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Preface

‘Electrical Circuit Theory and Technology, Revised second Edition’
provides coverage for a wide range of courses that contain electrical
principles, circuit theory and technology in their syllabuses, from
introductory to degree level. The chapter ‘Transients and Laplace
transforms’, which had been removed from the second edition due to page
restraints, has been included in this edition in response to popular demand.
The text is set out in four parts as follows:

PART 1, involving chapters 1 to 12, contains ‘Basic Electrical
Engineering Principles’ which any student wishing to progress in
electrical engineering would need to know. An introduction to electrical
circuits, resistance variation, chemical effects of electricity, series
and parallel circuits, capacitors and capacitance, magnetic circuits,
electromagnetism, electromagnetic induction, electrical measuring
instruments and measurements, semiconductor diodes and transistors are
all included in this section.

PART 2, involving chapters 13 to 22, contains ‘Electrical Principles
and Technology’ suitable for Advanced GNVQ, National Certificate,
National Diploma and City and Guilds courses in electrical and electronic
engineering. D.c. circuit theory, alternating voltages and currents,
single-phase series and parallel circuits, d.c. transients, operational
amplifiers, three-phase systems, transformers, d.c. machines and three-
phase induction motors are all included in this section.

PART 3, involving chapters 23 to 45, contains ‘Advanced Circuit
Theory and Technology’ suitable for Degree, Higher National
Certificate/Diploma and City and Guilds courses in electrical and
electronic/telecommunications engineering. The two earlier sections of the
book will provide a valuable reference/revision for students at this level.

Complex numbers and their application to series and parallel networks,
power in a.c. circuits, a.c. bridges, series and parallel resonance and
Q-factor, network analysis involving Kirchhoff’s laws, mesh and nodal
analysis, the superposition theorem, Thévenin’s and Norton’s theorems,
delta-star and star-delta transforms, maximum power transfer theorems
and impedance matching, complex waveforms, harmonic analysis,
magnetic materials, dielectrics and dielectric loss, field theory, attenuators,
filter networks, magnetically coupled circuits, transmission line theory and
transients and Laplace transforms are all included in this section.

PART 4 provides a short, ‘General Reference’ for standard electrical
quantities — their symbols and units, the Greek alphabet, common
prefixes and resistor colour coding and ohmic values.

At the beginning of each of the 45 chapters learning objectives
are listed.

At the end of each of the first three parts of the text is a handy reference
of the main formulae used.
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It is not possible to acquire a thorough understanding of electrical
principles, circuit theory and technology without working through a large
number of numerical problems. It is for this reason that ‘Electrical Circuit
Theory and Technology, Revised second Edition’contains some 740
detailed worked problems, together with over 1100 further problems,
all with answers in brackets immediately following each question. Over
1100 line diagrams further enhance the understanding of the theory.

Fourteen Assignments have been included, interspersed within the
text every few chapters. For example, Assignment 1 tests understanding
of chapters 1 to 4, Assignment 2 tests understanding of chapters 5 to 7,
Assignment 3 tests understanding of chapters 8 to 12, and so on. These
Assignments do not have answers given since it is envisaged that lecturers
could set the Assignments for students to attempt as part of their course
structure. Lecturers’ may obtain a complimentary set of solutions of the
Assignments in an Instructor’s Manual available from the publishers
via the internet — see below.

‘Learning by Example’ is at the heart of ‘Electrical Circuit Theory
and Technology, Revised second Edition’.

JOHN BIRD
University of Portsmouth



Free web downloads

Instructor’s Manual
Full worked solutions and mark scheme for all the Assignments in
this book.
This material is available to lecturers only. To obtain a password
please e-mail j.Blackfond@Elsevier.com with the following
details: course title, number of students, your job title and work
postal address.
To download the Instructor’s Manual visit
http://www.newnespress.com
and enter the book title in the search box, or use the following
direct URL:
http://www.bh.com/manuals/0750657847/

For up-to-date information on all Newnes textbooks visit our
websites:
www.newnespress.com
www.bh.com/engineering

Register as a user to receive regular e-mail bulletins.

If you have any suggestions for how we could improve this book
in future editions, corrections, or ideas for our future publishing
programme please e-mail Newnes at:
newnes@Elsevier.com



Part 1 Basic Electrical
Engineering
Principles



1 Units associated with
basic electrical quantities

At the end of this chapter you should be able to:

ž state the basic SI units

ž recognize derived SI units

ž understand prefixes denoting multiplication and division

ž state the units of charge, force, work and power and perform
simple calculations involving these units

ž state the units of electrical potential, e.m.f., resistance,
conductance, power and energy and perform simple
calculations involving these units

1.1 SI units The system of units used in engineering and science is the Système Inter-
nationale d’Unités (International system of units), usually abbreviated to
SI units, and is based on the metric system. This was introduced in 1960
and is now adopted by the majority of countries as the official system of
measurement.

The basic units in the SI system are listed with their symbols, in
Table 1.1.

TABLE 1.1 Basic SI Units

Quantity Unit

length metre, m
mass kilogram, kg
time second, s
electric current ampere, A
thermodynamic temperature kelvin, K
luminous intensity candela, cd
amount of substance mole, mol

Derived SI units use combinations of basic units and there are many of
them. Two examples are:

ž Velocity — metres per second (m/s)
ž Acceleration — metres per second squared (m/s2)
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SI units may be made larger or smaller by using prefixes which denote
multiplication or division by a particular amount. The six most common
multiples, with their meaning, are listed in Table 1.2.

TABLE 1.2

Prefix Name Meaning

M mega multiply by 1 000 000 (i.e. ð106)
k kilo multiply by 1000 (i.e. ð103)
m milli divide by 1000 (i.e. ð10�3)
� micro divide by 1 000 000 (i.e. ð10�6)
n nano divide by 1 000 000 000 (i.e. ð10�9)
p pico divide by 1 000 000 000 000 (i.e. ð10�12)

1.2 Charge The unit of charge is the coulomb (C) where one coulomb is one ampere
second. (1 coulomb D 6.24 ð 1018 electrons). The coulomb is defined as
the quantity of electricity which flows past a given point in an electric
circuit when a current of one ampere is maintained for one second. Thus,

charge, in coulombs Q = It

where I is the current in amperes and t is the time in seconds.

Problem 1. If a current of 5 A flows for 2 minutes, find the quan-
tity of electricity transferred.

Quantity of electricity Q D It coulombs

I D 5 A, t D 2 ð 60 D 120 s

Hence Q D 5 ð 120 D 600 C

1.3 Force The unit of force is the newton (N) where one newton is one kilogram
metre per second squared. The newton is defined as the force which, when
applied to a mass of one kilogram, gives it an acceleration of one metre
per second squared. Thus,

force, in newtons F = ma

where m is the mass in kilograms and a is the acceleration in metres
per second squared. Gravitational force, or weight, is mg, where g D
9.81 m/s2
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Problem 2. A mass of 5000 g is accelerated at 2 m/s2 by a force.
Determine the force needed.

Force D mass ð acceleration

D 5 kg ð 2 m/s2 D 10
kg m

s2
D 10 N

Problem 3. Find the force acting vertically downwards on a mass
of 200 g attached to a wire.

Mass D 200 g D 0.2 kg and acceleration due to gravity, g D 9.81 m/s2

Force acting downwards D weight D mass ð acceleration

D 0.2 kg ð 9.81 m/s2

D 1.962 N

1.4 Work The unit of work or energy is the joule (J) where one joule is one newton
metre. The joule is defined as the work done or energy transferred when
a force of one newton is exerted through a distance of one metre in the
direction of the force. Thus

work done on a body, in joules W = Fs

where F is the force in newtons and s is the distance in metres moved
by the body in the direction of the force. Energy is the capacity for
doing work.

1.5 Power The unit of power is the watt (W) where one watt is one joule per second.
Power is defined as the rate of doing work or transferring energy. Thus,

power in watts, P =
W
t

where W is the work done or energy transferred in joules and t is the
time in seconds. Thus

energy, in joules, W = Pt
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Problem 4. A portable machine requires a force of 200 N to move
it. How much work is done if the machine is moved 20 m and what
average power is utilized if the movement takes 25 s?

Work done D force ð distance D 200 N ð 20 m D 4000 Nm or 4 kJ

Power D work done

time taken
D 4000 J

25 s
D 160 J=s = 160 W

Problem 5. A mass of 1000 kg is raised through a height of 10 m
in 20 s. What is (a) the work done and (b) the power developed?

(a) Work done D force ð distance and force D mass ð acceleration

Hence, work done D 
1000 kg ð 9.81 m/s2� ð 
10 m�

D 98 100 Nm D 98.1 kNm or 98.1 kJ

(b) Power D work done

time taken
D 98100 J

20 s
D 4905 J/s

D 4905 W or 4.905 kW

1.6 Electrical potential
and e.m.f.

The unit of electric potential is the volt (V) where one volt is one joule
per coulomb. One volt is defined as the difference in potential between
two points in a conductor which, when carrying a current of one ampere,
dissipates a power of one watt, i.e.

volts D watts

amperes
D joules/second

amperes
D joules

ampere seconds
D joules

coulombs

A change in electric potential between two points in an electric circuit is
called a potential difference. The electromotive force (e.m.f.)provided
by a source of energy such as a battery or a generator is measured in volts.

1.7 Resistance and
conductance

The unit of electric resistance is the ohm (Z) where one ohm is one
volt per ampere. It is defined as the resistance between two points in a
conductor when a constant electric potential of one volt applied at the
two points produces a current flow of one ampere in the conductor. Thus,

resistance, in ohms R =
V
I
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where V is the potential difference across the two points in volts and I is
the current flowing between the two points in amperes.

The reciprocal of resistance is called conductanceand is measured in
siemens (S). Thus,

conductance, in siemens G =
1
R

where R is the resistance in ohms.

Problem 6. Find the conductance of a conductor of resistance
(a) 10 �, (b) 5 k� and (c) 100 m�

(a) Conductance G D 1

R
D 1

10
siemen D 0.1 s

(b) G D 1

R
D 1

5 ð 103
S D 0.2 ð 10�3 S D 0.2 mS

(c) G D 1

R
D 1

100 ð 10�3
S D 103

100
S D 10 S

1.8 Electrical power and
energy

When a direct current of I amperes is flowing in an electric circuit and
the voltage across the circuit is V volts, then

power, in watts P = VI

Electrical energy D Power ð time

D VIt Joules

Although the unit of energy is the joule, when dealing with large amounts
of energy, the unit used is the kilowatt hour (kWh) where

1 kWh D 1000 watt hour

D 1000 ð 3600 watt seconds or joules

D 3 600 000 J

Problem 7. A source e.m.f. of 5 V supplies a current of 3 A for
10 minutes. How much energy is provided in this time?

Energy D power ð time and power D voltage ð current. Hence
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Energy D VIt D 5 ð 3 ð 
10 ð 60� D 9000 Ws or J

D 9 kJ

Problem 8. An electric heater consumes 1.8 MJ when connected
to a 250 V supply for 30 minutes. Find the power rating of the
heater and the current taken from the supply.

i.e. Power rating of heater= 1 kW

Power P D VI, thus I D P

V
D 1000

250
D 4 A

Hence the current taken from the supply is 4 A

1.9 Summary of terms,
units and their symbols Quantity Quantity Unit Unit symbol

Symbol

Length l metre m
Mass m kilogram kg
Time t second s
Velocity v metres per second m/s or m s�1

Acceleration a metres per
second squared m/s2 or m s�2

Force F newton N
Electrical charge coulomb C

or quantity Q
Electric current I ampere A
Resistance R ohm �
Conductance G siemen S
Electromotive volt V

force E
Potential volt V

difference V
Work W joule J
Energy E (or W) joule J
Power P watt W

As progress is made through Electrical Circuit Theory and Technology
many more terms will be met. A full list of electrical quantities, together
with their symbols and units are given in Part 4, page 968.
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1.10 Further problems
on units associated with

basic electrical quantities
(Take g = 9.81 m/s2 where

appropriate)

1 What force is required to give a mass of 20 kg an acceleration of
30 m/s2? [600 N]

2 Find the accelerating force when a car having a mass of 1.7 Mg
increases its speed with a constant acceleration of 3 m/s2 [5.1 kN]

3 A force of 40 N accelerates a mass at 5 m/s2. Determine the mass.
[8 kg]

4 Determine the force acting downwards on a mass of 1500 g
suspended on a string. [14.72 N]

5 A force of 4 N moves an object 200 cm in the direction of the force.
What amount of work is done? [8 J]

6 A force of 2.5 kN is required to lift a load. How much work is done
if the load is lifted through 500 cm? [12.5 kJ]

7 An electromagnet exerts a force of 12 N and moves a soft iron
armature through a distance of 1.5 cm in 40 ms. Find the power
consumed. [4.5 W]

8 A mass of 500 kg is raised to a height of 6 m in 30 s. Find (a) the
work done and (b) the power developed.

[(a) 29.43 kNm (b) 981 W]

9 What quantity of electricity is carried by 6.24 ð 1021 electrons?
[1000 C]

10 In what time would a current of 1 A transfer a charge of 30 C? [30 s]

11 A current o

f 3 A flows for 5 minutes. What charge is transferred?

[900 C]

12 How long must a current of 0.1 A flow so as to transfer a charge of
30 C? [5 minutes]

13 Find the conductance of a resistor of resistance (a) 10Z (b) 2 kZ
(c) 2 mZ [(a) 0.1 S (b) 0.5 mS (c) 500 S]

14 A conductor has a conductance of 50 µS. What is its resistance?
[20 k�]

15 An e.m.f. of 250 V is connected across a resistance and the current
flowing through the resistance is 4 A. What is the power developed?

[1 kW]

16 450 J of energy are converted into heat in 1 minute. What power is
dissipated? [7.5 W]

17 A current of 10 A flows through a conductor and 10 W is dissipated.
What p.d. exists across the ends of the conductor? [1 V]

18 A battery of e.m.f. 12 V supplies a current of 5 A for 2 minutes.
How much energy is supplied in this time? [7.2 kJ]

19 A dc electric motor consumes 36 MJ when connected to a 250 V
supply for 1 hour. Find the power rating of the motor and the current
taken from the supply. [10 kW, 40 A]



2 An introduction to
electric circuits

At the end of this chapter you should be able to:

ž recognize common electrical circuit diagram symbols

ž understand that electric current is the rate of movement of
charge and is measured in amperes

ž appreciate that the unit of charge is the coulomb

ž calculate charge or quantity of electricity Q from Q D It

ž understand that a potential difference between two points in a
circuit is required for current to flow

ž appreciate that the unit of p.d. is the volt

ž understand that resistance opposes current flow and is
measured in ohms

ž appreciate what an ammeter, a voltmeter, an ohmmeter, a
multimeter and a C.R.O. measure

ž distinguish between linear and non-linear devices

ž state Ohm’s law as V D IR or I D V

R
or R D V

I

ž use Ohm’s law in calculations, including multiples and
sub-multiples of units

ž describe a conductor and an insulator, giving examples of each

ž appreciate that electrical power P is given by

P D VI D I2R D V2

R
watts

ž calculate electrical power

ž define electrical energy and state its unit

ž calculate electrical energy

ž state the three main effects of an electric current, giving
practical examples of each

ž explain the importance of fuses in electrical circuits

2.1 Standard symbols for
electrical components

Symbols are used for components in electrical circuit diagrams and some
of the more common ones are shown in Figure 2.1.
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Figure 2.1

2.2 Electric current and
quantity of electricity

All atomsconsist of protons, neutronsand electrons. The protons, which
have positive electrical charges, and the neutrons, which have no electrical
charge, are contained within the nucleus. Removed from the nucleus are
minute negatively charged particles called electrons. Atoms of different
materials differ from one another by having different numbers of protons,
neutrons and electrons. An equal number of protons and electrons exist
within an atom and it is said to be electrically balanced, as the positive
and negative charges cancel each other out. When there are more than
two electrons in an atom the electrons are arranged into shellsat various
distances from the nucleus.

All atoms are bound together by powerful forces of attraction existing
between the nucleus and its electrons. Electrons in the outer shell of an
atom, however, are attracted to their nucleus less powerfully than are
electrons whose shells are nearer the nucleus.
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It is possible for an atom to lose an electron; the atom, which is now
called an ion, is not now electrically balanced, but is positively charged
and is thus able to attract an electron to itself from another atom. Electrons
that move from one atom to another are called free electrons and such
random motion can continue indefinitely. However, if an electric pressure
or voltage is applied across any material there is a tendency for electrons
to move in a particular direction. This movement of free electrons, known
as drift , constitutes an electric current flow. Thus current is the rate of
movement of charge.

Conductors are materials that contain electrons that are loosely
connected to the nucleus and can easily move through the material from
one atom to another.

Insulators are materials whose electrons are held firmly to their
nucleus.

The unit used to measure the quantity of electrical charge Q is called
the coulomb C �where 1 coulomb D 6.24 ð 1018 electrons	

If the drift of electrons in a conductor takes place at the rate of one
coulomb per second the resulting current is said to be a current of one
ampere.

Thus, 1 ampere D 1 coulomb per second or 1 A D 1 C/s
Hence, 1 coulomb D 1 ampere second or 1 C D 1 As
Generally, if I is the current in amperes and t the time in seconds during

which the current flows, then Ið t represents the quantity of electrical
charge in coulombs, i.e.

quantity of electrical charge transferred, Q = I × t coulombs

Problem 1. What current must flow if 0.24 coulombs is to be
transferred in 15 ms?

Since the quantity of electricity, Q D It, then

I D Q

t
D 0.24

15 ð 10�3
D 0.24 ð 103

15
D 240

15
D 16 A

Problem 2. If a current of 10 A flows for four minutes, find the
quantity of electricity transferred.

Quantity of electricity, Q D It coulombs

I D 10 A; t D 4 ð 60 D 240 s

Hence Q D 10 ð 240 D 2400 C

Further problems on Q D Ið t may be found in Section 2.12, problems 1
to 3, page 21.
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2.3 Potential difference
and resistance

For a continuous current to flow between two points in a circuit a poten-
tial difference (p.d.) or voltage, V, is required between them; a complete
conducting path is necessary to and from the source of electrical energy.
The unit of p.d. is the volt, V

Figure 2.2 shows a cell connected across a filament lamp. Current flow,
by convention, is considered as flowing from the positive terminal of the
cell, around the circuit to the negative terminal.

The flow of electric current is subject to friction. This friction, or oppo-
sition, is called resistanceR and is the property of a conductor that limits
current. The unit of resistance is the ohm; 1 ohm is defined as the resis-
tance which will have a current of 1 ampere flowing through it when
1 volt is connected across it, i.e.

resistanceR =
potential difference

current
Figure 2.2

2.4 Basic electrical
measuring instruments

An ammeter is an instrument used to measure current and must be
connected in series with the circuit. Figure 2.2 shows an ammeter
connected in series with the lamp to measure the current flowing through
it. Since all the current in the circuit passes through the ammeter it must
have a very low resistance.

A voltmeter is an instrument used to measure p.d. and must be
connected in parallel with the part of the circuit whose p.d. is required. In
Figure 2.2, a voltmeter is connected in parallel with the lamp to measure
the p.d. across it. To avoid a significant current flowing through it a
voltmeter must have a very high resistance.

An ohmmeter is an instrument for measuring resistance.
A multimeter , or universal instrument, may be used to measure

voltage, current and resistance. An ‘Avometer’ is a typical example.
The cathode ray oscilloscope (CRO)may be used to observe wave-

forms and to measure voltages and currents. The display of a CRO
involves a spot of light moving across a screen. The amount by which
the spot is deflected from its initial position depends on the p.d. applied
to the terminals of the CRO and the range selected. The displacement is
calibrated in ‘volts per cm’. For example, if the spot is deflected 3 cm
and the volts/cm switch is on 10 V/cm then the magnitude of the p.d. is
3 cm ð 10 V/cm, i.e. 30 V (See Chapter 10 for more detail about elec-
trical measuring instruments and measurements.)

Figure 2.3

2.5 Linear and
non-linear devices

Figure 2.3 shows a circuit in which current I can be varied by the variable
resistor R2. For various settings of R2, the current flowing in resistor
R1, displayed on the ammeter, and the p.d. across R1, displayed on the
voltmeter, are noted and a graph is plotted of p.d. against current. The
result is shown in Figure 2.4(a) where the straight line graph passing
through the origin indicates that current is directly proportional to the p.d.
Since the gradient i.e. (p.d./current) is constant, resistance R1 is constant.
A resistor is thus an example of a linear device.
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Figure 2.4

If the resistor R1 in Figure 2.3 is replaced by a component such as a
lamp then the graph shown in Figure 2.4(b) results when values of p.d.
are noted for various current readings. Since the gradient is changing, the
lamp is an example of a non-linear device.

2.6 Ohm’s law Ohm’s law states that the current I flowing in a circuit is directly propor-
tional to the applied voltage V and inversely proportional to the resistance
R, provided the temperature remains constant. Thus,

I =
V
R

or V = IR or R =
V
I

Problem 3. The current flowing through a resistor is 0.8 A when
a p.d. of 20 V is applied. Determine the value of the resistance.

From Ohm’s law, resistance R D V

I
D 20

0.8
D 200

8
D 25Z

2.7 Multiples and
sub-multiples

Currents, voltages and resistances can often be very large or very small.
Thus multiples and sub-multiples of units are often used, as stated in
chapter 1. The most common ones, with an example of each, are listed
in Table 2.1

TABLE 2.1

Prefix Name Meaning Example

M mega multiply by 1 000 000
(i.e., ð 106)

2 M
 D 2 000 000 ohms

k kilo multiply by 1000
(i.e., ð 103)

10 kV D 10 000 volts

m milli divide by 1000
(i.e., ð 10�3)

25 mA D 25

1000
A

D 0.025 amperes

µ micro divide by 1 000 000
(i.e., ð 10�6)

50 µV D 50

1 000 000
V

D 0.000 05 volts
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A more extensive list of common prefixes are given on page 972.

Problem 4. Determine the p.d. which must be applied to a 2 k

resistor in order that a current of 10 mA may flow.

Resistance R D 2 k
 D 2 ð 103 D 2000 


Current I D 10 mA D 10 ð 10�3 A or
10

103
or

10

1000
A D 0.01 A

From Ohm’s law, potential difference, V D IR D �0.01	�2000	 D 20 V

Problem 5. A coil has a current of 50 mA flowing through it when
the applied voltage is 12 V. What is the resistance of the coil?

Resistance, R D V

I
D 12

50 ð 10�3
D 12 ð 103

50
D 12 000

50
D 240Z

Problem 6. A 100 V battery is connected across a resistor and
causes a current of 5 mA to flow. Determine the resistance of the
resistor. If the voltage is now reduced to 25 V, what will be the
new value of the current flowing?

Resistance R D V

I
D 100

5 ð 10�3
D 100 ð 103

5
D 20 ð 103 D 20 kZ

Current when voltage is reduced to 25 V,

I D V

R
D 25

20 ð 103
D 25

20
ð 10�3 D 1.25 mA

Problem 7. What is the resistance of a coil which draws a current
of (a) 50 mA and (b) 200 µA from a 120 V supply?

(a) Resistance R D V

I
D 120

50 ð 10�3

D 120

0.05
D 12 000

5
D 2 400Z or 2.4 kZ

(b) Resistance R D 120

200 ð 10�6
D 120

0.0002

D 1200 000

2
D 600 000Z or 600 kZ or 0.6 MZ

Further problems on Ohm’s law may be found in Section 2.12, problems 4
to 7, page 21.
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2.8 Conductors and
insulators

A conductor is a material having a low resistance which allows electric
current to flow in it. All metals are conductors and some examples include
copper, aluminium, brass, platinum, silver, gold and carbon.

An insulator is a material having a high resistance which does not
allow electric current to flow in it. Some examples of insulators include
plastic, rubber, glass, porcelain, air, paper, cork, mica, ceramics and
certain oils.

2.9 Electrical power and
energy

Electrical power

Power P in an electrical circuit is given by the product of potential
difference V and current I, as stated in Chapter 1. The unit of power is
the watt, W. Hence

P = V × I watts �2.1	

From Ohm’s law, V D IR
Substituting for V in equation (2.1) gives:

P D �IR	ð I

i.e. P = I 2R watts

Also, from Ohm’s law, I D V

R
Substituting for I in equation (2.1) gives:

P D Vð V

R

i.e. P =
V 2

R
watts

There are thus three possible formulae which may be used for calculating
power.

Problem 8. A 100 W electric light bulb is connected to a 250 V
supply. Determine (a) the current flowing in the bulb, and (b) the
resistance of the bulb.

Power P D Vð I, from which, current I D P

V

(a) Current I D 100

250
D 10

25
D 2

5
D 0.4 A

(b) Resistance R D V

I
D 250

0.4
D 2500

4
D 625Z
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Problem 9. Calculate the power dissipated when a current of
4 mA flows through a resistance of 5 k


Power P D I2R D �4 ð 10�3	2�5 ð 103	

D 16 ð 10�6 ð 5 ð 103 D 80 ð 10�3

D 0.08 W or 80 mW

Alternatively, since I D 4 ð 10�3 and R D 5 ð 103 then from Ohm’s law,
voltage V D IR D 4 ð 10�3 ð 5 ð 10�3 D 20 V
Hence, power P D Vð I D 20 ð 4 ð 10�3 D 80 mW

Problem 10. An electric kettle has a resistance of 30 
. What
current will flow when it is connected to a 240 V supply? Find
also the power rating of the kettle.

Current, I D V

R
D 240

30
D 8 A

Power, P D VI D 240 ð 8 D 1920 W D 1.92 kW

D power rating of kettle

Problem 11. A current of 5 A flows in the winding of an electric
motor, the resistance of the winding being 100 
. Determine (a) the
p.d. across the winding, and (b) the power dissipated by the coil.

(a) Potential difference across winding, V D IR D 5 ð 100 D 500 V

(b) Power dissipated by coil, P D I2R D 52 ð 100

D 2500 W or 2.5 kW

(Alternatively, P D Vð I D 500 ð 5 D 2500 W or 2.5 kW)

Problem 12. The current/voltage relationship for two resistors A
and B is as shown in Figure 2.5. Determine the value of the resis-
tance of each resistor.

Figure 2.5

For resistor A, R D V

I
D 20 A

20 mA
D 20

0.02
D 2 000

2
D 1 000Z or 1 kZ

For resistor B, R D V

I
D 16 V

5 mA
D 16

0.005
D 16 000

5
D 3 200Z or

3.2 kZ
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Problem 13. The hot resistance of a 240 V filament lamp is
960 
. Find the current taken by the lamp and its power rating.

From Ohm’s law, current I D V

R
D 240

960
D 24

96
D 1

4
A or 0.25 A

Power rating P D VI D �240	
(

1

4

)
D 60 W

Electrical energy

Electrical energy= power × time

If the power is measured in watts and the time in seconds then the unit of
energy is watt-seconds or joules. If the power is measured in kilowatts and
the time in hours then the unit of energy is kilowatt-hours , often called
the ‘unit of electricity ’. The ‘electricity meter’ in the home records the
number of kilowatt-hours used and is thus an energy meter.

Problem 14. A 12 V battery is connected across a load having a
resistance of 40 
. Determine the current flowing in the load, the
power consumed and the energy dissipated in 2 minutes.

Current I D V

R
D 12

40
D 0.3 A

Power consumed, P D VI D �12	�0.3	 D 3.6 W

Energy dissipated D power ð time D �3.6 W	�2 ð 60 s	 D 432 J
(since 1 J D 1 Ws)

Problem 15. A source of e.m.f. of 15 V supplies a current of 2 A
for six minutes. How much energy is provided in this time?

Energy D power ð time, and power D voltage ð current

Hence energy D VIt D 15 ð 2 ð �6 ð 60	 D 10 800 Ws or J D 10.8 kJ

Problem 16. Electrical equipment in an office takes a current of
13 A from a 240 V supply. Estimate the cost per week of electricity
if the equipment is used for 30 hours each week and 1 kWh of
energy costs 7p

Power D VI watts D 240 ð 13 D 3120 W D 3.12 kW
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Energy used per week D power ð time D �3.12 kW	ð �30 h	

D 93.6 kWh
Cost at 7p per kWh D 93.6 ð 7 D 655.2 p

Hence weekly cost of electricity = £6.55

Problem 17. An electric heater consumes 3.6 MJ when connected
to a 250 V supply for 40 minutes. Find the power rating of the
heater and the current taken from the supply.

Power D energy

time
D 3.6 ð 106

40 ð 60

J

s
(or W) D 1500 W

i.e. Power rating of heater D 1.5 kW

Power P D VI, thus I D P

V
D 1500

250
D 6 A

Hence the current taken from the supply is 6 A

Problem 18. Determine the power dissipated by the element of
an electric fire of resistance 20 
 when a current of 10 A flows
through it. If the fire is on for 6 hours determine the energy used
and the cost if 1 unit of electricity costs 7p.

PowerP D I2R D 102 ð 20 D 100 ð 20 D 2 000 W or 2 kW
(Alternatively, from Ohm’s law, V D IR D 10 ð 20 D 200 V, hence
power P D Vð I D 200 ð 10 D 2000 W D 2 kW)
Energy used in 6 hours D power ð time D 2 kW ð 6 h D 12 kWh
1 unit of electricity D 1 kWh
Hence the number of units used is 12
Cost of energy D 12 ð 7 D 84p

Problem 19. A business uses two 3 kW fires for an average of
20 hours each per week, and six 150 W lights for 30 hours each
per week. If the cost of electricity is 7p per unit, determine the
weekly cost of electricity to the business.

Energy D power ð time

Energy used by one 3 kW fire in 20 hours D 3 kW ð 20 h D 60 kWh

Hence weekly energy used by two 3 kW fires D 2 ð 60 D 120 kWh

Energy used by one 150 W light for 30 hours D 150 W ð 30 h

D 4500 Wh D 4.5 kWh
Hence weekly energy used by six 150 W lamps D 6 ð 4.5 D 27 kWh
Total energy used per week D 120 C 27 D 147 kWh
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1 unit of electricity D 1 kWh of energy

Thus weekly cost of energy at 7p per kWh D 7 ð 147 D 1029p

D £10.29

Further problems on power and energy may be found in Section 2.12,
problems 8 to 17, page 21.

2.10 Main effects of
electric current

The three main effects of an electric current are:

(a) magnetic effect
(b) chemical effect
(c) heating effect

Some practical applications of the effects of an electric current include:

Magnetic effect: bells, relays, motors, generators, transformers,
telephones, car-ignition and lifting magnets

Chemical effect: primary and secondary cells and electroplating

Heating effect: cookers, water heaters, electric fires, irons, furnaces,
kettles and soldering irons

2.11 Fuses A fuseis used to prevent overloading of electrical circuits. The fuse, which
is made of material having a low melting point, utilizes the heating effect
of an electric current. A fuse is placed in an electrical circuit and if the
current becomes too large the fuse wire melts and so breaks the circuit. A
circuit diagram symbol for a fuse is shown in Figure 2.1, on page 11.

Problem 20. If 5 A, 10 A and 13 A fuses are available, state
which is most appropriate for the following appliances which are
both connected to a 240 V supply (a) Electric toaster having a
power rating of 1 kW (b) Electric fire having a power rating of
3 kW

Power P D VI, from which, current I D P

V

(a) For the toaster, current I D P

V
D 1000

240
D 100

24
D 4

1

6
A

Hence a 5 A fuse is most appropriate

(b) For the fire, current I D P

V
D 3000

240
D 300

24
D 12

1

2
A

Hence a 13 A fuse is most appropriate
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A further problem on fuses may be found in Section 2.12 following,
problem 18, page 22.

2.12 Further problems
on the introduction to

electric circuits

Q = I × t

1 In what time would a current of 10 A transfer a charge of 50 C?
[5 s]

2 A current o

f 6 A flows for 10 minutes. What charge is transferred?

[3600 C]

3 How long must a current of 100 mA flow so as to transfer a charge
of 80 C? [13 min 20 s]

Ohm’s law

4 The current flowing through a heating element is 5 A when a p.d. of
35 V is applied across it. Find the resistance of the element. [7 
]

5 A 60 W electric light bulb is connected to a 240 V supply. Determine
(a) the current flowing in the bulb and (b) the resistance of the bulb.

[(a) 0.25 A (b) 960 
]

6 Graphs of current against voltage for two resistors P and Q are shown
in Figure 2.6. Determine the value of each resistor.

[2 m
, 5 m
]

7 Determine the p.d. which must be applied to a 5 k
 resistor such
that a current of 6 mA may flow. [30 V]Figure 2.6

Power and energy

8 The hot resistance of a 250 V filament lamp is 625 
. Determine
the current taken by the lamp and its power rating.

[0.4 A, 100 W]

9 Determine the resistance of a coil connected to a 150 V supply when
a current of (a) 75 mA (b) 300 µA flows through it.

[(a) 2 k
 (b) 0.5 M
]

10 Determine the resistance of an electric fire which takes a current of
12 A from a 240 V supply. Find also the power rating of the fire
and the energy used in 20 h. [20 
, 2.88 kW, 57.6 kWh]

11 Determine the power dissipated when a current of 10 mA flows
through an appliance having a resistance of 8 k
. [0.8 W]

12 85.5 J of energy are converted into heat in nine seconds. What power
is dissipated? [9.5 W]

13 A current of 4 A flows through a conductor and 10 W is dissipated.
What p.d. exists across the ends of the conductor? [2.5 V]



22 Electrical Circuit Theory and Technology

14 Find the power dissipated when:
(a) a current of 5 mA flows through a resistance of 20 k

(b) a voltage of 400 V is applied across a 120 k
 resistor
(c) a voltage applied to a resistor is 10 kV and the current flow is

4 mA. [(a) 0.5 W (b) 1 1
3 W (c) 40 W]

15 A battery of e.m.f. 15 V supplies a current of 2 A for 5 min. How
much energy is supplied in this time? [9 kJ]

16 In a household during a particular week three 2 kW fires are used on
average 25 h each and eight 100 W light bulbs are used on average
35 h each. Determine the cost of electricity for the week if 1 unit of
electricity costs 7p. [£12.46]

17 Calculate the power dissipated by the element of an electric fire of
resistance 30 
 when a current of 10 A flows in it. If the fire is on
for 30 hours in a week determine the energy used. Determine also
the weekly cost of energy if electricity costs 7.2p per unit.

[3 kW, 90 kWh, £6.48]

Fuses

18 A television set having a power rating of 120 W and electric lawn-
mower of power rating 1 kW are both connected to a 240 V supply.
If 3 A, 5 A and 10 A fuses are available state which is the most
appropriate for each appliance. [3 A, 5 A]



3 Resistance variation

At the end of this chapter you should be able to:

ž appreciate that electrical resistance depends on four factors

ž appreciate that resistance R D �l

a
, where � is the resistivity

ž recognize typical values of resistivity and its unit

ž perform calculations using R D �l

a
ž define the temperature coefficient of resistance, ˛

ž recognize typical values for ˛

ž perform calculations using R� D R0�1 C ˛��

3.1 Resistance and
resistivity

The resistance of an electrical conductor depends on 4 factors, these
being: (a) the length of the conductor, (b) the cross-sectional area of the
conductor, (c) the type of material and (d) the temperature of the material.

Resistance, R, is directly proportional to length, l, of a conductor, i.e.
R / l. Thus, for example, if the length of a piece of wire is doubled, then
the resistance is doubled.

Resistance, R, is inversely proportional to cross-sectional area, a, of a
conductor, i.e. R / 1/a. Thus, for example, if the cross-sectional area of
a piece of wire is doubled then the resistance is halved.

Since R / l and R / 1/a then R / l/a. By inserting a constant of
proportionality into this relationship the type of material used may be
taken into account. The constant of proportionality is known as the resis-
tivity of the material and is given the symbol � (Greek rho). Thus,

resistance R =
rl
a

ohms

� is measured in ohm metres (
m)
The value of the resistivity is that resistance of a unit cube of the

material measured between opposite faces of the cube.
Resistivity varies with temperature and some typical values of resistiv-

ities measured at about room temperature are given below:

Copper 1.7 ð 10�8 
m (or 0.017 µ
m)

Aluminium 2.6 ð 10�8 
m (or 0.026 µ
m)

Carbon (graphite) 10 ð 10�8 
m (or 0.10 µ
m)
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Glass 1 ð 1010 
m (or 104 µ
m)

Mica 1 ð 1013 
m (or 107 µ
m)

Note that good conductors of electricity have a low value of resistivity
and good insulators have a high value of resistivity.

Problem 1. The resistance of a 5 m length of wire is 600 
.
Determine (a) the resistance of an 8 m length of the same wire,
and (b) the length of the same wire when the resistance is 420 
.

(a) Resistance, R, is directly proportional to length, l, i.e. R / l

Hence, 600 
 / 5 m or 600 D �k��5�, where k is the coefficient of
proportionality. Hence,

k D 600

5
D 120

When the length l is 8 m, then resistance

R D kl D �120��8� D 960 Z

(b) When the resistance is 420 
, 420 D kl, from which,

length l D 420

k
D 420

120
D 3.5 m

Problem 2. A piece of wire of cross-sectional area 2 mm2 has a
resistance of 300 
. Find (a) the resistance of a wire of the same
length and material if the cross-sectional area is 5 mm2, (b) the
cross-sectional area of a wire of the same length and material of
resistance 750 


Resistance R is inversely proportional to cross-sectional area, a, i.e. R / 1

a

Hence 300 
 / 1

2 mm2
or 300 D �k�

(
1

2

)
,

from which, the coefficient of proportionality, k D 300 ð 2 D 600

(a) When the cross-sectional area a D 5 mm2 then R D �k�
(

1
5

)

D �600�
(

1
5

)
D 120 Z

(Note that resistance has decreased as the cross-sectional is
increased.)

(b) When the resistance is 750 
 then 750 D �k� �1/a�, from which

cross-sectional area, a D k

750
D 600

750
D 0.8 mm2
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Problem 3. A wire of length 8 m and cross-sectional area 3 mm2

has a resistance of 0.16 
. If the wire is drawn out until its cross-
sectional area is 1 mm2, determine the resistance of the wire.

Resistance R is directly proportional to length l, and inversely proportional
to the cross-sectional area, a, i.e.,

i.e., R / l

a
or R D k

(
l

a

)
, where k is the coefficient of proportionality.

Since R D 0.16, l D 8 and a D 3, then 0.16 D �k�
(

8
3

)
, from which

k D 0.16 ð 3
8 D 0.06

If the cross-sectional area is reduced to 1
3 of its original area then the

length must be tripled to 3 ð 8, i.e., 24 m

New resistance R D k
(

l

a

)
D 0.06

(
24

1

)
D 1.44 Z

Problem 4. Calculate the resistance of a 2 km length of
aluminium overhead power cable if the cross-sectional area of
the cable is 100 mm2. Take the resistivity of aluminium to be
0.03 ð 10�6 
m

Length l D 2 km D 2000 m; area, a D 100 mm2 D 100 ð 10�6m2; resis-
tivity � D 0.03 ð 10�6 
m

Resistance R D �l

a
D �0.03 ð 10�6 
m��2000 m�

�100 ð 10�6 m2�
D 0.03 ð 2000

100



D 0.6 Z

Problem 5. Calculate the cross-sectional area, in mm2, of a piece
of copper wire, 40 m in length and having a resistance of 0.25 
.
Take the resistivity of copper as 0.02 ð 10�6 
m

Resistance R D �l

a
hence cross-sectional area a D �l

R

D �0.02 ð 10�6 
m��40 m�

0.25 

D 3.2 ð 10�6 m2

D �3.2 ð 10�6� ð 106 mm2 D 3.2 mm2

Problem 6. The resistance of 1.5 km of wire of cross-sectional
area 0.17 mm2 is 150 
. Determine the resistivity of the wire.
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Resistance, R D �l

a

hence, resistivity � D Ra

l
D �150 
��0.17 ð 10�6 m2�

�1500 m�

D 0.017 × 10−6 Zm or 0.017 mZm

Problem 7. Determine the resistance of 1200 m of copper cable
having a diameter of 12 mm if the resistivity of copper is
1.7 ð 10�8 
m

Cross-sectional area of cable, a D �r2 D �
(

12
2

)2

D 36� mm2 D 36� ð 10�6 m2

Resistance R D �l

a
D �1.7 ð 10�8 
m� �1200 m�

�36� ð 10�6 m2�

D 1.7 ð 1200 ð 106

108 ð 36�

 D 1.7 ð 12

36�



D 0.180 Z

Further problems on resistance and resistivity may be found in Section 3.3,
problems 1 to 7, page 29.

3.2 Temperature
coefficient of resistance

In general, as the temperature of a material increases, most conductors
increase in resistance, insulators decrease in resistance, whilst the resis-
tance of some special alloys remain almost constant.

The temperature coefficient of resistance of a material is the increase
in the resistance of a 1 
 resistor of that material when it is subjected
to a rise of temperature of 1°C. The symbol used for the temperature
coefficient of resistance is ˛ (Greek alpha). Thus, if some copper wire of
resistance 1 
 is heated through 1°C and its resistance is then measured
as 1.0043 
 then ˛ D 0.0043 
/
°C for copper. The units are usually
expressed only as ‘per °C’, i.e., ˛ D 0.0043/°C for copper. If the 1 

resistor of copper is heated through 100°C then the resistance at 100°C
would be 1 C 100 ð 0.0043 D 1.43


Some typical values of temperature coefficient of resistance measured
at 0°C are given below:

Copper 0.0043/°C Aluminium 0.0038/°C
Nickel 0.0062/°C Carbon �0.000 48/°C
Constantan 0 Eureka 0.000 01/°C

(Note that the negative sign for carbon indicates that its resistance falls
with increase of temperature.)
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If the resistance of a material at 0°C is known the resistance at any
other temperature can be determined from:

Rq = R0.1Y a0q/

where R0 D resistance at 0°C

R� D resistance at temperature �°C

˛0 D temperature coefficient of resistance at 0°C

Problem 8. A coil of copper wire has a resistance of 100 
 when
its temperature is 0°C. Determine its resistance at 70°C if the
temperature coefficient of resistance of copper at 0°C is 0.0043/°C

Resistance R� D R0�1 C ˛0��

Hence resistance at 70°C, R70 D 100[1 C �0.0043��70�]

D 100[1 C 0.301] D 100�1.301�

D 130.1 Z

Problem 9. An aluminium cable has a resistance of 27 
 at a
temperature of 35°C. Determine its resistance at 0°C. Take the
temperature coefficient of resistance at 0°C to be 0.0038/°C

Resistance at �°C, R� D R0�1 C ˛0��

Hence resistance at 0°C, R0 D R�

�1 C ˛0��
D 27

[1 C �0.0038��35�]

D 27

1 C 0.133
D 27

1.133
D 23.83 Z

Problem 10. A carbon resistor has a resistance of 1 k
 at 0°C.
Determine its resistance at 80°C. Assume that the temperature coef-
ficient of resistance for carbon at 0°C is �0.0005/°C

Resistance at temperature �°C, R� D R0�1 C ˛0 ��

i.e., R� D 1000[1 C ��0.0005��80�]

D 1000[1 � 0.040] D 1000�0.96� D 960 Z

If the resistance of a material at room temperature (approximately 20°C),
R20, and the temperature coefficient of resistance at 20°C, ˛20, are known
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then the resistance R� at temperature �°C is given by:

Rq = R20[1Y a20.q − 20/]

Problem 11. A coil of copper wire has a resistance of 10 
 at
20°C. If the temperature coefficient of resistance of copper at 20°C
is 0.004/°C determine the resistance of the coil when the tempera-
ture rises to 100°C

Resistance at �°C, R D R20[1 C ˛20�� � 20�]

Hence resistance at 100°C, R100 D 10[1 C �0.004��100 � 20�]

D 10[1 C �0.004��80�]

D 10[1 C 0.32]

D 10�1.32� D 13.2 Z

Problem 12. The resistance of a coil of aluminium wire at 18°C
is 200 
. The temperature of the wire is increased and the resis-
tance rises to 240 
. If the temperature coefficient of resistance
of aluminium is 0.0039/°C at 18°C determine the temperature to
which the coil has risen.

Let the temperature rise to �°

Resistance at �°C, R� D R18[1 C ˛18�� � 18�]

i.e. 240 D 200[1 C �0.0039��� � 18�]

240 D 200 C �200��0.0039��� � 18�

240 � 200 D 0.78�� � 18�

40 D 0.78�� � 18�

40

0.78
D � � 18

51.28 D � � 18, from which, � D 51.28 C 18 D 69.28°C

Hence the temperature of the coil increases to 69.28°C

If the resistance at 0°C is not known, but is known at some other temper-
ature �1, then the resistance at any temperature can be found as follows:

R1 D R0�1 C ˛0�1� and R2 D R0�1 C ˛0�2�
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Dividing one equation by the other gives:

R1

R2
=

1Y a0q1

1Y a0q2

where R2 D resistance at temperature �2

Problem 13. Some copper wire has a resistance of 200 
 at 20°C.
A current is passed through the wire and the temperature rises to
90°C. Determine the resistance of the wire at 90°C, correct to the
nearest ohm, assuming that the temperature coefficient of resistance
is 0.004/°C at 0°C

R20 D 200 
, ˛0 D 0.004/°C

R20

R90
D [1 C ˛0�20�]

[1 C ˛0�90�]

Hence R90 D R20[1 C 90˛0]

[1 C 20˛0]
D 200[1 C 90�0.004�]

[1 C 20�0.004�]
D 200[1 C 0.36]

[1 C 0.08]

D 200�1.36�

�1.08�
D 251.85 Z

i.e., the resistance of the wire at 90°C is 252 Z

Further problems on temperature coefficient of resistance may be found in
Section 3.3, following, problems 8 to 14, page 30.

3.3 Further problems on
resistance variation

Resistance and resistivity

1 The resistance of a 2 m length of cable is 2.5 
. Determine (a) the
resistance of a 7 m length of the same cable and (b) the length of the
same wire when the resistance is 6.25 
. [(a) 8.75 
 (b) 5 m]

2 Some wire of cross-sectional area 1 mm2 has a resistance of 20 
.
Determine (a) the resistance of a wire of the same length and material
if the cross-sectional area is 4 mm2, and (b) the cross-sectional area
of a wire of the same length and material if the resistance is 32 
.

[(a) 5 
 (b) 0.625 mm2]

3 Some wire of length 5 m and cross-sectional area 2 mm2 has a resis-
tance of 0.08 
. If the wire is drawn out until its cross-sectional area
is 1 mm2, determine the resistance of the wire. [0.32 
]

4 Find the resistance of 800 m of copper cable of cross-sectional area
20 mm2. Take the resistivity of copper as 0.02 µ
m. [0.8 
]
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5 Calculate the cross-sectional area, in mm2, of a piece of aluminium
wire 100 m long and having a resistance of 2 
. Take the resistivity
of aluminium as 0.03 ð 10�6 
m. [1.5 mm2]

6 (a) What does the resistivity of a material mean?

(b) The resistance of 500 m of wire of cross-sectional area 2.6 mm2

is 5 
. Determine the resistivity of the wire in µ
m.
[0.026 µ
m]

7 Find the resistance of 1 km of copper cable having a diameter of
10 mm if the resistivity of copper is 0.017 ð 10�6 
m. [0.216 
]

Temperature coefficient of resistance

8 A coil of aluminium wire has a resistance of 50 
 when its temper-
ature is 0°C. Determine its resistance at 100°C if the temperature
coefficient of resistance of aluminium at 0°C is 0.0038/°C. [69 
]

9 A copper cable has a resistance of 30 
 at a temperature of 50°C.
Determine its resistance at 0°C. Take the temperature coefficient of
resistance of copper at 0°C as 0.0043/°C. [24.69 
]

10 The temperature coefficient of resistance for carbon at 0°C is
�0.00048/°C. What is the significance of the minus sign? A carbon
resistor has a resistance of 500 
 at 0°C. Determine its resistance
at 50°C. [488 
]

11 A coil of copper wire has a resistance of 20 
 at 18°C. If the
temperature coefficient of resistance of copper at 18°C is 0.004/°C,
determine the resistance of the coil when the temperature rises
to 98°C [26.4 
]

12 The resistance of a coil of nickel wire at 20°C is 100 
. The temper-
ature of the wire is increased and the resistance rises to 130 
. If the
temperature coefficient of resistance of nickel is 0.006/°C at 20°C,
determine the temperature to which the coil has risen. [70°C]

13 Some aluminium wire has a resistance of 50 
 at 20°C. The wire
is heated to a temperature of 100°C. Determine the resistance of the
wire at 100°C, assuming that the temperature coefficient of resistance
at 0°C is 0.004/°C [64.8 
]

14 A copper cable is 1.2 km long and has a cross-sectional area of
5 mm2. Find its resistance at 80°C if at 20°C the resistivity of copper
is 0.02 ð 10�6 
m and its temperature coefficient of resistance is
0.004/°C [5.952 
]



4 Chemical effects of
electricity

At the end of this chapter you should be able to:

ž understand electrolysis and its applications, including
electroplating

ž appreciate the purpose and construction of a simple cell
ž explain polarization and local action
ž explain corrosion and its effects
ž define the terms e.m.f., E, and internal resistance, r, of a cell
ž perform calculations using V D E� Ir
ž determine the total e.m.f. and total internal resistance for cells

connected in series and in parallel
ž distinguish between primary and secondary cells
ž explain the construction and practical applications of the

Leclanché, mercury, lead-acid and alkaline cells
ž list the advantages and disadvantages of alkaline cells over

lead-acid cells
ž understand the term ‘cell capacity’ and state its unit

4.1 Introduction A material must contain charged particles to be able to conduct elec-
tric current. In solids, the current is carried by electrons. Copper, lead,
aluminium, iron and carbon are some examples of solid conductors. In
liquids and gases, the current is carried by the part of a molecule which
has acquired an electric charge, called ions. These can possess a positive
or negative charge, and examples include hydrogen ion HC, copper ion
CuCC and hydroxyl ion OH�. Distilled water contains no ions and is a
poor conductor of electricity whereas salt water contains ions and is a
fairly good conductor of electricity.

4.2 Electrolysis Electrolysis is the decomposition of a liquid compound by the passage
of electric current through it. Practical applications of electrolysis include
the electroplating of metals (see Section 4.3), the refining of copper and
the extraction of aluminium from its ore.

An electrolyte is a compound which will undergo electrolysis. Exam-
ples include salt water, copper sulphate and sulphuric acid.
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The electrodesare the two conductors carrying current to the elec-
trolyte. The positive-connected electrode is called the anode and the
negative-connected electrode the cathode.

When two copper wires connected to a battery are placed in a beaker
containing a salt water solution, current will flow through the solution. Air
bubbles appear around the wires as the water is changed into hydrogen
and oxygen by electrolysis.

4.3 Electroplating Electroplating uses the principle of electrolysis to apply a thin coat of
one metal to another metal. Some practical applications include the tin-
plating of steel, silver-plating of nickel alloys and chromium-plating of
steel. If two copper electrodes connected to a battery are placed in a beaker
containing copper sulphate as the electrolyte it is found that the cathode
(i.e. the electrode connected to the negative terminal of the battery) gains
copper whilst the anode loses copper.

4.4 The simple cell The purpose of an electric cell is to convert chemical energy into electrical
energy.

A simple cell comprises two dissimilar conductors (electrodes) in an
electrolyte. Such a cell is shown in Figure 4.1, comprising copper and zinc
electrodes. An electric current is found to flow between the electrodes.
Other possible electrode pairs exist, including zinc-lead and zinc-iron. The
electrode potential (i.e. the p.d. measured between the electrodes) varies
for each pair of metals. By knowing the e.m.f. of each metal with respect
to some standard electrode the e.m.f. of any pair of metals may be deter-
mined. The standard used is the hydrogen electrode. The electrochemical
series is a way of listing elements in order of electrical potential, and
Table 4.1 shows a number of elements in such a series.

Figure 4.1

TABLE 4.1 Part of the electrochemical series

Potassium
sodium
aluminium
zinc
iron
lead
hydrogen
copper
silver
carbon

In a simple cell two faults exist — those due to polarization and local
action.
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Polarization

If the simple cell shown in Figure 4.1 is left connected for some time,
the current I decreases fairly rapidly. This is because of the formation of
a film of hydrogen bubbles on the copper anode. This effect is known as
the polarization of the cell. The hydrogen prevents full contact between
the copper electrode and the electrolyte and this increases the internal
resistance of the cell. The effect can be overcome by using a chemical
depolarizing agent or depolarizer, such as potassium dichromate which
removes the hydrogen bubbles as they form. This allows the cell to deliver
a steady current.

Local action

When commercial zinc is placed in dilute sulphuric acid, hydrogen gas
is liberated from it and the zinc dissolves. The reason for this is that
impurities, such as traces of iron, are present in the zinc which set up
small primary cells with the zinc. These small cells are short-circuited
by the electrolyte, with the result that localized currents flow causing
corrosion. This action is known as local action of the cell. This may be
prevented by rubbing a small amount of mercury on the zinc surface,
which forms a protective layer on the surface of the electrode.
When two metals are used in a simple cell the electrochemical series may
be used to predict the behaviour of the cell:

(i) The metal that is higher in the series acts as the negative electrode,
and vice-versa. For example, the zinc electrode in the cell shown in
Figure 4.1 is negative and the copper electrode is positive.

(ii) The greater the separation in the series between the two metals the
greater is the e.m.f. produced by the cell.

The electrochemical series is representative of the order of reactivity of
the metals and their compounds:

(i) The higher metals in the series react more readily with oxygen and
vice-versa.

(ii) When two metal electrodes are used in a simple cell the one that is
higher in the series tends to dissolve in the electrolyte.

4.5 Corrosion Corrosion is the gradual destruction of a metal in a damp atmosphere by
means of simple cell action. In addition to the presence of moisture and
air required for rusting, an electrolyte, an anode and a cathode are required
for corrosion. Thus, if metals widely spaced in the electrochemical series,
are used in contact with each other in the presence of an electrolyte,
corrosion will occur. For example, if a brass valve is fitted to a heating
system made of steel, corrosion will occur.

The effects of corrosioninclude the weakening of structures, the reduc-
tion of the life of components and materials, the wastage of materials and
the expense of replacement.
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Corrosion may be prevented by coating with paint, grease, plastic
coatings and enamels, or by plating with tin or chromium. Also, iron may
be galvanized, i.e., plated with zinc, the layer of zinc helping to prevent
the iron from corroding.

4.6 E.m.f. and internal
resistance of a cell

The electromotive force (e.m.f.),E , of a cell is the p.d. between its
terminals when it is not connected to a load (i.e. the cell is on ‘no load’).

The e.m.f. of a cell is measured by using a high resistance voltmeter
connected in parallel with the cell. The voltmeter must have a high resis-
tance otherwise it will pass current and the cell will not be on no-load.
For example, if the resistance of a cell is 1 � and that of a voltmeter
1 M� then the equivalent resistance of the circuit is 1 M�C 1�, i.e.
approximately 1 M�, hence no current flows and the cell is not loaded.

The voltage available at the terminals of a cell falls when a load is
connected. This is caused by the internal resistanceof the cell which is
the opposition of the material of the cell to the flow of current. The internal
resistance acts in series with other resistances in the circuit. Figure 4.2
shows a cell of e.m.f. E volts and internal resistance, r, and XY represents
the terminals of the cell.Figure 4.2

When a load (shown as resistance R) is not connected, no current flows
and the terminal p.d., V D E. When R is connected a current I flows which
causes a voltage drop in the cell, given by Ir. The p.d. available at the
cell terminals is less than the e.m.f. of the cell and is given by:

V = E − Ir

Thus if a battery of e.m.f. 12 volts and internal resistance 0.01 �
delivers a current of 100 A, the terminal p.d.,

V D 12 � �100��0.01�

D 12 � 1 D 11 V

When different values of potential difference V, across a cell or power
supply are measured for different values of current I, a graph may be
plotted as shown in Figure 4.3. Since the e.m.f. E of the cell or power
supply is the p.d. across its terminals on no load (i.e. when I D 0), then
E is as shown by the broken line.Figure 4.3

Since V D E� Ir then the internal resistance may be calculated from

r =
E − V

I

When a current is flowing in the direction shown in Figure 4.2 the cell
is said to be discharging (E > V)

When a current flows in the opposite direction to that shown in
Figure 4.2 the cell is said to be charging �V > E�
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A battery is a combination of more than one cell. The cells in a battery
may be connected in series or in parallel.

(i) For cells connected in series:
Total e.m.f. D sum of cell’s e.m.f.’s
Total internal resistance D sum of cell’s internal resistances

(ii) For cells connected in parallel:
If each cell has the same e.m.f. and internal resistance:
Total e.m.f. D e.m.f. of one cell
Total internal resistance of n cells

D 1

n
ð internal resistance of one cell

Problem 1. Eight cells, each with an internal resistance of 0.2 �
and an e.m.f. of 2.2 V are connected (a) in series, (b) in parallel.
Determine the e.m.f. and the internal resistance of the batteries so
formed.

(a) When connected in series, total e.m.f. D sum of cell’s e.m.f.

D 2.2 ð 8 D 17.6 V

Total internal resistance D sum of cell’s internal resistance

D 0.2 ð 8 D 1.6 Z

(b) When connected in parallel, total e.m.f. D e.m.f. of one cell

D 2.2 V
Total internal resistance of 8 cells

D 1
8 ð internal resistance of one cell

D 1
8 ð 0.2 D 0.025Z

Problem 2. A cell has an internal resistance of 0.02 � and an
e.m.f. of 2.0 V. Calculate its terminal p.d. if it delivers (a) 5 A,
(b) 50 A

(a) Terminal p.d., V D E� Ir where E D e.m.f. of cell, I D current
flowing and r D internal resistance of cell

E D 2.0 V, I D 5 A and r D 0.02 �

Hence V D 2.0 � �5��0.02� D 2.0 � 0.1 D 1.9 V

(b) When the current is 50 A, terminal p.d.,

V D E� Ir D 2.0 � 50�0.02�
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i.e., V D 2.0 � 1.0 D 1.0 V

Thus the terminal p.d. decreases as the current drawn increases.

Problem 3. The p.d. at the terminals of a battery is 25 V when no
load is connected and 24 V when a load taking 10 A is connected.
Determine the internal resistance of the battery.

When no load is connected the e.m.f. of the battery, E, is equal to the
terminal p.d., V, i.e., E D 25 V

When current I D 10 A and terminal p.d. V D 24 V, then V D E� Ir
i.e., 24 D 25 � �10�r

Hence, rearranging, gives 10r D 25 � 24 D 1 and the internal resistance,
r D 1

10 D 0.1 Z

Problem 4. Ten 1.5 V cells, each having an internal resistance
of 0.2 �, are connected in series to a load of 58 �. Determine
(a) the current flowing in the circuit and (b) the p.d. at the battery
terminals.

(a) For ten cells, battery e.m.f., E D 10 ð 1.5 D 15 V, and the total
internal resistance, r D 10 ð 0.2 D 2 � When connected to a 58 �
load the circuit is as shown in Figure 4.4.

Current I D e.m.f.

total resistance
D 15

58 C 2
D 15

60
D 0.25 A

Figure 4.4
(b) P.d. to battery terminals, V D E� Ir

i.e. V D 15 � �0.25��2� D 14.5 V

4.7 Primary cells Primary cells cannot be recharged, that is, the conversion of chemical
energy to electrical energy is irreversible and the cell cannot be used
once the chemicals are exhausted. Examples of primary cells include the
Leclanché cell and the mercury cell.

Lechlanché cell

A typical dry Lechlanché cell is shown in Figure 4.5. Such a cell has an
e.m.f. of about 1.5 V when new, but this falls rapidly if in continuous
use due to polarization. The hydrogen film on the carbon electrode forms
faster than can be dissipated by the depolarizer. The Lechlanché cell is
suitable only for intermittent use, applications including torches, transistor
radios, bells, indicator circuits, gas lighters, controlling switch-gear, and
so on. The cell is the most commonly used of primary cells, is cheap,
requires little maintenance and has a shelf life of about 2 years.
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Figure 4.5

Mercury cell

A typical mercury cell is shown in Figure 4.6. Such a cell has an e.m.f.
of about 1.3 V which remains constant for a relatively long time. Its
main advantages over the Lechlanché cell is its smaller size and its long
shelf life. Typical practical applications include hearing aids, medical elec-
tronics, cameras and for guided missiles.

Figure 4.6

4.8 Secondary cells Secondary cellscan be recharged after use, that is, the conversion of
chemical energy to electrical energy is reversible and the cell may be used
many times. Examples of secondary cells include the lead-acid cell and
the alkaline cell. Practical applications of such cells include car batteries,
telephone circuits and for traction purposes — such as milk delivery vans
and fork lift trucks.

Lead-acid cell

A typical lead-acid cell is constructed of:

(i) A container made of glass, ebonite or plastic.

(ii) Lead plates

(a) the negative plate (cathode) consists of spongy lead
(b) the positive plate (anode) is formed by pressing lead peroxide

into the lead grid.

The plates are interleaved as shown in the plan view of Figure 4.7 to
increase their effective cross-sectional area and to minimize internal
resistance.

Figure 4.7
(iii) Separatorsmade of glass, celluloid or wood.

(iv) An electrolyte which is a mixture of sulphuric acid and distilled
water.
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The relative density (or specific gravity) of a lead-acid cell, which may
be measured using a hydrometer, varies between about 1.26 when the cell
is fully charged to about 1.19 when discharged. The terminal p.d. of a
lead-acid cell is about 2 V.

When a cell supplies current to a load it is said to be discharging.
During discharge:

(i) the lead peroxide (positive plate) and the spongy lead (negative
plate) are converted into lead sulphate, and

(ii) the oxygen in the lead peroxide combines with hydrogen in the
electrolyte to form water. The electrolyte is therefore weakened and
the relative density falls.

The terminal p.d. of a lead-acid cell when fully discharged is about 1.8 V.
A cell is charged by connecting a d.c. supply to its terminals, the

positive terminal of the cell being connected to the positive terminal of
the supply. The charging current flows in the reverse direction to the
discharge current and the chemical action is reversed. During charging:

(i) the lead sulphate on the positive and negative plates is converted
back to lead peroxide and lead respectively, and

(ii) the water content of the electrolyte decreases as the oxygen released
from the electrolyte combines with the lead of the positive plate. The
relative density of the electrolyte thus increases.

The colour of the positive plate when fully charged is dark brown and
when discharged is light brown. The colour of the negative plate when
fully charged is grey and when discharged is light grey.

Alkaline cell

There are two main types of alkaline cell — the nickel-iron cell and the
nickel-cadmium cell. In both types the positive plate is made of nickel
hydroxide enclosed in finely perforated steel tubes, the resistance being
reduced by the addition of pure nickel or graphite. The tubes are assem-
bled into nickel-steel plates.

In the nickel-iron cell, (sometimes called the Edison cell or nife cell),
the negative plate is made of iron oxide, with the resistance being reduced
by a little mercuric oxide, the whole being enclosed in perforated steel
tubes and assembled in steel plates. In the nickel-cadmium cell the nega-
tive plate is made of cadmium. The electrolyte in each type of cell is a
solution of potassium hydroxide which does not undergo any chemical
change and thus the quantity can be reduced to a minimum. The plates
are separated by insulating rods and assembled in steel containers which
are then enclosed in a non-metallic crate to insulate the cells from one
another. The average discharge p.d. of an alkaline cell is about 1.2 V.

Advantagesof an alkaline cell (for example, a nickel-cadmium cell or a
nickel-iron cell) over a lead-acid cell include:
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(i) More robust construction
(ii) Capable of withstanding heavy charging and discharging currents

without damage
(iii) Has a longer life
(iv) For a given capacity is lighter in weight
(v) Can be left indefinitely in any state of charge or discharge without

damage
(vi) Is not self-discharging

Disadvantagesof an alkaline cell over a lead-acid cell include:

(i) Is relatively more expensive
(ii) Requires more cells for a given e.m.f.

(iii) Has a higher internal resistance
(iv) Must be kept sealed
(v) Has a lower efficiency

Alkaline cells may be used in extremes of temperature, in conditions
where vibration is experienced or where duties require long idle periods or
heavy discharge currents. Practical examples include traction and marine
work, lighting in railway carriages, military portable radios and for starting
diesel and petrol engines.

However, the lead-acid cell is the most common one in practical use.

4.9 Cell capacity The capacity of a cell is measured in ampere-hours (Ah). A fully charged
50 Ah battery rated for 10 h discharge can be discharged at a steady
current of 5 A for 10 h, but if the load current is increased to 10 A
then the battery is discharged in 3-4 h, since the higher the discharge
current, the lower is the effective capacity of the battery. Typical discharge
characteristics for a lead-acid cell are shown in Figure 4.8.

4.10 Further problems
on the chemical effects of

electricity

1 Twelve cells, each with an internal resistance of 0.24 � and an e.m.f.
of 1.5 V are connected (a) in series, (b) in parallel. Determine the
e.m.f. and internal resistance of the batteries so formed.

[(a) 18 V, 2.88 � (b) 1.5 V, 0.02 �]

Figure 4.8

2 A cell has an internal resistance of 0.03 � and an e.m.f. of 2.2 V.
Calculate its terminal p.d. if it delivers (a) 1 A, (b) 20 A, (c) 50 A

[(a) 2.17 V (b) 1.6 V (c) 0.7 V]

3 The p.d. at the terminals of a battery is 16 V when no load is
connected and 14 V when a load taking 8 A is connected. Deter-
mine the internal resistance of the battery. [0.25 �]
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Figure 4.9

4 A battery of e.m.f. 20 V and internal resistance 0.2 � supplies a
load taking 10 A. Determine the p.d. at the battery terminals and the
resistance of the load. [18 V, 1.8 �]

5 Ten 2.2 V cells, each having an internal resistance of 0.1 � are
connected in series to a load of 21 �. Determine (a) the current
flowing in the circuit, and (b) the p.d. at the battery terminals.

[(a) 1 A (b) 21 V]

6 For the circuits shown in Figure 4.9 the resistors represent the internal
resistance of the batteries. Find, in each case: (a) the total e.m.f.
across PQ (b) the total equivalent internal resistances of the batteries.
[(a)(i) 6 V (ii) 2 V (b)(i) 4 � (ii) 0.25 �]

7 The voltage at the terminals of a battery is 52 V when no load is
connected and 48.8 V when a load taking 80 A is connected. Find
the internal resistance of the battery. What would be the terminal
voltage when a load taking 20 A is connected?

[0.04 �, 51.2 V]



Assignment 1

This assignment covers the material contained in chapters 1 to
4.

The marks for each question are shown in brackets at the end of
each question.

1 An electromagnet exerts a force of 15 N and moves a soft iron arma-
ture through a distance of 12 mm in 50 ms. Determine the power
consumed. (5)

2 A d.c. motor consumes 47.25 MJ when connected to a 250 V supply
for 1 hour 45 minutes. Determine the power rating of the motor and
the current taken from the supply. (5)

3 A 100 W electric light bulb is connected to a 200 V supply. Calculate
(a) the current flowing in the bulb, and (b) the resistance of the bulb.

(4)

4 Determine the charge transferred when a current of 5 mA flows for
10 minutes. (4)

5 A current of 12 A flows in the element of an electric fire of resistance
25�. Determine the power dissipated by the element. If the fire is on
for 5 hours every day, calculate for a one week period (a) the energy
used, and (b) cost of using the fire if electricity cost 7p per unit.

(6)

6 Calculate the resistance of 1200 m of copper cable of cross-sectional
area 15 mm2. Take the resistivity of copper as 0.02 µ�m. (5)

7 At a temperature of 40°C, an aluminium cable has a resistance of
25�. If the temperature coefficient of resistance at 0°C is 0.0038/°C,
calculate it’s resistance at 0°C. (5)

8 (a) State six typical applications of primary cells.
(b) State six typical applications of secondary cells. (6)

9 Four cells, each with an internal resistance of 0.40� and an e.m.f.
of 2.5 V are connected in series to a load of 38.40�. (a) Determine
the current flowing in the circuit and the p.d. at the battery terminals.
(b) If the cells are connected in parallel instead of in series, determine
the current flowing and the p.d. at the battery terminals. (10)



5 Series and parallel
networks

At the end of this chapter you should be able to:

ž calculate unknown voltages, current and resistances in a series
circuit

ž understand voltage division in a series circuit
ž calculate unknown voltages, currents and resistances in a

parallel network
ž calculate unknown voltages, currents and resistances in

series-parallel networks
ž understand current division in a two-branch parallel network
ž describe the advantages and disadvantages of series and

parallel connection of lamps

5.1 Series circuits Figure 5.1 shows three resistors R1, R2 and R3 connected end to end, i.e.,
in series, with a battery source of V volts. Since the circuit is closed a
current I will flow and the p.d. across each resistor may be determined
from the voltmeter readings V1, V2 and V3

Figure 5.1

In a series circuit

(a) the current I is the same in all parts of the circuit and hence the
same reading is found on each of the two ammeters shown, and

(b) the sum of the voltages V1, V2 and V3 is equal to the total applied
voltage, V, i.e.

V = V1 Y V2Y V3
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From Ohm’s law:

V1 D IR1, V2 D IR2, V3 D IR3 and V D IR

where R is the total circuit resistance.

Since V D V1 C V2 C V3

then IR D IR1 C IR2 C IR3

Dividing throughout by I gives

R = R1Y R2Y R3

Thus for a series circuit, the total resistance is obtained by adding together
the values of the separate resistances.

Problem 1. For the circuit shown in Figure 5.2, determine (a) the
battery voltage V, (b) the total resistance of the circuit, and (c) the
values of resistance of resistors R1, R2 and R3, given that the p.d.’s
across R1, R2 and R3 are 5 V, 2 V and 6 V respectively.

Figure 5.2
(a) Battery voltage V D V1 C V2 C V3

D 5 C 2 C 6 D 13 V

(b) Total circuit resistance R D V

I
D 13

4
D 3.25Z

(c) Resistance R1 D V1

I
D 5

4
D 1.25Z

Resistance R2 D V2

I
D 2

4
D 0.5 Z

Resistance R3 D V3

I
D 6

4
D 1.5 Z

(Check: R1 C R2 C R3 D 1.25 C 0.5 C 1.5 D 3.25 � D R)

Problem 2. For the circuit shown in Figure 5.3, determine the p.d.
across resistor R3. If the total resistance of the circuit is 100 �,
determine the current flowing through resistor R1. Find also the
value of resistor R2

Figure 5.3 P.d. across R3, V3 D 25 � 10 � 4 D 11 V

Current I D V

R
D 25

100
D 0.25 A, which is the current flowing in each

resistor

Resistance R2 D V2

I
D 4

0.25
D 16Z
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Figure 5.4

Problem 3. A 12 V battery is connected in a circuit having three
series-connected resistors having resistances of 4 �, 9 � and 11 �.
Determine the current flowing through, and the p.d. across the 9 �
resistor. Find also the power dissipated in the 11 � resistor.

The circuit diagram is shown in Figure 5.4.
Total resistance R D 4 C 9 C 11 D 24 �

Current I D V

R
D 12

24
D 0.5 A, which is the current in the 9 � resistor.

P.d. across the 9 � resistor, V1 D Ið 9 D 0.5 ð 9 D 4.5 V

Power dissipated in the 11 � resistor, P D I2R D 0.52�11	

D �0.25	�11	 D 2.75 W

5.2 Potential divider The voltage distribution for the circuit shown in Figure 5.5(a) is given by:

V1 =
(

R1

R1Y R2

)
V

V2 =
(

R2

R1Y R2

)
V

The circuit shown in Figure 5.5(b) is often referred to as a potential
divider circuit. Such a circuit can consist of a number of similar elements
in series connected across a voltage source, voltages being taken from
connections between the elements. Frequently the divider consists of two
resistors as shown in Figure 5.5(b), where

VOUT =
(

R2

R1Y R2

)
VIN

Figure 5.5

Problem 4. Determine the value of voltage V shown in Figure 5.6.

Figure 5.6 may be redrawn as shown in Figure 5.7, and voltage

V D
(

6

6 C 4

)
�50	 D 30 V

Figure 5.6
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Figure 5.7

Problem 5. Two resistors are connected in series across a 24 V
supply and a current of 3 A flows in the circuit. If one of the
resistors has a resistance of 2 � determine (a) the value of the
other resistor, and (b) the p.d. across the 2 � resistor. If the circuit
is connected for 50 hours, how much energy is used?

The circuit diagram is shown in Figure 5.8

Figure 5.8

(a) Total circuit resistance R D V

I
D 24

3
D 8 �

Value of unknown resistance, Rx D 8 � 2 D 6 Z

(b) P.d. across 2 � resistor, V1 D IR1 D 3 ð 2 D 6 V
Alternatively, from above,

V1 D
(

R1

R1 C Rx

)
V D

(
2

2 C 6

)
�24	 D 6 V

Energy used D power ð time

D Vð Ið t

D �24 ð 3 W	�50 h	

D 3600 Wh D 3.6 kWh

5.3 Parallel networks Figure 5.9 shows three resistors, R1, R2 and R3 connected across each
other, i.e., in parallel, across a battery source of V volts.

In a parallel circuit:

(a) the sum of the currents I1, I2 and I3 is equal to the total circuit
current, I, i.e. I = I1 Y I2Y I3, and
(b) the source p.d., V volts, is the same across each of the resistors.

From Ohm’s law:

I1 D V

R1
, I2 D V

R2
, I3 D V

R3
and I D V

R

where R is the total circuit resistance.

Since I D I1 C I2 C I3

then,
V

R
D V

R1
C V

R2
C V

R3Figure 5.9
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Dividing throughout by V gives:

1
R

=
1

R1
Y

1
R2
Y

1
R3

This equation must be used when finding the total resistance R of a parallel
circuit. For the special case of two resistors in parallel

1

R
D 1

R1
C 1

R2
D R2 C R1

R1R2

Hence R =
R1R2

R1Y R2

(
i.e.

product

sum

)

Problem 6. For the circuit shown in Figure 5.10, determine (a) the
reading on the ammeter, and (b) the value of resistor R2

P.d. across R1 is the same as the supply voltage V.

Hence supply voltage, V D 8 ð 5 D 40 V

(a) Reading on ammeter, I D V

R3
D 40

20
D 2 A

(b) Current flowing through R2 D 11 � 8 � 2 D 1 A

Hence, R2 D V

I2
D 40

1
D 40ZFigure 5.10

Problem 7. Two resistors, of resistance 3 � and 6 �, are
connected in parallel across a battery having a voltage of 12 V.
Determine (a) the total circuit resistance and (b) the current flowing
in the 3 � resistor.

The circuit diagram is shown in Figure 5.11.

(a) The total circuit resistance R is given by

1

R
D 1

R1
C 1

R2
D 1

3
C 1

6

1

R
D 2 C 1

6
D 3

6

Hence, R D 6

3
D 2 Z

Figure 5.11
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(
Alternatively, R D R1R2

R1 C R2
D 3 ð 6

3 C 6
D 18

9
D 2 Z

)

(b) Current in the 3 � resistance, I1 D V

R1
D 12

3
D 4 A

Problem 8. For the circuit shown in Figure 5.12, find (a) the value
of the supply voltage V and (b) the value of current I.

Figure 5.12

(a) P.d. across 20 � resistor D I2R2 D 3 ð 20 D 60 V, hence supply
voltage V = 60 V since the circuit is connected in parallel.

(b) Current I1 D V

R1
D 60

10
D 6 AI I2 D 3 A

I3 D V

R3
D 60

60
D 1 A

Current I D I1 C I2 C I3 and hence I D 6 C 3 C 1 D 10 A

Alternatively,
1

R
D 1

60
C 1

20
C 1

10
D 1 C 3 C 6

60
D 10

60

Hence total resistance R D 60

10
D 6 �

Current I D V

R
D 60

6
D 10 A

Problem 9. Given four 1 � resistors, state how they must be
connected to give an overall resistance of (a) 1

4� (b) 1 � (c) 1 1
3 �

(d) 2 1
2 �, all four resistors being connected in each case.

Figure 5.13
(a) All four in parallel (see Figure 5.13),

since
1

R
D 1

1
C 1

1
C 1

1
C 1

1
D 4

1
, i.e., R D 1

4
�

Figure 5.14
(b) Two in series, in parallel with another two in series (see

Figure 5.14), since 1 � and 1 � in series gives 2 �, and 2 � in

parallel with 2 � gives:
2 ð 2

2 C 2
D 4

4
D 1 �

(c) Three in parallel, in series with one (see Figure 5.15), since for
the three in parallel,

1

R
D 1

1
C 1

1
C 1

1
D 3

1
, i.e., R D 1

3
� and

1

3
� in series

with 1 � gives 1 1
3 �Figure 5.15
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Figure 5.16

(d) Two in parallel, in series with two in series (see Figure 5.16),
since for the two in parallel

R D 1 ð 1

1 C 1
D 1

2
�, and

1

2
�, 1 � and 1 � in series gives 2

1

2
�

Problem 10. Find the equivalent resistance for the circuit shown
in Figure 5.17.

Figure 5.17

R3, R4 and R5 are connected in parallel and their equivalent resistance R
is given by:

1

R
D 1

3
C 1

6
C 1

18
D 6 C 3 C 1

18
D 10

18

Hence R D 18

10
D 1.8 �

The circuit is now equivalent to four resistors in series and the equivalent
circuit resistance D 1 C 2.2 C 1.8 C 4 D 9 Z

5.4 Current division For the circuit shown in Figure 5.18, the total circuit resistance, RT is
given by:

RT D R1R2

R1 C R2

and V D IRT D I
(

R1R2

R1 C R2

)

Figure 5.18
Current I1 D V

R1
D I

R1

(
R1R2

R1 C R2

)
D

(
R2

R1Y R2

)
.I /

Similarly,

current I2 D V

R2
D I

R2

(
R1R2

R1 C R2

)
D

(
R1

R1Y R2

)
.I /

Summarizing, with reference to Figure 5.18

I1 =
(

R2

R1Y R2

)
.I / and I2 =

(
R1

R1Y R2

)
.I /

Problem 11. For the series-parallel arrangement shown in
Figure 5.19, find (a) the supply current, (b) the current flowing
through each resistor and (c) the p.d. across each resistor.

Figure 5.19
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(a) The equivalent resistance Rx of R2 and R3 in parallel is:

Rx D 6 ð 2

6 C 2
D 12

8
D 1.5 �

The equivalent resistance RT of R1, Rx and R4 in series is:

RT D 2.5 C 1.5 C 4 D 8 �

Supply current I D V

RT
D 200

8
D 25 A

(b) The current flowing through R1 and R4 is 25 A

The current flowing through R2 D
(

R3

R2 C R3

)
I D

(
2

6 C 2

)
25

D 6.25 A

The current flowing through R3 D
(

R2

R2 C R3

)
I D

(
6

6 C 2

)
25

D 18.75 A

(Note that the currents flowing through R2 and R3 must add up to
the total current flowing into the parallel arrangement, i.e. 25 A)

(c) The equivalent circuit of Figure 5.19 is shown in Figure 5.20.

p.d. across R1, i.e., V1 D IR1 D �25	�2.5	 D 62.5 V

p.d. across Rx, i.e., Vx D IRx D �25	�1.5	 D 37.5 V

p.d. across R4, i.e., V4 D IR4 D �25	�4	 D 100 V

Hence the p.d. across R2 D p.d. across R3 D 37.5 VFigure 5.20

Problem 12. For the circuit shown in Figure 5.21 calculate (a) the
value of resistor Rx such that the total power dissipated in the circuit
is 2.5 kW, and (b) the current flowing in each of the four resistors.

Figure 5.21
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(a) Power dissipated P D VI watts, hence 2500 D �250	�I	

I D 2500

250
D 10 A

From Ohm’s law, RT D V

I
D 250

10
D 25 �, where RT is the

equivalent circuit resistance.

The equivalent resistance of R1 and R2 in parallel is

15 ð 10

15 C 10
D 150

25
D 6 �

The equivalent resistance of resistors R3 and Rx in parallel is equal
to 25 �� 6 �, i.e., 19 �

There are three methods whereby Rx can be determined.

Method 1
The voltage V1 D IR, where R is 6 �, from above,

i.e. V1 D �10	�6	 D 60 V

Hence V2 D 250 V � 60 V D 190 V D p.d. across R3

D p.d. across Rx

I3 D V2

R3
D 190

38
D 5 A. Thus I4 D 5 A also, since I D 10 A

Thus Rx D V2

I4
D 190

5
D 38 �

Method 2
Since the equivalent resistance of R3 and Rx in parallel is 19 �,

19 D 38Rx
38 C Rx

(
i.e.

product

sum

)
Hence

19�38 C Rx	 D 38Rx

722 C 19Rx D 38Rx

722 D 38Rx � 19Rx D 19Rx

Thus Rx D 722

19
D 38Z

Method 3
When two resistors having the same value are connected in parallel
the equivalent resistance is always half the value of one of the
resistors. Thus, in this case, since RT D 19 � and R3 D 38 �, then
Rx D 38 � could have been deduced on sight.
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(b) Current I1 D
(

R2

R1 C R2

)
I D

(
10

15 C 10

)
�10	

D
(

2

5

)
�10	 D 4 A

Current I2 D
(

R1

R1 C R2

)
I D

(
15

15 C 10

)
�10	

D
(

3

5

)
�10	 D 6 A

From part (a), method 1, I3 = I4 = 5 A

Problem 13. For the arrangement shown in Figure 5.22, find the
current Ix

Figure 5.22
Commencing at the right-hand side of the arrangement shown in
Figure 5.22, the circuit is gradually reduced in stages as shown in
Figure 5.23(a)–(d).

From Figure 5.23(d) I D 17

4.25
D 4 A

From Figure 5.23(b) I1 D
(

9

9 C 3

)
�I	 D

(
9

12

)
�4	 D 3 A

Figure 5.23

From Figure 5.22 Ix D
(

2

2 C 8

)
�I1	 D

(
2

10

)
�3	 D 0.6 A
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5.5 Wiring lamps in
series and in parallel

Series connection

Figure 5.24 shows three lamps, each rated at 240 V, connected in series
across a 240 V supply.

(i) Each lamp has only
240

3
V, i.e., 80 V across it and thus each lamp

glows dimly.

(ii) If another lamp of similar rating is added in series with the other

three lamps then each lamp now has
240

4
V, i.e., 60 V across it

and each now glows even more dimly.Figure 5.24
(iii) If a lamp is removed from the circuit or if a lamp develops a fault

(i.e. an open circuit) or if the switch is opened then the circuit is
broken, no current flows, and the remaining lamps will not light up.

(iv) Less cable is required for a series connection than for a parallel one.

The series connection of lamps is usually limited to decorative lighting
such as for Christmas tree lights.

Parallel connection

Figure 5.25 shows three similar lamps, each rated at 240 V, connected in
parallel across a 240 V supply.

Figure 5.25

(i) Each lamp has 240 V across it and thus each will glow brilliantly
at their rated voltage.

(ii) If any lamp is removed from the circuit or develops a fault (open
circuit) or a switch is opened, the remaining lamps are unaffected.

(iii) The addition of further similar lamps in parallel does not affect the
brightness of the other lamps.

(iv) More cable is required for parallel connection than for a series one.

The parallel connection of lamps is the most widely used in electrical
installations.

Problem 14. If three identical lamps are connected in parallel and
the combined resistance is 150 �, find the resistance of one lamp.

Let the resistance of one lamp be R, then,

1

150
D 1

R
C 1

R
C 1

R
D 3

R
, from which, R D 3 ð 150 D 450Z

Problem 15. Three identical lamps A, B and C are connected in
series across a 150 V supply. State (a) the voltage across each lamp,
and (b) the effect of lamp C failing.
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(a) Since each lamp is identical and they are connected in series there

is
150

3
V, i.e. 50 V across each.

(b) If lamp C fails, i.e., open circuits, no current will flow and lamps
A and B will not operate.

5.6 Further problems on
series and parallel

networks

1 The p.d’s measured across three resistors connected in series are
5 V, 7 V and 10 V, and the supply current is 2 A. Determine (a) the
supply voltage, (b) the total circuit resistance and (c) the values of
the three resistors. [(a) 22 V (b) 11 � (c) 2.5 �, 3.5 �, 5 �]

2 For the circuit shown in Figure 5.26, determine the value of V1. If
the total circuit resistance is 36 � determine the supply current and
the value of resistors R1, R2 and R3.

[10 V, 0.5 A, 20 �, 10 �, 6 �]

Figure 5.26

3 When the switch in the circuit in Figure 5.27 is closed the reading
on voltmeter 1 is 30 V and that on voltmeter 2 is 10 V. Determine
the reading on the ammeter and the value of resistor Rx

[4 A, 2.5 �]

Figure 5.27

4 Two resistors are connected in series across an 18 V supply and a
current of 5 A flows. If one of the resistors has a value of 2.4 �
determine (a) the value of the other resistor and (b) the p.d. across
the 2.4 � resistor. [(a) 1.2 � (b) 12 V]

5 Resistances of 4 � and 12 � are connected in parallel across a
9 V battery. Determine (a) the equivalent circuit resistance, (b) the
supply current, and (c) the current in each resistor.

[(a) 3 � (b) 3 A (c)

2.25 A, 0.75 A]

6 For the circuit shown in Figure 5.28 determine (a) the reading on
the ammeter, and (b) the value of resistor R. [2.5 A, 2.5 �]

7 Find the equivalent resistance when the following resistances are
connected (a) in series, (b) in parallel
(i) 3 � and 2 � (ii) 20 k� and 40 k�
(iii) 4 �, 8 � and 16 � (iv) 800 �, 4 k� and 1500 �

[(a) (i) 5 � (ii) 60 k� (iii) 28 � (iv) 6.3 k�
(b) (i) 1.2 � (ii) 13 1

3 k� (iii) 2 2
7 � (iv) 461.5 k�]

Figure 5.28

8 Find the total resistance between terminals A and B of the circuit
shown in Figure 5.29(a) [8 �]

9 Find the equivalent resistance between terminals C and D of the
circuit shown in Figure 5.29(b) [27.5 �]

10 Resistors of 20 �, 20 � and 30 � are connected in parallel. What
resistance must be added in series with the combination to obtain a
total resistance of 10 �. If the complete circuit expends a power of
0.36 kW, find the total current flowing. [2.5 �, 6 A]
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Figure 5.29

11 (a) Calculate the current flowing in the 30 � resistor shown in
Figure 5.30

(b) What additional value of resistance would have to be placed in
parallel with the 20 � and 30 � resistors to change the supply
current to 8 A, the supply voltage remaining constant.

[(a) 1.6 A (b) 6 �]

12 Determine the currents and voltages indicated in the circuit shown
in Figure 5.31.

[I1 D 5 A, I2 D 2.5 A, I3 D 1 2
3 A, I4 D 5

6 A
I5 D 3 A, I6 D 2 A, V1 D 20 V, V2 D 5 V, V3 D 6 V]

Figure 5.30

13 Find the current I in Figure 5.32. [1.8 A]

Figure 5.31 Figure 5.32

14 If four identical lamps are connected in parallel and the combined
resistance is 100 �, find the resistance of one lamp. [400 �]

15 Three identical filament lamps are connected (a) in series, (b) in
parallel across a 210 V supply. State for each connection the p.d.
across each lamp. [(a) 70 V (b) 210 V]



6 Capacitors and
capacitance

At the end of this chapter you should be able to:

ž describe an electrostatic field

ž define electric field strength E and state its unit

ž define capacitance and state its unit

ž describe a capacitor and draw the circuit diagram symbol

ž perform simple calculations involving C D Q

V
and Q D It

ž define electric flux density D and state its unit

ž define permittivity, distinguishing between ε0, εr and ε

ž perform simple calculations involving D D Q

A
, E D V

D
and

D

E
D ε0εr

ž understand that for a parallel plate capacitor,

C D ε0εrA�n� 1


d
ž perform calculations involving capacitors connected in parallel

and in series

ž define dielectric strength and state its unit

ž state that the energy stored in a capacitor is given by
W D 1

2 CV2 joules

ž describe practical types of capacitor

ž understand the precautions needed when discharging capacitors

6.1 Electrostatic field Figure 6.1 represents two parallel metal plates, A and B, charged to
different potentials. If an electron that has a negative charge is placed
between the plates, a force will act on the electron tending to push it
away from the negative plate B towards the positive plate, A. Similarly,
a positive charge would be acted on by a force tending to move it toward
the negative plate. Any region such as that shown between the plates
in Figure 1, in which an electric charge experiences a force, is called an
electrostatic field. The direction of the field is defined as that of the force
acting on a positive charge placed in the field. In Figure 6.1, the direction
of the force is from the positive plate to the negative plate.Figure 6.1 Electrostatic field
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Such a field may be represented in magnitude and direction by lines
of electric force drawn between the charged surfaces. The closeness
of the lines is an indication of the field strength. Whenever a p.d.
is established between two points, an electric field will always exist.
Figure 6.2(a) shows a typical field pattern for an isolated point charge,
and Figure 6.2(b) shows the field pattern for adjacent charges of opposite
polarity. Electric lines of force (often called electric flux lines) are
continuous and start and finish on point charges. Also, the lines cannot
cross each other. When a charged body is placed close to an uncharged
body, an induced charge of opposite sign appears on the surface of the
uncharged body. This is because lines of force from the charged body
terminate on its surface.

Figure 6.2 (a) Isolated point charge; (b) adjacent charges of opposite polarity

The concept of field lines or lines of force is used to illustrate the
properties of an electric field. However, it should be remembered that
they are only aids to the imagination.

The force of attraction or repulsion between two electrically charged
bodies is proportional to the magnitude of their charges and inversely
proportional to the square of the distance separating them,

i.e. force / q1q2

d2
or force D k

q1q2

d2 where constant k ³ 9 ð 109 in air

This is known as Coulomb’s law.
Hence the force between two charged spheres in air with their centres

16 mm apart and each carrying a charge of C1.6 µC is given by:

force D k
q1q2

d2
³ �9 ð 109


�1.6 ð 10�6
2

�16 ð 10�3
2
D 90 newtons
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6.2 Electric field strength Figure 6.3 shows two parallel conducting plates separated from each other
by air. They are connected to opposite terminals of a battery of voltage
V volts.

There is therefore an electric field in the space between the plates. If
the plates are close together, the electric lines of force will be straight
and parallel and equally spaced, except near the edge where fringing will
occur (see Figure 6.1). Over the area in which there is negligible fringing,

Electric field strength, E D V
d

volts=metre

where d is the distance between the plates. Electric field strength is also
called potential gradient.Figure 6.3

6.3 Capacitance Static electric fields arise from electric charges, electric field lines
beginning and ending on electric charges. Thus the presence of the field
indicates the presence of equal positive and negative electric charges on
the two plates of Figure 6.3. Let the charge be CQ coulombs on one
plate and �Q coulombs on the other. The property of this pair of plates
which determines how much charge corresponds to a given p.d. between
the plates is called their capacitance:

capacitance C =
Q
V

The unit of capacitance is the farad F (or more usually µF D
10�6 F or pF D 10�12 F), which is defined as the capacitance when a
pd of one volt appears across the plates when charged with one coulomb.

6.4 Capacitors Every system of electrical conductors possesses capacitance. For example,
there is capacitance between the conductors of overhead transmission
lines and also between the wires of a telephone cable. In these examples
the capacitance is undesirable but has to be accepted, minimized or
compensated for. There are other situations where capacitance is a
desirable property.

Devices specially constructed to possess capacitance are called capac-
itors (or condensers, as they used to be called). In its simplest form a
capacitor consists of two plates which are separated by an insulating mate-
rial known as a dielectric. A capacitor has the ability to store a quantity
of static electricity.

The symbols for a fixed capacitor and a variable capacitor used in
electrical circuit diagrams are shown in Figure 6.4.Figure 6.4
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The charge Q stored in a capacitor is given by:

Q = I × t coulombs,

where I is the current in amperes and t the time in seconds.

Problem 1. (a) Determine the p.d. across a 4 µF capacitor when
charged with 5 mC.

(b) Find the charge on a 50 pF capacitor when the voltage applied
to it is 2 kV.

(a) C D 4 µF D 4 ð 10�6 FIQ D 5 mC D 5 ð 10�3 C

Since C D Q

V
then V D Q

C
D 5 ð 10�3

4 ð 10�6
D 5 ð 106

4 ð 103
D 5000

4

Hence p.d. = 1250 V or 1.25 kV

(b) C D 50 pF D 50 ð 10�12 FIV D 2 kV D 2000 V

Q D CV D 50 ð 10�12 ð 2000 D 5 ð 2

108
D 0.1 ð 10�6

Hence charge = 0.1 mC

Problem 2. A direct current of 4 A flows into a previously unchar-
ged 20 µF capacitor for 3 ms. Determine the pd between the plates.

I D 4 AIC D 20 µF D 20 ð 10�6 FI t D 3 ms D 3 ð 10�3 s

Q D It D 4 ð 3 ð 10�3 C

V D Q

C
D 4 ð 3 ð 10�3

20 ð 10�6
D 12 ð 106

20 ð 103
D 0.6 ð 103 D 600 V

Hence, the pd between the plates is 600 V

Problem 3. A 5 µF capacitor is charged so that the pd between
its plates is 800 V. Calculate how long the capacitor can provide
an average discharge current of 2 mA.

C D 5 µF D 5 ð 10�6 FIV D 800 VI I D 2 mA D 2 ð 10�3 A

Q D CV D 5 ð 10�6 ð 800 D 4 ð 10�3 C

Also, Q D It. Thus, t D Q

I
D 4 ð 10�3

2 ð 10�3
D 2 s
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Hence the capacitor can provide an average discharge current of
2 mA for 2 s

Further problems on charge and capacitance may be found in Section 6.13,
problems 1 to 5, page 70.

6.5 Electric flux density Unit flux is defined as emanating from a positive charge of 1 coulomb.
Thus electric flux  is measured in coulombs, and for a charge of
Q coulombs, the flux  D Q coulombs.

Electric flux density D is the amount of flux passing through a defined
area A that is perpendicular to the direction of the flux:

electric flux density, D =
Q
A

coulombs/metre2

Electric flux density is also called charge density, s

6.6 Permittivity At any point in an electric field, the electric field strength E maintains
the electric flux and produces a particular value of electric flux density D
at that point. For a field established in vacuum (or for practical purposes
in air), the ratio D/E is a constant ε0, i.e.

D
E

= "0

where ε0 is called the permittivity of free space or the free space
constant. The value of ε0 is 8.85 ð 10�12 F/m.

When an insulating medium, such as mica, paper, plastic or ceramic, is
introduced into the region of an electric field the ratio of D/E is modified:

D
E

= "0"r

where εr , the relative permittivity of the insulating material, indicates
its insulating power compared with that of vacuum:

relative permittivity εr D flux density in material

flux density in vacuum

εr has no unit. Typical values of εr include air, 1.00; polythene, 2.3; mica,
3–7; glass, 5–10; water, 80; ceramics, 6–1000.

The product ε0εr is called the absolute permittivity, ε, i.e.,

" D "0"r
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The insulating medium separating charged surfaces is called a dielectric.
Compared with conductors, dielectric materials have very high resistivi-
ties. They are therefore used to separate conductors at different potentials,
such as capacitor plates or electric power lines.

Problem 4. Two parallel rectangular plates measuring 20 cm by
40 cm carry an electric charge of 0.2 µC. Calculate the electric
flux density. If the plates are spaced 5 mm apart and the voltage
between them is 0.25 kV determine the electric field strength.

Charge Q D 0.2 µC D 0.2 ð 10�6CI
Area A D 20 cm ð 40 cm D 800 cm2 D 800 ð 10�4 m2

Electric flux density D D Q

A
D 0.2 ð 10�6

800 ð 10�4
D 0.2 ð 104

800 ð 106

D 2000

800
ð 10�6 D 2.5 mC=m2

Voltage V D 0.25 kV D 250 V; Plate spacing, d D 5 mm D 5 ð 10�3 m

Electric field strength E D V

d
D 250

5 ð 10�3
D 50 kV=m

Problem 5. The flux density between two plates separated by mica
of relative permittivity 5 is 2 µC/m2. Find the voltage gradient
between the plates.

Flux density D D 2 µC/m2 D 2 ð 10�6 C/m2I
ε0 D 8.85 ð 10�12 F/mI εr D 5.
D

E
D ε0εr, hence voltage gradient E D D

ε0εr

D 2 ð 10�6

8.85 ð 10�12 ð 5
V/m

D 45.2 kV=m

Problem 6. Two parallel plates having a pd of 200 V between
them are spaced 0.8 mm apart. What is the electric field strength?
Find also the flux density when the dielectric between the plates is
(a) air, and (b) polythene of relative permittivity 2.3

Electric field strength E D V

D
D 200

0.8 ð 10�3
D 250 kV=m

(a) For air: εr D 1

D

E
D ε0εr . Hence
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electric flux density D D Eε0εr

D �250 ð 103 ð 8.85 ð 10�12 ð 1
 C/m2

D 2.213 mC=m2

(b) For polythene, εr D 2.3

Electric flux density D D Eε0εr

D �250 ð 103 ð 8.85 ð 10�12 ð 2.3
 C/m2

D 5.089 mC/m2

Further problems on electric field strength, electric flux density and permit-
tivity may be found in Section 6.13, problems 6 to 10, page 71.

6.7 The parallel plate
capacitor

For a parallel-plate capacitor, as shown in Figure 6.5(a), experiments
show that capacitance C is proportional to the area A of a plate, inversely
proportional to the plate spacing d (i.e., the dielectric thickness) and
depends on the nature of the dielectric:

Capacitance, C D "0"r A
d

farads

where ε0 D 8.85 ð 10�12 F/m (constant)
εr D relative permittivity
A D area of one of the plates, in m2, and
d D thickness of dielectric in m

Figure 6.5

Another method used to increase the capacitance is to interleave several
plates as shown in Figure 6.5(b). Ten plates are shown, forming nine
capacitors with a capacitance nine times that of one pair of plates.

If such an arrangement has n plates then capacitance C / �n� 1
.
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Thus capacitance C =
"0"r A.n − 1/

d
farads

Problem 7. (a) A ceramic capacitor has an effective plate area of
4 cm2 separated by 0.1 mm of ceramic of relative permittivity 100.
Calculate the capacitance of the capacitor in picofarads. (b) If the
capacitor in part (a) is given a charge of 1.2 µC what will be the
pd between the plates?

(a) Area A D 4 cm2 D 4 ð 10�4 m2I d D 0.1 mm D 0.1 ð 10�3 mI
ε0 D 8.85 ð 10�12 F/mI εr D 100

Capacitance C D ε0 εr A

d
farads

D 8.85 ð 10�12 ð 100 ð 4 ð 10�4

0.1 ð 10�3
F

D 8.85 ð 4

1010
F D 8.85 ð 4 ð 1012

1010
pF

D 3540 pF

(b) Q D CV thus V D Q

C
D 1.2 ð 10�6

3540 ð 10�12
V D 339 V

Problem 8. A waxed paper capacitor has two parallel plates, each
of effective area 800 cm2. If the capacitance of the capacitor is
4425 pF determine the effective thickness of the paper if its relative
permittivity is 2.5

A D 800 cm2 D 800 ð 10�4 m2 D 0.08 m2I
C D 4425 pF D 4425 ð 10�12 FI ε0 D 8.85 ð 10�12 F/mI εr D 2.5

Since C D ε0εrA

d
then d D ε0εrA

C

Hence, d D 8.85 ð 10�12 ð 2.5 ð 0.08

4425 ð 10�12
D 0.0004 m

Hence the thickness of the paper is 0.4 mm

Problem 9. A parallel plate capacitor has nineteen interleaved
plates each 75 mm by 75 mm separated by mica sheets 0.2 mm
thick. Assuming the relative permittivity of the mica is 5, calculate
the capacitance of the capacitor.
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n D 19I n� 1 D 18I A D 75 ð 75 D 5625 mm2 D 5625 ð 10�6 m2;

εr D 5I ε0 D 8.85 ð 10�12 F/mI d D 0.2 mm D 0.2 ð 10�3 m

Capacitance C D ε0 εrA�n� 1


d

D 8.85 ð 10�12 ð 5 ð 5625 ð 10�6 ð 18

0.2 ð 10�3
F

D 0.0224 mF or 22.4 nF

Further problems on parallel plate capacitors may be found in
Section 6.13, problems 11 to 17, page 71.

6.8 Capacitors connected
in parallel and series

(a) Capacitors connected in parallel

Figure 6.6 shows three capacitors, C1, C2 and C3, connected in parallel
with a supply voltage V applied across the arrangement.

Figure 6.6

When the charging current I reaches point A it divides, some flowing
into C1, some flowing into C2 and some into C3. Hence the total charge
QT�D Ið t
 is divided between the three capacitors. The capacitors each
store a charge and these are shown as Q1, Q2 and Q3 respectively. Hence

QT D Q1 C Q2 C Q3

But QT D CV, Q1 D C1V, Q2 D C2V and Q3 D C3V
Therefore CV D C1VCC2VC C3V where C is the total equivalent
circuit capacitance,

i.e. C= C1 Y C2 Y C3
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It follows that for n parallel-connected capacitors,

C = C1 Y C2 Y C3 . . .Y Cn ,

i.e. the equivalent capacitance of a group of parallel-connected capacitors
is the sum of the capacitances of the individual capacitors. (Note that this
formula is similar to that used for resistors connected in series)

(b) Capacitors connected in series

Figure 6.7 shows three capacitors, C1, C2 and C3, connected in series
across a supply voltage V. Let the p.d. across the individual capacitors
be V1, V2 and V3 respectively as shown.

Figure 6.7

Let the charge on plate ‘a’ of capacitor C1 be CQ coulombs. This
induces an equal but opposite charge of �Q coulombs on plate ‘b’. The
conductor between plates ‘b’ and ‘c’ is electrically isolated from the rest
of the circuit so that an equal but opposite charge of CQ coulombs must
appear on plate ‘c’, which, in turn, induces an equal and opposite charge
of �Q coulombs on plate ‘d’, and so on.
Hence when capacitors are connected in series the charge on each is
the same.

In a series circuit: V D V1 C V2 C V3

Since V D Q

C
then

Q

C
D Q

C1
C Q

C2
C Q

C3

where C is the total equivalent circuit capacitance,

i.e.
1
C

=
1

C1
Y

1
C2
Y

1
C3

It follows that for n series-connected capacitors:

1
C

=
1

C1
Y

1
C2
Y

1
C3
Y . . .Y

1
Cn,
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i.e. for series-connected capacitors, the reciprocal of the equivalent capac-
itance is equal to the sum of the reciprocals of the individual capacitances.
(Note that this formula is similar to that used for resistors connected in
parallel)
For the special case of two capacitors in series:

1

C
D 1

C1
C 1

C2
D C2 CC1

C1 C2

Hence C =
C1C2

C1 Y C2

(
i.e.

product

sum

)

Problem 10. Calculate the equivalent capacitance of two capaci-
tors of 6 µF and 4 µF connected (a) in parallel and (b) in series

(a) In parallel, equivalent capacitance C D C1 CC2 D 6 µF C 4 µF D
10 mF

(b) In series, equivalent capacitance C is given by: C D C1C2

C1 CC2

This formula is used for the special case of two capacitors in series.

Thus C D 6 ð 4

6 C 4
D 24

10
D 2.4 mF

Problem 11. What capacitance must be connected in series with
a 30 µF capacitor for the equivalent capacitance to be 12 µF?

Let C D 12 µF (the equivalent capacitance), C1 D 30 µF and C2 be the
unknown capacitance.

For two capacitors in series
1

C
D 1

C1
C 1

C2

Hence
1

C2
D 1

C
� 1

C1
D C1 �C

CC1

and C2 D CC1

C1 �C
D 12 ð 30

30 � 12
D 360

18
D 20 mF

Problem 12. Capacitances of 1 µF, 3 µF, 5 µF and 6 µF are
connected in parallel to a direct voltage supply of 100 V. Determine
(a) the equivalent circuit capacitance, (b) the total charge and
(c) the charge on each capacitor.

(a) The equivalent capacitance C for four capacitors in parallel is
given by:
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C D C1 C C2 C C3 CC4

i.e. C D 1 C 3 C 5 C 6 D 15 mF

(b) Total charge QT D CV where C is the equivalent circuit capacitance
i.e. QT D 15 ð 10�6 ð 100 D 1.5 ð 10�3 C D 1.5 mC

(c) The charge on the 1 µF capacitor Q1 D C1V D 1 ð 10�6 ð 100

D 0.1 mC

The charge on the 3 µF capacitor Q2 D C2V D 3 ð 10�6 ð 100

D 0.3 mC

The charge on the 5 µF capacitor Q3 D C3V D 5 ð 10�6 ð 100

D 0.5 mC

The charge on the 6 µF capacitor Q4 D C4V D 6 ð 10�6 ð 100

D 0.6 mC

[Check: In a parallel circuit QT D Q1 C Q2 C Q3 C Q4

Q1 C Q2 C Q3 C Q4 D 0.1 C 0.3 C 0.5 C 0.6 D 1.5 mC D QT]

Problem 13. Capacitances of 3 µF, 6 µF and 12 µF are connected
in series across a 350 V supply. Calculate (a) the equivalent circuit
capacitance, (b) the charge on each capacitor and (c) the pd across
each capacitor.

The circuit diagram is shown in Figure 6.8.Figure 6.8

(a) The equivalent circuit capacitance C for three capacitors in series is
given by:

1

C
D 1

C1
C 1

C2
C 1

C3

i.e.
1

C
D 1

3
C 1

6
C 1

12
D 4 C 2 C 1

12
D 7

12

Hence the equivalent circuit capacitance C=
12
7

= 1
5
7
mF

(b) Total charge QT D CV,

hence QT D 12

7
ð 10�6 ð 350 D 600 µC or 0.6 mC

Since the capacitors are connected in series 0.6 mC is the charge
on each of them.

(c) The voltage across the 3 µF capacitor, V1 D Q

C1
D 0.6 ð 10�3

3 ð 10�6

D 200 V
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The voltage across the 6 µF capacitor, V2 D Q

C2
D 0.6 ð 10�3

6 ð 10�6

D 100 V

The voltage across the 12 µF capacitor,V3 D Q

C3
D 0.6 ð 10�3

12 ð 10�6

D 50 V

[Check: In a series circuit V D V1 C V2 C V3

V1 C V2 C V3 D 200 C 100 C 50 D 350 V D supply voltage.]

In practice, capacitors are rarely connected in series unless they are of
the same capacitance. The reason for this can be seen from the above
problem where the lowest valued capacitor (i.e. 3 µF) has the highest
pd across it (i.e. 200 V) which means that if all the capacitors have an
identical construction they must all be rated at the highest voltage.

Further problems on capacitors in parallel and series may be found in
Section 6.13, problems 18 to 25, page 72.

6.9 Dielectric strength The maximum amount of field strength that a dielectric can withstand is
called the dielectric strength of the material.

Dielectric strength, Em D Vm
d

Problem 14. A capacitor is to be constructed so that its capaci-
tance is 0.2 µF and to take a p.d. of 1.25 kV across its terminals.
The dielectric is to be mica which, after allowing a safety factor of
2, has a dielectric strength of 50 MV/m. Find (a) the thickness of
the mica needed, and (b) the area of a plate assuming a two-plate
construction. (Assume εr for mica to be 6)

(a) Dielectric strength, E D V

d
, i.e. d D V

E
D 1.25 ð 103

50 ð 106
m

D 0.025 mm

(b) Capacitance, C D ε0εr A

d
, hence area

A D Cd

ε0εr
D 0.2 ð 10�6 ð 0.025 ð 10�3

8.85 ð 10�12 ð 6
m2

D 0.09416 m2 D 941.6 cm2
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6.10 Energy stored The energy, W, stored by a capacitor is given by

W = 1
2 CV 2 joules

Problem 15. (a) Determine the energy stored in a 3 µF capacitor
when charged to 400 V. (b) Find also the average power developed
if this energy is dissipated in a time of 10 µs

(a) Energy stored W D 1
2 C V2 joules

D 1
2 ð 3 ð 10�6 ð 4002 D 3

2 ð 16 ð 10�2

D 0.24 J

(b) Power D Energy

time
D 0.24

10 ð 10�6
W D 24 kW

Problem 16. A 12 µF capacitor is required to store 4 J of energy.
Find the pd to which the capacitor must be charged.

Energy stored W D 1

2
CV2 hence V2 D 2W

C

and V D
√(

2W

C

)
D
√(

2 ð 4

12 ð 10�6

)
D
√(

2 ð 106

3

)
D 816.5 V

Problem 17. A capacitor is charged with 10 mC. If the energy
stored is 1.2 J find (a) the voltage and (b) the capacitance.

Energy stored W D 1

2
CV2 and C D Q

V

Hence W D 1

2

(
Q

V

)
V2 D 1

2
QV

from which V D 2W

Q

Q D 10 mc D 10 ð 10�3 C and W D 1.2 J

(a) Voltage V D 2W

Q
D 2 ð 1.2

10 ð 10�3
D 0.24 kV or 240 V

(b) Capacitance C D Q

V
D 10 ð 10�3

240
F D 10 ð 106

240 ð 103
µF D 41.67 mF
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Further problems on energy stored may be found in Section 6.13, problems
26 to 30, page 73.

6.11 Practical types of
capacitor

Practical types of capacitor are characterized by the material used for
their dielectric. The main types include: variable air, mica, paper, ceramic,
plastic, titanium oxide and electrolytic.

1 Variable air capacitors. These usually consist of two sets of metal
plates (such as aluminium) one fixed, the other variable. The set
of moving plates rotate on a spindle as shown by the end view of
Figure 6.9.

Figure 6.9

As the moving plates are rotated through half a revolution, the
meshing, and therefore the capacitance, varies from a minimum to
a maximum value. Variable air capacitors are used in radio and
electronic circuits where very low losses are required, or where a
variable capacitance is needed. The maximum value of such capacitors
is between 500 pF and 1000 pF.

Figure 6.10

2 Mica capacitors. A typical older type construction is shown in
Figure 6.10.

Usually the whole capacitor is impregnated with wax and placed in
a bakelite case. Mica is easily obtained in thin sheets and is a good
insulator. However, mica is expensive and is not used in capacitors
above about 0.2 µF. A modified form of mica capacitor is the silvered
mica type. The mica is coated on both sides with a thin layer of silver
which forms the plates. Capacitance is stable and less likely to change
with age. Such capacitors have a constant capacitance with change of
temperature, a high working voltage rating and a long service life and
are used in high frequency circuits with fixed values of capacitance
up to about 1000 pF.

Figure 6.11

3 Paper capacitors. A typical paper capacitor is shown in Figure 6.11
where the length of the roll corresponds to the capacitance required.
The whole is usually impregnated with oil or wax to exclude mois-
ture, and then placed in a plastic or aluminium container for protection.
Paper capacitors are made in various working voltages up to about
150 kV and are used where loss is not very important. The maximum
value of this type of capacitor is between 500 pF and 10 µF. Disad-
vantages of paper capacitors include variation in capacitance with
temperature change and a shorter service life than most other types
of capacitor.

4 Ceramic capacitors. These are made in various forms, each type of
construction depending on the value of capacitance required. For high
values, a tube of ceramic material is used as shown in the cross section
of Figure 6.12. For smaller values the cup construction is used as
shown in Figure 6.13, and for still smaller values the disc construction
shown in Figure 6.14 is used. Certain ceramic materials have a very
high permittivity and this enables capacitors of high capacitance to be
made which are of small physical size with a high working voltageFigure 6.12
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Figure 6.13

rating. Ceramic capacitors are available in the range 1 pF to 0.1 µF
and may be used in high frequency electronic circuits subject to a
wide range of temperatures.

5 Plastic capacitors. Some plastic materials such as polystyrene and
Teflon can be used as dielectrics. Construction is similar to the paper
capacitor but using a plastic film instead of paper. Plastic capacitors
operate well under conditions of high temperature, provide a precise
value of capacitance, a very long service life and high reliability.

Figure 6.14

6 Titanium oxide capacitors have a very high capacitance with a small
physical size when used at a low temperature.

7 Electrolytic capacitors. Construction is similar to the paper capac-
itor with aluminium foil used for the plates and with a thick absorbent
material, such as paper, impregnated with an electrolyte (ammonium
borate), separating the plates. The finished capacitor is usually assem-
bled in an aluminium container and hermetically sealed. Its operation
depends on the formation of a thin aluminium oxide layer on the
positive plate by electrolytic action when a suitable direct potential is
maintained between the plates. This oxide layer is very thin and forms
the dielectric. (The absorbent paper between the plates is a conductor
and does not act as a dielectric.) Such capacitors must always be
used on dc and must be connected with the correct polarity; if this
is not done the capacitor will be destroyed since the oxide layer will
be destroyed. Electrolytic capacitors are manufactured with working
voltage from 6 V to 600 V, although accuracy is generally not very
high. These capacitors possess a much larger capacitance than other
types of capacitors of similar dimensions due to the oxide film being
only a few microns thick. The fact that they can be used only on dc
supplies limit their usefulness.

6.12 Discharging
capacitors

When a capacitor has been disconnected from the supply it may still be
charged and it may retain this charge for some considerable time. Thus
precautions must be taken to ensure that the capacitor is automatically
discharged after the supply is switched off. This is done by connecting a
high value resistor across the capacitor terminals.

6.13 Further problems
on capacitors and

capacitance
(Where appropriate take e0 as

8.85 × 10−12 F/m)

Charge and capacitance

1 Find the charge on a 10 µF capacitor when the applied voltage is
250 V. [2.5 mC]

2 Determine the voltage across a 1000 pF capacitor to charge it with
2 µC. [2 kV]

3 The charge on the plates of a capacitor is 6 mC when the potential
between them is 2.4 kV. Determine the capacitance of the capacitor.

[2.5 µF]
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4 For how long must a charging current of 2 A be fed to a 5 µF
capacitor to raise the pd between its plates by 500 V. [1.25 ms]

5 A steady current of 10 A flows into a previously uncharged capac-
itor for 1.5 ms when the pd between the plates is 2 kV. Find the
capacitance of the capacitor. [7.5 µF]

Electric field strength, electric flux density and permittivity

6 A capacitor uses a dielectric 0.04 mm thick and operates at 30 V.
What is the electric field strength across the dielectric at this voltage?

[750 kV/m]

7 A two-plate capacitor has a charge of 25 C. If the effective area of
each plate is 5 cm2 find the electric flux density of the electric field.

[50 kC/m2]

8 A charge of 1.5 µC is carried on two parallel rectangular plates each
measuring 60 mm by 80 mm. Calculate the electric flux density. If
the plates are spaced 10 mm apart and the voltage between them is
0.5 kV determine the electric field strength.

[312.5 µC/m2, 50 kV/m]

9 The electric flux density between two plates separated by polystyrene
of relative permittivity 2.5 is 5 µC/m2. Find the voltage gradient
between the plates. [226 kV/m]

10 Two parallel plates having a pd of 250 V between them are spaced
1 mm apart. Determine the electric field strength. Find also the
electric flux density when the dielectric between the plates is (a) air
and (b) mica of relative permittivity 5.

[250 kV/m (a) 2.213 µC/m2 (b) 11.063 µC/m2]

Parallel plate capacitor

11 A capacitor consists of two parallel plates each of area 0.01 m2,
spaced 0.1 mm in air. Calculate the capacitance in picofarads.

[885 pF]

12 A waxed paper capacitor has two parallel plates, each of effective
area 0.2 m2. If the capacitance is 4000 pF determine the effective
thickness of the paper if its relative permittivity is 2. [0.885 mm]

13 Calculate the capacitance of a parallel plate capacitor having 5 plates,
each 30 mm by 20 mm and separated by a dielectric 0.75 mm thick
having a relative permittivity of 2.3 [65.14 pF]

14 How many plates has a parallel plate capacitor having a capacitance
of 5 nF, if each plate is 40 mm by 40 mm and each dielectric is
0.102 mm thick with a relative permittivity of 6. [7]
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15 A parallel plate capacitor is made from 25 plates, each 70 mm by
120 mm interleaved with mica of relative permittivity 5. If the capac-
itance of the capacitor is 3000 pF determine the thickness of the mica
sheet. [2.97 mm]

16 The capacitance of a parallel plate capacitor is 1000 pF. It has 19
plates, each 50 mm by 30 mm separated by a dielectric of thickness
0.40 mm. Determine the relative permittivity of the dielectric. [1.67]

17 A capacitor is to be constructed so that its capacitance is 4250 pF
and to operate at a pd of 100 V across its terminals. The dielectric
is to be polythene (εr D 2.3) which, after allowing a safety factor,
has a dielectric strength of 20 MV/m. Find (a) the thickness of the
polythene needed, and (b) the area of a plate.

[(a) 0.005 mm (b) 10.44 cm2]

Capacitors in parallel and series

18 Capacitors of 2 µF and 6 µF are connected (a) in parallel and (b) in
series. Determine the equivalent capacitance in each case.

[(a) 8 µF (b) 1.5 µF]

19 Find the capacitance to be connected in series with a 10 µF capacitor
for the equivalent capacitance to be 6 µF [15 µF]

20 Two 6 µF capacitors are connected in series with one having a capac-
itance of 12 µF. Find the total equivalent circuit capacitance. What
capacitance must be added in series to obtain a capacitance of 1.2 µF?
[2.4 µF, 2.4 µF]

21 Determine the equivalent capacitance when the following capacitors
are connected (a) in parallel and (b) in series:

(i) 2 µF, 4 µF and 8 µF
(ii) 0.02 µF, 0.05 µF and 0.10 µF

(iii) 50 pF and 450 pF
(iv) 0.01 µF and 200 pF

[(a) (i) 14 µF (ii) 0.17 µF (iii) 500 pF (iv) 0.0102 µF
(b) (i) 1 1

7 µF (ii) 0.0125 µF (iii) 45 pF (iv) 196.1 pF]

22 For the arrangement shown in Figure 6.15 find (a) the equivalent
circuit capacitance and (b) the voltage across a 4.5 µF capacitor.

[(a) 1.2 µF (b) 100 V]

23 Three 12 µF capacitors are connected in series across a 750 V
supply. Calculate (a) the equivalent capacitance, (b) the charge on
each capacitor and (c) the pd across each capacitor.

[(a) 4 µF (b) 3 mC (c) 250 V]
Figure 6.15

24 If two capacitors having capacitances of 3 µF and 5 µF respectively
are connected in series across a 240 V supply, determine (a) the p.d.
across each capacitor and (b) the charge on each capacitor.

[(a) 150 V, 90 V (b) 0.45 mC on each]
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Figure 6.16

25 In Figure 6.16 capacitors P, Q and R are identical and the total
equivalent capacitance of the circuit is 3 µF. Determine the values
of P, Q and R [4.2 µF each]

Energy stored

26 When a capacitor is connected across a 200 V supply the charge is
4 µC. Find (a) the capacitance and (b) the energy stored.

[(a) 0.02 µF (b) 0.4 mJ]

27 Find the energy stored in a 10 µF capacitor when charged to 2 kV.
[20 J]

28 A 3300 pF capacitor is required to store 0.5 mJ of energy. Find the
pd to which the capacitor must be charged. [550 V]

29 A capacitor, consisting of two metal plates each of area 50 cm2 and
spaced 0.2 mm apart in air, is connected across a 120 V supply.
Calculate (a) the energy stored, (b) the electric flux density and
(c) the potential gradient

[(a) 1.593 µJ (b) 5.31 µC/m2 (c) 600 kV/m]

30 A bakelite capacitor is to be constructed to have a capacitance of
0.04 µF and to have a steady working potential of 1 kV maximum.
Allowing a safe value of field stress of 25 MV/m find (a) the thick-
ness of bakelite required, (b) the area of plate required if the rela-
tive permittivity of bakelite is 5, (c) the maximum energy stored by
the capacitor and (d) the average power developed if this energy is
dissipated in a time of 20 µs.

[(a) 0.04 mm (b) 361.6 cm2 (c) 0.02 J (d) 1 kW]



7 Magnetic circuits

At the end of this chapter you should be able to:

ž describe the magnetic field around a permanent magnet
ž state the laws of magnetic attraction and repulsion for two

magnets in close proximity
ž define magnetic flux, , and magnetic flux density, B, and

state their units

ž perform simple calculations involving B D 

A
ž define magnetomotive force, Fm, and magnetic field strength,

H, and state their units

ž perform simple calculations involving Fm D NI and H D NI

l
ž define permeability, distinguishing between 
0, 
r and 

ž understand the B–H curves for different magnetic materials
ž appreciate typical values of 
r
ž perform calculations involving B D 
0
rH
ž define reluctance, S, and state its units

ž perform calculations involving S D mmf


D l


0
rA

ž perform calculations on composite series magnetic circuits
ž compare electrical and magnetic quantities
ž appreciate how a hysteresis loop is obtained and that

hysteresis loss is proportional to its area

7.1 Magnetic fields A permanent magnet is a piece of ferromagnetic material (such as iron,
nickel or cobalt) which has properties of attracting other pieces of these
materials. A permanent magnet will position itself in a north and south
direction when freely suspended. The north-seeking end of the magnet is
called the north pole, N, and the south-seeking end the south pole, S.

The area around a magnet is called the magnetic field and it is in
this area that the effects of the magnetic force produced by the magnet
can be detected. A magnetic field cannot be seen, felt, smelt or heard
and therefore is difficult to represent. Michael Faraday suggested that the
magnetic field could be represented pictorially, by imagining the field
to consist of lines of magnetic flux, which enables investigation of the
distribution and density of the field to be carried out.

The distribution of a magnetic field can be investigated by using some
iron filings. A bar magnet is placed on a flat surface covered by, say,
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Figure 7.1

cardboard, upon which is sprinkled some iron filings. If the cardboard
is gently tapped the filings will assume a pattern similar to that shown
in Figure 7.1. If a number of magnets of different strength are used, it
is found that the stronger the field the closer are the lines of magnetic
flux and vice versa. Thus a magnetic field has the property of exerting a
force, demonstrated in this case by causing the iron filings to move into
the pattern shown. The strength of the magnetic field decreases as we
move away from the magnet. It should be realized, of course, that the
magnetic field is three dimensional in its effect, and not acting in one
plane as appears to be the case in this experiment.

If a compass is placed in the magnetic field in various positions, the
direction of the lines of flux may be determined by noting the direction of
the compass pointer. The direction of a magnetic field at any point is taken
as that in which the north-seeking pole of a compass needle points when
suspended in the field. The direction of a line of flux is from the north
pole to the south pole on the outside of the magnet and is then assumed to
continue through the magnet back to the point at which it emerged at the
north pole. Thus such lines of flux always form complete closed loops or
paths, they never intersect and always have a definite direction. The laws
of magnetic attraction and repulsion can be demonstrated by using two
bar magnets. In Figure 7.2(a), with unlike poles adjacent, attraction
takes place. Lines of flux are imagined to contract and the magnets try to
pull together. The magnetic field is strongest in between the two magnets,
shown by the lines of flux being close together. In Figure 7.2(b), with
similar poles adjacent (i.e. two north poles), repulsion occurs, i.e. the
two north poles try to push each other apart, since magnetic flux lines
running side by side in the same direction repel.

Figure 7.2

7.2 Magnetic flux and
flux density

Magnetic flux is the amount of magnetic field (or the number of lines of
force) produced by a magnetic source. The symbol for magnetic flux is
 (Greek letter ‘phi’). The unit of magnetic flux is the weber, Wb

Magnetic flux density is the amount of flux passing through a defined
area that is perpendicular to the direction of the flux:

Magnetic flux density =
magnetic flux

area

The symbol for magnetic flux density is B. The unit of magnetic flux
density is the tesla, T, where 1 T D 1 Wb/m2 Hence
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B =
8

A
tesla , where A�m2� is the area

Problem 1. A magnetic pole face has a rectangular section having
dimensions 200 mm by 100 mm. If the total flux emerging from
the pole is 150 µWb, calculate the flux density.

Flux  D 150 µWb D 150 ð 10�6 Wb

Cross sectional area A D 200 ð 100 D 20000 mm2

D 20000 ð 10�6 m2

Flux density B D 

A
D 150 ð 10�6

20000 ð 10�6

D 0.0075 T or 7.5 mT

Problem 2. The maximum working flux density of a lifting elec-
tromagnet is 1.8 T and the effective area of a pole face is circular
in cross-section. If the total magnetic flux produced is 353 mWb,
determine the radius of the pole face.

Flux density B D 1.8 T; flux  D 353 mWb D 353 ð 10�3 Wb

Since B D 

A
, cross-sectional area A D 

B
D 353 ð 10�3

1.8
m2

D 0.1961 m2

The pole face is circular, hence area D �r2, where r is the radius.

Hence �r2 D 0.1961

from which r2 D 0.1961

�
and radius r D

√(
0.1961

�

)
D 0.250 m

i.e. the radius of the pole face is 250 mm

7.3 Magnetomotive force
and magnetic field

strength

Magnetomotive force (mmf) is the cause of the existence of a magnetic
flux in a magnetic circuit,

mmf, Fm = NI amperes

where N is the number of conductors (or turns) and I is the current
in amperes. The unit of mmf is sometimes expressed as ‘ampere-turns’.
However since ‘turns’ have no dimensions, the SI unit of mmf is the
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ampere. Magnetic field strength (or magnetizing force),

H = NI =l ampere per metre,

where l is the mean length of the flux path in metres.

Thus mmf = NI = Hl amperes.

Problem 3. A magnetizing force of 8000 A/m is applied to a
circular magnetic circuit of mean diameter 30 cm by passing a
current through a coil wound on the circuit. If the coil is uniformly
wound around the circuit and has 750 turns, find the current in
the coil.

H D 8000 A/m; l D �d D � ð 30 ð 10�2 m; N D 750 turns

Since H D NI

l
then, I D Hl

N
D 8000 ð � ð 30 ð 10�2

750

Thus, current I = 10.05 A

7.4 Permeability and
B –H curves

For air, or any non-magnetic medium, the ratio of magnetic flux density
to magnetizing force is a constant, i.e. B/H D a constant. This constant is

0, the permeability of free space (or the magnetic space constant) and
is equal to 4� ð 10�7 H/m, i.e., for air, or any non-magnetic medium,

the ratio B=H = m0 (Although all non-magnetic materials, including

air, exhibit slight magnetic properties, these can effectively be neglected.)

For all media other than free space, B=H = m0mr

where ur is the relative permeability, and is defined as

mr =
flux density in material

flux density in a vacuum


r varies with the type of magnetic material and, since it is a ratio of
flux densities, it has no unit. From its definition, 
r for a vacuum is 1.
m0mr = m, called the absolute permeability

By plotting measured values of flux density B against magnetic field
strength H, a magnetization curve (or B–H curve) is produced. For non-
magnetic materials this is a straight line. Typical curves for four magnetic
materials are shown in Figure 7.3.

The relative permeability of a ferromagnetic material is proportional
to the slope of the B–H curve and thus varies with the magnetic field
strength. The approximate range of values of relative permeability 
r for
some common magnetic materials are:
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Figure 7.3 B–H curves for four materials

Cast iron 
r D 100–250 Mild steel 
r D 200–800

Silicon iron 
r D 1000–5000 Cast steel 
r D 300–900

Mumetal 
r D 200–5000 Stalloy 
r D 500–6000

Problem 4. A flux density of 1.2 T is produced in a piece of
cast steel by a magnetizing force of 1250 A/m. Find the relative
permeability of the steel under these conditions.

For a magnetic material:

B D 
0
r H

i.e. ur D B


0 H
D 1.2

�4� ð 10�7��1250�
D 764

Problem 5. Determine the magnetic field strength and the mmf
required to produce a flux density of 0.25 T in an air gap of length
12 mm.
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For air: B D 
0 H (since 
r D 1)

Magnetic field strength H D B


0
D 0.25

4� ð 10�7
D 198 940 A/m

mmf D Hl D 198 940 ð 12 ð 10�3 D 2387 A

Problem 6. A coil of 300 turns is wound uniformly on a ring
of non-magnetic material. The ring has a mean circumference of
40 cm and a uniform cross sectional area of 4 cm2. If the current
in the coil is 5 A, calculate (a) the magnetic field strength, (b) the
flux density and (c) the total magnetic flux in the ring.

(a) Magnetic field strength H D NI

l
D 300 ð 5

40 ð 10�2
D 3750 A/m

(b) For a non-magnetic material 
r D 1, thus flux density B D 
0H

i.e. B D 4� ð 10�7 ð 3750 D 4.712 mT

(c) Flux  D BA D �4.712 ð 10�3��4 ð 10�4� D 1.885 mWb

Problem 7. An iron ring of mean diameter 10 cm is uniformly
wound with 2000 turns of wire. When a current of 0.25 A is passed
through the coil a flux density of 0.4 T is set up in the iron. Find
(a) the magnetizing force and (b) the relative permeability of the
iron under these conditions.

l D �d D � ð 10 cm D � ð 10 ð 10�2 m; N D 2000 turns; I D 0.25 A;
B D 0.4 T

(a) H D NI

l
D 2000 ð 0.25

� ð 10 ð 10�2
D 5000

�
D 1592 A/m

(b) B D 
0
rH, hence mr D B


0H
D 0.4

�4� ð 10�7��1592�
D 200

Problem 8. A uniform ring of cast iron has a cross-sectional area
of 10 cm2 and a mean circumference of 20 cm. Determine the mmf
necessary to produce a flux of 0.3 mWb in the ring. The magneti-
zation curve for cast iron is shown on page 78.

A D 10 cm2 D 10 ð 10�4 m2; l D 20 cm D 0.2 m;  D 0.3 ð 10�3 Wb

Flux density B D 

A
D 0.3 ð 10�3

10 ð 10�4
D 0.3 T

From the magnetization curve for cast iron on page 78, when B D 0.3 T,
H D 1000 A/m, hence mmf D Hl D 1000 ð 0.2 D 200 A



80 Electrical Circuit Theory and Technology

A tabular method could have been used in this problem. Such a solution
is shown below.

Part of
circuit

Material  (Wb) A �m2� B D 

A
(T) H from

graph
l (m) mmf D

Hl (A)

Ring Cast iron 0.3 ð 10�3 10 ð 10�4 0.3 1000 0.2 200

7.5 Reluctance Reluctance S (or RM) is the ‘magnetic resistance’ of a magnetic circuit
to the presence of magnetic flux.

Reluctance S D FM


D NI


D Hl

BA
D l

�B/H�A
D l

m0mrA

The unit of reluctance is 1/H (or H�1) or A/Wb
Ferromagnetic materials have a low reluctance and can be used as
magnetic screens to prevent magnetic fields affecting materials within
the screen.

Problem 9. Determine the reluctance of a piece of mumetal of
length 150 mm and cross-sectional area 1800 mm2 when the rela-
tive permeability is 4000. Find also the absolute permeability of
the mumetal.

Reluctance S D l


0
rA
D 150 ð 10�3

�4� ð 10�7��4000��1800 ð 10�6�

D 16 580=H

Absolute permeability, m D 
0
r D �4� ð 10�7��4000�

D 5.027 × 10−3 H/m

Problem 10. A mild steel ring has a radius of 50 mm and a cross-
sectional area of 400 mm2. A current of 0.5 A flows in a coil wound
uniformly around the ring and the flux produced is 0.1 mWb. If
the relative permeability at this value of current is 200 find (a) the
reluctance of the mild steel and (b) the number of turns on the coil.

l D 2�r D 2 ð � ð 50 ð 10�3 m; A D 400 ð 10�6 m2; I D 0.5 A;
 D 0.1 ð 10�3 Wb; 
r D 200

(a) Reluctance S D l


0
rA
D 2 ð � ð 50 ð 10�3

�4� ð 10�7��200��400 ð 10�6�

D 3.125 × 106=H
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(b) S D mmf


i.e. mmf D S

so that NI D S and

hence N D S

I
D 3.125 ð 106 ð 0.1 ð 10�3

0.5
D 625 turns

Further problems on magnetic circuit quantities may be found in
Section 7.9, problems 1 to 14, page 85.

7.6 Composite series
magnetic circuits

For a series magnetic circuit having n parts, the total reluctance S is
given by:

S = S1 Y S2 Y . . .Y Sn

(This is similar to resistors connected in series in an electrical circuit.)

Problem 11. A closed magnetic circuit of cast steel contains a
6 cm long path of cross-sectional area 1 cm2 and a 2 cm path of
cross-sectional area 0.5 cm2. A coil of 200 turns is wound around
the 6 cm length of the circuit and a current of 0.4 A flows. Deter-
mine the flux density in the 2 cm path, if the relative permeability
of the cast steel is 750.

For the 6 cm long path:

Reluctance S1 D l1

0
rA1

D 6 ð 10�2

�4� ð 10�7��750��1 ð 10�4�

D 6.366 ð 105/H

For the 2 cm long path:

Reluctance S2 D l2

0
rA2

D 2 ð 10�2

�4� ð 10�7��750��0.5 ð 10�4�

D 4.244 ð 105/H

Total circuit reluctance S D S1 C S2 D �6.366 C 4.244�ð 105

D 10.61 ð 105/H

S D mmf


, i.e.  D mmf

S
D NI

S
D 200 ð 0.4

10.61 ð 105
D 7.54 ð 10�5 Wb

Flux density in the 2 cm path, B D 

A
D 7.54 ð 10�5

0.5 ð 10�4
D 1.51 T
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Problem 12. A silicon iron ring of cross-sectional area 5 cm2 has
a radial air gap of 2 mm cut into it. If the mean length of the silicon
iron path is 40 cm, calculate the magnetomotive force to produce
a flux of 0.7 mWb. The magnetization curve for silicon is shown
on page 78.

There are two parts to the circuit — the silicon iron and the air gap. The
total mmf will be the sum of the mmf’s of each part.

For the silicon iron: B D 

A
D 0.7 ð 10�3

5 ð 10�4
D 1.4 T

From the B–H curve for silicon iron on page 78, when B D 1.4 T,
H D 1650 At/m.

Hence the mmf for the iron path D Hl D 1650 ð 0.4 D 660 A
For the air gap:
The flux density will be the same in the air gap as in the iron, i.e. 1.4 T.
(This assumes no leakage or fringing occurring.)

For air, H D B


0
D 1.4

4� ð 10�7

D 1 114 000 A/m

Hence the mmf for the air gap D Hl D 1 114 000 ð 2 ð 10�3

D 2228 A

Total mmf to produce a flux of 0.7 mWb D 660 C 2228

D 2888 A
A tabular method could have been used as shown below.

Part of
circuit

Material  (Wb) A �m2� B (T) H (A/m) l (m) mmf D
Hl (A)

Ring Silicon 0.7 ð 10�3 5 ð 10�4 1.4 1650 0.4 660
iron (from graph)

Air-gap Air 0.7 ð 10�3 5 ð 10�4 1.4
1.4

4� ð 10�7
2 ð 10�3 2228

D 1 114 000

Total: 2888 A

Problem 13. Figure 7.4 shows a ring formed with two different
materials — cast steel and mild steel. The dimensions are:

mean length cross-sectional area
Mild steel 400 mm 500 mm2

Cast steel 300 mm 312.5 mm2

Figure 7.4



Magnetic circuits83

Find the total mmf required to cause a flux of 500 µWb in the
magnetic circuit. Determine also the total circuit reluctance.

A tabular solution is shown below.

Part of
circuit

Material  (Wb) A �m2� B (T)
(D /A)

H (A/m)
(from
graphs p 78)

l (m) mmfD Hl
( A )

A Mild steel 500 ð 10�6 500 ð 10�6 1.0 1400 400 ð 10�3 560
B Cast steel 500 ð 10�6 312.5 ð 10�6 1.6 4800 300 ð 10�3 1440

Total: 2000 A

Total circuit reluctance S D mmf


D 2000

500 ð 10�6

D 4 × 106=H

Problem 14. A section through a magnetic circuit of uniform
cross-sectional area 2 cm2 is shown in Figure 7.5. The cast steel
core has a mean length of 25 cm. The air gap is 1 mm wide and
the coil has 5000 turns. The B–H curve for cast steel is shown on
page 78. Determine the current in the coil to produce a flux density
of 0.80 T in the air gap, assuming that all the flux passes through
both parts of the magnetic circuit.

Figure 7.5 For the cast steel core, when B D 0.80 T, H D 750 A/m (from page 78)

Reluctance of core S1 D l1

0
rA1

and since B D 
0
rH,

then 
r D B


0H
. Thus S1 D l1


0

(
B


0H

)
A

D l1H

BA
D �25 ð 10�2��750�

�0.8��2 ð 10�4�

D 1 172 000/H

For the air gap: Reluctance, S2 D l2

0
rA2

D l2

0A2

�since 
r D 1 for air�

D 1 ð 10�3

�4� ð 10�7��2 ð 10�4�

D 3 979 000/H

Total circuit reluctance S D S1 C S2 D 1 172 000 C 3 979 000

D 5 151 000/H
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Flux  D BA D 0.80 ð 2 ð 10�4 D 1.6 ð 10�4 Wb

S D mmf


, thus mmf D S

Hence NI D S

and current I D S

N
D �5 151 000��1.6 ð 10�4�

5000
D 0.165 A

Further problems on composite series magnetic circuits may be found in
Section 7.9, problems 15 to 19, page 86.

7.7 Comparison between
electrical and magnetic

quantities
Electrical circuit Magnetic circuit

e.m.f. E (V) mmf Fm (A)
current I (A) flux  (Wb)
resistance R (�) reluctance S (H�1)

I D E

R
 D mmf

S

R D �l

A
S D l


0
rA

7.8 Hysteresis and
hysteresis loss

Hysteresis is the ‘lagging’ effect of flux density B whenever there are
changes in the magnetic field strength H. When an initially unmagnetized
ferromagnetic material is subjected to a varying magnetic field strength H,
the flux density B produced in the material varies as shown in Figure 7.6,
the arrows indicating the direction of the cycle. Figure 7.6 is known as a
hysteresis loop.

Figure 7.6

From Figure 7.6, distance OX indicates the residual flux density or
remanence, OY indicates the coercive force, and PP’ is the saturation
flux density.

Hysteresis results in a dissipation of energy which appears as a heating
of the magnetic material. The energy loss associated with hysteresis is
proportional to the area of the hysteresis loop.

The production of the hysteresis loop and hysteresis loss are explained
in greater detail in Chapter 38, Section 3, page 692.

The area of a hysteresis loop varies with the type of material. The area,
and thus the energy loss, is much greater for hard materials than for soft
materials.

For AC-excited devices the hysteresis loop is repeated every cycle of
alternating current. Thus a hysteresis loop with a large area (as with hard
steel) is often unsuitable since the energy loss would be considerable.
Silicon steel has a narrow hysteresis loop, and thus small hysteresis loss,
and is suitable for transformer cores and rotating machine armatures.
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7.9 Further problems on
magnetic circuits

(Where appropriate, assume
m0 = 4p × 10−7 H/m)

Magnetic circuit quantities

1 What is the flux density in a magnetic field of cross-sectional area
20 cm2 having a flux of 3 mWb? [1.5 T]

2 Determine the total flux emerging from a magnetic pole face having
dimensions 5 cm by 6 cm, if the flux density is 0.9 T. [2.7 mWb]

3 The maximum working flux density of a lifting electromagnet is
1.9 T and the effective area of a pole face is circular in cross-section.
If the total magnetic flux produced is 611 mWb determine the radius
of the pole face. [32 cm]

4 Find the magnetic field strength and the magnetomotive force needed
to produce a flux density of 0.33 T in an air-gap of length 15 mm.

[(a) 262 600 A/m (b) 3939 A]

5 An air-gap between two pole pieces is 20 mm in length and the area
of the flux path across the gap is 5 cm2. If the flux required in the
air-gap is 0.75 mWb find the mmf necessary. [23 870 A]

6 Find the magnetic field strength applied to a magnetic circuit of
mean length 50 cm when a coil of 400 turns is applied to it carrying
a current of 1.2 A. [960 A/m]

7 A solenoid 20 cm long is wound with 500 turns of wire. Find the
current required to establish a magnetizing force of 2500 A/m inside
the solenoid. [1 A]

8 A magnetic field strength of 5000 A/m is applied to a circular
magnetic circuit of mean diameter 250 mm. If the coil has 500 turns
find the current in the coil. [7.85 A]

9 Find the relative permeability of a piece of silicon iron if a flux
density of 1.3 T is produced by a magnetic field strength of 700 A/m

[1478]

10 Part of a magnetic circuit is made from steel of length 120 mm,
cross-sectional area 15 cm2 and relative permeability 800. Calculate
(a) the reluctance and (b) the absolute permeability of the steel.

[(a) 79 580 /H (b) 1 mH/m]

11 A steel ring of mean diameter 120 mm is uniformly wound with
1500 turns of wire. When a current of 0.30 A is passed through the
coil a flux density of 1.5 T is set up in the steel. Find the relative
permeability of the steel under these conditions. [1000]

12 A mild steel closed magnetic circuit has a mean length of 75 mm
and a cross-sectional area of 320.2 mm2. A current of 0.40 A flows
in a coil wound uniformly around the circuit and the flux produced
is 200 µWb. If the relative permeability of the steel at this value
of current is 400 find (a) the reluctance of the material and (b) the
number of turns of the coil. [(a) 466 000/H (b) 233]

13 A uniform ring of cast steel has a cross-sectional area of 5 cm2 and
a mean circumference of 15 cm. Find the current required in a coil
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of 1200 turns wound on the ring to produce a flux of 0.8 mWb. (Use
the magnetization curve for cast steel shown on page 78.) [0.60 A]

14 (a) A uniform mild steel ring has a diameter of 50 mm and a
cross-sectional area of 1 cm2. Determine the mmf necessary
to produce a flux of 50 µWb in the ring. (Use the B–H curve
for mild steel shown on page 78.)

(b) If a coil of 440 turns is wound uniformly around the ring in
part (a) what current would be required to produce the flux?

[(a) 110 A (b) 0.25 A]

Composite series magnetic circuits

15 A magnetic circuit of cross-sectional area 0.4 cm2 consists of one
part 3 cm long, of material having relative permeability 1200, and a
second part 2 cm long of material having relative permeability 750.
With a 100 turn coil carrying 2 A, find the value of flux existing in
the circuit. [0.195 mWb]

16 (a) A cast steel ring has a cross-sectional area of 600 mm2 and a
radius of 25 mm. Determine the mmf necessary to establish a
flux of 0.8 mWb in the ring. Use the B–H curve for cast steel
shown on page 78.

(b) If a radial air gap 1.5 mm wide is cut in the ring of part (a) find
the mmf now necessary to maintain the same flux in the ring.

[(a) 270 A (b) 1860 A]

17 For the magnetic circuit shown in Figure 7.7 find the current I in
the coil needed to produce a flux of 0.45 mWb in the air-gap. The
silicon iron magnetic circuit has a uniform cross-sectional area of
3 cm2 and its magnetization curve is as shown on page 78.

[0.83 A]

Figure 7.7

18 A ring forming a magnetic circuit is made from two materials; one
part is mild steel of mean length 25 cm and cross-sectional area
4 cm2, and the remainder is cast iron of mean length 20 cm and
cross-sectional area 7.5 cm2. Use a tabular approach to determine
the total mmf required to cause a flux of 0.30 mWb in the magnetic
circuit. Find also the total reluctance of the circuit. Use the magne-
tization curves shown on page 78. [550 A, 18.3 ð 105/H]

19 Figure 7.8 shows the magnetic circuit of a relay. When each of the
air gaps are 1.5 mm wide find the mmf required to produce a flux
density of 0.75 T in the air gaps. Use the B–H curves shown on
page 78. [2970 A]Figure 7.8



Assignment 2

This assignment covers the material contained in chapters 5
to 7.

The marks for each question are shown in brackets at the end of
each question.

1 Resistance’s of 5�, 7�, and 8� are connected in series. If a 10 V
supply voltage is connected across the arrangement determine the
current flowing through and the p.d. across the 7� resistor. Calculate
also the power dissipated in the 8� resistor. (6)

2 For the series-parallel network shown in Figure A2.1, find (a) the
supply current, (b) the current flowing through each resistor, (c) the
p.d. across each resistor, (d) the total power dissipated in the circuit,
(e) the cost of energy if the circuit is connected for 80 hours. Assume
electrical energy costs 7.2 p per unit. (15)

Figure A2.1
3 The charge on the plates of a capacitor is 8 mC when the potential

between them is 4 kV. Determine the capacitance of the capacitor.
(2)

4 Two parallel rectangular plates measuring 80 mm by 120 mm are sepa-
rated by 4 mm of mica and carry an electric charge of 0.48µC. The
voltage between the plates is 500 V. Calculate (a) the electric flux
density (b) the electric field strength, and (c) the capacitance of the
capacitor, in picofarads, if the relative permittivity of mica is 5.

(7)

5 A 4µF capacitor is connected in parallel with a 6µF capacitor. This
arrangement is then connected in series with a 10µF capacitor. A
supply p.d. of 250 V is connected across the circuit. Find (a) the
equivalent capacitance of the circuit, (b) the voltage across the 10µF
capacitor, and (c) the charge on each capacitor. (7)
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6 A coil of 600 turns is wound uniformly on a ring of non-magnetic
material. The ring has a uniform cross-sectional area of 200 mm2 and
a mean circumference of 500 mm. If the current in the coil is 4 A,
determine (a) the magnetic field strength, (b) the flux density, and
(c) the total magnetic flux in the ring. (5)

7 A mild steel ring of cross-sectional area 4 cm2 has a radial air-gap of
3 mm cut into it. If the mean length of the mild steel path is 300 mm,
calculate the magnetomotive force to produce a flux of 0.48 mWb.
(Use the B-H curve on page 78) (8)



8 Electromagnetism

At the end of this chapter you should be able to:

ž understand that magnetic fields are produced by electric
currents

ž apply the screw rule to determine direction of magnetic field

ž recognize that the magnetic field around a solenoid is similar
to a magnet

ž apply the screw rule or grip rule to a solenoid to determine
magnetic field direction

ž recognize and describe practical applications of an
electromagnet, i.e. electric bell, relay, lifting magnet,
telephone receiver

ž appreciate factors upon which the force F on a
current-carrying conductor depends

ž perform calculations using F D BIl and F D BIl sin �

ž recognize that a loudspeaker is a practical application of
force F

ž use Fleming’s left-hand rule to pre-determine direction of
force in a current-carrying conductor

ž describe the principle of operation of a simple d.c. motor

ž describe the principle of operation and construction of a
moving coil instrument

ž appreciate the force F on a charge in a magnetic field is given
by F D QvB

ž perform calculations using F D QvB

8.1 Magnetic field due to
an electric current

Magnetic fields can be set up not only by permanent magnets, as shown
in Chapter 7, but also by electric currents.

Let a piece of wire be arranged to pass vertically through a horizontal
sheet of cardboard, on which is placed some iron filings, as shown in
Figure 8.1(a).

If a current is now passed through the wire, then the iron filings will
form a definite circular field pattern with the wire at the centre, when the
cardboard is gently tapped. By placing a compass in different positions the
lines of flux are seen to have a definite direction as shown in Figure 8.1(b).
If the current direction is reversed, the direction of the lines of flux is
also reversed. The effect on both the iron filings and the compass needle
disappears when the current is switched off. The magnetic field is thus
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Figure 8.1

produced by the electric current. The magnetic flux produced has the same
properties as the flux produced by a permanent magnet. If the current is
increased the strength of the field increases and, as for the permanent
magnet, the field strength decreases as we move away from the current-
carrying conductor.

In Figure 8.1, the effect of only a small part of the magnetic field is
shown.

If the whole length of the conductor is similarly investigated it is found
that the magnetic field around a straight conductor is in the form of
concentric cylinders as shown in Figure 8.2, the field direction depending
on the direction of the current flow.

When dealing with magnetic fields formed by electric current it is usual
to portray the effect as shown in Figure 8.3. The convention adopted is:

(i) Current flowing away from the viewer, i.e. into the paper, is indi-
cated by ý. This may be thought of as the feathered end of the shaft
of an arrow. See Figure 8.3(a).

(ii) Current flowing towards the viewer, i.e. out of the paper, is indi-
cated by þ. This may be thought of as the point of an arrow. See
Figure 8.3(b).

The direction of the magnetic lines of flux is best remembered by the
screw rule. This states that:

‘If a normal right-hand thread screw is screwed along the conductor in
the direction of the current, the direction of rotation of the screw is in the
direction of the magnetic field.’

For example, with current flowing away from the viewer (Figure 8.3(a))
a right-hand thread screw driven into the paper has to be rotated clockwise.
Hence the direction of the magnetic field is clockwise.

A magnetic field set up by a long coil, or solenoid, is shown in
Figure 8.4(a) and is seen to be similar to that of a bar magnet. If the
solenoid is wound on an iron bar, as shown in Figure 8.4(b), an even
stronger magnetic field is produced, the iron becoming magnetized and
behaving like a permanent magnet.

The direction of the magnetic field produced by the current I in the
solenoid may be found by either of two methods, i.e. the screw rule or
the grip rule.

(a) The screw rule states that if a normal right-hand thread screw is
placed along the axis of the solenoid and is screwed in the direction
of the current it moves in the direction of the magnetic field inside
the solenoid. The direction of the magnetic field inside the solenoid
is from south to north. Thus in Figures 8.4(a) and (b) the north pole
is to the right.

(b) The grip rule states that if the coil is gripped with the right hand,
with the fingers pointing in the direction of the current, then the
thumb, outstretched parallel to the axis of the solenoid, points in the
direction of the magnetic field inside the solenoid.Figure 8.2
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Figure 8.3 Figure 8.4

Problem 1. Figure 8.5 shows a coil of wire wound on an iron core
connected to a battery. Sketch the magnetic field pattern associated
with the current carrying coil and determine the polarity of the field.

The magnetic field associated with the solenoid in Figure 8.5 is similar
to the field associated with a bar magnet and is as shown in Figure 8.6.
The polarity of the field is determined either by the screw rule or by
the grip rule. Thus the north pole is at the bottom and the south pole at
the top.Figure 8.5

8.2 Electromagnets The solenoid is very important in electromagnetic theory since the
magnetic field inside the solenoid is practically uniform for a particular
current, and is also versatile, inasmuch that a variation of the current
can alter the strength of the magnetic field. An electromagnet, based on
the solenoid, provides the basis of many items of electrical equipment,
examples of which include electric bells, relays, lifting magnets and
telephone receivers.

Figure 8.6

(i) Electric bell

There are various types of electric bell, including the single-stroke bell, the
trembler bell, the buzzer and a continuously ringing bell, but all depend
on the attraction exerted by an electromagnet on a soft iron armature. A
typical single stroke bell circuit is shown in Figure 8.7. When the push
button is operated a current passes through the coil. Since the iron-cored
coil is energized the soft iron armature is attracted to the electromagnet.
The armature also carries a striker which hits the gong. When the circuit
is broken the coil becomes demagnetized and the spring steel strip pulls
the armature back to its original position. The striker will only operate
when the push is operated.
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Figure 8.7

(ii) Relay

A relay is similar to an electric bell except that contacts are opened or
closed by operation instead of a gong being struck. A typical simple relay
is shown in Figure 8.8, which consists of a coil wound on a soft iron core.
When the coil is energized the hinged soft iron armature is attracted to
the electromagnet and pushes against two fixed contacts so that they are
connected together, thus closing some other electrical circuit.

(iii) Lifting magnet

Lifting magnets, incorporating large electromagnets, are used in iron and
steel works for lifting scrap metal. A typical robust lifting magnet, capable
of exerting large attractive forces, is shown in the elevation and plan view
of Figure 8.9 where a coil, C, is wound round a central core, P, of the iron
casting. Over the face of the electromagnet is placed a protective non-
magnetic sheet of material, R. The load, Q, which must be of magnetic
material is lifted when the coils are energized, the magnetic flux paths,
M, being shown by the broken lines.

Figure 8.8

(iv) Telephone receiver

Whereas a transmitter or microphone changes sound waves into corre-
sponding electrical signals, a telephone receiver converts the electrical
waves back into sound waves. A typical telephone receiver is shown in
Figure 8.10 and consists of a permanent magnet with coils wound on its
poles. A thin, flexible diaphragm of magnetic material is held in position
near to the magnetic poles but not touching them. Variation in current
from the transmitter varies the magnetic field and the diaphragm conse-
quently vibrates. The vibration produces sound variations corresponding
to those transmitted.

Figure 8.9 Figure 8.10

8.3 Force on a
current-carrying

conductor

If a current-carrying conductor is placed in a magnetic field produced by
permanent magnets, then the fields due to the current-carrying conductor
and the permanent magnets interact and cause a force to be exerted on
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the conductor. The force on the current-carrying conductor in a magnetic
field depends upon:

(a) the flux density of the field, B teslas
(b) the strength of the current, I amperes,
(c) the length of the conductor perpendicular to the magnetic field,

l metres, and
(d) the directions of the field and the current.

When the magnetic field, the current and the conductor are mutually at
right angles then:

Force F = BIl newtons

When the conductor and the field are at an angle �° to each other then:

Force F = BIl sin q newtons

Since when the magnetic field, current and conductor are mutually at
right angles, F D BIl, the magnetic flux density B may be defined by
B D F/Il, i.e. the flux density is 1 T if the force exerted on 1 m of a
conductor when the conductor carries a current of 1 A is 1 N.

Loudspeaker

A simple application of the above force is the moving coil loudspeaker.
The loudspeaker is used to convert electrical signals into sound waves.

Figure 8.11 shows a typical loudspeaker having a magnetic circuit
comprising a permanent magnet and soft iron pole pieces so that a strong
magnetic field is available in the short cylindrical airgap. A moving coil,
called the voice or speech coil, is suspended from the end of a paper
or plastic cone so that it lies in the gap. When an electric current flows
through the coil it produces a force which tends to move the cone back-
wards and forwards according to the direction of the current. The cone acts
as a piston, transferring this force to the air, and producing the required
sound waves.

Figure 8.11

Problem 2. A conductor carries a current of 20 A and is at right-
angles to a magnetic field having a flux density of 0.9 T. If the
length of the conductor in the field is 30 cm, calculate the force
acting on the conductor.
Determine also the value of the force if the conductor is inclined
at an angle of 30° to the direction of the field.

B D 0.9 T; I D 20 A; l D 30 cm D 0.30 m

Force F D BIl D 
0.9�
20�
0.30� newtons when the conductor is at right-
angles to the field, as shown in Figure 8.12(a), i.e. F = 5.4 NFigure 8.12
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Figure 8.13

When the conductor is inclined at 30° to the field, as shown in
Figure 8.12(b), then force F D BIl sin �

D 
0.9�
20�
0.30� sin 30°

i.e. F D 2.7 N

If the current-carrying conductor shown in Figure 8.3(a) is placed in the
magnetic field shown in Figure 8.13(a), then the two fields interact and
cause a force to be exerted on the conductor as shown in Figure 8.13(b).
The field is strengthened above the conductor and weakened below, thus
tending to move the conductor downwards. This is the basic principle
of operation of the electric motor (see Section 8.4) and the moving-coil
instrument (see Section 8.5).

The direction of the force exerted on a conductor can be pre-
determined by using Fleming’s left-hand rule (often called the motor
rule) which states:

Let the thumb, first finger and second finger of the left hand be extended
such that they are all at right-angles to each other, (as shown in
Figure 8.14). If the first finger points in the direction of the magnetic field,
the second finger points in the direction of the current, then the thumb will
point in the direction of the motion of the conductor.

Summarizing:

First finger - Field

SeCond finger - Current

ThuMb - Motion

Problem 3. Determine the current required in a 400 mm length of
conductor of an electric motor, when the conductor is situated at
right-angles to a magnetic field of flux density 1.2 T, if a force of
1.92 N is to be exerted on the conductor. If the conductor is vertical,
the current flowing downwards and the direction of the magnetic
field is from left to right, what is the direction of the force?

Force D 1.92 N; l D 400 mm D 0.40 m; B D 1.2 T

Since F D BIl, then I D F

Bl

hence current I D 1.92


1.2�
0.4�
D 4 A

If the current flows downwards, the direction of its magnetic field due
to the current alone will be clockwise when viewed from above. The
lines of flux will reinforce (i.e. strengthen) the main magnetic field at the
back of the conductor and will be in opposition in the front (i.e. weaken
the field).

Figure 8.14

Hence the force on the conductor will be from back to front (i.e.
toward the viewer). This direction may also have been deduced using
Fleming’s left-hand rule.
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Problem 4. A conductor 350 mm long carries a current of 10 A
and is at right-angles to a magnetic field lying between two circular
pole faces each of radius 60 mm. If the total flux between the pole
faces is 0.5 mWb, calculate the magnitude of the force exerted on
the conductor.

l D 350 mm D 0.35 m; I D 10 A;

Area of pole face A D �r2 D �
0.06�2 m2;

 D 0.5 mWb D 0.5 ð 10�3 Wb

Force F D BIl, and B D 

A

Figure 8.15 hence force F D
(


A

)
Il D 
0.5 ð 10�3�

�
0.06�2

10�
0.35� newtons

i.e. force = 0.155 N

Problem 5. With reference to Figure 8.15 determine (a) the direc-
tion of the force on the conductor in Figure 8.15(a), (b) the direc-
tion of the force on the conductor in Figure 8.15(b), (c) the direc-
tion of the current in Figure 8.15(c), (d) the polarity of the magnetic
system in Figure 8.15(d).

(a) The direction of the main magnetic field is from north to south, i.e.
left to right. The current is flowing towards the viewer, and using the
screw rule, the direction of the field is anticlockwise. Hence either
by Fleming’s left-hand rule, or by sketching the interacting magnetic
field as shown in Figure 8.16(a), the direction of the force on the
conductor is seen to be upward.

(b) Using a similar method to part (a) it is seen that the force on the
conductor is to the right — see Figure 8.16(b).

(c) Using Fleming’s left-hand rule, or by sketching as in Figure 8.16(c),
it is seen that the current is toward the viewer, i.e. out of the paper.

(d) Similar to part (c), the polarity of the magnetic system is as shown
in Figure 8.16(d).

Problem 6. A coil is wound on a rectangular former of width
24 mm and length 30 mm. The former is pivoted about an axis
passing through the middle of the two shorter sides and is placed
in a uniform magnetic field of flux density 0.8 T, the axis being
perpendicular to the field. If the coil carries a current of 50 mA,
determine the force on each coil side (a) for a single-turn coil,
(b) for a coil wound with 300 turns.

Figure 8.16
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(a) Flux density B D 0.8 T; length of conductor lying at right-angles to
field l D 30 mm D 30 ð 10�3 m; current I D 50 mA D 50 ð 10�3 A

For a single-turn coil, force on each coil side

F D BIl D 0.8 ð 50 ð 10�3 ð 30 ð 10�3

D 1.2 × 10−3 N, or 0.0012 N

(b) When there are 300 turns on the coil there are effectively 300 parallel
conductors each carrying a current of 50 mA. Thus the total force
produced by the current is 300 times that for a single-turn coil. Hence
force on coil side F D 300 BIl D 300 ð 0.0012 D 0.36 N

Further problems on the force on a current-carrying conductor may be
found in Section 8.7, problems 1 to 6, page 98.

8.4 Principle of
operation of a simple d.c.

motor

A rectangular coil which is free to rotate about a fixed axis is shown placed
inside a magnetic field produced by permanent magnets in Figure 8.17.
A direct current is fed into the coil via carbon brushes bearing on a
commutator, which consists of a metal ring split into two halves separated
by insulation.

Figure 8.17

When current flows in the coil a magnetic field is set up around the
coil which interacts with the magnetic field produced by the magnets. This
causes a force F to be exerted on the current-carrying conductor which,
by Fleming’s left-hand rule, is downwards between points A and B and
upward between C and D for the current direction shown. This causes a
torque and the coil rotates anticlockwise. When the coil has turned through
90° from the position shown in Figure 8.17 the brushes connected to the
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positive and negative terminals of the supply make contact with different
halves of the commutator ring, thus reversing the direction of the current
flow in the conductor. If the current is not reversed and the coil rotates
past this position the forces acting on it change direction and it rotates
in the opposite direction thus never making more than half a revolution.
The current direction is reversed every time the coil swings through the
vertical position and thus the coil rotates anti-clockwise for as long as the
current flows. This is the principle of operation of a d.c. motor which is
thus a device that takes in electrical energy and converts it into mechanical
energy.

8.5 Principle of
operation of a moving coil

instrument

A moving-coil instrument operates on the motor principle. When a
conductor carrying current is placed in a magnetic field, a force F is
exerted on the conductor, given by F D BIl. If the flux density B is made
constant (by using permanent magnets) and the conductor is a fixed length
(say, a coil) then the force will depend only on the current flowing in the
conductor.

In a moving-coil instrument a coil is placed centrally in the gap between
shaped pole pieces as shown by the front elevation in Figure 8.18(a).
(The airgap is kept as small as possible, although for clarity it is shown
exaggerated in Figure 8.18). The coil is supported by steel pivots, resting
in jewel bearings, on a cylindrical iron core. Current is led into and out
of the coil by two phosphor bronze spiral hairsprings which are wound
in opposite directions to minimize the effect of temperature change and
to limit the coil swing (i.e. to control the movement) and return the
movement to zero position when no current flows. Current flowing in the
coil produces forces as shown in Fig 8.18(b), the directions being obtained
by Fleming’s left-hand rule. The two forces, FA and FB, produce a torque
which will move the coil in a clockwise direction, i.e. move the pointer
from left to right. Since force is proportional to current the scale is linear.

Figure 8.18
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When the aluminium frame, on which the coil is wound, is rotated
between the poles of the magnet, small currents (called eddy currents)
are induced into the frame, and this provides automatically the necessary
damping of the system due to the reluctance of the former to move within
the magnetic field. The moving-coil instrument will measure only direct
current or voltage and the terminals are marked positive and negative to
ensure that the current passes through the coil in the correct direction to
deflect the pointer ‘up the scale’.

The range of this sensitive instrument is extended by using shunts and
multipliers (see Chapter 10).

8.6 Force on a charge When a charge of Q coulombs is moving at a velocity of v m/s in a
magnetic field of flux density B teslas, the charge moving perpendicular
to the field, then the magnitude of the force F exerted on the charge is
given by:

F = QvB newtons

Problem 17. An electron in a television tube has a charge of
1.6 ð 10�19 coulombs and travels at 3 ð 107 m/s perpendicular to
a field of flux density 18.5 µT. Determine the force exerted on the
electron in the field.

From above, force F D QvB newtons, where

Q D charge in coulombs D 1.6 ð 10�19 C;

v D velocity of charge D 3 ð 107 m/s;

and B D flux density D 18.5 ð 10�6 T

Hence force on electron F D 1.6 ð 10�19 ð 3 ð 107 ð 18.5 ð 10�6

D 1.6 ð 3 ð 18.5 ð 10�18

D 88.8 ð 10�18 D 8.88 × 10−17 N

Further problems on the force on a charge may be found in Section 8.7
following, problems 7 and 8, page 99.

8.7 Further problems on
electromagnetism

Force on a current-carrying conductor

1 A conductor carries a current of 70 A at right-angles to a magnetic
field having a flux density of 1.5 T. If the length of the conductor in
the field is 200 mm calculate the force acting on the conductor. What
is the force when the conductor and field are at an angle of 45°?

[21.0 N, 14.8 N]
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2 Calculate the current required in a 240 mm length of conductor of
a d.c. motor when the conductor is situated at right-angles to the
magnetic field of flux density 1.25 T, if a force of 1.20 N is to be
exerted on the conductor. [4.0 A]

3 A conductor 30 cm long is situated at right-angles to a magnetic field.
Calculate the strength of the magnetic field if a current of 15 A in the
conductor produces a force on it of 3.6 N. [0.80 T]

4 A conductor 300 mm long carries a current of 13 A and is at right-
angles to a magnetic field between two circular pole faces, each of
diameter 80 mm. If the total flux between the pole faces is 0.75 mWb
calculate the force exerted on the conductor. [0.582 N]

5 (a) A 400 mm length of conductor carrying a current of 25 A is
situated at right-angles to a magnetic field between two poles
of an electric motor. The poles have a circular cross-section. If
the force exerted on the conductor is 80 N and the total flux
between the pole faces is 1.27 mWb, determine the diameter of
a pole face.

(b) If the conductor in part (a) is vertical, the current flowing down-
wards and the direction of the magnetic field is from left to right,
what is the direction of the 80 N force?

[(a) 14.2 mm (b) towards the viewer]

6 A coil is wound uniformly on a former having a width of 18 mm
and a length of 25 mm. The former is pivoted about an axis passing
through the middle of the two shorter sides and is placed in a uniform
magnetic field of flux density 0.75 T, the axis being perpendicular
to the field. If the coil carries a current of 120 mA, determine the
force exerted on each coil side, (a) for a single-turn coil, (b) for a
coil wound with 400 turns. [(a) 2.25 ð 10�3 N (b) 0.9 N]

Force on a charge

7 Calculate the force exerted on a charge of 2 ð 10�18 C travelling at
2 ð 106 m/s perpendicular to a field of density 2 ð 10�7 T.

[8 ð 10�19 N]

8 Determine the speed of a 10�19 C charge travelling perpendicular to
a field of flux density 10�7 T, if the force on the charge is 10�20 N.

[106 m/s]



9 Electromagnetic
induction

At the end of this chapter you should be able to:

ž understand how an e.m.f. may be induced in a conductor

ž state Faraday’s laws of electromagnetic induction

ž state Lenz’s law

ž use Fleming’s right-hand rule for relative directions

ž appreciate that the induced e.m.f.,E D Blv or E D Blv sin�

ž calculate induced e.m.f. givenB, l, v and� and determine
relative directions

ž define inductanceL and state its unit

ž define mutual inductance

ž appreciate that e.m.f.E D �Nd
dt

D �LdI
dt

ž calculate induced e.m.f. givenN, t, L, change of flux or
change of current

ž appreciate factors which affect the inductance of an inductor

ž draw the circuit diagram symbols for inductors

ž calculate the energy stored in an inductor using
W D 1

2LI
2 joules

ž calculate inductanceL of a coil, givenL D N

I

ž calculate mutual inductance usingE2 D �MdI1

dt

9.1 Introduction to
electromagnetic induction

When a conductor is moved across a magnetic field so as to cut through
the lines of force (or flux), an electromotive force (e.m.f.) is produced
in the conductor. If the conductor forms part of a closed circuit then
the e.m.f. produced causes an electric current to flow round the circuit.
Hence an e.m.f. (and thus current) is ‘induced’ in the conductor as a
result of its movement across the magnetic field. This effect is known as
‘electromagnetic induction’.

Figure 9.1(a) shows a coil of wire connected to a centre-zero
galvanometer, which is a sensitive ammeter with the zero-current position
in the centre of the scale.
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Figure 9.1

(a) When the magnet is moved at constant speed towards the coil
(Figure 9.1(a)), a deflection is noted on the galvanometer showing
that a current has been produced in the coil.

(b) When the magnet is moved at the same speed as in (a) but away
from the coil the same deflection is noted but is in the opposite
direction (see Figure 9.1(b))

(c) When the magnet is held stationary, even within the coil, no deflec-
tion is recorded.

(d) When the coil is moved at the same speed as in (a) and the magnet
held stationary the same galvanometer deflection is noted.

(e) When the relative speed is, say, doubled, the galvanometer deflection
is doubled.

(f) When a stronger magnet is used, a greater galvanometer deflection
is noted.

(g) When the number of turns of wire of the coil is increased, a greater
galvanometer deflection is noted.

Figure 9.1(c) shows the magnetic field associated with the magnet. As the
magnet is moved towards the coil, the magnetic flux of the magnet moves
across, or cuts, the coil.It is the relative movement of the magnetic flux
and the coil that causes an e.m.f. and thus current, to be induced in
the coil. This effect is known as electromagnetic induction. The laws of
electromagnetic induction stated in Section 9.2 evolved from experiments
such as those described above.

9.2 Laws of
electromagnetic induction

Faraday’s laws of electromagnetic induction state:

(i) ‘An induced e.m.f. is set up whenever the magnetic field linking that
circuit changes.’

(ii) ‘The magnitude of the induced e.m.f. in any circuit is proportional to
the rate of change of the magnetic flux linking the circuit.’

Lenz’s law states:

‘The direction of an induced e.m.f. is always such that it tends to set up a
current opposing the motion or the change of flux responsible for inducing
that e.m.f.’.

An alternative method to Lenz’s law of determining relative directions
is given byFleming’s Right-hand rule (often called the geneRator rule)
which states:

Let the thumb, first finger and second finger of the right hand be extended
such that they are all at right angles to each other (as shown in Figure 9.2).

If the first finger points in the direction of the magnetic field, the thumb
points in the direction of motion of the conductor relative to the magnetic
field, then the second finger will point in the direction of the induced e.m.f.Figure 9.2
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Summarizing:

First finger — Field

ThuMb — Motion

SEcond finger — E.m.f.

In a generator, conductors forming an electric circuit are made to move
through a magnetic field. By Faraday’s law an e.m.f. is induced in the
conductors and thus a source of e.m.f. is created. A generator converts
mechanical energy into electrical energy. (The action of a simple a.c.
generator is described in Chapter 14.) The induced e.m.f. E set up between
the ends of the conductor shown in Figure 9.3 is given by:

E = Bl v volts,

whereB, the flux density, is measured in teslas,l, the length of conductor
in the magnetic field, is measured in metres, andv, the conductor velocity,
is measured in metres per second.

Figure 9.3

If the conductor moves at an angle�° to the magnetic field (instead of at
90° as assumed above) then

E = Bl v sin q volts

Problem 1. A conductor 300 mm long moves at a uniform speed
of 4 m/s at right-angles to a uniform magnetic field of flux density
1.25 T. Determine the current flowing in the conductor when (a) its
ends are open-circuited, (b) its ends are connected to a load of 20�
resistance.

When a conductor moves in a magnetic field it will have an e.m.f. induced
in it but this e.m.f. can only produce a current if there is a closed circuit.

Induced e.m.f.E D Blv D �1.25�
(

300

1000

)
�4� D 1.5 V
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(a) If the ends of the conductor are open circuited no current will flow
even though 1.5 V has been induced.

(b) From Ohm’s law,I D E

R
D 1.5

20
D 0.075 A or 75 mA

Problem 2. At what velocity must a conductor 75 mm long cut
a magnetic field of flux density 0.6 T if an e.m.f. of 9 V is to be
induced in it? Assume the conductor, the field and the direction of
motion are mutually perpendicular.

Induced e.m.f.E D Blv, hence velocityv D E

Bl

Hencev D 9

�0.6��75ð 10�3�
D 9 ð 103

0.6 ð 75
D 200 m=s

Problem 3. A conductor moves with a velocity of 15 m/s at an
angle of (a) 90°, (b) 60° and (c) 30° to a magnetic field produced
between two square-faced poles of side length 2 cm. If the flux
leaving a pole face is 5µWb, find the magnitude of the induced
e.m.f. in each case.

v D 15 m/s; length of conductor in magnetic field,l D 2 cmD 0.02 m;

A D 2 ð 2 cm2 D 4 ð 10�4 m2,  D 5 ð 10�6 Wb

(a) E90 D Blv sin 90° D
(


A

)
lv sin 90° D �5 ð 10�6�

�4 ð 10�4�
�0.02��15��1�

D 3.75 mV

(b) E60 D Blv sin 60° D E90 sin 60° D 3.75 sin 60° D 3.25 mV

(c) E30 D Blv sin 30° D E90 sin 30° D 3.75 sin 30° D 1.875 mV

Problem 4. The wing span of a metal aeroplane is 36 m. If
the aeroplane is flying at 400 km/h, determine the e.m.f. induced
between its wing tips. Assume the vertical component of the earth’s
magnetic field is 40µT

Induced e.m.f. across wing tips,E D Blv

B D 40 µT D 40ð 10�6 TI l D 36 m

v D 400
km

h
ð 1000

m

km
ð 1 h

60ð 60 s
D �400��1000�

3600

D 4000

36
m/s
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Figure 9.4

HenceE D Blv D �40ð 10�6��36�
(

4000

36

)

D 0.16 V

Problem 5. The diagram shown in Figure 9.4 represents the
generation of e.m.f’s. Determine (i) the direction in which the
conductor has to be moved in Figure 9.4(a), (ii) the direction of
the induced e.m.f. in Figure 9.4(b), (iii) the polarity of the magnetic
system in Figure 9.4(c).

The direction of the e.m.f., and thus the current due to the e.m.f. may
be obtained by either Lenz’s law or Fleming’s Right-hand rule (i.e.
GeneRator rule).

(i) Using Lenz’s law: The field due to the magnet and the field due
to the current-carrying conductor are shown in Figure 9.5(a) and
are seen to reinforce to the left of the conductor. Hence the force
on the conductor is to the right. However Lenz’s law states that
the direction of the induced e.m.f. is always such as to oppose the
effect producing it.Thus the conductor will have to be moved to
the left.

(ii) Using Fleming’s right-hand rule:

First finger — Field, i.e.N ! S, or right to left;

ThuMb — Motion, i.e. upwards;

SEcond finger — E.m.f., i.e. towards the viewer or out of the
paper, as shown in Figure 9.5(b)

(iii) The polarity of the magnetic system of Figure 9.4(c) is shown in
Figure 9.5(c) and is obtained using Fleming’s right-hand rule.

Further problems on induced e.m.f.’s may be found in Section 9.8,
problems 1 to 5, page 109.

9.3 Inductance Inductance is the name given to the property of a circuit whereby there is
an e.m.f. induced into the circuit by the change of flux linkages produced
by a current change.

When the e.m.f. is induced in the same circuit as that in which the
current is changing, the property is calledself inductance, L

When the e.m.f. is induced in a circuit by a change of flux due to
current changing in an adjacent circuit, the property is calledmutual
inductance, M.

The unit of inductance is thehenry, H.

‘A circuit has an inductance of one henry when an e.m.f. of one volt is
induced in it by a current changing at the rate of one ampere per second.’
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Figure 9.5

Induced e.m.f. in a coil ofN turns,

E = −N
d8
dt

volts,

whered is the change in flux in Webers, anddt is the time taken for
the flux to change in seconds(i.e.,d/dt is the rate of change of flux).

Induced e.m.f. in a coil of inductanceL henrys,

E = −L
dI
dt

volts,

wheredI is the change in current in amperes anddt is the time taken
for the current to change in seconds(i.e.,dI/dt is the rate of change of
current). The minus sign in each of the above two equations remind us
of its direction (given by Lenz’s law).

Problem 6. Determine the e.m.f. induced in a coil of 200 turns
when there is a change of flux of 25 mWb linking with it in 50 ms

Induced e.m.f.E D �Nd8
dt

D ��200�

(
25ð 10�3

50ð 10�3

)
D −100 volts

Problem 7. A flux of 400µWb passing through a 150-turn coil is
reversed in 40 ms. Find the average e.m.f. induced.

Since the flux reverses, the flux changes fromC400 µWb to �400 µWb,
a total change of flux of 800µWb

Induced e.m.f.E D �Nd
dt

D ��150�

(
800ð 10�6

40ð 10�3

)

D �
(

150ð 800ð 103

40ð 106

)

Hencethe average e.m.f. induced E = −3 volts

Problem 8. Calculate the e.m.f. induced in a coil of inductance
12 H by a current changing at the rate of 4 A/s

Induced e.m.f.E D �LdI
dt

D ��12��4� D −48 volts
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Figure 9.6

Problem 9. An e.m.f. of 1.5 kV is induced in a coil when a
current o

f 4 A collapses uniformly to zero in 8 ms. Determine the

inductance of the coil.

Change in current,dI D �4 � 0� D 4 A; dt D 8 msD 8 ð 10�3 s;

dI

dt
D 4

8 ð 10�3
D 4000

8
D 500 A/s;E D 1.5 kV D 1500 V

SincejEj D L
(
dI

dt

)
, inductance,L D jEj

�dI/dt�
D 1500

500
D 3 H

(Note thatjEj means the ‘magnitude ofE’, which disregards the minus
sign)

Further problems on inductance may be found in Section 9.8, problems 6
to 9, page 110.

9.4 Inductors A component called an inductor is used when the property of inductance
is required in a circuit. The basic form of an inductor is simply a coil of
wire.

Factors which affect the inductance of an inductor include:

(i) the number of turns of wire — the more turns the higher the
inductance

(ii) the cross-sectional area of the coil of wire — the greater the cross-
sectional area the higher the inductance

(iii) the presence of a magnetic core — when the coil is wound on an
iron core the same current sets up a more concentrated magnetic
field and the inductance is increased

(iv) the way the turns are arranged — a short thick coil of wire has a
higher inductance than a long thin one.

Two examples of practical inductors are shown in Figure 9.6, and the
standard electrical circuit diagram symbols for air-cored and iron-cored
inductors are shown in Figure 9.7.

Figure 9.7

An iron-cored inductor is often called achoke since, when used in a.c.
circuits, it has a choking effect, limiting the current flowing through it.
Inductance is often undesirable in a circuit. To reduce inductance to a
minimum the wire may be bent back on itself, as shown in Figure 9.8,
so that the magnetizing effect of one conductor is neutralized by that
of the adjacent conductor. The wire may be coiled around an insulator,
as shown, without increasing the inductance. Standard resistors may be
non-inductively wound in this manner.

Figure 9.8
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9.5 Energy stored An inductor possesses an ability to store energy. The energy stored,W,
in the magnetic field of an inductor is given by:

W = 1
2 LI 2 joules

Problem 10. An 8 H inductor has a current of 3 A flowing
through it. How much energy is stored in the magnetic field of
the inductor?

Energy stored,W D 1
2LI

2 D 1
2�8��3�

2 D 36 joules

Further problems on energy stored may be found in Section 9.8,
problems 10 and 11, page 110.

9.6 Inductance of a coil If a current changing from 0 toI amperes, produces a flux change from 0
to  Webers, thendI D I andd D . Then, from Section 9.3, induced
e.m.f.E D N/t D LI/t, from which

inductance of coil, L =
N8

I
henrys

Problem 11. Calculate the coil inductance when a current of 4 A
in a coil of 800 turns produces a flux of 5 mWb linking with the
coil.

For a coil, inductanceL D N

I
D �800��5 ð 10�3�

4
D 1 H

Problem 12. A flux of 25 mWb links with a 1500 turn coil when a
current of 3 A passes through the coil. Calculate (a) the inductance
of the coil, (b) the energy stored in the magnetic field, and (c) the
average e.m.f. induced if the current falls to zero in 150 ms.

(a) Inductance, L D N

I
D �1500��25ð 10�3�

3
D 12.5 H

(b) Energy stored, W D 1
2LI

2 D 1
2�12.5��3�2 D 56.25 J

(c) Induced e.m.f., E D �LdI
dt

D ��12.5�
(

3 � 0

150ð 10�3

)
D −250 V
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(Alternatively,E D �N
(
d

dt

)
D ��1500�

(
25ð 10�3

150ð 10�3

)

D −250 V
since if the current falls to zero so does the flux)

Problem 13. A 750 turn coil of inductance 3 H carries a current
of 2 A. Calculate the flux linking the coil and the e.m.f. induced in
the coil when the current collapses to zero in 20 ms

Coil inductance,L D N

I
from which, flux D LI

N

D �3��2�

750
D 8 ð 10�3 D 8 mWb

Induced e.m.f.E D �L
(
dI

dt

)
D �3

(
2 � 0

20ð 10�3

)
D −300 V

(Alternatively,E D �Nd
dt

D ��750�

(
8 ð 10�3

20ð 10�3

)
D −300 V�

Further problems on the inductance of a coil may be found in Section 9.8,
problems 12 to 18, page 110.

9.7 Mutual inductance Mutually induced e.m.f. in the second coil,

E2 = −M
dI1

dt
volts,

whereM is the mutual inductance between two coils, in henrys, and
dI1/dt is the rate of change of current in the first coil.

The phenomenon of mutual inductance is used intransformers
(see Chapter 20, page 315). Mutual inductance is developed further in
Chapter 43 on magnetically coupled circuits (see page 841).

Problem 14. Calculate the mutual inductance between two coils
when a current changing at 200 A/s in one coil induces an e.m.f.
of 1.5 V in the other.

Induced e.m.f.jE2j D M
dI1

dt
, i.e., 1.5 D M�200�

Thusmutual inductance, M D 1.5

200
D 0.0075 H or 7.5 mH
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Problem 15. The mutual inductance between two coils is 18 mH.
Calculate the steady rate of change of current in one coil to induce
an e.m.f. of 0.72 V in the other.

Induced e.m.f.,jE2j D M
dI1

dt

Hence rate of change of current,
dI1

dt
D jE2j

M
D 0.72

0.018
D 40 A=s

Problem 16. Two coils have a mutual inductance of 0.2 H. If the
current in one coil is changed from 10 A to 4 A in 10 ms, calculate
(a) the average induced e.m.f. in the second coil, (b) the change of
flux linked with the second coil if it is wound with 500 turns.

(a) Induced e.m.f.E2 D �MdI1

dt
D ��0.2�

(
10� 4

10ð 10�3

)
D −120 V

(b) Induced e.m.f.jE2j D N
d

dt
, henced D jE2jdt

N

Thus the change of flux,d D 120�10ð 10�3�

500
D 2.4 mWb

Further problems on mutual inductance may be found in Section 9.8
following, problems 19 to 22, page 111.

9.8 Further problems on
electromagnetic induction

Induced e.m.f.

1 A conductor of length 15 cm is moved at 750 mm/s at right-angles
to a uniform flux density of 1.2 T. Determine the e.m.f. induced in
the conductor. [0.135 V]

2 Find the speed that a conductor of length 120 mm must be moved
at right angles to a magnetic field of flux density 0.6 T to induce in
it an e.m.f. of 1.8 V. [25 m/s]

3 A 25 cm long conductor moves at a uniform speed of 8 m/s through
a uniform magnetic field of flux density 1.2 T. Determine the current
flowing in the conductor when (a) its ends are open-circuited, (b) its
ends are connected to a load of 15 ohms resistance.

[(a) 0 (b) 0.16 A]

4 A car is travelling at 80 km/h. Assuming the back axle of the car is
1.76 m in length and the vertical component of the earth’s magnetic
field is 40µT, find the e.m.f. generated in the axle due to motion.

[1.56 mV]
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5 A conductor moves with a velocity of 20 m/s at an angle of (a) 90°

(b) 45° (c) 30°, to a magnetic field produced between two square-
faced poles of side length 2.5 cm. If the flux on the pole face is
60 mWb, find the magnitude of the induced e.m.f. in each case.

[(a) 48 V (b) 33.9 V (c) 24 V]

Inductance

6 Find the e.m.f. induced in a coil of 200 turns when there is a change
of flux of 30 mWb linking with it in 40 ms. [�150 V]

7 An e.m.f. of 25 V is induced in a coil of 300 turns when the flux
linking with it changes by 12 mWb. Find the time, in milliseconds,
in which the flux makes the change. [144 ms]

8 An ignition coil having 10 000 turns has an e.m.f. of 8 kV induced
in it. What rate of change of flux is required for this to happen?

[0.8 Wb/s]

9 A flux of 0.35 mWb passing through a 125-turn coil is reversed in
25 ms. Find the magnitude of the average e.m.f. induced. [3.5 V]

Energy stored

10 Calculate the value of the energy stored when a current of 30 mA is
flowing in a coil of inductance 400 mH. [0.18 mJ]

11 The energy stored in the magnetic field of an inductor is 80 J when
the current flowing in the inductor is 2 A. Calculate the inductance
of the coil. [40 H]

Inductance of a coil

12 A flux of 30 mWb links with a 1200 turn coil when a current of
5 A is passing through the coil. Calculate (a) the inductance of the
coil, (b) the energy stored in the magnetic field, and (c) the average
e.m.f. induced if the current is reduced to zero in 0.20 s.

[(a) 7.2 H (b) 90 J (c) 180 V]

13 An e.m.f. of 2 kV is induced in a coil when a current of 5 A collapses
uniformly to zero in 10 ms. Determine the inductance of the coil.

[4 H]

14 An average e.m.f. of 60 V is induced in a coil of inductance 160 mH
when a current of 7.5 A is reversed. Calculate the time taken for the
current to reverse. [40 ms]

15 A coil of 2500 turns has a flux of 10 mWb linking with it when
carrying a current of 2 A. Calculate the coil inductance and the e.m.f.
induced in the coil when the current collapses to zero in 20 ms.

[12.5 H, 1.25 kV]
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16 A coil is wound with 600 turns and has a self inductance of 2.5 H.
What current must flow to set up a flux of 20 mWb?

[4.8 A]

17 When a current of 2 A flows in a coil, the flux linking with the coil
is 80 µWb. If the coil inductance is 0.5 H, calculate the number of
turns of the coil. [12 500]

18 A steady current of 5 A when flowing in a coil of 1000 turns
produces a magnetic flux of 500µWb. Calculate the inductance of
the coil. The current of 5 A is then reversed in 12.5 ms. Calculate
the e.m.f. induced in the coil. [0.1 H, 80 V]

Mutual inductance

19 The mutual inductance between two coils is 150 mH. Find the magni-
tude of the e.m.f. induced in one coil when the current in the other
is increasing at a rate of 30 A/s. [4.5 V]

20 Determine the mutual inductance between two coils when a current
changing at 50 A/s in one coil induces an e.m.f. of 80 mV in the
other. [1.6 mH]

21 Two coils have a mutual inductance of 0.75 H. Calculate the magni-
tude of the e.m.f. induced in one coil when a current of 2.5 A in the
other coil is reversed in 15 ms. [250 V]

22 The mutual inductance between two coils is 240 mH. If the current
in one coil changes from 15 A to 6 A in 12 ms, calculate (a) the
average e.m.f. induced in the other coil, (b) the change of flux linked
with the other coil if it is wound with 400 turns.

[(a) �180 V (b) 5.4 mWb]



10 Electrical measuring
instruments and
measurements

At the end of this chapter you should be able to:

ž recognize the importance of testing and measurements in
electric circuits

ž appreciate the essential devices comprising an analogue
instrument

ž explain the operation of an attraction and a repulsion type of
moving-iron instrument

ž explain the operation of a moving coil rectifier instrument

ž compare moving coil, moving iron and moving coil rectifier
instruments

ž calculate values of shunts for ammeters and multipliers for
voltmeters

ž understand the advantages of electronic instruments

ž understand the operation of an ohmmeter/megger

ž appreciate the operation of multimeters/Avometers

ž understand the operation of a wattmeter

ž appreciate instrument ‘loading’ effect

ž understand the operation of a C.R.O. for d.c. and a.c.
measurements

ž calculate periodic time, frequency, peak to peak values from
waveforms on a C.R.O.

ž recognize harmonics present in complex waveforms

ž determine ratios of powers, currents and voltages in decibels

ž understand null methods of measurement for a Wheatstone
bridge and d.c. potentiometer

ž understand the operation of a.c. bridges

ž understand the operation of a Q-meter

ž appreciate the most likely source of errors in measurements

ž appreciate calibration accuracy of instruments
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10.1 Introduction Tests and measurements are important in designing, evaluating, main-
taining and servicing electrical circuits and equipment. In order to detect
electrical quantities such as current, voltage, resistance or power, it is
necessary to transform an electrical quantity or condition into a visible
indication. This is done with the aid of instruments (or meters) that indi-
cate the magnitude of quantities either by the position of a pointer moving
over a graduated scale (called an analogue instrument) or in the form of
a decimal number (called a digital instrument).

10.2 Analogue
instruments

All analogue electrical indicating instruments require three essential
devices:

(a) A deflecting or operating device. A mechanical force is produced
by the current or voltage which causes the pointer to deflect from
its zero position.

(b) A controlling device. The controlling force acts in opposition to the
deflecting force and ensures that the deflection shown on the meter is
always the same for a given measured quantity. It also prevents the
pointer always going to the maximum deflection. There are two main
types of controlling device — spring control and gravity control.

(c) A damping device. The damping force ensures that the pointer
comes to rest in its final position quickly and without undue oscil-
lation. There are three main types of damping used — eddy-current
damping, air-friction damping and fluid-friction damping.

There are basically two types of scale — linear and non-linear.
A linear scale is shown in Figure 10.1(a), where the divisions or grad-

uations are evenly spaced. The voltmeter shown has a range 0–100 V,
i.e. a full-scale deflection (f.s.d.) of 100 V. A non-linear scale is shown
in Figure 10.1(b). The scale is cramped at the beginning and the gradu-
ations are uneven throughout the range. The ammeter shown has a f.s.d.
of 10 A.Figure 10.1

10.3 Moving-iron
instrument

(a) An attraction type of moving-iron instrument is shown diagram-
matically in Figure 10.2(a). When current flows in the solenoid, a
pivoted soft-iron disc is attracted towards the solenoid and the move-
ment causes a pointer to move across a scale.

(b) In the repulsion type moving-iron instrument shown diagrammat-
ically in Figure 10.2(b), two pieces of iron are placed inside the
solenoid, one being fixed, and the other attached to the spindle
carrying the pointer. When current passes through the solenoid, the
two pieces of iron are magnetized in the same direction and there-
fore repel each other. The pointer thus moves across the scale. The
force moving the pointer is, in each type, proportional to I2. Because
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Figure 10.2

of this the direction of current does not matter and the moving-iron
instrument can be used on d.c. or a.c. The scale, however, is non-
linear.

10.4 The moving-coil
rectifier instrument

A moving-coil instrument, which measures only d.c., may be used
in conjunction with a bridge rectifier circuit as shown in Figure 10.3
to provide an indication of alternating currents and voltages (see
Chapter 14). The average value of the full wave rectified current is
0.637 Im. However, a meter being used to measure a.c. is usually
calibrated in r.m.s. values. For sinusoidal quantities the indication
is �0.707 Im�/�0.637 Im� i.e. 1.11 times the mean value. Rectifier
instruments have scales calibrated in r.m.s. quantities and it is assumed
by the manufacturer that the a.c. is sinusoidal.

Figure 10.3

10.5 Comparison of
moving-coil, moving-iron
and moving-coil rectifier

instruments

Type of
instrument

Moving-coil Moving-iron Moving-coil
rectifier

Suitable for
measuring

Direct current
and voltage

Direct and alternating
currents and voltage
(reading in rms value)

Alternating current
and voltage (reads
average value but
scale is adjusted
to give rms value
for sinusoidal
waveforms)

Scale Linear Non-linear Linear

Method
of control

Hairsprings Hairsprings Hairsprings

Method of
damping

Eddy current Air Eddy current
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Type of
instrument

Moving-coil Moving-iron Moving-coil
rectifier

Frequency
limits

— 20–200 Hz 20–100 kHz

Advantages 1 Linear scale
2 High

sensitivity
3 Well shielded

from stray
magnetic
fields

4 Lower power
consumption

1 Robust
construction

2 Relatively cheap
3 Measures

dc and ac
4 In frequency range

20–100 Hz reads
rms correctly
regardless of
supply wave-form

1 Linear scale
2 High sensitivity
3 Well shielded

from stray
magnetic fields

4 Low power
consumption

5 Good frequency
range

Disadvantages 1 Only suitable
for dc

2 More
expensive
than moving
iron type

3 Easily
damaged

1 Non-linear scale
2 Affected by stray

magnetic fields
3 Hysteresis errors

in dc circuits
4 Liable to

temperature errors
5 Due to the

inductance of the
solenoid, readings
can be affected
by variation
of frequency

1 More expensive
than moving
iron type

2 Errors caused
when supply is
non-sinusoidal

(For the principle of operation of a moving-coil instrument, see Chapter 8,
page 97).

10.6 Shunts and
multipliers

An ammeter, which measures current, has a low resistance (ideally zero)
and must be connected in series with the circuit.

A voltmeter, which measures p.d., has a high resistance (ideally infi-
nite) and must be connected in parallel with the part of the circuit whose
p.d. is required.

There is no difference between the basic instrument used to measure
current and voltage since both use a milliammeter as their basic part.
This is a sensitive instrument which gives f.s.d. for currents of only a few
milliamperes. When an ammeter is required to measure currents of larger
magnitude, a proportion of the current is diverted through a low-value
resistance connected in parallel with the meter. Such a diverting resistor
is called a shunt.

From Figure 10.4(a), VPQ D VRS. Hence Iara D ISRS

Thus the value of the shunt, Rs =
I ara

I s
ohms

Figure 10.4
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The milliammeter is converted into a voltmeter by connecting a high
value resistance (called a multiplier) in series with it as shown in
Figure 10.4(b). From Figure 10.4(b), V D Va C VM D Ira C IRM

Thus the value of the multiplier, RM =
V − Ir a

I
ohms

Problem 1. A moving-coil instrument gives a f.s.d. when the
current is 40 mA and its resistance is 25 �. Calculate the value
of the shunt to be connected in parallel with the meter to enable it
to be used as an ammeter for measuring currents up to 50 A.

The circuit diagram is shown in Figure 10.5,Figure 10.5

where ra D resistance of instrument D 25 �,

Rs D resistance of shunt,

Ia D maximum permissible current flowing in instrument

D 40 mA D 0.04 A,

Is D current flowing in shunt,

I D total circuit current required to give f.s.d. D 50 A

Since I D Ia C Is then Is D I � Ia D 50 � 0.04 D 49.96 A

V D Iara D IsRs

Hence Rs D Iara
Is

D �0.04��25�

49.96
D 0.02002 � D 20.02 mZ

Thus for the moving-coil instrument to be used as an ammeter with a
range 0–50 A, a resistance of value 20.02 m� needs to be connected in
parallel with the instrument.

Problem 2. A moving-coil instrument having a resistance of
10 �, gives a f.s.d. when the current is 8 mA. Calculate the value
of the multiplier to be connected in series with the instrument so
that it can be used as a voltmeter for measuring p.d.s. up to 100 V.

The circuit diagram is shown in Figure 10.6,

where ra D resistance of instrument D 10 �,

RM D resistance of multiplier,Figure 10.6
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I D total permissible instrument current D 8 mA D 0.008 A,

V D total p.d. required to give f.s.d. D 100 V

V D Va C VM D Ira C IRM

i.e. 100 D �0.008��10� C �0.008� RM, or 100 � 0.08 D 0.008 RM

thus RM D 99.92

0.008
D 12 490 � D 12.49 kZ

Hence for the moving-coil instrument to be used as a voltmeter with a
range 0–100 V, a resistance of value 12.49 k� needs to be connected in
series with the instrument.

Further problems on shunts and multipliers may be found in Section 10.20,
problems 1 to 4, page 133.

10.7 Electronic
instruments

Electronic measuring instruments have advantages over instruments such
as the moving-iron or moving-coil meters, in that they have a much higher
input resistance (some as high as 1000 M�) and can handle a much wider
range of frequency (from d.c. up to MHz).

The digital voltmeter (DVM) is one which provides a digital display of
the voltage being measured. Advantages of a DVM over analogue instru-
ments include higher accuracy and resolution, no observational or parallex
errors (see Section 10.20) and a very high input resistance, constant on
all ranges.

A digital multimeter is a DVM with additional circuitry which makes
it capable of measuring a.c. voltage, d.c. and a.c. current and resistance.

Instruments for a.c. measurements are generally calibrated with a sinu-
soidal alternating waveform to indicate r.m.s. values when a sinusoidal
signal is applied to the instrument. Some instruments, such as the moving-
iron and electro-dynamic instruments, give a true r.m.s. indication. With
other instruments the indication is either scaled up from the mean value
(such as with the rectifier moving-coil instrument) or scaled down from
the peak value.

Sometimes quantities to be measured have complex waveforms (see
Section 10.13), and whenever a quantity is non-sinusoidal, errors in
instrument readings can occur if the instrument has been calibrated for
sine waves only.

Such waveform errors can be largely eliminated by using electronic
instruments.

10.8 The ohmmeter An ohmmeter is an instrument for measuring electrical resistance.
A simple ohmmeter circuit is shown in Figure 10.7(a). Unlike the

ammeter or voltmeter, the ohmmeter circuit does not receive the energy
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Ω

Figure 10.7

necessary for its operation from the circuit under test. In the ohmmeter
this energy is supplied by a self-contained source of voltage, such as a
battery. Initially, terminals XX are short-circuited and R adjusted to give
f.s.d. on the milliammeter. If current I is at a maximum value and voltage
E is constant, then resistance R D E/I is at a minimum value. Thus f.s.d.
on the milliammeter is made zero on the resistance scale. When termi-
nals XX are open circuited no current flows and R�D E/O� is infinity, 1

The milliammeter can thus be calibrated directly in ohms. A
cramped (non-linear) scale results and is ‘back to front’, as shown in
Figure 10.7(b). When calibrated, an unknown resistance is placed between
terminals XX and its value determined from the position of the pointer on
the scale. An ohmmeter designed for measuring low values of resistance
is called a continuity tester. An ohmmeter designed for measuring high
values of resistance (i.e. megohms) is called an insulation resistance
tester (e.g. ‘Megger’).

10.9 Multimeters Instruments are manufactured that combine a moving-coil meter with
a number of shunts and series multipliers, to provide a range of
readings on a single scale graduated to read current and voltage.
If a battery is incorporated then resistance can also be measured.
Such instruments are called multimeters or universal instruments
or multirange instruments. An ‘Avometer’ is a typical example. A
particular range may be selected either by the use of separate terminals or
by a selector switch. Only one measurement can be performed at a time.
Often such instruments can be used in a.c. as well as d.c. circuits when
a rectifier is incorporated in the instrument.

10.10 Wattmeters A wattmeter is an instrument for measuring electrical power in a circuit.
Figure 10.8 shows typical connections of a wattmeter used for measuring
power supplied to a load. The instrument has two coils:

(i) a current coil, which is connected in series with the load, like an
ammeter, and

(ii) a voltage coil, which is connected in parallel with the load, like a
voltmeter.

Figure 10.8

10.11 Instrument
‘loading’ effect

Some measuring instruments depend for their operation on power taken
from the circuit in which measurements are being made. Depending on
the ‘loading’ effect of the instrument (i.e. the current taken to enable it
to operate), the prevailing circuit conditions may change.

The resistance of voltmeters may be calculated since each have a stated
sensitivity (or ‘figure of merit’), often stated in ‘k� per volt’ of f.s.d. A
voltmeter should have as high a resistance as possible (� ideally infinite).
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In a.c. circuits the impedance of the instrument varies with frequency and
thus the loading effect of the instrument can change.

Problem 3. Calculate the power dissipated by the voltmeter and
by resistor R in Figure 10.9 when (a) R D 250 � (b) R D 2 M�.
Assume that the voltmeter sensitivity (sometimes called figure of
merit) is 10 k�/V.

Figure 10.9
(a) Resistance of voltmeter, Rv D sensitivity ð f.s.d.

Hence, Rv D �10 k�/V� ð �200 V� D 2000 k� D 2 M�

Current flowing in voltmeter, Iv D V

Rv

D 100

2 ð 106
D 50 ð 10�6A

Power dissipated by voltmeter D VIv D �100��50 ð 10�6� D 5 mW

When R D 250 �, current in resistor, IR D V

R
D 100

250
D 0.4 A

Power dissipated in load resistor R D VIR D �100��0.4� D 40 W

Thus the power dissipated in the voltmeter is insignificant in compar-
ison with the power dissipated in the load.

(b) When R D 2 M�, current in resistor, IR D V

R
D 100

2 ð 106

D 50 ð 10�6A

Power dissipated in load resistor R D VIR D 100 ð 50 ð 10�6

D 5 mW

In this case the higher load resistance reduced the power dissipated
such that the voltmeter is using as much power as the load.

Problem 4. An ammeter has a f.s.d. of 100 mA and a resistance
of 50 �. The ammeter is used to measure the current in a load of
resistance 500 � when the supply voltage is 10 V. Calculate (a) the
ammeter reading expected (neglecting its resistance), (b) the actual
current in the circuit, (c) the power dissipated in the ammeter, and
(d) the power dissipated in the load.

From Figure 10.10,

(a) expected ammeter reading D V

R
D 10

500
D 20 mA

(b) Actual ammeter reading D V

R C ra
D 10

500 C 50
D 18.18 mA

Figure 10.10
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Thus the ammeter itself has caused the circuit conditions to change
from 20 mA to 18.18 mA

(c) Power dissipated in the ammeter D I2ra D �18.18 ð 10�3�2�50�

D 16.53 mW

(d) Power dissipated in the load resistor D I2R D �18.18 ð 10�3�2�500�

D 165.3 mW

Problem 5. A voltmeter having a f.s.d. of 100 V and a sensi-
tivity of 1.6 k�/V is used to measure voltage V1 in the circuit of
Figure 10.11. Determine (a) the value of voltage V1 with the volt-
meter not connected, and (b) the voltage indicated by the voltmeter
when connected between A and B.

Figure 10.11

(a) By voltage division, V1 D
(

40

40 C 60

)
100 D 40 V

(b) The resistance of a voltmeter having a 100 V f.s.d. and sensitivity
1.6 k�/V is 100 V ð 1.6 k�/V D 160 k�.

Figure 10.12

When the voltmeter is connected across the 40 k� resistor the circuit
is as shown in Figure 10.12(a) and the equivalent resistance of the
parallel network is given by
(

40 ð 160

40 C 160

)
k� i.e.

(
40 ð 160

200

)
k� D 32 k�

The circuit is now effectively as shown in Figure 10.12(b).

Thus the voltage indicated on the voltmeter is
(

32

32 C 60

)
100 V D 34.78 V

A considerable error is thus caused by the loading effect of the voltmeter
on the circuit. The error is reduced by using a voltmeter with a higher
sensitivity.

Problem 6. (a) A current of 20 A flows through a load having
a resistance of 2 �. Determine the power dissipated in the load.
(b) A wattmeter, whose current coil has a resistance of 0.01 �
is connected as shown in Figure 10.13. Determine the wattmeter
reading.

Figure 10.13 (a) Power dissipated in the load, P D I2R D �20�2�2� D 800 W

(b) With the wattmeter connected in the circuit the total resistance
RT is 2 C 0.01 D 2.01 �
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The wattmeter reading is thus I2RT D �20�2�2.01� D 804 W

Further problems on instrument ‘loading’ effects may be found in
Section 10.20, problems 5 to 7, page 134.

10.12 The cathode ray
oscilloscope

The cathode ray oscilloscope (c.r.o.) may be used in the observation of
waveforms and for the measurement of voltage, current, frequency, phase
and periodic time. For examining periodic waveforms the electron beam
is deflected horizontally (i.e. in the X direction) by a sawtooth generator
acting as a timebase. The signal to be examined is applied to the vertical
deflection system (Y direction) usually after amplification.

Oscilloscopes normally have a transparent grid of 10 mm by 10 mm
squares in front of the screen, called a graticule. Among the timebase
controls is a ‘variable’ switch which gives the sweep speed as time per
centimetre. This may be in s/cm, ms/cm or µs/cm, a large number of
switch positions being available. Also on the front panel of a c.r.o. is a
Y amplifier switch marked in volts per centimetre, with a large number
of available switch positions.

(i) With direct voltage measurements, only the Y amplifier ‘volts/cm’
switch on the c.r.o. is used. With no voltage applied to the Y plates
the position of the spot trace on the screen is noted. When a direct
voltage is applied to the Y plates the new position of the spot trace
is an indication of the magnitude of the voltage. For example, in
Figure 10.14(a), with no voltage applied to the Y plates, the spot
trace is in the centre of the screen (initial position) and then the
spot trace moves 2.5 cm to the final position shown, on application
of a d.c. voltage. With the ‘volts/cm’ switch on 10 volts/cm
the magnitude of the direct voltage is 2.5 cm ð 10 volts/cm, i.e.
25 volts.

Figure 10.14

(ii) With alternating voltage measurements, let a sinusoidal waveform
be displayed on a c.r.o. screen as shown in Figure 10.14(b). If the
time/cm switch is on, say, 5 ms/cm then the periodic time T of the
sinewave is 5 ms/cm ð 4 cm, i.e. 20 ms or 0.02 s

Since frequency f D 1

T
, frequency =

1
0.02

= 50 Hz

If the ‘volts/cm’ switch is on, say, 20 volts/cm then the amplitude or
peak value of the sinewave shown is 20 volts/cm ð 2 cm, i.e. 40 V.

Since r.m.s. Voltage D peak voltagep
2

, (see Chapter 14),

r.m.s. voltage D 40p
2

D 28.28 volts
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Double beam oscilloscopes are useful whenever two signals are to be
compared simultaneously.

The c.r.o. demands reasonable skill in adjustment and use. However its
greatest advantage is in observing the shape of a waveform — a feature
not possessed by other measuring instruments.

Problem 7. Describe how a simple c.r.o. is adjusted to give
(a) a spot trace, (b) a continuous horizontal trace on the screen,
explaining the functions of the various controls.

(a) To obtain a spot trace on a typical c.r.o. screen:

(i) Switch on the c.r.o.

(ii) Switch the timebase control to off. This control is calibrated in
time per centimetres — for example, 5 ms/cm or 100 µs/cm.
Turning it to zero ensures no signal is applied to the X-plates.
The Y-plate input is left open-circuited.

(iii) Set the intensity, X-shift and Y-shift controls to about the
mid-range positions.

(iv) A spot trace should now be observed on the screen. If not,
adjust either or both of the X and Y-shift controls. The X-
shift control varies the position of the spot trace in a horizontal
direction whilst the Y-shift control varies its vertical position.

(v) Use the X and Y-shift controls to bring the spot to the centre
of the screen and use the focus control to focus the electron
beam into a small circular spot.

(b) To obtain a continuous horizontal trace on the screen the same
procedure as in (a) is initially adopted. Then the timebase control
is switched to a suitable position, initially the millisecond timebase
range, to ensure that the repetition rate of the sawtooth is sufficient
for the persistence of the vision time of the screen phosphor to hold
a given trace.

Problem 8. For the c.r.o. square voltage waveform shown in
Figure 10.15 determine (a) the periodic time, (b) the frequency and
(c) the peak-to-peak voltage. The ‘time/cm’ (or timebase control)
switch is on 100 µs/cm and the ‘volts/cm’ (or signal amplitude
control) switch is on 20 V/cm.

(In Figures 10.15 to 10.18 assume that the squares shown are 1 cm by
1 cm)

(a) The width of one complete cycle is 5.2 cm

Hence the periodic time, T D 5.2 cm ð 100 ð 10�6 s/cm D 0.52 msFigure 10.15
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(b) Frequency, f D 1

T
D 1

0.52 ð 10�3
D 1.92 kHz

(c) The peak-to-peak height of the display is 3.6 cm, hence the peak-
to-peak voltage D 3.6 cm ð 20 V/cm D 72 V

Problem 9. For the c.r.o. display of a pulse waveform shown
in Figure 10.16 the ‘time/cm’ switch is on 50 ms/cm and the
‘volts/cm’ switch is on 0.2 V/cm. Determine (a) the periodic time,
(b) the frequency, (c) the magnitude of the pulse voltage.

(a) The width of one complete cycle is 3.5 cm

Hence the periodic time, T D 3.5 cm ð 50 ms/cm D 175 ms

Figure 10.16
(b) Frequency, f D 1

T
D 1

0.175
D 5.71 Hz

(c) The height of a pulse is 3.4 cm hence the magnitude of the
pulse voltage D 3.4 cm ð 0.2 V/cm D 0.68 V

Problem 10. A sinusoidal voltage trace displayed by a c.r.o. is
shown in Figure 10.17. If the ‘time/cm’ switch is on 500 µs/cm
and the ‘volts/cm’ switch is on 5 V/cm, find, for the waveform,
(a) the frequency, (b) the peak-to-peak voltage, (c) the amplitude,
(d) the r.m.s. value.

(a) The width of one complete cycle is 4 cm. Hence the periodic time,
T is 4 cm ð 500 µs/cm, i.e. 2 ms

Frequency, f D 1

T
D 1

2 ð 10�3
D 500 HzFigure 10.17

(b) The peak-to-peak height of the waveform is 5 cm. Hence the peak-
to-peak voltage D 5 cm ð 5 V/cm D 25 V

(c) Amplitude 1
2 ð 25 V D 12.5 V

(d) The peak value of voltage is the amplitude, i.e. 12.5 V.

r.m.s voltage D peak voltagep
2

D 12.5p
2

D 8.84 V

Problem 11. For the double-beam oscilloscope displays shown in
Figure 10.18 determine (a) their frequency, (b) their r.m.s. values,
(c) their phase difference. The ‘time/cm’ switch is on 100 µs/cm
and the ‘volts/cm’ switch on 2 V/cm.

(a) The width of each complete cycle is 5 cm for both waveforms.

Hence the periodic time, T, of each waveform is 5 cm ð 100 µs/cm,

i.e. 0.5 ms.Figure 10.18



124 Electrical Circuit Theory and Technology

Frequency of each waveform, f D 1

T
D 1

0.5 ð 10�3
D 2 kHz

(b) The peak value of waveform A is 2 cm ð 2 V/cm D 4 V,

hence the r.m.s. value of waveform A D 4p
2

D 2.83 V

The peak value of waveform B is 2.5 cm ð 2 V/cm D 5 V,

hence the r.m.s. value of waveform B D 5p
2

D 3.54 V

(c) Since 5 cm represents 1 cycle, then 5 cm represents 360°,

i.e. 1 cm represents
360

5
D 72°.

The phase angle � D 0.5 cm D 0.5 cm ð 72°/cm D 36°

Hence waveform A leads waveform B by 36°

Further problems on the c.r.o. may be found in Section 10.20, problems 8
to 10, page 134.

10.13 Waveform
harmonics

(i) Let an instantaneous voltage v be represented by
v D Vm sin 2�ft volts. This is a waveform which varies
sinusoidally with time t, has a frequency f, and a maximum
value Vm. Alternating voltages are usually assumed to have wave-
shapes which are sinusoidal where only one frequency is present.
If the waveform is not sinusoidal it is called a complex wave,
and, whatever its shape, it may be split up mathematically into
components called the fundamental and a number of harmonics.
This process is called harmonic analysis. The fundamental (or first
harmonic) is sinusoidal and has the supply frequency, f; the other
harmonics are also sine waves having frequencies which are integer
multiples of f. Thus, if the supply frequency is 50 Hz, then the third
harmonic frequency is 150 Hz, the fifth 250 Hz, and so on.

(ii) A complex waveform comprising the sum of the fundamental and
a third harmonic of about half the amplitude of the fundamental is
shown in Figure 10.19(a), both waveforms being initially in phase
with each other. If further odd harmonic waveforms of the appro-
priate amplitudes are added, a good approximation to a square wave
results. In Figure 10.19(b), the third harmonic is shown having an
initial phase displacement from the fundamental. The positive and
negative half cycles of each of the complex waveforms shown in
Figures 10.19(a) and (b) are identical in shape, and this is a feature
of waveforms containing the fundamental and only odd harmonics.

(iii) A complex waveform comprising the sum of the fundamental and a
second harmonic of about half the amplitude of the fundamental is
shown in Figure 10.19(c), each waveform being initially in phase
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a

Figure 10.19

with each other. If further even harmonics of appropriate amplitudes
are added a good approximation to a triangular wave results. In
Figure 10.19(c) the negative cycle appears as a mirror image of
the positive cycle about point A. In Figure 10.19(d) the second
harmonic is shown with an initial phase displacement from the
fundamental and the positive and negative half cycles are dissimilar.

(iv) A complex waveform comprising the sum of the fundamental, a
second harmonic and a third harmonic is shown in Figure 10.19(e),
each waveform being initially ‘in-phase’. The negative half cycle
appears as a mirror image of the positive cycle about point B. In
Figure 10.19(f), a complex waveform comprising the sum of the
fundamental, a second harmonic and a third harmonic are shown
with initial phase displacement. The positive and negative half
cycles are seen to be dissimilar.

The features mentioned relative to Figures 10.19(a) to (f) make it
possible to recognize the harmonics present in a complex waveform
displayed on a CRO.

More on complex waveforms may be found in Chapter 36, page 631.
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10.14 Logarithmic ratios In electronic systems, the ratio of two similar quantities measured at
different points in the system, are often expressed in logarithmic units.
By definition, if the ratio of two powers P1 and P2 is to be expressed in
decibel (dB) units then the number of decibels, X, is given by:

X= 10 lg
(

P2

P1

)
dB �10.1�

Thus, when the power ratio,
P2

P1
D 1 then the decibel power ratio

D 10 lg 1 D 0

when the power ratio,
P2

P1
D 100 then the decibel power ratio

D 10 lg 100 D C20

(i.e. a power gain),

and when the power ratio,
P2

P1
D 1

100
then the decibel power ratio

D 10 lg
1

100
D �20

(i.e. a power loss or attenuation).

Logarithmic units may also be used for voltage and current ratios.

Power, P, is given by P D I2R or P D V2/R

Substituting in equation (10.1) gives:

X D 10 lg

(
I2

2R2

I2
1R1

)
dB or X D 10 lg

(
V2

2/R2

V2
1/R1

)
dB

If R1 D R2 then X D 10 lg

(
I2

2

I2
1

)
dB or X D 10 lg

(
V2

2

V2
1

)
dB

i.e. X= 20 lg
(

I 2

I 1

)
dB or X= 20 lg

(
V2

V1

)
dB

(from the laws of logarithms).

From equation (10.1), X decibels is a logarithmic ratio of two similar
quantities and is not an absolute unit of measurement. It is therefore
necessary to state a reference level to measure a number of decibels above
or below that reference. The most widely used reference level for power is
1 mW, and when power levels are expressed in decibels, above or below
the 1 mW reference level, the unit given to the new power level is dBm.

A voltmeter can be re-scaled to indicate the power level directly in
decibels. The scale is generally calibrated by taking a reference level
of 0 dB when a power of 1 mW is dissipated in a 600 � resistor (this
being the natural impedance of a simple transmission line). The reference
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voltage V is then obtained from

P D V2

R
, i.e. 1 ð 10�3 D V2

600
from which, V D 0.775 volts.

In general, the number of dBm, X D 20 lg
(

V

0.775

)

Thus V D 0.20 V corresponds to 20 lg
(

0.20

0.775

)
D �11.77 dBm and

V D 0.90 V corresponds to 20 lg
(

0.90

0.775

)
D C1.3 dBm, and so on.

A typical decibelmeter, or dB meter, scale is shown in Figure 10.20.
Errors are introduced with dB meters when the circuit impedance is
not 600 �.

Ω

+

−−
−

+

Figure 10.20

Problem 12. The ratio of two powers is (a) 3 (b) 20 (c) 400 (d) 1
20

Determine the decibel power ratio in each case.

From above, the power ratio in decibels, X, is given by: X D 10 lg
(
P2

P1

)

(a) When
P2

P1
D 3, X D 10 lg�3� D 10�0.477� D 4.77 dB

(b) When
P2

P1
D 20, X D 10 lg�20� D 10�1.30� D 13.0 dB

(c) When
P2

P1
D 400, X D 10 lg�400� D 10�2.60� D 26.0 dB

(d) When
P2

P1
D 1

20
D 0.05, X D 10 lg�0.05� D 10��1.30�

D −13.0 dB

(a), (b) and (c) represent power gains and (d) represents a power loss or
attenuation.

Problem 13. The current input to a system is 5 mA and the current
output is 20 mA. Find the decibel current ratio assuming the input
and load resistances of the system are equal.

From above, the decibel current ratio is 20 lg
(
I2

I1

)
D 20 lg

(
20

5

)

D 20 lg 4

D 20�0.60�

D 12 dB gain
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Problem 14. 6% of the power supplied to a cable appears at the
output terminals. Determine the power loss in decibels.

If P1 D input power and P2 D output power then
P2

P1
D 6

100
D 0.06

Decibel power ratio D 10 lg
(
P2

P1

)
D 10 lg�0.06� D 10��1.222�

D �12.22 dB

Hence the decibel power loss, or attenuation, is 12.22 dB

Problem 15. An amplifier has a gain of 14 dB. Its input power is
8 mW. Find its output power.

Decibel power ratio D 10 lg
(
P2

P1

)
where P1 D input power D 8 mW,

and P2 D output power

Hence 14 D 10 lg
(
P2

P1

)

1.4 D lg
(
P2

P1

)

and 101.4 D P2

P1
from the definition of a logarithm

i.e. 25.12 D P2

P1

Output power, P2 D 25.12P1 D �25.12��8� D 201 mW or 0.201 W

Problem 16. The output voltage from an amplifier is 4 V. If the
voltage gain is 27 dB, calculate the value of the input voltage
assuming that the amplifier input resistance and load resistance are
equal.

Voltage gain in decibels D 27 D 20 lg
(
V2

V1

)
D 20 lg

(
4

V1

)

Hence
27

20
D lg

(
4

V1

)

1.35 D lg
(

4

V1

)

101.35 D 4

V1
, from which V1 D 4

101.35
D 4

22.39
D 0.179 V
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Hence the input voltage V1 is 0.179 V

Further problems on logarithmic ratios may be found in Section 10.20,
problems 11 to 17, page 134.

10.15 Null method of
measurement

A null method of measurement is a simple, accurate and widely used
method which depends on an instrument reading being adjusted to read
zero current only. The method assumes:

(i) if there is any deflection at all, then some current is flowing;

(ii) if there is no deflection, then no current flows (i.e. a null condition).

Hence it is unnecessary for a meter sensing current flow to be calibrated
when used in this way. A sensitive milliammeter or microammeter with
centre zero position setting is called a galvanometer. Examples where
the method is used are in the Wheatstone bridge (see Section 10.16),
in the d.c. potentiometer (see Section 10.17) and with a.c. bridges (see
Section 10.18).

10.16 Wheatstone bridge Figure 10.21 shows a Wheatstone bridge circuit which compares an
unknown resistance Rx with others of known values, i.e. R1 and R2,
which have fixed values, and R3, which is variable. R3 is varied until
zero deflection is obtained on the galvanometer G. No current then flows
through the meter, VA D VB, and the bridge is said to be ‘balanced’.

At balance, R1Rx D R2R3, i.e. Rx =
R2R3

R1
ohms

Problem 17. In a Wheatstone bridge ABCD, a galvanometer is
connected between A and C, and a battery between B and D. A
resistor of unknown value is connected between A and B. When
the bridge is balanced, the resistance between B and C is 100 �,
that between C and D is 10 � and that between D and A is 400 �.
Calculate the value of the unknown resistance.

Figure 10.21

The Wheatstone bridge is shown in Figure 10.22 where Rx is the unknown
resistance. At balance, equating the products of opposite ratio arms, gives:

�Rx��10� D �100��400�

and Rx D �100��400�

10
D 4000 �

Hence the unknown resistance, Rx = 4 kZ

Figure 10.22
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10.17 D.c. potentiometer The d.c. potentiometer is a null-balance instrument used for determining
values of e.m.f.’s and p.d.s. by comparison with a known e.m.f. or p.d. In
Figure 10.23(a), using a standard cell of known e.m.f. E1, the slider S is
moved along the slide wire until balance is obtained (i.e. the galvanometer
deflection is zero), shown as length l1.

Figure 10.23

The standard cell is now replaced by a cell of unknown e.m.f. E2 (see
Figure 10.23(b)) and again balance is obtained (shown as l2).

Since E1˛l1 and E2˛l2 then
E1

E2
D l1

l2
and E2 = E1

(
l2
l1

)
volts

A potentiometer may be arranged as a resistive two-element potential
divider in which the division ratio is adjustable to give a simple variable
d.c. supply. Such devices may be constructed in the form of a resistive
element carrying a sliding contact which is adjusted by a rotary or linear
movement of the control knob.

Problem 18. In a d.c. potentiometer, balance is obtained at a
length of 400 mm when using a standard cell of 1.0186 volts.
Determine the e.m.f. of a dry cell if balance is obtained with a
length of 650 mm

E1 D 1.0186 V, l1 D 400 mm, l2 D 650 mm

With reference to Figure 10.23,
E1

E2
D l1

l2

from which, E2 D E1

(
l2

l1

)
D �1.0186�

(
650

400

)
D 1.655 volts

Further problems on the Wheatstone bridge and d.c. potentiometer may
be found in Section 10.20, problems 18 to 20, page 135.

10.18 A.c. bridges A Wheatstone bridge type circuit, shown in Figure 10.24, may be used in
a.c. circuits to determine unknown values of inductance and capacitance,
as well as resistance.

When the potential differences across Z3 and Zx (or across Z1 and Z2)
are equal in magnitude and phase, then the current flowing through the
galvanometer, G, is zero.

At balance, Z1Zx D Z2Z3, from which, Zx =
Z2Z3

Z1
Z

There are many forms of a.c. bridge, and these include: the Maxwell, Hay,
Owen and Heaviside bridges for measuring inductance, and the De Sauty,Figure 10.24



Electrical measuring instruments and measurements 131

Schering and Wien bridges for measuring capacitance. A commercial
or universal bridge is one which can be used to measure resistance,
inductance or capacitance.

A.c. bridges require a knowledge of complex numbers, as explained in
Chapter 23 and such bridges are discussed in detail in Chapter 27.

10.19 Measurement
errors

Errors are always introduced when using instruments to measure electrical
quantities. The errors most likely to occur in measurements are those
due to:

(i) the limitations of the instrument
(ii) the operator

(iii) the instrument disturbing the circuit

(i) Errors in the limitations of the instrument
The calibration accuracy of an instrument depends on the preci-
sion with which it is constructed. Every instrument has a margin
of error which is expressed as a percentage of the instruments full
scale deflection.

For example, industrial grade instruments have an accuracy of
š2% of f.s.d. Thus if a voltmeter has a f.s.d. of 100 V and it indi-
cates 40 V say, then the actual voltage may be anywhere between
40 š �2% of 100�, or 40 š 2, i.e. between 38 V and 42 V.

When an instrument is calibrated, it is compared against a stan-
dard instrument and a graph is drawn of ‘error’ against ‘meter
deflection’.

Figure 10.25

A typical graph is shown in Figure 10.25 where it is seen that
the accuracy varies over the scale length. Thus a meter with a š2%
f.s.d. accuracy would tend to have an accuracy which is much better
than š2% f.s.d. over much of the range.

(ii) Errors by the operator
It is easy for an operator to misread an instrument. With linear scales
the values of the sub-divisions are reasonably easy to determine;
non-linear scale graduations are more difficult to estimate. Also,
scales differ from instrument to instrument and some meters have
more than one scale (as with multimeters) and mistakes in reading
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indications are easily made. When reading a meter scale it should
be viewed from an angle perpendicular to the surface of the scale
at the location of the pointer; a meter scale should not be viewed
‘at an angle’.

(iii) Errors due to the instrument disturbing the circuit
Any instrument connected into a circuit will affect that circuit to
some extent. Meters require some power to operate, but provided
this power is small compared with the power in the measured
circuit, then little error will result. Incorrect positioning of instru-
ments in a circuit can be a source of errors. For example, let a resis-
tance be measured by the voltmeter-ammeter method as shown in
Figure 10.26. Assuming ‘perfect instruments, the resistance should
be given by the voltmeter reading divided by the ammeter reading
(i.e. R D V/I).

However, in Figure 10.26(a), V/I D R C ra and in Figure
10.26(b) the current through the ammeter is that through the resistor
plus that through the voltmeter. Hence the voltmeter reading divided
by the ammeter reading will not give the true value of the resistance
R for either method of connection.Figure 10.26

Problem 19. The current flowing through a resistor of 5 k� š
0.4% is measured as 2.5 mA with an accuracy of measurement
of š0.5%. Determine the nominal value of the voltage across the
resistor and its accuracy.

Voltage, V D IR D �2.5 ð 10�3��5 ð 103� D 12.5 V.

The maximum possible error is 0.4% C 0.5% D 0.9%

Hence the voltage, V D 12.5 V š 0.9% of 12.5 V D 0.9/100 ð 12.5 D
0.1125 V D 0.11 V correct to 2 significant figures. Hence the voltage V
may also be expressed as 12.5 ± 0.11 volts (i.e. a voltage lying between
12.39 V and 12.61 V).

Problem 20. The current I flowing in a resistor R is measured
by a 0–10 A ammeter which gives an indication of 6.25 A. The
voltage V across the resistor is measured by a 0–50 V voltmeter,
which gives an indication of 36.5 V. Determine the resistance of
the resistor, and its accuracy of measurement if both instruments
have a limit of error of 2% of f.s.d. Neglect any loading effects of
the instruments.

Resistance, R D V

I
D 36.5

6.25
D 5.84 �

Voltage error is š2% of 50 V D š1.0 V and expressed as a percentage

of the voltmeter reading gives
š1

36.5
ð 100% D š2.74%
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Current error is š2% of 10 A D š0.2 A and expressed as a percentage

of the ammeter reading gives
š0.2

6.25
ð 100% D š3.2%

Maximum relative error D sum of errors D 2.74% C 3.2% D š5.94%,

5.94% of 5.84 � D 0.347 �

Hence the resistance of the resistor may be expressed as:

5.84 Z± 5.94%, or 5.84 ± 0.35 Z (rounding off)

Problem 21. The arms of a Wheatstone bridge ABCD have
the following resistances: AB: R1 D 1000 � š 1.0%; BC: R2 D
100 � š 0.5%; CD: unknown resistance Rx; DA: R3 D 432.5 � š
0.2%. Determine the value of the unknown resistance and its
accuracy of measurement.

The Wheatstone bridge network is shown in Figure 10.27 and at balance:

R1Rx D R2R3, i.e. Rx D R2R3

R1
D �100��432.5�

1000
D 43.25 �

Figure 10.27
The maximum relative error of Rx is given by the sum of the three indi-
vidual errors, i.e. 1.0% C 0.5% C 0.2% D 1.7%

Hence Rx= 43.25 Z± 1.7%

1.7% of 43.25 � D 0.74 � (rounding off).

Thus Rx may also be expressed as Rx D 43.25 ± 0.74 Z

Further problems on measurement errors may be found in Section 10.20
following, problems 21 to 23, page 135.

10.20 Further problems
on electrical measuring

instruments and
measurements

Shunts and multipliers

1 A moving-coil instrument gives f.s.d. for a current of 10 mA.
Neglecting the resistance of the instrument, calculate the approximate
value of series resistance needed to enable the instrument to measure
up to (a) 20 V (b) 100 V (c) 250 V.

[(a) 2 k� (b) 10 k� (c) 25 k�]

2 A meter of resistance 50 � has a f.s.d. of 4 mA. Determine the value
of shunt resistance required in order that f.s.d. should be (a) 15 mA
(b) 20 A (c) 100 A.

[(a) 18.18 � (b) 10.00 m� (c) 2.00 m�]

3 A moving-coil instrument having a resistance of 20 �, gives a f.s.d.
when the current is 5 mA. Calculate the value of the multiplier to be
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connected in series with the instrument so that it can be used as a
voltmeter for measuring p.d.s up to 200 V. [39.98 k�]

4 A moving-coil instrument has a f.s.d. of 20 mA and a resistance of
25 �. Calculate the values of resistance required to enable the instru-
ment to be used (a) as a 0–10 A ammeter, and (b) as a 0–100 V
voltmeter. State the mode of resistance connection in each case.

[(a) 50.10 m� in parallel (b) 4.975 k� in series]

Instrument ‘loading’ effects

5 A 0–1 A ammeter having a resistance of 50 � is used to measure
the current flowing in a 1 k� resistor when the supply voltage is
250 V. Calculate: (a) the approximate value of current (neglecting
the ammeter resistance), (b) the actual current in the circuit, (c) the
power dissipated in the ammeter, (d) the power dissipated in the 1 k�
resistor. [(a) 0.250 A (b) 0.238 A (c) 2.832 W (d) 56.64 W]

Figure 10.28 6 (a) A current of 15 A flows through a load having a resistance of
4 �. Determine the power dissipated in the load. (b) A wattmeter,
whose current coil has a resistance of 0.02 � is connected (as shown
in Figure 10.13) to measure the power in the load. Determine the
wattmeter reading assuming the current in the load is still 15 A.

[(a) 900 W (b) 904.5 W]

7 A voltage of 240 V is applied to a circuit consisting of an 800 �
resistor in series with a 1.6 k� resistor. What is the voltage across
the 1.6 k� resistor? The p.d. across the 1.6 k� resistor is measured
by a voltmeter of f.s.d. 250 V and sensitivity 100 �/V. Determine the
voltage indicated. [160 V; 156.7 V]

Cathode ray oscilloscope

8 For the square voltage waveform displayed on a c.r.o. shown in
Figure 10.28, find (a) its frequency, (b) its peak-to-peak voltage.

[(a) 41.7 Hz (b) 176 V]

9 For the pulse waveform shown in Figure 10.29, find (a) its frequency,
(b) the magnitude of the pulse voltage. [(a) 0.56 Hz (b) 8.4 V]

10 For the sinusoidal waveform shown in Figure 10.30, determine (a) its
frequency, (b) the peak-to-peak voltage, (c) the r.m.s. voltage.

[(a) 7.14 Hz (b) 220 V (c) 77.78 V]

Figure 10.29

Logarithmic ratios

11 The ratio of two powers is (a) 3 (b) 10 (c) 20 (d) 10000. Determine
the decibel power ratio for each.

[(a) 4.77 dB (b) 10 dB (c) 13 dB (d) 40 dB]

12 The ratio of two powers is (a) 1
10 (b) 1

3 (c) 1
40 (d) 1

100Figure 10.30
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Determine the decibel power ratio for each.
[(a) �10 dB (b) �4.77 dB (c) �16.02 dB (d) �20 dB]

13 The input and output currents of a system are 2 mA and 10 mA
respectively. Determine the decibel current ratio of output to input
current assuming input and output resistances of the system are equal.

[13.98 dB]

14 5% of the power supplied to a cable appears at the output terminals.
Determine the power loss in decibels. [13 dB]

15 An amplifier has a gain of 24 dB. Its input power is 10 mW. Find
its output power. [2.51 W]

16 The output voltage from an amplifier is 7 mV. If the voltage gain
is 25 dB calculate the value of the input voltage assuming that the
amplifier input resistance and load resistance are equal. [0.39 mV]

17 The scale of a voltmeter has a decibel scale added to it, which is
calibrated by taking a reference level of 0 dB when a power of 1 mW
is dissipated in a 600 � resistor. Determine the voltage at (a) 0 dB
(b) 1.5 dB and (c) �15 dB (d) What decibel reading corresponds to
0.5 V? [(a) 0.775 V (b) 0.921 V (c) 0.138 V (d) �3.807 dB]

Wheatstone bridge and d.c. potentiometer

18 In a Wheatstone bridge PQRS, a galvanometer is connected between
Q and S and a voltage source between P and R. An unknown resistor
Rx is connected between P and Q. When the bridge is balanced, the
resistance between Q and R is 200 �, that between R and S is 10 �
and that between S and P is 150 �. Calculate the value of Rx [3 k�]

19 Balance is obtained in a d.c. potentiometer at a length of 31.2 cm
when using a standard cell of 1.0186 volts. Calculate the e.m.f. of a
dry cell if balance is obtained with a length of 46.7 cm. [1.525 V]

20 A Wheatstone bridge PQRS has the following arm resistances:

PQ, 1 k� š 2%; QR, 100 � š 0.5%; RS, unknown resistance; SP,
273.6 � š 0.1%. Determine the value of the unknown resistance,
and its accuracy of measurement.

[27.36 � š 2.6% or 27.36 � š 0.71 �]

Measurement errors

21 The p.d. across a resistor is measured as 37.5 V with an accuracy
of š0.5%. The value of the resistor is 6 k� š 0.8%. Determine the
current flowing in the resistor and its accuracy of measurement.

[6.25 mA š1.3% or 6.25š 0.08 mA]

22 The voltage across a resistor is measured by a 75 V f.s.d. voltmeter
which gives an indication of 52 V. The current flowing in the resistor
is measured by a 20 A f.s.d. ammeter which gives an indication of
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12.5 A. Determine the resistance of the resistor and its accuracy if
both instruments have an accuracy of š2% of f.s.d.

[4.16 � š 6.08% or 4.16 š 0.25 �]

23 A 240 V supply is connected across a load resistance R. Also
connected across R is a voltmeter having a f.s.d. of 300 V and a figure
of merit (i.e. sensitivity) of 8 k�/V. Calculate the power dissipated
by the voltmeter and by the load resistance if (a) R D 100 � (b) R D
1 M�. Comment on the results obtained.

[(a) 24 mW, 576 W (b) 24 mW, 57.6 mW]



11 Semiconductor diodes

At the end of this chapter you should be able to:

ž classify materials as conductors, semiconductors or insulators

ž appreciate the importance of silicon and germanium

ž understand n-type and p-type materials

ž understand the p-n junction

ž appreciate forward and reverse bias of p-n junctions

ž draw the circuit diagram symbol for a semiconductor diode

11.1 Types of materials Materials may be classified as conductors, semiconductors or insulators.
The classification depends on the value of resistivity of the material. Good
conductors are usually metals and have resistivities in the order of 10�7

to 10�8 �m, semiconductors have resistivities in the order of 10�3 to
3 ð 103�m and the resistivities of insulators are in the order of 104 to
1014�m. Some typical approximate values at normal room temperatures
are:

Conductors:

Aluminium 2.7 ð 10�8 �m
Brass (70 Cu/30 Zn) 8 ð 10�8�m
Copper (pure annealed) 1.7 ð 10�8 �m
Steel (mild) 15 ð 10�8�m

Semiconductors:

Silicon 2.3 ð 103�m
}

at 27°C
Germanium 0.45�m

Insulators:

Glass ½ 1010�m
Mica ½ 1011�m
PVC ½ 1013�m
Rubber (pure) 1012 to 1014 �m

In general, over a limited range of temperatures, the resistance of a
conductor increases with temperature increase, the resistance of insula-
tors remains approximately constant with variation of temperature and
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Figure 11.1

the resistance of semiconductor materials decreases as the temperature
increases. For a specimen of each of these materials, having the same
resistance (and thus completely different dimensions), at say, 15°C, the
variation for a small increase in temperature to t °C is as shown in
Figure 11.1.

11.2 Silicon and
germanium

The most important semiconductors used in the electronics industry are
silicon and germanium. As the temperature of these materials is raised
above room temperature, the resistivity is reduced and ultimately a point
is reached where they effectively become conductors. For this reason,
silicon should not operate at a working temperature in excess of 150°C to
200°C, depending on its purity, and germanium should not operate at a
working temperature in excess of 75°C to 90°C, depending on its purity.
As the temperature of a semiconductor is reduced below normal room
temperature, the resistivity increases until, at very low temperatures the
semiconductor becomes an insulator.

11.3 n-type and p-type
materials

Adding extremely small amounts of impurities to pure semiconductors in a
controlled manner is called doping. Antimony, arsenic and phosphorus are
called n-type impurities and form an n-type material when any of these
impurities are added to silicon or germanium. The amount of impurity
added usually varies from 1 part impurity in 105 parts semiconductor
material to 1 part impurity to 108 parts semiconductor material, depending
on the resistivity required. Indium, aluminium and boron are called p-type
impurities and form a p-type material when any of these impurities are
added to a semiconductor.

In semiconductor materials, there are very few charge carriers per unit
volume free to conduct. This is because the ‘four electron structure’ in
the outer shell of the atoms (called valency electrons), form strong cova-
lent bonds with neighbouring atoms, resulting in a tetrahedral structure
with the electrons held fairly rigidly in place. A two-dimensional diagram
depicting this is shown for germanium in Figure 11.2.

Ge Ge Ge

Ge Ge Ge

GeGeGe

Figure 11.2
Arsenic, antimony and phosphorus have five valency electrons and

when a semiconductor is doped with one of these substances, some impu-
rity atoms are incorporated in the tetrahedral structure. The ‘fifth’ valency
electron is not rigidly bonded and is free to conduct, the impurity atom
donating a charge carrier. A two-dimensional diagram depicting this is
shown in Figure 11.3, in which a phosphorus atom has replaced one of
the germanium atoms. The resulting material is called n-type material,
and contains free electrons.

Indium, aluminium and boron have three valency electrons and when a
semiconductor is doped with one of these substances, some of the semi-
conductor atoms are replaced by impurity atoms. One of the four bonds
associated with the semiconductor material is deficient by one electron
and this deficiency is called a hole. Holes give rise to conduction when

Ge Ge Ge

GePGe

Ge Ge Ge

Free electron

Figure 11.3
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a potential difference exists across the semiconductor material due to
movement of electrons from one hole to another, as shown in Figure 11.4.
In this figure, an electron moves from A to B, giving the appearance that
the hole moves from B to A. Then electron C moves to A, giving the
appearance that the hole moves to C, and so on. The resulting material is
p-type material containing holes.

Ge Ge Ge

GeGe

Ge Ge Ge

A

Hole
(missing
 electron)

B
C

A

1 2 3 4
Possible 
movements
of electrons

Figure 11.4

11.4 The p-n junction A p-n junction is piece of semiconductor material in which part of the
material is p-type and part is n-type. In order to examine the charge
situation, assume that separate blocks of p-type and n-type materials are
pushed together. Also assume that a hole is a positive charge carrier and
that an electron is a negative charge carrier.

At the junction, the donated electrons in the n-type material, called
majority carriers, diffuse into the p-type material (diffusion is from an

Electron
(mobile
 carriers)

  Holes
(mobile
 carriers)

n-type
material

p-type
material

Impurity atoms
(fixed)

Figure 11.5
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area of high density to an area of lower density) and the acceptor holes
in the p-type material diffuse into the n-type material as shown by the
arrows in Figure 11.5. Because the n-type material has lost electrons,
it acquires a positive potential with respect to the p-type material and
thus tends to prevent further movement of electrons. The p-type mate-
rial has gained electrons and becomes negatively charged with respect to
the n-type material and hence tends to retain holes. Thus after a short
while, the movement of electrons and holes stops due to the potential
difference across the junction, called the contact potential. The area in
the region of the junction becomes depleted of holes and electrons due to
electron-hole recombinations, and is called a depletion layer, as shown
in Figure 11.6.

11.5 Forward and
reverse bias

When an external voltage is applied to a p-n junction making the p-
type material positive with respect to the n-type material, as shown in
Figure 11.7, the p-n junction is forward biased. The applied voltage
opposes the contact potential, and, in effect, closes the depletion layer.
Holes and electrons can now cross the junction and a current flows.

Contact
potential

Applied
voltage

Depletion
layer

p-type
material

n-type
material

Figure 11.7

An increase in the applied voltage above that required to narrow the
depletion layer (about 0.2 V for germanium and 0.6 V for silicon), results
in a rapid rise in the current flow. Graphs depicting the current-voltage
relationship for forward biased p-n junctions, for both germanium and
silicon, called the forward characteristics, are shown in Figure 11.8.

When an external voltage is applied to a p-n junction making the
p-type material negative with respect to the n-type material as in shown
in Figure 11.9, the p-n junction is reverse biased. The applied voltage
is now in the same sense as the contact potential and opposes the move-
ment of holes and electrons due to opening up the depletion layer. Thus,
in theory, no current flows. However at normal room temperature certain
electrons in the covalent bond lattice acquire sufficient energy from the
heat available to leave the lattice, generating mobile electrons and holes.
This process is called electron-hole generation by thermal excitation.

The electrons in the p-type material and holes in the n-type material
caused by thermal excitation, are called minority carriers and these will
be attracted by the applied voltage. Thus, in practice, a small current
of a few microamperes for germanium and less than one microampere
for silicon, at normal room temperature, flows under reverse bias condi-
tions. Typical reverse characteristics are shown in Figure 11.10 for both
germanium and silicon.

11.6 Semiconductor
diodes

A semiconductor diode is a device having a p-n junction mounted in a
container, suitable for conducting and dissipating the heat generated in
operation, and having connecting leads. Its operating characteristics are as
shown in Figures 11.8 and 11.10. Two circuit diagram symbols for semi-
conductor diodes are in common use and are as shown in Figure 11.11.
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Sometimes the symbols are encircled as shown in Figures 14.14–14.16
on pages 208 and 209.
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Problem 1. Explain briefly the terms given below when they are
associated with a p-n junction: (a) conduction in intrinsic semicon-
ductors (b) majority and minority carriers, and (c) diffusion

(a) Silicon or germanium with no doping atoms added are called intrinsic
semiconductors. At room temperature, some of the electrons acquire
sufficient energy for them to break the covalent bond between atoms
and become free mobile electrons. This is called thermal generation
of electron-hole pairs. Electrons generated thermally create a gap in
the crystal structure called a hole, the atom associated with the hole
being positively charged, since it has lost an electron. This posi-
tive charge may attract another electron released from another atom,
creating a hole elsewhere.
When a potential is applied across the semiconductor material, holes
drift towards the negative terminal (unlike charges attract), and elec-
trons towards the positive terminal, and hence a small current flows.

(b) When additional mobile electrons are introduced by doping a
semiconductor material with pentavalent atoms (atoms having five
valency electrons), these mobile electrons are called majority
carriers. The relatively few holes in the n-type material produced
by intrinsic action are called minority carriers.
For p-type materials, the additional holes are introduced by doping
with trivalent atoms (atoms having three valency electrons). The
holes are apparently positive mobile charges and are majority carriers
in the p-type material. The relatively few mobile electrons in the
p-type material produced by intrinsic action are called minority
carriers.

(c) Mobile holes and electrons wander freely within the crystal lattice
of a semiconductor material. There are more free electrons in n-type
material than holes and more holes in p-type material than electrons.
Thus, in their random wanderings, on average, holes pass into the
n-type material and electrons into the p-type material. This process
is called diffusion.

Problem 2. Explain briefly why a junction between p-type and
n-type materials creates a contact potential.

Intrinsic semiconductors have resistive properties, in that when an applied
voltage across the material is reversed in polarity, a current of the same
magnitude flows in the opposite direction. When a p-n junction is formed,
the resistive property is replaced by a rectifying property, that is, current
passes more easily in one direction than the other.Figure 11.11
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An n-type material can be considered to be a stationary crystal matrix
of fixed positive charges together with a number of mobile negative
charge carriers (electrons). The total number of positive and negative
charges are equal. A p-type material can be considered to be a number of
stationary negative charges together with mobile positive charge carriers
(holes).

Again, the total number of positive and negative charges are equal
and the material is neither positively nor negatively charged. When the
materials are brought together, some of the mobile electrons in the n-type
material diffuse into the p-type material. Also, some of the mobile holes
in the p-type material diffuse into the n-type material.

Many of the majority carriers in the region of the junction combine
with the opposite carriers to complete covalent bonds and create a region
on either side of the junction with very few carriers. This region, called
the depletion layer, acts as an insulator and is in the order of 0.5 µm
thick. Since the n-type material has lost electrons, it becomes positively
charged. Also, the p-type material has lost holes and becomes negatively
charged, creating a potential across the junction, called the barrier or
contact potential.

Problem 3. Sketch the forward and reverse characteristics of a
silicon p-n junction diode and describe the shapes of the character-
istics drawn.

A typical characteristic for a silicon p-n junction having a forward bias is
shown in Figure 11.8 and having a reverse bias in Figure 11.10. When the
positive terminal of the battery is connected to the p-type material and the
negative terminal to the n-type material, the diode is forward biased. Due
to like charges repelling, the holes in the p-type material drift towards
the junction. Similarly the electrons in the n-type material are repelled by
the negative bias voltage and also drift towards the junction. The width
of the depletion layer and size of the contact potential are reduced. For
applied voltages from 0 to about 0.6 V, very little current flows. At about
0.6 V, majority carriers begin to cross the junction in large numbers and
current starts to flow. As the applied voltage is raised above 0.6 V, the
current increases exponentially (see Figure 11.8).

When the negative terminal of the battery is connected to the p-type
material and the positive terminal to the n-type material the diode is
reverse biased. The holes in the p-type material are attracted towards the
negative terminal and the electrons in the n-type material are attracted
towards the positive terminal (unlike charges attract). This drift increases
the magnitude of both the contact potential and the thickness of the deple-
tion layer, so that only very few majority carriers have sufficient energy
to surmount the junction.

The thermally excited minority carriers, however, can cross the junc-
tion since it is, in effect, forward biased for these carriers. The move-
ment of minority carriers results in a small constant current flowing.
As the magnitude of the reverse voltage is increased a point will be
reached where a large current suddenly starts to flow. The voltage at
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Figure 11.12

which this occurs is called the breakdown voltage. This current is due to
two effects:

(i) the zener effect, resulting from the applied voltage being sufficient
to break some of the covalent bonds, and

(ii) the avalanche effect, resulting from the charge carriers moving at
sufficient speed to break covalent bonds by collision.

A zener diode is used for voltage reference purposes or for voltage stabil-
isation. Two common circuit diagram symbols for a zener diode are shown
in Figure 11.12.

11.7 Rectification The process of obtaining unidirectional currents and voltages from alter-
nating currents and voltages is called rectification. Automatic switching
in circuits is carried out by diodes. For methods of half-wave and full-
wave rectification, see Section 14.7, page 208.

11.8 Further problems
on semiconductor diodes

1. Explain what you understand by the term intrinsic semiconductor
and how an intrinsic semiconductor is turned into either a p-type or
an n-type material.

2. Explain what is meant by minority and majority carriers in an n-type
material and state whether the numbers of each of these carriers are
affected by temperature.

3. A piece of pure silicon is doped with (a) pentavalent impurity and
(b) trivalent impurity. Explain the effect these impurities have on
the form of conduction in silicon.

4. With the aid of simple sketches, explain how pure germanium can
be treated in such a way that conduction is predominantly due to
(a) electrons and (b) holes.

5. Explain the terms given below when used in semiconductor
terminology: (a) covalent bond (b) trivalent impurity (c) pentavalent
impurity (d) electron-hole pair generation.

6. Explain briefly why although both p-type and n-type materials have
resistive properties when separate, they have rectifying properties
when a junction between them exists.

7. The application of an external voltage to a junction diode can influ-
ence the drift of holes and electrons. With the aid of diagrams
explain this statement and also how the direction and magnitude
of the applied voltage affects the depletion layer.

8. State briefly what you understand by the terms:

(a) reverse bias (b) forward bias (c) contact potential (d) diffusion
(e) minority carrier conduction.
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9. Explain briefly the action of a p-n junction diode:

(a) on open-circuit, (b) when provided with a forward bias, and
(c) when provided with a reverse bias. Sketch the characteristic
curves for both forward and reverse bias conditions.

10. Draw a diagram illustrating the charge situation for an unbiased p-n
junction. Explain the change in the charge situation when compared
with that in isolated p-type and n-type materials. Mark on the
diagram the depletion layer and the majority carriers in each region.



12 Transistors

At the end of this chapter you should be able to:

ž understand the structure of a bipolar junction transistor

ž understand transistor action for p-n-p and n-p-n types

ž draw the circuit diagram symbols for p-n-p and n-p-n
transistors

ž appreciate common-base, common-emitter and
common-collector transistor connections

ž interpret transistor characteristics

ž appreciate how the transistor is used as an amplifier

ž determine the load line on transistor characteristics

ž estimate current, voltage and power gains from transistor
characteristics

ž understand thermal runaway in a transistor

12.1 The bipolar
junction transistor

The bipolar junction transistor consists of three regions of semiconductor
material. One type is called a p-n-p transistor, in which two regions of
p-type material sandwich a very thin layer of n-type material. A second
type is called an n-p-n transistor, in which two regions of n-type material
sandwich a very thin layer of p-type material. Both of these types of tran-
sistors consist of two p-n junctions placed very close to one another in
a back-to-back arrangement on a single piece of semiconductor mate-
rial. Diagrams depicting these two types of transistors are shown in
Figure 12.1.

The two p-type material regions of the p-n-p transistor are called the
emitter and collector and the n-type material is called the base. Similarly,
the two n-type material regions of the n-p-n transistor are called the
emitter and collector and the p-type material region is called the base, as
shown in Figure 12.1.

Transistors have three connecting leads and in operation an electrical
input to one pair of connections, say the emitter and base connections
can control the output from another pair, say the collector and emitter
connections. This type of operation is achieved by appropriately biasing
the two internal p-n junctions. When batteries and resistors are connected
to a p-n-p transistor, as shown in Figure 12.2(a), the base-emitter junction
is forward biased and the base-collector junction is reverse biased.

Similarly, an n-p-n transistor has its base-emitter junction forward
biased and its base-collector junction reverse biased when the batteries
are connected as shown in Figure 12.2(b).
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For a silicon p-n-p transistor, biased as shown in Figure 12.2(a), if the
base-emitter junction is considered on its own, it is forward biased and
a current flows. This is depicted in Figure 12.3(a). For example, if RE
is 1000�, the battery is 4.5 V and the voltage drop across the junction
is taken as 0.7 V, the current flowing is given by �4.5 � 0.7�/1000 D
3.8 mA.
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+

− − +

− + − − + − +

p n p n p n

(a) p-n-p transistor (b) n-p-n transistor

Figure 12.2

When the base-collector junction is considered on its own, as shown in
Figure 12.3(b), it is reverse biased and the collector current is something
less than 1 µA.

However, when both external circuits are connected to the transistor,
most of the 3.8 mA of current flowing in the emitter, which previously
flowed from the base connection, now flows out through the collector
connection due to transistor action.
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12.2 Transistor action In a p-n-p transistor, connected as shown in Figure 12.2(a), transistor
action is accounted for as follows:

(a) The majority carriers in the emitter p-type material are holes

(b) The base-emitter junction is forward biased to the majority carriers
and the holes cross the junction and appear in the base region

(c) The base region is very thin and is only lightly doped with electrons
so although some electron-hole pairs are formed, many holes are left
in the base region

(d) The base-collector junction is reverse biased to electrons in the base
region and holes in the collector region, but forward biased to holes
in the base region; these holes are attracted by the negative potential
at the collector terminal

(e) A large proportion of the holes in the base region cross the base-
collector junction into the collector region, creating a collector cur-
rent; conventional current flow is in the direction of hole movement.

The transistor action is shown diagrammatically in Figure 12.4. For tran-
sistors having very thin base regions, up to 99.5% of the holes leaving
the emitter cross the base collector junction.

In an n-p-n transistor, connected as shown in Figure 12.2(b), transistor
action is accounted for as follows:

(a) The majority carriers in the n-type emitter material are electrons

Emitter Base Collector

Holes

p
IE IC

IB

n p

Figure 12.4
(b) The base-emitter junction is forward biased to these majority carriers

and electrons cross the junction and appear in the base region

(c) The base region is very thin and only lightly doped with holes, so
some recombination with holes occurs but many electrons are left
in the base region

(d) The base-collector junction is reverse biased to holes in the base
region and electrons in the collector region, but is forward biased



148 Electrical Circuit Theory and Technology

to electrons in the base region; these electrons are attracted by the
positive potential at the collector terminal

(e) A large proportion of the electrons in the base region cross the
base collector junction into the collector region, creating a collector
current.

The transistor action is shown diagrammatically in Figure 12.5. As stated
in Section 12.1, conventional current flow is taken to be in the direction
of hole flow, that is, in the opposite direction to electron flow, hence the
directions of the conventional current flow are as shown in Figure 12.5.

For a p-n-p transistor, the base-collector junction is reverse biased for
majority carriers. However, a small leakage current, ICBO flows from
the base to the collector due to thermally generated minority carriers
(electrons in the collector and holes in the base), being present.

Emitter Base Collector

Electrons

n
IE IC

IB

p n

+−

Figure 12.5 The base-collector junction is forward biased to these minority carriers.
If a proportion, ˛, (having a value of up to 0.995 in modern transistors),
of the holes passing into the base from the emitter, pass through the base-
collector junction, then the various currents flowing in a p-n-p transistor
are as shown in Figure 12.6(a).
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Figure 12.6

Similarly, for an n-p-n transistor, the base-collector junction is reversed
biased for majority carriers, but a small leakage current, ICBO flows from
the collector to the base due to thermally generated minority carriers
(holes in the collector and electrons in the base), being present. The
base-collector junction is forward biased to these minority carriers. If a
proportion, ˛, of the electrons passing through the base-emitter junction
also pass through the base-collector junction then the currents flowing in
an n-p-n transistor are as shown in Figure 12.6(b).

Problem 1. With reference to a p-n-p transistor, explain briefly
what is meant by the term transistor action and why a bipolar
junction transistor is so named.

For the transistor as depicted in Figure 12.4, the emitter is relatively
heavily doped with acceptor atoms (holes). When the emitter terminal
is made sufficiently positive with respect to the base, the base-emitter
junction is forward biased to the majority carriers. The majority carriers
are holes in the emitter and these drift from the emitter to the base. The
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base region is relatively lightly doped with donor atoms (electrons) and
although some electron-hole recombination’s take place, perhaps 0.5%,
most of the holes entering the base, do not combine with electrons.

The base-collector junction is reverse biased to electrons in the base
region, but forward biased to holes in the base region. Since the base is
very thin and now is packed with holes, these holes pass the base-emitter
junction towards the negative potential of the collector terminal. The
control of current from emitter to collector is largely independent of the
collector-base voltage and almost wholly governed by the emitter-base
voltage. The essence of transistor action is this current control by means
of the base-emitter voltage.

In a p-n-p transistor, holes in the emitter and collector regions are
majority carriers, but are minority carriers when in the base region. Also
thermally generated electrons in the emitter and collector regions are
minority carriers as are holes the base region. However, both majority
and minority carriers contribute towards the total current flow (see
Figure 12.6(a)). It is because a transistor makes use of both types of
charge carriers (holes and electrons) that they are called bipolar. The
transistor also comprises two p-n junctions and for this reason it is a
junction transistor. Hence the name — bipolar junction transistor.
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Figure 12.7

12.3 Transistor symbols Symbols are used to represent p-n-p and n-p-n transistors in circuit dia-
grams and are as shown in Figure 12.7. The arrowhead drawn on the
emitter of the symbol is in the direction of conventional emitter current
(hole flow). The potentials marked at the collector, base and emitter are
typical values for a silicon transistor having a potential difference of 6 V
between its collector and its emitter.

The voltage of 0.6 V across the base and emitter is that required to
reduce the potential barrier and if it is raised slightly to, say, 0.62 V, it is
likely that the collector current will double to about 2 mA. Thus a small
change of voltage between the emitter and the base can give a relatively
large change of current in the emitter circuit; because of this, transistors
can be used as amplifiers.

12.4 Transistor
connections

There are three ways of connecting a transistor, depending on the use
to which it is being put. The ways are classified by the electrode that is
common to both the input and the output. They are called:

(a) common-base configuration, shown in Figure 12.8(a)

(b) common-emitter configuration, shown in Figure 12.8(b)

(c) common-collector configuration, shown in Figure 12.8(c)

These configurations are for an n-p-n transistor. The current flows shown
are all reversed for a p-n-p transistor.



150 Electrical Circuit Theory and Technology

Problem 2. The basic construction of an n-p-n transistor makes it
appear that the emitter and collector can be interchanged. Explain
why this is not usually done.

In principle, a bipolar junction transistor will work equally well with either
the emitter or collector acting as the emitter. However, the conventional
emitter current largely flows from the collector through the base to the
emitter, hence the emitter region is far more heavily doped with donor
atoms (electrons) than the base is with acceptor atoms (holes). Also, the
base-collector junction is normally reverse biased and in general, doping
density increases the electric field in the junction and so lowers the break-
down voltage. Thus, to achieve a high breakdown voltage, the collector
region is relatively lightly doped.

In addition, in most transistors, the method of production is to diffuse
acceptor and donor atoms onto the n-type semiconductor material, one
after the other, so that one overrides the other. When this is done, the
doping density in the base region is not uniform but decreases from emitter
to collector. This results in increasing the effectiveness of the transistor.
Thus, because of the doping densities in the three regions and the non-
uniform density in the base, the collector and emitter terminals of a tran-
sistor should not be interchanged when making transistor connections.
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12.5 Transistor
characteristics

The effect of changing one or more of the various voltages and currents
associated with a transistor circuit can be shown graphically and these
graphs are called the characteristics of the transistor. As there are five
variables (collector, base and emitter currents and voltages across the
collector and base and emitter and base) and also three configurations,
many characteristics are possible. Some of the possible characteristics are
given below.

(a) Common-base configuration

(i) Input characteristic. With reference to Figure 12.8(a), the input to
a common-base transistor is the emitter current, IE, and can be varied
by altering the base emitter voltage VEB. The base-emitter junction is
essentially a forward biased junction diode, so as VEB is varied, the current
flowing is similar to that for a junction diode, as shown in Figure 12.9
for a silicon transistor. Figure 12.9 is called the input characteristic for
an n-p-n transistor having common-base configuration. The variation of
the collector-base voltage VCB has little effect on the characteristic. A
similar characteristic can be obtained for a p-n-p transistor, these having
reversed polarities.
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(ii) Output characteristics. The value of the collector current IC is very
largely determined by the emitter current, IE. For a given value of IE
the collector-base voltage, VCB, can be varied and has little effect on the
value of IC. If VCB is made slightly negative, the collector no longer
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attracts the majority carriers leaving the emitter and IC falls rapidly to
zero. A family of curves for various values of IE are possible and some
of these are shown in Figure 12.10. Figure 12.10 is called the output
characteristics for an n-p-n transistor having common-base configuration.
Similar characteristics can be obtained for a p-n-p transistor, these having
reversed polarities.
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(b) Common-emitter configuration

(i) Input characteristic. In a common-emitter configuration (see
Figure 12.8(b)), the base current is now the input current. As VEB is
varied, the characteristic obtained is similar in shape to the input char-
acteristic for a common-base configuration shown in Figure 12.9, but the
values of current are far less. With reference to Figure 12.6(a), as long
as the junctions are biased as described, the three currents IE, IC and IB
keep the ratio 1 : ˛ : �1 � ˛�, whichever configuration is adopted. Thus
the base current changes are much smaller than the corresponding emitter
current changes and the input characteristic for an n-p-n transistor is as
shown in Figure 12.11. A similar characteristic can be obtained for a
p-n-p transistor, these having reversed polarities.
(ii) Output characteristics. A family of curves can be obtained, depen-
ding on the value of base current IB and some of these for an n-p-n
transistor are shown in Figure 12.12. A similar set of characteristics can
be obtained for a p-n-p transistor, these having reversed polarities. These
characteristics differ from the common base output characteristics in two
ways:

the collector current reduces to zero without having to reverse the
collector voltage, and
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the characteristics slope upwards indicating a lower output resistance
(usually kilohms for a common-emitter configuration compared with
megohms for a common-base configuration).

Problem 3. With the aid of a circuit diagram, explain how the
input and output characteristics of an n-p-n transistor having a
common-base configuration can be obtained.

A circuit diagram for obtaining the input and output characteristics
for an n-p-n transistor connected in common-base configuration is shown
in Figure 12.13. The input characteristic can be obtained by varying R1,
which varies VEB, and noting the corresponding values of IE. This is
repeated for various values of VCB. It will be found that the input char-
acteristic is almost independent of VCB and it is usual to give only one
characteristic, as shown in Figure 12.9.
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To obtain the output characteristics, as shown in Figure 12.10, IE is
set to a suitable value by adjusting R1. For various values of VCB, set by
adjusting R2, IC is noted. This procedure is repeated for various values of
IE. To obtain the full characteristics, the polarity of battery V2 has to be
reversed to reduce IC to zero. This must be done very carefully or else

IE IC

IB VCBVEB V2
R2R1

A A

− +

−
+

AV V

Figure 12.13
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values of IC will rapidly increase in the reverse direction and burn out
the transistor.

12.6 The transistor as an
amplifier

The amplifying properties of a transistor depend upon the fact that current
flowing in a low-resistance circuit is transferred to a high-resistance circuit
with negligible change in magnitude. If the current then flows through a
load resistance, a voltage is developed. This voltage can be many times
greater than the input voltage which caused the original current flow.

(a) Common-base amplifier

The basic circuit for a transistor is shown in Figure 12.14 where an n-
p-n transistor is biased with batteries b1 and b2. A sinusoidal alternating
input signal, ve, is placed in series with the input bias voltage, and a load
resistor, RL, is placed in series with the collector bias voltage. The input
signal is therefore the sinusoidal current ie resulting from the applica-
tion of the sinusoidal voltage ve superimposed on the direct current IE
established by the base-emitter voltage VBE.

~ve

RL

IE + ie

b1

b2

Figure 12.14
Let the signal voltage ve be 100 mV and the base-emitter circuit resis-

tance be 50�. Then the emitter signal current will be 100/50 D 2 mA.
Let the load resistance RL D 2.5 k�. About 0.99 of the emitter current will
flow in RL. Hence the collector signal current will be about 0.99 ð 2 D
1.98 mA and the signal voltage across the load will be 2500 ð 1.98 ð
10�3 D 4.95 V. Thus a signal voltage of 100 mV at the emitter has produ-
ced a voltage of 4950 mV across the load. The voltage amplification or
gain is therefore 4950/100 D 49.5 times. This example illustrates the
action of a common-base amplifier where the input signal is applied
between emitter and base and the output is taken from between collector
and base.

~

RL

7V

VCCVBB

5 mA

12 V

1kΩ

IB + ib

ib

+

−

−

+
0.1 mA
base d.c.
bias IB

Collector
voltage
variations

Figure 12.15

(b) Common-emitter amplifier

The basic circuit arrangement of a common-emitter amplifier is shown
in Figure 12.15. Although two batteries are shown, it is more usual to
employ only one to supply all the necessary bias. The input signal is
applied between base and emitter, and the load resistor RL is connected
between collector and emitter. Let the base bias battery provide a voltage
which causes a base current IB of 0.1 mA to flow. This value of base
current determines the mean d.c. level upon which the a.c. input signal
will be superimposed. This is the d.c. base current operating point.

Let the static current gain of the transistor, ˛E, be 50. Since 0.1 mA
is the steady base current, the collector current IC will be ˛E ð IB D
50 ð 0.1 D 5 mA. This current will flow through the load resistor RL
(D 1 k�), and there will be a steady voltage drop across RL given by
ICRL D 5 ð 10�3 ð 1000 D 5 V. The voltage at the collector, VCE, will
therefore be VCC � ICRL D 12 � 5 D 7 V. This value of VCE is the mean
(or quiescent) level about which the output signal voltage will swing alter-
nately positive and negative. This is the collector voltage d.c. operating
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IB(µA)

200

100

0 0.5 1.0 VBE(V)

X

Figure 12.16

point. Both of these d.c. operating points can be pin-pointed on the
input and output characteristics of the transistor. Figure 12.16 shows
the IB/VBE characteristic with the operating point X positioned at IB D
100 µA, VBE D 0.75 V, say.

Figure 12.17 shows the IC/VCE characteristics, with the operating point
Y positioned at IC D 5 mA, VCE D 7V. It is usual to choose the operating
point Y somewhere near the centre of the graph.

IC(mA)

VCE(V)

IB = 100µA
5 mA

mean
collector
current

0 5 10 15

7 V mean collector
voltage

Y

Figure 12.17

It is possible to remove the bias battery VBB and obtain base bias from
the collector supply battery VCC instead. The simplest way to do this is
to connect a bias resistor RB between the positive terminal of the VCC
supply and the base as shown in Figure 12.18. The resistor must be of
such a value that it allows 100 µA to flow in the base-emitter diode.

VCC

RLRB

lB

Figure 12.18

For a silicon transistor, the voltage drop across the junction for forward
bias conditions is about 0.6 V. The voltage across RB must then be 12 �
0.6 D 11.4 V. Hence, the value of RB must be such that IB ð RB D 11.4 V,
i.e.

RB D 11.4

IB
D 11.4

100 ð 10�6
D 114 k�.

With the inclusion of the 1 k� load resistor, RL, a steady 5 mA collector
current, and a collector-emitter voltage of 7 V, the d.c. conditions are
established.

An alternating input signal (vi) can now be applied. In order not to
disturb the bias condition established at the base, the input must be fed to
the base by way of a capacitor C1. This will permit the alternating signal
to pass to the base but will prevent the passage of direct current. The
reactance of this capacitor must be such that it is very small compared
with the input resistance of the transistor. The circuit of the amplifier is
now as shown in Figure 12.19. The a.c. conditions can now be determined.

~

−

+

v0

C1

vi

C2

VCE

VCC

ib

lB

lB + ib

RB
RL

ic = αeib

lC + ic

Figure 12.19

When an alternating signal voltage v1 is applied to the base via capacitor
C1 the base current ib varies. When the input signal swings positive, the
base current increases; when the signal swings negative, the base current
decreases. The base current consists of two components: IB, the static base
bias established by RB, and ib, the signal current. The current variation
ib will in turn vary the collector current, ic. The relationship between ic
and ib is given by ic D ˛eib, where ˛e is the dynamic current gain of
the transistor and is not quite the same as the static current gain ˛E; the
difference is usually small enough to be insignificant.

The current through the load resistor RL also consists of two compo-
nents: IC, the static collector current, and ic, the signal current. As ib
increases, so does ic and so does the voltage drop across RL. Hence, from
the circuit:

VCE D VCC � �IC C ic�RL

The d.c. components of this equation, though necessary for the amplifier
to operate at all, need not be considered when the a.c. signal conditions
are being examined. Hence, the signal voltage variation relationship is:

vce D �˛e ð ib ð RL D icRL
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the negative sign being added because vce decreases when ib increases and
vice versa. The signal output and input voltages are of opposite polarity,
i.e. a phase shift of 180° has occurred. So that the collector d.c. potential
is not passed on to the following stage, a second capacitor, C2, is added
as shown in Figure 12.19. This removes the direct component but permits
the signal voltage vo D icRL to pass to the output terminals.

12.7 The load line The relationship between the collector-emitter voltage (VCE) and collector
current (IC) is given by the equation: VCE D VCC � ICRL in terms of the
d.c. conditions. Since VCC and RL are constant in any given circuit, this
represents the equation of a straight line which can be written in the
y D mx C c form. Transposing VCE D VCC � ICRL for IC gives:

IC D VCC � VCE
RL

D VCC
RL

� VCE
RL

D �
(

1

RL

)
VCE C VCC

RL

i.e. IC D �
(

1

RL

)
VCE C VCC

RL

which is of the straight line form y D mx C c; hence if Ic is plotted
vertically and VCE horizontally, then the gradient is given by ��1/RL�
and the vertical axis intercept is VCC/RL.

A family of collector static characteristics drawn on such axes is shown
in Figure 12.12 on page 151, and so the line may be superimposed on
these as shown in Figure 12.20.
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Figure 12.20

The reason why this line is necessary is because the static curves relate
IC to VCE for a series of fixed values of IB. When a signal is applied to
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the base of the transistor, the base current varies and can instantaneously
take any of the values between the extremes shown. Only two points
are necessary to draw the line and these can be found conveniently by
considering extreme conditions. From the equation:

VCE D VCC � ICRL

(i) when IC D 0, VCE D VCC (ii) when VCE D 0, IC D VCC/RL

Thus the points A and B respectively are located on the axes of the
IC/VCE characteristics. This line is called the load line and it is dependent
for its position upon the value of VCC and for its gradient upon RL. As
the gradient is given by ��1/RL�, the slope of the line is negative.

For every value assigned to RL in a particular circuit there will be a
corresponding (and different) load line. If VCC is maintained constant, all
the possible lines will start at the same point (B) but will cut the IC axis
at different points A. Increasing RL will reduce the gradient of the line
and vice-versa. Quite clearly the collector voltage can never exceed VCC
(point B) and equally the collector current can never be greater than that
value which would make VCE zero (point A).
Using the circuit example of Figure 12.15, we have

VCE D VCC D 12 V, when IC D 0

IC D VCC
RL

D 12

1000
D 12 mA, when VCE D 0

The load line is drawn on the characteristics shown in Figure 12.21, which
we assume are characteristics for the transistor used in the circuit of
Figure 12.15 earlier. Notice that the load line passes through the oper-
ating point X, as it should, since every position on the line represents a
relationship between VCE and IC for the particular values of VCC and RL
given. Suppose that the base current is caused to vary š0.1 mA about the
d.c. base bias of 0.1 mA. The result is IB changes from 0 mA to 0.2 mA
and back again to 0 mA during the course of each input cycle. Hence the
operating point moves up and down the load line in phase with the input
current and hence the input voltage. A sinusoidal input cycle is shown on
Figure 12.21.

12.8 Current and voltage
gains

The output signal voltage (vce) and current (ic) can be obtained by project-
ing vertically from the load line on to VCE and IC axes respectively. When
the input current ib varies sinusoidally as shown in Figure 12.21, then vce
varies sinusoidally if the points E and F at the extremities of the input
variations are equally spaced on either side of X.

The peak to peak output voltage is seen to be 8.5 V, giving an r.m.s.
value of 3 V (i.e. 0.707 ð 8.5/2). The peak to peak output current is
8.75 mA, giving an r.m.s. value of 3.1 mA. From these figures the voltage
and current amplifications can be obtained.



156 Electrical Circuit Theory and Technology

2 4 6 8 10 120

2

4

6

8

10

12

VCE (V)

8.5 V pk−pk

8.75 mA
pk−pk

F

X

E

IC (mA)

M
ax

im
um

 p
os

itiv
e 

ex
cu

rs
ion

M
ax

im
um

 n
eg

at
ive

 e
xc

ur
sio

n

M
ea

n 
ba

se
 b

ias

IB = 0.1 mA

IB = O

IB = 0.2 mA

Input current
variation is 0.1 mA
peak

Figure 12.21

The dynamic current gain Ai (D ˛e as opposed to the static gain ˛E),
is given by:

Ai D change in collector current
change in base current

This always leads to a different figure from that obtained by the direct
division of IC/IB which assumes that the collector load resistor is zero.
From Figure 12.21 the peak input current is 0.1 mA and the peak output
current is 4.375 mA. Hence

Ai D 4.375 ð 10�3

0.1 ð 10�3
D 43.75

The voltage gain Av is given by:

Av D change in collector voltage
change in base voltage

This cannot be calculated from the data available, but if we assume that
the base current flows in the input resistance, then the base voltage can
be determined. The input resistance can be determined from an input
characteristic such as was shown earlier.

Then Ri D change in VBC
change in IB

and vi D ibRC and vo D icRL
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and Av D icRL
IbRi

D ˛e
RL
Ri

For a resistive load, power gain, Ap, is given by

Ap = Av × Ai

Problem 4. An n-p-n transistor has the following characteristics,
which may be assumed to be linear between the values of collector
voltage stated.

Base current Collector current (mA) for
(µA) collector voltages of

1 V 5 V

30 1.4 1.6
50 3.0 3.5
70 4.6 5.2

The transistor is used as a common-emitter amplifier with load
resistor RL D 1.2 k� and a collector supply of 7 V. The signal input
resistance is 1 k�. Estimate the voltage gain Av, the current gain Ai
and the power gain Ap when an input current of 20 µA peak varies
sinusoidally about a mean bias of 50 µA.

The characteristics are drawn in Figure 12.22. The load line equation is
VCC D VCE � ICRL which enables the extreme points of the line to be
calculated.

When IC D 0, VCE D VC D 7.0 V

and when VCE D 0, jICj D VCC
RL

D 7

1200
D 5.83 mA

The load line is shown superimposed on the characteristic curves with
the operating point marked X at the intersection of the line and the 50 µA
characteristic.

From the diagram, the output voltage swing is 3.6 V peak to peak. The
input voltage swing is ibRi where ib is the base current swing and Ri is
the input resistance.

Therefore vi D �70 � 30�ð 10�6 ð 1 ð 103 D 40 mV peak to peak

Hence, voltage gain, Av D output volts

input volts
D 3.6

40 ð 10�3
D 90

Note that peak to peak values are taken at both input and output. There
is no need to convert to r.m.s. as only ratios are involved.
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Figure 12.22

From the diagram, the output current swing is 3.0 mA peak to peak.
The input base current swing is 40 µA peak to peak.

Hence, current gain, Ai D output current

input current
D 3 ð 10�3

40 ð 10�6
D 75

For a resistive load RL the power gain, Ap, is given by:

Ap D voltage gain ð current gain D Av ð Ai D 90 ð 75 D 6750

12.9 Thermal runaway When a transistor is used as an amplifier it is necessary to ensure that it
does not overheat. Overheating can arise from causes outside of the tran-
sistor itself, such as the proximity of radiators or hot resistors, or within
the transistor as the result of dissipation by the passage of current through
it. Power dissipated within the transistor, which is given approximately by
the product ICVCE, is wasted power; it contributes nothing to the signal
output power and merely raises the temperature of the transistor. Such
overheating can lead to very undesirable results.

The increase in the temperature of a transistor will give rise to the
production of hole electron pairs, hence an increase in leakage current
represented by the additional minority carriers. In turn, this leakage current
leads to an increase in collector current and this increases the product
ICVCE. The whole effect thus becomes self-perpetuating and results in
thermal runaway. This rapidly leads to the destruction of the transistor.

Problem 5. Explain how thermal runaway might be prevented in
a transistor.
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RB

IB

RL

+ Vcc

Figure 12.23

Two basic methods are available and either or both may be used in a
particular application.

Method 1 is in the circuit design itself. The use of a single biasing
resistor RB as shown earlier in Figure 12.18 is not particularly good prac-
tice. If the temperature of the transistor increases, the leakage current
also increases. The collector current, collector voltage and base current
are thereby changed, the base current decreasing as IC increases. An alter-
native is shown in Figure 12.23. Here the resistor RB is returned, not to
the VCC line, but to the collector itself.

If the collector current increases for any reason, the collector voltage
VCE will fall. Therefore, the d.c. base current IB will fall, since IB D
VCE/RB. Hence the collector current IC D ˛EIB will also fall and compen-
sate for the original increase.

A commonly used bias arrangement is shown in Figure 12.24. If the
total resistance value of resistors R1 and R2 is such that the current flowing
through the divider is large compared with the d.c. bias current IB, then
the base voltage VBE will remain substantially constant regardless of vari-
ations in collector current. The emitter resistor RE in turn determines the
value of emitter current which flows for a given base voltage at the junc-
tion of R1 and R2. Any increase in IC produces an increase in IE and
a corresponding increase in the voltage drop across RE. This reduces
the forward bias voltage VBE and leads to a compensating reduction
in IC.

+ VccIC

IB

VBE
IE

RLR1

R2
RE

Figure 12.24 Method 2 concerns some means of keeping the transistor temperature
down by external cooling. For this purpose, a heat sink is employed, as
shown in Figure 12.25. If the transistor is clipped or bolted to a large
conducting area of aluminium or copper plate (which may have cooling
fins), cooling is achieved by convection and radiation.

THICK ALUMINIUM
OR COPPER PLATE

POWER TRANSISTOR
BOLTED TO THE PLATE

Figure 12.25

Heat sinks are usually blackened to assist radiation and are normally
used where large power dissipation’s are involved. With small transistors,
heat sinks are unnecessary. Silicon transistors particularly have such small
leakage currents that thermal problems rarely arise.

12.10 Further problems
on transistors

1 Explain with the aid of sketches, the operation of an n-p-n transistor
and also explain why the collector current is very nearly equal to the
emitter current.

2 Explain what is meant by the term ‘transistor action’.

3 Describe the basic principle of operation of a bipolar junction tran-
sistor including why majority carriers crossing into the base from the
emitter pass to the collector and why the collector current is almost
unaffected by the collector potential.

4 For a transistor connected in common-emitter configuration, sketch
the output characteristics relating collector current and the collector-
emitter voltage, for various values of base current. Explain the shape
of the characteristics.
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5 Sketch the input characteristic relating emitter current and the emit-
ter-base voltage for a transistor connected in common-base configu-
ration, and explain its shape.

6 With the aid of a circuit diagram, explain how the output character-
istics of an n-p-n transistor having common-base configuration may
be obtained and any special precautions which should be taken.

7 Draw sketches to show the direction of the flow of leakage current
in both n-p-n and p-n-p transistors. Explain the effect of leakage
current on a transistor connected in common-base configuration.

8 Using the circuit symbols for transistors show how (a) common-base,
and (b) common-emitter configuration can be achieved. Mark on the
symbols the inputs, the outputs, polarities under normal operating
conditions to give correct biasing and current directions.

9 Draw a diagram showing how a transistor can be used in common
emitter configuration. Mark on the sketch the input and output polar-
ities under normal operating conditions, and current directions.

10 Sketch the circuit symbols for (a) a p-n-p and (b) an n-p-n transistor.
Mark on the emitter electrodes the direction of conventional current
flow and explain why the current flows in the direction indicated.

11 State whether the following statements are true or false:

(a) The purpose of a transistor amplifier is to increase the frequency
of an input signal

(b) The gain of an amplifier is the ratio of the output signal ampli-
tude to the input signal amplitude

(c) The output characteristics of a transistor relate the collector
current to the base voltage.

(d) The equation of the load line is VCE D VCC � ICRL
(e) If the load resistor value is increased the load line gradient is

reduced

(f) In a common-emitter amplifier, the output voltage is shifted
through 180° with reference to the input voltage

(g) In a common-emitter amplifier, the input and output currents
are in phase

(h) If the temperature of a transistor increases, VBE, IC and ˛E all
increase

(i) A heat sink operates by artificially increasing the surface area
of a transistor

(j) The dynamic current gain of a transistor is always greater than
the static current.

[(a) false (b) true (c) false (d) true (e) true (f) true
(g) true (h) false (VBE decreases) (i) true (j) true]

12 An amplifier has Ai D 40 and Av D 30. What is the power gain ?
[1200]
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13 What will be the gradient of a load line for a load resistor of value
4 k�? What unit is the gradient measured in? [�1/4000 siemen]

14 A transistor amplifier, supplied from a 9 V battery, requires a d.c. bias
current of 100 µA. What value of bias resistor would be connected
from base to the VCC line (a) if VCE is ignored (b) if VCE is 0.6 V?

[(a) 90 k� (b) 84 k�]

15 The output characteristics of a transistor in common-emitter config-
uration can be regarded as straight lines connecting the following
points

IB D 20 µA 50 µA 80 µA

VCE (V) 1.0 8.0 1.0 8.0 1.0 8.0
IC (mA) 1.2 1.4 3.4 4.2 6.1 8.1

Plot the characteristics and superimpose the load line for a 1 k� load,
given that the supply voltage is 9 V and the d.c. base bias is 50 µA.
The signal input resistance is 800� . When a peak input current
of 30 µA varies sinusoidally about a mean bias of 50 µA, determine
(a) the quiescent collector current (b) the current gain (c) the voltage
gain (d) the power gain

[(a) 4 mA (b) 104 (c) 83 (d) 8632]

16 Explain briefly what is meant by ‘thermal runaway’.



Assignment 3

This assignment covers the material contained in chapters 8
to 12.

The marks for each question are shown in brackets at the end of
each question.

1 A conductor, 25 cm long, is situated at right angles to a magnetic
field. Determine the strength of the magnetic field if a current of
12 A in the conductor produces a force on it of 4.5 N. (3)

2 An electron in a television tube has a charge of 1.5 ð 10�19 C and
travels at 3 ð 107 m/s perpendicular to a field of flux density 20 µT.
Calculate the force exerted on the electron in the field. (3)

3 A lorry is travelling at 100 km/h. Assuming the vertical component
of the earth’s magnetic field is 40 µT and the back axle of the lorry
is 1.98 m, find the e.m.f. generated in the axle due to motion. (5)

4 An e.m.f. of 2.5 kV is induced in a coil when a current of 2 A
collapses to zero in 5 ms. Calculate the inductance of the coil. (4)

5 Two coils, P and Q, have a mutual inductance of 100 mH. If a current
of 3 A in coil P is reversed in 20 ms, determine (a) the average e.m.f.
induced in coil Q, and (b) the flux change linked with coil Q if it
wound with 200 turns. (5)

6 A moving coil instrument gives a f.s.d. when the current is 50 mA and
has a resistance of 40�. Determine the value of resistance required
to enable the instrument to be used (a) as a 0–5 A ammeter, and
(b) as a 0–200 V voltmeter. State the mode of connection in each
case. (6)

7 An amplifier has a gain of 20 dB. It’s input power is 5 mW. Calculate
it’s output power. (3)

8 A sinusoidal voltage trace displayed on a c.r.o. is shown in
Figure A3.1; the ‘time/cm’ switch is on 50 ms and the ‘volts/cm’
switch is on 2 V/cm. Determine for the waveform (a) the frequency
(b) the peak-to-peak voltage (c) the amplitude (d) the r.m.s. value.

(7)Figure A3.1
9 With reference to a p-n junction, briefly explain the terms:

(a) majority carriers (b) contact potential (c) depletion layer
(d) forward bias (e) reverse bias. (5)

10 The output characteristics of a common-emitter transistor amplifier
are given below. Assume that the characteristics are linear between
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the values of collector voltage stated.

IB D 10 µA 40 µA 70 µA

VCE (V) 1.0 7.0 1.0 7.0 1.0 7.0
IC (mA) 0.6 0.7 2.5 2.9 4.6 5.35

Plot the characteristics and superimpose the load line for a 1.5 k�
load resistor and collector supply voltage of 8 V. The signal input
resistance is 1.2 k�. Determine (a) the voltage gain, (b) the current
gain, and (c) the power gain when an input current of 30 µA peak
varies sinusoidally about a mean bias of 40 µA (9)
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13 D.c. circuit theory

At the end of this chapter you should be able to:

ž state and use Kirchhoff’s laws to determine unknown currents
and voltages in d.c. circuits

ž understand the superposition theorem and apply it to find
currents in d.c. circuits

ž understand general d.c. circuit theory
ž understand Th́evenin’s theorem and apply a procedure to

determine unknown currents in d.c. circuits
ž recognize the circuit diagram symbols for ideal voltage and

current sources
ž understand Norton’s theorem and apply a procedure to

determine unknown currents in d.c. circuits
ž appreciate and use the equivalence of the Thévenin and

Norton equivalent networks
ž state the maximum power transfer theorem and use it to

determine maximum power in a d.c. circuit

13.1 Introduction The laws which determine the currents and voltage drops in d.c.
networks are: (a) Ohm’s law (see Chapter 2), (b) the laws for resistors
in series and in parallel (see Chapter 5), and (c) Kirchhoff’s laws (see
Section 13.2 following). In addition, there are a number of circuit
theorems which have been developed for solving problems in electrical
networks. These include:

(i) the superposition theorem (see Section 13.3),
(ii) Thévenin’s theorem (see Section 13.5),

(iii) Norton’s theorem (see Section 13.7), and
(iv) the maximum power transfer theorem (see Section 13.8).

13.2 Kirchhoff’s laws Kirchhoff’s laws state:

(a) Current Law. At any junction in an electric circuit the total current
flowing towards that junction is equal to the total current flowing
away from the junction, i.e.I D 0
Thus, referring to Figure 13.1:

I1 C I2 D I3 C I4 C I5 or I1 C I2 � I3 � I4 � I5 D 0

(b) Voltage Law. In any closed loop in a network, the algebraic sum
of the voltage drops (i.e. products of current and resistance) takenFigure 13.1
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Figure 13.2

around the loop is equal to the resultant e.m.f. acting in that loop.

Thus, referring to Figure 13.2:E1 � E2 D IR1 C IR2 C IR3

(Note that if current flows away from the positive terminal of a
source, that source is considered by convention to be positive. Thus
moving anticlockwise around the loop of Figure 13.2,E1 is positive
andE2 is negative.)

Problem 1. (a) Find the unknown currents marked in Figure
13.3(a). (b) Determine the value of e.m.f.E in Figure 13.3(b).

Figure 13.3

(a) Applying Kirchhoff’s current law:

For junction B: 50D 20C I1. HenceI1 D 30 A

For junction C: 20C 15 D I2. HenceI2 = 35 A

For junction D: I1 D I3 C 120

i.e. 30D I3 C 120. HenceI3 = −90 A

(i.e. in the opposite direction to that shown in Figure 13.3(a))

For junction E: I4 C I3 D 15

i.e. I4 D 15� ��90�. HenceI4 = 105 A

For junction F: 120D I5 C 40. HenceI5 = 80 A

(b) Applying Kirchhoff’s voltage law and moving clockwise around the
loop of Figure 13.3(b) starting at point A:

3 C 6 C E� 4 D �I��2�C �I��2.5�C �I��1.5�C �I��1�

D I�2 C 2.5 C 1.5 C 1�

i.e. 5C E D 2�7�, sinceI D 2 A

Hence E D 14� 5 D 9 V

Figure 13.4

Problem 2. Use Kirchhoff’s laws to determine the currents
flowing in each branch of the network shown in Figure 13.4.

Procedure

1 Use Kirchhoff’s current law and label current directions on the original
circuit diagram. The directions chosen are arbitrary, but it is usual, as a
starting point, to assume that current flows from the positive terminals
of the batteries. This is shown in Figure 13.5 where the three branch
currents are expressed in terms ofI1 and I2 only, since the current
throughR is I1 C I2.

2 Divide the circuit into two loops and apply Kirchhoff’s voltage law to
each. From loop 1 of Figure 13.5, and moving in a clockwise directionFigure 13.5
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as indicated (the direction chosen does not matter), gives

E1 D I1r1 C �I1 C I2�R, i.e. 4D 2I1 C 4�I1 C I2�,

i.e. 6I1 C 4I2 D 4 �1�

From loop 2 of Figure 13.5, and moving in an anticlockwise direction
as indicated (once again, the choice of direction does not matter; it
does not have to be in the same direction as that chosen for the
first loop), gives:

E2 D I2r2 C �I1 C I2�R, i.e. 2D I2 C 4�I1 C I2�,

i.e. 4I1 C 5I2 D 2 �2�

3 Solve equations (1) and (2) forI1 andI2.

2 ð �1� gives: 12I1 C 8I2 D 8 �3�

3 ð �2� gives: 12I1 C 15I2 D 6 �4�

�3�� �4� gives:�7I2 D 2 henceI2 D �2

7
D −0.286 A

(i.e. I2 is flowing in the opposite direction to that shown in
Figure 13.5.)

From (1) 6I1 C 4��0.286� D 4

6I1 D 4 C 1.144

Hence I1 D 5.144

6
D 0.857 A

Current flowing through resistanceR is

I1 C I2 D 0.857C ��0.286� D 0.571 A

Figure 13.6

Note that a third loop is possible, as shown in Figure 13.6, giving a third
equation which can be used as a check:

E1 � E2 D I1r1 � I2r2

4 � 2 D 2I1 � I2

2 D 2I1 � I2

[Check: 2I1 � I2 D 2�0.857�� ��0.286� D 2]

Problem 3. Determine, using Kirchhoff’s laws, each branch
current for the network shown in Figure 13.7.

1 Currents, and their directions are shown labelled in Figure 13.8
following Kirchhoff’s current law. It is usual, although not essential,Figure 13.7
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Figure 13.8

to follow conventional current flow with current flowing from the
positive terminal of the source.

2 The network is divided into two loops as shown in Figure 13.8.
Applying Kirchhoff’s voltage law gives:

For loop 1:

E1 C E2 D I1R1 C I2R2

i.e. 16D 0.5I1 C 2I2 �1�

For loop 2:

E2 D I2R2 � �I1 � I2�R3

Note that since loop 2 is in the opposite direction to current(I1 � I2),
the volt drop acrossR3 (i.e. (I1 � I2)(R3) is by convention negative).

Thus 12D 2I2 � 5�I1 � I2� i.e. 12D �5I1 C 7I2 �2�

3 Solving equations (1) and (2) to findI1 andI2:

10ð �1� gives 160D 5I1 C 20I2 �3�

�2�C �3� gives 172D 27I2 henceI2 D 172

27
D 6.37 A

From (1): 16D 0.5I1 C 2�6.37�

I1 D 16� 2�6.37�

0.5
D 6.52 A

Current flowing in R3 D I1 � I2 D 6.52� 6.37 D 0.15 A

Problem 4. For the bridge network shown in Figure 13.9 deter-
mine the currents in each of the resistors.

Figure 13.9 Let the current in the 2
 resistor beI1, then by Kirchhoff’s current law,
the current in the 14
 resistor is (I� I1). Let the current in the 32

resistor beI2 as shown in Figure 13.10. Then the current in the 11

resistor is (I1 � I2) and that in the 3
 resistor is (I� I1 C I2). Applying
Kirchhoff’s voltage law to loop 1 and moving in a clockwise direction as
shown in Figure 13.10 gives:

54 D 2I1 C 11�I1 � I2�

i.e. 13I1 � 11I2 D 54 �1�

Figure 13.10 Applying Kirchhoff’s voltage law to loop 2 and moving in an anticlock-
wise direction as shown in Figure 13.10 gives:

0 D 2I1 C 32I2 � 14�I� I1�
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However I D 8 A

Hence 0D 2I1 C 32I2 � 14�8 � I1�

i.e. 16I1 C 32I2 D 112 �2�

Equations (1) and (2) are simultaneous equations with two unknowns,
I1 andI2.

16ð �1� gives: 208I1 � 176I2 D 864 �3�

13ð �2� gives: 208I1 C 416I2 D 1456 �4�

�4�� �3� gives: 592I2 D 592

I2 D 1 A

Substituting forI2 in (1) gives:

13I1 � 11 D 54

I1 D 65

13
D 5 A

Hence,

the current flowing in the 2
 resistor D I1 D 5 A

the current flowing in the 14
 resistorD I� I1 D 8 � 5 D 3 A

the current flowing in the 32
 resistorD I2 D 1 A

the current flowing in the 11
 resistorD I1 � I2 D 5 � 1 D 4 A and

the current flowing in the 3
 resistor D I� I1 C I2 D 8 � 5 C 1

D 4 A

Further problems on Kirchhoff’s laws may be found in Section 13.10, prob-
lems 1 to 6, page 189.

13.3 The superposition
theorem

The superposition theoremstates:

‘In any network made up of linear resistances and containing more than
one source of e.m.f., the resultant current flowing in any branch is the
algebraic sum of the currents that would flow in that branch if each source
was considered separately, all other sources being replaced at that time
by their respective internal resistances.’

Problem 5. Figure 13.11 shows a circuit containing two sources
of e.m.f., each with their internal resistance. Determine the current
in each branch of the network by using the superposition theorem.

Figure 13.11
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Figure 13.12

Procedure:

1 Redraw the original circuit with sourceE2 removed, being replaced
by r2 only, as shown in Figure 13.12(a).

2 Label the currents in each branch and their directions as shown in
Figure 13.12(a) and determine their values. (Note that the choice of
current directions depends on the battery polarity, which, by conven-
tion is taken as flowing from the positive battery terminal as shown.)
R in parallel withr2 gives an equivalent resistance of:

4 ð 1

4 C 1
D 0.8 


From the equivalent circuit of Figure 13.12(b)

I1 D E1

r1 C 0.8
D 4

2 C 0.8
D 1.429 A

From Figure 13.12(a)

I2 D
(

1

4 C 1

)
I1 D 1

5
�1.429� D 0.286 A

and

I3 D
(

4

4 C 1

)
I1 D 4

5
�1.429� D 1.143 A by current division

3 Redraw the original circuit with sourceE1 removed, being replaced
by r1 only, as shown in Figure 13.13(a).

Figure 13.13

4 Label the currents in each branch and their directions as shown in
Figure 13.13(a) and determine their values.
r1 in parallel withR gives an equivalent resistance of:

2 ð 4

2 C 4
D 8

6
D 1.333


From the equivalent circuit of Figure 13.13(b)

I4 D E2

1.333C r2
D 2

1.333C 1
D 0.857 A

From Figure 13.13(a)

I5 D
(

2

2 C 4

)
I4 D 2

6
�0.857� D 0.286 A

I6 D
(

4

2 C 4

)
I4 D 4

6
�0.857� D 0.571 A

5 Superimpose Figure 13.13(a) on to Figure 13.12(a) as shown in
Figure 13.14.Figure 13.14
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6 Determine the algebraic sum of the currents flowing in each branch.
Resultant current flowing through source 1, i.e.

I1 � I6 D 1.429� 0.571

D 0.858 A (discharging)

Resultant current flowing through source 2, i.e.

I4 � I3 D 0.857� 1.143

D −0.286 A (charging)

Figure 13.15

Resultant current flowing through resistorR, i.e.

I2 C I5 D 0.286C 0.286

D 0.572 A

The resultant currents with their directions are shown in Figure 13.15.

Problem 6. For the circuit shown in Figure 13.16, find, using the
superposition theorem, (a) the current flowing in and the pd across
the 18
 resistor, (b) the current in the 8 V battery and (c) the
current in the 3 V battery.

Figure 13.16

1 Removing sourceE2 gives the circuit of Figure 13.17(a).

2 The current directions are labelled as shown in Figure 13.17(a),I1

flowing from the positive terminal ofE1.

From Figure 13.17(b),I1 D E1

3 C 1.8
D 8

4.8
D 1.667 A

From Figure 13.17(a),I2 D
(

18

2 C 18

)
I1 D 18

20
�1.667� D 1.500 A

and I3 D
(

2

2 C 18

)
I1 D 2

20
�1.667� D 0.167 A

3 Removing sourceE1 gives the circuit of Figure 13.18(a) (which is the
same as Figure 13.18(b)).

4 The current directions are labelled as shown in Figures 13.18(a) and
13.18(b),I4 flowing from the positive terminal ofE2

From Figure 13.18(c),I4 D E2

2 C 2.571
D 3

4.571
D 0.656 A

From Figure 13.18(b),I5 D
(

18

3 C 18

)
I4 D 18

21
�0.656� D 0.562 A

Figure 13.17
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Figure 13.18

I6 D
(

3

3 C 18

)
I4 D 3

21
�0.656� D 0.094 A

5 Superimposing Figure 13.18(a) on to Figure 13.17(a) gives the circuit
in Figure 13.19.

6 (a) Resultant current in the 18
 resistorD I3 � I6

D 0.167� 0.094

D 0.073 A

P.d. across the 18
 resistorD 0.073ð 18 D 1.314 V

(b) Resultant current in th

e 8 V battery

D I1 C I5 D 1.667C 0.562

D 2.229 A (discharging)

(c) Resultant current in th

e 3 V battery

D I2 C I4 D 1.500C 0.656

D 2.156 A (discharging)

Further problems on the superposition theorem may be found in
Section 13.10, problems 7 to 10, page 190.

13.4 General d.c. circuit
theory

The following points involving d.c. circuit analysis need to be appre-
ciated before proceeding with problems using Thévenin’s and Norton’s
theorems:

Figure 13.19

Figure 13.20

(i) The open-circuit voltage,E, across terminals AB in Figure 13.20
is equal to 10 V, since no current flows through the 2
 resistor
and hence no voltage drop occurs.

(ii) The open-circuit voltage,E, across terminals AB in Figure
13.21(a) is the same as the voltage across the 6
 resistor.
The circuit may be redrawn as shown in Figure 13.21(b).

E D
(

6

6 C 4

)
�50�

by voltage division in a series circuit, i.e.E = 30 V

(iii) For the circuit shown in Figure 13.22(a) representing a prac-
tical source supplying energy,V D E� Ir, whereE is the battery
e.m.f.,V is the battery terminal voltage andr is the internal resis-
tance of the battery (as shown in Section 4.6). For the circuit
shown in Figure 13.22(b),V D E� ��I�r, i.e.V D EC Ir

(iv) The resistance ‘looking-in’ at terminals AB in Figure 13.23(a)
is obtained by reducing the circuit in stages as shown in
Figures 13.23(b) to (d). Hence the equivalent resistance across
AB is 7 
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Figure 13.21

(v) For the circuit shown in Figure 13.24(a), the 3
 resistor carries
no current and the p.d. across the 20
 resistor is 10 V. Redrawing
the circuit gives Figure 13.24(b), from which

E D
(

4

4 C 6

)
ð 10 D 4 V

(vi) If the 10 V battery in Figure 13.24(a) is removed and replaced by
a short-circuit, as shown in Figure 13.24(c), then the 20
 resistor
may be removed. The reason for this is that a short-circuit has zero
resistance, and 20
 in parallel with zero ohms gives an equivalent
resistance of:�20ð 0/20C 0�, i.e. 0
. The circuit is then as
shown in Figure 13.24(d), which is redrawn in Figure 13.24(e).
From Figure 13.24(e), the equivalent resistance across AB,

r D 6 ð 4

6 C 4
C 3 D 2.4 C 3 D 5.4 Z

(vii) To find the voltage across AB in Figure 13.25:
Since the 20 V supply is across the 5
 and 15
 resistors in
series then, by voltage division, the voltage drop across AC,

VAC D
(

5

5 C 15

)
�20� D 5 V

Similarly, VCB D
(

12

12C 3

)
�20� D 16 V.

VC is at a potential ofC20 V.

VA D VC � VAC D C20� 5 D 15V and

VB D VC � VBC D C20� 16 D 4 V.

Hence the voltage between AB isVA � VB D 15� 4 D 11 V and
current would flow from A to B since A has a higher potential
than B.

Figure 13.22

(viii) In Figure 13.26(a), to find the equivalent resistance across AB
the circuit may be redrawn as in Figures 13.26(b) and (c). From
Figure 13.26(c), the equivalent resistance across

AB D 5 ð 15

5 C 15
C 12ð 3

12C 3
D 3.75C 2.4 D 6.15Z

(ix) In the worked problems in Sections 13.5 and 13.7 following, it
may be considered that Thévenin’s and Norton’s theorems have

Figure 13.23
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Figure 13.24

Figure 13.26

no obvious advantages compared with, say, Kirchhoff’s laws.
However, these theorems can be used to analyse part of a circuit
and in much more complicated networks the principle of replacing
the supply by a constant voltage source in series with a resistance
(or impedance) is very useful.

Figure 13.25

13.5 Th́evenin’s theorem Thévenin’s theoremstates:

‘The current in any branch of a network is that which would result if an
e.m.f. equal to the p.d. across a break made in the branch, were introduced
into the branch, all other e.m.f.’s being removed and represented by the
internal resistances of the sources.’

The procedure adopted when using Thévenin’s theorem is summarized
below. To determine the current in any branch of an active network (i.e.
one containing a source of e.m.f.):

(i) remove the resistanceR from that branch,
(ii) determine the open-circuit voltage,E, across the break,

(iii) remove each source of e.m.f. and replace them by their internal
resistances and then determine the resistance,r, ‘looking-in’ at the
break,

(iv) determine the value of the current from the equivalent circuit shown

in Figure 13.27, i.e.I =
E

RY r

Problem 7. Use Th́evenin’s theorem to find the current flowing
in the 10
 resistor for the circuit shown in Figure 13.28(a).

Following the above procedure:

(i) The 10
 resistance is removed from the circuit as shown in
Figure 13.28(b)
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Figure 13.27

(ii) There is no current flowing in the 5
 resistor and currentI1 is
given by:

I1 D 10

R1 C R2
D 10

2 C 8
D 1 A

P.d. acrossR2 D I1R2 D 1 ð 8 D 8 V

Hence p.d. across AB, i.e. the open-circuit voltage across the break,
E D 8 V.

(iii) Removing the source of e.m.f. gives the circuit of Figure 13.28(c).

Resistance,r D R3 C R1R2

R1 C R2
D 5 C 2 ð 8

2 C 8

D 5 C 1.6 D 6.6 


(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.28(d).

CurrentI D E

RC r
D 8

10C 6.6
D 8

16.6
D 0.482 A

Hence the current flowing in the 10
 resistor of Figure 28(a) is
0.482 A

Figure 13.28

Problem 8. For the network shown in Figure 13.29(a) determine
the current in the 0.8
 resistor using Th́evenin’s theorem.

Following the procedure:

(i) The 0.8
 resistor is removed from the circuit as shown in
Figure 13.29(b).

(ii) Current I1 D 12

1 C 5 C 4
D 12

10
D 1.2 A

P.d. across 4
 resistorD 4I1 D �4��1.2� D 4.8 V

Hence p.d. across AB, i.e. the open-circuit voltage across AB,

E D 4.8 V

(iii) Removing the source of e.m.f. gives the circuit shown in
Figure 13.29(c). The equivalent circuit of Figure 13.29(c) is shown
in Figure 13.29(d), from which,

resistancer D 4 ð 6

4 C 6
D 24

10
D 2.4 


(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.29(e), from
which,

currentI D E

r C R
D 4.8

2.4 C 0.8
C 4.8

3.2
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Figure 13.29

I D 1.5 A = current in the 0.8 Z resistor

Problem 9. Use Th́evenin’s theorem to determine the currentI
flowing in the 4
 resistor shown in Figure 13.30(a). Find also the
power dissipated in the 4
 resistor.

Following the procedure:

(i) The 4
 resistor is removed from the circuit as shown in
Figure 13.30(b).

(ii) Current I1 D E1 � E2

r1 C r2
D 4 � 2

2 C 1
D 2

3
A

P.d. across AB,E D E1 � I1r1 D 4 �
(

2
3

)
�2� D 22

3 V

(see Section 13.4(iii))

(Alternatively, p.d. across AB,E D E2 � I1r2

D 2 � �
(

2
3

)
�1� D 22

3 V�

(iii) Removing the sources of e.m.f. gives the circuit shown in
Figure 13.30(c), from which resistance

r D 2 ð 1

2 C 1
D 2

3



(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.30(d), from
which,

current,I D E

r C R
D 22

3
2
3 C 4

D 8/3

14/3
D 8

14
D 0.571 A

D current in the 4 Z resistorFigure 13.30

Power dissipated in 4
 resistor,PD I2RD �0.571�2�4�D 1.304 W

Problem 10. Use Th́evenin’s theorem to determine the current
flowing in the 3
 resistance of the network shown in
Figure 13.31(a). The voltage source has negligible internal
resistance.
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Figure 13.31

(Note the symbol for an ideal voltage source in Figure 13.31(a) which
may be used as an alternative to the battery symbol.)

Following the procedure

(i) The 3
 resistance is removed from the circuit as shown in
Figure 13.31(b).

(ii) The 12
3
 resistance now carries no current.

P.d. across 10
 resistorD
(

10

10C 5

)
�24�

D 16 V (see Section 13.4(v)).

Hence p.d. across AB,E D 16 V

(iii) Removing the source of e.m.f. and replacing it by its internal
resistance means that the 20
 resistance is short-circuited as shown
in Figure 13.31(c) since its internal resistance is zero. The 20

resistance may thus be removed as shown in Figure 13.31(d) (see
Section 13.4 (vi)).

From Figure 13.31(d), resistance,r D 1
2

3
C 10ð 5

10C 5

D 1
2

3
C 50

15
D 5 


(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.31(e), from
which

current, I D E

r C R
D 16

3 C 5
D 16

8
D 2 A

D current in the 3 Z resistance

Problem 11. A Wheatstone Bridge network is shown in
Figure 13.32(a). Calculate the current flowing in the 32
 resistor,
and its direction, using Th́evenin’s theorem. Assume the source of
e.m.f. to have negligible resistance.

Following the procedure:

(i) The 32
 resistor is removed from the circuit as shown in
Figure 13.32(b)

(ii) The p.d. between A and C,VAC D
(

R1

R1 C R4

)
�E�

D
(

2

2 C 11

)
�54� D 8.31 V
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Figure 13.32

The p.d. between B and C,VBC D
(

R2

R2 C R3

)
�E�

D
(

14

14C 3

)
�54� D 44.47 V

Hence the p.d. between A and BD 44.47� 8.31 D 36.16 V
Point C is at a potential ofC 54 V. Between C and A is a
voltage drop of 8.31 V. Hence the voltage at point A is 54� 8.31 D
45.69 V. Between C and B is a voltage drop of 44.47 V. Hence the
voltage at point B is 54� 44.47 D 9.53 V. Since the voltage at A
is greater than at B, current must flow in the direction A to B. (See
Section 13.4 (vii)).

(iii) Replacing the source of e.m.f. with a short-circuit (i.e. zero internal
resistance) gives the circuit shown in Figure 13.32(c). The circuit is
redrawn and simplified as shown in Figure 13.32(d) and (e), from
which the resistance between terminals A and B,

r D 2 ð 11

2 C 11
C 14ð 3

14C 3
D 22

13
C 42

17
D 1.692C 2.471D 4.163Z

(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.32(f), from
which,

currentI D E

r C R5
D 36.16

4.163C 32
D 1 A

Hence the current in the 32Z resistor of Figure 13.32(a) is 1 A,
flowing from A to B
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Further problems on Thévenin’s theorem may be found in Section 13.10,
problems 11 to 15, page 190.

13.6 Constant-current
source

A source of electrical energy can be represented by a source of e.m.f. in
series with a resistance. In Section 13.5, the Thévenin constant-voltage
source consisted of a constant e.m.f.E in series with an internal resis-
tancer. However this is not the only form of representation. A source of
electrical energy can also be represented by a constant-current source in
parallel with a resistance. It may be shown that the two forms are equiv-
alent. An ideal constant-voltage generatoris one with zero internal
resistance so that it supplies the same voltage to all loads. Anideal
constant-current generator is one with infinite internal resistance so
that it supplies the same current to all loads.

Figure 13.33

Note the symbol for an ideal current source (BS 3939, 1985), shown
in Figure 13.33.

13.7 Norton’s theorem Norton’s theorem states:

‘The current that flows in any branch of a network is the same as that which
would flow in the branch if it were connected across a source of electrical
energy, the short-circuit current of which is equal to the current that would
flow in a short-circuit across the branch, and the internal resistance of
which is equal to the resistance which appears across the open-circuited
branch terminals.’

The procedure adopted when using Norton’s theorem is summa-
rized below.

To determine the current flowing in a resistanceR of a branch AB of
an active network:

(i) short-circuit branch AB

(ii) determine the short-circuit currentISC flowing in the branch

(iii) remove all sources of e.m.f. and replace them by their internal
resistance (or, if a current source exists, replace with an open-
circuit), then determine the resistancer,‘looking-in’ at a break made
between A and B

(iv) determine the currentI flowing in resistanceR from the Norton
equivalent network shown in Figure 13.33, i.e.

I =
(

r
r Y R

)
I SC

Problem 12. Use Norton’s theorem to determine the current
flowing in the 10
 resistance for the circuit shown in
Figure 13.34(a).

Figure 13.34
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Figure 13.34 continued

Following the above procedure:

(i) The branch containing the 10
 resistance is short-circuited as
shown in Figure 13.34(b).

(ii) Figure 13.34(c) is equivalent to Figure 13.34(b). Hence

ISC D 10
2 D 5 A

(iii) If the 10 V source of e.m.f. is removed from Figure 13.34(b) the
resistance ‘looking-in’ at a break made between A and B is given by:

r D 2 ð 8

2 C 8
D 1.6 


(iv) From the Norton equivalent network shown in Figure 13.34(d) the
current in the 10
 resistance, by current division, is given by:

I D
(

1.6

1.6 C 5 C 10

)
�5� D 0.482 A

as obtained previously in problem 7 using Thévenin’s theorem.

Problem 13. Use Norton’s theorem to determine the currentI
flowing in the 4
 resistance shown in Figure 13.35(a).

Following the procedure:

(i) The 4
 branch is short-circuited as shown in Figure 13.35(b).

(ii) From Figure 13.35(b),ISC D I1 C I2 D 4
2 C 2

1 D 4 A

(iii) If the sources of e.m.f. are removed the resistance ‘looking-in’ at a
break made between A and B is given by:

r D 2 ð 1

2 C 1
D 2

3



(iv) From the Norton equivalent network shown in Figure 13.35(c) the
current in the 4
 resistance is given by:

I D
[

2/3

�2/3�C 4

]
�4� D 0.571 A,

as obtained previously in problems 2, 5 and 9 using Kirchhoff’s
laws and the theorems of superposition and Thévenin.

Problem 14. Use Norton’s theorem to determine the current
flowing in the 3
 resistance of the network shown in
Figure 13.36(a). The voltage source has negligible internal
resistance.

Figure 13.35



D.c. circuit theory 183

Figure 13.36

Following the procedure:

(i) The branch containing the 3
 resistance is short-circuited
as shown in Figure 13.36(b).

(ii) From the equivalent circuit shown in Figure 13.36(c),

ISC D 24

5
D 4.8 A

(iii) If the 24 V source of e.m.f. is removed the resistance ‘looking-in’
at a break made between A and B is obtained from Figure 13.36(d)
and its equivalent circuit shown in Figure 13.36(e) and is given by:

r D 10ð 5

10C 5
D 50

15
D 3

1

3



(iv) From the Norton equivalent network shown in Figure 13.36(f) the
current in the 3
 resistance is given by:

I D
[

31
3

31
3 C 12

3 C 3

]
�4.8� D 2 A,

as obtained previously in problem 10 using Thévenin’s theorem.

Problem 15. Determine the current flowing in the 2
 resistance
in the network shown in Figure 13.37(a).

Following the procedure:

(i) The 2
 resistance branch is short-circuited as shown in
Figure 13.37(b).
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Figure 13.37

(ii) Figure 13.37(c) is equivalent to Figure 13.37(b).

HenceISC D
(

6

6 C 4

)
�15� D 9 A by current division.

(iii) If the 15 A current source is replaced by an open-circuit then from
Figure 13.37(d) the resistance ‘looking-in’ at a break made between
A and B is given by (6C 4) 
 in parallel with (8C 7) 
, i.e.

r D �10��15�

10C 15
D 150

25
D 6 


(iv) From the Norton equivalent network shown in Figure 13.37(e) the
current in the 2
 resistance is given by:

I D
(

6

6 C 2

)
�9� D 6.75 A

13.8 Th́evenin and
Norton equivalent

networks

The Th́evenin and Norton networks shown in Figure 13.38 are equivalent
to each other. The resistance ‘looking-in’ at terminals AB is the same in
each of the networks, i.e.r.

If terminals AB in Figure 13.38(a) are short-circuited, the short-circuit
current is given byE/r. If terminals AB in Figure 13.38(b) are short-
circuited, the short-circuit current isISC. For the circuit shown in
Figure 13.38(a) to be equivalent to the circuit in Figure 13.38(b) the same
short-circuit current must flow. ThusISC D E/r.

Figure 13.39 shows a source of e.m.f.E in series with a resistancer
feeding a load resistanceR.

From Figure 13.39,I D E

r C R
D E/r

�r C R�/r
D

(
r

r C R

)
E

r

i.e. I D
(

r

r C R

)
ISC

Figure 13.38
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Figure 13.39 Figure 13.40 Figure 13.41 Figure 13.42

From Figure 13.40 it can be seen that, when viewed from the load, the
source appears as a source of currentISC which is divided betweenr and
R connected in parallel.

Thus the two representations shown in Figure 13.38 are equivalent.

Problem 16. Convert the circuit shown in Figure 13.41 to an
equivalent Norton network.

If terminals AB in Figure 13.41 are short-circuited, the short-circuit
currentISC D 10

2 D 5 A

The resistance ‘looking-in’ at terminals AB is 2
. Hence the equiva-
lent Norton network is as shown in Figure 13.42.

Problem 17. Convert the network shown in Figure 13.43 to an
equivalent Th́evenin circuit.

Figure 13.43
The open-circuit voltageE across terminals AB in Figure 13.43 is
given by:E D �ISC��r� D �4��3� D 12 V.

The resistance ‘looking-in’ at terminals AB is 3
. Hence the equiva-
lent Th́evenin circuit is as shown in Figure 13.44.

Problem 18. (a) Convert the circuit to the left of terminals AB
in Figure 13.45(a) to an equivalent Thévenin circuit by initially
converting to a Norton equivalent circuit. (b) Determine the current
flowing in the 1.8
 resistor.

(a) For the branch containing the 12 V source, converting to a Norton
equivalent circuit givesISC D 12/3 D 4 A and r1 D 3
. For the
branch containing the 24 V source, converting to a Norton equivalent
circuit givesISC2 D 24/2 D 12 A andr2 D 2 
.Figure 13.44
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Figure 13.45

Thus Figure 13.45(b) shows a network equivalent to Figure 13.45(a).
From Figure 13.45(b) the total short-circuit current is 4C 12 D 16 A

and the total resistance is given by:
3 ð 2

3 C 2
D 1.2 


Thus Figure 13.45(b) simplifies to Figure 13.45(c).
The open-circuit voltage across AB of Figure 13.45(c),

E D �16��1.2� D 19.2 V, and the resistance ‘looking-in’ at AB is
1.2 
. Hence the Th́evenin equivalent circuit is as shown in
Figure 13.45(d).

(b) When the 1.8
 resistance is connected between terminals A and B
of Figure 13.45(d) the currentI flowing is given by:

I D 19.2

1.2 C 1.8
D 6.4 A

Problem 19. Determine by successive conversions between
Thévenin and Norton equivalent networks a Thévenin equivalent
circuit for terminals AB of Figure 13.46(a). Hence determine the
current flowing in the 200
 resistance.

Figure 13.46
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For the branch containing the 10 V source, converting to a Norton equiv-
alent network gives

ISC D 10

2000
D 5 mA andr1 D 2 k
.

For the branch containing th

e 6 V source, converting to a Norton equiv-

alent network gives

ISC D 6

3000
D 2 mA andr2 D 3 k
.

Thus the network of Figure 13.46(a) converts to Figure 13.46(b).
Combining the 5 mA and 2 mA current sources gives the equivalent

network of Figure 13.46(c) where the short-circuit current for the original
two branches considered is 7 mA and the resistance is

2 ð 3

2 C 3
D 1.2 k
.

Both of the Norton equivalent networks shown in Figure 13.46(c) may
be converted to Th́evenin equivalent circuits. The open-circuit voltage
across CD is (7ð 10�3)(1.2 ð 103� D 8.4 V and the resistance ‘looking-
in’ at CD is 1.2 k
.

The open-circuit voltage acrossEF is �1 ð 10�3��600� D 0.6 V and the
resistance ‘looking-in’ atEF is 0.6 k
. Thus Figure 13.46(c) converts to
Figure 13.46(d). Combining the two Thévenin circuits gives

E D 8.4 � 0.6 D 7.8 V and the resistance

r D �1.2 C 0.6� k
 D 1.8 kZ.

Thus the Th́evenin equivalent circuit for terminals AB of Figure 13.46(a)
is as shown in Figure 13.46(e).

Hence the currentI flowing in a 200
 resistance connected between A
and B is given by:

I D 7.8

1800C 200
D 7.8

2000
D 3.9 mA

Further problems on Norton’s theorem may be found in Section 13.10,
problems 16 to 21, page 191.

13.9 Maximum power
transfer theorem

The maximum power transfer theorem states:

‘The power transferred from a supply source to a load is at its maximum
when the resistance of the load is equal to the internal resistance of the
source.’

Figure 13.47

Hence, in Figure 13.47, whenR D r the power transferred from the source
to the load is a maximum.
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Figure 13.48

Problem 20. The circuit diagram of Figure 13.48 shows dry cells
of source e.m.f. 6 V, and internal resistance 2.5
. If the load resis-
tanceRL is varied from 0 to 5
 in 0.5
 steps, calculate the power
dissipated by the load in each case. Plot a graph ofRL (horizon-
tally) against power (vertically) and determine the maximum power
dissipated.

WhenRL D 0, currentI D E

r C RL
D 6

2.5
D 2.4 A and power dissipated

in RL, P D I2RL, i.e. P D �2.4�2�0� D 0 W

WhenRL D 0.5 
, currentI D E

r C RL
D 6

2.5 C 0.5
D 2 A

and P D I2RL D �2�2�0.5� D 2 W

WhenRL D 1.0
, currentI D 6

2.5 C 1.0
D 1.714 A

and P D �1.714�2�1.0� D 2.94 W

With similar calculations the following table is produced:

RL�
� 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I D E

r C RL
2.4 2.0 1.714 1.5 1.333 1.2 1.091 1.0 0.923 0.857 0.8

P D I2RL�W� 0 2.00 2.94 3.38 3.56 3.60 3.57 3.50 3.41 3.31 3.20

A graph ofRL againstP is shown in Figure 13.49.The maximum value
of power is 3.60 W which occurs whenRL is 2.5
, i.e. maximum
power occurs whenRL = r , which is what the maximum power transfer
theorem states.Figure 13.49

Problem 21. A d.c. source has an open-circuit voltage of 30 V and
an internal resistance of 1.5
. State the value of load resistance
that gives maximum power dissipation and determine the value of
this power.

The circuit diagram is shown in Figure 13.50. From the maximum
power transfer theorem, for maximum power dissipation,

RL D r D 1.5 Z

From Figure 13.50, currentI D E

r C RL
D 30

1.5 C 1.5
D 10 A

PowerP D I2RL D �10�2�1.5� D 150 W D maximum power dissipatedFigure 13.50
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Problem 22. Find the value of the load resistorRL shown in
Figure 13.51(a) that gives maximum power dissipation and deter-
mine the value of this power.

Using the procedure for Thévenin’s theorem:

(i) Resistance RL is removed from the circuit as shown in
Figure 13.51(b).

Figure 13.51

(ii) The p.d. across AB is the same as the p.d. across the 12
 resistor.

HenceE D
(

12

12C 3

)
�15� D 12 V

(iii) Removing the source of e.m.f. gives the circuit of Figure 13.51(c),

from which resistance,r D 12ð 3

12C 3
D 36

15
D 2.4 


(iv) The equivalent Th́evenin’s circuit supplying terminals AB is shown
in Figure 13.51(d), from which, current,I D E/�r C RL�

For maximum power,RL D r D 2.4 Z. Thus current,

I D 12

2.4 C 2.4
D 2.5 A.

Power,P, dissipated in loadRL, P D I2RL D �2.5�2�2.4� D 15 W

Further problems on the maximum power transfer theorem may be found
in Section 13.10 following, problems 22 and 23, page 192.

Figure 13.52

13.10 Further problems
on d.c. circuit theory

Kirchhoff’s laws

1 Find currentsI3, I4 andI6 in Figure 13.52

[I3 D 2 A; I4 D �1 A; I6 D 3 A]
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Figure 13.53

2 For the networks shown in Figure 13.53, find the values of the currents
marked.

[(a) I1 D 4 A, I2 D �1 A, I3 D 13 A
(b) I1 D 40 A, I2 D 60 A, I3 D 120 A,

I4 D 100 A, I5 D �80 A]

3 Use Kirchhoff’s laws to find the current flowing in the 6
 resistor
of Figure 13.54 and the power dissipated in the 4
 resistor.

[2.162 A, 42.07 W]

4 Find the current flowing in the 3
 resistor for the network shown in
Figure 13.55(a). Find also the p.d. across the 10
 and 2
 resistors.

[2.715 A, 7.410 V, 3.948 V]

5 For the networks shown in Figure 13.55(b) find: (a) the current in the
battery, (b) the current in the 300
 resistor, (c) the current in the
90
 resistor, and (d) the power dissipated in the 150
 resistor.

[(a) 60.38 mA(b) 15.10 mA
(c) 45.28 mA(d) 34.20 mW]

6 For the bridge network shown in Figure 13.55(c), find the currentsI1

to I5.
[I1 D 1.26 A, I2 D 0.74 A, I3 D 0.16 A

I4 D 1.42 A, I5 D 0.59 A]

Figure 13.54

Superposition theorem

7 Use the superposition theorem to find currentsI1, I2 and I3 of
Figure 13.56(a). [I1 D 2 A, I2 D 3 A, I3 D 5 A]

8 Use the superposition theorem to find the current in the 8
 resistor
of Figure 13.56(b). [0.385 A]

9 Use the superposition theorem to find the current in each branch of
the network shown in Figure 13.56(c).

[10 V battery discharges at 1.429 A
4 V battery charges at 0.857 A

Current through 10
 resistor is 0.572 A]

10 Use the superposition theorem to determine the current in each
branch of the arrangement shown in Figure 13.56(d).

[24 V battery charges at 1.664 A
52 V battery discharges at 3.280 A

Current in 20
 resistor is 1.616 A]

Thévenin’s theorem

11 Use Th́evenin’s theorem to find the current flowing in the 14

resistor of the network shown in Figure 13.57. Find also the power
dissipated in the 14
 resistor. [0.434 A, 2.64 W]Figure 13.55
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Figure 13.56

Figure 13.57 Figure 13.58 Figure 13.59

12 Use Th́evenin’s theorem to find the current flowing in the 6

resistor shown in Figure 13.58 and the power dissipated in the 4

resistor. [2.162 A, 42.07 W]

13 Repeat problems 7–10 using Thévenin’s theorem.

14 In the network shown in Figure 13.59, the battery has negligible
internal resistance. Find, using Thévenin’s theorem, the current
flowing in the 4
 resistor. [0.918 A]

15 For the bridge network shown in Figure 13.60, find the current in
the 5
 resistor, and its direction, by using Thévenin’s theorem.

[0.153 A from B to A]

Figure 13.60

Norton’s theorem

16 Repeat problems 7–12, 14 and 15 using Norton’s theorem.

17 Determine the current flowing in the 6
 resistance of the network
shown in Figure 13.61 by using Norton’s theorem. [2.5 mA]

Figure 13.61

18 Convert the circuits shown in Figure 13.62 to Norton equivalent
networks.

[(a) ISC D 25 A, r D 2 

(b) ISC D 2 mA, r D 5 
]

19 Convert the networks shown in Figure 13.63 to Thévenin equivalent
circuits.

[(a) E D 20 V, r D 4 

(b) E D 12 mV, r D 3 
]Figure 13.62
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Figure 13.63 Figure 13.64 Figure 13.65

20 (a) Convert the network to the left of terminals AB in Figure 13.64
to an equivalent Th́evenin circuit by initially converting to a
Norton equivalent network.

(b) Determine the current flowing in the 1.8
 resistance connected
between A and B in Figure 13.64.

[(a) E D 18 V, r D 1.2 
 (b) 6 A]

21 Determine, by successive conversions between Thévenin and Norton
equivalent networks, a Thévenin equivalent circuit for terminals
AB of Figure 13.65. Hence determine the current flowing in a 6

resistor connected between A and B.

[E D 91
3 V, r D 1 
, 11

3 A]

Maximum power transfer theorem

22 A d.c. source has an open-circuit voltage of 20 V and an internal
resistance of 2
. Determine the value of the load resistance that
gives maximum power dissipation. Find the value of this power.

[2 
, 50 W]

23 Determine the value of the load resistanceRL shown in Figure 13.66
that gives maximum power dissipation and find the value of the
power. [RL D 1.6 
, P D 57.6 W]Figure 13.66



14 Alternating voltages
and currents

At the end of this chapter you should be able to:

ž appreciate why a.c. is used in preference to d.c.

ž describe the principle of operation of an a.c. generator

ž distinguish between unidirectional and alternating waveforms

ž define cycle, period or periodic time T and frequency f of a
waveform

ž perform calculations involving T D 1

f
ž define instantaneous, peak, mean and rms values, and form

and peak factors for a sine wave

ž calculate mean and rms values and form and peak factors for
given waveforms

ž understand and perform calculations on the general sinusoidal
equation v D Vm sin�ωt š �	

ž understand lagging and leading angles

ž combine two sinusoidal waveforms (a) by plotting graphically,
(b) by drawing phasors to scale and (c) by calculation

ž understand rectification, and describe methods of obtaining
half-wave and full-wave rectification

14.1 Introduction Electricity is produced by generators at power stations and then distributed
by a vast network of transmission lines (called the National Grid system)
to industry and for domestic use. It is easier and cheaper to generate
alternating current (a.c.) than direct current (d.c.) and a.c. is more conve-
niently distributed than d.c. since its voltage can be readily altered using
transformers. Whenever d.c. is needed in preference to a.c., devices called
rectifiers are used for conversion (see Section 14.7).

14.2 The a.c. generator Let a single turn coil be free to rotate at constant angular velocity symmet-
rically between the poles of a magnet system as shown in Figure 14.1.

An e.m.f. is generated in the coil (from Faraday’s Laws) which varies
in magnitude and reverses its direction at regular intervals. The reason for
this is shown in Figure 14.2. In positions (a), (e) and (i) the conductors
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Figure 14.1

of the loop are effectively moving along the magnetic field, no flux is cut
and hence no e.m.f. is induced. In position (c) maximum flux is cut and
hence maximum e.m.f. is induced. In position (g), maximum flux is cut
and hence maximum e.m.f. is again induced. However, using Fleming’s
right-hand rule, the induced e.m.f. is in the opposite direction to that in
position (c) and is thus shown as �E. In positions (b), (d), (f) and (h)
some flux is cut and hence some e.m.f. is induced. If all such positions
of the coil are considered, in one revolution of the coil, one cycle of
alternating e.m.f. is produced as shown. This is the principle of operation
of the ac generator (i.e. the alternator).

14.3 Waveforms If values of quantities which vary with time t are plotted to a base of
time, the resulting graph is called a waveform. Some typical waveforms
are shown in Figure 14.3. Waveforms (a) and (b) are unidirectional
waveforms, for, although they vary considerably with time, they flow
in one direction only (i.e. they do not cross the time axis and become
negative). Waveforms (c) to (g) are called alternating waveforms since
their quantities are continually changing in direction (i.e. alternately posi-
tive and negative).

A waveform of the type shown in Figure 14.3(g) is called a sine wave.
It is the shape of the waveform of e.m.f. produced by an alternator and
thus the mains electricity supply is of ‘sinusoidal’ form.

One complete series of values is called a cycle (i.e. from O to P in
Figure 14.3(g)).

The time taken for an alternating quantity to complete one cycle is
called the period or the periodic time, T, of the waveform.

Figure 14.2

The number of cycles completed in one second is called the frequency,
f, of the supply and is measured in hertz, Hz. The standard frequency of
the electricity supply in Great Britain is 50 Hz.

Figure 14.3
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T =
1
f

or f =
1
T

Problem 1. Determine the periodic time for frequencies of
(a) 50 Hz and (b) 20 kHz

(a) Periodic time T D 1

f
D 1

50
D 0.02 s or 20 ms

(b) Periodic time T D 1

f
D 1

20 000
D 0.000 05 s or 50 ms

Problem 2. Determine the frequencies for periodic times of
(a) 4 ms, (b) 4 µs

(a) Frequency f D 1

T
D 1

4 ð 10�3
D 1000

4
D 250 Hz

(b) Frequency f D 1

T
D 1

4 ð 10�6
D 1 000 000

4

D 250 000 Hz or 250 kHz or 0.25 MHz

Problem 3. An alternating current completes 5 cycles in 8 ms.
What is its frequency?

Time for 1 cycle D 8

5
ms D 1.6 ms D periodic time T

Frequency f D 1

T
D 1

1.6 ð 10�3
D 1000

1.6
D 10000

16
D 625 Hz

Further problems on frequency and periodic time may be found in
Section 14.8, problems 1 to 3, page 209.

14.4 A.c. values Instantaneous values are the values of the alternating quantities at any
instant of time. They are represented by small letters, i, v, e etc., (see
Figures 14.3(f) and (g)).

The largest value reached in a half cycle is called the peak value or the
maximum value or the crest value or the amplitude of the waveform.
Such values are represented by Vm, Im, etc. (see Figures 14.3(f) and (g)).
A peak-to-peak value of e.m.f. is shown in Figure 14.3(g) and is the
difference between the maximum and minimum values in a cycle.
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The average or mean value of a symmetrical alternating quantity,
(such as a sine wave), is the average value measured over a half cycle,
(since over a complete cycle the average value is zero).

Average or mean value =
area under the curve

length of base

The area under the curve is found by approximate methods such as the
trapezoidal rule, the mid-ordinate rule or Simpson’s rule. Average values
are represented by VAV, IAV, etc.

For a sine wave, average value = 0.637 × maximum value
(i.e. 2=p × maximum value)

The effective value of an alternating current is that current which will
produce the same heating effect as an equivalent direct current. The effec-
tive value is called the root mean square (rms) value and whenever
an alternating quantity is given, it is assumed to be the rms value. For
example, the domestic mains supply in Great Britain is 240 V and is
assumed to mean ‘240 V rms’. The symbols used for rms values are I,
V, E, etc. For a non-sinusoidal waveform as shown in Figure 14.4 the
rms value is given by:

I D
√(

i21 C i22 C . . .C i2n
n

)

Figure 14.4
where n is the number of intervals used.

For a sine wave, rms value = 0.707 × maximum value
(i.e. 1=

p
2 × maximum value)

Form factor D rms value
average value

For a sine wave,
form factor = 1.11

Peak factor D maximum value
rms value

For a sine wave,
peak factor = 1.41

The values of form and peak factors give an indication of the shape of
waveforms.

Problem 4. For the periodic waveforms shown in Figure 14.5
determine for each: (i) frequency (ii) average value over half a
cycle (iii) rms value (iv) form factor and (v) peak factor
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Figure 14.5

(a) Triangular waveform (Figure 14.5(a))

(i) Time for 1 complete cycle D 20 ms D periodic time, T

Hence frequency f D 1

T
D 1

20 ð 10�3
D 1000

20
D 50 Hz

(ii) Area under the triangular waveform for a half cycle

D 1
2 ð base ð height D 1

2 ð �10 ð 10�3	ð 200

D 1 volt second

Average value of waveform

D area under curve

length of base
D 1 volt second

10 ð 10�3 second
D 1000

10
D 100 V

(iii) In Figure 14.5(a), the first 1/4 cycle is divided into 4 intervals.

Thus rms value D
√(

v2
1 C v2

2 C v2
3 C v2

4

4

)

D
√(

252 C 752 C 1252 C 1752

4

)

D 114.6 V

(Note that the greater the number of intervals chosen, the greater the
accuracy of the result. For example, if twice the number of ordinates
as that chosen above are used, the rms value is found to be 115.6 V)

(iv) Form factor D rms value

average value
D 114.6

100
D 1.15

(v) Peak factor D maximum value

rms value
D 200

114.6
D 1.75
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(b) Rectangular waveform (Figure 14.5(b))

(i) Time for 1 complete cycle D 16 ms D periodic time, T

Hence frequency, f D 1

T
D 1

16 ð 10�3
D 1000

16

D 62.5 Hz

(ii) Average value over half a cycle D area under curve

length of base

D 10 ð �8 ð 10�3	

8 ð 10�3
D 10 A

(iii) The rms value D
√(

i21 C i22 C . . .C i2n
n

)
D 10 A

however many intervals are chosen, since the waveform is
rectangular.

(iv) Form factor D rms value

average value
D 10

10
D 1

(v) Peak factor D maximum value

rms value
D 10

10
D 1

Problem 5. The following table gives the corresponding values of
current and time for a half cycle of alternating current.

time t (ms) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
current i (A) 0 7 14 23 40 56 68 76 60 5 0

Assuming the negative half cycle is identical in shape to the positive
half cycle, plot the waveform and find (a) the frequency of the
supply, (b) the instantaneous values of current after 1.25 ms and
3.8 ms, (c) the peak or maximum value, (d) the mean or average
value, and (e) the rms value of the waveform.

The half cycle of alternating current is shown plotted in Figure 14.6

(a) Time for a half cycle D 5 ms. Hence the time for 1 cycle, i.e. the
periodic time, T D 10 ms or 0.01 s

Frequency, f D 1

T
D 1

0.01
D 100 Hz

(b) Instantaneous value of current after 1.25 ms is 19 A, from
Figure 14.6

Instantaneous value of current after 3.8 ms is 70 A, from Figure 14.6
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Figure 14.6

(c) Peak or maximum value D 76 A

(d) Mean or average value D area under curve

length of base

Using the mid-ordinate rule with 10 intervals, each of width 0.5 ms
gives:

area under curve D �0.5 ð 10�3	[3 C 10 C 19 C 30 C 49 C 63

C 73 C 72 C 30 C 2] (see Figure 14.6)

D �0.5 ð 10�3	�351	

Hence mean or average value D �0.5 ð 10�3	�351	

5 ð 10�3
D 35.1 A

(e) rms value

D
√(

32 C 102 C 192 C 302 C 492 C 632 C 732 C 722 C 302 C 22

10

)

D
√(

19 157

10

)
D 43.8 A
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Problem 6. Calculate the rms value of a sinusoidal current of
maximum value 20 A

For a sine wave, rms value D 0.707 ð maximum value

D 0.707 ð 20 D 14.14 A

Problem 7. Determine the peak and mean values for a 240 V
mains supply.

For a sine wave, rms value of voltage V D 0.707 ð Vm
A 240 V mains supply means that 240 V is the rms value, hence

Vm D V

0.707
D 240

0.707
D 339.5 V = peak value

Mean value VAV D 0.637Vm D 0.637 ð 339.5 D 216.3 V

Problem 8. A supply voltage has a mean value of 150 V. Deter-
mine its maximum value and its rms value

For a sine wave, mean value D 0.637 ð maximum value

Hence maximum value D mean value

0.637
D 150

0.637
D 235.5 V

rms value D 0.707 ð maximum value D 0.707 ð 235.5 D 166.5 V

Further problems on a.c. values of waveforms may be found in
Section 14.8, problems 4 to 10, page 209.

14.5 The equation of a
sinusoidal waveform

In Fig 14.7, OA represents a vector that is free to rotate anticlockwise
about 0 at an angular velocity of ω rad/s. A rotating vector is known as
a phasor.

Figure 14.7
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Figure 14.8

After time t seconds the vector OA has turned through an angle ωt. If
the line BC is constructed perpendicular to OA as shown, then

sinωt D BC

OB
i.e. BC D OB sinωt

If all such vertical components are projected on to a graph of y against
angle ωt (in radians), a sine curve results of maximum value OA. Any
quantity which varies sinusoidally can thus be represented as a phasor.

A sine curve may not always start at 0°. To show this a periodic func-
tion is represented by y D sin�ωt š �	, where � is the phase (or angle)
difference compared with y D sinωt. In Figure 14.8(a), y2 D sin�ωt C �	
starts � radians earlier than y1 D sinωt and is thus said to lead y1 by
� radians. Phasors y1 and y2 are shown in Figure 14.8(b) at the time
when t D 0.

In Figure 14.8(c), y4 D sin�ωt � �	 starts � radians later than y3 D
sinωt and is thus said to lag y3 by � radians. Phasors y3 and y4 are
shown in Figure 14.8(d) at the time when t D 0.

Given the general sinusoidal voltage, v = Vm sin.!t ± f/, then

(i) Amplitude or maximum value D Vm
(ii) Peak to peak value D 2Vm

(iii) Angular velocity D ω rad/s
(iv) Periodic time, T D 2�/ω seconds
(v) Frequency, f D ω/2� Hz (since ω D 2� f)

(vi) � D angle of lag or lead (compared with v D Vm sinωt)

Problem 9. An alternating voltage is given by v D 282.8 sin 314t
volts. Find (a) the rms voltage, (b) the frequency and (c) the
instantaneous value of voltage when t D 4 ms

(a) The general expression for an alternating voltage is

v D Vm sin�ωt š �	.

Comparing v D 282.8 sin 314t with this general expression gives the
peak voltage as 282.8 V

Hence the rms voltage D 0.707 ð maximum value

D 0.707 ð 282.8 D 200 V

(b) Angular velocity, ω D 314 rad/s, i.e. 2�f D 314

Hence frequency, f D 314

2�
D 50 Hz

(c) When t D 4 ms, v D 282.8 sin�314 ð 4 ð 10�3	

D 282.8 sin�1.256	 D 268.9 V
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(Note that 1.256 radians D
[
1.256 ð 180

�

]°
D 71.96° D 71°580

Hence v D 282.8 sin 71°580 D 268.9 V)

Problem 10. An alternating voltage is given by

v D 75 sin�200�t � 0.25	 volts.

Find (a) the amplitude, (b) the peak-to-peak value, (c) the rms
value, (d) the periodic time, (e) the frequency, and (f) the phase
angle (in degrees and minutes) relative to 75 sin 200�t

Comparing v D 75 sin�200�t � 0.25	 with the general expression
v D Vm sin�ωt š �	 gives:

(a) Amplitude, or peak value D 75 V

(b) Peak-to-peak value D 2 ð 75 D 150 V

(c) The rms value D 0.707 ð maximum value D 0.707 ð 75 D 53 V

(d) Angular velocity, ω D 200� rad/s

Hence periodic time, T D 2�

ω
D 2�

200�
D 1

100
D 0.01 s or 10 ms

(e) Frequency, f D 1

T
D 1

0.01
D 100 Hz

(f) Phase angle, � D 0.25 radians lagging 75 sin 200�t

0.25 rads D
(

0.25 ð 180

�

)°
D 14.32° D 14°190

Hence phase angle D 14°19′ lagging

Problem 11. An alternating voltage, v, has a periodic time of
0.01 s and a peak value of 40 V. When time t is zero, v D �20 V.
Express the instantaneous voltage in the form v D Vm sin�ωt š �	

Amplitude, Vm D 40 V

Periodic time T D 2�

ω
hence angular velocity,

ω D 2�

T
D 2�

0.01
D 200� rad/s

v D Vm sin�ωt C �	 thus becomes v D 40 sin�200�t C �	 V

When time t D 0, v D �20 V
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i.e. �20 D 40 sin�

so that sin � D �20

40
D �0.5

Hence � D arcsin��0.5	 D �30° D
(

�30 ð �

180

)
rads D ��

6
rads

Thus v= 40 sin
(

200pt − p

6

)
V

Problem 12. The current in an a.c. circuit at any time t seconds
is given by: i D 120 sin�100�t C 0.36	 amperes. Find:

(a) the peak value, the periodic time, the frequency and phase
angle relative to 120 sin 100�t

(b) the value of the current when t D 0

(c) the value of the current when t D 8 ms

(d) the time when the current first reaches 60 A, and

(e) the time when the current is first a maximum

(a) Peak value D 120 A

Periodic time T D 2�

ω
D 2�

100�
(since ω D 100�	

D 1

50
D 0.02 s or 20 ms

Frequency, f D 1

T
D 1

0.02
D 50 Hz

Phase angle D 0.36 rads D
(

0.36 ð 180

�

)°
D 20°38′ leading

(b) When t D 0, i D 120 sin�0 C 0.36	 D 120 sin 20°380 D 49.3 A

(c) When t D 8 ms, i D 120 sin
[
100�

(
8

103

)
C 0.36

]

D 120 sin 2.8733�D 120 sin 164°380	 D 31.8 A

(d) When i D 60 A, 60 D 120 sin�100�t C 0.36	

thus
60

120
D sin�100�t C 0.36	

so that �100�t C 0.36	 D arcsin 0.5 D 30° D �

6
rads D 0.5236 rads

Hence time, t D 0.5236 � 0.36

100�
D 0.521 ms
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(e) When the current is a maximum, i D 120 A

Thus 120 D 120 sin�100�t C 0.36	

1 D sin�100�t C 0.36	

�100�t C 0.36	 D arcsin 1 D 90° D �

2
rads D 1.5708 rads

Hence time, t D 1.5708 � 0.36

100�
D 3.85 ms

Further problems onv D Vm sin�ωt š �	 may be found in Section 14.8,
problems 11 to 15, page 210.

14.6 Combination of
waveforms

The resultant of the addition (or subtraction) of two sinusoidal quantities
may be determined either:

(a) by plotting the periodic functions graphically (see worked Prob-
lems 13 and 16), or

(b) by resolution of phasors by drawing or calculation (see worked Prob-
lems 14 and 15).

Problem 13. The instantaneous values of two alternating currents
are given by i1 D 20 sinωt amperes and i2 D 10 sin�ωt C �/3	
amperes. By plotting i1 and i2 on the same axes, using the same
scale, over one cycle, and adding ordinates at intervals, obtain a
sinusoidal expression for i1 C i2

i1 D 20 sinωt and i2 D 10 sin
(
ωtC �

3

)
are shown plotted in Figure 14.9

Ordinates of i1 and i2 are added at, say, 15° intervals (a pair of dividers
are useful for this).

For example,

at 30°, i1 C i2 D 10 C 10 D 20 A

at 60°, i1 C i2 D 8.7 C 17.3 D 26 A

at 150°, i1 C i2 D 10 C ��5	 D 5 A, and so on.

The resultant waveform for i1 C i2 is shown by the broken line in
Figure 14.9. It has the same period, and hence frequency, as i1 and i2.
The amplitude or peak value is 26.5 A.

The resultant waveform leads the curve i1 D 20 sinωt by 19°

i.e.
(

19 ð �

180

)
rads D 0.332 rads
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Figure 14.9

Hence the sinusoidal expression for the resultant i1 C i2 is given by:

iR = i1 Y i2 = 26.5 sin.!t Y 0.332/ A

Problem 14. Two alternating voltages are represented by v1 D
50 sinωt volts and v2 D 100 sin�ωt � �/6	 V. Draw the phasor
diagram and find, by calculation, a sinusoidal expression to
represent v1 C v2

Phasors are usually drawn at the instant when time t D 0. Thus v1 is
drawn horizontally 50 units long and v2 is drawn 100 units long lagging
v1 by �/6 rads, i.e. 30°. This is shown in Figure 14.10(a) where 0 is the
point of rotation of the phasors.

Procedure to draw phasor diagram to represent v1 C v2:

(i) Draw v1 horizontal 50 units long, i.e. oa of Figure 14.10(b)

(ii) Join v2 to the end of v1 at the appropriate angle, i.e. ab of
Figure 14.10(b)

(iii) The resultant vR D v1 C v2 is given by the length ob and its phase
angle may be measured with respect to v1

Alternatively, when two phasors are being added the resultant is always
the diagonal of the parallelogram, as shown in Figure 14.10(c).

From the drawing, by measurement, vR D 145 V and angle � D 20°

lagging v1.
A more accurate solution is obtained by calculation, using the cosine

and sine rules. Using the cosine rule on triangle oab of Figure 14.10(b)
gives:

v2
R D v2

1 C v2
2 � 2v1v2 cos 150°

D 502 C 1002 � 2�50	�100	 cos 150°Figure 14.10
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D 2500 C 10000 � ��8660	

vR D p
�21 160	 D 145.5 V

Using the sine rule,
100

sin�
D 145.5

sin 150°

from which sin� D 100 sin 150°

145.5
D 0.3436

and � D arcsin 0.3436 D 20°60 D 0.35 radians, and lags v1

Hence vR D v1 C v2 D 145.5 sin.!t − 0.35/ V

Problem 15. Find a sinusoidal expression for �i1 C i2	 of
Problem 13, (a) by drawing phasors, (b) by calculation.

(a) The relative positions of i1 and i2 at time t D 0 are shown as phasors
in Figure 14.11(a). The phasor diagram in Figure 14.11(b) shows the
resultant iR, and iR is measured as 26 A and angle � as 19° or 0.33
rads leading i1.

Hence, by drawing, iR = 26 sin.!t Y 0.33/ A

(b) From Figure 14.11(b), by the cosine rule:

Figure 14.11

i2R D 202 C 102 � 2�20	�10	�cos 120°	

from which iR D 26.46 A

By the sine rule:
10

sin�
D 26.46

sin 120°

from which � D 19.10° (i.e. 0.333 rads)

Hence, by calculation iR = 26.46 sin.!t Y 0.333/ A

Problem 16. Two alternating voltages are given by v1 D
120 sinωt volts and v2 D 200 sin�ωt � �/4	 volts. Obtain sinu-
soidal expressions for v1 � v2 (a) by plotting waveforms, and (b) by
resolution of phasors.

(a) v1 D 120 sinωt and v2 D 200 sin�ωt � �/4	 are shown plotted in
Figure 14.12. Care must be taken when subtracting values of
ordinates especially when at least one of the ordinates is negative.
For example

at 30°, v1 � v2 D 60 � ��52	 D 112 V

at 60°, v1 � v2 D 104 � 52 D 52 V

at 150°, v1 � v2 D 60 � 193 D �133 V and so on
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Figure 14.12

The resultant waveform, vR D v1 � v2, is shown by the broken line in
Figure 14.12. The maximum value of vR is 143 V and the waveform
is seen to lead v1 by 99° (i.e. 1.73 radians)

Hence, by drawing, vR = v1 − v2 = 143 sin.!t Y 1.73/ volts

(b) The relative positions of v1 and v2 are shown at time t D 0 as phasors
in Figure 14.13(a). Since the resultant of v1 � v2 is required, �v2 is
drawn in the opposite direction to Cv2 and is shown by the broken
line in Figure 14.13(a). The phasor diagram with the resultant is
shown in Figure 14.13(b) where �v2 is added phasorially to v1

By resolution:

Sum of horizontal components of v1 and v2

D 120 cos 0° C 200 cos 135° D �21.42

Sum of vertical components of v1 and v2

D 120 sin 0° C 200 sin 135° D 141.4

From Figure 14.13(c), resultant

vR D
√

[��21.42	2 C �141.4	2] D 143.0,

and tan�0 D 141.4

21.42
D tan 6.6013, from which

�0 D arctan 6.6013 D 81°230 and

� D 98°370 or 1.721 radiansFigure 14.13
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Hence, by resolution of phasors,

vR = v1 − v2 = 143.0 sin.!t Y 1.721/ volts

Further problems on the combination of periodic functions may be found
in Section 14.8, problems 16 to 19, page 211.

14.7 Rectification The process of obtaining unidirectional currents and voltages from
alternating currents and voltages is called rectification. Automatic
switching in circuits is carried out by devices called diodes.

Using a single diode, as shown in Figure 14.14, half-wave rectification
is obtained. When P is sufficiently positive with respect to Q, diode D
is switched on and current i flows. When P is negative with respect to
Q, diode D is switched off. Transformer T isolates the equipment from
direct connection with the mains supply and enables the mains voltage to
be changed.

Two diodes may be used as shown in Figure 14.15 to obtain full wave
rectification. A centre-tapped transformer T is used. When P is suffi-
ciently positive with respect to Q, diode D1 conducts and current flows
(shown by the broken line in Figure 14.15). When S is positive with
respect to Q, diode D2 conducts and current flows (shown by the contin-
uous line in Figure 14.15). The current flowing in R is in the same direc-
tion for both half cycles of the input. The output waveform is thus as
shown in Figure 14.15.

Figure 14.14 Figure 14.15

Four diodes may be used in a bridge rectifier circuit, as shown in
Figure 14.16 to obtain full wave rectification. As for the rectifier shown
in Figure 14.15, the current flowing in R is in the same direction for both
half cycles of the input giving the output waveform shown.

To smooth the output of the rectifiers described above, capacitors
having a large capacitance may be connected across the load resistor
R. The effect of this is shown on the output in Figure 14.17.
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Figure 14.16 Figure 14.17

14.8 Further problems
on alternating voltages

and currents

Frequency and periodic time

1 Determine the periodic time for the following frequencies:
(a) 2.5 Hz (b) 100 Hz (c) 40 kHz

[(a) 0.4 s (b) 10 ms (c) 25 µs]

2 Calculate the frequency for the following periodic times:
(a) 5 ms (b) 50 µs (c) 0.2 s

[(a) 0.2 kHz (b) 20 kHz (c) 5 Hz]

3 An alternating current completes 4 cycles in 5 ms. What is its
frequency? [800 Hz]

A.c. values of non-sinusoidal waveforms

4 An alternating current varies with time over half a cycle as follows:

Current (A) 0 0.7 2.0 4.2 8.4 8.2 2.5 1.0 0.4 0.2 0
time (ms) 0 1 2 3 4 5 6 7 8 9 10

The negative half cycle is similar. Plot the curve and determine:
(a) the frequency (b) the instantaneous values at 3.4 ms and 5.8 ms
(c) its mean value and (d) its rms value

[(a) 50 Hz (b) 5.5 A, 3.4 A (c) 2.8 A (d) 4.0 A]

5 For the waveforms shown in Figure 14.18 determine for each (i) the
frequency (ii) the average value over half a cycle (iii) the rms value
(iv) the form factor (v) the peak factor.

[(a) (i) 100 Hz (ii) 2.50 A (iii) 2.88 A (iv) 1.15 (v) 1.74
(b) (i) 250 Hz (ii) 20 V (iii) 20 V (iv) 1.0 (v) 1.0
(c) (i) 125 Hz (ii) 18 A (iii) 19.56 A (iv) 1.09 (v) 1.23
(d) (i) 250 Hz (ii) 25 V (iii) 50 V (iv) 2.0 (v) 2.0]
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Figure 14.18

6 An alternating voltage is triangular in shape, rising at a constant
rate to a maximum of 300 V in 8 ms and then falling to zero at a
constant rate in 4 ms. The negative half cycle is identical in shape
to the positive half cycle. Calculate (a) the mean voltage over half a
cycle, and (b) the rms voltage [(a) 150 V (b) 170 V]

A.c. values of sinusoidal waveforms

7 Calculate the rms value of a sinusoidal curve of maximum value
300 V [212.1 V]

8 Find the peak and mean values for a 200 V mains supply
[282.9 V, 180.2 V]

9 A sinusoidal voltage has a maximum value of 120 V. Calculate its
rms and average values. [84.8 V, 76.4 V]

10 A sinusoidal current has a mean value of 15.0 A. Determine its
maximum and rms values. [23.55 A, 16.65 A]

v = Vm sin.!t ± f/

11 An alternating voltage is represented by v D 20 sin 157.1 t volts.
Find (a) the maximum value (b) the frequency (c) the periodic time.
(d) What is the angular velocity of the phasor representing this wave-
form? [(a) 20 V (b) 25 Hz (c) 0.04 s (d) 157.1 rads/s]

12 Find the peak value, the rms value, the periodic time, the frequency
and the phase angle (in degrees and minutes) of the following alter-
nating quantities:

(a) v D 90 sin 400�t volts
[90 V, 63.63 V, 5 ms, 200 Hz, 0°]

(b) i D 50 sin�100�t C 0.30	 amperes
[50 A, 35.35 A, 0.02 s, 50 Hz, 17°110 lead]

(c) e D 200 sin�628.4t � 0.41	 volts
[200 V, 141.4 V, 0.01 s, 100 Hz, 23°290 lag]

13 A sinusoidal current has a peak value of 30 A and a frequency of
60 Hz. At time t D 0, the current is zero. Express the instantaneous
current i in the form i D Im sinωt [i D 30 sin 120�t]

14 An alternating voltage v has a periodic time of 20 ms and a maximum
value of 200 V. When time t D 0, v D �75 volts. Deduce a sinu-
soidal expression for v and sketch one cycle of the voltage showing
important points. [v D 200 sin�100�t � 0.384	]

15 The instantaneous value of voltage in an a.c. circuit at any time t
seconds is given by v D 100 sin�50�t � 0.523	 V. Find:

(a) the peak-to-peak voltage, the periodic time, the frequency and
the phase angle
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(b) the voltage when t D 0
(c) the voltage when t D 8 ms
(d) the times in the first cycle when the voltage is 60 V
(e) the times in the first cycle when the voltage is �40 V, and
(f) the first time when the voltage is a maximum.

Sketch the curve for one cycle showing relevant points.
[(a) 200 V, 0.04 s, 25 Hz, 29°580 lagging
(b) �49.95 V (c) 66.96 V (d) 7.426 ms, 19.23 ms
(e) 25.95 ms, 40.71 ms (f) 13.33 ms]

Combination of periodic functions

16 The instantaneous values of two alternating voltages are given by
v1 D 5 sinωt and v2 D 8 sin �ωt � �/6	. By plotting v1 and v2 on the
same axes, using the same scale, over one cycle, obtain expressions
for (a) v1 C v2 and (b) v1 � v2

[(a) v1 C v2 D 12.58 sin�ωt � 0.325	 V
(b) v1 � v2 D 4.44 sin�ωt C 2.02	 V]

17 Repeat Problem 16 by resolution of phasors.

18 Construct a phasor diagram to represent i1 C i2 where i1 D 12 sinωt
and i2 D 15 sin�ωt C �/3	. By measurement, or by calculation, find
a sinusoidal expression to represent i1 C i2

[�23.43 sin�ωt C 0.588	]

19 Determine, either by plotting graphs and adding ordinates at inter-
vals, or by calculation, the following periodic functions in the form
v D Vm sin�ωt š �	

(a) 10 sinωt C 4 sin�ωt C �/4	 [13.14 sin�ωt C 0.217	]
(b) 80 sin�ωt C �/3	C 50 sin�ωt � �/6	

[94.34 sin�ωt C 0.489	]
(c) 100 sin�ωt � 70 sin�ωt � �/3	 [88.88 sin�ωt C 0.751	]



Assignment 4

This assignment covers the material contained in chapters 13
and 14.

The marks for each question are shown in brackets at the end of
each question.

1 Find the current flowing in the 5 � resistor of the circuit shown
in Figure A4.1 using (a) Kirchhoff’s laws, (b) the Superposition
theorem, (c) Thévenin’s theorem, (d) Norton’s theorem. Demonstrate
that the same answer results from each method. Find also the current
flowing in each of the other two branches of the circuit. (27)

10 V 3 V

1 Ω

5 Ω

2 Ω

Figure A4.1

2 A d.c. voltage source has an internal resistance of 2 � and an open
circuit voltage of 24 V. State the value of load resistance that gives
maximum power dissipation and determine the value of this power.

(5)

3 A sinusoidal voltage has a mean value of 3.0 A. Determine it’s
maximum and r.m.s. values. (4)

4 The instantaneous value of current in an a.c. circuit at any time t
seconds is given by: i D 50 sin�100�t � 0.45� mA. Determine

(a) the peak to peak current, the periodic time, the frequency and
the phase angle (in degrees and minutes)

(b) the current when t D 0
(c) the current when t D 8 ms
(d) the first time when the current is a maximum.

Sketch the current for one cycle showing relevant points. (14)



15 Single-phase series a.c.
circuits

At the end of this chapter you should be able to:

ž draw phasor diagrams and current and voltage waveforms for
(a) purely resistive (b) purely inductive and (c) purely
capacitive a.c. circuits

ž perform calculations involvingXL D 2�fL andXC D 1

2�fC

ž draw circuit diagrams, phasor diagrams and voltage and
impedance triangles forR–L, R–C andR–L–C series a.c.
circuits and perform calculations using Pythagoras’ theorem,

trigonometric ratios andZ D V

I

ž understand resonance

ž derive the formula for resonant frequency and use it in
calculations

ž understand Q-factor and perform calculations using
VL
or VC�

V
or
ωrL

R
or

1

ωrCR
or

1

R

√(
L

C

)

ž understand bandwidth and half-power points

ž perform calculations involving
f2 � f1� D fr
Q

ž understand selectivity and typical values of Q-factor

ž appreciate that powerP in an a.c. circuit is given by
P D VI cos� or I2

RR and perform calculations using these
formulae

ž understand true, apparent and reactive power and power factor
and perform calculations involving these quantities

Figure 15.1

15.1 Purely resistive a.c.
circuit

In a purely resistive a.c. circuit, the currentIR and applied voltageVR are
in phase. See Figure 15.1.
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15.2 Purely inductive a.c.
circuit

In a purely inductive a.c. circuit, the currentIL lags the applied voltage
VL by 90° (i.e. �/2 rads). See Figure 15.2.

In a purely inductive circuit the opposition to the flow of alternating
current is called theinductive reactance,XL

XL =
VL

IL
= 2pfL Z

wheref is the supply frequency, in hertz, andL is the inductance, in
henry’s.XL is proportional tof as shown in Figure 15.3.

Figure 15.2

Figure 15.3

Problem 1. (a) Calculate the reactance of a coil of inductance
0.32 H when it is connected to a 50 Hz supply. (b) A coil has a
reactance of 124� in a circuit with a supply of frequency 5 kHz.
Determine the inductance of the coil.

(a) Inductive reactance,XL D 2�fL D 2�
50�
0.32� D 100.5 Z

(b) SinceXL D 2�fL, inductanceL D XL
2�f

D 124

2�
5000�
H D 3.95 mH

Problem 2. A coil has an inductance of 40 mH and negligible
resistance. Calculate its inductive reactance and the resulting current
if connected to (a) a 240 V, 50 Hz supply, and (b) a 100 V, 1 kHz
supply.

(a) Inductive reactance,XL D 2�fL D 2�
50�
40ð 10�3� D 12.57Z

Current,I D V

XL
D 240

12.57
D 19.09 A

(b) Inductive reactance,XL D 2�
1000�
40ð 10�3� D 251.3 Z

Current,I D V

XL
D 100

251.3
D 0.398 A

15.3 Purely capacitive
a.c. circuit

In a purely capacitive a.c. circuit, the currentIC leadsthe applied voltage
VC by 90° (i.e. �/2 rads). See Figure 15.4.

In a purely capacitive circuit the opposition to the flow of alternating
current is called thecapacitive reactance, XC

XC =
VC

IC
=

1
2pfC

Z

whereC is the capacitance in farads.

XC varies with frequencyf as shown in Figure 15.5.
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Figure 15.4

Problem 3. Determine the capacitive reactance of a capacitor
of 10 µF when connected to a circuit of frequency (a) 50 Hz
(b) 20 kHz

(a) Capacitive reactanceXC D 1

2�fC
D 1

2�
50�
10ð 10�6�

D 106

2�
50�
10�

D 318.3 Z

(b) XC D 1

2�fC
D 1

2�
20ð 103�
10ð 10�6�
D 106

2�
20ð 103�
10�

D 0.796Z

Figure 15.5

Hence as the frequency is increased from 50 Hz to 20 kHz,XC decreases
from 318.3� to 0.796� (see Figure 15.5).

Problem 4. A capacitor has a reactance of 40� when operated
on a 50 Hz supply. Determine the value of its capacitance.

SinceXC D 1

2�fC
, capacitanceC D 1

2�fXC
D 1

2�
50�
40�
F

D 106

2�
50�
40�
µF D 79.58 mF

Problem 5. Calculate the current taken by a 23µF capacitor when
connected to a 240 V, 50 Hz supply.

CurrentI D V

XC
D V(

1

2�fC

) D 2�fCV D 2�
50�
23ð 10�6�
240�

D 1.73 A

Further problems on purely inductive and capacitive a.c. circuits may be
found in Section 15.12, problems 1 to 8, page 234.

15.4 R–L series a.c.
circuit

In an a.c. circuit containing inductanceL and resistanceR, the applied
voltageV is the phasor sum ofVR andVL (see Figure 15.6), and thus
the currentI lags the applied voltageV by an angle lying between 0° and
90° (depending on the values ofVR andVL), shown as angle�. In any
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Figure 15.6

a.c. series circuit the current is common to each component and is thus
taken as the reference phasor.

From the phasor diagram of Figure 15.6, the‘voltage triangle’ is derived.

For theR–L circuit: V D
√

V2

R C V2
L� (by Pythagoras’ theorem)

and tan� D VL
VR

(by trigonometric ratios)

In an a.c. circuit, the ratio
applied voltageV

currentI
is called theimpedanceZ,

i.e.

Z =
V
I
Z

If each side of the voltage triangle in Figure 15.6 is divided by currentI
then the‘impedance triangle’ is derived.

For theR–L circuit: Z D
√

R2 C X2

L�

tan� D XL
R

, sin� D XL
Z

and cos� D R

Z

Problem 6. In a seriesR–L circuit the p.d. across the resistance
R is 12 V and the p.d. across the inductanceL is 5 V. Find the
supply voltage and the phase angle between current and voltage.

From the voltage triangle of Figure 15.6,

supply voltageV D
√

122 C 52� i.e. V = 13 V

(Note that in a.c. circuits, the supply voltage isnot the arithmetic sum of
the p.d’s across components. It is, in fact, thephasor sum.)

tan� D VL
VR

D 5

12
, from which� D arctan

(
5

12

)
D 22.62°

D 22°37′ lagging

(‘Lagging’ infers that the current is ‘behind’ the voltage, since phasors
revolve anticlockwise.)

Problem 7. A coil has a resistance of 4� and an inductance
of 9.55 mH. Calculate (a) the reactance, (b) the impedance, and
(c) the current taken from a 240 V, 50 Hz supply. Determine also
the phase angle between the supply voltage and current.

R D 4 �; L D 9.55 mHD 9.55ð 10�3 H; f D 50 Hz;V D 240 V

(a) Inductive reactance,XL D 2�fL D 2�
50�
9.55ð 10�3� D 3 Z
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(b) Impedance,Z D
√

R2 C X2

L� D
√

42 C 32� D 5 Z

(c) Current,I D V

Z
D 240

5
D 48 A

The circuit and phasor diagrams and the voltage and impedance triangles
are as shown in Figure 15.6.

Since tan� D XL
R
, � D arctan

XL
R

D arctan
3

4
D 36.87°

D 36°52′ lagging

Problem 8. A coil takes a current of 2 A from a 12 V d.c. supply.
When connected to a 240 V, 50 Hz supply the current is 20 A.
Calculate the resistance, impedance, inductive reactance and induc-
tance of the coil.

ResistanceR D d.c. voltage

d.c. current
D 12

2
D 6 �

ImpedanceZ D a.c. voltage

a.c. current
D 240

20
D 12�

SinceZ D
√

R2 C X2

L�, inductive reactance,XL D
√

Z2 � R2�

D
√

122 � 62�

D 10.39�

SinceXL D 2�fL, inductanceL D XL
2�f

D 10.39

2�
50�
D 33.1 mH

This problem indicates a simple method for finding the inductance of a
coil, i.e. firstly to measure the current when the coil is connected to a
d.c. supply of known voltage, and then to repeat the process with an a.c.
supply.

Problem 9. A coil of inductance 318.3 mH and negligible resis-
tance is connected in series with a 200� resistor to a 240 V, 50 Hz
supply. Calculate (a) the inductive reactance of the coil, (b) the
impedance of the circuit, (c) the current in the circuit, (d) the p.d.
across each component, and (e) the circuit phase angle.

L D 318.3 mH D 0.3183 H;R D 200�; V D 240 V; f D 50 Hz

The circuit diagram is as shown in Figure 15.6.

(a) Inductive reactanceXL D 2�fL D 2�
50�
0.3183� D 100Z

(b) ImpedanceZ D
√

R2 C X2

L� D
√

[
200�2 C 
100�2] D 223.6 Z
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(c) CurrentI D V

Z
D 240

223.6
D 1.073 A

(d) The p.d. across the coil,VL D IXL D 1.073ð 100D 107.3 V

The p.d. across the resistor,VR D IR D 1.073ð 200D 214.6 V

[Check:
√

V2

R C V2
L� D

√
[
214.6�2 C 
107.3�2] D 240 V, the supply

voltage]

(e) From the impedance triangle, angle� D arctan
XL
R

D arctan
(

100

200

)

Hence the phase anglef = 26.57° = 26°34′ lagging

Problem 10. A coil consists of a resistance of 100� and an
inductance of 200 mH. If an alternating voltage,v, given byv D
200 sin 500t volts is applied across the coil, calculate (a) the circuit
impedance, (b) the current flowing, (c) the p.d. across the resis-
tance, (d) the p.d. across the inductance and (e) the phase angle
between voltage and current.

Sincev D 200 sin 500t volts thenVm D 200 V andω D 2�f

D 500 rad/s

Hence rms voltageV D 0.707ð 200D 141.4 V

Inductive reactance,XL D 2�fL D ωL D 500ð 200ð 10�3 D 100�

(a) ImpedanceZ D
√

R2 C X2

L� D
√

1002 C 1002� D 141.4 Z

(b) CurrentI D V

Z
D 141.4

141.4
D 1 A

(c) p.d. across the resistanceVR D IR D 1 ð 100D 100 V

p.d. across the inductanceVL D IXL D 1 ð 100D 100 V

(e) Phase angle between voltage and current is given by: tan� D
(
XL
R

)

from which,� D arctan
100/100�, hencef = 45° or
p

4
rads

Problem 11. A pure inductance of 1.273 mH is connected in
series with a pure resistance of 30�. If the frequency of the
sinusoidal supply is 5 kHz and the p.d. across the 30� resistor
is 6 V, determine the value of the supply voltage and the voltage
across the 1.273 mH inductance. Draw the phasor diagram.

The circuit is shown in Figure 15.7(a).

Supply voltage,V D IZFigure 15.7
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CurrentI D VR
R

D 6

30
D 0.20 A

Inductive reactanceXL D 2�fL D 2�
5 ð 103�
1.273ð 10�3�

D 40�

Impedance,Z D
√

R2 C X2

L� D
√

302 C 402� D 50�

Supply voltageV D IZ D 
0.20�
50� D 10 V

Voltage across the 1.273 mH inductance,VL D IXL D 
0.2�
40� D 8 V

The phasor diagram is shown in Figure 15.7(b).

(Note that in a.c. circuits, the supply voltage isnot the arithmetic sum of
the p.d.’s across components but thephasor sum)

Problem 12. A coil of inductance 159.2 mH and resistance 20�
is connected in series with a 60� resistor to a 240 V, 50 Hz supply.
Determine (a) the impedance of the circuit, (b) the current in the
circuit, (c) the circuit phase angle, (d) the p.d. across the 60�
resistor and (e) the p.d. across the coil. (f) Draw the circuit phasor
diagram showing all voltages.

The circuit diagram is shown in Figure 15.8(a). When impedances are
connected in series the individual resistances may be added to give
the total circuit resistance. The equivalent circuit is thus shown in
Figure 15.8(b).

Inductive reactanceXL D 2�fL D 2�
50�
159.2 ð 10�3� D 50�

(a) Circuit impedance,Z D
√

R2

T C X2
L� D

√

802 C 502� D 94.34�

(b) Circuit current,I D V

Z
D 240

94.34
D 2.544 A

(c) Circuit phase angle� D arctan
(
XL
R

)
D arctan
50/80�

D 32° lagging
Figure 15.8

From Figure 15.8(a):

(d) VR D IR D 
2.544�
60� D 152.6 V

(e) VCOIL D IZCOIL, whereZCOIL D
√

R2

C C X2
L� D

√

202 C 502�

D 53.85�

HenceVCOIL D 
2.544�
53.85� D 137.0 V

(f) For the phasor diagram, shown in Figure 15.9,

VL D IXL D 
2.544�
50� D 127.2 VFigure 15.9
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VR COIL D IRC D 
2.544�
20� D 50.88 V

The 240 V supply voltage is the phasor sum ofVCOIL andVR

Further problems onR–L a.c. series circuits may be found in
Section 15.12, problems 9 to 13, page 234.

15.5 R–C series a.c.
circuit

In an a.c. series circuit containing capacitanceC and resistanceR, the
applied voltageV is the phasor sum ofVR andVC (see Figure 15.10)
and thus the currentI leads the applied voltageV by an angle lying
between 0° and 90° (depending on the values ofVR andVC), shown as
angle˛.

From the phasor diagram of Figure 15.10, the‘voltage triangle’ is
derived. For theR–C circuit:

V D
√

V2

R C V2
C� (by Pythagoras’ theorem)

and tan̨ D VC
VR

(by trigonometric ratios)

As stated in Section 15.4, in an a.c. circuit, the ratio

(applied voltageV)/(currentI) is called theimpedanceZ, i.e.Z D V

I
�

If each side of the voltage triangle in Figure 15.10 is divided by current
I then the‘impedance triangle’ is derived.Figure 15.10

For theR–C circuit: Z D
√

R2 C X2

C�

tan˛ D XC
R

, sin˛ D XC
Z

and cos̨ D R

Z

Problem 13. A resistor of 25� is connected in series with a
capacitor of 45µF. Calculate (a) the impedance, and (b) the current
taken from a 240 V, 50 Hz supply. Find also the phase angle
between the supply voltage and the current.

R D 25�; C D 45 µF D 45ð 10�6 F; V D 240 V; f D 50 Hz

The circuit diagram is as shown in Figure 15.10

Capacitive reactance,XC D 1

2�fC
D 1

2�
50�
45ð 10�6�
D 70.74�

(a) ImpedanceZ D
√

R2 C X2

C� D
√

[
25�2 C 
70.74�2] D 75.03Z

(b) CurrentI D V

Z
D 240

75.03
D 3.20 A
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Phase angle between the supply voltage and current,˛ D arctan
(
XC
R

)

hence˛ D arctan
(

70.74

25

)
D 70.54° D 70°32′ leading

(‘Leading’ infers that the current is ‘ahead’ of the voltage, since phasors
revolve anticlockwise.)

Problem 14. A capacitorC is connected in series with a 40�
resistor across a supply of frequency 60 Hz. A current of 3 A
flows and the circuit impedance is 50�. Calculate: (a) the value of
capacitance,C, (b) the supply voltage, (c) the phase angle between
the supply voltage and current, (d) the p.d. across the resistor, and
(e) the p.d. across the capacitor. Draw the phasor diagram.

(a) ImpedanceZ D
√

R2 C X2

C�

HenceXC D
√

Z2 � R2� D

√

502 � 402� D 30�

XC D 1

2�fC
henceC D 1

2�fXC
D 1

2�
60�30
F

D 88.42 mF

(b) SinceZ D V

I
thenV D IZ D 
3�
50� D 150 V

(c) Phase angle,̨ D arctan
XC
R

D arctan
(

30

40

)
D 36.87°

D 36°52′ leading

(d) P.d. across resistor,VR D IR D 
3�
40� D 120 V

(e) P.d. across capacitor,VC D IXC D 
3�
30� D 90 V

The phasor diagram is shown in Figure 15.11, where the supply voltage
V is the phasor sum ofVR andVC.

Further problems onR–C a.c. circuits may be found in Section 15.12,
problems 14 to 17, page 235.

Figure 15.11

15.6 R–L –C series a.c.
circuit

In an a.c. series circuit containing resistanceR, inductance L and capac-
itanceC, the applied voltageV is the phasor sum ofVR, VL andVC
(see Figure 15.12).VL andVC are anti-phase, i.e. displaced by 180°, and
there are three phasor diagrams possible — each depending on the relative
values ofVL andVC

When XL > XC (Figure 15.12(b)� : Z D
√

[R2 C 
XL � XC�2]

and tan� D 
XL � XC�

R
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Figure 15.12

When XC > XL (Figure 15.12(c)� : Z D
√

[R2 C 
XC � XL�2]

and tan̨ D 
XC � XL�

R

When XL = XC (Figure 15.12(d)), the applied voltageV and the current
I are in phase. This effect is calledseries resonance(see Section 15.7)

Problem 15. A coil of resistance 5� and inductance 120 mH in
series with a 100µF capacitor, is connected to a 300 V, 50 Hz
supply. Calculate (a) the current flowing, (b) the phase difference
between the supply voltage and current, (c) the voltage across the
coil and (d) the voltage across the capacitor.

Figure 15.13 The circuit diagram is shown in Figure 15.13

XL D 2�fL D 2�
50�
120ð 10�3� D 37.70Z

XC D 1

2�fC
D 1

2�
50�
100ð 10�6�
D 31.83Z

SinceXL is greater thanXC the circuit is inductive.
XL � XC D 37.70� 31.83 D 5.87�
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Figure 15.14

ImpedanceZ D
√

[R2 C 
XL � XC�2] D
√

[
5�2 C 
5.87�2] D 7.71�

(a) CurrentI D V

Z
D 300

7.71
D 38.91 A

(b) Phase angle� D arctan
(
XL � XC

R

)
D arctan

5.87

5
D 49.58°

D 49°35′

(c) Impedance of coilZCOIL D
√

R2 C X2

L� D
√

[
5�2 C 
37.70�2]

D 38.03�

Voltage across coilVCOIL D IZCOIL D 
38.91�
38.03� D 1480 V

Phase angle of coilD arctan
XL
R

D arctan
(

37.70

5

)
D 82.45°

D 82°270 lagging

(d) Voltage across capacitorVC D IXC D 
38.91�
31.83� D 1239 V

The phasor diagram is shown in Figure 15.14. The supply voltageV is
the phasor sum ofVCOIL andVC

Series connected impedances

For series-connected impedances the total circuit impedance can be repre-
sented as a singleL–C–R circuit by combining all values of resistance
together, all values of inductance together and all values of capacitance
together,

(remembering that for series connected capacitors
1

C
D 1

C1
C 1

C2
C . . .).

Figure 15.15

For example, the circuit of Figure 15.15(a) showing three impedances has
an equivalent circuit of Figure 15.15(b).
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Problem 16. The following three impedances are connected in
series across a 40 V, 20 kHz supply: (i) a resistance of 8�, (ii) a
coil of inductance 130µH and 5� resistance, and (iii) a 10�
resistor in series with a 0.25µF capacitor. Calculate (a) the circuit
current, (b) the circuit phase angle and (c) the voltage drop across
each impedance.

The circuit diagram is shown in Figure 15.16(a). Since the total circuit
resistance is 8C 5 C 10, i.e. 23�, an equivalent circuit diagram may be
drawn as shown in Figure 15.16(b)

Inductive reactance,XL D 2�fL D 2�
20ð 103�
130ð 10�6�

D 16.34�

Capacitive reactance,XC D 1

2�fC
D 1

2�
20ð 103�
0.25ð 10�6�

D 31.83�

Since XC > XL, the circuit is capacitive (see phasor diagram in
Figure 15.12(c)).XC � XL D 31.83� 16.34 D 15.49�Figure 15.16

(a) Circuit impedance,Z D
√

[R2 C 
XC � XL�2] D
√

[232 C 15.492]

D 27.73�

Circuit current,I D V

Z
D 40

27.73
D 1.442 A

From Figure 15.12(c), circuit phase angle� D arctan
(
XC � XL

R

)

i.e, � D arctan
(

15.49

23

)
D 33.96° D 33°58′ leading

(b) From Figure 15.16(a),V1 D IR1 D 
1.442�
8� D 11.54 V

V2 D IZ2 D I
√

52 C 16.342� D 
1.442�
17.09� D 24.64 V

V3 D IZ3 D I
√

102 C 31.832� D 
1.442�
33.36� D 48.11 V

The 40 V supply voltage is the phasor sum ofV1, V2 andV3

Figure 15.17

Problem 17. Determine the p.d.’sV1 andV2 for the circuit shown
in Figure 15.17 if the frequency of the supply is 5 kHz. Draw the
phasor diagram and hence determine the supply voltageV and the
circuit phase angle.



Single-phase series a.c. circuits225

For impedanceZ1:

R1 D 4 � andXL D 2�fL D 2�
5 ð 103�
0.286ð 10�3� D 8.985�

V1 D IZ1 D I
√

R2 C X2

L� D 5
√

42 C 8.9852� D 49.18 V

Phase angle�1 D arctan
(
XL
R

)
D arctan

(
8.985

4

)
D 66°0′ lagging

For impedanceZ2:

R2 D 8 � andXC D 1

2�fC
D 1

2�
5 ð 103�
1.273ð 10�6�
D 25.0 �

V2 D IZ2 D I
√

R2 C X2

C� D 5
√

82 C 25.02� D 131.2 V

Phase angle�2 D arctan
(
XC
R

)
D arctan

(
25.0

8

)
D 72°150 leading

The phasor diagram is shown in Figure 15.18.
The phasor sum ofV1 andV2 gives the supply voltageV of 100V at a

phase angle of53°8′ leading. These values may be determined by drawing
or by calculation — either by resolving into horizontal and vertical compo-
nents or by the cosine and sine rules.Figure 15.18

Further problems onR–L–C a.c. circuits may be found in Section 15.12,
problems 18 to 20, page 235.

15.7 Series resonance As stated in Section 15.6, for anR–L–C series circuit, whenXL D XC
(Figure 15.12(d)), the applied voltageV and the currentI are in phase.
This effect is calledseries resonance. At resonance:

(i) VL D VC

(ii) Z D R (i.e. the minimum circuit impedance possible in anL–C–R
circuit)

(iii) I D V

R
(i.e. the maximum current possible in anL–C–R circuit)

(iv) SinceXL D XC, then 2�frL D 1

2�frC

from which,f2
r D 1


2��2LC

and, fr =
1

2p
p

.LC /
Hz,

wherefr is the resonant frequency.
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Figure 15.19

(v) The series resonant circuit is often described as anacceptor circuit
since it has its minimum impedance, and thus maximum current, at
the resonant frequency.

(vi) Typical graphs of currentI and impedanceZ against frequency are
shown in Figure 15.19.

Problem 18. A coil having a resistance of 10� and an inductance
of 125 mH is connected in series with a 60µF capacitor across a
120V supply. At what frequency does resonance occur? Find the
current flowing at the resonant frequency.

Resonant frequency,fr D 1

2�
p

LC�

Hz

D 1

2�

√[(
125

103

)(
60

106

)] Hz

D 1

2�

√(
125ð 6

108

) D 1

2�

p
[
125�
6�]

104

D 104

2�
p

[
125�
6�]
D 58.12 Hz

At resonance,XL D XC and impedanceZ D R

Hence current,I D V

R
D 120

10
D 12 A

Problem 19. The current at resonance in a seriesL–C–R circuit is
100 µA. If the applied voltage is 2 mV at a frequency of 200 kHz,
and the circuit inductance is 50µH, find (a) the circuit resistance,
and (b) the circuit capacitance.

(a) I D 100 µA D 100ð 10�6 A; V D 2 mV D 2 ð 10�3 V

At resonance, impedanceZ D resistanceR

HenceR D V

I
D 20ð 10�3

100ð 10�6
D 2 ð 106

100ð 103
D 20Z

(b) At resonanceXL D XC

i.e. 2�fL D 1

2�fC
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Hence capacitanceC D 1


2�f�2L

D 1


2� ð 200ð 103�2
50ð 10�6�
F

D 
106�
106�


4��2
1010�
50�
µF

D 0.0127mF or 12.7 nF

15.8 Q-factor At resonance, ifR is small compared withXL andXC, it is possible for
VL andVC to have voltages many times greater than the supply voltage
(see Figure 15.12(d)).

Voltage magnification at resonanceD voltage acrossL (or C)
supply voltageV

This ratio is a measure of the quality of a circuit (as a resonator or tuning
device) and is called theQ-factor.

Hence Q-factorD VL
V

D IXL
IR

D XL
R

D 2pfr L
R

Alternatively, Q-factorD VC
V

D IXC
IR

D XC
R

D 1
2pfr CR

At resonancefr D 1

2�
p

LC�

i.e. 2�fr D 1p

LC�

HenceQ-factor D 2�frL

R
D 1p


LC�

(
L

R

)
D 1

R

√(
L
C

)

(Q-factor is explained more fully in Chapter 28, page 495)

Problem 20. A coil of inductance 80 mH and negligible resis-
tance is connected in series with a capacitance of 0.25µF and a
resistor of resistance 12.5� across a 100 V, variable frequency
supply. Determine (a) the resonant frequency, and (b) the current
at resonance. How many times greater than the supply voltage is
the voltage across the reactances at resonance?

(a) Resonant frequencyfr

D 1

2�

√[(
80

103

)(
0.25

106

)] D 1

2�

√[

8�
0.25�

108

]
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D 104

2�
p

2

D 1125.4 Hz D 1.1254 kHz

(b) Current at resonanceI D V

R
D 100

12.5
D 8 A

Voltage across inductance, at resonance,

VL D IXL D 
I�
2�fL�

D 
8�
2��
1125.4�
80ð 10�3�

D 4525.5 V

(Also, voltage across capacitor,

VC D IXC D I

2�fC
D 8

2�
1125.4�
0.25ð 10�6�
D 4525.5 V�

Voltage magnification at resonanceD VL
V

or
Vc
V

D 4525.5

100

D 45.255 V

i.e. at resonance, the voltage across the reactances are 45.255 times
greater than the supply voltage. Hence Q-factor of circuit is 45.255.

Problem 21. A series circuit comprises a coil of resistance 2�
and inductance 60 mH, and a 30µF capacitor. Determine the Q-
factor of the circuit at resonance.

At resonance, Q-factorD 1

R

√(
L

C

)
D 1

2

√(
60ð 10�3

30ð 10�6

)

D 1

2

√(
60ð 106

30ð 103

)

D 1

2

p

2000� D 22.36

Problem 22. A coil of negligible resistance and inductance
100 mH is connected in series with a capacitance of 2µF and
a resistance of 10� across a 50 V, variable frequency supply.
Determine (a) the resonant frequency, (b) the current at resonance,
(c) the voltages across the coil and the capacitor at resonance, and
(d) the Q-factor of the circuit.
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(a) Resonant frequency, fr D 1

2�
p

LC�

D 1

2�

√[(
100

103

)(
2

106

)]

D 1

2�

√(
20

108

) D 1(
2�

p
20

104

) D 104

2�
p

20

D 355.9 Hz

(b) Current at resonanceI D V

R
D 50

10
D 5 A

(c) Voltage across coil at resonance,

VL D IXL D I
2�frL�

D 
5�
2� ð 355.9 ð 100ð 10�3�

D 1118 V

Voltage across capacitance at resonance,

VC D IXC D I

2�frC

D 5

2�
355.9�
2 ð 10�6�

D 1118 V

(d) Q-factor (i.e. voltage magnification at resonance)D VL
V

or
VC
V

D 1118

50
D 22.36

Q-factor may also have been determined by
2�frL

R
or

1

2�frCR

or
1

R

√(
L

C

)

Further problems on series resonance and Q-factor may be found in
Section 15.12, problems 21 to 25, page 236.

15.9 Bandwidth and
selectivity

Figure 15.20 shows how current I varies with frequency in anR–L–C
series circuit. At the resonant frequencyfr , current is a maximum value,
shown asIr. Also shown are the points A and B where the current is 0.707
of the maximum value at frequenciesf1 andf2. The power delivered to
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Figure 15.20

the circuit isI2R. At I D 0.707Ir, the power is
0.707Ir�2R D 0.5I2
rR, i.e.,

half the power that occurs at frequencyfr . The points corresponding to
f1 andf2 are called thehalf-power points. The distance between these
points, i.e. (f2 � f1), is called thebandwidth.

It may be shown that

Q =
fr

f2 − f1
or .f2 − f1/ =

fr

Q

(This formula is proved in Chapter 28, page 495)

Problem 23. A filter in the form of a seriesL–R–C circuit is
designed to operate at a resonant frequency of 5 kHz. Included
within the filter is a 20 mH inductance and 10� resistance. Deter-
mine the bandwidth of the filter.

Q-factor at resonance is given by

Qr D ωrL

R
D 
2�5000�
20ð 10�3�

10
D 62.83

SinceQr D fr/
f2 � f1�

bandwidth, 
f2 � f1� D fr
Qr

D 5000

62.83
D 79.6 Hz

Selectivity is the ability of a circuit to respond more readily to signals of
a particular frequency to which it is tuned than to signals of other frequen-
cies. The response becomes progressively weaker as the frequency departs
from the resonant frequency. The higher the Q-factor, the narrower the
bandwidth and the more selective is the circuit. Circuits having high Q-
factors (say, in the order of 100 to 300) are therefore useful in communica-
tions engineering. A high Q-factor in a series power circuit has disadvan-
tages in that it can lead to dangerously high voltages across the insulation
and may result in electrical breakdown.

(For more on bandwidth and selectivity see Chapter 28, page 504)

15.10 Power in a.c.
circuits

In Figures 15.21(a)–(c), the value of power at any instant is given by the
product of the voltage and current at that instant, i.e. the instantaneous
power,p D vi, as shown by the broken lines.

(a) For a purely resistive a.c. circuit, the average power dissipated,P,
is given by:

P = VI = I 2R =
V 2

R
watts (V andI being rms values).

See Figure 15.21(a).
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Figure 15.21

(b) For a purely inductive a.c. circuit, the average power is zero. See
Figure 15.21(b).

(c) For a purely capacitive a.c. circuit, the average power is zero. See
Figure 15.21(c).

Figure 15.22 shows current and voltage waveforms for anR–L circuit
where the current lags the voltage by angle�. The waveform for power
(wherep D vi) is shown by the broken line, and its shape, and hence
average power, depends on the value of angle�.

For anR–L, R–C or R–L–C series a.c. circuit, the average powerP
is given by:

P = VI cosf watts

or

P = I 2R watts (V andI being rms values)

The formulae for power are proved in Chapter 26, page 459.

Problem 24. An instantaneous current,i D 250 sinωt mA flows
through a pure resistance of 5 k�. Find the power dissipated in the
resistor.

Power dissipated,P D I2R whereI is the rms value of current.
If i D 250 sinωt mA, thenIm D 0.250 A and rms current,
I D 
0.707ð 0.250� A

Hence powerP D 
0.707ð 0.250�2
5000� D 156.2 watts

Problem 25. A series circuit of resistance 60� and inductance
75 mH is connected to a 110 V, 60 Hz supply. Calculate the power
dissipated.

Inductive reactance,XL D 2�fL D 2�
60�
75ð 10�3� D 28.27�

Impedance,Z D
√

R2 C X2

L� D
√

[
60�2 C 
28.27�2] D 66.33�

Current,I D V

Z
D 110

66.33
D 1.658 A

To calculate power dissipation in an a.c. circuit two formulae may be
used:

(i) P D I2R D 
1.658�2
60� D 165 W

or (ii) P D VI cos� where cos� D R

Z
D 60

66.33
D 0.9046

Hence P D 
110�
1.658�
0.9046� D 165 W

Figure 15.22
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15.11 Power triangle and
power factor

Figure 15.23(a) shows a phasor diagram in which the currentI lags the
applied voltageV by angle�. The horizontal component ofV is V cos�
and the vertical component ofV is V sin�. If each of the voltage phasors
is multiplied byI, Figure 15.23(b) is obtained and is known as the‘power
triangle’ .

Apparent power, S = VI voltamperes (VA)
True or active power, P = VI cosf watts (W)
Reactive power, Q = VI sinf reactive

voltamperes (var)

Power factor =
True power P

Apparent power S

For sinusoidal voltages and currents, power factorD P

S
D VI cos�

VI
, i.e.

p.f. = cosf =
R
Z

(from Figure 15.6)

Figure 15.23

The relationships stated above are also true when currentI leads
voltageV. More on the power triangle and power factor is contained
in Chapter 26, page 464.

Problem 26. A pure inductance is connected to a 150 V, 50 Hz
supply, and the apparent power of the circuit is 300 VA. Find the
value of the inductance.

Apparent powerS D VI

Hence currentI D S

V
D 300

150
D 2 A

Inductive reactanceXL D V

I
D 150

2
D 75�

SinceXL D 2�fL, inductanceL D XL
2�f

D 75

2�
50�
D 0.239 H

Problem 27. A transformer has a rated output of 200 kVA at a
power factor of 0.8. Determine the rated power output and the
corresponding reactive power.

VI D 200 kVA D 200ð 103; p.f. D 0.8 D cos�

Power output,P D VI cos� D 
200ð 103�
0.8� D 160 kW
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Reactive power,Q D VI sin�

If cos� D 0.8, then� D arccos 0.8 D 36.87° D 36°520

Hence sin� D sin 36.87° D 0.6

Hence reactive power,Q D 
200ð 103�
0.6� D 120 kvar

Problem 28. The power taken by an inductive circuit when
connected to a 120 V, 50 Hz supply is 400 W and the current
is 8 A. Calculate (a) the resistance, (b) the impedance, (c) the
reactance, (d) the power factor, and (e) the phase angle between
voltage and current.

(a) PowerP D I2R. HenceR D P

I2
D 400


8�2
D 6.25Z

(b) ImpedanceZ D V

I
D 120

8
D 15Z

(c) SinceZ D
√

R2 C X2

L�, thenXL D
√

Z2 � R2�

D
√

[
15�2 � 
6.25�2]

D 13.64Z

(d) Power factorD true power

apparent power
D VI cos�

VI
D 400


120�
8�
D 0.4167

(e) p.f.D cos� D 0.4167.Hence phase angle� D arccos 0.4167

D 65.37°

D 65°22′ lagging

Problem 29. A circuit consisting of a resistor in series with a
capacitor takes 100 watts at a power factor of 0.5 from a 100 V,
60 Hz supply. Find (a) the current flowing, (b) the phase angle,
(c) the resistance, (d) the impedance, and (e) the capacitance.

(a) Power factorD true power

apparent power

i.e. 0.5 D 100


100�
I�
. HenceI D 100


0.5�
100�
D 2 A

(b) Power factorD 0.5 D cos�. Hence phase angle� D arccos 0.5

D 60° leading

(c) PowerP D I2R. Hence resistanceR D P

I2
D 100


2�2
D 25Z

(d) ImpedanceZ D V

I
D 100

2
D 50Z
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(e) Capacitive reactance,XC D
√

Z2 � R2� D

√

502 � 252�

D 43.30�

XC D 1

2�fC
hence capacitanceC D 1

2�fXc
D 1

2�
60�
43.30�
F

D 61.26 mF

Further problems on power in a.c. circuits may be found in Section 15.12
following, problems 26 to 36, page 237.

15.12 Further problems
on single-phase series a.c.

circuits

A.c. circuits containing pure inductance and pure capacitance

1 Calculate the reactance of a coil of inductance 0.2 H when it is
connected to (a) a 50 Hz, (b) a 600 Hz and (c) a 40 kHz supply.

[(a) 62.83� (b) 754� (c) 50.27 k�]

2 A coil has a reactance of 120� in a circuit with a supply frequency
of 4 kHz. Calculate the inductance of the coil. [4.77 mH]

3 A supply of 240 V, 50 Hz is connected across a pure inductance and
the resulting current is 1.2 A. Calculate the inductance of the coil.

[0.637 H]

4 An e.m.f. of 200 V at a frequency of 2 kHz is applied to a coil of
pure inductance 50 mH. Determine (a) the reactance of the coil, and
(b) the current flowing in the coil. [(a) 628� (b) 0.318 A]

5 Calculate the capacitive reactance of a capacitor of 20µF when
connected to an a.c. circuit of frequency (a) 20 Hz, (b) 500 Hz,
(c) 4 kHz [(a) 397.9� (b) 15.92� (c) 1.989�]

6 A capacitor has a reactance of 80� when connected to a 50 Hz
supply. Calculate the value of its capacitance. [39.79µF]

7 A capacitor has a capacitive reactance of 400� when connected to
a 100 V, 25 Hz supply. Determine its capacitance and the current
taken from the supply. [15.92µF, 0.25 A]

8 Two similar capacitors are connected in parallel to a 200 V, 1 kHz
supply. Find the value of each capacitor if the circuit current is
0.628 A. [0.25µF]

R–L a.c. circuits

9 Determine the impedance of a coil which has a resistance of 12�
and a reactance of 16� [20 �]

10 A coil of inductance 80 mH and resistance 60� is connected to
a 200 V, 100 Hz supply. Calculate the circuit impedance and the
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current taken from the supply. Find also the phase angle between
the current and the supply voltage.

[78.27�, 2.555 A, 39°570 lagging]

11 An alternating voltage given byv D 100 sin 240t volts is applied
across a coil of resistance 32� and inductance 100 mH. Determine
(a) the circuit impedance, (b) the current flowing, (c) the p.d. across
the resistance, and (d) the p.d. across the inductance.

[(a) 40� (b) 1.77 A (c) 56.64 V (d) 42.48 V]

12 A coil takes a current of 5 A from a 20 V d.c. supply. When
connected to a 200 V, 50 Hz a.c. supply the current is 25 A.
Calculate the (a) resistance, (b) impedance and (c) inductance of
the coil. [(a) 4� (b) 8� (c) 22.05 mH]

13 A coil of inductance 636.6 mH and negligible resistance is connected
in series with a 100� resistor to a 250 V, 50 Hz supply. Calcu-
late (a) the inductive reactance of the coil, (b) the impedance of the
circuit, (c) the current in the circuit, (d) the p.d. across each compo-
nent, and (e) the circuit phase angle.

[(a) 200� (b) 223.6 � (c)1.118 A
(d) 223.6 V, 111.8 V (e) 63°260 lagging]

R–C a.c. circuits

14 A voltage of 35 V is applied across aC–R series circuit. If the
voltage across the resistor is 21 V, find the voltage across the
capacitor. [28 V]

15 A resistance of 50� is connected in series with a capacitance of
20 µF. If a supply of 200 V, 100 Hz is connected across the arrange-
ment find (a) the circuit impedance, (b) the current flowing, and
(c) the phase angle between voltage and current.

[(a) 93.98� (b) 2.128 A (c) 57°510 leading]

16 An alternating voltagev D 250 sin 800 t volts is applied across a
series circuit containing a 30� resistor and 50µF capacitor. Calcu-
late (a) the circuit impedance, (b) the current flowing, (c) the p.d.
across the resistor, (d) the p.d. across the capacitor, and (e) the phase
angle between voltage and current

[(a) 39.05� (b) 4.527 A (c) 135.8 V
(d) 113.2 V (e) 39°480]

17 A 400� resistor is connected in series with a 2358 pF capacitor
across a 12 V a.c. supply. Determine the supply frequency if the
current flowing in the circuit is 24 mA. [225 kHz]

R–L –C a.c. circuits

18 A 40 µF capacitor in series with a coil of resistance 8� and induc-
tance 80 mH is connected to a 200 V, 100 Hz supply. Calculate
(a) the circuit impedance, (b) the current flowing, (c) the phase angle



236 Electrical Circuit Theory and Technology

between voltage and current, (d) the voltage across the coil, and
(e) the voltage across the capacitor.

[(a) 13.18� (b) 15.17 A (c) 52°380
(d) 772.1 V (e) 603.6 V]

19 Three impedances are connected in series across a 100 V, 2 kHz
supply. The impedances comprise:

(i) an inductance of 0.45 mH and 2� resistance,
(ii) an inductance of 570µH and 5� resistance, and

(iii) a capacitor of capacitance 10µF and resistance 3�.

Assuming no mutual inductive effects between the two inductances
calculate (a) the circuit impedance, (b) the circuit current, (c) the
circuit phase angle and (d) the voltage across each impedance. Draw
the phasor diagram.

[(a) 11.12� (b) 8.99 A (c) 25°550 lagging
(d) 53.92 V, 78.53 V, 76.46 V]

20 For the circuit shown in Figure 15.24 determine the voltagesV1 and
V2 if the supply frequency is 1 kHz. Draw the phasor diagram and
hence determine the supply voltageV and the circuit phase angle.

[V1 D 26.0 V, V2 D 67.05 V,
V D 50 V, 53°80 leading]

Figure 15.24
Series resonance and Q-factor

21 Find the resonant frequency of a series a.c. circuit consisting of a coil
of resistance 10� and inductance 50 mH and capacitance 0.05µF.
Find also the current flowing at resonance if the supply voltage is
100 V. [3.183 kHz, 10 A]

22 The current at resonance in a seriesL–C–R circuit is 0.2 mA. If the
applied voltage is 250 mV at a frequency of 100 kHz and the circuit
capacitance is 0.04µF, find the circuit resistance and inductance.

[1.25 k�, 63.3µH]

23 A coil of resistance 25� and inductance 100 mH is connected
in series with a capacitance of 0.12µF across a 200 V, variable
frequency supply. Calculate (a) the resonant frequency, (b) the
current at resonance and (c) the factor by which the voltage across
the reactance is greater than the supply voltage.

[(a) 1.453 kHz (b) 8 A (c) 36.52]

24 Calculate the inductance which must be connected in series with a
1000 pF capacitor to give a resonant frequency of 400 kHz.

[0.158 mH]

25 A series circuit comprises a coil of resistance 20� and inductance
2 mH and a 500 pF capacitor. Determine the Q-factor of the circuit at
resonance. If the supply voltage is 1.5 V, what is the voltage across
the capacitor? [100, 150 V]
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Power in a.c. circuits

26 A voltagev D 200 sinωt volts is applied across a pure resistance of
1.5 k�. Find the power dissipated in the resistor.

[13.33 W]

27 A 50 µF capacitor is connected to a 100 V, 200 Hz supply. Deter-
mine the true power and the apparent power.

[0, 628.3 VA]

28 A motor takes a current of 10 A when supplied from a 250 V a.c.
supply. Assuming a power factor of 0.75 lagging find the power
consumed. Find also the cost of running the motor for 1 week contin-
uously if 1 kWh of electricity costs 7.20 p.

[1875 W, £22.68]

29 A motor takes a current of 12 A when supplied from a 240 V a.c.
supply. Assuming a power factor of 0.75 lagging, find the power
consumed. [2.16 kW]

30 A substation is supplying 200 kVA and 150 kvar. Calculate the corre-
sponding power and power factor. [132 kW, 0.66]

31 A load takes 50 kW at a power factor of 0.8 lagging. Calculate the
apparent power and the reactive power.

[62.5 kVA, 37.5 kvar]

32 A coil of resistance 400� and inductance 0.20 H is connected to a
75 V, 400 Hz supply. Calculate the power dissipated in the coil.

[5.452 W]

33 An 80� resistor and a 6µF capacitor are connected in series across
a 150 V, 200 Hz supply. Calculate (a) the circuit impedance, (b) the
current flowing and (c) the power dissipated in the circuit.

[(a) 154.9� (b) 0.968 A (c) 75 W]

34 The power taken by a series circuit containing resistance and
inductance is 240 W when connected to a 200 V, 50 Hz supply.
If the current flowing is 2 A find the values of the resistance and
inductance. [60�, 255 mH]

35 A circuit consisting of a resistor in series with an inductance takes
210 W at a power factor of 0.6 from a 50 V, 100 Hz supply. Find
(a) the current flowing, (b) the circuit phase angle, (c) the resistance,
(d) the impedance and (e) the inductance.

[(a) 7 A (b) 53°80 lagging (c) 4.286�
(d) 7.143� (e) 9.095 mH]

36 A 200 V, 60 Hz supply is applied to a capacitive circuit. The current
flowing is 2 A and the power dissipated is 150 W. Calculate the
values of the resistance and capacitance.

[37.5�, 28.61µF]



16 Single-phase parallel
a.c. circuits

At the end of this chapter you should be able to:

ž calculate unknown currents, impedances and circuit phase
angle from phasor diagrams for (a)R–L (b) R–C (c) L–C
(d) LR–C parallel a.c. circuits

ž state the condition for parallel resonance in anLR–C circuit

ž derive the resonant frequency equation for anLR–C parallel
a.c. circuit

ž determine the current and dynamic resistance at resonance in
anLR–C parallel circuit

ž understand and calculate Q-factor in anLR–C parallel circuit

ž understand how power factor may be improved

16.1 Introduction In parallel circuits, such as those shown in Figures 16.1 and 16.2, the
voltage is common to each branch of the network and is thus taken as
the reference phasor when drawing phasor diagrams.
For any parallel a.c. circuit:

True or active power,P D VI cos� watts (W)

or P D IR2R watts

Apparent power,S D VI voltamperes (VA)

Reactive power,Q D VI sin� reactive voltamperes (var)

Power factorD true power

apparent power
D P

S
D cos�

(These formulae are the same as for series a.c. circuits as used in
Chapter 15.)

Figure 16.1

16.2 R–L parallel a.c.
circuit

In the two branch parallel circuit containing resistanceR and inductanceL
shown in Figure 16.1, the current flowing in the resistance,IR, is in-phase
with the supply voltageV and the current flowing in the inductance,IL,
lags the supply voltage by 90°. The supply currentI is the phasor sum of
IR and IL and thus the currentI lags the applied voltageV by an angle
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lying between 0° and 90° (depending on the values ofIR andIL), shown
as angle� in the phasor diagram.

From the phasor diagram:

I D
√

I2

R C I2
L�, (by Pythagoras’ theorem)

where IR D V

R
andIL D V

XL

tan� D IL
IR

, sin� D IL
I

and cos� D IR
I

(by trigonometric ratios�

Circuit impedance,Z D V

I

Problem 1. A 20� resistor is connected in parallel with an induc-
tance of 2.387 mH across a 60 V, 1 kHz supply. Calculate (a) the
current in each branch, (b) the supply current, (c) the circuit phase
angle, (d) the circuit impedance, and (e) the power consumed.

The circuit and phasor diagrams are as shown in Figure 16.1.

(a) Current flowing in the resistor IR D V

R
D 60

20
D 3 A

Current flowing in the inductanceIL D V

XL
D V

2�fL

D 60

2�
1000�
2.387ð 10�3�

D 4 A

(b) From the phasor diagram, supply current,I D
√

IR2 C I2

L�

D
√

32 C 42�

D 5 A

(c) Circuit phase angle,� D arctan
IL
IR

D arctan
(

4

3

)
D 53.13°

D 53°8′ lagging

(d) Circuit impedance,Z D V

I
D 60

5
D 12Z

(e) Power consumedP D VI cos� D 
60�
5�
cos 53°80� D 180 W

(Alternatively, power consumedP D IR2R D 
3�2
20� D 180 W�

Further problems onR–L parallel a.c. circuits may be found in
Section 16.8, problems 1 and 2, page 256.
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16.3 R–C parallel a.c.
circuit

In the two branch parallel circuit containing resistanceR and capacitance
C shown in Figure 16.2,IR is in-phase with the supply voltageV and the
current flowing in the capacitor,IC, leadsV by 90°. The supply current
I is the phasor sum ofIR andIC and thus the currentI leads the applied
voltageV by an angle lying between 0° and 90° (depending on the values
of IR andIC), shown as anglę in the phasor diagram.

From the phasor diagram:

I D
√

I2

R C I2
C�, (by Pythagoras’ theorem)

where IR D V

R
andIC D V

XC

tan˛ D IC
IR

, sin˛ D IC
I

and cos̨ D IR
I

(by trigonometric ratios)

Circuit impedanceZ D V

I
Figure 16.2

Problem 2. A 30µF capacitor is connected in parallel with an
80 � resistor across a 240 V, 50 Hz supply. Calculate (a) the
current in each branch, (b) the supply current, (c) the circuit phase
angle, (d) the circuit impedance, (e) the power dissipated, and
(f) the apparent power.

The circuit and phasor diagrams are as shown in Figure 16.2.

(a) Current in resistor,IR D V

R
D 240

80
D 3 A

Current in capacitor,IC D V

XC
D V(

1

2�fC

)

D 2�fCV

D 2�
50�
30ð 106�
240�

D 2.262 A

(b) Supply current,I D
√

IR2 C IC2� D

√

32 C 2.2622�

D 3.757 A

(c) Circuit phase angle,̨ D arctan
IC
IR

D arctan
(

2.262

3

)

D 37°1′ leading

(d) Circuit impedance,Z D V

I
D 240

3.757
D 63.88Z
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(e) True or active power dissipated,P D VI cos˛

D 240
3.757� cos 37°10

D 720 W

(Alternatively, true powerP D IR2 R D 
3�2
80� D 720 W)

(f) Apparent power,S D VI D 
240�
3.757� D 901.7 VA

Problem 3. A capacitor C is connected in parallel with a resistor
R across a 120 V, 200 Hz supply. The supply current is 2 A at a
power factor of 0.6 leading. Determine the values of C and R.

The circuit diagram is shown in Figure 16.3(a).

Power factorD cos� D 0.6 leading, hence � D arccos 0.6 D 53.13°

leading.

From the phasor diagram shown in Figure 16.3(b),

IR D I cos 53.13° D 
2�
0.6�

D 1.2 A

and IC D I sin 53.13° D 
2�
0.8�

D 1.6 A

(Alternatively, IR and IC can be measured from the scaled phasor
diagram.)

Figure 16.3
From the circuit diagram,

IR D V

R
from whichR D V

IR
D 120

1.2
D 100Z

andIC D V

XC
D 2�fCV, from which,C D IC

2�fV

D 1.6

2�
200�
120�

D 10.61 mF

Further problems onR–C parallel a.c. circuits may be found in
Section 16.8, problems 3 and 4, page 256.

16.4 L –C parallel a.c.
circuit

In the two branch parallel circuit containing inductance L and capacitance
C shown in Figure 16.4,IL lagsV by 90° andIC leadsV by 90°.

Theoretically there are three phasor diagrams possible — each depend-
ing on the relative values ofIL andIC:
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Figure 16.4

(i) IL > IC (giving a supply current,I D IL � IC laggingV by 90°)

(ii) IC > IL (giving a supply current,I D IC � IL leadingV by 90°)

(iii) IL D IC (giving a supply current, I = 0).

The latter condition is not possible in practice due to circuit resistance
inevitably being present (as in the circuit described in Section 16.5).

For theL–C parallel circuit,IL D V

XL
, IC D V

XC

I D phasor difference betweenIL andIC, andZ D V

I

Problem 4. A pure inductance of 120 mH is connected in parallel
with a 25µF capacitor and the network is connected to a 100 V,
50 Hz supply. Determine (a) the branch currents, (b) the supply
current and its phase angle, (c) the circuit impedance, and (d) the
power consumed.

The circuit and phasor diagrams are as shown in Figure 16.4.

(a) Inductive reactance,XL D 2�fL D 2�
50�
120ð 10�3�

D 37.70 �

Capacitive reactance,XC D 1

2�fC
D 1

2�
50�
25ð 10�6�

D 127.3 �

Current flowing in inductance,IL D V

XL
D 100

37.70
D 2.653 A

Current flowing in capacitor, IC D V

XC
D 100

127.3
D 0.786 A

(b) IL andIC are anti-phase. Hence supply current,

I D IL � IC D 2.653� 0.786D 1.867 A and the current lags the
supply voltageV by 90° (see Figure 16.4(i))

(c) Circuit impedance,Z D V

I
D 100

1.867
D 53.56Z

(d) Power consumed,P D VI cos� D 
100�
1.867�
cos 90°�

D 0 W

Problem 5. Repeat Problem 4 for the condition when the
frequency is changed to 150 Hz.
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(a) Inductive reactance,XL D 2�
150�
120ð 10�3� D 113.1 �

Capacitive reactance,XC D 1

2�
150�
25ð 10�6�
D 42.44 �

Current flowing in inductance,IL D V

XL
D 100

113.1
D 0.884 A

Current flowing in capacitor,IC D V

XC
D 100

42.44
D 2.356 A

(b) Supply current,I D IC � IL D 2.356� 0.884D 1.472 A leadingV
by 90° (see Figure 4(ii))

(c) Circuit impedance,Z D V

I
D 100

1.472
D 67.93Z

(d) Power consumed,P D VI cos� D 0 W (since� D 90°)

From Problems 4 and 5:

(i) WhenXL < XC thenIL > IC andI lagsV by 90°

(ii) When XL > XC thenIL < IC andI leadsV by 90°

(iii) In a parallel circuit containing no resistance the power consumed
is zero

Further problems onL–C parallel a.c. circuits may be found in
Section 16.8, problems 5 and 6, page 256.

16.5 LR –C parallel a.c.
circuit

In the two branch circuit containing capacitanceC in parallel with induc-
tanceL and resistanceR in series (such as a coil) shown in Figure 16.5(a),
the phasor diagram for the LR branch alone is shown in Figure 16.5(b)
and the phasor diagram for theC branch is shown alone in Figure 16.5(c).
Rotating each and superimposing on one another gives the complete
phasor diagram shown in Figure 16.5(d).

The currentILR of Figure 16.5(d) may be resolved into horizontal and
vertical components. The horizontal component, shown as op isILR cos�1

and the vertical component, shown aspq is ILR sin�1. There are three
possible conditions for this circuit:

(i) IC > ILR sin�1 (giving a supply currentI leading V by angle
�— as shown in Figure 16.5(e))

(ii) ILR sin�1 > IC (giving I lagging V by angle�— as shown in
Figure 16.5(f))

(iii) IC D ILR sin�1 (this is called parallel resonance, see Section 16.6).

There are two methods of finding the phasor sum of currentsILR and
IC in Figures 16.5(e) and (f). These are: (i) by a scaled phasor diagram,
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Figure 16.5

or (ii) by resolving each current into their ‘in-phase’ (i.e. horizontal) and
‘quadrature’ (i.e. vertical) components,as demonstrated in problems 6
and 7. With reference to the phasor diagrams of Figure 16.5:

Impedance of LR branch,ZLR D
√

R2 C XL

2�

Current, ILR D V

ZLR
andIC D V

XC

Supply currentI D phasor sum ofILR andIC (by drawing)

D
√

f
ILR cos�1�2 C 
ILR sin�1 ¾ IC�2g (by calculation)

where¾ means ‘the difference between’.

Circuit impedanceZ D V

I

tan�1 D VL

VR
D XL

R
, sin�1 D XL

ZLR
and cos�1 D R

ZLR

tan� D ILR sin�1 ¾ IC
ILR cos�1

and cos� D ILR cos�1

I

Problem 6. A coil of inductance 159.2 mH and resistance 40� is
connected in parallel with a 30µF capacitor across a 240 V, 50 Hz
supply. Calculate (a) the current in the coil and its phase angle,
(b) the current in the capacitor and its phase angle, (c) the supply
current and its phase angle,(d) the circuit impedance, (e) the power
consumed, (f) the apparent power, and (g) the reactive power. Draw
the phasor diagram.



Single-phase parallel a.c. circuits245

Figure 16.6

The circuit diagram is shown in Figure 16.6(a).

(a) For the coil, inductive reactanceXL D 2�fL

D 2�
50�
159.2 ð 10�3�

D 50 �

ImpedanceZ1 D
√

R2 C X2

L� D
√

402 C 502� D 64.03 �

Current in coil,ILR D V

Z1
D 240

64.03
D 3.748 A

Branch phase angle�1 D arctan
XL

R
D arctan

(
50

40

)
D arctan 1.25

D 51.34° D 51°20′ lagging

(see phasor diagram in Figure 16.6(b))

(b) Capacitive reactance,XC D 1

2�fC
D 1

2�
50�
30ð 10�6�

D 106.1 �

Current in capacitor,IC D V

XC
D 240

106.1

= 2.262 A leading the supply
voltage by 90°

(see phasor diagram of Figure 16.6(b)).

(c) The supply current I is the phasor sum ofILR and IC This may be
obtained by drawing the phasor diagram to scale and measuring the
currentI and its phase angle relative toV. (CurrentI will always
be the diagonal of the parallelogram formed as in Figure 16.6(b)).

Alternatively the currentILR andIC may be resolved into their hori-
zontal (or ‘in-phase’) and vertical (or ‘quadrant’) components. The
horizontal component ofILR is

ILR cos
51°200� D 3.748 cos 51°200 D 2.342 A

The horizontal component ofIC is IC cos 90° D 0

Thus the total horizontal component,IH D 2.342 A

The vertical component ofILR D �ILR sin
51°200�

D �3.748 sin 51°200

D �2.926 A

The vertical component ofIC D IC sin 90°

D 2.262 sin 90° D 2.262 A
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Thus the total vertical component,IV D �2.926C 2.262

D −0.664 A

IH andIV are shown in Figure 16.7, from which,

I D
√

[
2.342�2 C 
�0.664�2] D 2.434 A

Angle � D arctan
(

0.664

2.342

)
D 15.83° D 15°500 lagging

Figure 16.7
Hence the supply current I = 2.434 A laggingV by 15°50′.

(d) Circuit impedance,Z D V

I
D 240

2.434
D 98.60Z

(e) Power consumed,P D VI cos� D 
240�
2.434� cos 15°500

D 562 W

(Alternatively,P D IR2R D ILR2R (in this case)

D 
3.748�2
40� D 562 W�

(f) Apparent power,S D VI D 
240�
2.434� D 584.2 VA

(g) Reactive power,Q D VI sin� D 
240�
2.434�
sin 15°500�

D 159.4 var

Problem 7. A coil of inductance 0.12 H and resistance 3 k� is
connected in parallel with a 0.02µF capacitor and is supplied at
40 V at a frequency of 5 kHz. Determine (a) the current in the coil,
and (b) the current in the capacitor. (c) Draw to scale the phasor
diagram and measure the supply current and its phase angle; check
the answer by calculation. Determine (d) the circuit impedance and
(e) the power consumed.

The circuit diagram is shown in Figure 16.8(a).

(a) Inductive reactance,XL D 2�fL D 2�
5000�
0.12� D 3770�

Impedance of coil,Z1 D
√

R2 C XL

2� D
√

[
3000�2 C 
3770�2]

D 4818�

Current in coil,ILR D V

Z1
D 40

4818
D 8.30 mA

Branch phase angle� D arctan
XL

R
D arctan

3770

3000

D 51.5° laggingFigure 16.8
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(b) Capacitive reactance,XC D 1

2�fC
D 1

2�
5000�
0.02ð 10�6�

D 1592�

Capacitor current,IC D V

XC
D 40

1592

D 25.13 mA leading V by 90°

(c) Currents ILR and IC are shown in the phasor diagram of
Figure 16.8(b). The parallelogram is completed as shown and the
supply current is given by the diagonal of the parallelogram. The
currentI is measured as19.3 mA leading voltageV by 74.5°

By calculation,I D
√

[
ILR cos 51.5°�2 C 
IC � ILR sin 51.5°�2]

D 19.34 mA

and� D arctan
(
IC � ILR sin 51.5°

ILR cos 51.5°

)
D 74.50°

(d) Circuit impedance,Z D V

I
D 40

19.34ð 10�3
D 2.068 kZ

(e) Power consumed,P D VI cos� D 
40�
19.34ð 10�3�
cos 74.50°�

D 206.7 mW

(Alternatively,P D IR2R D ILR2R D 
8.30ð 10�3�2
3000�

D 206.7 mW)

Further problems on theLR–C parallel a.c. circuit may be found in
Section 16.8, problems 7 and 8, page 256.

16.6 Parallel resonance
and Q-factor

Parallel resonance

Resonanceoccurs in the two branch network containing capacitanceC in
parallel with inductanceL and resistanceR in series (see Figure 16.5(a))
when the quadrature (i.e. vertical) component of currentILR is equal to
IC. At this condition the supply currentI is in-phase with the supply
voltageV.

Resonant frequency

When the quadrature component ofILR is equal toIC then:IC D ILR sin�1

(see Figure 16.9)
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Figure 16.9

Hence
V

XC
D
(

V

ZLR

)(
XL

ZLR

)
, (from Section 16.5)

from which,ZLR
2 D XCXL D 
2�frL�

(
1

2�frC

)
D L

C
(16.1)

Hence [
√

R2 C XL

2�]2 D L

C
andR2 C XL

2 D L

C

Thus 
2�frL�
2 D L

C
� R2 and 2�frL D

√(
L

C
� R2

)

and fr D 1

2�L

√(
L

C
� R2

)
D 1

2�

√√√√
(

L

L2C
� R2

L2

)

i.e. parallel resonant frequency,fr =
1

2p

√√√√
(

1
LC

− R2

L2

)
Hz

(WhenR is negligible, thenfr D 1

2�
p

LC�

, which is the same as for

series resonance.)

Current at resonance

Current at resonance,Ir D ILR cos�1 (from Figure 16.9)

D
(

V

ZLR

)(
R

ZLR

)
(from Section 16.5)

D VR

Z2
LR

However from equation (16.1),Z2
LR D L

C

henceI r =
VR
L
C

=
VRC

L
(16.2)

The current is at aminimum at resonance.

Dynamic resistance

Since the current at resonance is in-phase with the voltage the impedance
of the circuit acts as a resistance. This resistance is known as thedynamic
resistance,RD (or sometimes, the dynamic impedance).
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From equation (16.2), impedance at resonanceD V

Ir
D V(

VRC

L

) D L

RC

i.e. dynamic resistance,RD =
L

RC
ohms

Rejector circuit

The parallel resonant circuit is often described as arejector circuit since
it presents its maximum impedance at the resonant frequency and the
resultant current is a minimum.

Q-factor

Currents higher than the supply current can circulate within the parallel
branches of a parallel resonant circuit, the current leaving the capacitor
and establishing the magnetic field of the inductor, this then collapsing and
recharging the capacitor, and so on. TheQ-factor of a parallel resonant
circuit is the ratio of the current circulating in the parallel branches of the
circuit to the supply current, i.e. the current magnification.

Q-factor at resonanceD current magnificationD circulating current

supply current

D IC
Ir

D ILR sin�1

Ir

D ILR sin�1

ILR cos�1
D sin�1

cos�1

D tan�1 D XL

R

i.e. Q-factor at resonance=
2pfr L

R

(which is the same as for a series circuit)

Note that in aparallel circuit the Q-factor is a measure ofcurrent
magnification, whereas in aseries circuit it is a measure ofvoltage
magnification.

At mains frequencies the Q-factor of a parallel circuit is usually low,
typically less than 10, but in radio-frequency circuits the Q-factor can be
very high.

Problem 8. A pure inductance of 150 mH is connected in parallel
with a 40µF capacitor across a 50 V, variable frequency supply.
Determine (a) the resonant frequency of the circuit and (b) the
current circulating in the capacitor and inductance at resonance.
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Figure 16.10

The circuit diagram is shown in Figure 16.10.

(a) Parallel resonant frequency,fr D 1

2�

√(
1

LC
� R2

L2

)

However, resistanceR D 0. Hence,

fr D 1

2�

√(
1

LC

)
D 1

2�

√[
1


150ð 10�3�
40ð 10�6�

]

D 1

2�

√(
107


15�
4�

)

D 103

2�

√(
1

6

)
D 64.97 Hz

(b) Current circulating inL andC at resonance,

ICIRC D V

XC
D V(

1

2�frC

) D 2�frCV

HenceICIRC D 2�
64.97�
40ð 10�6�
50� D 0.816 A


Alternatively, ICIRC D V

XL
D V

2�frL
D 50

2�
64.97�
0.15�

D 0.817 A�

Problem 9. A coil of inductance 0.20 H and resistance 60� is
connected in parallel with a 20µF capacitor across a 20 V, vari-
able frequency supply. Calculate (a) the resonant frequency, (b) the
dynamic resistance, (c) the current at resonance and (d) the circuit
Q-factor at resonance.

(a) Parallel resonant frequency,

fr D 1

2�

√(
1

LC
� R2

L2

)

D 1

2�

√(
1


0.20�
20ð 10�6�
� 
60�2


0.2�2

)

D 1

2�

p

250 000� 90 000�

D 1

2�

p

160 000� D 1

2�

400�

D 63.66 Hz
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(b) Dynamic resistance,RD D L

RC
D 0.20


60�
20ð 10�6�
D 166.7 Z

(c) Current at resonance,Ir D V

RD
D 20

166.7
D 0.12 A

(d) Circuit Q-factor at resonanceD 2�frL

R
D 2�
63.66�
0.2�

60
D 1.33

Alternatively, Q-factor at resonanceD current magnification (for a
parallel circuit)D Ic/Ir

Ic D V

Xc
D V(

1

2�frC

) D 2�frCV D 2�
63.66�
20ð 10�6�
20�

D 0.16 A

Hence Q-factorD Ic
Ir

D 0.16

0.12
D 1.33, as obtained above

Problem 10. A coil of inductance 100 mH and resistance 800�
is connected in parallel with a variable capacitor across a 12 V,
5 kHz supply. Determine for the condition when the supply current
is a minimum: (a) the capacitance of the capacitor, (b) the dynamic
resistance, (c) the supply current, and (d) the Q-factor.

(a) The supply current is a minimum when the parallel circuit is at
resonance.

Resonant frequency,fr D 1

2�

√(
1

LC
� R2

L2

)

Transposing for C gives:
2�fr�
2 D 1

LC
� R2

L2


2�fr�
2 C R2

L2
D 1

LC

C D 1

L

{

2�fr�2 C R2

L2

}

WhenL D 100 mH,R D 800� andfr D 5000 Hz,

C D 1

100ð 10�3

{
2�
5000�2 C 8002


100ð 10�3�2

}
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D 1

0.1[�2108 C 
0.64�108]
F

D 106

0.1
10.51ð 108�
µF D 0.009515mF or 9.515 nF

(b) Dynamic resistance,RD D L

CR
D 100ð 10�3


9.515ð 10�9�
800�

D 13.14 kZ

(c) Supply current at resonance,Ir D V

RD
D 12

13.14ð 103
D 0.913 mA

(d) Q-factor at resonance =
2�frL

R
D 2�
5000�
100ð 10�3�

800
D 3.93

Alternatively, Q-factor at resonanceD Ic

Ir
D V/Xc

Ir
D 2�frCV

Ir

D 2�
5000�
9.515ð 10�9�
12�

0.913ð 10�3

D 3.93

Further problems on parallel resonance and Q-factor may be found in
Section 16.8, problems 9 to 12, page 257.

16.7 Power factor
improvement

For a particular power supplied, a high power factor reduces the current
flowing in a supply system and therefore reduces the cost of cables,
switch-gear, transformers and generators. Supply authorities use tariffs
which encourage electricity consumers to operate at a reasonably high
power factor. Industrial loads such as a.c. motors are essentially induc-
tive (R–L) and may have a low power factor. One method of improving
(or correcting) the power factor of an inductive load is to connect a
static capacitorC in parallel with the load (see Figure 16.11(a)). The
supply current is reduced fromILR to I, the phasor sum ofILR and
IC, and the circuit power factor improves from cos�1 to cos�2 (see
Figure 16.11(b)).

Problem 11. A single-phase motor takes 50 A at a power factor of
0.6 lagging from a 240 V, 50 Hz supply. Determine (a) the current
taken by a capacitor connected in parallel with the motor to correct
the power factor to unity, and (b) the value of the supply current
after power factor correction.
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Figure 16.11

The circuit diagram is shown in Figure 16.12(a).

(a) A power factor of 0.6 lagging means that cos� D 0.6
i.e. � D arccos 0.6 D 53°80

HenceIM lagsV by 53°80 as shown in Figure 16.12(b).

If the power factor is to be improved to unity then the phase differ-
ence between supply currentI and voltageV is 0°, i.e. I is in phase
with V as shown in Figure 16.12(c). For this to be so,IC must
equal the length ab, such that the phasor sum ofIM and IC is I.
ab D IM sin 53°80 D 50
0.8� D 40 A

Hence the capacitor currentI c must be 40 A for the power factor
to be unity.

(b) Supply currentI D IM cos 53°80 D 50
0.6� D 30 A

Problem 12. A motor has an output of 4.8 kW, an efficiency of
80% and a power factor of 0.625 lagging when operated from a
240 V, 50 Hz supply. It is required to improve the power factor to
0.95 lagging by connecting a capacitor in parallel with the motor.
Determine (a) the current taken by the motor, (b) the supply current
after power factor correction, (c) the current taken by the capacitor,
(d) the capacitance of the capacitor, and (e) the kvar rating of the
capacitor.

(a) Efficiency D power output

power input
hence

80

100
D 4800

power input

Power inputD 4800

0.8
D 6000 W

Hence, 6000D VIM cos� D 
240�
IM�
0.625�,

since cos� D p.f. D 0.625

Thus current taken by the motor,IM D 6000


240�
0.625�
D 40 A

The circuit diagram is shown in Figure 16.13(a).

The phase angle betweenIM andV is given by:

� D arccos 0.625D 51.32° D 51°190, hence the phasor diagram is as
shown in Figure 16.13(b).

(b) When a capacitorC is connected in parallel with the motor a current
IC flows which leadsV by 90°. The phasor sum ofIM andIC gives
the supply currentI, and has to be such as to change the circuit
power factor to 0.95 lagging, i.e. a phase angle of arccos 0.95 or
18°120 lagging, as shown in Figure 16.13(c).

Figure 16.12
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Figure 16.13

The horizontal component ofIM (shown as oa)D IM cos 51°190

D 40 cos 51°190

D 25 A

The horizontal component ofI (also given by oa)D I cos 18°120

D 0.95 I

Equating the horizontal components gives: 25D 0.95 I

Hence the supply current after p.f. correction,I D 25

0.95
D 26.32 A

(c) The vertical component ofIM (shown as ab)D IM sin 51°190

D 40 sin 51°190

D 31.22 A

The vertical component ofI (shown as ac) D I sin 18°120

D 26.32 sin 18°120

D 8.22 A

The magnitude of the capacitor currentIC (shown as bc) is given
by ab � ac, i.e. 31.22� 8.22 D 23 A

(d) CurrentIC D V

Xc
D V(

1

2�fC

) D 2�fCV,

from which,C D IC
2�fV

D 23

2�
50�
240�
F D 305mF

(e) kvar rating of the capacitorD VIc
1000

D 
240�
23�

1000
D 5.52 kvar

In this problem the supply current has been reduced from 40 A to
26.32 A without altering the current or power taken by the motor. This
means that the size of generating plant and the cross-sectional area of
conductors supplying both the factory and the motor can be less — with
an obvious saving in cost.

Problem 13. A 250 V, 50 Hz single-phase supply feeds the
following loads (i) incandescent lamps taking a current of 10 A
at unity power factor, (ii) fluorescent lamps taking 8 A at a power
factor of 0.7 lagging, (iii) a 3 kVA motor operating at full load and
at a power factor of 0.8 lagging and (iv) a static capacitor. Deter-
mine, for the lamps and motor, (a) the total current, (b) the overall
power factor and (c) the total power. (d) Find the value of the static
capacitor to improve the overall power factor to 0.975 lagging.
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Figure 16.14

A phasor diagram is constructed as shown in Figure 16.14(a), where
8 A is lagging voltageV by arccos 0.7, i.e. 45.57°, and the motor current
is 3000/250, i.e. 12 A laggingV by arccos 0.8, i.e. 36.87°

(a) The horizontal component of the currents

D 10 cos 0° C 12 cos 36.87° C 8 cos 45.57°

D 10C 9.6 C 5.6 D 25.2 A

The vertical component of the currents

D 10 sin 0° � 12 sin 36.87° � 8 sin 45.57°

D 0 � 7.2 � 5.713D �12.91 A

From Figure 16.14(b), total current,IL D
√

[
25.2�2 C 
12.91�2]

D 28.31 A

at a phase angle of� D arctan
(

12.91

25.2

)
, i.e. 27.13° lagging

(b) Power factorD cos� D cos 27.13° D 0.890 lagging

(c) Total power,P D VIL cos� D 
250�
28.31�
0.890� D 6.3 kW

(d) To improve the power factor, a capacitor is connected in parallel
with the loads. The capacitor takes a currentIC such that the supply
current falls from 28.31 A toI, lagging V by arccos 0.975, i.e.
12.84°. The phasor diagram is shown in Figure 16.15.

Figure 16.15

oaD 28.31 cos 27.13° D I cos 12.84°

HenceI D 28.31 cos 27.13°

cos 12.84°
D 25.84 A

CurrentIC D bc D 
ab � ac�

D 28.31 sin 27.13° � 25.84 sin 12.84°

D 12.91� 5.742

D 7.168 A

Ic D V

Xc
D V(

1

2�fC

) D 2�fCV

Hence capacitanceC D Ic
2�fV

D 7.168

2�
50�
250�
F

= 91.27 mF

Thus to improve the power factor from 0.890 to 0.975 lagging a
91.27µF capacitor is connected in parallel with the loads.
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Further problems on power factor improvement may be found in
Section 16.8 following, problems 13 to 16, page 257.

16.8 Further problems
on single-phase parallel

a.c. circuits

R–L parallel a.c. circuit

1 A 30 � resistor is connected in parallel with a pure inductance of
3 mH across a 110 V, 2 kHz supply. Calculate (a) the current in each
branch, (b) the circuit current, (c) the circuit phase angle, (d) the
circuit impedance, (e) the power consumed, and (f) the circuit power
factor.

[(a) IR D 3.67 A, IL D 2.92 A (b) 4.69 A (c) 38°300
lagging (d) 23.45� (e) 404 W (f) 0.783 lagging]

2 A 40 � resistance is connected in parallel with a coil of inductance
L and negligible resistance across a 200 V, 50 Hz supply and the
supply current is found to be 8 A. Draw a phasor diagram to scale
and determine the inductance of the coil. [102 mH]

R–C parallel a.c. circuit

3 A 1500 nF capacitor is connected in parallel with a 16� resistor
across a 10 V, 10 kHz supply. Calculate (a) the current in each
branch, (b) the supply current, (c) the circuit phase angle, (d) the
circuit impedance, (e) the power consumed, (f) the apparent power,
and (g) the circuit power factor. Draw the phasor diagram.

[(a) IR D 0.625 A, IC D 0.943 A (b) 1.13 A (c) 56°280 leading
(d) 8.85 � (e) 6.25 W (f) 11.3 VA (g) 0.55 leading]

4 A capacitorC is connected in parallel with a resistanceR across a
60 V, 100 Hz supply. The supply current is 0.6 A at a power factor
of 0.8 leading. Calculate the value ofR andC.

[R D 125�, C D 9.55 µF]

L –C parallel a.c. circuit

5 An inductance of 80 mH is connected in parallel with a capacitance
of 10 µF across a 60 V, 100 Hz supply. Determine (a) the branch
currents, (b) the supply current, (c) the circuit phase angle, (d) the
circuit impedance and (e) the power consumed.

[(a) IC D 0.377 A, IL D 1.194 A (b) 0.817 A
(c) 90° lagging (d) 73.44 � (e) 0 W]

6 Repeat problem 5 for a supply frequency of 200 Hz.
[(a) IC D 0.754 A, IL D 0.597 A (b) 0.157 A

(c) 90° leading (d) 382.2 � (e) 0 W]

LR –C parallel a.c. circuit

7 A coil of resistance 60� and inductance 318.4 mH is connected
in parallel with a 15µF capacitor across a 200 V, 50 Hz supply.
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Calculate (a) the current in the coil, (b) the current in the capacitor,
(c) the supply current and its phase angle, (d) the circuit impedance,
(e) the power consumed, (f) the apparent power and (g) the reactive
power. Draw the phasor diagram.

[(a) 1.715 A (b) 0.943 A (c) 1.028 A at 30°540 lagging
(d) 194.6 � (e) 176.5 W (f) 205.6 VA (g) 105.6 var]

8 A 25 nF capacitor is connected in parallel with a coil of resis-
tance 2 k� and inductance 0.20 H across a 100 V, 4 kHz supply.
Determine (a) the current in the coil, (b) the current in the capac-
itor, (c) the supply current and its phase angle (by drawing a phasor
diagram to scale, and also by calculation), (d) the circuit impedance,
and (e) the power consumed.

[(a) 18.48 mA (b) 62.83 mA (c) 46.17 mA at 81°290
leading (d) 2.166 k� (e) 0.683 W]

Parallel resonance and Q-factor

9 A 0.15 µF capacitor and a pure inductance of 0.01 H are connected in
parallel across a 10 V, variable frequency supply. Determine (a) the
resonant frequency of the circuit, and (b) the current circulating in
the capacitor and inductance.

[(a) 4.11 kHz (b) 38.73 mA]

10 A 30 µF capacitor is connected in parallel with a coil of inductance
50 mH and unknown resistanceR across a 120 V, 50 Hz supply. If
the circuit has an overall power factor of 1 find (a) the value ofR,
(b) the current in the coil, and (c) the supply current.

[(a) 37.7 � (b) 2.94 A (c) 2.714 A]

11 A coil of resistance 25� and inductance 150 mH is connected in
parallel with a 10µF capacitor across a 60 V, variable frequency
supply. Calculate (a) the resonant frequency, (b) the dynamic resis-
tance, (c) the current at resonance and (d) the Q-factor at resonance.

[(a) 127.2 Hz (b) 600�
(c) 0.10 A (d) 4.80]

12 A coil of resistance 1.5 k� and 0.25 H inductance is connected in
parallel with a variable capacitance across a 10 V, 8 kHz supply.
Calculate (a) the capacitance of the capacitor when the supply current
is a minimum, (b) the dynamic resistance, and (c) the supply current.

[(a) 1561 pF (b) 106.8 k� (c) 93.66µA]

Power factor improvement

13 A 415 V alternator is supplying a load of 55 kW at a power factor
of 0.65 lagging. Calculate (a) the kVA loading and (b) the current
taken from the alternator. (c) If the power factor is now raised to
unity find the new kVA loading.

[(a) 84.6 kVA (b) 203.9 A (c) 84.6 kVA]

14 A single phase motor takes 30 A at a power factor of 0.65 lagging
from a 240 V, 50 Hz supply. Determine (a) the current taken by the
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capacitor connected in parallel to correct the power factor to unity,
and (b) the value of the supply current after power factor correction.

[(a) 22.80 A (b) 19.5 A]

15 A motor has an output of 6 kW, an efficiency of 75% and a power
factor of 0.64 lagging when operated from a 250 V, 60 Hz supply. It
is required to raise the power factor to 0.925 lagging by connecting a
capacitor in parallel with the motor. Determine (a) the current taken
by the motor, (b) the supply current after power factor correction,
(c) the current taken by the capacitor, (d) the capacitance of the
capacitor and (e) the kvar rating of the capacitor.

[(a) 50 A (b) 34.59 A (c) 25.28 A (d) 268.2µF (e) 6.32 kvar]

16 A 200 V, 50 Hz single-phase supply feeds the following loads:
(i) fluorescent lamps taking a current of 8 A at a power factor of
0.9 leading, (ii) incandescent lamps taking a current of 6 A at unity
power factor, (iii) a motor taking a current of 12 A at a power factor
of 0.65 lagging. Determine the total current taken from the supply
and the overall power factor. Find also the value of a static capacitor
connected in parallel with the loads to improve the overall power
factor to 0.98 lagging. [21.74 A, 0.966 lagging, 21.68µF]



17 D.c. transients

At the end of this chapter you should be able to:

ž understand the term ‘transient’

ž describe the transient response of capacitor and resistor
voltages, and current in a seriesC–R d.c. circuit

ž define the term ‘time constant’

ž calculate time constant in aC–R circuit

ž draw transient growth and decay curves for aC–R circuit

ž use equationsvC D V�1 � e�t/�	, vR D Ve�t/� and i D Ie�t/�
for aCR circuit

ž describe the transient response when discharging a capacitor

ž describe the transient response of inductor and resistor
voltages, and current in a seriesL–R d.c. circuit

ž calculate time constant in anL–R circuit

ž draw transient growth and decay curves for anLR circuit

ž use equationsvL D Ve�t/� , vR D V�1 � e�t/�	 and
i D I�1 � e�t/�	

ž describe the transient response for current decay in anLR
circuit

ž understand the switching of inductive circuits

ž describe the effects of time constant on a rectangular
waveform via integrator and differentiator circuits

17.1 Introduction When a d.c. voltage is applied to a capacitorC, and resistorR connected
in series, there is a short period of time immediately after the voltage is
connected, during which the current flowing in the circuit and voltages
acrossC andR are changing.

Similarly, when a d.c. voltage is connected to a circuit having induc-
tanceL connected in series with resistanceR, there is a short period of
time immediately after the voltage is connected, during which the current
flowing in the circuit and the voltages acrossL andR are changing.

These changing values are calledtransients.
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17.2 Charging a
capacitor

(a) The circuit diagram for a series connectedC–R circuit is shown
in Figure 17.1. When switch S is closed then by Kirchhoff’s
voltage law:

V D vC C vR �17.1	

Figure 17.1

(b) The battery voltageV is constant. The capacitor voltagevC is given
by q/C, whereq is the charge on the capacitor. The voltage drop
acrossR is given byiR, wherei is the current flowing in the circuit.
Hence at all times:

V D q

C
C iR �17.2	

At the instant of closing S, (initial circuit condition), assuming there
is no initial charge on the capacitor,q0 is zero, hencevCo is zero.
Thus from equation (17.1),V D 0 C vRo, i.e. vRo D V. This shows
that the resistance to current is solely due toR, and the initial current
flowing, io D I D V/R.

(c) A short time later at timet1 seconds after closing S, the capacitor
is partly charged to, say,q1 coulombs because current has been
flowing. The voltagevC1 is now q1/C volts. If the current flowing
is i1 amperes, then the voltage drop acrossR has fallen toi1R volts.
Thus, equation (17.2) is nowV D �q1/C	C i1R.

(d) A short time later still, say at timet2 seconds after closing the switch,
the charge has increased toq2 coulombs andvC has increased toq2/C
volts. SinceV D vC C vR and V is a constant, thenvR decreases
to i2R, Thus vC is increasing andi and vR are decreasing as time
increases.

(e) Ultimately, a few seconds after closing S, (i.e. at the final orsteady
state condition), the capacitor is fully charged to, say,Q coulombs,
current no longer flows, i.e.i D 0, and hencevR D iR D 0. It follows
from equation (17.1) thatvC D V.

(f) Curves showing the changes invC, vR andi with time are shown in
Figure 17.2.

The curve showing the variation ofvC with time is called an
exponential growth curve and the graph is called the ‘capacitor
voltage/time’ characteristic. The curves showing the variation ofvR
andi with time are calledexponential decay curves, and the graphs
are called ‘resistor voltage/time’ and ‘current/time’ characteristics
respectively. (The name ‘exponential’ shows that the shape can be
expressed mathematically by an exponential mathematical equation,
as shown in Section 17.4).

17.3 Time constant for a
C –R circuit

(a) If a constant d.c. voltage is applied to a series connectedC–R
circuit, a transient curve of capacitor voltagevC is as shown in
Figure 17.2(a).

Figure 17.2
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Figure 17.3

(b) With reference to Figure 17.3, let the constant voltage supply be
replaced by a variable voltage supply at timet1 seconds. Let the
voltage be varied so that thecurrent flowing in the circuit is
constant.

(c) Since the current flowing is a constant, the curve will follow a
tangent, AB, drawn to the curve at point A.

(d) Let the capacitor voltagevC reach its final value ofV at time t2
seconds.

(e) The time corresponding to�t2 � t1	 seconds is called thetime
constant of the circuit, denoted by the Greek letter ‘tau’,�. The
value of the time constant isCR seconds, i.e., for a series connected
C–R circuit,

time constant t = CR seconds

Since the variable voltage mentioned in para (b) above can be
applied to any instant during the transient change, it may be applied
at t D 0, i.e., at the instant of connecting the circuit to the supply. If
this is done, then the time constant of the circuit may be defined as:

‘ the time taken for a transient to reach its final state if the initial rate
of change is maintained’.

17.4 Transient curves for
a C –R circuit

There are two main methods of drawing transient curves graphically, these
being:

(a) the tangent method— this method is shown in Problem 1 below
and

(b) the initial slope and three point method, which is shown in
Problem 2, and is based on the following properties of a transient
exponential curve:

(i) for a growth curve, the value of a transient at a time equal to
one time constant is 0.632 of its steady state value (usually
taken as 63% of the steady state value), at a time equal to
two and a half time constants is 0.918 if its steady state value
(usually taken as 92% of its steady state value) and at a time
equal to five time constants is equal to its steady state value,

(ii) for a decay curve, the value of a transient at a time equal to
one time constant is 0.368 of its initial value (usually taken as
37% of its initial value), at a time equal to two and a half time
constants is 0.082 of its initial value (usually taken as 8% of
its initial value) and at a time equal to five time constants is
equal to zero.
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The transient curves shown in Figure 17.2 have mathematical equations,
obtained by solving the differential equations representing the circuit. The
equations of the curves are:

growth of capacitor voltage,vC D V�1 � e�t/CR	 D V�1 � e�t/�	

decay of resistor voltage, vR D Ve�t/CR D Ve�t/� and

decay of current flowing, i D Ie�t/CR D Ie�t/�

These equations are derived analytically in Chapter 45.

Problem 1. A 15µF uncharged capacitor is connected in series
with a 47 k� resistor across a 120 V, d.c. supply. Use the tangential
graphical method to draw the capacitor voltage/time characteristic
of the circuit. From the characteristic, determine the capacitor
voltage at a time equal to one time constant after being connected
to the supply, and also two seconds after being connected to the
supply. Also, find the time for the capacitor voltage to reach one
half of its steady state value.

To construct an exponential curve, the time constant of the circuit and
steady state value need to be determined.

Time constantD CR D 15 µF ð 47 k� D 15ð 10�6 ð 47ð 103

D 0.705 s

Steady state value ofvC D V, i.e. vC D 120 V.

With reference to Figure 17.4, the scale of the horizontal axis is drawn
so that it spans at least five time constants, i.e. 5ð 0.705 or about
3.5 seconds. The scale of the vertical axis spans the change in the
capacitor voltage, that is, from 0 to 120 V. A broken line AB is drawn
corresponding to the final value ofvC.Figure 17.4

Point C is measured along AB so that AC is equal to 1�, i.e., ACD
0.705 s. Straight line OC is drawn. Assuming that about five intermediate
points are needed to draw the curve accurately, a point D is selected on
OC corresponding to avC value of about 20 V. DE is drawn vertically. EF
is made to correspond to 1�, i.e. EFD 0.705 s. A straight line is drawn
joining DF. This procedure of

(a) drawing a vertical line through point selected,

(b) at the steady-state value, drawing a horizontal line corresponding to
1�, and

(c) joining the first and last points,

is repeated forvC values of 40, 60, 80 and 100 V, giving points G, H, I
and J.

The capacitor voltage effectively reaches its steady-state value of 120 V
after a time equal to five time constants, shown as point K. Drawing a
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smooth curve through points O, D, G, H, I, J and K gives the exponential
growth curve of capacitor voltage.

From the graph, the value of capacitor voltage at a time equal to
the time constant is about75 V. It is a characteristic of all exponen-
tial growth curves, that after a time equal to one time constant, the
value of the transient is 0.632 of its steady-state value. In this problem,
0.632ð 120D 75.84 V. Also from the graph, whent is two seconds,
vC is about115 Volts. [This value may be checked using the equation
vC�1 � e�t/�	, whereV D 120 V, � D 0.705 s andt D 2 s. This calcula-
tion givesvC D 112.97 V.]

The time forvC to rise to one half of its final value, i.e. 60 V, can be
determined from the graph and is about0.5 s. [This value may be checked
usingvC D V�1 � e�t/�	 whereV D 120 V, vC D 60 V and� D 0.705 s,
giving t D 0.489 s.]

Problem 2. A 4µF capacitor is charged to 24 V and then
discharged through a 220 k� resistor. Use the ‘initial slope
and three point’ method to draw: (a) the capacitor voltage/time
characteristic, (b) the resistor voltage/time characteristic and (c) the
current/time characteristic, for the transients which occur. From
the characteristics determine the value of capacitor voltage, resistor
voltage and current one and a half seconds after discharge has
started.

To draw the transient curves, the time constant of the circuit and steady
state values are needed.

Time constant,� D CR D 4 ð 10�6 ð 220ð 103 D 0.88 s

Initially, capacitor voltagevC D vR D 24 V, i D V

R
D 24

220ð 103

D 0.109 mA

Finally, vC D vR D i D 0

(a) The exponential decay of capacitor voltage is from 24 V to 0 V
in a time equal to five time constants, i.e., 5ð 0.88 D 4.4 s. With
reference to Figure 17.5, to construct the decay curve:

(i) the horizontal scale is made so that it spans at least five time
constants, i.e. 4.4 s,

(ii) the vertical scale is made to span the change in capacitor
voltage, i.e., 0 to 24 V,

(iii) point A corresponds to the initial capacitor voltage, i.e, 24 V,

(iv) OB is made equal to one time constant and line AB is drawn.
This gives the initial slope of the transient,

(v) the value of the transient after a time equal to one time
constant is 0.368 of the initial value, i.e. 0.368ð 24 D
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8.83 V; a vertical line is drawn through B and distance BC
is made equal to 8.83 V,

(vi) the value of the transient after a time equal to two and a half
time constants is 0.082 of the initial value, i.e., 0.082ð 24 D
1.97 V, shown as point D in Figure 17.5,

Figure 17.5

(vii) the transient effectively dies away to zero after a time equal
to five time constants, i.e., 4.4 s, giving point E.

The smooth curve drawn through points A, C, D and E represents
the decay transient. At 112 s after decay has started,vC ³ 4.4 V.
[This may be checked usingvC D Ve�t/� , whereV D 24, t D 11

2
and� D 0.88, givingvC D 4.36 V]

(b) The voltage drop across the resistor is equal to the capacitor voltage
when a capacitor is discharging through a resistor, thus the resistor
voltage/time characteristic is identical to that shown in Figure 17.5.

SincevR D vC, then at 112 seconds after decay has started,
vR ³ 4.4 V (see (vii) above).

(c) The current/time characteristic is constructed in the same way as
the capacitor voltage/time characteristic, shown in part (a) of this
problem, and is as shown in Figure 17.6. The values are:

point A: initial value of currentD 0.109 mA

point C: at 1�, i D 0.368ð 0.109D 0.040 mA
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Figure 17.6

point D: at 2.5�, i D 0.082ð 0.109D 0.009 mA

point E: at 5�, i D 0

Hence the current transient is as shown. At a time of 11
2 seconds, the

value of current, from the characteristic is0.02 mA. [This may be
checked usingi D Ie��t/�	 where I D 0.109, t D 11

2 and � D 0.88,
giving i D 0.0198 mA or 19.8µA]

Problem 3. A 20µF capacitor is connected in series with a 50 k�
resistor and the circuit is connected to a 20 V, d.c. supply. Deter-
mine

(a) the initial value of the current flowing,

(b) the time constant of the circuit,

(c) the value of the current one second after connection,

(d) the value of the capacitor voltage two seconds after connec-
tion, and

(e) the time after connection when the resistor voltage is 15 V

Parts (c), (d) and (e) may be determined graphically, as shown in Prob-
lems 1 and 2 or by calculation as shown below.

V D 20 V, C D 20 µF D 20ð 10�6 F, R D 50 k� D 50ð 103 V

(a) The initial value of the current flowing is

I D V

R
, i.e.

20

50ð 103
D 0.4 mA

(b) From Section 17.3 the time constant,

� D CR D �20ð 10�6	ð �50ð 103	 D 1 s



266 Electrical Circuit Theory and Technology

(c) Current,i D Ie�t/�

Working in mA units,i D 0.4e�1/1 D 0.4 ð 0.368D 0.147 mA

(d) Capacitor voltage,vC D V�1 � e�t/�	 D 20�1 � e�2/1	

D 20�1 � 0.135	 D 20ð 0.865D 17.3 V

(e) Resistor voltage,vR D Ve�t/�

Thus 15D 20e�t/1, 15
20 D e�t, i.e. et D 20

15 D 4
3

Taking natural logarithms of each side of the equation gives

t D ln 4
3 D ln 1.3333

i.e, time, t = 0.288 s

Problem 4. A circuit consists of a resistor connected in series with
a 0.5µF capacitor and has a time constant of 12 ms. Determine
(a) the value of the resistor, and (b) the capacitor voltage 7 ms
after connecting the circuit to a 10 V supply

(a) The time constant� D CR, henceR D �

C

i.e. R D 12ð 10�3

0.5 ð 10�6
D 24ð 103 D 24 kZ

(b) The equation for the growth of capacitor voltage is:

vC D V�1 � e�t/�	

Since� D 12 msD 12ð 10�3 s,V D 10 V and

t D 7 msD 7 ð 10�3 s,

thenvC D 10

[
1 � e

� 7ð10�3

12ð10�3

]
D 10�1 � e�0.583	

D 10�1 � 0.558	 D 4.42 V

Alternatively, the value ofvC when t is 7 ms may be determined
using the growth characteristic as shown in Problem 1.

17.5 Discharging a
capacitor

When a capacitor is charged (i.e. with the switch in position A in
Figure 17.7), and the switch is then moved to position B, the electrons
stored in the capacitor keep the current flowing for a short time. Initially,
at the instant of moving from A to B, the current flow is such that the
capacitor voltagevC is balanced by an equal and opposite voltagevR D iR.
Since initially vC D vR D V, then i D I D V/R. During the transient
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Figure 17.7

decay, by applying Kirchhoff’s voltage law to Figure 17.7,vC D vR.
Finally the transients decay exponentially to zero, i.e.vC D vR D 0. The
transient curves representing the voltages and current are as shown in
Figure 17.8.

The equations representing the transient curves during the discharge
period of a series connectedC–R circuit are:

decay of voltage,vC D vR D Ve��t/CR	 D Ve��t/�	

decay of current, i D Ie��t/CR	 D Ie��t/�	

When a capacitor has been disconnected from the supply it may still be
charged and it may retain this charge for some considerable time. Thus
precautions must be taken to ensure that the capacitor is automatically
discharged after the supply is switched off. This is done by connecting a
high value resistor across the capacitor terminals.

Problem 5. A capacitor is charged to 100 V and then discharged
through a 50 k� resistor. If the time constant of the circuit is 0.8 s,
determine: (a) the value of the capacitor, (b) the time for the capacitor
voltage to fall to 20 V, (c) the current flowing when the capacitor
has been discharging for 0.5 s, and (d) the voltage drop across the
resistor when the capacitor has been discharging for one second.

Figure 17.8

Parts (b), (c) and (d) of this problem may be solved graphically as shown
in Problems 1 and 2 or by calculation as shown below.

V D 100 V, � D 0.8 s,R D 50 k� D 50ð 103 �

(a) Since time constant,� D CR, C D �/R

i.e. C D 0.8

50ð 103
D 16 mF

(b) vC D Ve�t/�

20 D 100e�t/0.8, i.e. 1
5 D e�t/0.8

Thuset/0.8 D 5 and taking natural logarithms of each side, gives

t

0.8
D ln 5, i.e., t D 0.8 ln 5

Hence t = 1.29 s

(c) i D Ie�t/�

The initial current flowing,I D V

R
D 100

50ð 103
D 2 mA

Working in mA units,i D Ie�t/� D 2e��0.5/0.8	 D 2e�0.625

D 2 ð 0.535D 1.07 mA
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(d) vR D vC D Ve�t/�

D 100e�1/0.8 D 100e�1.25

D 100ð 0.287D 28.7 V

Problem 6. A 0.1µF capacitor is charged to 200 V before being
connected across a 4 k� resistor. Determine (a) the initial discharge
current, (b) the time constant of the circuit, and (c) the minimum
time required for the voltage across the capacitor to fall to less
than 2 V

(a) Initial discharge current,i D V

R
D 200

4 ð 103
D 0.05 A or 50 mA

(b) Time constant� D CR D 0.1 ð 10�6 ð 4 ð 103

D 0.0004 s or 0.4 ms

(c) The minimum time for the capacitor voltage to fall to less than 2 V,
i.e., less than or2

200 or 1% of the initial value is given by 5�.

5� D 5 ð 0.4 D 2 ms

In a d.c. circuit, a capacitor blocks the current except during the
times that there are changes in the supply voltage.

Further problems on transients in series connected C-R circuits may be
found in Section 17.12, problems 1 to 8, page 276.

17.6 Current growth in
an L –R circuit

(a) The circuit diagram for a series connectedL–R circuit is shown
in Figure 17.9. When switch S is closed, then by Kirchhoff’s
voltage law:

V D vL C vR �17.3	

(b) The battery voltageV is constant. The voltage across the inductance
is the induced voltage, i.e.

vL D L ð change of current

change of time
D L

d i

d t

The voltage drop acrossR, vR is given byiR. Hence, at all times:

V D L�d i/d t	C iR �17.4	Figure 17.9
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Figure 17.10

(c) At the instant of closing the switch, the rate of change of current is
such that it induces an e.m.f. in the inductance which is equal and
opposite toV, henceV D vL C 0, i.e.vL D V. From equation (17.3),
becausevL D V, thenvR D 0 andi D 0

(d) A short time later at timet1 seconds after closing S, currenti1 is
flowing, since there is a rate of change of current initially, resulting
in a voltage drop ofi1R across the resistor. SinceV (constant)D
vL C vR the induced e.m.f. is reduced, and equation (17.4) becomes:

V D L
d i1
d t1

C i1R

(e) A short time later still, say at timet2 seconds after closing the
switch, the current flowing isi2, and the voltage drop across the
resistor increases toi2R. SincevR increases,vL decreases.

(f) Ultimately, a few seconds after closing S, the current flow is entirely
limited by R, the rate of change of current is zero and hencevL
is zero. ThusV D iR. Under these conditions, steady state current
flows, usually signified byI. Thus,I D V/R, vR D IR and vL D 0
at steady state conditions.

(g) Curves showing the changes invL, vR and i with time are shown
in Figure 17.10 and indicate thatvL is a maximum value initially
(i.e equal toV), decaying exponentially to zero, whereasvR and i
grow exponentially from zero to their steady state values ofV and
I D V/R respectively.

17.7 Time constant for
an L –R circuit

With reference to Section 17.3, the time constant of a series connected
L–R circuit is defined in the same way as the time constant for a series
connectedC–R circuit. Its value is given by:

time constant, t = L=R seconds

17.8 Transient curves for
an L –R circuit

Transient curves representing the induced voltage/time, resistor
voltage/time and current/time characteristics may be drawn graphically, as
outlined in Section 17.4. A method of construction is shown in Problem 7.
Each of the transient curves shown in Figure 17.10 have mathematical
equations, and these are:

decay of induced voltage,vL D Ve��Rt/L	 D Ve��t/�	

growth of resistor voltage,vR D V�1 � e�Rt/L	 D V�1 � e�t/�	
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growth of current flow, i D I�1 � e�Rt/L	 D I�1 � e�t/�	

These equations are derived analytically in Chapter 45.
The application of these equations is shown in Problem 9.

Problem 7. A relay has an inductance of 100 mH and a resistance
of 20�. It is connected to a 60 V, d.c. supply. Use the ‘initial slope
and three point’ method to draw the current/time characteristic and
hence determine the value of current flowing at a time equal to two
time constants and the time for the current to grow to 1.5 A

Before the current/time characteristic can be drawn, the time constant and
steady-state value of the current have to be calculated.

Time constant,� D L

R
D 100ð 10�3

20
D 5 ms

Final value of current,I D V

R
D 60

20
D 3 A

The method used to construct the characteristic is the same as that used
in Problem 2.

(a) The scales should span at least five time constants (horizontally),
i.e. 25 ms, and 3 A (vertically).

(b) With reference to Figure 17.11, the initial slope is obtained by
making AB equal to 1 time constant, (5 ms), and joining OB.

Figure 17.11

(c) At a time of 1 time constant, CD is 0.632ð I D 0.632ð 3 D
1.896 A

At a time of 2.5 time constants, EF is 0.918ð I D 0.918ð 3 D
2.754 A

At a time of 5 time constants, GH isI D 3 A
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(d) A smooth curve is drawn through points O, D, F and H and this
curve is the current/time characteristic.

From the characteristic, whent D 2�, i ³ 2.6 A. [This may be checked
by calculation usingi D I�1 � e�t/�	, where I D 3 and t D 2�, giving
i D 2.59 A]. Also, when the current is 1.5 A, the corresponding time is
about3.6 ms. [This may be checked by calculation, usingi D I�1 � e�t/�	
wherei D 1.5, I D 3 and� D 5 ms, givingt D 3.466 ms.]

Problem 8. A coil of inductance 0.04 H and resistance 10� is
connected to a 120 V, d.c. supply. Determine (a) the final value of
current, (b) the time constant of the circuit, (c) the value of current
after a time equal to the time constant from the instant the supply
voltage is connected, (d) the expected time for the current to rise
to within 1% of its final value.

(a) Final steady current,I D V

R
D 120

10
D 12 A

(b) Time constant of the circuit,� D L

R
D 0.04

10
D 0.004 s or 4 ms

(c) In the time� s the current rises to 63.2% of its final value of 12 A,
i.e. in 4 ms the current rises to 0.632ð 12 D 7.58 A

(d) The expected time for the current to rise to within 1% of its final
value is given by 5� s, i.e. 5ð 4 D 20 ms

Problem 9. The winding of an electromagnet has an inductance
of 3 H and a resistance of 15�. When it is connected to a 120 V,
d.c. supply, calculate:

(a) the steady state value of current flowing in the winding,

(b) the time constant of the circuit,

(c) the value of the induced e.m.f. after 0.1 s,

(d) the time for the current to rise to 85% of its final value, and

(e) the value of the current after 0.3 s

(a) The steady state value of current isI D V/R, i.e. I D 120/15 D 8 A

(b) The time constant of the circuit,� D L/R D 3/15 D 0.2 s

Parts (c), (d) and (e) of this problem may be determined by drawing
the transients graphically, as shown in Problem 7 or by calculation
as shown below.
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(c) The induced e.m.f.,vL is given byvL D Ve�t/� . The d.c. voltage V
is 120 V, t is 0.1 s andt is 0.2 s, hence

vL D 120e�0.1/0.2 D 120e�0.5 D 120ð 0.6065

i.e. vL D 72.78 V

(d) When the current is 85% of its final value,i D 0.85I.

Also, i D I�1 � e�t/�	, thus 0.85I D I�1 � e�t/�	

0.85 D 1 � e�t/� and� D 0.2, hence

0.85 D 1 � e�t/0.2

e�t/0.2 D 1 � 0.85 D 0.15

et/0.2 D 1

1.15
D 6.P6

Taking natural logarithms of each side of this equation gives:

ln et/0.2 D ln 6.P6, and by the laws of logarithms

t

0.2
ln e D ln 6.P6. But lne D 1, hence

t D 0.2 ln 6.P6 i.e. t D 0.379 s

(e) The current at any instant is given byi D I�1 � e�t/�	

WhenI D 8, t D 0.3 and� D 0.2, then

i D 8�1 � e�0.3/0.2	 D 8�1 � e�1.5	

D 8�1 � 0.2231	 D 8 ð 0.7769 i.e.,i D 6.215 A

17.9 Current decay in an
L –R circuit

When a series connectedL–R circuit is connected to a d.c. supply as
shown with S in position A of Figure 17.12, a currentI D V/R flows
after a short time, creating a magnetic field� / I	 associated with the
inductor. When S is moved to position B, the current value decreases,
causing a decrease in the strength of the magnetic field. Flux linkages
occur, generating a voltagevL, equal toL�d i/d t	. By Lenz’s law, this
voltage keeps currenti flowing in the circuit, its value being limited by
R. ThusvL D vR. The current decays exponentially to zero and sincevR is
proportional to the current flowing,vR decays exponentially to zero. Since
vL D vR, vL also decays exponentially to zero. The curves representing
these transients are similar to those shown in Figure 17.8.

The equations representing the decay transient curves are:

decay of voltages,vL D vR D Ve��Rt/L	 D Ve��t/�	

decay of current,i D Ie��Rt/L	 D Ie��t/�	Figure 17.12
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Problem 10. The field winding of a 110 V, d.c. motor has a resis-
tance of 15� and a time constant of 2 s. Determine the inductance
and use the tangential method to draw the current/time characteristic
when the supply is removed and replaced by a shorting link. From
the characteristic determine (a) the current flowing in the winding
3 s after being shorted-out and (b) the time for the current to decay
to 5 A.

Since the time constant,� D L

R
, L D R�

i.e. inductanceL D 15ð 2 D 30 H

The current/time characteristic is constructed in a similar way to that used
in Problem 1.

(i) The scales should span at least five time constants horizontally, i.e.
10 s, andI D V/R D 110/15 D 7.P3 A vertically.

(ii) With reference to Figure 17.13, the initial slope is obtained by
making OB equal to 1 time constant, (2 s), and joining AB.

(iii) At, say, i D 6 A, let C be the point on AB corresponding to a
current of 6 A. Make DE equal to 1 time constant, (2 s), and join
CE.

(iv) Repeat the procedure given in (iii) for current values of, say, 4 A,
2 A and 1 A, giving points F, G and H.

(v) Point J is at five time constants, when the value of current is zero.Figure 17.13
(vi) Join points A, C, F, G, H and J with a smooth curve. This curve is

the current/time characteristic.

(a) From the current/time characteristic, whent D 3 s,i D 1.5 A. [This
may be checked by calculation usingi D Ie�t/� , where I D 7.P3,
t D 3 and� D 2, giving i D 1.64 A.] The discrepancy between the
two results is due to relatively few values, such as C, F, G and H,
being taken.

(b) From the characteristic, wheni D 5 A, t = 0.70 s. [This may be
checked by calculation usingi D Ie�t/� , wherei D 5, I D 7.P3, � D
2, giving t D 0.766 s.] Again, the discrepancy between the graph-
ical and calculated values is due to relatively few values such as C,
F, G and H being taken.

Problem 11. A coil having an inductance of 6 H and a resistance
of R � is connected in series with a resistor of 10� to a 120 V,
d.c. supply. The time constant of the circuit is 300 ms. When
steady-state conditions have been reached, the supply is replaced
instantaneously by a short-circuit. Determine: (a) the resistance of
the coil,(b) the current flowing in the circuit one second after the
shorting link has been placed in the circuit, and (c) the time taken
for the current to fall to 10% of its initial value.
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(a) The time constant,� D circuit inductance

total circuit resistance
D L

RC 10

Thus R D L

�
� 10 D 6

0.3
� 10 D 10Z

Parts (b) and (c) may be determined graphically as shown in Prob-
lems 7 and 10 or by calculation as shown below.

(b) The steady-state current,I D V

R
D 120

10C 10
D 6 A

The transient current after 1 second,i D Ie�t/� D 6e�1/0.3

Thus i D 6e�3.P3 D 6 ð 0.03567D 0.214 A

(c) 10% of the initial value of the current is�10/100	ð 6, i.e. 0.6 A

Using the equation i D Ie�t/� gives

0.6 D 6e�t/0.3

i.e.
0.6

6
D e�t/0.3 or et/0.3 D 6

0.6
D 10

Taking natural logarithms of each side of this equation gives:

t

0.3
D ln 10

t D 0.3 ln 10D 0.691 s

Problem 12. An inductor has a negligible resistance and an induc-
tance of 200 mH and is connected in series with a 1 k� resistor
to a 24 V, d.c. supply. Determine the time constant of the circuit
and the steady-state value of the current flowing in the circuit. Find
(a) the current flowing in the circuit at a time equal to one time
constant, (b) the voltage drop across the inductor at a time equal
to two time constants and (c) the voltage drop across the resistor
after a time equal to three time constants.

The time constant,� D L

R
D 0.2

1000
D 0.2 ms

The steady-state currentI D V

R
D 24

1000
D 24 mA

(a) The transient current,i D I�1 � e�t/�	 and t D 1�

Working in mA units gives,i D 24�1 � e��1t/�		 D 24�1 � e�1	

D 24�1 � 0.368	 D 15.17 mA
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(b) The voltage drop across the inductor,vL D Ve�t/�

When t D 2�, vL D 24e�2�/� D 24e�2

D 3.248 V

(c) The voltage drop across the resistor,vR D V�1 � e�t/�	

When t D 3�, vR D 24�1 � e�3�/�	 D 24�1 � e�3	

D 22.81 V

Further problems on transients in series L–R circuits may be found in
Section 17.12, problems 9 to 12, page 277.

17.10 Switching
inductive circuits

Energy stored in the magnetic field of an inductor exists because a current
provides the magnetic field. When the d.c. supply is switched off the
current falls rapidly, the magnetic field collapses causing a large induced
e.m.f. which will either cause an arc across the switch contacts or will
break down the insulation between adjacent turns of the coil. The high
induced e.m.f. acts in a direction which tends to keep the current flowing,
i.e. in the same direction as the applied voltage. The energy from the
magnetic field will thus be aided by the supply voltage in maintaining
an arc, which could cause severe damage to the switch. To reduce the
induced e.m.f. when the supply switch is opened, a discharge resistorRD
is connected in parallel with the inductor as shown in Figure 17.14. The
magnetic field energy is dissipated as heat inRD andR and arcing at the
switch contacts is avoided.

Figure 17.14

17.11 The effects of time
constant on a rectangular

waveform

Integrator circuit

By varying the value of eitherC or R in a series connectedC–R circuit,
the time constant�� D CR	, of a circuit can be varied. If a rectan-
gular waveform varying fromCE to �E is applied to aC–R circuit as
shown in Figure 17.15, output waveforms of the capacitor voltage have
various shapes, depending on the value ofR. WhenR is small, t D CR
is small and an output waveform such as that shown in Figure 17.16(a)
is obtained. As the value ofR is increased, the waveform changes to that
shown in Figure 17.16(b). WhenR is large, the waveform is as shown in
Figure 17.16(c), the circuit then being described as anintegrator circuit .

Differentiator circuit

If a rectangular waveform varying fromCE to �E is applied to a series
connectedC–R circuit and the waveform of the voltage drop across the
resistor is observed, as shown in Figure 17.17, the output waveform alters
asR is varied due to the time constant,�� D CR	, altering. WhenR is
small, the waveform is as shown in Figure 17.18(a), the voltage being
generated across R by the capacitor discharging fairly quickly. Since the

Figure 17.15
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Figure 17.16

Figure 17.17 Figure 17.18

change in capacitor voltage is fromCE to �E, the change in discharge
current is 2E/R, resulting in a change in voltage across the resistor of
2E. This circuit is called adifferentiator circuit . WhenR is large, the
waveform is as shown in Figure 17.18(b).

17.12 Further problems
on d.c. transients

Transients in series connectedC –R circuits

1 An uncharged capacitor of 0.2µF is connected to a 100 V, d.c.
supply through a resistor of 100 k�. Determine, either graphically
or by calculation the capacitor voltage 10 ms after the voltage has
been applied. [39.35 V]

2 A circuit consists of an uncharged capacitor connected in series with
a 50 k� resistor and has a time constant of 15 ms. Determine either
graphically or by calculation (a) the capacitance of the capacitor and
(b) the voltage drop across the resistor 5 ms after connecting the
circuit to a 20 V, d.c. supply. [(a) 0.3µF, (b) 14.33 V]

3 A 10 µF capacitor is charged to 120 V and then discharged through a
1.5 M� resistor. Determine either graphically or by calculation the
capacitor voltage 2 s after discharging has commenced. Also find
how long it takes for the voltage to fall to 25 V.

[105.0 V, 23.53 s]

4 A capacitor is connected in series with a voltmeter of resistance
750 k� and a battery. When the voltmeter reading is steady the
battery is replaced with a shorting link. If it takes 17 s for the
voltmeter reading to fall to two-thirds of its original value, deter-
mine the capacitance of the capacitor. [55.9µF]
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5 When a 3µF charged capacitor is connected to a resistor, the voltage
falls by 70% in 3.9 s. Determine the value of the resistor.

[1.08 M�]

6 A 50 µF uncharged capacitor is connected in series with a 1 k�
resistor and the circuit is switched to a 100 V, d.c. supply. Determine:

(a) the initial current flowing in the circuit,

(b) the time constant,

(c) the value of current whent is 50 ms and

(d) the voltage across the resistor 60 ms after closing the switch.
[(a) 0.1 A (b) 50 ms (c) 36.8 mA (d) 30.1 V]

7 An uncharged 5µF capacitor is connected in series with a 30 k�
resistor across a 110 V, d.c. supply. Determine the time constant of
the circuit and the initial charging current. Use a graphical method
to draw the current/time characteristic of the circuit and hence deter-
mine the current flowing 120 ms after connecting to the supply.

[150 ms, 3.67 mA, 1.65 mA]

8 An uncharged 80µF capacitor is connected in series with a 1 k�
resistor and is switched across a 110 V supply. Determine the time
constant of the circuit and the initial value of current flowing. Derive
graphically the current/time characteristic for the transient condition
and hence determine the value of current flowing after (a) 40 ms and
(b) 80 ms. [80 ms, 0.11 A (a) 66.7 mA (b) 40.5 mA]

Transients in series connectedL –R circuits

9 A coil has an inductance of 1.2 H and a resistance of 40� and is
connected to a 200 V, d.c. supply. Draw the current/time charac-
teristic and hence determine the approximate value of the current
flowing 60 ms after connecting the coil to the supply. [4.3 A]

10 A 25 V d.c. supply is connected to a coil of inductance 1 H and resis-
tance 5�. Use a graphical method to draw the exponential growth
curve of current and hence determine the approximate value of the
current flowing 100 ms after being connected to the supply. [2 A]

11 An inductor has a resistance of 20� and an inductance of 4 H.
It is connected to a 50 V d.c. supply. By drawing the appropriate
characteristic find (a) the approximate value of current flowing after
0.1 s and (b) the time for the current to grow to 1.5 A.

[(a) 1 A (b) 0.18 s]

12 The field winding of a 200 V d.c. machine has a resistance of 20�
and an inductance of 500 mH. Calculate:

(a) the time constant of the field winding,

(b) the value of current flow one time constant after being
connected to the supply, and

(c) the current flowing 50 ms after the supply has been switched
on. [(a) 25 ms (b) 6.32 A (c) 8.65 A]



18 Operational amplifiers

At the end of this chapter you should be able to:

ž recognise the main properties of an operational amplifier

ž understand op amp parameters input bias current and offset
current and voltage

ž define and calculate common-mode rejection ratio

ž appreciate slew rate

ž explain the principle of operation, draw the circuit diagram
symbol and calculate gain for the following operational
amplifiers:

inverter
non-inverter
voltage follower (or buffer)
summing
voltage comparator
integrator
differentiator

ž understand digital to analogue conversion

ž understand analogue to digital conversion

18.1 Introduction to
operational amplifiers

Operational Amplifiers (usually called ‘op amps’) were originally made
from discrete components, being designed to solve mathematical equa-
tions electronically, by performing operations such as addition and divi-
sion in analogue computers. Now produced in integrated-circuit (IC) form,
op amps have many uses, with one of the most important being as a high-
gain d.c. and a.c. voltage amplifier.

The main properties of an op amp include:

(i) a very high open-loop voltage gain Ao of around 105 for d.c. and
low frequency a.c., which decreases with frequency increase

(ii) a very high input impedance, typically 106 Z to 1012 Z, such that
current drawn from the device, or the circuit supplying it, is very
small and the input voltage is passed on to the op amp with little loss

(iii) a very low output impedance, around 100 Z, such that its output
voltage is transferred efficiently to any load greater than a few
kiloohms

The circuit diagram symbol for an op amp is shown in Figure 18.1. It
has one output, Vo, and two inputs; the inverting input, V1, is marked–,
and the non-inverting input, V2, is marked C.
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+ Vs (Supply +)

− Vs (Supply −)

Output

Vo
V1 V2

Inverting
Input

Non-inverting
Input

   0V (on power supply)

+

−

Figure 18.1

The operation of an op amp is most convenient from a dual balanced
d.c. power supply š VS (i.e. CVS, 0, �VS); the centre point of the supply,
i.e. 0 V, is common to the input and output circuits and is taken as their
voltage reference level. The power supply connections are not usually
shown in a circuit diagram.

An op amp is basically a differential voltage amplifier, i.e. it amplifies
the difference between input voltages V1 and V2. Three situations are
possible:

(i) if V2 > V1, Vo is positive
(ii) if V2 < V1, Vo is negative
(iii) if V2 D V1, Vo is zero

In general, Vo = Ao.V2 − V1/ or A D Vo

V2 � V1
�1�

where Ao is the open-loop voltage gain

Problem 1. A differential amplifier has an open-loop voltage gain
of 120. The input signals are 2.45 V and 2.35 V. Calculate the
output voltage of the amplifier.

From equation (1), output voltage,

Vo D Ao�V2 � V1� D 120�2.45 � 2.35�

D �120��0.1� D 12 V

Transfer characteristic

A typical voltage characteristic showing how the output Vo varies with
the input �V2 � V1� is shown in Figure 18.2.

It is seen from Figure 18.2 that only within the very small input range
P0Q is the output directly proportional to the input; it is in this range
that the op amp behaves linearly and there is minimum distortion of the
amplifier output. Inputs outside the linear range cause saturation and the
output is then close to the maximum value, i.e. CVS or �VS. The limited

Vo

Saturation

Saturation

V2 > V1

(V2 − V1) µV
V2 < V1

+ Vs

− Vs

P
Q0

Figure 18.2
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linear behaviour is due to the very high open-loop gain Ao, and the higher
it is the greater is the limitation.

Negative feedback

Operational amplifiers nearly always use negative feedback, obtained by
feeding back some, or all, of the output to the inverting (�) input (as
shown in Figure 18.5 later). The feedback produces an output voltage
that opposes the one from which it is taken. This reduces the new output
of the amplifier and the resulting closed-loop gain A is then less than the
open-loop gain Ao. However, as a result, a wider range of voltages can
be applied to the input for amplification. As long as Ao × A, negative
feedback gives:

(i) a constant and predictable voltage gain A, (ii) reduced distortion of
the output, and (iii) better frequency response.

106

105

104

103

102

10

101 102 103 104 105 106 107

Frequency (Hz)

V
ol

ta
ge

 G
ai

n

Figure 18.3

The advantages of using negative feedback outweigh the accompanying
loss of gain which is easily increased by using two or more op amp stages.

Bandwidth

The open-loop voltage gain of an op amp is not constant at all frequencies;
because of capacitive effects it falls at high frequencies. Figure 18.3 shows
the gain/bandwidth characteristic of a 741 op amp. At frequencies below
10 Hz the gain is constant, but at higher frequencies the gain falls at a
constant rate of 6 dB/octave (equivalent to a rate of 20 dB per decade)
to 0 dB.

The gain-bandwidth product for any amplifier is the linear voltage gain
multiplied by the bandwidth at that gain. The value of frequency at which
the open-loop gain has fallen to unity is called the transition frequency fT.

fT D closed-loop voltage gain ð bandwidth �2�

In Figure 18.3, fT D 106 Hz or 1 MHz; a gain of 20 dB (i.e. 20 log10 10)
gives a 100 kHz bandwidth, whilst a gain of 80 dB (i.e. 20 log10 104)
restricts the bandwidth to 100 Hz.

18.2 Some op amp
parameters

Input bias current

The input bias current, IB, is the average of the currents into the two input
terminals with the output at zero volts, which is typically around 80 nA
(i.e. 80 ð 10�9 A) for a 741 op amp. The input bias current causes a volt
drop across the equivalent source impedance seen by the op amp input.

Input offset current

The input offset current, Ios, of an op amp is the difference between the
two input currents with the output at zero volts. In a 741 op amp, Ios is
typically 20 nA.
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Input offset voltage

In the ideal op amp, with both inputs at zero there should be zero output.
Due to imbalances within the amplifier this is not always the case and
a small output voltage results. The effect can be nullified by applying
a small offset voltage, Vos, to the amplifier. In a 741 op amp, Vos is
typically 1 mV.

Common-mode rejection ratio

The output voltage of an op amp is proportional to the difference between
the voltages applied to its two input terminals. Ideally, when the two
voltages are equal, the output voltages should be zero. A signal applied
to both input terminals is called a common-mode signal and it is usually
an unwanted noise voltage. The ability of an op amp to suppress common-
mode signals is expressed in terms of its common-mode rejection ratio
(CMRR), which is defined by:

CMRR = 20 log10

(
differential voltage gain

common mode gain

)
dB �3�

In a 741 op amp, the CMRR is typically 90 dB.
The common-mode gain, Acom, is defined as:

Acom =
Vo

Vcom
�4�

where Vcom is the common input signal

Problem 2. Determine the common-mode gain of an op amp that
has a differential voltage gain of 150 ð 103 and a CMRR of 90 dB.

From equation (3),

CMRR D 20 log10

(
differential voltage gain

common mode gain

)
dB

Hence 90 D 20 log10

(
150 ð 103

common mode gain

)

from which 4.5 D log10

(
150 ð 103

common mode gain

)

and 104.5 D
(

150 ð 103

common mode gain

)

Hence, common-mode gain D 150 ð 103

104.5
= 4.74
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Problem 3. A differential amplifier has an open-loop voltage gain
of 120 and a common input signal of 3.0 V to both terminals. An
output signal of 24 mV results. Calculate the common-mode gain
and the CMRR.

From equation (4), the common-mode gain,

Acom D Vo
Vcom

D 24 ð 10�3

3.0
D 8 ð 10�3 D 0.008

From equation (3), the

CMRR D 20 log10

(
differential voltage gain

common mode gain

)
dB

D 20 log10

(
120

0.008

)
D 20 log10 15000 D 83.52 dB

Slew rate

The slew rate of an op amp is the maximum rate of change of output
voltage following a step input voltage. Figure 18.4 shows the effects of
slewing; it causes the output voltage to change at a slower rate that the
input, such that the output waveform is a distortion of the input waveform.
0.5 V/µs is a typical value for the slew rate.

Ideal output

Actual
 output

Time0

+ Vs

− Vs

Figure 18.4

18.3 Op amp inverting
amplifier

The basic circuit for an inverting amplifier is shown in Figure 18.5 where
the input voltage Vi (a.c. or d.c.) to be amplified is applied via resistor
Ri to the inverting (�) terminal; the output voltage Vo is therefore in
anti-phase with the input. The non-inverting (C) terminal is held at 0 V.
Negative feedback is provided by the feedback resistor, Rf, feeding back
a certain fraction of the output voltage to the inverting terminal.

Amplifier gain

In an ideal op amp two assumptions are made, these being that:

(i) each input draws zero current from the signal source, i.e. their input
impedance’s are infinite, and

(ii) the inputs are both at the same potential if the op amp is not satu-
rated, i.e. VA D VB in Figure 18.5.

In Figure 18.5, VB D 0, hence VA D 0 and point X is called a virtual
earth.

Thus, I1 D Vi � 0

Ri
and I2 D 0 � Vo

Rf

Vi

I1

I2
Ri

Rf

X
+

−

VA
VB

Vo

0V

Figure 18.5
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However, I1 D I2 from assumption (i) above.

Hence
Vi
Ri

D �Vo
Rf
,

the negative sign showing that Vo is negative when Vi is positive, and
vice versa.

The closed-loop gain A is given by:

A =
Vo

Vi
=

−Rf

Ri
�5�

This shows that the gain of the amplifier depends only on the two resistors,
which can be made with precise values, and not on the characteristics of
the op amp, which may vary from sample to sample.
For example, if Ri D 10 k� and Rf D 100 k�, then the closed-loop gain,

A D �Rf
Ri

D �100 ð 103

10 ð 103
= −10

Thus an input of 100 mV will cause an output change of 1 V.

Input impedance

Since point X is a virtual earth (i.e. at 0 V), Ri may be considered to be
connected between the inverting (�) input terminal and 0 V. The input
impedance of the circuit is therefore Ri in parallel with the much greater
input impedance of the op amp, i.e. effectively Ri. The circuit input impe-
dance can thus be controlled by simply changing the value of Ri.

Problem 4. In the inverting amplifier of Figure 18.5, Ri D 1 k�
and Rf D 2 k�. Determine the output voltage when the input
voltage is: (a) C0.4 V (b) �1.2 V

From equation (5), Vo D
(�Rf
Ri

)
Vi

(a) When Vi D C0.4 V, Vo D
(�2000

1000

)
�C0.4� D −0.8 V

(b) When Vi D �1.2 V,Vo D
(�2000

1000

)
��1.2� D Y2.4 V

Problem 5. The op amp shown in Figure 18.6 has an input bias
current of 100 nA at 20°C. Calculate (a) the voltage gain, and
(b) the output offset voltage due to the input bias current. (c) How
can the effect of input bias current be minimised?

R1 = 10 kΩ

R2 = 1 MΩ

Vi Vo

+

−

Figure 18.6
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Comparing Figure 18.6 with Figure 18.5, gives Ri D 10 k� and Rf D
1 M�

(a) From equation (5), voltage gain,

A D �Rf
Ri

D �1 ð 106

10 ð 103
D −100

(b) The input bias current, IB, causes a volt drop across the equivalent
source impedance seen by the op amp input, in this case, Ri and Rf
in parallel. Hence, the offset voltage, Vos, at the input due to the
100 nA input bias current, IB, is given by:

Vos D IB

(
RiRf
Ri C Rf

)
D �100 ð 10�9�

(
10 ð 103 ð 1 ð 106

�10 ð 103�C �1 ð 106�

)

D �10�7��9.9 ð 103� D 9.9 ð 10�4 D 0.99 mV

(c) The effect of input bias current can be minimised by ensuring that
both inputs ‘see’ the same driving resistance. This means that a
resistance of value of 9.9 kZ (from part (b)) should be placed
between the non-inverting (+) terminal and earth in Figure 18.6.

Problem 6. Design an inverting amplifier to have a voltage gain
of 40 dB, a closed-loop bandwidth of 5 kHz and an input resistance
of 10 k�

The voltage gain of an op amp, in decibels, is given by:

gain in decibels D 20 log10 (voltage gain) from chapter 10

Hence 40 D 20 log10 A

from which, 2 D log10 A

and A D 102 D 100

With reference to Figure 18.5, and from equation (5),

A D
∣∣∣∣RfRi

∣∣∣∣
i.e. 100 D Rf

10 ð 103

Hence Rf D 100 ð 10 ð 103 D 1 MZ

From equation (2), Section 18.1,

frequency D gain ð bandwidth D 100 ð 5 ð 103

D 0.5 MHz or 500 kHz
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Further problems on the introduction to operational amplifiers may be
found in Section 18.12, problems 1 to 6, page 294.

18.4 Op amp
non-inverting amplifier

The basic circuit for a non-inverting amplifier is shown in Figure 18.7
where the input voltage Vi (a.c. or d.c.) is applied to the non-inverting
(C) terminal of the op amp. This produces an output Vo that is in phase
with the input. Negative feedback is obtained by feeding back to the
inverting (�) terminal, the fraction of Vo developed across Ri in the
voltage divider formed by Rf and Ri across Vo

+

−

Vi

Rf

Ri

Vo

0V

Figure 18.7

Amplifier gain

In Figure 18.7, let the feedback factor,

ˇ D Ri
Ri C Rf

It may be shown that for an amplifier with open-loop gain Ao, the closed-
loop voltage gain A is given by:

A D Ao
1 C ˇAo

For a typical op amp, Ao D 105, thus ˇAo is large compared with 1, and
the above expression approximates to:

A D Ao
ˇAo

D 1
b

(6)

Hence A =
Vo

Vi
=

Ri Y Rf

Ri
= 1Y

Rf

Ri
(7)

For example, if Ri D 10 k� and Rf D 100 k�,

then A D 1 C 100 ð 103

10 ð 103
D 1 C 10 D 11

Again, the gain depends only on the values of Ri and Rf and is indepen-
dent of the open-loop gain Ao

Input impedance

Since there is no virtual earth at the non-inverting (C) terminal, the input
impedance is much higher (typically 50 MZ) than that of the inverting
amplifier. Also, it is unaffected if the gain is altered by changing Rf
and/or Ri. This non-inverting amplifier circuit gives good matching when
the input is supplied by a high impedance source.



286 Electrical Circuit Theory and Technology

Problem 7. For the op amp shown in Figure 18.8, R1 D 4.7 k�
and R2 D 10 k�. If the input voltage is �0.4 V, determine (a) the
voltage gain (b) the output voltage

Input voltage
R1 Output

voltage

0V

R2

−

+

Figure 18.8

The op amp shown in Figure 18.8 is a non-inverting amplifier, similar to
Figure 18.7.

(a) From equation (7), voltage gain,

A D 1 C Rf
Ri

D 1 C R2

R1
D 1 C 10 ð 103

4.7 ð 103

D 1 C 2.13 D 3.13

(b) Also from equation (7), output voltage,

Vo D
(

1 C R

R1

)
Vi

D �3.13���0.4� D −1.25 V

18.5 Op amp
voltage-follower

The voltage-follower is a special case of the non-inverting amplifier
in which 100% negative feedback is obtained by connecting the output
directly to the inverting (�) terminal, as shown in Figure 18.9. Thus Rf
in Figure 18.7 is zero and Ri is infinite.

−
+

VoVi

0V

Figure 18.9

From equation (6), A D 1/ˇ (when Ao is very large). Since all of the
output is fed back, ˇ D 1 and A ³ 1. Thus the voltage gain is nearly 1
and Vo D Vi to within a few millivolts.

The circuit of Figure 18.9 is called a voltage-follower since, as with its
transistor emitter-follower equivalent, Vo follows Vi. It has an extremely
high input impedance and a low output impedance. Its main use is as a
buffer amplifier, giving current amplification, to match a high impedance
source to a low impedance load. For example, it is used as the input stage
of an analogue voltmeter where the highest possible input impedance is
required so as not to disturb the circuit under test; the output voltage is
measured by a relatively low impedance moving-coil meter.

18.6 Op amp summing
amplifier

Because of the existence of the virtual earth point, an op amp can be used
to add a number of voltages (d.c. or a.c.) when connected as a multi-input
inverting amplifier. This, in turn, is a consequence of the high value of
the open-loop voltage gain Ao. Such circuits may be used as ‘mixers’ in
audio systems to combine the outputs of microphones, electric guitars,
pick-ups, etc. They are also used to perform the mathematical process of
addition in analogue computing.

The circuit of an op amp summing amplifier having three input voltages
V1, V2 and V3 applied via input resistors R1, R2 and R3 is shown in
Figure 18.10. If it is assumed that the inverting (�) terminal of the op

R1

R2

R3

I1
I2

I3V1 V2 V3

I Rf

Vo

0V

−
+X

Figure 18.10
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amp draws no input current, all of it passing through Rf, then:

I D I1 C I2 C I3

Since X is a virtual earth (i.e. at 0 V), it follows that:

�Vo
Rf

D V1

R1
C V2

R2
C V3

R3

Hence

Vo = −
(

Rf

R1
V1 Y

Rf

R2
V2 Y

Rf

R3
V3

)
= −Rf

(
V1

R1
Y

V2

R2
Y

V3

R3

)

�8�
The three input voltages are thus added and amplified if Rf is greater
than each of the input resistors; ‘weighted’ summation is said to have
occurred.

Alternatively, the input voltages are added and attenuated if Rf is less
than each input resistor.

For example, if
Rf
R1

D 4,
Rf
R2

D 3 and
Rf
R3

D 1 and V1 D V2 D V3 D
C1 V, then

Vo �
(
Rf
R1
V1 C Rf

R2
V2 C Rf

R3
V3

)
D ��4 C 3 C 1� D −8 V

If R1 D R2 D R3 D Ri, the input voltages are amplified or attenuated
equally, and

Vo D �Rf
Ri
�V1 C V2 C V3�

If, also, Ri D Rf then Vo D ��V1 C V2 C V3�
The virtual earth is also called the summing point of the amplifier. It

isolates the inputs from one another so that each behaves as if none of
the others existed and none feeds any of the other inputs even though all
the resistors are connected at the inverting (�) input.

0.5 V

0.8 V

1.2 V

10 kΩ 50 kΩ

20 kΩ

30 kΩ Vo

−
+

Figure 18.11

Problem 8. For the summing op amp shown in Figure 18.11, de-
termine the output voltage, Vo

From equation (8),

Vo D �Rf
(
V1

R1
C V2

R2
C V3

R3

)

D ��50 ð 103�
(

0.5

10 ð 103
C 0.8

20 ð 103
C 1.2

30 ð 103

)

D ��50 ð 103��5 ð 10�5 C 4 ð 10�5 C 4 ð 10�5�

D ��50 ð 103��13 ð 10�5� =−6.5 V
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18.7 Op amp voltage
comparator

If both inputs of the op amp shown in Figure 18.12 are used simultane-
ously, then from equation (1), page 279, the output voltage is given by:

Vo D Ao�V2 � V1�

V
1

v
2

Vo

−

+

0V

Figure 18.12

When V2 > V1 then Vo is positive, its maximum value being the positive
supply voltage C Vs, which it has when �V2 � V1� ½ Vs/Ao. The op amp
is then saturated. For example, if Vs D C9 V and Ao D 105, then saturation
occurs when �V2 � V1� ½ 9/105 i.e. when V2 exceeds V1 by 90 µV and
Vo ³ 9 V.

When V1 > V2, then Vo is negative and saturation occurs if V1 exceeds
V2 by Vs/Ao i.e. around 90 µV in the above example; in this case, Vo ³
�Vs D �9 V.

A small change in (V2 � V1) therefore causes Vo to switch between
near CVs and near to �Vs and enables the op amp to indicate when V2 is
greater or less than V1, i.e. to act as a differential amplifier and compare
two voltages. It does this in an electronic digital voltmeter.

Problem 9. Devise a light-operated alarm circuit using an op amp,
a LDR, a LED and a š15 V supply

A typical light-operated alarm circuit is shown in Figure 18.13.
+15 V

−15 V

0V

LDR

R

V1

V2 +
−

Vo
LED

Figure 18.13

Resistor R and the light dependent resistor (LDR) form a voltage divider
across the C15/0/�15 V supply. The op amp compares the voltage V1

at the voltage divider junction, i.e. at the inverting (�) input, with that
at the non-inverting (C) input, i.e. with V2, which is 0 V. In the dark
the resistance of the LDR is much greater than that of R, so more of the
30 V across the voltage divider is dropped across the LDR, causing V1

to fall below 0 V. Now V2 > V1 and the output voltage Vo switches
from near �15 V to near C15 V and the light emitting diode (LED)
lights.

18.8 Op amp integrator The circuit for the op amp integrator shown in Figure 18.14 is the same
as for the op amp inverting amplifier shown in Figure 18.5, but feedback
occurs via a capacitor C, rather than via a resistor.

The output voltage is given by:

Vo = − 1
CR

∫
Vi dt �9�

Since the inverting (�) input is used in Figure 18.15, Vo is negative if
Vi is positive, and vice versa, hence the negative sign in equation (9).

Since X is a virtual earth in Figure 18.14, i.e. at 0 V, the voltage across
R is Vi and that across C is Vo. Assuming again that none of the input
current I enters the op amp inverting (�) input, then all of current I flows
through C and charges it up. If Vi is constant, I will be a constant value

Vo

+
−

CI

I

R

Vi

X

Figure 18.14
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Saturation
(Just < +9V)

Ramp voltage (+2 V/s)

Time t(s)
0 1 2 3 4 5

2
4

6
8
9

Vo

Figure 18.15

given by I D Vi/R. Capacitor C therefore charges at a constant rate and
the potential of the output side of C (D Vo, since its input side is zero)
charges so that the feedback path absorbs I. If Q is the charge on C at
time t and the p.d. across it (i.e. the output voltage) changes from 0 to
Vo in that time then:

Q D �VoC D It

(from Chapter 6)

i.e. �VoC D Vi
R
t

i.e. Vo D � 1

CR
Vit

This result is the same as would be obtained from Vo D � 1

CR

∫
Vi d t if

Vi is a constant value.
For example, if the input voltage Vi D �2 V and, say, CR D 1 s, then

Vo D ���2�t D 2t

A graph of Vo/t will be a ramp function as shown in Figure 18.15
(Vo D 2t is of the straight line form y D mx C c; in this case y D Vo and
x D t, gradient, m D 2 and vertical axis intercept c D 0). Vo rises steadily
by C2 V/s in Figure 18.15, and if the power supply is, say, š9 V, then
Vo reaches C9 V after 4.5 s when the op amp saturates.

Problem 10. A steady voltage of �0.75 V is applied to an op amp
integrator having component values of R D 200 k� and C D 2.5 µF.
Assuming that the initial capacitor charge is zero, determine the
value of the output voltage 100 ms after application of the input.

From equation (9), output voltage,

Vo D � 1

CR

∫
Vi d t D � 1

�2.5 ð 10�6��200 ð 103�

∫
��0.75� d t

D � 1

0.5

∫
��0.75� d t D �2[�0.75t] D C1.5t

When time t D 100 ms, output voltage,

Vo D �1.5��100 ð 10�3� D 0.15 V

18.9 Op amp differential
amplifier

The circuit for an op amp differential amplifier is shown in Figure 18.16
where voltages V1 and V2 are applied to its two input terminals and the
difference between these voltages is amplified.

(i) Let V1 volts be applied to terminal 1 and 0 V be applied to terminal
2. The difference in the potentials at the inverting (�) and non-inverting
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(C) op amp inputs is practically zero and hence the inverting terminal
must be at zero potential. Then I1 D V1/R1. Since the op amp input
resistance is high, this current flows through the feedback resistor Rf.
The volt drop across Rf, which is the output voltage Vo D �V1/R1�Rf;
hence, the closed loop voltage gain A is given by:

A D Vo
V1

D �Rf

R1
�10�

−

+

R1

R2 R3

Rf

Vo

V1

V2

1

2

0V

Figure 18.16

(ii) By similar reasoning, if V2 is applied to terminal 2 and 0 V to
terminal 1, then the voltage appearing at the non-inverting terminal will
be �R3/�R2 C R3��V2 volts. This voltage will also appear at the inverting
(�) terminal and thus the voltage across R1 is equal to ��R3/�R2 C R3��V2

volts.
Now the output voltage,

Vo D
(

R3

R2 C R3

)
V2 C

[
�
(

R3

R2 C R3

)
V2

](
�Rf
R1

)

and the voltage gain,

A D Vo
V2

D
(

R3

R2 C R3

)
C
[
�
(

R3

R2 C R3

)](
�Rf
R1

)

i.e. A =
Vo

V2
=
(

R3

R2 Y R3

)(
1Y

Rf

R1

)
�11�

(iii) Finally, if the voltages applied to terminals 1 and 2 are V1 and
V2 respectively, then the difference between the two voltages will be
amplified.
If V1 > V2, then:

Vo= .V1 − V2/

(
−Rf

R1

)
�12�

If V2 > V1, then:

Vo= .V2 − V1/

(
R3

R2 Y R3

)(
1Y

Rf

R1

)
�13�

Problem 11. In the differential amplifier shown in Figure 18.16,
R1 D 10 k�, R2 D 10 k�, R3 D 100 k� and Rf D 100 k�. Deter-
mine the output voltage Vo if:

(a) V1 D 5 mV and V2 D 0
(b) V1 D 0 and V2 D 5 mV
(c) V1 D 50 mV and V2 D 25 mV
(d) V1 D 25 mV and V2 D 50 mV
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(a) From equation (10),

Vo D �Rf
R1
V1 D �

(
100 ð 103

10 ð 103

)
�5� mV D −50 mV

(b) From equation (11),

Vo D
(

R3

R2 C R3

)(
1 C Rf

R1

)
V2

D
(

100

110

)(
1 C 100

10

)
�5� mV D Y50 mV

(c) V1 > V2 hence from equation (12),

Vo D �V1 � V2�
(

�Rf
R1

)

D �50 � 25�
(

�100

10

)
mV D −250 mV

(d) V2 > V1 hence from equation (13),

Vo D �V2 � V1�
(

R3

R2 C R3

)(
1 C Rf

R1

)

D �50 � 25� mV
(

100

100 C 10

)(
1 C 100

10

)
mV

D �25�
(

100

110

)
�11� D Y250 mV

Further problems on operational amplifier calculations may be found in
Section 18.12, problems 7 to 11, page 295.

18.10 Digital to analogue
(D/A) conversion

There are a number of situations when digital signals have to be converted
to analogue ones. For example, a digital computer often needs to produce
a graphical display on the screen; this involves using a D/A converter
to change the two-level digital output voltage from the computer, into a
continuously varying analogue voltage for the input to the cathode ray
tube, so that it can deflect the electron beam to produce screen graphics.

A binary weighted resistor D/A converter is shown in Figure 18.17
for a four-bit input. The values of the resistors, R, 2R, 4R, 8R increase
according to the binary scale — hence the name of the converter. The
circuit uses an op amp as a summing amplifier (see section 18.6) with a
feedback resistor Rf. Digitally controlled electronic switches are shown
as S1 to S4. Each switch connects the resistor in series with it to a fixed
reference voltage Vref when the input bit controlling it is a 1 and to ground
(0 V) when it is a 0. The input voltages V1 to V4 applied to the op amp
by the four-bit input via the resistors therefore have one of two values,
i.e. either Vref or 0 V.
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1
0

1
0

1
0

1
0

S1

S2

S3

S4

V1

V2

V3

V4

R

2R

Rf

Analogue
voltage
output

Vo

4-bit
digital
input

Vref

m.s.b.

i.s.b.

4R

8R

0V

−
+

Figure 18.17

From equation (8), page 287, the analogue output voltage Vo is
given by:

Vo D �
(
Rf
R
V1 C Rf

2R
V2 C Rf

4R
V3 C Rf

8R
V4

)

Let Rf D R D 1 k�, then:

Vo D �
(
V1 C 1

2
V2 C 1

4
V3 C 1

8
V4

)

With a four-bit input of 0001 (i.e. decimal 1), S4 connects 8R to Vref,
i.e. V4 D Vref, and S1, S2 and S3 connect R, 2R and 4R to 0 V, making
V1 D V2 D V3 D 0. Let Vref D �8 V, then output voltage,

Vo D �
(

0 C 0 C 0 C 1

8
��8�

)
D Y1 V

With a four-bit input of 0101 (i.e. decimal 5), S2 and S4 connects 2R
and 4R to Vref, i.e. V2 D V4 D Vref, and S1 and S3 connect R and 4R to
0 V, making V1 D V3 D 0. Again, if Vref D �8 V, then output voltage,

Vo D �
(

0 C 1

2
��8�C 0 C 1

8
��8�

)
D Y5 V

If the input is 0111 (i.e. decimal 7), the output voltage will be 7 V, and
so on. From these examples, it is seen that the analogue output voltage,
Vo, is directly proportional to the digital input.
Vo has a ‘stepped’ waveform, the waveform shape depending on the

binary input. A typical waveform is shown in Figure 18.18.
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18.11 Analogue to digital
(A/D) conversion

In a digital voltmeter, its input is in analogue form and the reading is
displayed digitally. This is an example where an analogue to digital
converter is needed.

A block diagram for a four-bit counter type A/D conversion circuit is
shown in Figure 18.19. An op amp is again used, in this case as a voltage
comparator (see Section 18.7). The analogue input voltage V2, shown
in Figure 18.20(a) as a steady d.c. voltage, is applied to the non-inverting
(C) input, whilst a sawtooth voltage V1 supplies the inverting (�) input.

V1

V2

−

+

Binary
counter

Analogue input
voltage

AND
gate

Ramp
generator

(D/A convertor)

Pulse
generator

(clock)

Voltage
comparator

Reset

m.s.b

l.s.b

4-bit
digital
output

Figure 18.19

The output from the comparator is applied to one input of an AND
gate and is a 1 (i.e. ‘high’) until V1 equals or exceeds V2, when it then
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goes to 0 (i.e. ‘low’) as shown in Figure 18.20(b). The other input of the
AND gate is fed by a steady train of pulses from a pulse generator, as
shown in Figure 18.20(c). When both inputs to the AND gate are ‘high’,
the gate ‘opens’ and gives a ‘high’ output, i.e. a pulse, as shown in
Figure 18.20(d). The time taken by V1 to reach V2 is proportional to the
analogue voltage if the ramp is linear. The output pulses from the AND
gate are recorded by a binary counter and, as shown in Figure 18.20(e),
are the digital equivalent of the analogue input voltage V2. In practise, the
ramp generator is a D/A converter which takes its digital input from the
binary counter, shown by the broken lines in Figure 18.19. As the counter
advances through its normal binary sequence, a staircase waveform with
equal steps (i.e. a ramp) is built up at the output of the D/A converter (as
shown by the first few steps in Figure 18.18.

(a)

(b) Comparator
output

(c) Pulse
generator

(d) AND
gate

output
(e) Binary

output 00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

t

t

t

t

1

0

V2

V1

Figure 18.20

18.12 Further problems
on operational amplifiers

Introduction to operational amplifiers

1. A differential amplifier has an open-loop voltage gain of 150 when
the input signals are 3.55 V and 3.40 V. Determine the output voltage
of the amplifier. [ 22.5 V ]

2. Calculate the differential voltage gain of an op amp that has a com-
mon-mode gain of 6.0 and a CMRR of 80 dB. [6 ð 104]

R1 = 15 kΩ

R2 = 1.2 MΩ

Vi Vo

+

−

Figure 18.21

3. A differential amplifier has an open-loop voltage gain of 150 and a
common input signal of 4.0 V to both terminals. An output signal of
15 mV results. Determine the common-mode gain and the CMRR.

[3.75 ð 10�3, 92.04 dB]



Operational amplifiers 295

4. In the inverting amplifier of Figure 18.5 (on page 282), Ri D 1.5 k�
and Rf D 2.5 k�. Determine the output voltage when the input voltage
is: (a) C0.6 V (b) �0.9 V [(a) �1.0 V (b) C1.5 V ]

5. The op amp shown in Figure 18.21 has an input bias current of
90 nA at 20°C. Calculate (a) the voltage gain, and (b) the output offset
voltage due to the input bias current. [ (a) 80 (b) 1.33 mV ]

Input voltage Output
voltage

0V

15 kΩ

6.8 kΩ

−

+

Figure 18.22

6. Determine (a) the value of the feedback resistor, and (b) the freque-
ncy for an inverting amplifier to have a voltage gain of 45 dB, a
closed-loop bandwidth of 10 kHz and an input resistance of 20 k�.

[(a) 3.56 M� (b) 1.78 MHz]

Further operational amplifier calculations

7. If the input voltage for the op amp shown in Figure 18.22, is �0.5 V,
determine (a) the voltage gain (b) the output voltage

[(a) 3.21 (b) �1.60 V ]

V1

V2 Vo

−
+

10 kΩ

10 kΩ

25 kΩ

Figure 18.23
8. In the circuit of Figure 18.23, determine the value of the output

voltage, Vo, when (a) V1 D C1 V and V2 D C3 V (b) V1 D C1 V and
V2 D �3 V [(a) �10 V (b) C5 V ]

0.3V

0.5V

0.8V

15 kΩ 60 kΩ

25 kΩ

32 kΩ Vo

−
+

Figure 18.24

9. For the summing op amp shown in Figure 18.24, determine the output
voltage, Vo. [ �3.9 V ]

10. A steady voltage of �1.25 V is applied to an op amp integrator having
component values of R D 125 k� and C D 4.0 µF. Calculate the value
of the output voltage 120 ms after applying the input, assuming that
the initial capacitor charge is zero. [ 0.3 V ]

11. In the differential amplifier shown in Figure 18.25, determine the
output voltage, Vo, if: (a) V1 D 4 mV and V2 D 0 (b) V1 D 0 and
V2 D 6 mV (c) V1 D 40 mV and V2 D 30 mV (d) V1 D 25 mV and
V2 D 40 mV

[(a) �60 mV (b) C90 mV (c) �150 mV (d) C225 mV]

120 kΩ

120 kΩ

8 kΩ

8 kΩ

V1

Vo

V2

1

2

0V

−

+

Figure 18.25



Assignment 5

This assignment covers the material contained in chapters 15
to 18.

The marks for each question are shown in brackets at the end of
each question.

1 The power taken by a series inductive circuit when connected to a
100 V, 100 Hz supply is 250 W and the current is 5 A. Calculate (a) the
resistance, (b) the impedance, (c) the reactance, (d) the power factor,
and (e) the phase angle between voltage and current. (9)

2 A coil of resistance 20� and inductance 200 mH is connected in
parallel with a 4 µF capacitor across a 50 V, variable frequency supply.
Calculate (a) the resonant frequency, (b) the dynamic resistance,
(c) the current at resonance, and (d) the Q-factor at resonance. (10)

3 A series circuit comprises a coil of resistance 30� and inductance
50 mH, and a 2500 pF capacitor. Determine the Q-factor of the circuit
at resonance. (4)

4 The winding of an electromagnet has an inductance of 110 mH and
a resistance of 5.5�. When it is connected to a 110 V, d.c. supply,
calculate (a) the steady state value of current flowing in the winding,
(b) the time constant of the circuit, (c) the value of the induced e.m.f.
after 0.1 s, (d) the time for the current to rise to 75% of it’s final value,
and (e) the value of the current after 0.02 s. (11)

1.5 V
1.0 V

15 kΩ

10 kΩ

30 kΩ

Vo

−

+

Figure A5.1
5 A single-phase motor takes 30 A at a power factor of 0.65 lagging

from a 300 V, 50 Hz supply. Calculate (a) the current taken by a capac-
itor connected in parallel with the motor to correct the power factor
to unity, and (b) the value of the supply current after power factor
correction. (7)

6 For the summing operational amplifier shown in Figure A5.1, deter-
mine the value of the output voltage, Vo. (3)

7 In the differential amplifier shown in Figure A5.2, determine the
output voltage, Vo when: (a) V1 D 4 mV and V2 D 0 (b) V1 D 0 and
V2 D 5 mV (c) V1 D 20 mV and V2 D 10 mV. (6)

V1

V2

Vo

120 kΩ

20 kΩ
120 kΩ

20 kΩ

OV

−

+

1

2

Figure A5.2



19 Three phase systems

At the end of this chapter you should be able to:

ž describe a single-phase supply
ž describe a three-phase supply
ž understand a star connection, and recognize that IL D Ip and

VL D p
3Vp

ž draw a complete phasor diagram for a balanced, star
connected load

ž understand a delta connection, and recognize that VL D Vp
and IL D p

3Ip
ž draw a phasor diagram for a balanced, delta connected load
ž calculate power in three-phase systems using

P D p
3VLIL cos�

ž appreciate how power is measured in a three-phase system, by
the one, two and three-wattmeter methods

ž compare star and delta connections
ž appreciate the advantages of three-phase systems

19.1 Introduction Generation, transmission and distribution of electricity via the National
Grid system is accomplished by three-phase alternating currents.

The voltage induced by a single coil when rotated in a uniform magnetic
field is shown in Figure 19.1 and is known as a single-phase voltage.
Most consumers are fed by means of a single-phase a.c. supply. Two
wires are used, one called the live conductor (usually coloured red) and
the other is called the neutral conductor (usually coloured black). The
neutral is usually connected via protective gear to earth, the earth wire
being coloured green. The standard voltage for a single-phase a.c. supply
is 240 V. The majority of single-phase supplies are obtained by connec-
tion to a three-phase supply (see Figure 19.5, page 299).

Figure 19.1

19.2 Three-phase supply A three-phase supply is generated when three coils are placed 120°

apart and the whole rotated in a uniform magnetic field as shown in
Figure 19.2(a). The result is three independent supplies of equal volt-
ages which are each displaced by 120° from each other as shown in
Figure 19.2(b).

(i) The convention adopted to identify each of the phase voltages is:
R-red, Y-yellow, and B-blue, as shown in Figure 19.2.
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Figure 19.2

(ii) The phase-sequenceis given by the sequence in which the conduc-
tors pass the point initially taken by the red conductor. The national
standard phase sequence is R, Y, B.

A three-phase a.c. supply is carried by three conductors, called ‘lines’
which are coloured red, yellow and blue. The currents in these conductors
are known as line currents (IL) and the p.d.’s between them are known
as line voltages (VL). A fourth conductor, called the neutral (coloured
black, and connected through protective devices to earth) is often used
with a three-phase supply.

If the three-phase windings shown in Figure 19.2 are kept independent
then six wires are needed to connect a supply source (such as a generator)
to a load (such as motor). To reduce the number of wires it is usual to
interconnect the three phases. There are two ways in which this can be
done, these being:
(a) a star connection, and (b) a delta, or mesh, connection. Sources
of three-phase supplies, i.e. alternators, are usually connected in star,
whereas three-phase transformer windings, motors and other loads may
be connected either in star or delta.

19.3 Star connection (i) A star-connected loadis shown in Figure 19.3 where the three line
conductors are each connected to a load and the outlets from the
loads are joined together at N to form what is termed the neutral
point or the star point.

(ii) The voltages, VR, VY and VB are called phase voltagesor line to
neutral voltages. Phase voltages are generally denoted by Vp

(iii) The voltages, VRY, VYB and VBR are called line voltages

Figure 19.3

(iv) From Figure 19.3 it can be seen that the phase currents (generally
denoted by Ip) are equal to their respective line currents IR, IY and
IB, i.e. for a star connection:

I L = I p

(v) For a balanced system: IR D IY D IB, VR D VY D VB

VRY D VYB D VBR, ZR D ZY D ZB

and the current in the neutral conductor, IN D 0
When a star connected system is balanced, then the neutral
conductor is unnecessary and is often omitted.

(vi) The line voltage, VRY, shown in Figure 19.4(a) is given by
VRY = VR − VY (VY is negative since it is in the opposite
direction to VRY). In the phasor diagram of Figure 19.4(b), phasor
VY is reversed (shown by the broken line) and then added
phasorially to VR (i.e. VRY = VR Y .−VY /). By trigonometry, or
by measurement, VRY D p

3VR, i.e. for a balanced star connection:

VL =
p

3 Vp
Figure 19.4
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(See problem 3 following for a complete phasor diagram of a star-
connected system.)

(vii) The star connection of the three phases of a supply, together with
a neutral conductor, allows the use of two voltages — the phase
voltage and the line voltage. A 4-wire system is also used when the
load is not balanced. The standard electricity supply to consumers
in Great Britain is 415/240 V, 50 Hz, 3-phase, 4-wire alternating
current, and a diagram of connections is shown in Figure 19.5.

Figure 19.5

Problem 1. Three loads, each of resistance 30 
, are connected
in star to a 415 V, 3-phase supply. Determine (a) the system phase
voltage, (b) the phase current and (c) the line current.

A ‘415 V, 3-phase supply’ means that 415 V is the line voltage, VL

(a) For a star connection, VL D p
3Vp

Hence phase voltage, Vp D VLp
3

D 415p
3

D 239.6 V or 240 V

correct to 3 significant figures

(b) Phase current, Ip D Vp
Rp

D 240

30
D 8 A

(c) For a star connection, Ip D IL
Hence the line current, IL D 8 A

Problem 2. A star-connected load consists of three identical coils
each of resistance 30 
 and inductance 127.3 mH. If the line
current is 5.08 A, calculate the line voltage if the supply frequency
is 50 Hz
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Inductive reactance XL D 2�fL D 2��50��127.3 ð 10�3� D 40 


Impedance of each phase Zp D
√
�R2 C XL2� D

√
�302 C 402� D 50 


For a star connection IL D Ip D Vp
Zp

Hence phase voltage Vp D IpZp D �5.08��50� D 254 V

Line voltage VL D p
3Vp D p

3�254� D 440 V

Problem 3. A balanced, three-wire, star-connected, 3-phase load
has a phase voltage of 240 V, a line current of 5 A and a lagging
power factor of 0.966. Draw the complete phasor diagram.

The phasor diagram is shown in Figure 19.6.

Figure 19.6

Procedure to construct the phasor diagram:

(i) Draw VR D VY D VB D 240 V and spaced 120° apart. (Note that
VR is shown vertically upwards — this however is immaterial for it
may be drawn in any direction.)

(ii) Power factor D cos� D 0.966 lagging. Hence the load phase angle
is given by arccos 0.966, i.e. 15° lagging. Hence IR D IY D IB D
5 A, lagging VR, VY and VB respectively by 15°
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Figure 19.7

(iii) VRY D VR � VY (phasorially). Hence VY is reversed and added
phasorially to VR. By measurement, VRY D 415 V (i.e.

p
3�240�)

and leads VR by 30°. Similarly, VYB D VY � VB and
VBR D VB � VR

Problem 4. A 415 V, 3-phase, 4 wire, star-connected system
supplies three resistive loads as shown in Figure 19.7. Determine
(a) the current in each line and (b) the current in the neutral
conductor.

(a) For a star-connected system VL D p
3Vp

Hence Vp D VLp
3

D 415p
3

D 240 V

Since current I D Power P

Voltage V
for a resistive load

then IR D PR
VR

D 24 000

240
D 100 A

IY D PY
VY

D 18 000

240
D 75 A

and IB D PB
VB

D 12 000

240
D 50 A

(b) The three line currents are shown in the phasor diagram of
Figure 19.8. Since each load is resistive the currents are in phase
with the phase voltages and are hence mutually displaced by 120°.
The current in the neutral conductor is given by:

IN D IR C IY C IB phasorially.

Figure 19.8
Figure 19.9 shows the three line currents added phasorially. oa represents
IR in magnitude and direction. From the nose of oa, ab is drawn
representing IY in magnitude and direction. From the nose of ab, bc
is drawn representing IB in magnitude and direction. oc represents the
resultant, IN.

By measurement, IN = 43 A

Alternatively, by calculation, considering IR at 90°, IB at 210° and IY at
330°:
Total horizontal component D 100 cos 90° C 75 cos 330° C 50 cos 210°

D 21.65

Total vertical component D 100 sin 90° C 75 sin 330° C 50 sin 210°

D 37.50

Hence magnitude of IN D
√
�21.652 C 37.502� D 43.3 A

Figure 19.9
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19.4 Delta connection (i) A delta (or mesh) connected loadis shown in Figure 19.10 where
the end of one load is connected to the start of the next load.

(ii) From Figure 19.10, it can be seen that the line voltages VRY,VYB
and VBR are the respective phase voltages, i.e. for a delta
connection:

VL = Vp

Figure 19.10

(iii) Using Kirchhoff’s current law in Figure 19.10, IR D IRY � IBR D
IRY C ��IBR�. From the phasor diagram shown in Figure 19.11,
by trigonometry or by measurement, IR D p

3IRY, i.e. for a delta
connection:

I L =
p

3I p

Problem 5. Three identical coils each of resistance 30 
 and
inductance 127.3 mH are connected in delta to a 440 V, 50 Hz,
3-phase supply. Determine (a) the phase current, and (b) the line
current.

Figure 19.11

Phase impedance, Zp D 50 
 (from problem 2) and for a delta
connection, Vp D VL

(a) Phase current, Ip D Vp
Zp

D VL
Zp

D 440

50
D 8.8 A

(b) For a delta connection, IL D p
3Ip D p

3�8.8� D 15.24 A

Thus when the load is connected in delta, three times the line current is
taken from the supply than is taken if connected in star.

Problem 6. Three identical capacitors are connected in delta to a
415 V, 50 Hz, 3-phase supply. If the line current is 15 A, determine
the capacitance of each of the capacitors.

For a delta connection IL D p
3Ip

Hence phase current Ip D ILp
3

D 15p
3

D 8.66 A

Capacitive reactance per phase, XC D Vp
Ip

D VL
Ip

(since for a delta

connection VL D Vp)

Hence XC D 415

8.66
D 47.92 


XC D 1

2�fC
, from which capacitance, C D 1

2�fXC
D 1

2��50��47.92�
F

D 66.43 mF
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Problem 7. Three coils each having resistance 3 
 and inductive
reactance 4 
 are connected (i) in star and (ii) in delta to a 415 V,
3-phase supply. Calculate for each connection (a) the line and phase
voltages and (b) the phase and line currents.

(i) For a star connection: IL D Ip and VL D p
3Vp

(a) A 415 V, 3-phase supply means that the

line voltage, VL D 415 V

Phase voltage, Vp D VLp
3

D 415p
3

D 240 V

(b) Impedance per phase, Zp D
√
�R2 C XL2� D

√
�32 C 42�

D 5 


Phase current, Ip D Vp
Zp

D 240

5
D 48 A

Line current, IL D Ip D 48 A

(ii) For a delta connection: VL D Vp and IL D p
3Ip

(a) Line voltage, VL D 415 V

Phase voltage, Vp D VL D 415 V

(b) Phase current, Ip D Vp
Zp

D 415

5
D 83 A

Line current, IL D p
3Ip D p

3�83� D 144 A

Further problems on star and delta connections may be found in
Section 19.9, problems 1 to 7, page 312.

19.5 Power in
three-phase systems

The power dissipated in a three-phase load is given by the sum of the
power dissipated in each phase. If a load is balanced then the total power
P is given by: P D 3 ð power consumed by one phase.

The power consumed in one phase D Ip2Rp or VpIp cos� (where � is
the phase angle between Vp and Ip)

For a star connection, Vp D VLp
3

and Ip D IL hence

P D 3
(
VLp

3

)
IL cos� D p

3VLIL cos�

For a delta connection, Vp D VL and Ip D ILp
3

hence
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P D 3VL

(
ILp

3

)
cos� D p

3VLIL cos�

Hence for either a star or a delta balanced connection the total power P
is given by:

P =
p

3VLIL cosf watts or P = 3I p
2Rp watts.

Total volt-amperes, S =
p

3VLIL volt-amperes

Problem 8. Three 12 
 resistors are connected in star to a
415 V, 3-phase supply. Determine the total power dissipated by
the resistors.

Power dissipated, P D p
3VLIL cos� or P D 3Ip2Rp

Line voltage, VL D 415 V and phase voltage Vp D 415p
3

D 240 V

(since the resistors are star-connected)

Phase current, Ip D Vp
Zp

D Vp
Rp

D 240

12
D 20 A

For a star connection IL D Ip D 20 A

For a purely resistive load, the power factor D cos� D 1

Hence power P D p
3VLIL cos� D p

3�415��20��1� D 14.4 kW

or power P D 3Ip
2Rp D 3�20�2�12� D 14.4 kW

Problem 9. The input power to a 3-phase a.c. motor is measured
as 5 kW. If the voltage and current to the motor are 400 V and
8.6 A respectively, determine the power factor of the system.

Power, P D 5000 W; Line voltage VL D 400 V; Line current, IL D 8.6 A

Power, P D p
3VLIL cos�

Hence power factor D cos� D Pp
3VLIL

D 5000p
3�400��8.6�

D 0.839

Problem 10. Three identical coils, each of resistance 10 
 and
inductance 42 mH are connected (a) in star and (b) in delta to a
415 V, 50 Hz, 3-phase supply. Determine the total power dissipated
in each case.
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(a) Star connection

Inductive reactance XL D 2�fL D 2��50��42 ð 10�3�

D 13.19 


Phase impedance Zp D
√
�R2 C X2

L� D
√
�102 C 13.192�

D 16.55 


Line voltage VL D 415 V and

phase voltage, Vp D VLp
3

D 415p
3

D 240 V

Phase current, Ip D Vp
Zp

D 240

16.55
D 14.50 A

Line current, IL D Ip D 14.50 A

Power factor D cos� D Rp
Zp

D 10

16.55
D 0.6042 lagging

Power dissipated,P D p
3VLIL cos� D p

3�415��14.50��0.6042�

D 6.3 kW

(Alternatively, P D 3Ip2Rp D 3�14.50�2�10� D 6.3 kW�

(b) Delta connection

VL D Vp D 415 V, Zp D 16.55 
,

cos� D 0.6042 lagging (from above).

Phase current, Ip D Vp
Zp

D 415

16.55
D 25.08 A

Line current, IL D p
3Ip D p

3�25.08� D 43.44 A

Power dissipated,P D p
3VLIL cos� D p

3�415��43.44��0.6042�

D 18.87 kW

(Alternatively, P D 3Ip2Rp D 3�25.08�2�10� D 18.87 kW�

Hence loads connected in delta dissipate three times the power than when
connected in star, and also take a line current three times greater.

Problem 11. A 415 V, 3-phase a.c. motor has a power output of
12.75 kW and operates at a power factor of 0.77 lagging and with
an efficiency of 85%. If the motor is delta-connected, determine
(a) the power input, (b) the line current and (c) the phase current.

(a) Efficiency D power output

power input
, hence

85

100
D 12 750

power input

from which, power input D 12 750 ð 100

85
D 15 000 W or 15 kW
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(b) Power, P D p
3VLIL cos�, hence

line current , IL D Pp
3VL cos�

D 15 000p
3�415��0.77�

D 27.10 A

(c) For a delta connection, IL D p
3Ip,

hence phase current, Ip D ILp
3

D 27.10p
3

D 15.65 A

19.6 Measurement of
power in three-phase

systems

Power in three-phase loads may be measured by the following methods:

(i) One-wattmeter method for a balanced load
Wattmeter connections for both star and delta are shown in
Figure 19.12.

Total power = 3 × wattmeter reading

Figure 19.12

(ii) Two-wattmeter method for balanced or unbalanced loads
A connection diagram for this method is shown in Figure 19.13
for a star-connected load. Similar connections are made for a delta-
connected load.

Total power = sum of wattmeter readings= P1 Y P2

The power factor may be determined from:

tan f =
p

3
(

P1 − P2

P1Y P2

)
(see Problems 12 and 15 to 18)

It is possible, depending on the load power factor, for one wattmeter
to have to be ‘reversed’ to obtain a reading. In this case it is taken
as a negative reading (see Problem 17).

(iii) Three-wattmeter method for a three-phase, 4-wire system for
balanced and unbalanced loads.(see Figure 19.14).

Total power = P1Y P2 Y P3

Problem 12. (a) Show that the total power in a 3-phase, 3-wire
system using the two-wattmeter method of measurement is given
by the sum of the wattmeter readings. Draw a connection diagram.
(b) Draw a phasor diagram for the two-wattmeter method for a
balanced load. (c) Use the phasor diagram of part (b) to derive a
formula from which the power factor of a 3-phase system may be
determined using only the wattmeter readings.

Figure 19.13
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Figure 19.14

(a) A connection diagram for the two-wattmeter method of a power
measurement is shown in Figure 19.15 for a star-connected load.
Total instantaneous power, p D eRiR C eYiY C eBiB and in any 3
phase system iR C iY C iB D 0. Hence iB D �iR � iY

Thus, p D eRiR C eYiY C eB��iR � iY�

D �eR � eB�iR C �eY � eB�iY

However, (eR � eB) is the p.d. across wattmeter 1 in Figure 19.15
and (eY � eB) is the p.d. across wattmeter 2.

Hence total instantaneous power,

p D (wattmeter 1 reading) C (wattmeter 2 reading) D p1 C p2

Figure 19.15

The moving systems of the wattmeters are unable to follow the
variations which take place at normal frequencies and they indicate
the mean power taken over a cycle. Hence the total power,
P D P1 C P2 for balanced or unbalanced loads.

(b) The phasor diagram for the two-wattmeter method for a balanced
load having a lagging current is shown in Figure 19.16, where
VRB D VR � VB and VYB D VY � VB (phasorially).

Figure 19.16

(c) Wattmeter 1 reads VRBIR cos�30° � �� D P1

Wattmeter 2 reads VYBIY cos�30° C �� D P2

P1

P2
D VRBIR cos�30° � ��

VYBIY cos�30° C ��
D cos�30° � ��

cos�30° C ��

since IR D IY and VRB D VYB for a balanced load.

Hence
P1

P2
D cos 30° cos� C sin 30° sin�

cos 30° cos� � sin 30° sin�

(from compound angle formulae, see ‘Higher Engineering Mathematics’)

Dividing throughout by cos 30° cos� gives:

P1

P2
D 1 C tan 30° tan�

1 � tan 30° tan�
D

1 C 1p
3

tan�

1 � 1p
3

tan�
, (since

sin�

cos�
D tan�)

Cross-multiplying gives: P1 � P1p
3

tan� D P2 C P2p
3

tan�

Hence P1 � P2 D �P1 C P2�
tan�p

3

from which tan f =
p

3
(

P1 − P2

P1 Y P2

)

�, cos� and thus power factor can be determined from this formula.
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Figure 19.17

Problem 13. A 400 V, 3-phase star connected alternator supplies
a delta-connected load, each phase of which has a resistance
of 30 
 and inductive reactance 40 
. Calculate (a) the current
supplied by the alternator and (b) the output power and the kVA of
the alternator, neglecting losses in the line between the alternator
and load.

A circuit diagram of the alternator and load is shown in Figure 19.17.

(a) Considering the load: Phase current, Ip D Vp
Zp

Vp D VL for a delta connection. Hence Vp D 400 V

Phase impedance, Zp D
√
�Rp2 C XL2� D

√
�302 C 402� D 50 


Hence Ip D Vp
Zp

D 400

50
D 8 A

For a delta-connection, line current, IL D p
3Ip D p

3�8� D 13.86 A

Hence 13.86 A is the current supplied by the alternator.

(b) Alternator output power is equal to the power dissipated by the load.

i.e. P D p
3VLIL cos�, where cos� D Rp

Zp
D 30

50
D 0.6

Hence P D p
3�400��13.86��0.6� D 5.76 kW

Alternator output kVA, S D p
3VLIL D p

3�400��13.86�

D 9.60 kVA

Problem 14. Each phase of a delta-connected load comprises a
resistance of 30 
 and an 80 µF capacitor in series. The load is
connected to a 400 V, 50 Hz, 3-phase supply. Calculate (a) the
phase current, (b) the line current, (c) the total power dissipated and
(d) the kVA rating of the load. Draw the complete phasor diagram
for the load.

(a) Capacitive reactance, XC D 1

2�fC
D 1

2��50��80 ð 10�6�

D 39.79 


Phase impedance, Zp D
√
�Rp2 C XC2� D

√
�302 C 39.792�

D 49.83 


Power factor D cos� D Rp
Zp

D 30

49.83
D 0.602

Hence � D arccos 0.602 D 52°590 leading.

Phase current, Ip D Vp
Zp

and Vp D VL for a delta connection.
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Hence Ip D 400

49.83
D 8.027 A

(b) Line current IL D p
3Ip for a delta-connection

Hence IL D p
3�8.027� D 13.90 A

(c) Total power dissipated, P D p
3VLIL cos�

D p
3�400��13.90��0.602� D 5.797 kW

(d) Total kVA, S D p
3VLIL D p

3�400��13.90� D 9.630 kVA

The phasor diagram for the load is shown in Figure 19.18

Figure 19.18

Problem 15. Two wattmeters are connected to measure the input
power to a balanced 3-phase load by the two-wattmeter method.
If the instrument readings are 8 kW and 4 kW, determine (a) the
total power input and (b) the load power factor.

(a) Total input power, P D P1 C P2 D 8 C 4 D 12 kW

(b) tan� D p
3

(
P1 � P2

P1 C P2

)
D p

3
(

8 � 4

8 C 4

)

D p
3

(
4

12

)
D p

3
(

1

3

)
D 1p

3
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Hence � D arctan
1p
3

D 30°

Power factor D cos� D cos 30° D 0.866

Problem 16. Two wattmeters connected to a 3-phase motor
indicate the total power input to be 12 kW. The power factor is
0.6. Determine the readings of each wattmeter.

If the two wattmeters indicate P1 and P2 respectively

then P1 C P2 D 12 kW �1�

tan� D p
3

(
P1 � P2

P1 C P2

)
and power factor D 0.6 D cos�

Angle � D arccos 0.6 D 53.13° and tan 53.13° D 1.3333

Hence 1.3333 D
p

3�P1 � P2�

12
, from which, P1 � P2 D 12�1.3333�p

3
i.e., P1 � P2 D 9.237 kW �2�

Adding equations (1) and (2) gives: 2P1 D 21.237,

i.e. P1 D 21.237

2
D 10.62 kW

Hence wattmeter 1 reads 10.62 kW

From equation (1), wattmeter 2 reads.12− 10.62/ = 1.38 kW

Problem 17. Two wattmeters indicate 10 kW and 3 kW respec-
tively when connected to measure the input power to a 3-phase
balanced load, the reverse switch being operated on the meter indi-
cating the 3 kW reading. Determine (a) the input power and (b) the
load power factor.

Since the reversing switch on the wattmeter had to be operated the 3 kW
reading is taken as �3 kW.

(a) Total input power, P D P1 C P2 D 10 C ��3� D 7 kW

(b) tan� D p
3

(
P1 � P2

P1 C P2

)
D p

3
(

10 � ��3�

10 C ��3�

)

D p
3

(
13

7

)
D 3.2167

Angle � D arctan 3.2167 D 72.73°

Power factor D cos� D cos 72.73° D 0.297
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Problem 18. Three similar coils, each having a resistance of 8 

and an inductive reactance of 8 
 are connected (a) in star and
(b) in delta, across a 415 V, 3-phase supply. Calculate for each
connection the readings on each of two wattmeters connected to
measure the power by the two-wattmeter method.

(a) Star connection: VL D p
3Vp and IL D Ip

Phase voltage, Vp D VLp
3

D 415p
3

and

phase impedance, Zp D
√
�Rp2 C XL2�

D
√
�82 C 82� D 11.31 


Hence phase current, Ip D Vp
Zp

D 415/
p

3

11.31
D 21.18 A

Total power, P D 3Ip2Rp D 3�21.18�2�8� D 10 766 W

If wattmeter readings are P1 and P2 then P1 C P2 D 10 766 (1)

Since Rp D 8 
 and XL D 8 
, then phase angle � D 45° (from
impedance triangle)

tan� D p
3

(
P1 � P2

P1 C P2

)
, hence tan 45° D

p
3�P1 � P2�

10 766

from which P1 � P2 D 10 766�1�p
3

D 6 216 W (2)

Adding equations (1) and (2) gives: 2P1 D 10 766 C 6 216

D 16 982 W

Hence P1 D 8 491 W

From equation (1), P2 D 10 766 � 8 491 D 2 275 W

When the coils are star-connected the wattmeter readings are
thus 8.491 kW and 2.275 kW.

(b) Delta connection:VL D Vp and IL D p
3Ip

Phase current, Ip D Vp
Zp

D 415

11.31
D 36.69 A

Total power, P D 3Ip2Rp D 3�36.69�2�8� D 32 310 W

Hence P1 C P2 D 32 310 W (3)

tan� D p
3

(
P1 � P2

P1 C P2

)
thus 1 D

p
3�P1 � P2�

32 310

from which, P1 � P2 D 32 310p
3

D 18 650 W (4)
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Adding equations (3) and (4) gives:

2P1 D 50 960, from which P1 D 25 480 W

From equation (3), P2 D 32 310 � 25 480 D 6 830 W

When the coils are delta-connected the wattmeter readings are
thus 25.48 kW and 6.83 kW.

Further problems on power in 3-phase circuits may be found in
Section 19.9, problems 8 to 19, page 313.

19.7 Comparison of star
and delta connections

(i) Loads connected in delta dissipate three times more power than
when connected in star to the same supply.

(ii) For the same power, the phase currents must be the same for both
delta and star connections (since power D 3Ip2Rp), hence the line
current in the delta-connected system is greater than the line current
in the corresponding star-connected system. To achieve the same
phase current in a star-connected system as in a delta-connected
system, the line voltage in the star system is

p
3 times the line

voltage in the delta system.
Thus for a given power transfer, a delta system is associated with

larger line currents (and thus larger conductor cross-sectional area)
and a star system is associated with a larger line voltage (and thus
greater insulation).

19.8 Advantages of
three-phase systems

Advantages of three-phase systemsover single-phase supplies include:

(i) For a given amount of power transmitted through a system,
the three-phase system requires conductors with a smaller cross-
sectional area. This means a saving of copper (or aluminium) and
thus the original installation costs are less.

(ii) Two voltages are available (see Section 19.3(vii)).
(iii) Three-phase motors are very robust, relatively cheap, generally

smaller, have self-starting properties, provide a steadier output and
require little maintenance compared with single-phase motors.

19.9 Further problems
on three-phase systems

Star and delta connections

1 Three loads, each of resistance 50 
 are connected in star to a
400 V, 3-phase supply. Determine (a) the phase voltage, (b) the
phase current and (c) the line current.

[(a) 231 V (b) 4.62 A (c) 4.62 A]
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2 If the loads in question 1 are connected in delta to the same supply
determine (a) the phase voltage, (b) the phase current and (c) the
line current. [(a) 400 V (b) 8 A (c) 13.86 A]

3 A star-connected load consists of three identical coils, each of induc-
tance 159.2 mH and resistance 50 
. If the supply frequency is
50 Hz and the line current is 3 A determine (a) the phase voltage
and (b) the line voltage. [(a) 212 V (b) 367 V]

4 Three identical capacitors are connected (a) in star, (b) in delta to a
400 V, 50 Hz, 3-phase supply. If the line current is 12 A determine
in each case the capacitance of each of the capacitors.

[(a) 165.4 µF (b) 55.13 µF]

5 Three coils each having resistance 6 
 and inductance L H are
connected (a) in star and (b) in delta, to a 415 V, 50 Hz, 3-phase
supply. If the line current is 30 A, find for each connection the value
of L. [(a) 16.78 mH (b) 73.84 mH]

6 A 400 V, 3-phase, 4 wire, star-connected system supplies three resis-
tive loads of 15 kW, 20 kW and 25 kW in the red, yellow and blue
phases respectively. Determine the current flowing in each of the
four conductors.

[IR D 64.95 A, IY D 86.60 A
IB D 108.25 A, IN D 37.50 A]

7 A 3-phase, star-connected alternator delivers a line current of 65 A to
a balanced delta-connected load at a line voltage of 380 V. Calculate
(a) the phase voltage of the alternator, (b) the alternator phase current
and (c) the load phase current.

[(a) 219.4 V (b) 65 A (c) 37.53 A]

Power in 3-phase circuits

8 Determine the total power dissipated by three 20 
 resistors when
connected (a) in star and (b) in delta to a 440 V, 3-phase supply.

[(a) 9.68 kW (b) 29.04 kW]

9 Determine the power dissipated in the circuit of problem 3.
[1.35 kW]

10 A balanced delta-connected load has a line voltage of 400 V, a line
current of 8 A and a lagging power factor of 0.94. Draw a complete
phasor diagram of the load. What is the total power dissipated by
the load? [5.21 kW]

11 Three inductive loads, each of resistance 4 
 and reactance 9 
 are
connected in delta. When connected to a 3-phase supply the loads
consume 1.2 kW. Calculate (a) the power factor of the load, (b) the
phase current, (c) the line current and (d) the supply voltage.

[(a) 0.406 (b) 10 A (c) 17.32 A (d) 98.49 V]

12 The input voltage, current and power to a motor is measured as
415 V, 16.4 A and 6 kW respectively. Determine the power factor
of the system. [0.509]
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13 A 440 V, 3-phase a.c. motor has a power output of 11.25 kW and
operates at a power factor of 0.8 lagging and with an efficiency of
84%. If the motor is delta connected determine (a) the power input,
(b) the line current and (c) the phase current.

[(a) 13.39 kW (b) 21.96 A (c) 12.68 A]

14 Two wattmeters are connected to measure the input power to a
balanced 3-phase load. If the wattmeter readings are 9.3 kW and
5.4 kW determine (a) the total output power, and (b) the load power
factor. [(a) 14.7 kW (b) 0.909]

15 8 kW is found by the two-wattmeter method to be the power input
to a 3-phase motor. Determine the reading of each wattmeter if the
power factor of the system is 0.85. [5.431 kW, 2.569 kW]

16 Three similar coils, each having a resistance of 4.0 
 and an induc-
tive reactance of 3.46 
 are connected (a) in star and (b) in delta
across a 400 V, 3-phase supply. Calculate for each connection the
readings on each of two wattmeters connected to measure the power
by the two-wattmeter method.

[(a) 17.15 kW, 5.73 kW (b) 51.46 kW, 17.18 kW]

17 A 3-phase, star-connected alternator supplies a delta connected load,
each phase of which has a resistance of 15 
 and inductive reactance
20 
. If the line voltage is 400 V, calculate (a) the current supplied
by the alternator and (b) the output power and kVA rating of the
alternator, neglecting any losses in the line between the alternator
and the load. [(a) 27.71 A (b) 11.52 kW, 19.2 kVA]

18 Each phase of a delta-connected load comprises a resistance of 40 

and a 40 µF capacitor in series. Determine, when connected to a
415 V, 50 Hz, 3-phase supply (a) the phase current, (b) the line
current, (c) the total power dissipated, and (d) the kVA rating of
the load. [(a) 4.66 A (b) 8.07 A (c) 2.605 kW (d) 5.80 kVA]

19 Three 24 µF capacitors are connected in star across a 400 V, 50 Hz,
3-phase supply. What value of capacitance must be connected in
delta in order to take the same line current?

[8 µF]



20 Transformers

At the end of this chapter you should be able to:

ž understand the principle of operation of a transformer

ž understand the term ‘rating’ of a transformer

ž use
V1

V2
D N1

N2
D I2

I1
in calculations on transformers

ž construct a transformer no-load phasor diagram and calculate
magnetizing and core loss components of the no-load current

ž state the e.m.f. equation for a transformerE D 4.44fmN and
use it in calculations

ž construct a transformer on-load phasor diagram for an
inductive circuit assuming the volt drop in the windings is
negligible

ž describe transformer construction

ž derive the equivalent resistance, reactance and impedance
referred to the primary of a transformer

ž understand voltage regulation

ž describe losses in transformers and calculate efficiency

ž appreciate the concept of resistance matching and how it may
be achieved

ž perform calculations usingR1 D
(
N1

N2

)2

RL

ž describe an auto transformer, its advantages/disadvantages and
uses

ž describe an isolating transformer, stating uses

ž describe a three-phase transformer

ž describe current and voltage transformers

20.1 Introduction A transformer is a device which uses the phenomenon of mutual induction
(see Chapter 9) to change the values of alternating voltages and currents.
In fact, one of the main advantages of a.c. transmission and distribution is
the ease with which an alternating voltage can be increased or decreased
by transformers.

Losses in transformers are generally low and thus efficiency is high.
Being static they have a long life and are very stable.
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Transformers range in size from the miniature units used in electronic
applications to the large power transformers used in power stations. The
principle of operation is the same for each.

A transformer is represented in Figure 20.1(a) as consisting of two elec-
trical circuits linked by a common ferromagnetic core. One coil is termed
theprimary winding which is connected to the supply of electricity, and
the other thesecondary winding, which may be connected to a load. A
circuit diagram symbol for a transformer is shown in Figure 20.1(b).

Figure 20.1

20.2 Transformer
principle of operation

When the secondary is an open-circuit and an alternating voltageV1

is applied to the primary winding, a small current — called the no-load
currentI0 — flows, which sets up a magnetic flux in the core. This alter-
nating flux links with both primary and secondary coils and induces in
them e.m.f.’s ofE1 andE2 respectively by mutual induction.

The induced e.m.f.E in a coil of N turns is given by

E D �N
d

d t
volts,

whered/d t is the rate of change of flux. In an ideal transformer, the
rate of change of flux is the same for both primary and secondary and
thusE1/N1 D E2/N2, i.e. the induced e.m.f. per turn is constant.
Assuming no losses,E1 D V1 andE2 D V2 Hence

V1

N1
D V2

N2
or

V1

V2
D N1

N2

20.1�

V1/V2 is called the voltage ratio andN1/N2 the turns ratio, or the‘trans-
formation ratio’ of the transformer. IfN2 is less thanN1 thenV2 is less
than V1 and the device is termed astep-down transformer. If N2 is
greater thenN1 thenV2 is greater thanV1 and the device is termed a
step-up transformer.

When a load is connected across the secondary winding, a currentI2

flows. In an ideal transformer losses are neglected and a transformer is
considered to be 100% efficient.



Transformers 317

Hence input powerD output power, orV1I1 D V2I2, i.e., in an ideal
transformer, theprimary and secondary volt-amperes are equal.

Thus
V1

V2
D I2

I1

20.2�

Combining equations (20.1) and (20.2) gives:

V1

V2
=

N1

N2
=

I2

I1

20.3�

The rating of a transformer is stated in terms of the volt-amperes that
it can transform without overheating. With reference to Figure 20.1(a),
the transformer rating is eitherV1I1 or V2I2, whereI2 is the full-load
secondary current.

Problem 1. A transformer has 500 primary turns and 3000
secondary turns. If the primary voltage is 240 V, determine the
secondary voltage, assuming an ideal transformer.

For an ideal transformer, voltage ratioD turns ratio i.e.,

V1

V2
D N1

N2
, hence

240

V2
D 500

3000

Thus secondary voltageV2 D 
3000�
240�


500�
D 1440 V or 1.44 kV

Problem 2. An ideal transformer with a turns ratio of 2:7 is fed
from a 240 V supply. Determine its output voltage.

A turns ratio of 2:7 means that the transformer has 2 turns on the primary
for every 7 turns on the secondary (i.e. a step-up transformer). Thus,

N1

N2
D 2

7

For an ideal transformer,
N1

N2
D V1

V2
; hence

2

7
D 240

V2

Thus the secondary voltageV2 D 
240�
7�


2�
D 840 V

Problem 3. An ideal transformer has a turns ratio of 8:1 and the
primary current i

s 3 A when it is supplied at 240 V. Calculate the

secondary voltage and current.
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A turns ratio of 8:1 means
N1

N2
D 8

1
, i.e. a step-down transformer.

N1

N2
D V1

V2
, or secondary voltageV2 D V1

(
N2

N1

)
D 240

(
1

8

)

D 30 volts

Also,
N1

N2
D I2

I1
I hence secondary currentI2 D I1

(
N1

N2

)

D 3
(

8

1

)
D 24 A

Problem 4. An ideal transformer, connected to a 240 V mains,
supplies a 12 V, 150 W lamp. Calculate the transformer turns ratio
and the current taken from the supply.

V1 D 240 V,V2 D 12 V, I2 D P

V2
D 150

12
D 12.5 A

Turns ratioD N1

N2
D V1

V2
D 240

12
D 20

V1

V2
D I2

I1
, from which,I1 D I2

(
V2

V1

)
D 12.5

(
12

240

)

Hence current taken from the supply,I1 D 12.5

20
D 0.625 A

Problem 5. A 5 kVA single-phase transformer has a turns ratio of
10:1 and is fed from a 2.5 kV supply. Neglecting losses, determine
(a) the full-load secondary current, (b) the minimum load resistance
which can be connected across the secondary winding to give full
load kVA, (c) the primary current at full load kVA.

(a)
N1

N2
D 10

1
andV1 D 2.5 kV D 2500 V

Since
N1

N2
D V1

V2
, secondary voltageV2 D V1

(
N2

N1

)

D 2500
(

1

10

)
D 250 V

The transformer rating in volt-amperesD V2I2 (at full load),

i.e., 5000D 250I2
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Hence full load secondary currentI2 D 5000

250
D 20 A

(b) Minimum value of load resistance,RL D V2

I2
D 250

20
D 12.5 Z

(c)
N1

N2
D I2

I1
, from which primary currentI1 D I2

(
N2

N1

)

D 20
(

1

10

)
D 2 A

Further problems on the transformer principle of operation may be found
in Section 20.16, problems 1 to 9, page 344.

20.3 Transformer
no-load phasor diagram

(i) The core flux is common to both primary and secondary windings in
a transformer and is thus taken as the reference phasor in a phasor
diagram. On no-load the primary winding takes a small no-load
currentI0 and since, with losses neglected, the primary winding is
a pure inductor, this current lags the applied voltageV1 by 90°. In
the phasor diagram assuming no losses, shown in Figure 20.2(a),
current I0 produces the flux and is drawn in phase with the flux.
The primary induced e.m.f.E1 is in phase opposition toV1 (by
Lenz’s law) and is shown 180° out of phase withV1 and equal in
magnitude. The secondary induced e.m.f. is shown for a 2:1 turns
ratio transformer.

(ii) A no-load phasor diagram for a practical transformer is shown in
Figure 20.2(b). If current flows then losses will occur. When losses
are considered then the no-load currentI0 is the phasor sum of
two components — (i)IM , the magnetizing component, in phase
with the flux, and (ii)IC , the core loss component(supplying the
hysteresis and eddy current losses). From Figure 20.2(b):

No-load current,I0 =
√

.I 2
M Y I 2

C/, whereIM = I0 sinf0 and

IC = I 0 cosf0

Power factor on no-loadD cos�0 D IC
I0

The total core losses (i.e. iron losses)D V1I0 cos�0

Problem 6. A 2400 V/400 V single-phase transformer takes a no-
load current of 0.5 A and the core loss is 400 W. Determine the
values of the magnetizing and core loss components of the no-
load current. Draw to scale the no-load phasor diagram for the
transformer.

Figure 20.2
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Figure 20.3

V1 D 2400 V,V2 D 400 V, I0 D 0.5 A

Core loss (i.e. iron loss)D 400D V1I0 cos�0

i.e. 400D 
2400�
0.5� cos�0

Hence cos�0 D 400


2400�
0.5�
D 0.3333

�0 D arccos 0.3333D 70.53°

The no-load phasor diagram is shown in Figure 20.3.

Magnetizing component,IM D I0 sin�0 D 0.5 sin 70.53° D 0.471 A

Core loss component,IC D I0 cos�0 D 0.5 cos 70.53° D 0.167 A

Problem 7. A transformer takes a current of 0.8 A when its
primary is connected to a 240 volt, 50 Hz supply, the secondary
being on open circuit. If the power absorbed is 72 watts, determine
(a) the iron loss current, (b) the power factor on no-load, and (c) the
magnetizing current.

I0 D 0.8 A, V D 240 V

(a) Power absorbedD total core lossD 72 D V1I0 cos�0

Hence 72D 240 I0 cos�0

and iron loss current,Ic D I0 cos�0 D 72

240
D 0.30 A

(b) Power factor at no load, cos�0 D Ic
I0

D 0.30

0.80
D 0.375

(c) From the right-angled triangle in Figure 20.2(b) and using
Pythagoras’ theorem,I2

0 D I2
c C I2

M

from which, magnetizing current,IM D
√

I2

0 � I2
c�

D
√

0.802 � 0.302�

D 0.74 A

Further problems on the no-load phasor diagram may be found in
Section 20.16, problems 10 to 12, page 344.

20.4 E.m.f. equation of a
transformer

The magnetic flux set up in the core of a transformer when an alter-
nating voltage is applied to its primary winding is also alternating and is
sinusoidal.
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Let m be the maximum value of the flux and f be the frequency of
the supply. The time for 1 cycle of the alternating flux is the periodic
time T, whereT D 1/f seconds

The flux rises sinusoidally from zero to its maximum value in1
4 cycle,

and the time for14 cycle is 1/4f seconds.

Hence the average rate of change of fluxD m


1/4f�
D 4fm Wb/s,

and since 1 Wb/sD 1 volt, the average e.m.f. induced in each turn
D 4fm volts.

As the flux  varies sinusoidally, then a sinusoidal e.m.f. will be
induced in each turn of both primary and secondary windings.

For a sine wave, form factorD rms value

average value
D 1.11 (see Chapter 14)

Hence rms valueD form factorð average value

D 1.11ð average value

Thus rms e.m.f. induced in each turnD 1.11ð 4fm volts

D 4.44fm volts

Therefore, rms value of e.m.f. induced in primary,

E1 = 4.44f 8mN1 volts 
20.4�

and rms value of e.m.f. induced in secondary,

E2 = 4.44f 8mN2 volts 
20.5�

Dividing equation (20.4) by equation (20.5) gives:

E1

E2
D N1

N2
, as previously obtained in Section 20.2.

Problem 8. A 100 kVA, 4000 V/200 V, 50 Hz single-phase trans-
former has 100 secondary turns. Determine (a) the primary and
secondary current, (b) the number of primary turns, and (c) the
maximum value of the flux.

V1 D 4000 V,V2 D 200 V,f D 50 Hz,N2 D 100 turns

(a) Transformer ratingD V1I1 D V2I2 D 100 000 VA

Hence primary current,I1 D 100 000

V1
D 100 000

4000
D 25 A

and secondary current,I2 D 100 000

V2
D 100 000

200
D 500 A
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(b) From equation (20.3),
V1

V2
D N1

N2

from which, primary turns,N1 D
(
V1

V2

)

N2� D

(
4000

200

)

100�

i.e., N1 = 2000 turns

(c) From equation (20.5),E2 D 4.44fmN2

from which, maximum fluxm D E2

4.44fN2
D 200

4.44
50�
100�

(assumingE2 D V2)

D 9.01× 10−3 Wb or 9.01 mWb

[Alternatively, equation (20.4) could have been used,

whereE1 D 4.44fmN1

from which,m D E1

4.44fN1
D 4000

4.44
50�
2000�
(assumingE1 D V1�

D 9.01 mWb, as above]

Problem 9. A single-phase, 50 Hz transformer has 25 primary
turns and 300 secondary turns. The cross-sectional area of the core
is 300 cm2. When the primary winding is connected to a 250 V
supply, determine (a) the maximum value of the flux density in the
core, and (b) the voltage induced in the secondary winding.

(a) From equation (20.4), e.m.f.E1 D 4.44fmN1 volts i.e.,

250D 4.44
50�m
25�

from which, maximum flux density,m D 250


4.44�
50�
25�
Wb

D 0.04505 Wb

However,m D Bm ð A, whereBm D maximum flux density in the
core andA D cross-sectional area of the core (see Chapter 7)

HenceBm ð 300ð 10�4 D 0.04505

from which,maximum flux density, Bm D 0.04505

300ð 10�4
D 1.50 T

(b)
V1

V2
D N1

N2
, from which,V2 D V1

(
N2

N1

)

i.e., voltage induced in the secondary winding,
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V2 D 
250�
(

300

25

)
D 3000 V or 3 kV

Problem 10. A single-phase 500 V/100 V, 50 Hz transformer has
a maximum core flux density of 1.5 T and an effective core cross-
sectional area of 50 cm2. Determine the number of primary and
secondary turns.

The e.m.f. equation for a transformer isE D 4.44fmN

and maximum flux,m D B ð A D 
1.5�
50ð 10�4� D 75ð 10�4 Wb

SinceE1 D 4.44fmN1

then primary turns,N1 D E1

4.44fm
D 500

4.44
50�
75ð 10�4�

D 300 turns

SinceE2 D 4.4fmN2

then secondary turns,N2 D E2

4.4fm
D 100

4.44
50�
75ð 10�4�

D 60 turns

Problem 11. A 4500 V/225 V, 50 Hz single-phase transformer is
to have an approximate e.m.f. per turn of 15 V and operate with a
maximum flux of 1.4 T. Calculate (a) the number of primary and
secondary turns and (b) the cross-sectional area of the core.

(a) E.m.f. per turnD E1

N1
D E2

N2
D 15

Hence primary turns,N1 D E1

15
D 4500

15
D 300

and secondary turns,N2 D E2

15
D 225

15
D 15

(b) E.m.f.E1 D 4.44fmN1

from which,m D E1

4.44fN1
D 4500

4.44
50�
300�
D 0.0676 Wb

Now flux m D Bm ð A, whereA is the cross-sectional area of the
core, hence

areaA D m

Bm
D 0.0676

1.4
D 0.0483 m2 or 483 cm2
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Further problems on the e.m.f. equation may be found in Section 20.16,
problems 13 to 16, page 345.

20.5 Transformer
on-load phasor diagram

If the voltage drop in the windings of a transformer are assumed negli-
gible, then the terminal voltageV2 is the same as the induced e.m.f.E2 in
the secondary. Similarly,V1 D E1. Assuming an equal number of turns
on primary and secondary windings, thenE1 D E2, and let the load have
a lagging phase angle�2.

In the phasor diagram of Figure 20.4, currentI2 lagsV2 by angle�2.
When a load is connected across the secondary winding a currentI2 flows
in the secondary winding. The resulting secondary e.m.f. acts so as to tend
to reduce the core flux. However this does not happen since reduction of
the core flux reducesE1, hence a reflected increase in primary currentI0

1
occurs which provides a restoring mmf. Hence at all loads, primary and
secondary mmf’s are equal, but in opposition, and the core flux remains
constant.I0

1 is sometimes called the ‘balancing’ current and is equal, but
in the opposite direction, to currentI2 as shown in Figure 20.4.I0, shown
at a phase angle�0 to V1, is the no-load current of the transformer (see
Section 20.3).

The phasor sum ofI0
1 andI0 gives the supply currentI1 and the phase

angle betweenV1 andI1 is shown as�1.

Figure 20.4

Problem 12. A single-phase transformer has 2000 turns on the
primary and 800 turns on the secondary. Its no-load current is 5 A
at a power factor of 0.20 lagging. Assuming the volt drop in the
windings is negligible, determine the primary current and power
factor when the secondary current is 100 A at a power factor of
0.85 lagging.

Let I0
1 be the component of the primary current which provides the

restoring mmf. Then

I0
1N1 D I2N2

i.e., I0
1
2000� D 
100�
800�

from which, I0
1 D 
100�
800�

2000
D 40 A

If the power factor of the secondary is 0.85

then cos�2 D 0.85, from which,�2 D arccos 0.85 D 31.8°

If the power factor on no-load is 0.20,

then cos�0 D 0.2 and�0 D arccos 0.2 D 78.5°

In the phasor diagram shown in Figure 20.5,I2 D 100 A is shown at an
angle of�2 D 31.8° to V2 andI0

1 D 40 A is shown in anti-phase toI2.Figure 20.5
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The no-load currentI0 D 5 A is shown at an angle of�0 D 78.5° to V1.
Current I1 is the phasor sum ofI0

1 and I0 and by drawing to scale,
I1 D 44 A and angle�1 D 37°

By calculation, I1 cos�1 D oa C ob

D I0 cos�0 C I0
1 cos�2

D 
5�
0.2� C 
40�
0.85�

D 35.0 A

and I1 sin�1 D oc C od

D I0 sin�0 C I0
1 sin�2

D 
5� sin 78.5° C 
40� sin 31.8°

D 25.98 A

Hence the magnitude ofI1 D p

35.02 C 25.982� D 43.59 A

and tan�1 D
(

25.98

35.0

)
, from which,�1 D arctan

(
25.98

35.0

)
D 36.59°

Hence the power factor of the primaryD cos�1 D cos 36.59° D 0.80

A further problem on the transformer on-load may be found in
Section 20.16, problem 17, page 345.

20.6 Transformer
construction

(i) There are broadly two types of single-phase double-wound trans-
former constructions — thecore type and theshell type, as shown
in Figure 20.6. The low and high voltage windings are wound as
shown to reduce leakage flux.

(ii) For power transformers, rated possibly at several MVA and
operating at a frequency of 50 Hz in Great Britain, the core material
used is usually laminated silicon steel or stalloy, the laminations
reducing eddy currents and the silicon steel keeping hysteresis loss
to a minimum.

Large power transformers are used in the main distribution
system and in industrial supply circuits. Small power transformers
have many applications, examples including welding and rectifier
supplies, domestic bell circuits, imported washing machines, and
so on.

(iii) For audio frequency (a.f.) transformers, rated from a few mVA
to no more than 20 VA, and operating at frequencies up to about
15 kHz, the small core is also made of laminated silicon steel.
A typical application of a.f. transformers is in an audio amplifier
system.Figure 20.6
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(iv) Radio frequency (r.f.) transformers, operating in the MHz
frequency region have either an air core, a ferrite core or a dust
core. Ferrite is a ceramic material having magnetic properties
similar to silicon steel, but having a high resistivity. Dust cores
consist of fine particles of carbonyl iron or permalloy (i.e. nickel
and iron), each particle of which is insulated from its neighbour.
Applications of r.f. transformers are found in radio and television
receivers.

(v) Transformerwindings are usually of enamel-insulated copper or
aluminium.

(vi) Cooling is achieved by air in small transformers and oil in large
transformers.

20.7 Equivalent circuit
of a transformer

Figure 20.7 shows an equivalent circuit of a transformer.R1 andR2 repre-
sent the resistances of the primary and secondary windings andX1 and
X2 represent the reactances of the primary and secondary windings, due
to leakage flux.

Figure 20.7

The core losses due to hysteresis and eddy currents are allowed for by
resistanceR which takes a currentIc, the core loss component of the
primary current. ReactanceX takes the magnetizing componentIM.

In a simplified equivalent circuit shown in Figure 20.8,R andX are
omitted since the no-load currentI0 is normally only about 3–5% of the
full load primary current.

It is often convenient to assume that all of the resistance and reactance
as being on one side of the transformer.

ResistanceR2 in Figure 20.8 can be replaced by inserting an addi-
tional resistanceR0

2 in the primary circuit such that the power absorbed
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Figure 20.8

in R0
2 when carrying the primary current is equal to that inR2 due to the

secondary current, i.e.,I2
1R

0
2 D I2

2R2

from which,R0
2 D R2

(
I2

I1

)2

D R2

(
V1

V2

)2

Then the total equivalent resistance in the primary circuitRe is equal
to the primary and secondary resistances of the actual transformer.
Hence

Re D R1 C R0
2, i.e., Re = R1Y R2

(
V1

V2

)2

20.6�

By similar reasoning, the equivalent reactance in the primary circuit is
given by

Xe D X1 C X0
2, i.e., Xe = X1Y X2

(
V1

V2

)2

20.7�

The equivalent impedanceZe of the primary and secondary windings
referred to the primary is given by

Ze =
√

.R2
e Y X2

e/ 
20.8�

If �e is the phase angle betweenI1 and the volt dropI1Ze then

cosfe =
Re

Ze

20.9�

The simplified equivalent circuit of a transformer is shown in Figure 20.9.
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Figure 20.9

Problem 13. A transformer has 600 primary turns and 150
secondary turns. The primary and secondary resistances are 0.25�
and 0.01� respectively and the corresponding leakage reactances
are 1.0� and 0.04� respectively. Determine (a) the equivalent
resistance referred to the primary winding, (b) the equivalent
reactance referred to the primary winding, (c) the equivalent
impedance referred to the primary winding, and (d) the phase angle
of the impedance.

(a) From equation (20.6), equivalent resistanceRe D R1 C R2

(
V1

V2

)2

i.e., Re D 0.25C 0.01
(

600

150

)2

since
V1

V2
D N1

N2

D 0.41Z

(b) From equation (20.7), equivalent reactance,Xe D X1 C X2

(
V1

V2

)2

i.e.,Xe D 1.0 C 0.04
(

600

150

)2

D 1.64Z

(c) From equation (20.8), equivalent impedance,Ze D
√

R2

e C X2
e�

D
√

0.412 C 1.642�

D 1.69Z

(d) From equation (20.9), cos�e D Re

Ze
D 0.41

1.69

Hence�e D arccos
(

0.41

1.69

)
D 75.96°
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A further problem on the equivalent circuit of a transformer may be found
in Section 20.16, problem 18, page 346.

20.8 Regulation of a
transformer

When the secondary of a transformer is loaded, the secondary terminal
voltage, V2, falls. As the power factor decreases, this voltage drop
increases. This is called theregulation of the transformer and it is
usually expressed as a percentage of the secondary no-load voltage,E2.
For full-load conditions:

Regulation=
(

E2 − V2

E2

)
× 100% 
20.10�

The fall in voltage,
E2 � V2�, is caused by the resistance and reactance
of the windings.

Typical values of voltage regulation are about 3% in small transformers
and about 1% in large transformers.

Problem 14. A 5 kVA, 200 V/400 V, single-phase transformer
has a secondary terminal voltage of 387.6 volts when loaded.
Determine the regulation of the transformer.

From equation (20.10):

regulationD
(No-load secondary voltage
� terminal voltage on load)
no-load secondary voltage

ð 100%

D
[

400� 387.6

400

]
ð 100%

D
(

12.4

400

)
ð 100%D 3.1%

Problem 15. The open circuit voltage of a transformer is 240 V.
A tap changing device is set to operate when the percentage regu-
lation drops below 2.5%. Determine the load voltage at which the
mechanism operates.

RegulationD (no load voltage� terminal load voltage)

no load voltage
ð 100%

Hence 2.5 D
[

240� V2

240

]
100%
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Therefore

2.5�
240�

100
D 240� V2

i.e, 6D 240� V2

from which, load voltage, V2 D 240� 6 D 234 volts

Further problems on regulation may be found in Section 20.16, prob-
lems 19 and 20, page 346.

20.9 Transformer losses
and efficiency

There are broadly two sources oflosses in transformerson load, these
being copper losses and iron losses.

(a) Copper lossesare variable and result in a heating of the conductors,
due to the fact that they possess resistance. IfR1 and R2 are the
primary and secondary winding resistances then the total copper
loss isI2

1R1 C I2
2R2

(b) Iron losses are constant for a given value of frequency and flux
density and are of two types — hysteresis loss and eddy current loss.

(i) Hysteresis loss is the heating of the core as a result of
the internal molecular structure reversals which occur as the
magnetic flux alternates. The loss is proportional to the area of
the hysteresis loop and thus low loss nickel iron alloys are used
for the core since their hysteresis loops have small areas.(See
Chapters 7 and 38)

(ii) Eddy current loss is the heating of the core due to e.m.f.’s
being induced not only in the transformer windings but also
in the core. These induced e.m.f.’s set up circulating currents,
called eddy currents. Owing to the low resistance of the core,
eddy currents can be quite considerable and can cause a large
power loss and excessive heating of the core. Eddy current
losses can be reduced by increasing the resistivity of the core
material or, more usually, by laminating the core (i.e., splitting
it into layers or leaves) when very thin layers of insulating
material can be inserted between each pair of laminations. This
increases the resistance of the eddy current path, and reduces
the value of the eddy current.

Transformer efficiency,  D output power

input power
D input power — losses

input power

h = 1 − losses
input power


20.11�
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and is usually expressed as a percentage. It is not uncommon for power
transformers to have efficiencies of between 95% and 98%.

Output powerD V2I2 cos�2,

total lossesD copper lossC iron losses,

and input powerD output powerC losses

Problem 16. A 200 kVA rated transformer has a full-load copper
loss of 1.5 kW and an iron loss of 1 kW. Determine the transformer
efficiency at full load and 0.85 power factor.

Efficiency  D output power

input power
D input power — losses

input power

D 1 � losses

input power

Full-load output powerD VI cos� D 
200�
0.85� D 170 kW

Total lossesD 1.5 C 1.0 D 2.5 kW

Input powerD output powerC lossesD 170C 2.5 D 172.5 kW

Hence efficiencyD
(

1 � 2.5

172.5

)
D 1 � 0.01449D 0.9855 or98.55%

Problem 17. Determine the efficiency of the transformer in
Problem 16 at half full-load and 0.85 power factor.

Half full-load power outputD 1
2
200�
0.85� D 85 kW

Copper loss (orI2R loss) is proportional to current squared.

Hence the copper loss at half full-load is
(

1
2

)2

1500� D 375 W

Iron lossD 1000 W (constant)

Total lossesD 375C 1000D 1375 W or 1.375 kW

Input power at half full-loadD output power at half full-loadC losses

D 85C 1.375D 86.375 kW

Hence efficiencyD
(

1 � losses

input power

)
D

(
1 � 1.375

86.375

)

D 1 � 0.01592D 0.9841 or98.41%
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Problem 18. A 400 kVA transformer has a primary winding resis-
tance of 0.5� and a secondary winding resistance of 0.001�. The
iron loss is 2.5 kW and the primary and secondary voltages are
5 kV and 320 V respectively. If the power factor of the load is
0.85, determine the efficiency of the transformer (a) on full load,
and (b) on half load.

(a) RatingD 400 kVA D V1I1 D V2I2

Hence primary current,I1 D 400ð 103

V1
D 400ð 103

5000
D 80 A

and secondary current,I2 D 400ð 103

V2
D 400ð 103

320
D 1250 A

Total copper lossD I2
1R1 C I2

2R2,


whereR1 D 0.5 � andR2 D 0.001��

D 
80�2
0.5� C 
1250�2
0.001�

D 3200C 1562.5 D 4762.5 watts

On full load, total lossD copper lossC iron loss

D 4762.5 C 2500

D 7262.5 W D 7.2625 kW

Total output power on full loadD V2I2 cos�2

D 
400ð 103�
0.85�

D 340 kW

Input powerD output powerC lossesD 340 kWC 7.2625 kW

D 347.2625 kW

Efficiency, D
[
1 � losses

input power

]
ð 100%

D
[
1 � 7.2625

347.2625

]
ð 100%D 97.91%

(b) Since the copper loss varies as the square of the current, then total

copper loss on half loadD 4762.5 ð
(

1
2

)2 D 1190.625 W

Hence total loss on half loadD 1190.625C 2500

D 3690.625 W or 3.691 kW
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Output power on half full loadD 1
2
340� D 170 kW

Input power on half full loadD output powerC losses

D 170 kWC 3.691 kW

D 173.691 kW

Hence efficiency at half full load,

 D
[
1 � losses

input power

]
ð 100%

D
[
1 � 3.691

173.691

]
ð 100%D 97.87%

Maximum efficiency

It may be shown that the efficiency of a transformer is a maximum when
the variable copper loss (i.e.,I2

1R1 C I2
2R2) is equal to the constant iron

losses.

Problem 19. A 500 kVA transformer has a full load copper loss of
4 kW and an iron loss of 2.5 kW. Determine (a) the output kVA at
which the efficiency of the transformer is a maximum, and (b) the
maximum efficiency, assuming the power factor of the load is 0.75.

(a) Let x be the fraction of full load kVA at which the efficiency is a
maximum.

The corresponding total copper lossD 
4 kW�
x2�

At maximum efficiency, copper lossD iron loss Hence

4x2 D 2.5

from which x2 D 2.5

4
andx D

√(
2.5

4

)
D 0.791

Hencethe output kVA at maximum efficiency D 0.791ð 500

D 395.5 kVA

(b) Total loss at maximum efficiencyD 2 ð 2.5 D 5 kW

Output powerD 395.5 kVA ð p.f. D 395.5 ð 0.75 D 296.625 kW

Input powerD output powerC losses

D 296.625C 5 D 301.625 kW
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Maximum efficiency,  D
[
1 � losses

input power

]
ð 100%

D
[
1 � 5

301.625

]
ð 100%D 98.34%

Further problems on losses and efficiency may be found in Section 20.16,
problems 21 to 26, page 346.

20.10 Resistance
matching

Varying a load resistance to be equal, or almost equal, to the source
internal resistance is calledmatching. Examples where resistance match-
ing is important include coupling an aerial to a transmitter or receiver, or
in coupling a loudspeaker to an amplifier, where coupling transformers
may be used to give maximum power transfer.

With d.c. generators or secondary cells, the internal resistance is usually
very small. In such cases, if an attempt is made to make the load resis-
tance as small as the source internal resistance, overloading of the source
results.

A method of achieving maximum power transfer between a source and
a load (see Section 13.9, page 187), is to adjust the value of the load
resistance to ‘match’ the source internal resistance. A transformer may be
used as aresistance matching deviceby connecting it between the load
and the source.Figure 20.10

The reason why a transformer can be used for this is shown below.
With reference to Figure 20.10:

RL D V2

I2
andR1 D V1

I1

For an ideal transformer,V1 D
(
N1

N2

)
V2 andI1 D

(
N2

N1

)
I2

Thus the equivalent input resistanceR1 of the transformer is given by:

R1 D V1

I1
D

(
N1

N2

)
V2(

N2

N1

)
I2

D
(
N1

N2

)2 (
V2

I2

)
D

(
N1

N2

)2

RL

i.e., R1 =
(

N1

N2

)2

RL

Hence by varying the value of the turns ratio, the equivalent input resis-
tance of a transformer can be ‘matched’ to the internal resistance of a
load to achieve maximum power transfer.
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Problem 20. A transformer having a turns ratio of 4:1 supplies a
load of resistance 100�. Determine the equivalent input resistance
of the transformer.

From above, the equivalent input resistance,

R1 D
(
N1

N2

)2

RL D
(

4

1

)2


100� D 1600Z

Problem 21. The output stage of an amplifier has an output resis-
tance of 112�. Calculate the optimum turns ratio of a transformer
which would match a load resistance of 7� to the output resistance
of the amplifier.

The circuit is shown in Figure 20.11.Figure 20.11
The equivalent input resistance,R1 of the transformer needs to be 112�

for maximum power transfer.

R1 D
(
N1

N2

)2

RL

Hence
(
N1

N2

)2

D R1

RL
D 112

7
D 16

i.e.,
N1

N2
D p


16� D 4

Hence the optimum turns ratio is 4:1

Problem 22. Determine the optimum value of load resistance for
maximum power transfer if the load is connected to an amplifier
of output resistance 150� through a transformer with a turns ratio
of 5:1.

The equivalent input resistanceR1 of the transformer needs to be 150�
for maximum power transfer.

R1 D
(
N1

N2

)2

RL, from which,RL D R1

(
N2

N1

)2

D 150
(

1

5

)2

D 6 Z

Problem 23. A single-phase, 220 V/1760 V ideal transformer is
supplied from a 220 V source through a cable of resistance 2�. If
the load across the secondary winding is 1.28 k� determine (a) the
primary current flowing and (b) the power dissipated in the load
resistor.
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Figure 20.12

The circuit diagram is shown in Figure 20.12.

(a) Turns ratio
N1

N2
D V1

V2
D 220

1760
D 1

8

Equivalent input resistance of the transformer,

R1 D
(
N1

N2

)2

RL

D
(

1

8

)2


1.28ð 103� D 20 �

Total input resistance,RIN D R C R1 D 2 C 20 D 22 �

Primary current,I1 D V1

RIN
D 220

22
D 10 A

(b) For an ideal transformer
V1

V2
D I2

I1
, from which I2 D I1

(
V1

V2

)

D 10
(

220

1760

)
D 1.25 A

Power dissipated in load resistorRL, P D I2
2RL

D 
1.25�2
1.28ð 103�

D 2000 watts or 2 kW

Problem 24. An a.c. source of 24 V and internal resistance 15 k�
is matched to a load by a 25:1 ideal transformer. Determine (a) the
value of the load resistance and (b) the power dissipated in the
load.

The circuit diagram is shown in Figure 20.13.Figure 20.13

(a) For maximum power transferR1 needs to be equal to 15 k�

R1 D
(
N1

N2

)2

RL, from which load resistance,

RL D R1

(
N2

N1

)2

D 
15 000�
(

1

25

)2

D 24Z
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(b) The total input resistance when the source is connected to the
matching transformer isRIN C R1, i.e., 15 k� + 15 k� = 30 k�

Primary current,I1 D V

30 000
D 24

30 000
D 0.8 mA

N1

N2
D I2

I1
, from which I2 D I1

(
N1

N2

)
D 
0.8 ð 10�3�

(
25

1

)

D 20ð 10�3 A

Power dissipated in the loadRL, P D I2
2RL D 
20ð 10�3�2
24�

D 9600ð 10�6 W D 9.6 mW

Further problems on resistance matching may be found in Section 20.16,
problems 27 to 31, page 347.

20.11 Auto transformers An auto transformer is a transformer which has part of its winding
common to the primary and secondary circuits. Figure 20.14(a) shows
the circuit for a double-wound transformer and Figure 20.14(b) that for
an auto transformer. The latter shows that the secondary is actually
part of the primary, the current in the secondary being (I2 � I1).
Since the current is less in this section, the cross-sectional area of
the winding can be reduced, which reduces the amount of material
necessary.

Figure 20.15 shows the circuit diagram symbol for an auto transformer.

Problem 25. A single-phase auto transformer has a voltage ratio
320 V:250 V and supplies a load of 20 kVA at 250 V. Assuming
an ideal transformer, determine the current in each section of the
winding.

Figure 20.14

RatingD 20 kVA D V1I1 D V2I2

Hence primary current,I1 D 20ð 103

V1
D 20ð 103

320
D 62.5 A

and secondary current,I2 D 20ð 103

V2
D 20ð 103

250
D 80 A

Hence current in common part of the windingD 80� 62.5 D 17.5 A

The current flowing in each section of the transformer is shown in
Figure 20.16.

Figure 20.15
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Figure 20.16

Saving of copper in an auto transformer

For the same output and voltage ratio, the auto transformer requires less
copper than an ordinary double-wound transformer. This is explained
below.

The volume, and hence weight, of copper required in a winding is
proportional to the number of turns and to the cross-sectional area of the
wire. In turn this is proportional to the current to be carried, i.e., volume
of copper is proportional toNI.

Volume of copper in an auto transformer/ 
N1 � N2�I1 C N2
I2 � I1�

see Figure 20.14(b)

/ N1I1 � N2I1 C N2I2 � N2I1

/ N1I1 C N2I2 � 2N2I1

/ 2N1I1 � 2N2I1


sinceN2I2 D N1I1�

Volume of copper in a double-wound transformer/ N1I1 C N2I2

/ 2N1I1

(again, sinceN2I2 D N1I1)

Hence
volume of copper in an auto transformer

volume of copper in a double-wound transformer

D 2N1I1 � 2N2I1

2N1I1

D 2N1I1

2N1I1
� 2N2I1

2N1I1

D 1 � N2

N1

If
N2

N1
D x then

(volume of copper in an auto transformer)

= .1 − x/ (volume of copper in a double-wound transformer)(20.12)

If, say, x D 4
5 then

(volume of copper in auto transformer)

D
(
1 � 4

5

)

volume of copper in a double-wound transformer�

D 1
5
volume in double-wound transformer�
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i.e., a saving of 80%

Similarly, if x D 1
4, the saving is 25%, and so on.

The closerN2 is to N1, the greater the saving in copper.

Problem 26. Determine the saving in the volume of copper used
in an auto transformer compared with a double-wound transformer
for (a) a 200 V:150 V transformer, and (b) a 500 V:100 V trans-
former.

(a) For a 200 V:150 V transformer,x D V2

V1
D 150

200
D 0.75

Hence from equation (20.12), (volume of copper in auto transformer)

D 
1 � 0.75� (volume of copper in double-wound transformer)

D 
0.25� (volume of copper in double-wound transformer)

D 25% of copper in a double-wound transformer

Hence the saving is 75%

(b) For a 500 V:100 V transformer,x D V2

V1
D 100

500
D 0.2

Hence (volume of copper in auto transformer)

D 
1 � 0.2� (volume of copper in double-wound transformer)

D 
0.8� (volume in double-wound transformer)

D 80% of copper in a double-wound transformer

Hence the saving is 20%

Further problems on the auto-transformer may be found in Section 20.16,
problems 32 and 33, page 347.

Advantages of auto transformers

The advantages of auto transformers over double-wound transformers
include:

1 a saving in cost since less copper is needed (see above)
2 less volume, hence less weight
3 a higher efficiency, resulting from lowerI2R losses
4 a continuously variable output voltage is achievable if a sliding contact

is used
5 a smaller percentage voltage regulation.
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Disadvantages of auto transformers

The primary and secondary windings are not electrically separate, hence
if an open-circuit occurs in the secondary winding the full primary voltage
appears across the secondary.

Uses of auto transformers

Auto transformers are used for reducing the voltage when starting induc-
tion motors (see Chapter 22) and for interconnecting systems that are
operating at approximately the same voltage.

20.12 Isolating
transformers

Transformers not only enable current or voltage to be transformed to
some different magnitude but provide a means of isolating electrically
one part of a circuit from another when there is no electrical connection
between primary and secondary windings. Anisolating transformer is a
1:1 ratio transformer with several important applications, including bath-
room shaver-sockets, portable electric tools, model railways, and so on.

20.13 Three-phase
transformers

Three-phase double-wound transformers are mainly used in power
transmission and are usually of the core type. They basically consist of
three pairs of single-phase windings mounted on one core, as shown in
Figure 20.17, which gives a considerable saving in the amount of iron
used. The primary and secondary windings in Figure 20.17 are wound on
top of each other in the form of concentric cylinders, similar to that shown
in Figure 20.6(a). The windings may be with the primary delta-connected
and the secondary star-connected, or star-delta, star-star or delta-delta,
depending on its use.

A delta-connection is shown in Figure 20.18(a) and a star-connection
in Figure 20.18(b).

Problem 27. A three-phase transformer has 500 primary turns
and 50 secondary turns. If the supply voltage is 2.4 kV find the
secondary line voltage on no-load when the windings are connected
(a) star-delta, (b) delta-star.

(a) For a star-connection,VL D p
3Vp (see Chapter 19)

Primary phase voltage,Vp1 D VL1p
3

D 2400p
3

D 1385.64 volts

For a delta-connection,VL D Vp

N1

N2
D V1

V2
, from which,



Transformers 341

Figure 20.17

Figure 20.18
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secondary phase voltage,Vp2 D Vp1

(
N2

N1

)

D 
1385.64�
(

50

500

)
D 138.6 volts

(b) For a delta-connection,VL D Vp,

hence primary phase voltageVp1 D 2.4 kV D 2400 volts

Secondary phase voltage,Vp2 D Vp1

(
N2

N1

)
D 
2400�

(
50

500

)

D 240 volts

For a star-connection,VL D p
3Vp,

hence the secondary line voltageD p
3
240� D 416 volts

A further problem on the three-phase transformer may be found in
Section 20.16, problem 34, page 347.

20.14 Current
transformers

For measuring currents in excess of about 100 A a current transformer
is normally used. With a d.c. moving-coil ammeter the current required
to give full scale deflection is very small — typically a few milliamperes.
When larger currents are to be measured a shunt resistor is added to the
circuit (see Chapter 10). However, even with shunt resistors added it is
not possible to measure very large currents. When a.c. is being measured
a shunt cannot be used since the proportion of the current which flows in
the meter will depend on its impedance, which varies with frequency.

In a double-wound transformer:
I1

I2
D N2

N1

from which,secondary current I2 = I1

(
N1

N2

)

In current transformers the primary usually consists of one or two turns
whilst the secondary can have several hundred turns. A typical arrange-
ment is shown in Figure 20.19.

If, for example, the primary has 2 turns and the secondary 200 turns,
then if the primary current is 500 A,

secondary current,I2 D I1

(
N1

N2

)
D 
500�

(
2

200

)
D 5 A

Current transformers isolate the ammeter from the main circuit and allow
the use of a standard range of ammeters giving full-scale deflections of
1 A, 2 A or 5 A.Figure 20.19
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Figure 20.20

For very large currents the transformer core can be mounted around
the conductor or bus-bar. Thus the primary then has just one turn. It is
very important to short-circuit the secondary winding before removing the
ammeter. This is because if current is flowing in the primary, dangerously
high voltages could be induced in the secondary should it be open-
circuited.

Current transformer circuit diagram symbols are shown in Figure 20.20.

Problem 28. A current transformer has a single turn on the
primary winding and a secondary winding of 60 turns. The
secondary winding is connected to an ammeter with a resistance of
0.15�. The resistance of the secondary winding is 0.25�. If the
current in the primary winding is 300 A, determine (a) the reading
on the ammeter, (b) the potential difference across the ammeter and
(c) the total load (in VA) on the secondary.

(a) Reading on the ammeter,I2 D I1

(
N1

N2

)
D 300

(
1

60

)
D 5 A

(b) P.d. across the ammeterD I2RA, whereRA is the ammeter
resistance

D 
5�
0.15� D 0.75 volts

(c) Total resistance of secondary circuitD 0.15C 0.25 D 0.40 �

Induced e.m.f. in secondaryD 
5�
0.40� D 2.0 V

Total load on secondaryD 
2.0�
5� D 10 VA

A further problem on the current transformer may be found in
Section 20.16, problem 35, page 348.

20.15 Voltage
transformers

For measuring voltages in excess of about 500 V it is often safer to use
a voltage transformer. These are normal double-wound transformers with
a large number of turns on the primary, which is connected to a high
voltage supply, and a small number of turns on the secondary. A typical
arrangement is shown in Figure 20.21.

Since
V1

V2
D N1

N2

the secondary voltage,V2 = V1

(
N2

N1

)

Thus if the arrangement in Figure 20.21 has 4000 primary turns and 20
secondary turns then for a voltage of 22 kV on the primary, the voltageFigure 20.21
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on the secondary,

V2 D V1

(
N2

N1

)
D 22 000

(
20

4000

)
D 110 volts

20.16 Further problems
on transformers

Principle of operation

1 A transformer has 600 primary turns connected to a 1.5 kV supply.
Determine the number of secondary turns for a 240 V output voltage,
assuming no losses. [96]

2 An ideal transformer with a turns ratio of 2:9 is fed from a 220 V
supply. Determine its output voltage. [990 V]

3 A transformer has 800 primary turns and 2000 secondary turns. If the
primary voltage is 160 V, determine the secondary voltage assuming
an ideal transformer. [400 V]

4 An ideal transformer has a turns ratio of 12:1 and is supplied at
192 V. Calculate the secondary voltage. [16 V]

5 An ideal transformer has a turns ratio of 12:1 and is supplied at
180 V when the primary current is 4 A. Calculate the secondary
voltage and current. [15 V, 48 A]

6 A step-down transformer having a turns ratio of 20:1 has a primary
voltage of 4 kV and a load of 10 kW. Neglecting losses, calculate
the value of the secondary current. [50 A]

7 A transformer has a primary to secondary turns ratio of 1:15. Calcu-
late the primary voltage necessary to supply a 240 V load. If the load
current i

s 3 A determine the primary current. Neglect any losses.

[16 V, 45 A]

8 A 10 kVA, single-phase transformer has a turns ratio of 12:1 and is
supplied from a 2.4 kV supply. Neglecting losses, determine (a) the
full load secondary current, (b) the minimum value of load resistance
which can be connected across the secondary winding without the
kVA rating being exceeded, and (c) the primary current.

[(a) 50 A (b) 4� (c) 4.17 A]

9 A 20 � resistance is connected across the secondary winding of a
single-phase power transformer whose secondary voltage is 150 V.
Calculate the primary voltage and the turns ratio if the supply current
is 5 A, neglecting losses. [225 V, 3:2]

No-load phasor diagram

10 (a) Draw the phasor diagram for an ideal transformer on no-load.



Transformers 345

(b) A 500 V/100 V, single-phase transformer takes a full load
primary current of 4 A. Neglecting losses, determine (a) the full
load secondary current, and (b) the rating of the transformer.

[(a) 20 A (b) 2 kVA]

11 A 3300 V/440 V, single-phase transformer takes a no-load current
of 0.8 A and the iron loss is 500 W. Draw the no-load phasor
diagram and determine the values of the magnetizing and core loss
components of the no-load current. [0.786 A, 0.152 A]

12 A transformer takes a current o

f 1 A when its primary is connected

to a 300 V, 50 Hz supply, the secondary being on open-circuit.
If the power absorbed is 120 watts, calculate (a) the iron loss
current,(b) the power factor on no-load, and (c) the magnetizing
current. [(a) 0.4 A (b) 0.4 (c) 0.92 A]

E.m.f equation

13 A 60 kVA, 1600 V/100 V, 50 Hz, single-phase transformer has 50
secondary windings. Calculate (a) the primary and secondary current,
(b) the number of primary turns, and (c) the maximum value of the
flux. [(a) 37.5 A, 600 A (b) 800 (c) 9.0 mWb]

14 A single-phase, 50 Hz transformer has 40 primary turns and 520
secondary turns. The cross-sectional area of the core is 270 cm2.
When the primary winding is connected to a 300 volt supply, deter-
mine (a) the maximum value of flux density in the core, and (b) the
voltage induced in the secondary winding.

[(a) 1.25 T (b) 3.90 kV]

15 A single-phase 800 V/100 V, 50 Hz transformer has a maximum
core flux density of 1.294 T and an effective cross-sectional area of
60 cm2. Calculate the number of turns on the primary and secondary
windings. [464, 8]

16 A 3.3 kV/110 V, 50 Hz, single-phase transformer is to have an
approximate e.m.f. per turn of 22 V and operate with a maximum
flux of 1.25 T. Calculate (a) the number of primary and secondary
turns, and (b) the cross-sectional area of the core.

[(a) 150, 5 (b) 792.8 cm2]

Transformer on-load

17 A single-phase transformer has 2400 turns on the primary and
600 turns on the secondary. Its no-load current is 4 A at a power
factor of 0.25 lagging. Assuming the volt drop in the windings is
negligible, calculate the primary current and power factor when the
secondary current is 80 A at a power factor of 0.8 lagging.

[23.26 A, 0.73]
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Equivalent circuit of a transformer

18 A transformer has 1200 primary turns and 200 secondary turns. The
primary and secondary resistances are 0.2� and 0.02� respectively
and the corresponding leakage reactances are 1.2� and 0.05�
respectively. Calculate (a) the equivalent resistance, reactance and
impedance referred to the primary winding, and (b) the phase angle
of the impedance. [(a) 0.92�, 3.0�, 3.14� (b) 72.95°]

Regulation

19 A 6 kVA, 100 V/500 V, single-phase transformer has a secondary
terminal voltage of 487.5 volts when loaded. Determine the regula-
tion of the transformer. [2.5%]

20 A transformer has an open circuit voltage of 110 volts. A tap-
changing device operates when the regulation falls below 3%.
Calculate the load voltage at which the tap-changer operates.

[106.7 volts]

Losses and efficiency

21 A single-phase transformer has a voltage ratio of 6:1 and the h.v.
winding is supplied at 540 V. The secondary winding provides a full
load current of 30 A at a power factor of 0.8 lagging. Neglecting
losses, find (a) the rating of the transformer, (b) the power supplied
to the load, (c) the primary current.

[(a) 2.7 kVA, (b) 2.16 kW, (c) 5 A]

22 A single-phase transformer is rated at 40 kVA. The transformer has
full-load copper losses of 800 W and iron losses of 500 W. Deter-
mine the transformer efficiency at full load and 0.8 power factor.

[96.10%]

23 Determine the efficiency of the transformer in problem 22 at half
full-load and 0.8 power factor. [95.81%]

24 A 100 kVA, 2000 V/400 V, 50 Hz, single-phase transformer has an
iron loss of 600 W and a full-load copper loss of 1600 W. Calculate
its efficiency for a load of 60 kW at 0.8 power factor. [97.56%]

25 (a) What are eddy currents? State how their effect is reduced in
transformers.

(b) Determine the efficiency of a 15 kVA transformer for the
following conditions:

(i) full-load, unity power factor

(ii) 0.8 full-load, unity power factor

(iii) half full-load, 0.8 power factor.
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Assume that iron losses are 200 W and the full-load copper loss is
300 W. [(a) 96.77% (ii) 96.84% (iii) 95.62%]

26 A 250 kVA transformer has a full load copper loss of 3 kW and
an iron loss of 2 kW. Calculate (a) the output kVA at which the
efficiency of the transformer is a maximum, and (b) the maximum
efficiency, assuming the power factor of the load is 0.80.

[(a) 204.1 kVA (b) 97.61%]

Resistance matching

27 A transformer having a turns ratio of 8:1 supplies a load of resistance
50 �. Determine the equivalent input resistance of the transformer.

[3.2 k�]

28 What ratio of transformer is required to make a load of resistance
30 � appear to have a resistance of 270�? [3:1]

29 A single-phase, 240 V/2880 V ideal transformer is supplied from a
240 V source through a cable of resistance 3�. If the load across
the secondary winding is 720� determine (a) the primary current
flowing and (b) the power dissipated in the load resistance.

[(a) 30 A (b) 4.5 kW]

30 A load of resistance 768� is to be matched to an amplifier which
has an effective output resistance of 12�. Determine the turns ratio
of the coupling transformer. [1:8]

31 An a.c. source of 20 V and internal resistance 20 k� is matched to
a load by a 16:1 single-phase transformer. Determine (a) the value
of the load resistance and (b) the power dissipated in the load.

[(a) 78.13� (b) 5 mW]

Auto-transformer

32 A single-phase auto transformer has a voltage ratio of 480 V:300 V
and supplies a load of 30 kVA at 300 V. Assuming an ideal trans-
former, calculate the current in each section of the winding.

[I1 D 62.5 A, I2 D 100A, 
I2 � I1� D 37.5 A]

33 Calculate the saving in the volume of copper used in an auto
transformer compared with a double-wound transformer for (a) a
300 V:240 V transformer, and (b) a 400 V:100 V transformer.

[(a) 80% (b) 25%]

Three-phase transformer

34 A three-phase transformer has 600 primary turns and 150 secondary
turns. If the supply voltage is 1.5 kV determine the secondary line
voltage on no-load when the windings are connected (a) delta-star,
(b) star-delta. [(a) 649.5 V (b) 216.5 V]
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Current transformer

35 A current transformer has two turns on the primary winding and a
secondary winding of 260 turns. The secondary winding is connected
to an ammeter with a resistance of 0.2�. The resistance of the
secondary winding is 0.3�. If the current in the primary winding is
650 A, determine (a) the reading on the ammeter, (b) the potential
difference across the ammeter, and (c) the total load in VA on the
secondary. [(a

) 5 A (b) 1 V (c) 7.5 VA]



Assignment 6

This assignment covers the material contained in chapters 19
and 20.

The marks for each question are shown in brackets at the end of
each question.

1 Three identical coils each of resistance 40 � and inductive reactance
30 � are connected (i) in star, and (ii) in delta to a 400 V, three-phase
supply. Calculate for each connection (a) the line and phase voltages,
(b) the phase and line currents, and (c) the total power dissipated.

(12)

2 Two wattmeters are connected to measure the input power to a
balanced three-phase load by the two-wattmeter method. If the
instrument readings are 10 kW and 6 kW, determine (a) the total
power input, and (b) the load power factor. (5)

3 An ideal transformer connected to a 250 V mains, supplies a 25 V,
200 W lamp. Calculate the transformer turns ratio and the current
taken from the supply. (5)

4 A 200 kVA, 8000 V/320 V, 50 Hz single phase transformer has 120
secondary turns. Determine (a) the primary and secondary currents,
(b) the number of primary turns, and (c) the maximum value of flux.

(9)

5 Determine the percentage regulation of an 8 kVA, 100 V/200 V,
single phase transformer when it’s secondary terminal voltage is
194 V when loaded. (3)

6 A 500 kVA rated transformer has a full-load copper loss of 4 kW and
an iron loss of 3 kW. Determine the transformer efficiency (a) at full
load and 0.80 power factor, and (b) at half full load and 0.80 power
factor. (10)

7 Determine the optimum value of load resistance for maximum power
transfer if the load is connected to an amplifier of output resistance
288 � through a transformer with a turns ratio 6:1. (3)

8 A single-phase auto transformer has a voltage ratio of 250 V:200 V
and supplies a load of 15 kVA at 200 V. Assuming an ideal trans-
former, determine the current in each section of the winding. (3)



21 D.c. machines

At the end of this chapter you should be able to:

ž distinguish between the function of a motor and a generator

ž describe the action of a commutator

ž describe the construction of a d.c. machine

ž distinguish between wave and lap windings

ž understand shunt, series and compound windings of d.c.
machines

ž understand armature reaction

ž calculate generated e.m.f. in an armature winding using

E D 2pnZ

c
ž describe types of d.c. generator and their characteristics

ž calculate generated e.m.f. for a generator using E D V C IaRa

ž state typical applications of d.c. generators

ž list d.c. machine losses and calculate efficiency

ž calculate back e.m.f. for a d.c. motor using E D V � IaRa

ž calculate the torque of a d.c. motor using T D EIa

2�n
and

T D pZIa

�c
ž describe types of d.c. motor and their characteristics

ž state typical applications of d.c. motors

ž describe a d.c. motor starter

ž describe methods of speed control of d.c. motors

ž list types of enclosure for d.c. motors

21.1 Introduction When the input to an electrical machine is electrical energy, (seen as
applying a voltage to the electrical terminals of the machine), and the
output is mechanical energy, (seen as a rotating shaft), the machine is
called an electric motor. Thus an electric motor converts electrical energy
into mechanical energy.

The principle of operation of a motor is explained in Section 8.4,
page 96.

When the input to an electrical machine is mechanical energy, (seen as,
say, a diesel motor, coupled to the machine by a shaft), and the output is
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electrical energy, (seen as a voltage appearing at the electrical terminals
of the machine), the machine is called a generator. Thus, a generator
converts mechanical energy to electrical energy.

The principle of operation of a generator is explained in
Section 9.2, page 101.

21.2 The action of a
commutator

In an electric motor, conductors rotate in a uniform magnetic field. A
single-loop conductor mounted between permanent magnets is shown in
Figure 21.1. A voltage is applied at points A and B in Figure 21.1(a).

Figure 21.1

A force, F, acts on the loop due to the interaction of the magnetic
field of the permanent magnets and the magnetic field created by the
current flowing in the loop. This force is proportional to the flux density,
B, the current flowing, I, and the effective length of the conductor, l,
i.e. F D BIl. The force is made up of two parts, one acting vertically
downwards due to the current flowing from C to D and the other acting
vertically upwards due to the current flowing from E to F (from Fleming’s
left hand rule). If the loop is free to rotate, then when it has rotated
through 180°, the conductors are as shown in Figure 21.1(b). For rotation
to continue in the same direction, it is necessary for the current flow
to be as shown in Figure 21.1(b), i.e. from D to C and from F to E.
This apparent reversal in the direction of current flow is achieved by a
process called commutation. With reference to Figure 21.2(a), when a
direct voltage is applied at A and B, then as the single-loop conductor
rotates, current flow will always be away from the commutator for the
part of the conductor adjacent to the N-pole and towards the commutator
for the part of the conductor adjacent to the S-pole. Thus the forces act to
give continuous rotation in an anti-clockwise direction. The arrangement
shown in Figure 21.2(a) is called a ‘two-segment’ commutator and the
voltage is applied to the rotating segments by stationary brushes, (usually
carbon blocks), which slide on the commutator material, (usually copper),
when rotation takes place.

In practice, there are many conductors on the rotating part of a
d.c. machine and these are attached to many commutator segments.
A schematic diagram of a multi-segment commutator is shown in
Figure 21.2(b).
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Figure 21.2

Poor commutation results in sparking at the trailing edge of the brushes.
This can be improved by using interpoles (situated between each pair of
main poles), high resistance brushes, or using brushes spanning several
commutator segments.

21.3 D.c. machine
construction

The basic parts of any d.c. machine are shown in Figure 21.3, and
comprise:

(a) a stationary part called the stator having,

(i) a steel ring called the yoke, to which are attached

(ii) the magnetic poles, around which are the

(iii) field windings, i.e. many turns of a conductor wound round
the pole core; current passing through this conductor creates
an electromagnet, (rather than the permanent magnets shown
in Figures 21.1 and 21.2),

(b) a rotating part called the armature mounted in bearings housed in
the stator and having,Figure 21.3
(iv) a laminated cylinder of iron or steel called the core, on which

teeth are cut to house the

(v) armature winding, i.e. a single or multi-loop conductor
system and

(vi) the commutator, (see Section 21.2).

Armature windings can be divided into two groups, depending on how
the wires are joined to the commutator. These are called wave windings
and lap windings.

(a) In wave windings there are two paths in parallel irrespective of the
number of poles, each path supplying half the total current output.
Wave wound generators produce high voltage, low current outputs.

(b) In lap windings there are as many paths in parallel as the machine
has poles. The total current output divides equally between them.
Lap wound generators produce high current, low voltage output.
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21.4 Shunt, series and
compound windings

When the field winding of a d.c. machine is connected in parallel with
the armature, as shown in Figure 21.4(a), the machine is said to be shunt
wound. If the field winding is connected in series with the armature, as
shown in Figure 21.4(b), then the machine is said to be series wound.
A compound wound machine has a combination of series and shunt
windings.

Depending on whether the electrical machine is series wound, shunt
wound or compound wound, it behaves differently when a load is applied.
The behaviour of a d.c. machine under various conditions is shown by
means of graphs, called characteristic curves or just characteristics. The
characteristics shown in the following sections are theoretical, since they
neglect the effects of armature reaction.

Armature reaction is the effect that the magnetic field produced by the
armature current has on the magnetic field produced by the field system.
In a generator, armature reaction results in a reduced output voltage, and
in a motor, armature reaction results in increased speed.

A way of overcoming the effect of armature reaction is to fit compen-
sating windings, located in slots in the pole face.

Figure 21.4

21.5 E.m.f. generated in
an armature winding

Let Z D number of armature conductors,

 D useful flux per pole, in webers

p D number of pairs of poles

and n D armature speed in rev/s

The e.m.f. generated by the armature is equal to the e.m.f. generated by
one of the parallel paths. Each conductor passes 2p poles per revolution
and thus cuts 2p webers of magnetic flux per revolution. Hence flux cut
by one conductor per second D 2pn Wb and so the average e.m.f. E
generated per conductor is given by:

E D 2pn volts �since 1 volt D 1 Weber per second�

Let c D number of parallel paths through the winding between positive
and negative brushes

c= 2 for a wave winding

c= 2p for a lap winding

The number of conductors in series in each path D Z

c
The total e.m.f. between brushes

D (average e.m.f./conductor)(number of conductors in series per path)

D 2pn
Z

c
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i.e., generated e.m.f., E =
2p8nZ

c
volts �21.1�

Since Z, p and c are constant for a given machine, then E / n.
However 2�n is the angular velocity ω in radians per second, hence the
generated e.m.f. is proportional to  and ω, i.e.,

generated e.m.f., E ∝ 8! �21.2�

Problem 1. An 8-pole, wave-connected armature has 600 conduc-
tors and is driven at 625 rev/min. If the flux per pole is 20 mWb,
determine the generated e.m.f.

Z D 600, c D 2 (for a wave winding), p D 4 pairs

n D 625

60
rev/s,  D 20 ð 10�3 Wb

Generated e.m.f., E D 2pnZ

c

D
2�4��20 ð 10�3�

(
625

60

)
�600�

2
D 500 volts

Problem 2. A 4-pole generator has a lap-wound armature with
50 slots with 16 conductors per slot. The useful flux per pole is
30 mWb. Determine the speed at which the machine must be driven
to generate an e.m.f. of 240 V.

E D 240 V, c D 2p (for a lap winding), Z D 50 ð 16 D 800,

 D 30 ð 10�3 Wb.

Generated e.m.f. E D 2pnZ

c
D 2pnZ

2p
D nZ

Rearranging gives, speed, n D E

Z
D 240

�30 ð 10�3��800�

D 10 rev=s or 600 rev=min

Problem 3. An 8-pole, lap-wound armature has 1200 conductors
and a flux per pole of 0.03 Wb. Determine the e.m.f. generated
when running at 500 rev/min.
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Generated e.m.f., E D 2pnZ

c
D 2pnZ

2p
, for a lap-wound machine, i.e.,

E D nZ D �0.03�
(

500

60

)
�1200� D 300 volts

Problem 4. Determine the generated e.m.f. in problem 3 if the
armature is wave-wound.

Generated e.m.f. E D 2pnZ

c
D 2pnZ

2
(since cD2 for wave-wound�

D pnZ D �4��nZ�

D �4��300� from problem 3,

D 1200 volts

Problem 5. A d.c. shunt-wound generator running at constant
speed generates a voltage of 150 V at a certain value of field
current. Determine the change in the generated voltage when the
field current is reduced by 20%, assuming the flux is proportional
to the field current.

The generated e.m.f. E of a generator is proportional to ω, i.e. is propor-
tional to n, where  is the flux and n is the speed of rotation.

It follows that E D kn, where k is a constant.

At speed n1 and flux 1, E1 D k1n1.

At speed n2 and flux 2, E2 D k2n2.

Thus, by division:

E1

E2
D k1n1

k2n2
D 1n1

2n2

The initial conditions are E1 D 150 V,  D 1 and n D n1. When the
flux is reduced by 20%, the new value of flux is 80/100 or 0.8 of the
initial value, i.e. 2 D 0.81. Since the generator is running at constant
speed, n2 D n1.

Thus
E1

E2
D 1n1

2n2
D 1n1

0.81n1
D 1

0.8

that is, E2 D 150 ð 0.8 D 120 V

Thus, a reduction of 20% in the value of the flux reduces the generated
voltage to 120 V at constant speed.
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Problem 6. A d.c. generator running at 30 rev/s generates an
e.m.f. of 200 V. Determine the percentage increase in the flux per
pole required to generate 250 V at 20 rev/s.

From equation (21.2), generated e.m.f., E / ω and since ω D 2�n,
E / n.

Let E1 D 200 V, n1 D 30 rev/s and flux per pole at this speed be 1

Let E2 D 250 V, n1 D 20 rev/s and flux per pole at this speed be 2

Since E / n then
E1

E2
D 1n1

2n2

Hence
200

250
D 1�30�

2�20�

from which, 2 D 1�30��250�

�20��200�
D 1.875 1

Hence the increase in flux per pole needs to be 87.5%

Further problems on generated e.m.f. may be found in Section 21.17, prob-
lems 1 to 5, page 381.

21.6 D.c. generators D.c. generators are classified according to the method of their field exci-
tation. These groupings are:

(i) Separately-excited generators, where the field winding is
connected to a source of supply other than the armature of its own
machine.

(ii) Self-excited generators, where the field winding receives its supply
from the armature of its own machine, and which are sub-divided
into (a) shunt, (b) series, and (c) compound wound generators.

21.7 Types of d.c.
generator and their

characteristics

(a) Separately-excited generator

A typical separately-excited generator circuit is shown in Figure 21.5.

When a load is connected across the armature terminals, a load current Ia

will flow. The terminal voltage V will fall from its open-circuit e.m.f. E
due to a volt drop caused by current flowing through the armature resis-
tance, shown as Ra, i.e.,

terminal voltage, V = E − I aRa
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Figure 21.5

or generated e.m.f., E = V Y I aRa �21.3�

Problem 7. Determine the terminal voltage of a generator which
develops an e.m.f. of 200 V and has an armature current of 30 A
on load. Assume the armature resistance is 0.30 �

With reference to Figure 21.5, terminal voltage,

V D E � IaRa D 200 � �30��0.30� D 200 � 9 D 191 volts

Problem 8. A generator is connected to a 60 � load and a current
of 8 A flows. If the armature resistance is 1 � determine (a) the
terminal voltage, and (b) the generated e.m.f.

(a) Terminal voltage, V D IaRL D �8��60� D 480 volts

(b) Generated e.m.f., E D V C IaRa from equation (21.3)

D 480 C �8��1� D 480 C 8 D 488 volts

Problem 9. A separately-excited generator develops a no-load
e.m.f. of 150 V at an armature speed of 20 rev/s and a flux per
pole of 0.10 Wb. Determine the generated e.m.f. when (a) the speed
increases to 25 rev/s and the pole flux remains unchanged, (b) the
speed remains at 20 rev/s and the pole flux is decreased to 0.08 Wb,
and (c) the speed increases to 24 rev/s and the pole flux is decreased
to 0.07 Wb.

(a) From Section 21.5, generated e.m.f. E / n

from which,
E1

E2
D 1n1

2n2
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Hence
150

E2
D �0.10��20�

�0.10��25�

from which, E2 D �150��0.10��25�

�0.10��20�
D 187.5 volts

(b)
150

E3
D �0.10��20�

�0.08��20�

from which, e.m.f., E3 D �150��0.08��20�

�0.10��20�
D 120 volts

(c)
150

E4
D �0.10��20�

�0.07��24�

from which, e.m.f. E4 D �150��0.07��24�

�0.10��20�
D 126 volts

Characteristics

The two principal generator characteristics are the generated voltage/field
current characteristics, called the open-circuit characteristic and
the terminal voltage/load current characteristic, called the load
characteristic. A typical separately-excited generator open-circuit
characteristic is shown in Figure 21.6(a) and a typical load
characteristic is shown in Figure 21.6(b).

A separately-excited generator is used only in special cases, such as
when a wide variation in terminal p.d. is required, or when exact control of
the field current is necessary. Its disadvantage lies in requiring a separate
source of direct current.

Figure 21.6

(b) Shunt-wound generator

In a shunt wound generator the field winding is connected in parallel with
the armature as shown in Figure 21.7. The field winding has a relatively
high resistance and therefore the current carried is only a fraction of the
armature current.

For the circuit shown in Figure 21.7,

terminal voltage V D E � IaRa

or generated e.m.f., E D V C IaRa

Ia D If C I, from Kirchhoff’s current law,

where Ia D armature current

If D field current

(
D V

Rf

)

and I D load currentFigure 21.7
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Problem 10. A shunt generator supplies a 20 kW load at 200 V
through cables of resistance, R D 100 m�. If the field winding
resistance, Rf D 50 � and the armature resistance, Ra D 40 m�,
determine (a) the terminal voltage, and (b) the e.m.f. generated in
the armature.

(a) The circuit is as shown in Figure 21.8.

I
R = 100 mΩ

Ia

If
E

Rf = 50 Ω

Ra = 40 mΩ

V200 VLOAD
20 kW

Figure 21.8

Load current, I D 20 000 watts

200 volts
D 100 A

Volt drop in the cables to the load D IR D �100��100 ð 10�3�

D 10 V

Hence terminal voltage, V D 200 C 10 D 210 volts

(b) Armature current Ia D If C I

Field current, If D V

Rf
D 210

50
D 4.2 A

Hence Ia D If C I D 4.2 C 100 D 104.2 A

Generated e.m.f. E D V C IaRa

D 210 C �104.2��40 ð 10�3�

D 210 C 4.168

D 214.17 volts

Characteristics

The generated e.m.f., E, is proportional to ω, (see Section 21.5), hence
at constant speed, since ω D 2�n, E / . Also the flux  is proportional
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Figure 21.9

to field current If until magnetic saturation of the iron circuit of the
generator occurs. Hence the open circuit characteristic is as shown in
Figure 21.9(a).

As the load current on a generator having constant field current
and running at constant speed increases, the value of armature current
increases, hence the armature volt drop, Ia Ra increases. The generated
voltage E is larger than the terminal voltage V and the voltage equation
for the armature circuit is V D E � IaRa. Since E is constant, V decreases
with increasing load. The load characteristic is as shown in Figure 21.9(b).
In practice, the fall in voltage is about 10% between no-load and full-load
for many d.c. shunt-wound generators.

The shunt-wound generator is the type most used in practice, but the
load current must be limited to a value that is well below the maximum
value. This then avoids excessive variation of the terminal voltage. Typical
applications are with battery charging and motor car generators.

(c) Series-wound generator

In the series-wound generator the field winding is connected in series
with the armature as shown in Figure 21.10.

Figure 21.10

Characteristic

The load characteristic is the terminal voltage/current characteristic. The
generated e.m.f. E, is proportional to ω and at constant speed ω (D
2�n) is a constant. Thus E is proportional to . For values of current
below magnetic saturation of the yoke, poles, air gaps and armature core,
the flux  is proportional to the current, hence E / I. For values of
current above those required for magnetic saturation, the generated e.m.f.
is approximately constant. The values of field resistance and armature
resistance in a series wound machine are small, hence the terminal voltage
V is very nearly equal to E. A typical load characteristic for a series
generator is shown in Figure 21.11.

In a series-wound generator, the field winding is in series with the
armature and it is not possible to have a value of field current when the
terminals are open circuited, thus it is not possible to obtain an open-
circuit characteristic.

Series-wound generators are rarely used in practise, but can be used as
a ‘booster’ on d.c. transmission lines.

(d) Compound-wound generator

In the compound-wound generator two methods of connection are used,
both having a mixture of shunt and series windings, designed to combine
the advantages of each. Figure 21.12(a) shows what is termed a long-
shunt compound generator, and Figure 21.12(b) shows a short-shuntFigure 21.11
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Figure 21.12

compound generator. The latter is the most generally used form of d.c.
generator.

Problem 11. A short-shunt compound generator supplies 80 A at
200 V. If the field resistance, Rf D 40 �, the series resistance,
RSe D 0.02 � and the armature resistance, Ra D 0.04 �, determine
the e.m.f. generated.

The circuit is shown in Figure 21.13.

Figure 21.13

Volt drop in series winding D IRSe D �80��0.02� D 1.6 V

P.d. across the field winding D p.d. across armature

D V1 D 200 C 1.6 D 201.6 V

Field current If D V1

Rf
D 201.6

40
D 5.04 A

Armature current, Ia D I C If D 80 C 5.04 D 85.04 A

Generated e.m.f., E D V1 C IaRa

D 201.6 C �85.04��0.04�

D 201.6 C 3.4016

D 205 volts

Characteristics

In cumulative-compound machines the magnetic flux produced by
the series and shunt fields are additive. Included in this group
are over-compounded, level-compounded and under-compounded
machines — the degree of compounding obtained depending on the
number of turns of wire on the series winding.
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A large number of series winding turns results in an over-compounded
characteristic, as shown in Figure 21.14, in which the full-load terminal
voltage exceeds the no-load voltage. A level-compound machine gives a
full-load terminal voltage which is equal to the no-load voltage, as shown
in Figure 21.14.

An under-compounded machine gives a full-load terminal voltage
which is less than the no-load voltage, as shown in Figure 21.14. However
even this latter characteristic is a little better than that for a shunt
generator alone.

Figure 21.14

Compound-wound generators are used in electric arc welding, with
lighting sets and with marine equipment.

Further problems on the d.c. generator may be found in Section 21.17,
problems 6 to 11, page 382.

21.8 D.c. machine losses As stated in Section 21.1, a generator is a machine for converting mechan-
ical energy into electrical energy and a motor is a machine for converting
electrical energy into mechanical energy. When such conversions take
place, certain losses occur which are dissipated in the form of heat.

The principal losses of machines are:

(i) Copper loss, due to I2R heat losses in the armature and field
windings.

(ii) Iron (or core) loss, due to hysteresis and eddy-current losses in the
armature. This loss can be reduced by constructing the armature of
silicon steel laminations having a high resistivity and low hysteresis
loss. At constant speed, the iron loss is assumed constant.

(iii) Friction and windage losses, due to bearing and brush contact
friction and losses due to air resistance against moving parts
(called windage). At constant speed, these losses are assumed to
be constant.
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(iv) Brush contact loss between the brushes and commutator. This loss
is approximately proportional to the load current.

The total losses of a machine can be quite significant and operating effi-
ciencies of between 80% and 90% are common.

21.9 Efficiency of a d.c.
generator

The efficiency of an electrical machine is the ratio of the output power to
the input power and is usually expressed as a percentage. The Greek letter,
‘�’ (eta) is used to signify efficiency and since the units are power/power,
then efficiency has no units. Thus

efficiency, h =
(

output power
input power

)
× 100%

If the total resistance of the armature circuit (including brush contact
resistance) is Ra, then the total loss in the armature circuit is I 2

a Ra

If the terminal voltage is V and the current in the shunt circuit is If,
then the loss in the shunt circuit is If V

If the sum of the iron, friction and windage losses is C then the total
losses is given by:

I 2
a Ra Y I f V Y C (I2

aRa C IfV is, in fact, the ‘copper loss’)

If the output current is I, then the output power is VI

Total input power D VI C I2
aRa C IfV C C. Hence

efficiency, h =
output
input

=

(
VI

VI Y I 2
a Ra Y I f V Y C

)
× 100%

(21.4)

The efficiency of a generator is a maximum when the load is such that:

I 2
a Ra = VI f Y C

i.e., when the variable loss D the constant loss

Problem 12. A 10 kW shunt generator having an armature circuit
resistance of 0.75 � and a field resistance of 125 �, generates a
terminal voltage of 250 V at full load. Determine the efficiency of
the generator at full load, assuming the iron, friction and windage
losses amount to 600 W.

The circuit is shown in Figure 21.15.Figure 21.15
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Output power D 10 000 W D VI

from which, load current I D 10 000

V
D 10 000

250
D 40 A

Field current, If D V

Rf
D 250

125
D 2 A

Armature current, Ia D If C I D 2 C 40 D 42 A

Efficiency, � D
(

VI

VI C I2
aRa C IfV C C

)
ð 100%

D
(

10 000

10 000 C �42�2�0.75� C �2��250� C 600

)
ð 100%

D 10 000

12 423
ð 100% D 80.50%

A further problem on the efficiency of a d.c. generator may be found in
Section 21.17, problem 12, page 382.

21.10 D.c. motors The construction of a d.c. motor is the same as a d.c. generator. The only
difference is that in a generator the generated e.m.f. is greater than the
terminal voltage, whereas in a motor the generated e.m.f. is less than the
terminal voltage.

D.c. motors are often used in power stations to drive emergency stand-
by pump systems which come into operation to protect essential equipment
and plant should the normal a.c. supplies or pumps fail.

Back e.m.f.

When a d.c. motor rotates, an e.m.f. is induced in the armature conductors.
By Lenz’s law this induced e.m.f. E opposes the supply voltage V and is
called a back e.m.f., and the supply voltage, V is given by:

V = E Y I aRa or E = V − I aRa �21.5�

Problem 13. A d.c. motor operates from a 240 V supply. The
armature resistance is 0.2 �. Determine the back e.m.f. when the
armature current is 50 A.

For a motor, V D E C IaRa

hence back e.m.f., E D V � IaRa

D 240 � �50��0.2� D 240 � 10 D 230 volts
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Problem 14. The armature of a d.c. machine has a resistance of
0.25 � and is connected to a 300 V supply. Calculate the e.m.f.
generated when it is running: (a) as a generator giving 100 A, and
(b) as a motor taking 80 A.

(a) As a generator, generated e.m.f.,

E D V C IaRa, from equation (21.3),

D 300 C �100��0.25�

D 300 C 25 D 325 volts

(b) As a motor, generated e.m.f. (or back e.m.f.),

E D V � IaRa, from equation (21.5),

D 300 � �80��0.25� D 280 volts

Further problems on back e.m.f. may be found in Section 21.17, prob-
lems 13 to 15, page 383.

21.11 Torque of a d.c.
machine

From equation (21.5), for a d.c. motor, the supply voltage V is given by

V D E C IaRa

Multiplying each term by current Ia gives:

VIa D EIa C I2
aRa

The term VIa is the total electrical power supplied to the armature,
the term I 2

a Ra is the loss due to armature resistance,
and the term EIa is the mechanical power developed by the armature

If T is the torque, in newton metres, then the mechanical power devel-
oped is given by Tω watts (see ‘Science for Engineering’).

Hence Tω D 2�nT D EIa from which,

torque T =
EIa

2pn
newton metres �21.6�

From Section 21.5, equation (21.1), the e.m.f. E generated is given by

E D 2pnZ

c

Hence 2�nT D EIa D
(

2pnZ

c

)
Ia
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and torque T D

(
2pnZ

c

)
Ia

2�n

i.e., T =
p8ZIa

pc
newton metres �21.7�

For a given machine, Z, c and p are fixed values

Hence torque, T ∝ 8I a �21.8�

Problem 15. An 8-pole d.c. motor has a wave-wound armature
with 900 conductors. The useful flux per pole is 25 mWb. Deter-
mine the torque exerted when a current of 30 A flows in each
armature conductor.

p D 4, c D 2 for a wave winding,  D 25 ð 10�3 Wb, Z D 900,
Ia D 30 A

From equation (21.7), torque T D pZIa

�c

D �4��25 ð 10�3��900��30�

��2�

D 429.7 Nm

Problem 16. Determine the torque developed by a 350 V d.c.
motor having an armature resistance of 0.5 � and running at
15 rev/s. The armature current is 60 A.

V D 350 V, Ra D 0.5 �, n D 15 rev/s, Ia D 60 A

Back e.m.f. E D V � Ia Ra D 350 � �60��0.5� D 320 V

From equation (21.6), torque T D EIa

2�n
D �320��60�

2��15�
D 203.7 Nm

Problem 17. A six-pole lap-wound motor is connected to a 250 V
d.c. supply. The armature has 500 conductors and a resistance of
1 �. The flux per pole is 20 mWb. Calculate (a) the speed and
(b) the torque developed when the armature current is 40 A

V D 250 V, Z D 500, Ra D 1 �,  D 20 ð 10�3 Wb, Ia D 40 A,
c D 2p for a lap winding

(a) Back e.m.f. E D V � IaRa D 250 � �40��1� D 210 V
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E.m.f. E D 2pnZ

c

i.e. 210 D 2p�20 ð 10�3�n�500�

2p

Hence speed n D 210

�20 ð 10�3��500�
D 21 rev/s

or �21 ð 60� D 1260 rev/min

(b) Torque T D EIa

2�n
D �210��40�

2��21�
D 63.66 Nm

Problem 18. The shaft torque of a diesel motor driving a 100 V
d.c. shunt-wound generator is 25 Nm. The armature current of the
generator is 16 A at this value of torque. If the shunt field regulator
is adjusted so that the flux is reduced by 15%, the torque increases
to 35 Nm. Determine the armature current at this new value of
torque.

From equation (21.8), the shaft torque T of a generator is proportional to
Ia, where  is the flux and Ia is the armature current. Thus, T D kIa,
where k is a constant.

The torque at flux 1 and armature current Ia1 is T1 D k1Ia1.

Similarly, T2 D k2Ia2

By division
T1

T2
D k1Ia1

k2Ia2
D 1Ia1

2Ia2

Hence
25

35
D 1 ð 16

0.851 ð Ia2

i.e. Ia2 D 16 ð 35

0.85 ð 25
D 26.35 A

That is, the armature current at the new value of torque is 26.35 A

Problem 19. A 100 V d.c. generator supplies a current of 15 A
when running at 1500 rev/min. If the torque on the shaft driving the
generator is 12 Nm, determine (a) the efficiency of the generator
and (b) the power loss in the generator.

(a) From Section 21.9, the efficiency of a

generator D output power

input power
ð 100%
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The output power is the electrical output, i.e. VI watts. The input
power to a generator is the mechanical power in the shaft driving
the generator, i.e. Tω or T�2�n� watts, where T is the torque in Nm
and n is speed of rotation in rev/s. Hence, for a generator

efficiency, h D VI

T�2�n�
ð 100%

i.e. h D �100��15��100�

�12��2��
(

1500

60

)

i.e. efficiency = 79.6%

(b) The input power D output power C losses

Hence, T�2�n� D VI C losses

i.e. losses D T�2�n� � VI

D
[
�12��2��

(
1500

60

)]
� [�100��15�]

i.e. power loss D 1885 � 1500 D 385 W

Further problems on losses, efficiency, and torque may be found in
Section 21.17, problems 16 to 21, page 383.

21.12 Types of d.c. motor
and their characteristics

(a) Shunt-wound motor

In the shunt wound motor the field winding is in parallel with the armature
across the supply as shown in Figure 21.16.

For the circuit shown in Figure 21.16,

Supply voltage, V D E C IaRa

or generated e.m.f., E D V � IaRa

Supply current, I D Ia C If, from Kirchhoff’s current law.

Figure 21.16

Problem 20. A 240 V shunt motor takes a total current of 30 A.
If the field winding resistance Rf D 150 � and the armature resis-
tance Ra D 0.4 � determine (a) the current in the armature, and
(b) the back e.m.f.
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(a) Field current If D V

Rf
D 240

150
D 1.6 A

Supply current I D Ia C If

Hence armature current, Ia D I � If D 30 � 1.6 D 28.4 A

(b) Back e.m.f. E D V � IaRa

D 240 � �28.4��0.4� D 228.64 volts

Characteristics

The two principal characteristics are the torque/armature current and
speed/armature current relationships. From these, the torque/speed rela-
tionship can be derived.

(i) The theoretical torque/armature current characteristic can be derived
from the expression T / Ia, (see Section 21.11). For a shunt-
wound motor, the field winding is connected in parallel with the
armature circuit and thus the applied voltage gives a constant field
current, i.e. a shunt-wound motor is a constant flux machine. Since
 is constant, it follows that T / Ia, and the characteristic is as
shown in Figure 21.17.

(ii) The armature circuit of a d.c. motor has resistance due to the arma-
ture winding and brushes, Ra ohms, and when armature current
Ia is flowing through it, there is a voltage drop of IaRa volts. In
Figure 21.16 the armature resistance is shown as a separate resistor
in the armature circuit to help understanding. Also, even though the
machine is a motor, because conductors are rotating in a magnetic
field, a voltage, E / ω, is generated by the armature conductors.
From equation (21.5) V D E C IaRa or E D V � IaRaFigure 21.17
However, from Section 21.5, E / n, hence n / E/, i.e.

speed of rotation, n / E


/ V � IaRa


�21.9�

For a shunt motor, V,  and Ra are constants, hence as armature
current Ia increases, IaRa increases and V � IaRa decreases, and
the speed is proportional to a quantity which is decreasing and is
as shown in Figure 21.18. As the load on the shaft of the motor
increases, Ia increases and the speed drops slightly. In practice,
the speed falls by about 10% between no-load and full-load on
many d.c. shunt-wound motors. Due to this relatively small drop
in speed, the d.c. shunt-wound motor is taken as basically being a
constant-speed machine and may be used for driving lathes, lines of
shafts, fans, conveyor belts, pumps, compressors, drilling machines
and so on.Figure 21.18



370 Electrical Circuit Theory and Technology

Figure 21.19

(iii) Since torque is proportional to armature current, (see (i) above), the
theoretical speed/torque characteristic is as shown in Figure 21.19.

Problem 21. A 200 V, d.c. shunt-wound motor has an armature
resistance of 0.4 � and at a certain load has an armature current of
30 A and runs at 1350 rev/min. If the load on the shaft of the motor
is increased so that the armature current increases to 45 A, deter-
mine the speed of the motor, assuming the flux remains constant.

The relationship E / n applies to both generators and motors. For a
motor,

E D V � IaRa, �see equation 21.5�

Hence E1 D 200 � 30 ð 0.4 D 188 V,

and E2 D 200 � 45 ð 0.4 D 182 V.

The relationship,
E1

E2
D 1n1

2n2

applies to both generators and motors. Since the flux is constant, 1 D 2

Hence
188

182
D

1 ð
(

1350

60

)

1 ð n2
, i.e., n2 D 22.5 ð 182

188
D 21.78 rev/s

Thus the speed of the motor when the armature current is 45 A is
21.78 ð 60 rev/min, i.e. 1307 rev/min

Problem 22. A 220 V, d.c. shunt-wound motor runs at
800 rev/min and the armature current is 30 A. The armature circuit
resistance is 0.4 �. Determine (a) the maximum value of armature
current if the flux is suddenly reduced by 10% and (b) the steady
state value of the armature current at the new value of flux,
assuming the shaft torque of the motor remains constant.

(a) For a d.c. shunt-wound motor, E D V � IaRa. Hence initial gener-
ated e.m.f., E1 D 220 � 30 ð 0.4 D 208 V. The generated e.m.f. is
also such that E / n, so at the instant the flux is reduced, the speed
has not had time to change, and E D 208 ð 90/100 D 187.2 V.

Hence, the voltage drop due to the armature resistance is 220 �
187.2, i.e., 32.8 V. The instantaneous value of the current is
32.8/0.4, i.e., 82 A. This increase in current is about three times
the initial value and causes an increase in torque, (T / Ia). The
motor accelerates because of the larger torque value until steady
state conditions are reached.

(b) T / Ia and since the torque is constant,

1Ia1 D 2Ia2. The flux  is reduced by 10%, hence
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2 D 0.91.

Thus, 1 ð 30 D 0.91 ð Ia2

i.e. the steady state value of armature current, Ia2 D 30

0.9
D 33

1
3

A

(b) Series-wound motor

In the series-wound motor the field winding is in series with the armature
across the supply as shown in Figure 21.20.

Figure 21.20

For the series motor shown in Figure 21.20,

Supply voltage V D E C I�Ra C Rf�

or generated e.m.f. E D V � I�Ra C Rf�

Characteristics

In a series motor, the armature current flows in the field winding and is
equal to the supply current, I.

(i) The torque/current characteristic
It is shown in Section 21.11 that torque T / Ia. Since the arma-
ture and field currents are the same current, I, in a series machine,
then T / I over a limited range, before magnetic saturation of the
magnetic circuit of the motor is reached, (i.e., the linear portion of
the B–H curve for the yoke, poles, air gap, brushes and arma-
ture in series). Thus  / I and T / I2. After magnetic satura-
tion,  almost becomes a constant and T / I. Thus the theoretical
torque/current characteristic is as shown in Figure 21.21.

(ii) The speed/current characteristic
It is shown in equation (21.9) that n / �V � IaRa�/. In a series
motor, Ia D I and below the magnetic saturation level,  / I. Thus
n / �V � IR�/I where R is the combined resistance of the series
field and armature circuit. Since IR is small compared with V, then
an approximate relationship for the speed is n / V/I / 1/I since
V is constant. Hence the theoretical speed/current characteristic is
as shown in Figure 21.22. The high speed at small values of current
indicate that this type of motor must not be run on very light loads
and invariably, such motors are permanently coupled to their loads.

Figure 21.21

(iii) The theoretical speed/torque characteristic may be derived from
(i) and (ii) above by obtaining the torque and speed for various
values of current and plotting the co-ordinates on the speed/torque
characteristics. A typical speed/torque characteristic is shown in
Figure 21.23.Figure 21.22
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Figure 21.23

A d.c. series motor takes a large current on starting and the
characteristic shown in Figure 21.21 shows that the series-wound
motor has a large torque when the current is large. Hence these
motors are used for traction (such as trains, milk delivery vehicles,
etc.), driving fans and for cranes and hoists, where a large initial
torque is required.

Problem 23. A series motor has an armature resistance of 0.2 �
and a series field resistance of 0.3 �. It is connected to a 240 V
supply and at a particular load runs at 24 rev/s when drawing 15 A
from the supply.

(a) Determine the generated e.m.f. at this load.
(b) Calculate the speed of the motor when the load is changed

such that the current is increased to 30 A. Assume that this
causes a doubling of the flux.

(a) With reference to Figure 21.20, generated e.m.f., E, at initial load,
is given by

E1 D V � Ia�Ra C Rf�

D 240 � �15��0.2 C 0.3� D 240 � 7.5 D 232.5 volts

(b) When the current is increased to 30 A, the generated e.m.f. is
given by:

E2 D V � Ia�Ra C Rf�

D 240 � �30��0.2 C 0.3� D 240 � 15 D 225 volts

Now e.m.f. E / n

thus
E1

E2
D 1n1

2n2

i.e.,
232.5

225
D 1�24�

�21��n2�
since 2 D 21

Hence speed of motor, n2 D �24��225�

�232.5��2�
D 11.6 rev/s

As the current has been increased from 15 A to 30 A, the speed has
decreased from 24 rev/s to 11.6 rev/s. Its speed/current characteristic
is similar to Figure 21.22.

(c) Compound-wound motor

There are two types of compound wound motor:

(i) Cumulative compound, in which the series winding is so connected
that the field due to it assists that due to the shunt winding.Figure 21.24
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Figure 21.25

(ii) Differential compound, in which the series winding is so connected
that the field due to it opposes that due to the shunt winding.

Figure 21.24(a) shows a long-shunt compound motor and Figure 21.24(b)
a short-shunt compound motor.

Characteristics

A compound-wound motor has both a series and a shunt field winding,
(i.e. one winding in series and one in parallel with the armature), and is
usually wound to have a characteristic similar in shape to a series wound
motor (see Figures 21.21–21.23). A limited amount of shunt winding
is present to restrict the no-load speed to a safe value. However, by
varying the number of turns on the series and shunt windings and the
directions of the magnetic fields produced by these windings (assisting
or opposing), families of characteristics may be obtained to suit almost
all applications. Generally, compound-wound motors are used for heavy
duties, particularly in applications where sudden heavy load may occur
such as for driving plunger pumps, presses, geared lifts, conveyors, hoists
and so on.

Typical compound motor torque and speed characteristics are shown in
Figure 21.25.

21.13 The efficiency of a
d.c. motor

It was stated in Section 21.9, that the efficiency of a d.c. machine is
given by:

efficiency, � D output power

input power
ð 100%

Also, the total losses D I2
aRa C IfV C C (for a shunt motor) where C is

the sum of the iron, friction and windage losses.

For a motor, the input power D VI

and the output power D VI � losses

D VI � I2
aRa � IfV � C

Hence efficiency h =

(
VI − I 2

a Ra − I f V − C
VI

)
× 100% �21.10�

The efficiency of a motor is a maximum when the load is such that:

I 2
a Ra = I f V Y C
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Problem 24. A 320 V shunt motor takes a total current of 80 A
and runs at 1000 rev/min. If the iron, friction and windage losses
amount to 1.5 kW, the shunt field resistance is 40 � and the arma-
ture resistance is 0.2 �, determine the overall efficiency of the
motor.

The circuit is shown in Figure 21.26.

Figure 21.26

Field current, If D V

Rf
D 320

40
D 8 A

Armature current Ia D I � If D 80 � 8 D 72 A

C D iron, friction and windage losses D 1500 W

Efficiency, � D
(

VI � I2
aRa � IfV � C

VI

)
ð 100%

D
(

�320��80� � �72�2�0.2� � �8��320� � 1500

�320��80�

)
ð 100%

D
(

25 600 � 1036.8 � 2560 � 1500

25 600

)
ð 100%

D
(

20 503.2

25 600

)
ð 100% D 80.1%

Problem 25. A 250 V series motor draws a current of 40 A. The
armature resistance is 0.15 � and the field resistance is 0.05 �.
Determine the maximum efficiency of the motor.

The circuit is as shown in Figure 21.27.
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Figure 21.27

From equation (21.10), efficiency,

� D
(

VI � I2
aRa � IfV � C

VI

)
ð 100%

However for a series motor, If D 0 and the I2
aRa loss needs to be

I2�Ra C Rf�

Hence efficiency, � D
(

VI � I2�Ra C Rf� � C

VI

)
ð 100%

For maximum efficiency I2�Ra C Rf� D C

Hence efficiency, � D
(

VI � 2I2�Ra C Rf�

VI

)
ð 100%

D
(

�250��40� � 2�40�2�0.15 C 0.05�

�250��40�

)
ð 100%

D
(

10 000 � 640

10 000

)
ð 100%

D
(

9360

10 000

)
ð 100% D 93.6%

Problem 26. A 200 V d.c. motor develops a shaft torque of
15 Nm at 1200 rev/min. If the efficiency is 80%, determine the
current supplied to the motor.

The efficiency of a motor D output power

input power
ð 100%

The output power of a motor is the power available to do work at its shaft
and is given by Tω or T�2�n� watts, where T is the torque in Nm and n
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is the speed of rotation in rev/s. The input power is the electrical power
in watts supplied to the motor, i.e. VI watts.

Thus for a motor, efficiency, � D T�2�n�

VI
ð 100%

i.e., 80 D
[

�15��2���1200/60�

�200��I�

]
�100�

Thus the current supplied, I D �15��2���20��100�

�200��80�
D 11.8 A

Problem 27. A d.c. series motor drives a load at 30 rev/s and takes
a current of 10 A when the supply voltage is 400 V. If the total
resistance of the motor is 2 � and the iron, friction and windage
losses amount to 300 W, determine the efficiency of the motor.

Efficiency, � D
(

VI � I2R � C

VI

)
ð 100%

D
(

�400��10� � �10�2�2� � 300

�400��10�

)
ð 100%

D
(

4000 � 200 � 300

4000

)
ð 100%

D
(

3500

4000

)
ð 100% D 87.5%

Further problems on d.c. motors may be found in Section 21.17,
problems 22 to 30, page 384.

21.14 D.c. motor starter If a d.c. motor whose armature is stationary is switched directly to its
supply voltage, it is likely that the fuses protecting the motor will burn
out. This is because the armature resistance is small, frequently being less
than one ohm. Thus, additional resistance must be added to the armature
circuit at the instant of closing the switch to start the motor.

As the speed of the motor increases, the armature conductors are cutting
flux and a generated voltage, acting in opposition to the applied voltage,
is produced, which limits the flow of armature current. Thus the value of
the additional armature resistance can then be reduced.

When at normal running speed, the generated e.m.f. is such that no
additional resistance is required in the armature circuit. To achieve this
varying resistance in the armature circuit on starting, a d.c. motor starter
is used, as shown in Figure 21.28.
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Figure 21.28

The starting handle is moved slowly in a clockwise direction to start the
motor. For a shunt-wound motor, the field winding is connected to stud
1 or to L via a sliding contact on the starting handle, to give maximum
field current, hence maximum flux, hence maximum torque on starting,
since T / Ia.

A similar arrangement without the field connection is used for series
motors.

21.15 Speed control of
d.c. motors

Shunt-wound motors

The speed of a shunt-wound d.c. motor, n, is proportional to �V�IaRa�/
(see equation (21.9)). The speed is varied either by varying the value
of flux, , or by varying the value of Ra. The former is achieved by
using a variable resistor in series with the field winding, as shown in
Figure 21.29(a) and such a resistor is called the shunt field regulator.
As the value of resistance of the shunt field regulator is increased, the
value of the field current, If, is decreased.

This results in a decrease in the value of flux, , and hence an increase
in the speed, since n / 1/. Thus only speeds above that given without a
shunt field regulator can be obtained by this method. Speeds below those
given by �V � IaRa�/ are obtained by increasing the resistance in the
armature circuit, as shown in Figure 21.29(b), where

n / V � Ia�Ra C R�



Since resistor R is in series with the armature, it carries the full arma-
ture current and results in a large power loss in large motors where a
considerable speed reduction is required for long periods.

These methods of speed control are demonstrated in the following
worked problem.
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Figure 21.29

Problem 28. A 500 V shunt motor runs at its normal speed of
10 rev/s when the armature current is 120 A. The armature resis-
tance is 0.2 �.

(a) Determine the speed when the current is 60 A and a resistance
of 0.5 � is connected in series with the armature, the shunt
field remaining constant.

(b) Determine the speed when the current is 60 A and the shunt
field is reduced to 80% of its normal value by increasing
resistance in the field circuit.

(a) With reference to Figure 21.29(b),

back e.m.f. at 120 A, E1 D V � IaRa D 500 � �120��0.2�

D 500 � 24 D 476 volts

When Ia D 60 A, E2 D 500 � �60��0.2 C 0.5�

D 500 � �60��0.7�

D 500 � 42 D 458 volts

Now
E1

E2
D 1n1

2n2

i.e.,
476

458
D 1�10�

1�n2�
since 2 D 1

from which, speed n2 D �10��458�

�476�
D 9.62 rev/s

(b) Back e.m.f. when Ia D 60 A, E2 D 500 � �60��0.2�

D 500 � 12 D 488 volts

Now
E1

E2
D 1n1

2n2

i.e.,
476

488
D �1��10�

�0.81��n3�
, since 2 D 0.81

from which, speed n3 D �10��488�

�0.8��476�
D 12.82 rev/s

Series-wound motors

The speed control of series-wound motors is achieved using either (a) field
resistance, or (b) armature resistance techniques.

(a) The speed of a d.c. series-wound motor is given by:

n D k
(

V � IR



)
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Figure 21.30

where k is a constant, V is the terminal voltage, R is the combined
resistance of the armature and series field and  is the flux.

Thus, a reduction in flux results in an increase in speed. This is
achieved by putting a variable resistance in parallel with the field-
winding and reducing the field current, and hence flux, for a given
value of supply current. A circuit diagram of this arrangement is
shown in Figure 21.30(a). A variable resistor connected in parallel
with the series-wound field to control speed is called a diverter.
Speeds above those given with no diverter are obtained by this
method. Problem 29 below demonstrates this method.

(b) Speeds below normal are obtained by connecting a variable resistor
in series with the field winding and armature circuit, as shown in
Figure 21.30(b). This effectively increases the value of R in the
equation

n D k
(

V � IR



)

and thus reduces the speed. Since the additional resistor carries the
full supply current, a large power loss is associated with large motors
in which a considerable speed reduction is required for long periods.
This method is demonstrated in problem 30.

Problem 29. On full-load a 300 V series motor takes 90 A and
runs at 15 rev/s. The armature resistance is 0.1 � and the series
winding resistance is 50 m�. Determine the speed when developing
full load torque but with a 0.2 � diverter in parallel with the field
winding. (Assume that the flux is proportional to the field current.)

At 300 V, e.m.f. E1 D V � IR

D V � I�Ra C Rse�

D 300 � �90��0.1 C 0.05�

D 300 � �90��0.15�

D 300 � 13.5 D 286.5 volts

With the 0.2 � diverter in parallel with Rse (see Figure 21.30(a)),

the equivalent resistance, R D �0.2��0.05�

�0.2� C �0.05�
D �0.2��0.05�

�0.25�
D 0.04 �

By current division, current I1 (in Figure 21.30(a)) D
(

0.2

0.2 C 0.05

)
I

D 0.8I

Torque, T / Ia and for full load torque, Ia11 D Ia22
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Since flux is proportional to field current 1 / Ia1 and 2 / 0.8Ia2

then �90��90� D �Ia2��0.8Ia2�

from which, I2
a2 D �90�2

0.8
and Ia2 D 90p

�0.8�
D 100.62 A

Hence e.m.f. E2 D V � Ia2�Ra C R�

D 300 � �100.62��0.1 C 0.04�

D 300 � �100.62��0.14�

D 300 � 14.087 D 285.9 volts

Now e.m.f., E / n from which,
E1

E2
D 1n1

2n2
D Ia1n1

0.8Ia2n2

Hence
�286.5�

285.9
D �90��15�

�0.8��100.62�n2

and new speed, n2 D �285.9��90��15�

�286.5��0.8��100.62�
D 16.74 rev/s

Thus the speed of the motor has increased from 15 rev/s (i.e.,
900 rev/min) to 16.74 rev/s (i.e., 1004 rev/min) by inserting a 0.2 �
diverter resistance in parallel with the series winding.

Problem 30. A series motor runs at 800 rev/min when the voltage
is 400 V and the current is 25 A. The armature resistance is 0.4 �
and the series field resistance is 0.2 �. Determine the resistance to
be connected in series to reduce the speed to 600 rev/min with the
same current.

With reference to Figure 21.30(b), at 800 rev/min,

e.m.f., E1 D V � I�Ra C Rse� D 400 � �25��0.4 C 0.2�

D 400 � �25��0.6�

D 400 � 15 D 385 volts

At 600 rev/min, since the current is unchanged, the flux is unchanged.

Thus E / n, or E / n, and
E1

E2
D n1

n2

Hence
385

E2
D 800

600

from which, E2 D �385��600�

�800�
D 288.75 volts

and E2 D V � I�Ra C Rse C R�
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Hence 288.75 D 400 � 25�0.4 C 0.2 C R�

Rearranging gives: 0.6 C R D 400 � 288.75

25
D 4.45

from which, extra series resistance, R D 4.45 � 0.6

i.e., R = 3.85 Z

Thus the addition of a series resistance of 3.85 � has reduced the speed
from 800 rev/min to 600 rev/min

Further problems on the speed control of d.c. motors may be found in
Section 21.17, problems 31 to 33, page 384.

21.16 Motor cooling Motors are often classified according to the type of enclosure used, the
type depending on the conditions under which the motor is used and the
degree of ventilation required.

The most common type of protection is the screen-protected type,
where ventilation is achieved by fitting a fan internally, with the openings
at the end of the motor fitted with wire mesh.

A drip-proof type is similar to the screen-protected type but has a
cover over the screen to prevent drips of water entering the machine.

A flame-proof type is usually cooled by the conduction of heat through
the motor casing.

With a pipe-ventilated type, air is piped into the motor from a dust-free
area, and an internally fitted fan ensures the circulation of this cool air.

21.17 Further problems
on d.c. machines

Generated e.m.f.

1 A 4-pole, wave-connected armature of a d.c. machine has 750
conductors and is driven at 720 rev/min. If the useful flux per pole is
15 mWb, determine the generated e.m.f. [270 volts]

2 A 6-pole generator has a lap-wound armature with 40 slots with 20
conductors per slot. The flux per pole is 25 mWb. Calculate the speed
at which the machine must be driven to generate an e.m.f. of 300 V.

[15 rev/s or 900 rev/min]

3 A 4-pole armature of a d.c. machine has 1000 conductors and a flux
per pole of 20 mWb. Determine the e.m.f. generated when running at
600 rev/min when the armature is (a) wave-wound, (b) lap-wound.

[(a) 400 volts (b) 200 volts]

4 A d.c. generator running at 25 rev/s generates an e.m.f. of 150 V.
Determine the percentage increase in the flux per pole required to
generate 180 V at 20 rev/s. [50%]
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5 Determine the terminal voltage of a generator which develops an e.m.f.
of 240 V and has an armature current of 50 A on load. Assume the
armature resistance is 40 m�. [238 volts]

D.c. generator

6 A generator is connected to a 50 � load and a current of 10 A
flows. If the armature resistance is 0.5 �, determine (a) the terminal
voltage, and (b) the generated e.m.f. [(a) 500 volts (b) 505 volts]

7 A separately excited generator develops a no-load e.m.f. of 180 V
at an armature speed of 15 rev/s and a flux per pole of 0.20 Wb.
Calculate the generated e.m.f. when

(a) the speed increases to 20 rev/s and the flux per pole remaining
unchanged,

(b) the speed remains at 15 rev/s and the pole flux is decreased to
0.125 Wb, and

(c) the speed increases to 25 rev/s and the pole flux is decreased
to 0.18 Wb. [(a) 240 volts (b) 112.5 volts (c) 270 volts]

8 A shunt generator supplies a 50 kW load at 400 V through cables
of resistance 0.2 �. If the field winding resistance is 50 � and the
armature resistance is 0.05 �, determine (a) the terminal voltage,
(b) the e.m.f. generated in the armature.

[(a) 425 volts (b) 431.68 volts]

9 A short-shunt compound generator supplies 50 A at 300 V. If the
field resistance is 30 �, the series resistance 0.03 � and the armature
resistance 0.05 �, determine the e.m.f. generated. [304.5 volts]

10 A d.c. generator has a generated e.m.f. of 210 V when running at
700 rev/min and the flux per pole is 120 mWb. Determine the gener-
ated e.m.f. (a) at 1050 rev/min, assuming the flux remains constant,
(b) if the flux is reduced by one-sixth at constant speed, and (c) at a
speed of 1155 rev/min and a flux of 132 mWb.

[(a) 315 V (b) 175 V (c) 381.2 V]

11 A 250 V d.c. shunt-wound generator has an armature resistance
of 0.1 �. Determine the generated e.m.f. when the generator is
supplying 50 kW, neglecting the field current of the generator.

[270 V]

Efficiency of d.c. generator

12 A 15 kW shunt generator having an armature circuit resistance of
0.4 � and a field resistance of 100 �, generates a terminal voltage
of 240 V at full load. Determine the efficiency of the generator at
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full load, assuming the iron, friction and windage losses amount
to 1 kW. [82.14%]

Back e.m.f.

13 A d.c. motor operates from a 350 V supply. If the armature resistance
is 0.4 � determine the back e.m.f. when the armature current is 60 A.

[326 volts]

14 The armature of a d.c. machine has a resistance of 0.5 � and is
connected to a 200 V supply. Calculate the e.m.f. generated when
it is running (a) as a motor taking 50 A and (b) as a generator
giving 70 A. [(a) 175 volts (b) 235 volts]

15 Determine the generated e.m.f. of a d.c. machine if the armature
resistance is 0.1 � and it (a) is running as a motor connected to a
230 V supply, the armature current being 60 A, and (b) is running
as a generator with a terminal voltage of 230 V, the armature current
being 80 A. [(a) 224 V (b) 238 V]

Losses, efficiency and torque

16 The shaft torque required to drive a d.c. generator is 18.7 Nm when
it is running at 1250 rev/min. If its efficiency is 87% under these
conditions and the armature current is 17.3 A, determine the voltage
at the terminals of the generator. [123.1 V]

17 A 220 V, d.c. generator supplies a load of 37.5 A and runs at
1550 rev/min. Determine the shaft torque of the diesel motor driving
the generator, if the generator efficiency is 78%. [65.2 Nm]

18 A 4-pole d.c. motor has a wave-wound armature with 800 conductors.
The useful flux per pole is 20 mWb. Calculate the torque exerted
when a current of 40 A flows in each armature conductor.

[203.7 Nm]

19 Calculate the torque developed by a 240 V d.c. motor whose arma-
ture current is 50 A, armature resistance is 0.6 � and is running at
10 rev/s. [167.1 Nm]

20 An 8-pole lap-wound d.c. motor has a 200 V supply. The armature
has 800 conductors and a resistance of 0.8 �. If the useful flux per
pole is 40 mWb and the armature current is 30 A, calculate (a) the
speed and (b) the torque developed.

[(a) 5.5 rev/s or 330 rev/min (b) 152.8 Nm]

21 A 150 V d.c. generator supplies a current of 25 A when running
at 1200 rev/min. If the torque on the shaft driving the generator is
35.8 Nm, determine (a) the efficiency of the generator, and (b) the
power loss in the generator. [(a) 83.4% (b) 748.8 W]
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D.c. motors

22 A 240 V shunt motor takes a total current of 80 A. If the field
winding resistance is 120 � and the armature resistance is 0.4 �,
determine (a) the current in the armature, and (b) the back e.m.f.

[(a) 78 A (b) 208.8 V]

23 A d.c. motor has a speed of 900 rev/min when connected to a 460 V
supply. Find the approximate value of the speed of the motor when
connected to a 200 V supply, assuming the flux decreases by 30%
and neglecting the armature volt drop. [559 rev/min]

24 A series motor having a series field resistance of 0.25 � and an
armature resistance of 0.15 �, is connected to a 220 V supply and
at a particular load runs at 20 rev/s when drawing 20 A from the
supply. Calculate the e.m.f. generated at this load. Determine also
the speed of the motor when the load is changed such that the current
increases to 25 A. Assume the flux increases by 25%.

[212 V, 15.85 rev/s]

25 A 500 V shunt motor takes a total current of 100 A and runs at
1200 rev/min. If the shunt field resistance is 50 �, the armature
resistance is 0.25 � and the iron, friction and windage losses amount
to 2 kW, determine the overall efficiency of the motor. [81.95%]

26 A 250 V, series-wound motor is running at 500 rev/min and its shaft
torque is 130 Nm. If its efficiency at this load is 88%, find the current
taken from the supply. [30.94 A]

27 In a test on a d.c. motor, the following data was obtained.
Supply voltage: 500 V. Current taken from the supply: 42.4 A
Speed: 850 rev/min. Shaft torque: 187 Nm
Determine the efficiency of the motor correct to the nearest 0.5%.

[78.5%]

28 A 300 V series motor draws a current of 50 A. The field resistance
is 40 m� and the armature resistance is 0.2 �. Determine the
maximum efficiency of the motor. [92%]

29 A series motor drives a load at 1500 rev/min and takes a current of
20 A when the supply voltage is 250 V. If the total resistance of the
motor is 1.5 � and the iron, friction and windage losses amount to
400 W, determine the efficiency of the motor. [80%]

30 A series-wound motor is connected to a d.c. supply and develops
full-load torque when the current is 30 A and speed is 1000 rev/min.
If the flux per pole is proportional to the current flowing, find the
current and speed at half full-load torque, when connected to the
same supply. [21.2 A, 1415 rev/min]

Speed control

31 A 350 V shunt motor runs at its normal speed of 12 rev/s when the
armature current is 90 A. The resistance of the armature is 0.3 �.
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(a) Find the speed when the current is 45 A and a resistance of 0.4 �
is connected in series with the armature, the shunt field remaining
constant. (b) Find the speed when the current is 45 A and the shunt
field is reduced to 75% of its normal value by increasing resistance
in the field circuit. [(a) 11.83 rev/s (b) 16.67 rev/s]

32 A series motor runs at 900 rev/min when the voltage is 420 V and
the current is 40 A. The armature resistance is 0.3 � and the series
field resistance is 0.2 �. Calculate the resistance to be connected in
series to reduce the speed to 720 rev/min with the same current.

[2 �]

33 A 320 V series motor takes 80 A and runs at 1080 rev/min at full
load. The armature resistance is 0.2 � and the series winding resis-
tance is 0.05 �. Assuming the flux is proportional to the field current,
calculate the speed when developing full-load torque, but with a
0.15 � diverter in parallel with the field winding. [1239 rev/min]



22 Three-phase induction
motors

At the end of this chapter you should be able to:

ž appreciate the merits of three-phase induction motors
ž understand how a rotating magnetic field is produced
ž state the synchronous speed, ns D �f/p� and use in

calculations
ž describe the principle of operation of a three-phase induction

motor
ž distinguish between squirrel-cage and wound-rotor types of

motor
ž understand how a torque is produced causing rotor movement
ž understand and calculate slip
ž derive expressions for rotor e.m.f., frequency, resistance,

reactance, impedance, current and copper loss, and use them
in calculations

ž state the losses in an induction motor and calculate efficiency
ž derive the torque equation for an induction motor, state the

condition for maximum torque, and use in calculations
ž describe torque-speed and torque-slip characteristics for an

induction motor
ž state and describe methods of starting induction motors
ž state advantages of cage rotor and wound rotor types of

induction motor
ž describe the double cage induction motor
ž state typical applications of three-phase induction motors

22.1 Introduction In d.c. motors, introduced in Chapter 21, conductors on a rotating armature
pass through a stationary magnetic field. In a three-phase induction
motor, the magnetic field rotates and this has the advantage that no
external electrical connections to the rotor need be made. Its name is
derived from the fact that the current in the rotor is induced by the
magnetic field instead of being supplied through electrical connections to
the supply. The result is a motor which: (i) is cheap and robust, (ii) is
explosion proof, due to the absence of a commutator or slip-rings and
brushes with their associated sparking, (iii) requires little or no skilled
maintenance, and (iv) has self-starting properties when switched to a
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supply with no additional expenditure on auxiliary equipment. The prin-
cipal disadvantage of a three-phase induction motor is that its speed cannot
be readily adjusted.

22.2 Production of a
rotating magnetic field

When a three-phase supply is connected to symmetrical three-phase wind-
ings, the currents flowing in the windings produce a magnetic field. This
magnetic field is constant in magnitude and rotates at constant speed as
shown below, and is called the synchronous speed.

With reference to Figure 22.1, the windings are represented by three
single-loop conductors, one for each phase, marked RSRF, YSYF and
BSBF, the S and F signifying start and finish. In practice, each phase
winding comprises many turns and is distributed around the stator; the
single-loop approach is for clarity only.

When the stator windings are connected to a three-phase supply, the
current flowing in each winding varies with time and is as shown in
Figure 22.1(a). If the value of current in a winding is positive, the assump-
tion is made that it flows from start to finish of the winding, i.e., if it is
the red phase, current flows from RS to RF, i.e. away from the viewer in
RS and towards the viewer in RF. When the value of current is negative,
the assumption is made that it flows from finish to start, i.e. towards the
viewer in an ‘S’ winding and away from the viewer in an ‘F’ winding.
At time, say t1, shown in Figure 22.1(a), the current flowing in the red
phase is a maximum positive value. At the same time, t1, the currents
flowing in the yellow and blue phases are both 0.5 times the maximum
value and are negative.

The current distribution in the stator windings is therefore as shown
in Figure 22.1(b), in which current flows away from the viewer, (shown
as �) in RS since it is positive, but towards the viewer (shown as þ )
in YS and BS, since these are negative. The resulting magnetic field is as
shown, due to the ‘solenoid’ action and application of the corkscrew rule.

A short time later at time t2, the current flowing in the red phase has
fallen to about 0.87 times its maximum value and is positive, the current
in the yellow phase is zero and the current in the blue phase is about
0.87 times its maximum value and is negative. Hence the currents and
resultant magnetic field are as shown in Figure 22.1(c). At time t3, the
currents in the red and yellow phases are 0.5 of their maximum values and
the current in the blue phase is a maximum negative value. The currents
and resultant magnetic field are as shown in Figure 22.1(d).

Similar diagrams to Figure 22.1(b), (c) and (d) can be produced for all
time values and these would show that the magnetic field travels through
one revolution for each cycle of the supply voltage applied to the stator
windings. By considering the flux values rather than the current values,
it is shown below that the rotating magnetic field has a constant value of
flux. The three coils shown in Figure 22.2(a), are connected in star to a
three-phase supply. Let the positive directions of the fluxes produced by
currents flowing in the coils, be �A, �B and �C respectively. The directions
of �A, �B and �C do not alter, but their magnitudes are proportional toFigure 22.1
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Figure 22.2

the currents flowing in the coils at any particular time. At time t1, shown
in Figure 22.2(b), the currents flowing in the coils are:

iB, a maximum positive value, i.e., the flux is towards point P;

iA and iC, half the maximum value and negative, i.e., the flux is away
from point P.

These currents give rise to the magnetic fluxes �A, �B and �C, whose
magnitudes and directions are as shown in Figure 22.2(c). The resultant
flux is the phasor sum of �A, �B and �C, shown as  in Figure 22.2(c).
At time t2, the currents flowing are:

iB, 0.866 ð maximum positive value, iC, zero, and

iA, 0.866 ð maximum negative value.

The magnetic fluxes and the resultant magnetic flux are as shown in
Figure 22.2(d).

At time t3, iB is 0.5 ð maximum value and is positive

iA is a maximum negative value, and

iC is 0.5 ð maximum value and is positive.

The magnetic fluxes and the resultant magnetic flux are as shown in
Figure 22.2(e).

Inspection of Figures 22.2(c), (d) and (e) shows that the magnitude
of the resultant magnetic flux, , in each case is constant and is 1 1

2 ð
the maximum value of �A, �B or �C, but that its direction is changing.
The process of determining the resultant flux may be repeated for all
values of time and shows that the magnitude of the resultant flux is
constant for all values of time and also that it rotates at constant speed,
making one revolution for each cycle of the supply voltage.

22.3 Synchronous speed The rotating magnetic field produced by three phase windings could have
been produced by rotating a permanent magnet’s north and south pole at
synchronous speed, (shown as N and S at the ends of the flux phasors in
Figures 22.1(b), (c) and (d)). For this reason, it is called a 2-pole system
and an induction motor using three phase windings only is called a 2-pole
induction motor.

If six windings displaced from one another by 60° are used, as shown
in Figure 22.3(a), by drawing the current and resultant magnetic field
diagrams at various time values, it may be shown that one cycle of the
supply current to the stator windings causes the magnetic field to move
through half a revolution. The current distribution in the stator windings
are shown in Figure 22.3(a), for the time t shown in Figure 22.3(b).

It can be seen that for six windings on the stator, the magnetic flux
produced is the same as that produced by rotating two permanent magnet
north poles and two permanent magnet south poles at synchronous speed.
This is called a 4-pole system and an induction motor using six phase
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windings is called a 4-pole induction motor. By increasing the number of
phase windings the number of poles can be increased to any even number.

In general, if f is the frequency of the currents in the stator windings
and the stator is wound to be equivalent to p pairs of poles, the speed of
revolution of the rotating magnetic field, i.e., the synchronous speed, ns
is given by:

ns =
f
p

rev/s

Problem 1. A three-phase two-pole induction motor is connected
to a 50 Hz supply. Determine the synchronous speed of the motor
in rev/min.

From above, ns D f/p rev/s, where ns is the synchronous speed, f is
the frequency in hertz of the supply to the stator and p is the number of
pairs of poles. Since the motor is connected to a 50 hertz supply, f D 50.
The motor has a two-pole system, hence p, the number of pairs of poles
is one.

Thus, synchronous speed, ns D 50

1
D 50 rev/s D 50 ð 60 rev/min

D 3000 rev=min

Problem 2. A stator winding supplied from a three-phase 60 Hz
system is required to produce a magnetic flux rotating at
900 rev/min. Determine the number of poles.

Synchronous speed, ns D 900 rev/min D 900

60
rev/s D 15 rev/s
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Since ns D f

p
then p D f

ns
D 60

15
D 4

Hence the number of pole pairs is 4 and thus the number of poles is 8.

Problem 3. A three-phase 2-pole motor is to have a synchronous
speed of 6000 rev/min. Calculate the frequency of the supply
voltage.

Since ns D f

p
then frequency, f D �ns��p�

D
(

6000

60

)(
2

2

)
D 100 Hz

Further problems on synchronous speed may be found in Section 22.18,
problems 1 to 3, page 406.

22.4 Construction of a
three-phase induction

motor

The stator of a three-phase induction motor is the stationary part corre-
sponding to the yoke of a d.c. machine. It is wound to give a 2-pole, 4-
pole, 6-pole, . . . . . . rotating magnetic field, depending on the rotor speed
required. The rotor, corresponding to the armature of a d.c. machine, is
built up of laminated iron, to reduce eddy currents.

In the type most widely used, known as a squirrel-cage rotor, copper
or aluminium bars are placed in slots cut in the laminated iron, the ends
of the bars being welded or brazed into a heavy conducting ring, (see
Figure 22.4(a)). A cross-sectional view of a three-phase induction motor
is shown in Figure 22.4(b).

The conductors are placed in slots in the laminated iron rotor core. If
the slots are skewed, better starting and quieter running is achieved. This
type of rotor has no external connections which means that slip rings and
brushes are not needed. The squirrel-cage motor is cheap, reliable and
efficient.

Another type of rotor is the wound rotor. With this type there are
phase windings in slots, similar to those in the stator. The windings may
be connected in star or delta and the connections made to three slip rings.
The slip rings are used to add external resistance to the rotor circuit,
particularly for starting (see Section 22.13), but for normal running the
slip rings are short circuited.

The principle of operation is the same for both the squirrel cage and
the wound rotor machines.

Figure 22.4

22.5 Principle of
operation of a three-phase

induction motor

When a three-phase supply is connected to the stator windings, a rotating
magnetic field is produced. As the magnetic flux cuts a bar on the rotor, an
e.m.f. is induced in it and since it is joined, via the end conducting rings, to



Three-phase induction motors 391

Figure 22.5

another bar one pole pitch away, a current flows in the bars. The magnetic
field associated with this current flowing in the bars interacts with the
rotating magnetic field and a force is produced, tending to turn the rotor
in the same direction as the rotating magnetic field, (see Figure 22.5).
Similar forces are applied to all the conductors on the rotor, so that a
torque is produced causing the rotor to rotate.

22.6 Slip The force exerted by the rotor bars causes the rotor to turn in the direc-
tion of the rotating magnetic field. As the rotor speed increases, the rate
at which the rotating magnetic field cuts the rotor bars is less and the
frequency of the induced e.m.f.’s in the rotor bars is less. If the rotor runs
at the same speed as the rotating magnetic field, no e.m.f.’s are induced
in the rotor, hence there is no force on them and no torque on the rotor.
Thus the rotor slows down. For this reason the rotor can never run at
synchronous speed.

When there is no load on the rotor, the resistive forces due to
windage and bearing friction are small and the rotor runs very nearly
at synchronous speed. As the rotor is loaded, the speed falls and this
causes an increase in the frequency of the induced e.m.f.’s in the rotor
bars and hence the rotor current, force and torque increase. The difference
between the rotor speed, nr , and the synchronous speed, ns, is called the
slip speed, i.e.

slip speed = ns − nr rev=s

The ratio �ns � nr�/ns is called the fractional slip or just the slip, s, and
is usually expressed as a percentage. Thus

slip, s =
(

ns − nr

ns

)
× 100%

Typical values of slip between no load and full load are about 4 to 5%
for small motors and 1.5 to 2% for large motors.

Problem 4. The stator of a 3-phase, 4-pole induction motor is
connected to a 50 Hz supply. The rotor runs at 1455 rev/min at
full load. Determine (a) the synchronous speed and (b) the slip at
full load.

(a) The number of pairs of poles, p D 4/2 D 2

The supply frequency f D 50 Hz

The synchronous speed, ns D f

p
D 50

2
D 25 rev=s

(b) The rotor speed, nr D 1455

60
D 24.25 rev/s
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The slip, s D
(
ns � nr
ns

)
ð 100%

D
(

25 � 24.25

25

)
ð 100% D 3%

Problem 5. A 3-phase, 60 Hz induction motor has 2 poles. If the
slip is 2% at a certain load, determine (a) the synchronous speed,
(b) the speed of the rotor and (c) the frequency of the induced
e.m.f.’s in the rotor.

(a) f D 60 Hz, p D 2

2
D 1

Hence synchronous speed, ns D f

p
D 60

1
D 60 rev=s

or 60 ð 60 D 3600 rev=min

(b) Since slip, s D
(
ns � nr
ns

)
ð 100%

2 D
(

60 � nr
60

)
ð 100

Hence
2 ð 60

100
D 60 � nr

i.e. nr D 60 � 2 ð 60

100
D 58.8 rev/s

i.e. the rotor runs at 58.8 ð 60 D 3528 rev=min

(c) Since the synchronous speed is 60 rev/s and that of the rotor
is 58.8 rev/s, the rotating magnetic field cuts the rotor bars at
�60 � 58.8�, i.e. 1.2 rev/s.
Thus the frequency of the e.m.f.’s induced in the rotor bars is
1.2 Hz

Problem 6. A three-phase induction motor is supplied from a
50 Hz supply and runs at 1200 rev/min when the slip is 4%. Deter-
mine the synchronous speed.

Slip, s D
(
ns � nr
ns

)
ð 100%

Rotor speed, nr D 1200

60
D 20 rev/s, and s D 4

Hence 4 D
(
ns � 20

ns

)
ð 100%



Three-phase induction motors 393

or 0.04 D ns � 20

ns

from which, ns�0.04� D ns � 20

and 20 D ns � 0.04 ns D ns�1 � 0.04�

Hence synchronous speed, ns D
(

20

1 � 0.04

)
D 20.8P3 rev/s

D �20.8P3 ð 60� rev/min D 1250 rev=min

Further problems on slip may be found in Section 22.18, problems 4 to 7,
page 406.

22.7 Rotor e.m.f. and
frequency

Rotor e.m.f.

When an induction motor is stationary, the stator and rotor windings form
the equivalent of a transformer as shown in Figure 22.6.

The rotor e.m.f. at standstill is given by E2 D
(
N2

N1

)
E1 �22.1�

Figure 22.6

where E1 is the supply voltage per phase to the stator.
When an induction motor is running, the induced e.m.f. in the rotor

is less since the relative movement between conductors and the rotating
field is less. The induced e.m.f. is proportional to this movement, hence
it must be proportional to the slip, s.

Hence when running, rotor e.m.f. per phase D Er D sE2

D s
(
N2

N1

)
E1 �22.2�

Rotor frequency

The rotor e.m.f. is induced by an alternating flux and the rate at which
the flux passes the conductors is the slip speed. Thus the frequency of the
rotor e.m.f. is given by:

fr D �ns � nr�p D �ns � nr�

ns
�nsp�

However
(
ns � nr
ns

)
is the slip s and nsp is the supply frequency f,

hence

fr = sf �22.3�
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Problem 7. The frequency of the supply to the stator of an 8-
pole induction motor is 50 Hz and the rotor frequency is 3 Hz.
Determine (a) the slip, and (b) the rotor speed.

(a) From equation (22.3), fr D s f

Hence 3 D �s��50�

from which, slip, s D 3

50
D 0.06 or 6%

(b) Synchronous speed, ns D f

p
D 50

4
D 12.5 rev/s

or �12.5 ð 60� D 750 rev/min

Slip, s D
(
ns � nr
ns

)
, hence 0.06 D

(
12.5 � nr

12.5

)

�0.06��12.5� D 12.5 � nr

and rotor speed, nr D 12.5 � �0.06��12.5�

D 11.75 rev=s or 705 rev=min

Further problems on rotor frequency may be found in Section 22.18, prob-
lems 8 and 9, page 407.

22.8 Rotor impedance
and current

Rotor resistance

The rotor resistance R2 is unaffected by frequency or slip, and hence
remains constant.

Rotor reactance

Rotor reactance varies with the frequency of the rotor current.

At standstill, reactance per phase, X2 D 2�fL

When running, reactance per phase, Xr D 2�frL

D 2��sf�L from equation (22.3)

D s�2�fL�

i.e. Xr = s X2 �22.4�

Figure 22.7 represents the rotor circuit when running.Figure 22.7

Rotor impedance

Rotor impedance per phase, Zr D
√

[R2
2 C �sX2�2] �22.5�
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At standstill, slip s D 1, then Z2 D
√
R2

2 C X2
2] �22.6�

Rotor current

From Figures 22.6 and 22.7,

at standstill, starting current,
I 2 =

E2

Z2
=

(
N2

N1

)
E1

p
[R2

2 Y X2
2]

�22.7�

and when running, current,
I r =

Er

Zr
=

s
(

N2

N1

)
E1

p
[R2

2 Y .sX2/2]
�22.8�

22.9 Rotor copper loss Power P D 2�nT, where T is the torque in newton metres, hence torque
T D P/�2�n�

If P2 is the power input to the rotor from the rotating field, and Pm is
the mechanical power output (including friction losses)

then T D P2

2�ns
D Pm

2�nr

from which,
P2

ns
D Pm
nr

or
Pm
P2

D nr
ns

Hence 1 � Pm
P2

D 1 � nr
ns

P2 � Pm
P2

D ns � nr
ns

D s

P2 � Pm is the electrical or copper loss in the rotor, i.e. P2 � Pm D Ir2R2

Hence slip, s =
rotor copper loss

rotor input
=

I r
2R2

P2
�22.9�

or power input to the rotor, P2 =
I r

2R2

s
�22.10�

22.10 Induction motor
losses and efficiency

Figure 22.8 summarizes losses in induction motors.

Motor efficiency,  D output power

input power
D Pm
P1

ð 100%
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Figure 22.8

Problem 8. The power supplied to a three-phase induction motor
is 32 kW and the stator losses are 1200 W. If the slip is 5%,
determine (a) the rotor copper loss, (b) the total mechanical power
developed by the rotor, (c) the output power of the motor if friction
and windage losses are 750 W, and (d) the efficiency of the motor,
neglecting rotor iron loss.

(a) Input power to rotor D stator input power � stator losses

D 32 kW � 1.2 kW D 30.8 kW

From equation (22.9), slip D rotor copper loss

rotor input

i.e.,
5

100
D rotor copper loss

30.8

from which, rotor copper loss D �0.05��30.8� D 1.54 kW

(b) Total mechanical power developed by the rotor

D rotor input power � rotor losses

D 30.8 � 1.54 D 29.26 kW

(c) Output power of motor

D power developed by the rotor � friction and windage losses

D 29.26 � 0.75 D 28.51 kW

(d) Efficiency of induction motor,  D
(

output power

input power

)
ð 100%

D
(

28.51

32

)
ð 100% D 89.10%



Three-phase induction motors 397

Problem 9. The speed of the induction motor of Problem 8 is
reduced to 35% of its synchronous speed by using external rotor
resistance. If the torque and stator losses are unchanged, determine
(a) the rotor copper loss, and (b) the efficiency of the motor.

(a) Slip, s D
(
ns � nr
ns

)
ð 100% D

(
ns � 0.35ns

ns

)
ð 100%

D �0.65��100� D 65%

Input power to rotor D 30.8 kW (from Problem 8)

Since s D rotor copper loss

rotor input

then rotor copper loss D �s�(rotor input)

D
(

65

100

)
�30.8� D 20.02 kW

(b) Power developed by rotor

D input power to rotor � rotor copper loss

D 30.8 � 20.02 D 10.78 kW

Output power of motor

D power developed by rotor � friction and windage losses

D 10.78 � 0.75 D 10.03 kW

Efficiency,  D output power

input power
100% D

(
10.03

32

)
ð 100%

D 31.34%

Further problems on losses and efficiency may be found in Section 22.18,
problems 10 and 11, page 407.

22.11 Torque equation
for an induction motor Torque T D P2

2�ns
D
(

1

2�ns

) (
Ir2R2

s

)
(from equation (22.10)

From equation (22.8), Ir D s�N2/N1� E1p
[R2

2 C �s X2�2]

Hence torque per phase, T D
(

1

2�ns

)[
s2�N2/N1�2E1

2

R2
2 C �sX2�2

](
R2

s

)

i.e. T D
(

1

2�ns

)[
s�N2/N1�2E1

2R2

R2
2 C �sX2�2

]
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If there are m phases then

torque, T D
(

m

2�ns

)[
s�N2/N1�2E1

2R2

R2
2 C �sX2�2

]

i.e., T =

[
m.N2=N1/2

2pns

] [
sE1

2R2

R2
2 Y .sX2/2

]
�22.11�

D k

(
sE1

2R2

R2
2 C �sX2�2

)
, where k is a constant for

a particular machine,

i.e., torque T ∝ sE1
2R2

R2
2 Y .sX2/2

�22.12�

Under normal conditions, the supply voltage is usually constant, hence
equation (22.12) becomes:

T / sR2

R2
2 C �sX2�2

/ R2

R2
2

s
C sX2

2

The torque will be a maximum when the denominator is a minimum and
this occurs when R2

2/s D sX2
2

i.e., when s D R2

X2
or R2 D sX2 D Xr from equation (22.4)

Thus maximum torque occurs when rotor resistance and rotor reactance
are equal, i.e., R2 = Xr

Problems 10 to 13 following illustrate some of the characteristics of three-
phase induction motors.

Problem 10. A 415 V, three-phase, 50 Hz, 4 pole, star-connected
induction motor runs at 24 rev/s on full load. The rotor resistance
and reactance per phase are 0.35 " and 3.5 " respectively, and
the effective rotor-stator turns ratio is 0.85:1. Calculate (a) the
synchronous speed, (b) the slip, (c) the full load torque, (d) the
power output if mechanical losses amount to 770 W, (e) the
maximum torque, (f) the speed at which maximum torque occurs,
and (g) the starting torque.

(a) Synchronous speed, ns D f

p
D 50

2
D 25 rev=s or �25 ð 60�

D 1500 rev=min
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(b) Slip, s D
(
ns � nr
ns

)
D 25 � 24

25
D 0.04 or 4%

(c) Phase voltage, E1 D 415p
3

D 239.6 volts

Full load torque, T D
[
m �N2/N1�2

2�ns

] [
s E1

2 R2

R2
2 C �s X2�2

]

from equation (22.11)

D
[

3 �0.85�2

2� �25�

] [
0.04 �239.6�2 0.35

�0.35�2 C �0.04 ð 3.5�2

]

D �0.01380�
(

803.71

0.1421

)
D 78.05 Nm

(d) Output power, including friction losses, Pm D 2�nrT

D 2��24��78.05�

D 11 770 watts

Hence power output D Pm � mechanical losses

D 11 770 � 770 D 11 000 W D 11 kW

(e) Maximum torque occurs when R2 D Xr D 0.35 Z

Slip, s D R2

X2
D 0.35

3.5
D 0.1

Hence maximum torque, Tm D �0.01380�

[
s E1

2 R2

R2
2 C �s X2�2

]

from part (c)

D �0.01380�

[
0.1 �239.6�2 0.35

0.352 C 0.352

]

D �0.01380�
[

2009.29

0.245

]

D 113.18 Nm

(f) For maximum torque, slip s D 0.1

Slip, s D
(
ns � nr
ns

)
i.e., 0.1 D

(
25 � nr

25

)

Hence �0.1��25� D 25 � nr and nr D 25 � �0.1��25�

Thus speed at which maximum torque occurs,

nr D 25 � 2.5

D 22.5 rev=s or 1350 rev=min
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(g) At the start, i.e., at standstill, slip s D 1

Hence starting torque D
[
m �N2/N1�2

2�ns

] [
E1

2 R2

R2
2 C X2

2

]

from equation (22.11) with s D 1

D �0.01380�

[
�239.6�2 0.35

0.352 C 3.52

]

D �0.01380�
(

20092.86

12.3725

)

i.e., starting torque D 22.41 Nm

(Note that the full load torque (from part (c)) is 78.05 Nm but the starting
torque is only 22.41 Nm)

Problem 11. Determine for the induction motor in problem 10 at
full load, (a) the rotor current, (b) the rotor copper loss, and (c) the
starting current.

(a) From equation (22.8), rotor current,

I r D
s
(
N2

N1

)
E1√

[R2
2 C �s X2�2]

D �0.04� �0.85� �239.6�√
[0.352 C �0.04 ð 3.5�2]

D 8.1464

0.37696
D 21.61 A

(b) Rotor copper loss per phase D Ir2 R2 D �21.61�2�0.35� D 163.45 W

Total copper loss (for 3 phases) D 3 ð 163.45 D 490.35 W

(c) From equation (22.7), starting current,

I2 D

(
N2

N1

)
E1√

[R2
2 C X2

2]
D �0.85� �239.6�√

[0.352 C 3.52]
D 57.90 A

(Note that the starting current of 57.90 A is considerably higher than the
full load current of 21.61 A)
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Problem 12. For the induction motor in problems 10 and 11, if
the stator losses are 650 W, determine (a) the power input at full
load, (b) the efficiency of the motor at full load and (c) the current
taken from the supply at full load, if the motor runs at a power
factor of 0.87 lagging.

(a) Output power Pm D 11.770 kW from part (d), Problem 10
Rotor copper loss D 490.35 W D 0.49035 kW from part (b),
Problem 11
Stator input power, P1 D Pm C rotor copper loss

C rotor stator loss

D 11.770 C 0.49035 C 0.650 D 12.910 kW
(b) Net power output D 11 kW from part (d), Problem 10

Hence efficiency,  D output

input
ð 100% D

(
11

12.910

)
ð 100%

D 85.21%

(c) Power input, P1 D p
3 VLIL cos� (see Chapter 19) and cos � D

p.f. D 0.87

hence, supply current, I L D P1p
3 VL cos �

D 12.910 ð 1000p
3 �415� 0.87

D 20.64 A

Problem 13. For the induction motor of Problems 10 to 12, deter-
mine the resistance of the rotor winding required for maximum
starting torque.

From equation (22.4), rotor reactance Xr D s X2

At the moment of starting, slip, s D 1
Maximum torque occurs when rotor reactance equals rotor resistance

hence for maximum torque, R2 D Xr D s X2 D X2 D 3.5 Z
Thus if the induction motor was a wound rotor type with slip rings

then an external star-connected resistance of �3.5 � 0.35� " D 3.15 "
per phase could be added to the rotor resistance to give maximum torque
at starting (see Section 22.13).

Further problems on the torque equation may be found in Section 22.18,
problems 12 to 15, page 407.

22.12 Induction motor
torque–speed

characteristics

From Problem 10, parts (c) and (g), it is seen that the normal starting
torque may be less than the full load torque. Also, from Problem 10,
parts (e) and (f), it is seen that the speed at which maximum torque
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occurs is determined by the value of the rotor resistance. At synchronous
speed, slip s D 0 and torque is zero. From these observations, the torque-
speed and torque-slip characteristics of an induction motor are as shown
in Figure 22.9.

Figure 22.9

The rotor resistance of an induction motor is usually small compared
with its reactance (for example, R2 D 0.35 " and X2 D 3.5 " in the above
Problems), so that maximum torque occurs at a high speed, typically about
80% of synchronous speed.

Curve P in Figure 22.9 is a typical characteristic for an induction motor.
The curve P cuts the full-load torque line at point X, showing that at full
load the slip is about 4–5%. The normal operating conditions are between
0 and X, thus it can be seen that for normal operation the speed variation
with load is quite small — the induction motor is an almost constant-
speed machine. Redrawing the speed-torque characteristic between 0 and
X gives the characteristic shown in Figure 22.10, which is similar to a
d.c. shunt motor as shown in chapter 21.Figure 22.10

If maximum torque is required at starting then a high resistance rotor
is necessary, which gives characteristic Q in Figure 22.9. However, as
can be seen, the motor has a full load slip of over 30%, which results
in a drop in efficiency. Also such a motor has a large speed variation
with variations of load. Curves R and S of Figure 22.9 are characteristics
for values of rotor resistances between those of P and Q. Better starting
torque than for curve P is obtained, but with lower efficiency and with
speed variations under operating conditions.

A squirrel-cage induction motor would normally follow characteristic
P. This type of machine is highly efficient and about constant-speed under
normal running conditions. However it has a poor starting torque and
must be started off-load or very lightly loaded (see Section 22.13 below).
Also, on starting, the current can be four or five times the normal full
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load current, due to the motor acting like a transformer with secondary
short circuited. In problem 11, for example, the current at starting was
nearly three times the full load current.

A wound-rotor induction motor would follow characteristic P when
the slip-rings are short-circuited, which is the normal running condition.
However, the slip-rings allow for the addition of resistance to the rotor
circuit externally and, as a result, for starting, the motor can have a char-
acteristic similar to curve Q in Figure 22.9 and the high starting current
experienced by the cage induction motor can be overcome.

In general, for three-phase induction motors, the power factor is usually
between about 0.8 and 0.9 lagging, and the full load efficiency is usually
about 80–90%.

From equation (22.12), it is seen that torque is proportional to the
square of the supply voltage. Any voltage variations therefore would seri-
ously affect the induction motor performance.

22.13 Starting methods
for induction motors

Squirrel-cage rotor

(i) Direct-on-line starting
With this method, starting current is high and may cause interfer-
ence with supplies to other consumers.

(ii) Auto transformer starting
With this method, an auto transformer is used to reduce
the stator voltage, E1, and thus the starting current (see
equation (22.7)). However, the starting torque is seriously reduced
(see equation (22.12)), so the voltage is reduced only sufficiently
to give the required reduction of the starting current. A typical
arrangement is shown in Figure 22.11. A double-throw switch
connects the auto transformer in circuit for starting, and when the
motor is up to speed the switch is moved to the run position which
connects the supply directly to the motor.

(iii) Star-delta starting
With this method, for starting, the connections to the stator phase
winding are star-connected, so that the voltage across each phase

Figure 22.11
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Figure 22.12

winding is 1/
p

3 (i.e. 0.577) of the line voltage. For running, the
windings are switched to delta-connection. A typical arrangement
is shown in Figure 22.12. This method of starting is less expensive
than by auto transformer.

Wound rotor

When starting on load is necessary, a wound rotor induction motor must
be used. This is because maximum torque at starting can be obtained
by adding external resistance to the rotor circuit via slip rings, (see
problem 13). A face-plate type starter is used, and as the resistance is
gradually reduced, the machine characteristics at each stage will be similar
to Q, S, R and P of Figure 22.13. At each resistance step, the motor oper-
ation will transfer from one characteristic to the next so that the overall
starting characteristic will be as shown by the bold line in Figure 22.13.
For very large induction motors, very gradual and smooth starting is
achieved by a liquid type resistance.

22.14 Advantages of
squirrel-cage induction

motors

The advantages of squirrel-cage motors compared with the wound rotor
type are that they:

(i) are cheaper and more robust
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Figure 22.13

(ii) have slightly higher efficiency and power factor
(iii) are explosion-proof, since the risk of sparking is eliminated by the

absence of slip rings and brushes.

22.15 Advantages of
wound rotor induction

motor

The advantages of the wound rotor motor compared with the cage type
are that they:

(i) have a much higher starting torque
(ii) have a much lower starting current

(iii) have a means of varying speed by use of external rotor resistance.

22.16 Double cage
induction motor

The advantages of squirrel-cage and wound rotor induction motors are
combined in the double cage induction motor. This type of induction
motor is specially constructed with the rotor having two cages, one inside
the other. The outer cage has high resistance conductors so that maximum
torque is achieved at or near starting. The inner cage has normal low
resistance copper conductors but high reactance since it is embedded deep
in the iron core. The torque-speed characteristic of the inner cage is that
of a normal induction motor, as shown in Figure 22.14. At starting, the
outer cage produces the torque, but when running the inner cage produces
the torque. The combined characteristic of inner and outer cages is shown
in Figure 22.14. The double cage induction motor is highly efficient when
running.

22.17 Uses of three-phase
induction motors

Three-phase induction motors are widely used in industry and constitute
almost all industrial drives where a nearly constant speed is required,
from small workshops to the largest industrial enterprises.
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Figure 22.14

Typical applications are with machine tools, pumps and mill motors. The
squirrel cage rotor type is the most widely used of all a.c. motors.

22.18 Further problems
on three-phase induction

motors

Synchronous speed

1 The synchronous speed of a 3-phase, 4-pole induction motor is
60 rev/s. Determine the frequency of the supply to the stator
windings. [120 Hz]

2 The synchronous speed of a 3-phase induction motor is 25 rev/s and
the frequency of the supply to the stator is 50 Hz. Calculate the
equivalent number of pairs of poles of the motor. [2]

3 A 6-pole, 3-phase induction motor is connected to a 300 Hz supply.
Determine the speed of rotation of the magnetic field produced by
the stator. [100 rev/s]

Slip

4 A 6-pole, 3-phase induction motor runs at 970 rev/min at a certain
load. If the stator is connected to a 50 Hz supply, find the percentage
slip at this load. [3%]

5 A 3-phase, 50 Hz induction motor has 8 poles. If the full load slip is
2.5%, determine (a) the synchronous speed, (b) the rotor speed, and
(c) the frequency of the rotor e.m.f.’s.

[(a) 750 rev/min (b) 731 rev/min (c) 1.25 Hz]

6 A three-phase induction motor is supplied from a 60 Hz supply and
runs at 1710 rev/min when the slip is 5%. Determine the synchronous
speed. [1800 rev/min]
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7 A 4-pole, 3-phase, 50 Hz induction motor runs at 1440 rev/min at
full load. Calculate (a) the synchronous speed, (b) the slip and (c) the
frequency of the rotor induced e.m.f.’s.

[(a) 1500 rev/min (b) 4% (c) 2 Hz]

Rotor frequency

8 A 12-pole, 3-phase, 50 Hz induction motor runs at 475 rev/min.
Determine (a) the slip speed, (b) the percentage slip and (c) the
frequency of rotor currents. [(a) 25 rev/min (b) 5% (c) 2.5 Hz]

9 The frequency of the supply to the stator of a 6-pole induction motor
is 50 Hz and the rotor frequency is 2 Hz. Determine (a) the slip, and
(b) the rotor speed in rev/min. [(a) 0.04 or 4% (b) 960 rev/min]

Losses and efficiency

10 The power supplied to a three-phase induction motor is 50 kW and
the stator losses are 2 kW. If the slip is 4%, determine (a) the rotor
copper loss, (b) the total mechanical power developed by the rotor,
(c) the output power of the motor if friction and windage losses
are 1 kW, and (d) the efficiency of the motor, neglecting rotor iron
losses. [(a) 1.92 kW (b) 46.08 kW (c) 45.08 kW (d) 90.16%]

11 By using external rotor resistance, the speed of the induction motor in
problem 15 is reduced to 40% of its synchronous speed. If the torque
and stator losses are unchanged, calculate (a) the rotor copper loss,
and (b) the efficiency of the motor. [(a) 28.80 kW (b) 36.40%]

Torque equation

12 A 400 V, three-phase, 50 Hz, 2-pole, star-connected induction motor
runs at 48.5 rev/s on full load. The rotor resistance and reactance per
phase are 0.4 " and 4.0 " respectively, and the effective rotor-stator
turns ratio is 0.8:1. Calculate (a) the synchronous speed, (b) the slip,
(c) the full load torque, (d) the power output if mechanical losses
amount to 500 W, (e) the maximum torque, (f) the speed at which
maximum torque occurs, and (g) the starting torque.

[(a) 50 rev/s or 3000 rev/min (b) 0.03 or 3%
(c) 22.43 Nm (d) 6.34 kW (e) 40.74 Nm
(f) 45 rev/s or 2700 rev/min (g) 8.07 Nm]

13 For the induction motor in problem 12, calculate at full load (a) the
rotor current, (b) the rotor copper loss, and (c) the starting current.

[(a) 10.62 A (b) 135.3 W (c) 45.96 A]

14 If the stator losses for the induction motor in problem 12 are 525 W,
calculate at full load (a) the power input, (b) the efficiency of the
motor and (c) the current taken from the supply if the motor runs at
a power factor of 0.84. [(a) 7.49 kW (b) 84.65% (c) 12.87 A]

15 For the induction motor in problem 12, determine the resistance of
the rotor winding required for maximum starting torque. [4.0 "]



Assignment 7

This assignment covers the material contained in chapters 21
and 22.
The marks for each question are shown in brackets at the end of
each question.

1 A 6-pole armature has 1000 conductors and a flux per pole
of 40 mWb. Determine the e.m.f. generated when running at
600 rev/min when (a) lap wound (b) wave wound. (6)

2 The armature of a d.c. machine has a resistance of 0.3 � and is
connected to a 200 V supply. Calculate the e.m.f. generated when it
is running (a) as a generator giving 80 A (b) as a motor taking 80 A

(4)

3 A 15 kW shunt generator having an armature circuit resistance of 1 �
and a field resistance of 160 � generates a terminal voltage of 240 V
at full-load. Determine the efficiency of the generator at full-load
assuming the iron, friction and windage losses amount to 544 W.

(6)

4 A 4-pole d.c. motor has a wave-wound armature with 1000 conduc-
tors. The useful flux per pole is 40 mWb. Calculate the torque exerted
when a current of 25 A flows in each armature conductor. (4)

5 A 400 V shunt motor runs at it’s normal speed of 20 rev/s when the
armature current is 100 A. The armature resistance is 0.25 �. Calcu-
late the speed, in rev/min when the current is 50 A and a resistance
of 0.40 � is connected in series with the armature, the shunt field
remaining constant. (7)

6 The stator of a three-phase, 6-pole induction motor is connected to a
60 Hz supply. The rotor runs at 1155 rev/min at full load. Determine
(a) the synchronous speed, and (b) the slip at full load. (6)

7 The power supplied to a three-phase induction motor is 40 kW and
the stator losses are 2 kW. If the slip is 4% determine (a) the rotor
copper loss, (b) the total mechanical power developed by the rotor,
(c) the output power of the motor if frictional and windage losses are
1.48 kW, and (d) the efficiency of the motor, neglecting rotor iron
loss. (9)

8 A 400 V, three-phase, 100 Hz, 8-pole induction motor runs at
24.25 rev/s on full load. The rotor resistance and reactance per
phase are 0.2 � and 2 � respectively and the effective rotor-stator
turns ratio is 0.80:1. Calculate (a) the synchronous speed, (b) the
percentage slip, and (c) the full load torque. (8)
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Operational amplifiers:
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dB
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)
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23 Revision of complex
numbers

At the end of this chapter you should be able to:

ž define a complex number

ž understand the Argand diagram

ž perform calculations on addition, subtraction, multiplication,
and division in Cartesian and polar forms

ž use De Moivres theorem for powers and roots of complex
numbers

23.1 Introduction A complex numberis of the form (a C jb) where a is a real number and
jb is an imaginary number. Hence (1 C j2) and (5 � j7) are examples
of complex numbers.

By definition, j D p�1 and j2 D �1

Complex numbers are widely used in the analysis of series,
parallel and series-parallel electrical networks supplied by alternating
voltages (see Chapters 24 to 26), in deriving balance equations
with a.c. bridges (see Chapter 27), in analysing a.c. circuits using
Kirchhoff’s laws (Chapter 30), mesh and nodal analysis (Chapter 31),
the superposition theorem (Chapter 32), with Thévenin’s and Norton’s
theorems (Chapter 33) and with delta-star and star-delta transforms
(Chapter 34) and in many other aspects of higher electrical engineering.
The advantage of the use of complex numbers is that the manipulative
processes become simply algebraic processes.

A complex number can be represented pictorially on an Argand
diagram. In Figure 23.1, the line OA represents the complex number
(2 C j3), OB represents (3 � j), OC represents (�2 C j2) and OD
represents (�4 � j3).

A complex number of the form a C jb is called a Cartesian or rect-
angular complex number. The significance of the j operator is shown in
Figure 23.2. In Figure 23.2(a) the number 4 (i.e., 4 C j0) is shown drawn
as a phasor horizontally to the right of the origin on the real axis. (Such
a phasor could represent, for example, an alternating current, i D 4 sin ωt
amperes, when time t is zero.)

The number j4 (i.e., 0 C j4) is shown in Figure 23.2(b) drawn verti-
cally upwards from the origin on the imaginary axis. Hence multiplying
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Figure 23.1 The Argand diagram

the number 4 by the operator j results in an anticlockwise phase-shift of
90° without altering its magnitude.

Multiplying j4 by j gives j24, i.e. �4, and is shown in Figure 23.2(c)
as a phasor four units long on the horizontal real axis to the left of the
origin — an anticlockwise phase-shift of 90° compared with the position
shown in Figure 23.2(b). Thus multiplying by j2 reverses the original
direction of a phasor.

Multiplying j24 by j gives j34, i.e. �j4, and is shown in Figure 23.2(d)
as a phasor four units long on the vertical, imaginary axis downward
from the origin — an anticlockwise phase-shift of 90° compared with the
position shown in Figure 23.2(c).

Multiplying j34 by j gives j44, i.e. 4, which is the original position of
the phasor shown in Figure 23.2(a).

Summarizing, application of the operator j to any number rotates it
90° anticlockwise on the Argand diagram, multiplying a number by j2

rotates it 180° anticlockwise, multiplying a number by j3 rotates it 270°

anticlockwise and multiplication by j4 rotates it 360° anticlockwise, i.e.,
back to its original position. In each case the phasor is unchanged in its
magnitude.

By similar reasoning, if a phasor is operated on by �j then a phase
shift of �90° (i.e., clockwise direction) occurs, again without change of
magnitude.

In electrical circuits, 90° phase shifts occur between voltage and current
with pure capacitors and inductors; this is the key as to why j notation
is used so much in the analysis of electrical networks. This is explained
in Chapter 24 following.Figure 23.2
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23.2 Operations
involving Cartesian

complex numbers

(a) Addition and subtraction

�a C jb� C �c C jd� D �a C c� C j�b C d�

and �a C jb� � �c C jd� D �a � c� C j�b � d�

Thus, �3 C j2� C �2 � j4� D 3 C j2 C 2 � j4 D 5 − j 2

and �3 C j2� � �2 � j4� D 3 C j2 � 2 C j4 D 1Y j 6

(b) Multiplication

�a C jb��c C jd� D ac C a�jd� C �jb�c C �jb��jd�

D ac C jad C jbc C j2bd

But j2 D �1, thus

�a C jb��c C jd� D �ac � bd� C j�ad C bc�

For example, �3 C j2��2 � j4� D 6 � j12 C j4 � j28

D �6 � ��1�8� C j��12 C 4�

D 14 C j��8� D 14− j 8

(c) Complex conjugate

The complex conjugateof (a C jb) is (a � jb). For example, the conju-
gate of (3 � j2) is (3 C j2).

The product of a complex number and its complex conjugate is always
a real number, and this is an important property used when dividing
complex numbers. Thus

�a C jb��a � jb� D a2 � jab C jab � j2b2

D a2 � ��b2� D a2 C b2 (i.e. a real number)

For example, �1 C j2��1 � j2� D 12 C 22 D 5

and �3 � j4��3 C j4� D 32 C 42 D 25

(d) Division

The expression of one complex number divided by another, in the form
a C jb, is accomplished by multiplying the numerator and denominator by
the complex conjugate of the denominator. This has the effect of making
the denominator a real number. Hence, for example,

2 C j4

3 � j4
D 2 C j4

3 � j4
ð 3 C j4

3 C j4
D 6 C j8 C j12 C j216

32 C 42

D 6 C j8 C j12 � 16

25
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D �10 C j20

25

D −10
25

Y j
20
25

or − 0.4Y j 0.8

The elimination of the imaginary part of the denominator by multiplying
both the numerator and denominator by the conjugate of the denominator
is often termed ‘rationalizing’ .

Problem 1. In an electrical circuit the total impedance ZT is
given by

ZT D Z1Z2

Z1 C Z2
C Z3

Determine ZT in �a C jb� form, correct to two decimal places,
when Z1 D 5 � j3, Z2 D 4 C j7 and Z3 D 3.9 � j6.7

Z1Z2 D �5 � j3��4 C j7� D 20 C j35 � j12 � j221

D 20 C j35 � j12 C 21 D 41 C j23

Z1 C Z2 D �5 � j3� C �4 C j7� D 9 C j4

Hence
Z1Z2

Z1 C Z2
D 41 C j23

9 C j4
D �41 C j23��9 � j4�

�9 C j4��9 � j4�

D 369 � j164 C j207 � j292

92 C 42

D 369 � j164 C j207 C 92

97

D 461 C j43

97
D 4.753 C j0.443

Thus
Z1Z2

Z1 C Z2
C Z3 D �4.753 C j0.443� C �3.9 � j6.7�

D 8.65− j 6.26, correct to two decimal places.

Problem 2. Given Z1 D 3 C j4 and Z2 D 2 � j5 determine in
cartesian form correct to three decimal places:

(a)
1

Z1
(b)

1

Z2
(c)

1

Z1
C 1

Z2
(d)

1

�1/Z1� C �1/Z2�
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(a)
1

Z1
D 1

3 C j4
D 3 � j4

�3 C j4��3 � j4�
D 3 � j4

32 C 42

D 3 � j4

25
D 3

25
� j

4

25
D 0.120− j 0.160

(b)
1

Z2
D 1

2 � j5
D 2 C j5

�2 � j5��2 C j5�
D 2 C j5

22 C 52
D 2 C j5

29

D 2

29
C j

5

29
D 0.069Y j 0.172

(c)
1

Z1
C 1

Z2
D �0.120 � j0.160� C �0.069 C j0.172�

D 0.189Y j 0.012

(d)
1

�1/Z1� C �1/Z2�
D 1

0.189 C j0.012

D 0.189 � j0.012

�0.189 C j0.012��0.189 � j0.012�

D 0.189 � j0.012

0.1892 C 0.0122
D 0.189 � j0.012

0.03587

D 0.189

0.03587
� j0.012

0.03587
D 5.269− j 0.335

Further problems on operations involving Cartesian complex numbers may
be found in Section 23.7, problems 1 to 11, page 424.

23.3 Complex equations If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal. Hence, if a C jb D c C jd then a D c
and b D d. This is a useful property, since equations having two unknown
quantities can be solved from one equation. Complex equations are used
when deriving balance equations with a.c. bridges (see Chapter 27).

Problem 3. Solve the following complex equations:

(a) 3�a C jb� D 9 � j2

(b) �2 C j���2 C j� D x C jy

(c) �a � j2b� C �b � j3a� D 5 C j2
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(a) 3�a C jb� D 9 � j2. Thus 3a C j3b D 9 � j2

Equating real parts gives: 3a D 9, i.e. a = 3

Equating imaginary parts gives: 3b D �2, i.e., b = −2=3

(b) �2 C j���2 C j� D x C jy

Thus �4 C j2 � j2 C j2 D x C jy

�5 C j0 D x C jy

Equating real and imaginary parts gives: x = −5, y = 0

(c) �a � j2b� C �b � j3a� D 5 C j2

Thus �a C b� C j��2b � 3a� D 5 C j2

Hence a C b D 5 �1�

and 2b � 3a D 2 �2�

We have two simultaneous equations to solve. Multiplying equation
(1) by 2 gives:

2a C 2b D 10 �3�

Adding equations (2) and (3) gives �a D 12, i.e. a = −12

From equation (1), b = 17

Problem 4. An equation derived from an a.c. bridge network is
given by

R1R3 D �R2 C jωL2�
[

1

�1/R4� C jωC

]

R1, R3, R4 and C4 are known values. Determine expressions for R2

and L2 in terms of the known components.

Multiplying both sides of the equation by �1/R4 C jωC4� gives

�R1R3��1/R4 C jωC4� D R2 C jωL2

i.e. R1R3/R4 C jR1R3ωC4 D R2 C jωL2

Equating the real parts gives: R2 = R1R3=R4

Equating the imaginary parts gives:

ωL2 D R1R3ωC4, from which, L2 = R1R3C4

Further problems on complex equations may be found in Section 23.7,
problems 12 to 16, page 425.
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23.4 The polar form of a
complex number

In Figure 23.3(a), Z D x C jy D r cos � C jr sin � from trigonometry,

D r �cos � C j sin ��

This latter form is usually abbreviated to Z = r 6 6 q, and is called the polar
form of a complex number.

r is called the modulus (or magnitude of Z) and is written as mod Z
or jZj. r is determined from Pythagoras’s theorem on triangle OAZ, i.e.

jZ j = r =
√

.x2 Y y2/

The modulus is represented on the Argand diagram by the distance OZ.
� is called the argument (or amplitude) of Z and is written as arg Z. �
is also deduced from triangle OAZ: arg Z = q = arctan y=x

For example, the cartesian complex number (3 C j4) is equal to r 6 � in

polar form, where r D √
�32 C 42� D 5 and q D arctan

4

3
D 53.13°

Hence .3Y j 4/= 56 6 53.13°

Similarly, (�3 C j4) is shown in Figure 23.3(b),

where r D
√

�32 C 42� D 5, �0 D arctan
4

3
D 53.13°

and � D 180° � 53.13° D 126.87°

Hence .−3Y j 4/ = 56 6 126.87°

Figure 23.3

23.5 Multiplication and
division using complex
numbers in polar form

(a) Multiplication

.r1 6 6 q1/.r2 6 6 q2/= r1r2 6 6 .q1 Y q2�

Thus 3 6 25° ð 2 6 32° D 6 6 57°, 4 6 11° ð 5 6 �18° D 20 6 �7°,
2 6 ��/3� ð 7 6 ��/6� D 14 6 ��/2�, and so on.

(b) Division

r1 6 6 q1

r2 6 6 q2
=

r1

r2

6 6 .q1 Y q2/

Thus
8 6 58°

2 6 11°
D 4 6 47°,

9 6 136°

3 6 �60°
D 3 6 �136° � �60°�

D 3 6 196° or 3 6 �164°,

and
10 6 ��/2�

5 6 ���/4�
D 2 6 �3�/4�, and so on.

Conversion from cartesian or rectangular form to polar form, and
vice versa, may be achieved by using the R ! P and P ! R conversion
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facility which is available on most calculators with scientific notation.
This allows, of course, a great saving of time.

Problem 5. Convert 5 6 �132° into a C jb form correct to four
significant figures.

Figure 23.4 indicates that the polar complex number 5 6 �132° lies in the
third quadrant of the Argand diagram.

Using trigonometrical ratios,

x D 5 cos 48° D 3.346 and y D 5 sin 48° D 3.716

Hence 56 6 −132°= −3.346− j 3.716

Alternatively, 5 6 �132° D 5�cos �132° C j sin �132°�

D 5 cos��132°� C j5 sin��132°�

= −3.346− j 3.716, as above.
Figure 23.4

With this latter method the real and imaginary parts are obtained directly,
using a calculator.

Problem 6. Two impedances in an electrical network are given
by Z1 D 4.7 6 35° and Z2 D 7.3 6 �48°. Determine in polar form the
total impedance ZT given that ZT D Z1Z2/�Z1 C Z2�

Z1 D 4.7 6 35° D 4.7 cos 35° C j4.7 sin 35° D 3.85 C j2.70

Z2 D 7.3 6 �48° D 7.3 cos��48°� C j7.3 sin��48°�

D 4.88 � j5.42

Z1 C Z2 D �3.85 C j2.70� C �4.88 � j5.42� D 8.73 � j2.72

D
√

�8.732 C 2.722� 6 arctan
(�2.72

8.73

)

D 9.14 6 �17.31°

Hence ZT D Z1Z2/�Z1 C Z2� D 4.7 6 35° ð 7.3 6 �48°

9.14 6 �17.31°

D 4.7 ð 7.3

9.14
6 [35° � 48° � ��17.31°�]

D 3.756 6 4.31° or 3.756 6 4°19′
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Further problems on the polar form of complex numbers may be found in
Section 23.7, problems 17 to 31, page 426.

23.6 De Moivre’s
theorem — powers and

roots of complex numbers

De Moivre’s theorem, states:

[r 6 q]n D r n 6 nq

This result is true for all positive, negative or fractional values of n.
De Moivre’s theorem is thus useful in determining powers and roots of
complex numbers. For example,

[26 15°]6=26 6 �6 ð 15°� D 646 6 90° = 0Y j 64

A square root of a complex number is determined as follows:
p

[r 6 �] D [r 6 �]1/2 D r1/2 6 1
2 �

However, it is important to realize that a real number has two square
roots, equal in size but opposite in sign. On an Argand diagram the roots
are 180° apart (see problem 8 following).

Problem 7. Determine ��2 C j3�5 in polar and in cartesian form.

Z D �2 C j3 is situated in the second quadrant of the Argand diagram.

Thus r D
√

[�2�2 C �3�2] D p
13 and ˛ D arctan 3/2 D 56.31°

Hence the argument � D 180° � 56.31° D 123.69°

Thus �2 C j3 in polar form is
p

136 123.69°

��2 C j3�5 D [
p

13 6 123.69°]5

D �
p

13�5 6 �5 ð 123.69°� from De Moivre’s theorem

D 135/2 6 618.45° D 135/2 6 258.45°(since 618.45°

� 618.45° � 360°�

D 135/2 6 �101.55° D 609.36 6 −101°33′

In cartesian form, 609.36 �101.55° D 609.3 cos��101.55°�

C j609.3 sin��101.55°�

D −122− j 597

Problem 8. Determine the two square roots of the complex
number �12 C j5� in cartesian and polar form, correct to three
significant figures. Show the roots on an Argand diagram.
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In polar form 12 C j5 D
√

�122 C 52�6 arctan�5/12�, since 12 C j5 is in
the first quadrant of the Argand diagram, i.e. 12 C j5 D 136 22.62°

Since we are finding the square roots of 13 6 22.62° there will be two
solutions. To obtain the second solution it is helpful to express 13 6 22.62°

also as 13 6 �360° C 22.62°�, i.e. 13 6 382.62° (we have merely rotated one
revolution to obtain this result). The reason for doing this is that when
we divide the angles by 2 we still obtain angles less than 360°, as shown
below.

Hence
p

�12 C j5� D p
[136 22.62°] or

p
[136 382.62°]

D [136 22.62°]1/2 or [13 6 382.62°]1/2

D 131/2 6
(

1
2 ð 22.62°

)
or 131/2 6

(
1
2 ð 382.62°

)

from De Moivre’s theorem,

D p
13 6 11.31° or

p
13 6 191.31°

D 3.61 6 11.31° or 3.61 6 �168.69°

i.e., 3.616 6 11°19′ or 3.616 6 −168°41′

Figure 23.5
These two solutions of

p
�12 C j5� are shown in the Argand diagram of

Figure 23.5. 3.616 11°190 is in the first quadrant of the Argand diagram.

Thus 3.61 6 11°190 D 3.61�cos 11°190 C j sin 11°190� D 3.540 C j0.708

3.61 6 �168°410 is in the third quadrant of the Argand diagram.

Thus 3.61 6 �168°410 D 3.61[cos��168°410� C j sin��168°410�]

D �3.540 � j0.708

Thus in cartesian form the two roots are ±.3.540Y j 0.708/
From the Argand diagram the roots are seen to be 180° apart, i.e. they

lie on a straight line. This is always true when finding square roots of
complex numbers.

Further problems on powers and roots of complex numbers may be found
in Section 23.7 following, problems 32 to 39, page 428.

23.7 Further problems
on complex numbers

Operations on Cartesian complex numbers

In problems 1 to 5, evaluate in a C jb form assuming that
Z1 D 2 C j3, Z2 D 3 � j4, Z3 D �1 C j2 and Z4 D �2 � j5

1 (a) Z1 � Z2 (b) Z2 C Z3 � Z4 [(a) �1 C j7 (b) 4 C j3]

2 (a) Z1Z2 (b) Z3Z4 [(a) 18 C j (b) 12 C j]
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3 (a) Z1Z3Z4 (b) Z2Z3 C Z4 [(a) 21 C j38 (b) 3 C j5]

4 (a)
Z1

Z2
(b)

Z1 C Z2

Z3 C Z4

[
(a) � 6

25
C j

17

25
(b) � 2

3
C j

]

5 (a)
Z1Z2

Z1 C Z2
(b) Z1 C Z2

Z3
C Z4

[
(a)

89

26
C j

23

26
(b) � 11

5
� j

12

5

]

6 Evaluate

[
�1 C j�2 � �1 � j�2

j

]
[4]

7 If Z1 D 4 � j3 and Z2 D 2 C j evaluate x and y given

x C jy D 1

Z1 � Z2
C 1

Z1Z2
[x D 0.188, y D 0.216]

8 Evaluate (a) �1 C j�4 (b)
2 � j

2 C j
(c)

1

2 C j3[
(a) � 4 (b)

3

5
� j

4

5
(c)

2

13
� j

3

13

]

9 If Z D 1 C j3

1 � j2
evaluate Z2 in a C jb form. [0 � j2]

10 In an electrical circuit the equivalent impedance Z is given by

Z D Z1 C Z2Z3

Z2 C Z3

Determine Z is rectangular form, correct to two decimal places, when
Z1 D 5.91 C j3.15, Z2 D 5 C j12 and Z3 D 8 � j15

[Z D 21.62 C j8.39]

11 Given Z1 D 5 � j9 and Z2 D 7 C j2, determine in �a C jb� form,
correct to four decimal places

(a)
1

Z1
(b)

1

Z2
(c)

1

Z1
C 1

Z2
(d)

1

�1/Z1� C �1/Z2�

[(a) 0.0472 C j0.0849 (b) 0.1321 � j0.0377
(c) 0.1793 C j0.0472 (d) 5.2158 � j1.3731]

Complex equations

In problems 12 to 15 solve the given complex equations:

12 4�a C jb� D 7 � j3
[
a D 7

4
, b D �3

4

]

13 �3 C j4��2 � j3� D x C jy [x D 18, y D �1]
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14 �a � j3b� C �b � j2a� D 4 C j6 [a D 18, b D �14]

15 5 C j2 D p
�e C jf� [e D 21, f D 20]

16 An equation derived from an a.c. bridge circuit is given by

�R3�
[ �j

ωC1

]
D

[
Rx � j

ωCx

] [
R4��j/�ωC4��

R4 � �j/�ωC4��

]

Components R3, R4, C1 and C4 have known values. Determine
expressions for Rx and Cx in terms of the known components.[

Rx D R3C4

C1
, Cx D C1R4

R3

]

Polar form of complex numbers

In problems 17 and 18 determine the modulus and the argument of each
of the complex numbers given.

17 (a) 3 C j4 (b) 2 � j5 [(a) 5, 53°80 (b) 5.385, �68°120]

18 (a) �4 C j (b) �5 � j3 [(a) 4.123, 165°580 (b) 5.831, �149°20]

In problems 19 and 20 express the given cartesian complex numbers in
polar form, leaving answers in surd form.

19 (a) 6 C j5 (b) 3 � j2 (c) �3
[(a)

p
61 6 39°480 (b)

p
13 6 �33°410

(c) 36 180° or 3 6 �]

20 (a) �5 C j (b) �4 � j3 (c) �j2
[(a)

p
26 6 168°410 (b) 56 �143°80

(c) 26 �90° or 2 6 ��/2]

In problems 21 to 23 convert the given polar complex numbers into
(a C jb) form, giving answers correct to four significant figures.

21 (a) 6 6 30° (b) 46 60° (c) 36 45°

[(a) 5.196 C j3.000 (b) 2.000 C j3.464 (c) 2.121 C j2.121]

22 (a) 2 6 �/2 (b) 36 � (c) 56 �5�/6�

[(a) 0 C j2.000 (b) �3.000 C j0 (c) �4.330 C j2.500]

23 (a) 8 6 150° (b) 4.2 6 �120° (c) 3.6 6 �25°

[(a) � 6.928 C j4.000 (b) � 2.100 � j3.637
(c) 3.263 � j1.521]

In problems 24 to 26, evaluate in polar form.

24 (a) 2 6 40° ð 5 6 20° (b) 2.6 6 72° ð 4.3 6 45°

[(a) 106 60° (b) 11.18 6 117°]
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25 (a) 5.86 35° ł 2 6 �10° (b) 46 30° ð 3 6 70° ł 2 6 �15°

[(a) 2.9 6 45° (b) 66 115°]

26 (a)
4.1 6 20° ð 3.2 6 �62°

1.2 6 150°
(b) 66 25° C 3 6 �36°�4 6 72°

[(a) 10.93 6 168° (b) 7.289 6 �24°350]

27 Solve the complex equations, giving answers correct to four signifi-
cant figures.

(a)
12 6 ��/2� ð 3 6 �3�/4�

2 6 ���/3�
D x C jy

(b) 156 �/3 C 12 6 �/2 � 6 6 ��/3 D r 6 �

[(a) x D 4.659, y D �17.392 (b) r D 30.52, � D 81°310]

28 The total impedance ZT of an electrical circuit is given by

ZT D Z1 ð Z2

Z1 C Z2
C Z3

Determine ZT in polar form correct to three significant figures when
Z1 D 3.2 6 �56°, Z2 D 7.4 6 25° and Z3 D 6.3 6 62° [6.61 6 37.24°]

29 A star-connected impedance Z1 is given by

Z1 D ZAZB

ZA C ZB C ZC

Evaluate Z1, in both cartesian and polar form, given
ZA D �20 C j0��, ZB D �0 � j20�� and ZC D �10 C j10��

[�4 � j12�� or 12.656 �71.57° �]

30 The current I flowing in an impedance is given by

I D �8 6 60°��10 6 0°�

�8 6 60° C 5 6 30°�
A

Determine the value of current in polar form, correct to two decimal
places. [6.36 6 11.46° A]

31 A delta-connected impedance ZA is given by

ZA D Z1Z2 C Z2Z3 C Z3Z1

Z2

Determine ZA, in both cartesian and polar form, given
Z1 D �10 C j0��, Z2 D �0 � j10�� and Z3 D �10 C j10��

[�10 C j20��, 22.366 63.43° �]
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Powers and roots of complex numbers

In problems 32 to 35, evaluate in cartesian and in polar form.

32 (a) �2 C j3�2 (b) �4 � j5�2

[(a) �5 C j12; 13 6 112°370 (b) �9 � j40; 41 6 �102°410]

33 (a) ��3 C j2�5 (b) ��2 � j�3

[(a) 597 C j122; 609.36 11°330
(b) � 2 � j11; 11.186 �100°170]

34 (a) �4 6 32°�4 (b) �2 6 125°�5

[(a) � 157.6 C j201.7I 256 6 128°

(b) � 2.789 � j31.88I 326 �95°]

35 (a) �3 6 ��/3�3 (b) �1.5 6 �160°�4

[(a) �27 C j0; 276 �� (b) 0.8792 C j4.986; 5.0636 80°]

In problems 36 to 38, determine the two square roots of the given
complex numbers in cartesian form and show the results on an
Argand diagram.

36 (a) 2 C j (b) 3 � j2

[(a) š�1.455 C j0.344� (b) š�1.818 � j0.550�]

37 (a) �3 C j4 (b) �1 � j3 [(a) š�1 C j2� (b) š�1.040 � j1.442�]

38 (a) 5 6 36° (b) 146 3�/2

[(a) š�2.127 C j0.691� (b) š��2.646 C j2.646�]

39 Convert 2 � j into polar form and hence evaluate �2 � j�7 in polar
form. [

p
5 6 �26°340; 279.5 6 174°30]



24 Application of complex
numbers to series a.c.
circuits

At the end of this chapter you should be able to:

ž appreciate the use of complex numbers in a.c. circuits

ž perform calculations on series a.c. circuits using complex
numbers

24.1 Introduction Simple a.c. circuits may be analysed by using phasor diagrams. However,
when circuits become more complicated analysis is considerably simpli-
fied by using complex numbers. It is essential that the basic operations
used with complex numbers, as outlined in Chapter 23, are thoroughly
understood before proceeding with a.c. circuit analysis. The theory intro-
duced in Chapter 15 is relevant; in this chapter similar circuits will be
analysed using j notation and Argand diagrams.

24.2 Series a.c. circuits (a) Pure resistance

In an a.c. circuit containing resistance R only (see Figure 24.1(a)), the
current IR is in phasewith the applied voltage VR as shown in the phasor
diagram of Figure 24.1(b). The phasor diagram may be superimposed on
the Argand diagram as shown in Figure 24.1(c). The impedance Z of the
circuit is given by

Z =
VR 6 6 0°

IR 6 6 0°
= R

(b) Pure inductance

In an a.c. circuit containing pure inductance L only (see Figure 24.2(a)),
the current IL lags the applied voltage VL by 90° as shown in the phasor
diagram of Figure 24.2(b). The phasor diagram may be superimposed on
the Argand diagram as shown in Figure 24.2(c). The impedance Z of the
circuit is given by

Z D VL 6 90°

IL 6 0°
D VL
IL

6 90° D XL 6 6 90° or jX L

Figure 24.1 (a) Circuit
diagram (b) Phasor diagram
(c) Argand diagram
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Figure 24.1 Continued

where XL is the inductive reactancegiven by

XL = !L = 2pfL ohms,

where f is the frequency in hertz and L is the inductance in henrys.

(c) Pure capacitance

In an a.c. circuit containing pure capacitance only (see Figure 24.3(a)),
the current IC leadsthe applied voltage VC by 90° as shown in the phasor
diagram of Figure 24.3(b). The phasor diagram may be superimposed on
the Argand diagram as shown in Figure 24.3(c). The impedance Z of the
circuit is given by

Z D VC 6 �90°

IC 6 0°
D VC
IC

6 �90° D XC 6 6 −90° or −jXC

where XC is the capacitive reactancegiven by

XC =
1

!C
=

1
2pfC

ohms

where C is the capacitance in farads.
[

Note: � jXC D �j
ωC

D �j�j�
ωC�j�

D �j2

jωC
D ���1�

jωC
D 1

jωC

]

(d) R–L series circuit

In an a.c. circuit containing resistance R and inductance L in series (see
Figure 24.4(a)), the applied voltage V is the phasor sum of VR and VL
as shown in the phasor diagram of Figure 24.4(b). The current I lags
the applied voltage V by an angle lying between 0° and 90° — the actual
value depending on the values of VR and VL, which depend on the values
of R and L. The circuit phase angle, i.e., the angle between the current
and the applied voltage, is shown as angle 
 in the phasor diagram.
In any series circuit the current is common to all components and is
thus taken as the reference phasor in Figure 24.4(b). The phasor diagram
may be superimposed on the Argand diagram as shown in Figure 24.4(c),
where it may be seen that in complex form the supply voltage V is
given by:

V = VR Y jVL

Figure 24.5(a) shows the voltage triangle that is derived from the
phasor diagram of Figure 24.4(b) (i.e. triangle Oab). If each side of the
voltage triangle is divided by current I then the impedance triangle of

Figure 24.2 (a) Circuit
diagram (b) Phasor diagram
(c) Argand diagram
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Figure 24.3 (a) Circuit
diagram (b) Phasor diagram
(c) Argand diagram

Figure 24.4 (a) Circuit diagram (b) Phasor diagram (c) Argand
diagram

Figure 24.5 (a) Voltage triangle (b) Impedance triangle (c) Argand
diagram

Figure 24.5(b) is derived. The impedance triangle may be superimposed
on the Argand diagram, as shown in Figure 24.5(c), where it may be seen
that in complex form the impedance Z is given by:

Z = RY jXL

Thus, for example, an impedance expressed as �3 C j4�� means that the
resistance is 3 � and the inductive reactance is 4 �

In polar form, Z D jZj6 
 where, from the impedance triangle, the
modulus of impedance jZj D

√
�R2 C X2

L� and the circuit phase angle

 D arctan�XL/R� lagging

(e) R–C series circuit

In an a.c. circuit containing resistance R and capacitance C in series
(see Figure 24.6(a)), the applied voltage V is the phasor sum of VR and
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Figure 24.6 (a) Circuit
diagram (b) Phasor diagram
(c) Argand diagram

VC as shown in the phasor diagram of Figure 24.6(b). The current I
leads the applied voltage V by an angle lying between 0° and 90° — the
actual value depending on the values of VR and VC, which depend on
the values of R and C. The circuit phase angle is shown as angle 
 in
the phasor diagram. The phasor diagram may be superimposed on the
Argand diagram as shown in Figure 24.6(c), where it may be seen that
in complex form the supply voltage V is given by:

V = VR − jVC

Figure 24.7(a) shows the voltage triangle that is derived from the phasor
diagram of Figure 24.6(b). If each side of the voltage triangle is divided
by current I, the impedance triangle is derived as shown in Figure 24.7(b).
The impedance triangle may be superimposed on the Argand diagram as
shown in Figure 24.7(c), where it may be seen that in complex form the
impedance Z is given by

Z = R − jXC

Thus, for example, an impedance expressed as �9 � j14�� means that
the resistance is 9 � and the capacitive reactance XC is 14 �

In polar form, Z D jZj6 
 where, from the impedance triangle,

jZj D
√
�R2 C X2

C� and 
 D arctan�XC/R� leading

Figure 24.7 (a) Voltage triangle (b) Impedance triangle (c) Argand
diagram

(f) R–L –C series circuit

In an a.c. circuit containing resistance R, inductance L and capacitance
C in series (see Figure 24.8(a)), the applied voltage V is the phasor sum
of VR, VL and VC as shown in the phasor diagram of Figure 24.8(b)
(where the condition VL > VC is shown). The phasor diagram may be
superimposed on the Argand diagram as shown in Figure 24.8(c), where
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Figure 24.8 (a) Circuit
diagram (b) Phasor diagram
(c) Argand diagram

it may be seen that in complex form the supply voltage V is given by:

V = VR Y j .VL − VC/

From the voltage triangle the impedance triangle is derived and superim-
posing this on the Argand diagram gives, in complex form,

impedance Z = RY j .XL − XC/ or Z = jZ j6 6 f

where, jZj D
√

[R2 C �XL � XC�2] and 
 D arctan�XL � XC�/R

When VL D VC, XL D XC and the applied voltage V and the current
I are in phase. This effect is called series resonanceand is discussed
separately in Chapter 28.

(g) General series circuit

In an a.c. circuit containing several impedances connected in series, say,
Z1, Z2, Z3, . . . , Zn, then the total equivalent impedance ZT is given by

ZT = Z1 Y Z2Y Z3 Y . . .Y Zn

Problem 1. Determine the values of the resistance and the
series-connected inductance or capacitance for each of the
following impedances: (a) �12 C j5�� (b) �j40 � (c) 306 60° �
(d) 2.20 ð 106 6 �30° �. Assume for each a frequency of 50 Hz.

(a) From Section 24.2(d), for an R–L series circuit, impedance
Z D RC jXL.

Thus Z D �12 C j5�� represents a resistance of 12 � and an induc-
tive reactance of 5 � in series.

Since inductive reactance XL D 2�fL,

inductance L D XL
2�f

D 5

2��50�
D 0.0159 H

i.e., the inductance is 15.9 mH.

Thus an impedance.12Y j 5/Z represents a resistance of 12Z
in series with an inductance of 15.9 mH.

(b) From Section 24.2(c), for a purely capacitive circuit, impedance
Z D �jXc.
Thus Z D �j40 � represents zero resistance and a capacitive reac-
tance of 40 �.

Since capacitive reactance XC D 1/�2�fC�,

capacitance C D 1

2�fXC
D 1

2��50��40�
F D 106

2��50��40�
µF

D 79.6 µF
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Thus an impedance −j 40Z represents a pure capacitor of
capacitance 79.6mF

(c) 306 60° D 30�cos 60° C j sin 60°� D 15 C j25.98

Thus Z D 30 6 60° � D �15 C j25.98�� represents a resistance of
15 � and an inductive reactance of 25.98 � in series (from
Section 24.2(d)).

Since XL D 2�fL,

inductance L D XL
2�f

D 25.98

2��50�
D 0.0827 H or 82.7 mH

Thus an impedance 306 6 60° Z represents a resistance of 15Z in
series with an inductance of 82.7 mH

(d) 2.20 ð 106 6 �30° D 2.20 ð 106[cos��30°�C j sin��30°�]

D 1.905 ð 106 � j1.10 ð 106

Thus Z D 2.20 ð 106 6 �30° � D �1.905 ð 106 � j1.10 ð 106�� re-
presents a resistance of 1.905 ð 106 � (i.e. 1.905 M�) and a capac-
itive reactance of 1.10 ð 106 � in series (from Section 24.2(e)).

Since capacitive reactance XC D 1/�2�fC�,

capacitance C D 1

2�fXC
D 1

2��50��1.10 ð 106�
F

D 2.894 ð 10�9 F or 2.894 nF

Thus an impedance 2.2 × 106 6 6 −30° Z represents a resistance of
1.905 MZ in series with a 2.894 nF capacitor.

Problem 2. Determine, in polar and rectangular forms, the current
flowing in an inductor of negligible resistance and inductance
159.2 mH when it is connected to a 250 V, 50 Hz supply.

Inductive reactance XL D 2�fL D 2��50��159.2 ð 10�3� D 50 �

Thus circuit impedance Z D �0 C j50�� D 50 6 90° �

Supply voltage, V D 250 6 0° V (or (250 C j0)V)

(Note that since the voltage is given as 250 V, this is assumed to mean
250 6 0° V or (250 C j0)V)

Hence current I D V

Z
D 250 6 0°

50 6 90°
D 250

50
6 �0° � 90°� D 56 6 −90° A
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Alternatively, I D V

Z
D �250 C j0�

�0 C j50�
D 250��j50�

j50��j50�

D �j�50��250�

502
D −j 5 A

which is the same as 5 6 �90° A

Problem 3. A 3 µF capacitor is connected to a supply of frequency
1 kHz and a current of 2.83 6 90° A flows. Determine the value of
the supply p.d.

Capacitive reactance XC D 1

2�fC
D 1

2��1000��3 ð 10�6�
D 53.05 �

Hence circuit impedance Z D �0 � j53.05�� D 53.056 �90° �

Current I D 2.83 6 90° A (or �0 C j2.83�A�

Supply p.d., V D IZ D �2.836 90°��53.05 6 �90°�

i.e. p.d.= 1506 6 0° V

Alternatively, V D IZ D �0 C j2.83��0 � j53.05�

D �j2�2.83��53.05� D 150 V

Problem 4. The impedance of an electrical circuit is �30 � j50�
ohms. Determine (a) the resistance, (b) the capacitance, (c) the
modulus of the impedance, and (d) the current flowing and its phase
angle, when the circuit is connected to a 240 V, 50 Hz supply.

(a) Since impedance Z D �30 � j50��, the resistance is 30 ohmsand
the capacitive reactance is 50 �

(b) Since XC D 1/�2�fC�, capacitance,

C D 1

2�fXC
D 1

2��50��50�
D 63.66 mF

(c) The modulus of impedance, jZj D
√
�R2 C X2

C� D
√
�302 C 502�

D 58.31Z

(d) Impedance Z D �30 � j50�� D 58.31 6 arctan
XC
R

D 58.31 6 �59.04° �

Hence current I D V

Z
D 240 6 0°

58.31 6 �59.04°
= 4.126 6 59.04° A
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Figure 24.9

Problem 5. A 200 V, 50 Hz supply is connected across a coil
of negligible resistance and inductance 0.15 H connected in series
with a 32 � resistor. Determine (a) the impedance of the circuit,
(b) the current and circuit phase angle, (c) the p.d. across the 32 �
resistor, and (d) the p.d. across the coil.

(a) Inductive reactance XL D 2�fL D 2��50��0.15� D 47.1 �

Impedance Z D RC jXL D .32Y j 47.1/Z or 57.06 6 55.81° Z

The circuit diagram is shown in Figure 24.9

(b) Current I D V

Z
D 200 6 0°

57.0 6 55.81°
D 3.516 6 −55.81° A

i.e., the current is 3.51 A lagging the voltage by 55.81°

(c) P.d. across the 32 resistor, VR D IR D �3.51 6 �55.81°)�32 6 0°�

i.e., VR = 112.36 6 −55.81° V

(d) P.d. across the coil, VL D IXL D �3.51 6 �55.81°)�47.1 6 90°�

i.e. VL = 165.36 6 34.19° V

The phasor sum of VR and VL is the supply voltage V as shown in the
phasor diagram of Figure 24.10.

VR D 112.3 6 �55.81° D �63.11 � j92.89� V

VL D 165.36 34.19° V D �136.73 C j92.89� V

Hence V D VR C VL D �63.11 � j92.89�C �136.73 C j92.89�

D �200 C j0� V or 200 6 0° V, correct to three significant
figures.Figure 24.10

Problem 6. Determine the value of impedance if a current
of �7 C j16�A flows in a circuit when the supply voltage is
(120 C j200)V. If the frequency of the supply is 5 MHz, determine
the value of the components forming the series circuit.

Impedance Z D V

I
D �120 C j200�

�7 C j16�
D 233.24 6 59.04°

17.464 6 66.37°

D 13.36 6 �7.33 � or �13.25 � j1.705��

The series circuit thus consists of a 13.25Z resistor and a capacitor of
capacitive reactance 1.705Z
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Since XC D 1

2�fC
, capacitance C D 1

2�fXC
D 1

2��5 ð 106��1.705�

D 1.867 ð 10�8 F D 18.67 nF

Problem 7. For the circuit shown in Figure 24.11, determine the
value of impedance Z2.

Figure 24.11

Total circuit impedance Z D V

I
D 70 6 30°

3.5 6 �20°

D 20 6 50° � or �12.86 C j15.32��

Total impedance Z D Z1 C Z2 (see Section 24.2(g)).

Hence �12.86 C j15.32� D �4.36 � j2.10�C Z2

from which, impedance Z2 D �12.86 C j15.32�� �4.36 � j2.10�

D .8.50Y j 17.42/Z or 19.386 6 63.99° Z

Problem 8. A circuit comprises a resistance of 90 � in series with
an inductor of inductive reactance 150 �. If the supply current is
1.35 6 0° A, determine (a) the supply voltage, (b) the voltage across
the 90 � resistance, (c) the voltage across the inductance, and
(d) the circuit phase angle. Draw the phasor diagram.

The circuit diagram is shown in Figure 24.12

(a) Circuit impedance Z D RC jXL D �90 C j150�� or
174.93 6 59.04° �Figure 24.12
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Figure 24.13

Supply voltage, V D IZ D �1.356 0°��174.93 6 59.04°�

= 236.26 6 59.04° V or .121.5Y j 202.5/V

(b) Voltage across 90 � resistor, VR= 121.5 V (since V D VR C jVL)

(c) Voltage across inductance, VL= 202.5 V leading VR by 90°.

(d) Circuit phase angle is the angle between the supply current and
voltage, i.e., 59.04° lagging(i.e., current lags voltage). The phasor
diagram is shown in Figure 24.13.

Problem 9. A coil of resistance 25 � and inductance 20 mH has
an alternating voltage given by v D 282.8 sin�628.4tC ��/3�� volts
applied across it. Determine (a) the rms value of voltage (in polar
form), (b) the circuit impedance, (c) the rms current flowing, and
(d) the circuit phase angle.

(a) Voltage v D 282.8 sin�628.4t C ��/3�� volts means Vm D 282.8 V,
hence rms voltage

V D 0.707 ð 282.8
[
or

1p
2

ð 282.8
]
,

i.e., V D 200 V

In complex form the rms voltage may be expressed as
2006 6 p=3 V or 2006 6 60° V

(b) ω D 2�f D 628.4 rad/s, hence frequency

f D 628.4/�2�� D 100 Hz

Inductive reactance XL D 2�fL D 2��100��20 ð 10�3� D 12.57 �

Hence circuit impedance Z D RC jXL D .25Y j 12.57/Z or
27.986 6 26.69° Z

(c) Rms current, I D V

Z
D 200 6 60°

27.98 6 26.69°
D 7.1486 6 33.31° A

(d) Circuit phase angle is the angle between current I and voltage V,
i.e., 60° � 33.31°= 26.69° lagging.

Problem 10. A 240 V, 50 Hz voltage is applied across a series
circuit comprising a coil of resistance 12 � and inductance 0.10 H,
and 120 µF capacitor. Determine the current flowing in the circuit.

The circuit diagram is shown in Figure 24.14.

Inductive reactance, XL D 2�fL D 2��50��0.10� D 31.4 �Figure 24.14
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Figure 24.15

Capacitive reactance, XC D 1

2�fC
D 1

2��50��120 ð 10�6�
D 26.5 �

Impedance Z D RC j�XL � XC� (see Section 24.2(f))

i.e. Z D 12 C j�31.4 � 26.5� D �12 C j4.9�� or 13.06 22.2° �

Current flowing, I D V

Z
D 240 6 0°

13.0 6 22.2°
D 18.56 6 −22.2° A,

i.e., the current flowing is 18.5 A, lagging the voltage by 22.2°.

The phasor diagram is shown on the Argand diagram in Figure 24.15

Problem 11. A coil of resistance R ohms and inductance L henrys
is connected in series with a 50 µF capacitor. If the supply
voltage is 225 V at 50 Hz and the current flowing in the circuit
is 1.5 6 �30° A, determine the values of R and L. Determine also
the voltage across the coil and the voltage across the capacitor.

Circuit impedance Z D V

Z
D 225 6 0°

1.5 6 �30°

D 150 6 30° � or �129.9 C j75.0��

Capacitive reactance XC D 1

2�fC
D 1

2��50��50 ð 10�6�
D 63.66 �

Circuit impedance Z D RC j�XL � XC�

i.e. 129.9 C j75.0 D RC j�XL � 63.66�

Equating the real parts gives: resistanceR = 129.9 Z.

Equating the imaginary parts gives: 75.0 D XL � 63.66,

from which, XL D 75.0 C 63.66 D 138.66 �

Since XL D 2�fL, inductance L D XL
2�f

D 138.66

2��50�
D 0.441 H

The circuit diagram is shown in Figure 24.16.Figure 24.16
Voltage across coil, VCOIL D IZCOIL

ZCOIL D RC jXL D �129.9 C j138.66�� or 190 6 46.87° �

Hence VCOIL D �1.5 6 �30°��190 6 46.87°�

D 2856 6 16.87° V or .272.74Y j 82.71/V

Voltage across capacitor, VC D IXC D �1.5 6 �30°��63.66 6 �90°�

D 95.496 6 −120° V or

.−47.75− j 82.70/V
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Figure 24.17

[Check: Supply voltage V D VCOIL C VC

D �272.74 C j82.71�C ��47.75 � j82.70�

D �225 C j0�V or 225 6 0° V]

Problem 12. For the circuit shown in Figure 24.17, determine the
values of voltages V1 and V2 if the supply frequency is 4 kHz.
Determine also the value of the supply voltage V and the circuit
phase angle. Draw the phasor diagram.

For impedance Z1, XC D 1

2�fC
D 1

2��4000��2.653 ð 10�6�
D 15 �

Hence Z1 D �8 � j15�� or 17 6 �61.93° �

and voltage V1 D IZ1 D �6 6 0°��17 6 �61.93°�

D 1026 6 −61.93° V or .48− j 90/V

For impedance Z2, XL D 2�fL D 2��4000��0.477 ð 10�3� D 12 �

Hence Z2 D �5 C j12�� or 13 6 67.38° �

and voltage V2 D IZ2 D �6 6 0°��13 6 67.38°�

D 786 6 67.38° V or .30Y j 72/V

Supply voltage, V D V1 C V2 D �48 � j90�C �30 C j72�

D .78− j 18/V or 806 6 −13° V

Circuit phase angle, f = 13° leading. The phasor diagram is shown in
Figure 24.18.

Figure 24.18

Further problems on the application of complex numbers to series a.c.
circuits may be found in Section 24.3 following, problems 1 to 20.

24.3 Further problems
on series a.c. circuits

1 Determine the resistance R and series inductance L (or capacitance
C) for each of the following impedances, assuming the frequency
to be 50 Hz. (a) �4 C j7�� (b) �3 � j20�� (c) j10 � (d) �j3 k�
(e) 156 ��/3�� (f) 66 �45° M�

[(a) R D 4 �, L D 22.3 mH (b) R D 3 �,C D 159.3 µF
(c) R D 0, L D 31.8 mH (d) R D 0, C D 1.061 µF
(e) R D 7.5 �, L D 41.3 mH
(f) R D 4.243 M�,C D 0.750 nF]

2 A 0.4 µF capacitor is connected to a 250 V, 2 kHz supply. Determine
the current flowing. [1.257 6 90° A or j1.247 A]
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Figure 24.19

3 Two voltages in a circuit are represented by �15 C j10�V and
�12 � j4�V. Determine the magnitude of the resultant voltage when
these voltages are added. [27.66 V]

4 A current of 2.56 �90° A flows in a coil of inductance 314.2 mH
and negligible resistance when connected across a 50 Hz supply.
Determine the value of the supply p.d. [246.86 0° V]

5 A voltage �75 C j90�V is applied across an impedance and a
current of �5 C j12�A flows. Determine (a) the value of the circuit
impedance, and (b) the values of the components comprising the
circuit if the frequency is 1 kHz.

[(a) Z D �8.61 � j2.66�� or 9.01 6 �17.19° �
(b) R D 8.61 �,C D 59.83 µF]

6 Determine, in polar form, the complex impedances for the circuits
shown in Figure 24.19 if the frequency in each case is 50 Hz.

[(a) 44.53 6 �63.31° � (b) 19.77 6 52.62° �
(c) 113.5 6 �58.08° �]

7 For the circuit shown in Figure 24.20 determine the impedance Z in
polar and rectangular forms.

[Z D �1.85 C j6.20�� or 6.476 73.39° �]

8 A 30 µF capacitor is connected in series with a resistance R at a
frequency of 200 Hz. The resulting current leads the voltage by 30°.
Determine the magnitude of R. [45.95 �]

9 A coil has a resistance of 40 � and an inductive reactance of 75 �.
The current in the coil is 1.70 6 0° A. Determine the value of (a) the
supply voltage, (b) the p.d. across the 40 � resistance, (c) the p.d.
across the inductive part of the coil, and (d) the circuit phase angle.
Draw the phasor diagram.

[(a) �68 C j127.5� V or 144.56 61.93° V (b) 68 6 0° V
(c) 127.5 6 90° V (d) 61.93° lagging]

10 An alternating voltage of 100 V, 50 Hz is applied across an
impedance of �20 � j30��. Calculate (a) the resistance, (b) the
capacitance, (c) the current, and (d) the phase angle between current
and voltage

[(a) 20 � (b) 106.1 µF (c) 2.774 A (d) 56.31° leading]

11 A capacitor C is connected in series with a coil of resistance R and
inductance 30 mH. The current flowing in the circuit is 2.56 �40° A
when the supply p.d. is 200 V at 400 Hz. Determine the value of
(a) resistance R, (b) capacitance C, (c) the p.d. across C, and (d) the
p.d., across the coil. Draw the phasor diagram.

[(a) 61.28 � (b) 16.59 µF
(c) 59.95 6 �130° V (d) 242.96 10.90° V]

12 A series circuit consists of a 10 � resistor, a coil of inductance
0.09 H and negligible resistance, and a 150 µF capacitor, and is

Figure 24.20
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connected to a 100 V, 50 Hz supply. Calculate the current flowing
and its phase relative to the supply voltage.

[8.17 A lagging V by 35.20°]

13 A 150 mV, 5 kHz source supplies an ac. circuit consisting of a coil
of resistance 25 � and inductance 5 mH connected in series with a
capacitance of 177 nF. Determine the current flowing and its phase
angle relative to the source voltage. [4.44 6 42.31° mA]

14 Two impedances, Z1 D 5 6 30° � and Z2 D 10 6 45° � draw a current
of 3.36 A when connected in series to a certain a.c. supply. Deter-
mine (a) the supply voltage, (b) the phase angle between the voltage
and current, (c) the p.d. across Z1, and (d) the p.d. across Z2.

[(a) 50 V (b) 40.01° lagging (c) 16.86 30° V (d) 33.6 6 45° V]

15 A 4500 pF capacitor is connected in series with a 50 �
resistor across an alternating voltage v D 212.1 sin��106t C �/4�
volts. Calculate (a) the rms value of the voltage, (b) the circuit
impedance, (c) the rms current flowing, (d) the circuit phase angle,
(e) the voltage across the resistor, and (f) the voltage across the
capacitor.

[(a) 150 6 45° V (b) 86.63 6 �54.75° �

(c) 1.73 6 99.75° A (d) 54.75° leading

(e) 86.50 6 99.75° V (f) 122.38 6 9.75° V]

16 If the p.d. across a coil is �30 C j20�V at 60 Hz and the coil consists
of a 50 mH inductance and 10 � resistance, determine the value of
current flowing (in polar and cartesian forms).

[1.69 6 �28.36° A; �1.49 � j0.80�A]

17 Three impedances are connected in series across a 120 V, 10 kHz
supply. The impedances are:

(i) Z1, a coil of inductance 200 µH and resistance 8 �

(ii) Z2, a resistance of 12 �

(iii) Z3, a 0.50 µF capacitor in series with a 15 � resistor.

Determine (a) the circuit impedance, (b) the circuit current, (c) the
circuit phase angle, and (d) the p.d. across each impedance.

[(a) 39.95 6 �28.82° � (b) 3.00 6 28.82° A (c) 28.82° leading

(d) V1 D 44.70 6 86.35° V, V2 D 36.00 6 28.82° V,

V3 D 105.56 6 �35.95° V]

18 Determine the value of voltages V1 and V2 in the circuit shown in
Figure 24.21, if the frequency of the supply is 2.5 kHz. Find alsoFigure 24.21
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the value of the supply voltage V and the circuit phase angle. Draw
the phasor diagram.

[V1D 164 6 �12.68° V or �160 � j36�V
V2D 104 6 67.38° V or �40 C j96�V
V3D 208.8 6 16.70° V or �200 C j60�V
Phase angle D 16.70° lagging]

19 A circuit comprises a coil of inductance 40 mH and resistance 20 �
in series with a variable capacitor. The supply voltage is 120 V at
50 Hz. Determine the value of capacitance needed to cause a current
of 2.0 A to flow in the circuit. [46.04 F]

20 For the circuit shown in Figure 24.22, determine (i) the circuit
current I flowing, and (ii) the p.d. across each impedance.

[(i) 3.71 6 �17.35° A (ii) V1 D 55.65 6 12.65° V,
V2 D 37.10 6 �77.35° V, V3 D 44.52 6 32.65° V]

Figure 24.22



25 Application of complex
numbers to parallel a.c.
networks

At the end of this chapter you should be able to:

ž determine admittance, conductance and susceptance in a.c.
circuits

ž perform calculations on parallel a.c. circuits using complex
numbers

25.1 Introduction As with series circuits, parallel networks may be analysed by using phasor
diagrams. However, with parallel networks containing more than two
branches this can become very complicated. It is with parallel a.c. network
analysis in particular that the full benefit of using complex numbers
may be appreciated. The theory for parallel a.c. networks introduced in
Chapter 16 is relevant; more advanced networks will be analysed in this
chapter using j notation. Before analysing such networks admittance,
conductance and susceptance are defined.

25.2 Admittance,
conductance and

susceptance

Admittance is defined as the current I flowing in an a.c. circuit divided
by the supply voltage V (i.e. it is the reciprocal of impedance Z). The
symbol for admittance is Y. Thus

Y =
I
V

=
1
Z

The unit of admittance is the Siemen, S.
An impedance may be resolved into a real part R and an imaginary part

X, giving Z D Rš jX. Similarly, an admittance may be resolved into two
parts — the real part being called the conductanceG, and the imaginary
part being called the susceptanceB — and expressed in complex form.
Thus admittance

Y = G ± jB

When an a.c. circuit contains:
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(a) pure resistance, then

Z D R and Y D 1

Z
D 1

R
D G

(b) pure inductance, then

Z D jXL and Y D 1

Z
D 1

jXL
D �j
	jXL
	�j
 D �j

XL
D −jB L

thus a negative sign is associated with inductive susceptance, BL

(c) pure capacitance, then

Z D �jXC and Y D 1

Z
D 1

�jXC D j

	�jXC
	j
 D j

XC
D YjB C

thus a positive sign is associated with capacitive susceptance, BC

(d) resistance and inductance in series, then

Z D RC jXL and Y D 1

Z
D 1

RC jXL
D 	R � jXL


R2 C X2
L

i.e. Y D R

R2 C X2
L

� j
XL

R2 C XL2
or Y =

R
jZ j2 − j

XL

jZ j2

Thus conductance, G D R/jZj2 and inductive susceptance,
BL D �XL/jZj2.

(Note that in an inductive circuit, the imaginary term of the
impedance, XL, is positive, whereas the imaginary term of the
admittance, BL , is negative.)

(e) resistance and capacitance in series, then

Z D R� jXC and Y D 1

Z
D 1

R� jXC
D RC jXC
R2 C X2

C

i.e. Y D R

R2 C X2
C

C j
XC

R2 C X2
C

or Y =
R

jZ j2 Y j
XC

jZ j2

Thus conductance, G D R/jZj2 and capacitive susceptance,
BC D XC/jZj2.

(Note that in a capacitive circuit, the imaginary term of the
impedance, XC, is negative, whereas the imaginary term of the
admittance, BC, is positive.)

(f) resistance and inductance in parallel, then

1

Z
D 1

R
C 1

jXL
D jXL C R

	R
	jXL
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from which, Z =
.R/.jXL/

RY jXL

(
i.e.

product

sum

)

and Y D 1

Z
D RC jXL

jRXL
C R

jRXL
C jXL
jRXL

i.e., Y D 1

jXL
C 1

R
D 	�j

	jXL
	�j
 C 1

R

or Y=
1
R

− j
XL

Thus conductance, G = 1=R and inductive susceptance,
BL = −1=XL

(g) resistance and capacitance in parallel, then

Z D 	R
	�jXC

R� jXC

(
i.e.

product

sum

)

and Y D 1

Z
D R� jXC

�jRXC D R

�jRXC � jXC
�jRXC

i.e. Y D 1

�jXC C 1

R
D 	j


	�jXC
	j
 C 1

R

or Y=
1
R
Y

j
XC

	25.1


Thus conductance, G = 1=R and capacitive susceptance,
BC = l=XC .

The conclusions that may be drawn from Sections (d) to (g) above
are:

(i) that a seriescircuit is more easily represented by an impedance,
(ii) that a parallel circuit is often more easily represented by an

admittance especially when more than two parallel impedances are
involved.

Problem 1. Determine the admittance, conductance and suscep-
tance of the following impedances: (a) �j5 � (b) 	25 C j40
�
(c) 	3 � j2
� (d) 506 40° �

(a) If impedance Z D �j5 �, then

admittance Y D 1

Z
D 1

�j5
D j

	�j5
	j

D j

5

D j 0.2 S or 0.26 6 90° S
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Since there is no real part, conductance, G = 0, and capacitive
susceptance, BC= 0.2 S

(b) If impedance Z D 	25 C j40
� then

admittance Y D 1

Z
D 1

	25 C j40

D 25 � j40

252 C 402
D 25

2225
� j40

2225

D .0.0112− j 0.0180/S

Thus conductance, G= 0.0112 S and inductive susceptance,
BL= 0.0180 S

(c) If impedance Z D 	3 � j2
�, then

admittance Y D 1

Z
D 1

	3 � j2

D 3 C j2

32 C 22
D

(
3

13
C j

2

13

)
S

or .0.231Y j 0.154/S

Thus conductance, G= 0.231 S and capacitive susceptance,
BC= 0.154 S

(d) If impedance Z D 50 6 40° �, then

admittance Y D 1

Z
D 1

50 6 40°
D 1 6 0°

50 6 40°
D 1

50
6 �40°

D 0.026 6 −40° S or .0.0153− j 0.0129/S

Thus conductance, G= 0.0153 S and inductive susceptance,
BL= 0.0129 S

Problem 2. Determine expressions for the impedance of the
following admittances:

(a) 0.004 6 30° S (b) 	0.001 � j0.002
S (c) 	0.05 C j0.08
S

(a) Since admittance Y D 1/Z, impedance Z D 1/Y.

Hence impedance Z D 1

0.004 6 30°
D 1 6 0°

0.004 6 30°

D 2506 6 −30° Z or .216.5 − j 125/Z

(b) Impedance Z D 1

	0.001 � j0.002

D 0.001 C j0.002

	0.001
2 C 	0.002
2

D 0.001 C j0.002

0.000 005

D .200Y j 400/Z or 447.26 6 63.43° Z

(c) Admittance Y D 	0.05 C j0.08
 S D 0.094 6 57.99° S
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Figure 25.1 (a) Circuit
diagram, (b) Phasor diagram

Hence impedance Z D 1

0.0094 6 57.99°

D 10.646 6 −57.99° Z or .5.64− j 9.02/Z

Problem 3. The admittance of a circuit is 	0.040 C j0.025
S.
Determine the values of the resistance and the capacitive reactance
of the circuit if they are connected (a) in parallel, (b) in series.
Draw the phasor diagram for each of the circuits.

(a) Parallel connection

Admittance Y D 	0.040 C j0.025
 S, therefore conductance, G D 0.040 S
and capacitive susceptance, BC D 0.025 S. From equation (25.1) when a
circuit consists of resistance R and capacitive reactance in parallel, then
Y D 	1/R
C 	j/XC
.

Hence resistance R D 1

G
D 1

0.040
D 25Z

and capacitive reactance XC D 1

BC
D 1

0.025
D 40Z

The circuit and phasor diagrams are shown in Figure 25.1.

(b) Series connection

Admittance Y D 	0.040 C j0.025
 S, therefore

impedance Z D 1

Y
D 1

0.040 C j0.025
D 0.040 � j0.025

	0.040
2 C 	0.025
2

D 	17.98 � j11.24
�

Thus the resistance, R= 17.98Z and capacitive reactance,

XC= 11.24Z.

The circuit and phasor diagrams are shown in Figure 25.2.
The circuits shown in Figures 25.1(a) and 25.2(a) are equivalent in

that they take the same supply current I for a given supply voltage V; the
phase angle � between the current and voltage is the same in each of the
phasor diagrams shown in Figures 25.1(b) and 25.2(b).

Further problems on admittance, conductance and susceptance may be
found in Section 25.4, problems 1 to 6, page 454.Figure 25.2 (a) Circuit

diagram, (b) Phasor diagram

25.3 Parallel a.c.
networks

Figure 25.3 shows a circuit diagram containing three impedances, Z1,
Z2 and Z3 connected in parallel. The potential difference across each
impedance is the same, i.e. the supply voltage V. Current I1 D V/Z1,
I2 D V/Z2 and I3 D V/Z3. If ZT is the total equivalent impedance of the
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Figure 25.3

circuit then I D V/ZT. The supply current, I D I1 C I2 C I3 (phasorially).

Thus
V

ZT
D V

Z1
C V

Z2
C V

Z3
and

1

ZT
D 1

Z1
C 1

Z2
C 1

Z3

or total admittance, YT D Y1 C Y2 C Y3

In general, for n impedances connected in parallel,

YT = Y1 Y Y2Y Y3 Y . . .Y Yn (phasorially)

It is in parallel circuit analysis that the use of admittance has its greatest
advantage.

Current division in a.c. circuits

For the special case of two impedances, Z1 and Z2, connected in parallel
(see Figure 25.4),

1

ZT
D 1

Z1
C 1

Z2
D Z2 C Z1

Z1Z2

The total impedance, ZT = Z1Z2=.Z1 Y Z2/ (i.e. product/sum).

From Figure 25.4,

Figure 25.4
supply voltage, V D IZT D I

(
Z1Z2

Z1 C Z2

)

Also, V D I1Z1(and V D I2Z2)

Thus, I1Z1 D I
(

Z1Z2

Z1 C Z2

)

i.e., current I1 = I
(

Z2

Z1 Y Z2

)

Similarly, current I2 = I
(

Z1

Z1 Y Z2

)

Note that all of the above circuit symbols infer complex quantities either
in cartesian or polar form.

The following problems show how complex numbers are used to
analyse parallel a.c. networks.

Problem 4. Determine the values of currents I, I1 and I2 shown
in the network of Figure 25.5.

Figure 25.5
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Total circuit impedance,

ZT D 5 C 	8
	j6


8 C j6
D 5 C 	j48
	8 � j6


82 C 62

D 5 C j384 C 288

100

D 	7.88 C j3.84
� or 8.776 25.98° �

Current I D V

ZT
D 50 6 0°

8.77 6 25.98°
D 5.706 6 −25.98° A

Current I1 D I
(

j6

8 C j6

)
D 	5.70 6 �25.98°


(
6 6 90°

10 6 36.87°

)

D 3.426 6 27.15° A

Current I2 D I
(

8

8 C j6

)
D 	5.70 6 �25.98°


(
8 6 0°

10 6 36.87°

)

D 4.566 6 −62.85° A

[Note: I D I1 C I2 D 3.42 6 27.15° C 4.56 6 �62.85°

D 	3.043 C j1.561
C 	2.081 � j4.058


D 	5.124 � j2.497
 A D 5.706 �25.98° A]

Problem 5. For the parallel network shown in Figure 25.6, deter-
mine the value of supply current I and its phase relative to the 40 V
supply.

Figure 25.6

Impedance Z1 D 	5 C j12
�, Z2 D 	3 � j4
� and Z3 D 8 �

Supply current I D V

ZT
D VYT where ZT D total circuit impedance, and

YT D total circuit admittance.
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YT D Y1 C Y2 C Y3

D 1

Z1
C 1

Z2
C 1

Z3
D 1

	5 C j12

C 1

	3 � j4

C 1

8

D 5 � j12

52 C 122
C 3 C j4

32 C 42
C 1

8

D 	0.0296 � j0.0710
C 	0.1200 C j0.1600
C 	0.1250


i.e. YT D 	0.2746 C j0.0890
S or 0.2887 6 17.96° S

Current I D VYT D 	40 6 0°
	0.2887 6 17.96°
 D 11.55 6 17.96° A

Hence the current I is 11.55 A and is leading the 40 V supply by
17.96°

Alternatively, current I D I1 C I2 C I3

Current I1 D 40 6 0°

5 C j12
D 40 6 0°

13 6 67.38°

D 3.077 6 �67.38° A or 	1.183 � j2.840
 A

Current I2 D 40 6 0°

3 � j4
D 40 6 0°

5 6 �53.13°
D 8 6 53.13° A or 	4.80 C j6.40
 A

Current I3 D 40 6 0°

8 6 0°
D 5 6 0° A or 	5 C j0
 A

Thus current I D I1 C I2 C I3

D 	1.183 � j2.840
C 	4.80 C j6.40
C 	5 C j0


D 10.983 C j3.560 D 11.556 6 17.96° A, as previously
obtained.

Problem 6. An a.c. network consists of a coil, of inductance
79.58 mH and resistance 18 �, in parallel with a capacitor of
capacitance 64.96 µF. If the supply voltage is 250 6 0° V at 50 Hz,
determine (a) the total equivalent circuit impedance, (b) the supply
current, (c) the circuit phase angle, (d) the current in the coil, and
(e) the current in the capacitor.

The circuit diagram is shown in Figure 25.7.Figure 25.7
Inductive reactance, XL D 2�fL D 2�	50
	79.58 ð 10�3
 D 25 �.

Hence the impedance of the coil,

ZCOIL D 	RC jXL
 D 	18 C j25
� or 30.816 54.25° �

Capacitive reactance, XC D 1

2�fC
D 1

2�	50
	64.96 ð 10�6

D 49 �

In complex form, the impedance presented by the capacitor, ZC is �jXC,
i.e., �j49 � or 49 6 �90° �
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(a) Total equivalent circuit impedance,

ZT D ZCOILXC
ZCOIL C ZC

(
i.e.

product

sum

)

D 	30.81 6 54.25°
	49 6 �90°


	18 C j25
C 	�j49


D 	30.81 6 54.25°
	49 6 �90°


18 � j24

D 	30.81 6 54.25°
	49 6 �90°


30 6 �53.13°

D 50.32 6 	54.25° � 90° � 	�53.13°



D 50.326 6 17.38° Z or .48.02Y j 15.03/ Z

(b) Supply current I D V

ZT
D 250 6 0°

50.32 6 17.38°

D 4.976 6 −17.38° A

(c) Circuit phase angle D 17.38° lagging, i.e., the current I lags the vol-
tage V by 17.38°

(d) Current in the coil, ICOIL D V

ZCOIL
D 250 6 0°

30.81 6 54.25°

D 8.116 6 −54.25° A

(e) Current in the capacitor, IC D V

ZC
D 250 6 0°

49 6 �90°

D 5.106 6 90° A

Problem 7. (a) For the network diagram of Figure 25.8, determine
the value of impedance Z1 (b) If the supply frequency is 5 kHz,
determine the value of the components comprising impedance Z1

Figure 25.8
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(a) Total circuit admittance,

YT D I

V
D 31.46 52.48°

50 6 30°

D 0.6286 6 25.48° S or .0.58Y j 0.24/S

YT D Y1 C Y2 C Y3

Thus 	0.58 C j0.24
 D Y1 C 1

	8 C j6

C 1

10

D Y1 C 8 � j6

82 C 62
C 0.1

i.e., 0.58 C j0.24 D Y1 C 0.08 � j0.06 C 0.1

Hence Y1 D 	0.58 � 0.08 � 0.1
C j	0.24 C j0.06


D 	0.4 C j0.3
S or 0.56 36.87° S

Thus impedance, Z1 D 1

Y1
D 1

0.5 6 36.87°

D 26 6 −36.87° Z or .1.6 − j 1.2/Z

(b) Since Z1 D 	1.6 � j1.2
�, resistance= 1.6 Z and capacitive
reactance, XC D 1.2 �.

Since XC D 1

2�fC
, capacitance C D 1

2�fXC
D 1

2�	5000
	1.2

F

i.e., capacitance= 26.53 mF

Problem 8. For the series-parallel arrangement shown in
Figure 25.9, determine (a) the equivalent series circuit impedance,
(b) the supply current I, (c) the circuit phase angle, (d) the values
of voltages V1 and V2, and (e) the values of currents IA and IB

Figure 25.9
(a) The impedance, Z, of the two branches connected in parallel is given

by:

Z D 	5 C j7
	4 � j15


	5 C j7
C 	4 � j15

D 20 � j75 C j28 � j2105

9 � j8

D 125 � j47

9 � j8
D 133.54 6 �20.61°

12.04 6 �41.63°

D 11.09 6 21.02° � or 	10.35 C j3.98
�

Equivalent series circuit impedance,

ZT D 	1.65 C j1.02
C 	10.35 C j3.98


= .12Y j 5/Z or 136 6 22.62° Z
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(b) Supply current, I D V

Z
D 91 6 0°

13 6 22.62°
D 76 6 −22.62° A

(c) Circuit phase angle D 22.62° lagging

(d) Voltage V1 D IZ1, where Z1 D 	1.65 C j1.02
� or 1.946 31.72° �.

Hence V1 D 	7 6 �22.62°
	1.94 6 31.72°
 D 13.586 6 9.10° V
Voltage V2 D IZ, where Z is the equivalent impedance of the two
branches connected in parallel.
Hence V2 D 	7 6 �22.62°
	11.09 6 21.02°
 D 77.636 6 −1.60° V

(e) Current IA D V2/ZA, where ZA D 	5 C j7
� or 8.606 54.46° �.

Thus I A D 77.63 6 �1.60°

8.60 6 54.46°
D 9.036 6 − 56.06° A

Current I B D V2/ZB,

where ZB D 	4 � j15
� or 15.524 6 �75.07° �

Thus IB D 77.63 6 �1.60°

15.524 6 �75.07°
D 5.006 6 73.47° A

[Alternatively, by current division,

I A D I
(

ZB
ZA C ZB

)
D 7 6 �22.62°

(
15.524 6 �75.07°

	5 C j7
C 	4 � j15


)

D 7 6 �22.62°
(

15.524 6 �75.07°

9 � j8

)

D 7 6 �22.62°
(

15.524 6 �75.07°

12.04 6 �41.63°

)

D 9.036 6 −56.06°A

I B D I
(

ZA
ZA C ZB

)
D 7 6 �22.62°

(
8.60 6 54.46°

12.04 6 �41.63°

)

D 5.006 6 73.47°A]

Further problems on parallel a.c. networks may be found in Section 25.4
following, problems 7 to 21, page 455.

25.4 Further problems
on parallel a.c. networks

Admittance, conductance and susceptance

1 Determine the admittance (in polar form), conductance and suscep-
tance of the following impedances: (a) j10 � (b) �j40 �
(c) 326 �30° � (d) 	5 C j9
� (e) 	16 � j10
�

[(a) 0.16 �90° S, 0, 0.1 S
(b) 0.025 6 90° S, 0, 0.025 S
(c) 0.03125 6 30° S, 0.0271 S, 0.0156 S
(d) 0.0971 6 �60.95°S, 0.0472 S, 0.0849 S
(e) 0.0530 6 32.01° S, 0.0449 S, 0.0281 S]
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Figure 25.10

2 Derive expressions, in polar form, for the impedances of the
following admittances: (a) 0.05 6 40° S (b) 0.0016 6 �25° S (c) 	0.1 C
j0.4
S (d) 	0.025 � j0.040
S

[(a) 206 �40° � (b) 625 6 25° �
(c) 2.425 6 �75.96° � (d) 21.20 6 57.99° �]

3 The admittance of a series circuit is 	0.010 � j0.004
S. Determine
the values of the circuit components if the frequency is 50 Hz.

[R D 86.21 �, L D 109.8 mH]

4 The admittance of a network is 	0.05 � j0.08
S. Determine the
values of resistance and reactance in the circuit if they are connected
(a) in series, (b) in parallel.

[(a) R D 5.62 �, XL D 8.99 � (b) R D 20 �, XL D 12.5 �]

5 The admittance of a two-branch parallel network is 	0.02 C j0.05
S.
Determine the circuit components if the frequency is 1 kHz.

[R D 50 �, C D 7.958 µF]

6 Determine the total admittance, in rectangular and polar forms, of
each of the networks shown in Figure 25.10.

[(a) 	0.0154 � j0.0231
S or 0.0278 6 �56.31° S
(b) 	0.132 � j0.024
S or 0.134 6 �10.30° S
(c) 	0.08 C j0.01
S or 0.0806 6 7.125° S
(d) 	0.0596 � j0.0310
S or 0.0672 6 �27.48° S]

Parallel a.c. networks

7 Determine the equivalent circuit impedances of the parallel networks
shown in Figure 25.11.

[(a) 	4 � j8
� or 8.94 6 �63.43° �
(b) 	7.56 C j1.95
� or 7.81 6 14.46° �
(c) 	14.04 � j0.74
� or 14.06 6 �3.02° �]

8 Determine the value and phase of currents I1 and I2 in the network
shown in Figure 25.12.

[I1 D 8.94 6 �10.30° A, I2 D 17.89 6 79.70° A]

9 For the series-parallel network shown in Figure 25.13, determine
(a) the total network impedance across AB, and (b) the supply
current flowing if a supply of alternating voltage 30 6 20° V is
connected across AB. [(a) 10 6 36.87° � (b) 3 6 �16.87° A]

10 For the parallel network shown in Figure 25.14, determine (a) the
equivalent circuit impedance, (b) the supply current I, (c) the circuit
phase angle, and (d) currents I1 and I2

[(a) 10.33 6 �6.31° � (b) 4.84 6 6.31° A (c) 6.31° leading
(d) I1 D 0.953 6 �73.38° A, I2 D 4.765 6 17.66° A]
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Figure 25.11 Figure 25.12

Figure 25.13 Figure 25.14

11 For the network shown in Figure 25.15, determine (a) current I1,
(b) current I2, (c) current I, (d) the equivalent input impedance, and
(e) the supply phase angle.

[(a) 15.08 6 90° A (b) 3.39 6 �45.15° A
(c) 12.90 6 79.33° A (d) 9.30 6 �79.33° �
(e) 79.33° leading]

12 Determine, for the network shown in Figure 25.16, (a) the total
network admittance, (b) the total network impedance, (c) the supply
current I, (d) the network phase angle, and (e) currents I1, I2, I3

and I4

[(a) 0.0733 6 43.39° S (b) 13.64 6 �43.39° �
(c) 1.833 6 43.39° A (d) 43.39° leading
(e) I1 D 0.455 6 �43.30° A, I2 D 1.863 6 57.50° A,

I3 D 1 6 0° A, I4 D 1.570 6 90° A]

13 Four impedances of 	10 � j20
�, 	30 C j0
�, 	2 � j15
� and
	25 C j12
� are connected in parallel across a 250 V ac. supply.
Find the supply current and its phase angle. [32.626 43.55° A]

14 In the network shown in Figure 25.17, the voltmeter indicates 24 V.
Determine the reading on the ammeter. [7.53 A]

15 Three impedances are connected in parallel to a 100 V, 50 Hz supply.
The first impedance is 	10 C j12.5
� and the second impedance is
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Figure 25.15 Figure 25.16

Figure 25.17 Figure 25.18

	20 C j8
�. Determine the third impedance if the total current is
20 6 �25° A [	9.74 C j1.82
� or 9.916 10.56° �]

16 For each of the network diagrams shown in Figure 25.18, determine
the supply current I and their phase relative to the applied voltages.

[(a) 1.632 6 �17.10° A (b) 5.411 6 �8.46° A]

17 Determine the value of current flowing in the 	12 C j9
� impedance
in the network shown in Figure 25.19. [7.66 6 33.63° A]

18 In the series-parallel network shown in Figure 25.20 the p.d. between
points A and B is 50 6 �68.13° V. Determine (a) the supply current I,
(b) the equivalent input impedance, (c) the supply voltage V, (d) the
supply phase angle, (e) the p.d. across points B and C, and (f) the
value of currents I1 and I2

[(a) 11.99 6 �31.81° A (b) 8.54 6 20.56° �
(c) 102.4 6 �11.25° V (d) 20.56° lagging (e) 86.06 17.91° V
(f) I1 D 7.37 6 �13.05° A I2 D 5.54 6 �57.16° A]
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Figure 25.19 Figure 25.20

Figure 25.21 Figure 25.22

19 For the network shown in Figure 25.21, determine (a) the value of
impedance Z2, (b) the current flowing in Z2, and (c) the components
comprising Z2 if the supply frequency is 2 kHz

[(a) 6.25 6 52.34° � (b) 16.06 7.66° A
(c) R D 3.819 �, L D 0.394 mH]

20 Coils of impedance 	5 C j8
� and 	12 C j16
� are connected
in parallel. In series with this combination is an impedance of
	15 � j40
�. If the alternating supply pd. is 150 6 0° V, determine
(a) the equivalent network impedance, (b) the supply current, (c) the
supply phase angle, (d) the current in the 	5 C j8
� impedance, and
(e) the current in the 	12 C j16
� impedance.

[(a) 39.31 6 �61.84° � (b) 3.816 6 61.84° A
(c) 61.84° leading (d) 2.595 6 60.28° A
(e) 1.224 6 65.15° A]

21 For circuit shown in Figure 25.22, determine (a) the input
impedance, (b) the source voltage V, (c) the p.d. between points A
and B, and (d) the current in the 10 � resistor.

[(a) 10.0 6 36.87° � (b) 150 6 66.87° V
(c) 906 51.92° V (d) 2.50 6 18.23° A]



26 Power in a.c. circuits

At the end of this chapter you should be able to:

ž determine active, apparent and reactive power in a.c.
series/parallel networks

ž appreciate the need for power factor improvement

ž perform calculations involving power factor improvement

26.1 Introduction Alternating currents and voltages change their polarity during each cycle.
It is not surprising therefore to find that power also pulsates with time.
The product of voltage v and current i at any instant of time is called
instantaneous power p, and is given by:

p = vi

26.2 Determination of
power in a.c. circuits

(a) Purely resistive a.c. circuits

Let a voltage v D Vm sinωt be applied to a circuit comprising resistance
only. The resulting current is i D Im sinωt, and the corresponding instan-
taneous power, p, is given by:

p D vi D �Vm sinωt	�Im sinωt	

i.e., p D VmIm sin2 ωt

From trigonometrical double angle formulae, cos 2A D 1 � 2 sin2 A, from
which,

sin2 A D 1
2 �1 � cos 2A	

Thus sin2 ωt D 1
2 �1 � cos 2ωt	

Then power p D VmIm
[

1
2 �1 � cos 2ωt	

]
, i.e., p = 1

2VmIm.1 − cos 2!t/.

The waveforms of v, i and p are shown in Figure 26.1. The waveform
of power repeats itself after 
/ω seconds and hence the power has a
frequency twice that of voltage and current. The power is always positive,
having a maximum value of VmIm. The average or mean value of the
power is 1

2VmIm.
The rms value of voltage V D 0.707 Vm, i.e. V D Vm/

p
2, from which,

Vm D p
2 V. Similarly, the rms value of current, I D Im/

p
2, from which,

Im D p
2 I. Hence the average power, P, developed in a purely resistive
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Figure 26.1 The waveforms ofv, i andp

a.c. circuit is given by

P D 1
2VmIm D 1

2 �
p

2 V	�
p

2 I	 D VI watts

Also, power P D I2R or V2/R as for a d.c. circuit, since V D IR.

Summarizing, the average powerP in a purely resistive a.c. circuit is
given by

P = VI = I 2R =
V 2

R
watts

where V and I are rms values.

(b) Purely inductive a.c. circuits

Let a voltage v D Vm sinωt be applied to a circuit containing pure induc-
tance (theoretical case). The resulting current is i D Im sin�ωt � �
/2		
since current lags voltage by 90° in a purely inductive circuit, and the
corresponding instantaneous power, p, is given by:

p D vi D �Vm sinωt	Im sin�ωt � �
/2		

i.e., p D VmIm sinωt sin�ωt � �
/2		

However, sin�ωt � �
/2		 D � cosωt

Thus p D �VmIm sinωt cosωt

Rearranging gives: p D � 1
2VmIm�2 sinωt cosωt	. However, from the

double-angle formulae, 2 sinωt cosωt D sin 2ωt.

Thus power, p = − 1
2VmIm sin 2!t



Power in a.c. circuits461

The waveforms of v, i and p are shown in Figure 26.2. The frequency of
power is twice that of voltage and current. For the power curve shown
in Figure 26.2, the area above the horizontal axis is equal to the area
below, thus over a complete cycle the average power P is zero. It is
noted that when v and i are both positive, power p is positive and energy
is delivered from the source to the inductance; when v and i have opposite
signs, power p is negative and energy is returned from the inductance to
the source.

Figure 26.2 Power in a purely inductive a.c. circuit

In general, when the current through an inductance is increasing, energy
is transferred from the circuit to the magnetic field, but this energy is
returned when the current is decreasing.

Summarizing, the average powerP in a purely inductive a.c. circuit
is zero.

(c) Purely capacitive a.c. circuits

Let a voltage v D Vm sinωt be applied to a circuit containing pure capac-
itance. The resulting current is i D Im sin�ωt C �
/2		, since current leads
voltage by 90° in a purely capacitive circuit, and the corresponding instan-
taneous power, p, is given by:

p D vi D �Vm sinωt	Im sin�ωt C �
/2		

i.e., p D VmIm sinωt sin�ωt C �
/2		

However, sin�ωt C �
/2		 D cosωt.

Thus P D VmIm sinωt cosωt

Rearranging gives p D 1
2VmIm�2 sinωt cosωt	.

Thus power, p = 1
2VmIm sin 2!t
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The waveforms of v, i and p are shown in Figure 26.3. Over a complete
cycle the average power P is zero. When the voltage across a capacitor
is increasing, energy is transferred from the circuit to the electric field,
but this energy is returned when the voltage is decreasing.

Figure 26.3 Power in a purely capacitive a.c. circuit

Summarizing, the average powerP in a purely capacitive a.c. circuit
is zero.

(d) R–L or R–C a.c. circuits

Let a voltage v D Vm sinωt be applied to a circuit containing resistance
and inductance or resistance and capacitance. Let the resulting current
be i D Im sin�ωt C �	, where phase angle � will be positive for an R–C
circuit and negative for an R–L circuit. The corresponding instantaneous
power, p, is given by:

p D vi D �Vm sinωt	�Im sin�ωt C �		

i.e., p D VmIm sinωt sin�ωt C �	

Products of sine functions may be changed into differences of cosine
functions by using: sinA sinB D � 1

2 [cos�AC B	� cos�A� B	]

Substituting ωt D A and �ωt C �	 D B gives:

power, p D VmIm
{

� 1
2 [cos�ωt C ωtC �	� cos�ωt � �ωt C �		]

}

i.e., p D 1
2VmIm[cos���	� cos�2ωt C �	]

However, cos���	 D cos�.

Thus p= 1
2VmIm[cosf − cos.2!t Y f/]
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The instantaneous power p thus consists of

(i) a sinusoidal term, � 1
2VmIm cos�2ωt C �	, which has a mean value

over a cycle of zero, and

(ii) a constant term, 1
2VmIm cos� (since � is constant for a particular

circuit).

Thus the average value of power, P D 1
2VmIm cos�.

Since Vm D p
2 V and Im D p

2 I,

average power, P D 1
2 �

p
2 V	�

p
2 I	 cos�

i.e., P = VI cosf watts

The waveforms of v, i and p, are shown in Figure 26.4 for an R–L circuit.
The waveform of power is seen to pulsate at twice the supply frequency.
The areas of the power curve (shown shaded) above the horizontal time
axis represent power supplied to the load; the small areas below the axis
represent power being returned to the supply from the inductance as the
magnetic field collapses.

A similar shape of power curve is obtained for an R–C circuit, the
small areas below the horizontal axis representing power being returned
to the supply from the charged capacitor. The difference between the areas
above and below the horizontal axis represents the heat loss due to the
circuit resistance. Since power is dissipated only in a pure resistance, the
alternative equations for power, P D I2

RR, may be used, where IR is the
rms current flowing through the resistance.

Figure 26.4 Power in a.c. circuit containing resistance and inductive
reactance
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Summarizing, the average powerP in a circuit containing resistance
and inductance and/or capacitance, whether in series or in parallel,
is given byP = VI cosf or P = I 2

RR .V , I and IR being rms values).

26.3 Power triangle and
power factor

A phasor diagram in which the current I lags the applied voltage V
by angle � (i.e., an inductive circuit) is shown in Figure 26.5(a). The
horizontal component of V is V cos�, and the vertical component of V is
V sin�. If each of the voltage phasors of triangle Oab is multiplied by I,
Figure 26.5(b) is produced and is known as the ‘power triangle’ . Each
side of the triangle represents a particular type of power:

True or active power P= VI cosf watts (W)
Apparent power S= VI voltamperes (VA)
Reactive powerQ= VI sinf vars (var)

The power triangle is not a phasor diagram since quantities P, Q and S
are mean values and not rms values of sinusoidally varying quantities.

Superimposing the power triangle on an Argand diagram produces a
relationship between P, S and Q in complex form, i.e.,

S = P Y jQ

Figure 26.5 (a) Phasor
diagram, (b) Power triangle for
inductive circuit

Apparent power, S, is an important quantity since a.c. apparatus, such
as generators, transformers and cables, is usually rated in voltamperes
rather than in watts. The allowable output of such apparatus is usually
limited not by mechanical stress but by temperature rise, and hence by
the losses in the device. The losses are determined by the voltage and
current and are almost independent of the power factor. Thus the amount
of electrical equipment installed to supply a certain load is essentially
determined by the voltamperes of the load rather than by the power alone.
The rating of a machine is defined as the maximum apparent power that
it is designed to carry continuously without overheating.

The reactive power, Q, contributes nothing to the net energy transfer
and yet it causes just as much loading of the equipment as if it did so.
Reactive power is a term much used in power generation, distribution and
utilization of electrical energy.

Inductive reactive power, by convention, is defined as positive reactive
power; capacitive reactive power, by convention, is defined as negative
reactive power. The above relationships derived from the phasor diagram
of an inductive circuit may be shown to be true for a capacitive circuit,
the power triangle being as shown in Figure 26.6.

Figure 26.6 Power triangle for
capacitive circuit

Power factor is defined as:

power factor =
active power P

apparent power S
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For sinusoidal voltages and currents,

power factor D P

S
D VI cos�

VI

D cosf =
R
Z

(from the impedance triangle)

A circuit in which current lags voltage (i.e., an inductive circuit) is said
to have a lagging power factor, and indicates a lagging reactive power Q.

A circuit in which current leads voltage (i.e., a capacitive circuit) is said
to have a leading power factor, and indicates a leading reactive power Q.

26.4 Use of complex
numbers for

determination of power

Let a circuit be supplied by an alternating voltage V6 ˛, where

V 6 ˛ D V�cos˛C j sin˛	 D V cos˛C jV sin˛ D aC jb �26.1	

Let the current flowing in the circuit be I 6 ˇ, where

I 6 ˇ D I�cosˇ C j sinˇ	 D I cosˇ C j I sinˇ D c C jd �26.2	

From Sections 26.2 and 26.3, power P D VI cos�, where � is the angle
between the voltage V and current I. If the voltage is V6 ˛° and the current
is I 6 ˇ°, then the angle between voltage and current is �˛� ˇ	°

Thus power, P D VI cos�˛� ˇ	

From compound angle formulae, cos�˛� ˇ	 D cos˛ cos ˇ C sin˛ sinˇ.

Hence power, P D VI[cos˛ cos ˇ C sin˛ sinˇ]

Rearranging gives P D �V cos˛	�I cos ˇ	C �V sin ˛	�I sinˇ	, i.e.,

P D �a	�c	C �b	�d	 from equations (26.1) and (26.2)

Summarizing, if V = .a Y jb/ and I = .cY jd/, then

power, P = acY bd �26.3	

Thus power may be calculated from the sum of the products of the real
components and imaginary components of voltage and current.

Reactive power, Q D VI sin�˛� ˇ	

From compound angle formulae, sin�˛� ˇ	 D sin˛ cosˇ � cos˛ sinˇ.

Thus Q D VI[sin˛ cosˇ � cos˛ sinˇ]

Rearranging gives Q D �V sin ˛	�I cosˇ	� �V cos ˛	�I sin ˇ	 i.e.,

Q D �b	�c	� �a	�d	 from equations (26.1) and (26.2).
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Summarizing, if V = .a Y jb/ and I = .cY jd/, then

reactive power, Q = bc − ad �26.4	

Expressions (26.3) and (26.4) provide an alternative method of deter-
mining true power P and reactive power Q when the voltage and current
are complex quantities. From Section 26.3, apparent power S D PC jQ.
However, merely multiplying V by I in complex form will not give this
result, i.e. (from above)

S D VI D �a C jb	�c C jd	 D �ac � bd	C j�bc C ad	

Here the real part is not the expression for power as given in equa-
tion (26.3) and the imaginary part is not the expression of reactive power
given in equation (26.4)

The correct expression may be derived by multiplying the voltage V
by the conjugate of the current, i.e. �c � jd	, denoted by IŁ. Thus

apparent power S = VI ∗ D �aC jb	�c � jd	

D �ac C bd	C j�bc � ad	

i.e., S = P Y jQ , from equations (26.3) and (26.4).

Thus the active and reactive powers may be determined if, and only
if, the voltage V is multiplied by the conjugate of current I. As stated
in Section 26.3, a positive value of Q indicates an inductive circuit, i.e.,
a circuit having a lagging power factor, whereas a negative value of
Q indicates a capacitive circuit, i.e., a circuit having a leading power
factor.

Problem 1. A coil of resistance 5 � and inductive reactance 12 �
is connected across a supply voltage of 52 6 30° volts. Determine the
active power in the circuit.

The circuit diagram is shown in Figure 26.7.

Impedance Z D �5 C j12	� or 136 67.38° �

Voltage V D 52 6 30° V or �45.03 C j26.0	V

Current I D V

Z
D 52 6 30°

13 6 67.38°

D 4 6 �37.38° A or �3.18 � j2.43	A

There are three methods of calculating power.

Method 1. Active power, P D VI cos�, where � is the angle
between voltage V and current I. HenceFigure 26.7
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P D �52	�4	 cos[30° � ��37.38°	] D �52	�4	 cos 67.38°

D 80 W

Method 2. Active power, P D I2
RR D �4	2�5	 D 80 W

Method 3. Since V D �45.03 C j26.0	V and

I D �3.18 � j2.43	A, then active power,

P D �45.03	�3.18	C �26.0	��2.43	
from equation (26.3), i.e.,

P D 143.2 � 63.2 D 80 W

Problem 2. A current of �15 C j8	A flows in a circuit whose
supply voltage is �120 C j200	V. Determine (a) the active power,
and (b) the reactive power.

(a) Method 1. Active power P D �120	�15	C �200	�8	,
from equation (26.3), i.e.,

P D 1800 C 1600 D 3400 W or 3.4 kW

Method 2. Current I D �15 C j8	A D 176 28.07° A and

Voltage V D �120 C j200	V D 233.24 6 59.04° V

Angle between voltage and current D 59.04° � 28.07°

D 30.97°

Hence power, P D VI cos� D �233.24	�17	 cos 30.97°

D 3.4 kW

(b) Method 1. Reactive power, Q D �200	�15	� �120	�8	
from equation (26.4), i.e.,

Q D 3000 � 960 D 2040 var or
2.04 kvar

Method 2. Reactive power, Q D VI sin�

D �233.24	�17	 sin 30.97°

D 2.04 kvar

Alternatively, parts (a) and (b) could have been obtained directly, using

Apparent power, S D VIŁ D �120 C j200	�15 � j8	

D �1800 C 1600	C j�3000 � 960	

D 3400 C j2040 D PC jQ

from which, power P = 3400 W and reactive power,Q = 2040 var
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Problem 3. A series circuit possesses resistance R and capaci-
tance C. The circuit dissipates a power of 1.732 kW and has a
power factor of 0.866 leading. If the applied voltage is given by v D
141.4 sin�104tC �
/9		 volts, determine (a) the current flowing
and its phase, (b) the value of resistance R, and (c) the value of
capacitance C.

(a) Since v D 141.4 sin�104t C �
/9		 volts, then 141.4 V represents the
maximum value, from which the rms voltage, V D 141.4/

p
2 D

100 V, and the phase angle of the voltage D C
/9 rad or 20°

leading. Hence as a phasor the voltage V is written as 1006 6 20° V.

Power factor D 0.866 D cos�, from which � D arccos 0.866 D 30°.
Hence the angle between voltage and current is 30°.

Power P D VI cos�. Hence 1732 D �100	I cos 30° from which,

current, jIj D 1732

�100	�0.866	
D 20 A

Since the power factor is leading, the current phasor leads the
voltage — in this case by 30°. Since the voltage has a phase angle
of 20°,

current, I D 20 6 �20° C 30°	 A D 206 6 50° A

(b) Impedance Z D V

I
D 100 6 20°

20 6 50°
D 5 6 �30° � or �4.33 � j2.5	�

Hence the resistance, R = 4.33Z and the capacitive reactance,
XC D 2.5 �.

Alternatively, the resistance may be determined from active power,
P D I2R. Hence 1732 D �20	2R, from which,

resistanceR D 1732

�20	2
D 4.33Z

(c) Since v D 141.4 sin�104tC �
/9		 volts, angular velocity

ω D 104 rad/s. Capacitive reactance, XC D 2.5 �, thus

2.5 D 1

2
fC
D 1

ωC

from which, capacitance,C D 1

2.5ω
D 1

�2.5	�104	
F D 40 mF

Problem 4. For the circuit shown in Figure 26.8, determine the
active power developed between points (a) A and B, (b) C and D,
(c) E and F.

Figure 26.8
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Circuit impedance, Z D 5 C �3 C j4	��j10	

�3 C j4 � j10	
D 5 C �40 � j30	

�3 � j6	

D 5 C 50 6 �36.87°

6.71 6 �63.43°
D 5 C 7.45 6 26.56°

D 5 C 6.66 C j3.33 D �11.66 C j3.33	� or

12.136 15.94° �

Current I D V

Z
D 100 6 0°

12.13 6 15.94°
D 8.24 6 �15.94° A

(a) Active power developed between points A and B D I2R D
�8.24	2�5	 D 339.5 W

(b) Active power developed between points C and D is zero, since no
power is developed in a pure capacitor.

(c) Current, I1 D I
(

ZCD
ZCD C ZEF

)
D 8.24 6 �15.94°

( �j10

3 � j6

)

D 8.24 6 �15.94°
(

10 6 �90°

6.71 6 �63.43°

)

D 12.28 6 �42.51° A

Hence the active power developed between points E and F
D I2

1R D �12.28	2�3	 D 452.4 W

[Check: Total active power developed D 339.5 C 452.4 D 791.9 W
or 792 W, correct to three significant figures.

Total active power, P D I2RT D �8.24	2�11.66	 D 792 W (since
1l.66 � is the total circuit equivalent resistance)

or P D VI cos� D �100	�8.24	 cos 15.94° D 792 W]

Problem 5. The circuit shown in Figure 26.9 dissipates an active
power of 400 W and has a power factor of 0.766 lagging. Determine
(a) the apparent power, (b) the reactive power, (c) the value and
phase of current I, and (d) the value of impedance Z.

Figure 26.9
Since power factor D 0.766 lagging, the circuit phase angle
� D arccos 0.766, i.e., � D 40° lagging which means that the current I
lags voltage V by 40°.

(a) Since power, P D VI cos�, the magnitude of apparent power,

S D VI D P

cos�
D 400

0.766
D 522.2 VA

(b) Reactive power Q D VI sin� D �522.2	�sin 40°	 D 335.7 var lagg-
ing. (The reactive power is lagging since the circuit is inductive,Figure 26.10
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Figure 26.11 (a) Circuit
diagram (b) Phasor diagram

which is indicated by the lagging power factor.) The power triangle
is shown in Figure 26.10.

(c) Since VI D 522.2 VA,

magnitude of current jIj D 522.2

V
D 522.2

100
D 5.222 A

Since the voltage is at a phase angle of 30° (see Figure 26.9)
and current lags voltage by 40°, the phase angle of current is
30° � 40° D �10°. Hence current I = 5.2226 6 −10° A

(d) Total circuit impedance ZT D V

I
D 100 6 30°

5.222 6 �10°

D 19.15 6 40° � or �14.67 C j12.31	�

Hence impedance Z D ZT � 4 D �14.67 C j12.31	� 4

D .10.67Y j 12.31/Z or 16.296 6 49.08° Z

Further problems on power in a.c. circuits may be found in Section 26.6,
problems 1 to 12, page 472.

26.5 Power factor
improvement

For a particular active power supplied, a high power factor reduces the
current flowing in a supply system and therefore reduces the cost of cables,
transformers, switchgear and generators, as mentioned in Section 16.7,
page 252. Supply authorities use tariffs which encourage consumers to
operate at a reasonably high power factor. One method of improving the
power factor of an inductive load is to connect a bank of capacitors in
parallel with the load. Capacitors are rated in reactive voltamperes and
the effect of the capacitors is to reduce the reactive power of the system
without changing the active power. Most residential and industrial loads on
a power system are inductive, i.e. they operate at a lagging power factor.

A simplified circuit diagram is shown in Figure 26.11(a) where a capac-
itor C is connected across an inductive load. Before the capacitor is
connected the circuit current is ILR and is shown lagging voltage V by
angle �1 in the phasor diagram of Figure 26.11(b). When the capacitor C
is connected it takes a current IC which is shown in the phasor diagram
leading voltage V by 90°. The supply current I in Figure 26.11(a) is now
the phasor sum of currents ILR and IC as shown in Figure 26.11(b). The
circuit phase angle, i.e., the angle between V and I, has been reduced from
�1 to �2 and the power factor has been improved from cos�1 to cos�2.

Figure 26.12(a) shows the power triangle for an inductive circuit with
a lagging power factor of cos �1. In Figure 26.12(b), the angle �1 has
been reduced to �2, i.e., the power factor has been improved from
cos�1 to cos�2 by introducing leading reactive voltamperes (shown as
length ab) which is achieved by connecting capacitance in parallel with
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Figure 26.12 Effect of
connecting capacitance in
parallel with the inductive load

the inductive load. The power factor has been improved by reducing the
reactive voltamperes; the active power P has remained unaffected.

Power factor correction results in the apparent power S decreasing
(from 0a to 0b in Figure 26.12(b)) and thus the current decreasing, so
that the power distribution system is used more efficiently.

Another method of power factor improvement, besides the use of static
capacitors, is by using synchronous motors; such machines can be made
to operate at leading power factors.

Problem 6. A 300 kVA transformer is at full load with an overall
power factor of 0.70 lagging. The power factor is improved by
adding capacitors in parallel with the transformer until the overall
power factor becomes 0.90 lagging. Determine the rating (in kilo-
vars) of the capacitors required.

At full load, active power, P D VI cos� D �300	�0.70	 D 210 kW.

Circuit phase angle � D arccos 0.70 D 45.57°

Reactive power, Q D VI sin� D �300	�sin 45.57°	 D 214.2 kvar lagging.
The power triangle is shown as triangle 0ab in Figure 26.13. When the

power factor is 0.90, the circuit phase angle � D arccos 0.90 D 25.84°.
The capacitor rating needed to improve the power factor to 0.90 is given
by length bd in Figure 26.13.

Figure 26.13

Tan 25.84° D ad/210, from which, ad D 210 tan 25.84° D 101.7 kvar.
Hence the capacitor rating, i.e., bd D ab� ad D 214.2 � 101.7 D
112.5 kvar leading.

Problem 7. A circuit has an impedance Z D �3 C j4	� and a
source p.d. of 50 6 30° V at a frequency of 1.5 kHz. Determine
(a) the supply current, (b) the active, apparent and reactive power,
(c) the rating of a capacitor to be connected in parallel with
impedance Z to improve the power factor of the circuit to 0.966
lagging, and (d) the value of capacitance needed to improve the
power factor to 0.966 lagging.

(a) Supply current, I D V

Z
D 50 6 30°

�3 C j4	
D 50 6 30°

5 6 53.13°
D 106 6 −23.13° A

(b) Apparent power, S D VIŁ D �50 6 30°	�10 6 23.13°	

D 500 6 53.13° VA

D �300 C j400	VA D PC jQ

Hence active power,P= 300 W

apparent power, S= 500 VA and

reactive power,Q= 400 var lagging.



472 Electrical Circuit Theory and Technology

Figure 26.14

The power triangle is shown in Figure 26.14.

(c) A power factor of 0.966 means that cos � D 0.966.
Hence angle � D arccos 0.966 D 15°

To improve the power factor from cos 53.13°, i.e. 0.60, to 0.966, the
power triangle will need to change from Ocb (see Figure 26.15) to
0ab, the length ca representing the rating of a capacitor connected in
parallel with the circuit. From Figure 26.15, tan 15° D ab/300, from
which, ab D 300 tan 15° D 80.38 var.

Hence the rating of the capacitor, ca D cb� ab

D 400 � 80.38

D 319.6 var leading.

Figure 26.15

(d) Current in capacitor, IC D Q

V
D 319.6

50
D 6.39 A

Capacitive reactance, XC D V

IC
D 50

6.39
D 7.82 �

Thus 7.82 D 1/�2
fC	, from which,

required capacitanceC D 1

2
�1500	�7.82	
F 	 13.57 mF

Further problems on power factor improvement may be found in
Section 26.6 following, problems 13 to 16, page 473.

26.6 Further problems
on power in a.c. circuits

Power in a.c. circuits

1 When the voltage applied to a circuit is given by �2 C j5	V, the
current flowing is given by �8 C j4	A. Determine the power dissi-
pated in the circuit. [36 W]

2 A current of �12 C j5	A flows in a circuit when the supply voltage
is �150 C j220	V. Determine (a) the active power, (b) the reactive
power, and (c) the apparent power. Draw the power triangle.

[(a) 2.90 kW (b) 1.89 kvar lagging (c) 3.46 kVA]

3 A capacitor of capacitive reactance 40 � and a resistance of 30 �
are connected in series to a supply voltage of 200 6 60° V. Determine
the active power in the circuit. [480 W]

4 The circuit shown in Figure 26.16 takes 81 VA at a power factor of
0.8 lagging. Determine the value of impedance Z.

[�4 C j3	� or 5 6 36.87° �]

5 A series circuit possesses inductance L and resistance R. The
circuit dissipates a power of 2.898 kW and has a power
factor of 0.966 lagging. If the applied voltage is given by v D
169.7 sin�100t � �
/4		 volts, determine (a) the current flowingFigure 26.16
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and its phase, (b) the value of resistance R, and (c) the value of
inductance L.

[(a) 256 �60° A (b) 4.64 � (c) 12.4 mH]

6 The p.d. across and the current in a certain circuit are represented
by �190 C j40	V and �9 � j4	A respectively. Determine the active
power and the reactive power, stating whether the latter is leading
or lagging. [1550 W; 1120 var lagging]

7 Two impedances, Z1 D 6 6 40° � and Z2 D 10 6 30° � are connected
in series and have a total reactive power of 1650 var lagging. Deter-
mine (a) the average power, (b) the apparent power, and (c) the
power factor. [(a) 2469 W (b) 2970 VA (c) 0.83 lagging]

8 A current i D 7.5 sin�ωt � �
/4		 A flows in a circuit which has
an applied voltage v D 180 sin�ωt C �
/12		V. Determine (a) the
circuit impedance, (b) the active power, (c) the reactive power, and
(d) the apparent power. Draw the power triangle.

[(a) 246 60° � (b) 337.5 W
(c) 584.6 var lagging (d) 675 VA]

Figure 26.17

9 The circuit shown in Figure 26.17 has a power of 480 W and a power
factor of 0.8 leading. Determine (a) the apparent power, (b) the reac-
tive power, and (c) the value of impedance Z.

[(a) 600 VA (b) 360 var leading
(c) �3 � j3.6	� or 4.696 �50.19° �]

10 For the network shown in Figure 26.18, determine (a) the values of
currents I1 and I2, (b) the total active power, (c) the reactive power,
and (d) the apparent power.

[(a) I1 D 6.20 6 29.74° A, I2 D 19.86 6 �8.92° A (b) 981 W
(c) 153.9 var leading (d) 992.8 VA]

Figure 26.18

11 A circuit consists of an impedance 5 6 �45° � in parallel with a
resistance of 10 �. The supply current is 4 A. Determine for the
circuit (a) the active power, (b) the reactive power, and (c) the power
factor. [(a) 49.34 W (b) 28.90 var leading (c) 0.863 leading]

12 For the network shown in Figure 26.19, determine the active power
developed between points (a) A and B, (b) C and D, (c) E and F

[(a) 254.1 W (b) 0 (c) 65.92 W]

Power factor improvement

13 A 600 kVA transformer is at full load with an overall power factor of
0.64 lagging. The power factor is improved by adding capacitors in
parallel with the transformer until the overall power factor becomes
0.95 lagging. Determine the rating (in kvars) of the capacitors
needed. [334.8 kvar leading]

14 A source p.d. of 130 6 40° V at 2 kHz is applied to a circuit having an
impedance of �5 C j12	�. Determine (a) the supply current, (b) the
active, apparent and reactive powers, (c) the rating of the capac-
itor to be connected in parallel with the impedance to improve theFigure 26.19
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Figure 26.20

power factor of the circuit to 0.940 lagging, and (d) the value of the
capacitance of the capacitor required.

[(a) 106 �27.38° A (b) 500 W, 1300 VA, 1200 var lagging
(c) 1018.5 var leading (d) 4.797 µF]

15 The network shown in Figure 26.20 has a total active power of
2253 W. Determine (a) the total impedance, (b) the supply current,
(c) the apparent power, (d) the reactive power, (e) the circuit power
factor, (f) the capacitance of the capacitor to be connected in parallel
with the network to improve the power factor to 0.90 lagging, if the
supply frequency is 50 Hz.

[(a) 3.51 6 58.40° � (b) 35.0 A (c) 4300 VA
(d) 3662 var lagging (e) 0.524 lagging (f) 542.3 µF]

16 The power factor of a certain load is improved to 0.92 lagging with
the addition of a 30 kvar bank of capacitors. If the resulting supply
apparent power is 200 kVA, determine (a) the active power, (b) the
reactive power before power factor correction, and (c) the power
factor before correction.

[(a) 184 kW (b) 108.4 kvar lagging (c) 0.862 lagging]



Assignment 8

This assignment covers the material contained in chapters 23
to 26.

The marks for each question are shown in brackets at the end of
each question.

1 The total impedance ZT of an electrical circuit is given by:

ZT D Z1 C Z2 ð Z3

Z2 C Z3

Determine ZT in polar form, correct to 3 significant figures, when

Z1 D 5.5 6 �21° �,Z2 D 2.6 6 30° � and Z3 D 4.8 6 71° � �10�

2 For the network shown in Figure A8.1, determine

(a) the equivalent impedance of the parallel branches
(b) the total circuit equivalent impedance
(c) current I
(d) the circuit phase angle
(e) currents I1 and I2

(f) the p.d. across points A and B
(g) the p.d. across points B and C
(h) the active power developed in the inductive branch
(i) the active power developed across the �j10 � capacitor
(j) the active power developed between points B and C
(k) the total active power developed in the network
(l) the total apparent power developed in the network

(m) the total reactive power developed in the network (30)

I

A
I1

8 Ω

j6 Ω

B

5 Ω

−j3 Ω

C

170∠ 0° V

I2

−j10 Ω

Figure A8.1
3 A 400 kVA transformer is at full load with an overall power factor

of 0.72 lagging. The power factor is improved by adding capaci-
tors in parallel with the transformer until the overall power factor
becomes 0.92 lagging. Determine the rating (in kilovars) of the capa-
citors required (10)



27 A.c. bridges

At the end of this chapter you should be able to:

ž derive the balance equations of any a.c. bridge circuit

ž state types of a.c. bridge circuit

ž calculate unknown components when using an a.c. bridge
circuit

27.1 Introduction A.C. bridges are electrical networks, based upon an extension of
the Wheatstone bridge principle, used for the determination of an
unknown impedance by comparison with known impedances and for
the determination of frequency. In general, they contain four impe-
dance arms, an a.c. power supply and a balance detector which is sensitive
to alternating currents. It is more difficult to achieve balance in an
a.c. bridge than in a d.c. bridge because both the magnitude and the
phase angle of impedances are related to the balance condition. Balance
equations are derived by using complex numbers. A.C. bridges provide
precise methods of measurement of inductance and capacitance, as well
as resistance.

27.2 Balance conditions
for an a.c. bridge

The majority of well known a.c. bridges are classified as four-arm bridges
and consist of an arrangement of four impedances (in complex form,
Z D R š jX) as shown in Figure 27.1. As with the d.c. Wheatstone
bridge circuit, an a.c. bridge is said to be ‘balanced’ when the current
through the detector is zero (i.e., when no current flows between B and
D of Figure 27.1). If the current through the detector is zero, then the
current I1 flowing in impedance Z1 must also flow in impedance Z2.
Also, at balance, the current I4 flowing in impedance Z4, must also flow
through Z3.

Figure 27.1 Four-arm bridge

At balance:

(i) the volt drop between A and B is equal to the volt drop between A
and D,

i.e., VAB D VAD

i.e., I1Z1 D I4Z4 (both in magnitude and in phase) �27.1	

(ii) the volt drop between B and C is equal to the volt drop between D
and C,

i.e., VBC D VDC
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i.e., I1Z2 D I4Z3 (both in magnitude and in phase) �27.2	

Dividing equation (27.1) by equation (27.2) gives

I1Z1

I1Z2
D I4Z4

I4Z3

from which
Z1

Z2
D Z4

Z3

or Z1Z3 = Z2Z4 �27.3	

Equation (27.3) shows that at balance the products of the impedances of
opposite arms of the bridge are equal.

If in polar form, Z1 D jZ1j 6 ˛1, Z2 D jZ2j 6 ˛2, Z3 D jZ3j 6 ˛3,
and Z4 D jZ4j 6 ˛4, then from equation (27.3), �jZ1j 6 ˛1	�jZ3j 6 ˛3	 D
�jZ2j 6 ˛2	�jZ4j 6 ˛4	, which shows that there are two conditions to be
satisfied simultaneously for balance in an a.c. bridge, i.e.,

jZ1j jZ3j = jZ2j jZ4j and a1 Y a3 = a2 Y a4

When deriving balance equations of a.c. bridges, where at least two of
the impedances are in complex form, it is important to appreciate that for
a complex equation a C jb D c C jd the real parts are equal, i.e. a D c,
and the imaginary parts are equal, i.e., b D d.

Usually one arm of an a.c. bridge circuit contains the unknown
impedance while the other arms contain known fixed or variable
components. Normally only two components of the bridge are variable.
When balancing a bridge circuit, the current in the detector is gradually
reduced to zero by successive adjustments of the two variable components.
At balance, the unknown impedance can be expressed in terms of the fixed
and variable components.

Procedure for determining the balance equations of any a.c. bridge
circuit

(i) Determine for the bridge circuit the impedance in each arm in
complex form and write down the balance equation as in equa-
tion (27.3). Equations are usually easier to manipulate if L and C
are initially expressed as XL and XC, rather than ωL or 1/(ωC).

(ii) Isolate the unknown terms on the left-hand side of the equation in
the form a C jb.

(iii) Manipulate the terms on the right-hand side of the equation into
the form c C jd.

(iv) Equate the real parts of the equation, i.e., a D c, and equate the
imaginary parts of the equation, i.e., b D d.

(v) Substitute ωL for XL and 1/(ωC) for Xc where appropriate and
express the final equations in their simplest form.
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Types of detector used with a.c. bridges vary with the type of bridge
and with the frequency at which it is operated. Common detectors used
include:

(i) a C.R.O., which is suitable for use with a very wide range of
frequencies;

(ii) earphones (or telephone headsets), which are suitable for frequen-
cies up to about 10 kHz and are used often at about 1 kHz, in which
region the human ear is very sensitive;

(iii) various electronic detectors, which use tuned circuits to detect
current at the correct frequency; and

(iv) vibration galvanometers, which are usually used for mains-operated
bridges. This type of detector consists basically of a narrow moving
coil which is suspended on a fine phosphor bronze wire between
the poles of a magnet. When a current of the correct frequency
flows through the coil, it is set into vibration. This is because
the mechanical resonant frequency of the suspension is purposely
made equal to the electrical frequency of the coil current. A mirror
attached to the coil reflects a spot of light on to a scale, and
when the coil is vibrating the spot appears as an extended beam
of light. When the band reduces to a spot the bridge is balanced.
Vibration galvanometers are available in the frequency range 10 Hz
to 300 Hz.

27.3 Types of a.c. bridge
circuit

A large number of bridge circuits have been developed, each of which
has some particular advantage under certain conditions. Some of the most
important a.c. bridges include the Maxwell, Hay, Owen and Maxwell-
Wien bridges for measuring inductance, the De Sauty and Schering
bridges for measuring capacitance, and the Wien bridge for measuring
frequency. Obviously a large number of combinations of components in
bridges is possible.

In many bridges it is found that two of the balancing impedances will be
of the same nature, and often consist of standard non-inductive resistors.

For a bridge to balance quickly the requirement is either:

(i) the adjacent arms are both pure components (i.e. either both resis-
tors, or both pure capacitors, or one of each) — this type of bridge
being called a ratio-arm bridge (see, for example, paras (a), (c),
(e) and (g) below); or

(ii) a pair of opposite arms are pure components — this type of bridge
being called a product-arm bridge (see, for example, paras (b),
(d) and (f) below).

A ratio-arm bridge can only be used to measure reactive quantities of
the same type. When using a product-arm bridge the reactive component
of the balancing impedance must be of opposite sign to the unknown
reactive component.
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Figure 27.2 Simple Maxwell
bridge

A commercial or universal bridge is available and can be used to
measure resistance, inductance or capacitance.

(a) The simple Maxwell bridge

This bridge is used to measure the resistance and inductance of a
coil having a high Q-factor (where Q-factor D ωL/R, see Chapters 15
and 28).

A coil having unknown resistance Rx and inductance Lx is shown in
the circuit diagram of a simple Maxwell bridge in Figure 27.2. R4 and
L4 represent a standard coil having known variable values. At balance,
expressions for Rx and Lx may be derived in terms of known components
R2, R3, R4 and L4.

The procedure for determining the balance equations given in
Section 27.2 may be followed.

(i) From Figure 27.2, Zx D Rx C jXLx , Z2 D R2, Z3 D R3 and
Z4 D R4 C jXL4 .

At balance, �Zx	�Z3	 D �Z2	�Z4	, from equation (27.3),

i.e., �Rx C jXLx 	�R3	 D �R2	�R4 C jXL4	

(ii) Isolating the unknown impedance on the left-hand side of the equa-
tion gives

�Rx C jXLx 	 D R2

R3
�R4 C jXL4	

(iii) Manipulating the right-hand side of the equation into �a C jb	 form
gives

�Rx C jXLx 	 D R2R4

R3
C j

R2XL4

R3

(iv) Equating the real parts gives Rx D R2R4

R3

Equating the imaginary parts gives XLx D R2XL4

R3

(v) Since XL D ωL, then

ωLx D R2�ωL4	

R3
from which Lx D R2L4

R3

Thus at balance the unknown components in the simple Maxwell bridge
are given by

Rx =
R2R4

R3
and Lx =

R2L4

R3

These are known as the ‘balance equations’ for the bridge.



480 Electrical Circuit Theory and Technology

Figure 27.3 Hay bridge

(b) The Hay bridge

This bridge is used to measure the resistance and inductance of a coil
having a very high Q-factor. A coil having unknown resistance Rx

and inductance Lx is shown in the circuit diagram of a Hay bridge in
Figure 27.3.

Following the procedure of Section 27.2 gives:

(i) From Figure 27.3, Zx D Rx C jXLx , Z2 D R2, Z3 D R3 � jXC3 , and
Z4 D R4.

At balance �Zx	�Z3	 D �Z2	�Z4	, from equation (27.3),

i.e., �Rx C jXLx 	�R3 � jXC3	 D �R2	�R4	

(ii) �Rx C jXLx 	 D R2R4

R3 � jXC3

(iii) Rationalizing the right-hand side gives

�Rx C jXLx 	 D R2R4�R3 C jXC3	

�R3 � jXC3	�R3 C jXC3	
D R2R4�R3 C jXC3	

R2
3 C X2

C3

i.e. �Rx C jXLx 	 D R2R3R4

R2
3 C X2

C3

C j
R2R4XC3

R2
3 C X2

C3

(iv) Equating the real parts gives Rx D R2R3R4

R2
3 C X2

C3

Equating the imaginary parts gives XLx D R2R4XC3

R2
3 C X2

C3

(v) Since XC3 D 1

ωC3
,

Rx D R2R3R4

R2
3 C �1/�ω2C2

3		
D R2R3R4

�ω2C2
3R2

3 C 1	/�ω2C2
3	

i.e. Rx D ω2C2
3R2R3R4

1 C ω2C2
3R2

3

Since XLx D ωLx,

ωLx D R2R4�1/�ωC3		

�ω2C2
3R2

3 C 1	/�ω2C2
3	

D ω2C2
3R2R4

ωC3�1 C ω2C2
3R2

3	

i.e. Lx D C3R2R4

�1 C ω2C2
3R2

3	
by cancelling.

Thus at balance the unknown components in the Hay bridge are given by

Rx =
!2C2

3 R2R3R4

.1Y !2C2
3 R2

3/
and Lx =

C3R2R4

.1Y !2C2
3 R2

3/
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Since ω�D 2�f	 appears in the balance equations, the bridge is
frequency-dependent.

(c) The Owen bridge

This bridge is used to measure the resistance and inductance of coils
possessing a large value of inductance. A coil having unknown resistance
Rx and inductance Lx is shown in the circuit diagram of an Owen bridge in
Figure 27.4, from which Zx D Rx C jXLx , Z2 D R2 � jXC2 , Z3 D �jXC3

and Z4 D R4.

At balance �Zx	�Z3	 D �Z2	�Z4	, from equation (27.3), i.e.,

�Rx C jXLx 	��jXC3	 D �R2 � jXC2	�R4	.

Rearranging gives Rx C jXLx D �R2 � jXC2	R4

�jXC3

By rationalizing and equating real and imaginary parts it may be shown
that at balance the unknown components in the Owen bridge are given by

Rx =
R4C3

C2
and Lx = R2R4C3

(d) The Maxwell-Wien bridge

This bridge is used to measure the resistance and inductance of a coil
having a low Q-factor. A coil having unknown resistance Rx and induc-
tance Lx is shown in the circuit diagram of a Maxwell-Wien bridge in
Figure 27.5, from which Zx D Rx C jXLx ,Z2 D R2 and Z4 D R4.

Arm 3 consists of two parallel-connected components. The equivalent
impedance Z3, is given either

(i) by
product

sum
, i.e., Z3 D �R3	��jXC3	

�R3 � jXC3	
, or

Figure 27.4 Owen bridge Figure 27.5 Maxwell-Wien bridge
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(ii) by using the reciprocal impedance expression,

1

Z3
D 1

R3
C 1

�jXC3

from which Z3 D 1

�1/R3	 C �1/��jXC3		
D 1

�1/R3	 C �j/XC3	

or Z3 D 1
1

R3
C jωC3

, since XC3 D 1

ωC3

Whenever an arm of an a.c. bridge consists of two branches in
parallel, either method of obtaining the equivalent impedance may
be used.

For the Maxwell-Wien bridge of Figure 27.5, at balance

�Zx	�Z3	 D �Z2	�Z4	, from equation (27.3)

i.e., �Rx C jXLx 	
�R3	��jXC3	

�R3 � jXC3	
D R2R4

using method (i) for Z3. Hence

�Rx C jXLx 	 D R2R4
�R3 � jXC3	

�R3	��jXC3	

By rationalizing and equating real and imaginary parts it may be
shown that at balance the unknown components in the Maxwell-
Wien bridge are given by

Rx =
R2R4

R3
and Lx = C3R2R4

(e) The de Sauty bridge

This bridge provides a very simple method of measuring a capacitance
by comparison with another known capacitance. In the de Sauty bridge
shown in Figure 27.6, Cx is an unknown capacitance and C4 is a standard
capacitor.

At balance �Zx	�Z3	 D �Z2	�Z4	

i.e. ��jXCx
	�R3	 D �R2	��jXC4

	

Hence �XCx 	�R3	 D �R2	�XC4	(
1

ωCx

)
�R3	 D �R2	

(
1

ωC4

)
Figure 27.6 De Sauty bridge
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from which
R3

Cx
D R2

C4
or Cx =

R3C4

R2

This simple bridge is usually inadequate in most practical cases. The
power factor of the capacitor under test is significant because of internal
dielectric losses — these losses being the dissipation within a dielectric
material when an alternating voltage is applied to a capacitor.

(f) The Schering bridge

This bridge is used to measure the capacitance and equivalent series resis-
tance of a capacitor. From the measured values the power factor of insu-
lating materials and dielectric losses may be determined. In the circuit
diagram of a Schering bridge shown in Figure 27.7, Cx is the unknown
capacitance and Rx its equivalent series resistance.

From Figure 27.7, Zx D Rx � jXCx
, Z2 D �jXC2

Z3 D �R3	��jXC3	

�R3 � jXC3	
and Z4 D R4

Figure 27.7 Schering bridge
At balance, �Zx	�Z3	 D �Z2	�Z4	 from equation (27.3), i.e.,

�Rx � jXCx
	
�R3	��jXC3

	

R3 � jXC3

D ��jXC2
	�R4	

from which �Rx � jXCx
	 D ��jXC2

R4	�R3 � jXC3
	

�jXC3
R3

D XC2R4

XC3R3
�R3 � jXC3

	

Equating the real parts gives

Rx D XC2R4

XC3

D �1/ωC2	R4

�1/ωC3	
D C3R4

C2

Equating the imaginary parts gives

�XCx D �XC2R4

R3

i.e.
1

ωCx
D �1/ωC2	R4

R3
D R4

ωC2R3

from which Cx D C2R3

R4

Thus at balance the unknown components in the Schering bridge are
given by

Rx =
C3R4

C2
and Cx =

C2R3

R4
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Figure 27.8 Phasor diagram
for the unknown arm in the
Schering bridge

The loss in a dielectric may be represented by either (a) a resistance
in parallel with a capacitor, or (b) a lossless capacitor in series with a
resistor.

If the dielectric is represented by an R-C circuit, as shown by Rx and
Cx in Figure 27.7, the phasor diagram for the unknown arm is as shown
in Figure 27.8. Angle � is given by

� D arctan
VCx

VRx

D arctan
IxXCx

IxRx

i.e., � D arctan
(

1

ωCxRx

)

The power factor of the unknown arm is given by cos �.

The angle υ (D 90° � �) is called the loss angleand is given by

υ D arctan
VRx

VCx

= arctan !Cx Rx and

υ D arctan
[
ω
(

C2R3

R4

)(
C3R4

C2

)]

= arctan .!R3C3/

(See also Chapter 39, page 716)

(g) The Wien bridge

This bridge is used to measure frequency in terms of known components
(or, alternatively, to measure capacitance if the frequency is known). It
may also be used as a frequency-stabilizing network.Figure 27.9 Wien bridge

A typical circuit diagram of a Wien bridge is shown in Figure 27.9,
from which

Z1 D R1, Z2 D 1

�1/R2	 C jωC2
(see (ii), para (d), page 482),

Z3 D R3 � jXC3
and Z4 D R4.

At balance, �Z1	�Z3	 D �Z2	�Z4	 from equation (27.3), i.e.,

�R1	�R3 � jXC3
	 D

(
1

�1/R2	 C jωC2

)
�R4	

Rearranging gives
(

R3 � j

ωC3

)(
1

R2
C jωC2

)
D R4

R1

R3

R2
C C2

C3
� j

(
1

ωC3R2

)
C jωC2R3 D R4

R1
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Equating real parts gives

R3

R2
Y

C2

C3
=

R4

R1
�27.4	

Equating imaginary parts gives

� 1

ωC3R2
C ωC2R3 D 0

i.e. ωC2R3 D 1

ωC3R2

from which ω2 D 1

C2C3R2R3

Since ω D 2�f, frequency, f =
1

2p
p

.C2C3R2R3/
(27.5)

Note that if C2 D C3 D C and R2 D R3 D R,

frequency, f D 1

2�
p

�C2R2	
D 1

2�CR

Problem 1. The a.c. bridge shown in Figure 27.10 is used to
measure the capacitance Cx and resistance Rx . (a) Derive the
balance equations of the bridge. (b) Given R3 D R4, C2 D 0.2 µF,
R2 D 2.5 k� and the frequency of the supply is 1 kHz, determine
the values of Rx and Cx at balance.

Figure 27.10
(a) Since Cx and Rx are the unknown values and are connected in

parallel, it is easier to use the reciprocal impedance form for this

branch
(

rather than
product

sum

)
,

i.e.
1

Zx
D 1

Rx
C 1

�jXCx

D 1

Rx
C j

XCx

from which Zx D 1

�1/Rx	 C jωCx

From Figure 27.10, Z2 D R2 � jXC2
, Z3 D R3and Z4 D R4.

At balance, �Zx	�Z3	 D �Z2	�Z4	

(
1

�1/Rx	 C jωCx

)
�R3	 D �R2 � jωXC2	�R4	
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hence
R3

R4�R2 � jXC2
	

D 1

Rx
C jωCx

Rationalizing gives
R3�R2 C jXC2

	

R4�R2
2 C X2

C2
	

D 1

Rx
C jωCx

Hence
1

Rx
C jωCx D R3R2

R4�R2
2 C �1/ω2C2

2	
C jR3�1/ωC2	

R3�R2
2 C �1/ω2C2

2		

Equating the real parts gives

1

Rx
D R3R2

R4�R2
2 C �1/ω2C2

2	

i.e. Rx D R4

R2R3

(
R2

2ω2C2
2 C 1

ω2C2
2

)

and Rx =
R4.1Y !2C2

2 R2
2/

R2R3!2C2
2

Equating the imaginary parts gives

ωCx D R3�1/ωC2	

R4�R2
2 C �1/ω2C2

2		

D R3

ωC2R4��R2
2ω2C2

2 C 1	/ω2C2
2	

i.e. ωCx D R3ω2C2
2

ωC2R4�1 C ω2C2
2R2

2	

and Cx =
R3C2

R4.1Y !2C2
2 R2

2/

(b) Substituting the given values gives

Rx D �1 C ω2C2
2R2

2	

R2ω2C2
2

since R3 D R4

i.e. Rx D 1 C �2�1000	2�0.2 ð 10�6	2�2.5 ð 103	2

�2.5 ð 103	�2�1000	2�0.2 ð 10�6	2

D 1 C 9.8696

3.9478 ð 10�3

 2.75 k�

Cx D C2

�1 C ω2C2
2R2

2	
since R3 D R4

D �0.2 ð 10�6	

1 C 9.8696
µF D 0.01840 µF or 18.40 nF

Hence at balanceRx = 2.75 kZ and Cx = 18.40 nF
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Problem 2. For the Wien bridge shown in Figure 27.9, R2 D
R3 D 30 k�, R4 D 1 k� and C2 D C3 D 1 nF. Determine, when
the bridge is balanced, (a) the value of resistance R1, and (b) the
frequency of the bridge.

(a) From equation (27.4)

R3

R2
C C2

C3
D R4

R1

i.e., 1 C 1 D 1000/R1, since R2 D R3 and C2 D C3, from which

resistanceR1 D 1000

2
D 500Z

(b) From equation (27.5),

frequency, f D 1

2�
p

�C2C3R2R3	
D 1

2�
√

[�10�9	2�30 ð 103	2]

D 1

2��10�9	�30 ð 103	

 5.305 kHz

Problem 3. A Schering bridge network is as shown in Figure 27.7,
page 480. Given C2 D 0.2 µF, R4 D 200 �, R3 D 600 �, C3 D
4000 pF and the supply frequency is 1.5 kHz, determine, when
the bridge is balanced, (a) the value of resistance Rx, (b) the value
of capacitance Cx , (c) the phase angle of the unknown arm, (d) the
power factor of the unknown arm and (e) its loss angle.

From para (f), the equations for Rx and Cx at balance are given by

Rx D R4C3

C2
and Cx D C2R3

R4

(a) Resistance, Rx D R4C3

C2
D �200	�4000 ð 10�12	

0.2 ð 10�6
D 4 Z

(b) Capacitance, Cx D C2R3

R4
D �0.2 ð 10�6	�600	

�200	
F D 0.6 mF

(c) The phasor diagram for Rx and Cx in series is shown in Figure 27.11.

Phase angle, � D arctan
VCx

VRx

D arctan
IxXCx

IxRx
D arctan

1

ωCxRx

i.e.  D arctan
(

1

�2�1500	�0.6 ð 10�6	�4	

)

D arctan 44.21 D 88.7° leadFigure 27.11
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(d) Power factor of capacitor = cos � D cos 88.7° D 0.0227

(e) Loss angle, shown as υ in Figure 27.11, is given by
υ D 90° � 88.7° D 1.3°

Alternatively, loss angle υ D arctan ωCxRx (see para (f), page 483)

D arctan
(

1

44.21

)
from (c) above,

i.e., υ D 1.3°

Further problems on a.c. bridges may be found in Section 27.4 following,
problems 1 to 13.

27.4 Further problems
on a.c. bridges

1 A Maxwell-Wien bridge circuit ABCD has the following arm
impedances: AB, 250 � resistance; BC, 2 µF capacitor in parallel
with a 10 k� resistor; CD, 400 � resistor; DA, unknown inductor
having inductance L in series with resistance R. Determine the values
of L and R if the bridge is balanced. [L D 0.20 H, R D 10 �]

2 In a four-arm de Sauty a.c. bridge, arm 1 contains a 2 k� non-
inductive resistor, arm 3 contains a loss-free 2.4 µF capacitor, and
arm 4 contains a 5 k� non-inductive resistor. When the bridge is
balanced, determine the value of the capacitor contained in arm 2.

[6 µF]

3 A four-arm bridge ABCD consists of: AB — fixed resistor R1;
BC — variable resistor R2 in series with a variable capacitor C2;
CD — fixed resistor R3; DA — coil of unknown resistance R and
inductance L. Determine the values of R and L if, at balance,
R1 D 1 k�, R2 D 2.5 k�, C2 D 4000 pF, R3 D 1 k� and the supply
frequency is 1.6 kHz. [R D 4.00 �, L D 3.96 mH]

4 The bridge shown in Figure 27.12 is used to measure capacitance
Cx and resistance Rx. Derive the balance equations of the bridge
and determine the values of Cx and Rx when R1 D R4, C2 D 0.1 µF,
R2 D 2 k� and the supply frequency is 1 kHz.

[Cx D 38.77 nF, Rx D 3.27 k�]

5 In a Schering bridge network ABCD, the arms are made up as
follows: AB — a standard capacitor C1; BC — a capacitor C2 in
parallel with a resistor R2; CD — a resistor R3; DA — the capacitor
under test, represented by a capacitor Cx in series with a resistor
Rx. The detector is connected between B and D and the a.c. supply
is connected between A and C. Derive the equations for Rx and
Cx when the bridge is balanced. Evaluate Rx and Cx if, at balance,
C1 D 1 nF, R2 D 100 �, R3 D 1 k�and C2 D 10 nF.

[Rx D 10 k�, Cx D 100 pF]
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Figure 27.12 Figure 27.13

6 The a.c. bridge shown in Figure 27.13 is balanced when the values
of the components are shown. Determine at balance, the values of
Rx and Lx . [R D 2 k�, Lx D 0.2 H]

7 An a.c. bridge has, in arm AB, a pure capacitor of 0.4 µF; in arm BC,
a pure resistor of 500 �; in arm CD, a coil of 50 � resistance and
0.1 H inductance; in arm DA, an unknown impedance comprising
resistance Rx and capacitance Cx in series. If the frequency of the
bridge at balance is 800 Hz, determine the values of Rx and Cx .

[Rx D 500 �, Cx D 4 µF]

8 When the Wien bridge shown in Figure 27.9 is balanced, the
components have the following values: R2 D R3 D 20 k�, R4 D
500 �, C2 D C3 D 800 pF. Determine for the balance condition
(a) the value of resistance R1 and (b) the frequency of the bridge
supply. [(a) 250 � (b) 9.95 kHz]

9 The conditions at balance of a Schering bridge ABCD used to
measure the capacitance and loss angle of a paper capacitor are
as follows: AB — a pure capacitance of 0.2 µF; BC — a pure
capacitance of 3000 pF in parallel with a 400 � resistance; CD — a
pure resistance of 200 �; DA — the capacitance under test which
may be considered as a capacitance Cx in series with a resistance
Rx. If the supply frequency is 1 kHz determine (a) the value of Rx,
(b) the value of Cx , (c) the power factor of the capacitor, and (d) its
loss angle. [(a) 3 � (b) 0.4 µF (c) 0.0075 (d) 0.432°]

10 At balance, an a.c. bridge PQRS used to measure the inductance
and resistance of an inductor has the following values: PQ — a
non-inductive 400 � resistor; QR — the inductor with unknown
inductance Lx in series with resistance Rx; RS — a 3 µF capacitor in
series with a non-inductive 250 � resistor; SP — a 15 µF capacitor.
A detector is connected between Q and S and the a.c. supply is
connected between P and R. Derive the balance equations for Rx

and Lx and determine their values. [Rx D 2 k�, Lx D 1.5 H]
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11 A 1 kHz a.c. bridge ABCD has the following components in its four
arms: AB — a pure capacitor of 0.2 µF; BC — a pure resistance of
500 �; CD — an unknown impedance; DA — a 400 � resistor in
parallel with a 0.1 µF capacitor. If the bridge is balanced, determine
the series components comprising the impedance in arm CD.

[R D 59.41 �, L D 37.6 mH]

12 An a.c. bridge ABCD has in arm AB a standard lossless capacitor
of 200 pF; arm BC, an unknown impedance, represented by a loss-
less capacitor Cx in series with a resistor Rx; arm CD, a pure 5 k�
resistor; arm DA, a 6 � resistor in parallel with a variable capacitor
set at 250 pF. The frequency of the bridge supply is 1500 Hz. Deter-
mine for the condition when the bridge is balanced (a) the values of
Rx and Cx , and (b) the loss angle.

[(a) Rx D 6.25 k�, Cx D 240 pF; (b) 0.81°]

13 An a.c. bridge ABCD has the following components: AB — a 1 k�
resistance in parallel with a 0.2 µF capacitor; BC — a 1.2 k�
resistance; CD — a 750 � resistance; DA — a 0.8 µF capacitor in
series with an unknown resistance. Determine (a) the frequency for
which the bridge is in balance, and (b) the value of the unknown
resistance in arm DA to produce balance.

[(a) 649.7 Hz (b) 375 �]



28 Series resonance and
Q-factor

At the end of this chapter you should be able to:

ž state the conditions for resonance in an a.c. series circuit

ž calculate the resonant frequency in an a.c. series circuit,

fr D 1

2�
p
�LC�

ž define Q-factor as
X

R
and as

VL

V
or

VC

V

ž determine the maximum value of VC and VCOIL and the
frequency at which this occurs

ž determine the overall Q-factor for two components in series

ž define bandwidth and selectivity

ž calculate Q-factor and bandwidth in an a.c. series circuit

ž determine the current and impedance when the frequency
deviates from the resonant frequency

28.1 Introduction When the voltage V applied to an electrical network containing resistance,
inductance and capacitance is in phase with the resulting current I, the
circuit is said to be resonant. The phenomenon of resonance is of great
value in all branches of radio, television and communications engineering,
since it enables small portions of the communications frequency spectrum
to be selected for amplification independently of the remainder.

At resonance, the equivalent network impedance Z is purely resistive
since the supply voltage and current are in phase. The power factor of a
resonant network is unity,(i.e., power factor D cos
 D cos 0 D 1).

In electrical work there are two types of resonance — one associated
with series circuits,(which was introduced in Chapter 15), when the input
impedance is a minimum, (which is discussed further in this chapter),
and the other associated with simple parallel networks, when the input
impedance is a maximum (which is discussed in Chapter 29).

28.2 Series resonance Figure 28.1 shows a circuit comprising a coil of inductance L and resis-
tance R connected in series with a capacitor C. The R–L–C series circuit
has a total impedance Z given by Z D R C j�XL � XC) ohms, or Z D
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Figure 28.1 R � L � C series
circuit

R C j�ωL � 1/ωC� ohms where ω D 2�f. The circuit is at resonance
when �XL � XC� D 0, i.e., when XL D XC or ωL D 1/�ωC�. The phasor
diagram for this condition is shown in Figure 28.2, where jVLj D jVCj.

Since at resonance ωrL D 1

ωrC
, ω2

r D 1

LC
and ω D 1p

�LC�

Thus resonant frequency, fr =
1

2p
p

.LC /
hertz, since ωr D 2�fr

Figure 28.2 Phasor diagram
jVLj D jVCj

Figure 28.3 shows how inductive reactance XL and capacitive reactance
XC vary with the frequency. At the resonant frequency fr , jXLj D jXCj.
Since impedance Z D R C j�XL � XC� and, at resonance, �XL � XC� D
0, then impedance Z = R at resonance. This is the minimum value
possible for the impedance as shown in the graph of the modulus of
impedance, jZj, against frequency in Figure 28.4.

Figure 28.3 Variation ofXL andXC with frequency

At frequencies less than fr , XL < XC and the circuit is capacitive; at
frequencies greater than fr , XL > XC and the circuit is inductive.

Current I D V/Z. Since impedance Z is a minimum value at resonance,
the current I has a maximum value. At resonance, current I D V/R. A
graph of current against frequency is shown in Figure 28.4.

Problem 1. A coil having a resistance of 10 � and an inductance
of 75 mH is connected in series with a 40 µF capacitor across a
200 V a.c. supply. Determine at what frequency resonance occurs,
and (b) the current flowing at resonance.
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Figure 28.4 jZj and I plotted against frequency

(a) Resonant frequency,

fr D 1

2�
p
�LC�

D 1

2�
√

[�75 ð 10�3��40 ð 10�6�]

i.e., fr = 91.9 Hz

(b) Current at resonance, I D V

R
D 200

10
D 20 A

Problem 2. An R–L–C series circuit is comprised of a coil of
inductance 10 mH and resistance 8 � and a variable capacitor C.
The supply frequency is 1 kHz. Determine the value of capacitor
C for series resonance.

At resonance, ωrL D 1/�ωrC�, from which, capacitance, C D 1/�ω2
r L�

Hence capacitance C D 1

�2�1000�2�10 ð 10�3�
D 2.53 mF

Problem 3. A coil having inductance L is connected in series with
a variable capacitor C. The circuit possesses stray capacitance CS

which is assumed to be constant and effectively in parallel with
the variable capacitor C. When the capacitor is set to 1000 pF
the resonant frequency of the circuit is 92.5 kHz, and when the
capacitor is set to 500 pF the resonant frequency is 127.8 kHz.
Determine the values of (a) the stray capacitance CS, and (b) the
coil inductance L.
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For a series R–L–C circuit the resonant frequency fr is given by:

fr D 1

2�
p
�LC�

The total capacitance of C in parallel with CS is given by �C C CS�

At 92.5 kHz, C D 1000 pF. Hence

92.5 ð 103 D 1

2�
√

[L�1000 C CS�10�12]
�1�

At 127.8 kHz, C D 500 pF. Hence

127.8 ð 103 D 1

2�
√

[L�500 C CS�10�12]
�2�

(a) Dividing equation (2) by equation (1) gives:

127.8 ð 103

92.5 ð 103
D

1

2�
√

[L�500 C CS�10�12]
1

2�
√

[L�1000 C CS�10�12]

i.e.,
127.8

92.5
D

√
[L�1000 C CS�10�12]√
[L�500 C CS�10�12]

D
√(

1000 C CS

500 C CS

)

where CS is in picofarads, from which,

(
127.8

92.5

)2

D 1000 C CS

500 C CS

i.e., 1.909 D 1000 C CS

500 C CS

Hence 1.909�500 C CS� D 1000 C CS

954.5 C 1.909CS D 1000 C CS

1.909CS � CS D 1000 � 954.5

0.909CS D 45.5

Thus stray capacitance CS D 45.5/0.909 D 50 pF

(b) Substituting CS D 50 pF in equation (1) gives:

92.5 ð 103 D 1

2�
√

[L�1050 ð 10�12�]
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Hence �92.5 ð 103 ð 2��2 D 1

L�1050 ð 10�12�

from which, inductance L D 1

�1050 ð 10�12��92.5 ð 103 ð 2��2
H

D 2.82 mH

Further problems on series resonance may be found in Section 28.8, prob-
lems 1 to 5, page 512

28.3 Q-factor Q-factor is a figure of merit for a resonant device such as an L–C–R
circuit.

Such a circuit resonates by cyclic interchange of stored energy, accom-
panied by energy dissipation due to the resistance.

By definition, at resonance Q D 2�
(

maximum energy stored

energy loss per cycle

)

Since the energy loss per cycle is equal to (the average power dissipated)
ð (periodic time),

Q D 2�
(

maximum energy stored

average power dissipated ð periodic time

)

D 2�
(

maximum energy stored

average power dissipated ð �1/fr�

)

since the periodic time T D 1/fr .

Thus Q D 2�fr

(
maximum energy stored

average power dissipated

)

i.e., Q D ωr

(
maximum energy stored

average power dissipated

)

where ωr is the angular frequency at resonance.
In an L–C–R circuit both of the reactive elements store energy during

a quarter cycle of the alternating supply input and return it to the circuit
source during the following quarter cycle. An inductor stores energy in
its magnetic field, then transfers it to the electric field of the capacitor
and then back to the magnetic field, and so on. Thus the inductive and
capacitive elements transfer energy from one to the other successively
with the source of supply ideally providing no additional energy at all.
Practical reactors both store and dissipate energy.

Q-factor is an abbreviation for quality factor and refers to the ‘good-
ness’ of a reactive component.
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For an inductor, Q D ωr

(
maximum energy stored

average power dissipated

)

D ωr

(
1
2LI

2
m

I2R

)
D

ωr

(
1
2LI

2
m

)

�Im/
p

2�2R
D ωrL

R
�28.1�

For a capacitor Q D
ωr

(
1
2CV

2
m

)

�Im/
p

2�2R
D ωr

1
2C�ImXC�2

�Im/
p

2�2R

D ωr
1
2CI

2
m�1/ωrC�2

�Im/
p

2�2R

i.e., Q D 1

ωrCR
�28.2�

From expressions (28.1) and (28.2) it can be deduced that

Q D XL

R
D XC

R
D reactance

resistance

In fact, Q-factor can also be defined as

Q-factor D reactance power

resistance
D Q

P

where Q is the reactive power which is also the peak rate of energy
storage, and P is the average energy dissipation rate. Hence

Q-factor D Q

P
D I2XL�or I2XC�

I2R
D XL

R

(
or

XC

R

)

i.e., Q =
reactance
resistance

In an R–L–C series circuit the amount of energy stored at resonance is
constant.

When the capacitor voltage is a maximum, the inductor current is zero,
and vice versa, i.e., 1

2LI
2
m D 1

2CV
2
m

Thus the Q-factor at resonance, Qr is given by

Qr =
!r L
R

=
1

!r CR
�28.3�

However, at resonance ωr D 1/
p
�LC�

Hence Qr D ωrL

R
D 1p

�LC�

(
L

R

)
i.e, Qr =

1
R

√(
L

C

)
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It should be noted that when Q-factor is referred to, it is nearly always
assumed to mean ‘the Q-factor at resonance’.

With reference to Figures 28.1 and 28.2, at resonance, VL D VC

VL D IXL D IωrL D V

R
ωrL D

(
ωrL

R

)
V D QrV

and VC D IXC D I

ωrC
D V/R

ωrC
D

(
1

ωrCR

)
V D QrV

Hence, at resonance, VL D VC D QrV

or Qr =
VL .or VC/

V

The voltages VL and VC at resonance may be much greater than that
of the supply voltage V. For this reason Q is often called the circuit
magnification factor. It represents a measure of the number of times VL

or VC is greater than the supply voltage.
The Q-factor at resonance can have a value of several hundreds. Reso-

nance is usually of interest only in circuits of Q-factor greater than about
10; circuits having Q considerably below this value are effectively merely
operating at unity power factor.

Problem 4. A series circuit comprises a 10 � resistance, a 5 µF
capacitor and a variable inductance L. The supply voltage is 20 6 0°

volts at a frequency of 318.3 Hz. The inductance is adjusted until
the p.d. across the 10 � resistance is a maximum. Determine for
this condition (a) the value of inductance L, (b) the p.d. across each
component and (c) the Q-factor.

(a) The maximum voltage across the resistance occurs at resonance
when the current is a maximum. At resonance, ωrL D 1/�ωrC�,
from which

inductance L D 1

ω2
rC

D 1

�2�318.3�2�5 ð 10�6�

D 0.050 H or 50 mH

(b) Current at resonance Ir D V

R
D 20 6 0°

10 6 0°
D 2.0 6 0° A

p.d. across resistance, VR D IrR D �2.0 6 0°��10� D 20 6 6 0° V

p.d. across inductance, VL D IXL

XL D 2��318.3��0.050� D 100 �

Hence VL D �2.0 6 0°�100 6 90°� D 200 6 6 90° V
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p.d. across capacitor, VC D IXC D �2.0 6 0°��100 6 �90°�

D 200 6 6 −90° V

(c) Q-factor at resonance, Qr D VL�or VC�

V
D 200

20
D 10

[
Alternatively, Qr D ωrL

R
D 100

10
D 10

or Qr D 1

ωrCR
D 1

2��318.3��5 ð 10�6��10�
D 10

or Qr D 1

R

√(
L

C

)
D 1

10

√(
0.050

5 ð 10�6

)
D 10

]

28.4 Voltage
magnification

For a circuit with a high value of Q (say, exceeding 100), the maximum
volt-drop across the coil, VCOIL, and the maximum volt-drop across the
capacitor, VC, coincide with the maximum circuit current at the resonant
frequency fr , as shown in 28.5(a). However, if a circuit of low Q (say, less
than 10) is used, it may be shown experimentally that the maximum value
of VC occurs at a frequency less than fr while the maximum value of
VCOIL occurs at a frequency higher than fr , as shown in Figure 28.5(b).
The maximum current, however, still occurs at the resonant frequency
with low Q. This is analysed below.

Since Qr D VC

V
then VC D VQr

However VC D IXC D I
( �j

ωC

)
D I

(
1

jωC

)
and since I D V

Z
,

VC D V

Z

(
1

jωC

)
D V

�jωC�Z

Z D R C j
(
ωL � 1

ωC

)

thus VC D V

�jωC�
[
R C j

(
ωL � 1

ωC

)]

D V

jωCR C j2ω2CL � j2
ωC

ωC

D V

jωCR � ω2LC C 1
D V

�1 � ω2LC� C jωCR

D V[�1 � ω2LC� � jωCR]

[�1 � ω2LC� C jωCR][�1 � ω2LC� � jωCR]
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Figure 28.5 (a) HighQ-factor
(b) LowQ-factor

D V[�1 � ω2LC� � jωCR]

[�1 � ω2LC�2 C �ωCR�2

The magnitude of VC, jVCj D V
√

[�1 � ω2LC�2 C �ωCR�2]

[�1 � ω2LC�2 C �ωCR�2]

from the Argand diagram

D V√
[�1 � ω2LC�2 C �ωCR�2]

�28.4�

To find the maximum value of VC, equation (28.4) is differentiated with
respect to ω, equated to zero and then solved — this being the normal
procedure for maximum/minimum problems. Thus, using the quotient
and function of a function rules:

dVC

dω
D

√
[�1 � ω2LC�2 C �ωCR�2][0] � [V] 1

2 [�1 � ω2LC�2

C�ωCR�2]�1/22�1 � ω2LC���2ωLC� C 2ωC2R2{√
[�1 � ω2LC�2 C �ωCR�2]

}2

D

0 � V

2
[�1 � ω2LC�2 C �ωCR�2]�1/22�1 � ω2LC�

ð��2ωLC� C 2ωC2R2

�1 � ω2LC�2 C �ωCR�2

D
�V

2
[2�1 � ω2LC���2ωLC� C 2ωC2R2]

[�1 � ω2LC�2 C �ωCR�2]3/2
D 0

for a maximum value

Hence �V

2
[2�1 � ω2LC���2ωLC� C 2ωC2R2] D 0

and �V[�1 � ω2LC���2ωLC� C ωC2R2] D 0

and �1 � ω2LC���2ωLC� C ωC2R2 D 0

from which, ωC2R2 D �1 � ω2LC��2ωLC�

i.e., C2R2 D 2LC�1 � ω2LC�

C2R2

LC
D 2 � 2ω2LC and 2ω2LC D 2 � CR2

L

Hence ω2 D 2

2LC
�

CR2

L
2LC

D 1

LC
� 1

2

(
R

L

)2
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The resonant frequency, ωr D 1p
�LC�

from which, ω2
r D 1

LC

Thus ω2 D ω2
r � 1

2

(
R

L

)2

�28.5�

Q D ωrL

R
from which

R

L
D ωr

Q
and

(
R

L

)2

D ω2
r

Q2

Hence, from equation (28.5) ω2 D ω2
r � 1

2

ω2
r

Q2

i.e., ω2 D ω2
r

(
1 � 1

2Q2

)
�28.6�

or ω D ωr

√(
1 � 1

2Q2

)

or f = fr

√(
1 − 1

2Q2

)
�28.7�

Hence the maximum p.d. across the capacitor does not occur at the reso-
nant frequency, but at a frequency slightly less than fr as shown in
Figure 28.5(b). If Q is large, then f ³ fr as shown in Figure 28.5(a).

From equation (28.4), jVCj D V√
[�1 � ω2LC�2 C �ωCR�2]

and substituting ω2 D ω2
r

(
1 � 1

2Q2

)
from equation (28.6) gives:

maximum value of Vc,

VCm D V√√√√
[(

1 � ω2
r

(
1 � 1

2Q2

)
LC

)2

C ω2
r

(
1 � 1

2Q2

)
C2R2

]

ω2
r D 1

LC
hence

VCm D V√√√√
[(

1 � 1

LC

(
1 � 1

2Q2

)
LC

)2

C 1

LC

(
1 � 1

2Q2

)
C2R2

]
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D V√√√√
[(

1 �
(

1 � 1

2Q2

))2

C CR2

L

(
1 � 1

2Q2

)]

D V√[
1

4Q4
C CR2

L
� CR2

L

(
1

2Q2

)] �28.8�

Q D ωrL

R
D 1

ωrCR
hence Q2 D

(
ωrL

R

)(
1

ωrCR

)
D L

CR2

from which,
CR2

L
D 1

Q2

Substituting in equation (28.8),

VCm D V√(
1

4Q4
C 1

Q2
� 1

2Q4

) D V√(
1

Q2

[
1

4Q2
C 1 � 1

2Q2

])

D V

1

Q

√[
1 � 1

4Q2

]

i.e.,
VCm =

QV√√√√
[

1 −
(

1
2Q

)2
]

�28.9�

From equation (28.9), when Q is large, VCm ³ QV
If a similar exercise is undertaken for the voltage across the inductor

it is found that the maximum value is given by:

VLm =
QV√√√√

[
1 −

(
1

2Q

)2
]

,

i.e., the same equation as for VCm , and frequency,

f D fr√[(
1 − 1

2Q2

)]
,
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showing that the maximum p.d. across the coil does not occur at the
resonant frequency but at a value slightly greater than fr , as shown in
Figure 28.5(b).

Problem 5. A series L–R–C circuit has a sinusoidal input voltage
of maximum value 12 V. If inductance, L D 20 mH, resistance,
R D 80 �, and capacitance, C D 400 nF, determine (a) the reso-
nant frequency, (b) the value of the p.d. across the capacitor at the
resonant frequency, (c) the frequency at which the p.d. across the
capacitor is a maximum, and (d) the value of the maximum voltage
across the capacitor.

(a) The resonant frequency,

fr D 1

2�
p
�LC�

D 1

2�
√

[�20 ð 10�3��400 ð 10�9�]

D 1779.4 Hz

(b) VC D QV and Q D ωrL

R

(
or

1

ωrCR
or

1

R

√
L

C

)

Hence Q D �2�1779.4��20 ð 10�3�

80
D 2.80

Thus VC D QV D �2.80��12� D 33.60 V

(c) From equation (28.7), the frequency f at which VC is a maximum
value,

f D fr

√(
1 � 1

2Q2

)
D �1779.4�

√(
1 � 1

2�2.80�2

)

D 1721.7 Hz

(d) From equation (28.9), the maximum value of the p.d. across the
capacitor is given by:

VCm D QV√√√√
[

1 �
(

1

2Q

)2
] D �2.80��12�√√√√

[
1 �

(
1

2�2.80�

)2
] D 34.15 V

28.5 Q-factors in series If the losses of a capacitor are not considered as negligible, the overall
Q-factor of the circuit will depend on the Q-factor of the individual
components. Let the Q-factor of the inductor be QL and that of the capac-
itor be QC



Series resonance and Q-factor503

The overall Q-factor, QT D 1

RT

√
L

C
from Section (28.3),

where RT D RL C RC

Since QL D ωrL

RL
then RL D ωrL

QL
and since

QC D 1

ωrCRC
then RC D 1

QCωrC

Hence QT D 1

RL C RC

√
L

C
D 1(

ωrL

QL
C 1

QCωrC

)
√

L

C

D 1


(
1p
�LC�

)
L

QL
C 1

QC

(
1p
�LC�

)
C




√
L

C

since ωr D 1p
�LC�

D 1

L

QLL1/2C1/2
C L1/2C1/2

QCC

√
L

C
D 1

1

QL

L1/2

C1/2
C 1

QC

L1/2

C1/2

√
L

C

D 1
1

QL

√
L

C
C 1

QC

√
L

C

√
L

C
D 1√

L

C

(
1

QL
C 1

QC

)
√

L

C

D 1
1

QL
C 1

QC

D 1
QC C QL

QLQC

i.e., the overall Q-factor,

QT =
QLQC

QL YQC

Problem 6. An inductor of Q-factor 60 is connected in series with
a capacitor having a Q-factor of 390. Determine the overall Q-factor
of the circuit.

From above, overall Q-factor,

QT D QLQC

QL C QC
D �60��390�

60 C 390
D 23400

450
D 52
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28.6 Bandwidth Figure 28.6 shows how current I varies with frequency f in an R–L–C
series circuit. At the resonant frequency fr , current is a maximum value,
shown as Ir Also shown are the points A and B where the current is 0.707
of the maximum value at frequencies f1 and f2. The power delivered
to the circuit is I2R. At I D 0.707Ir , the power is �0.707Ir�2R D 0.5 I2

rR,
i.e., half the power that occurs at frequency fr . The points corresponding
to f1 and f2 are called the half-power points. The distance between
these points, i.e., (f2 � f1), is called the bandwidth.

When the ratio of two powers P1 and P2 is expressed in decibel units,
the number of decibels X is given by:

X D 10 lg
(
P2

P1

)
dB (see Section 10.14, page 126)

Figure 28.6 Bandwidth and
half-power pointsf1 andf2 Let the power at the half-power points be �0.707Ir�2 R D �I2

r R�/2 and let
the peak power be I2

rR. then the ratio of the power in decibels is given by:

10 lg

[
I2
rR/2

I2
rR

]
D 10 lg

1

2
D −3 dB

It is for this reason that the half-power points are often referred to as ‘the
−3 dB points’.

At the half-power frequencies, I D 0.707 Ir , thus impedance

Z D V

I
D V

0.707Ir
D 1.414

(
V

Ir

)
D p

2Zr D p
2R

(since at resonance Zr D R)

Since Z D p
2R, an isosceles triangle is formed by the impedance

triangles, as shown in Figure 28.7, where ab D bc. From the impedance
triangles it can be seen that the equivalent circuit reactance is equal to
the circuit resistance at the half-power points.

At f1, the lower half-power frequency jXCj > jXLj (see Figure 28.4)

Thus
1

2�f1C
� 2�f1L D R

from which, 1 � 4�2f2
1LC D 2�f1CR

i.e., �4�2LC�f2
1 C �2�CR�f1 � 1 D 0

This is a quadratic equation in f1. Using the quadratic formula gives:

f1 D ��2�CR� š
√

[�2�CR�2 � 4�4�2LC���1�]

2�4�2LC�

D ��2�CR� š
√

[4�2C2R2 C 16�2LC]

8�2LC

Figure 28.7 (a) Inductive
impedance triangle
(b) Capacitive impedance
triangle
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D ��2�CR� š
√

[4�2C2�R2 C �4L/C��]

8�2LC

D ��2�CR� š 2�C
√

[R2 C �4L/C�]

8�2LC

Hence f1 D �R š
√

[R2 C �4L/C�]

4�L
D −RY

√
[R2 Y .4L=C/]

4pL

(since
√

[R2 C �4L/C�] > R and f1 cannot be negative).

At f2, the upper half-power frequency jXLj > jXCj (see Figure 28.4)

Thus 2�f2L � 1

2�f2C
D R

from which, 4�2f2
2LC � 1 D R�2�f2C�

i.e., �4�2LC�f2
2 � �2�CR�f2 � 1 D 0

This is a quadratic equation in f2 and may be solved using the quadratic
formula as for f1, giving:

f2 =
RY

√
[R2 Y .4L=C/]

4pL

Bandwidth D �f2 � f1�

D


R C

√
[R2 C �4L/C�]

4�L


 �




�R C
√

[R2 C �4L/C�]

4�L




D 2R

4�L
D R

2�L
D 1

2�L/R

D fr

2�frL/R
D fr

Qr

from equation (28.3). Hence for a series R–L–C circuit

Qr =
fr

f2 − f1
�28.10�

Problem 7. A filter in the form of a series L–R–C circuit is
designed to operate at a resonant frequency of 10 kHz. Included
within the filter is a 10 mH inductance and 5 � resistance. Deter-
mine the bandwidth of the filter.

Q-factor at resonance is given by

Qr D ωrL

R
D �2� 10 000��10 ð 10�3�

5
D 125.66
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Since Qr D fr/�f2 � f1�,

Bandwidth, . f2 − f1/ D fr

Qr
D 10 000

125.66
D 79.6 Hz

An alternative equation involving fr

At the lower half-power frequency f1:
1

ω1C
� ω1L D R

At the higher half-power frequency f2: ω2L � 1

ω2C
D R

Equating gives:
1

ω1C
� ω1L D ω2L � 1

ω2C

Multiplying throughout by C gives:
1

ω1
� ω1LC D ω2LC � 1

ω2

However, for series resonance, ω2
r D 1/�LC�

Hence
1

ω1
� ω1

ω2
r

D ω2

ω2
r

� 1

ω2

i.e.,
1

ω1
C 1

ω2
D ω2

ω2
r

C ω1

ω2
r

D ω1 C ω2

ω2
r

Therefore
ω2 C ω1

ω1ω2
D ω1 C ω2

ω2
r

,

from which, ω2
r D ω1ω2 or ωr D p

�ω1ω2�

Hence 2�fr D p
[�2�f1��2�f2�] and fr =

p
.f1 f2/ �28.11�

Selectivity is the ability of a circuit to respond more readily to signals of
a particular frequency to which it is tuned than to signals of other frequen-
cies. The response becomes progressively weaker as the frequency departs
from the resonant frequency. Discrimination against other signals becomes
more pronounced as circuit losses are reduced, i.e., as the Q-factor is
increased. Thus Qr D fr/�f2 � f1� is a measure of the circuit selec-
tivity in terms of the points on each side of resonance where the circuit
current has fallen to 0.707 of its maximum value reached at resonance.
The higher the Q-factor, the narrower the bandwidth and the more selec-
tive is the circuit. Circuits having high Q-factors (say, in the order 300)
are therefore useful in communications engineering. A high Q-factor in a
series power circuit has disadvantages in that it can lead to dangerously
high voltages across the insulation and may result in electrical breakdown.

For example, suppose that the working voltage of a capacitor is stated
as 1 kV and is used in a circuit having a supply voltage of 240 V. The
maximum value of the supply will be

p
2�240�, i.e., 340 V. The working

voltage of the capacitor would appear to be ample. However, if the Q-
factor is, say, 10, the voltage across the capacitor will reach 2.4 kV.
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Since the capacitor is rated only at 1 kV, dielectric breakdown is more
than likely to occur.

Low Q-factors, say, in the order of 5 to 25, may be found in power
transformers using laminated iron cores.

A capacitor-start induction motor, as used in domestic appliances such
as washing machines and vacuum-cleaners, having a Q-factor as low as
1.5 at starting would result in a voltage across the capacitor 1.5 times that
of the supply voltage; hence the cable joining the capacitor to the motor
would require extra insulation.

Problem 8. An R–L–C series circuit has a resonant frequency
of 1.2 kHz and a Q-factor at resonance of 30. If the impedance
of the circuit at resonance is 50 � determine the values of (a) the
inductance, and (b) the capacitance. Find also (c) the bandwidth,
(d) the lower and upper half-power frequencies and (e) the value
of the circuit impedance at the half-power frequencies.

(a) At resonance the circuit impedance, Z D R, i.e., R D 50 �.

Q-factor at resonance, Qr D ωrL/R

Hence inductance, L D QrR

ωr
D �30��50�

�2�1200�
D 0.199 H or 199 mH

(b) At resonance ωrL D 1/�ωrC�

Hence capacitance, C D 1

ω2
r L

D 1

�2�1200�2�0.199�

D 0.088 mF or 88 nF

(c) Q-factor at resonance is also given by Qr D fr/�f2 � f1�, from
which,

bandwidth,.f2 − f1/ D fr

Qr
D 1200

30
D 40 Hz

(d) From equation (28.11), resonant frequency, fr D p
�f1f2�,

i.e., 1200 D p
�f1f2�

from which, f1f2 D �1200�2 D 1.44 ð 106 �28.12�

From part(c), f2 � f1 D 40 �28.13�

From equation (28.12), f1 D �1.44 ð 106�/f2

Substituting in equation (28.13) gives:

f2 � 1.44 ð 106

f2
D 40
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Multiplying throughout by f2 gives:

f2
2 � 1.44 ð 106 D 40f2

i.e., f2
2 � 40f2 � 1.44 ð 106 D 0

This is a quadratic equation in f2. Using the quadratic formula gives:

f2 D 40 š
√

[�40�2 � 4�1.44 ð 106�]

2
D 40 š 2400

2

D 40 C 2400

2
(since f2 cannot be negative)

Hence the upper half-power frequency, f2 = 1220 Hz
From equation (28.12), the lower half-power frequency,

f1 D f2 � 40 D 1220 � 40 D 1180 Hz

Note that the upper and lower half-power frequency values are
symmetrically placed about the resonance frequency. This is usually
the case when the Q-factor has a high value (say, >10).

(e) At the half-power frequencies, current I D 0.707 Ir

Hence impedance,

Z D V

I
D V

0.707 Ir
D 1.414

(
V

Ir

)
D p

2Zr D p
2R

Thus impedance at the half-power frequencies,
Z D p

2R D p
2�50� D 70.71 Z

Problem 9. A series R–L–C circuit is connected to a 0.2 V supply
and the current is at its maximum value of 4 mA when the supply
frequency is adjusted to 3 kHz. The Q-factor of the circuit under
these conditions is 100. Determine the value of (a) the circuit resis-
tance, (b) the circuit inductance, (c) the circuit capacitance, and
(d) the voltage across the capacitor

Since the current is at its maximum, the circuit is at resonance and the
resonant frequency is 3 kHz.

(a) At resonance, impedance, Z D R D V

I
D 0.2

4 ð 10�3
D 50 �

Hence the circuit resistance in 50 Z

(b) Q-factor at resonance is given by Qr D ωrL/R, from which,

inductance, L D QrR

ωr
D �100��50�

2�3000
D 0.265 H or 265 mH
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(c) Q-factor at resonance is also given by Qr D 1/�ωrCR�, from which,

capacitance, C D 1

ωrRQr
D 1

�2�3000��50��100�

D 0.0106 mF or 10.6 nF

(d) Q-factor at resonance in a series circuit represents the
voltage magnification, i.e., Qr D VC/V, from which, VC D QrV D
�100��0.2� D 20 V.

Hence the voltage across the capacitor is 20 V

�Alternatively, VC D IXC D I

ωrC
D 4 ð 10�3

�2�3000��0.0106 ð 10�6�

D 20 V�

Problem 10. A coil of inductance 351.8 mH and resistance 8.84 �
is connected in series with a 20 µF capacitor. Determine (a) the
resonant frequency, (b) the Q-factor at resonance, (c) the band-
width, and (d) the lower and upper �3dB frequencies.

(a) Resonant frequency, fr D 1

2�
p
�LC�

D 1

2�
√

[�0.3518��20 ð 10�6�]

D 60.0 Hz

(b) Q-factor at resonance, Qr D 1

R

√
L

C
D 1

8.84

√(
0.3518

20 ð 10�6

)
D 15

[
Alternatively, Qr D ωrL

R
D 2��60.0��0.3518�

8.84
D 15

or Qr D 1

ωrCR
D 1

�2�60.0��20 ð 10�6��8.84�
D 15

]

(c) Bandwidth, .f2 − f1/ D fr

Qr
D 60.0

15
D 4 Hz

(d) With a Q-factor of 15 it may be assumed that the lower and upper
�3 dB frequencies, f1 and f2 are symmetrically placed about the
resonant frequency of 60.0 Hz. Hence the lower −3 dB frequency,
f1 = 58 Hz, and the upper −3 dB frequency, f2 D 62 Hz.

[This may be checked by using �f2 � f1� D 4 and fr D p
�f1f2�]

28.7 Small deviations
from the resonant

frequency

Let ω1 be a frequency below the resonant frequency ωr in an L–R–C
series circuit, and ω2 be a frequency above ωr by the same amount as ω1

is below, i.e., ωr � ω1 D ω2 � ωr
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Let the fractional deviation from the resonant frequency be υ where

υ D ωr � ω1

ωr
D ω2 � ωr

ωr

Hence ωrυ D ωr � ω1 and ωrυ D ω2 � ωr

from which, ω1 D ωr � ωrυ and ω2 D ωr C ωrυ

i.e., ω1 D ωr�1 � υ� �28.14�

and ω2 D ωr�1 C υ� �28.15�

At resonance, Ir D V

R
, and at other frequencies, I D V

Z
where Z is the

circuit impedance.

Hence
I

Ir
D V/Z

V/R
D R

Z
D R

R C j
(
ωL � 1

ωC

)

From equation (28.15), at frequency !2,

I

Ir
D R

R C j
[
ωr�1 C υ�L � 1

ωr�1 C υ�C

]

D R/R
R

R
C j

[
ωrL

R
�1 C υ� � 1

ωrRC�1 C υ�

]

At resonance,
1

ωrC
D ωrL hence

I

Ir
D 1

1 C j
[
ωrL

R
�1 C υ� � ωrL

R�1 C υ�

]

D 1

1 C j
ωrL

R

[
�1 C υ� � 1

�1 C υ�

]

Since
ωrL

R
D Q then

I

Ir
D 1

1 C jQ

[
�1 C υ�2 � 1

�1 C υ�

] D 1

1 C jQ

[
1 C 2υ C υ2 � 1

�1 C υ�

]

D 1

1 C jQ

[
2υ C υ2

1 C υ

] D 1

1 C jυQ
[

2 C υ

1 C υ

]
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If the deviation from the resonant frequency υ is very small such that
υ − 1

then
I

Ir
³ 1

1 C jυQ
[

2
1

] D 1
1Y j 2dQ

�28.16�

and
I

Ir
D V/Z

V/Zr
D Zr

Z
D 1

1 C j2dQ

from which,
Z
Zr

= 1Y j 2dQ �28.17�

It may be shown that at frequency !1,
I

Ir
D 1

1 − j 2dQ
and

Z
Zr

= 1 − j 2dQ

Problem 11. In an L–R–C series network, the inductance, L D
8 mH, the capacitance, C D 0.3 µF, and the resistance, R D 15 �.
Determine the current flowing in the circuit when the input voltage
is 7.5 6 0° V and the frequency is (a) the resonant frequency, (b) a
frequency 3% above the resonant frequency. Find also (c) the
impedance of the circuit when the frequency is 3% above the
resonant frequency.

(a) At resonance, Zr D R D 15 �

Current at resonance, I r D V

Zr
D 7.5 6 0°

15 6 0°
D 0.5 6 6 0° A

(b) If the frequency is 3% above the resonant frequency, then υ D 0.03

From equation (28.16),
I

Ir
D 1

1 C j2υQ

Q D 1

R

√
L

C
D 1

15

√(
8 ð 10�3

0.3 ð 10�6

)
D 10.89

Hence
I

0.5 6 0°
D 1

1 C j2�0.03��10.89�
D 1

1 C j0.6534

D 1

1.1945 6 33.16°

and I D 0.5 6 0°

1.1945 6 33.16°
D 0.4186 6 6 −33.16° A

(c) From equation (28.17),
Z

Zr
D 1 C j2υQ
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hence Z D Zr�1 C j2υQ� D R�1 C j2υQ�

D 15�1 C j2�0.03��10.89��

D 15�1 C j0.6534�

D 15�1.1945 6 33.16°�

D 17.92 6 6 33.16° Z

Alternatively, Z D V

I
D 7.56 0°

0.4186 6 �33.16°
D 17.92 6 33.16° �

Further problems on Q-factor and bandwidth may be found in Section 28.8
following, problems 6 to 16, page 513

28.8 Further problems
on series resonance and

Q-factor

Series resonance

1 A coil having an inductance of 50 mH and resistance 8.0 � is
connected in series with a 25 µF capacitor across a 100 V a.c.
supply. Determine (a) the resonant frequency of the circuit, and
(b) the current flowing at resonance. [(a) 142.4 Hz (b) 12.5 A]

2 The current at resonance in a series R–L–C circuit is 0.12 mA. The
circuit has an inductance of 0.05 H and the supply voltage is 24 mV
at a frequency of 40 kHz. Determine (a) the circuit resistance, and
(b) the circuit capacitance. [(a) 200 � (b) 316.6 pF]

3 A coil of inductance 2.0 mH and resistance 4.0 � is connected in
series with a 0.3 µF capacitor. The circuit is connected to a 5.0 V,
variable frequency supply. Calculate (a) the frequency at which reso-
nance occurs, (b) the voltage across the capacitance at resonance, and
(c) the voltage across the coil at resonance.

[(a) 6.50 kHz (b) 102.1 V (c) 102.2 V]

4 A series R–L–C circuit having an inductance of 0.40 H has
an instantaneous voltage, v D 60 sin�4000t � ��/6�� volts and an
instantaneous current, i D 2.0 sin 4000t amperes. Determine (a) the
values of the circuit resistance and capacitance, and (b) the frequency
at which the circuit will be resonant.

[(a) 26 �; 154.8 nF (b) 639.6 Hz]

5 A variable capacitor C is connected in series with a coil having
inductance L. The circuit possesses stray capacitance CS which is
assumed to be constant and effectively in parallel with the variable
capacitor C. When the capacitor is set to 2.0 nF the resonant
frequency of the circuit is 86.85 kHz, and when the capacitor is set
to 1.0 nF the resonant frequency is 120 kHz. Determine the values
of (a) the stray circuit capacitance CS, and (b) the coil inductance L.

[(a) 100 pF (b) 1.60 mH]
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Q-factor and bandwidth

6 A series R–L–C circuit comprises a 5 µF capacitor, a 4 � resistor
and a variable inductance L. The supply voltage is 10 6 0° V at a
frequency of 159.1 Hz. The inductance is adjusted until the p.d.
across the 4 � resistance is a maximum. Determine for this condition
(a) the value of inductance, (b) the p.d. across each component, and
(c) the Q-factor of the circuit.

[(a) 200 mH (b) VR D 10 6 0° VIVL D 500 6 90° VI
VC D 500 6 �90° V (c) 50]

7 A coil of resistance 10.05 � and inductance 400 mH is connected
in series with a 0.396 µF capacitor. Determine (a) the resonant
frequency, (b) the resonant Q-factor, (c) the bandwidth, and (d) the
lower and upper half-power frequencies.

[(a) 400 Hz (b) 100 (c) 4 Hz (d) 398 Hz and 402 Hz]

8 An R–L–C series circuit has a resonant frequency of 2 kHz and
a Q-factor at resonance of 40. If the impedance of the circuit
at resonance is 30 � determine the values of (a) the inductance
and (b) the capacitance. Find also (c) the bandwidth, (d) the lower
and upper �3 dB frequencies, and (e) the impedance at the �3 dB
frequencies.

[(a) 95.5 mH (b) 66.3 nF (c) 50 Hz
(d) 1975 Hz and 2025 Hz (e) 42.43 �]

9 A filter in the form of a series L–C–R circuit is designed to operate
at a resonant frequency of 20 kHz and incorporates a 20 mH inductor
and 30 � resistance. Determine the bandwidth of the filter.

[238.7 Hz]

10 A series L–R–C circuit has a supply input of 5 volts. Given that
inductance, L D 5 mH, resistance, R D 75 � and capacitance, C D
0.2 µF, determine (a) the resonant frequency, (b) the value of voltage
across the capacitor at the resonant frequency, (c) the frequency at
which the p.d. across the capacitance is a maximum, and (d) the
value of the maximum voltage across the capacitor.

[(a) 5033 Hz (b) 10.54 V (c) 4741 Hz (d) 10.85 V]

11 A capacitor having a Q-factor of 250 is connected in series with a
coil which has a Q-factor of 80. Calculate the overall Q-factor of the
circuit. [60.61]

12 An R–L–C series circuit has a maximum current of 2 mA flowing
in it when the frequency of the 0.1 V supply is 4 kHz. The Q-factor
of the circuit under these conditions is 90. Determine (a) the voltage
across the capacitor, and (b) the values of the circuit resistance,
inductance and capacitance. [(a) 9 V (b) 50 �; 0.179 H; 8.84 nF]

13 Calculate the inductance of a coil which must be connected in
series with a 4000 pF capacitor to give a resonant frequency of
200 kHz. If the coil has a resistance of 12 �, determine the circuit
Q-factor. [158.3 µH; 16.58]
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14 A circuit consists of a coil of inductance 200 µH and resistance 8.0 �
in series with a lossless 500 pF capacitor. Determine (a) the resonant
Q-factor, and (b) the bandwidth of the circuit.

[(a) 79.06 (b) 6366 Hz]

15 A coil of inductance 200 µH and resistance 50.27 � and a variable
capacitor are connected in series to a 5 mV supply of frequency
2 MHz. Determine (a) the value of capacitance to tune the circuit
to resonance, (b) the supply current at resonance, (c) the p.d. across
the capacitor at resonance, (d) the bandwidth, and (e) the half-power
frequencies.

[(a) 31.66 pF (b) 99.46 µA (c) 250 mV
(d) 40 kHz (e) 2.02 MHz; 1.98 MHz]

16 A supply voltage of 3 V is applied to a series R–L–C circuit
whose resistance is 12 �, inductance is 7.5 mH and capacitance
is 0.5 µF. Determine (a) the current flowing at resonance, (b) the
current flowing at a frequency 2.5% below the resonant frequency,
and (c) the impedance of the circuit when the frequency is 1% lower
than the resonant frequency.

[(a) 0.25 A (b) 0.223 6 27.04°A (c) 13.47 6 �27.04° �]



29 Parallel resonance and
Q-factor

At the end of this chapter you should be able to:

ž state the condition for resonance in an a.c. parallel network
ž calculate the resonant frequency in a.c. parallel networks

ž calculate dynamic resistanceRD D L

CR
in an a.c. parallel

network

ž calculate Q-factor and bandwidth in an a.c. parallel network
ž determine the overall Q-factor for capacitors connected in

parallel
ž determine the impedance when the frequency deviates from

the resonant frequency

29.1 Introduction A parallel network containing resistanceR, pure inductanceL and pure
capacitanceC connected in parallel is shown in Figure 29.1. Since the
inductance and capacitance are considered as pure components, this circuit
is something of an ‘ideal’ circuit. However, it may be used to highlight
some important points regarding resonance which are applicable to any
parallel circuit.

From Figure 29.1,

the admittance of the resistive branch,G D 1

R

the admittance of the inductive branch,BL D 1

jXL
D �j
ωL

the admittance of the capacitive branch,BC D 1

�jXC
D j

1/ωC
D jωC

Figure 29.1 Parallel R–L–C
circuit

Total circuit admittance,Y D GC j�BC � BL
,

i.e., Y D 1

R
C j

(
ωC� 1

ωL

)

The circuit is at resonance when the imaginary part is zero, i.e., when
ωC� �1/ωL
 D 0. Hence at resonanceωrC D 1/�ωrL
 andω2

r D 1/�LC
,
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Figure 29.2 jYj plotted
against frequency

from whichωr D 1/
p
�LC
 and the resonant frequency

fr =
1

2p
p

.LC /
hertz

the same expression as for a seriesR–L–C circuit.
Figure 29.2 shows typical graphs ofBC, BL, G and Y against

frequencyf for the circuit shown in Figure 29.1. At resonance,BC D BL
and admittanceY D G D 1/R. This represents the condition ofminimum
admittance for the circuit and thusmaximum impedance.

Since currentI D V/Z D VY, the current is at aminimum value at
resonance in a parallel network.

From the ideal circuit of Figure 29.1 we have therefore established the
following facts which apply to any parallel circuit. At resonance:

(i) admittanceY is a minimum
(ii) impedanceZ is a maximum

(iii) current I is a minimum
(iv) an expression for the resonant frequencyfr may be obtained

by making the ‘imaginary’ part of the complex expression for
admittance equal to zero.

29.2 TheLR –C parallel
network

A more practical network, containing a coil of inductanceL and resistance
R in parallel with a pure capacitanceC, is shown in Figure 29.3.

Admittance of coil,YCOIL D 1

RC jXL
D R� jXL
R2 C X2

L

D R

R2 C ω2L2
� jωL

R2 C ω2L2

Figure 29.3

Admittance of capacitor,YC D 1

�jXC D j

Xc
D jωC

Total circuit admittance,Y D YCOIL C YC

D R

R2 C ω2L2
� jωL

R2 C ω2L2
C jωC �29.1


At resonance, the total circuit admittanceY is real�Y D R/�R2 C ω2L2

,
i.e., the imaginary part is zero. Hence, at resonance:

�ωrL
R2 C ω2

r L
2

C ωrC D 0
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Therefore
ωrL

R2 C ω2
r L

2
D ωrC and

L

C
D R2 C ω2

r L
2

Thus ω2
r L

2 D L

C
� R2

and ω2
r D L

CL2
� R2

L2
D 1

LC
� R2

L2
�29.2


Hence ωr D
√(

1

LC
� R2

L2

)

and resonant frequency, fr =
1

2p

√(
1

LC
� R2

L2

)
�29.3


Note that whenR2/L2 − 1/�LC
 then fr D 1/�2�
p
�LC
, as for the

series R–L–C circuit. Equation (29.3) is the same as obtained in
Chapter 16, page 248; however, the above method may be applied to
any parallel network as demonstrated in Section 29.4 below.

29.3 Dynamic resistance Since the current at resonance is in phase with the voltage, the impedance
of the network acts as a resistance. This resistance is known as the
dynamic resistance, RD . Impedance at resonance,RD D V/Ir, whereIr
is the current at resonance.

Ir D VYr D V
(

R

R2 C ω2
r L

2

)

from equation (29.1) with the j terms equal to zero.

HenceRD D V

Ir
D V

VR/�R2 C ω2
r L

2

D R2 C ω2

r L
2

R

D R2 C L2�1/LC
� �R2/L2


R
from equation�29.2


D R2 C �L/C
� R2

R
D L/C

R
D L

CR

Hence dynamic resistance,RD =
L

CR
�29.4


29.4 TheLR –CR
parallel network

A more general network comprising a coil of inductanceL and resistance
RL in parallel with a capacitanceC and resistanceRC in series is shown
in Figure 29.4.
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Figure 29.4

Admittance of inductive branch,

YL D 1

RL C jXL
D RL � jXL

R2
L C X2

L

D RL
R2
L C X2

L

� jXL
R2
L C X2

L

Admittance of capacitive branch,

YC D 1

RC � jXC
D RC C jXC

R2
C C X2

C

D RC
R2
C C X2

C

C jXC
R2
C C X2

C

Total network admittance,

Y D YL C YC D RL
R2
L C jX2

L

� jXL
R2
L C X2

L

C RC
R2
C C X2

C

C jXC
R2
C C X2

C

At resonance the admittance is a minimum, i.e., when the imaginary part
of Y is zero. Hence, at resonance,

�XL
R2
L C X2

L

C XC
R2
C C X2

C

D 0

i.e.,
ωrL

R2
L C ω2L2

D 1/�ωrC


R2
C C 1/ω2

rC
2


�29.5


Rearranging gives:ωrL
(
R2
C C 1

ω2
rC

2

)
D 1

ωrC
�R2

L C ω2
r L

2


ωrLR
2
C C L

ωrC2
D R2

L

ωrC
C ωrL2

C

Multiplying throughout byωrC2 gives:

ω2
rC

2LR2
C C L D R2

LCC ω2
r L

2C

ω2
r �C

2LR2
C � L2C
 D R2

LC� L

ω2
rCL�CR

2
C � L
 D R2

LC� L

Hence ω2
r D �CR2

L � L


LC�CR2
C � L


i.e., ωr D 1p
�LC


√(
R2
L � �L/C


R2
C � �L/C


)

Hence resonant frequency,fr =
1

2p
p

.LC /

√(
R2

L − .L=C/

R2
C − .L=C/

)

�29.6
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It is clear from equation (29.5) that parallel resonance may be achieved
in such a circuit in several ways — by varying either the frequencyf,
the inductanceL, the capacitanceC, the resistanceRL or the resis-
tanceRC.

29.5 Q-factor in a
parallel network

The Q-factor in the seriesR–L–C circuit is a measure of the voltage
magnification. In a parallel circuit, currents higher than the supply current
can circulate within the parallel branches of a parallel resonant network,
the current leaving the capacitor and establishing the magnetic field of
the inductance, this then collapsing and recharging the capacitor, and
so on. The Q-factor of a parallel resonant circuit is the ratio of the
current circulating in the parallel branches of the circuit to the supply
current, i.e. in a parallel circuit, Q-factor is a measure of thecurrent
magnification.

Circulating currents may be several hundreds of times greater than the
supply current at resonance. For the parallel network of Figure 29.5, the
Q-factor at resonance is given by:

Qr =
circulating current

current at resonance
=

capacitor current
current at resonance

=
IC

I r

Current in capacitor,IC D V/XC D VωrCFigure 29.5

Current at resonance,Ir D V

RD
D V

L/CR
D VCR

L

HenceQr D IC
Ir

D VωrC

VCR/L
i.e., Qr =

!r L
R

the same expression as for series resonance.
The difference between the resonant frequency of a series circuit and

that of a parallel circuit can be quite small. The resonant frequency of
a coil in parallel with a capacitor is shown in Equation (29.3); however,
around the closed loop comprising the coil and capacitor the energy would
naturally resonate at a frequency given by that for a seriesR–L–C circuit,
as shown in Chapter 28. This latter frequency is termed thenatural
frequency, fn , and the frequency of resonance seen at the terminals of
Figure 29.5 is often called theforced resonant frequency, fr . (For a
series circuit, the forced and natural frequencies coincide.)

From the coil-capacitor loop of Figure 29.5,fn D 1

2�
p
�LC


and the forced resonant frequency,fr D 1

2�

√(
1

LC
� R2

L2

)
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Thus
fr
fn

D

1

2�

√(
1

LC
� R2

L2

)

1

2�
p
�LC


D

√(
1

LC
� R2

L2

)

1p
�LC


D
√(

1

LC
� R2

L2

)p
�LC
 D

√(
LC

LC
� LCR2

L2

)
D
√(

1 � R2C

L

)

From Chapter 28,Q D 1

R

√(
L

C

)
from which

Q2 D 1

R2

(
L

C

)
or
R2C

L
D 1

Q2

Hence
fr
fn

D
√(

1 � R2C

L

)
D
√(

1 � 1

Q2

)

i.e., fr = fn

√(
1 − 1

Q2

)

Thus it is seen that even with small values ofQ the difference between
fr andfn tends to be very small. A high value ofQ makes the parallel
resonant frequency tend to the same value as that of the series resonant
frequency.

The expressions already obtained in Chapter 28 for bandwidth and reso-
nant frequency, also apply to parallel circuits,

i.e., Qr = fr =.f2 − f1/ �29.7


and fr =
p

.f1 f2/ �29.8


The overall Q-factorQT of two parallel components having different Q-
factors is given by:

QT =
QLQC

QL YQC
�29.9


as for the series circuit.
By similar reasoning to that of the seriesR–L–C circuit it may be

shown that at the half-power frequencies the admittance is
p

2 times its
minimum value at resonance and, sinceZ D 1/Y, the value of impedance
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at the half-power frequencies is 1/
p

2 or 0.707 times its maximum value
at resonance.

By similar analysis to that given in Chapter 28, it may be shown that
for a parallel network:

Y
Yr

=
RD

Z
= 1Y j 2dQ �29.10


whereY is the circuit admittance,Yr is the admittance at resonance,
Z is the network impedance andRD is the dynamic resistance (i.e., the
impedance at resonance) andυ is the fractional deviation from the resonant
frequency.

Problem 1. A coil of inductance 5 mH and resistance 10� is
connected in parallel with a 250 nF capacitor across a 50 V
variable-frequency supply. Determine (a) the resonant frequency,
(b) the dynamic resistance, (c) the current at resonance, and (d) the
circuit Q-factor at resonance.

(a) Resonance frequency

fr D 1

2�

√(
1

LC
� R2

L2

)
from equation (29.3),

D 1

2�

√(
1

5 ð 10�3 ð 250ð 10�9
� 102

�5 ð 10�3
2

)

D 1

2�

√
�800ð 106 � 4 ð 106
 D 1

2�

√
�796ð 106
 D 4490 Hz

(b) From equation (29.4), dynamic resistance,

RD D L

CR
D 5 ð 10�3

�250ð 10�9
�10

D 2000Z

(c) Current at resonance,I r D V

RD
D 50

2000
D 25 mA

(d) Q-factor at resonance,Qr D ωrL

R
D �2�4490
�5 ð 10�3


10
D 14.1

Problem 2. In the parallel network of Figure 29.6, inductance,
L D 100 mH and capacitance,C D 40 µF. Determine the resonant
frequency for the network if (a)RL D 0 and (b)RL D 30�

Figure 29.6
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Total circuit admittance,

Y D 1

RL C jXL
C 1

�jXC D RL � jXL
R2
L C X2

L

C j

XC

D RL
R2
L C X2

L

� jXL
R2
L C X2

L

C j

XC

The network is at resonance when the admittance is at a minimum value,
i.e., when the imaginary part is zero. Hence, at resonance,

�XL
R2
L C X2

L

C 1

XC
D 0 or ωrC D ωrL

R2
L C ω2

r L
2

�29.11


(a) WhenRL D 0, ωrC D ωrL

ω2
r L

2

from which,ω2
r D 1

LC
andωr D 1p

�LC


Hence resonant frequency,

fr D 1

2�
p
�LC


D 1

2�
√
�100ð 10�3 ð 40ð 10�6


D 79.6 Hz

(b) WhenRL D 30�, ωrC D ωrL

302 C ω2
r L

2
from equation (29.11) above

from which, 302 C ω2
r L

2 D L

C

i.e., ω2
r �100ð 10�3
2 D 100ð 10�3

40ð 10�6
� 900

i.e., ω2
r �0.01
 D 2500� 900D 1600

Thus,ω2
r D 1600/0.01 D 160 000 andωr D p

160 000D 400 rad/s

Hence resonant frequency,fr D 400

2�
D 63.7 Hz

[Alternatively, from equation (29.3),

fr D 1

2�

√(
1

LC
� R2

L2

)

D 1

2�

√(
1

�100ð 10�3
�40ð 10�6

� 302

�100ð 10�3
2

)

D 1

2�

p
�250 000�90 000
D 1

2�

p
160 000D 1

2�
�400
D63.7 Hz]
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Hence, as the resistance of a coil increases, the resonant frequency
decreases in the circuit of Figure 29.6.

Problem 3. A coil of inductance 120 mH and resistance 150�
is connected in parallel with a variable capacitor across a 20 V,
4 kHz supply. Determine for the condition when the supply current
is a minimum, (a) the capacitance of the capacitor, (b) the dynamic
resistance, (c) the supply current, (d) the Q-factor, (e) the band-
width, (f) the upper and lower�3 dB frequencies, and (g) the value
of the circuit impedance at the�3 dB frequencies.

(a) The supply current is a minimum when the parallel network is at
resonance.

Resonant frequency,fr D 1

2�

√(
1

LC
� R2

L2

)
from equation (29.3),

from which, �2�fr
2 D 1

LC
� R2

L2

Hence
1

LC
D �2�fr
2 C R2

L2
and

capacitanceC D 1

L[�2�fr
2 C �R2/L2
]

D 1

120ð 10�3[�2�4000
2 C �1502/�120ð 10�3
2
]

D 1

0.12�631.65ð 106 C 1.5625ð 106


D 0.01316mF or 13.16 nF

(b) Dynamic resistance,RD D L

CR
D 120ð 10�3

�13.16ð 10�9
�150


D 60.79 kZ

(c) Supply current at resonance,

I r D V

RD
D 20

60.79ð 10�3
D 0.329 mA or 329mA

(d) Q-factor at resonance,Qr D ωrL

R
D �2�4000
�120ð 10�3


150
D 20.11

[Note that the expressionsQr D 1

ωrCR
or Qr D 1

R

√(
L

C

)
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used for theR–L–C series circuit may also be used in parallel
circuits when the resistance of the coil is much smaller than the
inductive reactance of the coil.

In this caseR D 150� andXL D 2��4000
�120ð 10�3
 D 3016�.

Hence, alternatively,

Qr D 1

ωrCR
D 1

�2�4000
�13.16ð 10�9
�150

D 20.16

or Qr D 1

R

√(
L

C

)
D 1

150

√(
120ð 10�3

13.16ð 10�9

)
D 20.13]

(e) If the lower and upper�3 dB frequencies aref1 andf2 respectively
then the bandwidth is�f2 � f1
. Q-factor at resonance is given by
Qr D fr/�f2 � f1
, from which, bandwidth,

.f2 − f1/ D fr
Qr

D 4000

20.11
D 199 Hz

(f) Resonant frequency,fr D p
�f1f2
, from which

f1f2 D f2
r D �4000
2 D 16ð 106 �29.12


Also, from part (e),f2 � f1 D 199 �29.13


From equation (29.12), f1 D 16ð 106

f2

Substituting in equation (29.13) gives:f2 � 16ð 106

f2
D 199

i.e., f2
2 � 16ð 106 D 199f2 from which,

f2
2 � 199f2 � 16ð 106 D 0.

Solving this quadratic equation gives:

f2 D 199š
√

[�199
2 � 4��16ð 106
]

2
D 199š 8002.5

2

i.e., the upper 3 dB frequency,f2 = 4100 Hz(neglecting the nega-
tive answer).

From equation (29.12),

the lower −3 dB frequency, f1 D 10ð 106

f2
D 16ð 106

4100

D 3900 Hz
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(Note that f1 and f2 are equally displaced about the resonant
frequency,fr , as they always will be whenQ is greater than about
10 — just as for a series circuit)

(g) The value of the circuit impedance,Z, at the�3 dB frequencies is
given by

Z D 1p
2
Zr

whereZr is the impedance at resonance.

The impedance at resonanceZr D RD, the dynamic resistance.

Henceimpedance at the−3 dB frequenciesD 1p
2
�60.79ð 103


D 42.99 kZ

Figure 29.7 shows impedance plotted against frequency for the
circuit in the region of the resonant frequency.

= = Ω

Ω

−

√

Figure 29.7

Problem 4. A two-branch parallel network is shown in
Figure 29.8. Determine the resonant frequency of the network.

Figure 29.8

From equation (29.6),

resonant frequency,fr D 1

2�
p
�LC


√(
R2
L � �L/C


R2
C � �L/C


)

whereRL D 5 �, RC D 3 �, L D 2 mH andC D 25 µF. Thus

fr D 1

2�
√

[�2 ð 10�3
�25ð 10�6
]

√(
52���2 ð 10�3
/�25ð 10�6



32���2 ð 10�3
/�25ð 10�6



)

D 1

2�
√
�5 ð 10�8


√(
25� 80

9 � 80

)

D 104

2�
p

5

√(�55

�71

)
D 626.5 Hz

Problem 5. Determine for the parallel network shown in
Figure 29.9 the values of inductanceL for which the network is
resonant at a frequency of 1 kHz.

Figure 29.9
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The total network admittance,Y, is given by

Y D 1

3 C jXL
C 1

4 � j10
D 3 � jXL

32 C X2
L

C 4 C j10

42 C 102

D 3

32 C X2
L

� jXL
32 C X2

L

C 4

116
C j10

116

D
(

3

32 C X2
L

C 4

116

)
C j

(
10

116
� XL

32 C X2
L

)

Resonance occurs when the admittance is a minimum, i.e., when the
imaginary part ofY is zero. Hence, at resonance,

10

116
� XL

32 C X2
L

D 0 i.e.,
10

116
D XL

32 C X2
L

Therefore 10�9 C X2
L
 D 116XL i.e., 10X2

L � 116XL C 90 D 0

from which,X2
L � 11.6 XL C 9 D 0

Solving the quadratic equation gives:

XL D 11.6 š
√

[��11.6
2 � 4�9
]

2
D 11.6 š 9.93

2

i.e.,XL D 10.765� or 0.835�. Hence 10.765D 2�frL1, from which,

inductanceL1 D 10.765

2��1000

D 1.71 mH

and 0.835D 2�frL2 from which,

inductance,L2 D 0.835

2��1000

D 0.13 mH

Thus the conditions for the circuit of Figure 29.9 to be resonant are
that inductance L is either 1.71 mH or 0.13 mH

Problem 6. A capacitor having a Q-factor of 300 is connected in
parallel with a coil having a Q-factor of 60. Determine the overall
Q-factor of the parallel combination.

From equation (29.9), the overall Q-factor is given by:

QT D QLQC
QL C QC

D �60
�300


60C 300
D 18000

360
D 50
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Problem 7. In anLR–C network, the capacitance is 10.61 nF, the
bandwidth is 500 Hz and the resonant frequency is 150 kHz. Deter-
mine for the circuit (a) the Q-factor, (b) the dynamic resistance, and
(c) the magnitude of the impedance when the supply frequency is
0.4% greater than the tuned frequency.

(a) From equation (29.7),Q D fr
f2 � f1

D 150ð 103

500
D 300

(b) From equation (29.4), dynamic resistance,RD D L

CR

Also, in anLR–C network,Q D ωrL

R
from which,R D ωrL

Q

Hence,RD D L

CR
D L

C
(
ωrL

Q

) D LQ

CωrL
D Q

ωrC

D 300

�2�150ð 103
�10.61ð 10�9

D 30 kZ

(c) From equation (29.10),
RD
Z

D 1 C j2υQ from which,Z D RD
1 C j2υQ

υ D 0.4% D 0.004 henceZ D 30ð 103

1 C j2�0.004
�300


D 30ð 103

1 C j2.4
D 30ð 103

2.66 67.38°

D 11.546 �67.38° k�

Hence the magnitude of the impedancewhen the frequency is 0.4%
greater than the tuned frequency is11.54 kZ.

Further problems on parallel resonance may be found in the Section 29.6
following, problems 1 to 14.

29.6 Further problems
on parallel resonance and

Q-factor

1 A coil of resistance 20� and inductance 100 mH is connected in
parallel with a 50µF capacitor across a 30 V variable-frequency
supply. Determine (a) the resonant frequency of the circuit, (b) the
dynamic resistance, (c) the current at resonance, and (d) the circuit
Q-factor at resonance. [(a) 63.66 Hz (b) 100� (c) 0.30 A (d) 2]

2 A 25 V, 2.5 kHz supply is connected to a network comprising a
variable capacitor in parallel with a coil of resistance 250� and
inductance 80 mH. Determine for the condition when the supply
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Figure 29.10

current is a minimum (a) the capacitance of the capacitor, (b) the
dynamic resistance, (c) the supply current, (d) the Q-factor, (e) the
bandwidth, (f) the upper and lower half-power frequencies and
(g) the value of the circuit impedance at the�3 dB frequencies.

[(a) 48.73 nF (b) 6.57 k� (c) 3.81 mA (d) 5.03
(e) 497.3 Hz (f) 2761 Hz; 2264 Hz (g) 4.64 k�]

3 A 0.1 µF capacitor and a pure inductance of 0.02 H are connected in
parallel across a 12 V variable-frequency supply. Determine (a) the
resonant frequency of the circuit, and (b) the current circulating in
the capacitance and inductance at resonance.

[(a) 3.56 kHz (b) 26.84 mA]

4 A coil of resistance 300� and inductance 100 mH and a 4000 pF
capacitor are connected (i) in series and (ii) in parallel. Find for each
connection (a) the resonant frequency, (b) the Q-factor, and (c) the
impedance at resonance.

[(i) (a) 7958 Hz (b) 16.67 (c) 300�]
[(ii) (a) 7943 Hz (b) 16.64 (c) 83.33 k�]

5 A network comprises a coil of resistance 100� and inductance 0.8 H
and a capacitor having capacitance 30µF. Determine the resonant
frequency of the network when the capacitor is connected (a) in
series with, and (b) in parallel with the coil.

[(a) 32.5 Hz (b) 25.7 Hz]Figure 29.11
6 Determine the value of capacitorC shown in Figure 29.10 for which

the resonant frequency of the network is 1 kHz. [2.30µF]

7 In the parallel network shown in Figure 29.11, inductanceL is
40 mH and capacitanceC is 5 µF. Determine the resonant frequency
of the circuit if (a)RL D 0 and (b)RL D 40�.

[(a) 355.9 Hz (b) 318.3 Hz]

8 A capacitor of reactance 5� is connected in series with a 10�
resistor. The whole circuit is then connected in parallel with a coil
of inductive reactance 20� and a variable resistor. Determine the
value of this resistance for which the parallel network is resonant.

[10 �]Figure 29.12
9 Determine, for the parallel network shown in Figure 29.12, the values

of inductanceL for which the circuit is resonant at a frequency of
600 Hz. [2.50 mH or 0.45 mH]

10 Find the resonant frequency of the two-branch parallel network
shown in Figure 29.13. [667 Hz]

11 Determine the value of the variable resistanceR in Figure 29.14 for
which the parallel network is resonant. [11.87�]

12 For the parallel network shown in Figure 29.15, determine the
resonant frequency. Find also the value of resistance to be connected
in series with the 10µF capacitor to change the resonant frequency
to 1 kHz. [928 Hz; 5.27�]
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Figure 29.13 Figure 29.14 Figure 29.15

13 Determine the overall Q-factor of a parallel arrangement consisting
of a capacitor having a Q-factor of 410 and an inductor having a
Q-factor of 90. [73.8]

14 The value of capacitance in anLR–C parallel network is 49.74 nF. If
the resonant frequency of the circuit is 200 kHz and the bandwidth is
800 Hz, determine for the network (a) the Q-factor, (b) the dynamic
resistance, and (c) the magnitude of the impedance when the supply
frequency is 0.5% smaller than the tuned frequency.

[(a) 250 (b) 4 k� (c) 1.486 k�]



Assignment 9

This assignment covers the material contained in chapters 27
to 29.

The marks for each part of the question are shown in brackets at
the end of each question.

1 In a Schering bridge network PQRS, the arms are made up as follows:
PQ — a standard capacitorC1, QR — a capacitorC2 in parallel with
a resistorR2, RS — a resistorR3, SP — the capacitor under test,
represented by a capacitorCx in series with a resistorRx. The detector
is connected between Q and S and the a.c. supply is connected between
P and R.

(a) Sketch the bridge and derive the equations forRx andCx when
the bridge is balanced.

(b) EvaluateRx andCx if, at balanceC1 D 5 nF,R2 D 300�, C2 D
30 nF andR3 D 1.5 k�. (16)

2 A coil of inductance 25 mH and resistance 5� is connected in series
with a variable capacitorC. If the supply frequency is 1 kHz and
the current flowing is 2 A, determine, for series resonance, (a) the
value of capacitanceC, (b) the supply p.d., and (c) the p.d. across the
capacitor. (8)

3 An L–R–C series circuit has a peak current of 5 mA flowing in it
when the frequency of the 200 mV supply is 5 kHz. The Q-factor
of the circuit under these conditions is 75. Determine (a) the voltage
across the capacitor, and (b) the values of the circuit resistance, induc-
tance and capacitance. (8)

4 A coil of resistance 15� and inductance 150 mH is connected in
parallel with a 4µF capacitor across a 50 V variable-frequency supply.
Determine (a) the resonant frequency of the circuit, (b) the dynamic
resistance (c) the current at resonance, and (d) the circuit Q-factor at
resonance. (10)

C

5 Ω

2 mH

Figure A9.1
5 For the parallel network shown in Figure A9.1, determine the value

of C for which the resonant frequency is 2 kHz. (8)



30 Introduction to
network analysis

At the end of this chapter you should be able to:

ž appreciate available methods of analysing networks

ž solve simultaneous equations in two and three unknowns
using determinants

ž analyse a.c. networks using Kirchhoff’s laws

30.1 Introduction Voltage sources in series-parallel networks cause currents to flow in
each branch of the circuit and corresponding volt-drops occur across
the circuit components. A.c. circuit (or network) analysis involves the
determination of the currents in the branches and/or the voltages across
components.

The laws which determine the currents and voltage drops in a.c.
networks are:

(a) current , I = V =Z , whereZ is the complex impedance andV the
voltage across the impedance;

(b) the laws for impedances in series and parallel,i.e., total
impedance,

ZT D Z1 C Z2 C Z3 C . . . C Zn for n impedances connected
in series,

and
1

ZT
D 1

Z1
C 1

Z2
C 1

Z3
C . . . C 1

Zn
for n impedances

connected in parallel; and

(c) Kirchhoff’s laws, which may be stated as:

(i) ‘At any point in an electrical circuit the phasor sum of the
currents flowing towards that junction is equal to the phasor
sum of the currents flowing away from the junction.’

(ii) ‘In any closed loop in a network, the phasor sum of the voltage
drops (i.e., the products of current and impedance) taken around
the loop is equal to the phasor sum of the e.m.f.’s acting in that
loop.’

In any circuit the currents and voltages at any point may be determined
by applying Kirchhoff’s laws (as demonstrated in this chapter), or by
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extensions of Kirchhoff’s laws, called mesh-current analysis and nodal
analysis (see Chapter 31).

However, for more complicated circuits, a number of circuit theorems
have been developed as alternatives to the use of Kirchhoff’s laws to
solve problems involving both d.c. and a.c. electrical networks. These
include:

(a) the superposition theorem (see Chapter 32)
(b) Thévenin’s theorem (see Chapter 33)
(c) Norton’s theorem (see Chapter 33),
(d) the maximum power transfer theorems (see Chapter 35).

In addition to these theorems, and often used as a preliminary to
using circuit theorems, star-delta (orT � �) and delta-star (or� � T)
transformations provide a method for simplifying certain circuits (see
Chapter 34).

In a.c. circuit analysis involving Kirchhoff’s laws or circuit theorems,
the use of complex numbers is essential.

The above laws and theorems apply to linear circuits, i.e., circuits
containing impedances whose values are independent of the direction and
magnitude of the current flowing in them.

30.2 Solution of
simultaneous equations

using determinants

When Kirchhoff’s laws are applied to electrical circuits, simultaneous
equations result which require solution. If two loops are involved, two
simultaneous equations containing two unknowns need to be solved; if
three loops are involved, three simultaneous equations containing three
unknowns need to be solved and so on. The elimination and substitu-
tion methods of solving simultaneous equations may be used to solve
such equations. However a more convenient method is to use
determinants.

Two unknowns

When solving linear simultaneous equations in two unknowns using deter-
minants:

(i) the equations are initially written in the form:

a1x C b1y C c1 D 0

a2x C b2y C c2 D 0

(ii) the solution is given by:

x

Dx
D �y

Dy
D 1

D

where Dx D
∣∣∣∣ b1 c1

b2 c2

∣∣∣∣
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i.e., the determinant of the coefficients left when thex-column is
‘covered up’,

Dy D
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣
i.e., the determinant of the coefficients left when the y-column is
‘covered up’,

and D D
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣
i.e., the determinant of the coefficients left when the constants-
column is ‘covered up’.

A ‘2 ð 2’ determinant
∣∣∣∣ a d
b c

∣∣∣∣ is evaluated asad � bc

Three unknowns

When solving linear simultaneous equations in three unknowns using
determinants:

(i) the equations are initially written in the form:

a1x C b1y C c1z C d1 D 0

a2x C b2y C c2z C d2 D 0

a3x C b3y C c3z C d3 D 0

(ii) the solution is given by:

x

Dx
D �y

Dy
D z

Dz
D �1

D

where Dx D
∣∣∣∣∣∣
b1 c1 d1

b2 c2 d2

b3 c3 d3

∣∣∣∣∣∣
i.e., the determinant of the coefficients left when thex-column is
‘covered up’,

Dy D
∣∣∣∣∣∣
a1 c1 d1

a2 c2 d2

a3 c3 d3

∣∣∣∣∣∣
i.e., the determinant of the coefficients left when they-column is
‘covered up’,

Dz D
∣∣∣∣∣∣
a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣
i.e., the determinant of the coefficients left when the z-column is
‘covered up’,
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and D D
∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
i.e., the determinant of the coefficients left when the constants-
column is ‘covered up’.

To evaluate a 3× 3 determinant:

(a) The minor of an element o

f a 3 by 3 matrix is the value of the

2 by 2 determinant obtained by covering up the row and column
containing that element.

Thus for the matrix


 1 2 3

4 5 6
7 8 9


 the minor of element 4 is the

determinant
∣∣∣∣ 2 3
8 9

∣∣∣∣, i.e., �2 ð 9� � �3 ð 8� D 18� 24 D �6. Simi-

larly, the minor of element 3 is
∣∣∣∣ 4 5
7 8

∣∣∣∣, i.e., �4 ð 8� � �5 ð 7� D
32� 35 D �3

(b) The sign of the minor depends on its position within the matrix,

the sign pattern being


 C � C

� C �
C � C


. Thus the signed minor of

element 4 in the above matrix is�
∣∣∣∣ 2 3
8 9

∣∣∣∣ D ���6� D 6

The signed-minor of an element is called thecofactor of the element.

Thus the cofactor of element 2 is�
∣∣∣∣ 4 6
7 9

∣∣∣∣ D ��36� 42� D 6

(c) The value of a 3 by 3 determinant is the sum of the products of
the elements and their cofactors of any row or any column of
the corresponding 3 by 3 matrix.

Thus a 3 by 3 determinant

∣∣∣∣∣∣
a b c
d e f
g h j

∣∣∣∣∣∣ is evaluated as

a
∣∣∣∣ e f
h j

∣∣∣∣ � b
∣∣∣∣ d f
g j

∣∣∣∣ C c
∣∣∣∣ d e
g h

∣∣∣∣ using the top row,

or � b
∣∣∣∣ d f
g j

∣∣∣∣ C e
∣∣∣∣ a c
g j

∣∣∣∣ � h
∣∣∣∣ a c
d f

∣∣∣∣ using the second column.

There are thus six ways of evaluating a 3 by 3 determinant.
Determinants are used to solve simultaneous equations in some of the

following problems and in Chapter 31.
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30.3 Network analysis
using Kirchhoff’s laws

Kirchhoff’s laws may be applied to both d.c. and a.c. circuits. The laws
are introduced in Chapter 13 for d.c. circuits. To demonstrate the method
of analysis, consider the d.c. network shown in Figure 30.1. If the current
flowing in each branch is required, the following three-step procedure
may be used:

(i) Label branch currents and their directions on the circuit diagram.
The directions chosen are arbitrary but, as a starting-point, a useful
guide is to assume that current flows from the positive terminals
of the voltage sources. This is shown in Figure 30.2 where the
three branch currents are expressed in terms ofI1 and I2 only,
since the current through resistanceR, by Kirchhoff’s current law,
is (I1 C I2)Figure 30.1

(ii) Divide the circuit into loops — two in this ease (see Figure 30.2)
and then apply Kirchhoff’s voltage law to each loop in turn. From
loop ABEF, and moving in a clockwise direction (the choice of
loop direction is arbitrary),E1 D I1r C �I1 C I2�R (note that the
two voltage drops are positive since the loop direction is the same
as the current directions involved in the volt drops). Hence

8 D I1 C 5�I1 C I2�

or 6I1 C 5I2 D 8 �1�
Figure 30.2

From loop BCDE in Figure 30.2, and moving in an anticlockwise
direction, (note that the direction does not have to be the same as
that used for the first loop),E2 D I2r2 C �I1 C I2�R,

i.e., 3D 2I2 C 5�I1 C I2�

or 5I1 C 7I2 D 3 �2�

(iii) Solve simultaneous equations (1) and (2) forI1 andI2

Multiplying equation (1) by 7 gives: 42I1 C 35I2 D 56 �3�

Multiplying equation (2) by 5 gives: 25I1 C 35I2 D 15 �4�

Equation (3)� equation (4) gives: 17I1 D 41

from which, currentI1 D 41/17 D 2.412 A D 2.41 A, correct to
two decimal places.

From equation (1): 6�2.412� C 5I2 D 8, from which,

currentI2 D 8 � 6�2.412�

5
D �1.294 A

D −1.29 A, correct to two decimal places.

The minus sign indicates that currentI2 flows in the opposite direction
to that shown in Figure 30.2.
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The current flowing through resistanceR is

�I1 C I2� D 2.412C ��1.294�

D 1.118 A D 1.12 A, correct to two decimal places.

[A third loop may be selected in Figure 30.2, (just as a check), moving
clockwise around the outside of the network. ThenE1 � E2 D I1r1 � I2r2,
i.e. 8� 3 D I1 � 2I2. Thus 5D 2.412� 2��1.294� D 5]

An alternative method of solving equations (1) and (2) is shown below
using determinants. Since

6I1 C 5I2 � 8 D 0 �1�

5I1 C 7I2 � 3 D 0 �2�

then
I1∣∣∣∣ 5 �8

7 �3

∣∣∣∣
D �I2∣∣∣∣ 6 �8

5 �3

∣∣∣∣
D 1∣∣∣∣ 6 5

5 7

∣∣∣∣
i.e.,

I1

�15C 56
D �I2

�18C 40
D 1

42� 25

I1

41
D �I2

22
D 1

17

from which, I1 D 41/17 D 2.41 A and I2 D �22/17 D −1.29 A, as
obtained previously.

The above procedure is shown for a simple d.c. circuit having two
unknown values of current. The procedure however applies equally well
to a.c. networks and/or to circuits where three unknown currents are
involved. This is illustrated in the following problems.

Problem 1. Use Kirchhoff’s laws to find the current flowing in
each branch of the network shown in Figure 30.3.

Figure 30.3
(i) The branch currents and their directions are labelled as shown in

Figure 30.4

Figure 30.4

(ii) Two loops are chosen. From loop ABEF, and moving clockwise,

25I1 C 20�I1 C I2� D 1006 0°

i.e., 45I1 C 20I2 D 100 �1�

From loop BCDE, and moving anticlockwise,

10I2 C 20�I1 C I2� D 506 90°

i.e., 20I1 C 30I2 D j50 �2�

3 ð equation�1� gives: 135I1 C 60I2 D 300 �3�

2 ð equation�2� gives: 40I1 C 60I2 D j100 �4�
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Equation (3) — equation�4� gives: 95I1 D 300� j100,

from which, currentI1 D 300� j100

95
D 3.3296 6 −18.43° A or

.3.158− j 1.052/A

Substituting in equation (1) gives:

45�3.158� j1.052� C 20I2 D 100, from which,

I2 D 100� 45�3.158� j1.052�

20

D .−2.106Y j 2.367/A or 3.1686 6 131.66° A

Thus

I1 C I2 D �3.158� j1.052� C ��2.106C j2.367�

D .1.052Y j 1.315/ A or 1.6846 6 51.34° A

Problem 2. Determine the current flowing in the 2� resistor of
the circuit shown in Figure 30.5 using Kirchhoff’s laws. Find also
the power dissipated in the 3� resistance.

Figure 30.5
(i) Currents and their directions are assigned as shown in Figure 30.6.

Figure 30.6

(ii) Three loops are chosen since three unknown currents are required.
The choice of loop directions is arbitrary. From loop ABCDE, and
moving anticlockwise,

5I1 C 6I2 C 4�I2 � I3� D 8

i.e., 5I1 C 10I2 � 4I3 D 8 �1�
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From loop EDGF, and moving clockwise,

6I2 C 2I3 � 1�I1 � I2� D 0

i.e., �I1 C 7I2 C 2I3 D 0 �2�

From loop DCHG, and moving anticlockwise,

2I3 C 3�I1 � I2 C I3� � 4�I2 � I3� D 0

i.e., 3I1 � 7I2 C 9I3 D 0 �3�

(iii) Thus 5I1 C 10I2 � 4I3 � 8 D 0

�I1 C 7I2 C 2I3 C 0 D 0

3I1 � 7I2 C 9I3 C 0 D 0

Hence, using determinants,

I1∣∣∣∣∣∣
10 �4 �8
7 2 0

�7 9 0

∣∣∣∣∣∣
D �I2∣∣∣∣∣∣

5 �4 �8
�1 2 0
3 9 0

∣∣∣∣∣∣
D I3∣∣∣∣∣∣

5 10 �8
�1 7 0
3 �7 0

∣∣∣∣∣∣
D �1∣∣∣∣∣∣

5 10 �4
�1 7 2
3 �7 9

∣∣∣∣∣∣
Thus

I1

�8
∣∣∣∣ 7 2
�7 9

∣∣∣∣
D �I2

�8
∣∣∣∣ �1 2

3 9

∣∣∣∣
D I3

�8
∣∣∣∣ �1 7

3 �7

∣∣∣∣
D �1

5
∣∣∣∣ 7 2
�7 9

∣∣∣∣ � 10
∣∣∣∣ �1 2

3 9

∣∣∣∣ � 4
∣∣∣∣ �1 7

3 �7

∣∣∣∣
I1

�8�63C 14�
D �I2

�8��9 � 6�
D I3

�8�7 � 21�

D �1

5�63C 14� � 10��9 � 6� � 4�7 � 21�

I1

�616
D �I2

120
D I3

112
D �1

591

Hence I1 D 616

591
D 1.042 A,

I2 D 120

591
D 0.203 A and

I3 D �112

591
D �0.190 A
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Thusthe current flowing in the 2 Z resistance is 0.190 Ain the opposite
direction to that shown in Figure 30.6.

Current in the 3� resistanceD I1 � I2 C I3

D 1.042� 0.203C ��0.190� D 0.649 A.

Hencepower dissipated in the 3Z resistance, I2�3� D �0.649�2�3� D
1.26W

Problem 3. For the a.c. network shown in Figure 30.7, determine
the current flowing in each branch using Kirchhoff’s laws.

Figure 30.7

(i) CurrentsI1 andI2 with their directions are shown in Figure 30.8.

Figure 30.8

(ii) Two loops are chosen with their directions both clockwise.

From loop ABEF,�5 C j0� D I1�3 C j4� C �I1 � I2��6 C j8�

i.e., 5D �9 C j12� I1 � �6 C j8�I2 �1�

From loop BCDE,�2 C j4� D I2�2 � j5� � �I1 � I2��6 C j8�

i.e., �2 C j4� D ��6 C j8� I1 C �8 C j3�I2 �2�

(iii) Multiplying equation (1) by�8 C j3� gives:

5�8 C j3� D �8 C j3��9 C j12�I1 � �8 C j3��6 C j8�I2 �3�

Multiplying equation (2) by�6 C j8� gives:

�6 C j8��2 C j4� D ��6 C j8��6 C j8�I1 C �6 C j8��8 C j3�I2

�4�
Adding equations (3) and (4) gives:

5�8 C j3� C �6 C j8��2 C j4� D [�8 C j3��9 C j12�

� �6 C j8��6 C j8�]I1

i.e., �20C j55� D �64C j27�I1
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from which, I1 D 20C j55

64C j27
D 58.526 70.02°

69.466 22.87°
D 0.8426 6 47.15° A

D �0.573C j0.617� A

D .0.57Y j 0.62/ A, correct to two decimal places.

From equation (1), 5D �9 C j12��0.573C j0.617� � �6 C j8�I2

5 D ��2.247C j12.429� � �6 C j8�I2

from which, I2 D �2.247C j12.429� 5

6 C j8

D 14.396 120.25°

106 53.13°

D 1.4396 6 67.12°A D �0.559C j1.326� A

D .0.56Y j 1.33/A, correct to two decimal places.

The current in the�6 C j8�� impedance,

I1 � I2 D �0.573C j0.617� � �0.559C j1.326�

D .0.014− j 0.709/A or 0.7096 6 −88.87° A

An alternative method of solving equations (1) and (2) is shown below,
using determinants.

�9 C j12�I1 � �6 C j8�I2 � 5 D 0 �1�

��6 C j8�I1 C �8 C j3�I2 � �2 C j4� D 0 �2�

Thus
I1∣∣∣∣ ��6 C j8� �5

�8 C j3� ��2 C j4�

∣∣∣∣
D �I2∣∣∣∣ �9 C j12� �5

��6 C j8� ��2 C j4�

∣∣∣∣
D 1∣∣∣∣ �9 C j12� ��6 C j8�

��6 C j8� �8 C j3�

∣∣∣∣
I1

��20C j40� C �40C j15�
D �I2

�30� j60� � �30C j40�

D 1

�36C j123� � ��28C j96�

I1

20C j55
D �I2

�j100
D 1

64C j27

Hence I1 D 20C j55

64C j27
D 58.526 70.02°

69.466 22.87°

D 0.8426 6 47.15° A
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and I2 D 1006 90°

69.466 22.87°
D 1.4406 6 67.13° A

The current flowing in the�6 C j8� � impedance is given by:

I1 � I2 D 0.8426 47.15° � 1.4406 67.13°A

D .0.013− j 0.709/ A or 0.7096 6 −88.95° A

Problem 4. For the network shown in Figure 30.9, use Kirch-
hoff’s laws to determine the magnitude of the current in the
�4 C j3� � impedance.

(i) Currents I1, I2 and I3 with their directions are shown in
Figure 30.10. The current in the�4 C j3� � impedance is specified
by one symbol only (i.e.,I3), which means that the three equations
formed need to be solved for only one unknown current.

Figure 30.9 Figure 30.10

(ii) Three loops are chosen. From loop ABGH, and moving clockwise,

4I1 � j5I2 D 10C 12 �1�

From loop BCFG, and moving anticlockwise,

� j5I2 � 8�I1 � I2 � I3� D 15C 12 �2�

From loop CDEF, and moving clockwise,

�8�I1 � I2 � I3� C �4 C j3��I3� D 15 �3�

Hence

4I1 � j5I2 C 0I3 � 22 D 0

�8I1 C �8 � j5�I2 C 8I3 � 27 D 0

�8I1 C 8I2 C �12C j3�I3 � 15 D 0
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Solving for I3 using determinants gives:

I3∣∣∣∣∣∣
4 �j5 �22

�8 �8 � j5� �27
�8 8 �15

∣∣∣∣∣∣
D �1∣∣∣∣∣∣

4 �j5 0
�8 �8 � j5� 8
�8 8 �12C j3�

∣∣∣∣∣∣

Thus
I3

4
∣∣∣∣ �8 � j5� �27

8 �15

∣∣∣∣ C j5
∣∣∣∣ �8 �27
�8 �15

∣∣∣∣ � 22
∣∣∣∣ �8 �8 � j5�
�8 8

∣∣∣∣
D �1

4
∣∣∣∣ �8 � j5� 8

8 �12C j3�

∣∣∣∣ C j5
∣∣∣∣ �8 8
�8 �12C j3�

∣∣∣∣
Hence

I3

384C j700
D �1

308� j304
from which,

I3 D ��384C j700�

�308� j304�

D 798.416 �118.75

432.766 �44.63°

D 1.856 �74.12° A

Hence the magnitude of the current flowing in the .4Y j 3/Z
impedance is 1.85 A

Further problems on network analysis using Kirchhoff’s laws may be found
in Section 30.4 following, problems 1 to 10.

30.4 Further problems
on Kirchhoff’s laws

1 For the network shown in Figure 30.11, determine the current
flowing in each branch.

[50 V source discharges at 2.08 A,
20 V source charges at 0.62 A,

current through 20� resistor is 1.46 A]

2. Determine the value of currentsIA, IB andIC for the network shown
in Figure 30.12. [IA D 5.38 A, IB D 4.81 A, IC D 0.58 A]

3. For the bridge shown in Figure 30.13, determine the current flowing
in (a) the 5� resistance, (b) the 22� resistance, and (c) the 2�
resistance. [(a) 4 A (b

) 1 A (c) 7 A]

4. For the circuit shown in Figure 30.14, determine (a) the current
flowing in the 10 V source, (b) the p.d. across the 6� resistance,
and (c) the active power dissipated in the 4� resistance.

[(a) 1.59 A (b) 3.71 V (c) 3.79 W]

Figure 30.11
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Figure 30.12 Figure 30.13 Figure 30.14

5. Use Kirchhoff’s laws to determine the current flowing in each branch
of the network shown in Figure 30.15.

[406 90° V source discharges at 4.406 74.48° A

206 0° V source discharges at 2.946 53.13° A

current in 10� resistance is 1.976 107.35° A

(downward)]
Figure 30.15

6. For the network shown in Figure 30.16, use Kirchhoff’s laws to
determine the current flowing in the capacitive branch. [1.58 A]

7. Use Kirchhoff’s laws to determine, for the network shown in
Figure 30.17, the current flowing in (a) the 20� resistance, and
(b) the 4� resistance. Determine also (c) the p.d. across the 8�
resistance, and (d) the active power dissipated in the 10� resistance.

[(a) 0.14 A (b) 10.1 A (c) 2.27 V (d) 1.81 W]

Figure 30.16 Figure 30.17
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Figure 30.18 Figure 30.19

8. Determine the value of currentsIA, IB andIC shown in the network
of Figure 30.18, using Kirchhoff’s laws.

[IA D 2.806 �59.59° A, IB D 2.716 �58.78° A,
IC D 0.0976 97.13° A]

9. Use Kirchhoff’s laws to determine the currents flowing in (a) the
3 � resistance, (b) the 6� resistance and (c) th

e 4 V source of the

network shown in Figure 30.19. Determine also the active power
dissipated in the 5� resistance.

[(a) 0.27 A (b) 0.70 A (c) 0.29 A discharging (d) 1.60 W]

10. Determine the magnitude of the p.d. across the�8 C j6� � impe-
dance shown in Figure 30.20 by using Kirchhoff’s laws. [11.37 V]Figure 30.20



31 Mesh-current and
nodal analysis

At the end of this chapter you should be able to:

ž solve d.c. and a.c. networks using mesh-current analysis

ž solve d.c. and a.c. networks using nodal analysis

31.1 Mesh-current
analysis

Mesh-current analysis is merely an extension of the use of Kirchhoff’s
laws, explained in Chapter 30. Figure 31.1 shows a network whose circu-
lating currentsI1, I2 and I3 have been assigned to closed loops in the
circuit rather than to branches. CurrentsI1, I2 and I3 are calledmesh-
currents or loop-currents.

Figure 31.1

In mesh-current analysis the loop-currents are all arranged to circu-
late in the same direction (in Figure 31.1, shown as clockwise direction).
Kirchhoff’s second law is applied to each of the loops in turn, which
in the circuit of Figure 31.1 produces three equations in three unknowns
which may be solved forI1, I2 andI3. The three equations produced from
Figure 31.1 are:

I1�Z1 C Z2�� I2Z2 D E1

I2�Z2 C Z3 C Z4�� I1Z2 � I3Z4 D 0

I3�Z4 C Z5�� I2Z4 D �E2

The branch currents are determined by taking the phasor sum of the
mesh currents common to that branch. For example, the current flowing
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in impedanceZ2 of Figure 31.1 is given by (I1 � I2) phasorially. The
method of mesh-current analysis, calledMaxwell’s theorem, is demon-
strated in the following problems.

Problem 1. Use mesh-current analysis to determine the current
flowing in (a) the 5� resistance, and (b) the 1� resistance of the
d.c. circuit shown in Figure 31.2.

Figure 31.2

The mesh currentsI1, I2 andI3 are shown in Figure 31.2. Using Kirch-
hoff’s voltage law:

For loop 1, �3 C 5�I1 � 5I2 D 4 �1�

For loop 2, �4 C 1 C 6 C 5�I2 � �5�I1 � �1�I3 D 0 �2�

For loop 3, �1 C 8�I3 � �1�I2 D �5 �3�

Thus
8I1 � 5I2 � 4 D 0 �10�

� 5I1 C 16I2 � I3 D 0 �20�

� I2 C 9I3 C 5 D 0 �30�

Using determinants,

I1∣∣∣∣∣∣∣
�5 0 �4

16 �1 0

�1 9 5

∣∣∣∣∣∣∣

D �I2∣∣∣∣∣∣∣
8 0 �4

�5 �1 0

0 9 5

∣∣∣∣∣∣∣

D I3∣∣∣∣∣∣∣
8 �5 �4

�5 16 0

0 �1 5

∣∣∣∣∣∣∣

D �1∣∣∣∣∣∣∣
8 �5 0

�5 16 �1

0 �1 9

∣∣∣∣∣∣∣
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I1

�5
∣∣∣∣ �1 0

9 5

∣∣∣∣ � 4
∣∣∣∣ 16 �1

�1 9

∣∣∣∣
D �I2

8
∣∣∣∣ �1 0

9 5

∣∣∣∣ � 4
∣∣∣∣ �5 �1

0 9

∣∣∣∣

D I3

�4
∣∣∣∣ �5 16

0 �1

∣∣∣∣ C 5
∣∣∣∣ 8 �5

�5 16

∣∣∣∣

D �1

8
∣∣∣∣ 16 �1

�1 9

∣∣∣∣ C 5
∣∣∣∣ �5 �1

0 9

∣∣∣∣
I1

�5��5�� 4�143�
D �I2

8��5�� 4��45�
D I3

�4�5�C 5�103�

D �1

8�143�C 5��45�
I1

�547
D �I2

140
D I3

495
D �1

919

HenceI1 D 547

919
D 0.595 A, I2 D 140

919
D 0.152 A, and

I3 D �495

919
D �0.539 A

Thuscurrent in the 5 Z resistanceD I1 � I2 D 0.595� 0.152

D 0.44 A,

andcurrent in the 1 Z resistanceD I2 � I3 D 0.152� ��0.539�

D 0.69 A

Problem 2. For the a.c. network shown in Figure 31.3 determine,
using mesh-current analysis, (a) the mesh currentsI1 andI2 (b) the
current flowing in the capacitor, and (c) the active power delivered
by the 1006 0° V voltage source.

Figure 31.3
(a) For the first loop�5 � j4�I1 � ��j4I2� D 1006 0° (1)

For the second loop�4 C j3 � j4�I2 � ��j4I1� D 0 (2)

Rewriting equations (1) and (2) gives:

�5 � j4�I1 C j4I2 � 100D 0 �10�

j4I1 C �4 � j�I2 C 0 D 0 �20�
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Thus, using determinants,

I1∣∣∣∣∣
j4 �100

�4 � j� 0

∣∣∣∣∣
D �I2∣∣∣∣∣

�5 � j4� �100

j4 0

∣∣∣∣∣
D 1∣∣∣∣∣

�5 � j4� j4

j4 �4 � j�

∣∣∣∣∣
I1

�400� j100�
D �I2

j400
D 1

�32� j21�

Hence I1 D �400� j100�

�32� j21�
D 412.316 �14.04°

38.286 �33.27°

D 10.776 19.23° A D 10.86 6 −19.2° A,

correct to one decimal place

I2 D 4006 �90°

38.286 �33.27°
D 10.456 �56.73° A

D 10.56 6 −56.7° A,

correct to one decimal place

(b) Current flowing in capacitorD I1 � I2

D 10.776 19.23° � 10.456 �56.73°

D 4.44C j12.28 D 13.16 70.12° A,

i.e., the current in the capacitor is 13.1 A

(c) Source powerP D VI cos� D �100��10.77� cos 19.23°

D 1016.9 W D 1020 W,

correct to three significant figures.

(Check: power in 5� resistorD I2
1�5� D �10.77�2�5� D 579.97 W

and power in 4� resistorD I2
2�4� D �10.45�2�4� D 436.81 W

Thus total power dissipatedD 579.97C 436.81

D 1016.8 W D 1020 W, correct

to three significant figures.)

Problem 3. A balanced star-connected 3-phase load is shown in
Figure 31.4. Determine the value of the line currentsIR, IY andIB
using mesh-current analysis.

Figure 31.4
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Two mesh currentsI1 andI2 are chosen as shown in Figure 31.4.

From loop 1,I1�3 C j4�C I1�3 C j4�� I2�3 C j4� D 4156 120°

i.e., �6 C j8�I1 � �3 C j4�I2 � 4156 120° D 0 �1�

From loop 2,I2�3 C j4�� I1�3 C j4�C I2�3 C j4� D 4156 0°

i.e., � �3 C j4�I1 C �6 C j8�I2 � 4156 0° D 0 �2�

Solving equations (1) and (2) using determinants gives:

I1∣∣∣∣∣
��3 C j4� �4156 120°

�6 C j8� �4156 0°

∣∣∣∣∣
D �I2∣∣∣∣∣

�6 C j8� �4156 120°

��3 C j4� �4156 0°

∣∣∣∣∣

D 1∣∣∣∣∣
�6 C j8� ��3 C j4�

��3 C j4� �6 C j8�

∣∣∣∣∣

I1

20756 53.13° C 41506 173.13°
D �I2

�41506 53.13° � 20756 173.13°

D 1

1006 106.26° � 256 106.26°

I1

35946 143.13°
D I2

35946 83.13°
D 1

756 106.26°

Hence I1 D 35946 143.13°

756 106.26°
D 47.96 36.87° A

and I2 D 35946 83.13°

756 106.26°
D 47.96 �23.13° A

Thus line current IR D I1 D 47.96 6 36.87° A

I B D �I2 D ��47.96 �23.23° A�

D 47.96 6 156.87° A

and I Y D I2 � I1 D 47.96 �23.13° � 47.96 36.87°

D 47.96 6 −83.13° A

Further problems on mesh-current analysis may be found in Section 31.3,
problems 1 to 9, page 559.
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31.2 Nodal analysis A node of a network is defined as a point where two or more branches
are joined. If three or more branches join at a node, then that node is
called aprincipal node or junction . In Figure 31.5, points 1, 2, 3, 4 and
5 are nodes, and points 1, 2 and 3 are principal nodes.

A node voltage is the voltage of a particular node with respect to a
node called the reference node. If in Figure 31.5, for example, node 3 is
chosen as the reference node thenV13 is assumed to mean the voltage
at node 1 with respect to node 3 (as distinct fromV31). Similarly, V23

would be assumed to mean the voltage at node 2 with respect to node 3,
and so on. However, since the node voltage is always determined with
respect to a particular chosen reference node, the notationV1 for V13 and
V2 for V23 would always be used in this instance.

The object of nodal analysis is to determine the values of voltages at
all the principal nodes with respect to the reference node, e.g., to find
voltagesV1 andV2 in Figure 31.5. When such voltages are determined,
the currents flowing in each branch can be found.

Kirchhoff’s current law is applied to nodes 1 and 2 in turn in
Figure 31.5 and two equations in unknownsV1 andV2 are obtained which
may be simultaneously solved using determinants.

Figure 31.5 Figure 31.6

The branches leading to node 1 are shown separately in Figure 31.6.
Let us assume that all branch currents are leaving the node as shown.
Since the sum of currents at a junction is zero,

V1 � Vx
ZA

C V1

ZD
C V1 � V2

ZB
D 0 �1�

Similarly, for node 2, assuming all branch currents are leaving the node
as shown in Figure 31.7,

V2 � V1

ZB
C V2

ZE
C V2 C VY

ZC
D 0 �2�

In equations (1) and (2), the currents are all assumed to be leaving the
node. In fact, any selection in the direction of the branch currents may
be made — the resulting equations will be identical. (For example, if for
node 1 the current flowing inZB is considered as flowing towards node 1
instead of away, then the equation for node 1 becomesFigure 31.7
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V1 � Vx
ZA

C V1

ZD
D V2 � V1

ZB

which if rearranged is seen to be exactly the same as equation (1).)
Rearranging equations (1) and (2) gives:

(
1

ZA
C 1

ZB
C 1

ZD

)
V1 �

(
1

ZB

)
V2 �

(
1

ZA

)
Vx D 0 �3�

�
(

1

ZB

)
V1 C

(
1

ZB
C 1

ZC
C 1

ZE

)
V2 C

(
1

ZC

)
VY D 0 �4�

Equations (3) and (4) may be rewritten in terms of admittances (where
admittanceY D l/Z ):

�YA C YB C YD�V1 � YBV2 � YAVx D 0 �5�

�YBV1 C �YB C YC C YE�V2 C YCVY D 0 �6�

Equations (5) and (6) may be solved forV1 andV2 by using determinants.
Thus

V1∣∣∣∣ �YB �YA
�YB C YC C YE� YC

∣∣∣∣
D �V2∣∣∣∣ �YA C YB C YD� �YA

�YB YC

∣∣∣∣
D 1∣∣∣∣ �YA C YB C YD� �YB

�YB �YB C YC C YE�

∣∣∣∣
Current equations, and hence voltage equations, may be written at each
principal node of a network with the exception of a reference node. The
number of equations necessary to produce a solution for a circuit is, in
fact, always one less than the number of principal nodes.

Whether mesh-current analysis or nodal analysis is used to determine
currents in circuits depends on the number of loops and nodes the circuit
contains, Basically, the method that requires the least number of equations
is used. The method of nodal analysis is demonstrated in the following
problems.

Problem 4. For the network shown in Figure 31.8, determine the
voltageVAB, by using nodal analysis.

Figure 31.8
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Figure 31.8 contains two principal nodes (at 1 andB) and thus only one
nodal equation is required.B is taken as the reference node and the equa-
tion for node 1 is obtained as follows. Applying Kirchhoff’s current law
to node 1 gives:

IX C IY D I

i.e.,
V1

16
C V1

�4 C j3�
D 206 0°

Thus V1

(
1

16
C 1

4 C j3

)
D 20

V1

(
0.0625C 4 � j3

42 C 32

)
D 20

V1�0.0625C 0.16� j0.12� D 20

V1�0.2225� j0.12� D 20

from which,V1 D 20

�0.2225� j0.12�
D 20

0.25286 �28.34°

i.e., voltageV1 D 79.16 28.34° V

The current through the�4 C j3�� branch,Iy D V1/�4 C j3�

Hence the voltage drop between pointsA and B, i.e., across the 4�
resistance, is given by:

VAB D �Iy��4� D V1�4�

�4 C j3�
D 79.16 28.34°

56 36.87°
�4� D 63.36 6 −8.53° V

Problem 5. Determine the value of voltageVXY shown in the
circuit of Figure 31.9.

Figure 31.9
The circuit contains no principal nodes. However, if pointY is chosen as
the reference node then an equation may be written for nodeX assuming
that current leaves pointX by both branches.

Thus
VX � 86 0°

�5 C 4�
C Vx � 86 90°

�3 C j6�
D 0

from which, VX

(
1

9
C 1

3 C j6

)
D 8

9
C j8

3 C j6

VX

(
1

9
C 3 � j6

32 C 62

)
D 8

9
C j8�3 � j6�

32 C 62
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VX�0.1778� j0.1333� D 0.8889C 48C j24

45

VX�0.22226 �36.86°� D 1.9556C j0.5333

D 2.0276 15.25°

Since pointY is the reference node,

voltageVX D VXY D 2.0276 15.25°

0.22226 �36.86°
D 9.126 6 52.11° V

Problem 6. Use nodal analysis to determine the current flowing
in each branch of the network shown in Figure 31.10.

Figure 31.10
This is the same problem as problem 1 of Chapter 30, page 536, which
was solved using Kirchhoff’s laws. A comparison of methods can
be made.

There are only two principal nodes in Figure 31.10 so only one nodal
equation is required. Node 2 is taken as the reference node.

The equation at node 1 isI1 C I2 C I3 D 0

i.e.,
V1 � 1006 0°

25
C V1

20
C V1 � 506 90°

10
D 0

i.e.,
(

1

25
C 1

20
C 1

10

)
V1 � 1006 0°

25
� 506 90°

10
D 0

0.19V1 D 4 C j5

Thus the voltage at node 1, V1 D 4 C j5

0.19
D 33.706 51.34° V

or �21.05C j26.32�V

Hence the current in the 25� resistance,

I1 D V1 � 1006 0°

25
D 21.05C j26.32� 100

25

D �78.95C j26.32

25

D 3.336 6 161.56° A flowing away from node 1

�or 3.336 �161.56° � 180°�A D 3.336 6 −18.44° A flowing toward
node 1)

The current in the 20� resistance,

I2 D V1

20
D 33.706 51.34°

20
D 1.696 6 51.34° A

flowing from node 1 to node 2
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The current in the 10� resistor,

I3 D V1 � 506 90°

10
D 21.05C j26.32� j50

10
D 21.05� j23.68

10

D 3.176 6 −48.36° A away from node 1

�or 3.176 ��48.36° � 180°� D 3.176 �228.36° A D 3.176 6 131.64° A
toward node 1)

Problem 7. In the network of Figure 31.11 use nodal analysis to
determine (a) the voltage at nodes 1 and 2, (b) the current in the
j4 � inductance, (c) the current in the 5� resistance, and (d) the
magnitude of the active power dissipated in the 2.5� resistance.

Figure 31.11

(a) At node 1,
V1 � 256 0°

2
C V1

�j4 C V1 � V2

5
D 0

Rearranging gives:
(

1

2
C 1

�j4 C 1

5

)
V1 �

(
1

5

)
V2 � 256 0°

2
D 0

i.e., �0.7 C j0.25�V1 � 0.2V2 � 12.5 D 0 �1�

At node 2,
V2 � 256 90°

2.5
C V2

j4
C V2 � V1

5
D 0

Rearranging gives:

�
(

1

5

)
V1 C

(
1

2.5
C 1

j4
C 1

5

)
V2 � 256 90°

2.5
D 0

i.e., �0.2V1 C �0.6 � j0.25�V2 � j10 D 0 �2�

Thus two simultaneous equations have been formed with two
unknowns,V1 andV2. Using determinants, if

�0.7 C j0.25�V1 � 0.2V2 � 12.5 D 0 �1�
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and �0.2V1 C �0.6 � j0.25�V2 � j10 D 0 �2�

then
V1∣∣∣∣∣

�0.2 �12.5

�0.6 � j0.25� �j10

∣∣∣∣∣
D �V2∣∣∣∣∣

�0.7 C j0.25� �12.5

�0.2 �j10

∣∣∣∣∣
D 1∣∣∣∣∣

�0.7 C j0.25� �0.2

�0.2 �0.6 � j0.25�

∣∣∣∣∣
i.e.,

V1

�j2 C 7.5 � j3.125�
D �V2

��j7 C 2.5 � 2.5�

D 1

�0.42� j0.175C j0.15C 0.0625� 0.04�

and
V1

7.5846 �8.53°
D �V2

�76 90°
D 1

0.4436 �3.23°

Thusvoltage,V1 D 7.5846 �8.53°

0.4436 �3.23°
D 17.126 �5.30° V

D 17.16 6 −5.3° V, correct to one decimal place,

and voltage,V2 D 76 90°

0.4436 �3.23°
D 15.806 93.23° V

D 15.86 6 93.2° V, correct to one decimal place.

(b) The current in thej4 � inductance is given by:

V2

j4
D 15.806 93.23°

46 90°
D 3.956 6 3.23° A flowing away from node 2

(c) The current in the 5� resistance is given by:

I5 D V1 � V2

5
D 17.126 �5.30° � 15.806 93.23°

5

i.e., I5 D �17.05� j1.58�� ��0.89C j15.77�

5

D 17.94� j17.35

5
D 24.966 �44.04°

5
D 4.996 6 −44.04° A flowing from node 1 to node 2

(d) The active power dissipated in the 2.5� resistor is given by

P2.5 D �I2.5�
2�2.5� D

(
V2 � 256 90°

2.5

)2

�2.5�

D �0.89C j15.77� j25�2

2.5
D �9.2736 �95.51°�2

2.5
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D 85.996 �191.02°

2.5
by de Moivre’s theorem

D 34.46 169° W

Thus the magnitude of the active power dissipated in the 2.5Z
resistance is 34.4 W

Problem 8. In the network shown in Figure 31.12 determine the
voltageVXY using nodal analysis.

Figure 31.12

Node 3 is taken as the reference node.

At node 1, 256 0° D V1

4 C j3
C V1 � V2

5

i.e.,
(

4 � j3

25
C 1

5

)
V1 � 1

5
V2 � 25 D 0

or �0.3796 �18.43°�V1 � 0.2V2 � 25 D 0 �1�

At node 2,
V2

j10
C V2

j20
C V2 � V1

5
D 0

i.e., �0.2V1 C
(

1

j10
C 1

j20
C 1

5

)
V2 D 0

or �0.2V1 C ��j0.1 � j0.05C 0.2�V2 D 0

i.e., �0.2V1 C �0.256 �36.87°�V2 C 0 D 0 �2�

Simultaneous equations (1) and (2) may be solved forV1 andV2 by using
determinants. Thus,
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V1∣∣∣∣∣
�0.2 �25

0.256 �36.87° 0

∣∣∣∣∣
D �V2∣∣∣∣∣

0.3796 �18.43° �25

�0.2 0

∣∣∣∣∣

D 1∣∣∣∣∣
0.3796 �18.43° �0.2

�0.2 0.256 �36.87°

∣∣∣∣∣

i.e.,
V1

6.256 �36.87°
D �V2

�5
D 1

0.094756 �55.30° � 0.04

D 1

0.0796 �79.85°

Hence voltage,V1 D 6.256 �36.87°

0.0796 �79.85°
D 79.116 6 42.98° V

and voltage,V2 D 5

0.0796 �79.85°
D 63.296 6 79.85° V

The current flowing in the�4 C j3�� branch isV1/�4 C j3�. Hence the
voltage between pointX and node 3 is:

V1

�4 C j3�
�j3� D �79.116 42.98°��36 90°�

56 36.87°

D 47.476 96.11° V

Thus the voltage

VXY D VX � VY D VX � V2 D 47.476 96.11° � 63.296 79.85°

D �16.21� j15.10 D 22.156 6 −137° V

Problem 9. Use nodal analysis to determine the voltages at nodes
2 and 3 in Figure 31.13 and hence determine the current flowing
in the 2� resistor and the power dissipated in the 3� resistor.

This is the same problem as Problem 2 of Chapter 30, page 537, which
was solved using Kirchhoff’s laws.

In Figure 31.13, the reference node is shown at point A.

At node 1,
V1 � V2

1
C V1

6
C V1 � 8 � V3

5
D 0

i.e., 1.367V1 � V2 � 0.2V3 � 1.6 D 0 �1�

At node 2,
V2

2
C V2 � V1

1
C V2 � V3

3
D 0

Figure 31.13
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i.e., �V1 C 1.833V2 � 0.333V3 C 0 D 0 �2�

At node 3,
V3

4
C V3 � V2

3
C V3 C 8 � V1

5
D 0

i.e., �0.2V1 � 0.333V2 C 0.783V3 C 1.6 D 0 �3�

Equations (1) to (3) can be solved forV1, V2 andV3 by using
determinants. Hence

V1∣∣∣∣∣∣∣
�1 �0.2 �1.6

1.833 �0.333 0

�0.333 0.783 1.6

∣∣∣∣∣∣∣

D �V2∣∣∣∣∣∣∣
1.367 �0.2 �1.6

�1 �0.333 0

�0.2 0.783 1.6

∣∣∣∣∣∣∣
D V3∣∣∣∣∣∣∣

1.367 �1 �1.6

�1 1.833 0

�0.2 �0.333 1.6

∣∣∣∣∣∣∣

D �1∣∣∣∣∣∣∣
1.367 �1 �0.2

�1 1.833 �0.333

�0.2 �0.333 0.783

∣∣∣∣∣∣∣

Solving forV2 gives:
�V2

�1.6��0.8496�C 1.6��0.6552�

D �1

1.367�1.3244�C 1��0.8496�� 0.2�0.6996�

hence
�V2

0.31104
D �1

0.82093
from which, voltage,V 2 D 0.31104

0.82093

D 0.3789 V

Thus the current in the 2 Z resistor D V2

2
D 0.3789

2
D 0.19 A,

flowing from node 2 to node A.

Solving forV3 gives:
V3

�1.6�0.6996�C 1.6�1.5057�
D �1

0.82093

hence
V3

1.2898
D �1

0.82093
from which, voltage,V3 D �1.2898

0.82093

D −1.571 V

Power in the 3Z resistor D �I3�2�3� D
(
V2 � V3

3

)2

�3�

D �0.3789� ��1.571��2

3
D 1.27 W

Further problems on nodal analysis may be found in Section 31.3
following, problems 10 to 15, page 560.
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31.3 Further problems
on mesh-current and

nodal analysis

Mesh-current analysis

1 Repeat problems 1 to 10, page 542, of Chapter 30 using mesh-
current analysis.

2 For the network shown in Figure 31.14, use mesh-current analysis
to determine the value of current I and the active power output of
the voltage source. [6.966 �49.94° A; 644 W]

3 Use mesh-current analysis to determine currentsI1, I2 andI3 for the
network shown in Figure 31.15.

[I1 D 8.736 �1.37° A, I2 D 7.026 17.25° A,
I3 D 3.056 �48.67° A]

Figure 31.14

Figure 31.15

4 For the network shown in Figure 31.16, determine the current
flowing in the �4 C j3�� impedance. [0]

Figure 31.16

5 For the network shown in Figure 31.17, use mesh-current analysis
to determine (a) the current in the capacitor,IC, (b) the current in
the inductance,IL, (c) the p.d. across the 4� resistance, and (d) the
total active circuit power.

[(a) 14.5 A (b) 11.5 A (c) 71.8 V (d) 2499 W]

Figure 31.17

6 Determine the value of the currentsIR, IY and IB in the network
shown in Figure 31.18 by using mesh-current analysis.

[IR D 7.846 71.19° AI IY D 9.046 �37.50° A;
IB D 9.896 �168.81° A]

7 In the network of Figure 31.19, use mesh-current analysis to
determine (a) the current in the capacitor, (b) the current in the 5�
resistance, (c) the active power output of the 156 0° V source, and
(d) the magnitude of the p.d. across thej2 � inductance.

[(a) 1.03 A (b) 1.48 A
(c) 16.28 W (d) 3.47 V]

8 A balanced 3-phase delta-connected load is shown in Figure 31.20.
Use mesh-current analysis to determine the values of mesh currents
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Figure 31.18

I1, I2 and I3 shown and hence find the line currentsIR, IY
and IB.

[I1 D 836 173.13° A, I2 D 836 53.13° A,
I3 D 836 �66.87° A IR D 143.86 143.13° A,
IY D 143.86 23.13° A, IB D 143.86 �96.87° A]

9 Use mesh-circuit analysis to determine the value of currentsIA to IE
in the circuit shown in Figure 31.21.

[IA D 2.406 52.52° A; IB D 1.026 46.19° A;
IC D 1.396 57.17° A; ID D 0.676 15.57° A;

IE D 0.9966 83.74° A]

Figure 31.19 Figure 31.20

Figure 31.21 Figure 31.22

Nodal analysis

10 Repeat problems 1, 2, 5, 8 and 10 on page 542 of Chapter 30, and
problems 2, 3, 5, and 9 above, using nodal analysis.
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Figure 31.23

11 Determine for the network shown in Figure 31.22 the voltage at
node 1 and the voltageVAB

[V1 D 59.06 �28.92° V; VAB D 45.36 10.89° V]

12 Determine the voltage VPQ in the network shown in Figure 31.23.
[VPQ D 55.876 50.60° V]

13 Use nodal analysis to determine the currentsIA, IB andIC shown in
the network of Figure 31.24.

[IA D 1.216 150.96° AI IB D 1.066 �56.32° A;
IC D 0.556 32.01° A]

Figure 31.24

14 For the network shown in Figure 31.25 determine (a) the voltages at
nodes 1 and 2, (b) the current in the 40� resistance, (c) the current
in the 20� resistance, and (d) the magnitude of the active power
dissipated in the 10� resistance

[(a) V1 D 88.126 33.86° V, V2 D 58.726 72.28° V
(b) 2.206 33.86° A, away from node 1,
(c) 2.806 118.65° A, away from node 1, (d) 223 W]

Figure 31.25 Figure 31.26

15 Determine the voltage VAB in the network of Figure 31.26, using
nodal analysis. [VAB D 54.236 �102.52° V]



32 The superposition
theorem

At the end of this chapter you should be able to:

ž solve d.c. and a.c. networks using the superposition theorem

32.1 Introduction The superposition theorem states:

‘In any network made up of linear impedances and containing more than
one source of e.m.f. the resultant current flowing in any branch is the
phasor sum of the currents that would flow in that branch if each source
were considered separately, all other sources being replaced at that time
by their respective internal impedances.’

32.2 Using the
superposition theorem

The superposition theorem, which was introduced in Chapter 13 for d.c.
circuits, may be applied to both d.c. and a.c. networks. A d.c. network
is shown in Figure 32.1 and will serve to demonstrate the principle of
application of the superposition theorem.

To find the current flowing in each branch of the circuit, the following
six-step procedure can be adopted:

(i) Redraw the original network with one of the sources, say E2,
removed and replaced by r2 only, as shown in Figure 32.2.

(ii) Label the current in each branch and its direction as shown
in Figure 32.2, and then determine its value. The choice of
current direction for I1 depends on the source polarity which,
by convention, is taken as flowing from the positive terminal as
shown.

Figure 32.1

R in parallel with r2 gives an equivalent resistance of

�5 ð 2�/�5 C 2� D 10/7 D 1.429 	

as shown in the equivalent network of Figure 32.3. From
Figure 28.3,

current I1 D E1

�r1 C 1.429�
D 8

2.429
D 3.294 A

Figure 32.2
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Figure 32.3

From Figure 32.2,

current I2 D
(

r2
RC r2

)
�I1� D

(
2

5 C 2

)
�3.294� D 0.941 A

and current I3 D
(

5

5 C 2

)
�3.294� D 2.353 A

(iii) Redraw the original network with source E1 removed and replaced
by r1 only, as shown in Figure 32.4.

(iv) Label the currents in each branch and their directions as shown in
Figure 32.4, and determine their values.

R and r1 in parallel gives an equivalent resistance of

�5 ð 1�/�5 C 1� D 5/6 	 or 0.833 	,

Figure 32.4

as shown in the equivalent network of Figure 32.5. From
Figure 32.5,

current I4 D E2

r2 C 0.833
D 3

2.833
D 1.059 A

From Figure 32.4,

current I5 D
(

1

1 C 5

)
�1.059� D 0.177 A

and current I6 D
(

5

1 C 5

)
�1.059� D 0.8825 A

Figure 32.5

(v) Superimpose Figure 32.2 on Figure 32.4, as shown in Figure 32.6.

Figure 32.6

(vi) Determine the algebraic sum of the currents flowing in each branch.
(Note that in an a.c. circuit it is the phasor sum of the currents that
is required.)
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From Figure 32.6, the resultant current flowing through the 8 V
source is given by

I1 � I6 D 3.294 � 0.8825 D 2.41 A (discharging, i.e., flowing from
the positive terminal of the source).

The resultant current flowing in th

e 3 V source is given by

I3 � I4 D 2.353 � 1.059 D 1.29 A (charging, i.e., flowing into the
positive terminal of the source).

The resultant current flowing in the 5 	 resistance is given by

I2 C I5 D 0.941 C 0.177 D 1.12 A

The values of current are the same as those obtained on page 536
by using Kirchhoff’s laws.

The following problems demonstrate further the use of the superposi-
tion theorem in analysing a.c. as well as d.c. networks. The theorem is
straightforward to apply, but is lengthy. Thévenin’s and Norton’s theo-
rems (described in Chapter 33) produce results more quickly.

Problem 1. A.c. sources of 100 6 0° V and internal resistance
25 	, and 50 6 90° V and internal resistance 10 	, are connected
in parallel across a 20 	 load. Determine using the superposition
theorem, the current in the 20 	 load and the current in each voltage
source.

(This is the same problem as problem 1 on page 536 and problem 6 on
page 553 and a comparison of methods may be made.)

The circuit diagram is shown in Figure 32.7. Following the above
procedure:

(i) The network is redrawn with the 50 6 90° V source removed as
shown in Figure 32.8

(ii) Currents I1, I2 and I3 are labelled as shown in Figure 32.8.

Figure 32.7 Figure 32.8
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I1 D 100 6 0°

25 C �10 ð 20�/�10 C 20�
D 100 6 0°

25 C 6.667
D 3.158 6 0° A

I2 D
(

10

10 C 20

)
�3.158 6 0°� D 1.053 6 0° A

I3 D
(

20

10 C 20

)
�3.158 6 0°� D 2.105 6 0° A

(iii) The network is redrawn with the 100 6 0° V source removed as
shown in Figure 32.9

(iv) Currents I4, I5 and I6 are labelled as shown in Figure 32.9.

I4 D 50 6 90°

10 C �25 ð 20�/�25 C 20�
D 50 6 90°

10 C 11.111

D 2.368 6 90° A or j2.368 A

I5 D
(

25

20 C 25

)
�j2.368� D j1.316 A

I6 D
(

20

20 C 25

)
�j2.368� D j1.052 A

(v) Figure 32.10 shows Figure 32.9 superimposed on Figure 32.8,
giving the currents shown.

Figure 32.9 Figure 32.10

(vi) Current in the 20 	 load, I2 C I5 D �1.053 C j1.316� A or
1.69 6 6 51.33° A

Current in the 100 6 0° V source, I1 � I6 D �3.158 � j1.052� A or
3.33 6 6 −18.42° A

Current in the 50 6 90° V source, I4 � I3 D �j2.368 � 2.105� or
3.17 6 6 131.64° A
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Problem 2. Use the superposition theorem to determine the
current in the 4 	 resistor of the network shown in Figure 32.11.

(i) Removing the 20 V source gives the network shown in
Figure 32.12.

Figure 32.11 Figure 32.12

(ii) Currents I1 and I2 are shown labelled in Figure 32.12. It is unnec-
essary to determine the currents in all the branches since only the
current in the 4 	 resistance is required.

From Figure 32.12, 6 	 in parallel with 2 	 gives
�6 ð 2�/�6 C 2� D 1.5 	, as shown in Figure 32.13. 2.5 	 in series
with 1.5 	 gives 4 	, 4 	 in parallel with 4 	 gives 2 	, and 2 	
in series with 5 	 gives 7 	.

Thus current I1 D 12

7
D 1.714 A and

current I2 D
(

4

4 C 4

)
�1.714� D 0.857 A

Figure 32.13

(iii) Removing the 12 V source from the original network gives the
network shown in Figure 32.14.

(iv) Currents I3, I4 and I5 are shown labelled in Figure 32.14.

Figure 32.14

From Figure 32.14, 5 	 in parallel with 4 	 gives
�5 ð 4�/�5 C 4� D 20/9 D 2.222 	, as shown in Figure 32.15,
2.222 	 in series with 2.5 	 gives 4.722 	, 4.722 	 in parallel
with 6 	 gives �4.722 ð 6�/�4.722 C 6� D 2.642 	, 2.642 	 in
series with 2 	 gives 4.642 	.

Hence I3 D 20

4642
D 4.308 A

I4 D
(

6

6 C 4.722

)
�4.308� D 2.411 A, from Figure 32.15

I5 D
(

5

4 C 5

)
�2.411� D 1.339 A, from Figure 32.14

Figure 32.15
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(v) Superimposing Figure 32.14 on Figure 32.12 shows that the current
flowing in the 4 	 resistor is given by I5 � I2

(vi) I5 � I2 D 1.339 � 0.857 D 0.48 A, flowing from B toward A (see
Figure 32.11)

Problem 3. Use the superposition theorem to obtain the current
flowing in the �4 C j3�	 impedance of Figure 32.16.

(i) The network is redrawn with V2 removed, as shown in
Figure 32.17.

Figure 32.16 Figure 32.17

(ii) Current I1 and I2 are shown in Figure 32.17. From Figure 32.17,
�4 C j3�	 in parallel with �j10 	 gives an equivalent impe-
dance of

�4 C j3���j10�

�4 C j3 � j10�
D 30 � j40

4 � j7
D 50 6 �53.13°

8.062 6 �60.26°

D 6.202 6 7.13° or �6.154 C j0.770�	

Total impedance of Figure 32.17 is

6.154 C j0.770 C 4 D �10.154 C j0.770�	 or 10.1836 4.34° 	

Hence current I1 D 30 6 45°

10.183 6 4.34°
D 2.946 6 40.66° A

and current I2 D
( �j10

4 � j7

)
�2.946 6 40.66°�

D �10 6 �90°��2.946 6 40.66°�

8.062 6 �60.26°

D 3.654 6 10.92° A or �3.588 C j0.692�A
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Figure 32.18

(iii) The original network is redrawn with V1 removed, as shown in
Figure 32.18.

(iv) Currents I3 and I4 are shown in Figure 32.18. From Figure 32.18,
4 	 in parallel with �4 C j3�	 gives an equivalent impedance of

4�4 C j3�

4 C 4 C j3
D 16 C j12

8 C j3
D 20 6 36.87°

8.544 6 20.56°

D 2.341 6 16.31° 	 or �2.247 C j0.657�	

Total impedance of Figure 32.18 is

2.247 C j0.657 � j10 D �2.247 � j9.343�	 or

9.609 6 �76.48° 	

Hence current I3 D 30 6 �45°

9.609 6 �76.48°
D 3.122 6 31.48° A

and current I4 D
(

4

8 C j3

)
�3.122 6 31.48°�

D �4 6 0°��3.122 6 31.48°�

8.544 6 20.56°

D 1.462 6 10.92° A or �1.436 C j0.277�A

(v) If the network of Figure 32.18 is superimposed on the network
of Figure 32.17, it can be seen that the current in the �4 C j3�	
impedance is given by I2 � I4

(vi) I2 � I4 D �3.588 C j0.692�� �1.436 C j0.277�

D .2.152Y j 0.415/A or 2.1926 6 10.92° A,
flowing from A to B in Figure 32.16.

Problem 4. For the a.c. network shown in Figure 32.19 determine,
using the superposition theorem, (a) the current in each branch,
(b) the magnitude of the voltage across the �6 C j8�	 impedance,
and (c) the total active power delivered to the network.

(a) (i) The original network is redrawn with E2 removed, as shown in
Figure 32.20.

(ii) Currents I1, I2 and I3 are labelled as shown in Figure 32.20.
From Figure 32.20, �6 C j8�	 in parallel with �2 � j5�	 gives
an equivalent impedance of

�6 C j8��2 � j5�

�6 C j8�C �2 � j5�
D �5.123 � j3.671�	
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Figure 32.19 Figure 32.20

From the equivalent network of Figure 32.21,

current I1 D 5 C j0

�3 C j4�C �5.123 � j3.671�

D �0.614 � j0.025�A

current I2 D
[

�2 � j5�

�6 C j8�C �2 � j5�

]
�0.614 � j0.025�

D ��0.00731 � j0.388�A

and current I3 D
[

�6 C j8�

�6 C j8�C �2 � j5�

]
�0.614 � j0.025�

D �0.622 C j0.363�A

Figure 32.21

(iii) The original network is redrawn with E1 removed, as shown in
Figure 32.22.

Figure 32.22
(iv) Currents I4, I5 and I6 are shown labelled in Figure 32.22 with I4

flowing away from the positive terminal of the �2 C j4�V source.

From Figure 32.22, �3 C j4�	 in parallel with �6 C j8�	 gives
an equivalent impedance of

�3 C j4��6 C j8�

�3 C j4�C �6 C j8�
D �2.00 C j2.667�	

From the equivalent network of Figure 32.23,

current I4 D �2 C j4�

�2.00 C j2.667�C �2 � j5�

D ��0.062 C j0.964�AFigure 32.23

From Figure 32.22,

current I5 D
[

�3 C j4�

�3 C j4�C �6 C j8�

]
��0.062 C j0.964�

D ��0.0207 C j0.321�A
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P D �5��0.843� cos�47.16° � 0°�

C �
√
�22 C 42���1.440� cos

(
67.12° � arctan 4

2

)

D 2.866 C 6.427 D 9.293 W

D 9.3 W, correct to one dec. place.

(This value may be checked since total active power dissipated is
given by:

P D �I1 C I6�
2�3�C �I2 � I5�

2�6�C �I3 C I4�
2�2�

D �0.843�2�3�C �0.709�2�6�C �1.440�2�2�

D 2.132 C 3.016 C 4.147 D 9.295 W

D 9.3 W, correct to one dec. place.�

Problem 5. Use the superposition theorem to determine, for the
network shown in Figure 32.25, (a) the magnitude of the current
flowing in the capacitor, (b) the p.d. across the 5 	 resistance,
(c) the active power dissipated in the 20 	 resistance and (d) the
total active power taken from the supply.

Figure 32.25

(i) The network is redrawn with the 30 6 90° V source removed, as
shown in Figure 32.26.

(ii) Currents I1 to I5 are shown labelled in Figure 32.26. From
Figure 32.26, two 8 	 resistors in parallel give an equivalent
resistance of 4 	.

Hence I1 D 50 6 0°

20 C �5�4 � j3�/�5 C 4 � j3��
D 2.220 6 2.12° A

I2 D �4 � j3�

�5 C 4 � j3�
I1 D 1.170 6 �16.32° A

I3 D
(

5

5 C 4 � j3

)
I1 D 1.170 6 20.55° A

I4 D
(

8

8 C 8

)
I3 D 0.585 6 20.55° A D I5
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Figure 32.26 Figure 32.27

(iii) The original network is redrawn with the 50 6 0° V source removed,
as shown in Figure 32.27.

(iv) Currents I6 to I10 are shown labelled in Figure 32.27. From
Figure 32.27, 20 	 in parallel with 5 	 gives an equivalent
resistance of �20 ð 5�/�20 C 5� D 4 	.

Hence I6 D 30 6 90°

8 C �8�4 � j3�/�8 C 4 � j3��
D 2.715 6 96.52° A

I7 D �4 � j3�

�8 C 4 � j3�
I6 D 1.097 6 73.69° A

I8 D
(

8

8 C 4 � j3

)
I6 D 1.756 6 110.56° A

I9 D
(

20

20 C 5

)
I8 D 1.405 6 110.56° A

and I10 D
(

5

20 C 5

)
I8 D 0.351 6 110.56° A

(a) The current flowing in the capacitor is given by

�I3 � I8� D 1.170 6 20.55° � 1.756 6 110.56°

D �1.712 � j1.233�A or 2.116 �35.76° A

i.e., the magnitude of the current in the capacitor is 2.11 A

(b) The p.d. across the 5 	 resistance is given by (I2 C I9) (5).

�I2 C I9� D 1.170 6 �16.32° C 1.405 6 110.56°

D �0.629 C j0.987�A or 1.176 57.49° A

Hence the magnitude of the pd. across the 5 Z resistance is
�1.17��5� D 5.85 V

(c) Active power dissipated in the 20 	 resistance is given by
�I1 � I10�2�20�.

�I1 � I10� D 2.220 6 2.12° � 0.351 6 110.56°

D �2.342 � j0.247�A or 2.3556 �6.02° A
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Hence the active power dissipated in the 20 Z resistance is
�2.355�2�20� D 111 W

(d) Active power developed by the 50 6 0° V source

P1 D V�I1 � I10� cos�1 D �50��2.355� cos�6.02° � 0°�

D 117.1 W

Active power developed by 30 6 90 V source,

P2 D 30�I6 � I5� cos�2

�I6 � I5� D 2.715 6 96.52° � 0.585 6 20.55°

D ��0.856 C j2.492�A or 2.6356 108.96° A

Hence P2 D �30��2.635� cos�108.96° � 90°� D 74.8 W.

Total power developed, P D P1 C P2 D 117.1 C 74.8 D 191.9 W

(This value may be checked by summing the I2R powers dissipated
in the four resistors.)

Further problems on the superposition theorem may be found in
Section 32.3 following, problems 1 to 8.

32.3 Further problems
on the superposition

theorem

1 Repeat problems 1, 5, 8 and 9 on page 542, of Chapter 30, and prob-
lems 3, 5 and 13 on page 559, of Chapter 31, using the superposition
theorem.

2 Two batteries each of e.m.f. 15 V are connected in parallel to supply
a load of resistance 2.0 	. The internal resistances of the batteries
are 0.5 	 and 0.3 	. Determine, using the superposition theorem, the
current in the load and the current supplied by each battery.

[6.86 A; 2.57 A; 4.29 A]

3 Use the superposition theorem to determine the magnitude of the
current flowing in the capacitive branch of the network shown in
Figure 32.28. [2.584 A]

4 A.c. sources of 20 6 90° V and internal resistance 10 	 and 30 6 0° V
and internal resistance 12 	 are connected in parallel across an 8 	
load. Use the superposition theorem to determine (a) the current in
the 8 	 load, and (b) the current in each voltage source.

[(a) 1.30 A (b) 20 6 90° V source discharges at
1.58 6 120.98° A, 306 0° V source

discharges at 1.90 6 �16.49° A]

5 Use the superposition theorem to determine current Ix flowing in the
5 	 resistance of the network shown in Figure 32.29.

[0.529 6 5.71° A]
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Figure 32.28 Figure 32.29

6 For the network shown in Figure 32.30, determine, using the superpo-
sition theorem, (a) the current flowing in the capacitor, (b) the current
flowing in the 2 	 resistance, (c) the p.d. across the 5 	 resistance,
and (d) the total active circuit power.

[(a) 1.28 A (b) 0.74 A (c) 3.01 V (d) 2.91 W]

7 (a) Use the superposition theorem to determine the current in the
12 	 resistance of the network shown in Figure 32.31. Deter-
mine also the p.d. across the 8 	 resistance and the power
dissipated in the 20 	 resistance.

(b) If the 37.5 V source in Figure 32.31 is reversed in direction,
determine the current in the 12 	 resistance.

[(a) 0.375 A, 8.0 V, 57.8 W (b) 0.625 A]

Figure 32.30 Figure 32.31

8 For the network shown in Figure 32.32, use the superposition theorem
to determine (a) the current in the capacitor, (b) the pd. across the
10 	 resistance, (c) the active power dissipated in the 20 	 resistance,
and (d) the total active circuit power.

[(a) 3.97 A (b) 28.7 V (c) 36.4 W (d) 371.6 W]

Figure 32.32



33 Thévenin’s and
Norton’s theorems

At the end of this chapter you should be able to:

ž understand and use Thévenin’s theorem to analyse a.c. and
d.c. networks

ž understand and use Norton’s theorem to analyse a.c. and d.c.
networks

ž appreciate and use the equivalence of Thévenin and Norton
networks

33.1 Introduction Many of the networks analysed in Chapters 30, 31 and 32 using
Kirchhoff’s laws, mesh-current and nodal analysis and the superposition
theorem can be analysed more quickly and easily by using Thévenin’s
or Norton’s theorems. Each of these theorems involves replacing what
may be a complicated network of sources and linear impedances with a
simple equivalent circuit. A set procedure may be followed when using
each theorem, the procedures themselves requiring a knowledge of basic
circuit theory. (It may be worth checking some general d.c. circuit theory
in Section 13.4. page 174, before proceeding)

33.2 Th́evenin’s theorem Thévenin’s theorem states:

‘The current which flows in any branch of a network is the same as that
which would flow in the branch if it were connected across a source of
electrical energy, the e.m.f. of which is equal to the potential difference
which would appear across the branch if it were open-circuited, and the
internal impedance of which is equal to the impedance which appears
across the open-circuited branch terminals when all sources are replaced
by their internal impedances.’

The theorem applies to any linear active network (‘linear’ meaning that the
measured values of circuit components are independent of the direction
and magnitude of the current flowing in them, and ‘active’ meaning that
it contains a source, or sources, of e.m.f.)

The above statement of Thévenin’s theorem simply means that
a complicated network with output terminals AB, as shown in
Figure 33.1(a), can be replaced by a single voltage sourceE in series
with an impedancez, as shown in Figure 33.1(b).E is the open-circuit
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Figure 33.1 The Thévenin
equivalent circuit

voltage measured at terminals AB andz is the equivalent impedance of
the network at the terminals AB when all internal sources of e.m.f. are
made zero. The polarity of voltageE is chosen so that the current flowing
through an impedance connected between A and B will have the same
direction as would result if the impedance had been connected between A
and B of the original network. Figure 33.1(b) is known as theThévenin
equivalent circuit, and was initially introduced in Section 13.4, page 174
for d.c. networks.

The following four-stepprocedure can be adopted when determining,
by means of Th́evenin’s theorem, the current flowing in a branch
containing impedanceZL of an active network:

(i) remove the impedanceZL from that branch;

(ii) determine the open-circuit voltageE across the break;

(iii) remove each source of e.m.f. and replace it by its internal impedance
(if it has zero internal impedance then replace it by a short-
circuit), and then determine the internal impedance,z, ‘looking in’
at the break;

(iv) determine the current from the Thévenin equivalent circuit shown
in Figure 33.2, i.e.

current iL =
E

ZL Y z
.

A simple d.c. network (Figure 33.3) serves to demonstrate how the above
procedure is applied to determine the current flowing in the 5� resis-
tance by using Th́evenin’s theorem. This is the same network as used in
Chapter 30 when it was solved using Kirchhoff’s laws (see page 535),
and by means of the superposition theorem in Chapter 32 (see page 562).

A comparison of methods may be made.

Using the above procedure:

(i) the 5� resistor is removed, as shown in Figure 33.4(a).

(ii) The open-circuit voltageE across the break is now required. The
network of Figure 33.4(a) is redrawn for convenience as shown in
Figure 33.4(b), where current,

I1 D E1 � E2

r1 C r2
D 8 � 3

1 C 2
D 5

3
or 1

2

3
A

Figure 33.2
Hence the open-circuit voltageE is given by

E D E1 � I1r1 i.e.,E D 8 �
(
12

3

)
	1
 D 61

3 V

(Alternatively,E D E2 � 	�I1
r2 D 3 C
(
12

3

)
	2
 D 61

3 V.


(iii) Removing each source of e.m.f. gives the network of Figure 33.5.
The impedance,z, ‘looking in’ at the break AB is given by

z D 	1 ð 2
/	1 C 2
 D 2
3 �Figure 33.3
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Figure 33.4

(iv) The Th́evenin equivalent circuit is shown in Figure 33.6, where
currentiL is given by

iL D E

ZL C z
D 61

3

5 C 2
3

D 1.1177

D 1.12 A, correct to two decimal placesFigure 33.5

To determine the currents flowing in the other two branches of
the circuit of Figure 33.3, basic circuit theory is used. Thus, from
Figure 33.7, voltageV D 	1.1177
	5
 D 5.5885 V.

ThenV D E1 � IAr1, i.e., 5.5885D 8 � IA	1
, from which

currentIA D 8 � 5.5885D 2.41 A.

Similarly, V D E2 � IBr2, i.e., 5.5885D 3 � IB	2
, from which

currentIB D 3 � 5.5885

2
D −1.29 A

Figure 33.6
(i.e., flowing in the direction opposite to that shown in Figure 33.7).

The Th́evenin theorem procedure used above may be applied to a.c. as
well as d.c. networks, as shown below.

An a.c. network is shown in Figure 33.8 where it is required to find the
current flowing in the	6 C j8
� impedance by using Thévenin’s theorem.

Figure 33.7

Using the above procedure

(i) The 	6 C j8
� impedance is removed, as shown in Figure 33.9(a).

(ii) The open-circuit voltage across the break is now required. The
network is redrawn for convenience as shown in Figure 33.9(b),
where current

I1 D 	5 C j0
C 	2 C j4


	3 C j4
C 	2 � j5

D 	7 C j4


	5 � j


D 1.5816 41.05° AFigure 33.8
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Figure 33.9

Hence open-circuit voltage across AB,

E D E1 � I1	3 C j4
, i.e.,

E D 	5 C j0
� 	1.5816 41.05°
	56 53.13°


from whichE D 9.5676 �54.73° V
Figure 33.10

(iii) From Figure 33.10, the impedancez ‘looking in’ at terminals AB
is given by

z D 	3 C j4
	2 � j5


	3 C j4
C 	2 � j5


D 5.2816 �3.76° � or 	5.270� j0.346
�

(iv) The Th́evenin equivalent circuit is shown in Figure 33.11, from
which current

iL D E

ZL C z
D 9.6576 �54.73°

	6 C j8
C 	5.270� j0.346


Figure 33.11

Thus, current in	6 C j8
� impedance,

iL D 9.6576 �54.73°

13.6236 34.18°
D 0.716 6 −88.91° A

The network of Figure 33.8 is analysed using Kirchhoff’s laws in
problem 3, page 539, and by the superposition theorem in problem 4,
page 568. The above analysis using Thévenin’s theorem is seen to be
much quicker.

Figure 33.12

Problem 1. For the circuit shown in Figure 33.12, use Thévenin’s
theorem to determine (a) the current flowing in the capacitor, and
(b) the p.d. across the 150 k� resistor.

(a) (i) Initially the 	150� j120
k� impedance is removed from the
circuit as shown in Figure 33.13.Figure 33.13
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Note that, to find the current in the capacitor, only the capacitor
need have been initially removed from the circuit. However,
removing each of the components from the branch through
which the current is required will often result in a simpler
solution.

(ii) From Figure 33.13,

currentI1 D 2006 0°

	5000C 20000

D 8 mA

The open-circuit e.m.f.E is equal to the p.d. across the 20 k�
resistor, i.e.

E D 	8 ð 10�3
	20ð 103
 D 160 V.

(iii) Removing the 2006 0° V source gives the network shown in
Figure 33.14.

Figure 33.14

The impedance,z, ‘looking in’ at the open-circuited terminals
is given by

z D 5 ð 20

5 C 20
k� D 4 kZ

Figure 33.15

(iv) The Th́evenin equivalent circuit is shown in Figure 33.15,
where currentiL is given by

iL D E

ZL C z
D 160

	150� j120
ð 103 C 4 ð 103

D 160

195.23ð 103 6 �37.93°

D 0.826 37.93° mA

Thus the current flowing in the capacitor is 0.82 mA.

(b) P.d. across the 150 k� resistor,

V0 D iLR D 	0.82ð 10�3
	150ð 103
 D 123 V

Figure 33.16 Problem 2. Determine, for the network shown in Figure 33.16,
the value of currentI. Each of the voltage sources has a frequency
of 2 kHz.

(i) The impedance through which currentI is flowing is initially
removed from the network, as shown in Figure 33.17.

(ii) From Figure 33.17,

current,I1 D 20� 10

2 C 3
D 2 A

Figure 33.17
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Figure 33.18

Hence the open circuit e.m.f.E D 20� I1	2
 D 20� 2	2
 D 16 V.

(Alternatively,E D 10C I1	3
 D 10C 	2
	3
 D 16 V.)

(iii) When the sources of e.m.f. are removed from the circuit, the
impedance,z, ‘looking in’ at the break is given by

z D 2 ð 3

2 C 3
D 1.2 Z

(iv) The Th́evenin equivalent circuit is shown in Figure 33.18, where
inductive reactance,

XL D 2�fL D 2�	2000
	235ð 10�6
 D 2.95�
Hence current

I D 16

	1.2 C 1.5 C j2.95

D 16

4.06 47.53°

D 4.06 6 −47.53° A or .2.70− j 2.95/ A

Problem 3. Use Th́evenin’s theorem to determine the power dissi-
pated in the 48� resistor of the network shown in Figure 33.19.

Figure 33.19

The power dissipated by a currentI flowing through a resistorR is given
by I2R, hence initially the current flowing in the 48� resistor is required.

(i) The 	48C j144
� impedance is initially removed from the network
as shown in Figure 33.20.

(ii) From Figure 33.20,

current,i D 506 0°

	300� j400

D 0.16 53.13° A

Figure 33.20
Hence the open-circuit voltage

E D i	300
 D 	0.16 53.13°
	300
 D 306 6 53.13° V

(iii) When the 506 0° V source shown in Figure 33.20 is removed, the
impedance,z, is given by

z D 	�j400
	300


	300� j400

D 	4006 �90°
	300


5006 �53.13°

D 2406 �36.87° � or .192− j 144/Z

(iv) The Th́evenin equivalent circuit is shown in Figure 33.21 connected
to the	48C j144
� load.

Current I D 306 53.13°

	192� j144
C 	48C j144

D 306 53.13°

2406 0°

D 0.1256 53.13° AFigure 33.21
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Hence the power dissipated in the 48Z resistor

D I2R D 	0.125
2	48
 D 0.75 W

Problem 4. For the network shown in Figure 33.22, use
Thévenin’s theorem to determine the current flowing in the 80�
resistor.

Figure 33.22

One method of analysing a multi-branch network as shown in
Figure 33.22 is to use Thévenin’s theorem on one part of the network
at a time. For example, the part of the circuit to the left of AA may be
reduced to a Th́evenin equivalent circuit.
From Figure 33.23,

E1 D
(

20

20C 5

)
100D 80 V, by voltage division

and z1 D 20ð 5

20C 5
D 4 �

Thus the network of Figure 33.22 reduces to that of Figure 33.24. The
part of the network shown in Figure 33.24 to the left of BB may be
reduced to a Th́evenin equivalent circuit, where

E2 D
(

50

50C 46C 4

)
	80
 D 40 V

Figure 33.23 Figure 33.24
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and current I6 D
[

6 C j8

�3 C j4�C �6 C j8�

]
��0.062 C j0.964�

D ��0.041 C j0.643�A

(v) If Figure 32.22 is superimposed on Figure 32.20, the resultant
currents are as shown in Figure 32.24.

Figure 32.24

(vi) Resultant current flowing from (5 C j0)V source is given by

I1 C I6 D �0.614 � j0.025�C ��0.041 C j0.643�

D .0.573Y j 0.618/A or 0.8436 6 47.16° A

Resultant current flowing from (2 C j4)V source is given by

I3 C I4 D �0.622 C j0.363�C ��0.062 C j0.964�

D .0.560Y j 1.327/A or 1.4406 6 67.12° A

Resultant current flowing through the �6 C j8�	 impedance is
given by

I2 � I5 D ��0.00731 � j0.388�� ��0.0207 C j0.321�

D .0.0134 − j 0.709/A or 0.709 6 6 −88.92° A

(b) Voltage across �6 C j8�	 impedance is given by

�I2 � I5��6 C j8� D �0.709 6 �88.92°��10 6 53.13°�

D 7.09 6 �35.79° V

i.e., the magnitude of the voltage across the �6 C j8�	 impedance
is 7.09 V

(c) Total active power P delivered to the network is given by

P D E1�I1 C I6� cos�1 C E2�I3 C I4� cos�2

where �1 is the phase angle between E1 and (I1 C I6) and �2 is the
phase angle between E2 and (I3 C I4), i.e.,
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Figure 33.25

and z2 D 50ð 50

50C 50
D 25�

Thus the original network reduces to that shown in Figure 33.25.
The part of the network shown in Figure 33.25 to the left of CC may be
reduced to a Th́evenin equivalent circuit, where

E3 D
(

60

60C 25C 15

)
	40
 D 24 V

and z3 D 	60
	40


	60C 40

D 24�

Thus the original network reduces to that of Figure 33.26, from which
the current in the 80 Z resistor is given by

I D
(

24

80C 16C 24

)
D 0.20 A

Figure 33.26

Problem 5. Determine the Thévenin equivalent circuit with
respect to terminals AB of the circuit shown in Figure 33.27.
Hence determine (a) the magnitude of the current flowing in a
	3.75C j11
� impedance connected across terminals AB, and
(b) the magnitude of the p.d. across the	3.75C j11
� impedance.

Figure 33.27

CurrentI1 shown in Figure 33.27 is given by

I1 D 246 0°

	4 C j3 � j3

D 246 0°

46 0°
D 66 0° A

The Th́evenin equivalent voltage, i.e., the open-circuit voltage across
terminals AB, is given by

E D I1	4 C j3
 D 	66 0°
	56 36.87°
 D 306 6 36.87° V

When the 246 0° V source is removed, the impedancez ‘looking in’ at
AB is given by

z D 	4 C j3
	�j3

	4 C j3 � j3


D 9 � j12

4
D .2.25− j 3.0/Z

Thus the Th́evenin equivalent circuit is as shown in Figure 33.28.

(a) When a	3.75C j11
� impedance is connected across terminals AB,
the currentI flowing in the impedance is given by

I D 306 36.87°

	3.75C j11
C 	2.25� j3.0

D 306 36.87°

106 53.13°

D 36 �16.26° A
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Figure 33.28 Figure 33.29

Hence the current flowing in the .3.75Y j 11/Z impedance
is 3 A.

(b) P.d. across the	3.75C j11
� impedance is given by

V D 	36 �16.26°
	3.75C j11
 D 36 �16.26°
	11.626 71.18°


D 34.866 54.92° V

Hence the magnitude of the p.d. across the impedance is 34.9 V.

Problem 6. Use Th́evenin’s theorem to determine the current
flowing in the capacitor of the network shown in Figure 33.29.

(i) The capacitor is removed from branch AB, as shown in
Figure 33.30.

(ii) The open-circuit voltage,E, shown in Figure 33.30, is given by
	I2
	5
. I2 may be determined by current division ifI1 is known.
(Alternatively, E may be determined by the method used in
problem 4.)Figure 33.30
Current I1 D V/Z, where Z is the total circuit impedance and
V D 16.556 �22.62° V.

Impedance,Z D 4 C 	j2
	8 C j6


j2 C 8 C j6
D 4 C �12C j16

8 C j8

D 4.5966 22.38° �

Hence I1 D 16.556 �22.62°

4.5966 22.38°
D 3.606 �45° A

and I2 D
(

j2

j2 C 3 C j6 C 5

)
I1 D 	26 90°
	3.606 �45°


11.3146 45°

D 0.6366 0° A
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(An alternative method of findingI2 is to use Kirchhoff’s laws or
mesh-current or nodal analysis on Figure 33.30.)

Hence E D 	I2
	5
 D 	0.6366 0°
	5
 D 3.186 6 0° V

(iii) If the 16.556 �22.62° V source is removed from Figure 33.30, the
impedance,z, ‘looking in’ at AB is given by

z D 5[		4 ð j2
/	4 C j2

C 	3 C j6
]

5 C [		4 ð j2
/	4 C j2

C 3 C j6]
D 5	3.8 C j7.6


8.8 C j7.6

i.e. z D 3.6546 22.61° � or .3.373Y j 1.405/Z

(iv) The Th́evenin equivalent circuit is shown in Figure 33.31, where
the current flowing in the capacitor,I, is given by

I D 3.186 0°

	3.373C j1.405
� j8
D 3.186 0°

7.4086 �62.91°

D 0.436 6 62.91° A in the direction from A to B
Figure 33.31

Problem 7. For the network shown in Figure 33.32, derive the
Thévenin equivalent circuit with respect to terminals PQ, and
hence determine the power dissipated by a 2� resistor connected
across PQ.

Figure 33.32

CurrentI1 shown in Figure 33.32 is given by

I1 D 106 0°

	5 C 4 C j3

D 1.0546 �18.43° A

Hence the voltage drop across the 5� resistor is given byVX D 	I1
	5
 D
5.276 �18.43° V, and is in the direction shown in Figure 33.32, i.e., the
direction opposite to that in whichI1 is flowing.

The open-circuit voltageE across PQ is the phasor sum ofV1, Vx and
V2, as shown in Figure 33.33.Figure 33.33
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Figure 33.34

Thus E D 106 0° � 56 45° � 5.276 �18.43°

D 	1.465� j1.869
V or 2.3756 6 −51.91° V

The impedance,z, ‘looking in’ at terminals PQ with the voltage sources
removed is given by

z D 8 C 5	4 C j3


	5 C 4 C j3

D 8 C 2.6356 18.44° D .10.50Y j 0.833/Z

The Th́evenin equivalent circuit is shown in Figure 33.34 with the 2�
resistance connected across terminals PQ.
The current flowing in the 2� resistance is given by

I D 2.3756 �51.91°

	10.50C j0.833
C 2
D 0.18966 �55.72° A

The powerP dissipated in the 2� resistor is given by

P D I2R D 	0.1896
2	2
 D 0.0719 W� 72 mW, correct to two
significant figures.

Problem 8. For the a.c. bridge network shown in Figure 33.35,
determine the current flowing in the capacitor, and its direction,
by using Th́evenin’s theorem. Assume the 306 0° V source to have
negligible internal impedance.

Figure 33.35
(i) The �j25� capacitor is initially removed from the network, as

shown in Figure 33.36.
(ii) P.d. between A and C,

VAC D
(

Z1

Z1 C Z4

)
V D

(
15

15C 5 C j5

)
	306 0°


D 21.836 �14.04° V

Figure 33.36

P.d. between B and C,

VBC D
(

Z2

Z2 C Z3

)
V D

(
40

40C 20C j20

)
	306 0°


D 18.976 �18.43° V

Assuming that point A is at a higher potential than point B, then
the p.d. between A and B is

21.836 � 14.04° � 18.976 �18.43°

D 	3.181C j0.701
V or 3.2576 12.43° V,

i.e., the open-circuit voltage across AB is given by

E D 3.2576 12.43° V.
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Point C is at a potential of 306 0° V. Between C and A is a volt
drop of 21.836 �14.04° V. Hence thevoltage at point A is

306 0° � 21.836 �14.04° D 10.296 6 30.98° V

Between points C and B is a voltage drop of 18.976 �18.43° V.
Hence the voltage at point B is 306 0° � 18.976 �18.43° D
13.426 6 26.55° V.

Since the magnitude of the voltage at B is higher than at A, current
must flow in the direction B to A.

(iii) Replacing the 306 0° V source with a short-circuit (i.e., zero internal
impedance) gives the network shown in Figure 33.37(a). The
network is shown redrawn in Figure 33.37(b) and simplified in
Figure 33.37(c). Hence the impedance,z, ‘looking in’ at terminals
AB is given by

z D 	15
	5 C j5


	15C 5 C j5

C 	40
	20C j20


	40C 20C j20


D 5.1456 30.96° C 17.8896 26.57°

i.e., z D 	20.41C j10.65
�

Figure 33.37

(iv) The Th́evenin equivalent circuit is shown in Figure 33.38, where
currentI is given by

I D 3.2576 12.43°

	20.41C j10.65
� j25
D 3.2576 12.43°

24.956 �35.11°

D 0.1316 47.54° A

Thus a current of 131 mA flows in the capacitor in a direction
from B to A.Figure 33.38
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Further problems on Thévenin’s theorem may be found in Section 33.5,
problems 1 to 10, page 598.

33.3 Norton’s theorem A source of electrical energy can be represented by a source of e.m.f. in
series with an impedance. In Section 33.2, the Thévenin constant-voltage
source consisted of a constant e.m.f.E, which may be alternating or direct,
in series with an internal impedance,z. However, this is not the only form
of representation. A source of electrical energy can also be represented by
a constant-current source, which may be alternating or direct, in parallel
with an impedance. It is shown in Section 33.4 that the two forms are in
fact equivalent.

Norton’s theorem states:

‘The current that flows in any branch of a network is the same as that which
would flow in the branch if it were connected across a source of electrical
energy, the short-circuit current of which is equal to the current that would
flow in a short-circuit across the branch, and the internal impedance of
which is equal to the impedance which appears across the open-circuited
branch terminals.’

The above statement simply means that any linear active network
with output terminals AB, as shown in Figure 33.39(a), can be replaced
by a current source in parallel with an impedancez as shown in
Figure 33.39(b). The equivalent current sourceISC (note the symbol in
Figure 33.39(b) as per BS 3939:1985) is the current through a short-circuit
applied to the terminals of the network. The impedancez is the equivalent
impedance of the network at the terminals AB when all internal sources of
e.m.f. are made zero. Figure 33.39(b) is known as theNorton equivalent
circuit , and was initially introduced in Section 13.7, page 181 for d.c.
networks.

Figure 33.39 The Norton
equivalent circuit

The following four-step procedure may be adopted when determining
the current flowing in an impedanceZL of a branch AB of an active
network, using Norton’s theorem:

(i) short-circuit branch AB;
(ii) determine the short-circuit currentISC;

(iii) remove each source of e.m.f. and replace it by its internal impedance
(or, if a current source exists, replace with an open circuit), then
determine the impedance,z, ‘looking in’ at a break made between
A and B;

(iv) determine the value of the currentiL flowing in impedanceZL from
the Norton equivalent network shown in Figure 33.40, i.e.,

iL D
(

z

ZL C z

)
ISC

Figure 33.40

A simple d.c. network (Figure 33.41) serves to demonstrate how the above
procedure is applied to determine the current flowing in the 5� resistance
by using Norton’s theorem:Figure 33.41
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Figure 33.42

(i) The 5� branch is short-circuited, as shown in Figure 33.42.

(ii) From Figure 33.42,ISC D I1 C I2 D 8
1 C 3

2 D 9.5 A

(iii) If each source of e.m.f. is removed the impedance ‘looking in’ at
a break made between A and B is given byz D 	1 ð 2
/	1 C 2
 D
2
3 �.

(iv) From the Norton equivalent network shown in Figure 33.43, the

current in the 5� resistance is given byIL D
(

2
3

/ (
5 C 2

3

))
9.5 D

1.12 A, as obtained previously using Kirchhoff’s laws, the super-
position theorem and by Thévenin’s theorem.

As with Thévenin’s theorem, Norton’s theorem may be used with a.c.
as well as d.c. networks, as shown below.

An a.c. network is shown in Figure 33.44 where it is required to find the
current flowing in the	6 C j8
� impedance by using Norton’s theorem.
Using the above procedure:

Figure 33.43 Figure 33.44

(i) Initially the 	6 C j8
� impedance is short-circuited, as shown in
Figure 33.45.

(ii) From Figure 33.45,

I SC D I1 C I2 D 	5 C j0


	3 C j4

C 	�	2 C j4



	2 � j5


D 16 �53.13° � 4.4726 63.43°

5.3856 �68.20°

D 	1.152� j1.421
A or 1.8296 6 −50.97° AFigure 33.45

(iii) If each source of e.m.f. is removed, the impedance,z, ‘looking in’
at a break made between A and B is given by

z D 	3 C j4
	2 � j5


	3 C j4
C 	2 � j5


D 5.286 6 −3.76° Z or .5.269− j 0.346/Z

(iv) From the Norton equivalent network shown in Figure 33.46, the
current is given byFigure 33.46
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Figure 33.47 Figure 33.48 Figure 33.49

iL D
(

z

ZL C z

)
ISC

D
(

5.286 �3.76°

	6 C j8
C 	5.269� j0.346


)
1.8296 �50.97°

i.e., current in .6Y j 8/Z impedance,iL = 0.716 6 −88.91° A

Problem 9. Use Norton’s theorem to determine the value of
currentI in the circuit shown in Figure 33.47.

(i) The branch containing the 2.8� resistor is short-circuited, as shown
in Figure 33.48.

(ii) The 3� resistor in parallel with a short-circuit is the same
as 3� in parallel with 0 giving an equivalent impedance of
	3 ð 0
/	3 C 0
 D 0. Hence the network reduces to that shown in
Figure 33.49, whereISC D 5/2 D 2.5 A.

(iii) If the 5 V source is removed from the network the input impedance,
z, ‘looking-in’ at a break made in AB of Figure 33.48 gives
z D 	2 ð 3
/	2 C 3
 D 1.2 Z (see Figure 33.50).

Figure 33.50

Figure 33.51

(iv) The Norton equivalent network is shown in Figure 33.51, where
currentI is given by

I D
(

1.2

1.2 C 	2.8 � j3


)
	2.5
 D 3

4 � j3
D 0.606 6 36.87° A

Problem 10. For the circuit shown in Figure 33.52 determine the
current flowing in the inductive branch by using Norton’s theorem.

Figure 33.52

(i) The inductive branch is initially short-circuited, as shown in
Figure 33.53.

(ii) From Figure 33.53,

ISC D I1 C I2 D 20

2
C 10

3
D 13.3̇ A

Figure 33.53
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Figure 33.54

(iii) If the voltage sources are removed, the impedance,z, ‘looking in’
at a break made in AB is given byz D 	2 ð 3
/	2 C 3
 D 1.2 Z.

(iv) The Norton equivalent network is shown in Figure 33.54, where
currentI is given by

I D
(

1.2

1.2 C 1.5 C j2.95

)
	13.P3
 D 16

2.7 C j2.95

D 4.06 6 −47.53° A or .2.7 − j 2.95/A

Problem 11. Use Norton’s theorem to determine the magnitude
of the p.d. across the 1� resistance of the network shown in
Figure 33.55.

Figure 33.55

(i) The branch containing the 1� resistance is initially short-circuited,
as shown in Figure 33.56.

Figure 33.56

(ii) 4 � in parallel with �j2 � in parallel with 0� (i.e., the
short-circuit) is equivalent to 0, giving the equivalent circuit of
Figure 33.57. HenceISC D 10/4 D 2.5 A.

Figure 33.57

(iii) The 10 V source is removed from the network of Figure 33.55, as
shown in Figure 33.58, and the impedancez, ‘looking in’ at a break
made in AB is given by

1

z
D 1

4
C 1

4
C 1

�j2 D �j� jC 2

�j4 D 2 � j2

�j4
from which

z D �j4
2 � j2

D �j4	2 C j2


22 C 22
D 8 � j8

8
D .1 − j 1/Z

(iv) The Norton equivalent network is shown in Figure 33.59, from
which currentI is given by

I D
(

1 � j1

	1 � j1
C 1

)
	2.5
 D 1.586 �18.43° A

Hence the magnitude of the p.d. across the 1Z resistor is
given by

IR D 	1.58
	1
 D 1.58 V.

Figure 33.58 Figure 33.59
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Figure 33.60 Figure 33.61

Problem 12. For the network shown in Figure 33.60, obtain the
Norton equivalent network at terminals AB. Hence determine the
power dissipated in a 5� resistor connected between A and B.

(i) Terminals AB are initially short-circuited, as shown in Figure 33.61.
(ii) The circuit impedanceZ presented to the 206 0° V source is

given by

Z D 2 C 	4 C j3
	�j3

	4 C j3
C 	�j3
 D 2 C 9 � j12

4

D 	4.25� j3
� or 5.2026 �35.22° �

Thus currentI in Figure 33.61 is given by

I D 206 0°

5.2026 �35.22°
D 3.8456 35.22° A

Hence

ISC D
(

	4 C j3


	4 C j3
� j3

)
	3.8456 35.22°


D 4.8066 6 72.09° A

(iii) Removing the 206 0° V source of Figure 33.60 gives the network
of Figure 33.62.Figure 33.62
Impedance,z, ‘looking in’ at terminals AB is given by

z D �j3 C 2	4 C j3


2 C 4 C j3
D �j3 C 1.4916 10.3°

D .1.467− j 2.733/Z or 3.1026 6 −61.77°Z

(iv) The Norton equivalent network is shown in Figure 33.63.

CurrentIL D
(

3.1026 �61.77°

1.467� j2.733C 5

)
	4.8066 72.09°


D 2.1236 33.23° A
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Figure 33.63

Hence the power dissipated in the 5Z resistor is

I2
LR D 	2.123
2	5
 D 22.5 W

Problem 13. Derive the Norton equivalent network with respect
to terminals PQ for the network shown in Figure 33.64 and hence
determine the magnitude of the current flowing in a 2� resistor
connected across PQ.

Figure 33.64
This is the same problem as problem 7 on page 584 which was solved
by Thévenin’s theorem.

A comparison of methods may thus be made.

(i) Terminals PQ are initially short-circuited, as shown in Figure 33.65.

(ii) CurrentsI1 andI2 are shown labelled. Kirchhoff’s laws are used.

For loop ABCD, and moving anticlockwise,

106 0° D 5I1 C 	4 C j3
	I1 C I2
,

i.e., 	9 C j3
I1 C 	4 C j3
I2 � 10 D 0 	1


Figure 33.65
For loop DPQC, and moving clockwise,

106 0° � 56 45° D 5I1 � 8I2,

i.e., 5I1 � 8I2 C 	56 45° � 10
 D 0 	2


Solving Equations (1) and (2) by using determinants gives

I1∣∣∣∣ 	4 C j3
 �10
�8 	56 45° � 10


∣∣∣∣
D �I2∣∣∣∣ 	9 C j3
 �10

5 	56 45° � 10


∣∣∣∣
D I∣∣∣∣ 	9 C j3
 	4 C j3


5 �8

∣∣∣∣
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from which

I2 D
�

∣∣∣∣ 	9 C j3
 �10
5 	56 45°�10


∣∣∣∣∣∣∣∣ 	9 C j3
 	4 C j3

5 �8

∣∣∣∣
D �[	9 C j3
	56 45°�10
C 50]

[�72� j24� 20� j15]

D �[22.526 146.50°]

[99.9256 �157.03°]
D �0.2256 303.53° or � 0.2256 �56.47°

Hence the short-circuit currentISC D 0.2256 �56.47° A flowing
from P to Q.

(iii) The impedance,z, ‘looking in’ at a break made between P and Q
is given by

z D 	10.50C j0.833
� (see problem 7, page 584).

(iv) The Norton equivalent circuit is shown in Figure 33.66, where
currentI is given by

I D
(

10.50C j0.833

10.50C j0.833C 2

)
	0.2256 �56.47°


D 0.196 �55.74° A

Figure 33.66

Hence the magnitude of the current flowing in the 2Z resistor
is 0.19 A.

Further problems on Norton’s theorem may be found in Section 33.5,
problems 11 to 15, page 600

33.4 Th́evenin and
Norton equivalent

networks

It is seen in Sections 33.2 and 33.3 that when Thévenin’s and Norton’s
theorems are applied to the same circuit, identical results are obtained.
Thus the Th́evenin and Norton networks shown in Figure 33.67 are equiv-
alent to each other. The impedance ‘looking in’ at terminals AB is the
same in each of the networks; i.e.,z.

If terminals AB in Figure 33.67(a) are short-circuited, the short-circuit
current is given byE/z.
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Figure 33.67 Equivalent Thévenin and Norton circuits

If terminals AB in Figure 33.67(b) are short-circuited, the short-circuit
current isISC.

Thus I SC D E=z.

Figure 33.68
Figure 33.68 shows a source of e.m.f.E in series with an impedancez

feeding a load impedanceZL. From Figure 33.68,

IL D E

z C ZL
D E/z

	z C ZL
/z
D

(
z

z C ZL

)
E

z

i.e., I L D
(

z
z Y ZL

)
I SC, from above.

From Figure 33.69 it can be seen that, when viewed from the load, the
source appears as a source of currentISC which is divided betweenz and
ZL connected in parallel.

Figure 33.69

Thus it is shown that the two representations shown in Figure 33.67 are
equivalent.

Problem 14. (a) Convert the circuit shown in Figure 33.70(a) to
an equivalent Norton network. (b) Convert the network shown in
Figure 33.70(b) to an equivalent Thévenin circuit.

(a) If the terminals AB of Figure 33.70(a) are short circuited, the short-
circuit current,ISC D 20/4 D 5 A. The impedance ‘looking in’ at
terminals AB is 4�. Hence the equivalent Norton network is as
shown in Figure 33.71(a).

(b) The open-circuit voltageE across terminals AB in Figure 33.70(b)
is given byE D 	ISC
	z
 D 	3
	2
 D 6 V. The impedance ‘looking
in’ at terminals AB is 2�.

Hence the equivalent Thévenin circuit is as shown in
Figure 33.71(b).Figure 33.70
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Figure 33.71 Figure 33.72

Problem 15. (a) Convert the circuit to the left of terminals AB
in Figure 33.72 to an equivalent Thévenin circuit by initially
converting to a Norton equivalent circuit. (b) Determine the
magnitude of the current flowing in the	1.8 C j4
� impedance
connected between terminals A and B of Figure 33.72.

(a) For the branch containing the 12 V source, conversion to a Norton
equivalent network givesISC1 D 12/3 D 4 A and z1 D 3 �. For
the branch containing the 24 V source, conversion to a Norton
equivalent circuit givesISC2 D 24/2 D 12 A andz2 D 2 �.

Thus Figure 33.73 shows a network equivalent to Figure 33.72.
From Figure 33.73, the total short-circuit current is 4C 12 D 16 A,
and the total impedance is given by	3 ð 2
/	3 C 2
 D 1.2 �. Thus
Figure 33.73 simplifies to Figure 33.74.

Figure 33.73 Figure 33.74

The open-circuit voltage across AB of Figure 33.74,E D
	16
	1.2
 D 19.2 V, and the impedance ‘looking in’ at AB,z D
1.2 �. Hence the Th́evenin equivalent circuit is as shown in
Figure 33.75.

(b) When the	1.8 C j4
� impedance is connected to terminals AB of
Figure 33.75, the currentI flowing is given by

I D 19.2

	1.2 C 1.8 C j4

D 3.846 �53.13° A

Hence the current flowing in the.1.8Yj 4/Z impedance is 3.84 A.Figure 33.75
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Problem 16. Determine, by successive conversions between
Thévenin’s and Norton’s equivalent networks, a Thévenin
equivalent circuit for terminals AB of Figure 33.76. Hence
determine the magnitude of the current flowing in the capacitive
branch connected to terminals AB.

Figure 33.76

For the branch containing the 5 V source, converting to a Norton
equivalent network givesISC D 5/1000D 5 mA andz D 1 k�. For the
branch containing the 10 V source, converting to a Norton equivalent
network givesISC D 10/4000D 2.5 mA andz D 4 k�. Thus the circuit
of Figure 33.76 converts to that of Figure 33.77.

Figure 33.77 Figure 33.78

The above two Norton equivalent networks shown in Figure 33.77 may
be combined, since the total short-circuit current is	5 C 2.5
 D 7.5 mA
and the total impedancez is given by 	1 ð 4
/	1 C 4
 D 0.8 k�. This
results in the network of Figure 33.78.

Both of the Norton equivalent networks shown in Figure 33.78 may
be converted to Th́evenin equivalent circuits. Open-circuit voltage across
CD is

	7.5 ð 10�3
	0.8 ð 103
 D 6 V

and the impedance ‘looking in’ at CD is 0.8 k�. Open-circuit voltage
across EF is	1 ð 10�3
	2 ð 102
 D 2 V and the impedance ‘looking in’
at EF is 2 k�. Thus Figure 33.78 converts to Figure 33.79.Figure 33.79
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Figure 33.80

Combining the two Th́evenin circuits gives e.m.f.E D 6 � 2 D 4 V,
and impedancez D 	0.8 C 2
 D 2.8 kZ. Thus the Th́evenin equivalent
circuit for terminals AB of Figure 33.76 is as shown in Figure 33.80.

If an impedance	200� j4000
� is connected across terminals AB,
then the currentI flowing is given by

I D 4

2800C 	200� j4000

D 4

50006 �53.13°
D 0.806 53.13° mA

i.e., the current in the capacitive branch is 0.80 mA.

Problem 17. (a) Determine an equivalent Thévenin circuit for
terminals AB of the network shown in Figure 33.81. (b) Calculate
the power dissipated in a	600� j800
� impedance connected
between A and B of Figure 33.81.

Figure 33.81

(a) Converting the Th́evenin circuit to a Norton network gives

ISC D 5

j1000
D �j5 mA or 56 �90° mA andz D j1 k�

Thus Figure 33.81 converts to that shown in Figure 33.82. The two
Norton equivalent networks may be combined, giving

ISC D 4 C 56 �90° D 	4 � j5
mA or 6.4036 �51.34° mA

and z D 	2
	j1


	2 C j1

D 	0.4 C j0.8
k� or 0.8946 63.43° k�

Figure 33.82 Figure 33.83

This results in the equivalent network shown in Figure 33.83.
Converting to an equivalent Thévenin circuit gives open circuit
e.m.f. across AB,

E D 	6.403ð 10�3 6 �51.34°
	0.894ð 103 6 63.43°


D 5.7246 6 12.09° V

and

impedancez D 0.8946 63.43° k� or .400Y j 800/Z

Thus the Th́evenin equivalent circuit is as shown in Figure 33.84.Figure 33.84
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(b) When a 	600� j800
� impedance is connected across AB, the
currentI flowing is given by

I D 5.7246 12.09°

	400C j800
C 	600� j800

D 5.7246 12.09° mA

Hence the power P dissipated in the	600� j800
� impedance is
given by

P D I2 R D 	5.724ð 10�3
2	600
 D 19.7 mW

Further problems on Thévenin and Norton equivalent networks may be
found in Section 33.5 following, problems 16 to 21, page 600

33.5 Further problems
on Thévenin’s and
Norton’s theorem

Thévenin’s theorem

1 Use Th́evenin’s theorem to determine the current flowing in the 10�
resistor of the d.c. network shown in Figure 33.85. [0.85 A]

2 Determine, using Th́evenin’s theorem, the values of currentsI1, I2

andI3 of the network shown in Figure 33.86.
[I1 D 2.8 A, I2 D 4.8 A, I3 D 7.6 A]

3 Determine the Th́evenin equivalent circuit with respect to terminals
AB of the network shown in Figure 33.87. Hence determine
the magnitude of the current flowing in a	4 � j7
� impedance
connected across terminals AB and the power delivered to this
impedance. [E D 15.376 �38.66°,

z D 	3.20C j4.00
�; 1.97 A; 15.5 W]

4 For the network shown in Figure 33.88 use Thévenin’s theorem to
determine the current flowing in the 3� resistance. [1.17 A]

5 Derive for the network shown in Figure 33.89 the Thévenin
equivalent circuit at terminals AB, and hence determine the current
flowing in a 20� resistance connected between A and B.

[E D 2.5 V, r D 5 �; 0.10 A]

6 Determine for the network shown in Figure 33.90 the Thévenin
equivalent circuit with respect to terminals AB, and hence determine
the current flowing in the	5 C j6
� impedance connected between
A and B. [E D 14.326 6.38°, z D 	3.99C j0.55
�; 1.29 A]

Figure 33.85

Figure 33.86

7 For the network shown in Figure 33.91, derive the Thévenin
equivalent circuit with respect to terminals AB, and hence determine
the magnitude of the current flowing in a	2 C j13
� impedance
connected between A and B. [1.157 A]

8 Use Th́evenin’s theorem to determine the power dissipated in the
4 � resistance of the network shown in Figure 33.92. [0.24 W]

Figure 33.87
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Figure 33.88 Figure 33.89 Figure 33.90

Figure 33.91 Figure 33.92

9 For the bridge network shown in Figure 33.93 use Thévenin’s
theorem to determine the current flowing in the	4 C j3
� impedance
and its direction. Assume that the 206 0° V source has negligible
internal impedance. [0.12 A from Q to P]

Figure 33.93

10 Repeat problems 1 to 10, page 542 of Chapter 30, 2 and 3 and 11
to 15, page 559 of Chapter 31 and 2 to 8, page 573 of Chapter 32,
using Th́evenin’s theorem and compare the method of solution with
that used for Kirchhoff’s laws, mesh-current and nodal analysis and
the superposition theorem.
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Figure 33.94 Figure 33.95

Norton’s theorem

11 Repeat problems 1 to 4 and 6 to 8 above using Norton’s theorem
instead of Th́evenin’s theorem.

12 Determine the current flowing in the 10� resistance of the network
shown in Figure 33.94 by using Norton’s theorem. [3.13 A]

13 For the network shown in Figure 33.95, use Norton’s theorem to
determine the current flowing in the 10� resistance. [1.08 A]

14 Determine for the network shown in Figure 33.96 the Norton equiv-
alent network at terminals AB. Hence determine the current flowing
in a 	2 C j4
� impedance connected between A and B.

[ISC D 2.1856 �43.96° A, z D 	2.40C j1.47
�; 0.88 A]

Figure 33.96

15 Repeat problems 1 to 10, page 542 of Chapter 30 and 2 and 3 and
12 to 15, page 559 of Chapter 31, using Norton’s theorem.

Thévenin and Norton equivalent networks

16 Convert the circuits shown in Figure 33.97 to Norton equivalent
networks. [(a)ISC D 2.5 A, z D 2 � (b) ISC D 26 30°, z D 5 �]

Figure 33.97

17 Convert the networks shown in Figure 33.98 to Thévenin equivalent
circuits. [(a)E D 20 V, z D 4 �; (b) E D 126 50° V, z D 3 �]

18 (a) Convert the network to the left of terminals AB in Figure 33.99
to an equivalent Th́evenin circuit by initially converting to a
Norton equivalent network.

(b) Determine the current flowing in the	2.8 � j3
� impedance
connected between A and B in Figure 33.99.

[(a) E D 18 V, z D 1.2 � (b) 3.6 A]

19 Determine, by successive conversions between Thévenin and Norton
equivalent networks, a Thévenin equivalent circuit for terminals
AB of Figure 33.100. Hence determine the current flowing in a
	2 C j4
� impedance connected between A and B.[

E D 91
3 V, z D 1 �I 1.876 �53.13° A

]
Figure 33.98
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Figure 33.99 Figure 33.100

20 Derive an equivalent Thévenin circuit for terminals AB of the
network shown in Figure 33.101. Hence determine the p.d. across
AB when a 	3 C j4
k� impedance is connected between these
terminals.

[E D 4.826 �41.63° V, z D 	0.8 C j0.4
 k�; 4.15 V]

Figure 33.101

21 For the network shown in Figure 33.102, derive (a) the Thévenin
equivalent circuit, and (b) the Norton equivalent network. (c) A 6�
resistance is connected between A and B. Determine the current
flowing in the 6� resistance by using both the Thévenin and Norton
equivalent circuits.

[(a) E D 6.716 �26.57° V, z D 	4.50C j3.75
�
(b) ISC D 1.156 �66.38°, z D 	4.50C j3.75
�
(c) 0.60 A

Figure 33.102



Assignment 10

This assignment covers the material contained in chapters 30
to 33.

The marks for each question are shown in brackets at the end of
each question.

For the network shown in Figure A10.1, determine the current flowing in
each branch using:

(a) Kirchhoff’s laws (10)
(b) Mesh-current analysis (12)
(c) Nodal analysis (12)
(d) the Superposition theorem (22)
(e) Thévenin’s theorem (14)
(f) Norton’s theorem (10)

Demonstrate that each method gives the same value for each of the branch
currents.

10∠ 0° V

(3−j4)Ω

5 Ω

(3+j4)Ω

20∠ 0° V

Figure A10.1



34 Delta-star and
star-delta
transformations

At the end of this chapter you should be able to:

ž recognize delta (or�) and star (orT) connections

ž apply the delta-star and star-delta transformations in
appropriate a.c. and d.c. networks

34.1 Introduction By using Kirchhoff’s laws, mesh-current analysis, nodal analysis or the
superposition theorem, currents and voltages in many network can be
determined as shown in Chapters 30 to 32. Thevenin’s and Norton’s theo-
rems, introduced in Chapter 33, provide an alternative method of solving
networks and often with considerably reduced numerical calculations.
Also, these latter theorems are especially useful when only the current
in a particular branch of a complicated network is required. Delta-star
and star-delta transformations may be applied in certain types of circuit
to simplify them before application of circuit theorems.

34.2 Delta and star
connections

The network shown in Figure 34.1(a) consisting of three impedancesZA,
ZB andZC is said to bep-connected. This network can be redrawn as
shown in Figure 34.1(b), where the arrangement is referred to asdelta-
connectedor mesh-connected.

The network shown in Figure 34.2(a), consisting of three impedances,
Z1, Z2 andZ3, is said to beT-connected. This network can be redrawn
as shown in Figure 34.2(b), where the arrangement is referred to asstar-
connected.

34.3 Delta-star
transformation

It is possible to replace the delta connection shown in Figure 34.3(a) by
an equivalent star connection as shown in Figure 34.3(b) such that the
impedance measured between any pair of terminals (1–2, 2–3 or 3–1)
is the same in star as in delta. The equivalent star network will consume
the same power and operate at the same power factor as the original delta
network. A delta-star transformation may alternatively be termed ‘� to T
transformation’.
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Figure 34.1 (a) �-connected
network, (b) Delta-connected
network

Considering terminals 1 and 2 of Figure 34.3(a), the equivalent
impedance is given by the impedanceZB in parallel with the series
combination ofZA andZC,

i.e.,
ZB�ZA C ZC�

ZB C ZA C ZC

In Figure 34.3(b), the equivalent impedance between terminals 1 and 2 is
Z1 andZ2 in series, i.e.,Z1 C Z2 Thus,

Delta Star

Z12 D ZB�ZA C ZC�

ZB C ZA C ZC
D Z1 C Z2 �34.1�

By similar reasoning, Z23 D ZC�ZA C ZB�

ZC C ZA C ZB
D Z2 C Z3 �34.2�

and Z31 D ZA�ZB C ZC�

ZA C ZB C ZC
D Z3 C Z1 �34.3�

Hence we have three simultaneous equations to be solved forZ1, Z2

andZ3.

Equation (34.1)� equation (34.2) gives:

ZAZB � ZAZC
ZA C ZB C ZC

D Z1 � Z3 �34.4�

Equation (34.3)C equation (34.4) gives:

2ZAZB
ZA C ZB C ZC

D 2Z1

from which Z1 D ZAZB
ZA C ZB C ZC

Similarly, equation (34.2)� equation (34.3) gives:

ZBZC � ZAZB
ZA C ZB C ZC

D Z2 � Z1 �34.5�

Equation (34.1)C equation (34.5) gives:

2ZBZC
ZA C ZB C ZC

D 2Z2

from which Z2 D ZBZC
ZA C ZB C ZC

Finally, equation (34.3)� equation (34.1) gives:

ZAZC � ZBZC
ZA C ZB C ZC

D Z3 � Z2 �34.6�
Figure 34.2 (a) T-connected
network, (b) Star-connected
network
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Figure 34.3

Equation (34.2)C equation (34.6) gives:

2ZAZC
ZA C ZB C ZC

D 2Z3

from which Z3 D ZAZC
ZA C ZB C ZC

Summarizing, the star section shown in Figure 34.3(b) is equivalent to
the delta section shown in Figure 34.3(a) when

Z1 =
ZAZB

ZA Y ZB Y ZC
�34.7�

Z2 =
ZB ZC

ZA Y ZB Y ZC
�34.8�

and Z3 =
ZAZC

ZA Y ZB Y ZC
�34.9�

It is noted that impedanceZ1 is given by the product of the two
impedances in delta joined to terminal 1 (i.e.,ZA and ZB), divided by
the sum of the three impedances; impedanceZ2 is given by the product
of the two impedances in delta joined to terminal 2 (i.e.,ZB and ZC),
divided by the sum of the three impedances; and impedanceZ3 is given
by the product of the two impedances in delta joined to terminal 3 (i.e.,
ZA andZC), divided by the sum of the three impedances.

Thus, for example, the star equivalent of the resistive delta network
shown in Figure 34.4 is given by

Z1 D �2��3�

2 C 3 C 5
D 0.6 Z,

Z2 D �3��5�

2 C 3 C 5
D 1.5 Z

and Z3 D �2��5�

2 C 3 C 5
D 1.0 Z

Problem 1. Replace the delta-connected network shown in
Figure 34.5 by an equivalent star connection.

Let the equivalent star network be as shown in Figure 34.6. Then, from
equation (34.7),

Z1 D ZAZB
ZA C ZB C ZC

D �20��10C j10�

20C 10C j10� j20Figure 34.4
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Figure 34.5

D �20��10C j10�

�30� j10�
D �20��1.4146 45°�

31.626 �18.43°

D 8.9446 6 63.43° Z or .4Y j 8/Z

From equation (34.8),

Z2 D ZBZC
ZA C ZB C ZC

D �10C j10���j20�

31.626 �18.43°

D �1.4146 45°��206 �90°�

31.626 �18.43°

D 8.9446 6 −26.57° Z or .8 − j 4/Z

Figure 34.6

From equation (34.9),

Z3 D ZAZC
ZA C ZB C ZC

D �20���j20�

31.626 �18.43°

D �4006 �90°�

31.626 �18.43°

D 12.6506 6 −71.57° Z or .4 − j 12/Z

Problem 2. For the network shown in Figure 34.7, determine
(a) the equivalent circuit impedance across terminals AB,
(b) supply currentI and (c) the power dissipated in the 10�
resistor.

Figure 34.7 Figure 34.8

(a) The network of Figure 34.7 is redrawn, as in Figure 34.8, showing
more clearly the part of the network 1, 2, 3 forming a delta connec-
tion. This may he transformed into a star connection as shown
in Figure 34.9.

From equation (34.7),

Z1 D ZAZB
ZA C ZB C ZC

D �j10��j15�

j10C j15C j25

D �j10��j15�

�j50�
D j 3 Z
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Figure 34.9

From equation (34.8),

Z2 D ZBZC
ZA C ZB C ZC

D �j15��j25�

j50
D j 7.5 Z

From equation (34.9),

Z3 D ZAZC
ZA C ZB C ZC

D �j10��j25�

�j50�
D j 5 Z

The equivalent network is shown in Figure 34.10 and is further
simplified in Figure 34.11.

�10C j5�� in parallel with�j5 � gives an equivalent impedance of

�10C j5���j5�
�10C j5 � j5�

D �2.5 � j5��

Hence the total circuit equivalent impedance across terminals AB is
given byZAB D �2.5 � j5�C j7.5 D .2.5Y j 2.5/Z or 3.546 6 45° Z

(b) Supply currentI D V

ZAB
D 406 0°

3.546 45°
D 11.36 6 −45° A

(c) PowerP dissipated in the 10� resistance of Figure 34.7 is given
by �I1�2(10), whereI1 (see Figure 34.11) is given by:

I1 D
[ �j5

10C j5 � j5

]
�11.36 �45°� D 5.656 �135° A

Figure 34.10

Hence powerP D �5.65�2�10� D 319 W

Figure 34.11 Problem 3. Determine, for the bridge network shown in
Figure 34.12, (a) the value of the single equivalent resistance that
replaces the network between terminals A and B, (b) the current
supplied by the 52 V source, and (c) the current flowing in the 8�
resistance.

(a) In Figure 34.12, no resistances are directly in parallel or directly
in series with each other. However, ACD and BCD are both delta
connections and either may be converted into an equivalent star
connection. The delta network BCD is redrawn in Figure 34.13(a)
and is transformed into an equivalent star connection as shown in
Figure 34.13(b), where

Z1 D �8��16�

8 C 16C 40
D 2 � (from equation (34.7))

Z2 D �16��40�

8 C 16C 40
D 10� (from equation (34.8))

Z3 D �8��40�

8 C 16C 40
D 5 � (from equation (34.9))Figure 34.12
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Figure 34.13

The network of Figure 34.12 may thus be redrawn as shown in
Figure 34.14. The 4� and 2� resistances are in series with each
other, as are the 1� and 5� resistors. Hence the equivalent network
is as shown in Figure 34.15. The total equivalent resistance across
terminals A and B is given by

RAB D �6��6�

�6�C �6�
C 10 D 13Z

(b) Current supplied by the 52 V source, i.e., current I in Figure 34.15,
is given by

I D V

ZAB
D 52

13
D 4 A

(c) From Figure 34.15, currentI1 D [6/�6 C 6�]�I� D 2 A, and current
I2 D 2 A also. From Figure 34.14, p.d. across AC,VAC D �I1��4� D
8 V and p.d. across AD,VAD D �I2��1� D 2 V. Hence p.d. between
C and D (i.e., p.d. across the 8� resistance of Figure 34.12) is given
by �8 � 2� D 6 V.

Thus the current in the 8 Z resistance is given byVCD/8 D 6/8 D
0.75 A

Problem 4. Figure 34.16 shows an Anderson bridge used
to measure, with high accuracy, inductanceLX and series
resistanceRX

(a) Transform the delta ABD into its equivalent star connection
and hence determine the balance equations forRX andLX

(b) If R2 D R3 D 1 k�,R4 D 500�,R5 D 200� andC D 2 µF,
determine the values ofRX andLX at balance.

(a) The delta ABD is redrawn separately in Figure 34.17, together with
its equivalent star connection comprising impedancesZ1, Z2 andZ3.
From equation (34.7),

Z1 D �R5���jXC�
R5 � jXC C R3

D �jR5XC
�R3 C R5�� jXC

From equation (34.8),

Z2 D ��jXC��R3�

R5 � jXC C R3
D �jR3XC
�R3 C R5�� jXC

From equation (34.9),

Z3 D R5R3

�R3 C R5�� jXC

Figure 34.14
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Figure 34.15

The network of Figure 34.16 is redrawn with the star replacing
the delta as shown in Figure 34.18, and further simplified in
Figure 34.19. (Note that impedanceZ1 does not affect the balance
of the bridge since it is in series with the detector.)

Figure 34.16

At balance,

�RX C jXLX��Z2� D �R2��R4 C Z3� from Chapter 27,

from which,

�RX C jXLX� D R2

Z2
�R4 C Z3� D R2R4

Z2
C R2Z3

Z2

D R2R4

�jR3XC/��R3 C R5�� jXC�

C R2�R5R3/��R3 C R5�� jXC��

�jR3XC/��R3 C R5�� jXC�

D R2R4��R3 C R5�� jXC�

�jR3XC
C R2R5R3

�jR3XC

D jR2R4��R3 C R5�� jXC�

R3XC
C jR2R5

XC

i.e., �RX C jXLX� D jR2R4�R3 C R5�

R3XC
C R2R4XC

R3XC
C jR2R5

XC

Equating the real parts gives:

RX =
R2R4

R3

Equating the imaginary parts gives:

XLX D R2R4�R3 C R5�

R3XC
C R2R5

XC

i.e., ωLX D R2R4R3

R3�1/ωC�
C R2R4R5

R3�1/ωC�
C R2R5

�1/ωC�

D ωCR2R4 C ωCR2R4R5

R3
C ωCR2R5

Hence LX D R2C
(

R4Y
R4R5

R3
Y R5

)

(b) When R2 D R3 D 1 k�, R4 D 500�, R5 D 200� and C D 2 µF,
then, at balance

RX D R2R4

R3
D �1000��500�

�1000�
D 500Z

and LX D R2C
(
R4 C R4R5

R3
C R5

)
Figure 34.17
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Figure 34.18

D �1000��2 ð 10�6�
[
500C �500��200�

�1000�
C 200

]

D 1.60 H

Figure 34.19

Problem 5. For the network shown in Figure 34.20, determine
(a) the current flowing in the�0 C j10�� impedance, and (b) the
power dissipated in the�20C j0�� impedance.

Figure 34.20

(a) The network may initially be simplified by transforming the delta
PQR to its equivalent star connection as represented by impedances
Z1, Z2 andZ3 in Figure 34.21. From equation (34.7),

Z1 D �15C j10��25� j5�

�15C j10�C �25� j5�C �20� j30�

D �15C j10��25� j5�

�60� j25�

D �18.036 33.69°��25.506 �11.31°�

656 �22.62°

D 7.076 45° � or �5 C j5��

From equation (34.8),

Z2 D �15C j10��20� j30�

�656 �22.62°�

D �18.036 33.69°��36.066 �56.31°�

656 �22.62°

D 10.06 0° or �10C j0��

From equation (34.9),

Z3 D �25� j5��20� j30�

�656 �22.62°�Figure 34.21
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D �25.506 �11.31°��36.066 �56.31°�

656 �22.62°

D 14.156 �45° � or �10� j10��

The network is shown redrawn in Figure 34.22 and further simplified
in Figure 34.23, from which,

currentI1 D 1206 0°

7.5 C ��10��30�/�10C 30��

D 1206 0°

15
D 8 A

currentI2 D
(

10

10C 30

)
�8� D 2 A

currentI3 D
(

30

10C 30

)
�8� D 6 A

Figure 34.22

The current flowing in the�0 C j10�� impedance of Figure 34.20
is the currentI3 shown in Figure 34.23, i.e.,6 A

Figure 34.23
(b) The power P dissipated in the �20C j0�� impedance of

Figure 34.20 is given byP D I2
2�20� D �2�2�20� D 80 W

34.4 Star-delta
transformation

It is possible to replace the star section shown in Figure 34.24(a) by an
equivalent delta section as shown in Figure 34.24(b). Such a transforma-
tion is also known as a ‘T to � transformation’.

From equations (34.7), (34.8) and (34.9),

Z1Z2 C Z2Z3 C Z3Z1 D ZAZ2
BZC C ZAZBZ2

C C Z2
AZBZC

�ZA C ZB C ZC�2

D ZAZBZC�ZB C ZC C ZA�

�ZA C ZB C ZC�2

D ZAZBZC
�ZA C ZB C ZC�

�34.10�
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Figure 34.24

i.e., Z1Z2 C Z2Z3 C Z3Z1 D ZA

(
ZBZC

ZA C ZB C ZC

)
D ZA�Z2�

from equation (34.8)

Hence ZA D Z1Z2 C Z2Z3 C Z3Z1

Z2

From equation (34.10),

Z1Z2 C Z2Z3 C Z3Z1 D ZB

(
ZAZC

ZA C ZB C ZC

)
D ZB�Z3�

from equation (34.9)

Hence ZB D Z1Z2 C Z2Z3 C Z3Z1

Z3

Also from equation (34.10),

Z1Z2 C Z2Z3 C Z3Z1 D ZC

(
ZAZB

ZA C ZB C ZC

)
D ZC�Z1�

from equation (34.7)

Hence ZC D Z1Z2 C Z2Z3 C Z3Z1

Z1

Summarizing, the delta section shown in Figure 34.24(b) is equivalent to
the star section shown in Figure 34.24(a) when

ZA =
Z1Z2Y Z2Z3 Y Z3Z1

Z2
�34.11�

ZB =
Z1Z2Y Z2Z3Y Z3Z1

Z3
�34.12�

and ZC =
Z1Z2Y Z2Z3Y Z3Z1

Z1
�34.13�

It is noted that the numerator in each expression is the sum of the products
of the star impedances taken in pairs. The denominator of the expression
for ZA, which is connected between terminals 1 and 3 of Figure 34.24(b),
is Z2, which is connected to terminal 2 of Figure 34.24(a). Similarly, the
denominator of the expression forZB which is connected between termi-
nals 1 and 2 of Figure 34.24(b), isZ3, which is connected to terminal 3
of Figure 34.24(a). Also the denominator of the expression forZC which
is connected between terminals 2 and 3 of Figure 34.24(b), isZ1, which
is connected to terminal 1 of Figure 34.24(a).
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Figure 34.25

Thus, for example, the delta equivalent of the resistive star circuit
shown in Figure 34.25 is given by:

ZA D �0.6��1.5�C �1.5��1.0�C �1.0��0.6�

1.5
D 3.0

1.5
D 2 Z,

ZB D 3.0

1.0
D 3 Z, ZC D 3.0

0.6
D 5 Z

Problem 6. Determine the delta-connected equivalent network for
the star-connected impedances shown in Figure 34.26

Figure 34.26

Figure 34.27(a) shows the network of Figure 34.26 redrawn and
Figure 34.27(b) shows the equivalent delta connection containing
impedancesZA, ZB andZC. From equation (34.11),

ZA D Z1Z2 C Z2Z3 C Z3Z1

Z2
D �10��20�C �20��j5�C �j5��10�

20

D 200C j150

20
D .10Y j 7.5/Z

From equation (34.12),

ZB D �200C j150�

Z3
D �200�C �j150�

j5

D �j5�200C j150�

25
D .30− j 40/Z

From equation (34.13),

ZC D �200C j150�

Z1
D �200�C �j150�

10
D .20Y j 15/Z

Problem 7. Three impedances,Z1D1006 0°�, Z2D63.256 18.43°�
andZ3 D 1006 �90° � are connected in star. Convert the star to
an equivalent delta connection.

The star-connected network and the equivalent delta network comprising
impedancesZA, ZB and ZC are shown in Figure 34.28. From
equation (34.11),

ZA D Z1Z2 C Z2Z3 C Z3Z1

Z2

D
�1006 0°��63.256 18.43°�C �63.256 18.43°��1006 �90°�

C�1006 �90°��1006 0°�
63.256 18.43°Figure 34.27
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Figure 34.28

D 63256 18.43° C 63256 �71.57° C 100 006 �90°

63.256 18.43°

D 6000C j2000C 2000� j6000� j100 00

63.256 18.43°

D 8000� j14 000

63.256 18.43°
D 16 124.56 �60.26°

63.256 18.43°

D 254.936 6 −78.69° Z or .50− j 250/Z

From equation (34.12),

ZB D Z1Z2 C Z2Z3 C Z3Z1

Z3

D 16 124.56 �60.26

1006 �90°

D 161.256 6 29.74° Z or .140Y j 80/Z

From equation (34.13),

ZC D Z1Z2 C Z2Z3 C Z3Z1

Z1
D 16 124.56 �60.26

1006 0°

D 161.256 6 −60.26° Z or .80Y j 140/Z

Further problems on delta-star and star-delta transformations may be
found in Section 34.5 following, problems 1 to 10.

34.5 Further problems
on delta-star and

star-delta transformations

1 Transform the delta connected networks shown in Figure 34.29 to
their equivalent star-connected networks.

[(a) Z1 D 0.4 �,Z2 D 2 �,Z3 D 0.5 �
(b) Z1 D �j100�,Z2 D j100�,Z3 D 100�]

2 Determine the delta-connected equivalent networks for the star-
connected impedances shown in Figure 34.30

[(a) Z12 D 18�,Z23 D 9 �,Z31 D 13.5 �
(b) Z12 D �10C j0��, Z23 D �5 C j5��,

Z31 D �0 � j10��]

3 (a) Transform the� network shown in Figure 34.31(a) to its equiv-
alent star-connected network.

(b) Change theT-connected network shown in Figure 34.31(b) to
its equivalent delta-connected network.

[(a) Z1 D 5.126 78.35° �,Z2 D 6.826 �26.65° �,
Z3 D 10.236 �11.65° �

(b) Z12 D 35.936 40.50° �,Z23 D 53.896 �19.50° �,
Z31 D 26.956 �49.50° �]Figure 34.29
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Figure 34.30

4 For the network shown in Figure 34.32 determine (a) currentI, and
(b) the power dissipated in the 10� resistance.

[(a) 7.326 24.06° A (b) 668 W]

5 (a) A delta-connected network contains three 246 60° � impedances.
Determine the impedances of the equivalent star-connected
network.

(b) Three impedances, each of�2 C j3��, are connected in star.
Determine the impedances of the equivalent delta-connected
network.

[(a) Each impedanceD 86 60° �
(b) Each impedanceD �6 C j9��]

6 (a) Derive the star-connected network of three impedances equiva-
lent to the network shown in Figure 34.33.

(b) Obtain the delta-connected equivalent network for Figure 34.33.
[(a) 5�, 6 �, 3 �
(b) 21�, 12.6 �, 10.5 �]

Figure 34.31

Figure 34.32 Figure 34.33

7 For the a.c. bridge network shown in Figure 34.34, transform the
delta-connected network ABC into an equivalent star, and hence deter-
mine the current flowing in the capacitor. [131 mA]

8 For the network shown in Figure 34.35 transform the delta-connected
network ABC to an equivalent star-connected network, convert the
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Figure 34.34 Figure 34.35

Figure 34.36 Figure 34.37

35 A, 2� Norton circuit to an equivalent Thévenin circuit and hence
determine the p.d. across the 12.5� resistor. [31.25 V]

9 Transform the delta-connected network ABC shown in Figure 34.36
and hence determine the magnitude of the current flowing in the 20�
resistance. [4.47 A]

10 For the network shown in Figure 34.37 determine (a) the current
supplied by the 806 0° V source, and (b) the power dissipated in the
�2.00� j0.916�� impedance. [(a) 9.73 A (b) 98.6 W]



35 Maximum power
transfer theorems and
impedance matching

At the end of this chapter you should be able to:

ž appreciate the conditions for maximum power transfer in a.c.
networks

ž apply the maximum power transfer theorems to a.c. networks

ž appreciate advantages of impedance matching in a.c. networks

ž perform calculations involving matching transformers for
impedance matching in a.c. networks

35.1 Maximum power
transfer theorems

A network that contains linear impedances and one or more voltage or
current sources can be reduced to a Thévenin equivalent circuit as shown
in Chapter 33. When a load is connected to the terminals of this equivalent
circuit, power is transferred from the source to the load.

A Thévenin equivalent circuit is shown in Figure 35.1 with source
internal impedance,z D �r C jx�� and complex loadZ D �RC jX��.

The maximum power transferred from the source to the load depends
on the following four conditions.

Figure 35.1

Condition 1. Let the load consist of a pure variable resistanceR (i.e. let
X D 0). Then currentI in the load is given by:

I D E

�r C R�C jx

and the magnitude of current,jIj D E√
[�r C R�2 C x2]

The active powerP delivered to loadR is given by

P D jIj2R D E2R

�r C R�2 C x2

To determine the value ofR for maximum power transferred to the load,
P is differentiated with respect toR and then equated to zero (this being
the normal procedure for finding maximum or minimum values using
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calculus). Using the quotient rule of differentiation,

dP

dR
D E2

{
[�r C R�2 C x2]�1�� �R��2��r C R�

[�r C R�2 C x2]2

}

D 0 for a maximum (or minimum) value.

For
dP

dR
to be zero, the numerator of the fraction must be zero.

Hence �r C R�2 C x2 � 2R�r C R� D 0

i.e., r2 C 2rRC R2 C x2 � 2Rr � 2R2 D 0

from which, r2 C x2 D R2 �35.1�

or R =
√

.r 2 Y x2/ = jzj

Thus, with a variable purely resistive load, the maximum power is deliv-
ered to the load if the load resistanceR is made equal to the magnitude
of the source impedance.

Condition 2. Let both the load and the source impedance be purely resis-
tive (i.e., let x D X D 0). From equation (35.1) it may be seen that the

maximum power is transferred whenR = r (this is, in fact, the d.c.

condition explained in Chapter 13, page 187)

Condition 3. Let the loadZ have both variable resistanceR and variable
reactanceX. From Figure 35.1,

currentI D E

�r C R�C j�x C x�
and jIj D E√

[�r C R�2 C �x C X�2]

The active powerP delivered to the load is given byP D jIj2R (since
power can only be dissipated in a resistance) i.e.,

P D E2R

�r C R�2 C �x C X�2

If X is adjusted such thatX D �x then the value of power is a maximum.

If X D �x thenP D E2R

�r C R�2

dP

dR
D E2

{
�r C R�2�1�� �R��2��r C R�

�r C R�4

}
D 0 for a maximum value

Hence �r C R�2 � 2R�r C R� D 0

i.e., r2 C 2rRC R2 � 2Rr � 2R2 D 0

from which, r2 � R2 D 0 andR D r
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Thus with the load impedanceZ consisting of variable resistanceR and
variable reactanceX, maximum power is delivered to the load when

X = −x and R = r , i.e., whenRC jX D r � jx. Hence maximum

power is delivered to the load when the load impedance is the complex
conjugate of the source impedance.

Condition 4. Let the load impedanceZ have variable resistanceR and
fixed reactanceX. From Figure 35.1, the magnitude of current,

jIj D E√
[�r C R�2 C �x C X�2]

and the power dissipated in the load,

P D E2R

�r C R�2 C �x C X�2

dP

dR
D E2

{
[�r C R�2 C �x C X�2]�1�� �R��2��r C R�

[�r C R�2 C �x C X�2]2

}

D 0 for a maximum value

Hence �r C R�2 C �x C X�2 � 2R�r C R� D 0

r2 C 2rRC R2 C �x C X�2 � 2Rr � 2R2 D 0

from which,R2 D r2 C �x C X�2 and R =
√

[r 2 Y .x Y X /2]

Summary

With reference to Figure 35.1:

1 When the load is purely resistive (i.e.,X D 0) and adjustable, maxi-

mum power transfer is achieved whenR = jzj =
√

.r 2 Y x2/

2 When both the load and the source impedance are purely resistive (i.e.,

X D x D 0), maximum power transfer is achieved whenR = r

3 When the load resistanceR and reactanceX are both independently
adjustable, maximum power transfer is achieved when

X = −x and R = r

4 When the load resistanceR is adjustable with reactanceX fixed,
maximum power transfer is achieved when

R =
√

[r 2 Y .x Y X /2]
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The maximum power transfer theorems are primarily important where
a small source of power is involved — such as, for example, the output
from a telephone system (see Section 35.2)

Problem 1. For the circuit shown in Figure 35.2 the load
impedanceZ is a pure resistance. Determine (a) the value ofR
for maximum power to be transferred from the source to the load,
and (b) the value of the maximum power delivered toR.

(a) From condition 1, maximum power transfer occurs whenR D jzj,
i.e., when

R D j15C j20j D
√
�152 C 202� D 25Z

Figure 35.2
(b) CurrentI flowing in the load is given byI D E/ZT, where the total

circuit impedanceZT D z C R D 15C j20C 25 D �40C j20�� or
44.726 26.57° �

Hence I D 1206 0°

44.726 26.57°
D 2.6836 �26.57° A

Thusmaximum power delivered, P D I2R D �2.683�2�25�

D 180 W

Problem 2. If the load impedanceZ in Figure 35.2 of problem 1
consists of variable resistanceR and variable reactanceX, determine
(a) the value ofZ that results in maximum power transfer, and
(b) the value of the maximum power.

(a) From condition 3, maximum power transfer occurs whenX D �x
andR D r. Thus if z D r C jx D �15C j20�� then

Z = .15− j20/Z or 256 6 −53.13° Z

(b) Total circuit impedance at maximum power transfer condition,
ZT D z C Z, i.e.,

ZT D �15C j20�C �15� j20� D 30�

Hence current in load,I D E

ZT
D 1206 0°

30
D 46 0° A

andmaximum power transfer in the load,P D I2R D �4�2�15�

D 240 W

Problem 3. For the network shown in Figure 35.3, determine
(a) the value of the load resistanceR required for maximum power
transfer, and (b) the value of the maximum power transferred.

Figure 35.3



Maximum power transfer theorems and impedance matching621

(a) This problem is an example of condition 1, where maximum power
transfer is achieved whenR D jzj. Source impedancez is composed
of a 100� resistance in parallel with a 1µF capacitor.

Capacitive reactance,XC D 1

2�fC
D 1

2��1000��1 ð 10�6�

D 159.15�

Hence source impedance,

z D �100���j159.15�

�100� j159.15�
D 159156 �90°

187.966 � 57.86°

D 84.676 �32.14° � or �71.69� j45.04��

Thus the value ofload resistancefor maximum power transfer is
84.67Z (i.e., jzj)

(b) With z D �71.69� j45.04�� andR D 84.67� for maximum power
transfer, the total circuit impedance,

ZT D 71.69C 84.67� j45.04

D �156.36� j45.04�� or 162.726 �16.07° �

Current flowing in the load,I D V

ZT
D 2006 0°

162.726 �16.07°

D 1.236 16.07° A

Thus themaximum power transferred,P D I2R D �1.23�2�84.67�

D 128 W

Problem 4. In the network shown in Figure 35.4 the load consists
of a fixed capacitive reactance of 7� and a variable resistanceR.
Determine (a) the value ofR for which the power transferred to the
load is a maximum, and (b) the value of the maximum power.

(a) From condition (4), maximum power transfer is achieved when

R D
√

[r2 C �x C X�2] D
√

[42 C �10� 7�2]

D
√
�42 C 32� D 5 Z

(b) CurrentI D 606 0°

�4 C j10�C �5 � j7�
D 606 0°

�9 C j3�

D 606 0°

9.4876 18.43°
D 6.3246 �18.43° A

Thus themaximum power transferred,P D I2R D �6.324�2�5�

D 200 WFigure 35.4
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Figure 35.5

Problem 5. Determine the value of the load resistanceR shown
in Figure 35.5 that gives maximum power dissipation and calculate
the value of this power.

Using the procedure of Thévenin’s theorem (see page 576):

(i) R is removed from the network as shown in Figure 35.6

(ii) P.d. across AB,E D �15/�15C 5���20� D 15 V

(iii) Impedance ‘looking-in’ at terminals AB with the 20 V source
removed is given byr D �5 ð 15�/�5 C 15� D 3.75�

(iv) The equivalent Th́evenin circuit supplying terminals AB is shown
in Figure 35.7. From condition (2), for maximum power transfer,
R D r, i.e., R = 3.75Z

CurrentI D E

RC r
D 15

3.75C 3.75
D 2 A

Thus themaximum power dissipated in the load,

P D I2R D �2�2�3.75� D 15 W

Figure 35.6

Problem 6. Determine, for the network shown in Figure 35.8,
(a) the values ofR andX that will result in maximum power being
transferred across terminals AB, and (b) the value of the maximum
power.

Figure 35.7 (a) Using the procedure for Thévenin’s theorem:

(i) ResistanceR and reactanceX are removed from the network
as shown in Figure 35.9

(ii) P.d. across AB,

E D
(

5 C j10

5 C j10C 5

)
�1006 30°� D �11.186 63.43°��1006 30°�

14.146 45°

D 79.076 48.43° V

Figure 35.8 (iii) With the 1006 30° V source removed the impedance,z, ‘looking
in’ at terminals AB is given by:

z D �5��5 C j10�

�5 C 5 C j10�
D �5��11.186 63.43°�

�14.146 45°�

D 3.9536 18.43° � or �3.75C j1.25��

(iv) The equivalent Th́evenin circuit is shown in Figure 35.10.
From condition 3, maximum power transfer is achieved when
X D �x andR D r, i.e., in this case whenX = −1.25Z and
R = 3.75ZFigure 35.9
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Figure 35.10

(b) CurrentI D E

z C Z
D 79.076 48.43°

�3.75C j1.25�C �3.75� j1.25�

D 79.076 48.43°

7.5
D 10.5436 48.43° A

Thus themaximum power transferred,P D I2R D �10.543�2�3.75�

D 417 W

Further problems on the maximum power transfer theorems may be found
in Section 35.3, problems 1 to 10, page 626.

35.2 Impedance
matching

It is seen from Section 35.1 that when it is necessary to obtain the
maximum possible amount of power from a source, it is advantageous
if the circuit components can be adjusted to give equality of impedances.
This adjustment is called‘impedance matching’ and is an important
consideration in electronic and communications devices which normally
involve small amounts of power. Examples where matching is impor-
tant include coupling an aerial to a transmitter or receiver, or coupling a
loudspeaker to an amplifier.

The mains power supply is considered as infinitely large compared
with the demand upon it, and under such conditions it is unnecessary to
consider the conditions for maximum power transfer. With transmission
lines (see Chapter 44), the lines are ‘matched’, ideally, i.e., terminated in
their characteristic impedance.

With d.c. generators, motors or secondary cells, the internal impedance
is usually very small and in such cases, if an attempt is made to make the
load impedance as small as the source internal impedance, overloading
of the source results.

A method of achieving maximum power transfer between a source and
a load is to adjust the value of the load impedance to match the source
impedance, which can be done using a‘matching-transformer’ .

A transformer is represented in Figure 35.11 supplying a load
impedanceZL.

Figure 35.11 Matching impedance by means of a transformer

Small transformers used in low power networks are usually regarded
as ideal (i.e., losses are negligible), such that
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V1

V2
D N1

N2
D I2

I1

From Figure 35.11, the primary input impedancejzj is given by

jzj D V1

I1
D �N1/N2�V2

�N2/N1�I2
D

(
N1

N2

)2 V2

I2

Since the load impedancejZLj D V2/I2,

jzj =
(

N1

N2

)2

jZL j �35.2�

If the input impedance of Figure 35.11 is purely resistive (say,r) and the
load impedance is purely resistive (say,RL) then equation (35.2) becomes

r =
(

N1

N2

)2

RL �35.3�

(This is the case introduced in Section 20.10, page 334).

Thus by varying the value of the transformer turns ratio, the equivalent
input impedance of the transformer can be ‘matched’ to the impedance
of a source to achieve maximum power transfer.

Problem 7. Determine the optimum value of load resistance for
maximum power transfer if the load is connected to an amplifier
of output resistance 448� through a transformer with a turns ratio
of 8:1

The equivalent input resistancer of the transformer must be 448� for
maximum power transfer. From equation (35.3),r D �N1/N2�2RL, from
which, load resistanceRL D r�N2/N1�2 D 448�1/8�2 D 7 Z

Problem 8. A generator has an output impedance of
�450C j60��. Determine the turns ratio of an ideal transformer
necessary to match the generator to a load of�40C j19�� for
maximum transfer of power.

Let the output impedance of the generator bez, wherez D �450C j60��
or 453.986 7.59° �, and the load impedance beZL, where
ZL D �40C j19�� or 44.286 25.41° �. From Figure 35.11 and equa-
tion (35.2),z D �N1/N2�2ZL. Hence

transformer turns ratio
(
N1

N2

)
D

√
z

ZL
D

√
453.98

44.28
D p

�10.25� D 3.20
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Problem 9. A single-phase, 240 V/1920 V ideal transformer is
supplied from a 240 V source through a cable of resistance 5�. If
the load across the secondary winding is 1.60 k� determine (a) the
primary current flowing, and (b) the power dissipated in the load
resistance.

The network is shown in Figure 35.12.

(a) Turns ratio,
N1

N2
D V1

V2
D 240

1920
D 1

8

Figure 35.12

Equivalent input resistance of the transformer,

r D
(
N1

N2

)2

RL D
(

1

8

)2

�1600� D 25�

Total input resistance,RIN D R1 C r D 5 C 25 D 30�. Hence the
primary current,I1 D V1/RIN D 240/30 D 8 A

(b) For an ideal transformer,
V1

V2
D I2

I1

from which, I2 D I1

(
V1

V2

)
D �8�

(
240

1920

)
D 1 A

Power dissipated in the load resistance,P D I2
2RL D �1�2�1600�

D 1.6 kW

Problem 10. An ac. source of 306 0° V and internal resistance
20 k� is matched to a load by a 20:1 ideal transformer. Determine
for maximum power transfer (a) the value of the load resistance,
and (b) the power dissipated in the load.

The network diagram is shown in Figure 35.13.

(a) For maximum power transfer,r1 must be equal to 20 k�. From
equation (35.3),r1 D �N1/N2�2RL from which,Figure 35.13



626 Electrical Circuit Theory and Technology

load resistanceRL D r1

(
N2

N1

)2

D �20 000�
(

1

20

)2

D 50Z

(b) The total input resistance when the source is connected to the
matching transformer is�r C r1�, i.e., 20 k�C 20 k� D 40 k�.
Primary current,

I1 D V/40 000D 30/40 000D 0.75 mA

N1

N2
D I2

I1
from which, I2 D I1

(
N1

N2

)
D �0.75ð 10�3�

(
20

1

)

D 15 mA

Power dissipated in load resistanceRL is given by

P D I2
2RL D �15ð 10�3�2�50� D 0.01125 Wor 11.25 mW

Further problems on impedance matching may be found in Section 35.3
following, problems 11 to 15, page 627.

35.3 Further problems
on maximum power

transfer theorems and
impedance matching

Maximum power transfer theorems

1 For the circuit shown in Figure 35.14 determine the value of the
source resistancer if the maximum power is to he dissipated in the
15� load. Determine the value of this maximum power.

[r D 9 �,P D 208.4 W]

2 In the circuit shown in Figure 35.15 the load impedanceZL is a pure
resistanceR. Determine (a) the value ofR for maximum power to
be transferred from the source to the load, and (b) the value of the
maximum power delivered toR. [(a) 11.18� (b) 151.1 W]

3 If the load impedanceZL in Figure 35.15 of problem 2 consists of
a variable resistanceR and variable reactanceX, determine (a) the
value ofZL which results in maximum power transfer, and (b) the
value of the maximum power. [(a)�10C j5�� (b) 160 W]Figure 35.14

4 For the network shown in Figure 35.16 determine (a) the value of
the load resistanceRL required for maximum power transfer, and
(b) the value of the maximum power. [(a) 26.83� (b) 35.4 W]

5 Find the value of the load resistanceRL shown in Figure 35.17 that
gives maximum power dissipation, and calculate the value of this
power. [RL D 2.1 �,P D 23.3 W]

6 For the circuit shown in Figure 35.18 determine (a) the value of load
resistanceRL which results in maximum power transfer, and (b) the
value of the maximum power. [(a) 16� (b) 48 W]Figure 35.15
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Figure 35.16 Figure 35.17 Figure 35.18

Figure 35.21

7 Determine, for the network shown in Figure 35.19, (a) the values of
R andX which result in maximum power being transferred across
terminals AB, and (b) the value of the maximum power.

[(a) R D 1.706�, X D 0.177� (b) 269 W]

8 A source of 1206 0° V and impedance�5 C j3�� supplies a load
consisting of a variable resistorR in series with a fixed capacitive
reactance of 8�. Determine (a) the value ofR to give maximum
power transfer, and (b) the value of the maximum power.

[(a) 7.07� (b) 596.5 W]Figure 35.19
9 If the loadZL between terminals A and B of Figure 35.20 is variable

in both resistance and reactance determine the value ofZL such that
it will receive maximum power. Calculate the value of the maximum
power. [R D 3.47�,X D �0.93�, 13.6 W]

10 For the circuit of Figure 35.21, determine the value of load
impedanceZL for maximum load power if (a)ZL comprises a
variable resistanceR and variable reactanceX, and (b)ZL is a pure
resistanceR. Determine the values of load power in each case

[(a) R D 0.80�,X D �1.40�,P D 225 W
(b) R D 1.61�,P D 149.2 W]

Figure 35.20

Impedance matching

11 The output stage of an amplifier has an output resistance of 144�.
Determine the optimum turns ratio of a transformer that would match
a load resistance of 9� to the output resistance of the amplifier for
maximum power transfer. [4:1]

12 Find the optimum value of load resistance for maximum power
transfer if a load is connected to an amplifier of output resistance
252� through a transformer with a turns ratio of 6:1 [7�]

13 A generator has an output impedance of�300C j45��. Determine
the turns ratio of an ideal transformer necessary to match the gener-
ator to a load of�37C j19�� for maximum power transfer.

[2.70]
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14 A single-phase, 240 V/2880 V ideal transformer is supplied from a
240 V source through a cable of resistance 3.5 �. If the load across
the secondary winding is 1.8 k�, determine (a) the primary current
flowing, and (b) the power dissipated in the load resistance.

[(a) 15 A (b) 2.81 kW]

15 An a.c. source of 206 0° V and internal resistance 10.24 k� is
matched to a load for maximum power transfer by a 16:1 ideal
transformer. Determine (a) the value of the load resistance, and
(b) the power dissipated in the load. [(a) 40� (b) 9.77 mW]



Assignment 11

This assignment covers the material in chapters 34 and 35.

The marks for each question are shown in brackets at the end of
each question.

1 Determine the delta-connected equivalent network for the star-
connected impedances shown in Figure A11.1 (9)

(3+j4)Ω

(2−j5)Ω

(1+j)Ω

Figure A11.1

2 Transform the delta-connection in Figure A11.2 to it’s equivalent
star connection. Hence determine for the network shown in
Figure A11.3

(a) the total circuit impedance

(b) the currentI

(c) the current in the 20� resistor

(d) the power dissipated in the 20� resistor. (17)
−j40 Ω

−j20 Ω
−j20 Ω

Figure A11.2

3 If the load impedanceZ in Figure A11.4 consists of variable resistance
and variable reactance, find (a) the value ofZ that results in maximum
power transfer, and (b) the value of the maximum power. (6)

4 Determine the value of the load resistanceR in Figure A11.5 that
gives maximum power dissipation and calculate the value of
power. (9)

−j40 Ω

−j20 Ω −j20 Ω

j15 Ω 20 Ω

I

50∠ 0° V

Figure A11.3

Z

100∠ 0° V

(4+j3) Ω

Figure A11.4
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50 V

10 Ω

40 Ω R

Figure A11.5

5 An a.c. source of 106 0° V and internal resistance 5 k� is matched to
a load for maximum power transfer by a 5:1 ideal transformer. Deter-
mine (a) the value of the load resistance, and (b) the power dissipated
in the load. (9)



36 Complex Waveforms

At the end of this chapter you should be able to:

ž define a complex wave

ž recognize periodic functions

ž recognize the general equation of a complex waveform

ž use harmonic synthesis to build up a complex wave

ž recognize characteristics of waveforms containing odd, even
or odd and even harmonics, with or without phase change

ž calculate rms and mean values, and form factor of a complex
wave

ž calculate power associated with complex waves

ž perform calculations on single phase circuits containing
harmonics

ž define and perform calculations on harmonic resonance

ž list and explain some sources of harmonics

36.1 Introduction In preceding chapters a.c. supplies have been assumed to be sinusoidal,
this being a form of alternating quantity commonly encountered in elec-
trical engineering. However, many supply waveforms are not sinusoidal.
For example, sawtooth generators produce ramp waveforms, and rectan-
gular waveforms may be produced by multivibrators. A waveform that
is not sinusoidal is called a complex wave. Such a waveform may be
shown to be composed of the sum of a series of sinusoidal waves having
various interrelated periodic times.

A function f�t� is said to be periodic if f�t C T� D f�t� for all values
of t, where T is the interval between two successive repetitions and is
called the period of the function f�t�. A sine wave having a period of
2�/ω is a familiar example of a periodic function.

A typical complex periodic-voltage waveform, shown in Figure 36.1,
has period T seconds and frequency f hertz. A complex wave such as
this can be resolved into the sum of a number of sinusoidal waveforms,
and each of the sine waves can have a different frequency, amplitude
and phase.

The initial, major sine wave component has a frequency f equal to
the frequency of the complex wave and this frequency is called the
fundamental frequency. The other sine wave components are known
as harmonics, these having frequencies which are integer multiples of
frequency f. Hence the second harmonic has a frequency of 2f, the third
harmonic has a frequency of 3f, and so on. Thus if the fundamental (i.e.,
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Figure 36.1 Typical complex periodic voltage waveform

supply) frequency of a complex wave is 50 Hz, then the third harmonic
frequency is 150 Hz, the fourth harmonic frequency is 200 Hz, and so on.

36.2 The general
equation for a complex

waveform

The instantaneous value of a complex voltage wave 	 acting in a linear
circuit may be represented by the general equation

v D Vm sin.!t Y91/Y V2m sin.2!t Y92/

Y · · ·Y Vnm sin.n!t Y9n/volts �36.1�

Here V1m sin�ωt C1� represents the fundamental component of which
V1m is the maximum or peak value, frequency, f D ω/2� and 1 is the
phase angle with respect to time, t D 0.

Similarly, V2m sin�2ωt C2� represents the second harmonic compo-
nent, and Vnm sin�nωt Cn� represents the nth harmonic component, of
which Vnm is the peak value, frequency D nω/2��D nf� and n is the
phase angle.

In the same way, the instantaneous value of a complex current i may
be represented by the general equation

i = I 1m sin.!t Y q1/Y I 2m sin.2!t Y q2/

Y · · ·Y I nm sin.n!t Y qn/amperes �36.2�

Where equations (36.1) and (36.2) refer to the voltage across and the
current flowing through a given linear circuit, the phase angle between
the fundamental voltage and current is �1 D �1 � �1�, the phase angle
between the second harmonic voltage and current is �2 D �2 � �2�, and
so on.
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It often occurs that not all harmonic components are present in a
complex waveform. Sometimes only the fundamental and odd harmonics
are present, and in others only the fundamental and even harmonics are
present.

36.3 Harmonic synthesis Harmonic analysis is the process of resolving a complex periodic
waveform into a series of sinusoidal components of ascending order of
frequency. Many of the waveforms met in practice can be represented by
mathematical expressions similar to those of equations (36.1) and (36.2),
and the magnitude of their harmonic components together with their
phase may be calculated using Fourier series (see Higher Engineering
Mathematics). Numerical methods are used to analyse waveforms for
which simple mathematical expressions cannot be obtained. A numerical
method of harmonic analysis is explained in Chapter 37. In a laboratory,
waveform analysis may be performed using a waveform analyser
which produces a direct readout of the component waves present in a
complex wave.

By adding the instantaneous values of the fundamental and progressive
harmonics of a complex wave for given instants in time, the shape of a
complex waveform can be gradually built up. This graphical procedure is
known as harmonic synthesis (synthesis meaning ‘the putting together
of parts or elements so as to make up a complex whole’).
A number of examples of harmonic synthesis will now be considered.

Example 1

Consider the complex voltage expression given by

va = 100 sin !t Y 30 sin 3!t volts

The waveform is made up of a fundamental wave of maximum value
100 V and frequency, f D ω/2� hertz and a third harmonic component
of maximum value 30 V and frequency D 3ω/2��D 3f�, the fundamental
and third harmonics being initially in phase with each other. Since the
maximum value of the third harmonic is 30 V and that of the fundamental
is 100 V, the resultant waveform 	a is said to contain 30/100, i.e., ‘30%
third harmonic’. In Figure 36.2, the fundamental waveform is shown by
the broken line plotted over one cycle, the periodic time being 2�/ω
seconds. On the same axis is plotted 30 sin 3ωt, shown by the dotted
line, having a maximum value of 30 V and for which three cycles are
completed in time T seconds. At zero time, 30 sin 3ωt is in phase with
100 sinωt.

The fundamental and third harmonic are combined by adding ordinates
at intervals to produce the waveform for va as shown. For example, at
time T/12 seconds, the fundamental has a value of 50 V and the third
harmonic a value of 30 V. Adding gives a value of 80 V for waveform va,
at time T/12 seconds. Similarly, at time T/4 seconds, the fundamental
has a value of 100 V and the third harmonic a value of �30 V. After
addition, the resultant waveform va is 70 V at time T/4. The procedure
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Figure 36.2

is continued between t D 0 and t D T to produce the complex waveform
for va. The negative half-cycle of waveform va is seen to be identical in
shape to the positive half-cycle.

Example 2

Consider the addition of a fifth harmonic component to the complex wave-
form of Figure 36.2, giving a resultant waveform expression

vb = 100 sin !t Y 30 sin 3!t Y 20 sin 5!t volts

Figure 36.3 shows the effect of adding (100 sinωt C 30 sin 3ωt) obtained
from Figure 36.2 to 20 sin 5ωt. The shapes of the negative and positive
half-cycles are still identical. If further odd harmonics of the appropriate
amplitude and phase were added to vb, a good approximation to a square
wave would result.

Example 3

Consider the complex voltage expression given by

vc = 100 sin !t Y 30 sin
(

3!t Y
p

2

)
volts

This expression is similar to voltage va in that the peak value of the
fundamental and third harmonic are the same. However the third harmonic
has a phase displacement of �/2 radian leading (i.e., leading 30 sin 3ωt
by �/2 radian). Note that, since the periodic time of the fundamental is
T seconds, the periodic time of the third harmonic is T/3 seconds, and
a phase displacement of �/2 radian or 1

4 cycle of the third harmonic
represents a time interval of �T/3�ł 4, i.e., T/12 seconds.
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Figure 36.3

Figure 36.4

Figure 36.4 shows graphs of 100 sinωt and 30 sin�3ωt C ��/2�� over
the time for one cycle of the fundamental. When ordinates of the two
graphs are added at intervals, the resultant waveform vc is as shown. The
shape of the waveform vc is quite different from that of waveform va
shown in Figure 36.2, even though the percentage third harmonic is the
same. If the negative half-cycle in Figure 36.4 is reversed it can be seen
that the shape of the positive and negative half-cycles are identical.
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Example 4

Consider the complex voltage expression given by

vd = 100 sin !t Y 30 sin
(

3!t − p

2

)
volts

The fundamental, 100 sinωt, and the third harmonic component,
30 sin�3ωt � ��/2��, are plotted in Figure 36.5, the latter lagging
30 sin 3ωt by �/2 radian or T/12 seconds. Adding ordinates at intervals
gives the resultant waveform vd as shown. The negative half-cycle of vd
is identical in shape to the positive half-cycle.

Figure 36.5

Example 5

Consider the complex voltage expression given by

ve = 100 sin !t Y 30 sin.3!t Y p/volts

The fundamental, 100 sinωt, and the third harmonic component,
30 sin�3ωt C ��, are plotted as shown in Figure 36.6, the latter leading
30 sin 3ωt by � radian or T/6 seconds. Adding ordinates at intervals
gives the resultant waveform ve as shown. The negative half-cycle of ve
is identical in shape to the positive half-cycle.

Example 6

Consider the complex voltage expression given by

vf D 100 sinωt � 30 sin
(

3ωt C �

2

)
volts
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Figure 36.6

Figure 36.7

The phasor representing 30 sin�3ωt C ��/2�) is shown in Figure 36.7(a)
at time t D 0. The phasor representing �30 sin�3ωt C ��/2�) is shown
in Figure 36.7(b) where it is seen to be in the opposite direction to that
shown in Figure 36.7(a).

�30 sin�3ωt C ��/2�) is the same as 30 sin�3ωt � ��/2�). Thus

vf D 100 sinωt � 30 sin
(

3ωt C �

2

)
D 100 sinωt C 30 sin

(
3ωt � �

2

)

The waveform representing this expression has already been plotted in
Figure 36.5.

General conclusions on examples 1 to 6

Whenever odd harmonics are added to a fundamental waveform, whether
initially in phase with each other or not, the positive and negative half-
cycles of the resultant complex wave are identical in shape (i.e., in
Figures 36.2 to 36.6, the values of voltage in the third quadrant — between
T/2 seconds and 3T/4 seconds — are identical to the voltage values in the
first quadrant — between 0 and T/4 seconds, except that they are negative,
and the values of voltage in the second and fourth quadrants are identical,
except for the sign change). This is a feature of waveforms containing a
fundamental and odd harmonics and is true whether harmonics are added
or subtracted from the fundamental.
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From Figures 36.2 to 36.6, it is seen that a waveform can change its
shape considerably as a result of changes in both phase and magnitude of
the harmonics.

Example 7

Consider the complex current expression given by

ia = 10 sin !t Y 4 sin 2!t amperes

Current ia consists of a fundamental component, 10 sinωt, and a second
harmonic component, 4 sin 2ωt, the components being initially in phase
with each other. Current ia contains 40% second harmonic. The funda-
mental and second harmonic are shown plotted separately in Figure 36.8.
By adding ordinates at intervals, the complex waveform representing ia is
produced as shown. It is noted that if all the values in the negative half-
cycle were reversed then this half-cycle would appear as a mirror image of
the positive half-cycle about a vertical line drawn through time, t D T/2.

Figure 36.8

Example 8

Consider the complex current expression given by

ib = 10 sin !t Y 4 sin 2!t Y 3 sin 4!t amperes

The waveforms representing (10 sinωt C 4 sin 2ωt) and the fourth
harmonic component, 3 sin 4ωt, are each shown separately in Figure 36.9,
the former waveform having been produced in Figure 36.8. By adding
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Figure 36.9

ordinates at intervals, the complex waveform for ib is produced as shown
in Figure 36.9. If the half-cycle between times T/2 and T is reversed then
it is seen to be a mirror image of the half-cycle lying between 0 and T/2
about a vertical line drawn through the time, t D T/2.

Example 9

Consider the complex current expressions given by

ic = 10 sin !t Y 4 sin
(

2!t Y
p

2

)
amperes

The fundamental component, 10 sinωt, and the second harmonic compo-
nent, having an amplitude of 4 A and a phase displacement of �/2 radian
leading (i.e., leading 4 sin 2ωt by �/2 radian or T/8 seconds), are shown
plotted separately in Figure 36.10. By adding ordinates at intervals, the
complex waveform for ic is produced as shown. The positive and negative
half-cycles of the resultant waveform ic are seen to be quite dissimilar.

Example 10

Consider the complex current expression given by

id = 10 sin !t Y 4 sin.2!t Y p/amperes

The fundamental, 10 sinωt, and the second harmonic component which
leads 4 sin 2ωt by � rad are shown separately in Figure 36.11. By adding
ordinates at intervals, the resultant waveform id is produced as shown. If
the negative half-cycle is reversed, it is seen to be a mirror image of the
positive half-cycle about a line drawn vertically through time, t D T/2.
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Figure 36.10

Figure 36.11

General conclusions on examples 7 to 10

Whenever even harmonics are added to a fundamental component:

(a) if the harmonics are initially in phase or if there is a phase-shift of �
rad, the negative half-cycle, when reversed, is a mirror image of the
positive half-cycle about a vertical line drawn through time, t D T/2;
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(b) if the harmonics are initially out of phase with each other (i.e., other
than � rad), the positive and negative half-cycles are dissimilar.

These are features of waveforms containing the fundamental and even
harmonics.

Example 11

Consider the complex voltage expression given by

vg = 50 sin !t Y 25 sin 2!t Y 15 sin 3!t volts

The fundamental and the second and third harmonics are each shown
separately in Figure 36.12. By adding ordinates at intervals, the resultant
waveform vg is produced as shown. If the negative half-cycle is reversed,
it appears as a mirror image of the positive half-cycle about a vertical
line drawn through time D T/2.

Figure 36.12

Example 12

Consider the complex voltage expression given by

vh = 50 sin !t Y 25 sin.2!t − p/Y 15 sin
(

3!t Y
p

2

)
volts

The fundamental, the second harmonic lagging by � radian and the third
harmonic leading by �/2 radian are initially plotted separately, as shown
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in Figure 36.13. Adding ordinates at intervals gives the resultant wave-
form vh as shown. The positive and negative half-cycles are seen to be
quite dissimilar.

Figure 36.13

General conclusions on examples 11 and 12

Whenever a waveform contains both odd and even harmonics:

(a) if the harmonics are initially in phase with each other, the negative
cycle, when reversed, is a mirror image of the positive half-cycle
about a vertical line drawn through time, t D T/2;

(b) if the harmonics are initially out of phase with each other, the posi-
tive and negative half-cycles are dissimilar.

Example 13

Consider the complex current expression given by

i = 32Y 50 sin !t Y 20 sin
(

2!t − p

2

)
mA

The current i comprises three components — a 32 mA d.c. component, a
fundamental of amplitude 50 mA and a second harmonic of amplitude
20 mA, lagging by �/2 radian. The fundamental and second harmonic
are shown separately in Figure 36.14. Adding ordinates at intervals gives
the complex waveform 50 sinωt C 20 sin�2ωt � ��/2�).
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Figure 36.14

This waveform is then added to the 32 mA d.c. component to produce
the waveform i as shown. The effect of the d.c. component is seen to be
to shift the whole wave 32 mA upward. The waveform approaches that
expected from a half-wave rectifier (see Section 36.8).

Problem 1. A complex waveform v comprises a fundamental
voltage of 240 V rms and frequency 50 Hz, together with a 20%
third harmonic which has a phase angle lagging by 3�/4 rad at
time D 0. (a) Write down an expression to represent voltage v. (b)
Use harmonic synthesis to sketch the complex waveform repre-
senting voltage 	 over one cycle of the fundamental component.

(a) A fundamental voltage having an rms value of 240 V has a maximum
value, or amplitude of (

p
2)(240), i.e., 339.4 V.

If the fundamental frequency is 50 Hz then angular velocity,
ω D 2�f D 2��50� D 100� rad/s. Hence the fundamental voltage
is represented by 339.4 sin 100�t volts. Since the fundamental
frequency is 50 Hz, the time for one cycle of the fundamental is
given by T D 1/f D 1/50 s or 20 ms.
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The third harmonic has an amplitude equal to 20% of 339.4 V,
i.e., 67.9 V. The frequency of the third harmonic component
is 3 ð 50 D 150 Hz, thus the angular velocity is 2� (150), i.e.,
300� rad/s. Hence the third harmonic voltage is represented by
67.9 sin�300�t � �3�/4�� volts. Thus

voltage, v = 339.4 sin 100pt Y 67.9 sin
(

300pt − 3p

4

)
volts

(b) One cycle of the fundamental, 339.4 sin 100�t, is shown sketched
in Figure 36.15, together with three cycles of the third harmonic
component, 67.9 sin�300�t � �3�/4�� initially lagging by 3�/4 rad.
By adding ordinates at intervals, the complex waveform representing
voltage is produced as shown. If the negative half-cycle is reversed,
it is seen to be identical to the positive half-cycle, which is a feature
of waveforms containing the fundamental and odd harmonics.

Figure 36.15

Problem 2. For each of the periodic complex waveforms shown
in Figure 36.16, suggest whether odd or even harmonics (or both)
are likely to be present.

(a) If in Figure 36.16(a) the negative half-cycle is reversed, it is seen to
be identical to the positive half-cycle. This feature indicates that the
complex current waveform is composed of a fundamental and odd
harmonics only (see examples 1 to 6).

(b) In Figure 36.16(b) the negative half-cycle is quite dissimilar to the
positive half-cycle.

This indicates that the complex voltage waveform comprises either

(i) a fundamental and even harmonics, initially out of phase with
each other (see example 9), orFigure 36.16
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(ii) a fundamental and odd and even harmonics, one or more of
the harmonics being initially out of phase (see example 12).

(c) If in Figure 36.16(c) the negative half-cycle is reversed, it is seen
to be a mirror image of the positive half-cycle about a vertical line
drawn through time T/2. This feature indicates that the complex
e.m.f. waveform comprises either:

(i) a fundamental and even harmonics initially in phase with each
other (see examples 7 and 8), or

(ii) a fundamental and odd and even harmonics, each initially in
phase with each other (see example 11).

Further problems on harmonic synthesis may be found in Section 36.9,
problems 1 to 6, page 671

36.4 Rms value, mean
value and the form factor

of a complex wave

Rms value

Let the instantaneous value of a complex current, i, be given by

i D I1m sin�ωt C �1�C I2m sin�2ωt C �2�

C Ð Ð Ð C Inm sin�nωt C �n�amperes

The effective or rms value of this current is given by

I D p�mean value of i2�

i2 D [I1m sin�ωt C �1�C I2m sin�2ωt C �2�

C Ð Ð Ð C Inm sin�nωt C �n�]
2

i.e., i2 D I2
1m sin2�ωt C �1�C I2

2m sin2�2ωt C �2�

C Ð Ð Ð C I2
nm sin2�nωt C �n�

C 2I1mI2m sin�ωt C �1� sin�2ωt C �2�C Ð Ð Ð �36.3�

Without writing down all terms involved when squaring current i, it can
be seen that two types of term result, these being:

(i) terms such as I2
1m sin2�ωt C �1�, I2

2m sin2�2ωt C �2�, and so on, and

(ii) terms such as 2I1mI2m sin�ωt C �1� sin�2ωt C �2�, i.e., products of
different harmonics.

The mean value of i2 is the sum of the mean values of each term in
equation (36.3).

Taking an example of the first type, say I2
1m sin2�ωt C �1�, the mean

value over one cycle of the fundamental is determined using integral
calculus:
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Mean value of I2
1m sin2�ωt C �1� D 1

2�

∫ 2�

0
I2

1m sin2�ωt C �1� d�ωt�

(since the mean value of y D f�x� between x D a and x D b is given by
1

b� a

∫ b
a y dx�

D I2
1m

2�

∫ 2�

0

{
1 � cos 2�ωt C �1�

2

}
d�ωt�,

(since cos 2x D 1 � 2 sin2 x, from which sin2 x D �1 � cos 2x�/2�,

D I2
1m

4�

[
ωt � sin 2�ωt C �1�

2

]2�

0

D I2
1m

4�

[(
2� � sin 2�2� C �1�

2

)
�
(

0 � sin 2�0 C �1�

2

)]

D I2
1m

4�

[
2� � sin 2�2� C �1�

2
C sin 2�1

2

]
D I2

1m

4�
�2�� D I 2

1m

2

Hence it follows that the mean value of I2
nm sin2�nωt C �n� is given by

I2
nm/2.

Taking an example of the second type, say,

2I1mI2m sin�ωt C �1� sin�2ωt C �2�,

the mean value over one cycle of the fundamental is also determined
using integration:

Mean value of 2I1mI2m sin�ωt C �1� sin�2ωt C �2�

D 1

2�

∫ 2�

0
2I1mI2m sin�ωt C �1� sin�2ωt C �2� d�ωt�

D I1mI2m

�

∫ 2�

0

1

2
fcos�ωt C �2 � �1�� cos�3ωt C �2 C �1�g d�ωt�

(since sinA sinB D 1
2 [cos�A � B�� cos�A C B�], and taking

A D �2ωt C �2� and B D �ωt C �1��

D I1mI2m

2�

[
sin�ωt C �2 � �1�� sin�3ωt C �2 C �1�

3

]2�

0

D I1mI2m

2�

[(
sin�2� C �2 � �1�� sin�6� C �2 C �1�

3

)

�
(

sin��2 � �1�� sin��2 C �1�

3

)]
D I1mI2m

2�
[0] D 0 �36.4�
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Hence it follows that all such products of different harmonics will have
a mean value of zero. Thus

mean value of i2 D I2
1m

2
C I2

2m

2
C Ð Ð Ð C I2

nm

2

Hence the rms value of current,

I D
√(

I2
1m

2
C I2

2m

2
C Ð Ð Ð C I2

nm

2

)

i.e., I =

√(
I 2

1m Y I 2
2m Y · · ·Y I 2

nm

2

)
�36.5�

For a sine wave, rms value D �1/
p

2� maximum value, i.e., maximum
value D p

2 rms value. Hence, for example, I1m D p
2I1, where I1 is the

rms value of the fundamental component, and �I1m�2 D �
p

2I1�2 D 2I2
1.

Thus, from equation (36.5), rms current

I D
√(

2I2
1 C 2I2

2 C Ð Ð Ð C 2I2
n

2

)

i.e., I =
p

.I 2
1 Y I 2

2 Y · · ·Y I 2
n / �36.6�

where I1, I2, . . . , In are the rms values of the respective harmonics.

By similar reasoning, for a complex voltage waveform represented by

v D V1m sin�ωt C1�C V2m sin�2ωt C2�

C Ð Ð Ð C Vnm sin�nωt Cn�volts

the rms value of voltage, V, is given by

V =

√(
V 2

1m Y V 2
2m Y · · ·Y V 2

nm

2

)
�36.7�

or V =
√

.V2
1 Y V2

2 Y · · ·Y V2
n/ �36.8�

where V1, V2, . . . , Vn are the rms values of the respective harmonics.

From equations (36.5) to (36.8) it is seen that the rms value of a
complex wave is unaffected by the relative phase angles of the harmonic
components. For a d.c. current or voltage, the instantaneous value, the
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mean value and the maximum value are equal. Thus, if a complex wave-
form should contain a d.c. component I0, then the rms current I is given by

I =

√(
I 2

0 Y
I 2

1m Y I 2
2m Y · · ·Y I 2

nm

2

)
�36.9�

or I =
√

.I2
0 Y I2

1 Y I2
2 Y · · ·Y I2

n/ �36.9�

Mean value

The mean or average value of a complex quantity whose negative half-
cycle is similar to its positive half-cycle is given, for current, by

I av =
1
p

∫ p

0
i d.!t/ �36.10�

and for voltage by vav =
1
p

∫ p

0
v d.!t/ �36.11�

each waveform being taken over half a cycle.
Unlike rms values, mean values are affected by the relative phase

angles of the harmonic components.

Form factor

The form factor of a complex waveform whose negative half-cycle is
similar in shape to its positive half-cycle is defined as:

form factor D rms value of the waveform

mean value
�36.12�

where the mean value is taken over half a cycle.
Changes in the phase displacement of the harmonics may appreciably

alter the form factor of a complex waveform.

Problem 3. Determine the rms value of the current waveform
represented by

i D 100 sinωt C 20 sin�3ωt C �/6�C 10 sin�5ωt C 2�/3�mA

From equation (36.5), the rms value of current is given by

I D
√(

1002 C 202 C 102

2

)
D
√(

10000 C 400 C 100

2

)
D 72.46 mA
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Problem 4. A complex voltage is represented by

v D �10 sinωt C 3 sin 3ωt C 2 sin 5ωt�volts

Determine for the voltage, (a) the rms value, (b) the mean value
and (c) the form factor.

(a) From equation (36.7), the rms value of voltage is given by

V D
√(

102 C 32 C 22

2

)
D
√(

113

2

)
D 7.52 V

(b) From equation (36.11), the mean value of voltage is given by

Vav D 1

�

∫ �

0
�10 sinωt C 3 sin 3ωt C 2 sin 5ωt� d�ωt�

D 1

�

[
�10 cosωt � 3 cos 3ωt

3
� 2 cos 5ωt

5

]�
0

D 1

�

[(
�10 cos� � cos 3� � 2

5
cos 5�

)

�
(

�10 cos 0 � cos 0 � 2

5
cos 0

)]

D 1

�

[(
10 C 1 C 2

5

)
�
(

�10 � 1 � 2

5

)]
D 22.8

�
D 7.26 V

(c) From equation (36.12), form factor is given by

form factor D rms value of the waveform

mean value
D 7.52

7.26
D 1.036

Problem 5. A complex voltage waveform which has an rms value
of 240 V contains 30% third harmonic and 10% fifth harmonic,
both of the harmonics being initially in phase with each other. (a)
Determine the rms value of the fundamental and each harmonic.
(b) Write down an expression to represent the complex voltage
waveform if the frequency of the fundamental is 31.83 Hz.

(a) From equation (36.8), rms voltage V D
√
�V2

1 C V2
3 C V2

5�.

Since V3 D 0.30 V1, V5 D 0.10 V1 and V D 240 V, then

240 D
√

[V2
1 C �0.30 V1�2 C �0.10 V1�2]

i.e., 240 D
√
�1.10 V2

1� D 1.049 V1
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from which the rms value of the fundamental,

V1 D 240/1.049 D 228.8 V.

Rms value of the third harmonic,

V3 D 0.30 V1 D �0.30��228.8� D 68.64 V

and the rms value of the fifth harmonic,

V5 D 0.10 V1 D �0.10��228.8� D 22.88 V

(b) Maximum value of the fundamental,

V1m D p
2V1 D p

2�228.8� D 323.6 V

Maximum value of the third harmonic,

V3m D p
2V3 D p

2�68.64� D 97.07 V

Maximum value of the fifth harmonic,

V5m D p
2V5 D p

2�22.88� D 32.36 V

Since the fundamental frequency is 31.83 Hz, the funda-
mental voltage may be written as 323.6 sin 2��31.83�t, i.e.,
323.6 sin 200t volts

The third harmonic component is 97.07 sin 600t volts and the fifth
harmonic component is 32.36 sin 1000t volts. Hence an expression
representing the complex voltage waveform is given by

v = .323.6 sin 200t Y 97.07 sin 600t Y 32.36 sin 1000t/volts

Further problems on rms values, mean values and form factor of complex
waves may be found in Section 36.9, problems 7 to 11, page 672.

36.5 Power associated
with complex waves

Let a complex voltage wave be represented by

v D V1m sinωt C V2m sin 2ωt C V3m sin 3ωt C Ð Ð Ð ,
and when this is applied to a circuit let the resulting current be repre-
sented by

i D I1m sin�ωt � �1�C I2m sin�2ωt � �2�C I3m sin�3ωt � �3�C Ð Ð Ð
(Since the phase angles are lagging, the circuit in this case is inductive.)

At any instant in time the power p supplied to the circuit is given by
p D vi, i.e.,

p D �V1m sinωt C V2m sin 2ωt C Ð Ð Ð��I1m sin�ωt � �1�

C I2m sin�2ωt � �2�C Ð Ð Ð�
D V1mI1m sinωt sin�ωt � �1�C V1mI2m sinωt sin�2ωt � �2� D Ð Ð Ð

�36.13�
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The average or active power supplied over one cycle is given by the sum
of the average values of each individual product term taken over one
cycle. It is seen from equation (36.4) that the average value of product
terms involving harmonics of different frequencies is always zero. This
means therefore that only products of voltage and current harmonics of
the same frequency need be considered in equation (36.13).

Taking the first term, for example, the average power P1 over one cycle
of the fundamental is given by

P1 D 1

2�

∫ 2�

0
V1mI1m sinωt sin�ωt � �1� d�ωt�

D V1mI1m

2�

∫ 2�

0

1

2
fcos�1 � cos�2ωt � �1�gd�ωt�

since sinA sinB D 1
2 fcos�A � B�� cos�A C B�g,

D V1mI1m

4�

[
�ωt� cos�1 � sin�2ωt � �1�

2

]2�

0

D V1mI1m

4�

[(
2� cos�1 � sin�4� � �1�

2

)
�
(

0 � sin���1�

2

)]

D V1mI1m

4�
[2� cos�1] D V1mI1m

2
cos�1

V1m D p
2V1 and I1m D p

2I1, where V1 and I1 are rms values, hence

P1 D �
p

2V1��
p

2I1�

2
cos�1

i.e., P1 D V1I1 cos�1 watts

Similarly, the average power supplied over one cycle of the fundamental
for the second harmonic is V2I2 cos2, and so on. Hence the total power
supplied by complex voltages and currents is the sum of the powers
supplied by each harmonic component acting on its own. The average
power P supplied for one cycle of the fundamental is given by

P = V1I 1 cos f1 Y V2I 2 cos f2 Y · · ·Y VnIn cos fn �36.14�

If the voltage waveform contains a d.c. component V0 which causes a
direct current component I0, then the average power supplied by the d.c.
component is V0I0 and the total average power P supplied is given by

P = V0I 0 Y V1I 1 cos f1 Y V2I 2 cos f2 Y · · ·Y VnIn cos fn �36.15�

Alternatively, if R is the equivalent series resistance of a circuit then the
total power is given by

P D I2
0R C I2

1R C I2
2R C I2

3R C Ð Ð Ð
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i.e., P = I 2R �36.16�

where I is the rms value of current i.

Power factor

When harmonics are present in a waveform the overall circuit power
factor is defined as

overall power factor D total power supplied

total rms voltage ð total rms current

D total power

volt amperes

i.e., p.f . =
V1I 1 cos f1 Y V2I 2 cos f2 Y · · ·

VI
�36.17�

Problem 6. Determine the average power in a 20 # resistance if
the current i flowing through it is of the form

i D �12 sinωt C 5 sin 3ωt C 2 sin 5ωt�amperes

From equation (36.5), rms current,

I D
√(

122 C 52 C 22

2

)
D 9.30 A

From equation (36.16), average power,

P D I2R D �9.30�2�20� D 1730 W or 1.73 kW

Problem 7. A complex voltage v given by

v D 60 sinωt C 15 sin
(

3ωt C �

4

)
C 10 sin

(
5ωt � �

2

)
volts

is applied to a circuit and the resulting current i is given by

i D 2 sin
(
ωt � �

6

)
C 0.30 sin

(
3ωt � �

12

)

C 0.1 sin
(

5ωt � 8�

9

)
amperes

Determine (a) the total active power supplied to the circuit, and (b)
the overall power factor.
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(a) From equation (36.14), total power supplied,

P D V1I1 cos�1 C V3I3 cos�3 C V5I5 cos�5

D
(

60p
2

)(
2p
2

)
cos

(
0 �

(
��

6

))

C
(

15p
2

)(
0.3p

2

)
cos

(
�

4
�
(

� �

12

))

C
(

10p
2

)(
0.1p

2

)
cos

(
��

2
�
(

�8�

9

))

D 51.96 C 1.125 C 0.171 D 53.26 W

(b) From equation (36.5), rms current,

I D
√(

22 C 0.32 C 0.12

2

)
D 1.43 A

and from equation (36.7), rms voltage,

V D
√(

602 C 152 C 102

2

)
D 44.30 V

From equation (36.17),

overall power factor D 53.26

�44.30��1.43�
D 0.841

(With a sinusoidal waveform,

power factor D power

volt-amperes
D VI cos�

VI
D cos�

Thus power factor depends upon the value of phase angle �, and is lagging
for an inductive circuit and leading for a capacitive circuit. However,
with a complex waveform, power factor is not given by cos �. In the
expression for power in equation (36.14), there are n phase-angle terms,
�1, �2, . . . , �n, all of which may be different. It is for this reason that
it is not possible to state whether the overall power factor is lagging or
leading when harmonics are present.)

Further problems on power associated with complex waves may be found
in Section 36.9, problems 12 to 15, page 673.

36.6 Harmonics in
single-phase circuits

When a complex alternating voltage wave, i.e., one containing harmonics,
is applied to a single-phase circuit containing resistance, inductance and/or
capacitance (i.e., linear circuit elements), then the resulting current will
also be complex and contain harmonics.
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Let a complex voltage v be represented by

v = V1m sin !t Y V2m sin 2!t Y V3m sin 3!t Y · · ·

(a) Pure resistance

The impedance of a pure resistance R is independent of frequency and
the current and voltage are in phase for each harmonic. Thus the general
expression for current i is given by

i =
v

R
=

V1m

R
sin !t Y

V2m

R
sin 2!t Y

V3m

R
sin 3!t Y · · · �36.18�

The percentage harmonic content in the current wave is the same as that in
the voltage wave. For example, the percentage second harmonic content
from equation (36.18) is

V2m/R

V1m/R
ð 100%, i.e.,

V2m

V1m
ð 100%

the same as for the voltage wave. The current and voltage waveforms
will therefore be identical in shape.

(b) Pure inductance

The impedance of a pure inductance L, i.e., inductive reactance XL�D
2�fL�, varies with the harmonic frequency when voltage v is applied to
it. Also, for every harmonic term, the current will lag the voltage by 90°

or �/2 rad. The current i is given by

i =
v

XL
=

V1m

!L
sin
(

!t − p

2

)
Y

V2m

2!L
sin
(

2!t − p

2

)

Y
V3m

3!L
sin
(

3!t − p

2

)
Y · · ·

�36.19�

since for the nth harmonic the reactance is nωL.
Equation (36.19) shows that for, say, the nth harmonic, the percentage

harmonic content in the current waveform is only 1/n of the corre-
sponding harmonic content in the voltage waveform.

If a complex current contains a d.c. component then the direct voltage
drop across a pure inductance is zero.

(c) Pure capacitance

The impedance of a pure capacitance C, i.e., capacitive reactance XC�D
1/�2�fC��, varies with the harmonic frequency when voltage v is applied
to it. Also, for each harmonic term the current will lead the voltage by
90° or �/2 rad. The current i is given by
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i D v

XC
D V1m

1/ωC
sin
(
ωt C �

2

)
C V2m

1/2ωC
sin
(

2ωt C �

2

)

C V3m

1/3ωC
sin
(

3ωt C �

2

)
C Ð Ð Ð ,

since for the nth harmonic the reactance is 1/�nωC�. Hence current,

i = V1m.!C/ sin
(

!tY
p

2

)
Y V2m.2!C/ sin

(
2!tY

p

2

)

Y V3m.3!C/ sin
(

3!t Y
p

2

)
Y · · ·

�36.20�

Equation (36.20) shows that the percentage harmonic content of the
current waveform is n times larger for the nth harmonic than that of
the corresponding harmonic voltage.

If a complex current contains a d.c. component then none of this direct
current will flow through a pure capacitor, although the alternating compo-
nents of the supply still operate.

Problem 8. A complex voltage waveform represented by

v D 100 sinωt C 30 sin
(

3ωt C �

3

)
C 10 sin

(
5ωt � �

6

)
volts

is applied across (a) a pure 40 # resistance, (b) a pure 7.96 mH
inductance, and (c) a pure 25 µF capacitor. Determine for each case
an expression for the current flowing if the fundamental frequency
is 1 kHz.

(a) From equation (36.18),

current i D v

R
D 100

40
sinωt C 30

40
sin
(

3ωt C �

3

)

C 10

40
sin
(

5ωt � �

6

)

i.e. i = 2.5 sin !t Y 0.75 sin
(

3!t Y
p

3

)

Y 0.25 sin
(

5!t − p

6

)
amperes

(b) At the fundamental frequency, ωL D 2��1000��7.96 ð 10�3� D
50 #. From equation (36.19),

current i D 100

50
sin
(
ωt � �

2

)
C 30

3 ð 50
sin
(

3ωt C �

3
� �

2

)

C 10

5 ð 50
sin
(

5ωt � �

6
� �

2

)
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i.e. current i = 2 sin
(

!t − p

2

)
Y0.20 sin

(
3!t − p

6

)

Y 0.04 sin
(

5!t − 2p

3

)
amperes

(c) At the fundamental frequency, ωC D 2��1000��25 ð 10�6� D
0.157. From equation (36.20),

current i D 100�0.157� sin
(
ωt C �

2

)

C 30�3 ð 0.157� sin
(

3ωt C �

3
C �

2

)

C 10�5 ð 0.157� sin
(

5ωt � �

6
C �

2

)

i.e., i = 15.70 sin
(

!t Y
p

2

)
Y14.13 sin

(
3!t Y

5p

6

)

Y7.85 sin
(

5!t Y
p

3

)
amperes

Problem 9. A supply voltage v given by

v D �240 sin 314t C 40 sin 942t C 30 sin 1570t�volts

is applied to a circuit comprising a resistance of 12 # connected in
series with a coil of inductance 9.55 mH. Determine (a) an expres-
sion to represent the instantaneous value of the current, (b) the rms
voltage, (c) the rms current, (d) the power dissipated, and (e) the
overall power factor.

(a) The supply voltage comprises a fundamental, 240 sin 314t, a third
harmonic, 40 sin 942t (third harmonic since 942 is 3 ð 314) and a
fifth harmonic, 30 sin 1570t.

Fundamental

Since the fundamental frequency, ω1 D 314 rad/s, inductive reac-
tance,

XL1 D ω1L D �314��9.55 ð 10�3� D 3.0 #.

Hence impedance at the fundamental frequency,

Z1 D �12 C j3.0�# D 12.376 14.04° #

Maximum current at fundamental frequency

I1m D V1m

Z1
D 240 6 0°

12.37 6 14.04°
D 19.40 6 �14.04° A

14.04° D 14.04 ð ��/180� rad D 0.245 rad, thus

I1m D 19.40 6 �0.245 A
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Hence the fundamental current i1 D 19.40 sin�314t � 0.245�A.

(Note that with an expression of the form R sin�ωt š ˛�, ωt is an
angle measured in radians, thus the phase displacement, ˛, should
also be expressed in radians.)

Third harmonic

Since the third harmonic frequency, ω3 D 942 rad/s, inductive
reactance,

XL3 D 3XL1 D 9.0 #.

Hence impedance at the third harmonic frequency,

Z3 D �12 C j9.0�# D 15 6 36.87° #

Maximum current at the third harmonic frequency,

I3m D V3m

Z3
D 40 6 0°

15 6 36.87°

D 2.67 6 �36.87° A

D 2.67 6 �0.644 A

Hence the third harmonic current, i3 D 2.67 sin�942t � 0.644�A.

Fifth harmonic

Inductive reactance, XL5 D 5XL1 D 15 #

Impedance Z5 D �12 C j15�# D 19.216 51.34° #

Current, I5m D V5m

Z5
D 30 6 0°

19.21 6 51.34°

D 1.56 6 �51.34° A D 1.56 6 �0.896 A

Hence the fifth harmonic current, i5 D 1.56 sin�1570t � 0.896�A

Thus an expression to represent the instantaneous current, i, is given
by i D i1 C i3 C i5 i.e.,

i = 19.40 sin.314t − 0.245/Y 2.67 sin.942t − 0.644/Y

1.56 sin.1570t − 0.896/amperes

(b) From equation (36.7), rms voltage,

V D
√(

2402 C 402 C 302

2

)
D 173.35 V

(c) From equation (36.5), rms current,

I D
√(

19.402 C 2.672 C 1.562

2

)
D 13.89 A
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(d) From equation (36.16), power dissipated,

P D I2R D �13.89�2�12� D 2315 W or 2.315 kW

(Alternatively, equation (36.14) may be used to determine power.)

(e) From equation (36.17),

overall power factor D 2315

�173.35��13.89�
D 0.961

Problem 10. An e.m.f. is represented by

e D 50 C 200 sinωt C 40 sin
(

2ωt � �

2

)
C 5 sin

(
4ωt C �

4

)
volts,

the fundamental frequency being 50 Hz. The e.m.f. is applied across
a circuit comprising a 100 µF capacitor connected in series with a
50 # resistor. Obtain an expression for the current flowing and
hence determine the rms value of current.

D.c. component

In a d.c. circuit no current will flow through a capacitor. The current wave-
form will not possess a d.c. component even though the e.m.f. waveform
has a 50 V d.c. component. Hence i0 D 0.

Fundamental

Capacitive reactance,

XC1 D 1

2�fC
D 1

2��50��100 ð 10�6�
D 31.83 #

Impedance Z1 D �50 � j31.83�# D 59.276 �32.48° #

I1m D V1m

Z1
D 200 6 0°

59.27 6 �32.48°
D 3.374 6 32.48° A D 3.374 6 0.567 A

Hence the fundamental current, i1 D 3.374 sin�ωt C 0.567�A

Second harmonic

Capacitive reactance,

XC2 D 1

2�2�fC�
D 31.83

2
D 15.92 #

Impedance Z2 D �50 � j15.92�# D 52.476 �17.66° #

I2m D V2m

Z2
D 40 6 ��/2

52.47 6 �17.66°
D 0.762

//(
��

2
� ��17.66°�

)

D 0.762 6 �72.34° A
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Hence the second harmonic current, i2 D 0.762 sin�2ωt � 72.34°�A

D 0.762 sin�2ωt � 1.263�A

Fourth harmonic

Capacitive reactance, XC4 D 1

4
XC1 D 31.83

4
D 7.958 #

Impedance, Z4 D �50 � j7.958�# D 50.636 �9.04° #

I4m D V4m

Z4
D 5 6 �/4

50.63 6 �9.04°
D 0.099 6 ��/4 � ��9.04°��

D 0.099 6 54.04° A

Hence the fourth harmonic current, i4 D 0.099 sin�4ωt C 54.04°�A

D 0.099 sin�4ωt C 0.943�A

An expression for current flowing is therefore given by

i D i0 C i1 C i2 C i4

i.e., i = 3.374 sin.!t Y 0.567/Y 0.762 sin.2!t − 1.263/

Y 0.099 sin.4!t Y 0.943/amperes

From equation (36.5), rms current,

I D
√(

3.3742 C 0.7622 C 0.0992

2

)
D 2.45 A

Problem 11. A complex voltage 	 is represented by:

	 D 25 C 100 sinωt C 40 sin
(

3ωt C �

6

)

C 20 sin
(

5ωt C �

12

)
volts

where ω D 104 rad/s. The voltage is applied to a series circuit
comprising a 5.0 # resistance and a 500 µH inductance.

Determine (a) an expression to represent the current flowing in
the circuit, (b) the rms value of current, correct to two decimal
places, and (c) the power dissipated in the circuit, correct to three
significant figures.

(a) d.c. component

Inductance has no effect on a steady current. Hence the d.c. compo-
nent of the current, i0, is given by

i0 D 	0

R
D 25

5.0
D 5.0 A
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Fundamental

Inductive reactance, XL1 D ωL D �104��500 ð 10�6� D 5 #

Impedance, Z1 D �5 C j5�# D 7.071 6 45° #

I1m D V1m

Z1
D 100 6 0°

7.071 6 45°
D 14.14 6 �45° A

D 14.14 6 ��/4 A or 14.14 6 �0.785 A

Hence fundamental current, i1 D 14.14 sin�ωt � 0.785�A

Third harmonic

Inductive reactance at third harmonic frequency,

XL3 D 3XL1 D 15 #

Impedance, Z3 D �5 C j15�# D 15.816 71.57° #

I3m D V3m

Z3
D 40 6 �/6

15.81 6 71.57°
D 2.53 6 �41.57° A

D 2.53 6 �0.726 A

Hence the third harmonic current, i3 D 2.53 sin�3ωt � 41.57°�A

D 2.53 sin�3ωt � 0.726�A

Fifth harmonic

Inductive reactance at fifth harmonic frequency, XL5 D 5XL1 D 25 #

Impedance, Z5 D �5 C j25�# D 25.495 6 78.69° #

I5 D V5m

Z5
D 20 6 �/12

25.495 6 78.69°
D 0.784 6 �63.69° A

D 0.784 6 �1.112 A

Hence the fifth harmonic current, i5 D 0.784 sin�5ωt � 63.69°�A

D 0.784 sin�5ωt � 1.112�A

Thus current, i D i0 C i1 C i3 C i5, i.e.,

i = 5Y 14.14 sin.!t − 0.785/Y 2.43 sin.3!t − 0.726/

Y 0.784 sin.5!t − 1.112/A

(b) From equation (36.9), rms current,

I D
√(

5.02 C 14.142 C 2.532 C 0.7842

2

)

D 11.3348 A D 11.33 A, correct to two decimal places.
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(c) From equation (36.16), power dissipated,

P D I2R D �11.3348�2�5.0� D 642.4 W

D 642 W, correct to three significant figures

(Alternatively, from equation (36.15),

power P D �25��5.0�C
(

100p
2

)(
14.14p

2

)
cos 45°

C
(

40p
2

)(
2.53p

2

)
cos 71.57°

C
(

20p
2

)(
0.784p

2

)
cos 78.69°

D 125 C 499.92 C 16.00 C 1.54

D 642.46 W or 642 W,

correct to three significant figures, as above.�

Problem 12. The voltage applied to a particular circuit comprising
two components connected in series is given by

	 D �30 C 40 sin 103t C 25 sin 2 ð 103t C 15 sin 4 ð 103t�volts

and the resulting current is given by

i D 0.743 sin�103t C 1.190�C 0.781 sin�2 ð 103t C 0.896�

C 0.636 sin�4 ð 103t C 0.559�A

Determine (a) the average power supplied, (b) the type of compo-
nents present, and (c) the values of the components.

(a) From equation (36.15), the average power P is given by

P D �30��0�C
(

40p
2

)(
0.743p

2

)
cos 1.190

C
(

25p
2

)(
0.781p

2

)
cos 0.896 C

(
15p

2

)(
0.636p

2

)
cos 0.559

i.e., P D 0 C 5.523 C 6.099 C 4.044 D 15.67 W

(b) The expression for the voltage contains a d.c. component of 30 V.
However there is no corresponding term in the expression for current.
This indicates that one of the components is a capacitor (since in
a d.c. circuit a capacitor offers an infinite impedance to a direct
current). Since power is delivered to the circuit the other component
is a resistor.
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(c) From equation (36.5), rms current,

I D
√(

0.7432 C 0.7812 C 0.6362

2

)
D 0.885 A

Average power P D I2R, from which,

resistance R D P

I2
D 15.67

�0.885�2
D 20 Z

At the fundamental frequency, ω D 103 rad/s

impedance jZ1j D V1m

I1m
D 40

0.743
D 53.84 #

Impedance jZ1j D
√
�R2 C X2

C1�, from which

XC1 D
√
�Z2

1 � R2� D
√
�53.842 � 202� D 50 #

Hence 1/ωC D 50, from which

capacitance C D 1

ω�50�
D 1

103�50�
D 20 mF

Problem 13. In the circuit shown in Figure 36.17 the supply vol-
tage 	 is given by 	 D 300 sin 314t C 120 sin�942t C 0.698� volts.
Determine (a) an expression for the supply current, i, (b) the
percentage harmonic content of the supply current, (c) the total
power dissipated, (d) an expression for the p.d. shown as 	1, and
(e) an expression for current ic

Figure 36.17
(a) Capacitive reactance of the 2.123 µF capacitor at the fundamental

frequency is given by

XC1 D 1

�314��2.123 ð 10�6�
D 1500 #

At the fundamental frequency the total circuit impedance, Z1, is
given by

Z1 D 560 C �2000���j1500�

�2000 � j1500�
D 560 C 3 ð 106 6 �90°

2500 6 �36.87°

D 560 C 1200 6 �53.13° D 560 C 720 � j 960

D �1280 � j960�# D 1600 6 �36.87° #

D 1600 6 �0.644 #

Since for the nth harmonic the capacitive reactance is 1/�nωC�,
the capacitive reactance of the third harmonic is 1

3XC1 D 1
3 �1500� D

500 #. Hence at the third harmonic frequency the total circuit
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impedance, Z3, is given by

Z1 D 560 C �2000���j500�

�2000 � j500�
D 560 C 106 6 �90°

2061.55 6 �14.04°

D 560 C 485.07 6 �75.96° D 560 C 117.68 � j470.58

D �677.68 � j470.58�# D 8256 �34.78° #

D 825 6 �0.607 #

The fundamental current

i1 D 	1

Z1
D 300 6 0

1600 6 �0.644
D 0.188 6 0.644 A

The third harmonic current

i3 D 	3

Z3
D 120 6 0.698

825 6 �0.607
D 0.145 6 1.305 A

Thus, supply current, i = 0.188 sin.314t Y 0.644/

Y 0.145 sin.942t Y 1.305/A

(b) Percentage harmonic content of the supply current is given by

0.145

0.188
ð 100% D 77%

(c) From equation (36.14), total active power

P D
(

300p
2

)(
0.188p

2

)
cos 0.644

C
(

120p
2

)(
0.145p

2

)
cos 0.607

i.e., P D 22.55 C 7.15 D 29.70 W

(d) Voltage 	1 D iR D 560[0.188 sin�314t C 0.644�

C 0.145 sin�942t C 1.305�],

i.e., n1 D 105.3sin.314tY 0.644/

Y 81.2 sin.942tY 1.305/ volts

(e) Current, ic D i1

(
R

R � jXC1

)
C i3

(
R

R � jXC3

)

by current division

D �0.188 6 0.644�
(

2000

2000 � j1500

)

C �0.145 6 1.305�
(

2000

2000 � j500

)
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D �0.188 6 0.644�
(

2000

2500 6 �0.644

)

C �0.145 6 1.305�
(

2000

2061.55 6 �0.245

)

D 0.150 6 1.288 C 0.141 6 1.550

Hence ic= 0.150 sin�314t Y 1.288/Y 0.141 sin.942t Y 1.550/A

Further problems on harmonics in single phase circuits may be found in
Section 36.9, problems 16 to 24, page 673.

36.7 Resonance due to
harmonics

In industrial circuits at power frequencies the typical values of L and
C involved make resonance at the fundamental frequency very unlikely.
(An exception to this is with the capacitor-start induction motor where
the start-winding can achieve unity power factor during run-up.)

However, if the voltage waveform is not a pure sine wave it is quite
possible for the resonant frequency to be near the frequency of one of the
harmonics. In this case the magnitude of the particular harmonic in the
current waveform is greatly increased and may even exceed that of the
fundamental. The effect of this is a great distortion of the resultant current
waveform so that dangerous volt drops may occur across the inductance
and capacitance in the circuit.

When a circuit resonates at one of the harmonic frequencies of the
supply voltage, the effect is called selective or harmonic resonance.

For resonance with the fundamental, the condition is ωL D 1/�ωC�; for
resonance at, say, the third harmonic, the condition is 3 ωL D 1/�3ωC�;
for resonance at the nth harmonic, the condition is

n!L = 1=.n!C/ .

Problem 14. A voltage waveform having a fundamental of
maximum value 400 V and a third harmonic of maximum
value 10 V is applied to the circuit shown in Figure 36.18.
Determine (a) the fundamental frequency for resonance with the
third harmonic, and (b) the maximum value of the fundamental
and third harmonic components of current.

(a) Resonance with the third harmonic means that 3ωL D 1/�3ωC�, i.e.,

ω D
√(

1

9LC

)
D 1

3
p
�0.5��0.2 ð 10�6�

D 1054 rad/s
Figure 36.18
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from which, fundamental frequency, f D ω

2�
D 1054

2�

D 167.7 Hz

(b) At the fundamental frequency,

impedance Z1 D R C j
(
ωL � 1

ωC

)

D 2 C j
[
�1054��0.5�� 1

�1054��0.2 ð 10�6�

]

D �2 � j4217�#

i.e., Z1 D 4217 6 �89.97° #

Maximum value of current at the fundamental frequency,

I1m D V1m

Z1
D 400

4217
D 0.095 A

At the third harmonic frequency,

Z3 D R C j
(

3ωL � 1

3ωC

)
D R

since resonance occurs at the third harmonic, i.e., Z3 D 2#

Maximum value of current at the third harmonic frequency,

I3m D V3m

Z3
D 10

2
D 5 A

(Note that the magnitude of I3m compared with I1m is 5/0.095, i.e.,
ð 52.6 greater.)

Problem 15. A voltage wave has an amplitude of 800 V at the
fundamental frequency of 50 Hz and its nth harmonic has an ampli-
tude 1.5% of the fundamental. The voltage is applied to a series
circuit containing resistance 5 #, inductance 0.369 H and capaci-
tance 0.122 µF. Resonance occurs at the nth harmonic. Determine
(a) the value of n, (b) the maximum value of current at the nth
harmonic, (c) the p.d. across the capacitor at the nth harmonic and
(d) the maximum value of the fundamental current.

(a) For resonance at the nth harmonic, nωL D 1/�nωC�, from which

n2 D 1

ω2LC
and n D 1

ω
p
�LC�

Hence n D 1

2�50
p
�0.369��0.122 ð 10�6�

D 15

Thus resonance occurs at the 15th harmonic.
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(b) At resonance, impedance Z15 D R D 5 #. Hence the maximum
value of current at the 15th harmonic,

I15m D V15m

R
D �1.5/100�ð 800

5
D 2.4 A

(c) At the 15th harmonic, capacitive reactance,

XC15 D 1

15ωC
D 1

15�2�50��0.122 ð 10�6�
D 1739 #

Hence the p.d. across the capacitor at the 15th harmonic

D �I15m��XC15� D �2.4��1739� D 4.174 kV

(d) At the fundamental frequency, inductive reactance,

XL1 D ωL D �2�50��0.369� D 115.9 #,

and capacitive reactance,

XCl D 1

ωC
D 1

�2�50��0.122 ð 10�6�
D 26091 #

Impedance at the fundamental frequency,

jZj D p
[R2 C �XC � XL�

2]

D 25975 #

Maximum value of current at the fundamental frequency,

I1m D V1m

Z1
D 800

25975
D 0.031 A or 31 mA

Further problems on harmonic resonance may be found in Section 36.9,
problems 25 to 29, page 676.

36.8 Sources of
harmonics

(i) Harmonics may be produced in the output waveform of an a.c.
generator. This may be due either to ‘tooth-ripple’, caused by the
effect of the slots that accommodate the windings, or to the nonsi-
nusoidal airgap flux distribution.

Great care is taken to ensure a sinusoidal output from genera-
tors in large supply systems; however, non linear loads will cause
harmonics to appear in the load current waveform. Thus harmonics
are produced in devices that have a non linear response to their
inputs. Non linear circuit elements (i.e., those in which the current
flowing through them is not proportional to the applied voltage)
include rectifiers and any large-signal electronic amplifier in which
diodes, transistors, valves or iron-cored inductors are used.

(ii) A rectifier is a device for converting an alternating or an oscil-
lating current into a unidirectional or approximate direct current. A
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rectifier has a low impedance to current flow in one direction and a
nearly infinite impedance to current flow in the opposite direction.
Thus when an alternating current is applied to a rectifier, current
will flow through it during the positive half-cycles only; the current
is zero during the negative half-cycles. A typical current waveform
is shown in Figure 36.19. This ‘half-wave rectification’ is produced
by using a single diode. The waveform is similar in shape to that
shown in Figure 36.14, page 643, where the d.c. component brought
the negative half-cycle up to the zero current point. The waveform
shown in Figure 36.19 is typical of one containing a fairly large
second harmonic.

Figure 36.19 Typical current waveform containing a fairly large
second harmonic

(iii) Transistors and valves are non linear devices in that sinusoidal
input results in different positive and negative half-cycle amplifica-
tions. This means that the output half-cycles have different ampli-
tudes. Since they have a different shape, even harmonic distortion
is suggested (see Section 36.3).

(iv) Ferromagnetic-cored coils are a source of harmonic generation in
a.c. circuits because of the non-linearity of the B/H curve and
the hysteresis loop, especially if saturation occurs. Let a sinu-
soidal voltage v D Vm sinωt be applied to a ferromagnetic-cored
coil (having low resistance relative to inductive reactance) of cross-
section area A square metres and possessing N turns.

If � is the flux produced in the core then the instantaneous voltage
is given by v = N .df=dt/.

If B is the flux density of the core, then, since  D BA,

v D N
d

dt
�BA� D NA

dB
dt
,

since area A is a constant for a particular core.

Separating the variables gives
∫
dB D 1

NA

∫
	 dt

i.e., B D 1

NA

∫
Vm sinωt dt D �Vm

ωNA
cosωt
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Since � cosωt D sin�ωt � 90°�,

B=
Vm

!NA
sin.!t − 90°/ �36.21�

Equation (36.21) shows that if the applied voltage is sinusoidal, the
flux density B in the iron core must also be sinusoidal but lagging
by 90°.

The condition of low resistance relative to inductive reactance,
giving a sinusoidal flux from a sinusoidal supply voltage, is called
free magnetization.

Consider the application of a sinusoidal voltage to a coil wound
on a core with a hysteresis loop as shown in Figure 36.20(a). The
horizontal axis of a hysteresis loop is magnetic field strength H,
but since H D Ni/l and N and l (the length of the flux path) are
constant, the axis may be directly scaled as current i (i.e., i D
Hl/N). Figure 36.20(b) shows sinusoidal voltage v and flux density
B waveforms, B lagging v by 90°.

Figure 36.20
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The current waveform is shown in Figure 36.20(c) and is derived
as follows. At time t1, point a on the voltage curve corresponds to
point b on the flux density curve and the point c on the hysteresis
loop. The current at time t1 is given by the distance dc. Plotting
this current on a vertical time-scale gives the derived point e on the
current curve. A similar procedure is adopted for times t2, t3 and
so on over one cycle of the voltage.

(Note that it is important to move around the hysteresis loop
in the correct direction.) It is seen from the current curve that
it is non-sinusoidal and that the positive and negative half-cycles
are identical. This indicates that the waveform contains only odd
harmonics (see Section (36.3)).

(v) If, in a circuit containing a ferromagnetic-cored coil, the resistance
is high compared with the inductive reactance, then the current
flowing from a sinusoidal supply will tend to be sinusoidal. This
means that the flux density B of the core cannot be sinusoidal
since it is related to the current by the hysteresis loop. This means,
in turn, that the induced voltage due to the alternating flux (i.e.,
v D NA�dB/dt�) will not be sinusoidal. This condition is called
forced magnetization.

The shape of the induced voltage waveform under forced
magnetization is obtained as follows. The current waveform is shown
onaverticalaxis inFigure 36.21(a).Thehysteresis loopcorresponding
to the maximum value of circuit current is drawn as shown in
Figure 36.21(b). The flux density curve which is derived from the
sinusoidal current waveform is shown in Figure 36.21(c). Point a on
the current wave at time t1 corresponds to point b on the hysteresis
loop and to point c on the flux density curve. By taking other points
throughout the current cycle the flux density curve is derived as shown.

The relationship between the induced voltage v and the flux
density B is given by v D NA�dB/dt�. Here dB/dt represents the
rate of change of flux density with respect to time, i.e., the gradient
of the B/t curve. At point d the gradient of the B/t curve is a
maximum in the positive direction. Thus v will be maximum posi-
tive as shown by point d’ in Figure 36.21(d). At point e the gradient
(i.e., dB/dt) is zero, thus v is zero, as shown by point e’. At point f
the gradient is maximum in a negative direction, thus v is maximum
negative, as shown by point f’. If all such points are taken around
the B/t curve, the curve representing induced voltage, shown in
Figure 36.21(d), is produced. The resulting voltage waveform is
nonsinusoidal. The positive and negative half-cycles are identical
in shape, indicating that the waveform contains a fundamental and
a prominent third harmonic.

(vi) The amount of power delivered to a load can be controlled using a
thyristor, which is a semi-conductor device. Examples of applica-
tions of controlled rectification include lamp and heater controls and
the control of motor speeds. A basic circuit used for single-phase
power control is shown in Figure 36.22(a). The trigger module
contains circuitry to produce the necessary gate current to turn
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Figure 36.21

Figure 36.22

the thyristor on. If the pulse is applied at time �/ω, where � is
the firing or triggering angle, then the current flowing in the load
resistor has a waveform as shown in Figure 36.22(b). The sharp
rise-time (shown as ab in Figure 36.22(b)), however, gives rise to
harmonics.
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(vii) In microelectronic systems rectangular waveforms are common.
Again, fast rise-times give rise to harmonics, especially at high
frequency. These harmonics can be fed back to the mains if not
filtered.
There are thus a large number of sources of harmonics.

36.9 Further problems
on complex waveforms

Harmonic synthesis

1 A complex current waveform i comprises a fundamental current of
50 A rms and frequency 100 Hz, together with a 24% third harmonic,
both being in phase with each other at zero time. (a) Write down an
expression to represent current, i. (b) Sketch the complex waveform of
current using harmonic synthesis over one cycle of the fundamental.

[(a) i D �70.71 sin 628.3t C 16.97 sin 1885t�A]

2 A complex voltage waveform v is comprised of a 212.1 V rms funda-
mental voltage at a frequency of 50 Hz, a 30% second harmonic
component lagging the fundamental voltage at zero time by �/2 rad,
and a 10% fourth harmonic component leading the fundamental at zero
time by �/3 rad. (a) Write down an expression to represent voltage v.
(b) Sketch the complex voltage waveform using harmonic synthesis
over one cycle of the fundamental waveform.

[(a) v D 300 sin 314.2t C 90 sin�628.3t � ��/2��
C 30 sin�1256.6t C ��/3��volts]

3 A voltage waveform is represented by

v D 20 C 50 sinωt C 20 sin�2ωt � �/2�volts

Draw the complex waveform over one cycle of the fundamental by
using harmonic synthesis.

4 Write down an expression representing a current having a fundamental
component of amplitude 16 A and frequency 1 kHz, together with its
third and fifth harmonics being respectively one-fifth and one-tenth
the amplitude of the fundamental, all components being in phase at
zero time. Sketch the complex current waveform for one cycle of the
fundamental using harmonic synthesis.

[i D �16 sin 2�103t C 3.2 sin 6�103t C 1.6 sin�104t�A]

5 For each of the waveforms shown in Figure 36.23, state which
harmonics are likely to be present.

[(a) Fundamental and even harmonics, or all harmonics present,
initially in phase with each other. (b) Fundamental and odd harmonics
only. (c) Fundamental and even harmonics, initially out of phase with
each other (or all harmonics present), some being initially out of phase
with each other.]Figure 36.23
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6 A voltage waveform is described by

v D 200 sin 377t C 80 sin�1131t C ��/4��

C 20 sin�1885t � ��/3��volts

Determine (a) the fundamental and harmonic frequencies of the wave-
form, (b) the percentage third harmonic and (c) the percentage fifth
harmonic. Sketch the voltage waveform using harmonic synthesis over
one cycle of the fundamental.

[(a) 60 Hz, 180 Hz, 300 Hz (b) 40% (c) 10%]

Rms values, mean values and form factor of complex waves

7 Determine the rms value of a complex current wave represented by

i D 3.5 sinωt C 0.8 sin
(

3ωt � �

3

)
C 0.2 sin

(
5ωt C �

2

)
A

[2.54 A]

8 Derive an expression for the rms value of a complex voltage wave-
form represented by

v D V0 C V1m sin�ωt C �1�C V3m sin�3ωt C �3�volts

Calculate the rms value of a voltage waveform given by

v D 80 C 240 sinωt C 50 sin
(

2ωt C �

4

)
C 20 sin

(
4ωt � �

3

)
volts

[191.4 V]

9 A complex voltage waveform is given by

v D 150 sin 314t C 40 sin
(

942t � �

2

)
C 30 sin�1570t C ��volts

Determine for the voltage (a) the third harmonic frequency, (b) its
rms value, (c) its mean value and (d) the form factor.

[(a) 150 Hz (b) 111.8 V (c) 91.7 V (d) 1.22]

10 A complex voltage waveform has an rms value of 220 V and it
contains 25% third harmonic and 15% fifth harmonic. (a) Deter-
mine the rms value of the fundamental and each harmonic. (b) Write
down an expression to represent the complex voltage waveform if
the frequency of the fundamental is 60 Hz.

[(a) 211.2 V, 52.8 V, 31.7 V;

[(b) v D 298.7 sin 377t C 74.7 sin 1131t C 44.8 sin 1885tV]

11 Define the term ‘form factor’ when applied to a symmetrical complex
waveform. Calculate the form factor of an alternating voltage which
is represented by

v D �50 sin 314t C 15 sin 942t C 6 sin 1570t�volts

[1.038]
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Power associated with complex waves

12 Determine the average power in a 50 # resistor if the current i
flowing through it is represented by

i D �140 sinωt C 40 sin 3ωt C 20 sin 5ωt�mA

[0.54 W]

13 A voltage waveform represented by

v D 100 sinωt C 22 sin
(

3ωt � �

6

)
C 8 sin

(
5ωt � �

4

)
volts

is applied to a circuit and the resulting current i is given by

i D 5 sin
(
ωt C �

3

)
C 1.91 sin 3ωt C 0.76 sin�5ωt � 0.452�amperes

Calculate (a) the total active power supplied to the circuit, and (b) the
overall power factor.

[(a) 146.1 W (b) 0.526]

14 Determine the rms voltage, rms current and average power supplied
to a network if the applied voltage is given by

v D 100 C 50 sin
(

400t � �

3

)
C 40 sin

(
1200t � �

6

)
volts

and the resulting current is given by

i D 0.928 sin�400t C 0.424�C 2.14 sin�1200t C 0.756�amperes

[109.8 V, 1.65 A, 14.60 W]

15 A voltage v D 40 C 20 sin 300t C 8 sin 900t C 3 sin 1500t volts is
applied to the terminals of a circuit and the resulting current is
given by

i D 4 C 1.715 sin�300t � 0.540�C 0.389 sin�900t � 1.064�

C 0.095 sin�1500t � 1.249�A

Determine (a) the rms voltage, (b) the rms current and (c) the average
power.

[(a) 42.85 V (b) 4.189 A (c) 175.5 W]

Harmonics in single-phase circuits

16 A complex voltage waveform represented by

v D 240 sinωt C 60 sin
(

3ωt � �

4

)
C 30 sin

(
5ωt C �

3

)
volts

is applied across (a) a pure 50 # resistance, (b) a pure 4.974 µF
capacitor, and (c) a pure 15.92 mH inductance. Determine for
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each case an expression for the current flowing if the fundamental
frequency is 400 Hz.

[
(a) i D 4.8 sinωt C 1.2 sin

(
3ωt � �

4

)
C 0.6 sin

(
5ωt C �

3

)
A

(b) i D 3 sin
(
ωt C �

2

)
C 2.25 sin

(
3ωt C �

4

)

C 1.875 sin
(

5ωt C 5�

6

)
A

(c) i D 6 sin
(
ωt � �

2

)
C 0.5 sin

(
3ωt � 3�

4

)

C 0.15 sin
(

5ωt � �

6

)
A
]

17 A complex current given by

i D 5 sin
(
ωt C �

3

)
C 8 sin

(
3ωt C 2�

3

)
mA

flows through a pure 2000 pF capacitor. If the frequency of the
fundamental component is 4 kHz, determine (a) the rms value of
current, (b) an expression for the p.d. across the capacitor, and (c)
the rms value of voltage.

[(a) 6.671 mA (b) v D 99.47 sin�ωt � ��/6��
C53.05 sin�3ωt C ��/6��V (c) 79.71 V]

18 A complex voltage, v, given by

v D 200 sinωt C 42 sin 3ωt C 25 sin 5ωt volts

is applied to a circuit comprising a 6 # resistance in series with a
coil of inductance 5 mH. Determine, for a fundamental frequency
of 50 Hz, (a) an expression to represent the instantaneous value of
the current flowing, (b) the rms voltage, (c) the rms current, (d) the
power dissipated, and (e) the overall power factor.

[(a) i D 32.25 sin�314t � 0.256�C 5.50 sin�942t � 0.666�

C 2.53 sin�1570t � 0.918�A

(b) 145.6 V (c) 23.20 A (d) 3.23 kW (e) 0.956]

19 An e.m.f. e is given by

e D 40 C 150 sinωt C 30 sin
(

2ωt � �

4

)

C 10 sin
(

4ωt � �

3

)
volts
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the fundamental frequency being 50 Hz. The e.m.f. is applied across
a circuit comprising a 100 # resistance in series with a 15 µF capac-
itor. Determine (i) the rms value of voltage, (ii) an expression for
the current flowing and (iii) the rms value of current.

[(i) 115.5 V

(ii) i D 0.639 sin�ωt C 1.130�C 0.206 sin�2ωt C 0.030�

C 0.088 sin�4ωt � 0.559�A
(iii) 0.479 A]

20 A circuit comprises a 100 # resistance in series with a 1 mH induc-
tance. The supply voltage is given by

v D 40 C 200 sinωt C 50 sin
(

3ωt C �

4

)
C 15 sin

(
5ωt C �

6

)
volts

where ω D 105 rad/s. Determine for the circuit (a) an expression to
represent the current flowing, (b) the rms value of current and (c)
the power dissipated.

[(a) i D 0.40 C 1.414 sin�ωt � ��/4��C 0.158 sin�3ωt � 0.464�

C 0.029 sin�5ωt � 0.850�

(b) 1.08 A (c) 117 W]

21 The e.m.f. applied to a circuit comprising two components connected
in series is given by

	 D 50 C 150 sin�2 ð 103t�C 40 sin�4 ð 103t�

C 20 sin�8 ð 103t�volts

and the resulting current is given by

i D 1.011 sin�2 ð 103t C 1.001�C 0.394 sin�4 ð 103t C 0.663�

C 0.233 sin�8 ð 103t C 0.372�A

Determine for the circuit (a) the average power supplied, and (b) the
value of the two circuit components.

[(a) 49.3 W (b) R D 80 #, C D 4 µF]

22 A coil having inductance L and resistance R is supplied with a
complex voltage given by

	 D 240 sinωt C V3 sin
(

3ωt C �

3

)

C V5 sin
(

5ωt � �

12

)
volts

The resulting current is given by

i D 4.064 sin�ωt � 0.561�C 0.750 sin�3ωt � 0.036�

C 0.182 sin�5ωt � 1.525�A
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The fundamental frequency is 500 Hz. Determine (a) the impedance
of the circuit at the fundamental frequency, and hence the values of
R and L, (b) the values of V3 and V5, (c) the rms voltage, (d) the
rms current, (e) the circuit power, and (f) the power factor.

[(a) 59.06 #, R D 50 #, L D 10 mH (b) 80 V,

30 V (c) 180.1 V (d) 2.93 A (e) 427.8 W (f) 0.811]

23 An alternating supply voltage represented by

	 D �240 sin 300t � 40 sin 1500t C 60 sin 2100t�volts

is applied to the terminals of a circuit containing a 40 # resistor,
a 200 mH inductor and a 25 µF capacitor in series. (a) Derive the
expression for the current waveform and (b) calculate the power
dissipated by the circuit.

[(a) i D 2.873 sin�300t C 1.071�� 0.145 sin�1500t � 1.425�

C 0.149 sin�2100t � 1.471�A

(b) 166 W]

24 A voltage 	 represented by

	 D 120 sin 314t C 25 sin
(

942t C �

6

)
volts

is applied to the circuit shown in Figure 36.24. Determine (a) an
expression for current i, (b) the percentage harmonic content of the
supply current, (c) the total power dissipated, (d) an expression for
the p.d. shown as 	1 and (e) expressions for the currents shown as
iR and iC.

Figure 36.24

[(a) i D 0.134 sin�314t C 0.464�C 0.047 sin�942t C 0.988�A

(b) 35.07% (c) 7.72 W

(d) 	1 D 53.6 sin�314t C 0.464�C 18.8 sin�942t C 0.988�V

(e) iR D 0.095 sin�314t � 0.321�C 0.015 sin�942t � 0.261�A

iC D 0.095 sin�314t C 1.249�C 0.045 sin�942t C 1.310�A]

Harmonic resonance

25 A voltage waveform having a fundamental of maximum value 250 V
and a third harmonic of maximum value 20 V is applied to a series
circuit comprising a 5 # resistor, a 400 mH inductance and a 0.5 µF
capacitor. Determine (a) the fundamental frequency for resonance
with the third harmonic and (b) the maximum values of the funda-
mental and third harmonic components of the current.

[(a) 118.6 Hz (b) 0.105 A, 4 A]

26 A complex voltage waveform has a maximum value of 500 V at
the fundamental frequency of 60 Hz and contains a 17th harmonic
having an amplitude of 2% of the fundamental. The voltage is applied
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to a series circuit containing resistance 2 #, inductance 732 mH
and capacitance 36.26 nF. Determine (a) the maximum value of the
17th harmonic current, (b) the maximum value of the 17th harmonic
p.d. across the capacitor, and (c) the amplitude of the fundamental
current.

[(a) 5 A (b) 23.46 kV (c) 6.29 mA]

27 A complex voltage waveform 	 is given by the expression

	 D 150 sinωt C 25 sin
(

3ωt � �

6

)
C 10 sin

(
5ωt C �

3

)
volts

where ω D 314 rad/s. The voltage is applied to a circuit consisting
of a coil of resistance 10 # and inductance 50 mH in series with a
variable capacitor.

(a) Calculate the value of the capacitance which will give resonance
with the triple frequency component of the voltage. (b) Write down
the corresponding equation for the current waveform. (c) Determine
the rms value of current. (d) Find the power dissipated in the circuit.

[(a) 22.54 µF

(b) i D 1.191 sin�314t C 1.491�C 2.500 sin�942t � 0.524�

C 0.195 sin�1570t � 0.327�A
(c) 1.963 A (d) 38.56 W]

28 A complex voltage of fundamental frequency 50 Hz is applied to
a series circuit comprising resistance 20 #, inductance 800 µH and
capacitance 74.94 µF. Resonance occurs at the nth harmonic. Deter-
mine the value of n. [13]

29 A complex voltage given by 	 D 1200 sinωt C 300 sin 3ωt C
100 sin 5ωt volts is applied to a circuit containing a 25 # resistor,
a 12 µF capacitor and a 37 mH inductance connected in series. The
fundamental frequency is 79.62 Hz. Determine (a) the rms value of
the voltage, (b) an expression for the current waveform, (c) the rms
value of current, (d) the amplitude of the third harmonic voltage
across the capacitor, (e) the circuit power, and (f) the overall power
factor.

[(a) 877.5 V

(b) i D 7.991 sin�ωt C 1.404�C 12 sin 3ωt

C 1.555 sin�5ωt � 1.171�A

(c) 10.25 A (d) 666.4 V (e) 2626 W (f) 0.292]



37 A numerical method of
harmonic analysis

At the end of this chapter you should be able to:

ž use a tabular method to determine the Fourier series for a
complex waveform

ž predict the probable harmonic content of a waveform on
inspection

37.1 Introduction Many practical waveforms can be represented by simple mathematical
expressions, and, by using Fourier series, the magnitude of their harmonic
components determined. For waveforms not in this category, analysis may
be achieved by numerical methods. Harmonic analysis is the process of
resolving a periodic, non-sinusoidal quantity into a series of sinusoidal
components of ascending order of frequency.

37.2 Harmonic analysis
on data given in tabular

or graphical form

A Fourier series is merely a trigonometric series of the form:

f�x� D a0 C a1 cos x C a2 cos 2x C Ð Ð Ð C b1 sin x C b2 sin 2x C Ð Ð Ð

i.e. f�x� D a0 C
1∑

nD1

�an cos nx C bn sin nx�

The Fourier coefficients a0, an and bn all require functions to be inte-
grated, i.e.,

a0 D 1

2�

�∫
��

f�x�dx D 1

2�

2�∫
0

f�x� dx

D mean value of f�x� in the range � � to � or 0 to 2�

an D 1

�

�∫
��

f�x� cos nx dx D 1

�

2�∫
0

f�x� cos nx dx

D twice the mean value of f�x� cos nx in the range 0 to 2�

bn D 1

�

�∫
��

f�x� sin nx dx D 1

�

2�∫
0

f�x� sin nx dx

D twice the mean value of f�x� sin nx in the range 0 to 2�
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However, irregular waveforms are not usually defined by mathematical
expressions and thus the Fourier coefficients cannot be determined by
using calculus. In these cases, approximate methods, such as the trape-
zoidal rule, can be used to evaluate the Fourier coefficients.

Most practical waveforms to be analysed are periodic. Let the period
of a waveform be 2� and be divided into p equal parts as shown in
Figure 37.1. The width of each interval is thus 2�/p. Let the ordinates
be labelled y0, y1, y2, . . ., yp (note that y0 D yp). The trapezoidal rule
states:

Area ³ (width of interval)
[

1

2
(first C last ordinate)

C sum of remaining ordinates
]

³ 2�

p

[
1

2
�y0 C yp� C y1 C y2 C y3 C Ð Ð Ð

]

f (x)
y0 y1 y2 y3 y4

yp

x2pp0
2p/p

Period = 2p

Figure 37.1

Since y0 D yp, then
1

2
�y0 C yp� D y0 D yp. Hence area ³ 2�

p

p∑
kD1

yk

Mean value D area

length of base
³ 1

2�

(
2�

p

) p∑
kD1

yk ³ 1

p

p∑
kD1

yk

However, a0 D mean value of f�x� in the range 0 to 2�. Thus

a0 ≈ 1
p

p∑
k=1

yk �37.1�

Similarly, an D twice the mean value of f�x� cos nx in the range
0 to 2�, thus,
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an ≈ 2
p

p∑
k=1

yk cosnxk �37.2�

and bn D twice the mean value of f�x� sin nx in the range 0 to 2�, thus

bn ≈ 2
p

p∑
k=1

yk sinnxk �37.3�

Problem 1. The values of the voltage � volts at different moments
in a cycle are given by:

� degrees 30 60 90 120 150 180 210 240 270 300 330 360

� (volts) 62 35 �38 �64 �63 �52 �28 24 80 96 90 70

Draw the graph of voltage � against angle � and analyse the voltage
into its first three constituent harmonics, each coefficient correct to
2 decimal places.

The graph of voltage � against angle � is shown in Figure 37.2. The
range 0 to 2� is divided into 12 equal intervals giving an interval width
of 2�/12, i.e. �/6 or 30°. The values of the ordinates y1, y2, y3, . . . are
62, 35, �38, . . . from the given table of values. If a larger number of
intervals are used, results having a greater accuracy are achieved. The
data is tabulated in the proforma shown in Table 37.1.

y1
y2

y3 y4 y5 y6

y7

y8

y9 y11 y12

y10

270 360  degrees

90 180

80

60

40

20

0
−20

−40

−60

−80

V
ol

ta
ge

 v
 (

vo
lts

)

q

Figure 37.2

From equation (37.1), a0 ³ 1

p

p∑
kD1

yk D 1

12
�212�

D 17.67 (since p D 12�



TABLE 37.1

Ordin- �° v cos � v cos � sin � v sin � cos 2� v cos 2� sin 2� v sin 2� cos 3� v cos 3� sin 3� v sin 3�
ates

y1 30 62 0.866 53.69 0.5 31 0.5 31 0.866 53.69 0 0 1 62
y2 60 35 0.5 17.5 0.866 30.31 �0.5 �17.5 0.866 30.31 �1 �35 0 0
y3 90 �38 0 0 1 �38 �1 38 0 0 0 0 �1 38
y4 120 �64 �0.5 32 0.866 �55.42 �0.5 32 �0.866 55.42 1 �64 0 0
y5 150 �63 �0.866 54.56 0.5 �31.5 0.5 �31.5 �0.866 54.56 0 0 1 �63
y6 180 �52 �1 52 0 0 1 �52 0 0 �1 52 0 0
y7 210 �28 �0.866 24.25 �0.5 14 0.5 �14 0.866 �24.25 0 0 �1 28
y8 240 24 �0.5 �12 �0.866 �20.78 �0.5 �12 0.866 �20.78 1 24 0 0
y9 270 80 0 0 �1 �80 �1 �80 0 0 0 0 1 80
y10 300 96 0.5 48 �0.866 �83.14 �0.5 �48 �0.866 �83.14 �1 �96 0 0
y11 330 90 0.866 77.94 �0.5 �45 0.5 45 �0.866 �77.94 0 0 �1 �90
y12 360 70 1 70 0 0 1 70 0 0 1 70 0 0

12∑
kD1

yk D 212
12∑

kD1

yk cos �k

12∑
kD1

yk sin �k

12∑
kD1

yk cos 2�k

12∑
kD1

yk sin 2�k

12∑
kD1

yk cos 3�k

12∑
kD1

yk sin 3�k

D 417.94 D � 278.53 D � 39 D 29.43 D � 49 D 55
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From equation (37.2), an ³ 2

p

p∑
kD1

cos nxk

Hence a1 ³ 2

12
�417.94� D 69.66I

a2 ³ 2

12
��39� D �6.50I

and a3 ³ 2

12
��49� D �8.17

From equation (37.3), bn ³ 2

p

p∑
kD1

yk sin nxk

Hence b1 ³ 2

12
��278.53� D �46.42;

b2 ³ 2

12
�29.43� D 4.91;

and b3 ³ 2

12
�55� D 9.17

Substituting these values into the Fourier series:

f�x� D a0 C
1∑

nD1

�an cos nx C bn sin nx�

gives: n = 17.67Y 69.66 cosq − 6.50 cos 2q − 8.17 cos 3qY · · ·
−46.42 sinqY 4.91 sin 2qY 9.17 sin 3qY · · · �37.4�

Note that in equation (37.4), (�46.42 sin � C 69.66 cos �) comprises the
fundamental, (4.91 sin 2� � 6.50 cos 2�) comprises the second harmonic
and (9.17 sin 3� � 8.17 cos 3�) comprises the third harmonic.

It is shown in Higher Engineering Mathematicsthat

a sin ωt C b cos ωt 	 R sin�ωt C ˛�

where a D R cos ˛, b D R sin ˛, R D
√

�a2 C b2� and ˛ D arctan
b

a

For the fundamental, R D
√[

��46.42�2 C �69.66�2
] D 83.71

If a D R cos ˛, then cos ˛ D a

R
D �46.42

83.71
which is negative,

and if b D R sin ˛, then sin ˛ D b

R
D 69.66

83.71
which is positive.

The only quadrant where cos ˛ is negative and sin ˛ is positive is the
second quadrant.

Hence ˛ D arctan
b

a
D arctan

69.66

�46.42
D 123.68° or 2. 16 rad

Thus (�46.42 sin � C 69.66 cos �� D 83.71 sin�� C 2.16)
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By a similar method it may be shown that the second harmonic

�4.91 sin 2� � 6.50 cos 2�� 	 8.15 sin�2� � 0.92� and the third harmonic

�9.17 sin 3� � 8.17 cos 3�� 	 12.28 sin�3� � 0.73�

Hence equation (37.4) may be re-written as:

n = 17.67Y 83.71 sin.qY 2.16/Y 8.15 sin.2q − 0.92/

Y 12.28 sin.3q − 0.73/ volts

which is the form used in Chapter 36 with complex waveforms.

37.3 Complex waveform
considerations

It is sometimes possible to predict the harmonic content of a waveform
on inspection of particular waveform characteristics.

(i) If a periodic waveform is such that the area above the horizontal
axis is equal to the area below then the mean value is zero. Hence
a0 D 0 (see Figure 37.3(a)).

(ii) An even function is symmetrical about the vertical axis and
contains no sine terms(see Figure 37.3(b)).

f (x)

0 p 2p x

(a)

p 2p x0−p

Contains no sine terms(b)

−2p −p p0 2p x

Contains no cosine terms(c)

f (x)

−2p −p p0 2p x

f (x)

−p p0 2p x

Contains only odd harmonics(d)    Contains only even harmonics

f (x) f (x)

a0 = 0

(e)

Figure 37.3

(iii) An odd function is symmetrical about the origin and contains no
cosine terms(see Figure 37.3(c)).

(iv) f�x� D f�x C �� represents a waveform which repeats after half a
cycle and only even harmonicsare present (see Figure 37.3(d)).

(v) f�x� D �f�x C �� represents a waveform for which the positive
and negative cycles are identical in shape and only odd harmonics
are present (see Figure 37.3(e)).

Problem 2. Without calculating Fourier coefficients state which
harmonics will be present in the waveforms shown in Figure 37.4.
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f (x)

2

−2

0 p−p 2p x

0 p−p 2p x

5

f (x)

(a)

(b)

Figure 37.4

(a) The waveform shown in Figure 37.4(a) is symmetrical about the
origin and is thus an odd function. An odd function contains no cosine
terms. Also, the waveform has the characteristic f�x� D �f�x C ��,
i.e. the positive and negative half cycles are identical in shape. Only
odd harmonics can be present in such a waveform. Thus the wave-
form shown in Figure 37.4(a) contains only odd sine terms. Since
the area above the x-axis is equal to the area below, a0 D 0.

(b) The waveform shown in Figure 37.4(b) is symmetrical about the
f�x� axis and is thus an even function. An even function contains no
sine terms. Also, the waveform has the characteristic f�x� D f�x C
��, i.e., the waveform repeats itself after half a cycle. Only even
harmonics can be present in such a waveform. Thus the waveform
shown in Figure 37.4(b) contains only even cosine terms(together
with a constant term, a0).

Problem 3. An alternating current i amperes is shown in
Figure 37.5. Analyse the waveform into its constituent harmonics
as far as and including the fifth harmonic, correct to 2 decimal
places, by taking 30° intervals.

y1 y2 y3 180 240 300 q°
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y4

y5
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Figure 37.5

With reference to Figure 37.5, the following characteristics are noted:

(i) The mean value is zero since the area above the � axis is equal
to the area below it. Thus the constant term, or d.c. component,
a0 D 0.

(ii) Since the waveform is symmetrical about the origin the function i
is odd, which means that there are no cosine terms present in the
Fourier series.

(iii) The waveform is of the form f��� D �f�� C �� which means that
only odd harmonics are present.

Investigating waveform characteristics has thus saved unnecessary
calculations and in this case the Fourier series has only odd sine terms
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present, i.e.

i D b1 sin � C b3 sin 3� C b5 sin 5� C Ð Ð Ð
A proforma, similar to Table 37.1, but without the ‘cosine terms’ columns
and without the ‘even sine terms’ columns in shown in Table 37.2 up to,
and including, the fifth harmonic, from which the Fourier coefficients b1,
b3 and b5 can be determined. Twelve coordinates are chosen and labelled
y1, y2, y3, . . . y12 as shown in Figure 37.5.

TABLE 37.2

Ordinate �° i sin � i sin � sin 3� i sin 3� sin 5� i sin 5�

y1 30 2 0.5 1 1 2 0.5 1
y2 60 7 0.866 6.06 0 0 �0.866 �6.06
y3 90 10 1 10 �1 �10 1 10
y4 120 7 0.866 6.06 0 0 �0.866 �6.06
y5 150 2 0.5 1 1 2 0.5 1
y6 180 0 0 0 0 0 0 0
y7 210 �2 �0.5 1 �1 2 �0.5 1
y8 240 �7 �0.866 6.06 0 0 0.866 �6.06
y9 270 �10 �1 10 1 �10 �1 10
y10 300 �7 �0.866 6.06 0 0 0.866 �6.06
y11 330 �2 �0.5 1 �1 2 �0.5 1
y12 360 0 0 0 0 0 0 0

12∑
kD1

ik sin �k

12∑
kD1

ik sin 3�k

12∑
kD1

ik sin 5�k

D 48.24 D � 12 D � 0.24

From equation (37.3), Section 37.2, bn ³ 2

p

p∑
kD1

ik sin n�k , where p D 12.

Hence b1 ³ 2

12
�48.24� D 8.04;

b3 ³ 2

12
��12� D �2.00;

and b5 ³ 2

12
��0.24� D �0.04

Thus the Fourier series for current i is given by:

i = 8.04 sinq − 2.00 sin 3q − 0.04 sin 5q

37.4 Further problems
on a numerical method of

harmonic analysis

Determine the Fourier series to represent the periodic functions given by
the tables of values in Problems 1 to 3, up to and including the third
harmonics and each coefficient correct to 2 decimal places. Use 12 ordi-
nates in each case.
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1
Angle �° 30 60 90 120 150 180 210 240 270 300 330 360

Displacement y 40 43 38 30 23 17 11 9 10 13 21 32

[y D 23.92 C 7.81 cos � C 14.61 sin � C 0.17 cos 2�
C 2.31 sin 2� � 0.33 cos 3� C 0.50 sin 3�]

2
Angle �° 0 30 60 90 120 150 180 210 240 270 300 330

Voltage � �5.0 �1.5 6.0 12.5 16.0 16.5 15.0 12.5 6.5 �4.0 �7.0 �7.5

[� D 5.00 � 10.78 cos � C 6.83 sin � � 1.96 cos 2�
C 0.80 sin 2� C 0.58 cos 3� � 1.08 sin 3�]

3
Angle �° 30 60 90 120 150 180 210 240 270 300 330 360

Current i 0 �1.4 �1.8 �1.9 �1.8 �1.3 0 2.2 3.8 3.9 3.5 2.5

[i D 0.64 C 1.58 cos � � 2.73 sin � � 0.23 cos 2�
� 0.42 sin 2� C 0.27 cos 3� C 0.05 sin 3�]

f (t )

4

0

−4

−p−2p p 2p 4p t

(a)

2p
−p 0

p

y
10

−10

(b)

x

Figure 37.6

4 Without performing calculations, state which harmonics will be
present in the waveforms shown in Figure 37.6.

[(a) only odd cosine terms present
(b) only even sine terms present]

Figure 37.7
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5 Analyse the periodic waveform of displacement y against angle � in
Figure 37.7(a) into its constituent harmonics as far as and including
the third harmonic, by taking 30° intervals.

[yD 9.4 C 13.2 cos � � 24.4 sin � C 1.75 cos 2�
� 0.58 sin 2� C 1.33 cos 3� C 0.67 sin 3�]

6 For the waveform of current shown in Figure 37.7(b) state why only
a d.c. component and even cosine terms will appear in the Fourier
series and determine the series, using �/6 rad intervals, up to and
including the sixth harmonic.

[I D 3.83 � 4.50 cos 2� C 1.17 cos 4� � 1.00 cos 6�]



38 Magnetic materials

At the end of this chapter you should be able to:

ž recognize terms associated with magnetic circuits

ž appreciate magnetic properties of materials

ž categorize materials as ferromagnetic, diamagnetic and
paramagnetic

ž explain hysteresis and calculate hysteresis loss

ž explain and calculate eddy current loss

ž explain a method of separation of hysteresis and eddy current
loss and determine the separate losses from given data

ž distinguish between non-permanent and permanent magnetic
materials.

38.1 Revision of terms
and units used with

magnetic circuits

In Chapter 7, page 74, a number of terms used with magnetic circuits are
defined. These are summarized below.

(a) A magnetic field is the state of the space in the vicinity of a perma-
nent magnet or an electric current throughout which the magnetic
forces produced by the magnet or current are discernible.

(b) Magnetic flux 8 is the amount of magnetic field produced by a
magnetic source. The unit of magnetic flux is the weber, Wb. If
the flux linking one turn in a circuit changes by one weber in one
second, a voltage of one volt will be induced in that turn.

(c) Magnetic flux density B is the amount of flux passing through a
defined area that is perpendicular to the direction of the flux.

Magnetic flux density D magnetic flux

area

i.e., B = 8=A, where A is the area in square metres. The unit of

magnetic flux density is the tesla T, where 1 T D 1 Wb/m2.

(d) Magnetomotive force (mmf) is the cause of the existence of a

magnetic flux in a magnetic circuit. mmf, Fm = NI amperes,

where N is the number of conductors (or turns) and I is the current in
amperes. The unit of mmf is sometimes expressed as ‘ampere-turns’.
However since ‘turns’ have no dimension, the S.I. unit of mmf is
the ampere.
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(e) Magnetic field strength (or magnetizing force),

H = NI =l ampere per metre,

where l is the mean length of the flux path in metres.

Thus mmf = NI = Hl amperes.

(f) �0 is a constant called the permeability of free space (or the
magnetic space constant). The value of �0 is 4� ð 10�7 H/m.

For air, or any nonmagnetic medium, the ratio B=H = m0

(Although all nonmagnetic materials, including air, exhibit slight
magnetic properties, these can effectively be neglected.)

(g) �r is the relative permeability and is defined as

flux density in material

flux density in a vacuum

�r varies with the type of magnetic material and, since it is a ratio
of flux densities, it has no unit. From its definition, �r for a vacuum
is 1.

For all media other than free space, B=H = m0mr

(h) Absolute permeability m D m0mr

(i) By plotting measured values of flux density B against magnetic field
strength H a magnetization curve (or B/H curve) is produced. For
nonmagnetic materials this is a straight line having the approximate
gradient of �0. B/H curves for four materials are shown on page 78.

(j) From 
g�, �r D B/
�0H�. Thus the relative permeability �r of a
ferromagnetic material is proportional to the gradient of the B/H
curve and varies with the magnetic field strength H.

(k) Reluctance S (or RM) is the ‘magnetic resistance’ of a magnetic
circuit to the presence of magnetic flux.

Reluctance S D Fm


D NI


D Hl

BA
D 1


B/H�A
D 1

�0�rA

The unit of reluctance is 1/H (or H�1) or A/Wb

(l) Permeance is the magnetic flux per ampere of total magnetomotive
force in the path of a magnetic field. It is the reciprocal of reluctance.
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38.2 Magnetic properties
of materials

The full theory of magnetism is one of the most complex of subjects.
However the phenomenon may be satisfactorily explained by the use of
a simple model. Bohr and Rutherford, who discovered atomic structure,
suggested that electrons move around the nucleus confined to a plane, like
planets around the sun. An even better model is to consider each electron
as having a surface, which may be spherical or elliptical or something
more complicated.

Magnetic effects in materials are due to the electrons contained in them,
the electrons giving rise to magnetism in the following two ways:

(i) by revolving around the nucleus
(ii) by their angular momentum about their own axis, called spin.

In each of these cases the charge of the electron can be thought of as
moving round in a closed loop and therefore acting as a current loop.

The main measurable quantity of an atomic model is the magnetic
moment. When applied to a loop of wire carrying a current,

magnetic moment D current ð area of the loop

Electrons associated with atoms possess magnetic moment which gives
rise to their magnetic properties.

Diamagnetism is a phenomenon exhibited by materials having a rela-
tive permeability less than unity. When electrons move more or less in
a spherical orbit around the nucleus, the magnetic moment due to this
orbital is zero, all the current due to moving electrons being considered
as averaging to zero. If the net magnetic moment of the electron spins
were also zero then there would be no tendency for the electron motion
to line up in the presence of a magnetic field. However, as a field is
being turned on, the flux through the electron orbitals increases. Thus,
considering the orbital as a circuit, there will be, by Faraday’s laws, an
e.m.f. induced in it which will change the current in the circuit. The
flux change will accelerate the electrons in its orbit, causing an induced
magnetic moment. By Lenz’s law the flux due to the induced magnetic
moment will be such as to oppose the applied flux. As a result, the net
flux through the material becomes less than in a vacuum. Since relative
permeability is defined as

flux density in material

flux density in vacuum

with diamagnetic materials the relative permeability is less than one.
Paramagnetism is a phenomenon exhibited by materials where the

relative permeability is greater than unity. Paramagnetism occurs in
substances where atoms have a permanent magnetic moment. This may be
caused by the orbitals not being spherical or by the spin of the electrons.
Electron spins tend to pair up and cancel each other. However, there
are many atoms with odd numbers of electrons, or in which pairing is
incomplete. Such atoms have what is called a permanent dipole moment.
When a field is applied to them they tend to line up with the field, like
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compass needles, and so strengthen the flux in that region. (Diamagnetic
materials do not tend to line up with the field in this way.) When this
effect is stronger than the diamagnetic effect, the overall effect is to
make the relative permeability greater than one. Such materials are called
paramagnetic.

Ferromagnetic materials

Ferromagnetism is the phenomenon exhibited by materials having a rela-
tive permeability which is considerably greater than 1 and which varies
with flux density. Iron, cobalt and nickel are the only elements that are
ferromagnetic at ordinary working temperatures, but there are several
alloys containing one or more of these metals as constituents, with widely
varying ferromagnetic properties.

Consider the simple model of a single iron atom represented in
Figure 38.1. It consists of a small heavy central nucleus surrounded by
a total of 26 electrons. Each electron has an orbital motion about the
nucleus in a limited region, or shell, such shells being represented by
circles K, L,M and N. The numbers in Figure 38.1 represent the number
of electrons in each shell.

Figure 38.1 Single iron atom

The outer shell N contains two loosely held electrons, these electrons
becoming the carriers of electric current, making iron electrically conduc-
tive. There are 14 electrons in the M shell and it is this group that is
responsible for magnetism. An electron carries a negative charge and a
charge in motion constitutes an electric current with which is associated a
magnetic field. Magnetism would therefore result from the orbital motion
of each electron in the atom. However, experimental evidence indicates
that the resultant magnetic effect due to all the orbital motions in the
metal solid is zero; thus the orbital currents may be disregarded.

In addition to the orbital motion, each electron spins on its own axis.
A rotating charge is equivalent to a circular current and gives rise to a
magnetic field. In any atom, all the axes about which the electrons spin
are parallel, but rotation may be in either direction. In the single atom
shown in Figure 38.1, in each of the K, L and N shells equal numbers
of electrons spin in the clockwise and anticlockwise directions respec-
tively and therefore these shells are magnetically neutral. However, in
shell M, nine of the electrons spin in one direction while five spin in
the opposite direction. There is therefore a resultant effect due to four
electrons.

The atom of cobalt has 15 electrons in the M shell, nine spinning in
one direction and six in the other. Thus with cobalt there is a resultant
effect due to 3 electrons. A nickel atom has a resultant effect due to 2
electrons. The atoms of the paramagnetic elements, such as manganese,
chromium or aluminium, also have a resultant effect for the same reasons
as that of iron, cobalt and nickel. However, in the diamagnetic materials
there is an exact equality between the clockwise and anticlockwise spins.

The total magnetic field of the resultant effect due to the four electrons
in the iron atom is large enough to influence other atoms. Thus the orienta-
tion of one atom tends to spread through the material, with atoms acting
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together in groups instead of behaving independently. These groups of
atoms, called domains (which tend to remain permanently magnetized),
act as units. Thus, when a field is applied to a piece of iron, these domains
as a whole tend to line up and large flux densities can be produced. This
means that the relative permeability of such materials is much greater
than one. As the applied field is increased, more and more domains align
and the induced flux increases.

The overall magnetic properties of iron alloys and materials containing
iron, such as ferrite (ferrite is a mixture of iron oxide together with other
oxides — lodestone is a ferrite), depend upon the structure and compo-
sition of the material. However, the presence of iron ensures marked
magnetic properties of some kind in them. Ferromagnetic effects decrease
with temperature, as do those due to paramagnetism. The loss of ferro-
magnetism with temperature is more sudden, however; the temperature at
which it has all disappeared is called the Curie temperature. The ferro-
magnetic properties reappear on cooling, but any magnetism will have
disappeared. Thus a permanent magnet will be demagnetized by heating
above the Curie temperature (1040 K for iron) but can be remagnetized
after cooling. Above the Curie temperature, ferromagnetics behave as
paramagnetics.

38.3 Hysteresis and
hysteresis loss

Hysteresis loop

Let a ferromagnetic material which is completely demagnetized, i.e., one
in which B D H D 0 (either by heating the sample above its Curie temper-
ature or by reversing the magnetizing current a large number of times
while at the same time gradually reducing the current to zero) be subjected
to increasing values of magnetic field strength H and the corresponding
flux density B measured. The domains begin to align and the resulting rela-
tionship between B and H is shown by the curve Oab in Figure 38.2. At a
particular value of H, shown as Oy, most of the domains will be aligned
and it becomes difficult to increase the flux density any further. The mate-
rial is said to be saturated. Thus by is the saturation flux density.

Figure 38.2

If the value of H is now reduced it is found that the flux density follows
curve bc, i.e., the domains will tend to stay aligned even when the field
is removed. When H is reduced to zero, flux remains in the iron. This
remanent flux density or remanence is shown as Oc in Figure 38.2.
When H is increased in the opposite direction, the domains begin to
realign in the opposite direction and the flux density decreases until, at
a value shown as Od, the flux density has been reduced to zero. The
magnetic field strength Od required to remove the residual magnetism,
i.e., reduce B to zero, is called the coercive force.

Further increase of H in the reverse direction causes the flux density
to increase in the reverse direction until saturation is reached, as shown
by curve de. If the reversed magnetic field strength Ox is adjusted to the
same value of Oy in the initial direction, then the final flux density xe is
the same as yb. If H is varied backwards from Ox to Oy, the flux density
follows the curve efgb, similar to curve bcde.
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It is seen from Figure 38.2 that the flux density changes lag behind the
changes in the magnetic field strength. This effect is called hysteresis.
The closed figure bcdefgb is called the hysteresis loop (or the B/H loop).

Hysteresis loss

A disturbance in the alignment of the domains of a ferromagnetic
material causes energy to be expended in taking it through a cycle of
magnetization. This energy appears as heat in the specimen and is called
the hysteresis loss. Let the hysteresis loop shown in Figure 38.3 be that
obtained for an iron ring of mean circumference l and cross-sectional area
a m2 and let the number of turns on the magnetizing coil be N.

Figure 38.3

Let the increase of flux density be dB when the magnetic field strength
H is increased by a very small amount km (see Figure 38.3) in time dt
second, and let the current corresponding to Ok be i amperes. Thus since
H D NI/l then Ok D Ni/l, from which,

i D l
Ok�

N

38.1�

The instantaneous e.m.f. e induced in the winding is given by

e D �N
d

dt
D �N

d
Ba�

dt
D �aN

dB

dt

The applied voltage to neutralize this e.m.f., v D aN
dB

dt

The instantaneous power supplied to a magnetic field,

p D vi D i
(
aN

dB

dt

)
watts

Energy supplied to the magnetic field in time dt seconds

D power ð time D iaN
dB

dt
dt

D iaNdB joules D
(
l
Ok�

N

)
aN dB from equation 
38.1�

D 
Ok�dB 
la� joules D (area of shaded strip) (volume of ring)

i.e., energy supplied in time dt seconds D 
area of shaded strip�J/m3.

Hence the energy supplied to the magnetic field when H is increased from
zero to Oy D 
area fgbzf�J/m3.

Similarly, the energy returned from the magnetic field when H is reduced
from Oy to zero D 
area bzcb�J/m3.

Hence net energy absorbed by the magnetic field D 
area fgbcf�J/m3

Thus the hysteresis loss for a complete cycle

D area of loop efgbcdeJ=m3
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Figure 38.4

If the hysteresis loop is plotted to a scale of 1 cm D ˛ ampere/metre along
the horizontal axis and 1 cm D ˇ tesla along the vertical axis, and if A
represents the area of the loop in square centimetres, then

hysteresis loss/cycle = Aab joules per metre3 
38.2�

If hysteresis loops for a given ferromagnetic material are determined for
different maximum values of H, they are found to lie within one another
as shown in Figure 38.4.

The maximum sized hysteresis loop for a particular material is obtained
at saturation. If, for example, the maximum flux density is reduced to half
its value at saturation, the area of the resulting loop is considerably less
than half the area of the loop at saturation. From the areas of a number
of such hysteresis loops, as shown in Figure 38.4, the hysteresis loss per
cycle was found by Steinmetz (an American electrical engineer) to be
proportional to 
Bm�n, where n is called the Steinmetz index and can
have a value between about 1.6 and 3.0, depending on the quality of
the ferromagnetic material and the range of flux density over which the
measurements are made.

From the above it is found that the hysteresis loss is proportional to the
volume of the specimen and the number of cycles through which the
magnetization is taken. Thus

hysteresis loss, Ph = khvf .Bm/n watts 
38.3�

where v D volume in cubic metres, f D frequency in hertz, and kh is a
constant for a given specimen and given range of B.

The magnitude of the hysteresis loss depends on the composition of
the specimen and on the heat treatment and mechanical handling to which
the specimen has been subjected.

Figure 38.5 shows typical hysteresis loops for (a) hard steel, which
has a high remanence Oc and a large coercivity Od, (b) soft steel, which
has a large remanence and small coercivity and (c) ferrite, this being a
ceramic-like magnetic substance made from oxides of iron, nickel, cobalt,
magnesium, aluminium and manganese. The hysteresis of ferrite is very
small.

Problem 1. The area of a hysteresis loop obtained from a
ferromagnetic specimen is 12.5 cm2. The scales used were:
horizontal axis 1 cm D 500 A/m; vertical axis 1 cm D 0.2 T.
Determine (a) the hysteresis loss per m3 per cycle, and (b) the
hysteresis loss per m3 at a frequency of 50 Hz.

(a) From equation (38.2), hysteresis loss per cycle

D A˛ˇ D 
12.5�
500�
0.2� D 1250 J=m3Figure 38.5
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(Note that, since ˛ D 500 A/m per centimetre and ˇ D 0.2 T per
centimetre, then 1 cm2 of the loop represents

500
A

m
ð 0.2 T D 100

A

m

Wb

m2
D 100

AVs

m3
D 100

Ws

m3
D 100 J/m3

Hence 12.5 cm2 represents 12.5 ð 100 D 1250 J=m3)

(b) At 50 Hz frequency, hysteresis loss

D 
1250 J/m3�
50 1/s� D 62 500 W=m3

Problem 2. If in problem 1, the maximum flux density is 1.5 T
at a frequency of 50 Hz, determine the hysteresis loss per m3 for a
maximum flux density of 1.1 T and frequency of 25 Hz. Assume
the Steinmetz index to be 1.6

From equation (38.3), hysteresis loss Ph D khvf
Bm�n

The loss at f D 50 Hz and Bm D 1.5 T is 62 500 W/m3, from problem 1.

Thus 62 500 D kh
1�
50�
1.5�1.6,

from which, constant kh D 62 500


50�
1.5�1.6
D 653.4

When f D 25 Hz and Bm D 1.1 T,

hysteresis loss, Ph D khvf
Bm�
n

D 
653.4�
1�
25�
1.1�1.6 D 19 026 W=m3

Problem 3. A ferromagnetic ring has a uniform cross-sectional
area of 2000 mm2 and a mean circumference of 1000 mm. A
hysteresis loop obtained for the specimen is plotted to scales of
10 mm D 0.1 T and 10 mm D 400 A/m and is found to have an
area of 104 mm2. Determine the hysteresis loss at a frequency of
80 Hz.

From equation (38.2), hysteresis loss per cycle

D A˛ˇ

D 
104 ð 10�6 m2�
(

400 A/m

10 ð 10�3 m

)(
0.1T

10 ð 10�3 m

)

D 4000 J/m3

At a frequency of 80 Hz,

hysteresis loss D 
4000 J/m�
80 1/s� D 320 000 W/m3

Volume of ring D (cross-sectional area) (mean circumference)

D 
2000 ð 10�6 m2�
1000 ð 10�3 m� D 2 ð 10�3 m3

Thus hysteresis loss, Ph D 
320 000 W/m3�
2 ð 10�3 m3� D 640 W
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Problem 4. The cross-sectional area of a transformer limb is
80 cm2 and the volume of the transformer core is 5000 cm3. The
maximum value of the core flux is 10 mWb at a frequency of 50 Hz.
Taking the Steinmetz constant as 1.7, the hysteresis loss is found
to be 100 W. Determine the value of the hysteresis loss when the
maximum core flux is 8 mWb and the frequency is 50 Hz.

When the maximum core flux is 10 mWb and the cross-sectional area is
80 cm2,

maximum flux density, Bm1 D 1

A
D 10 ð 10�3

80 ð 10�4
D 1.25 T

From equation (38.3), hysteresis loss, Ph1 D khvf
Bm1�n

Hence 100 D kh
5000 ð 10�6�
50�
1.25�1.7

from which, constant kh D 100


5000 ð 10�6�
50�
1.25�1.7
D 273.7

When the maximum core flux is 8 mWb,

Bm2 D 8 ð 10�3

80 ð 10�4
D 1 T

Hence hysteresis loss, Ph2 D khvf
Bm2�n

D 
273.7�
5000 ð 10�6�
50�
1�1.7 D 68.4 W

Further problems on hysteresis loss may be found in Section 38.8,
problems 1 to 6, page 707.

38.4 Eddy current loss If a coil is wound on a ferromagnetic core (such as in a transformer) and
alternating current is passed through the coil, an alternating flux is set up
in the core. The alternating flux induces an e.m.f. e in the coil given by
e D N
d,/dt� However, in addition to the desirable effect of inducing an
e.m.f. in the coil, the alternating flux induces undesirable voltages in the
iron core. These induced e.m.f.s set up circulating currents in the core,
known as eddy currents. Since the core possesses resistance, the eddy
currents heat the core, and this represents wasted energy.

Eddy currents can be reduced by laminating the core, i.e., splitting
it into thin sheets with very thin layers of insulating material inserted
between each pair of the laminations (this may be achieved by simply
varnishing one side of the lamination or by placing paper between each
lamination). The insulation presents a high resistance and this reduces any
induced circulating currents.

The eddy current loss may be determined as follows. Let Figure 38.6
represent one strip of the core, having a thickness of t metres, and consider



Magnetic materials697

just a rectangular prism of the strip having dimensions t m ð 1 m ð 1 m
as shown. The area of the front face ABCD is 
t ð 1�m2 and, since the
flux enters this face at right angles, the eddy currents will flow along
paths parallel to the long sides.

Figure 38.6

Consider two such current paths each of width υx and distance x m from
the centre line of the front face. The area of the rectangle enclosed by the
two paths, A D 
2x�
1� D 2x m2. Hence the maximum flux entering the
rectangle,

m D 
Bm�
A� D 
Bm�
2x� weber 
38.4�

Induced e.m.f. e is given by e D N
d,/dt�. Since the flux varies sinu-
soidally, , D m sinωt. Thus

e.m.f. e D N
d

dt

m sinωt� D Nωm cosωt

The maximum value of e.m.f. occurs when cosωt D 1, i.e., Em D Nωm

Rms value of e.m.f., E D Emp
2

D Nωmp
2

Now ω D 2�f hence

E D
(

2�p
2

)
fNm D 4.44fNm

i.e., E D 4.44fN
Bm�
A� 
38.5�
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From equation (38.4), m D 
Bm�
2x�. Hence induced e.m.f.
E D 4.44fN
Bm�
2x� and, since the number of turns N D 1,

E D 8.88 Bmfx volts 
38.6�

Resistance R is given by R D 0l/a, where 0 is the resistivity of the
lamination material. Since the current set up is confined to the two loop
sides (thus l D 2 m and a D 
υx ð 1�m2), the total resistance of the path
is given by

R D 0
2�

υx
D 20

υx

38.7�

The eddy current loss in the two strips is given by

E2

R
D 8.882Bm

2f2x2

20/υx
from equations 
38.6� and 
38.7�

D 8.882Bm
2f2x2υx

20

The total eddy current loss Pe in the rectangular prism considered is given
by

Pe D
t/2∫
0

(
8.882Bm

2f2

20

)
x2dx D

(
8.882Bm

2f2

20

)[
x3

3

]t/2

0

D
(

8.882Bm
2f2

20

)(
t3

24

)
watts

i.e., Pe = ke.Bm/2f 2t3 watts 
38.8�

where ke is a constant.

The volume of the prism is 
t ð 1 ð 1� m3. Hence the eddy current loss
per m3 is given by

Pe = ke.Bm/2f 2t2 watts per m3 
38.9�

From equation (38.9) it is seen that eddy current loss is proportional to the
square of the thickness of the core strip. It is therefore desirable to make
lamination strips as thin as possible. However, at high frequencies where
it is not practicable to make very thin laminations, core losses may be
reduced by using ferrite cores or dust cores. Ferrite is a ceramic material
having magnetic properties similar to silicon steel, and dust cores consist
of fine particles of carbonyl iron or permalloy (i.e. nickel and iron), each
particle of which is insulated from its neighbour by a binding material.
Such materials have a very high value of resistivity.
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Problem 5. The eddy current loss in a particular magnetic circuit
is 10 W/m3. If the frequency of operation is reduced from 50 Hz
to 30 Hz with the flux density remaining unchanged, determine the
new value of eddy current loss per cubic metre.

From equation (38.9), eddy current loss per cubic metre,
Pe D ke
Bm�2f2t2 or Pe D kf2, where k D ke
Bm�2t2, since Bm and t
are constant.

When the eddy current loss is 10 W/m3, frequency f is 50 Hz. Hence
10 D k
50�2, from which

constant k D 10


50�2

When the frequency is 30 Hz, eddy current loss,

Pe D k
30�2 D 10


50�2

30�2 D 3.6 W=m3

Problem 6. The core of a transformer operating at 50 Hz has an
eddy current loss of 100 W/m3 and the core laminations have a
thickness of 0.50 mm. The core is redesigned so as to operate
with the same eddy current loss but at a different voltage and
at a frequency of 250 Hz. Assuming that at the new voltage the
maximum flux density is one-third of its original value and the
resistivity of the core remains unaltered, determine the necessary
new thickness of the laminations.

From equation (38.9), Pe D ke
Bm�2f2t2 watts per m3.

Hence, at 50 Hz frequency, 100 D ke
Bm�2
50�2
0.50 ð 10�3�2, from
which

ke D 100


Bm�2
50�2
0.50 ð 10�3�2

At 250 Hz frequency, 100 D ke

(
Bm

3

)2


250�2
t�2

i.e., 100 D
(

100


Bm�2
50�2
0.50 ð 10�3�2

)(
Bm

3

)2


250�2
t�2

D 100
250�2
t�2


3�2
50�2
0.50 ð 10�3�2

from which t2 D 
100�
3�2
50�2
0.50 ð 10�3�2


100�
250�2

i.e., lamination thickness, t D 
3�
50�
0.50 ð 10�3�

250
D 0.3 ð 10�3 m

or 0.30 mm
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Problem 7. The core of an inductor has a hysteresis loss of
40 W and an eddy current loss of 20 W when operating at 50 Hz
frequency. (a) Determine the values of the losses if the frequency
is increased to 60 Hz. (b) What will be the total core loss if the
frequency is 50 Hz and the lamination are made one-half of their
original thickness? Assume that the flux density remains unchanged
in each case

(a) From equation (38.3). hysteresis loss, Ph D khvf
Bm�n D k1f
(where k1 D khv
Bm�n), since the flux density and volume are
constant. Thus when the hysteresis is 40 W and the frequency 50 Hz,

40 D k1
50�

from which, k1 D 40

50
D 0.8

If the frequency is increased to 60 Hz,

hysteresis loss, Ph D k1
60� D 
0.8�
60� D 48 W

From equation (38.8),

eddy current loss, Pe D ke
Bm�
2f2t3

D k2f
2
where k2 D ke
Bm�

2t3�,

since the flux density and lamination thickness are constant.

When the eddy current loss is 20 W the frequency is 50 Hz. Thus
20 D k2
50�2

from which k2 D 20


50�2
D 0.008

If the frequency is increased to 60 Hz,

eddy current loss, Pe D k2
60�2 D 
0.008�
60�2 D 28.8 W

(b) The hysteresis loss, Ph D khvf
Bm�n, is independent of the thickness
of the laminations. Thus, if the thickness of the laminations is halved,
the hysteresis loss remains at 40 W

Eddy current loss Pe D ke
Bm�2f2t3, i.e. Pe D k3f2t3, where
k3 D ke
Bm�2.

Thus 20 D k3
50�2t3

from which k3 D 20


50�2t3

When the thickness is t/2, Pe D k3
50�2
t/2�3

D
(

20


50�2t3

)

50�2
t/2�3 D 2.5 W
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Hence the total core loss when the thickness of the laminations is
halved is given by hysteresis loss C eddy current loss D 40 C 2.5 D
42.5 W

Problem 8. When a transformer is connected to a 500 V, 50 Hz
supply, the hysteresis and eddy current losses are 400 W and 150 W
respectively. The applied voltage is increased to 1 kV and the
frequency to 100 Hz. Assuming the Steinmetz index to be 1.6,
determine the new total core loss.

From equation (38.3), the hysteresis loss, Ph D khvf
Bm�n. From
equation (38.5), e.m.f., E D 4.44fN
Bm�
A�, from which, Bm˛
E/f�
since turns N and cross-sectional area, A are constants. Hence
Ph D k1f
E/f�1.6 D k1f�0.6E1.6

At 500 V and 50 Hz, 400 D k1
50��0.6
500�1.6,

from which, k1 D 400


50��0.6
500�1.6
D 0.20095

At 1000 V and 100 Hz,

hysteresis loss, Ph D k1
100��0.6
1000�1.6

D 
0.20095�
100��0.6
1000�1.6 D 800 W

From equation (38.8)

eddy current loss, Pe D ke
Bm�
2f2t3 D k2
E/f�2f2 D k2E

2

At 500 V, 150 D k2
500�2, from which

k2 D 150


500�2
D 6 ð 10�4

At 1000 V,

eddy current loss, Pe D k2
1000�2 D 
6 ð 10�4�
1000�2 D 600 W

Hence the new total core loss D 800 C 600 D 1400 W

Further problems on eddy current loss may be found in Section 38.8, prob-
lems 7 to 12, page 708.

38.5 Separation of
hysteresis and eddy

current losses

From equation (38.3), hysteresis loss, Ph D khvf
Bm�n

From equation (38.8), eddy current loss, Pe D ke
Bm�2f2t3

The total core loss Pc is given by Pc D Ph C Pe

If for a particular inductor or transformer, the core flux density is
maintained constant, then Ph D k1f, where constant k1 D khv
Bm�n, and
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Pe D k2f2, where constant k2 D ke
Bm�2t3. Thus the total core loss
Pc D k1f C k2f2 and

Pc

f
= k1 Y k2f

which is of the straight line form y D mx C c. Thus if Pc/f is plotted
vertically against f horizontally, a straight line graph results having a
gradient k2 and a vertical-axis intercept k1.

If the total core loss Pc is measured over a range of frequencies, then
k1 and k2 may be determined from the graph of Pc/f against f. Hence
the hysteresis loss Ph
D k1f� and the eddy current loss Pe
D k2f2� at a
given frequency may be determined.

The above method of separation of losses is an approximate one since
the Steinmetz index n is not a constant value but tends to increase with
increase of frequency. However, a reasonable indication of the relative
magnitudes of the hysteresis and eddy current losses in an iron core may
be determined.

Problem 9. The total core loss of a ferromagnetic cored trans-
former winding is measured at different frequencies and the results
obtained are:
Total core loss, Pc (watts) 45 105 190 305

Frequency, f (hertz) 30 50 70 90

Determine the separate values of the hysteresis and eddy current
losses at frequencies of (a) 50 Hz and (b) 60 Hz.

To obtain a straight line graph, values of Pc/f are plotted against f.

f(Hz) 30 50 70 90

Pc/f 1.5 2.1 2.7 3.4

A graph of Pc/f against f is shown in Figure 38.7. The graph is a straight
line of the form Pc/f D k1 C k2f

The vertical axis intercept at f D 0, k1 = 0.5

The gradient of the graph, k2 D a

b
D 3.7 � 0.5

100
D 0.032

Since Pc/f D k1 C k2f, then P D k1f C k2f2, i.e.,

total core losses D hysteresis loss C eddy current loss.

(a) At a frequency of 50 Hz,

hysteresis loss D k1f D 
0.5�
50� D 25 W

eddy current loss D k2f
2 D 
0.032�
50�2 D 80 W
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Figure 38.7

(b) At a frequency of 60 Hz,

hysteresis loss D k1f D 
0.5�
60� D 30 W

eddy current loss D k2f
2 D 
0.032�
60�2 D 115.2 W

Problem 10. The core of a synchrogenerator has total losses of
400 W at 50 Hz and 498W at 60 Hz, the flux density being constant
for the two tests. (a) Determine the hysteresis and eddy current
losses at 50 Hz (b) If the flux density is increased by 25% and the
lamination thickness is increased by 40%, determine the hysteresis
and eddy current losses at 50 Hz. Assume the Steinmetz index to
be 1.7

(a) From equation (38.3),

hysteresis loss, Ph D khvf
Bm�
n D k1f

(if volume v and the maximum flux density are constant)

From equation (38.8),

eddy current loss, Pe D ke
Bm�
2f2t3 D k2f

2

(if the maximum flux density and the lamination thickness are
constant)
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Hence the total core loss Pc D Ph C Pe i.e., Pc D k1f C k2f2

At 50 Hz frequency, 400 D k1
50� C k2
50�2 
1�

At 60 Hz frequency, 498 D k1
60� C k2
60�2 
2�

Solving equations (1) and (2) gives the values of k1 and k2.

6 ð equation (1) gives: 2400 D 300k1 C 15 000k2 
3�

5 ð equation (2) gives: 2490 D 300k1 C 18 000k2 
4�

Equation (4)–equation (3) gives: 90 D 3000k2 from which,

k2 D 90/3000 D 0.03

Substituting k2 D 0.03 in equation (1) gives 400 D 50k1 C 75, from
which k1 = 6.5 Thus, at 50 Hz frequency,

hysteresis loss Ph D k1f D 
6.5�
50� D 325 W

eddy current loss Pe D k2f
2 D 
0.03�
50�2 D 75 W

(b) Hysteresis loss, Ph D khvf
Bm�n. Since at 50 Hz the flux density is
increased by 25%, the new hysteresis loss is (1.25)1.7 times greater
than 325 W,

i.e., Ph D 
1.25�1.7
325� D 474.9 W

Eddy current loss, Pe D ke
Bm�2f2t3. Since at 50 Hz the flux density
is increased by 25%, and the lamination thickness is increased by
40%, the new eddy current loss is 
1.25�2
1.4�3 times greater than
75 W,

i.e., Pe D 
1.25�2
1.4�3
75� D 321.6 W

Further problems on the separation of hysteresis and eddy current losses
may be found in Section 38.8, problems 13 to 16, page 709.

38.6 Nonpermanent
magnetic materials

General

Nonpermanent magnetic materials are those in which magnetism may be
induced. With the magnetic circuits of electrical machines, transformers
and heavy current apparatus a high value of flux density B is desir-
able so as to limit the cross-sectional area A 
 D BA� and therefore the
weight and cost involved. At the same time the magnetic field strength
H
D NI/l� should be as small as possible so as to limit the I2R losses in
the exciting coils. The relative permeability 
�r D B/
�0H�) and the satu-
ration flux density should therefore be high. Also, when flux is continually
varying, as in transformers, inductors and armature cores, low hysteresis
and eddy current losses are essential.
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Silicon-iron alloys

In the earliest electrical machines the magnetic circuit material used was
iron with low content of carbon and other impurities. However, it was later
discovered that the deliberate addition of silicon to the iron brought about
a great improvement in magnetic properties. The laminations now used in
electrical machines and in transformers at supply frequencies are made of
silicon-steel in which the silicon in different grades of the material varies
in amounts from about 0.5% to 4.5% by weight. The silicon added to iron
increases the resistivity. This in turn increases the resistance 
R D 0l/A�
and thus helps to reduce eddy current loss. The hysteresis loss is also
reduced; however, the silicon reduces the saturation flux density.

A limit to the amount of silicon which may be added in practice is set
by the mechanical properties of the material, since the addition of silicon
causes a material to become brittle. Also the brittleness of a silicon-iron
alloy depends on temperature. About 4.5% silicon is found to be the
upper practical limit for silicon-iron sheets. Lohys is a typical example
of a silicon-iron alloy and is used for the armatures of d.c. machines and
for the rotors and stators of a.c. machines. Stalloy, which has a higher
proportion of silicon and lower losses, is used for transformer cores.

Silicon steel sheets are often produced by a hot-rolling process. In
these finished materials the constituent crystals are not arranged in any
particular manner with respect, for example, to the direction of rolling or
the plane of the sheet. If silicon steel is reduced in thickness by rolling in
the cold state and the material is then annealed it is possible to obtain a
finished sheet in which the crystals are nearly all approximately parallel to
one another. The material has strongly directional magnetic properties, the
rolling direction being the direction of highest permeability. This direction
is also the direction of lowest hysteresis loss. This type of material is
particularly suitable for use in transformers, since the axis of the core can
be made to correspond with the rolling direction of the sheet and thus
full use is made of the high permeability, low loss direction of the sheet.

With silicon-iron alloys a maximum magnetic flux density of about
2 T is possible. With cold-rolled silicon steel, used for large machine
construction, a maximum flux density of 2.5 T is possible, whereas the
maximum obtainable with the hot-rolling process is about 1.8 T. (In fact,
with any material, only under the most abnormal of conditions will the
value of flux density exceed 3 T.)

It should be noted that the term ‘iron-core’ implies that the core is
made of iron; it is, in fact, almost certainly made from steel, pure iron
being extremely hard to come by. Equally, an iron alloy is generally a
steel and so it is preferred to describe a core as being a steel rather than
an iron core.

Nickel-iron alloys

Nickel and iron are both ferromagnetic elements and when they are
alloyed together in different proportions a series of useful magnetic
alloys is obtained. With about 25%–30% nickel content added to iron,
the alloy tends to be very hard and almost nonmagnetic at room
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temperature. However, when the nickel content is increased to, say,
75%–80% (together with small amounts of molybdenum and copper),
very high values of initial and maximum permeabilities and very low
values of hysteresis loss are obtainable if the alloys are given suitable
heat treatment. For example, Permalloy, having a content of 78% nickel,
3% molybdenum and the remainder iron, has an initial permeability of
20 000 and a maximum permeability of 100 000 compared with values
of 250 and 5000 respectively for iron. The maximum flux density for
Permalloy is about 0.8 T. Mumetal (76% nickel, 5% copper and 2%
chromium) has similar characteristics. Such materials are used for the
cores of current and a.f. transformers, for magnetic amplifiers and also
for magnetic screening. However, nickel-iron alloys are limited in that
they have a low saturation value when compared with iron. Thus, in
applications where it is necessary to work at a high flux density, nickel-
iron alloys are inferior to both iron and silicon-iron. Also nickel-iron
alloys tend to be more expensive than silicon-iron alloys.

Eddy current loss is proportional to the thickness of lamination squared,
thus such losses can be reduced by using laminations as thin as possible.
Nickel-iron alloy strip as thin as 0.004 mm, wound in a spiral, may
be used.

Dust cores

In many circuits high permeability may be unnecessary or it may be more
important to have a very high resistivity. Where this is so, metal powder or
dust cores are widely used up to frequencies of 150 MHz. These consist
of particles of nickel-iron-molybdenum for lower frequencies and iron
for the higher frequencies. The particles, which are individually covered
with an insulating film, are mixed with an insulating, resinous binder and
pressed into shape.

Ferrites

Magnetite, or ferrous ferrite, is a compound of ferric oxide and ferrous
oxide and possesses magnetic properties similar to those of iron. However,
being a semiconductor, it has a very high resistivity. Manufactured ferrites
are compounds of ferric oxide and an oxide of some other metal such as
manganese, nickel or zinc. Ferrites are free from eddy current losses at
all but the highest frequencies (i.e., >100 MHz) but have a much lower
initial permeability compared with nickel-iron alloys or silicon-iron alloys.
Ferrites have typically a maximum flux density of about 0.4 T. Ferrite
cores are used in audio-frequency transformers and inductors.

38.7 Permanent
magnetic materials

A permanent magnet is one in which the material used exhibits magnetism
without the need for excitation by a current-carrying coil. The silicon-iron
and nickel-iron alloys discussed in Section 38.6 are ‘soft’ magnetic mate-
rials having high permeability and hence low hysteresis loss. The opposite
characteristics are required in the ‘hard’ materials used to make permanent
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magnets. In permanent magnets, high remanent flux density and high
coercive force, after magnetization to saturation, are desirable in order to
resist demagnetization. The hysteresis loop should embrace the maximum
possible area. Possibly the best criterion of the merit of a permanent
magnet is its maximum energy product 
BH�m, i.e., the maximum value
of the product of the flux density B and the magnetic field strength H along
the demagnetization curve (shown as cd in Figure 38.2). A rough criterion
is the product of coercive force and remanent flux density, i.e. (Od)(Oc)
in Figure 38.2. The earliest materials used for permanent magnets were
tungsten and chromium steel, followed by a series of cobalt steels, to give
both a high remanent flux density and a high value of 
BH�m

Alni was the first of the aluminium-nickel-iron alloys to be discovered,
and with the addition of cobalt, titanium and niobium, the Alnico series
of magnets was developed, the properties of which vary according to
composition. These materials are very hard and brittle. Many alloys with
other compositions and trade names are commercially available.

A considerable advance was later made when it was found that
directional magnetic properties could be induced in alloys of suitable
composition if they were heated in a strong magnetic field. This discovery
led to the powerful Alcomex and Hycomex series of magnets. By using
special casting techniques to give a grain-oriented structure, even better
properties are obtained if the field applied during heat treatment is parallel
to the columnar crystals in the magnet. The values of coercivity, the
remanent flux density and hence 
BH�m are high for these alloys.

The most recent and most powerful permanent magnets discovered are
made by powder metallurgy techniques and are based on an intermetallic
compound of cobalt and samarium. These are very expensive and are only
available in a limited range of small sizes.

38.8 Further problems
on magnetic materials

Hysteresis loss

1 The area of a hysteresis loop obtained from a specimen of steel is
2000 mm2. The scales used are: horizontal axis 1 cm D 400 A/m;
vertical axis 1 cm D 0.5 T. Determine (a) the hysteresis loss per m3

per cycle, (b) the hysteresis loss per m3 at a frequency of 60 Hz. (c) If
the maximum flux density is 1.2 T at a frequency of 60 Hz, determine
the hysteresis loss per m3 for a maximum flux density of 1 T and a
frequency of 20 Hz, assuming the Steinmetz index to be 1.7.

[(a) 4 kJ/m3 (b) 240 kW/m3 (c) 58.68 kW/m3]

2 A steel ring has a uniform cross-sectional area of 1500 mm2 and a
mean circumference of 800 mm. A hysteresis loop obtained for the
specimen is plotted to scales of 1 cm D 0.05 T and 1 cm D 100 A/m
and it is found to have an area of 720 cm2. Determine the hysteresis
loss at a frequency of 50 Hz. [216 W]

3 What is hysteresis? Explain how a hysteresis loop is produced for
a ferromagnetic specimen and how its area is representative of the
hysteresis loss.
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The area of a hysteresis loop plotted for a ferromagnetic material is
80 cm2, the maximum flux density being 1.2 T. The scales of B and H
are such that 1 cm D 0.15 T and 1 cm D 10 A/m. Determine the loss
due to hysteresis if 1.25 kg of the material is subjected to an alter-
nating magnetic field of maximum flux density 1.2 T at a frequency
of 50 Hz. The density of the material is 7700 kg/m3 [0.974 W]

4 The cross-sectional area of a transformer limb is 8000 mm2 and the
volume of the transformer core is 4 ð 106 mm3. The maximum value
of the core flux is 12 mWb and the frequency is 50 Hz. Assuming the
Steinmetz constant is 1.6, the hysteresis loss is found to be 250 W.
Determine the hysteresis loss when the maximum core flux is 9 mWb,
the frequency remaining unchanged. [157.8 W]

5 The hysteresis loss in a transformer is 200 W when the maximum flux
density is 1 T and the frequency is 50 Hz. Determine the hysteresis
loss if the maximum flux density is increased to 1.2 T and the
frequency reduced to 32 Hz. Assume the hysteresis loss over this
range to he proportional to 
Bm�1.6. [171.4 W]

6 A hysteresis loop is plotted to scales of 1 cm D 0.004 T and 1 cm D
10 A/m and has an area of 200 cm2. If the ferromagnetic circuit for
the loop has a volume of 0.02 m3 and operates at 60 Hz frequency,
determine the hysteresis loss for the ferromagnetic specimen.

[9.6 W]

Eddy current loss

7 In a magnetic circuit operating at 60 Hz, the eddy current loss is
25 W/m3. If the frequency is reduced to 30 Hz with the flux density
remaining unchanged, determine the new value of eddy current loss
per cubic metre. [6.25 W/m3]

8 A transformer core operating at 50 Hz has an eddy current loss of
150 W/m3 and the core laminations are 0.4 mm thick. The core is
redesigned so as to operate with the same eddy current loss but at
a different voltage and at 200 Hz frequency. Assuming that at the
new voltage the flux density is half of its original value and the
resistivity of the core remains unchanged, determine the necessary
new thickness of the laminations [0.20 mm]

9 An inductor core has an eddy current loss of 25 W and a hysteresis
loss of 35 W when operating at 50 Hz frequency. Assuming that the
flux density remains unchanged, determine (a) the value of the losses
if the frequency is increased to 75 Hz, and (b) the total core loss if
the frequency is 50 Hz and the laminations are 2/5 of their original
thickness. [(a) Ph D 52.5 W, Pe D 56.25 W (b) 36.6 W]

10 A transformer is connected to a 400 V, 50 Hz supply. The hysteresis
loss is 250 W and the eddy current loss is 120 W. The supply voltage
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is increased to 1.2 kV and the frequency to 80 Hz. Determine the
new total core loss if the Steinmetz index is assumed to be 1.6

[2173.6 W]

11 The hysteresis and eddy current losses in a magnetic circuit are
5 W and 8 W respectively. If the frequency is reduced from 50 Hz
to 30 Hz, the flux density remaining the same, determine the new
values of hysteresis and eddy current loss. [3 W; 2.88 W]

12 The core loss in a transformer connected to a 600 V, 50 Hz supply
is 1.5 kW of which 60% is hysteresis loss and 40% eddy current
loss. Determine the total core loss if the same winding is connected
to a 750 V, 60 Hz supply. Assume the Steinmetz constant to be 1.6

[2090 W]

Separation of hysteresis and eddy current losses

13 Tests to determine the total loss of the steel core of a coil at different
frequencies gave the following results:

Frequency (Hz) 40 50 70 100
Total core loss (W) 40 57.5 101.5 190

Determine the hysteresis and eddy current losses at (a) 50 Hz and
(b) 80 Hz. [(a) 20 W; 37.5 W (b) 32 W; 96 W]

14 Explain why, when steel is subjected to alternating magnetization
energy, losses occur due to both hysteresis and eddy currents.

The core loss in a transformer core at normal flux density was
measured at frequencies of 40 Hz and 50 Hz, the results being 40 W
and 52.5 W respectively. Calculate, at a frequency of 50 Hz, (a) the
hysteresis loss and (b) the eddy current loss.

[(a) 40 W (b) 12.5 W]

15 Results of a test used to separate the hysteresis and eddy current
losses in the core of a transformer winding gave the following results:

Total core loss (W) 48 96 160 240
Frequency (Hz) 40 60 80 100

If the flux density is held constant throughout the test, determine the
values of the hysteresis and eddy current losses at 50 Hz.

[20 W; 50 W]

16 A transformer core has a total core loss of 275 W at 50 Hz and
600 W at 100 Hz, the flux density being constant for the two tests.
(a) Determine the hysteresis and eddy current losses at 75 Hz. (b) If
the flux density is increased by 40% and the lamination thickness is
increased by 20% determines the hysteresis and eddy current losses
at 75 Hz. Assume the Steinmetz index to be 1.6

[(a) 375 W; 56.25 W (b) 642.4 W; 190.5 W]



Assignment 12

This assignment covers the material in chapters 36 to 38.

The marks for each question are shown in brackets at the end of
each question.

1 A voltage waveform represented by

v D 50 sinωt C 20 sin
(

3ωt C �

3

)
C 5 sin

(
5ωt C �

6

)
volts

is applied to a circuit and the resulting currenti is given by

i D 2.0 sin
(
ωt� �

6

)
C 0.462 sin 3ωt

C 0.0756 sin�5ωt � 0.71� amperes.

Calculate (a) the r.m.s. voltage, (b) the mean value of voltage, (c) the
form factor for the voltage, (d) the r.m.s. value of current, (e) the
mean value of current, (f) the form factor for the current, (g) the total
active power supplied to the circuit, and (h) the overall power factor.

(24)

2 The value of the currenti (in mA) at different moments in a cycle are
given by:

� degrees 0 30 60 90 120 150 180
i mA 50 75 165 190 170 100�150

� degrees 210 240 270 300 330 360
i mA �210 �185 �90 �10 35 50

Draw the graph of currenti against� and analyse the current into
it’s first three constituent components, each coefficient correct to 2
decimal places. (30)

3 The cross-sectional area of a transformer limb is 8000 mm2 and the
volume of the transformer core is 4ð 106 mm3. The maximum value
of the core flux is 12 mWb at a frequency of 50 Hz. Taking the Stein-
metz index as 1.6, the hysteresis loss is found to be 80 W. Determine
the value of the hysteresis loss when the maximum core flux is 9 mWb
and the frequency is 50 Hz. (6)

4 The core of an inductor has a hysteresis loss of 25 W and an eddy
current loss of 15 W when operating at 50 Hz frequency. Determine
(a) the values of the losses if the frequency is increased to 70 Hz, and
(b) the total core loss if the frequency is 50 Hz and the laminations
are made three quarters of their original thickness. Assume that the
flux density remains unchanged in each case. (10)



39 Dielectrics and
dielectric loss

At the end of this chapter you should be able to:

ž understand electric fields, capacitance and permittivity

ž assess the dielectric properties of materials

ž determine dielectric loss, loss angle, Q-factor and dissipation
factor of capacitors

39.1 Electric fields,
capacitance and

permittivity

Any region in which an electric charge experiences a force is called an
electrostatic field. Electric fields, Coulombs law, capacitance and permit-
tivity are discussed in Chapter 6 — refer back to page 55. Summarizing
the main formulae:

Electric field strength, E=
V
d

volts/metre

Capacitance C=
Q
V

farads

Electric flux density, D=
Q
A

coulombs/metre2

D
E

D "0"r = "

Relative permittivity "r D flux density in material

flux density in vacuum

The insulating medium separating charged surfaces is called a dielectric.
Compared with conductors, dielectric materials have very high resistivities
(and hence low conductance, since � D 1/�). They are therefore used to
separate conductors at different potentials, such as capacitor plates or
electric power lines.

For a parallel-plate capacitor, capacitance C =
"0"r A.n − 1/

d

39.2 Polarization When a dielectric is placed between charged plates, the capacitance of
the system increases. The mechanism by which a dielectric increases
capacitance is called polarization. In an electric field the electrons and
atomic nuclei of the dielectric material experience forces in opposite
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directions. Since the electrons in an insulator cannot flow, each atom
becomes a tiny dipole (i.e., an arrangement of two electric charges of
opposite polarity) with positive and negative charges slightly separated,
i.e., the material becomes polarised.

Within the material this produces no discernible effects. However,
on the surfaces of the dielectric, layers of charge appear. Electrons are
drawn towards the positive potential, producing a negative charge layer,
and away from the negative potential, leaving positive surface charge
behind. Therefore the dielectric becomes a volume of neutral insulator
with surface charges of opposite polarity on opposite surfaces. The result
of this is that the electric field inside the dielectric is less than the elec-
tric field causing the polarization, because these two charge layers give
rise to a field which opposes the electric field causing it. Since electric
field strength, E D V/d, the p.d. between the plates, V D Ed. Thus, if E
decreases when the dielectric is inserted, then V falls too and this drop
in p.d. occurs without change of charge on the plates. Thus, since capac-
itance C D Q/V, capacitance increases, this increase being by a factor
equal to εr above that obtained with a vacuum dielectric.

There are two main ways in which polarization takes place:

(i) The electric field, as explained above, pulls the electrons and nucleii
in opposite directions because they have opposite charges, which
makes each atom into an electric dipole. The movement is only small
and takes place very fast since the electrons are very light. Thus, if
the applied electric field is varied periodically, the polarization, and
hence the permittivity due to these induced dipoles, is independent
of the frequency of the applied field.

(ii) Some atoms have a permanent electric dipole as a result of their
structure and, when an electric field is applied, they turn and tend
to align along the field. The response of the permanent dipoles is
slower than the response of the induced dipoles and that part of
the relative permittivity which arises from this type of polarization
decreases with increase of frequency.

Most materials contain both induced and permanent dipoles, so
the relative permittivity usually tends to decrease with increase of
frequency.

39.3 Dielectric strength The maximum amount of field strength that a dielectric can withstand
is called the dielectric strength of the material. When an electric field is
established across the faces of a material, molecular alignment and distor-
tion of the electron orbits around the atoms of the dielectric occur. This
produces a mechanical stress which in turn generates heat. The produc-
tion of heat represents a dissipation of power, such a loss being present in
all practical dielectrics, especially when used in high-frequency systems
where the field polarity is continually and rapidly changing.

A dielectric whose conductivity is not zero between the plates of a
capacitor provides a conducting path along which charges can flow and
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thus discharge the capacitor. The resistance R of the dielectric is given
by R D �l/a, l being the thickness of the dielectric film (which may be
as small as 0.001 mm) and a being the area of the capacitor plates. The
resistance R of the dielectric may be represented as a leakage resistance
across an ideal capacitor (see Section 39.8 on dielectric loss). The required
lower limit for acceptable resistance between the plates varies with the use
to which the capacitor is put. High-quality capacitors have high shunt-
resistance values. A measure of dielectric quality is the time taken for
a capacitor to discharge a given amount through the resistance of the
dielectric. This is related to the product CR.

Capacitance, C / area

thickness
and

1

R
/ area

thickness

thus CR is a characteristic of a given dielectric. In practice, circuit design
is considerably simplified if the shunt conductance of a capacitor can be
ignored (i.e. R ! 1) and the capacitor therefore regarded as an open
circuit for direct current.

Since capacitance C of a parallel plate capacitor is given by C D
ε0εrA/d, reducing the thickness d of a dielectric film increases the
capacitance, but decreases the resistance. It also reduces the voltage
the capacitor can withstand without breakdown (since V D Q/C). Any
material will eventually break down, usually destructively, when subjected
to a sufficiently large electric field. A spark may occur at breakdown which
produces a hole through the film. The metal film forming the metal plates
may be welded together at the point of breakdown.

Breakdown depends on electric field strength E (where E D V/d), so
thinner films will break down with smaller voltages across them. This
is the main reason for limiting the voltage that may be applied to a
capacitor. All practical capacitors have a safe working voltage stated on
them, generally at a particular maximum temperature. Figure 39.1 shows
the typical shapes of graphs expected for electric field strength E plotted
against thickness and for breakdown voltage plotted against thickness. The
shape of the curves depend on a number of factors, and these include:

(i) the type of dielectric material,
(ii) the shape and size of the conductors associated with it,

(iii) the atmospheric pressure,
(iv) the humidity/moisture content of the material,
(v) the operating temperature.

Dielectric strength is an important factor in the design of capacitors as
well as transformers and high voltage insulators, and in motors and gener-
ators. Dielectrics vary in their ability to withstand large fields. Some
typical values of dielectric strength, together with resistivity and rela-
tive permittivity are shown in Table 39.1. The ceramics have very high
relative permittivities and they tend to be ‘ferroelectric’, i.e., they do not
lose their polarities when the electric field is removed. When ferroelectric
effects are present, the charge on a capacitor is given by Q D �CV� C
(remanent polarization). These dielectrics often possess an appreciableFigure 39.1
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TABLE 39.1 Dielectric properties of some common materials

Relative Dielectric
Resistivity, � permittivity, strength

Material (�m) εr (V/m)

Air 1.0 3 ð 106

Paper 1010 3.7 1.6 ð 107

Mica 5 ð 1011 5.4 108 –109

Titaniumdioxide 1012 100 6 ð 106

Polythene >1011 2.3 4 ð 107

Polystyrene >1013 2.5 2.5 ð 107

Ceramic (type 1) 4 ð 1011 6–500 4.5 ð 107

Ceramic (type 2) 106 –1013 500–1000 2 ð 106 –107

negative temperature coefficient of resistance. Despite this, a high permit-
tivity is often very desirable and ceramic dielectrics are widely used.

39.4 Thermal effects As the temperature of most dielectrics is increased, the insulation
resistance falls rapidly. This causes the leakage current to increase, which
generates further heat. Eventually a condition known as thermal avalanche
or thermal runaway may develop, when the heat is generated faster than
it can be dissipated to the surrounding environment. The dielectric will
burn and thus fail.

Thermal effects may often seriously influence the choice and
application of insulating materials. Some important factors to be
considered include:

(i) the melting-point (for example, for waxes used in paper
capacitors),

(ii) aging due to heat,
(iii) the maximum temperature that a material will withstand without

serious deterioration of essential properties,
(iv) flash-point or ignitability,
(v) resistance to electric arcs,

(vi) the specific heat capacity of the material,
(vii) thermal resistivity,

(viii) the coefficient of expansion,
(ix) the freezing-point of the material.

39.5 Mechanical
properties

Mechanical properties determine, to varying degrees, the suitability of a
solid material for use as an insulator: tensile strength, transverse strength,
shearing strength and compressive strength are often specified. Most
solid insulations have a degree of inelasticity and many are quite brittle,
thus it is often necessary to consider features such as compressibility,
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deformation under bending stresses, impact strength and extensibility,
tearing strength, machinability and the ability to fold without damage.

39.6 Types of practical
capacitor

Practical types of capacitor are characterized by the material used
for their dielectric. The main types include: variable air, mica, paper,
ceramic, plastic, titanium oxide and electrolytic. Refer back to Chapter 6,
Section 11, page 69, for a description of each type.

39.7 Liquid dielectrics
and gas insulation

Liquid dielectrics used for insulation purposes are refined mineral oils,
silicone fluids and synthetic oils such as chlorinated diphenyl. The prin-
cipal uses of liquid dielectrics are as a filling and cooling medium for
transformers, capacitors and rheostats, as an insulating and arc-quenching
medium in switchgear such as circuit breakers, and as an impregnant of
absorbent insulations — for example, wood, slate, paper and pressboard,
used mainly in transformers, switchgear, capacitors and cables.

Two gases used as insulation are nitrogen and sulphur hexafluoride.
Nitrogen is used as an insulation medium in some sealed transformers
and in power cables, and sulphur hexafluoride is finding increasing use
in switchgear both as an insulant and as an arc-extinguishing medium.

39.8 Dielectric loss and
loss angle

In capacitors with solid dielectrics, losses can be attributed to two causes:

(i) dielectric hysteresis, a phenomenon by which energy is expended
and heat produced as the result of the reversal of electrostatic stress
in a dielectric subjected to alternating electric stress — this loss is
analogous to hysteresis loss in magnetic materials;

(ii) leakage currents that may flow through the dielectric and along
surface paths between the terminals.

The total dielectric loss may be represented as the loss in an additional
resistance connected between the plates. This may be represented as either
a small resistance in series with an ideal capacitor or as a large resistance
in parallel with an ideal capacitor.

Series representation

The circuit and phasor diagrams for the series representation are shown
in Figure 39.2. The circuit phase angle is shown as angle �. If resistance
RS is zero then current I would lead voltage V by 90°, this being the case
of a perfect capacitor. The difference between 90° and the circuit phase
angle � is the angle shown as υ. This is known as the loss angle of the
capacitor, i.e.,

loss angle, d = .90° − f/Figure 39.2 (a) Circuit
diagram (b) Phasor diagram
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For the equivalent series circuit,

tan υ D VRS

VCS

D IRS

IXCS

i.e., tan υ D RS

1/�ωCS�
D RSωCS

Since from Chapter 28, Q D 1

ωCR
then

tan d = RS!CS =
1
Q

�39.1�

Power factor of capacitor,

cos � D VRS

V
D IRS

IZS
D RS

ZS
³ RS

XCS

since XCS ³ ZS when υ is small. Hence power factor D cos f ≈ RS!CS ,
i.e.,

cos f ≈ tan d �39.2�

Dissipation factor, D is defined as the reciprocal of Q-factor and is an
indication of the quality of the dielectric, i.e.,

D =
1
Q

= tan d �39.3�

Parallel representation

The circuit and phasor diagrams for the parallel representation are shown
in Figure 39.3. From the phasor diagram,

tan υ D IRP

ICP

D V/RP

V/XCP

D XCP

RP

i.e., tan d =
1

RP!CP
�39.4�

Power factor of capacitor,

cos � D IRP

I
D V/RP

V/ZP
D ZP

RP
³ XCP

RP

Figure 39.3 (a) Circuit
diagram (b) Phasor diagram
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since XCP ³ ZP, when υ is small. Hence

power factor D cos � ³ 1

RPωCP

i.e., cos f ≈ tan d

(For equivalence between the series and the parallel circuit repre-
sentations,

CS ³ CP D C and RSωCS ³ 1

RPωCP

from which RS ³ 1/RPω2C2)

Power loss in the dielectric D VI cos �. From the phasor diagram of
Figure 39.3

cos υ D ICP

I
D V/XCP

I
D VωC

I
or I D VωC

cos υ

Hence power loss D VI cos � D V
(

VωC

cos υ

)
cos �

However, cos � D sin υ (complementary angles), thus

power loss D V
(

VωC

cos υ

)
sin υ D V2ωC tan υ

(since sin υ/ cos υ D tan υ)

Hence dielectric power loss = V 2!C tan d �39.5�

Problem 1. The equivalent series circuit for a particular capacitor
consists of a 1.5 � resistance in series with a 400 pF capacitor.
Determine for the capacitor, at a frequency of 8 MHz, (a) the loss
angle, (b) the power factor, (c) the Q-factor, and (d) the dissipation
factor.

(a) From equation (39.1), for a series equivalent circuit,

tan υ D RSωCS

D �1.5��2� ð 8 ð 106��400 ð 10	12� D 0.030159

Hence loss angle, d D arctan�0.030159� D 1.727° or 0.030 rad.

(b) From equation (39.2), power factor D cos � ³ tan υ D 0.030

(c) From equation �39.1�, tan υ D 1

Q
hence Q D 1

tan υ

D 1

0.030159
D 33.16
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(d) From equation (39.3), dissipation factor,

D D 1

Q
D 0.030159 or 0.030, correct to 3 decimal places.

Problem 2. A capacitor has a loss angle of 0.025 rad, and when it
is connected across a 5 kV, 50 Hz supply, the power loss is 20 W.
Determine the component values of the equivalent parallel circuit.

From equation (39.5),

power loss D V2ωC tan υ

i.e., 20 D �5000�2�2�50��C� tan�0.025�

from which capacitance C D 20

�5000�2�2�50� tan�0.025�
D 0.102 mF

(Note tan�0.025� means ‘the tangent of 0.025 rad’)
From equation (39.4), for a parallel equivalent circuit,

tan υ D 1

RPωCP

from which, parallel resistance,

RP D 1

ωCP tan υ
D 1

�2�50��0.102 ð 10	6� tan 0.025

i.e., RP = 1.248 MZ

Problem 3. A 2000 pF capacitor has an alternating voltage of
20 V connected across it at a frequency of 10 kHz. If the power
dissipated in the dielectric is 500 µW, determine (a) the loss angle,
(b) the equivalent series loss resistance, and (c) the equivalent
parallel loss resistance.

(a) From equation (39.5), power loss D V2ωC tan υ, i.e.,

500 ð 10	6 D �20�2�2�10 ð 103��2000 ð 10	12� tan υ

Hence tan υ D 500 ð 10	6

�20�2�2�10 ð 103��2000 ð 10	12�

D 9.947 ð 10	3

from which, loss angle, d = 0.57° or 9.95 × 10−3 rad.

(b) From equation (39.1), for an equivalent series circuit,
tan υ D RSωCS, from which equivalent series resistance,

RS D tan υ

ωCS
D 9.947 ð 10	3

�2�10 ð 103��2000 ð 10	12�

i.e., RS = 79.16 Z
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(c) From equation (39.4), for an equivalent parallel circuit,

tan υ D 1

RPωCP

from which equivalent parallel resistance,

RP D 1

�tan υ�ωCP

D 1

�9.947 ð 10	3��2�10 ð 103��2000 ð 10	12�

i.e., RP = 800 kZ

Further problems on dielectric loss and loss angle may be found in
Section 39.9 following, problems 1 to 5.

39.9 Further problems
on dielectric loss and loss

angle
1 The equivalent series circuit for a capacitor consists of a 3 � resistance

in series with a 250 pF capacitor. Determine the loss angle of the
capacitor at a frequency of 5 MHz, giving the answer in degrees and
in radians. Find also for the capacitor, (a) the power factor, (b) the
Q-factor, and (c) the dissipation factor.

[1.35° or 0.024 rad (a) 0.0236 (b) 42.4 (c) 0.0236]

2 A capacitor has a loss angle of 0.008 rad and when it is connected
across a 4 kV, 60 Hz supply the power loss is 15 W. Determine the
component values of (a) the equivalent parallel circuit, and (b) the
equivalent series circuit.

[(a) 0.311 µF, 1.066 M� (b) 0.311 µF, 68.24 �]

3 A coaxial cable has a capacitance of 4 µF and a dielectric power loss
of 12 kW when operated at 50 kV and frequency 50 Hz. Calculate
(a) the value of the loss angle, and (b) the equivalent parallel resis-
tance of the cable.

[(a) 0.219° or 3.82 ð 10	3 rad (b) 208.3 k�]

4 What are the main reasons for power loss in capacitors with solid
dielectrics? Explain the term ‘loss angle’.
A voltage of 10 V and frequency 20 kHz is connected across a 1 nF
capacitor. If the power dissipated in the dielectric is 0.2 mW, deter-
mine (a) the loss angle, (b) the equivalent series loss resistance, and
(c) the equivalent parallel loss resistance.

[(a) 0.912° or 0.0159 rad (b) 126.7 � (c) 0.5 M�]

5 The equivalent series circuit for a capacitor consists of a 0.5 � resistor
in series with a capacitor of reactance 2 k�. Determine for the capac-
itor (a) the loss angle, (b) the power factor, and (c) the equivalent
parallel resistance.

[(a) 0.014° or 2.5 ð 10	4 rad (b) 2.5 ð 10	4 (c) 8 M�]



40 Field theory

At the end of this chapter you should be able to:

ž understand field plotting by curvilinear squares

ž show that the capacitance between concentric cylinders,

C D 2�ε0εr
ln�b/a	

and calculate C given values of radii a and b

ž calculate dielectric stress E D V

r ln�b/a	

ž appreciate dimensions of the most economical cable

ž show that the capacitance of an isolated twin line,

C D �ε0εr
ln�D/a	

and calculate C given values of a and D

ž calculate energy stored in an electric field

ž show that the inductance of a concentric cylinder,

L D �0�r

2�

(
1

4
C ln

b

a

)
and calculate L given values of a

and b

ž show that the inductance of an isolated twin line,

C D �0�r

�

(
1

4
C ln

D

a

)
and calculate L given values of a

and D

ž calculate energy stored in an electromagnetic field

40.1 Field plotting by
curvilinear squares

Electric fields, magnetic fields and conduction fields (i.e., a region in
which an electric current flows) are analogous, i.e., they all exhibit similar
characteristics. Thus they may all be analysed by similar processes. In the
following the electric field is analysed

Figure 40.1 shows two parallel plates A and B. Let the potential on
plate A be CV volts and that on plate B be �V volts. The force acting on
a point charge of 1 coulomb placed between the plates is the electric field
strength E. It is measured in the direction of the field and its magnitude
depends on the p.d. between the plates and the distance between the
plates. In Figure 40.1, moving along a line of force from plate B to plate
A means moving from �V to CV volts. The p.d. between the plates
is therefore 2 V volts and this potential changes linearly when moving
from one plate to the other. Hence a potential gradient is followed which
changes by equal amounts for each unit of distance moved.
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Figure 40.1 Lines of force intersecting equipotential lines in an electric
field

Lines may be drawn connecting together all points within the field
having equal potentials. These lines are called equipotential lines and
these have been drawn in Figure 40.1 for potentials of 2

3 V, 1
3 V, 0,

� 1
3 V and � 2

3 V. The zero equipotential line represents earth potential
and the potentials on plates A and B are respectively above and below
earth potential. Equipotential lines form part of an equipotential surface.
Such surfaces are parallel to the plates shown in Figure 40.1 and the
plates themselves are equipotential surfaces. There can be no current flow
between any given points on such a surface since all points on an equipo-
tential surface have the same potential. Thus a line of force (or flux) must
intersect an equipotential surface at right angles. A line of force in an
electrostatic field is often termed a streamline.

An electric field distribution for a concentric cylinder capacitor is
shown in Figure 40.2. An electric field is set up in the insulating medium
between two good conductors. Any volt drop within the conductors can
usually be neglected compared with the p.d.’s across the insulation since
the conductors have a high conductivity. All points on the conductors
are thus at the same potential so that the conductors form the boundary
equipotentials for the electrostatic field. Streamlines (or lines of force)
which must cut all equipotentials at right angles leave one boundary
at right angles, pass across the field, and enter the other boundary at
right angles.

Figure 40.2 Electric field
distribution for a concentric
cylinder capacitor

In a magnetic field, a streamline is a line so drawn that its direction is
everywhere parallel to the direction of the magnetic flux. An equipotential
surface in a magnetic field is the surface over which a magnetic pole may
be moved without the expenditure of work or energy.

In a conduction field, a streamline is a line drawn with a direction
which is everywhere parallel to the direction of the current flow.

A method of solving certain field problems by a form of graphical
estimation is available which may only be applied, however, to plane
linear fields; examples include the field existing between parallel plates
or between two long parallel conductors. In general, the plane of a field
may be divided into a number of squares formed between the line of
force (i.e. streamline) and the equipotential. Figure 40.3 shows a typical
pattern. In most cases true squares will not exist, since the streamlines and
equipotentials are curved. However, since the streamlines and the equipo-
tentials intersect at right angles, square-like figures are formed, and these
are usually called ‘curvilinear squares’ . The square-like figure shown

Figure 40.3 Curvilinear
square
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in Figure 40.3 is a curvilinear square since, on successive subdivision by
equal numbers of intermediate streamlines and equipotentials, the smaller
figures are seen to approach a true square form.

When subdividing to give a field in detail, and in some cases for the
initial equipotentials, ‘Moores circle’ technique can be useful in that
it tends to eliminate the trial and error process. If, say, two flux lines
and an equipotential are given and it is required to draw a neighbouring
equipotential, a circle tangential to the three given lines is constructed.
The new equipotential is then approximately tangential to the circle, as
shown in Figure 40.3.

Consider the electric field established between two parallel metal plates,
as shown in Figure 40.4. The streamlines and the equipotential lines are
shown sketched and are seen to form curvilinear squares. Consider a true
square abcd lying between equipotentials AB and CD. Let this square
be the end of x metres depth of the field forming a flux tube between
adjacent equipotential surfaces abfe and cdhg as shown in Figure 40.5.
Let l be the length of side of the squares. Then the capacitance C1 of the
flux tube is given by

C1 D ε0εr (area of plate)

plate separation

i.e., C1 D ε0εr�lx	

l
D "0"r x �40.1	

Thus the capacitance of the flux tube whose end is a true square is inde-
pendent of the size of the square.

Let the distance between the plates of a capacitor be divided into an
exact number of parts, say n (in Figure 40.4, n D 4). Using the same
scale, the breadth of the plate is divided into a number of parts (which is
not always an integer value), say m (in Figure 40.4, m D 10, neglecting
fringing). Thus between equipotentials AB and CD in Figure 40.4 there
are m squares in parallel and so there are m capacitors in parallel. For m
capacitors connected in parallel, the equivalent capacitance CT is given by
CT D C1 C C2 C C3 C Ð Ð Ð C Cm. If the capacitors have the same value,

Figure 40.4 Figure 40.5
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i.e., C1 D C2 D C3 D Ð Ð Ð D Cm D Ct, then

CT D mCt �40.2	

Similarly, there are n squares in series in Figure 40.4 and thus n capacitors
in series.

For n capacitors connected in series, the equivalent capacitance CT is
given by

1

CT
D 1

C1
C 1

C2
C Ð Ð Ð C 1

Cn

If C1 D C2 D Ð Ð Ð D Cn D Ct then 1/CT D n/Ct, from which

CT D Ct

n
�40.3	

Thus if m is the number of parallel squares measured along each
equipotential and n is the number of series squares measured along each
streamline (or line of force), then the total capacitance C of the field is
given, from equations (40.1)–(40.3), by

C = "0"r x
m
n

farads �40.4	

For example, let a parallel-plate capacitor have plates 8 mm ð 5 mm and
spaced 4 mm apart (See Figure 40.6). Let the dielectric have a relative
permittivity 3.5. If the distance between the plates is divided into, say,
four equipotential lines, then each is 1 mm apart. Hence n D 4.Figure 40.6

Using the same scale, the number of lines of force from plate P to
plate Q must be 8, i.e. m D 8. This is, of course, neglecting any fringing.
From equation (40.4), capacitance C D ε0εrx�m/n	, where x D 5 mm or
0.005 m in this case. Hence

C D �8.85 ð 10�12	�3.5	�0.005	
(

8
4

)
D 0.31 pF

(Using the normal equation for capacitance of a parallel-plate capacitor,

C D ε0εrA

d
D �8.85 ð 10�12	�3.5	�0.008 ð 0.005	

0.004
D 0.31 pF

The capacitance found by each method gives the same value; this is
expected since the field is uniform between the plates, giving a field plot
of true squares.)

The effect of fringing may be considered by estimating the capacitance
by field plotting. This is described below.

In the side view of the plates shown in Figure 40.7, RS is the medial
line of force or medial streamline, by symmetry. Also XY is the medial
equipotential. The field may thus be divided into four separate symmet-
rical parts.Figure 40.7
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Figure 40.8

Considering just the top left part of the field, the field plot is estimated
as follows, with reference to Figure 40.8:

(i) Estimate the position of the equipotential EF which has the
mean potential between that of the plate and that of the medial
equipotential XO. F is not taken too far since it is difficult to
estimate. Point E will lie slightly closer to point Z than point O.

(ii) Estimate the positions of intermediate equipotentials GH and IJ.

(iii) All the equipotential lines plotted are 2
4 , i.e., 0.5 mm apart. Thus a

series of streamlines, cutting the equipotential at right angles, are
drawn, the streamlines being spaced 0.5 mm apart, with the object
of forming, as far as possible, curvilinear squares.

It may be necessary to erase the equipotentials and redraw them to fit the
lines of force. The field between the plates is almost uniform, giving a
field plot of true squares in this region. At the corner of the plates the
squares are smaller, this indicating a great stress in this region.

On the top of the plate the squares become very large, indicating that
the main field exists between the plates.
From equation (40.4),

total capacitance, C D ε0εrx
m

n
farads

The number of parallel squares measured along each equipotential is about
13 in this case and the number of series squares measured along each line
of force is 4. Thus, for the plates shown in Figure 40.7, m D 2 ð 13 D 26
and n D 2 ð 4 D 8. Since x is 5 mm,

total capacitance D ε0εrx
m

n
D �8.85 ð 10�12	�3.5	�0.005	

26

8
D 0.50 pF
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Figure 40.9

Problem 1. A field plot between two metal plates is shown in
Figure 40.9. The relative permeability of the dielectric is 2.8.
Determine the capacitance per metre length of the system.

From equation (40.4), capacitance C D ε0εrx�m/n	. From Figure 40.9,
m D 16, i.e., the number of parallel squares measured along each
equipotential, and n D 6, i.e., the number of series squares measured
along each line of force. Hence capacitance fo

r a 1 m length,

C D �8.85 ð 10�12	�2.8	�1	
16

6
D 66.08 pF

Problem 2. A field plot for a cross-section of a concentric cable is
shown in Figure 40.10. If the relative permeability of the dielectric
is 3.4, determine the capacitance of a 100 m length of the cable.

Figure 40.10

From equation (40.4), capacitance C D ε0εrx�m/n	. In this case, m D 13
and n D 4. Also x D 100 m. Thus

capacitance C D �8.85 ð 10�12	�3.4	�100	
13

4
D 9780 pFor 9.78 nF

Further problems on field plotting by curvilinear squares may be found in
Section 40.9, problems 1 to 3, page 753.

40.2 Capacitance
between concentric

cylinders

A concentric cable is one which contains two or more separate
conductors, arranged concentrically (i.e., having a common centre), with
insulation between them. In a coaxial cable, the central conductor,
which may be either solid or hollow, is surrounded by an outer tubular
conductor, the space in between being occupied by a dielectric. If air
is the dielectric then concentric insulating discs are used to prevent the
conductors touching each other. The two kinds of cable serve different
purposes. The main feature they have in common is a complete absence
of external flux and therefore a complete absence of interference with and
from other circuits.

The electric field between two concentric cylinders (i.e., a coaxial
cable) is shown in the cross-section of Figure 40.11. The conductors form
the boundary equipotentials for the field, the boundary equipotentials in
Figure 40.11 being concentric cylinders of radii a and b. The streamlines,
or lines of force, are radial lines cutting the equipotentials at right angles.

Let Q be the charge per unit length of the inner conductor. Then the
total flux across the dielectric per unit length is Q coulombs/metre. This
total flux will pass through the elemental cylinder of width υr at radius r
(shown in Figure 40.11) and a distance of 1 m into the plane of the
paper.

Inner
conductor

r

b

aδr

Streamlines Equipotential

Outer
conductor

Figure 40.11 Electric field
between two concentric cylinders
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The surface area of a cylinder of lengt

h 1 m within the dielectric with

radius r is �2�r ð 1	 m2.

Hence the electric flux density at radius r,

D D Q

A
D Q

2�r

The electric field strength or electric stress E, at radius r is given by

E D D

ε0εr
D Q

2�rε0εr
volts/metre �40.5	

Let the p.d. across the element be υV volts. Since

E D voltage

thickness

voltage D E ð thickness. Therefore

υV D Eυr D Q

2�rε0εr
υr

The total p.d. between the boundaries,

V D
b∫

a

Q

2�rε0εr
dr D Q

2�ε0εr

b∫
a

1

r
dr

D Q

2�ε0εr
[ln r]ba D Q

2�ε0εr
[ln b � ln a]

i.e., V D Q

2�ε0εr
ln

b

a
volts �40.6	

The capacitance per unit length,

C D charge per unit length

p.d.

Hence capacitance,

C D Q

V
D Q

�Q/�2�ε0εr		 ln�b/a	

i.e., C =
2p"0"r

ln .b=a/
farads=metre �40.7	

Problem 3. A coaxial cable has an inner core radius of 0.5 mm
and an outer conductor of internal radius 6.0 mm. Determine the
capacitance per metre length of the cable if the dielectric has a
relative permittivity of 2.7.
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From equation (40.7),

capacitance C D 2�ε0εr
ln�b/a	

D 2��8.85 ð 10�12	�2.7	

ln�6.0/0.5	
D 60.4 pF

Problem 4. A single-core concentric cable has a capacitance of
80 pF per metre length. The relative permittivity of the dielectric
is 3.5 and the core diameter is 8.0 mm. Determine the internal
diameter of the sheath.

From equation (40.7), capacitance

C D 2�ε0εr
ln�b/a	

F/m

from which ln
b

a
D 2�ε0εr

C
D 2��8.85 ð 10�12	�3.5	

�80 ð 10�12	

D 2.433

Since the core radius, a D 8.0/2 D 4.0 mm, ln�b/4.0	 D 2.433 and
b/4.0 D e2.433.

Thus the internal radius of the sheath, b D 4.0e2.433 D 45.57 mm. Hence
the internal diameter of the sheath 2 ð 45.57 D 91.14 mm.

Dielectric stress

Rearranging equation (40.6) gives:

Q

2�ε0εr
D V

ln�b/a	

However, from equation (40.5),

E D Q

2�rε0εr

Thus dielectric stress,

E =
V

r ln .b=a/
volts=metre �40.8	

From equation (40.8), the dielectric stress at any point is seen to be
inversely proportional to r, i.e., E / 1/r.

The dielectric stress E will have a maximum value when r is at its
minimum, i.e., when r D a. Thus

Emax =
V

a ln .b=a/
�40.9	
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It follows that

Emin =
V

b ln .b=a/
�40.90	

Problem 5. A concentric cable has a core diameter of 32 mm and
an inner sheath diameter of 80 mm. The core potential is 40 kV and
the relative permittivity of the dielectric is 3.5. Determine (a) the
capacitance per kilometre length of the cable, (b) the dielectric
stress at a radius of 30 mm, and (c) the maximum and minimum
values of dielectric stress.

(a) From equation (40.7), capacitance per metre length,

C D 2�ε0εr
ln�b/a	

D 2��8.85 ð 10�12	�3.5	

ln�40/16	
D 212.4 ð 10�12 F/m

D 212.4 ð 10�12 ð 103 F/km

D 212 nF=km or 0.212mF=km

(b) From equation (40.8), dielectric stress at radius r,

E D V

r ln�b/a	
D 40 ð 103

�30 ð 10�3	 ln�40/16	

D 1.46× 106 V=m or 1.46 MV=m

(c) From equation (40.9), maximum dielectric stress,

Emax D V

a ln�b/a	
D 40 ð 103

16 ð 10�3 ln�40/16	
D 2.73 MV=m

From equation (40.90), minimum dielectric stress,

Emin D V

b ln�b/a	
D 40 ð 103

40 ð 10�3 ln�40/16	
D 1.09 MV=m

Dimensions of most economical cable

It is important to obtain the most economical dimensions when designing
a cable. A relationship between a and b may be obtained as follows. If
Emax and V are both fixed values, then, from equation (40.9),

V

Emax
D a ln

b

a
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Letting V/Emax D k, a constant, gives

a ln
b

a
D k

from which ln�b/a	 D k/a, b/a D ek/a and b D aek/a �40.10	

For the most economical cable, b will be a minimum value. Using the
product rule of calculus,

db

da
D �ek/a	�1	 C �a	

(
� k

a2
ek/a

)
D 0 for a minimum value.

(Note, to differentiate ek/a with respect to a, an algebraic substitution may
be used, letting u D 1/a).

ek/a � k

a
ek/a D 0

Therefore ek/a
(

1 � k

a

)
D 0

from which a D k. Thus

a =
V

Emax
�40.11	

From equation (40.10), internal sheath radius, b D aek/a D ae1 D ae, i.e.,

b = 2.718a �40.12	

Problem 6. A single-core concentric cable is to be manufactured
for a 60 kV, 50 Hz transmission system. The dielectric used is
paper which has a maximum permissible safe dielectric stress of
10 MV/m rms and a relative permittivity of 3.5. Calculate (a) the
core and inner sheath radii for the most economical cable, (b) the
capacitance per metre length, and (c) the charging current per kilo-
metre run.

(a) From equation (40.11),

core radius, a D V

Em
D 60 ð 103 V

10 ð 106 V/m

D 6 ð 10�3 m D 6.0 mm

From equation (40.12), internal sheath radius,
b D ae D 6.0e D 16.3 mm
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(b) From equation (40.7),

capacitance C D 2�ε0εr
ln�b/a	

F/m

Since b D ae,

C D 2�ε0εr
ln e

D 2�ε0εr D 2��8.85 ð 10�12	�3.5	

D 195× 10−12 F=m or 195 pF=m

(c) Charging current D V

XC
D V

1/�ωC	
D ωCV

D �2�50	�195 ð 10�12	�60 ð 103	

D 3.68 ð 10�3 A/m

Hence the charging current per kilometre D 3.68 A

Problem 7. A concentric cable has a core diameter of 25 mm and
an inside sheath diameter of 80 mm. The relative permittivity of the
dielectric is 2.5, the loss angle is 3.5 ð 10�3 rad and the working
voltage is 132 kV at 50 Hz frequency. Determine for a 1 km length
of the cable (a) the capacitance, (b) the charging current and (c) the
power loss.

(a) From equation (40.7),

capacitance, C D 2�ε0εr
ln�b/a	

F/m

D 2��8.85 ð 10�12	�2.5	

ln�40/12.5	
ð 103 F/km

D 0.120 µF/km

Thus the capacitance fo

r a 1 km length of the cable is

0.120mF

(b) Charging current I D V

XC
D V

1/�ωC	
D ωCV

D �2�50	�0.120 ð 10�6	�132 ð 103	

D 4.98 A=km

(c) From equation (39.5), Chapter 39,

power loss D V2ωC tan υ

D �132 ð 103	2�2�50	�0.120 ð 10�6	 tan�3.5 ð 10�3	

D 2300 W
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θ rad

Line of
force r4

r3

r2

r1

Equipotential
lines

Figure 40.12

Concentric cable field plotting

Figure 40.12 shows a cross-section of a concentric cable having a core
radius r1 and a sheath radius r4. It was shown in Section 40.1 that the
capacitance of a true square is given by C D ε0εr farads/metre.

A curvilinear square is shown shaded in Figure 40.12. Such squares
can be made to have the same capacitance as a true square by the correct
choice of spacing between the lines of force and the equipotential surfaces
in the field plot.

From equation (40.7), the capacitance between cylindrical equipotential
lines at radii ra and rb is given by

C D 2�ε0εr
ln�rb/ra	

farads/metre

Thus for a sector of ! radians (see Figure 40.12) the capacitance is
given by

C D !

2�

(
2�ε0εr

ln�rb/ra	

)
D !ε0εr

ln�rb/ra	
farads/metre

Now if ! D ln�rb/ra	 then C D ε0εr F/m, the same as for a true square. If
! D ln�rb/ra	, then e! D �rb/ra	. Thus if, say, two equipotential surfaces
are chosen within the dielectric as shown in Figure 40.12, then e! D r2/r1,
e! D r3/r2 and e! D r4/r3. Hence

�e!	3 D r2

r1
ð r3

r2
ð r4

r3
, i.e., e3q =

r4

r1
�40.13	

It follows that e2! D r3/r1.

Equation (40.13) is used to determine the value of ! and hence the
number of sectors. Thus, for a concentric cable having a core radius 8 mm
and inner sheath radius 32 mm, if two equipotential surfaces within the
dielectric are chosen (and therefore form three capacitors in series in each
sector).

e3! D r4

r1
D 32

8
D 4

Hence 3! D ln 4 and ! D 1
3 ln 4 D 0.462 rad (or 26.47°). Thus there

will be 2�/0.462 D 13.6 sectors in the field plot. (Alternatively,
360°/26.47° D 13.6 sectors.) From above,

e2! D r3/r1, i.e., r3 D r1e
2! D 8e2�0.462	 D 20.15 mm

e! D r2

r1

from which

r2 D r1e
! D 8e0.462 D 12.70 mm
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The field plot is shown in Figure 40.13. The number of parallel squares
measured along each equipotential is 13.6 and the number of series
squares measured along each line of force is 3. Hence in equation (40.4),
where C D ε0εrx�m/n	, m D 13.6 and n D 3.

If the dielectric has a relative permittivity of, say, 2.5, then the capacitance
per metre length,

C D �8.85 ð 10�12	�2.5	�1	
13.6

3
D 100 pF

(From equation (40.7),

C D 2�ε0εr
ln�r4/r1	

F/m D 2��8.85 ð 10�12	�2.5	

ln�32/8	
D 100 F=m	

Thus field plotting using curvilinear squares provides an alternative
method of determining the capacitance between concentric cylinders.

Problem 8. A concentric cable has a core diameter of 20 mm and
a sheath inside diameter of 60 mm. The permittivity of the dielec-
tric is 3.2. Using three equipotential surfaces within the dielectric,
determine the capacitance of the cable per metre length by the
method of curvilinear squares. Draw the field plot for the cable.

The field plot consists of radial lines of force dividing the cable cross-
section into a number of sectors, the lines of force cutting the equipotential
surfaces at right angles. Since three equipotential surfaces are required in
the dielectric, four capacitors in series are found in each sector of !
radians.

In Figure 40.14, r1 D 20/2 D 10 mm and r5 D 60/2 D 30 mm. It
follows from equation (40.13) that e4! D r5/r1 D 30/10 D 3, from which
4! D ln 3 and ! D 1

4 ln 3 D 0.2747 rad.

r1 = 8 mm

r2 = 12.70 mm

r3 = 20.15 mm

r4 = 32 mm

Figure 40.13

0.2747 rad

r 1
r2

r3

r4

r5

Figure 40.14
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Thus the number of sectors in the plot shown in Figure 40.14 is
2�/0.2747 D 22.9.

The three equipotential lines are shown in Figure 40.14 at radii of r2,
r3 and r4.

From equation (40.13),

e3! D r4

r1
, from which r4 D r1e

3! D 10e3�0.2747	 D 22.80 mm

e2! D r3

r1
, from which r3 D r1e

2! D 10e2�0.2747	 D 17.32 mm

e! D r2

r1
, from which r2 D r1e

! D 10e0.2747 D 13.16 mm

Thus the field plot for the cable is as shown in Figure 40.14.
From equation (40.4), capacitance C D ε0εrx�m/n	. The number of

parallel squares along each equipotential, m D 22.9 and the number of
series squares measured along each line of force, n D 4. Thus

capacitance C D �8.85 ð 10�12	�3.2	�1	
22.9

4
D 162 pF

(Checking, from equation (40.7),

capacitance C D 2�ε0εr
ln�r5/r1	

D 2��8.85 ð 10�12	�3.2	

ln�30/10	
D 162 pF	

Further problems on the capacitance between concentric cylinders may be
found in Section 40.9, problems 4 to 10, page 753.

40.3 Capacitance of an
isolated twin line

The field distribution with two oppositely charged, long conductors, A and
B, each of radius a is shown in Figure 40.15. The distance D between
the centres of the two conductors is such that D is much greater than a.
Figure 40.16 shows the field of each conductor separately.

Initially, let conductor A carry a charge of CQ coulombs per metre
while conductor B is uncharged. Consider a cylindrical element of radius r
about conductor A having a depth of 1 m and a thickness υr as shown in
Figure 40.16.

The electric flux density D at the element (i.e. at radius r) is given by

D D charge

area
D Q

�2� ð 1	
coulomb/metre2

The electric field strength at the element,

E D D

ε0εr
D Q/2�r

ε0εr
D Q

2�rε0εr
volts/metre

Since E D V/d, potential difference, V D Ed. Thus

p.d. at the element D Eυr D Qυr

2�rε0εr
volts
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Figure 40.15

Figure 40.16

The potential may be considered as zero at a large distance from the
conductor. Let this be at radius R. Then the potential of conductor A
above zero, VA1 , is given by

VA1 D
R∫

a

Qdr

2�rε0εr
D Q

2�ε0εr

R∫
a

1

r
dr D Q

2�ε0εr
[ln r]Ra

D Q

2�ε0εr
[ln R � ln a]
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i.e., VA1 D Q

2�ε0εr
ln

R

a

Since conductor B lies in the field of conductor A, by reasoning similar
to that above, the potential at conductor B above zero, VB1 , is given by

VB1 D
R∫

D

Qdr

2�rε0εr
D Q

2�ε0εr
[ln r]RD D Q

2�ε0εr
ln

R

D

Repeating the above procedure, this time assuming that conductor B
carries a charge of �Q coulombs per metre, while conductor A is
uncharged, gives

potential of conductor B below zero, VB2 D �Q

2�ε0εr
ln

R

a

and the potential of conductor A below zero, due to the charge on
conductor B,

VA2 D �Q

2�ε0εr
ln

R

D

When both conductors carry equal and opposite charges, the total potential
of A above zero is given by

VA1 C VA2 D
(

Q

2�ε0εr
ln

R

a

)
C
( �Q

2�ε0εr
ln

R

D

)

D Q

2�ε0εr

(
ln

R

a
� ln

R

D

)

D Q

2�ε0εr

(
ln

R/a

R/D

)
D Q

2�ε0εr
ln

D

a

and the total potential of B below zero is given by

VB1 C VB2 D Q

2�ε0εr

(
ln

R

D
� ln

R

a

)

D Q

2�ε0εr
ln

a

D
D �Q

2�ε0εr
ln

D

a

Hence the p.d. between A and B is

2
(

Q

2�ε0εr
ln

D

a

)
volts/metre

The capacitance between A and B per metre length,

C D charge per metre

p.d.
D Q

2�Q/�2�ε0εr		 ln�D/a	
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i.e., C=
1
2

2p"0"r

ln .D=a/
farads=metre

or C D p"0"r

ln .D=a/
farads=metre �40.14	

Problem 9. Two parallel wires, each of diameter 5 mm, are
uniformly spaced in air at a distance of 50 mm between centres.
Determine the capacitance of the line if the total length is 200 m.

From equation (40.14). capacitance per metre length,

C D �ε0εr
ln�D/a	

D ��8.85 ð 10�12	�1	

ln�50/�5/2		
since εr D 1 for air,

D ��8.85 ð 10�12	

ln 20
D 9.28 ð 10�12 F

Hence the capacitance of a 200 m length is �9.28 ð 10�12 ð 200	 F
D 1860 pFor 1.86 nF

Problem 10. A single-phase circuit is composed of two parallel
conductors, each of radius 4 mm, spaced 1.2 m apart in air. The
p.d. between the conductors at a frequency of 50 Hz is 15 kV.
Determine, for a 1 km length of line, (a) the capacitance of the
conductors, (b) the value of charge carried by each conductor, and
(c) the charging current.

(a) From equation (40.14),

capacitance C D �ε0εr
ln�D/a	

D ��8.85 ð 10�12	�1	

ln�1.2/4 ð 10�3	

D ��8.85 ð 10�12	

ln 300
D 4.875 pF/m

Hence the capacitance per kilometre length is
�4.875 ð 10�12	�103	 F D 4.875 nF

(b) Charge Q D CV D �4.875 ð 10�9	�15 ð 103	 D 73.1 mC

(c) Charging current D V

XC
D V

�1/ωC	
D ωCV

D �2�50	�4.875 ð 10�9	�15 ð 103	

D 0.023 A or 23 mA
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Problem 11. The charging current for an 800 m run of isolated
twin line is not to exceed 15 mA. The voltage between the lines
is 10 kV at 50 Hz. If the line is air-insulated, determine (a) the
maximum value required for the capacitance per metre length,
and (b) the maximum diameter of each conductor if their distance
between centres is 1.25 m.

(a) Charging current I D V

XC
D V

�1/ωC	
D ωCV

from which,

capacitance C D I

ωV
D 15 ð 10�3

�2�50	�10 ð 103	
farads per
800 metre run

D 4.775 nF

Hence the required maximum value of capacitance

D 4.775 ð 10�9

800
F/m D 5.97 pF=m

(b) From equation (40.14)

C D �ε0εr
ln�D/a	

,

thus 5.97 ð 10�12 D ��8.85 ð 10�12	�1	

ln�1.25/a	

from which, ln
(

1.25

a

)
D �8.85

5.97
D 4.657

Hence
1.25

a
D e4.657 D 105.3

and radius a D 1.25

105.3
m D 0.01187 m or 11.87 mm

Thus the maximum diameter of each conductor is2 ð 11.87, i.e.,
23.7 mm

Further problems on capacitance of an isolated twin line may be found in
Section 40.9, problems 11 to 15, page 754.

40.4 Energy stored in an
electric field

Consider the p.d. across a parallel-plate capacitor of capacitance C farads
being increased by dv volts in d t seconds. If the corresponding increase
in charge is dq coulombs, then dq D Cdv. If the charging current at that
instant is i amperes, then dq D id t. Thus id t D Cdv, i.e.,

i D C
dv

d t
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(i.e., instantaneous current D capacitance ð rate of change of p.d.)

The instantaneous value of power to the capacitor,

p D vi watts D v

(
C

dv

d t

)
watts

The energy supplied to the capacitor during time d t

D power ð time D
(

vC
dv

d t

)
�d t	

D Cv dv joules

Thus the total energy supplied to the capacitor when the p.d. is increased
from 0 to V volts is given by

Wf D
V∫

0

Cv dv D C

[
v2

2

]V
0

i.e., energy stored in the electric field,

Wf = 1
2 CV2 joules �40.15	

Consider a capacitor with dielectric of relative permittivity εr , thickness
d metres and area A square metres. Capacitance C D Q/V, hence energy
stored D 1

2 �Q/V	V2 D 1
2QV joules.

The electric flux density, D D Q/A, from which Q D DA.

Hence the energy stored D 1
2 �DA	V joules.

The electric field strength, E D V/d, from which V D Ed.

Hence the energy stored D 1
2 �DA	�Ed	 joules. However Ad is the volume

of the field.

Hence energy stored per unit volume,

!f = 1
2 DE joules/cubic metre �40.16	

Since D/E D ε0εr , then D D ε0εrE. Hence, from equation (40.16), the
energy stored per unit volume,

ωf D 1
2 �ε0εrE	E

i.e., !f = 1
2"0"r E 2 joules/cubic metre �40.17	

Also, since D/E D ε0εr , then E D D/�ε0εr	. Hence from equation (40.16),
the energy stored per unit volume,

ωf D 1

2
D
(

D

ε0εr

)
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i.e., !f =
D2

2"0"r
joules/cubic metre �40.18	

Summarizing,

energy stored in a capacitor D 1
2 CV 2 joules

and energy stored per unit volume of dielectric

D 1
2 DE = 1

2"0"r E 2

D D2

2"0"r
joules/cubic metre

Problem 12. Determine the energy stored in a 10 nF capacitor
when charged to 1 kV, and the average power developed if this
energy is dissipated in 10 µs.

From equation (40.15),

energy stored,Wf D 1
2CV2 D 1

2 �10 ð 10�9	�103	2

D 5 mJ

average power developed D energy dissipated, W

time, t

D 5 ð 10�3 J

10 ð 10�6 s
D 500 W

Problem 13. A capacitor is charged with 5 mC. If the energy
stored is 625 mJ, determine (a) the voltage across the plates and
(b) the capacitance of the capacitor.

(a) From equation (40.15),

energy stored, Wf D 1

2
CV2 D 1

2

(
Q

V

)
V2 D 1

2
QV

from which voltage across the plates,

V D 2 ð energy stored

Q
D 2 ð 0.625

5 ð 10�3
D 250 V

(b) Capacitance C D Q

V
D 5 ð 10�3

250
F D 20 ð 10�6 F D 20 mF
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Problem 14. A ceramic capacitor is to be constructed to have
a capacitance of 0.01 µF and to have a steady working poten-
tial of 2.5 kV maximum. Allowing a safe value of field stress
of 10 MV/m, determine (a) the required thickness of the ceramic
dielectric, (b) the area of plate required if the relative permittivity
of the ceramic is 10, and (c) the maximum energy stored by the
capacitor.

(a) Field stress E D V/d, from which thickness of ceramic dielectric,

d D V

E
D 2.5 ð 103

10 ð 106
D 2.5 ð 10�4 m D 0.25 mm

(b) Capacitance C D ε0εrA/d for a two-plate parallel capacitor. Hence
cross-sectional area of plate,

A D Cd

ε0εr
D �0.01 ð 10�6	�0.25 ð 10�3	

�8.85 ð 10�12	�10	

D 0.0282 m2 or 282 cm2

(c) Maximum energy stored,

Wf D 1
2CV2 D 1

2 �0.01 ð 10�6	�2.5 ð 103	2

D 0.0313 Jor 31.3 mJ

Problem 15. A 400 pF capacitor is charged to a p.d. of 100 V.
The dielectric has a cross-sectional area of 200 cm2 and a relative
permittivity of 2.3. Calculate the energy stored per cubic metre of
the dielectric.

From equation (40.18), energy stored per unit volume of dielectric,

ωf D D2

2ε0εr

Electric flux density

D D Q

A
D CV

A
D �400 ð 10�12	�100	

200 ð 10�4
D 2 ð 10�6 C/m2

Hence energy stored,

ωf D D2

2ε0εr
D �2 ð 10�6	2

2�8.85 ð 10�12	�2.3	

D 0.0983 J=m3 or 98.3 mJ=m3
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Further problems on energy stored in electric fields may be found in
Section 40.9, problems 16 to 23, page 755.

40.5 Induced e.m.f. and
inductance

A current flowing in a coil of wire is accompanied by a magnetic flux
linking with the coil. If the current changes, the flux linkage (i.e., the
product of flux and the number of turns) changes and an e.m.f. is induced
in the coil. The magnitude of the induced e.m.f. e in a coil of N turns is
given by

e = N
df

dt
volts

where d)/d t is the rate of change of flux.
Inductance is the name given to the property of a circuit whereby

there is an e.m.f. induced into the circuit by the change of flux linkages
produced by a current change. The unit of inductance is the henry, H. A
circuit has an inductance of 1 H when an e.m.f. of 1 V is induced in it
by a current changing uniformly at the rate of 1 A/s.
The magnitude of the e.m.f. induced in a coil of inductance L henry is
given by

e = L
di
dt

volts

where d i/d t is the rate of change of current.
If a current changing uniformly from zero to I amperes produces a

uniform flux change from zero to ) webers in t seconds then (from above)
average induced e.m.f., Eav D N)/t D LI/t, from which

inductance of coil, L =
N f

I
henry

Flux linkage means the product of flux, in webers, and the number of
turns with which the flux is linked. Hence flux linkage D N). Thus since
L D N)/I, inductanceD flux linkages per ampere.

40.6 Inductance of a
concentric cylinder (or

coaxial cable)

Skin effect

When a direct current flows in a uniform conductor the current will
tend to distribute itself uniformly over the cross-section of the conductor.
However, with alternating current, particularly if the frequency is high,
the current carried by the conductor is not uniformly distributed over
the available cross-section, but tends to be concentrated at the conductor
surface. This is called skin effect. When current is flowing through a
conductor, the magnetic flux that results is in the form of concentric
circles. Some of this flux exists within the conductor and links with the
current more strongly near the centre. The result is that the inductance
of the central part of the conductor is greater than the inductance of the
conductor near the surface. This is because of the greater number of flux



742 Electrical Circuit Theory and Technology

linkages existing in the central region. At high frequencies the reactance
�XL D 2�fL	 of the extra inductance is sufficiently large to seriously
affect the flow of current, most of which flows along the surface of the
conductor where the impedance is low rather than near the centre where
the impedance is high.

Inductance due to internal linkages at low frequency

When a conductor is used at high frequency the depth of penetration of
the current is small compared with the conductor cross-section. Thus the
internal linkages may be considered as negligible and the circuit induc-
tance is that due to the fields in the surrounding space. However, at very
low frequency the current distribution is considered uniform over the
conductor cross-section and the inductance due to flux linkages has its
maximum value.

Consider a conductor of radius R, as shown in Figure 40.17, carrying
a current I amperes uniformly distributed over the cross-section. At all
points on the conductor cross-section

current density, J D current

area
D
(

I

�R2

)
amperes/metre2

Figure 40.17
Consider a thin elemental ring at radius r and width υr contained within
the conductor, as shown in Figure 40.17. The current enclosed by the ring,

i D current density ð area enclosed by the ring

D
(

I

�R2

)
��r2	

i.e. i D Ir2

R2
amperes

Magnetic field strength, H D Ni/l amperes/metre.
At radius r, the mean length of the flux path, l D 2�r (i.e., the circum-

ference of the elemental ring) and N D 1 turn.

Hence at radius r,

Hr D Ni

l
D �1	�Ir2/R2	

2�r
D Ir

2�R2
ampere/metre

and the flux density, Br D �0�rHr D �0�r

(
Ir

2�R2

)
tesla

Flux ) D BA webers. For a 1 m length of the conductor, the cross-sec-
tional area A of the element is �υr ð 1	 m2 (see Figure 40.17). Thus the
flux within the element of thickness υr,

) D
(
�0�rIr

2�R2

)
�υr	 webers
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The flux in the element links the portion �r2/�R2, i.e., r2/R2 of the total
conductor. Hence linkages due to the flux within radius r

D
(
�0�rIr

2�R2
υr
)

r2

R2
D �0�rIr3

2�R4
υr weber turns

Total linkages per metre due to the flux in the conductor

D
∫ R

0

�0�rIr3

2�R4
dr D �0�rI

2�R4

∫ R

0
r3dr

D �0�rI

2�R4

[
r4

4

]R
0

D �0�rI

2�R4

[
R4

4

]

D 1

4

(
�0�rI

2�

)
weber turns

Inductance per metre due to the internal flux D internal flux linkages per
ampere

D 1
4

(
m0mr

2p

)
or

m

8p
henry=metre

It is seen that the inductance is independent of the conductor radius R.

Inductance of a pair of concentric cylinders

The cross-section of a concentric (or coaxial) cable is shown in
Figure 40.18. Let a current of I amperes flow in one direction in the
core and a current of I amperes flow in the opposite direction in the outer
sheath conductor.

Consider an element of width υr at radius r, and let the radii of the
inner and outer conductor be a and b respectively as shown. The magnetic
field strength at radius r,

Hr D Ni

I
D �1	�I	

2�r
D I

2�r

a

b

r

δr

Figure 40.18 Cross-section of
a concentric cable

The flux density at radius r, Br D �0�rHr D �0�rI

2�r

For a 1 m length of the cable, the flux ) within the element of width υr
is given by

 D BrA D
(
�0�rI

2�r

)
�υr ð 1	 D �0�rI

2�r
dr webers

This flux links the loop of the cable formed by the core and the
outer sheath. Thus the flux linkage per metre length of the cable is
��0�rI/�2�r		υr weber turns, and
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total flux linkages per metre D
∫ b

a

�0�rI

2�r
dr D �0�rI

2�

∫ b

a

1

r
dr

D �0�rI

2�
[ln r]ba D �0�rI

2�
[ln b � ln a]

D �0�rI

2�
ln

b

a
weber turns

Thus inductance per metre length D flux linkages per ampere

D m0mr

2p
ln

b
a

henry=metre �40.19	

At low frequencies the inductance due to the internal linkages is added
to this result.

Hence the total inductance per metre at low frequency is given by

L D 1
4

(
m0mr

2p

)
C m0mr

2p
ln

b
a

henry=metre �40.20	

or L =
m

2p

(
1
4
Y ln

b
a

)
henry=metre �40.21	

Problem 16. A coaxial cable has an inner core of radius 1.0
mm and an outer sheath of internal radius 4.0 mm. Determine the
inductance of the cable per metre length.

Assume that the relative permeability is unity.

From equation (40.21),

inductance L D �

2�

(
1

4
C ln

b

a

)
H/m

D �0�r

2�

(
1

4
C ln

4.0

1.0

)
D �4� ð 10�7	�1	

2�
�0.25 C ln 4	

D 3.27× 10−7 H=m or 0.327mH=m

Problem 17. A concentric cable has a core diameter of 10 mm.
The inductance of the cable is 4 ð 10�7 H/m. Ignoring inductance
due to internal linkages, determine the diameter of the sheath.
Assume that the relative permeability is 1.

From equation (40.19),

inductance per metre length D �0�r

2�
ln

b

a
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where b D sheath radius and a D core radius. Hence

4 ð 10�7 D �4� ð 10�7	�1	

2�
ln
(
b

5

)

from which 2 D ln
(
b

5

)
and e2 D b

5

Hence radius b D 5e2 D 36.95 mm

Thus the diameter of the sheath is 2 ð 36.95 D 73.9 mm

Problem 18. A coaxial cable 7.5 km long has a core 10 mm
diameter and a sheath 25 mm diameter, the sheath having
negligible thickness. Determine for the cable (a) the inductance,
assuming nonmagnetic materials, and (b) the capacitance, assuming
a dielectric of relative permittivity 3.

(a) From equation (40.21),

inductance per metre length D �

2�

(
1

4
C ln

b

a

)

D �0�r

2�

[
1

4
C ln

(
12.5

5

)]

D �4� ð 10�7	�1	

2�
�0.25 C ln 2.5	

D 2.33 ð 10�7 H/m

Since the cable is 7500 m long,

the inductance D 7500 ð 2.33 ð 10�7 D 1.75 mH

(b) From equation (40.7),

capacitance, C D 2�ε0εr
ln�b/a	

D 2��8.85 ð 10�12	�3	

ln�12.5/5	

D 182.06 pF/m

Since the cable is 7500 m long,

the capacitance D 7500 ð 182.06 ð 10�12 D 1.365mF

Further problems on the inductance of concentric cables may be found in
Section 40.9, problems 24 to 27, page 756.



746 Electrical Circuit Theory and Technology

40.7 Inductance of an
isolated twin line

Consider two isolated, long, parallel, straight conductors A and B, each
of radius a metres, spaced D metres apart. Let the current in each be
I amperes but flowing in opposite directions. Distance D is assumed to
be much greater than radius a. The magnetic field associated with the
conductors is as shown in Figure 40.19. There is a force of repulsion
between conductors A and B.

Figure 40.19 Figure 40.20

It is easier to analyse the field by initially considering each conductor
alone (as in Section 40.3). At any radius r from conductor A (see
Figure 40.20),

magnetic field strength, Hr D Ni

l
D I

2�r
ampere/metre

and flux density, Br D �0�rHr D �0�rI

2�r
tesla

The total flux i

n 1 m of the conductor,

 D BrA D
(
�0�rI

2�r

)
�υr ð 1	 D �0�rI

2�r
υr webers

Since this flux links conductor A once, the linkages with conductor A

due to this flux D �0�rI

2�r
υr weber turns.

There is, in fact, no limit to the distance from conductor A at which a
magnetic field may be experienced. However, let R be a very large radius
at which the magnetic field strength may be regarded as zero. Then the
total linkages with conductor A due to current in conductor A is given by
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∫ R

a

�0�rI

2�r
dr D �0�rI

2�

∫ R

a

dr

r
D �0�rI

2�
[ln r]Ra

D �0�rI

2�
[ln R � ln a] D �0�rI

2�
ln
(
R

a

)

Similarly, the total linkages with conductor B due to the current in A

D
∫ R

D

�0�rI

2�r
dr D �0�rI

2�
ln

R

D

Now consider conductor B alone, carrying a current of �I amperes. By
similar reasoning to above, total linkages with

conductor B due to the current in B D ��0�rI

2�
ln
(
R

a

)

and total linkages with conductor A due to the current in B

D ��0�rI

2�
ln

R

D

Hence total linkages with conductor A

D
(
�0�rI

2�
ln

R

a

)
C
(��0�rI

2�
ln

R

D

)

D �0�rI

2�

[
ln

R

a
� ln

R

D

]

D �0�rI

2�

[
ln

R/a

R/D

]

D �0�rI

2�
ln

D

a
weber-turns/metre

Similarly, total linkages with conductor B

D ��0�rI

2�
ln

D

a
weber-turns metre

For a 1 m

length of the two conductors,

total inductance D flux linkages per ampere

D 2
(
�0�r

2�
ln

D

a

)
henry/metre

i.e., total inductance=
m0mr

p
ln

D
a

henry=metre �40.22	

Equation (40.22) does not take into consideration the internal linkages of
each line.
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From Section (40.6), inductance per metre due to internal linkages

D 1

4

(
�0�r

2�

)
henry/metre

Thus inductance per metre due to internal linkages of two conductors

D 2
(

1

4

(
�0�r

2�

))
D �0�r

4�
henry/metre

Therefore, at low frequency, total inductance per metre of the two
conductors

D �0�r

4�
C �0�r

�
ln

D

a

i.e., L =
m0mr

p

(
1
4
Y ln

D
a

)
henry=metre �40.23	

(This is often referred to as the ‘loop inductance’).

In most practical lines the relative permeability, �r D 1.

Problem 19. A single-phase power line comprises two conductors
each with a radius 8.0 mm and spaced 1.2 m apart in air. Deter-
mine the inductance of the line per metre length ignoring internal
linkages. Assume the relative permeability, �r D 1.

From equation (40.22), inductance

D �0�r

�
ln

D

a

D �4� ð 10�7	�1	

�
ln
(

1.2

8.0 ð 10�3

)
D 4 ð 10�7 ln 150

D 20.0 × 10−7 H=m or 2.0 mH=m

Problem 20. Determine (a) the loop inductance, and (b) the
capacitance of a 1 km length of single-phase twin line having
conductors of diameter 10 mm and spaced 800 mm apart in air.

(a) From equation (40.23), total inductance per loop metre

D �0�r

�

(
1

4
C ln

D

a

)

D �4� ð 10�7	�1	

�

(
1

4
C ln

800

10/2

)
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D �4 ð 10�7	�0.25 C ln 160	

D 21.3 ð 10�7 H/m

Hence loop inductance o

f a 1 km length of line

D 21.3 ð 10�7 H/m ð 103 m

D 21.3 × 10−4 H or 2.13 mH

(b) From equation (40.14), capacitance per metre length

D �ε0εr
ln�D/a	

D ��8.85 ð 10�12	�1	

ln�800/5	

D 5.478 ð 10�12 F/m

Hence capacitance o

f a 1 km length of line

D 5.478 ð 10�12 F/m ð 103 m

D 5.478 nF

Problem 21. The total loop inductance of an isolated twin power
line is 2.185 µH/m. The diameter of each conductor is 12 mm.
Determine the distance between their centres.

From equation (40.23),

total loop inductance D �0�r

�

(
1

4
C ln

D

a

)

Hence

2.185 ð 10�6 D �4� ð 10�7	�1	

�

(
1

4
C ln

D

6

)

where D is the distance between centres in millimetres.

2.185 ð 10�6

4 ð 10�7
D
(

0.25 C ln
D

6

)

ln
D

6
D 5.4625 � 0.25 D 5.2125

D

6
D e5.2125

from which, distance D D 6e5.2125 D 1100 mmor 1.10 m
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Further problems on the inductance of an isolated twin line may be found
in Section 40.9, problems 28 to 32, page 756.

40.8 Energy stored in an
electromagnetic field

Magnetic energy in a nonmagnetic medium

For a nonmagnetic medium the relative permeability, �r D 1 and
B D �0H.

Thus the magnetic field strength H is proportional to the flux density B
and a graph of B against H is a straight line, as shown in Figure 40.21.

It was shown in Section 38.3 that, when the flux density is increased by
an amount dB due to an increase dH in the magnetic field strength, then

energy supplied to the magnetic circuit D area of shaded strip
(in joules per cubic metre)

Thus, for a maximum flux density OY in Figure 40.21,

total energy stored in the magnetic field D area of triangle OYX

D 1
2 ð base ð height

D 1
2 �OZ	�OY	

Figure 40.21
If OY D B teslas and OZ D H ampere/metre, then the total energy stored
in a non-magnetic medium,

!f = 1
2 HB joules=metre3 �40.24	

Since B D �0H for a non-magnetic medium, the energy stored,

ωf D 1
2H��0H	

i.e., !f = 1
2m0H 2 joules=metre3 �40.25	

Alternatively, H D B/�0, thus the energy stored,

ωf D 1

2
HB D 1

2

(
B

�0

)
B

i.e., !f =
B2

2m0
joules=metre3 �40.26	

Magnetic energy stored in an inductor

Establishing a magnetic field requires energy to be expended. However,
once the field is established, the only energy expended is that supplied to
maintain the flow of current in opposition to the circuit resistance, i.e.,
the I2R loss, which is dissipated as heat.
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Figure 40.22

For an inductive circuit containing resistance R and inductance L (see
Figure 40.22) the applied voltage V at any instant is given by V D vR C vL

i.e., V D iR C L
d i

d t

Multiplying throughout by current i gives the power equation:

Vi D i2R C Li
d i

d t

Multiplying throughout by time d t seconds gives the energy equation:

Vi d t D i2Rd t C Li d i

Vi d t is the energy supplied by the source in time d t, i2R d t is the energy
dissipated in the resistance and Lid i is the energy supplied in establishing
the magnetic field or the energy absorbed by the magnetic field in time
d t seconds.

Hence the total energy stored in the field when the current increases
from 0 to I amperes is given by

energy stored, Wf D
∫ I

0
Lid i D L

[
i2

2

]I
0

i.e., total energy stored, Wf = 1
2LI 2 joules �40.27	

From Section 40.5, inductance L D N)/I, hence

total energy stored D 1

2

(
N)

I

)
I2 D 1

2
N)I joules

Also H D NI/l, from which, N D Hl/I, and ) D BA. Thus the total
energy stored,

Wf D 1

2
N)I D 1

2

(
Hl

I

)
�BA	I

D 1

2
HBlA joules

or ωf D 1

2
HB joules/metre3

since lA is the volume of the magnetic field. This latter expression has
already been derived in equation (40.24).

Summarizing, the energy stored in a nonmagnetic medium,

!f =
1
2

BH =
1
2

m0H 2 =
B2

2m0
joules=metre3

and the energy stored in an inductor,

Wf = 1
2LI 2 joules
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Problem 22. Calculate the value of the energy stored when a
current of 50 mA is flowing in a coil of inductance 200 mH. What
value of current would double the energy stored?

From equation (40.27), energy stored in inductor,

Wf D 1
2LI

2 D 1
2 �200 ð 10�3	�50 ð 10�3	2

D 2.5 × 10−4 J or 0.25 mJ or 250mJ

If the energy stored is doubled, then �2	�2.5 ð 10�4	 D 1
2 �200 ð 10�3	I2

from which

current I D
√(

�4	�2.5 ð 10�4	

�200 ð 10�3	

)
D 70.71 mA

Problem 23. The airgap of a moving coil instrument is 2.0 mm
long and has a cross-sectional area of 500 mm2. If the flux density
is 50 mT, determine the total energy stored in the magnetic field
of the airgap.

From equation (40.26), energy stored,

ωf D B2

2�0
D �50 ð 10�3	2

2�4� ð 10�7	
D 9.95 ð 102 J/m3

Volume of airgap D Al D �500 ð 2.0	 mm3 D 500 ð 2.0 ð 10�9 m3.
Hence the energy stored in the airgap,

Wf D 9.95 ð 102 J/m3 ð 500 ð 2.0 ð 10�9 m3

= 9.95× 10−4 J 	 0.995 mJ	 995mJ

Problem 24. Determine the strength of a uniform electric field if
it is to have the same energy as that established by a magnetic field
of flux density 0.8 T. Assume that the relative permeability of the
magnetic field and the relative permittivity of the electric field are
both unity.

From equation (40.26), energy stored in magnetic field,

ωf D B2

2�0
D �0.8	2

2�4� ð 10�7	
D 2.546 ð 105 J/m3

From equation (40.17), energy stored in electric field,

ωf D 1
2ε0εrE

2
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Hence, if the current stored in the magnetic and electric fields is to be the
same, then 1

2ε0εrE2 D 2.546 ð 105, i.e.,

1
2 �8.85 ð 10�12	�1	E2 D 2.546 ð 105

from which electric field strength,

E D
√(

�2	�2.546 ð 105	

�8.85 ð 10�12	

)
D
√

�5.75 ð 1016	

D 2.40× 108 V=m or 240 MV=m

Further problems on energy stored in an electromagnetic field may be
found in Section 40.9 following, problems 33 to 37, page 756.

40.9 Further problems
on field theory

Field plotting by curvilinear squares

1 (a) Explain the meaning of the terms (i) streamline (ii) equipotential,
with reference to an electric field.

(b) A field plot between two metal plates is shown in Figure 40.23.
If the relative permittivity of the dielectric is 2.4, determine the
capacitance of a 50 cm length of the system. [23.4 pF]

2 A field plot for a concentric cable is shown in Figure 40.24. The
relative permittivity of the dielectric is 5. Determine the capacitance
of a 10 m length of the cable. [1.66 nF]

3 The plates of a capacitor are 10 mm long and 6 mm wide and are
separated by a dielectric 3 mm thick and of relative permittivity 2.5.
Determine the capacitance of the capacitor (a) when neglecting any
fringing at the edges, (b) by producing a field plot taking fringing
into consideration.

[(a) 0.44 pF (b) 0.60 pF � 0.70 pF,
depending on the accuracy of the plot]

Capacitance between concentric cylinders

4 A coaxial cable has an inner conductor of radius 0.4 mm and an
outer conductor of internal radius 4 mm. Determine the capacitance
per metre length of the cable if the dielectric has a relative permit-
tivity of 2. [48.30 pF]

Figure 40.23

5 A concentric cable has a core diameter of 40 mm and an inner sheath
diameter of 100 mm. The relative permittivity of the dielectric is 2.5
and the core potential is 50 kV. Determine (a) the capacitance per
kilometre length of the cable and (b) the dielectric stress at radii of
30 mm and 40 mm.

[(a) 0.1517 µF (b) 1.819 MV/m, 1.364 MV/m]
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Figure 40.24

6 A coaxial cable has a capacitance of 100 pF per metre length. The
relative permittivity of the dielectric is 3.2 and the core diameter is
1.0 mm. Determine the required inside diameter of the sheath.

[5.93 mm]

7 A single-core concentric cable is to be manufactured for a 100 kV,
50 Hz transmission system. The dielectric used is paper which has
a maximum safe dielectric stress of 10 MV/m and a relative permit-
tivity of 3.2. Calculate (a) the core and inner sheath radii for the most
economical cable, (b) the capacitance per metre length and (c) the
charging current per kilometre run.

[(a) 10 mm; 27.2 mm (b) 177.9 pF (c) 5.59 A]

8 A concentric cable has a core diameter of 30 mm and an inside
sheath diameter of 75 mm. The relative permittivity is 2.6, the loss
angle is 2.5 ð 10�3 rad and the working voltage is 100 kV at 50 Hz
frequency. Determine for a 1 km length of cable (a) the capacitance,
(b) the charging current, and (c) the power loss.

[(a) 0.1578 µF (b) 4.957 A (c) 1239 W]

9 A concentric cable operates at 200 kV and 50 Hz. The maximum
electric field strength within the cable is not to exceed 5 MV/m.
Determine (a) the radius of the core and the inner radius of the
sheath for ideal operation, and (b) the stress on the dielectric at the
surface of the core and at the inner surface of the sheath.

[(a) 40 mm, 108.7 mm (b) 5 MV/m, 1.84 MV/m]

10 A concentric cable has a core radius of 20 mm and a sheath inner
radius of 40 mm. The permittivity of the dielectric is 2.5. Using two
equipotential surfaces within the dielectric, determine the capacitance
of the cable per metre length by the method of curvilinear squares.
Draw the field plot for the cable. [200.6 pF]

Capacitance of an isolated twin line

11 Two parallel wires, each of diameter 5.0 mm, are uniformly spaced
in air at a distance of 40 mm between centres. Determine the capac-
itance of a 500 m run of the line. [5.014 nF]

12 A single-phase circuit is comprised of two parallel conductors each
of radius 5.0 mm and spaced 1.5 m apart in air. The p.d. between
the conductors is 20 kV at 50 Hz. Determine (a) the capacitance
per metre length of the conductors, and (b) the charging current per
kilometre run. [(a) 4.875 pF (b) 30.63 mA]

13 The capacitance of a 300 m length of an isolated twin line is 1522 pF.
The line comprises two air conductors which are spaced 1200 mm
between centres. Determine the diameter of each conductor.

[10 mm]

14 An isolated twin line is comprised of two air-insulated conductors,
each of radius 8.0 mm, which are spaced 1.60 m apart. The voltage
between the lines is 7 kV at a frequency of 50 Hz. Determine for a
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1 km length (a) the line capacitance, (b) the value of charge carried
by each wire, and (c) the charging current.

[(a) 5.248 nF (b) 36.74 µC (c) 11.54 mA]

15 The charging current for a 1 km run of isolated twin line is not to
exceed 30 mA. The p.d. between the lines is 20 kV at 50 Hz. If
the line is air insulated and the conductors are spaced 1 m apart,
determine (a) the maximum value required for the capacitance per
metre length, and (b) the maximum diameter of each conductor.

[(a) 4.775 pF (b) 5.92 mm]

Energy stored in an electric field

16 Determine the energy stored in a 5000 pF capacitor when charged to
800 V and the average power developed if this energy is dissipated
in 20 µs. [1.6 mJ; 80 W]

17 A 0.25 µF capacitor is required to store 2 J of energy. Determine the
p.d. to which the capacitor must be charged. [4 kV]

18 A capacitor is charged with 6 mC. If the energy stored is 1.5 J deter-
mine (a) the voltage across the plates, and (b) the capacitance of the
capacitor. [(a) 500 V (b) 12 µF]

19 After a capacitor is connected across a 250 V d.c. supply the charge
is 5 µC. Determine (a) the capacitance, and (b) the energy stored.

[(a) 20 nF (b) 0.625 mJ]

20 A capacitor consisting of two metal plates each of area 100 cm2

and spaced 0.1 mm apart in air is connected across a 200 V supply.
Determine (a) the electric flux density, (b) the potential gradient and
(c) the energy stored in the capacitor.

[(a) 17.7 µC/m2 (b) 2 MV/m (c) 17.7 µJ]

21 A mica capacitor is to be constructed to have a capacitance of 0.05 µF
and to have a steady working potential of 2 kV maximum. Allowing
a safe value of field stress of 20 MV/m, determine (a) the required
thickness of the mica dielectric, (b) the area of plate required if the
relative permittivity of the mica is 5, (c) the maximum energy stored
by the capacitor, and (d) the average power developed if this energy
is dissipated in 25 µs.

[(a) 0.1 mm (b) 0.113 m2 (c) 0.1 J (d) 4 kW]

22 A 500 pF capacitor is charged to a p.d. of 100 V. The dielectric has
a cross-sectional area of 200 cm2 and a relative permittivity of 2.4.
Determine the energy stored per cubic metre in the dielectric.

[0.147 J/m3]

23 Two parallel plates each having dimensions 30 mm by 50 mm are
spaced 8 mm apart in air. If a voltage of 40 kV is applied across the
plates determine the energy stored in the electric field. [1.328 mJ]
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Inductance of a concentric cable

24 A coaxial cable has an inner core of radius 0.8 mm and an outer
sheath of internal radius 4.8 mm. Determine the inductance of 25 m
of the cable. Assume that the relative permeability of the material
used is 1. [10.2 µH]

25 A concentric cable has a core 12 mm diameter and a sheath 40 mm
diameter, the sheath having negligible thickness. Determine the
inductance and the capacitance of the cable per metre assuming
nonmagnetic materials and a dielectric of relative permittivity 3.2.

[0.291 µH/m, 147.8 pF/m]

26 A concentric cable has an inner sheath radius of 4.0 cm. The induc-
tance of the cable is 0.5 µH/m. Ignoring inductance due to internal
linkages, determine the radius of the core. Assume that the relative
permeability of the material is unity. [3.28 mm]

27 The inductance of a concentric cable of core radius 8 mm and inner
sheath radius of 35 mm is measured as 2.0 mH. Determine (a) the
length of the cable, and (b) the capacitance of the cable. Assume
that nonmagnetic materials are used and the relative permittivity of
the dielectric is 2.5. [(a) 5.794 km (b) 0.546 µF]

Inductance of an isolated twin line

28 A single-phase power line comprises two conductors each with a
radius of 15 mm and spaced 1.8 m apart in air. Determine the induc-
tance per metre length, ignoring internal linkages and assuming the
relative permeability, �r D 1. [1.915 µH/m]

29 Determine (a) the loop inductance, and (b) the capacitance of a
500 m length of single-phase twin line having conductors of diameter
8 mm and spaced 60 mm apart in air.

[(a) 0.592 mH (b) 5.133 nF]

30 An isolated twin power line has conductors 7.5 mm radius. Deter-
mine the distance between centres if the total loop inductance of
1 km of the line is 1.95 mH. [765 mm]

31 An isolated twin line has conductors of diameter d ð 10�3 metres
and spaced D millimetres apart in air. Derive an expression for the
total loop inductance L of the line per metre length.[

L D �0

�

(
1

4
C ln

2D

d

)]

32 A single-phase power line comprises two conductors spaced 2 m
apart in air. The loop inductance of 2 km of the line is measured as
3.65 mH. Determine the diameter of the conductors. [53.6 mm]

Energy stored in an electromagnetic field

33 Determine the value of the energy stored when a current of 120 mA
flows in a coil of 500 mH. What value of current is required to
double the energy stored? [3.6 mJ, 169.7 mA]
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34 A moving-coil instrument has two airgaps each 2.5 mm long and
having a cross-sectional area of 8.0 cm2. Determine the total energy
stored in the magnetic field of the airgap if the flux density is 100 mT.

[15.92 mJ]

35 Determine the flux density of a uniform magnetic field if it is to
have the same energy as that established by a uniform electric field of
strength 45 MV/m. Assume the relative permeability of the magnetic
field and the relative permittivity of the electric field are both unity.

[0.15 T]

36 A long single core concentric cable has inner and outer conductors
of diameters D1 and D2 respectively. The conductors each carry a
current of I amperes but in opposite directions. If the relative perme-
ability of the material is unity and the inductance due to internal
linkages is negligible, show that the magnetic energy stored in a
4 m length of the cable is given by

�0I2

�
ln
(
D2

D1

)
joules

37 1 mJ of energy is stored in a uniform magnetic field having dimen-
sions 20 mm by 10 mm by 1.0 mm. Determine for the field (a) the
flux density, and (b) the magnetic field strength.

[(a) 0.112 T (b) 89200 A/m]



41 Attenuators

At the end of this chapter you should be able to:

ž understand the function of an attenuator

ž understand characteristic impedance and calculate for given
values

ž appreciate and calculate logarithmic ratios

ž design symmetrical T and symmetrical � attenuators given
required attenuation and characteristic impedance

ž appreciate and calculate insertion loss

ž determine iterative and image impedances for asymmetrical T
and � networks

ž appreciate and design the L-section attenuator

ž calculate attenuation for two-port networks in cascade

41.1 Introduction An attenuator is a device for introducing a specified loss between a signal
source and a matched load without upsetting the impedance relationship
necessary for matching. The loss introduced is constant irrespective
of frequency; since reactive elements (L or C) vary with frequency, it
follows that ideal attenuators are networks containing pure resistances. A
fixed attenuator section is usually known as a ‘pad’.

Attenuation is a reduction in the magnitude of a voltage or current
due to its transmission over a line or through an attenuator. Any degree
of attenuation may be achieved with an attenuator by suitable choice of
resistance values but the input and output impedances of the pad must
be such that the impedance conditions existing in the circuit into which
it is connected are not disturbed. Thus an attenuator must provide the
correct input and output impedances as well as providing the required
attenuation.

Attenuation sections are made up of resistances connected as T or �
arrangements (as introduced in Chapter 34).

Two-port networks

Networks in which electrical energy is fed in at one pair of terminals and
taken out at a second pair of terminals are called two-port networks.
Thus an attenuator is a two-port network, as are transmission lines,
transformers and electronic amplifiers. The network between the input
port and the output port is a transmission network for which a known
relationship exists between the input and output currents and voltages. If

Figure 41.1 (a) T-network,
(b) �-network
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Figure 41.2 (a) Balanced
T-network, (b) Balanced
�-network

a network contains only passive circuit elements, such as in an attenuator,
the network is said to be passive; if a network contains a source of e.m.f.,
such as in an electronic amplifier, the network is said to be active.

Figure 41.1(a) shows a T-network, which is termed symmetrical if
ZA D ZB and Figure 41.1(b) shows a �-network which is symmetrical if
ZE D ZF. If ZA 6D ZB in Figure 41.1(a) and ZE 6D ZF in Figure 41.1(b),
the sections are termed asymmetrical. Both networks shown have one
common terminal, which may be earthed, and are therefore said to
be unbalanced. The balanced form of the T-network is shown in
Figure 41.2(a) and the balanced form of the �-network is shown in
Figure 41.2(b).

Symmetrical T- and �-attenuators are discussed in Section 41.4 and
asymmetrical attenuators are discussed in Sections 41.6 and 41.7. Before
this it is important to understand the concept of characteristic impedance,
which is explained generally in Section 41.2 (characteristic impedances
will be used again in Chapter 44), and logarithmic units, discussed in
Section 41.3. Another important aspect of attenuators, that of insertion
loss, is discussed in Section 41.5. To obtain greater attenuation, sections
may be connected in cascade, and this is discussed in Section 41.8.

41.2 Characteristic
impedance

The input impedance of a network is the ratio of voltage to current (in
complex form) at the input terminals. With a two-port network the input
impedance often varies according to the load impedance across the output
terminals. For any passive two-port network it is found that a particular
value of load impedance can always be found which will produce an
input impedance having the same value as the load impedance. This is
called the iterative impedancefor an asymmetrical network and its value
depends on which pair of terminals is taken to be the input and which
the output (there are thus two values of iterative impedance, one for each
direction). For a symmetrical network there is only one value for the
iterative impedance and this is called the characteristic impedanceof
the symmetrical two-port network. Let the characteristic impedance be
denoted by Z0. Figure 41.3 shows a symmetrical T-network terminated
in an impedance Z0.

Let the impedance ‘looking-in’ at the input port also be Z0. Then
V1/I1 D Z0 D V2/I2 in Figure 41.3. From circuit theory,

Z0 D V1

I1
D ZA C ZB�ZA C Z0


ZB C ZA C Z0
, since �ZA C Z0
 is in parallel with ZB,

D Z2
A C ZAZB C ZAZ0 C ZAZB C ZBZ0

ZA C ZB C Z0

i.e. Z0 D Z2
A C 2ZAZB C ZAZ0 C ZBZ0

ZA C ZB C Z0

Thus Z0�ZA C ZB C Z0
 D Z2
A C 2ZAZB C ZAZ0 C ZBZ0

Z0ZA C Z0ZB C Z2
0 D Z2

A C 2ZAZB C ZAZ0 C ZBZ0
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Figure 41.3

i.e., Z2
0 D Z2

A C 2ZAZB, from which

characteristic impedance, Z0 =
√

.Z 2
A Y 2ZAZB / �41.1


If the output terminals of Figure 41.3 are open-circuited, then the open-
circuit impedance, ZOC D ZA C ZB. If the output terminals of Figure 41.3
are short-circuited, then the short-circuit impedance,

ZSC D ZA C ZAZB

ZA C ZB
D Z2

A C 2ZAZB

ZA C ZB

Thus ZOCZSC D �ZA C ZB


(
Z2

A C 2ZAZB

ZA C zB

)
D Z2

A C 2ZAZB

Comparing this with equation (41.1) gives

Z0 =
p

�ZOCZSC
, �41.2


Figure 41.4 shows a symmetrical �-network terminated in an
impedance Z0.

Figure 41.4

If the impedance ‘looking in’ at the input port is also Z0, then

V1

I1
D Z0 D �Z2
 in parallel with [Z1 in series with �Z0 and Z2


in parallel]

D �Z2
 in parallel with
[
Z1 C Z0Z2

Z0 C Z2

]

D �Z2
 in parallel with
[

Z1Z0 C Z1Z2 C Z0Z2

Z0 C Z2

]

i.e., Z0 D �Z2
��Z1Z0 C Z1Z2 C Z0Z2
/�Z0 C Z2



Z2 C ��Z1Z0 C Z1Z2 C Z0Z2
/�Z0 C Z2



D �Z1Z2Z0 C Z1Z2
2 C Z0Z2

2
/�Z0 C Z2


�Z2Z0 C Z2
2 C Z1Z0 C Z1Z2 C Z0Z2
/�Z0 C Z2


i.e. Z0 D Z1Z2Z0 C Z1Z2
2 C Z0Z2

2

Z2
2 C 2Z2Z0 C Z1Z0 C Z1Z2

Thus Z0�Z2
2 C 2Z2Z0 C Z1Z0 C Z1Z2
 D Z1Z2Z0 C Z1Z2

2 C Z0Z2
2

2Z2Z2
0 C Z1Z2

0 D Z1Z2
2

from which

characteristic impedance,Z0 =

√(
Z1Z 2

2

Z1Y 2Z2

)
�41.3




Attenuators761

If the output terminals of Figure 41.4 are open-circuited, then the open-
circuit impedance,

ZOC D Z2�Z1 C Z2


Z2 C Z1 C Z2
D Z2�Z1 C Z2


Z1 C 2Z2

If the output terminals of Figure 41.4 are short-circuited, then the short-
circuit impedance,

ZSC D Z2Z1

Z1 C Z2

Thus

ZOCZSC D Z2�Z1 C Z2


�Z1 C 2Z2


(
Z2Z1

Z1 C Z2

)
D Z1Z2

2

Z1 C 2Z2

Comparing this expression with equation (41.3) gives

Z0 =
p

.ZOCZSC/, �41.20


which is the same as equation (41.2).
Thus the characteristic impedance Z0 is given by Z0 D p

�ZOCZSC

whether the network is a symmetrical T or a symmetrical �.

Equations (41.1) to (41.3) are used later in this chapter.

41.3 Logarithmic ratios The ratio of two powers P1 and P2 may be expressed in logarithmic form
as shown in Chapter 10.
Let P1 be the input power to a system and P2 the output power.
If logarithms to base 10 are used, then the ratio is said to be in bels,
i.e., power ratio in bels D lg�P2/P1
. The bel is a large unit and the
decibel (dB) is more often used, where 10 decibels D 1 bel, i.e.,

power ratio in decibels= 10 lg
P2

P1
�41.4


For example:

P2/P1 Power ratio (dB)

1 10 lg 1 D 0

100 10 lg 100 D C20 (power gain)
1

10
10 lg

1

10
D �10 (power loss or attenuation)

If logarithms to basee (i.e., natural or Napierian logarithms) are used,
then the ratio of two powers is said to be in nepers (Np), i.e.,
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power ratio in nepers =
1
2

ln
P2

P1
�41.5


Thus when the power ratio P2/P1 D 5, the power ratio in nepers D
1
2 ln 5 D 0.805 Np, and when the power ratio P2/P1 D 0.1, the power
ratio in nepers D 1

2 ln 0.1 D �1.15 Np.
The attenuation of filter sections and along a transmission line are of an

exponential form and it is in such applications that the unit of the neper
is used (see Chapters 42 and 44).

If the powers P1 and P2 refer to power developed in two equal resistors,
R, then P1 D V2

1/R and P2 D V2
2/R. Thus the ratio (from equation (41.4))

can be expressed, by the laws of logarithms, as

ratio in decibels D 10 lg
P2

P1
D 10 lg

(
V2

2/R

V2
1/R

)
D 10 lg

V2
2

V2
1

D 10 lg
(

V2

V1

)2

i.e. ratio in decibels = 20 lg
V2

V1
�41.6


Although this is really a power ratio, it is called the logarithmic voltage
ratio .

Alternatively, (from equation (41.5)),

ratio in nepers D 1

2
ln

P2

P1
D 1

2
ln

(
V2

2/R

V2
1/R

)
D 1

2
ln
(

V2

V1

)2

i.e., ratio in nepers = ln
V2

V1
�41.7


Similarly, if currents I1 and I2 in two equal resistors R give powers P1

and P2 then (from equation (41.4))

ratio in decibels D 10 lg
P2

P1
D 10 lg

(
I2

2R

I2
1R

)
D 10 lg

(
I2

I1

)2

i.e., ratio in decibels= 20 lg
I2

I1
�41.8


Alternatively (from equation (41.5)),

ratio in nepers D 1

2
ln

P2

P1
D 1

2
ln

(
I2

2R

I2
1R

)2

D 1

2
ln
(

I2

I1

)2
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i.e., ratio in nepers = ln
I2

I1
�41.9


In equations (41.4) to (41.9) the output-to-input ratio has been used.
However, the input-to-output ratio may also be used. For example,
in equation (41.6), the output-to-input voltage ratio is expressed as
20 lg�V2/V1
 dB. Alternatively, the input-to-output voltage ratio may be
expressed as 20 lg�V1/V2
 dB, the only difference in the values obtained
being a difference in sign.

If 20 lg�V2/V1
 D 10 dB, say, then 20 lg�V1/V2
 D �10 dB. Thus if
an attenuator has a voltage input V1 of 50 mV and a voltage output V2

of 5 mV, the voltage ratio V2/V1 is 5/50 or 1/10. Alternatively, this may
be expressed as ‘an attenuation of 10’, i.e., V1/V2 D 10.

Problem 1. The ratio of output power to input power in a
system is

(a) 2 (b) 25 (c) 1000 and (d) 1
100

Determine the power ratio in each case (i) in decibels and (ii) in
nepers.

(i) From equation (41.4), power ratio in decibels D 10 lg�P2/P1
.

(a) When P2/P1 D 2, power ratio D 10 lg 2 D 3 dB
(b) When P2/P1 D 25, power ratio D 10 lg 25 D 14 dB
(c) When P2/P1 D 1000, power ratio D 10 lg 1000 D 30 dB

(d) When P2/P1 D 1
100 , power ratio D 10 lg 1

100 D −20 dB

(ii) From equation (41.5), power ratio in nepers D 1
2 ln�P2/P1
.

(a) When P2/P1 D 2, power ratio D 1
2 ln 2 D 0.347 Np

(b) When P2/P1 D 25, power ratio D 1
2 ln 25 D 1.609 Np

(c) When P2/P1 D 1000, power ratio D 1
2 ln 1000 D 3.454 Np

(d) When P2/P1 D 1
100 , power ratio D 1

2 ln 1
100 D −2.303 Np

The power ratios in (a), (b) and (c) represent power gains, since the
ratios are positive values; the power ratio in (d) represents a power loss
or attenuation, since the ratio is a negative value.

Problem 2. 5% of the power supplied to a cable appears at the
output terminals. Determine the attenuation in decibels.

If P1 D input power and P2 D output power, then

P2

P1
D 5

100
D 0.05
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From equation (41.4), power ratio in decibels

D 10 lg�P2/P1
 D 10 lg 0.05 D �13 dB.

Hence the attenuation (i.e., power loss) is 13 dB.

Problem 3. An amplifier has a gain of 15 dB. If the input power
is 12 mW, determine the output power.

From equation (41.4), decibel power ratio D 10 lg�P2/P1
. Hence
15 D 10 lg�P2/12
, where P2 is the output power in milliwatts.

1.5 D lg
(

P2

12

)

P2

12
D 101.5

from the definition of a logarithm. Thus the output power,

P2 D 12�10
1.5 D 379.5 mW

Problem 4. The current output of an attenuator is 50 mA. If the
current ratio of the attenuator is �1.32 Np, determine (a) the current
input and (b) the current ratio expressed in decibels. Assume that
the input and load resistances of the attenuator are equal.

(a) From equation (41.9), current ratio in nepers D ln�I2/I1
. Hence
�1.32 D ln�50/I1
, where I1 is the input current in mA.

e�1.32 D 50

I1

from which, current input , I1 D 50

e�1.32
D 50e1.32 D 187.2 mA

(b) From equation (41.8),

current ratio in decibels D 20 lg
I2

I1
D 20 lg

(
50

187.2

)

D −11.47 dB

Further problems on logarithmic ratios may be found in Section 41.9,
problems 1 to 5, page 785.

41.4 Symmetrical T-and
p-attenuators

(a) Symmetrical T-attenuator

As mentioned in Section 41.1, the ideal attenuator is made up of pure
resistances. A symmetrical T-pad attenuator is shown in Figure 41.5 with
a termination R0 connected as shown. From equation (41.1),
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Figure 41.5 Symmetrical
T-pad attenuator

R0 =
√

�R2
1 Y 2R1R2/ �41.10


and from equation (41.2) R0 =
p

�ROCRSC/ �41.11


With resistance R0 as the termination, the input resistance of the pad will
also be equal to R0. If the terminating resistance R0 is transferred to port
A then the input resistance looking into port B will again be R0.

The pad is therefore symmetrical in impedance in both directions of
connection and may thus be inserted into a network whose impedance is
also R0. The value of R0 is the characteristic impedance of the section.

As stated in Section 41.3, attenuation may be expressed as a voltage
ratio V1/V2 (see Figure 41.5) or quoted in decibels as 20 lg�V1/V2
 or,
alternatively, as a power ratio as 10 lg�P1/P2
. If a T-section is symmet-
rical, i.e., the terminals of the section are matched to equal impedances,
then

10 lg
P1

P2
D 20 lg

V1

V2
D 20 lg

I1

I2

since RIN D RLOAD D R0, i.e.,

10 lg
P1

P2
D 10 lg

(
V1

V2

)2

D 10 lg
(

I1

I2

)2

from which
P1

P2
D
(

V1

V2

)2

D
(

I1

I2

)2

or

√(
P1

P2

)
D
(

V1

V2

)
D
(

I1

I2

)

Let N D V1/V2 or I1/I2 or
p

�P1/P2
, where N is the attenuation. In
Section 41.5, page 772, it is shown that, for a matched network, i.e., one
terminated in its characteristic impedance, N is in fact the insertion loss
ratio. (Note that in an asymmetrical network, only the expression N Dp

�P1/P2
 may be used — see Section 41.7 on the L-section attenuator)

From Figure 41.5,

current I1 D V1

R0

Voltage V D V1 � I1R1 D V1 �
(

V1

R0

)
R1

i.e., V D V1

(
1 � R1

R0

)

Voltage V2 D
(

R0

R1 C R0

)
V by voltage division
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i.e., V2 D
(

R0

R1 C R0

)
V1

(
1 � R1

R0

)

D V1

(
R0

R1 C R0

)(
R0 � R1

R0

)

Hence
V2

V1
D R0 � R1

R0 C R1
or

V1

V2
D N D R0 C R1

R0 � R1
�41.12


From equation (41.12) and also equation (41.10), it is possible to derive
expressions for R1 and R2 in terms of N and R0, thus enabling an atten-
uator to be designed to give a specified attenuation and to be matched
symmetrically into the network. From equation (41.12),

N�R0 � R1
 D R0 C R1

NR0 � NR1 D R0 C R1

NR0 � R0 D R1 C NR1

R0�N � 1
 D R1�1 C N


from which R1 = R0
.N − 1/

.N Y 1/
�41.13


From equation (41.10), R0 D
√

�R2
1 C 2R1R2
 i.e., R2

0 D R2
1 C 2R1R2,

from which, R2 D R2
0 � R2

1

2R1

Substituting for R1 from equation (41.13) gives

R2 D R2
0 � [R0�N � 1
/�N C 1
]2

2[R0�N � 1
/�N C 1
]

D [R2
0�N C 1
2 � R2

0�N � 1
2]/�N C 1
2

2R0�N � 1
/�N C 1


i.e., R2 D R2
0[�N C 1
2 � �N � 1
2]

2R0�N � 1
�N C 1


D R0[�N2 C 2N C 1
 � �N2 � 2N C 1
]

2�N2 � 1


D R0�4N


2�N2 � 1


Hence R2 = R0

(
2N

N 2 − 1

)
�41.14


Thus if the characteristic impedance R0 and the attenuation N �D V1/V2)
are known for a symmetrical T-network then values of R1 and R2 may be
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Figure 41.6

calculated. Figure 41.6 shows a T-pad attenuator having input and output
impedances of R0 with resistances R1 and R2 expressed in terms of R0

and N.

(b) Symmetrical p-attenuator

A symmetrical �-attenuator is shown in Figure 41.7 terminated in R0.
From equation (41.3),

characteristic impedance R0 =

√(
R1R2

2

R1Y 2R2

)
�41.15


and from equation (41.20), R0 =
p

�ROCRSC/ �41.16
Figure 41.7 Symmetrical
�-attenuator

Given the attenuation factor N D V1

V2

(
D I1

I2

)

and the characteristic impedance R0, it is possible to derive expressions
for R1 and R2, in a similar way to the T-pad attenuator, to enable a
�-attenuator to be effectively designed.

Since N D V1/V2 then V2 D V1/N. From Figure 41.7,

current I1 D IA C IB and current IB D IC C ID. Thus

current I1 D V1

R0
D IA C IC C ID

D V1

R2
C V2

R2
C V2

R0
D V1

R2
C V1

NR2
C V1

NR0

since V2 D V1/N, i.e.,

V1

R0
D V1

(
1

R2
C 1

NR2
C 1

NR0

)

Hence
1

R0
D 1

R2
C 1

NR2
C 1

NR0

1

R0
� 1

NR0
D 1

R2
C 1

NR2

1

R0

(
1 � 1

N

)
D 1

R2

(
1 C 1

N

)

1

R0

(
N � 1

N

)
D 1

R2

(
N C 1

N

)

Thus R2 = R0
.N Y 1/

.N − 1/
�41.17
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From Figure 41.7, current I1 D IA C IB, and since the p.d. across R1 is
�V1 � V2
,

V1

R0
D V1

R2
C V1 � V2

R1

V1

R0
D V1

R2
C V1

R1
� V2

R1

V1

R0
D V1

R2
C V1

R1
� V1

NR1
since V2 D V1/N

1

R0
D 1

R2
C 1

R1
� 1

NR1

1

R0
� 1

R2
D 1

R1

(
1 � 1

N

)

1

R0
� �N � 1


R0�N C 1

D 1

R1

(
N � 1

N

)
from equation (41.17),

1

R0

(
1 � N � 1

N C 1

)
D 1

R1

(
N � 1

N

)

1

R0

(
�N C 1
 � �N � 1


�N C 1


)
D 1

R1

(
N � 1

N

)

1

R0

(
2

N C 1

)
D 1

R1

(
N � 1

N

)

R1 D R0

(
N � 1

N

)(
N C 1

2

)

Hence R1 = R0

(
N 2 − 1

2N

)
�41.18


Figure 41.8 shows a �-attenuator having input and output impedances of
R0 with resistances R1 and R2 expressed in terms of R0 and N.

Figure 41.8
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Figure 41.9

There is no difference in the functions of the T- and �-attenuator pads
and either may be used in a particular situation.

Problem 5. Determine the characteristic impedance of each of the
attenuator sections shown in Figure 41.9.

From equation (41.10), for a T-section attenuator the characteristic
impedance,

R0 D
√

�R2
1 C 2R1R2
.

(a) R0 D
√

�82 C �2
�8
�21

 D p
400 D 20Z

(b) R0 D
√

�102 C �2
�10
�15

 D p
400 D 20Z

(c) R0 D
√

�2002 C �2
�200
�56.25

 D p
62500 D 250Z

It is seen that the characteristic impedance of parts (a) and (b) is the same.
In fact, there are numerous combinations of resistances R1 and R2 which
would give the same value for the characteristic impedance.

Problem 6. A symmetrical �-attenuator pad has a series arm of
500 � resistance and each shunt arm of 1 k� resistance. Determine
(a) the characteristic impedance, and (b) the attenuation (in dB)
produced by the pad.

The �-attenuator section is shown in Figure 41.10 terminated in its char-
acteristic impedance, R0.

(a) From equation (41.15), for a symmetrical �-attenuator section,

characteristic impedance, R0 D
√(

R1R2
2

R1 C 2R2

)

Hence R0 D
√[

�500
�1000
2

500 C 2�1000


]
D 447 �Figure 41.10

(b) Attenuation D 20 lg�I1/I2
 dB. From Figure 41.10,

current IX D
(

R2

R2 C R1 C �R2R0/�R2 C R0



)
�I1
,

by current division

i.e., IX D
(

1000

1000 C 500 C ��1000
�447
/�1000 C 447



)
I1

D 0.553I1

and current I2 D
(

R2

R2 C R0

)
IX D

(
1000

1000 C 447

)
IX D 0.691IX



770 Electrical Circuit Theory and Technology

Hence I2 D 0.691�0.553I1
 D 0.382I1 and I1/I2 D 1/0.382

D 2.617. Thus

attenuation D 20 lg 2.617 D 8.36 dB

(Alternatively, since I1/I2 D N, then the formula

R2 D R0

(
N C 1

N � 1

)

may be transposed for N, from which attenuation = 20 lgN .)

Problem 7. For each of the attenuator networks shown in
Figure 41.11, determine (a) the input resistance when the output
port is open-circuited, (b) the input resistance when the output port
is short-circuited, and (c) the characteristic impedance.

(i) For the T-network shown in Figure 41.11(i):

(a) ROC D 15 C 10 D 25Z

(b) RSC D 15 C 10 ð 15

10 C 15
D 15 C 6 D 21Z

(c) From equation (41.11), R0 D p
�ROCRSC
 D p

[�25
�21
]
D 22.9 Z

(Alternatively, from equation (41.10),

R0 D
√

�R2
1 C 2R1R2
 D

√
�152 C �2
�15
�10

 D 22.9 Z


(ii) For the �-network shown in Figure 41.11(ii):

(a) ROC D 5 ð �15 C 5


5 C �15 C 5

D 100

25
D 4 Z

(b) RSC D 5 ð 15

5 C 15
D 75

20
D 3.75Z

(c) From equation (41.16),

R0 D p
�ROCRSC
 as for a T-network

D p
[�4
�3.75
] D p

15 D 3.87Z

(Alternatively, from equation (41.15),

R0 D
√(

R1R2
2

R1 C 2R2

)
D
√(

15�5
2

15 C 2�5


)
D 3.87Z


Problem 8. Design a T-section symmetrical attenuator pad to
provide a voltage attenuation of 20 dB and having a characteristic
impedance of 600 �.

Figure 41.11
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Voltage attenuation in decibels D 20 lg�V1/V2
.

Attenuation, N D V1/V2, hence 20 D 20 lg N, from which N D 10.

Characteristic impedance, R0 D 600 �

From equation (41.13),

resistance R1 D R0�N � 1


�N C 1

D 600�10 � 1


�10 C 1

D 491Z

From equation (41.14),

resistance R2 D R0

(
2N

N2 � 1

)
D 600

(
�2
�10


102 � 1

)
D 121Z

Thus the T-section attenuator shown in Figure 41.12 has a voltage atten-
uation of 20 dB and a characteristic impedance of 600 �.Figure 41.12
(Check: From equation (41.10)),

R0 D
√

�R2
1 C 2R1R2
 D

√
[4912 C 2�491
�121
] D 600 �


Problem 9. Design a �-section symmetrical attenuator pad to
provide a voltage attenuation of 20 dB and having a characteristic
impedance of 600 �.

From problem 8, N D 10 and R0 D 600 �

From equation (41.18),

resistance R1 D R0

(
N2 � 1

2N

)
D 600

(
102 � 1

�2
�10


)

D 2970Z or 2.97 kZ

From equation (41.17),

R2 D R0

(
N C 1

N � 1

)
D 600

(
10 C 1

10 � 1

)
D 733Z

Thus the �-section attenuator shown in Figure 41.13 has a voltage atten-
uation of 20 dB and a characteristic impedance of 600 �.

Figure 41.13
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(Check: From equation (41.15),

R0 D
√(

R1R2
2

R1 C 2R2

)
D
√(

�2970
�733
2

2970 C �2
�733


)
D 600 �


Further problems on symmetrical T- and�-attenuators may be found in
Section 41.9, problems 6 to 15, page 785.

41.5 Insertion loss Figure 41.14(a) shows a generator E connected directly to a load ZL . Let
the current flowing be IL and the p.d. across the load VL. z is the internal
impedance of the source.

Figure 41.14(b) shows a two-port network connected between the
generator E and load ZL.

The current through the load, shown as I2, and the p.d. across the
load, shown as V2, will generally be less than current IL and voltage VL

of Figure 41.14(a), as a result of the insertion of the two-port network
between generator and load.

The insertion loss ratio, AL , is defined as

AL D voltage across load when connected directly to the generator

voltage across load when the two-port network is connected

i.e., AL = VL=V2 = I L=I2 �41.19


Figure 41.14

since VL D ILZL and V2 D I2ZL. Since both VL and V2 refer to p.d.’s
across the same impedance ZL, the insertion loss ratio may also be
expressed (from Section 41.3) as

insertion loss ratio= 20 lg
(

VL

V2

)
dB or 20 lg

(
I L

I2

)
dB �41.20


When the two-port network is terminated in its characteristic impedance
Z0 the network is said to be matched. In such circumstances the input
impedance is also Z0, thus the insertion loss is simply the ratio of input
to output voltage (i.e., V1/V2
. Thus, for a network terminated in its
characteristic impedance,

insertion loss= 20 lg
(

V1

V2

)
dB or 20 lg

(
I1

I2

)
dB �41.21


Problem 10. The attenuator shown in Figure 41.15 feeds a
matched load. Determine (a) the characteristic impedance R0, and
(b) the insertion loss in decibels.

Figure 41.15
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(a) From equation (41.10), the characteristic impedance of a symmetric
T-pad attenuator is given by

R0 D
√

�R2
1 C 2R1R2
 D

√
[3002 C 2�300
�450
] D 600Z.

(b) Since the T-network is terminated in its characteristic impedance,
then from equation (41.21),

insertion loss D 20 lg�V1/V2
 dB or 20 lg�I1/I2
 dB.

By current division in Figure 41.15,

I2 D
(

R2

R2 C R1 C R0

)
�I1


Hence

insertion lossD 20 lg
I1

I2
D 20 lg

(
I1

�R2/�R2 C R1 C R0

I1

)

D 20 lg
(

R2 C R1 C R0

R2

)

D 20 lg
(

450 C 300 C 600

450

)

D 20 lg 3 D 9.54 dB

Problem 11. A 0–3 k� rheostat is connected across the output of
a signal generator of internal resistance 500 �. If a load of 2 k�
is connected across the rheostat, determine the insertion loss at a
tapping of (a) 2 k�, (b) 1 k�.

The circuit diagram is shown in Figure 41.16. Without the rheostat in
the circuit the voltage across the 2 k� load, VL (see Figure 41.17), is
given by

VL D
(

2000

2000 C 500

)
E D 0.8 E

(a) With the 2 k� tapping, the network of Figure 41.16 may be redrawn
as shown in Figure 41.18, which in turn is simplified as shown in
Figure 41.19. From Figure 41.19,

voltage V2 D
(

1000

1000 C 1000 C 500

)
E D 0.4 E

Figure 41.16

Hence, from equation (41.19), insertion loss ratio,

AL D VL

V2
D 0.8E

0.4E
D 2

Figure 41.17
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Figure 41.18

or, from equation (41.20),

insertion loss D 20 lg�VL/V2
 D 20 lg 2 D 6.02 dB

(b) With the 1 k� tapping, voltage V2 is given by

V2 D
(

�1000 ð 2000
/�1000 C 2000


��1000 ð 2000
/�1000 C 2000

 C 2000 C 500

)
E

D
(

666.7

666.7 C 2000 C 500

)
E D 0.211 E

Hence, from equation (41.19),

insertion loss ratio AL D VL

V2
D 0.8E

0.211E
D 3.79

or, from equation (41.20),

insertion loss in decibels D 20 lg
(

VL

V2

)
D 20 lg 3.79

D 11.57 dB

(Note that the insertion loss is not doubled by halving the tapping.)

Figure 41.19

Problem 12. A symmetrical �-attenuator pad has a series arm of
resistance 1000 � and shunt arms each of 500 �. Determine (a) its
characteristic impedance, and (b) the insertion loss (in decibels)
when feeding a matched load.

The �-attenuator pad is shown in Figure 41.20, terminated in its charac-
teristic impedance, R0.

Figure 41.20

(a) From equation (41.15), the characteristic impedance of a symmet-
rical attenuator is given by

R0 D
√(

R1R2
2

R1 C 2R2

)
D
√(

�1000
�500
2

1000 C 2�500


)
D 354Z
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(b) Since the attenuator network is feeding a matched load, from equa-
tion (41.21),

insertion loss D 20 lg
(

V1

V2

)
dB D 20 lg

(
I1

I2

)
dB

From Figure 41.20, by current division,

current IX D
{

R2

R2 C R1 C �R2R0/�R2 C R0



}
�I1


and current I2 D
(

R2

R2 C R0

)
IX

D
(

R2

R2 C R0

)(
R2

R2 C R1 C �R2R0/�R2 C R0



)
I1

i.e.,

I2 D
(

500

500 C 354

)(
500

500 C 1000 C ��500
�354
/�500 C 354



)
I1

D �0.5855
�0.2929
I1 D 0.1715I1

Hence I1/I2 D 1/0.1715 D 5.83

Thus the insertion loss in decibelsD 20 lg�I1/I2


D 20 lg 5.83 D 15.3 dB

Further problems on insertion loss may be found in Section 41.9, prob-
lems 16 to 18, page 786.

41.6 Asymmetrical T-
and p-sections

Figure 41.21(a) shows an asymmetrical T-pad section where resistance
R1 6D R3. Figure 41.21(b) shows an asymmetrical �-section where
R2 6D R3.

When viewed from port A, in each of the sections, the output
impedance is ROB; when viewed from port B, the input impedance is
ROA. Since the sections are asymmetrical ROA does not have the same
value as ROB.

Iterative impedance is the term used for the impedance measured at
one port of a two-port network when the other port is terminated with
an impedance of the same value. For example, the impedance looking
into port 1 of Figure 41.22(a) is, say, 500 � when port 2 is terminated
in 500 � and the impedance looking into port 2 of Figure 41.22(b) is,
say, 600 � when port 1 is terminated in 600 �. (In symmetric T- and
�-sections the two iterative impedances are equal, this value being the
characteristic impedance of the section.)

An image impedance is defined as the impedance which, when
connected to the terminals of a network, equals the impedance presented
to it at the opposite terminals. For example, the impedance looking into

Figure 41.21 (a) Asymmetrical
T-pad section, (b) Asymmetrical
�-section
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Figure 41.22

port 1 of Figure 41.23(a) is, say, 400 � when port 2 is terminated in, say
750 �, and the impedance seen looking into port 2 (Figure 41.23(b)) is
750 � when port 1 is terminated in 400 �. An asymmetrical network is
correctly terminated when it is terminated in its image impedance. (If the
image impedances are equal, the value is the characteristic impedance.)

The following worked problems show how the iterative and image
impedances are determined for asymmetrical T- and �-sections.

Problem 13. An asymmetrical T-section attenuator is shown in
Figure 41.24. Determine for the section (a) the image impedances,
and (b) the iterative impedances.

(a) The image impedance ROA seen at port 1 in Figure 41.24 is given by
equation (41.11): ROA D p

�ROC
�RSC
, where ROC and RSC refer to
port 2 being respectively open-circuited and short-circuited.

ROC D 200 C 100 D 300 �

and RSC D 200 C �100
�300


100 C 300
D 275 �

Hence ROA D p
[�300
�275
] D 287.2 Z

Figure 41.23

Similarly, ROB D p
�ROC
�RSC
, where ROC and RSC refer to port 1

being respectively open-circuited and short-circuited.

ROC D 300 C 100 D 400 �

and RSC D 300 C �200
�100


200 C 100
D 366.7 �

Hence ROB D p
[�400
�366.7
] D 383Z.

Thus the image impedances are 287.2Z and 383Z and are
shown in the circuit of Figure 41.25.
(Checking:

ROA D 200 C �100
�300 C 383


100 C 300 C 383
D 287.2 �

and ROB D 300 C �100
�200 C 287.2


100 C 200 C 287.2
D 383 �


(b) The iterative impedance at port 1 in Figure 41.26, is shown as R1.
Hence

R1 D 200 C �100
�300 C R1


100 C 300 C R1
D 200 C 30 000 C 100R1

400 C R1

from which 400R1 C R2
1 D 80 000 C 200R1 C 30 000 C 100R1

and R2
1 C 100R1 � 110 000 D 0Figure 41.24
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Figure 41.25

Solving by the quadratic formula gives

R1 D �100 š
√

[1002 � �4
�1
��110 000
]

2

D �100 š 670.8

2
D 285.4 Z

(neglecting the negative value).

Figure 41.26

The iterative impedance at port 2 in Figure 41.27 is shown as R2.
Hence

R2 D 300 C �100
�200 C R2


100 C 200 C R2
D 300 C 20 000 C 100R2

300 C R2

from which 300R2 C R2
2 D 90 000 C 300R2 C 20 000 C 100R2

and R2
2 � 100R2 � 110 000 D 0

Thus R2 D 100 š
√

[��100
2 � �4
�1
��110 000
]

2

D 100 š 670.8

2
D 385.4 Z

Figure 41.27

Thus the iterative impedances of the section shown in
Figure 41.24 are 285.4Z and 385.4Z.

Problem 14. An asymmetrical �-section attenuator is shown in
Figure 41.28. Determine for the section (a) the image impedances,
and (b) the iterative impedances.

Figure 41.28

(a) The image resistance ROA seen at port 1 is given by

ROA D p
�ROC
�RSC
,

where the impedance at port 1 with port 2 open-circuited,

ROC D �1000
�5000


1000 C 5000
D 833 �

and the impedance at port 1, with port 2 short-circuited,

RSC D �1000
�3000


1000 C 3000
D 750 �

Hence ROA D p
[�833
�750
 D 790Z.

Similarly, ROB D p
�ROC
�RSC
, where the impedance at port 2 with

port 1 open-circuited,
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ROC D �2000
�4000


2000 C 4000
D 1333 �

and the impedance at port 2 with port 1 short-circuited,

RSC D �2000
�3000


2000 C 3000
D 1200 �

Hence ROB D p
[�1333
�1200
] D 1265Z

Thus the image impedances are 790Z and 1265Z.

Figure 41.29

(b) The iterative impedance at port 1 in Figure 41.29 is shown as R1.
From circuit theory,

R1 D 1000[3000 C �2000R1/�2000 C R1

]

1000 C 3000 C �2000R1/�2000 C R1



i.e., R1 D 3 ð 106 C �2 ð 106R1/�2000 C R1



4000 C �2000R1/�2000 C R1



4000R1 C 2000R2
1

2000 C R1
D 3 ð 106 C 2 ð 106R1

2000 C R1

8 ð 106R1 C 4000R2
1 C 2000R2

1 D 6 ð 109 C 3 ð 106R1

C 2 ð 106R1

6000R2
1 C 3 ð 106R1 � 6 ð 109 D 0

2R2
1 C 1000R1 � 2 ð 106 D 0

Using the quadratic formula gives

R1 D �1000 š
√

[�1000
2 � �4
�2
��2 ð 106
]

4

D �1000 š 4123

4
D 781Z

(neglecting the negative value).

Figure 41.30

The iterative impedance at port 2 in Figure 41.30 is shown as R2.

R2 D 2000[3000 C �1000R2/�1000 C R2

]

2000 C 3000 C �1000R2/�1000 C R2



D 6 ð 106 C �2 ð 106R2/�1000 C R2



5000 C �1000R2/�1000 C R2



Hence

5000R2 C 1000R2
2

1000 C R2
D 6 ð 106 C 2 ð 106R2

1000 C R2

5 ð 106R2 C 5000R2
2 C 1000R2

2 D 6 ð 109 C 6 ð 106R2

C 2 ð 106R2
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6000R2
2 � 3 ð 106R2 � 6 ð 109 D 0

2R2
2 � 1000R2 � 2 ð 106 D 0

from which

R2 D 1000 š
√

[��1000
2 � �4
�2
��2 ð 106
]

4

D 1000 š 4123

4
D 1281Z

Thus the iterative impedances of the section shown in
Figure 41.28 are 781Z and 1281Z.

Further problems on asymmetrical T — and�-sections may be found in
Section 41.9, problems 19 to 21, page 787.

41.7 The L-section
attenuator

A typical L-section attenuator pad is shown in Figure 41.31. Such a pad
is used for matching purposes only, the design being such that the atten-
uation introduced is a minimum. In order to derive values for R1 and R2,
consider the resistances seen from either end of the section.

Looking in at port 1,

ROA D R1 C R2ROB

R2 C ROB

from which

ROAR2 C ROAROB D R1R2 C R1ROB C R2ROB �41.22


Figure 41.31 L-section
attenuator pad

Looking in at port 2,

ROB D R2�R1 C ROA


R1 C ROA C R2

from which

ROBR1 C ROAROB C ROBR2 D R1R2 C R2ROA �41.23


Adding equations (41.22) and (41.23) gives

ROAR2 C 2ROAROB C ROBR1 C ROBR2 D 2R1R2 C R1ROB

C R2ROB C R2ROA

i.e., 2ROAROB D 2R1R2

and R1 D ROAROB

R2
�41.24
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Substituting this expression for R1 into equation (41.22) gives

ROAR2 C ROAROB D
(

ROAROB

R2

)
R2 C

(
ROAROB

R2

)
ROB C R2ROB

i.e., ROAR2 C ROAROB D ROAROB C ROAR2
OB

R2
C R2ROB

from which R2�ROA � ROB
 D ROAR2
OB

R2

R2
2�ROA � ROB
 D ROAR2

OB

and resistance, R2 =

√(
ROAR2

OB

ROA − ROB

)
�41.25


Thus, from equation (41.24),

R1 D ROAROB√
�ROAR2

OB/�ROA � ROB


D ROAROB

ROB
p

�ROA/�ROA � ROB



D ROAp
ROA

p
�ROA � ROB


Hence resistance, R1 =
p

[ROA.ROA − ROB/] �41.26


Figure 41.32 shows an L-section attenuator pad with its resistances
expressed in terms of the input and output resistances, ROA and ROB.

Figure 41.32

Problem 15. A generator having an internal resistance of 500 �
is connected to a 100 � load via an impedance-matching resis-
tance pad as shown in Figure 41.33. Determine (a) the values of
resistance R1 and R2, (b) the attenuation of the pad in decibels, and
(c) its insertion loss.
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Figure 41.33

(a) From equation (41.26), R1 D p
[500�500 � 100
] D 447.2 Z

From equation (41.25), R2 D
√(

�500
�100
2

500 � 100

)
D 111.8 Z

(b) From section 41.3, the attenuation is given by 10 lg�P1/P2
 dB. Note
that, for an asymmetrical section such as that shown in Figure 41.33,
the expression 20 lg�V1/V2
 or 20 lg�I1/I2
 may not be used for
attenuation since the terminals of the pad are not matched to equal
impedances. In Figure 41.34,

current I1 D E

500 C 447.2 C �111.8 ð 100/�111.8 C 100



D E

1000

Figure 41.34

and current

I2 D
(

111.8

111.8 C 100

)
I1 D

(
111.8

211.8

)(
E

1000

)
D E

1894.5

Thus input power,

P1 D I2
1�500
 D

(
E

1000

)2

�500


and output power,

P2 D I2
2�100
 D

(
E

1894.5

)2

�100


Hence

attenuation D 10 lg
P1

P2
D 10 lg

{
[E/�1000
]2�500


[E/�1894.5]2�100


}

D 10 lg

{(
1894.5

1000

)2

�5


}
dB

i.e., attenuation = 12.54 dB

(c) Insertion loss AL is defined as

voltage across load when connected directly to the generator

voltage across load when the two-port network is connected

Figure 41.35 shows the generator connected directly to the load.

Load current, IL D E

500 C 100
D E

600

and voltage, VL D IL�100
 D E

600
�100
 D E

6Figure 41.35
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From Figure 41.34 voltage, V1 D E � I1�500
 D E � �E/1000
500 from
part (b)

i.e., V1 D 0.5 E

voltage, V2 D V1 � I1R1 D 0.5 E �
(

E

1000

)
�447.2
 D 0.0528 E

insertion loss,AL D VL

V2
D E/6

0.0528E
D 3.157

In decibels, the insertion lossD 20 lg
VL

V2

D 20 lg 3.157 D 9.99 dB

Further problems on L-section attenuators may be found in Section 41.9,
problems 22 and 23, page 787.

41.8 Two-port networks
in cascade

Often two-port networks are connected in cascade, i.e., the output from
the first network becomes the input to the second network, and so on,
as shown in Figure 41.36. Thus an attenuator may consist of several
cascaded sections so as to achieve a particular desired overall performance.

Figure 41.36 Two-port networks connected in cascade

If the cascade is arranged so that the impedance measured at one port
and the impedance with which the other port is terminated have the same
value, then each section (assuming they are symmetrical) will have the
same characteristic impedance Z0 and the last network will be terminated
in Z0. Thus each network will have a matched termination and hence
the attenuation in decibels of section 1 in Figure 41.36 is given by a1 D
20 lg�V1/V2
. Similarly, the attenuation of section 2 is given by a2 D
20 lg�V2/V3
, and so on.

The overall attenuation is given by

a D 20
V1

Vn

D 20 lg
(

V1

V2
ð V2

V3
ð V3

V4
ð Ð Ð Ð ð Vn�1

Vn

)

D 20 lg
V1

V2
C 20 lg

V2

V3
C Ð Ð Ð C 20 lg

Vn�1

Vn
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by the laws of logarithms, i.e.,

overall attenuation, a = a1Y a2Y · · ·Y an−1 �41.27


Thus the overall attenuation is the sum of the attenuations (in decibels)
of the matched sections.

Problem 16. Five identical attenuator sections are connected in
cascade. The overall attenuation is 70 dB and the voltage input to
the first section is 20 mV. Determine (a) the attenuation of each
individual attenuation section, (b) the voltage output of the final
stage, and (c) the voltage output of the third stage.

(a) From equation (41.27), the overall attenuation is equal to the sum
of the attenuations of the individual sections and, since in this case
each section is identical, the attenuation of each sectionD 70/5 D
14 dB.

(b) If V1 D the input voltage to the first stage and V0 D the output of
the final stage, then the overall attenuation D 20 lg�V1/V0
, i.e.,

70 D 20 lg
(

20

V0

)
where V0 is in millivolts

3.5 D lg
(

20

V0

)

103.5 D 20

V0

from which

output voltage of final stage,V0 D 20

103.5
D 6.32 ð 10�3mV

D 6.32 mV

(c) The overall attenuation of three identical stages is 3 ð 14 D 42 dB.
Hence 42 D 20 lg�V1/V3
, where V3 is the voltage output of the
third stage. Thus

42

20
D lg

(
20

V3

)
, 1042/20 D 20

V3

from which the voltage output of the third stage,V3 D 20/102.1 D
0.159 mV
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Problem 17. A d.c. generator has an internal resistance of 450 �
and supplies a 450 � load.

(a) Design a T-network attenuator pad having a characteristic
impedance of 450 � which, when connected between the
generator and the load, will reduce the load current to 1

8 of its
initial value.

(b) If two such networks as designed in (a) were connected in
series between the generator and the load, determine the frac-
tion of the initial current that would now flow in the load.

(c) Determine the attenuation in decibels given by four such
sections as designed in (a).

The T-network attenuator is shown in Figure 41.37 connected between
the generator and the load. Since it is matching equal impedances, the
network is symmetrical.

Figure 41.37

(a) Since the load current is to be reduced to 1
8 of its initial value, the

attenuation N D 8. From equation (41.13),

resistance, R1 D R0�N � 1


�N C 1

D 450

�8 � 1


�8 C 1

D 350Z

and from equation (41.14),

resistance, R2 D R0

(
2N

N2 � 1

)
D 450

(
2 ð 8

82 � 1

)
D 114Z

(b) When two such networks are connected in series, as shown in
Figure 41.38, current I1 flows into the first stage and 1

8 I1 flows
out of the first stage into the second.

Again, 1
8 of this current flows out of the second stage, i.e.,

1
8 ð 1

8 I1, i.e., 1
64 of I1 flows into the load.

Thus 1
64 of the original current flows in the load.
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Figure 41.38

Figure 41.39

(c) The attenuation of a single stage is 8. Expressed in decibels,
the attenuation is 20 lg�I1/I2
 D 20 lg 8 D 18.06 dB. From equa-
tion (41.27), the overall attenuation of four identical stages is given
by 18.06 C 18.06 C 18.06 C 18.06, i.e., 72.24 dB.

Further problems on cascading two-port networks may be found in
Section 41.9 following, problems 24 to 26, page 787.

41.9 Further problems
on attenuators

Logarithmic ratios

1 The ratio of two powers is (a) 3, (b) 10, (c) 30, (d) 10000. Determine
the decibel power ratio for each.

[(a) 4.77 dB (b) 10 dB (c) 14.8 dB (d) 40 dB]

2 The ratio of two powers is (a) 1
10 , (b) 1

2 , (c) 1
40 , (d) 1

1000 . Determine

the decibel power ratio for each.
[(a) �10 dB (b) �3 dB (c) �16 dB (d) �30 dB]

3 An amplifier has (a) a gain of 25 dB, (b) an attenuation of 25 dB. If
the input power is 12 mW, determine the output power in each case.

[(a) 3795 mW (b) 37.9 µW]

4 7.5% of the power supplied to a cable appears at the output terminals.
Determine the attenuation in decibels. [11.25 dB]

5 The current input of a system is 250 mA. If the current ratio of the
system is (i) 15 dB, (ii) �8 dB, determine (a) the current output and
(b) the current ratio expressed in nepers.

[(i) (a) 1.406 A (b) 1.727 Np
(ii) (a) 99.53 mA (b) � 0.921 Np]

Symmetrical T — and p-attenuators

6 Determine the characteristic impedances of the T-network attenuator
sections shown in Figure 41.39.

[(a) 26.46 � (b) 244.9 � (c) 1.342 k�]
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Figure 41.40

7 Determine the characteristic impedances of the �-network attenuator
pads shown in Figure 41.40. [(a) 7.45 � (b) 353.6 � (c) 189.7 �]

8 A T-section attenuator is to provide 18 dB voltage attenuation per
section and is to match a 1.5 k� line. Determine the resistance values
necessary per section. [R1 D 1165 �, R2 D 384 �]

9 A �-section attenuator has a series resistance of 500 � and shunt
resistances of 2 k�. Determine (a) the characteristic impedance, and
(b) the attenuation produced by the network. [(a) 667 � (b) 6 dB]

10 For each of the attenuator pads shown in Figure 41.41 determine
(a) the input resistance when the output port is open-circuited, (b) the
input resistance when the output port is short-circuited, and (c) the
characteristic impedance.

[(i) (a) 50 � (b) 42 � (c) 45.83 �
(ii) (a) 285.7 � (b) 240 � (c) 261.9 �]

11 A television signal received from an aerial through a length of coaxial
cable of characteristic impedance 100 � has to be attenuated by
15 dB before entering the receiver. If the input impedance of the
receiver is also 100 �, design a suitable T-attenuator network to
give the necessary reduction. [R1 D 69.8 �, R2 D 36.7 �]

12 Design (a) a T-section symmetrical attenuator pad, and (b) a �-
section symmetrical attenuator pad, to provide a voltage attenuation
of 15 dB and having a characteristic impedance of 500 �.

[(a) R1 D 349 �, R2 D 184 �
(b) R1 D 1.36 k�, R2 D 716 �]

13 Determine the values of the shunt and series resistances for
T-pad attenuators of characteristic impedance 400 � to provide the
following voltage attenuations: (a) 12 dB (b) 25 dB (c) 36 dB

[(a) R1 D 239.4 �, R2 D 214.5 �
(b) R1 D 357.4 �, R2 D 45.13 �
(c) R1 D 387.5 �, R2 D 12.68 �]

14 Design a �-section symmetrical attenuator network to provide a
voltage attenuation of 24 dB and having a characteristic impedance
of 600 �. [R1 D 4.736 k�, R2 D 680.8 �]

15 A d.c. generator has an internal resistance of 600 � and supplies a
600 � load. Design a symmetrical (a) T-network and (b) �-network
attenuator pad, having a characteristic impedance of 600 � which
when connected between the generator and load will reduce the load
current to 1

4 its initial value.
[(a) R1 D 360 �, R2 D 320 �
(b) R1 D 1125 �, R2 D 1000 �]

Insertion loss

16 The attenuator section shown in Figure 41.42 feeds a matched load.
Determine (a) the characteristic impedance R0 and (b) the insertion
loss. [(a) 282.8 � (b) 15.31 dB]

Figure 41.41
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Figure 41.42

17 A 0–10 k� variable resistor is connected across the output of
a generator of internal resistance 500 �. If a load of 1500 � is
connected across the variable resistor, determine the insertion loss
in decibels at a tapping of (a) 7.5 k�, (b) 2.5 k�

[(a) 8.13 dB (b) 17.09 dB]

18 A symmetrical � attenuator pad has a series arm resistance of 800 �
and shunt arms each of 250 �. Determine (a) the characteristic
impedance of the section, and (b) the insertion loss when feeding
a matched load. [(a) 196.1 � (b) 18.36 dB]

Asymmetric T — and p-attenuators

19 An asymmetric section is shown in Figure 41.43. Determine for the
section (a) the image impedances, and (b) the iterative impedances.

[(a) 144.9 �, 241.5 � (b) 143.6 �, 243.6 �]

Figure 41.43 20 An asymmetric �-section is shown in Figure 41.44. Determine
for the section (a) the image impedances, and (b) the iterative
impedances.

[(a) 329.5 �, 285.6 � (b) 331.2 �, 284.2 �]

Figure 41.44

21 Distinguish between image and iterative impedances of a network.
An asymmetric T-attenuator section has series arms of resistance
200 � and 400 � respectively, and a shunt arm of resistance 300 �.
Determine the image and iterative impedances of the section.

[(a) 430.9 �, 603.3 �; 419.6 �, 619.6 �]

L-section attenuators

22 Figure 41.45 shows an L-section attenuator. The resistance across
the input terminals is 250 � and the resistance across the output
terminals is 100 �. Determine the values R1 and R2.

[R1 D 193.6 �, R2 D 129.1 �]

Figure 41.45

23 A generator having an internal resistance of 600 � is connected to
a 200 � load via an impedance-matching resistive pad as shown
in Figure 41.46. Determine (a) the values of resistances R1 and R2,
(b) the attenuation of the matching pad, and (c) its insertion loss.

[(a) R1 D 489.9 �, R2 D 249.9 �
(b) 9.96 dB (c) 8.71 dB]

Cascading two-port networks

24 The input to an attenuator is 24 V and the output is 4 V. Deter-
mine the attenuation in decibels. If five such identical attenuators
are cascaded, determine the overall attenuation.

[(a) 15.56 dB, 77.80 dB]

25 Four identical attenuator sections are connected in cascade. The
overall attenuation is 60 dB. The input to the first section is 50 mV.Figure 41.46
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Determine (a) the attenuation of each stage, (b) the output of the
final stage, and (c) the output of the second stage.

[(a) 15 dB (b) 50 µV (c) 1.58 mV]

26 A d.c. generator has an internal resistance of 300 � and supplies a
300 � load.

(a) Design a symmetrical T network attenuator pad having a char-
acteristic impedance of 300 � which, when connected between
the generator and the load, will reduce the load current to 1

3 its
initial value.

(b) If two such networks as in (a) were connected in series between
the generator and the load, what fraction of the initial current
would the load take?

(c) Determine the fraction of the initial current that the load would
take if six such networks were cascaded between the generator
and the load.

(d) Determine the attenuation in decibels provided by five such
identical stages as in (a).

[(a) R1 D 150 �, R2 D 225 �

(b) 1
9 (c) 1

729 (d) 44.71 dB]



Assignment 13

This assignment covers the material contained in chapters 39
to 41.

The marks for each question are shown in brackets at the end of
each question.

1 The equivalent series circuit for a particular capacitor consists of a 2 �
resistor in series with a 250 pF capacitor. Determine, at a frequency of
10 MHz (a) the loss angle of the capacitor, and (b) the power factor
of the capacitor. (3)

2 A 50 V, 20 kHz supply is connected across a 500 pF capacitor and the
power dissipated in the dielectric is 200 µW. Determine (a) the loss
angle, (b) the equivalent series loss resistance, and (c) the equivalent
parallel loss resistance. (9)

3 A coaxial cable, which has a core of diameter 12 mm and a sheath
diameter of 30 mm, is 10 km long. Calculate for the cable (a) the
inductance, assuming non-magnetic materials, and (b) the capacitance,
assuming a dielectric of relative permittivity 5. (8)

4 A 50 km length single-phase twin line has conductors of diameter
20 mm and spaced 1.25 m apart in air. Determine for the line (a) the
loop inductance, and (b) the capacitance. (8)

5 Find the strength of a uniform electric field if it is to have the same
energy as that established by a magnetic field of flux density 1.15 T.
(Assume that the relative permeability of the magnetic field and the
relative permittivity of the electric field are both unity) (5)

6 8% of the power supplied to a cable appears at the output terminals.
Determine the attenuation in decibels. (3)

7 Design (a) a T-section attenuator, and (b) a �-attenuator to provide a
voltage attenuation of 25 dB and having a characteristic impedance
of 620 �. (14)



42 Filter networks

At the end of this chapter you should be able to:

ž appreciate the purpose of a filter network

ž understand basic types of filter sections, i.e., low-pass,
high-pass, band-pass and band-stop filters

ž understand characteristic impedance and attenuation of filter
sections

ž understand low and high pass ladder networks

ž design a low and high pass filter section

ž calculate propagation coefficient and time delay in filter
sections

ž understand and design ‘m-derived’ filter sections

ž understand and design practical composite filters

42.1 Introduction A filter is a network designed to pass signals having frequencies within
certain bands (called passbands) with little attenuation, but greatly attenu-
ates signals within other bands (called attenuation bands or stopbands).

As explained in the previous chapter, an attenuator network pad is
composed of resistances only, the attenuation resulting being constant
and independant of frequency. However, a filter is frequency sensitive
and is thus composed of reactive elements. Since certain frequencies are
to be passed with minimal loss, ideally the inductors and capacitors need
to be pure components since the presence of resistance results in some
attenuation at all frequencies.

Between the pass band of a filter, where ideally the attenuation is
zero, and the attenuation band, where ideally the attenuation is infinite, is
the cut-off frequency, this being the frequency at which the attenuation
changes from zero to some finite value.

A filter network containing no source of power is termed passive, and
one containing one or more power sources is known as an active filter
network.

The filters considered in this chapter are symmetrical unbalanced T and
� sections, the reactances used being considered as ideal.

Filters are used for a variety of purposes in nearly every type of elec-
tronic communications and control equipment. The bandwidths of filters
used in communications systems vary from a fraction of a hertz to many
megahertz, depending on the application.
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42.2 Basic types of filter
sections

(a) Low-pass filters

Figure 42.1 shows simple unbalanced T and � section filters using series
inductors and shunt capacitors. If either section is connected into a
network and a continuously increasing frequency is applied, each would
have a frequency-attenuation characteristic as shown in Figure 42.2(a).
This is an ideal characteristic and assumes pure reactive elements. All
frequencies are seen to be passed from zero up to a certain value without
attenuation, this value being shown as fc, the cut-off frequency; all
values of frequency above fc are attenuated. It is for this reason that
the networks shown in Figures 42.1(a) and (b) are known as low-pass
filters. The electrical circuit diagram symbol for a low-pass filter is shown
in Figure 42.2(b).

Summarizing, a low-pass filter is one designed to pass signals at
frequencies below a specified cut-off frequency.

Figure 42.1
When rectifiers are used to produce the d.c. supplies of electronic

systems, a large ripple introduces undesirable noise and may even mask
the effect of the signal voltage. Low-pass filters are added to smooth the
output voltage waveform, this being one of the most common applications
of filters in electrical circuits.

Filters are employed to isolate various sections of a complete system
and thus to prevent undesired interactions. For example, the insertion of
low-pass decoupling filters between each of several amplifier stages and
a common power supply reduces interaction due to the common power
supply impedance.

Figure 42.2

(b) High-pass filters

Figure 42.3 shows simple unbalanced T and � section filters using series
capacitors and shunt inductors. If either section is connected into a
network and a continuously increasing frequency is applied, each would
have a frequency-attenuation characteristic as shown in Figure 42.4(a).

Once again this is an ideal characteristic assuming pure reactive
elements. All frequencies below the cut-off frequency fc are seen to
be attenuated and all frequencies above fc are passed without loss. It is
for this reason that the networks shown in Figures 42.3(a) and (b) are
known as high-pass filters. The electrical circuit-diagram symbol for a
high-pass filter is shown in Figure 42.4(b).

Summarizing, a high-pass filter is one designed to pass signals at
frequencies above a specified cut-off frequency.

The characteristics shown in Figures 42.2(a) and 42.4(a) are ideal in
that they have assumed that there is no attenuation at all in the pass-bands
and infinite attenuation in the attenuation bands. Both of these conditions
are impossible to achieve in practice. Due to resistance, mainly in the
inductive elements the attenuation in the pass-band will not be zero, and
in a practical filter section the attenuation in the attenuation band will
have a finite value. Practical characteristics for low-pass and high-pass
filters are discussed in Sections 42.5 and 42.6. In addition to the resistive
loss there is often an added loss due to mismatching. Ideally when a filter
is inserted into a network it is matched to the impedance of that network.Figure 42.3
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Figure 42.4

However the characteristic impedance of a filter section will vary with
frequency and the termination of the section may be an impedance that
does not vary with frequency in the same way. To minimize losses due
to resistance and mismatching, filters are used under image impedance
conditions as far as possible (see Chapter 41).

(c) Band-pass filters

A band-pass filter is one designed to pass signals with frequencies between
two specified cut-off frequencies. The characteristic of an ideal band-pass
filter is shown in Figure 42.5.

Figure 42.5

Such a filter may be formed by cascading a high-pass and a low-pass
filter. fCH is the cut-off frequency of the high-pass filter and fCL is the
cut-off frequency of the low-pass filter. As can be seen, fCL > fCH for
a band-pass filter, the pass-band being given by the difference between
these values. The electrical circuit diagram symbol for a band-pass filter
is shown in Figure 42.6.

Crystal and ceramic devices are used extensively as band-pass filters.
They are common in the intermediate-frequency amplifiers of vhf radios
where a precisely-defined bandwidth must be maintained for good
performance.

Figure 42.6

(d) Band-stop filters

A band-stop filter is one designed to pass signals with all frequencies
except those between two specified cut-off frequencies. The characteristic
of an ideal band-stop filter is shown in Figure 42.7. Such a filter may be
formed by connecting a high-pass and a low-pass filter in parallel. As can
be seen, for a band-stop filter fCH > fCL , the stop-band being given by
the difference between these values. The electrical circuit diagram symbol
for a band-stop filter is shown in Figure 42.8.

Figure 42.7

Sometimes, as in the case of interference from 50 Hz power lines in
an audio system, the exact frequency of a spurious noise signal is known.
Usually such interference is from an odd harmonic of 50 Hz, for example,
250 Hz. A sharply tuned band-stop filter, designed to attenuate the 250 Hz
noise signal, is used to minimize the effect of the output. A high-pass
filter with cut-off frequency greater than 250 Hz would also remove the
interference, but some of the lower frequency components of the audio
signal would be lost as well.

42.3 The characteristic
impedance and the
attenuation of filter

sections

Nature of the input impedance

Let a symmetrical filter section be terminated in an impedance ZO. If
the input impedance also has a value of ZO, then ZO is the characteristic
impedance of the section.

Figure 42.9 shows a T section composed of reactive elements XA and
XB. If the reactances are of opposite kind, then the input impedance of
the section, shown as ZO, when the output port is open or short-circuited
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Figure 42.8

can be either inductive or capacitive depending on the frequency of the
input signal.

Z0

XA

XB

XA

Input
Port

Output
Port

Figure 42.9

For example, if XA is inductive, say jXL, and XB is capacitive, say,
�jXC, then from Figure 42.9,

ZOC D jXL � jXC D j�XL � XC�

and ZSC D jXL C �jXL���jXC�

�jXL� C ��jXC�
D jXL C �XLXC�

j�XL � XC�

D jXL � j
(

XLXC

XL � XC

)
D j

(
XL − XLXC

XL − XC

)

Since XL D 2�fL and XC D �1/2�fC� then ZOC and ZSC can be
inductive, (i.e., positive reactance) or capacitive (i.e., negative reactance)
depending on the value of frequency, f.

Let the magnitude of the reactance on open-circuit be XOC and the
magnitude of the reactance on short-circuit be XSC. Since the filter
elements are all purely reactive they may be expressed as jXOC or jXSC,
where XOC and XSC are real, being positive or negative in sign. Four
combinations of ZOC and ZSC are possible, these being:

(i) ZOC D CjXOC and ZSC D �jXSC

(ii) ZOC D �jXOC and ZSC D CjXSC

(iii) ZOC D CjXOC and ZSC D CjXSC

and (iv) ZOC D �jXOC and ZSC D �jXSC

From general circuit theory, input impedance ZO is given by:

ZO D p
�ZOCZSC�

Taking either of combinations (i) and (ii) above gives:

ZO D
√
��j2XOCXSC� D p

�XOCXSC�,

which is real, thus the input impedance will be purely resistive.
Taking either of combinations (iii) and (iv) above gives:

ZO D
√
�j2XOCXSC� D Cjp

�XOCXSC�,

which is imaginary, thus the input impedance will be purely reactive.
Thus since the magnitude and nature of ZOC and ZSC depend upon

frequency then so also will the magnitude and nature of the input
impedance ZO depend upon frequency.

Characteristic impedance

Figure 42.10 shows a low-pass T section terminated in its characteristic
impedance, ZO.
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I1

V1
Z0

V2 Z0

I2

Input
Port

Output
Port

Figure 42.10

From equation (41.2), page 760, the characteristic impedance is given
by ZO D p

�ZOCZSC�.
The following statements may be demonstrated to be true for any filter:

(a) The attenuation is zero throughout the frequency range for which the
characteristic impedance is purely resistive.

(b) The attenuation is finite throughout the frequency range for which
the characteristic impedance is purely reactive.

To demonstrate statement (a) above:

Let the filter shown in Figure 42.10 be operating over a range of frequen-
cies such that ZO is purely resistive.

From Figure 42.10, ZO D V1

I1
D V2

I2

Power dissipated in the output termination, P2 D V2I2 cos�2 D V2I2

(since �2 D 0 with a purely resistive load).

Power delivered at the input terminals,

P1 D V1I1 cos�1 D V1I1�since �1 D 0�

No power is absorbed by the filter elements since they are purely reactive.

Hence P2 D P1, V2 D V1 and I2 D I1.

Thus if the filter is terminated in ZO and operating in a frequency range
such that ZO is purely resistive, then all the power delivered to the input
is passed to the output and there is therefore no attenuation.

To demonstrate statement (b) above:

Let the filter be operating over a range of frequencies such that ZO is
purely reactive.

Then, from Figure 42.10,
V1

I1
D jZO D V2

I2
.
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Thus voltage and current are at 90° to each other which means that the
circuit can neither accept nor deliver any active power from the source
to the load (P D VI cos� D VI cos 90° D VI�0� D 0). There is therefore
infinite attenuation, theoretically. (In practise, the attenuation is finite, for
the condition �V1/I1� D �V2/I2� can hold for V2 < V1 and I2 < I1, since
the voltage and current are 90° out of phase.)

Statements (a) and (b) above are important because they can be applied
to determine the cut-off frequency point of any filter section simply from
a knowledge of the nature of ZO. In the pass band, ZO is real, and in the
attenuation band, ZO is imaginary. The cut-off frequency is therefore at
the point on the frequency scale at which ZO changes from a real quantity
to an imaginary one, or vice versa (see Sections 42.5 and 42.6).

42.4 Ladder networks Low-pass networks

Figure 42.11 shows a low-pass network arranged as a ladder or repetitive
network. Such a network may be considered as a number of T or �
sections in cascade. In Figure 42.12(a), a T section may be taken from the
ladder by removing ABED, producing the low-pass filter section shown
in Figure 42.13(a). The ladder has been cut in the centre of each of
its inductive elements hence giving L/2 as the series arm elements in
Figure 42.13(a).

L L L L L L

C C C C C C

Figure 42.11

Similarly, a � section may be taken from the ladder shown in
Figure 42.12(a) by removing FGJH, producing the low-pass filter section

L L L L

C C C C C C

L
2

L
2

L
2

L
2

A D

B E

F H

G J

L L L

F H

G J

C
2

C
2

C
2

C
2

(a) (b)

Figure 42.12
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L
2

L
2

C

L

C
2

C
2

(a)

(b)

Figure 42.13

shown in Figure 42.13(b). The shunt element C in Figure 42.12(a) may
be regarded as two capacitors in parallel, each of value C/2 as shown in
the part of the ladder redrawn in Figure 42.12(b). (Note that for parallel
capacitors, the total capacitance CT is given by

CT D C1 C C2 C Ð Ð Ð . In this case
C

2
C C

2
D C�.

The ladder network of Figure 42.11 can thus either be considered to be a
number of the T networks shown in Figure 42.13(a) connected in cascade,
or a number of the � networks shown in Figure 42.13(b) connected in
cascade.

It is shown in Section 44.3, page 871, that an infinite transmission line
may be reduced to a repetitive low-pass filter network.

High-pass networks

Figure 42.14 shows a high-pass network arranged as a ladder. As above,
the repetitive network may be considered as a number of T or � sections
in cascade.

L L L L L L

C C C C C

Figure 42.14

In Figure 42.15, a T section may be taken from the ladder by removing
ABED, producing the high-pass filter section shown in Figure 42.16(a).

L L L L L L

A D

B E

C C C

F H

G J

2L 2L 2L 2L

C

F H

C C

G J

(a) (b)

CC

Figure 42.15



Filter networks 797

2C 2C

L

(a)

2L 2L

C

(b)

Figure 42.16

Note that the series arm elements are each 2C. This is because two capac-
itors each of value 2C connected in series gives a total equivalent value
of C, (i.e., for series capacitors, the total capacitance CT is given by

1

CT
D 1

C1
C 1

C2
C Ð Ð Ð�

Similarly, a � section may be taken from the ladder shown in Figure 42.15
by removing FGJH, producing the high-pass filter section shown in
Figure 42.16(b). The shunt element L in Figure 42.15(a) may be regarded
as two inductors in parallel, each of value 2L as shown in the part of the
ladder redrawn in Figure 42.15(b). (Note that for parallel inductance, the
total inductance LT is given by

1

LT
D 1

L1
C 1

L2
C Ð Ð Ð . In this case,

1

2L
C 1

2L
D 1

L
.�

The ladder network of Figure 42.14 can thus be considered to be either
a number of T networks shown in Figure 42.16(a) connected in cascade,
or a number of the � networks shown in Figure 42.16(b) connected in
cascade.

42.5 Low-pass filter
sections

(a) The cut-off frequency

From equation (41.1), the characteristic impedance Z0 for a symmetrical

T network is given by: Z0 D
√
�Z2

A C 2ZAZB�. Applying this to the low-
pass T section shown in Figure 42.17,

ZA D jωL

2
and ZB D 1

jωC

Thus Z0 D
√[

j2ω2L2

4
C 2

(
jωL

2

)(
1

jωC

)]

D
√(

�ω2L2

4
C L

C

)

i.e., Z0 D
√(

L

C
� ω2L2

4

)
�42.1�

Z0

L
2

L
2

Z0
C

Figure 42.17

Z0 will be real if
L

C
>

ω2L2

4

Thus attenuation will commence when
L

C
D ω2L2

4

i.e., when ω2
c D 4

LC
�42.2�

where ωc D 2�fc and fc is the cut-off frequency.
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Thus �2�fc�
2 D 4

LC

2�fc D
√(

4

LC

)
D 2p

�LC�

and fc D 2

2�
p
�LC�

D 1

�
p
�LC�

i.e., the cut-off frequency, fc =
1

p
p

.LC /
�42.3�

The same equation for the cut-off frequency is obtained for the low-pass
� network shown in Figure 42.18 as follows:

C
2

C
2

Z0

L

Z0

Figure 42.18
From equation (41.3), for a symmetrical � network,

Z0 D
√(

Z1Z2
2

Z1 C 2Z2

)

Applying this to Figure 42.18 Z1 D jωL and Z2 D 1

jω
C

2

D 2

jωC

Thus Z0 D

√√√√√√√√




�jωL�
(

2

jωC

)2

jωL C 2
(

2

jωC

)



D

√√√√√√√



�jωL�

(
4

�ω2C2

)

jωL � j
(

4

ωC

)



D

√√√√√√√




�j 4L

ωC2

j
(
ωL � 4

ωC

)



D

√√√√√√√




4L

ωC2

4

ωC
� ωL




D

√√√√√√√




4L

ωC2

(
4

ωC
� ωL

)



D
√(

4L

4C � ω2LC2

)

i.e., Z0 D

√√√√√√√


 1

C

L
� ω2C2

4


 �42.4�

Z0 will be real if
C

L
>

ω2C2

4
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Thus attenuation will commence when
C

L
D ω2C2

4

i.e., when ω2
c D 4

LC

from which, cut-off frequency, fc =
1

p
p

.LC /
as in equation (42.3)).

(b) Nominal impedance

When the frequency is very low, ω is small and the term �ω2L2/4�
in equation (42.1) (or the term �ω2C2/4� in equation (42.4)) may be
neglected. The characteristic impedance then becomes equal to

p
�L/C�,

which is purely resistive. This value of the characteristic impedance is
known as the design impedance or the nominal impedance of the section
and is often given the symbol R0,

i.e., R0 =
√

L
C

�42.5�

Problem 1. Determine the cut-off frequency and the nominal
impedance of each of the low-pass filter sections shown in
Figure 42.19.

(a) Comparing Figure 42.19(a) with the low-pass T section in
Figure 42.17 shows that �L/2� D 100 mH, i.e., inductance,
L D 200 mH D 0.2 H and capacitance, C D 0.2 µF D 0.2 ð 10�6 F

From equation (42.3), cut-off frequency,

fc D 1

�
p
�LC�

D 1

�
√
�0.2 ð 0.2 ð 10�6�

D 103

��0.2�

i.e., fc= 1592 Hz or 1.592 kHz

From equation (42.5), nominal impedance,

R0 D
√(

L

C

)
D
√(

0.2

0.2 ð 10�6

)
D 1000 Z or 1 kZ

(b) Comparing Figure 42.19(b) with the low-pass � section shown
in Figure 42.18 shows that �C/2� D 200 pF, i.e., capacitance,
C D 400 pF D 400 ð 10�12 F and inductance, L D 0.4 H,

From equation (42.3), cut-off frequency,

fc D 1

�
p
�LC�

D 1

�
√
�0.4 ð 400 ð 10�12�

D 25.16 kHz

100 mH 100 mH

0.2 µF

0.4 H

200 pF 200 pF

(b)

(a)

Figure 42.19
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From equation (42.5), nominal impedance,

R0 D
√(

L

C

)
D
√(

0.4

400 ð 10�12

)
D 31.62 kZ

From equations (42.1) and (42.4) it is seen that the characteristic
impedance Z0 varies with ω, i.e., Z0 varies with frequency. Thus if
the nominal impedance is made to equal the load impedance into
which the filter feeds then the matching deteriorates as the frequency
increases from zero towards fc. It is however convention to make the
terminating impedance equal to the value of Z0 well within the pass-
band, i.e., to take the limiting value of Z0 as the frequency approaches
zero. This limit is obviously

p
�L/C�. This means that the filter is

properly terminated at very low frequency but as the cut-off frequency is
approached becomes increasingly mismatched. This is shown for a low-
pass section in Figure 42.20 by curve (a). It is seen that an increasing loss
is introduced into the pass band. Curve (b) shows the attenuation due to
the same low-pass section being correctly terminated at all frequencies. A
curve lying somewhere between curves (a) and (b) will usually result for
each section if several sections are cascaded and terminated in R0, or if a
matching section is inserted between the low pass section and the load.

Attenuation

(a)
(b)

0 fc
Attenuation
     band

Frequency

Pass band

Figure 42.20

(c) To determine values of L and C given R0 and fc

If the values of the nominal impedance R0 and the cut-off frequency fc

are known for a low pass T or � section it is possible to determine the
values of inductance and capacitance required to form the section.

From equation (42.5), R0 D
√
L

C
D

p
Lp
C

from which,
p
L D R0

p
C
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Substituting in equation (42.3) gives:

fc D 1

�
p
L

p
C

D 1

��R0

p
C�

p
C

D 1

�R0C

from which, capacitance C =
1

pR0 fc
�42.6�

Similarly from equation (42.5),
p
C D

p
L

R0

Substituting in equation (42.3) gives: fc D 1

�
p
L

(p
L

R0

) D R0

�L

from which, inductance, L =
R0

pfc
�42.7�

Problem 2. A filter section is to have a characteristic impedance at
zero frequency of 600 � and a cut-off frequency at 5 MHz. Design
(a) a low-pass T section filter, and (b) a low-pass � section filter
to meet these requirements.

The characteristic impedance at zero frequency is the nominal impedance
R0, i.e., R0 D 600 �; cut-off frequency, fc D 5 MHz D 5 ð 106 Hz.

From equation (42.6),

capacitance, C D 1

�R0fc
D 1

��600��5 ð 106�
F D 106 pF

and from equation (42.7),

inductance, L D R0

�fc
D 600

��5 ð 106�
H D 38.2 µH

(a) A low-pass T section filter is shown in Figure 42.21(a), where
the series arm inductances are each L/2 (see Figure 42.17), i.e.,
�38.2/2� D 19.1 µH

(b) A low-pass � section filter is shown in Figure 42.21(b), where
the shunt arm capacitances are each �C/2� (see Figure 42.18), i.e.,
�106/2� D 53 pF

19.1 µH

106 pF

(a)

38.2 µH

53 pF 53 pF

(b)

19.1 µH

Figure 42.21

(d) ‘Constant-k’ prototype low-pass filter

A ladder network is shown in Figure 42.22, the elements being expressed
in terms of impedances Z1 and Z2. The network shown in Figure 42.22(b)
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Z1 Z1 Z1 Z1 Z1

Z2 Z2 Z2 Z2 Z2

A D F H

B E G J 

Z1
2

Z1
2

Z1
2

Z1
2 Z1 Z1 Z1

Z2 Z2 2Z2 2Z2 2Z2 2Z2 Z2

(a)

(b)

Figure 42.22

is equivalent to the network shown in Figure 42.22(a), where �Z1/2� in
series with �Z1/2� equals Z1 and 2Z2 in parallel with 2Z2 equals Z2.
Removing sections ABED and FGJH from Figure 42.22(b) gives the T
section shown in Figure 42.23(a), which is terminated in its characteristic
impedance ZOT, and the � section shown in Figure 42.23(b), which is
terminated in its characteristic impedance Z0�.

Z1
2

Z1
2

Z2

Z0T Z0T

(a)

Z1

Z0p

2Z2 2Z2

Z0p

(b)

Figure 42.23

From equation (41.1), page 760,

ZOT D
√[(

Z1

2

)2

C 2
(
Z1

2

)
Z2

]

i.e., ZOT D
√(

Z2
1

4
C Z1Z2

)
�42.8�

From equation (41.3), page 760

Z0� D
√[

�Z1��2Z2�2

Z1 C 2�2Z2�

]
D
√[

Z1�Z1��4Z2
2�

Z1�Z1 C 4Z2�

]

D 2Z1Z2√
�Z2

1 C 4Z1Z2�
D Z1Z2√(

Z2
1

4
C Z1Z2

)

i.e., Z0� D Z1Z2

ZOT
from equation (42.8)
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Thus Z0T Z0p = Z1Z2 �42.9�

This is a general expression relating the characteristic impedances of T
and � sections made up of equivalent series and shunt impedances.

From the low-pass sections shown in Figures 42.17 and 42.18,

Z1 D jωL and Z2 D 1

jωC
.

Hence Z0TZ0� D �jωL�
(

1

jωC

)
D L

C

Thus, from equation (42.5), Z0T Z0p = R2
0 �42.10�

From equations (42.9) and (42.10),

Z0TZ0� D Z1Z2 D R2
0 D constant (k).

A ladder network composed of reactances, the series reactances being
of opposite sign to the shunt reactances (as in Figure 42.23) are called
‘constant-k’ filter sections. Positive (i.e., inductive) reactance is directly
proportional to frequency, and negative (i.e., capacitive) reactance is
inversely proportional to frequency. Thus the product of the series and
shunt reactances is independent of frequency (see equations (42.9) and
(42.10)). The constancy of this product has given this type of filter
its name.

From equation (42.10), it is seen that Z0T and Z0� will either be both
real or both imaginary together (since j2 D �1). Also, when Z0T changes
from real to imaginary at the cut-off frequency, so will Z0�. The two
sections shown in Figures 42.17 and 42.18 will thus have identical cut-
off frequencies and thus identical pass bands. Constant-k sections of any
kind of filter are known as prototypes.

(e) Practical low-pass filter characteristics

From equation (42.1), the characteristic impedance Z0T of a low-pass T
section is given by:

Z0T D
√(

L

C
� ω2L2

4

)

Rearranging gives:

Z0T D
√[

L

C

(
1 � ω2LC

4

)]
D
√(

L

C

)√(
1 � ω2LC

4

)

D R0

√(
1 � ω2LC

4

)
from equation (42.5)
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From equation (42.2), ω2
c D 4

LC
, hence Z0T D R0

√(
1 � ω2

ω2
c

)

i.e., Z0T = R0

√[
1 −

(
!

!c

)2
]

�42.11�

Also, from equation (42.10), Z0� D R2
0

Z0T
D R2

0

R0

√[
1 �

(
ω

ωc

)2
]

i.e.,
Z0p =

R0√[
1 −

(
!

!c

)2
]

�42.12�

(Alternatively, the expression for Z0� could have been obtained from
equation (42.4), where

Z0� D

√√√√√√√


 1

C

L
� ω2C2

4


 D

√√√√√√√√√




L

C
L

C

(
C

L
� ω2C2

4

)




D

√
L

C√(
1 � ω2LC

4

) D R0√[
1 �

(
ω

ωc

)2
] as above�.

From equations (42.11) and (42.12), when ω D 0 (i.e., when the frequency
is zero),

Z0T D Z0� D R0.

At the cut-off frequency, fc, ω D ωc

and from equation (42.11), Z0T falls to zero,

and from equation (42.12), Z0� rises to infinity.
These results are shown graphically in Figure 42.24, where it is seen

that Z0T decreases from R0 at zero frequency to zero at the cut-off
frequency; Z0� rises from its initial value of R0 to infinity at fc.

(At a frequency, f D 0.95fc, for example, Z0� D R0√
�1 � 0.952�

D 3.2R0

from equation (42.12)).
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  Nominal
Impedance

Frequency

Attenuation
    band

R0

Z0T

Z0p

Z0

0 fc

Pass band

Figure 42.24

Frequency

Attenuation
Band

Pass band

0 fc

Attenuation

Figure 42.25

Note that since Z0 becomes purely reactive in the attenuation band, it is
not shown in this range in Figure 42.24.

Figure 42.2(a), on page 791, showed an ideal low-pass filter section
characteristic. In practise, the characteristic curve of a low-pass prototype
filter section looks more like that shown in Figure 42.25. The character-
istic may be improved somewhat closer to the ideal by connecting two
or more identical sections in cascade. This produces a much sharper cut-
off characteristic, although the attenuation in the pass band is increased
a little.

Problem 3. The nominal impedance of a low-pass � section filter
is 500 � and its cut-off frequency is at 100 kHz. Determine (a) the
value of the characteristic impedance of the section at a frequency
of 90 kHz, and (b) the value of the characteristic impedance of the
equivalent low-pass T section filter.
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At zero frequency the characteristic impedance of the � and T section
filters will be equal to the nominal impedance of 500 �.

(a) From equation (42.12), the characteristic impedance of the � section
at 90 kHz is given by:

Z0� D R0√√√√
[

1 �
(
ω

ωc

)2
] D 500√√√√√


1 �

(
2�90 ð 103

2�100 ð 103

)2



D 500√
[1 � �0.9�2]

D 1147 Z

(b) From equation (42.11), the characteristic impedance of the T section
at 90 kHz is given by:

Z0T D R0

√√√√
[

1 �
(
ω

ωc

)2
]

D 500
√

[1 � �0.9�2] D 218 Z

(Check: From equation (42.10),

Z0TZ0� D �218��1147� D 250 000 D 5002 D R2
0�

Typical low-pass characteristics of characteristic impedance against
frequency are shown in Figure 42.24.

Problem 4. A low-pass � section filter has a nominal impedance
of 600 � and a cut-off frequency of 2 MHz. Determine the
frequency at which the characteristic impedance of the section is
(a) 600 � (b) 1 k� (c) 10 k�

From equation (42.12), Z0� D R0√√√√
[

1 �
(
ω

ωc

)2
]

(a) When Z0� D 600 � and R0 D 600 �, then ω D 0, i.e., the
frequency is zero

(b) When Z0� D 1000 �, R0 D 600 � and fc D 2 ð 106 Hz

then 1000 D 600√√√√
[

1 �
(

2�f

2�2 ð 106

)2
]
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from which, 1 �
(

f

2 ð 106

)2

D
(

600

1000

)2

D 0.36

and
(

f

2 ð 106

)
D p

�1 � 0.36� D 0.8

Thus when Z0� D 1000 �,

frequency, f D �0.8��2 ð 106� D 1.6 MHz

(c) When Z0� D 10 k�, then

10 000 D 600√√√√
[

1 �
(
f

2

)2
] , where frequency,

f is in megahertz.

Thus 1 �
(
f

2

)2

D
(

600

10 000

)2

D �0.06�2

and
f

2
D
√

[1 � �0.06�2] D 0.9982

Hence when Z0� D 10 k�, frequency f D �2��0.9982�

D 1.996 MHz

The above three results are seen to be borne out in the characteristic of
Z0� against frequency shown in Figure 42.24.

Further problems on low-pass filter sections may be found in
Section 42.10, problems 1 to 6, page 837.

42.6 High-pass filter
sections

(a) The cut-off frequency

High-pass T and � sections are shown in Figure 42.26, (as derived in
Section (42.4)), each being terminated in their characteristic impedance.

From equation (41.1), page 760, the characteristic impedance of a T
section is given by:

Z0T D
√
�Z2

A C 2ZAZB�

From Figure 42.26(a), ZA D 1

jω2C
and ZB D jωL

Thus Z0T D
√√√√
[(

1

jω2C

)2

C 2
(

1

jω2C

)
�jωL�

]
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Z0T

2C 2C

L Z0T

(a)

Z0p

C

Z0p

(b)

2L 2L

Figure 42.26

D
√[

1

�4ω2C2
C L

C

]

i.e., Z0T D
√(

L

C
� 1

4ω2C2

)
�42.13�

Z0T will be real when
L

C
>

1

4ω2C2

Thus the filter will pass all frequencies above the point

where
L

C
D 1

4ω2C2

i.e., where ω2
c D 1

4LC
�42.14�

where ωc D 2�fc, and fc is the cut-off frequency.

Hence �2�fc�
2 D 1

4LC

and the cut-off frequency, fc =
1

4p
p

.LC /
�42.15�

The same equation for the cut-off frequency is obtained for the high-pass
� network shown in Figure 42.26(b) as follows:

From equation (41.3), page 760, the characteristic impedance of a
symmetrical � section is given by:

Z0� D
√(

Z1Z2
2

Z1 C 2Z2

)

From Figure 42.26(b), Z1 D 1

jωC
and Z2 D j2ωL

Hence Z0� D

√√√√√√√




(
1

jωC

)
�j2ωL�2

1

jωC
C 2j2ωL




D

√√√√√√√




j4
ωL2

C

j
(

4ωL � 1

ωC

)



D

√√√√√√√




4L2

C

4L � 1

ω2C




i.e., Z0� D

√√√√√√√


 1
C

L
� 1

4ω2L2


 �42.16�
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Z0� will be real when
C

L
>

1

4ω2L2
and the filter will pass all frequencies

above the point where
C

L
D 1

4ω2L2
, i.e., where ω2

c D 1

4LC
as above.

Thus the cut-off frequency for a high-pass � network is also given by

fc =
1

4p
p

.LC /
(as in equation (42.15)) �42.150�

(b) Nominal impedance

When the frequency is very high, ω is a very large value and the term
�1/4ω2C2� in equations (42.13) and (42.16) are extremely small and may
be neglected.

The characteristic impedance then becomes equal to
p
�L/C�, this being

the nominal impedance. Thus for a high-pass filter section the nominal
impedance R0 is given by:

R0 =

√(
L
C

)
�42.17�

the same as for the low-pass filter sections.

Problem 5. Determine for each of the high-pass filter sections
shown in Figure 42.27 (i) the cut-off frequency, and (ii) the
nominal impedance.

(a) Comparing Figure 42.27(a) with Figure 42.26(a) shows that:

2C D 0.2 µF, i.e., capacitance, C D 0.1 µF D 0.1 ð 10�6 F

and inductance, L D 100 mH D 0.1 H

(i) From equation (42.15),

cut-off frequency, fc D 1

4�
p
�LC�

D 1

4�
√

[�0.1��0.1 ð 10�6]

i.e., fc D 103

4��0.1�
D 796 Hz

(ii) From equation (42.17),

nominal impedance, R0 D
√(

L

C

)
D
√(

0.1

0.1 ð 10�6

)

D 1000 Z or 1 kZ

0.2 µF 0.2 µF

100 mH

(a)

4000 pF

200 µH 200 µH

(b)

Figure 42.27
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(b) Comparing Figure 42.27(b) with Figure 42.26(b) shows that:

2L D 200 µH, i.e., inductance, L D 100 µH D 10�4 H

and capacitance C D 4000 pF D 4 ð 10�9 F

(i) From equation (42.150),

cut-off frequency, fc D 1

4�
p
�LC�

D 1

4�
√

[�10�4��4 ð 10�9�]
D 126 kHz

(ii) From equation (42.17),

nominal impedance, R0 D
√(

L

C

)
D
√(

10�4

4 ð 10�9

)

D
√(

105

4

)
D 158 Z

(c) To determine values of L and C given R0 and fc

If the values of the nominal impedance R0 and the cut-off frequency fc

are known for a high-pass T or � section it is possible to determine the
values of inductance L and capacitance C required to form the section.

From equation (42.17), R0 D
√
L

C
D

p
Lp
C

from which,
p
L D R0

p
C

Substituting in equation (42.15) gives:

fc D 1

4�
p
L

p
C

D 1

4��R0

p
C�

p
C

D 1

4�R0C

from which, capacitance C =
1

4pR0fc
�42.18�

Similarly, from equation (42.17),
p
C D

p
L

R0

Substituting in equation (42.15) gives: fc D 1

4�
p
L

(p
L

R0

) D R0

4�L

from which, inductance, L =
R0

4pfc
�42.19�
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Problem 6. A filter is required to pass all frequencies above
25 kHz and to have a nominal impedance of 600 �. Design (a) a
high-pass T section filter and (b) a high-pass � section filter to
meet these requirements.

Cut-off frequency, fc D 25 ð 103 Hz and nominal impedance,
R0 D 600 �

From equation (42.18),

C D 1

4�R0fc
D 1

4��600��25 ð 103�
F D 1012

4��600��25 ð 103�
pF

i.e., C D 5305 pF or 5.305 nF

From equation (42.19), inductance,

L D R0

4�fc
D 600

4��25 ð 103�
H D 1.91 mH

(a) A high-pass T section filter is shown in Figure 42.28(a) where the
series arm capacitances are each 2 C (see Figure 42.26(a)), i.e.,
2 ð 5.305 D 10.61 nF

(b) A high-pass � section filter is shown in Figure 42.28(b), where the
shunt arm inductances are each 2 L (see Figure 42.26(b)), i.e.,
2 ð 1.91 D 3.82 mH

10.61 nF

1.91 mH

(a)

5.305 nF

3.82 mH 3.82 mH

(b)

10.61 nF

Figure 42.28

(d) ‘Constant-k’ prototype high-pass filter

It may be shown, in a similar way to that shown in Section 42.5(d), that
for a high-pass filter section:

Z0T Z0p = Z1Z2 D R2
0

where Z1 and Z2 are the total equivalent series and shunt arm impedances.
The high-pass filter sections shown in Figure 42.26 are thus ‘constant-k’
prototype filter sections.

(e) Practical high-pass filter characteristics

From equation (42.13), the characteristic impedance Z0T of a high-pass
T section is given by:

Z0T D
√(

L

C
� 1

4ω2C2

)
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Rearranging gives:

Z0T D
√[

L

C

(
1 � 1

4ω2LC

)]
D
√(

L

C

)√(
1 � 1

4ω2LC

)

From equation (42.14), ω2
c D 1

4LC

Thus Z0T = R0

√[
1 −

(
!c

!

)2
]

�42.20�

Also, since Z0TZ0� D R2
0

then Z0� D R2
0

Z0T
D R2

0

R0

√[
1 �

(
ωc

ω

)2
]

i.e.,
Z0p =

R0√[
1 −

(
!c

!

)2
]

�42.21�

From equation (42.20),

when ω < ωc, Z0T is reactive,

when ω D ωc, Z0T is zero,

and when ω > ωc, Z0T is real, eventually increasing to R0

when ω is very large.

Similarly, from equation (42.21),

when ω < ωc, Z0� is reactive,

when ω D ωc, Z0� D 1 (i.e.,
R0

0
D 1)

and when ω > ωc, Z0� is real, eventually decreasing to R0

when ω is very large.

Curves of Z0T and Z0� against frequency are shown in Figure 42.29.

Figure 42.4(a), on page 792, showed an ideal high-pass filter section
characteristic of attenuation against frequency. In practise, the character-
istic curve of a high-pass prototype filter section would look more like
that shown in Figure 42.30.
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Nominal
impedance

Frequency

Pass band

R0

Z0T

Z0Π

Z0

0 fc

Attenuation
band

Figure 42.29 Figure 42.30

Problem 7. A low-pass T section filter having a cut-off frequency
of 15 kHz is connected in series with a high-pass T section filter
having a cut-off frequency of 10 kHz. The terminating impedance
of the filter is 600 �.

(a) Determine the values of the components comprising the
composite filter.

(b) Sketch the expected attenuation against frequency
characteristic.

(c) State the name given to the type of filter described.

(a) For the low-pass T section filter: fcL D 15 000 Hz

From equation (42.6),

capacitance, C D 1

�R0fc
D 1

��600��15 000�

 35.4 nF

From equation (42.7),

inductance, L D R0

�fc
D 600

��15 000�

 12.73 mH

Thus from Figure 42.17, the series arm inductances are each L/2,
i.e., �12.73/2� D 6.37 mH and the shunt arm capacitance is 35.4 nF.

For a high-pass T section filter: fCH D 10 000 Hz

From equation (42.18),

capacitance, C D 1

4�R0fc
D 1

4��600��10 000�

 13.3 nF
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From equation (42.19),

inductance, L D R0

4�fc
D 600

4�10 000

 4.77 mH

Thus from Figure 42.26(a), the series arm capacitances are each 2 C,
i.e., 2 ð 13.3 D 26.6 nF, and the shunt arm inductance is 4.77 mH.

The composite filter is shown in Figure 42.31.

6.37 mH 6.37 mH

35.4 nF

26.6 nF 26.6 nF

4.77 mH 600 Ω

Figure 42.31

(b) A typical characteristic expected of attenuation against frequency is
shown in Figure 42.32.

Figure 42.32

(c) The name given to the type of filter described is a band-pass filter.

The ideal characteristic of such a filter is shown in Figure 42.5.

Problem 8. A high-pass T section filter has a cut-off frequency
of 500 Hz and a nominal impedance of 600 �. Determine the
frequency at which the characteristic impedance of the section is
(a) zero, (b) 300 �, (c) 590 �.
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From equation (42.20), Z0T D R0

√[
1 �

(
ωc

ω

)2
]

(a) When Z0T D 0, then �ωc/ω� D 1, i.e., the frequency is 500 Hz, the
cut-off frequency.

(b) When Z0T D 300 �, R0 D 600 � and fc D 500 Hz

300 D 600

√[
1 �

(
2�500

2�f

)2
]

from which
(

300

600

)2

D 1 �
(

500

f

)2

and
500

f
D
√[

1 �
(

300

600

)2
]

D p
0.75

Thus when Z0T D 300 �, frequency, f D 500p
0.75

D 577.4 Hz

(c) When Z0T D 590 �, 590 D 600

√[
1 �

(
500

f

)2
]

500

f
D
√[

1 �
(

590

600

)2
]

D 0.1818

Thus when Z0T D 590 �, frequency, f D 500

0.1818
D 2750 Hz

The above three results are seen to be borne out in the characteristic of
Z0T against frequency shown in Figure 42.29.

Further problems on high-pass filter sections may be found in
Section 42.10, problems 7 to 12, page 837.

42.7 Propagation
coefficient and time delay

in filter sections

Propagation coefficient

In Figure 42.33, let A, B and C represent identical filter sections, the
current ratios �I1/I2�, �I2/I3� and �I3/I4� being equal.

Although the rate of attenuation is the same in each section (i.e., the
current output of each section is one half of the current input) the amount
of attenuation in each is different (section A attenuates by 1

2 A, B atten-
uates by 1

4 A and C attenuates by 1
8 A). The attenuation is in fact in the
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A B C

I1 = 1 A I2 =     A1
2

I3 =     A1
4

I4 =     A1
8

Figure 42.33

form of a logarithmic decay and

I1

I2
D I2

I3
D I3

I4
D e� �42.22�

where � is called the propagation coefficient or the propagation
constant.

From equation (42.22), propagation coefficient,

� D ln
I1

I2
nepers �42.23�

(See Section 41.3, page 761, on logarithmic units.)
Unless Sections A, B and C in Figure 42.33 are purely resistive there

will be a phase change in each section. Thus the ratio of the current
entering a section to that leaving it will be a phasor quantity having both
modulus and argument. The propagation constant which has no units is a
complex quantity given by:

� D ˛ C jˇ �42.24�

where ˛ is called the attenuation coefficient, measured in nepers, and ˇ
the phase shift coefficient, measured in radians. ˇ is the angle by which
a current leaving a section lags behind the current entering it.

From equations (42.22) and (42.24),

I1

I2
D e� D e˛Cjˇ D �e˛��ejˇ�

Since ex D 1 C x C x2

2!
C x3

3!
C x4

4!
C x5

5!
C . . . . . .

then ejˇ D 1 C �jˇ� C �jˇ�2

2!
C �jˇ�3

3!
C �jˇ�4

4!
C �jˇ�5

5!
C . . . . . .

D 1 C jˇ � ˇ2

2!
� j

ˇ3

3!
C ˇ4

4!
C j

ˇ5

5!
C . . . . . .

since j2 D �1, j3 D �j, j4 D C1, and so on.

Hence ejˇ D
(

1 � ˇ2

2!
C ˇ4

4!
� . . . .

)
C j

(
ˇ � ˇ3

3!
C ˇ5

5!
� . . . . .

)

D cosˇ C j sinˇ from the power series for cos ˇ and sin ˇ
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Thus
I1

I2
D e˛ejˇ D e˛�cos ˇ C j sinˇ� D e˛ 6 ˇ in abbreviated polar form,

i.e.,
I 1

I 2
= ea 6 6 b �42.25�

Now e˛ D
∣∣∣∣I1

I2

∣∣∣∣
from which

attenuation coefficient, a = ln
∣∣∣∣ I 1

I 2

∣∣∣∣ nepers or 20 lg
∣∣∣∣ I 1

I 2

∣∣∣∣ dB

If in Figure 42.33 current I2 lags current I1 by, say, 30°, i.e., (�/6) rad,
then the propagation coefficient � of Section A is given by:

� D ˛ C jˇ D ln

∣∣∣∣∣∣∣∣
1
1

2

∣∣∣∣∣∣∣∣
C j

�

6

i.e., g D .0.693Y j 0.524/

If there are n identical sections connected in cascade and terminated in
their characteristic impedance, then

I1

InC1
D �e��n D en� D en�˛Cjˇ� D en˛ 6 nˇ, . . . . . . �42.26�

where InC1 is the output current of the n’th section.

Problem 9. The propagation coefficients of two filter networks are
given by

(a) � D �1.25 C j0.52�, (b) � D 1.7946 �39.4°

Determine for each (i) the attenuation coefficient, and (ii) the phase
shift coefficient.

(a) If � D �1.25 C j0.52�

then (i) the attenuation coefficient, ˛, is given by the real part,

i.e., a D 1.25 N

and (ii) the phase shift coefficient, ˇ, is given by the imaginary
part,

i.e., b D 0.52 rad
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(b) � D 1.794 6 �39.4° D 1.794[cos��39.4°� C j sin��39.4°�]

D �1.386 � j1.139�

Hence (i) the attenuation coefficient, a = 1.386 N

and (ii) the phase shift coefficient, b = −1.139 rad

Problem 10. The current input to a filter section is 24 6 10° mA and
the current output is 8 6 �45° mA. Determine for the section (a) the
attenuation coefficient, (b) the phase shift coefficient, and (c) the
propagation coefficient. (d) If five such sections are cascaded
determine the output current of the fifth stage and the overall
propagation constant of the network.

Let I1 D 24 6 10° mA and I2 D 8 6 �45° mA, then

I1

I2
D 24 6 10°

8 6 � 45°
D 3 6 55° D e˛ 6 ˇ from equation (42.25).

(a) Hence the attenuation constant, ˛, is obtained from 3 D e˛, i.e.,
a = ln 3 = 1.099 N

(b) The phase shift coefficient ˇ D 55° ð �

180
D 0.960 rad

(c) The propagation coefficient � D ˛ C jˇ D .1.099Y j 0.960/ or
1.459 6 6 41.14°

(d) If I6 is the current output of the fifth stage, then from
equation (42.26),

I1

I6
D �e��n D [36 55°]5 D 243 6 275° (by De Moivre’s theorem)

Thus the output current of the fifth stage,

I6 D I1

243 6 275°
D 24 6 10°

243 6 275°

= 0.0988 6 6 −265° mA or 98.86 6 95° mA

Let the overall propagation coefficient be � 0

then
I1

I6
D 243 6 275° D e�

0 D e˛
0 6 ˇ 0

The overall attenuation coefficient ˛0 D ln 243 D 5.49

and the overall phase shift coefficient ˇ0 D 275° ð �

180°
D 4.80 rad

Hence the overall propagation coefficient g 0 D .5.49Y j 4.80/ or
7.29 6 6 41.16°
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Problem 11. For the low-pass T section filter shown in
Figure 42.34 determine (a) the attenuation coefficient, (b) the phase
shift coefficient and (c) the propagation coefficient � .

I1 XL = j5 Ω XL = j5 Ω I2

XC = −j10 Ω
RL = 12 Ω

Figure 42.34

By current division in Figure 42.34, I2 D
(

XC

XC C XL C RL

)
I1

from which
I1

I2
D XC C XL C RL

XC
D �j10 C j5 C 12

�j10
D �j5 C 12

�j10

D �j5

�j10
C 12

�j10

D 0.5 C j12

�j210
D 0.5 C j1.2

D 1.3 6 67.38° or 1.3 6 1.176

From equation (42.25),
I1

I2
D e˛ 6 ˇ D 1.3 6 1.176

(a) The attenuation coefficient, ˛ D ln 1.3 D 0.262 N

(b) The phase shift coefficient, b D 1.176 rad

(c) The propagation coefficient, � D ˛ C jˇ D .0.262Y j 1.176/ or
1.205 6 6 77.44°

Variation in phase angle in the pass-band of a filter

In practise, the low and high-pass filter sections discussed in Sections 42.5
and 42.6 would possess a phase shift between the input and output volt-
ages which varies considerably over the range of frequency comprising
the pass-band.

Let the low-pass prototype T section shown in Figure 42.35 be termi-
nated as shown in its nominal impedance R0. The input impedance for
frequencies much less than the cut-off frequency is thus also equal to R0

and is resistive. The phasor diagram representing Figure 42.35 is shown
in Figure 42.36 and is produced as follows:
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I1
L
2

L
2

VL1 VL2

VCV1
C

V2 R0

I2

Figure 42.35

(i) V1 and I1 are in phase (since the input impedance is resistive).

(ii) Voltage VL1 D I1XL D I1

(
ωL

2

)
, which leads I by 90°.

(iii) Voltage V1 is the phasor sum of VL1 and VC. Thus VC is drawn
as shown, completing the parallelogram oabc.

(iv) Since no power is dissipated in reactive elements V1 D V2 in
magnitude.

(v) Voltage VL2 D I2

(
ωL

2

)
D I1

(
ωL

2

)
D VL1

(vi) Voltage VC is the phasor sum of VL2 and V2 as shown by triangle
ocd, where VL2 is at right angles to V2

a

VL1

0 b

2

I1 b

2

b

V1

VC

c

VL2

I2

V2

d

b

Figure 42.36
(vii) Current I2 is in phase with V2 since the output impedance is resis-

tive. The phase lag over the section is the angle between V1 and
V2 shown as angle ˇ in Figure 42.36,

where tan
ˇ

2
D oa

ob
D VL1

V1
D

I1

(
ωL

2

)

I1R0
D

ωL

2
R0

From equation (42.5), R0 D
√
L

C
, thus tan

ˇ

2
D

ωL

2√
L

C

D ω
p
�LC�

2

For angles of ˇ up to about 20°, tan
ˇ

2
³ ˇ

2
radians

Thus when ˇ < 20°,
ˇ

2
D ω

p
�LC�

2

from which, phase angle, b = !
p

.LC / radian �42.27�

Since ˇ D 2�f
p
�LC� D �2�

p
�LC��f then ˇ is proportional to f and a

graph of ˇ (vertical) against frequency (horizontal) should be a straight
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line of gradient 2�
p
�LC� and passing through the origin. However in

practise this is only usually valid up to a frequency of about 0.7 fc for a
low-pass filter and a typical characteristic is shown in Figure 42.37. At the
cut-off frequency, ˇ D � rad. For frequencies within the attenuation band,
the phase shift is unimportant, since all voltages having such frequencies
are suppressed.

p

Phase angle
b (rad)

p

2

0
0.7 fc Frequency

Ideal characteristic

Practical curve

Pass band Attenuation
band

fc

Figure 42.37

A high-pass prototype T section is shown in Figure 42.38(a) and its
phasor diagram in Figure 42.38(b), the latter being produced by similar
reasoning to above.

I1
2C 2C I2

VC1
VC2

VL
LV1 V2

R0

(a)

I2

V2
VC2

b

I1

VL

V1

VC1 (b)

b

2

Figure 42.38
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From Figure 42.38(b), tan
ˇ

2
D VC1

V1
D

I1

(
1

ω2C

)

I1R0
D 1

2ωCR0

D 1

2ωC

√
L

C

D 1

2ω
p
�LC�

i.e., ˇ D 1

ω
p
�LC�

D 1

�2�
p
�LC��f

for small angles.

Thus the phase angle is universely proportional to frequency. The ˇ/f
characteristics of an ideal and a practical high-pass filter are shown in
Figure 42.39.

0 fc Frequency

p

Phase
angle
b (rad) Ideal

characteristic

Practical
curve

Attenuation
band

Pass band

Figure 42.39

Time delay

The change of phase that occurs in a filter section depends on the time
the signal takes to pass through the section. The phase shift ˇ may be
expressed as a time delay. If the frequency of the signal is f then the
periodic time is �1/f� seconds.

Hence the time delay D ˇ

2�
ð 1

f
D ˇ

ω
.

From equation (42.27), ˇ D ω
p
�LC�. Thus

time delay =
!

p
.LC /

!
=

p
.LC / �42.28�

when angle ˇ is small.
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Equation (42.28) shows that the time delay, or transit time, is
independant of frequency. Thus a phase shift which is proportional to
frequency (equation (42.27)) results in a time delay which is independant
of frequency. Hence if the input to the filter section consists of a complex
wave composed of several harmonic components of differing frequency,
the output will consist of a complex wave made up of the sum of
corresponding components all delayed by the same amount. There will
therefore be no phase distortion due to varying time delays for the separate
frequency components.

In practise, however, phase shift ˇ tends not to be constant and the
increase in time delay with rising frequency causes distortion of non-
sinusoidal inputs, this distortion being superimposed on that due to the
attenuation of components whose frequency is higher than the cut-off
frequency.

At the cut-off frequency of a prototype low-pass filter, the phase angle
ˇ D � rad. Hence the time delay of a signal through such a section at the
cut-off frequency is given by

ˇ

ω
D �

2�fc
D 1

2fc
D 1

2
1

�
p
�LC�

from equation (42.3),

i.e., at fc, the transit time =
p

p
.LC /

2
seconds �42.29�

Problem 12. Determine for the filter section shown in Figure 42.40,
(a) the time delay for the signal to pass through the filter, assuming
the phase shift is small, and (b) the time delay for a signal to pass
through the section at the cut-off frequency.

Comparing Figure 42.40 with the low-pass T section of Figure 42.13(a),
shows that

L

2
D 0.5 H, thus inductance L D 1 H, and capacitance C D 2 nF

0.5 H 0.5 H

2 nF

Figure 42.40

(a) From equation (42.28),

time delay D p
�LC� D p

[�1��2 ð 10�9�] D 44.7 ms

(b) From equation (42.29), at the cut-off frequency,

time delay D �

2

p
�LC� D �

2
�44.7� D 70.2 ms



824 Electrical Circuit Theory and Technology

Problem 13. A filter network comprising n identical sections
passes signals of all frequencies up to 500 kHz and provides a
total delay of 9.55 µs. If the nominal impedance of the circuit into
which the filter is inserted is 1 k�, determine (a) the values of the
elements in each section, and (b) the value of n.

Cut-off frequency, fc D 500 ð 103 Hz and nominal impedance

R0 D 1000 �.

Since the filter passes frequencies up to 500 kHz then it is a low-pass
filter.

(a) From equations (42.6) and (42.7), for a low-pass filter section,

capacitance, C D 1

�R0fc
D 1

��1000��500 ð 103�

 636.6 pF

and inductance, L D R0

�fc
D 1000

��500 ð 103�

 636.6 mH

Thus if the section is a low-pass T section then the inductance in
each series arm will be �L/2� D 318.3 mH and the capacitance in
the shunt arm will be 636.6 pF.

If the section is a low-pass p section then the inductance in the
series arm will be 636.6 mH and the capacitance in each shunt arm
will be �C/2� D 318.3 pF

(b) From equation (42.28), the time delay for a single section

D p
�LC� D p

[�636.6 ð 10�6��636.6 ð 10�12�] D 0.6366 µs

For a time delay of 9.55 µs therefore, the number of cascaded
sections required is given by

9.55

0.6366
D 15, i.e., n = 15

Problem 14. A filter network consists of 8 sections in cascade
having a nominal impedance of 1 k�. If the total delay time is
4 µs, determine the component values for each section if the filter
is (a) a low-pass T network, and (b) a high-pass � network.

Since the total delay time is 4 µs then the delay time of each of the 8
sections is 4

8 , i.e., 0.5 µs

From equation (42.28), time delay D p
�LC�

Hence 0.5 ð 10�6 D p
�LC� (i)
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Also, from equation (42.5),

√
L

C
D 1000 (ii)

From equation (ii),
p
L D 1000

p
C

Substituting in equation (i) gives: 0.5 ð 10�6 D �1000
p
C�

p
C D 1000 C

from which, capacitance C D 0.5 ð 10�6

1000
D 0.5 nF

From equation (ii),
p
C D

p
L

1000

Substituting in equation (i) gives: 0.5 ð 10�6 D �
p
L�

( p
L

1000

)
D L

1000

from which, inductance, L D 500 µH

(a) If the filter is a low-pass T section then, from Figure 42.13(a), each
series arm has an inductance of L/2, i.e., 250 mH and the shunt arm
has a capacitance of 0.5 nF

(b) If the filter is a high-pass p network then, from Figure 42.16(b),
the series arm has a capacitance of 0.5 nF and each shunt arm has
an inductance of 2 L, i.e., 1000 mH or 1 mH.

Further problems on propagation coefficient and time delay may be found
in Section 42.10, problems 13 to 18, page 838

42.8 ‘m-derived’ filter
sections

(a) General

In a low-pass filter a clearly defined cut-off frequency followed by a high
attenuation is needed; in a high-pass filter, high attenuation followed by a
clearly defined cut-off frequency is needed. It is not practicable to obtain
either of these conditions by wiring appropriate prototype constant-k
sections in cascade. An equivalent section is therefore required having:

(i) the same cut-off frequency as the prototype but with a rapid rise in
attenuation beyond cut-off for a low-pass type or a rapid decrease
at cut-off from a high attenuation for the high-pass type,

(ii) the same value of nominal impedance R0 as the prototype at
all frequencies (otherwise the two forms could not be connected
together without mismatch).

If the two sections, i.e., the prototype and the equivalent section, have the
same value of R0 they will have identical pass-bands.

The equivalent section is called an ‘m-derived’ filter section (for
reasons as explained below) and is one which gives a sharper cut-off
at the edges of the pass band and a better impedance characteristic.
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Z1

2

Z1

2

Z2

mZ1

2

mZ1

2

Z ′ 2

(a)

(b)

Figure 42.41

(b) T sections

A prototype T section is shown in Figure 42.41(a). Let a new section be
constructed from this section having a series arm of the same type but of
different value, say mZ1, where m is some constant. (It is for this reason
that the new equivalent section is called an ‘m-derived’ section.) If the
characteristic impedance Z0T of the two sections is to be the same then
the value of the shunt arm impedance will have to be different to Z2.

Let this be Z0
2 as shown in Figure 42.41(b).

The value of Z0
2 is determined as follows:

From equation (41.1), page 760, for the prototype shown in Fig-
ure 42.41(a):

Z0T D
√[(

Z1

2

)2

C 2
(
Z1

2

)
Z2

]

i.e., Z0T D
√(

Z2
1

4
C Z1Z2

)
(a)

Similarly, for the new section shown in Figure 42.41(b),

Z0T D
√[(

mZ1

2

)2

C 2
(
mZ1

2

)
Z0

2

]

i.e., Z0T D
√(

m2Z2
1

4
C mZ1Z

0
2

)
(b)

Equations (a) and (b) will be identical if:

Z2
1

4
C Z1Z2 D m2Z2

1

4
C mZ1Z

0
2

Rearranging gives: mZ1Z
0
2 D Z1Z2 C Z2

1

4
�1 � m2�

i.e., Z0
2 D Z2

m
C Z1

(
1 � m2

4m

)
�42.30�

Thus impedance Z0
2 consists of an impedance Z2/m in series with an

impedance Z1��1 � m2�/4m�. An additional component has therefore been
introduced into the shunt arm of the m-derived section. The value of m
can range from 0 to 1, and when m D 1, the prototype and the m-derived
sections are identical.

(c) p sections

A prototype � section is shown in Figure 42.42(a). Let a new section be
constructed having shunt arms of the same type but of different values,
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Z1

2Z2 2Z2

Z ′1

2Z2

m

2Z2

m

(a)

(b)

Figure 42.42

say Z2/m, where m is some constant. If the characteristic impedance Z0�

of the two sections is to be the same then the value of the series arm
impedance will have to be different to Z1.

Let this be Z0
1 as shown in Figure 42.42(b).

The value of Z0
1 is determined as follows:

From equation (42.9), Z0TZ0� D Z1Z2

Thus the characteristic impedance of the section shown in
Figure 42.42(a) is given by:

Z0� D Z1Z2

Z0T
D Z1Z2√(

Z2
1

4
C Z1Z2

) (c)

from equation (a) above.

For the section shown in Figure 42.42(b),

Z0� D
Z0

1

Z2

m√(
�Z0

1�
2

4
C Z0

1
Z2

m

) (d)

Equations (c) and (d) will be identical if

Z1Z2√(
Z2

1

4
C Z1Z2

) D
Z0

1

Z2

m√(
�Z0

1�
2

4
C Z0

1
Z2

m

)

Dividing both sides by Z2 and then squaring both sides gives:

Z2
1

Z2
1

4
C Z1Z2

D
�Z0

1�
2

m2

�Z0
1�

2

4
C Z0

1Z2

m

Thus Z2
1

(
�Z0

1�
2

4
C Z0

1Z2

m

)
D �Z0

1�
2

m2

(
Z2

1

4
C Z1Z2

)

i.e.,
Z2

1�Z
0
1�

2

4
C Z2

1Z
0
1Z2

m
D �Z0

1�
2Z2

1

4m2
C �Z0

1�
2Z1Z2

m2

Multiplying throughout by 4m2 gives:

m2Z2
1�Z

0
1�

2 C 4mZ2
1Z

0
1Z2 D �Z0

1�
2Z2

1 C 4�Z0
1�

2Z1Z2

Dividing throughout by Z0
1 and rearranging gives:

4mZ2
1Z2 D Z0

1�Z
2
1 C 4Z1Z2 � m2Z2

1�
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Thus Z0
1 D 4mZ2

1Z2

4Z1Z2 C Z2
1�1 � m2�

i.e., Z ′
1 =

4mZ1Z2

4Z2 Y Z1.1 − m2/
�42.31�

An impedance mZ1 in parallel with an impedance �4mZ2/1 � m2� gives
(using (product/sum)):

�mZ1�
4mZ2

1 � m2

mZ1 C 4mZ2

1 � m2

D �mZ1�4mZ2

mZ1�1 � m2� C 4mZ2
D 4mZ1Z2

4Z2 C Z1�1 � m2�

Hence the expression for Z0
1 (equation (42.31)) represents an impedance

mZ1 in parallel with an impedance �4m/1 � m2�Z2

(d) Low-pass ‘m-derived’ sections

The ‘m-derived’ low-pass T section is shown in Figure 42.43(a) and is
derived from Figure 42.13(a), Figure 42.41 and equation (42.30). If Z2

represents a pure capacitor in Figure 42.41(a), then Z2 D �1/ωC�.
A capacitance of value mC shown in Figure 42.43(a) has an impedance

1

ωmC
D 1

m

(
1

ωC

)
D Z2

m
as in equation (42.30).

The ‘m-derived’ low-pass � section is shown in Figure 42.43(b) and is
derived from Figure 42.13(b), Figure 42.42 and from equation (42.31).

Note that a capacitance of value

(
1 � m2

4m

)
C has an impedance of

1

ω

(
1 � m2

4m

)
C

D
(

4m

1 � m2

)(
1

ωC

)
D
(

4m

1 � m2

)
Z2

mL
2

mC

mL

(a)

(b)

mL
2

1−m2

4 m
L

1−m2

4 m
C

mC
2

mC
2

Figure 42.43
where Z2 is a pure capacitor.

In Figure 42.43(a), series resonance will occur in the shunt arm at a
particular frequency — thus short-circuiting the transmission path. In the
prototype, infinite attenuation is obtained only at infinite frequency (see
Figure 42.25).

In the m-derived section of Figure 42.43(a), let the frequency of infinite
attenuation be f1, then at resonance: XL D XC

i.e., ω1

(
1 � m2

4m

)
L D 1

ω1mC

from which, ω2
1 D 1

�mC�

(
1 � m2

4m

)
L

D 4

LC�1 � m2�
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From equation (42.2),

4

LC
D ω2

c , thus ω2
1 D ω2

c

�1 � m2�
,

where ωc D 2�fc, fc being the cut-off frequency of the prototype.

Hence ω1 D ωcp
�1 � m2�

�42.32�

Rearranging gives: ω2
1�1 � m2� D ω2

c

ω2
1 � m2ω2

1 D ω2
c

m2 D ω2
1 � ω2

c

ω21
D 1 � ω2

c

ω21

i.e., m =

√[
1 −

(
fc

f∞

)2
]

�42.33�

In the m-derived � section of Figure 42.43(b), resonance occurs in the
parallel arrangement comprising the series arm of the section when

ω2 D 1

mL

(
1 � m2

4m

)
C

, when ω2 D 4

LC�1 � m2�

as in the series resonance case (see Chapter 28).
Thus equations (42.32) and (42.33) are also applicable to the low-pass

m-derived � section.
In equation (42.33), 0 < m < 1, thus f∞ > fc.
The frequency of infinite attenuation f1 can be placed anywhere within

the attenuation band by suitable choice of the value of m; the smaller m
is made the nearer is f1 to the cut-off frequency, fc.

Problem 15. A filter section is required to have a nominal
impedance of 600 �, a cut-off frequency of 5 kHz and a frequency
of infinite attenuation at 5.50 kHz. Design (a) an appropriate ‘m-
derived’ T section, and (b) an appropriate ‘m-derived’ � section.

Nominal impedance R0 D 600 �, cut-off frequency, fc D 5000 Hz and
frequency of infinite attenuation, f1 D 5500 Hz. Since f1 > fc the
filter section is low-pass.
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From equation (42.33),

m D
√[

1 �
(
fc

f1

)2
]

D
√[

1 �
(

5000

5500

)2
]

D 0.4166

For a low-pass prototype section:

from equation (42.6), capacitance, C D 1

�R0fc
D 1

��600��5000�


 0.106 µF

and from equation (42.7), inductance, L D R0

�fc
D 600

��5000�


 38.2 mH

(a) For an ‘m-derived’ low-pass T section:

From Figure 42.43(a), the series arm inductances are each

mL

2
D �0.4166��38.2�

2
D 7.957 mH,

and the shunt arm contains a capacitor of value mC,

i.e., �0.4166��0.106� D 0.0442 mF or 44.2 nF, in series with an
inductance of

value

(
1 � m2

4m

)
L D

(
1 � 0.41662

4�0.4166�

)
�38.2�,

i.e., 18.95 mH

The appropriate ‘m-derived’ T section is shown in Figure 42.44.

(b) For an ‘m-derived’ low-pass � section:

From Figure 42.43(b) the shunt arms each contain capacitances
equal to mC/2,

i.e.,
�0.4166��0.106�

2
D 0.0221 mF or 22.1 nF,

7.957 mH 7.957 mH

44.2 nF

18.95 mH

Figure 42.44

and the series arm contains an inductance of value m L,

i.e., �0.4166��38.2� D 15.91 mH in parallel with a capacitance of

value

(
1 � m2

4m

)
C D

(
1 � 0.41662

4�0.4166�

)
�0.106�

D 0.0526 mF or 52.6 nF

The appropriate ‘m-derived’� section is shown in Figure 42.45.

15.91 mH

22.1 nF
52.6 nF

22.1 nF

Figure 42.45
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(e) High-pass ‘m-derived’ sections

Figure 42.46(a) shows a high-pass prototype T section and Figure 42.46(b)
shows the ‘m-derived’ high-pass T section which is derived from
Figure 42.16(a), Figure 42.41 and equation (42.30).

Z1
2

Z1
2

Z2

2C 2C

L

2C
m

2C
m

L
m

4m
1 − m2

C

(a) (b)

Figure 42.46

Figure 42.47(a) shows a high-pass prototype � section and
Figure 42.47(b) shows the ‘m-derived’ high-pass � section which is
derived from Figure 42.16(b), Figure 42.42 and equation (42.31). In
Figure 42.46(b), resonance occurs in the shunt arm when:

ω1
L

m
D 1

ω1
(

4m

1 � m2

)
C

i.e., when ω2
1 D 1 � m2

4LC
D ω2

c �1 � m2� from equation (42.14)

i.e., ω1 D ωc
p
�1 � m2� �42.34�

Hence
ω2

1
ω2
c

D 1 � m2

Z1

2Z2 2Z2

(a)

C

2L 2L 2L
m

C
m

4 m
1 − m2 L

2L
m

(b)

Figure 42.47
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from which, m =

√[
1 −

(
f∞
fc

)2
]

�42.35�

For a high-pass section, f1 < fc.

It may be shown that equations (42.34) and (42.35) also apply to the
‘m-derived’ � section shown in Figure 42.47(b).

Problem 16. Design (a) a suitable ‘m-derived’ T section, and
(b) a suitable ‘m-derived’ � section having a cut-off frequency of
20 kHz, a nominal impedance of 500 � and a frequency of infinite
attenuation 16 kHz.

Nominal impedance R0 D 500 �, cut-off frequency, fc D 20 kHz and the
frequency of infinite attenuation, f1 D 16 kHz. Since f1 < fc the filter
is high-pass.

From equation (42.35), m D
√[

1 �
(
f1
fc

)2
]

D
√[

1 �
(

16

20

)2
]

D 0.60

For a high-pass prototype section:

From equation (42.18), capacitance,

C D 1

4�R0fc
D 1

4��500��20 000�

 7.958 nF

and from equation (42.19), inductance,

L D R0

4�fc
D 500

4��20 000�

 1.989 mH

(a) For an ‘m-derived’ high-pass T section:

From Figure 42.46(b), each series arm contains a capacitance of
value 2C/m, i.e., 2(7.958)/0.60, i.e., 26.53 nF, and the shunt arm
contains an inductance of value L/m, i.e., �1.989/0.60� D 3.315 mH
in series with a capacitance of value

(
4m

1 � m2

)
C i.e.,

(
4�0.60�

1 � 0.602

)
�7.958� D 29.84 nF

A suitable ‘m-derived’ T section is shown in Figure 42.48.

(b) For an ‘m-derived’ high pass � section:

From Figure 42.47(b), the shunt arms each contain inductances equal
to 2L/m, i.e., (2(1.989)/0.60), i.e., 6.63 mH and the series arm

26.53 nF 26.53 nF

3.315 mH

29.84 nF

Figure 42.48
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13.26 nF

7.459 mH

6.63 mH 6.63 mH

Figure 42.49

contains a capacitance of value C/m, i.e., �7.958/0.60� D 13.26 nF
in parallel with an inductance of value �4m/1 � m2�L,

i.e.,
(

4�0.60�

1 � 0.602

)
�1.989� 
 7.459 mH

A suitable ‘m-derived’ � section is shown in Figure 42.49.

Further problems on ‘m-derived’ filter sections may be found in
Section 42.10, problems 19 to 22, page 839

42.9 Practical composite
filters

In practise, filters to meet a given specification often have to comprise a
number of basic networks. For example, a practical arrangement might
consist of (i) a basic prototype, in series with (ii) an ‘m-derived’ section,
with (iii) terminating half-sections at each end. The ‘m-derived’ section
improves the attenuation immediately after cut-off, the prototype improves
the attenuation well after cut-off, whilst the terminating half-sections are
used to obtain a constant match over the pass-band.

Figure 42.50(a) shows an ‘m-derived’ low-pass T section, and
Figure 42.50(b) shows the same section cut into two halves through AB,
each of the two halves being termed a ‘half-section’. The ‘m-derived’ half
section also improves the steepness of attenuation outside the pass-band.

Z0T Z0T

mL
2

mL
2

mC

1 − m2

4 m

(a)

Z0T

mC
2

mC
2

L

Z0T

Z0T

(b)

1 − m2

2 m
L1 − m2

2 m L

mL
2

mL
2A

B

Z0T

Figure 42.50

As shown in Section 42.8, the ‘m-derived’ filter section is based on a
prototype which presents its own characteristic impedance at its terminals.
Hence, for example, the prototype of a T section leads to an ‘m-derived’
T section and Z0T D Z0T�m� where Z0T is the characteristic impedance
of the prototype and Z0T�m� is the characteristic impedance of the ‘m-
derived’ section. It is shown in Figure 42.24 that Z0T has a non-linear
characteristic against frequency; thus Z0T�m� will also be non-linear.

Since from equation (42.9), Z0� D �Z1Z2/Z0T�, then the characteristic
impedance of the ‘m-derived’ � section,

Z0��m� D Z0
1Z

0
2

Z0T�m�
D Z0

1Z
0
2

Z0T
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where Z0
1 and Z0

2 are the equivalent values of impedance in the ‘m-derived’
section.

From Figure 42.41, Z0
1 D mZ1 and from equation (42.30),

Z0
2 D Z2

m
C
(

1 � m2

4m

)
Z1

Thus Z0��m� D
mZ1

[
Z2

m
C
(

1 � m2

4m

)
Z1

]

Z0T

D Z1Z2

Z0T

[
1 C

(
1 � m2

4Z2

)
Z1

]
�42.36�

or Z0p.m/= Z0p

[
1Y

(
1 − m2

4Z2

)
Z1

]
�42.37�

Thus the impedance of the ‘m-derived’ section is related to the impedance
of the prototype by a factor of [1 C �1 � m2/4Z2�Z1] and will vary as m
varies.

When m D 1, Z0��m� D Z0�

When m D 0, Z0��m� D Z1Z2

Z0T

[
1 C Z1

4Z2

]
from equation (42.36)

D 1

Z0T

[
Z1Z2 C Z2

1

4

]

However from equation (42.8), Z1Z2 C Z2
1

4
D Z2

0T

Hence, when m D 0, Z0��m� D Z2
0T

Z0T
D Z0T

Thus the characteristic of impedance against frequency for m D 1 and
m D 0 shown in Figure 42.51 are the same as shown in Figure 42.24.
Further characteristics may be drawn for values of m between 0 and 1 as
shown.

It is seen from Figure 42.51 that when m D 0.6 the impedance is prac-
tically constant at R0 for most of the pass-band. In a composite filter,
‘m-derived’ half-sections having a value of m D 0.6 are usually used at
each end to provide a good match to a resistive source and load over the
pass-band.

Figure 42.51 shows characteristics of ‘m-derived’ low-pass filter
sections; similar curves may be constructed for m-derived high-pass filters
with the two curves shown in Figure 42.29 representing the limiting
values of m D 0 and m D 1.

The value of m needs to be small for the frequency of input attenuation,
f1, to be close to the cut-off frequency, fc. However, it is not practical
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Z0

R0

ZOT

Z 0p
= Z 0p

(m
)

m
= 

1

m
= 0

.8
m

= 
0.

6

m = 0.4

Z
OT = Z

0p(m)

m = 0

0 fc Frequency

Pass band
Attenuation

band

Nominal
impedance

Z0π(m)

Figure 42.51

to make m very small, below 0.3 being very unusual. When m D 0.3,
f1 ³ 1.05fc (from equation (42.32)) and when m D 0.6, f1 D 1.25fc.
The effect of the value of m on the frequency of infinite attenuation is
shown in Figure 42.52 although the ideal curves shown would be modified
a little in practise by resistance losses.

Attenuation

m = 0.3

m = 0.6

m = 1

fc 1.05fc 1.25fc Frequency

Figure 42.52

Problem 17. It is required to design a composite filter with a
cut-off frequency of 10 kHz, a frequency of infinite attenuation
11.8 kHz and nominal impedance of 600 �. Determine the compo-
nent values needed if the filter is to comprise a prototype T section,
an ‘m-derived’ T section and two terminating ‘m-derived’ half-
sections.
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R0 D 600 �, fc D 10 kHz and f1 D 11.8 kHz. Since fc < f1 the filter
is a low-pass T section.

For the prototype:

From equation (42.6), capacitance,

C D 1

�fcR0
D 1

��10 000��600�

 0.0531 µF,

and from equation (42.7), inductance,

L D R0

�fc
D 600

��10 000�

 19 mH

Thus, from Figure 42.13(a), the series arm components are
�L/2� D �19/2� D 9.5 mH and the shunt arm component is 0.0531 mF.

For the ‘m-derived’ section:

From equation (42.33),

m D
√[

1 �
(
fc

f1

)2
]

D
√[

1 �
(

10 000

11800

)2
]

D 0.5309

Thus from Figure 42.43(a), the series arm components are

mL

2
D �0.5309��19�

2
D 5.04 mH

and the shunt arm comprises mC D �0.5309��0.0531� D 0.0282 mF in
series with(

1 � m2

4m

)
L D

(
1 � 0.53092

4�0.5309�

)
�19� D 6.43 mH

For the half-sections a value of m D 0.6 is taken to obtain matching.

Thus from Figure 42.50,

mL

2
D �0.6��19�

2
D 5.7 mH,

mC

2
D �0.6��0.0531�

2


 0.0159 mF

5.7 mH 9.5 mH 9.5 mH 5.04 mH 5.04 mH 5.7 mH

0.0159 µF

10.13 mH
0.0531 µF

0.0282 µF

6.43 mH

0.0159 µF

10.13 mH

Half section Prototype section "m-derived" section Half section

Figure 42.53
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and

(
1 � m2

2m

)
L D

(
1 � 0.62

2�0.6�

)
�19� 
 10.13 mH

The complete filter is shown in Figure 42.53.

Further problems on practical composite filter sections may be found in
Section 42.10 following, problems 23 and 24, page 840

42.10 Further problems
on filter networks

Low-pass filter sections

1 Determine the cut-off frequency and the nominal impedance of each
of the low-pass filter sections shown in Figure 42.54.

[(a) 1592 Hz; 5 k� (b) 9545 Hz; 600 �]

2 A filter section is to have a characteristic impedance at zero frequency
of 500 � and a cut-off frequency of 1 kHz. Design (a) a low-pass
T section filter, and (b) a low-pass � section filter to meet these
requirements.

[(a) Each series arm 79.6 mH, shunt arm 0.637 µF
(b) Series arm 159.2 mH, each shunt arm 0.318 µF]

3 Determine the value of capacitance required in the shunt arm of a
low-pass T section if the inductance in each of the series arms is
40 mH and the cut-off frequency of the filter is 2.5 kHz.

[0.203 µF]

4 The nominal impedance of a low-pass � section filter is 600 � and
its cut-off frequency is at 25 kHz. Determine (a) the value of the
characteristic impedance of the section at a frequency of 20 kHz and
(b) the value of the characteristic impedance of the equivalent low-
pass T section filter. [(a) 1 k� (b) 360 �]

0.5 H 0.5 H

0.04 µF

20 mH

27.8 nF 27.8 nF

(a)

(b)

Figure 42.54
5 The nominal impedance of a low-pass � section filter is 600 �. If

the capacitance in each of the shunt arms is 0.1 µF determine the
inductance in the series arm. Make a sketch of the ideal and the
practical attenuation/frequency characteristic expected for such a filter
section. [72 mH]

6 A low-pass T section filter has a nominal impedance of 600 � and
a cut-off frequency of 10 kHz. Determine the frequency at which
the characteristic impedance of the section is (a) zero, (b) 300 �,
(c) 600 � [(a) 10 kHz (b) 8.66 kHz (c) 0]

High-pass filter sections

7 Determine for each of the high-pass filter sections shown in
Figure 42.55 (i) the cut-off frequency, and (ii) the nominal
impedance.

[(a) (i) 22.51 kHz (ii) 14.14 k� (b) (i) 281.3 Hz (ii) 1414 �]
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500 pF 500 pF

50 mH

0.2 µF

800 mH 800 mH

(a)

(b)

Figure 42.55

8 A filter is required to pass all frequencies above 4 kHz and to have
a nominal impedance of 750 �. Design (a) an appropriate T section
filter, and (b) an appropriate� section filter to meet these requirements.

[(a) Each series arm D 53.1 nF, shunt arm D 14.92 mH
(b) Series arm D 26.5 nF, each shunt arm D 29.84 mH]

9 The inductance in each of the shunt arms of a high-pass � section
filter is 50 mH. If the nominal impedance of the section is 600 �,
determine the value of the capacitance in the series arm.

[69.44 nF]

10 Determine the value of inductance required in the shunt arm of a
high-pass T section filter if in each series arm it contains a 0.5 µF
capacitor. The cut-off frequency of the filter section is 1500 Hz.
Sketch the characteristic curve of characteristic impedance against
frequency expected for such a filter section. [11.26 mH]

11 A high-pass � section filter has a nominal impedance of 500 � and
a cut-off frequency of 50 kHz. Determine the frequency at which
the characteristic impedance of the section is (a) 1 k� (b) 800 �
(c) 520 �. [(a) 57.74 kHz (b) 64.05 kHz (c) 182 kHz]

12 A low-pass T section filter having a cut-off frequency of 9 kHz is
connected in series with a high-pass T section filter having a cut-off
frequency of 6 kHz. The terminating impedance of the filter is 600 �.

(a) Determine the values of the components comprising the
composite filter.

(b) Sketch the expected attenuation/frequency characteristic and
state the name given to the type of filter described.

[(a) Low-pass Tsection: each series arm 10.61 mH,
shunt-arm 58.95 nF]
High-pass Tsection: each series arm 44.20 nF,
shunt arm 7.96 mH

(b) Band-pass filter]

Propagation coefficient and time delay

13 A filter section has a propagation coefficient given by
(a) �1.79 � j0.63� (b) 1.378 6 51.6°. Determine for each (i) the atten-
uation coefficient and (ii) the phase angle coefficient.

[(a) (i) 1.79 N (ii) �0.63 rad (b) (i) 0.856 N (ii) 1.08 rad]

14 A filter section has a current input of 200 6 20° mA and a current
output of 16 6 �30° mA. Determine (a) the attenuation coefficient
(b) the phase shift coefficient, and (c) the propagation coefficient.
(d) If four such sections are cascaded determine the current output
of the fourth stage and the overall propagation coefficient.

[(a) 2.526 N (b) 0.873 rad
(c) �2.526 C j0.873� or 2.6736 19.07°

(d) 8.19 6 �180°µAI �10.103 C j3.491� or
10.69 6 19.06°]
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15 Determine for the high-pass T section filter shown in Figure 42.56,
(a) the attenuation coefficient, (b) the phase shift coefficient, and
(c) the propagation coefficient.

[(a) 1.61 N (b) � 2.50 rad
(c) �1.61 � j2.50� or 2.976 �57.22°]

Xc = −j1 kΩ Xc = −j1 kΩ

XL = j 200 Ω RL = 600 Ω

Figure 42.56

16 A low-pass T section filter has an inductance of 25 mH in each
series arm and a shunt arm capacitance of 400 nF. Determine for the
section (a) the time delay for the signal to pass through the filter,
assuming the phase shift is small, and (b) the time delay for a signal
to pass through the section at the cut-off frequency.

[(a) 141.4 µs (b) 222.1 µs]

17 A filter network comprising n identical sections passes signals of
all frequencies over 8 kHz and provides a total delay of 69.63 µs.
If the characteristic impedance of the circuit into which the filter
is inserted is 600 �, determine (a) the values of the components
comprising each section, and (b) the value of n.

[(a) Each series arm 33.16 nF; shunt arm 5.97 mH (b) 7]

18 A filter network consists of 15 sections in cascade having a nominal
impedance of 800 �. If the total delay time is 30 µs determine the
component value for each section if the filter is (a) a low-pass �
network, (b) a high-pass T network.

[(a) Series arm 1.60 mH, each shunt arm 1.25 nF
(b) Each series arm 5 nF, shunt arm 1.60 nF]

‘m-derived’ filter sections

19 A low-pass filter section is required to have a nominal impedance of
450 �, a cut-off frequency of 150 kHz and a frequency of infinite
attenuation at 160 kHz. Design an appropriate ‘m-derived’ T section
filter.

[Each series arm 0.166 mH; shunt arm comprises 1.641 nF
capacitor in series with 0.603 mH inductance]

20 In a filter section it is required to have a cut-off frequency of
1.2 MHz and a frequency of infinite attenuation 1.3 MHz. If the
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nominal impedance of the line into which the filter is to be inserted
is 600 �, determine suitable component values if the section is an
‘m-derived’� type.

[Each shunt arm 85.1 pFI series arm contains 61.21 µH
inductance in parallel with 244.9 pF capacitor]

21 Determine the component values of an ‘m-derived’ T section filter
having a nominal impedance of 600 �, a cut-off frequency of
1220 Hz and a frequency of infinite attenuation of 1100 Hz.

[Each series arm 0.503 µFI series arm comprises 90.50 mH
inductance in series with 0.231 µF capacitor]

22 State the advantages of an ‘m-derived’ filter section over its equiva-
lent prototype.
A filter section is to have a nominal impedance of 500 �, a cut-
off frequency of 5 kHz and a frequency of infinite attenuation of
4.5 kHz. Determine the values of components if the section is to be
an ‘m-derived’ � filter.

[Each shunt arm 36.51 mH inductance;
series arm comprises 73.02 nF
capacitor in parallel with 17.13 mH inductance]

Composite filter sections

23 A composite filter is to have a nominal impedance of 500 �, a cut-
off frequency of 1500 Hz and a frequency of infinite attenuation of
1800 Hz. Determine the values of components required if the filter
is to comprise a prototype T section, an ‘m-derived’ T section and
two terminating half-sections (use m D 0.6 for the half-sections).

[Prototype: Each series arm 53.1 mH;
shunt arm comprises 0.424 µF

‘m-derived’: Each series arm 29.3 mH;
shunt arm comprises 0.235 µH
capacitor in series with 33.32 mH inductance.

Half-sections: Series arm 31.8 mH;
shunt arm comprises 0.127 µF
capacitor in series with 56.59 mH inductance]

24 A filter made up of a prototype � section, an ‘m-derived’ �
section and two terminating half-sections in cascade has a nominal
impedance of 1 k�, a cut-off frequency of 100 kHz and a frequency
of infinite attenuation of 90 kHz. Determine the values of the
components comprising the composite filter and explain why such a
filter is more suitable than just the prototype. (Use m D 0.6 for the
half-sections.)

[Prototype: Series arm 795.8 pF, each shunt arm 1.592 mH
‘m-derived’: Each shunt arm 3.651 mH; series arm 1.826 nF

capacitor in parallel with 1.713 mH inductance.
Half-sections: Shunt arm 238.7 pF; series arm 10.61 nF

capacitor in parallel with 1.492 mH inductance]



43 Magnetically coupled
circuits

At the end of this chapter you should be able to:

ž define mutual inductance

ž deduce that E2 D �MdI1

d t
, M D N2

d2

dI1
, M D N1

d1

dI2
and

perform calculations

ž show that M D k
p
�L1L2
 and perform calculations

ž perform calculations on mutually coupled coils in series

ž perform calculations on coupled circuits

ž describe and use the dot rule in coupled circuit problems.

43.1 Introduction When the interaction between two loops of a circuit takes place through a
magnetic field instead of through common elements, the loops are said to
be inductively or magnetically coupled. The windings of a transformer,
for example, are magnetically coupled (see Chapter 20).

43.2 Self-inductance It was shown in Chapter 9, that the e.m.f. E induced in a coil of inductance
L henrys is given by:

E = −L
di
dt

volts , where
d i

d t
is the rate of change of current,

the magnitude of the e.m.f. induced in a coil of N turns is given by:

E = −N
d8
dt

volts , where
d

d t
is the rate of change of flux,

and the inductance of a coil L is given by:

L =
N8

I
henrys
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43.3 Mutual inductance Mutual inductance is said to exist between two circuits when a changing
current in one induces, by electromagnetic induction, an e.m.f. in the
other. An ideal equivalent circuit of a mutual inductor is shown in
Figure 43.1.
L1 and L2 are the self inductances of the two circuits and M the mutual

inductance between them. The mutual inductance M is defined by the
relationship:

E2 = −M
dI1

dt
or E1 = −M

dI2

dt
�43.1


where E2 is the e.m.f. in circuit 2 due to current I1 in circuit 1 and E1 is
the e.m.f. in circuit 1 due to the current I2 in circuit 2.

CIRCUIT
       1

CIRCUIT
       2

N1 N2

M

L1 L2

Figure 43.1 The unit of M is the henry.

From Section 43.2, E2 D �N2
d2

d t
or E1 D �N1

d1

d t
�43.2


Equating the E2 terms in equations (43.1) and (43.2) gives:

�M
dI1

d t
D �N2

d2

d t

from which M = N2
d82

dI1
�43.3


Equating the E1 terms in equations (43.1) and (43.2) gives:

�M
dI2

d t
D �N1

d1

d t

from which M = N1
d81

dI2
�43.4


If the coils are linked with air as the medium, the flux and current are
linearly related and equations (43.3) and (43.4) become:

M =
N282

I 1
and M =

N181

I 2
�43.5


Problem 1. A and B are two coils in close proximity. A has
1200 turns and B has 1000 turns. When a current of 0.8 A flows
in coil A a flux of 100 µWb links with coil A and 75% of this
flux links coil B. Determine (a) the self inductance of coil A, and
(b) the mutual inductance.
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(a) From Section (43.2),

self inductance of coil A, LA D NAA

IA
D �1200
�100 ð 10�6


0.80

D 0.15 H

(b) From equation (43.5),

mutual inductance, M D NBB

IA
D �1000
�0.75 ð 100 ð 10�6


0.80

D 0.09 375 H or 93.75 mH

Problem 2. Two circuits have a mutual inductance of 600 mH. A
current of 5 A in the primary is reversed in 200 ms. Determine the
e.m.f. induced in the secondary, assuming the current changes at a
uniform rate.

Secondary e.m.f., E2 D �MdI1

d t
, from equation (43.5).

Since the current changes from C5A to �5A, the change of current
is 10 A.

Hence
dI1

d t
D 10

200 ð 10�3
D 50 A/s

Hence secondary induced e.m.f., E2 D �MdI1

d t
D ��600 ð 10�3
�50


D −30 volts

Further problems on mutual inductance may be found in Section 43.8,
problems, 1 to 4, page 864.

43.4 Coupling coefficient The coupling coefficient k is the degree or fraction of magnetic coupling
that occurs between circuits.

k D flux linking two circuits

total flux produced

When there is no magnetic coupling, k D 0. If the magnetic coupling is
perfect, i.e., all the flux produced in the primary links with the secondary
then k D 1. Coupling coefficient is used in communications engineering
to denote the degree of coupling between two coils. If the coils are close
together, most of the flux produced by current in one coil passes through
the other, and the coils are termed tightly coupled. If the coils are spaced
apart, only a part of the flux links with the second, and the coils are termed
loosely-coupled.
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From Section 43.2, the inductance of a coil is given by L D N

I

Thus for the circuit of Figure 43.1, L1 D N11

I1

from which, 1 D L1I1

N1
�43.6


From equation (43.5), M D �N22/I1
, but the flux that links the second
circuit, 2 D k1

Thus M D N22

I1
D N2�k1


I1
D N2k

I1

(
L1I1

N1

)
from equation (43.6)

i.e., M D kN2L1

N1
from which,

N2

N1
D M

kL1
�43.7


Also, since the two circuits can be reversed,

M D kN1L2

N2
from which,

N2

N1
D kL2

M
�43.8


Thus from equations (43.7) and (43.8),

N2

N1
D M

kL1
D kL2

M

from which, M2 D k2L1L2 and M = k
p

.L1L2/ �43.9


or, coefficient of coupling, k =
Mp

.L1L2/
�43.10


Problem 3. Two coils have self inductances of 250 mH and
400 mH respectively. Determine the magnetic coupling coefficient
of the pair of coils if their mutual inductance is 80 mH.

From equation (43.10), coupling coefficient,

k D Mp
�L1L2


D 80 ð 10�3√
[�250 ð 10�3
�400 ð 10�3
]

D 80 ð 10�3

p
�0.1


D 0.253
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Problem 4. Two coils, X and Y, having self inductances of 80 mH
and 60 mH respectively, are magnetically coupled. Coil X has 200
turns and coil Y has 100 turns. When a current o

f 4 A is reversed

in coil X the change of flux in coil Y is 5 mWb. Determine (a) the
mutual inductance between the coils, and (b) the coefficient of
coupling.

(a) From equation (43.3),

mutual inductance, M D NY
dY

dIX
D �100
�5 ð 10�3


�4 � �4


D 0.0625 H or 62.5 mH

(b) From equation (43.10),

coefficient of coupling, k D Mp
�LXLY


D 0.0625√
[�80 ð 10�3
�60 ð 10�3
]

D 0.902

Further problems on coupling coefficient may be pound in Section 43.8,
problems 5 and 6, page 865.

43.5 Coils connected in
series

Figure 43.2 shows two coils 1 and 2 wound on an insulating core with
terminals B and C joined. The fluxes in each coil produced by current i
are in the same direction and the coils are termed cumulatively coupled.

Let the self inductance of coil 1 be L1 and that of coil 2 be L2 and let
their mutual inductance be M.

If in d t seconds, the current increases by d i amperes then the e.m.f.
induced in coil 1 due to its self inductance is L1�d i/d t
 volts, and the
e.m.f. induced in coil 2 due to its self inductance is L2�d i/d t
 volts. Also,
the e.m.f. induced in coil 1 due to the increase of current in coil 2 is
M�d i/d t
 volts and the e.m.f. induced in coil 2 due to the increase of
current in coil 1 is M�d i/d t
.

Hence the total e.m.f. induced in coils 1 and 2 is:

L1
d i

d t
C L2

d i

d t
C 2

(
M

d i

d t

)
volts D �L1 C L2 C 2M


d i

d t
volts

COIL 1

COIL 2

A

B

C

D

i

Figure 43.2 If the winding between terminals A and D in Figure 43.2 are consid-
ered as a single circuit having a self inductance LA henrys then if the
same increase in d t seconds is d i amperes then the e.m.f. induced in the
complete circuit is LA�d i/d t
 volts.

Hence LA
d i

d t
D �L1 C L2 C 2M


d i

d t
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i

COIL 1

COIL 2

A

B

C

D

Figure 43.3

i.e., LA= L1 Y L2 Y 2M �43.11


If terminals B and D are joined as shown in Figure 43.3 the direction of
the current in coil 2 is reversed and the coils are termed differentially
coupled. In this case, the total e.m.f. induced in coils 1 and 2 is:

L1
d i

d t
C L2

d i

d t
� 2M

d i

d t

The e.m.f. M�d i/d t
 induced in coil 1 due to an increase d i amperes in
d t seconds in coil 2 is in the same direction as the current and is hence in
opposition to the e.m.f. induced in coil 1 due to its self inductance. Simi-
larly, the e.m.f. induced in coil 2 by mutual inductance is in opposition
to that induced by the self inductance of coil 2.

If LB is the self inductance of the whole circuit between terminals A
and C in Figure 43.3 then:

LB
d i

d t
D L1

d i

d t
C L2

d i

d t
� 2M

d i

d t

i.e., LB = L1 Y L2 − 2M �43.12


Thus the total inductance L of inductively coupled circuits is given by:

L = L1 Y L2 ± 2M �43.13


Equation (43.11) - equation (43.12) gives:

LA � LB D �L1 C L2 C 2M
� �L1 C L2 � 2M


i.e., LA � LB D 2M� ��2M
 D 4M

from which, mutual inductance, M =
LA − LB

4
�43.14


An experimental method of determining the mutual inductance is indi-
cated by equation (43.14), i.e., connect the coils both ways and determine
the equivalent inductances LA and LB using an a.c. bridge. The mutual
inductance is then given by a quarter of the difference between the two
values of inductance.

Problem 5. Two coils connected in series have self inductance of
40 mH and 10 mH respectively. The total inductance of the circuit
is found to be 60 mH. Determine (a) the mutual inductance between
the two coils, and (b) the coefficient of coupling.

(a) From equation (43.13), total inductance, L D L1 C L2 š 2M

Hence 60 D 40 C 10 š 2M
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Since �L1 C L2
 < L then 60 D 40 C 10 C 2M

from which 2M D 60 � 40 � 10 D 10

and mutual inductance, M D 10

2
D 5 mH

(b) From equation (43.10), coefficient of coupling,

k D Mp
�L1L2


D 5 ð 10�3√
[�40 ð 10�3
�10 ð 10�3
]

D 5 ð 10�3

0.02

i.e., coefficient of coupling, k = 0.25

Problem 6. Two mutually coupled coils X and Y are connected
in series to a 240 V d.c. supply. Coil X has a resistance of 5 �
and an inductance of 1 H. Coil Y has a resistance of 10 � and an
inductance of 5 H. At a certain instant after the circuit is connected,
the current is 8 A and increasing at a rate of 15 A/s. Determine
(a) the mutual inductance between the coils and (b) the coefficient
of coupling.

The circuit is shown in Figure 43.4.

i

V = 240 V

COIL X

COIL Y

M

Rx = 5 Ω
 Lx = 1 H

Ry = 10 Ω
 Ly = 5 H

Figure 43.4 (a) From Kirchhoff’s voltage law:

V D iR C L
d i

d t

i.e., 240 D 8�5 C 10
C L�15


i.e., 240 D 120 C 15L

from which, L D 240 � 120

15
D 8 H

From equation (43.11),

L D LX C LY C 2M

Hence 8 D 1 C 5 C 2M

from which, mutual inductance, M D 1 H

(b) From equation (43.10),

coefficient of coupling, k D Mp
�LXLY


D 1p
[�1
�5
]

D 0.447
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Problem 7. Two coils are connected in series and their effective
inductance is found to be 15 mH. When the connection to one coil
is reversed, the effective inductance is found to be 10 mH. If the
coefficient of coupling is 0.7, determine (a) the self inductance of
each coil, and (b) the mutual inductance.

(a) From equation (43.13), total inductance, L D L1 C L2 š 2M

and from equation (43.9), M D k
p
�L1L2


hence L D L1 C L2 š 2k
p
�L1L2


Since in equation (43.11),

LA D 15 mH, 15 D L1 C L2 C 2k
p
�L1L2
 �43.15


and since in equation (43.12),

LB D 10 mH, 10 D L1 C L2 � 2k
p
�L1L2
 �43.16


Equation �43.15
C equation (43.16) gives:

25 D 2L1 C 2L2 and 12.5 D L1 C L2 �43.17


From equation (43.17), L2 D 12.5 � L1

Substituting in equation (43.15), gives:

15 D L1 C �12.5 � L1
C 2�0.7

p

[L1�12.5 � L1
]

i.e., 15 D 12.5 C 1.4
√
�12.5L1 � L2

1


15 � 12.5

1.4
D
√
�12.5L1 � L2

1


and
(

15 � 12.5

1.4

)2

D 12.5L1 � L2
1

i.e., 3.189 D 12.5L1 � L2
1

from which, L2
1 � 12.5L1 C 3.189 D 0

Using the quadratic formula:

L1 D ���12.5
š
√

[��12.5
2 � 4�1
�3.189
]

2�1


i.e., L1 D 12.5 š �11.98


2
D 12.24 mH or 0.26 H

From equation (43.17):

L2 D 12.5 � L1 D �12.5 � 12.24
 D 0.26 mH

or �12.5 � 0.26
 D 12.24 mH
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(b) From equation (43.14),

mutual inductance, M D LA � LB
4

D 15 � 10

4
D 1.25 mH

Further problems on coils in series may be found in Section 43.8, problems
7 to 11, page 865.

43.6 Coupled circuits The magnitude of the secondary e.m.f. E2 in Figure 43.5 is given by:

E2 D M
dI1

d t
, from equation (43.1)

If the current I1 is sinusoidal, i.e., I1 D I1m sinωt

then E2 D M
d

d t
�I1m sinωt
 D MωI1m cosωt

Since cosωt D sin�ωt C 90°
 then cosωt D j sinωt in complex form.

Hence E2 D MωI1m�j sinωt
 D jωM�I1m sinωt


i.e., E2 = j !MI 1 �43.18


E1

I1

E2

Magnetic flux

Figure 43.5
If L1 is the self inductance of the primary winding in Figure 43.5, there
will be an e.m.f. generated equal to jωL1I1 induced into the primary
winding since the flux set up by the primary current also links with the
primary winding.

(a) Secondary open-circuited

Figure 43.6 shows two coils, having self inductances of L1 and L2 which
are inductively coupled together by a mutual inductance M. The primary
winding has a voltage generator of e.m.f. E1 connected across its termi-
nals. The internal resistance of the source added to the primary resistance
is shown as R1 and the secondary winding which is open-circuited has a
resistance of R2.

Applying Kirchhoff’s voltage law to the primary circuit gives:

E1 D I1R1 C L1
dI1

d t
�43.19


I1

R1 R2

E1

L1 L2

M

Figure 43.6
If E1 and I1 are both sinusoidal then equation (43.19) becomes:

E1 D I1R1 C L1
d

d t
�I1m sinωt


D I1R1 C L1ωI1m cosωt

D I1R1 C L1ω�jI1m sinωt




850 Electrical Circuit Theory and Technology

i.e., E1 D I1R1 C jωI1L1 D I1�R1 C jωL1


i.e., I1 D E1

R1 C jωL1
�43.20


From equation (43.18), E2 D jωMI1

from which, I1 D E2

jωM
�43.21


Equating equations (43.20) and (43.21) gives:
E2

j!M
D E1

R1 C j!L1

and E2 =
j !ME1

R1 Y j !L1
�43.22


Problem 8. For the circuit shown in Figure 43.7, determine the
p.d. E2 which appears across the open-circuited secondary winding,
given that E1 D 8 sin 2500t volts.

Impedance of primary, Z1 D R1 C jωL1 D 15 C j�2500
�5 ð 10�3


D �15 C j12.5
� or 19.53 6 39.81° �

Primary current I1 D E1

Z1
D 8 6 0°

19.53 6 39.81°

I1

E1

15 Ω 15 Ω

E2

5 mH 5 mH

M = 0.1 mH

Figure 43.7

From equation (43.18),

E2 D jωMI1 D jωME1

�R1 C jωL1

D j�2500
�0.1 ð 10�3
�8 6 0°


19.53 6 39.81°

D 2 6 90°

19.53 6 39.81°
D 0.102 6 6 50.19° V

Problem 9. Two coils x and y, with negligible resistance, have self
inductances of 20 mH and 80 mH respectively, and the coefficient
of coupling between them is 0.75. If a sinusoidal alternating p.d.
of 5 V is applied to x, determine the magnitude of the open circuit
e.m.f. induced in y.

From equation (43.9), mutual inductance,

M D k
√
�LxLy
 D 0.75

√
[�20 ð 10�3
�80 ð 10�3
] D 0.03 H
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From equation (43.22), the magnitude of the open circuit e.m.f. induced
in coil y,

jEy j D jωMEx
Rx C jωLx

When R1 D 0, jEyj D jωMEx
jωLx

D MEx
Lx

D �0.03
�5


20 ð 10�3
D 7.5 V

(b) Secondary terminals having load impedance

In the circuit shown in Figure 43.8 a load resistor RL is connected across
the secondary terminals. Let R0

2 C RL D R2

When an e.m.f. is induced into the secondary winding a current I2

flows and this will induce an e.m.f. into the primary winding.
Applying Kirchhoff’s voltage law to the primary winding gives:

E1 D I1�R1 C jωL1
š jωMI2 �43.23


I1

E1

R1

E2

L1

M

L2

R2′

RL

I2

Figure 43.8 Applying Kirchhoff’s voltage law to the secondary winding gives:

0 D I2�R2 C jωL2
š jωMI1 �43.24


From equation (43.24), I2 D ÝjωI1

�R2 C jωL2


Substituting this in equation (43.23) gives:

E1 D I1�R1 C jωL1
š jωM
( ÝjωMI1

�R2 C jωL2


)

i.e., E1 D I1

[
�R1 C jωL1
C ω2M2

�R2 C jωL2


]
since j2 D �1

D I1

[
�R1 C jωL1
C ω2M2�R2 � jωL2


R2
2 C ω2L2

2

]

D I1

[
R1 C jωL1 C ω2M2R2

R2
2 C ω2L2

2

� jω3M2L2

R2
2 C ω2L2

2

]

The effective primary impedance Z1�eff
 of the circuit is given by:

Z1.eff/ =
E1

I 1
= R1 Y

!2M 2R2

R2
2 Y !2L2

2
Y j

(
!L1 − !3M 2L2

R2
2 Y !2L2

2

)

�43.25


In equation (43.25), the primary impedance is �R1 C jωL1
. The
remainder,
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i.e.,

(
ω2M2R2

R2
2 C ω2L2

2
� j

ω3M2L2

R2
2 C ω2L2

2

)

is known as the reflected impedance since it represents the impedance
reflected back into the primary side by the presence of the secondary
current.

Hence reflected impedance

D ω2M2R2

R2
2 C ω2L2

2

� j
ω3M2L2

R2
2 C ω2L2

2

D ω2M2
(
R2 � jωL2

R2
2 C ω2L2

2

)

D ω2M2 �R2 � jωL2


�R2 C jωL2
�R2 � jωL2

D ω2M2

R2 C jωL2

i.e., reflected impedance, Zr =
!2M 2

Z2
�43.26


Problem 10. For the circuit shown in Figure 43.9, determine the
value of the secondary current I2 if E1 D 2 6 0° volts and the

frequency is
103

�
Hz.

I1 16 Ω 16 Ω I2

50 Ω4 Ω

E1

10 mH 10 mH

M = 2 mH

Figure 43.9

From equation (43.25), R1�eff
 is the real part of Z1�eff
,

i.e., R1�eff
 D R1 C ω2M2R2

R2
2 C ω2L2

2

D �4 C 16
C

(
2�

103

�

)2

�2 ð 10�3
2�16 C 50


662 C
(

2�
103

�

)2

�10 ð 10�3
2

D 20 C 1056

4756
D 20.222 �

and X1�eff
 is the imaginary part of Z1�eff
, i.e.,

X1�eff
 D ωL1 � ω3M2L2

R2
2 C ω2L2

2

D
(

2�
103

�

)
�10 ð 10�3
�

(
2�

103

�

)3

�2 ð 10�3
2�10 ð 10�3


662 C
(

2�
103

�

)2

�10 ð 10�3
2

D 20 � 320

4756
D 19.933 �
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Hence primary current, I1 D E1

Z1�eff

D 2 6 0°

�20.222 C j19.933


D 26 0°

28.395 6 44.59°
D 0.0704 6 �44.59° A

From equation (43.18), E2 D jωMI1

D j

(
2�

103

�

)
�2 ð 10�3
�0.0704 6 �44.59°


D �4 6 90°
�0.0704 6 �44.59°


D 0.282 6 45.41° V

Hence secondary current I2 D E2

Z2
D 0.282 6 45.41°

66 C j

(
2�

103

�

)
�10 ð 10�3


D 0.282 6 45.41°

�66 C j20


D 0.282 6 45.41°

68.964 6 16.86°
D 4.089 ð 10�3 6 28.55° A

i.e., I 2= 4.09 6 6 28.55° mA

Problem 11. For the coupled circuit shown in Figure 43.10,
calculate (a) the self impedance of the primary circuit, (b) the self
impedance of the secondary circuit, (c) the impedance reflected into
the primary circuit, (d) the effective primary impedance, (e) the
primary current, and (f) the secondary current.

I1 300 Ω 0.2 H

50∠ 0° V

w = 500 rad/s

0.5 H 0.3 H

I2

500 Ω

5 µF

M = 0.2 H

Figure 43.10

(a) Self impedance of primary circuit, Z1 D 300 C j�500
�0.2 C 0.5


i.e., Z1= .300Y j 350/Z
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(b) Self impedance of secondary circuit,

Z2 D 500 C j
[
�500
�0.3 � 1

�500
�5 ð 10�6


]

D 500 C j�150 � 400


i.e., Z2 = .500 − j 250/Z

(c) From equation (43.26),

reflected impedance, Zr D ω2M2

Z2
D �500
2�0.2
2

�500 � j250


D 104�500 C j250


5002 C 2502
D .16Y j 8/Z

(d) Effective primary impedance,

Z1�eff
 D Z1 C Zr (note this is equivalent to equation 43.25)

D �300 C j350
C �16 C j8


i.e., Z1.eff/= .316Y j 358/Z

(e) Primary current I 1 D E1

Z1�eff

D 50 6 0°

�316 C j358


D 50 6 0°

477.51 6 48.57°

D 0.105 6 6 −48.57° A

(f) Secondary current, I2 D E2

Z2
, where

E2 D jωMI1 from equation (43.18)

Hence I 2 D jωMI1

Z2
D j�500
�0.2
�0.105 6 �48.57°


�500 � j250


D �100 6 90°
�0.105 6 �48.57°


559.02 6 �26.57°

D 0.0188 6 6 68° A

(c) Resonance by tuning capacitors

Tuning capacitors may be added to the primary and/or secondary circuits
to cause it to resonate at particular frequencies. These may be connected
either in series or in parallel with the windings. Figure 43.11 shows each
winding tuned by series-connected capacitors C1 and C2. The expres-
sion for the effective primary impedance Z1�eff
, i.e., equation (43.25)
applies except that ωL1 becomes �ωL1 � �1/ωC1

 and ωL2 becomes
�ωL2 � �1/ωC2
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I1

C1
R1

L1 L2

C2

I2

E1 R2

M

Figure 43.11

Problem 12. For the circuit shown in Figure 43.12 each winding
is tuned to resonate at the same frequency. Determine (a) the reso-
nant frequency, (b) the value of capacitor C2, (c) the effective
primary impedance, (d) the primary current, (e) the voltage across
capacitor C2 and (f) the coefficient of coupling.

I1

400 pF 30 Ω

1 mH 0.2 mH

50 Ω

I2

C2

15 Ω

M = 10 µH

E1 = 20∠ 0° V

Figure 43.12

(a) For resonance in a series circuit, the resonant frequency, fr , is
given by:

fr D 1

2�
p
�LC


Hz

Hence fr D 1

2�
p
�L1C1


D 1

2�
√
�1 ð 10�3
�400 ð 10�12


D 251.65 kHz

(b) The secondary is also tuned to a resonant frequency of 251.65 kHz.

Hence fr D 1

2�
p
�L2C2


i.e., �2�fr
2 D 1

L2C2
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and capacitance, C2 D 1

L2�2�fr
2

D 1

�0.2 ð 10�3
[2��251.65 ð 103
]2

D 2.0 ð 10�9 F or 2.0 nF

(Note that since fr D 1

2�
p
�L1C1


D 1

2�
p
�L2C2


then L1C1 D L2C2

and C2 D L1C1

L2
D �1 ð 10�3
�400 ð 10�12


0.2 ð 10�3
D 2.0 nF)

(c) Since both the primary and secondary circuits are resonant, the effec-
tive primary impedance Z1�eff
, from equation (43.25) is resistive,

i.e., Z1.eff/ D R1 C ω2M2R2

R2
2 C

(
ωL1 � 1

ωC1

)2 D R1 C ω2M2R2

R2
2

D R1 C ω2M2

R2
D �15 C 30


C [2��251.65 ð 103
]2�10 ð 10�6
2

50

D 45 C 5 D 50 Z

(d) Primary current, I 1 D E1

Z1�eff

D 20 6 0°

50
D 0.40 6 6 0° A

(e) From equation (43.18), secondary voltage

E2 D jωMI1

D j�2�
�251.65 ð 103
�10 ð 10�6
�0.40 6 0°


D 6.325 6 90° V

Secondary current, I2 D E2

Z2
D 6.325 6 90°

50 6 0°
D 0.1265 6 90° A

Hence voltage across capacitor C2

D �I2
�XC2
 D �I2

(

1

ωC2

)
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D �0.1265 6 90°

(

1

[2��251.65 ð 103
]�2.0 ð 10�9

6 �90°

)

D 40 6 6 0° V

(f) From equation (43.10), the

coefficient of coupling, k D Mp
�L1L2


D 10 ð 10�6√
�1 ð 10�3
�0.2 ð 10�3


D 0.0224

Further problem on coupled circuits may be found in Section 43.8,
problems 12 to 16, page 866.

43.7 Dot rule for coupled
circuits

Applying Kirchhoff’s voltage law to each mesh of the circuit shown in
Figure 43.13 gives:

E1 D I1�R1 C jωL1
š jωMI2

and 0 D I2�R2 C RL C jωL2
š jωMI1

In these equations the ‘M’ terms have been written as š because it is
not possible to state whether the magnetomotive forces due to currents
I1 and I2 are added or subtracted. To make this clearer a dot nota-
tion is used whereby the polarity of the induced e.m.f. due to mutual
inductance is identified by placing a dot on the diagram adjacent to that
end of each equivalent winding which bears the same relationship to the
magnetic flux.

I1

R1

I2

R2

L1 L2 RLE1

M

Figure 43.13

The dot rule determines the sign of the voltage of mutual inductance
in the Kirchhoff’s law equations shown above, and states:

(i) when both currents enter, or both currents leave, a pair of coupled
coils at the dotted terminals, the signs of the ‘M’ terms will be the
same as the signs of the ‘L’ terms, or

(ii) when one current enters at a dotted terminal and one leaves by a
dotted terminal, the signs of the ‘M’ terms are opposite to the signs
of the ‘L’ terms.

Thus Figure 43.14 shows two cases in which the signs of M and L are
the same, and Figure 43.15 shows two cases where the signs of M and
L are opposite. In Figure 43.13, therefore, if dots had been placed at
the top end of coils L1 and L2 then the terms jωMI2 and jωMI1 in
the Kirchhoff’s equation would be negative (since current directions are
similar to Figure 43.15(a)).

(a)

(b)

Figure 43.14
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(a)

(b)

Figure 43.15

Problem 13. For the coupled circuit shown in Figure 43.16, deter-
mine the values of currents I1 and I2

I1 I2M = j10 Ω

 j50 Ω  j50 Ω

10 Ω 10 Ω

50 Ω250 ∠ 0° V

Figure 43.16

The position of the dots and the current directions correspond to
Figure 43.15(a), and hence the signs of the M and L terms are opposite.
Applying Kirchhoff’s voltage law to the primary circuit gives:

250 6 0° D �10 C j50
I1 � j10I2 �1


and applying Kirchhoff’s voltage law to the secondary circuit gives:

0 D �10 C 50 C j50
I2 � j10I1 �2


From equation (2), j10I1 D �60 C j50
I2

and I1 D �60 C j50
I2

j10
D
(

60

j10
C j50

j10

)
I2 D ��j6 C 5
I2

i.e., I1 D �5 � j6
I2 �3


Substituting for I1 in equation (1) gives:

250 6 0° D �10 C j50
�5 � j6
I2 � j10I2

D �50 � j60 C j250 C 300 � j10
I2

D �350 C j180
I2

from which, I 2 D 250 6 0°

�350 C j180

D 250 6 0°

393.57 6 27.22°

D 0.635 6 6 −27.22° A

From equation (3), I1 D �5 � j6
I2

D �5 � j6
�0.635 6 �27.22°


D �7.810 6 �50.19°
�0.635 6 �27.22°


i.e., I 1 = 4.959 6 6 −77.41° A
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Problem 14. The circuit diagram of an air-cored transformer
winding is shown in Figure 43.17. The coefficient of coupling
between primary and secondary windings is 0.70. Determine for
the circuit (a) the mutual inductance M, (b) the primary current I1

and (c) the secondary terminal p.d.

I1 I2

R1 = 5 Ω R2 = 40 Ω

L1 =1 mH L2 = 6 mH

M

40 ∠ 0° V ZL=200 ∠−6 0° Ω

20 kHz

Figure 43.17

(a) From equation (43.9),

mutual inductance, M D k
p
�L1L2


D 0.70
√

[�1 ð 10�3
�6 ð 10�3
]

D 1.715 mH

(b) The two mesh equations are:

40 6 0° D �R1 C jωL1
I1 � jωMI2 �1


and 0 D �R2 C jωL2 C ZL
I2 � jωMI1 �2


(Note that with the dots and current directions shown, the jωMI
terms are negative)

R1 C jωL1 D 5 C j2��20 ð 103
�1 ð 10�3


D �5 C j125.66
� or 125.76 6 87.72° �

jωM D j2��20 ð 103
�1.715 ð 10�3


D j215.51 � or 215.51 6 90° �

R2 C jωL2 C ZL D 40 C j2��20 ð 103
�6 ð 10�3
C 200 6 �60°

D 40 C j753.98 C 100 � j173.21

D �140 C j580.77
� or 597.416 76.45° �

Hence 40 6 0° D 125.76 6 87.72°I1 � 215.51 6 90°I2 �3


0 D �215.51 6 90°I1 C 597.41 6 76.45°I2 �4
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From equation (4), I2 D 215.51 6 90°

597.41 6 76.45°
I1 D 0.361 6 13.55°I1 �5


Substituting for I2 in equation (3) gives:

40 6 0° D 125.76 6 87.72°I1 � �215.51 6 90°
�0.361 6 13.55°I1


D I1�125.76 6 87.72° � 77.80 6 103.55°


D I1[�5 C j125.66
� ��18.23 C j75.63
]

D I1�23.23 � j50.03


i.e., 406 0° D I1�55.16 6 �65.09°


Hence primary current, I 1 D 40 6 0°

55.16 6 �65.09°
D 0.725 6 6 65.09° A

(c) From equation (5), I2 D 0.361 6 13.55°I1

D �0.361 6 13.55°
�0.725 6 65.09°


D 0.262 6 78.64° A

Hence secondary terminal p.d. D I2ZL

D �0.262 6 78.64°
�200 6 �60°


D 52.4 6 6 18.64° V

Problem 15. A mutual inductor is used to couple a 20 � resis-
tive load to a 50 6 0° V generator as shown in Figure 43.18. The
generator has an internal resistance of 5 � and the mutual inductor
parameters are R1 D 20 �, L1 D 0.2 H, R2 D 25 �, L2 D 0.4 H
and M D 0.1 H. The supply frequency is �75/�
 Hz. Determine
(a) the generator current I1 and (b) the load current I2.

I1
R1 = 20 Ω R2 = 25 Ω

I2
E1=
50∠ 0° V

L1 = 0.2 H

r = 5 Ω M = 0.1 H

L2 = 0.4 H RL = 20 Ω

Figure 43.18

(a) Applying Kirchhoff’s voltage law to the primary winding gives:

I1�r C R1 C jωL1
� jωMI2 D 50 6 0°
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i.e., I1

[
5 C 20 C j2�

(
75

�

)
�0.2


]
� j2�

(
75

�

)
�0.1
I2 D 50 6 0°

i.e., I1�25 C j30
� j15I2 D 50 6 0° �1


Applying Kirchhoff’s voltage law to the secondary winding gives:

� jωMI1 C I2�R2 C RL C jωL2
 D 0

i.e., � j2�
(

75

�

)
�0.1
I1 C I2

[
25 C 20 C j2�

(
75

�

)
�0.4


]

i.e., � j15I1 C I2�45 C j60
 D 0 �2


Hence the equations to solve are:

�25 C j30
I1 � j15I2 � 50 6 0° D 0 �1
0

and �j15I1 C �45 C j60
I2 D 0 �2
0

Using determinants:

I1∣∣∣∣ �j15 �50 6 0°

�45 C j60
 0

∣∣∣∣
D �I2∣∣∣∣�25 C j30
 �50 6 0°

�j15 0

∣∣∣∣
D 1∣∣∣∣�25 C j30
 �j15

�j15 �45 C j60


∣∣∣∣

i.e.,
I1

50�45 C j60

D �I2

�50�j15


D 1

�25 C j30
�45 C j60
� �j15
2

I1

50�75 6 53.13°

D I2

750 6 90°

D 1

�39.05 6 50.19°
�75 6 53.13°
C 225

I1

3750 6 53.13°
D I2

750 6 90°
D 1

2928.75 6 103.32° C 225

I1

3750 6 53.13°
D I2

750 6 90°
D 1

��449.753 C j2849.962


I1

3750 6 53.13°
D I2

750 6 90°
D 1

2885.23 6 98.97°

(a) Generator current, I 1 D 3750 6 53.13°

2885.23 6 98.97°
D 1.30 6 6 −45.84° A

(b) Load current, I 2 D 750 6 90°

2885.23 6 98.97°
D 0.26 6 6 −8.97° A
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Problem 16. The mutual inductor of problem 15 is connected to
the circuit of Figure 43.19. Determine the source and load currents
for (a) the windings as shown (i.e. with the dots adjacent), and
(b) with one winding reversed (i.e. with the dots at opposite ends).

E1 =
50∠ 0° V
f = 75 Hz

π

r = 5 Ω

R1 = 20 Ω R2 = 25 Ω

M = 0.1 H

L1 = 0.2 H L2 = 0.4 H

L = 0.1H

I1
I2

R = 8 Ω

RL = 20 Ω

Figure 43.19

(a) The left hand mesh equation in Figure 43.19 is:

E1 D I1�r C R1 C RC jωL1 C jωL
� jωMI2 � I2�R C jωL


(Note that with the dots as shown in Figure 43.19, and the
chosen current directions as shown, the jωMI2 is negative — see
Figure 43.15(a)). Hence

50 6 0° D I1

[
5 C 20 C 8 C j2�

(
75

�

)
�0.2


C j2�
(

75

�

)
�0.1


]

� j2�
(

75

�

)
�0.1
I2 � I2

[
8 C j2�

(
75

�

)
�0.1


]

i.e., 50 6 0° D I1�33 C j30 C j15
� j15I2 � I2�8 C j15
 (i)

i.e., 50 6 0° D �33 C j45
I1 � �8 C j30
I2 �1


The right hand mesh equation in Figure 43.19 is:

0 D I2�R C R2 C RL C jωL2 C jωL
� jωMI1 � I1�RC jωL


i.e., 0 D I2

[
8 C 25 C 20 C j2�

(
75

�

)
�0.4
C j2�

(
75

�

)
�0.1


]

� j2�
(

75

�

)
�0.1
I1 � I1

[
8 C j2�

(
75

�

)
�0.1


]
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i.e., 0 D I2�53 C j60 C j15
� j15I1 � I1�8 C j15
 (ii)

i.e., 0 D �53 C j75
I2 � �8 C j30
I1 �2


Hence the simultaneous equations to solve are:

�33 C j45
I1 � �8 C j30
I2 � 50 6 0° D 0 �1


��8 C j30
I1 C �53 C j75
I2 D 0 �2


Using determinants gives:

I1∣∣∣∣��8 C j30
 �506 0°

�53 C j75
 0

∣∣∣∣
D �I2∣∣∣∣ �33 C j45
 �50 6 0°

��8 C j30
 0

∣∣∣∣
D 1∣∣∣∣ �33 C j45
 ��8 C j30


��8 C j30
 �53 C j75


∣∣∣∣

i.e.,
I1

50�53 C j75

D �I2

�50�8 C j30


D 1

�33 C j45
�53 C j75
� �8 C j30
2

i.e.,
I1

50�91.84 6 54.75°

D I2

50�31.05 6 75.07°


D 1

�55.80 6 53.75°
�91.84 6 54.75°

��31.05 6 75.07°
2

I1

4592 6 54.75°
D I2

1552.5 6 75.07°

D 1

5124.672 6 108.50° � 964.103 6 150.14°

I1

4592 6 54.75°
D I2

1552.5 6 75.07°
D 1

�789.97 C j4379.84

D 1

4450.51 6 100.22°

Hence source current, I 1 D 4592 6 54.75°

4450.51 6 100.22°

D 1.03 6 6 −45.47° A

and load current, I 2 D 1552.5 6 75.07°

4450.51 6 100.22°

D 0.35 6 6 −25.15° A
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I1

I2

Figure 43.20

(b) When one of the windings of the mutual inductor is reversed, with,
say, the dots as shown in Figure 43.20, the jωMI terms change
sign, i.e., are positive. With both currents entering the dot ends of
the windings as shown, it compares with Figure 43.14(a), which
indicates that the ‘L’ and ‘M’ terms are of similar sign.

Thus equations (i) and (ii) of part (a) become:

506 0° D I1�33 C j30 C j15
C j15I2 � I2�8 C j15


and 0 D I2�53 C j60 C j15
C j15I1 � I1�8 C j15


i.e., I1�33 C j45
� I2�8
� 50 6 0° D 0

and �I1�8
C I2�53 C j75
 D 0

Using determinants:

I1∣∣∣∣ �8 �50 6 0°

�53 C j75
 0

∣∣∣∣
D �I2∣∣∣∣ �33 C j45
 �50 6 0°

�8 0

∣∣∣∣
D 1∣∣∣∣ �33 C j45
 �8

�8 �53 C j75


∣∣∣∣
i.e.,

I1

50�53 C j75

D �I2

�400 6 0°
D 1

�33 C j45
�53 C j75
� 64

I1

4592 6 54.75°
D I2

400 6 0°
D 1

5124.672 6 108.50° � 64

D 1

�1690.08 C j4859.85
D 1

5145.34 6 109.18°

Hence source current, I 1 D 4592 6 54.75°

5145.34 6 109.18°

D 0.89 6 6 −54.43° A

and load current, I 2 D 400 6 0°

5145.34 6 109.18°

D 0.078 6 6 −109.18° A

Further problems on the dot rule for coupled circuits may be found in
Section 43.8 following, problems 17 to 20, page 867.

43.8 Further problems
on magnetically coupled

circuits

Mutual inductance

1 If two coils have a mutual inductance of 500 µH, determine the
magnitude of the e.m.f. induced in one coil when the current in the
other coil varies at a rate of 20 ð 103 A/s [10 V]
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2 An e.m.f. of 15 V is induced in a coil when the current in an adjacent
coil varies at a rate of 300 A/s. Calculate the value of the mutual
inductance of the two coils [50 mH]

3 Two circuits have a mutual inductance of 0.2 H. A current of 3 A
in the primary is reversed in 200 ms. Determine the e.m.f. induced
in the secondary, assuming the current changes at a uniform rate.

[�6 V]

4 A coil, x, has 1500 turns and a coil, y, situated close to x has
900 turns. When a current of 1 A flows in coil x a flux of 0.2 mWb
links with x and 0.65 of this flux links coil y. Determine (a) the
self inductance of coil x, and (b) the mutual inductance between the
coils. [(a) 0.30 H (b) 0.117 H]

Coefficient of coupling

5 Two coils have a mutual inductance of 0.24 H. If the coils have self
inductances of 0.4 H and 0.9 H respectively, determine the magnetic
coefficient of coupling. [0.40]

6 Coils A and B are magnetically coupled. Coil A has a self inductance
of 0.30 H and 300 turns, and coil B has a self inductance of 0.20 H
and 120 turns. A change of flux of 8 mWb occurs in coil B when
a current of 3 A is reversed in coil A. Determine (a) the mutual
inductance between the coils, and (b) the coefficient of coupling.

[(a) 0.16 H (b) 0.653]

Coils in series

7 Two coils have inductances of 50 mH and 100 mH respectively.
They are placed so that their mutual inductance is 10 mH. Determine
their effective inductance when the coils are (a) in series aiding (i.e.,
cumulatively coupled), and (b) in series opposing (i.e., differentially
coupled). [(a) 170 mH (b) 130 mH]

8 The total inductance of two coils connected in series is 0.1 H.
The coils have self inductance of 25 mH and 55 mH respectively.
Determine (a) the mutual inductance between the two coils, and
(b) the coefficient of coupling. [(a) 10 mH (b) 0.270]

9 A d.c. supply of 200 V is applied across two mutually coupled
coils in series, A and B. Coil A has a resistance of 2 � and a
self inductance of 0.5 H; coil B has a resistance of 8 � and a self
inductance of 2 H. At a certain instant after the circuit is switched
on, the current is 10 A and increasing a at rate of 25 A/s. Determine
(a) the mutual inductance between the coils, and (b) the coefficient
of coupling. [(a) 0.75 H (b) 0.75]

10 A ferromagnetic-cored coil is in two sections. One section has an
inductance of 750 mH and the other an inductance of 148 mH. The
coefficient of coupling is 0.6. Determine (a) the mutual inductance,
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(b) the total inductance when the sections are connected in series
aiding, and (c) the total inductance when the sections are in series
opposing. [(a) 200 mH (b) 1.298 H (c) 0.498 H]

11 Two coils are connected in series and their total inductance is
measured as 0.12 H, and when the connection to one coil is reversed,
the total inductance is measured as 0.04 H. If the coefficient of
coupling is 0.8, determine (a) the self inductance of each coil, and
(b) the mutual inductance between the coils.

[(a) L1 D 71.22 mH or 8.78 mH,
L2 D 8.78 mH or 71.22 mH

(b) 20 mH]

Coupled circuits

12 Determine the value of voltage E2 which appears across the open
circuited secondary winding of Figure 43.21. [0.936 68.20° V]

13 The coefficient of coupling between two coils having self inductances
of 0.5 H and 0.9 H respectively is 0.85. If a sinusoidal alternating
voltage of 50 mV is applied to the 0.5 H coil, determine the magni-
tude of the open circuit e.m.f. induced in the 0.9 H coil. [57 mV]

14 Determine the value of (a) the primary current, I1, and (b) the
secondary current I2, for the circuit shown in Figure 43.22.

[(a) 0.197 6 �71.91° A (b) 0.030 6 �48.48° A]

15 For the magnetically coupled circuit shown in Figure 43.23,
determine (a) the self impedance of the primary circuit, (b) the
self impedance of the secondary circuit, (c) the impedance reflected
into the primary circuit, (d) the effective primary impedance, (e) the
primary current, and (f) the secondary current.

[(a) �100 C j200
� (b) �40 C j80
�
(c) �40.5 � j81.0
� (d) �140.5 C j119
�
(e) 0.543 6 �40.26° A (f) 0.546 6 �13.69° A]

5 Ω 10 Ω

2 mH 3 mH E2
E1 =

10 sin 1000t volts

M = 0.5 mH

Figure 43.21

I1 20 Ω 25 Ω

I2

40 Ω
20 mH 30 mH

10 Ω

w = 5000 rad/s

20∠ 0° V

M = 5 mH

Figure 43.22



Magnetically coupled circuits 867

I1
80 mH

100 Ω

120 mH 100 mH

I2

50 µF

40 Ω

M = 90 mH

100∠ 0° V

w = 1000 rad/s

Figure 43.23

I1

50 Ω
5 nF 80 Ω

I2

CS

25 mH 10 mH

10 Ω

M = 4 mH

30∠ 0° V

Figure 43.24

16 In the coupled circuit shown in Figure 43.24, each winding is
tuned to resonance at the same frequency. Calculate (a) the resonant
frequency, (b) the value of CS, (c) the effective primary impedance,
(d) the primary current, (e) the secondary current, (f) the p.d. across
capacitor CS, and (g) the coefficient of coupling.

[(a) 14.235 kHz (b) 12.5 nF (c) 1659.9 � (d) 18.16 0° mA
(e)80.9 6 90° mA (f) 72.4 6 0° V (g) 0.253]

Dot rule for coupled circuits

17 Determine the values of currents Ip and Is in the coupled circuit
shown in Figure 43.25.

[Ip D 893.36 �60.57° mA, Is D 99.88 6 2.86° mA]

18 The coefficient of coupling between the primary and secondary
windings for the air-cored transformer shown in Figure 43.26 is 0.84.
Calculate for the circuit (a) the mutual inductance M, (b) the primary
current Ip, (c) the secondary current Is, and (d) the secondary
terminal p.d.

[(a) 13.28 mH(b) 1.603 6 �28.98° A
(c) 0.913 6 17.70° A (d) 73.04 6 �27.30° V]

19 A mutual inductor is used to couple a 50 � resistive load to a
250 6 0° V generator as shown in Figure 43.27. Calculate (a) the
generator current Ig and (b) the load current IL.

[(a) Ig D 9.653 6 �36.03° A (b) IL D 1.084 6 27.28° A]

Ip Is

5 Ω 15 Ω

j 10 Ω j 20 Ω

10∠ 0° V

M = j5 Ω

25 Ω

Figure 43.25

M

Ip
Is

10 mH 25 mH

20 Ω 50 Ω

100∠ 0° V
  1 kHz

ZL = 80∠− 45° Ω

Figure 43.26
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250∠ 0° V
     50 Hz

5 Ω

50 mH 120 mH

Ig 15 Ω 25 Ω

IL

50 Ω

M = 30 mH

Figure 43.27

50 Ω15 Ω

20 mH

120 mH

25 Ω15 Ω

5 Ω

50 mH

M = 30 mH

250∠ 0° V
   50 Hz

Figure 43.28

20 The mutual inductor of problem 19 is connected to the circuit as
shown in Figure 43.28. Determine (a) the source current, and (b) the
load current. (c) If one of the windings is reversed, determine the
new value of source and load currents.

[(a) 6.658 6 �28.07° A (b) 1.444 6 �7.79° A
(c) 8.239 6 �23.09° A, 1.261 6 �60.96° A]



44 Transmission lines

At the end of this chapter you should be able to:

ž appreciate the purpose of a transmission line
ž define the transmission line primary constants R, L, C and G
ž calculate phase delay, wavelength and velocity of propagation

on a transmission line
ž appreciate current and voltage relationships on a transmission

line
ž define the transmission line secondary line constants Z0, � , ˛

and ˇ
ž calculate characteristic impedance and propagation coefficient

in terms of the primary line constants
ž understand and calculate distortion on transmission lines
ž understand wave reflection and calculate reflection coefficient
ž understand standing waves and calculate standing wave ratio

44.1 Introduction A transmission line is a system of conductors connecting one point
to another and along which electromagnetic energy can be sent. Thus
telephone lines and power distribution lines are typical examples of
transmission lines; in electronics, however, the term usually implies a
line used for the transmission of radio-frequency (r.f.) energy such as that
from a radio transmitter to the antenna.

An important feature of a transmission line is that it should guide energy
from a source at the sending end to a load at the receiving end without
loss by radiation. One form of construction often used consists of two
similar conductors mounted close together at a constant separation. The
two conductors form the two sides of a balanced circuit and any radiation
from one of them is neutralized by that from the other. Such twin-wire
lines are used for carrying high r.f. power, for example, at transmitters.
The coaxial form of construction is commonly employed for low power
use, one conductor being in the form of a cylinder which surrounds the
other at its centre, and thus acts as a screen. Such cables are often used
to couple f.m. and television receivers to their antennas.

At frequencies greater than 1000 MHz, transmission lines are usually
in the form of a waveguide which may be regarded as coaxial lines
without the centre conductor, the energy being launched into the guide or
abstracted from it by probes or loops projecting into the guide.

44.2 Transmission line
primary constants

Let an a.c. generator be connected to the input terminals of a pair of
parallel conductors of infinite length. A sinusoidal wave will move along



870 Electrical Circuit Theory and Technology

the line and a finite current will flow into the line. The variation of voltage
with distance along the line will resemble the variation of applied voltage
with time. The moving wave, sinusoidal in this case, is called a voltage
travelling wave. As the wave moves along the line the capacitance of the
line is charged up and the moving charges cause magnetic energy to be
stored. Thus the propagation of such an electromagnetic wave constitutes
a flow of energy.

After sufficient time the magnitude of the wave may be measured at any
point along the line. The line does not therefore appear to the generator
as an open circuit but presents a definite load Z0. If the sending-end
voltage is VS and the sending end current is IS then Z0 D VS/IS. Thus
all of the energy is absorbed by the line and the line behaves in a similar
manner to the generator as would a single ‘lumped’ impedance of value
Z0 connected directly across the generator terminals.

There are four parameters associated with transmission lines, these
being resistance, inductance, capacitance and conductance.

(i) Resistance R is given by R D 
l/A, where 
 is the resistivity of the
conductor material, A is the cross-sectional area of each conductor
and l is the length of the conductor (for a two-wire system, l repre-
sents twice the length of the line). Resistance is stated in ohms
per metre length of a line and represents the imperfection of the
conductor. A resistance stated in ohms per loop metre is a little
more specific since it takes into consideration the fact that there are
two conductors in a particular length of line.

(ii) Inductance L is due to the magnetic field surrounding the conduc-
tors of a transmission line when a current flows through them. The
inductance of an isolated twin line is considered in Section 40.7.
From equation (40.23), page 748, the inductance L is given by

L D �0�r

�

{
1

4
C ln

D

a

}
henry/metre

where D is the distance between centres of the conductor and a is
the radius of each conductor. In most practical lines �r D 1. An
inductance stated in henrys per loop metre takes into consideration
the fact that there are two conductors in a particular length of line.

(iii) Capacitance C exists as a result of the electric field between conduc-
tors of a transmission line. The capacitance of an isolated twin line
is considered in Section 40.3. From equation (40.14), page 736, the
capacitance between the two conductors is given by

C D �ε0εr
ln�D/a�

farads/metre

In most practical lines εr D 1

(iv) Conductance G is due to the insulation of the line allowing some
current to leak from one conductor to the other. Conductance
is measured in siemens per metre length of line and represents
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the imperfection of the insulation. Another name for conductance
is leakance.

Each of the four transmission line constants, R, L, C and G, known as
the primary constants, are uniformly distributed along the line.

From Chapter 41, when a symmetrical T-network is terminated in its
characteristic impedance Z0, the input impedance of the network is also
equal to Z0. Similarly, if a number of identical T-sections are connected
in cascade, the input impedance of the network will also be equal to Z0.

A transmission line can be considered to consist of a network of a
very large number of cascaded T-sections each a very short length (υl) of
transmission line, as shown in Figure 44.1. This is an approximation of
the uniformly distributed line; the larger the number of lumped parameter
sections, the nearer it approaches the true distributed nature of the line.
When the generator VS is connected, a current IS flows which divides
between that flowing through the leakage conductance G, which is lost,
and that which progressively charges each capacitor C and which sets up
the voltage travelling wave moving along the transmission line. The loss
or attenuation in the line is caused by both the conductance G and the
series resistance R.

Figure 44.1

44.3 Phase delay,
wavelength and velocity of

propagation

Each section of that shown in Figure 44.1 is simply a low-pass filter
possessing losses R and G. If losses are neglected, and R and G are
removed, the circuit simplifies and the infinite line reduces to a repetitive
T-section low-pass filter network as shown in Figure 44.2. Let a generator
be connected to the line as shown and let the voltage be rising to a
maximum positive value just at the instant when the line is connected
to it. A current IS flows through inductance L1 into capacitor C1. The
capacitor charges and a voltage develops across it. The voltage sends a
current through inductance L0

1 and L2 into capacitor C2. The capacitor

Figure 44.2
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charges and the voltage developed across it sends a current through L0
2

and L3 into C3, and so on. Thus all capacitors will in turn charge up
to the maximum input voltage. When the generator voltage falls, each
capacitor is charged in turn in opposite polarity, and as before the input
charge is progressively passed along to the next capacitor. In this manner
voltage and current waves travel along the line together and depend on
each other.

The process outlined above takes time; for example, by the time capac-
itor C3 has reached its maximum voltage, the generator input may be at
zero or moving towards its minimum value. There will therefore be a
time, and thus a phase difference between the generator input voltage and
the voltage at any point on the line.

Phase delay

Since the line shown in Figure 44.2 is a ladder network of low-pass T-
section filters, it is shown in equation (42.27), page 820, that the phase
delay, ˇ, is given by:

b = !
p

.LC / radians=metre �44.1�

where L and C are the inductance and capacitance per metre of the line.

Wavelength

The wavelength � on a line is the distance between a given point and
the next point along the line at which the voltage is the same phase, the
initial point leading the latter point by 2� radian. Since in one wavelength
a phase change of 2� radians occurs, the phase change per metre is 2�/�.
Hence, phase change per metre, ˇ D 2�/�

or wavelength, l D 2p

b
metres �44.2�

Velocity of propagation

The velocity of propagation, u, is given by u D f�, where f is the
frequency and � the wavelength. Hence

u D f l D f �2p/b� D 2pf
b

D !

b
�44.3�

The velocity of propagation of free space is the same as that of light,
i.e., approximately 300 ð 106 m/s. The velocity of electrical energy along
a line is always less than the velocity in free space. The wavelength �
of radiation in free space is given by � D c/f where c is the velocity of
light. Since the velocity along a line is always less than c, the wavelength
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corresponding to any particular frequency is always shorter on the line
than it would be in free space.

Problem 1. A parallel-wire air-spaced transmission line operating
at 1910 Hz has a phase shift of 0.05 rad/km. Determine (a) the
wavelength on the line, and (b) the speed of transmission of a
signal.

(a) From equation (44.2), wavelength � D 2�/ˇ D 2�/0.05

D 125.7 km

(b) From equation (44.3), speed of transmission,

u D f� D �1910��125.7� D 240 × 103 km=s or 240 × 106 m=s

Problem 2. A transmission line has an inductance of 4 mH/loop
km and a capacitance of 0.004 µF/km. Determine, for a frequency
of operation of 1 kHz, (a) the phase delay, (b) the wavelength on
the line, and (c) the velocity of propagation (in metres per second)
of the signal.

(a) From equation (44.1), phase delay,

ˇ D ω
p
�LC� D �2�1000�

√
[�4 ð 10�3��0.004 ð 10�6�]

D 0.025 rad=km

(b) From equation (44.2), wavelength � D 2�/ˇ D 2�/0.025

D 251 km

(c) From equation (44.3), velocity of propagation,

u D f� D �1000��251� km/s D 251 × 106 m=s

Further problems on phase delay, wavelength and velocity of propagation
may be found in Section 44.9, problems 1 to 3, page 897.

44.4 Current and voltage
relationships

Figure 44.3 shows a voltage source VS applied to the input terminals of
an infinite line, or a line terminated in its characteristic impedance, such
that a current IS flows into the line. At a point, say, 1 km down the line
let the current be I1. The current I1 will not have the same magnitude as
IS because of line attenuation; also I1 will lag IS by some angle ˇ. The
ratio IS/I1 is therefore a phasor quantity. Let the current a further 1 km
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Figure 44.3

down the line be I2, and so on, as shown in Figure 44.3. Each unit length
of line can be treated as a section of a repetitive network, as explained in
Section 44.2. The attenuation is in the form of a logarithmic decay and

IS
I1

D I1

I2
D I2

I3
D e�

where � is the propagation constant, first introduced in Section 42.7,
page 815. � has no unit.

The propagation constant is a complex quantity given by � D ˛ C jˇ,
where ˛ is the attenuation constant, whose unit is the neper, and ˇ is
the phase shift coefficient, whose unit is the radian. For n such 1 km
sections, IS/IR D en� where IR is the current at the receiving end.

Hence
IS
IR

D en�˛Cjˇ� D e�n˛Cjnˇ� D en˛ 6 nˇ

from which, IR D I Se−ng D I Se−na 6 6 �nb �44.4�

In equation (44.4), the attenuation on the line is given by n˛ nepers and
the phase shift is nˇ radians.

At all points along an infinite line, the ratio of voltage to current is Z0,
the characteristic impedance. Thus from equation (44.4) it follows that:

receiving end voltage, VR D VSe−ng D VSe−na 6 6 �nb �44.5�

Z0, � , ˛, and ˇ are referred to as the secondary line constants or coef-
ficients.

Problem 3. When operating at a frequency of 2 kHz, a cable has
an attenuation of 0.25 Np/km and a phase shift of 0.20 rad/km. If a
5 V rms signal is applied at the sending end, determine the voltage
at a point 10 km down the line, assuming that the termination is
equal to the characteristic impedance of the line.

Let VR be the voltage at a point n km from the sending end, then from
equation (44.5), VR D VSe�n� D VSe�n˛ 6 �nˇ

Since ˛ D 0.25 Np/km, ˇ D 0.20 rad/km, VS D 5 V and n D 10 km, then

VR D �5�e��10��0.25� 6 ��10��0.20� D 5e�2.5 6 �2.0 V

D 0.41 6 6 −2.0 V or 0.41 6 6 −114.6° V

Thus the voltage 10 km down the line is 0.41 V rms lagging the sending
end voltage o

f 5 V by 2.0 rad or 114.6

°
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Problem 4. A transmission line 5 km long has a characteristic
impedance of 800 6 �25° #. At a particular frequency, the atten-
uation coefficient of the line is 0.5 Np/km and the phase shift
coefficient is 0.25 rad/km. Determine the magnitude and phase
of the current at the receiving end, if the sending end voltage is
2.0 6 0° V r.m.s.

The receiving end voltage (from equation (44.5)) is given by:

VR D VSe
�n� D VSe

�n˛ 6 �nˇ D �2.06 0°�e��5��0.5� 6 ��5��0.25�

D 2.0e�2.5 6 �1.25 D 0.1642 6 �71.62° V

Receiving end current,

IR D VR

Z0
D 0.1642 6 �71.62°

800 6 �25°
D 2.05 ð 10�4 6 ��71.62° � ��25°��A

D 0.205 6 6 −46.62° mA

Problem 5. The voltages at the input and at the output of a trans-
mission line properly terminated in its characteristic impedance are
8.0 V and 2.0 V rms respectively. Determine the output voltage if
the length of the line is doubled.

The receiving-end voltage VR is given by VR D VSe�n� .

Hence 2.0 D 8.0e�n� , from which, e�n� D 2.0/8.0 D 0.25

If the line is doubled in length, then

VR D 8.0e�2n� D 8.0�e�n��2

D 8.0�0.25�2 D 0.50 V

Further problems on current and voltage relationships may be found in
Section 44.9, problems 4 to 6, page 897.

44.5 Characteristic
impedance and

propagation coefficient in
terms of the primary

constants

Characteristic impedance

At all points along an infinite line, the ratio of voltage to current is
called the characteristic impedance Z0. The value of Z0 is independent
of the length of the line; it merely describes a property of a line that is a
function of the physical construction of the line. Since a short length of
line may be considered as a ladder of identical low-pass filter sections,
the characteristic impedance may be determined from equation (41.2),
page 760, i.e.,

Z0 D p
.ZOCZSC/ �44.6�
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since the open-circuit impedance ZOC and the short-circuit impedance
ZSC may be easily measured.

Problem 6. At a frequency of 1.5 kHz the open-circuit impedance
of a length of transmission line is 800 6 �50° # and the short-circuit
impedance is 413 6 �20° #. Determine the characteristic impedance
of the line at this frequency.

From equation (44.6),

characteristic impedance Z0 D p
�ZOCZSC�

D p
[�800 6 �50°��413 6 �20°�]

D p
�330400 6 �70°� D 575 6 6 −35° Z

by de Moivre’s theorem.

The characteristic impedance of a transmission line may also be
expressed in terms of the primary constants, R, L, G and C. Measurements
of the primary constants may be obtained for a particular line and
manufacturers usually state them for a standard length.

Let a very short length of line υl metres be as shown in Figure 44.4
comprising a single T-section. Each series arm impedance is
Z1 D 1

2 �R C jωL�υl ohms, and the shunt arm impedance is

Z2 D 1

Y2
D 1

�G C jωC�υl

Figure 44.4
[i.e., from Chapter 25, the total admittance Y2 is the sum of the admittance
of the two parallel arms, i.e., in this case, the sum of

Gυl and
(

1

1/�jωC�

)
υl]

From equation (41.1), page 760, the characteristic impedance Z0 of a T-
section having in each series arm an impedance Z1 and a shunt arm
impedance Z2 is given by: Z0 D

√
�Z1

2 C 2Z1Z2�
Hence the characteristic impedance of the section shown in Figure 44.4 is

Z0 D
√{[

1

2
�R C jωL�υl

]2

C 2
[

1

2
�R C jωL�υl

] [
1

�G C jωC�υl

]}

The term Z1
2 involves υl2 and, since υl is a very short length of line, υl2

is negligible. Hence

Z0 D
√

R C j !L
G C j !C

ohms �44.7�
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If losses R and G are neglected, then

Z0 D p
.L=C/ ohms �44.8�

Problem 7. Atransmission linehas the followingprimaryconstants:
resistance R D 15 #/loop km, inductance L D 3.4 mH/loop km,
conductance G D 3 µS/km and capacitance C D 10 nF/km. Deter-
mine the characteristic impedance of the line when the frequency is
2 kHz.

From equation (44.7),

characteristic impedance Z0 D
√

R C jωL

G C jωC
ohms

R C jωL D 15 C j�2�2000��3.4 ð 10�3�

D �15 C j42.73�# D 45.296 70.66° #

G C jωC D 3 ð 10�6 C j�2�2000��10 ð 10�9�

D �3 C j125.66�10�6 S D 125.7 ð 10�6 6 88.63° S

Hence Z0 D
√

45.29 6 70.66°

125.7 ð 10�6 6 88.63°
D
√

[0.360 ð 106 6 �17.97°] #

i.e., characteristic impedance, Z0 D 600 6 6 −8.99° Z

Propagation coefficient

Figure 44.5 shows a T-section with the series arm impedances each
expressed as ZA/2 ohms per unit length and the shunt impedance as
ZB ohms per unit length. The p.d. between points P and Q is given by:

VPQ D �I1 � I2�ZB D I2

(
ZA

2
C Z0

)

i.e., I1ZB � I2ZB D I2ZA

2
C I2Z0

Hence I1ZB D I2

(
ZB C ZA

2
C Z0

)

from which
I1

I2
D ZB C �ZA/2� C Z0

ZB

Figure 44.5
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From equation (41.1), page 760, Z0 D
√

�Z1
2 C 2Z1Z2�. In Figure 44.5,

Z1 	 ZA/2 and Z2 	 ZB

Thus Z0 D
√[(

ZA

2

)2

C 2
(
ZA

2

)
ZB

]
D
√(

ZA
2

4
C ZAZB

)

Hence
I1

I2
D ZB C �ZA/2� C

√
�ZAZB C �ZA

2/4��

ZB

D ZB

ZB
C �ZA/2�

ZB
C
√

�ZAZB C �ZA
2/4��

ZB

D 1 C 1

2

(
ZA

ZB

)
C
√(

ZAZB

ZB
2

C �ZA
2/4�

ZB
2

)

i.e.,
I1

I2
D 1 C 1

2

(
ZA

ZB

)
C
[
ZA

ZB
C 1

4

(
ZA

ZB

)2
]1/2

�44.9�

From Section 44.4, I1/I2 D e� , where � is the propagation coefficient.
Also, from the binomial theorem:

�a C b�n D an C nan�1b C n�n � 1�

2!
an�2b2 C Ð Ð Ð

Thus

[
ZA

ZB
C 1

4

(
ZA

ZB

)2
]1/2

D
(
ZA

ZB

)1/2

C 1

2

(
ZA

ZB

)�1/2 1

4

(
ZA

ZB

)2

C Ð Ð Ð

Hence, from equation (44.9),

I1

I2
D e� D 1 C 1

2

(
ZA

ZB

)
C
[(

ZA

ZB

)1/2

C 1

8

(
ZA

ZB

)3/2

C Ð Ð Ð

Rearranging gives: e� D 1 C
(
ZA

ZB

)1/2

C 1

2

(
ZA

ZB

)
C 1

8

(
ZA

ZB

)3/2

C Ð Ð Ð

Let length XY in Figure 44.5 be a very short length of line υl and
let impedance ZA D Zυl, where Z D R C jωL and ZB D 1/�Yυl�, where
Y D G C jωC

Then

e�υl D 1 C
(

Zυl

1/Yυl

)1/2

C 1

2

(
Zυl

1/Yυl

)
C 1

8

(
Zυl

1/Yυl

)3/2

C Ð Ð Ð

D 1 C �ZYυl2�1/2 C 1

2
�ZYυl2� C 1

8
�ZYυl2�3/2 C Ð Ð Ð
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D 1 C �ZY�1/2υl C 1

2
�ZY��υl�2 C 1

8
�ZY�3/2�υl�3 C Ð Ð Ð

D 1 C �ZY�1/2υl,

if �υl�2, �υl�3 and higher powers are considered as negligible.

ex may be expressed as a series:

ex D 1 C x C x2

2!
C x3

3!
C Ð Ð Ð

Comparison with e�υl D 1 C �ZY�1/2υl shows that �υl D �ZY�1/2υl i.e.,
� D p

�ZY�. Thus

propagation coefficient, g =
p

[.RY j !L/.G Y j !C/] �44.10�

The unit of � is
p
�#��S�, i.e.,

p
[�#��1/#�], thus � is dimensionless, as

expected, since I1/I2 D e� , from which � D ln�I1/I2�, i.e., a ratio of two
currents. For a lossless line, R D G D 0 and

g =
p

. j !L/. j !C/ = j !
p

.LC / �44.11�

Equations (44.7) and (44.10) are used to determine the characteristic
impedance Z0 and propagation coefficient � of a transmission line in
terms of the primary constants R, L, G and C. When R D G D 0, i.e.,
losses are neglected, equations (44.8) and (44.11) are used to determine
Z0 and � .

Problem 8. A transmission line having negligible losses has
primary line constants of inductance L D 0.5 mH/loop km and
capacitance C D 0.12 µF/km. Determine, at an operating frequency
of 400 kHz, (a) the characteristic impedance, (b) the propagation
coefficient, (c) the wavelength on the line, and (d) the velocity of
propagation, in metres per second, of a signal.

(a) Since the line is lossfree, from equation (44.8), the characteristic
impedance Z0 is given by

Z0 D
√

L

C
D
√

0.5 ð 10�3

0.12 ð 10�6
D 64.55 Z

(b) From equation (44.11), for a lossfree line, the propagation coefficient
� is given by

� D jω
p
�LC� D j�2�400 ð 103�

√
[�0.5 ð 10�3��0.12 ð 10�6�]

D j19.47 or 0Y j19.47
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Since � D ˛ C jˇ, the attenuation coefficient ˛ D 0 and the phase-
shift coefficient, ˇ D 19.47 rad/km.

(c) From equation (44.2), wavelength � D 2�

ˇ
D 2�

19.47

D 0.323 km or 323 m

(d) From equation (44.3), velocity of propagation u D f�

D �400 ð 103��323� D 129 × 106 m=s.

Problem 9. At a frequency of 1 kHz the primary constants of a
transmission line are resistance R D 25 #/loop km, inductance L D
5 mH/loop km, capacitance C D 0.04 µF/km and conductance G D
80 µS/km. Determine for the line (a) the characteristic impedance,
(b) the propagation coefficient, (c) the attenuation coefficient and
(d) the phase-shift coefficient.

(a) From equation (44.7),

characteristic impedance Z0 D
√

R C jωL

G C jωC
ohms

R C jωL D 25 C j�2�1000��5 ð 10�3� D �25 C j31.42�

D 40.15 6 51.49° #

G C jωC D 80 ð 10�6 C j�2�1000��0.04 ð 10�6�

D �80 C j251.33�10�6 D 263.76 ð 10�6 6 72.34° S

Thus characteristic impedance

Z0 D
√

40.15 6 51.49°

263.76 ð 10�6 6 72.34°
D 390.26 6 −10.43° Z

(b) From equation (44.10), propagation coefficient

� D p
[�R C jωL��G C jωC�]

D
√

[�40.15 6 51.49°��263.76 ð 10�6 6 72.34°�]

D p
�0.01059 6 123.83°� D 0.1029 6 6 61.92°

(c) � D ˛ C jˇ D 0.1029�cos 61.92° C j sin 61.92°�,
i.e., � D 0.0484 C j0.0908

Thus the attenuation coefficient, a = 0.0484 nepers=km

(d) The phase shift coefficient, b = 0.0908 rad=km
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Problem 10. An open wire line is 300 km long and is terminated
in its characteristic impedance. At the sending end is a
generator having an open-circuit e.m.f. of 10.0 V, an internal
impedance of �400 C j0�# and a frequency of 1 kHz. If the line
primary constants are R D 8 #/loop km, L D 3 mH/loop km, C D
7500 pF/km and G D 0.25 µS/km, determine (a) the characteristic
impedance, (b) the propagation coefficient, (c) the attenuation
and phase-shift coefficients, (d) the sending-end current, (e) the
receiving-end current, (f) the wavelength on the line, and (g) the
speed of transmission of signal.

(a) From equation (44.7),

characteristic impedance, Z0 D
√

R C jωL

G C jωC
ohms

R C jωL D 8 C j�2�1000��3 ð 10�3�

D 8 C j6� D 20.48 6 67.0° #

G C jωC D 0.25 ð 10�6 C j�2�1000��7500 ð 10�12�

D �0.25 C j47.12�10�6 D 47.12 ð 10�6 6 89.70° S

Hence characteristic impedance

Z0 D
√

20.48 6 67.0°

47.12 ð 10�6 6 89.70°
D 659.36 6 −11.35° Z

(b) From equation (44.10), propagation coefficient

� D p
[�R C jωL��G C jωC�] D

p
[�20.48 6 67.0°��47.12 ð 10�6 6 89.70°�] D 0.03106 6 6 78.35°

(c) � D ˛ C jˇ D 0.03106�cos 78.35° C j sin 78.35°�

D 0.00627 C j0.03042

Hence the attenuation coefficient, a = 0.00627 Np=km and the
phase shift coefficient, b = 0.03042 rad=km

(d) With reference to Figure 44.6, since the line is matched, i.e., termi-
nated in its characteristic impedance, VS/IS D Z0. Also

VS D VG � ISZG D 10.0 � IS�400 C j0�

Thus IS D VS

Z0
D 10.0 � 400IS

Z0

Rearranging gives: ISZ0 D 10.0 � 400 IS, from which,

IS�Z0 C 400� D 10.0Figure 44.6
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Thus the sending-end current,

IS D 10.0

Z0 C 400
D 10.0

659.3 6 �11.35° C 400

D 10.0

646.41 � j129.75 C 400
D 10.0

1054.4 6 �7.07°

D 9.484 6 6 7.07° mA

(e) From equation (44.4), the receiving-end current,

IR D ISe
�n� D ISe

�n˛ 6 �nˇ

D �9.484 6 7.07°�e��300��0.00627� 6 ��300��0.03042�

D 9.484 6 7.07°e�1.881 6 �9.13 rad

D 1.446 6 �516° mA D 1.446 6 6 −156° mA

(f) From equation (44.2),

wavelength, � D 2�

ˇ
D 2�

0.03042
D 206.5 km

(g) From equation (44.3),

speed of transmission, u D f� D �1000��206.5�

D 206.5 ð 103 km/s D 206.5 × 106 m=s

Further problems on the characteristic impedance and the propagation
coefficient in terms of the primary constants may be found in Section 44.9,
problems 7 to 11, page 898.

44.6 Distortion on
transmission lines

If the waveform at the receiving end of a transmission line is not the
same shape as the waveform at the sending end, distortion is said to
have occurred. The three main causes of distortion on transmission lines
are as follows.

(i) The characteristic impedance Z0 of a line varies with the operating
frequency, i.e., from equation (44.7),

Z0 D
√

R C jωL

G C jωC
ohms

The terminating impedance of the line may not vary with frequency
in the same manner.

In the above equation for Z0, if the frequency is very low, ω is low
and Z0 ³ p

�R/G�. If the frequency is very high, then ωL × R,
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Figure 44.7

ωC × G and Z0 ³ p
�L/C�. A graph showing the variation of Z0

with frequency f is shown in Figure 44.7.

If the characteristic impedance is to be constant throughout the
entire operating frequency range then the following condition is
required:

p
�L/C� D p

�R/G�, i.e., L/C D R/G, from which

LG = CR �44.12�

Thus, in a transmission line, if LG D CR it is possible to provide a
termination equal to the characteristic impedance Z0 at all frequen-
cies.

(ii) The attenuation of a line varies with the operating frequency (since
� D p

[�R C jωL��G C jωC�], from equation (44.10)), thus waves
of differing frequencies and component frequencies of complex
waves are attenuated by different amounts.

From the above equation for the propagation coefficient:

�2 D �R C jωL��G C jωC�

D RG C jω�LG C CR� � ω2LC

If LG D CR D x, then LG C CR D 2x and LG C CR may be
written as 2

p
x2, i.e., LG C CR may be written as 2

p
[�LG��CR�].

Thus �2 D RG C jω�2
p

[�LG��CR�]� � ω2LC

D [
p
�RG� C jω

p
�LC�]2

and � D p
�RG� C jω

p
�LC�

Since

� D ˛ C jˇ, attenuation coefficient, a =
p

.RG/ �44.13�

and phase shift coefficient, b = !
p

.LC / �44.14�

Thus, in a transmission line, if LG D CR, ˛ D p
�RG�, i.e., the

attenuation coefficient is independent of frequency and all frequen-
cies are equally attenuated.

(iii) The delay time, or the time of propagation, and thus the velocity of
propagation, varies with frequency and therefore waves of different
frequencies arrive at the termination with differing delays. From
equation (44.14), the phase-shift coefficient, ˇ D ω

p
�LC� when

LG D CR.

Velocity of propagation, u D ω

ˇ
D ω

ω
p
�LC�

D 1p
�LC�

�44.15�

Thus, in a transmission line, if LG D CR, the velocity of propaga-
tion, and hence the time delay, is independent of frequency.



884 Electrical Circuit Theory and Technology

From the above it appears that the condition LG D CR is appropriate for
the design of a transmission line, since under this condition no distor-
tion is introduced. This means that the signal at the receiving end is the
same as the sending-end signal except that it is reduced in amplitude and
delayed by a fixed time. Also, with no distortion, the attenuation on the
line is a minimum. In practice, however, R/L × G/C. The inductance is
usually low and the capacitance is large and not easily reduced. Thus if
the condition LG D CR is to be achieved in practice, either L or G must
be increased since neither C or R can really be altered. It is undesirable
to increase G since the attenuation and power losses increase. Thus the
inductance L is the quantity that needs to be increased and such an arti-
ficial increase in the line inductance is called loading. This is achieved
either by inserting inductance coils at intervals along the transmission
line — this being called ‘lumped loading’ — or by wrapping the conduc-
tors with a high-permeability metal tape — this being called ‘continuous
loading’.

Problem 11. An underground cable has the following primary
constants: resistance R D 10 #/loop km, inductance L D 1.5 mH/
loop km, conductance G D 1.2 µS/km and capacitance C D
0.06 µF/km. Determine by how much the inductance should be
increased to satisfy the condition for minimum distortion.

From equation (44.12), the condition for minimum distortion is given by
LG D CR, from which,

inductance L D CR

G
D �0.06 ð 10�6��10�

1.2 ð 10�6
D 0.5 H or 500 mH

Thus the inductance should be increased by �500 � 1.5� mH, i.e.,
498.5 mH per loop km, for minimum distortion.

Problem 12. A cable has the following primary constants:
resistance R D 80 #/loop km, conductance, G D 2 µS/km, and
capacitance C D 5 nF/km. Determine, for minimum distortion at
a frequency of 1.5 kHz (a) the value of inductance per loop
kilometre required, (b) the propagation coefficient, (c) the velocity
of propagation of signal, and (d) the wavelength on the line

(a) From equation (44.12), for minimum distortion, LG D CR, from
which, inductance per loop kilometre,

L D CR

G
D �5 ð 10�9��80�

�2 ð 10�6�
D 0.20 H or 200 mH

(b) From equation (44.13), attenuation coefficient,

˛ D p
�RG� D

√
[�80��2 ð 10�6�] D 0.0126 Np/km
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and from equation (44.14), phase shift coefficient,

ˇ D ω
p
�LC� D �2�1500�

√
[�0.20��5 ð 10�9�] D 0.2980 rad/km

Hence the propagation coefficient,

� D ˛ C jˇ D .0.0126Y j0.2980/ or 0.2983 6 6 87.58°

(c) From equation (44.15), velocity of propagation,

u D 1p
�LC�

D 1√
[�0.2��5 ð 10�9�]

D 31 620 km=s or 31.62 × 106 m=s

(d) Wavelength, � D u

f
D 31.62 ð 106

1500
m D 21.08 km

Further problems on distortion on transmission lines may be found in
Section 44.9, problems 12 and 13, page 899.

44.7 Wave reflection and
the reflection coefficient

In earlier sections of this chapter it was assumed that the transmission line
had been properly terminated in its characteristic impedance or regarded
as an infinite line. In practice, of course, all lines have a definite length
and often the terminating impedance does not have the same value as the
characteristic impedance of the line. When this is the case, the transmis-
sion line is said to have a ‘mismatched load’.

The forward-travelling wave moving from the source to the load is
called the incident wave or the sending-end wave. With a mismatched
load the termination will absorb only a part of the energy of the incident
wave, the remainder being forced to return back along the line toward the
source. This latter wave is called the reflected wave.

Electrical energy is transmitted by a transmission line; when such
energy arrives at a termination that has a value different from the char-
acteristic impedance, it experiences a sudden change in the impedance
of the medium. When this occurs, some reflection of incident energy
occurs and the reflected energy is lost to the receiving load. (Reflections
commonly occur in nature when a change of transmission medium occurs;
for example, sound waves are reflected at a wall, which can produce
echoes, and light rays are reflected by mirrors.)

If a transmission line is terminated in its characteristic impedance,
no reflection occurs; if terminated in an open circuit or a short circuit,
total reflection occurs, i.e., the whole of the incident wave reflects along
the line. Between these extreme possibilities, all degrees of reflection
are possible.
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Open-circuited termination

If a length of transmission line is open-circuited at the termination, no
current can flow in it and thus no power can be absorbed by the termi-
nation. This condition is achieved if a current is imagined to be reflected
from the termination, the reflected current having the same magnitude
as the incident wave but with a phase difference of 180°. Also, since
no power is absorbed at the termination (it is all returned back along
the line), the reflected voltage wave at the termination must be equal to
the incident wave. Thus the voltage at the termination must be doubled
by the open circuit. The resultant current (and voltage) at any point on
the transmission line and at any instant of time is given by the sum of
the currents (and voltages) due to the incident and reflected waves (see
Section 44.8).

Short-circuit termination

If the termination of a transmission line is short-circuited, the impedance
is zero, and hence the voltage developed across it must be zero. As with
the open-circuit condition, no power is absorbed by the termination. To
obtain zero voltage at the termination, the reflected voltage wave must
be equal in amplitude but opposite in phase (i.e., 180° phase difference)
to the incident wave. Since no power is absorbed, the reflected current
wave at the termination must be equal to the incident current wave and
thus the current at the end of the line must be doubled at the short circuit.
As with the open-circuited case, the resultant voltage (and current) at any
point on the line and at any instant of time is given by the sum of the
voltages (and currents) due to the incident and reflected waves.

Energy associated with a travelling wave

A travelling wave on a transmission line may be thought of as being made
up of electric and magnetic components. Energy is stored in the magnetic
field due to the current (energy D 1

2LI
2 — see page 751) and energy is

stored in the electric field due to the voltage (energy D 1
2CV2 — see

page 738). It is the continual interchange of energy between the magnetic
and electric fields, and vice versa, that causes the transmission of the total
electromagnetic energy along the transmission line.

When a wave reaches an open-circuited termination the magnetic field
collapses since the current I is zero. Energy cannot be lost, but it can
change form. In this case it is converted into electrical energy, adding
to that already caused by the existing electric field. The voltage at the
termination consequently doubles and this increased voltage starts the
movement of a reflected wave back along the line. A magnetic field will
be set up by this movement and the total energy of the reflected wave
will again be shared between the magnetic and electric field components.

When a wave meets a short-circuited termination, the electric field
collapses and its energy changes form to the magnetic energy. This results
in a doubling of the current.
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Figure 44.8

Reflection coefficient

Let a generator having impedance Z0 (this being equal to the characteristic
impedance of the line) be connected to the input terminals of a transmis-
sion line which is terminated in an impedance ZR, where Z0 6D ZR, as
shown in Figure 44.8. The sending-end or incident current Ii flowing
from the source generator flows along the line and, until it arrives at the
termination ZR behaves as though the line were infinitely long or properly
terminated in its characteristic impedance, Z0.

The incident voltage Vi shown in Figure 44.8 is given by:

Vi D IiZ0 �44.12�

from which, Ii D Vi

Z0
�44.13�

At the termination, the conditions must be such that:

ZR D total voltage

total current

Since ZR 6D Z0, part of the incident wave will be reflected back along the
line from the load to the source. Let the reflected voltage be Vr and the
reflected current be Ir . Then

Vr D �IrZ0 �44.14�

from which, Ir D �Vr

Z0
�44.15�

(Note the minus sign, since the reflected voltage and current waveforms
travel in the opposite direction to the incident waveforms.)

Thus, at the termination,

ZR D total voltage

total current
D Vi C Vr

Ii C Ir

D IiZ0 � IrZ0

Ii C Ir
from equations (44.12) and (44.14)

i.e., ZR D Z0�Ii � Ir�

�Ii C Ir�

Hence ZR�Ii C Ir� D Z0�Ii � Ir�

ZRIi C ZRIr D Z0Ii � Z0Ir

Z0Ir C ZRIr D Z0Ii � ZRIi

Ir�Z0 C ZR� D Ii�Z0 � ZR�

from which
Ir
Ii

D Z0 � Zr

Z0 C Zr
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The ratio of the reflected current to the incident current is called the
reflection coefficient and is often given the symbol 
, i.e.,

I r

I i
= r =

Z0 − ZR

Z0 Y ZR
�44.16�

By similar reasoning to above an expression for the ratio of the reflected
to the incident voltage may be obtained. From above,

ZR D Vi C Vr

Ii C Ir
D Vi C Vr

�Vi/Z0� � �Vr/Z0�

from equations (44.13) and (44.15),

i.e., ZR D Vi C Vr

�Vi � Vr�/Z0

Hence
ZR

Z0
�Vi � Vr� D Vi C Vr

from which,
ZR

Z0
Vi � ZR

Z0
Vr D Vi C Vr

Then
ZR

Z0
Vi � Vi D Vr C ZR

Z0
Vr

and Vi

(
ZR

Z0
� 1

)
D Vr

(
1 C ZR

Z0

)

Hence Vi

(
ZR � Z0

Z0

)
D Vr

(
Z0 C ZR

Z0

)

from which
Vr

Vi
D ZR � Z0

Z0 C ZR
D �

(
Z0 � ZR

Z0 C ZR

)
�44.17�

Hence
Vr

Vi
D � I r

I i
D �r �44.18�

Thus the ratio of the reflected to the incident voltage has the same magni-
tude as the ratio of reflected to incident current, but is of opposite sign.
From equations (44.16) and (44.17) it is seen that when ZR D Z0, 
 D 0
and there is no reflection.

Problem 13. A cable which has a characteristic impedance of
75 # is terminated in a 250 # resistive load. Assuming that the
cable has negligible losses and the voltage measured across the
terminating load is 10 V, calculate the value of (a) the reflection
coefficient for the line, (b) the incident current, (c) the incident
voltage, (d) the reflected current, and (e) the reflected voltage.
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(a) From equation (44.16),

reflection coefficient, r D Z0 � ZR

Z0 C ZR
D 75 � 250

75 C 250
D �175

325

D −0.538

(b) The circuit diagram is shown in Figure 44.9. Current flowing in the
terminating load,

IR D VR

ZR
D 10

250
D 0.04 A

Figure 44.9
However, current IR D Ii C Ir . From equation (44.16), Ir D 
Ii

Thus IR D Ii C 
Ii D Ii�1 C 
�

from which incident current, I i D IR
�1 C 
�

D 0.04

1 C ��0.538�
D 0.0866 A or 86.6 mA

(c) From equation (44.12),

incident voltage, Vi D IiZ0 D �0.0866��75� D 6.50 V

(d) Since IR D Ii C Ir

reflected current, I r D IR � Ii D 0.04 � 0.0866

D −0.0466 A or −46.6 mA
(e) From equation (44.14),

reflected voltage, Vr D �IrZ0 D ���0.0466��75� D 3.50 V

Problem 14. A long transmission line has a characteristic
impedance of �500 � j40�# and is terminated in an impedance of
(a) �500 C j40�# and (b) �600 C j20�#. Determine the magnitude
of the reflection coefficient in each case.

(a) From equation (44.16), reflection coefficient,


 D Z0 � ZR

Z0 C ZR

When Z0 D �500 � j40�# and ZR D �500 C j40�#


 D �500 � j40� � �500 C j40�

�500 � j40� C �500 C j40�
D �j80

1000
D �j0.08

Hence the magnitude of the reflection coefficient, j
j D 0.08
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(b) When Z0 D �500 � j40�# and ZR D �600 C j20�#


 D �500 � j40� � �600 C j20�

�500 � j40� C �600 C j20�
D �100 � j60

1100 � j20

D 116.62 6 � 149.04°

1100.18 6 �1.04°

D 0.106 6 �148°

Hence the magnitude of the reflection coefficient, j
j D 0.106

Problem 15. A loss-free transmission line has a characteristic
impedance of 500 6 0° # and is connected to an aerial of impedance
�320 C j240�#. Determine (a) the magnitude of the ratio of the
reflected to the incident voltage wave, and (b) the incident voltage
if the reflected voltage is 20 6 35° V

(a) From equation (44.17), the ratio of the reflected to the incident
voltage is given by:

Vr

Vi
D ZR � Z0

ZR C Z0

where Z0 is the characteristic impedance 500 6 0° # and ZR is the
terminating impedance �320 C j240�#.

Thus
Vr

Vi
D �320 C j240� � 500 6 0°

500 6 0° C �320 C j240�
D �180 C j240

820 C j240

D 300 6 126.87°

854.4 6 16.31°
D 0.351 6 110.56°

Hence the magnitude of the ratio Vr : Vi is 0.351

(b) Since Vr/Vi D 0.351 6 110.56°,

incident voltage, Vi D Vr

0.351 6 110.56°

Thus, when Vr D 20 6 35° V,

Vi D 20 6 35°

0.351 6 110.56°
D 57.06 6 −75.56° V

Further problems on the reflection coefficient may be found in Section 44.9,
problems 14 to 16, page 899.

44.8 Standing waves and
the standing wave ratio

Consider a lossfree transmission line open-circuited at its termination. An
incident current waveform is completely reflected at the termination, and,
as stated in Section 44.7, the reflected current is of the same magnitude
as the incident current but is 180° out of phase. Figure 44.10(a) shows
the incident and reflected current waveforms drawn separately (shown as
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Ii moving to the right and Ir moving to the left respectively) at a time
t D 0, with Ii D 0 and decreasing at the termination.

The resultant of the two waves is obtained by adding them at inter-
vals. In this case the resultant is seen to be zero. Figures 44.10(b) and
(c) show the incident and reflected waves drawn separately as times
t D T/8 seconds and t D T/4, where T is the periodic time of the signal.
Again, the resultant is obtained by adding the incident and reflected wave-
forms at intervals. Figures 44.10(d) to (h) show the incident and reflected

Figure 44.10 Current waveforms on an open-circuited
transmission line
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current waveforms plotted on the same axis, together with their resultant
waveform, at times t D 3T/8 to t D 7T/8 at intervals of T/8.

If the resultant waveforms shown in Figures 44.10(a) to (g) are super-
imposed one upon the other, Figure 44.11 results. (Note that the scale has
been increased for clarity.) The waveforms show clearly that waveform
(a) moves to (b) after T/8, then to (c) after a further period of T/8, then
to (d), (e), (f), (g) and (h) at intervals of T/8. It is noted that at any partic-
ular point the current varies sinusoidally with time, but the amplitude of
oscillation is different at different points on the line.

Whenever two waves of the same frequency and amplitude travelling in
opposite directions are superimposed on each other as above, interference
takes place between the two waves and a standing or stationary wave is
produced. The points at which the current is always zero are called nodes
(labelled N in Figure 44.11). The standing wave does not progress to the
left or right and the nodes do not oscillate. Those points on the wave
that undergo maximum disturbance are called antinodes (labelled A in
Figure 44.11). The distance between adjacent nodes or adjacent antinodes
is �/2, where � is the wavelength. A standing wave is therefore seen to be
a periodic variation in the vertical plane taking place on the transmission
line without travel in either direction.

Figure 44.11

The resultant of the incident and reflected voltage for the open-circuit
termination may be deduced in a similar manner to that for current.
However, as stated in Section 44.7, when the incident voltage wave
reaches the termination it is reflected without phase change. Figure 44.12
shows the resultant waveforms of incident and reflected voltages at
intervals of t D T/8. Figure 44.13 shows all the resultant waveforms
of Figure 44.12(a) to (h) superimposed; again, standing waves are seen
to result. Nodes (labelled N) and antinodes (labelled A) are shown in
Figure 44.13 and, in comparison with the current waves, are seen to occur
90° out of phase.

If the transmission line is short-circuited at the termination, it is
the incident current that is reflected without phase change and the
incident voltage that is reflected with a phase change of 180°. Thus the
diagrams shown in Figures 44.10 and 44.11 representing current at an



Transmission lines 893

Figure 44.12 Voltage waveforms on an open-circuited transmission line

open-circuited termination may be used to represent voltage conditions
at a short-circuited termination and the diagrams shown in Figures 44.12
and 44.13 representing voltage at an open-circuited termination may be
used to represent current conditions at a short-circuited termination.

Figure 44.14 shows the rms current and voltage waveforms plotted
on the same axis against distance for the case of total reflection, deduced
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Figure 44.13

Figure 44.14

from Figures 44.11 and 44.13. The rms values are equal to the amplitudes
of the waveforms shown in Figures 44.11 and 44.13, except that they
are each divided by

p
2 (since, for a sine wave, rms value D �1/

p
2� ð

maximum value). With total reflection, the standing-wave patterns of rms
voltage and current consist of a succession of positive sine waves with the
voltage node located at the current antinode and the current node located
at the voltage antinode. The termination is a current nodal point. The rms
values of current and voltage may be recorded on a suitable rms instru-
ment moving along the line. Such measurements of the maximum and
minimum voltage and current can provide a reasonably accurate indica-
tion of the wavelength, and also provide information regarding the amount
of reflected energy relative to the incident energy that is absorbed at the
termination, as shown below.

Standing-wave ratio

Let the incident current flowing from the source of a mismatched low-
loss transmission line be Ii and the current reflected at the termination be
Ir . If IMAX is the sum of the incident and reflected current, and IMIN is
their difference, then the standing-wave ratio (symbol s) on the line is
defined as:

s D IMAX

IMIN
D I i C I r

I i � I r
�44.19�
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Hence s�Ii � Ir� D Ii C Ir

sIi � sIr D Ii C Ir

sIi � Ii D sIr C Ir

Ii�s � 1� D Ir�s C 1�

i.e.,
I r

I i
D
(

s − 1
sY 1

)
�44.20�

The power absorbed in the termination Pt D Ii2Z0 and the reflected power,

Pr D Ir2Z0. Thus
Pr

Pt
D Ir2Z0

Ii2Z0
D
(
Ir
Ii

)2

Hence, from equation (44.20),

Pr

Pt
D
(

s − 1
sY 1

)2

�44.21�

Thus the ratio of the reflected to the transmitted power may be calculated
directly from the standing-wave ratio, which may be calculated from
measurements of IMAX and IMIN. When a transmission line is properly
terminated there is no reflection, i.e., Ir D 0, and from equation (44.19)
the standing-wave ratio is 1. From equation (44.21), when s D 1, Pr D 0,
i.e., there is no reflected power. In practice, the standing-wave ratio is
kept as close to unity as possible.

From equation (44.16), the reflection coefficient, 
 D Ir/Ii Thus, from

equation (44.20), j
j D s � 1

s C 1

Rearranging gives: j
j�s C 1� D �s � 1�

j
js C j
j D s � 1

1 C j
j D s�1 � j
j�

from which s D 1Y jrj
1 − jrj �44.22�

Equation (44.22) gives an expression for the standing-wave ratio in terms
of the magnitude of the reflection coefficient.

Problem 16. A transmission line has a characteristic impedance
of 600 6 0° # and negligible loss. If the terminating impedance of
the line is �400 C j250�#, determine (a) the reflection coefficient
and (b) the standing-wave ratio.
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(a) From equation (44.16),

reflection coefficient, 
 D Z0 � ZR

Z0 C ZR
D 600 6 0° � �400 C j250�

600 6 0° C �400 C j250�

D 200 � j250

1000 C j250
D 320.166 �51.34°

1030.78 6 14.04°

Hence r D 0.3106 6 6 − 65.38°

(b) From above, j
j D 0.3106. Thus from equation (44.22),

standing-wave ratio, s D 1 C j
j
1 � j
j D 1 C 0.3106

1 � 0.3106
D 1.901

Problem 17. A low-loss transmission line has a mismatched load
such that the reflection coefficient at the termination is 0.26 �120°.
The characteristic impedance of the line is 80 #. Calculate (a) the
standing-wave ratio, (b) the load impedance, and (c) the incident
current flowing if the reflected current is 10 mA.

(a) From equation (44.22),

standing-wave ratio, s D 1 C j
j
1 � j
j D 1 C 0.2

1 � 0.2
D 1.2

0.8
D 1.5

(b) From equation (44.16) reflection coefficient, 
 D Z0 � ZR

Z0 C ZR

Rearranging gives: 
�Z0 C ZR� D Z0 � ZR,

from which ZR�
 C 1� D Z0�1 � 
�

and
ZR

Z0
D 1 � 


1 C 

D 1 � 0.26 �120°

1 C 0.2 6 �120°
D 1 � ��0.10 � j0.173�

1 C ��0.10 � j0.173�

D 1.10 C j0.173

0.90 � j0.173
D 1.1135 6 8.94°

0.9165 6 �10.88°

D 1.215 6 19.82°

Hence load impedance ZR D Z0�1.215 6 19.82°�D �80��1.215 6 19.82°�

D 97.2 6 6 19.82° Z or .91.4Y j 33.0/Z

(c) From equation (44.20),

Ir
Ii

D s � 1

s C 1

Hence
10

Ii
D 1.5 � 1

1.5 C 1
D 0.5

2.5
D 0.2

Thus the incident current, Ii D 10/0.2 D 50 mA
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Problem 18. The standing-wave ratio on a mismatched line is
calculated as 1.60. If the incident power arriving at the termina-
tion is 200 mW, determine the value of the reflected power.

From equation (44.21),

Pr

Pt
D
(
s � 1

s C 1

)2

D
(

1.60 � 1

1.60 C 1

)2

D
(

0.60

2.60

)2

D 0.0533

Hence the reflected power, Pr D 0.0533Pt D �0.0533��200�

D 10.66 mW

Further problems on the standing wave ratio may be found in Section 44.9
following, problems 17 to 21, page 899.

44.9 Further problems
on transmission lines

Phase delay, wavelength and velocity of propagation

1 A parallel-wire air-spaced line has a phase-shift of 0.03 rad/km.
Determine (a) the wavelength on the line, and (b) the speed of trans-
mission of a signal of frequency 1.2 kHz.

[(a) 209.4 km (b) 251.3 ð 106 m/s]

2 A transmission line has an inductance of 5 µH/m and a capacitance of
3.49 pF/m. Determine, for an operating frequency of 5 kHz, (a) the
phase delay, (b) the wavelength on the line and (c) the velocity of
propagation of the signal in metres per second.

[(a) 0.131 rad/km (b) 48 km (c) 240 ð 106 m/s]

3 An air-spaced transmission line has a capacitance of 6.0 pF/m and the
velocity of propagation of a signal is 225 ð 106 m/s. If the operating
frequency is 20 kHz, determine (a) the inductance per metre, (b) the
phase delay, and (c) the wavelength on the line.

[(a) 3.29 µH/m (b) 0.558 ð 10�3 rad/m (c) 11.25 km]

Current and voltage relationships

4 When the working frequency of a cable is 1.35 kHz, its attenuation
is 0.40 Np/km and its phase-shift is 0.25 rad/km. The sending-end
voltage and current are 8.0 V rms and 10.0 mA rms. Determine the
voltage and current at a point 25 km down the line, assuming that
the termination is equal to the characteristic impedance of the line.

[VRD 0.363 6 �6.25 mV or 0.363 6 1.90° mV
IR D 0.454 6 �6.25 µA or 0.454 6 1.90° µA]

5 A transmission line 8 km long has a characteristic impedance
600 6 �30° #. At a particular frequency the attenuation coefficient of
the line is 0.4 Np/km and the phase-shift coefficient is 0.20 rad/km.
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Determine the magnitude and phase of the current at the receiving
end if the sending-end voltage is 5 6 0° V rms. [0.340 6 �61.67 mA]

6 The voltages at the input and at the output of a transmission line
properly terminated in its characteristic impedance are 10 V and 4 V
rms respectively. Determine the output voltage if the length of the
line is trebled. [0.64 V]

Characteristic impedance and propagation constant

7 At a frequency of 800 Hz, the open-circuit impedance of a length of
transmission line is measured as 500 6 �35° # and the short-circuit
impedance as 300 6 �15° #. Determine the characteristic impedance
of the line at this frequency. [387.36 �25° #]

8 A transmission line has the following primary constants per loop
kilometre run: R D 12 #, L D 3 mH, G D 4 µS and C D 0.02 µF.
Determine the characteristic impedance of the line when the
frequency is 750 Hz. [443.3 6 �18.95° #]

9 A transmission line having negligible losses has primary constants:
inductance L D 1.0 mH/loop km and capacitance C D 0.20 µF/km.
Determine, at an operating frequency of 50 kHz, (a) the characteristic
impedance, (b) the propagation coefficient, (c) the attenuation and
phase-shift coefficients, (d) the wavelength on the line, and (e) the
velocity of propagation of signal in metres per second.

[(a) 70.71 # (b) j4.443 (c) 0; 4.443 rad/km
(d) 1.414 km (e) 70.71 ð 106 m/s]

10 At a frequency of 5 kHz the primary constants of a transmission line
are: resistance R D 12 #/loop km, inductance L D 0.50 mH/loop
km, capacitance CD0.01 µF/km and G D 60 µS/km. Determine
for the line (a) the characteristic impedance, (b) the propagation
coefficient, (c) the attenuation coefficient, and (d) the phase-shift
coefficient.

[(a) 248.6 6 �13.29° # (b) 0.0795 6 65.91°

(c) 0.0324 Np/km (d) 0.0726 rad/km]

11 A transmission line is 50 km in length and is terminated in its
characteristic impedance. At the sending end a signal emanates
from a generator which has an open-circuit e.m.f. of 20.0 V, an
internal impedance of �250 C j0�# at a frequency of 1592 Hz. If the
line primary constants are R D 30 #/loop km, L D 4.0 mH/loop km,
G D 5.0 µS/km, and C D 0.01 µF/km, determine (a) the value of
the characteristic impedance, (b) the propagation coefficient, (c) the
attenuation and phase-shift coefficients, (d) the sending-end current,
(e) the receiving-end current, (f) the wavelength on the line, and
(g) the speed of transmission of a signal, in metres per second.

[(a) 706.6 6 �17° # (b) 0.0708 6 70.14°

(c) 0.024 Np/km; 0.067 rad/km
(d) 21.1 6 12.58° mA (e) 6.35 6 �178.21° mA
(f) 94.34 km (g) 150.2 ð 106 m/s]
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Distortion on transmission lines

12 A cable has the following primary constants: resistance R D
90 #/loop km, inductance L D 2.0 mH/loop km, capacitance C D
0.05 µF/km and conductance G D 3.0 µS/km. Determine the value
to which the inductance should be increased to satisfy the condition
for minimum distortion. [1.5 H]

13 A condition of minimum distortion is required for a cable. Its
primary constants are: R D 40 #/loop km, L D 2.0 mH/loop km,
G D 2.0 µS/km and C D 0.08 µF/km. At a frequency of 100 Hz
determine (a) the increase in inductance required, (b) the propagation
coefficient, (c) the speed of signal transmission and (d) the
wavelength on the line.

[(a) l.598 H (b) �8.944 C j225�10�3

(c) 2.795 ð 106 m/s (d) 27.93 km]

Reflection coefficient

14 A coaxial line has a characteristic impedance of 100 # and is termi-
nated in a 400 # resistive load. The voltage measured across the
termination is 15 V. The cable is assumed to have negligible losses.
Calculate for the line the values of (a) the reflection coefficient,
(b) the incident current, (c) the incident voltage, (d) the reflected
current, and (e) the reflected voltage.

[(a) �0.60 (b) 93.75 mA (c) 9.375 V
(d) �56.25 mA (e) 5.625 V]

15 A long transmission line has a characteristic impedance of
�400�j50�# and is terminated in an impedance of (i) �400 C j50�#,
(ii) �500 C j60�# and (iii) 400 6 0° #. Determine the magnitude of
the reflection coefficient in each case.

[(i) 0.125 (ii) 0.165 (iii) 0.062]

16 A transmission line which is loss-free has a characteristic
impedance of 600 6 0° # and is connected to a load of impedance
�400 C j300�#. Determine (a) the magnitude of the reflection
coefficient and (b) the magnitude of the sending-end voltage if the
reflected voltage is 14.60 V [(a) 0.345 (b) 42.32 V]

Standing-wave ratio

17 A transmission line has a characteristic impedance of 500 6 0° # and
negligible loss. If the terminating impedance of the line is
�320 C j200�# determine (a) the reflection coefficient and (b) the
standing-wave ratio. [(a) 0.319 6 �61.72° (b) 1.937]

18 A low-loss transmission line has a mismatched load such that the
reflection coefficient at the termination is 0.5 6 �135°. The character-
istic impedance of the line is 60 #. Calculate (a) the standing-wave
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ratio, (b) the load impedance, and (c) the incident current flowing if
the reflected current is 25 mA.

[(a) 3 (b) 113.936 43.32° # (c) 50 mA]

19 The standing-wave ratio on a mismatched line is calculated as 2.20. If
the incident power arriving at the termination is 100 mW, determine
the value of the reflected power.

[14.06 mW]

20 The termination of a coaxial cable may be represented as a 150 #
resistance in series with a 0.20 µH inductance. If the characteristic
impedance of the line is 100 6 0° # and the operating frequency is
80 MHz, determine (a) the reflection coefficient and (b) the standing-
wave ratio. [(a) 0.417 6 �138.35° (b) 2.43]

21 A cable has a characteristic impedance of 70 6 0° #. The cable is
terminated by an impedance of 60 6 30° #. Determine the ratio of the
maximum to minimum current along the line. [1.77]



45 Transients and Laplace
transforms

At the end of this chapter you should be able to:

ž determine the transient response of currents and voltages in
R–L, R–C andL–R–C series circuits using differential
equations

ž define the Laplace transform of a function
ž use a table of Laplace transforms of functions commonly met

in electrical engineering for transient analysis of simple
networks

ž use partial fractions to deduce inverse Laplace transforms
ž deduce expressions for component and circuit impedances in

the s-plane given initial conditions
ž use Laplace transform analysis directly from circuit diagrams

in the s-plane
ž deduce Kirchhoff law equations in thes-plane for determining

the response ofR–L, R–C andL–R–C networks, given
initial conditions

ž explain the conditions for which anL–R–C circuit response
is over, critical, under or zero-damped and calculate circuit
responses

ž predict the circuit response of anL–R–C network, given
non-zero initial conditions

45.1 Introduction A transient state will exist in a circuit containing one or more energy
storage elements (i.e., capacitors and inductors) whenever the energy
conditions in the circuit change, until the newsteady statecondition is
reached. Transients are caused by changing the applied voltage or current,
or by changing any of the circuit elements; such changes occur due to
opening and closing switches. Transients were introduced in Chapter 17
where growth and decay curves were constructed and their equations
stated for step inputs only. In this chapter, such equations are developed
analytically by using bothdifferential equations and Laplace trans-
forms for different waveform supply voltages.

45.2 Response ofR–C
series circuit to a step

input

Charging a capacitor

A seriesR–C circuit is shown in Figure 45.1 (a).
A step voltage of magnitudeV is shown in Figure 45.1(b). The capacitor
in Figure 45.1(a) is assumed to be initially uncharged.
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Figure 45.1

From Kirchhoff’s voltage law, supply voltage,

V D vC C vR �45.1�

VoltagevR D iR and currenti D C
dvC
dt

, hencevR D CR
dvC
dt

Therefore, from equation (45.1)

V D vC CCR
dvC
dt

�45.2�

This is a linear, constant coefficient, first order differential equation. Such
a differential equation may be solved, i.e., find an expression for voltage
vC, by separating the variables.(SeeEngineering Mathematicsor Higher
Engineering Mathematics)

Rearranging equation (45.2) gives:

V� vC D CR
dvC
dt

and

dvC
dt

D V� vC

CR
from which,

dvC
V� vC

D dt

CR

and integrating both sides gives:
∫

dvC
V� vC

D
∫

dt

CR

Hence � ln�V� vC� D t

CR
C k �45.3�

wherek is the arbitrary constant of integration

(To integrate
∫ dvC
V� vC

make an algebraic substitution,

u D V� vC — see Engineering Mathematicsor Higher Engineering
Mathematics)

When timet D 0, vC D 0, hence� lnV D k

Thus, from equation (45.3),� ln�V� vC� D t

CR
� lnV

Rearranging gives:

lnV� ln�V� vC� D t

CR

ln
V

V� vC
D t

CR
by the laws of logarithms

i.e.,
V

V� vC
D e

t
CR

and
V� vC

V
D 1

et/CR
D e�t/CR

V� vC D Ve�t/CR

V� Ve�t/CR D vC
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vC

V

t0

vC = V(1−e−t/CR)

Figure 45.2

i.e., capacitor p.d., vc = V
(
1 − e−t=CR

)
�45.4�

This is an exponential growth curve, as shown in Figure 45.2.

From equation (45.1),vR D V� vC

D V�
[
V
(
1 � e�t/CR

)]
from equation (45.4)

D V� VC Ve�t/CR

i.e., resistor p.d., vR = Ve−t=CR �45.5�

This is an exponential decay curve, as shown in Figure 45.3.

0 t

V
vR

vR  = Ve−t /CR

Figure 45.3

In the circuit of Figure 45.1 (a), currenti D C
dvC
dt

Hencei D C
d

dt

[
V
(

1 � e�t/CR
)]

from equation (45.4)

i.e., i D C
d

dt

[
V� Ve�t/CR

]

D C
[
0 � �V�

(�1

CR

)
e�t/CR

]

D C
[
V

CR
e�t/CR

]

i.e., current, i =
V
R

e−t=CR �45.6�

where
V

R
is the steady state current,I.

This is an exponential decay curve as shown in Figure 45.4.

t

V
R

i

0

i = e−t /CR
R
V

Figure 45.4
After a period of time it can be determined from equations (45.4) to (45.6)
that the voltage across the capacitor,vC, attains the valueV, the supply
voltage, whilst the resistor voltage,vR, and currenti both decay to zero.

Problem 1. A 500 nF capacitor is connected in series with a
100 k� resistor and the circuit is connected to a 50 V, d.c. supply.
Calculate (a) the initial value of current flowing, (b) the value of
current 150 ms after connection, (c) the value of capacitor voltage
80 ms after connection, and (d) the time after connection when the
resistor voltage is 35 V.
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(a) From equation (45.6), current,i D V

R
e�t/CR

Initial current, i.e., whent D 0, i0 D V

R
e0 D V

R
D 50

100ð 103

D 0.5 mA

(b) Current,i D V

R
e�t/CR hence, when timet D 150 ms or 0.15 s,

i D 50

100ð 103
e�0.5/�500ð10�9��100ð103� D �0.5 ð 10�3�e�3

D �0.5 ð 10�3��0.049787� D 0.0249 mA or 24.9 mA

(c) From equation (45.4), capacitor voltage,vC D V�1 � e�t/CR�

When timet D 80 ms, vC D 50�1 � e�80ð10�3/�500ð10�3ð100ð103��

D 50�1 � e�1.6� D 50�0.7981�

D 39.91 V

(d) From equation (45.5), resistor voltage,vR D Ve�t/CR

When vR D 35 V,

then 35D 50e�t/�500ð10�9ð100ð103�

i.e.,
35

50
D e�t/0.05

and ln
35

50
D �t

0.05
from which, time, t D �0.05 ln 0.7

D 0.0178 s or17.8 ms

Discharging a capacitor

If after a period of time the step input voltageV applied to the circuit of
Figure 45.1 is suddenly removed, by opening the switch, then

from equation (45.1), vR C vC D 0

or, from equation (45.2),CR
dvC
dt

C vC D 0

Rearranging gives:
dvC
dt

D �1

CR
vC

and separating the variables gives:
dvC
vC

D � dt

CR

and integrating both sides gives:
∫
dvC
vC

D
∫

� dt

CR



Transients and Laplace transforms905

from which, lnvC D � t

CR
C k �45.7�

wherek is a constant.

At time t D 0 (i.e., at the instant of opening the switch),vC D V

Substitutingt D 0 andvC D V in equation (45.7) gives:

lnV D 0 C k

Substitutingk D lnV into equation (45.7) gives:

ln vC D � t

CR
C lnV

and lnvC � lnV D � t

CR

ln
vC

V
D � t

CR

and
vC

V
D e�t/CR

from which, vC = Ve−t=CR �45.8�

i.e., the capacitor voltage,vC, decays to zero after a period of time, the
rate of decay depending onCR, which is the time constant, t (see
Section 17.3, page 260). SincevR C vC D 0 then the magnitude of the
resistor voltage,vR, is given by:

vR = Ve−t=CR �45.9�

and sincei D C
dvC
dt

D C
d

dt

(
Ve�t/CR) D �CV�

(
� 1

CR

)
e�t/CR

i.e., the magnitude of the current,i =
V
R

e−t=CR �45.10�

Problem 2. A d.c. voltage supply of 200 V is connected across
a 5 µF capacitor as shown in Figure 45.5. When the supply is
suddenly cut by opening switch S, the capacitor is left isolated
except for a parallel resistor of 2 M�. Calculate the p.d. across the
capacitor after 20 s.

From equation (45.8),vC D Ve�t/CR

After 20 s, vC D 200e�20/�5ð10�6ð2ð106� D 200 e�2 D 200�0.13534�

D 27.07 V

S

200 V
2 MΩ 

+

−

5 µF

Figure 45.5
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45.3 Response ofR–L
series circuit to a step

input

Current growth

A seriesR–L circuit is shown in Figure 45.6. When the switch is closed
and a step voltageV is applied, it is assumed thatL carries no current.

From Kirchhoff’s voltage law,V D vL C vR

VoltagevL D L
di

dt
and voltagevR D iR

Hence V D L
di

dt
C iR �45.11�

This is a linear, constant coefficient, first order differential equation.

Again, such a differential equation may be solved by separating the
variables.

V

Switch

L R

vL vR

i

Figure 45.6

Rearranging equation (45.11) gives:
di

dt
D V� iR

L

from which,
di

V� iR
D dt

L

and
∫

di

V� iR
D
∫
dt

L

Hence � 1

R
ln�V� iR� D t

L
C k �45.12�

wherek is a constant

�Use the algebraic substitutionu D V� iR to integrate
∫

di

V� iR
�

At time t D 0, i D 0, thus� 1

R
lnV D 0 C k

Substitutingk D � 1

R
lnV in equation (45.12) gives:

� 1

R
ln�V� iR� D t

L
� 1

R
lnV

Rearranging gives:
1

R
[ln V� ln�V� iR�] D t

L

and ln
(

V

V� iR

)
D Rt

L

Hence
V

V� iR
D e

Rt
L

and
V� iR

V
D 1

eRt/L
D e�Rt/L

V� iR D Ve�Rt/L

V� Ve�Rt/L D iR
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i = V
R

1−e−Rt/L

V
R

i

0 t

Figure 45.7

and current, i =
V
R

(
1 − e−Rt=L

)
�45.13�

This is an exponential growth curve as shown in Figure 45.7.

The p.d. across the resistor in Figure 45.6,vR D iR

HencevR D R
[
V

R

(
1 � e�Rt/L)] from equation�45.13�

i.e., vR = V .1 − e−Rt=L/ �45.14�

which again represents an exponential growth curve.

The voltage across the inductor in Figure 45.6,vL D L
di

dt

i.e., vL D L
d

dt

[
V

R
�1 � e�Rt/L�

]
D LV

R

d

dt
[1 � e�Rt/L]

D LV

R

[
0 �

(
�R

L

)
e�Rt/L

]
D LV

R

(
R

L
e�Rt/L

)

i.e., vL = Ve−Rt=L �45.15�

Problem 3. A coil of inductance 50 mH and resistance 5� is
connected to a 110 V, d.c. supply. Determine (a) the final value
of current, (b) the value of current after 4 ms, (c) the value of the
voltage across the resistor after 6 ms, (d) the value of the voltage
across the inductance after 6 ms, and (e) the time when the current
reaches 15 A.

(a) From equation (45.13), whent is large, the final, or steady state
currenti is given by:

i D V

R
D 110

5
D 22 A

(b) From equation (45.13), current,i D V

R
�1 � e�Rt/L�

When t D 4 ms, i D 110

5

(
1 � e���5��4ð10�3�/50ð10�3�

)

D 22�1 � e�0.40� D 22�0.32968� D 7.25 V

(c) From equation (45.14), the voltage across the resistor,

vR D V�1 � e�Rt/L�
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When t D 6 ms, vR D 110
(
1 � e[��5��6ð10�3�/50ð10�3�

)

D 110�1 � e�0.60� D 110�0.45119� D 49.63 V

(d) From equation (45.15), the voltage across the inductance,

vL D Ve�Rt/L

When t D 6 ms,

vL D 110e���5��6ð10�3�/50ð10�3� D 110 e�0.60 D 60.37 V

(Note that att D 6 ms,

vL C vR D 60.37C 49.63 D 110 V D supply p.d., V�

(e) When currenti reaches 15 A,

15 D V

R
�1 � e�Rt/L� from equation (45.13)

i.e., 15D 110

5
�1 � e�5t/�50ð10�3��

15
(

5

110

)
D 1 � e�100t

and e�100t D 1 � 75

110

Hence �100t D ln
(

1 � 75

110

)

and time, t D 1

�100
ln
(

1 � 75

100

)

D 0.01145 sor 11.45 ms

Current decay

If after a period of time the step voltageV applied to the circuit of
Figure 45.6 is suddenly removed by opening the switch, then from equa-
tion (45.11),

0 D L
di

dt
C iR

Rearranging gives:L
di

dt
D �iR or

di

dt
D � iR

L

Separating the variables gives:
di

i
D �R

L
dt

and integrating both sides gives:
∫
di

i
D
∫

�R

L
dt

ln i D �R

L
t C k �45.16�
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At t D 0 (i.e., when the switch is opened),

i D I
(

D V

R
, the steady state current

)

then lnI D 0 C k

Substitutingk D ln I into equation (45.16) gives:

ln i D �R

L
t C ln I

Rearranging gives: lni� ln I D �R

L
t

ln
i

I
D �R

L
t

i

I
D e�Rt/L

and current, i = Ie−Rt=L or
V
R

e−Rt=L �45.17�

i.e., the currenti decays exponentially to zero.

From Figure 45.6,vR D iR D R
(
V

R
e�Rt/L

)
from equation (45.17)

i.e., vR = Ve−Rt=L �45.18�

The voltage across the coil,vL D L
di

dt
D L

d

dt

(
V

R
e�Rt/L

)

from equation (45.17)

D L
(
V

R

)(
�R

L

)
e�Rt/L

Hence the magnitude ofvL is given by: vL = Ve−Rt=L �45.19�

Hence bothvR andvL decay exponentially to zero.

Problem 4. In the circuit shown in Figure 45.8, a current of 5 A
flows from the supply source. Switch S is then opened. Determine
(a) the time for the current in the 2 H inductor to fall to 200 mA,
and (b) the maximum voltage appearing across the resistor.

(a) When the supply is cut off, the circuit consists of just the 10�
resistor and the 2 H coil in parallel. This is effectively the same
circuit as Figure 45.6 with the supply voltage zero.

2 H

S5 A

V
10 Ω

Figure 45.8
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From equation (45.17), currenti D V

R
e�Rt/L

In this case
V

R
D 5 A, the initial value of current.

When i D 200 mA or 0.2 A,

0.2 D 5e�10t/2

i.e.,
0.2

5
D e�5t

thus ln
0.2

5
D �5t

and time, t D �1

5
ln

0.2

5
D 0.644 sor 644 ms

(b) Since the current through the coil can only return through the 10�
resistance, the voltage across the resistor is a maximum at the
moment of disconnection, i.e.,

vRm D IR D �5��10� D 50 V

45.4 L –R–C series
circuit response

For the circuit shown in Figure 45.9, from Kirchhoff’s voltage law,

V D vL C vR C vC �45.20�

vL D L
di

dt
and i D C

dvC
dt

, hencevL D L
d

dt

(
C
dvC
dt

)
D LC

d2vC

dt2

vR D iR D
(
C
dvC
dt

)
R D RC

dvC
dt

R

V

L

vL vR

vC C

i

Figure 45.9 Hence from equation (45.20):

V D LC
d2vC

dt2
C RC

dvC
dt

C vC �45.21�

This is a linear, constant coefficient, second order differential
equation.(For the solution of second order differential equations, see
Higher Engineering Mathematics).

To determine the transient response, the supply p.d.,V, is made equal
to zero,

i.e., LC
d2vC

dt2
C RC

dvC
dt

C vC D 0 �45.22�

A solution can be found by lettingvC D Aemt, from which,

dvC
dt

D Amemt and
dvC
dt2

D Am2emt
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Substituting these expressions into equation (45.22) gives:

LC�Am2emt�C RC�Amemt�C Aemt D 0

i.e., Aemt�m2LCC mRCC 1� D 0

ThusvC D Aemt is a solution of the given equation provided that

m2LCC mRCC 1 D 0 �45.23�

This is called theauxiliary equation.

Using the quadratic formula on equation (45.23) gives:

m D �RCš
√

[�RC�2 � 4�LC��1�]

2LC
D �RCš

√
�R2C2 � 4LC�

2LC

i.e., m D �RC
2LC

š
√
R2C2 � 4LC

�2LC�2
D � R

2L
š
√√√√
(
R2C2

4L2C2
� 4LC

4L2C2

)

D � R

2L
š
√√√√
[(

R

2L

)2

� 1

LC

]
�45.24�

This equation may have either:

(i) two different real roots, when�R/2L�2 > �1/LC�, when the circuit
is said to beoverdamped since the transient voltage decays very
slowly with time, or

(ii) two real equal roots, when�R/2L�2 D �1/LC�, when the circuit is
said to becritically damped since the transient voltage decays in
the minimum amount of time without oscillations occurring, or

(iii) two complex roots, when �R/2L�2 < �1/LC�, when the circuit is
said to beunderdampedsince the transient voltage oscillates about
the final steady state value, the oscillations eventually dying away
to give the steady state value, or

(iv) if R = 0 in equation (45.24), the oscillations would continue
indefinitely without any reduction in amplitude — this is the
undamped condition.

Damping in discussed again in Section 45.8 with typical current responses
sketched in Figure 45.28 on page 947.

Problem 5. A seriesL–R–C circuit has inductance,L D 2 mH,
resistance,R D 1 k� and capacitance,C D 5 µF. (a) Determine
whether the circuit is over, critical or underdamped. (b) IfC D
5 nF, determine the state of damping.
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(a)
(
R

2L

)2

D
[

103

2�2 ð 10�3�

]2

D 1012

16
D 6.25ð 1010

1

LC
D 1

�2 ð 10�3��5 ð 106�
D 109

10
D 108

Since
(
R

2L

)2

>
1

LC
the circuit isoverdamped.

(b) WhenC D 5 nF,
1

LC
D 1

�2 ð 10�3��5 ð 10�9�
D 1011

Since
(
R

2L

)2

<
1

LC
the circuit isunderdamped.

Problem 6. In the circuit of problem 5, what value of capacitance
will give critical damping ?

For critical damping:
(
R

2L

)2

D 1

LC
from which,capacitance ,

C D 1

L
(
R

2L

)2 D 1

L
R2

4L2

D 4L2

LR2
D 4L

R2

D 4�2 ð 10�3�

�103�2
D 8 ð 10�9 F or 8 nF

Roots of the auxiliary equation

With reference to equation (45.24):

(i) when the roots arereal and different, saym D ˛ andm D ˇ, the
general solution is

vC = Aeat Y Bebt �45.25�

where˛ D � R

2L
C
√√√√
[(

R

2L

)2

� 1

LC

]
and

ˇ D � R

2L
�
√√√√
[(

R

2L

)2

� 1

LC

]
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(ii) when the roots arereal and equal, say mD ˛ twice, the general
solution is

vC = .At Y B/eat �45.26�

where˛ D � R

2L
(iii) when the roots arecomplex, say mD ˛š jˇ, the general solu-

tion is

vC = eat fA cos bt Y B sin btg �45.27�

where˛ D � R

2L
andˇ D

√√√√
[

1

LC
�
(
R

2L

)2
]

(45.28)

To determine the actual expression for the voltage under any given initial
condition, it is necessary to evaluate constants A and B in terms ofvC
and currenti. The procedure is the same for each of the above three
cases. Assuming in, say, case (iii) that at timet D 0, vC D v0 and i�D
C�dvC/dt�� D i0 then substituting in equation (45.27):

v0 D e0 fA cos 0C B sin 0g
i.e., v0 D A �45.29�

Also, from equation (45.27),

dvC
dt

D e˛t[�Aˇ sin ˇt C Bˇ cos ˇt]

C [A cos ˇt C B sin ˇt]
(
˛e˛t

)
�45.30�

by the product rule of differentiation

When t D 0,
dvC
dt

D e0[0 C Bˇ] C [A]
(
˛e0
) D Bˇ C ˛A

Hence att D 0, i0 D C
dvC
dt

D C�Bˇ C ˛A�

From equation (45.29),A D v0 hencei0 D C�Bˇ C ˛v0� D CBˇ CC˛v0

from which,B =
i0 − Cav0

Cb
�45.31�

Problem 7. A coil has an equivalent circuit of inductance 1.5 H
in series with resistance 90�. It is connected across a charged
5 µF capacitor at the moment when the capacitor voltage is 10 V.
Determine the nature of the response and obtain an expression for
the current in the coil.
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(
R

2L

)2

D
[

90

2�1.5�

]2

D 900 and
1

LC
D 1

�1.5��5 ð 10�6�
D 1.333ð 105

Since
(
R

2L

)2

<
1

LC
the circuit isunderdamped.

From equation (45.28),

˛ D � R

2L
D � 90

2�1.5�
D �30

andˇ D
√√√√
[

1

LC
�
(
R

2L

)2
]

D
√

[1.333ð 105 � 900] D 363.9

With v0 D 10 V andi0 D 0, from equation (45.29),v0 D A D 10

and from equation (45.31),B D i0 � C˛v0

Cˇ
D 0 � �5 ð 10�6���30��10�

�5 ð 10�6��363.9�

D 300

363.9
D 0.8244

Current, i D C
dvC
dt

, and from equation (45.30),

i D Cfe�30t[�10�363.9� sinˇt C �0.8244��363.9� cosˇt]

C �10 coš t C 0.8244 siň t���30e�30t�g
D Cfe�30t[�3639 siň t C 300 coš t � 300 coš t

�24.732 siň t]g
D Ce�30t[�3663.732 siň t]

D ��5 ð 10�6��3663.732�e�30t sinˇt

i.e., current, i = −0.0183e−30t sin 363.9t amperes

Further problems onR–C, R–L andL–R–C series circuits may be found
in Section 45.10. problems 1 to 8, page 952.

45.5 Introduction to
Laplace transforms

The solution of most electrical problems can be reduced ultimately to
the solution of differential equations and the use ofLaplace transforms
provides an alternative method to those used previously. Laplace trans-
forms provide a convenient method for the calculation of the complete
response of a circuit. In this section and in Section 45.6 the technique
of Laplace transforms is developed and then used to solve differential
equations. In Section 45.7 Laplace transforms are used to analyse transient
responses directly from circuit diagrams.
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Definition of a Laplace transform

The Laplace transform of the function of timef�t� is defined by the
integral
∫ 1

0
e�stf�t�dt wheres is a parameter

There are various commonly used notations for the Laplace transform of
f�t� and these includeL ff�t�g or Lff�t�g or L �f� or Lf or f�s�

Also the letterp is sometimes used instead ofs as the parameter. The
notation used in this chapter will bef�t� for the original function and
L ff�t�g for its Laplace transform,

i.e., L ff�t�g D
∫ 1

0
e�stf�t�dt �45.32�

Laplace transforms of elementary functions

Using equation (45.32):

(i) when f .t/ = 1,L f1g D ∫1
0 e�st�1�dt D

[
e�st

�s
]1

0

D �1

s

[
e�s�1� � e0

] D �1

s
[0 � 1] D 1

s
(provides > 0)

(ii) when f .t/ = k ,L fkg D kL f1g D k
(

1

s

)
D k

s
from (i) above

(iii) when f .t/ D eat,L featg D ∫1
0 e�st�eat�dt D ∫ e��s�a�tdt

from the laws of indices

D
[
e��s�a�t

��s � a�

]1

0

D 1

��s � a�
�0 � 1�

D 1
s − a

(provideds > a)

(iv) when f .t/ = t,L ftg D ∫1
0 e�stt dt D

[
te�st

�s � ∫ e�st

�s dt
]1

0

D
[
te�st

�s � e�st

s2

]1

0
by integration by parts

D
[

1e�s�1�

�s � e�s�1�

s2

]
�
[
0 � e0

s2

]

D �0 � 0��
(

0 � 1

s2

)
since�1 ð 0� D 0

D 1
s2

�provideds > 0�
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(v) when f .t/ = cos!t,L fcosωtg D ∫1
0 e�st cosωt dt

D
[

e�st

s2 C ω2
�ω sinωt � s cosωt�

]1

0

by integration by parts twice

D s
s2Y !2

� provideds > 0�

A list of standard Laplace transforms is summarized in Table 45.1 on
page 917. It will not usually be necessary to derive the transforms as
above — but merely to use them.

The following worked problems only require using the standard list of
Table 45.1.

Problem 8. Find the Laplace transforms of (a) 1C 2t � 1
3t

4

(b) 5e2t � 3e�t

(a) L f1 C 2t� 1

3
t4g D L f1g C 2L ftg � 1

3
L ft4g

D 1

s
C 2

(
1

s2

)
� 1

3

(
4!

s4C1

)

from 2, 7 and 9 of Table 45.1

D 1

s
C 2

s2
� 1

3

(
4 ð 3 ð 2 ð 1

s5

)

D 1
s

C 2
s2

� 8
s5

(b) L f5e2t � 3e�tg D 5L fe2tg � 3L fe�tg

D 5
(

1

s� 2

)
� 3

(
1

s� �1

)
from 3 of Table 45.1

D 5

s� 2
� 3

sC 1
D 5�s C 1�� 3�s� 2�

�s � 2��s C 1�

D 2s C 11
s2 � s � 2

Problem 9. Find the Laplace transform of 6 sin 3t� 4 cos 5t

L f6 sin 3t � 4 cos 5tg D 6L fsin 3tg � 4L fcos 5tg
D 6

(
3

s2 C 32

)
� 4

(
s

s2 C 52

)

from 5 and 6 of Table 45.1

D 18
s2 Y 9

� 4s
s2 Y 25
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TABLE 45.1 Standard Laplace Transforms

Time function f(t) Laplace transform
L ff�t�g D ∫1

0 e�stf�t�dt

1. υ (unit impulse) 1

2. 1 (unit step function)
1

s

3. eat (exponential function)
1

s� a

4. unit step delayed byT
e�sT

s

5. sinωt (sine wave)
ω

s2 C ω2

6. cosωt (cosine wave)
s

s2 C ω2

7. t (unit ramp function)
1

s2

8. t2
2!

s3

9. tn �n D 1, 2, 3..�
n!

snC1

10. coshωt
s

s2 � ω2

11. sinhωt
ω

s2 � ω2

12. eattn
n!

�s � a�nC1

13. e�at sinωt (damped sine wave)
ω

�s C a�2 C ω2

14. e�at cosωt (damped cosine wave)
sC a

�s C a�2 C ω2

15. e�at sinhωt
ω

�s C a�2 � ω2

16. e�at coshωt
sC a

�s C a�2 � ω2
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Problem 10. Use Table 45.1 to determine the Laplace transforms
of the following waveforms:

(a) a step voltage of 10 V which starts at timet D 0

(b) a step voltage of 10 V which starts at timet D 5 s

(c) a ramp voltage which starts at zero and increases at 4 V/s

(d) a ramp voltage which starts at timet D 1 s and increases at
4 V/s

(a) From 2 of Table 45.1,L f10g D 10L f1g D 10
(

1

s

)
D 10

s

The waveform is shown in Figure 45.10 (a).

(b) From 4 of Table 45.1, a step function of 10 V which is delayed by
t D 5 s is given by:

10

(
e�sT

s

)
D 10

(
e�5s

s

)
D 10

s
e−5s

This is, in fact, the function starting att D 0 given in part (a), i.e.,
�10/s� multiplied by e�sT, whereT is the delay in seconds.

The waveform is shown in Figure 45.10 (b).

(c) From 7 of Table 45.1, the Laplace transform of the unit ramp,
L ftg D �1/s2�

Hence the Laplace transform of a ramp voltage increasing at 4 V/s
is given by:

4L ftg D 4
s2

The waveform is shown in Figure 45.10(c).

(d) As with part (b), for a delayed function, the Laplace transform is
the undelayed function, in this case�4/s2� from part (c), multiplied
by e�sT whereT in this case is 1 s. Hence the Laplace transform is
given by:.4=s2/e−s

The waveform is shown in Figure 45.10 (d).

Problem 11. Determine the Laplace transforms of the following
waveforms:

(a) an impulse voltage o

f 8 V which starts at time

t D 0

(b) an impulse voltage o

f 8 V which starts at time

t D 2 s

(c) a sinusoidal current of 4 A and angular frequency 5 rad/s
which starts at timet D 0

0

10

V

t

(a)

0

V

(c)

4

0

V

(d)

4

1 t

1 t

0

10

V

(b)

5 t

2

Figure 45.10
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V

8

0 t

(a)

V

8

0 t

(b)

2

0

4

−4

π t
5

2π
5

(c)

i

Figure 45.11

(a) An impulse is an intense signal of very short duration. This function
is often known as theDirac function .

From 1 of Table 45.1, the Laplace transform of an impulse starting
at time t D 0 is given byL fυg D 1, hence an impulse of 8 V is
given by: 8L fυg D 8

This is shown in Figure 45.11 (a).

(b) From part (a) the Laplace transform of an impulse of 8 V is 8.
Delaying the impulse by 2 s involves multiplying the undelayed
function bye−sT whereT D 2 s.

Hence the Laplace transform of the function is given by:8 e�2s

This is shown in Figure 45.11(b).

(c) From 5 of Table 45.1,L fsinωtg D ω

s2 C ω2

When the amplitude i

s 4 A and

ω D 5, then

L f4 sinωtg D 4
(

5

s2 C 52

)
D 20

s2Y 25

The waveform is shown in Figure 45.11 (c).

Problem 12. Find the Laplace transforms of (a) 2t4e3t

(b) 4e3t cos 5t

(a) From 12 of Table 45.1,

L f2t4e3tg D 2L ft4e3tg

D 2
[

4!

�s � 3�4C1

]
D 2�4 ð 3 ð 2 ð 1�

�s � 3�5
D 48

.s − 3/5

(b) From 14 of table 45.1,

L f4e3t cos 5tg D 4L fe3t cos 5tg

D 4
[

s� 3

�s� 3�2 C 52

]
D 4�s� 3�

s2 � 6sC 9 C 25

D 4.s − 3/

s2 − 6sY 34

Problem 13. Determine the Laplace transforms of (a) 2 cosh 3t
(b) e�2t sin 3t

(a) From 10 of Table 45.1,

L f2 cosh 3tg D 2L cosh 3t D 2
[

s

s2 � 32

]
D 2s

s2 − 9
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(b) From 13 of Table 45.1,

L fe�2t sin 3tg D 3

�s C 2�2 C 32
D 3

s2 C 4sC 4 C 9
D 3

s2Y 4sY 13

Laplace transforms of derivatives

Using integration by parts, it may be shown that:

(a) for thefirst derivative:

L ff ′.t/g D sL ff .t/g − f .0/

or L

{
dy
dx

}
D sL fyg − y.0/ �45.33�

wherey�0� is the value ofy at x D 0

(b) for thesecond derivative:

L ff ′′.t/g D s2L ff .t/g − sf .0/ � f ′.0/

or L

{
d2y
dx2

}
D s2L fyg − sy.0/ − y′.0/ �45.34�

wherey0�0� is the value of�dy/dx� at x D 0

Equations (45.33) and (45.34) are used in the solution of differential equa-
tions in Section 45.6.

The initial and final value theorems

The initial and final value theorems can often considerably reduce the
work of solving electrical circuits.

(a) Theinitial value theorem states: limit
t!0

[f�t�] D limit
s!1[sL ff�t�g]

Thus, for example, if f�t� D v D Ve
�t
CR and if, say,

V D 10 andCR D 0.5, then

f�t� D v D 10e�2t

L ff�t�g D 10
[

1

sC 2

]

from 3 of Table 45.1

sL ff�t�g D 10
[

s

sC 2

]

From the initial value theorem, the initial value off�t� is given by:

10
[ 1

1 C 2

]
D 10�1� D 10
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(b) Thefinal value theorem states: limit
t!1 [f�t�] D limit

s!0
[sL ff�t�g]

In the above example off�t� D 10e�2t the final value is given by:

10
[

0

0 C 2

]
D 0

The initial and final value theorems are used in pulse circuit applica-
tions where the response of the circuit for small periods of time, or the
behaviour immediately the switch is closed, are of interest. The final value
theorem is particularly useful in investigating the stability of systems
(such as in automatic aircraft-landing systems) and is concerned with the
steady state response for large values of timet, i.e., after all transient
effects have died away.

Further problems on Laplace transforms may be found in Section 45.10,
problems 9 to 19, page 953.

45.6 Inverse Laplace
transforms and the

solution of differential
equations

Since from 2 of Table 45.1,L f1g D 1

s
thenL �1

{
1
s

}
= 1

whereL �1 means theinverse Laplace transform.

Similarly, since from 5 of Table 45.1,

L fsinωtg D ω

s2 C ω2
thenL �1

{
!

s2 Y !2

}
= sin!t

Thus finding an inverse transform involves locating the Laplace transform
from the right-hand column of Table 45.1 and then reading the function
from the left-hand column. The following worked problems demonstrate
the method.

Problem 14. Find the following inverse Laplace transforms:

(a) L �1
{

1

s2 C 9

}
(b) L �1

{
5

3s� 1

}

(a) L �1
{

1

s2 C 9

}
D L �1

{
1

s2 C 32

}
D 1

3
L �1

{
3

s2 C 32

}

and from 5 of Table 45.1,
1

3
L �1

{
3

s2 C 32

}
D 1

3
sin 3t

(b) L �1
{

5

3s� 1

}
DL �1




5

3�s� 1

3
�




D 5

3
L �1




1

s� 1

3




D 5
3

e
1
3t

from 3 of Table 45.1
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Problem 15. Determine the following inverse Laplace transforms:

(a) L �1
{

6

s3

}
(b) L �1

{
3

s4

}

(a) From 8 of Table 45.1,L �1
{

2

s3

}
D t2

HenceL �1
{

6

s3

}
D 3L �1

{
2

s3

}
D 3t2

(b) From 9 of Table 45.1, ifs is to have a power of 4 thenn D 3.

Thus L �1
{

3!

s4

}
D t3, i.e., L �1

{
6

s4

}
D t3

HenceL �1
{

3

s4

}
D 1

2
L �1

{
6

s4

}
D 1

2
t3

Problem 16. Determine (a)L �1
{

7s

s2 C 4

}
(b) L �1

{
4s

s2 � 16

}

(a) L �1
{

7s

s2 C 4

}
D 7L �1

{
s

s2 C 22

}

D 7 cos 2t from 6 of Table 45.1

(b) L �1
{

4s

s2 � 16

}
D 4L �1

{
s

s2 � 42

}

D 4 cosh 4t from 10 of Table 45.1

Problem 17. FindL �1
{

2

�s � 3�5

}

From 12 of Table 45.1,L �1
{

n!

�s � a�nC1

}
D eattn

ThusL �1
{

1

�s� a�nC1

}
D 1

n!
eattn

and comparing withL �1
{

2

�s� 3�5

}
shows thatn D 4 anda D 3.

HenceL �1
{

2

�s � 3�5

}
D 2L �1

{
1

�s� 3�5

}
D 2

[
1

4!
e3tt4

]

D 1
12e3t t4
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Problem 18. Determine

(a) L �1
{

3

s2 � 4sC 13

}
(b) L �1

{
2�sC 1�

s2 C 2sC 10

}

(a) L �1
{

3

s2 � 4sC 13

}
D L �1

{
3

�s � 2�2 C 32

}

D e2t sin 3t from 13 of Table 45.1

(b) L �1
{

2�sC 1�

s2 C 2sC 10

}
D L �1

{
2�sC 1�

�s C 1�2 C 32

}

D 2e−t cos 3t from 14 of Table 45.1

Note that in solving these examples the denominator in each case has
been made into a perfect square.

Use of partial fractions for inverse Laplace transforms

Sometimes the function whose inverse is required is not recognisable as a
standard type, such as those listed in Table 45.1. In such cases it may be
possible, by usingpartial fractions , to resolve the function into simpler
fractions which may be inverted on sight.

For example, the functionF�s� D 2s� 3

s�s � 3�
cannot be inverted on sight

from Table 45.1. However, using partial fractions:

2s� 3

s�s� 3�
� A

s
C B

s� 3
D A�s � 3�C Bs

s�s � 3�

from which, 2s� 3 D A�s � 3�C Bs

Letting s D 0 gives:�3 D �3A from whichA D 1

Letting s D 3 gives: 3D 3B from whichB D 1

Hence
2s� 3

s�s � 3�
� 1

s
C 1

s� 3

ThusL �1
{

2s� 3

s�s� 3�

}
D L �1

{
1

s
C 1

�s � 3�

}

D 1Y e3t from 2 and 3 of Table 45.1

Partial fractions are explained inEngineering Mathematics and Higher
Engineering Mathematics. The following worked problems demonstrate
the method.

Problem 19. DetermineL �1
{

4s� 5

s2 � s� 2

}
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4s� 5

s2 � s� 2
� 4s� 5

�s � 2��s C 1�
� A

�s � 2�
C B

�sC 1�

D A�s C 1�C B�s� 2�

�s � 2��s C 1�

Hence 4s� 5 D A�sC 1�C B�s � 2�

Whens D 2, 3D 3A from which,A D 1

Whens D �1, �9 D �3B from which,B D 3

HenceL �1
{

4s� 5

s2 � s� 2

}
� L �1

{
1

s� 2
C 3

sC 1

}

D L �1
{

1

s� 2

}
C L �1

{
3

sC 1

}

D e2t Y 3e−t from 3 of Table 45.1

Problem 20. FindL �1

{
3s3 C s2 C 12sC 2

�s� 3��s C 1�3

}

3s3 C s2 C 12sC 2

�s � 3��s C 1�3
� A

s � 3
C B

sC 1
C C

�s C 1�2
C D

�sC 1�3

D
A�s C 1�3 C B�s � 3��s C 1�2

CC�s � 3��s C 1�C D�s� 3�
�s� 3��s C 1�3

Hence 3s3 C s2 C 12sC 2 D A�s C 1�3 C B�s� 3��s C 1�2

CC�s� 3��s C 1�C D�s � 3�

Whens D 3, 128D 64A from which,A D 2

Whens D �1, �12 D �4D from which,D D 3

Equatings3 terms gives: 3D AC B from which,B D 1

Equatings2 terms gives: 1D 3A� BCC from which,C D �4

Hence L �1

{
3s3 C s2 C 12sC 2

�s� 3��s C 1�3

}

� L �1
{

2

s� 3
C 1

sC 1
� 4

�s C 1�2
C 3

�sC 1�3

}

D 2e3t Y e−t − 4e−t t Y
3
2

e−t t2

from 3 and 12 of Table 45.1
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Problem 21. DetermineL �1

{
5s2 C 8s� 1

�s C 3��s2 C 1�

}

5s2 C 8s� 1

�s C 3��s2 C 1�
� A

sC 3
C BsCC

s2 C 1
D A�s2 C 1�C �BsC C��sC 3�

�sC 3��s2 C 1�

Hence 5s2 C 8s� 1 D A�s2 C 1�C �Bs CC��s C 3�

Whens D �3 20D 10A from which,A D 2

Equatings2 terms gives: 5D AC B from which,B D 3

Equatings terms gives: 8D 3BCC from which,C D �1

HenceL �1

{
5s2 C 8s� 1

�sC 3��s2 C 1�

}
� L �1

{
2

sC 3
C 3s� 1

s2 C 1

}

D L �1
{

2

sC 3

}
C L �1

{
3s

s2 C 1

}

�L �1
{

1

s2 C 1

}

D 2e−3t Y 3 cost − sin t

from 3, 6 and 5 of Table 45.1

Procedure to solve differential equations by using Laplace
transforms

(i) Take the Laplace transform of both sides of the differential equation
by applying the formulae for the Laplace transforms of derivatives
(i.e., equations (45.33) and (45.34) on page 920) and, where neces-
sary, using a list of standard Laplace transforms, such as Table 45.1
on page 917.

(ii) Put in the given initial conditions, i.e.y�0� andy0�0�
(iii) Rearrange the equation to makeL fyg the subject

(iv) Determiney by using, where necessary, partial fractions, and taking
the inverse of each term by using Table 45.1.

This procedure is demonstrated in the following problems.

Problem 22. Use Laplace transforms to solve the differential
equation

2
d2y

dx2
C 5

dy

dx
� 3y D 0, given that whenx D 0, y D 4 and

dy

dx
D 9
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(i) 2L

{
d2y

dx2

}
C 5L

{
dy

dx

}
� 3L fyg D L f0g

2[s2L fyg � sy�0�� y0�0�] C 5[sL fyg � y�0�] � 3L fyg D 0

from equations (45.33) and (45.34)

(ii) y�0� D 4 andy0�0� D 9

Thus 2[s2]L fyg � 4s� 9] C 5[sL fyg � 4] � 3L fyg D 0

i.e., 2s2L fyg � 8s� 18C 5sL fyg � 20� 3L fyg D 0

(iii) Rearranging gives:�2s2 C 5s� 3�L fyg D 8sC 38

i.e., L fyg D 8sC 38

2s2 C 5s� 3

(iv) y D L �1
{

8sC 38

2s2 C 5s� 3

}

Let
8sC 38

2s2 C 5s� 3
D 8sC 38

�2s � 1��s C 3�
D A

2s� 1
C B

sC 3

D A�s C 3�C B�2s� 1�

�2s � 1��s C 3�

Hence 8sC 38 D A�s C 3�C B�2s� 1�

When s D 1
2, 42 D 31

2A from which,A D 12

When s D �3, 14 D �7B from which,B D �2

Hence y D L �1
{

8sC 38

2s2 C 5s � 3

}
� L �1

{
12

2s� 1
� 2

sC 3

}

D L �1

{
12

2�s � 1
2�

}
� L �1

{
2

sC 3

}

Hence y= 6e.1=2/x − 2e−3x from 3 of Table 45.1.

Problem 23. Use Laplace transforms to solve the differential
equation:

d2y

dx2
C 6

dy

dx
C 13y D 0, given that whenx D 0, y D 3 and

dy

dx
D 7

Using the above procedure:

(i) L

{
d2y

dx2

}
C 6L

{
dy

dx

}
C 13L fyg D L f0g

Hence [s2L fyg � sy�0�� y0�0�] C 6[sL fyg � y�0�] C 13L fygD0

from equations (45.33) and (45.34)
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(ii) y�0� D 3 andy0�0� D 7

Thuss2L fyg � 3s� 7 C 6sL fyg � 18C 13L fyg D 0

(iii) Rearranging gives:�s2 C 6sC 13�L fyg D 3sC 25

i.e. L fyg D 3sC 25

s2 C 6sC 13

(iv) y D L �1
{

3sC 25

s2 C 6sC 13

}

D L �1
{

3sC 25

�sC 3�2 C 22

}
D L �1

{
3�sC 3�C 16

�sC 3�2 C 22

}

D L �1
{

3�s C 3�

�sC 3�2 C 22

}
C L �1

{
8�2�

�sC 3�2 C 22

}

D 3e�3t cos 2tC 8e�3t sin 2t

from 14 and 13 of Table 45.1, page 917.

Hencey = e−3t .3 cos 2t Y 8 sin 2t/

Problem 24. A step voltage is applied to a seriesC–R circuit.
When the capacitor is fully charged the circuit is suddenly broken.
Deduce, using Laplace transforms, an expression for the capacitor
voltage during the transient period if the voltage when the supply
is cut isV volts.

From Figure 45.1, page 902,vR C vC D 0 when the supply is cut

i.e., iRC vc D 0

i.e.,
(
C

dvc

dt

)
RC vc D 0

i.e., CR
dvc

dt
C vc D 0

Using the procedure:

(i) L

{
CR

dvc

dt

}
C L fvcg D L f0g

i.e.,CR[sL fvcg � v0] C L fvcg D 0

(ii) v0 D V, henceCR[sL fvcg � V] C L fvcg D 0

(iii) Rearranging gives:CRsL fvcg �CRVC L fvcg D 0

i.e., �CRsC 1�L fvcg D CRV

hence L fvcg D CRV

�CRsC 1�
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(iv) Capacitor voltage,vc D L �1
{

CRV

CRsC 1

}

D CRVL �1




1

CR
(
sC 1

CR

)



D CRV

CR
L �1




1

sC 1

CR




i.e., vc = Ve.−t=CR/ as previously obtained in equation (45.8) on
page 905.

Problem 25. A seriesR–L circuit has a step inputV applied to it.
Use Laplace transforms to determine an expression for the current
i flowing in the circuit given that when timet D 0, i D 0.

From Figure 45.6 and equation (45.11) on page 906,

vR C vL D V becomesiR C L
di

dt
D V

Using the procedure:

(i) L fiRg C L

{
L

di

dt

}
D L fVg i.e., RL fig C L[sL fig � i�0�] D V

s

(ii) i�0� D 0, henceRL fig C LsL fig D V

s

(iii) Rearranging gives:�RC Ls�L fig D V

s
i.e., L fig D V

s�RC Ls�

(iv) i D L �1
{

V

s�R C Ls�

}

Let
V

s�R C Ls�
� A

s
C B

RC Ls
D A�R C Ls�C Bs

s�RC Ls�

HenceV D A�R C Ls�C Bs

Whens D 0, V D AR from which,A D V

R

Whens D �R

L
, V D B��R

L
� from which,B D �VL

R
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Hence L �1
{

V

s�RC Ls�

}
D L �1

{
V/R

s
C �VL/R
RC Ls

}

D L �1
{
V

Rs
� VL

R�R C Ls�

}

D L �1



V

R

(
1

s

)
� V

R


 1
R

L
C s







D V

R
L �1




1

s
� 1(

sC R

L

)



Hence current, i =
V
R

.1 − e−Rt=L/ as previously obtained in equa-

tion (45.13), page 907.

Problem 26. If after a period of time, the switch in theR–L circuit
of Problem 25 is opened, use Laplace transforms to determine an
expression to represent the current transient response. Assume that
at the instant of opening the switch, the steady-state current flowing
is I.

From Figure 45.6, page 906,vL C vR D 0 when the switch is opened,

i.e., L
di

dt
C iR D 0

Using the procedure:

(i) L

{
L
di

dt

}
C L fiRg D L f0g

i.e., L[sL fig � i0] C RL fig D 0

(ii) i0 D I, henceL[sL fig � I] C RL fig D 0

(iii) Rearranging gives:LsL fig � LIC RL fig D 0

i.e., �R C Ls�L fig D LI

and L fig D LI

RC Ls

(iv) Current, i D L �1
{

LI

RC Ls

}
D LIL �1




1

L
(
R

L
C s
)



D LI

L
L �1




1

sC R

L



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i.e., i = Ie.−Rt=L/ from 3 of Table 45.1

SinceI D V

R
theni =

V
R

e
−Rt

L as previously derived in equation (45.17),

page 909.

Further problems on inverse Laplace transforms and the solution of
differential equations may be found in Section 45.10, problems 20 to 39,
page 954.

45.7 Laplace transform
analysis directly from the

circuit diagram

Resistor

At any instant in timev D Ri
Sincev andi are both functions of time, a more correct equation would be
v�t� D Ri�t�

However, this is normally assumed. The Laplace transform of this equa-
tion is:

V�s� D RI�s�

Hence, in thes-domain R�s� D V�s�

I�s�
D R

(Note thatV�s� merely means that it is the Laplace transform ofv and
I�s� is the Laplace transform ofi. Whenever the Laplace transform of
functions is taken it is referred to as the ‘s-domain’ — as opposed to the
‘time domain’)

The resistor is shown in Figure 45.12 in both the time domain and the
s-domain.

R

v

iTime
domain

+ −

R

V(s)

I(s)

+ −
s-domain

Figure 45.12

Inductor

If an inductor has no initial current, i.e.,i D 0 at timet D 0, the normal
equation isv D L�di/dt� whereL is the inductance

The Laplace transform of the equation is:

V�s� D L[sI�s�� i�0�] from equation 45.33

and asi�0� D 0 thenV�s� D sLI�s�

Thus the impedance of the inductor in thes-domain is given by:

Z�s� D V�s�

I�s�
D sL

The inductor is shown in Figure 45.13 in both the time domain and the
s-domain.

i L

+ −

v

Time
domain

I(s) sL

+ −

V(s)

s-domain

Figure 45.13

Capacitor

If a capacitor has no initial voltage, i.e.,v D 0 at timet D 0, the normal
equation isi D C�dv/dt�
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The Laplace transform of the equation is:

I�s� D C[sV�s�� v�0�]

D sC V�s� sincev�0� D 0

Thus the impedance of the capacitor in thes-domain is given by:

Z�s� D V�s�

I�s�
D V�s�

sCV�s�
D 1

sC

The capacitor is shown in Figure 45.14 in both the time domain and the
s-domain.

Summarising, in thetime domain, the circuit elements areR, L and C
and in thes-domain, the circuit elements areR,sL and .1=sC/

Note that the impedance ofL is XL D jωL and the impedance ofC is
Xc D ��j/ωC� D �1/jωC�

Thus, just replacingjω with s gives thes-domain expressions forL
andC. (Because of this apparent association withj, s is sometimes called
the complex frequencyand thes-domain called thecomplex frequency
domain).

i C

v

Time
domain

I(s) sC

V(s)

s-domain

1

+ −

+ −

Figure 45.14

Problem 27. Determine the impedance of a 5µF capacitor in the
s-domain

In the s-domain the impedance of a capacitor is
1

sC
hence

Z�s� D 1
s.5 × 10−6/

Z or
1

5 × 10−6s
Z or

2 × 105

s
Z

Problem 28. Determine the impedance of a 200� resistor in
series with an 8 mH inductor in thes-domain

The impedance of the resistor in thes-domain is 200�

The impedance of the inductor in thes-domain issL D 8 ð 10�3s

Since the components are in series,Z�s� D .200Y 8 × 10−3s/Z

Problem 29. A circuit comprises a 50� resistor, a 5 mH inductor
and a 0.04µF capacitor. Determine, in thes-domain (a) the
impedance when the components are connected in series, and
(b) the admittance when the components are connected in parallel.

(a) R,L andC connected in series in thes-domain give an impedance,

Z�s� D RC sL C 1

sC
D
(

50Y 5 × 10−3sY
1

0.04× 10−6s

)
Z



932 Electrical Circuit Theory and Technology

(b) R, L andC connected in parallel gives:

admittanceY D Y1 C Y2 C Y3 D 1

Z1
C 1

Z2
C 1

Z3

In the s-domain, admittance,

Y�s� D 1

R
C 1

sL
C 1

1

sC

D 1

R
C 1

sL
C sC

i.e., Y .s/=
(

1
50
Y

1
5 × 10−3s

Y 0.04× 10−6s
)

S

or Y�s� D 1

s

(
s

50
C 1

5 ð 10�3
C 0.04ð 10�6s2

)
S

D 0.04ð 10�6

s

(
s

50�0.04ð 10�6�

C 1

�5 ð 10�3��0.04ð 10�6�
C s2

)
S

i.e., Y .s/ D 4 × 10−8

s
.s2 Y 5 × 105sY 5 × 109/S

Kirchhoff’s laws in the s-domain

Kirchhoff’s current and voltage laws may be applied to currents and volt-
ages in thes-domain just as they can with normal time domain currents
and voltages. To solve circuits in thes-domain using Kirchhoff’s laws the
procedure is:

(i) change the time domain circuit to ans-domain circuit,

(ii) apply Kirchhoff’s laws in terms ofs,

(iii) solve the equation to obtain the Laplace transform of the unknown
quantity, and

(iv) determine the inverse Laplace transform after rearranging into a
form that can be recognised in a table of standard transforms.

This procedure is demonstrated in the following problems.

Problem 30. Determine an expression for (a) the current i through,
and (b) the voltagevc across the capacitor for the circuit shown in
Figure 45.15, after the switch is closed with a supply step voltage
of V volts. Assume that the capacitor is initially uncharged.

R i

vCC
V

Figure 45.15
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R

vC (s)V

I(s)

sC
1s

Figure 45.16

(a) Using the above procedure:

(i) In the s-domain the circuit impedance,Z�s� D RC �1/sC� and
the step input voltage is�V/s� and the circuit is as shown in
Figure 45.16.

(ii) Applying Kirchhoff’s voltage law:

V

s
D RI�s�C vc�s� �45.35�

D RI�s�C
(

1

sC

)
I�s�

i.e.,
V

s
D I�s�

(
RC 1

sC

)

(iii) Rearranging gives:

I�s� D V/s(
RC 1

sC

) D V/s

R
(

1 C 1

RsC

)

D V

sR
(

1 C 1

RsC

) i.e., I�s� D V

R
(
s C 1

RC

) �45.36�

(iv) Hence current,i D L �1fI�s�g D L �1




V

R
(
sC 1

RC

)



D V

R
L �1

{ 1

sC 1

RC

}

sinceL �1
{

1

s� a

}
D eat thenL �1

{
1

sC a

}
D e�at from 3

of Table 45.1. Hence

current, i =
V
R

e−.1=RC/t =
V
R

e−t=RC

as previously obtained in equation (45.6), page 903.

(b) From equation (45.35),vc�s�D V

s
� RI�s� and from equation (45.36),

vc�s� D V

s
� R




V

R
(
sC 1

RC

)



D V

s
� V(

sC 1

RC

) D V

( 1

s
� 1

s C 1

RC

)
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Hencevc D L �1fvc�s�g D L �1



V


1

s
� 1

sC 1

RC







i.e., vc= V .1 − e−t=RC/ from 2 and 3 of Table 45.1,

as previously obtained in equation (45.4), page 903.

Alternatively, current,i D C
dvc
dt

, hence

vc D
∫ t

0

i

C
dt D

∫ t

0

V

R
e�t/RC

C
dt D V

RC


e

�t/RC

�1

RC



t

0

D �V[e�t/RC]t0 D �V[e�t/RC � e0] D �V[e�t/RC � 1]

i.e., Vc = V .1 − e−t=RC/

Problem 31. In theR–C series circuit shown in Figure 45.17, a
ramp voltageV is applied to the input. Determine expressions for
(a) current,i, and (b) capacitor voltage,vc

i R

V

V

C t C

vC

1

Figure 45.17

(a) Using the procedure:

(i) The time domain circuit of Figure 45.17 is changed to thes-
domain as shown in Figure 45.18, where the ramp function is
�V/s2� from 7 of Table 45.1.

(ii) Applying Kirchhoff’s voltage law gives:

V

s2
D RI�s�C

(
1

sC

)
I�s� D I�s�

(
RC 1

sC

)

(iii) Hence I�s� D V

s2
(
RC 1

sC

) D V

s2

sC
�RsCC 1�

D VC

s�1 C sRC�

I(s) R

V
S2 1

SC

vc(s)

Figure 45.18
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Using partial fractions:
VC

s�1 C sRC�
D A

s
C B

�1 C sRC�

D A�1 C sRC�C Bs

s�1 C sRC�

ThusVC D A�1 C sRC�C Bs

Whens D 0 VC D AC 0 i.e.,A D VC

Whens D �1

RC
VC D 0 C B

(�1

RC

)
i.e., B D �VC2R

Hence

I�s� D VC

s�1 C sRC�
D A

s
C B

�1 C sRC�
D VC

s
C �VC2R

�1 C sRC�

D VC

s
� VC2R

RC
(

1

RC
C s
) D VC

s
� VC(

sC 1

RC

)

�45.37�

(iv) Current, i D L �1



VC

s
� VC(

sC 1

RC

)



D VCL �1
{

1

s

}
� VCL �1

{ 1

sC 1

RC

}

D VC� VCe�t/RC from 2 and 3 of Table 45.1

i.e., current, i = VC.1 − e−t=RC/

(b) Capacitor voltage,vc�s� D I�s�
(

1

sC

)
D

VC

s
� VC

sC 1

RC
sC

from equation (45.37)

D V

s2
� V

s
(
sC 1

RC

)

Using partial fractions:
V

s
(
sC 1

RC

) D A

s
C B

sC 1

RC

D
A
(
sC 1

RC

)
C Bs

s
(
sC 1

RC

)
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henceV D A
(
sC 1

RC

)
C Bs

Whens D 0

V D A
(

1

RC

)
C 0 from which,A D VCR

Whens D � 1

RC

V D 0 C B
(

� 1

RC

)
from which,B D �VCR

Thus

vc�s� D V

s2
� V

s
(
sC 1

RC

)

D V

s2
�


VCR

s
� VCR(

sC 1

RC

)



D V

s2
� VCR

s
C VCR(

sC 1

RC

)

Thus, capacitor voltage,

vc D L �1



V

s2
� VCR

s
C VCR(

sC 1

RC

)



D Vt � VCRC VCR e�t/RC

from 7, 2 and 3 of Table 45.1

i.e., vc = Vt − VCR.1 − e−t=RC/

R vR

L

vL

i

V

0 t

Figure 45.19 Problem 32. Determine for theR–L series circuit shown in
Figure 45.19 expressions for currenti, inductor voltagevL and
resistor voltagevR when a step voltageV is applied to the input
terminals.

Using the procedure:

(i) The s-domain circuit is shown in Figure 45.20.

(ii) Using Kirchhoff’s voltage law:
V

s
D I�s��sL�C I�s�R

V R

vL(s)

SL

s

I(s)

vR(s)

Figure 45.20
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(iii) Current I(s)D V/s

�R C sL�
D V

s�R C sL�

D V

sL
(
s C R

L

) D V/L

s
(
sC R

L

)

Using partial fractions:

V/L

s
(
sC R

L

) D A

s
C B(

sC R

L

) D
A
(
sC R

L

)
C Bs

s
(
sC R

L

)

Hence
V

L
D A

(
sC R

L

)
C Bs

Whens D 0
V

L
D A

(
R

L

)
C 0 from which,A D V

R

Whens D �R

L

V

L
D 0 C B

(
�R

L

)
from which,B D �V

R

HenceI�s� D V/L

s
(
sC R

L

) D V/R

s
� V/R(

sC R

L

) �45.38�

(iv) Current i D L �1



V/R

s
� V/R(

sC R

L

)



D V

R
� V

R
e

�Rt
L

from 2 and 3 of Table 45.1

i.e., i =
V
R

.1 − e.−Rt=L//

as previously obtained in equation (45.13), page 907, and in
problem 25.

In the s-domain, inductor voltage

vL�s� D I�s��sL�

D �sL�


V/Rs � V/R(

sC R

L

)

 from equation (45.38)

D VL

R
� VL

R


 s(

sC R

L

)


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s(
sC R

L

) needs to be divided out:

1(
sC R

L

) )
s

s C R

L

� R

L

Thus
s(

sC R

L

) � 1 � R/L(
sC R

L

)

HencevL�s� D VL

R
� VL

R


1 � R/L(

sC R

L

)



D VL

R
� VL

R
C VL

R


 R/L(

sC R

L

)



D VL

R

R

L


 1(

sC R

L

)

 D V


 1(

sC R

L

)



Thus inductor currentvL D L �1



V


 1

sC R

L







D VL �1




1

sC R

L




i.e., vL= Ve−Rt=L

from 3 of Table 45.1, as previously obtained in equation (45.15),
page 907.

SinceV D vL C vR in Figure 45.19,

resistor voltage,vR D V� vL D V� Ve�Rt/L D V .1 − e−Rt=L/ as previ-
ously obtained in equation (45.14), page 907.

Problem 33. For the circuit of Figure 45.19 of Problem 32, a
ramp ofV volts/s is applied to the input terminals, instead of a
step voltage. Determine expressions for currenti, inductorvL and
resistor voltagevR

(i) The circuit for thes-domain is shown in Figure 45.21.

SL

vL(s)

R vR(s)V
s2

Figure 45.21
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(ii) From Kirchhoff’s voltage law:
V

s2
D I�s��R C sL�

(iii) Current I�s� D V

s2�R C sL�
D V

s2L
(
sC R

L

) D V/L

s2
(
sC R

L

)

Using partial fractions:

V/L

s2
(
sC R

L

) D A

s
C B

s2
C C

sC R

L

D
As
(
sC R

L

)
C B

(
sC R

L

)
CCs2

s2
(
sC R

L

)

from which,
V

L
D As

(
sC R

L

)
C B

(
sC R

L

)
CCs2

whens D 0,
V

L
D 0 C B

(
R

L

)
C 0 from which,B D V

R

whens D �R

L
,

V

L
D 0 C 0 C C

(
�R

L

)2

from which,

C D V

L

(
L2

R2

)
D VL

R2

Equatings2 coefficients: 0D AC C from which,A D �C D �VL

R2

Thus I�s� D V/L

s2
(
sC R

L

) D A

s
C B

s2
C C

sC R

L

D �VL/R2

s
C V/R

s2
C VL/R2(

sC R

L

) �45.39�

(iv) Current,i D L �1fI�s�g D �VL

R2
L �1

{
1

s

}
C V

R
L �1

{
1

s2

}

C VL

R2
L �1




1

sC R

L




D �VL

R2
�1�C V

R
�t�C VL

R2
�e��Rt/L��

from 2, 7 and 3 of Table 45.1
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i.e., i =
V
R

t − VL
R2

.1 − e.−Rt=L//

Inductor voltage,

vL�s� D I�s��sL� D sL


�VL/R2

s
C V/R

s2
C VL/R2

sC R

L




from equation (45.39) above

D �VL2

R2
C VL/R

s
C �VL2/R2�s

sC R

L

D �VL2

R2
C VL

sR
C �VL2

R2


 s

sC R

L




The division
s

sC R

L

was shown on page 938,

and is equivalent to 1� R/L

sC R

L

Hence vL�s� D �VL2

R2
C VL

sR
C VL2

R2


1 � R/L

sC R

L




D VL

sR
� VL2

R2

R

L


 1

sC R

L


 D VL

sR
� VL

R


 1

sC R

L




ThusvL D L �1fvL�s�g D VL

R
L �1

{
1

s

}
� VL

R
L �1




1

sC R

L




i.e., inductor voltage,vL D VL

R
� VL

R
e��Rt/L� D VL

R

(
1 − e.−Rt=L/

)

Resistor voltage,vR�s� D I�s�R D R


�VL/R2

s
C V/R

s2
C VL/R2(

sC R

L

)



from equation (45.39)
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D �VL

sR
C V

s2
C VL

R
(
sC R

L

)

hence vR D L �1




� VL

sR
C V

s2
C VL

R
(
sC R

L

)



D �VL

R
C Vt C VL

R
e��Rt/L�

from 2, 7 and 3 Table 45.1

i.e., vR D Vt − VL
R

.1 − e.−Rt=L//

Problem 34. At time t D 0, a sinusoidal voltage 10 sinωt is
applied to an L–R series circuit. Determine an expression for the
current flowing.

(i) The circuit is shown in Figure 45.22 and thes-domain circuit
is shown in Figure 45.23, the 10 sinωt input voltage becoming

10
(

ω

s2 C ω2

)
in the s-domain from 5 of Table 45.1

(ii) From Kirchhoff’s voltage law:
10ω

s2 C ω2
D I�s��sL�C I�s�R

0
−10

10
V

t

Li

R

Figure 45.22

(iii) Hence current,I�s� D 10ω

�s2 C ω2��R C sL�
D 10ω

�s2 C ω2�L
(
sC R

L

)

D 10ω/L

�s2 C ω2�
(
sC R

L

)

Using partial fractions:

10ω/L

�s2 C ω2�
(
sC R

L

) D AsC B

�s2 C ω2�
C C(

sC R

L

)

D
�AsC B�

(
sC R

L

)
CC

(
s2 C ω2

)
(
s2 C ω2

)(
sC R

L

)

10 w

s2 + w2

sLI(s)

R

Figure 45.23
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hence
10ω

L
D �AsC B�

(
sC R

L

)
CC�s2 C ω2�

Whens D �R

L

10ω

L
D 0 CC

[(
�R

L

)2

C ω2

]

from which,C D 10ω

L

(
R2

L2
C ω2

) D 10ω
L

L2
�R2 C L2ω�

D 10ωL

�R2 C ω2L2�

Equatings2 coefficients,

0 D ACC, from which,A D �C D � 10ωL

�R2 C ω2L2�

Equating constant terms,
10ω

L
D B

(
R

L

)
CCω2

10ω

L
�Cω2 D B

(
R

L

)

from which,B D L

R

(
10ω

L
� Cω2

)

D 10ω

R
� Lω2

R

(
10ωL

�R2 C ω2L2�

)

D 10ω�R2 C ω2L2�� Lω2�10ωL�

R�R2 C ω2L2�

D 10ωR2 C 10ω3L2 � 10ω3L2

R�R2 C ω2L2�

D 10ωR

�R2 C ω2L2�

Hence

I�s� D 10ω/L

�s2 C ω2�
(
sC R

L

) D AsC B

�s2 C ω2�
C C(

sC R

L

)

D

( �10ωL

R2 C ω2L2

)
sC
(

10ωR

R2 C ω2L2

)

�s2 C ω2�
C

(
10ωL

R2 C ω2L2

)
(
sC R

L

)
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D 10ω

R2 C ω2L2


 L(

sC R

L

) � sL

�s2 C ω2�
C R

�s2 C ω2�




(iv) Current,i D L �1fI�s�g

D 10!

R2 Y !2L2

{
Le.−Rt=L/ − L cos!t Y

R
!

sin t
}

from 3, 6 and 5 of table 45.1

Problem 35. In the series-parallel network shown in Figure 45.24,
a 5 V step voltage is applied at the input terminals. Determine an
expression to show how currenti varies with time.

In the s�domain, Z�s� D 15C 10�4 C 0.1s�

10C 4 C 0.1s
D 15C 40C s

14C 0.1s

D 15�14C 0.1s�C �40C s�

14C 0.1s

D 210C 1.5sC 40C s

14C 0.1s
D 250C 2.5s

14C 0.1s

i

5 V step

100 mH4 Ω

10 Ω

15 Ω

Figure 45.24

Since in thes-domain the input voltage is�V/s� then

I�s� D V�s�

Z�S�
D 5/s(

250C 2.5s

14C 0.1s

) D 5�14C 0.1s�

s�250C 2.5s�
D 70C 0.5s

s�250C 2.5s�

D 70

s�250C 2.5s�
C 0.5s

s�250C 2.5s�

D 70

2.5s�sC 100�
C 0.5

2.5�s C 100�

i.e., I�s� D 28

s�sC 100�
C 0.2

�s C 100�

Using partial fractions:
28

s�sC 100�
D A

s
C B

�sC 100�

D A�sC 100�C Bs

s�s C 100�

from which, 28D A�sC 100�C Bs
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Whens D 0 28D 100A andA D 0.28

Whens D �100 28D 0 � 100B andB D �0.28

HenceI�s� D 0.28

s
� 0.28

�sC 100�
C 0.2

�sC 100�
D 0.28

s
� 0.08

�s C 100�

and current , i D L �1fI�s�g D 0.28− 0.08e−100t from 2 and 3 of
Table 45.1

45.8 L –R–C series
circuit using Laplace

transforms

An L–R–C series circuit is shown in Figure 45.25 with a step input
voltageV. In the s-domain, the circuit components are as shown in
Figure 45.26 and if the step is applied at timet D 0, thes-domain supply
voltage is�V/s�.

Hence
V

s
D I�s�

(
RC sL C 1

sC

)

from which, current,

I�s� D V/s

RC sL C �1/sC�
D V/s

�1/s�
(
sRC s2L C �1/C�

)

D V

sRC s2L C �1/C�
D V

L
(
s2 C s�R/L�C �1/LC�

)

D V/L(
s2 C �R/L�s C �1/LC�

)

The denominator is made into a perfect square (as in Problem 18):

Hence I�s� D V/L{
s2 C R

L
sC
(
R

2L

)2
}

C
{

1

LC
�
(
R

2L

)2
}

i

L R C

V

Figure 45.25

sL R

V
s

I(s) 1
sC

Figure 45.26
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D V/L
(
sC R

2L

)2

C
√√√√
(

1

LC
�
(
R

2L

)2
)2

�45.40�

or I�s� D V/L√√√√
(

1

LC
�
(
R

2L

)2
)

√√√√
(

1

LC
�
(
R

2L

)2
)

(
sC R

2L

)2

C
√√√√
(

1

LC
�
(
R

2L

)2
)2

and current,i D L �1fI�s�g

From 13 of Table 45.1,L �1
{

ω

�s C a�2 C ω2

}
D e�at sinωt, hence

current, i =
V =L√√√√

(
1

LC
−
(

R
2L

)2
) e−.R=2L/ t sin

√√√√
(

1
LC

−
(

R
2L

)2
)

t

�45.41�

Problem 36. For the circuit shown in Figure 45.27 produce an
equation which shows how the current varies with time. Assume
zero initial conditions when the switch is closed.

5 Ω 0.1 H 20 µF

i

2 V

Figure 45.27

In the s-domain, applying Kirchhoff’s voltage law gives:

2

s
D I�s�

[
5 C 0.1sC 1

20ð 10�6s

]

and current I�s� D 2

s

(
5 C 0.1sC 5 ð 104

s

) D 2

5sC 0.1s2 C 5 ð 104



946 Electrical Circuit Theory and Technology

D 2

0.1

(
s2 C 5

0.1
s C 5 ð 104

0.1

) D 20

�s2 C 50sC 5 ð 105�

D 20{
s2 C 50sC �25�2

}C {5 ð 105 � �25�2
}

D 20

�sC 25�2 C
√
�499 375�2

D 20p
�499 375�

p
�499 375�

�s C 25�2 C
√
�499375�2

D 20

706.7

706.7

�s C 25�2 C �706.7�2

Hence current, i D L �1fI�s�g D 0.0283e�25t sin 706.7t,

from 13 of Table 45.1,

i.e., i D 28.3e−25t sin 706.7t mA

Damping

The expression for currentI�s� in equation (45.40) has four possible solu-
tions, each dependant on the values ofR, L andC.

Solution 1. When R D 0, the circuit is undamped and, from equa-
tion (45.40),

I�s� D V/L(
s2 C 1

LC

)

From Chapter 28, at resonance,ωr D 1

LC
hence

I�s� D V/L

�s2 C ω2
r �

D V

ωrL

ωr
�s2 C ω2

r �

Hencecurrent , i D L �1fI�s�g D V
!r L

sin!r t from 5 of Table 45.1

which is a sine wave of amplitude
V

ωrL
and angular velocityωr rad/s.

This is shown by curveA in Figure 45.28.
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i

+

0

−

A
B

C

D

t

Figure 45.28

Solution 2. When
(
R

2L

)2

<
1

LC
, the circuit isunderdamped and the

current i is as in equation (45.41). The current is oscillatory which is
decaying exponentially. This is shown by curveB in Figure 45.28.

Solution 3. When
(
R

2L

)2

D 1

LC
, the circuit iscritically damped and

from equation (45.40),

I�s� D V/L(
sC R

2L

)2 andcurrent , i D L �1




V/L(
sC R

2L

)2




D V
L

te−.Rt=2L/ �45.42�

from 12 of Table 45.1

The current is non-oscillatory and is as shown in curveC in Figure 45.28.

Solution 4. When
(
R

2L

)2

>
1

LC
, the circuit isoverdamped and from

equation (45.40),

I�s� D V/L
(
sC R

2L

)2

�
√√√√
[(

R

2L

)2

� 1

LC

]2
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D V/L√√√√
[(

R

2L

)2

� 1

LC

]

√√√√
[(

R

2L

)2

� 1

LC

]

(
sC R

2L

)2

�
√√√√
[(

R

2L

)2

� 1

LC

]2

andcurrent i D L −1fI .s/g

=
V

L

√√√√
[(

R
2L

)2

− 1
LC

]e−.Rt=2L/ sinh

√√√√
[(

R
2L

)2

− 1
LC

]
t

from 15 of Table 45.1

This curve is shown as curveD in Figure 45.28.

Problem 37. AnL–R–C series circuit contains a coil of induc-
tance 1 H and resistance 8� and a capacitor of capacitance 50µF.
Assuming currenti D 0 at time t D 0, determine (a) the state of
damping in the circuit, and (b) an expression for the current when
a step voltage of 10 V is applied to the circuit.

(a)
(
R

2L

)2

D
(

8

2�1�

)2

D 16 and
1

LC
D 1

�1��50ð 10�6�
D 20000

Since
(
R

2L

)2

<
1

LC
the circuit isunderdamped

(b) When
(
R

2L

)2

<
1

LC
, equation (45.41) applies,

i.e., i D V/L√
1

LC
�
(
R

2L

)2
e��Rt/2L� sin

√√√√
[

1

LC
�
(
R

2L

)2
]
t

D 10/1p
�20000� 16�

e�4t sin
p
�20000� 16�t

i.e., i D 0.0707e−4t sin 141.4t A

Problem 38. Values ofR, L andC in a seriesR–L–C circuit are
R D 100�, L D 423 mH andC D 169.2 µF. A step voltage of 2 V
is applied to the circuit. Assuming currenti D 0 at the instant of
applying the step, determine (a) the state of damping, and (b) an
expression for currenti.
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(a)
(
R

2L

)2

D
[

100

2�0.423�

]2

D 13972

and
1

LC
D 1

�0.423��169.2 ð 10�6�
D 13972

Since
(
R

2L

)2

D 1

LC
the circuit iscritically damped.

(b) From equation (45.42), current

i D V

L
te��Rt/2L� D 2

0.423
te��100/2�0.423��t

i.e., i D 4.73t e−118.2t A

45.9 Initial conditions In an L–R–C c

ircuit it is possible, at time

t D 0, for an inductor to carry
a current or a capacitor to possess a charge.

(a) For an inductor: vL D L
di

dt

The Laplace Transform of this equation is:vL�s� D L[sI�s�� i�0�]

If, say, i�0� D I, thenvL�s� D sLI�s�� LI0 �45.43�

The p.d. across the inductor in thes-domain is given by: (sL)I(s)
Equation (45.43) would appear to comprise two series elements,

i.e., vL�s� D (p.d. across L)C (voltage generator of� LI0�
An inductor can thus be considered as an impedance sL in series with

an independent voltage source of�LI0 as shown in Figure 45.29.

I(s) sL

LI0

+ −

Series equivalent circuit for
an inductor in the s-domain

Figure 45.29

Transposing equation (45.43) for I(s) gives:

I�s� D vL�s�C LI0

sL
D vL�s�

sL
C I0

s

Thus, alternatively, an inductor can be considered to be an impedancesL
in parallel with an independent current source�I0/s�

i.e., I�s� D �current throughL�C
(

current source
I0

s

)

sL

I(s)

+ −

I0
s

Parallel equivalent circuit for
an inductor in the s-domain

Figure 45.30

as shown in Figure 45.30.

Problem 39. AnL–R series circuit has a step voltageV applied
to its input terminals. If after a period of time the step voltage is
removed and replaced by a short-circuit, determine the expression
for the current transient.

The L–R circuit with a step voltage applied to the input is shown in
Figure 45.31.

A
L

V

B

R

i

Figure 45.31
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A
L

B

R

Figure 45.32

Using Kirchhoff’s voltage law:

V D iR C L
di

dt
�45.44�

If the step voltage is removed the circuit of Figure 45.32 results.
The s-domain circuit is shown in Figure 45.33 where the inductor is

considered as an impedancesL in series with a voltage sourceLI0 with
it’s direction as shown.

If V D 0 in equation (45.44) then 0D iRC L
di

dt

i.e., 0D I�s�RC L[sI�s�� I0]

D I�s�RC sLI�s�� LI0 which verifies Figure 45.33

In this caseI0 D �V/R�, the steady state current before the step voltage
was removed.

Hence 0D I�s�R C sLI�s�� L
V

R

i.e.,
LV

R
D I�s��R C sL�

and I�s� D VL/R

RC sL

D VL/R

L �sC �R/L��
D V/R

�sC �R/L��

sL

R

I(s)

LI0

Figure 45.33

Hencecurrent i D L �1
{

V/R

s C �R/L�

}
D V

R
e−.Rt=L/

(b) For a capacitor: i D C
dv

dt
The Laplace transform of this equation is:

I�s� D C[sV�s�� v�0�]

If, say, v�0� D V0 then I�s� D CsV�s��CV0 �45.45�

Rearranging gives: CsV�s� D I�s�CCV0

from which, V�s� D I�s�

Cs
C CV0

Cs
D
(

1

sC

)
I�s�C V0

s

i.e., V�s� D (p.d. across capacitor)C
(

voltage source
V0

s

)
(45.46)

as shown in Figure 45.34.

I(s)

+ −1
SC V0

s

Series equivalent circuit for
a capacitor in the s-domain

Figure 45.34
Thus the equivalent circuit in thes-domain for a capacitor with an

initial voltageV0 is a capacitor with impedance�1/sC� in series with an
impedance source�V0/s� Alternatively. From equation (45.45),
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+ −

CV0

1
sC

Parallel equivalant circuit for
a capacitor in the s-domain

I(s)

Figure 45.35

I�s� D sC V�s��CV0

D (current through C)C (a current source of� CV0�

as shown in Figure 45.35.

Problem 40. AC–R series circuit is shown in Figure 45.36. The
capacitorC is charged to a p.d. ofV0 when it is suddenly discharged
through the resistorR. Deduce how the currenti and the voltagev
vary with time.

The s-domain equivalent circuit, from equation (45.46), is shown in
Figure 45.37.

C

i

R v

Figure 45.36

Applying Kirchhoff’s voltage law:
V0

s
D I�s�

(
1

sC

)
C RI�s�

D I�s�
(
RC 1

sC

)

1
sC

V0
s

R V(s)

I(s)

Figure 45.37

from which,

I�s� D V0/s(
RC 1

sC

) D V0

s
(
RC 1

sC

) D V0

sRC 1

C

D V0

R
(
sC 1

RC

)

and current i D L �1fI�s�g D V0

R
L �1




1

sC 1

RC




D V0

R
e��t/CR�

i.e., i D V0

R
e.−t=CR/

Sincev D iR, thenv D
(
V0

R
e

�t
CR

)
R

i.e., v D V0e.−t=CR/
50 V

x y

i

1 kΩ

2 µF

Figure 45.38
Problem 41. Derive an equation for currenti flowing through the
1 k� resistor in Figure 45.38 when the switch is moved fromx to
y. Assume that the switch has been in positionx for some time.

The 2µF capacitor will have become fully charged to 50 V after a period
of time. When the switch is changed fromx to y the charged capacitor can
be considered to be a voltage generator of voltage�50/s�. The s-domain
circuit is shown in Figure 45.39.
Applying Kirchhoff’s voltage law in thes-domain gives:

50

s
D I�s�

(
103 C 1

2 ð 10�6s

)
50
s

1
2 × 10−6 s

I(s)

1 kΩ

Figure 45.39
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from which, I�s� D 50/s(
103 C 5 ð 105

s

) D 50

�103sC 5 ð 105�

D 50/103(
103s

103
C 5 ð 105

103

) D 0.05

�sC 500�
D 0.05

(
1

sC 500

)

Hencecurrent, i = 0.05e−500t A

Further problems on circuit analysis using Laplace transforms may be
found in Section 45.10 following, Problems 40 to 55, page 955.

45.10 Further problems
on transients and Laplace

transforms

Response ofR–C , R–L and L –R–C series circuits

1 A 5 µF capacitor is connected in series with a 20 k� resistor and the
circuit is connected to a 10 V d.c. supply. Determine (a) the initial
value of current flowing, (b) the value of the current 0.4s after connec-
tion, (c) the value of the capacitor voltage 30 ms after connection, and
(d) the time after connection when the resistor voltage is 4 V.

[(a) 0.5 mA (b) 9.16µA (c) 2.59 V (d) 91.63 ms]

2 A 100 V d.c. supply is connected across a 400 nF capacitor as shown
in Figure 45.40. When the switchS is opened the capacitor is left
isolated except for a parallel resistor of 50 M�. Determine the p.d.
across the capacitor 5s after opening the switch. [8.21 V]

100 V

S

5 MΩ
400 nF

Figure 45.40 3 A 40 V d.c. supply is connected across a coil of inductance 25 mH
and resistance 5�. Calculate (a) the final value of current, (b) the
value of current after 10 ms, (c) the resistor p.d. across the resistor
after 5 ms, (d) the value of the voltage across the inductance after
2 ms, and (e) the time when the current reaches 3 A.

[(a) 8 A (b)

6.92 A (c) 25.28 V (d) 26.81 V (e) 2.35 ms]

4 In the circuit shown in Figure 45.41 a current of 2 A flows from the
source. If the switchS is suddenly opened, calculate (a) the time for
the current in the 0.5 H inductor to fall to 0.8 A, and (b) the maximum
voltage across the resistor. [(a) 114.5 ms (b) 8 V]

2 AS

4 Ω

0.5 HE

Figure 45.41
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5 In a seriesL–R–C circuit the inductance,L D 5 mH and the resis-
tanceR D 5 k�. Determine whether the circuit is over, critical or
under damped when (a) capacitanceC D 500 pF, and (b)C D 10 µF.

[(a) underdamped (b) overdamped]

6 For the circuit in Problem 5 calculate the value of capacitance C for
critical damping. [800 pF]

7 A coil having an equivalent circuit of inductance 1 H in series with
resistance 50� is connected across a fully charged 0.4µF capacitor
at the instant when the capacitor voltage is 20 V. Determine the nature
of the response and obtain an expression for the current in the coil.

[underdamped;i D �0.0127e�25t sin 1580.9 t A]

8 If the coil in Problem 7 had a resistance of 500� and the capaci-
tance was 16µF, determine the nature of the response and obtain an
expression for the current in the coil.

[critically damped;i D �5000t C 20�e�250t A]

Laplace transforms

Determine the Laplace transforms in Problems 9 to 15.

9 (a) 2t � 3 (b) 5t2 C 4t � 3
[
(a)

2

s2
� 3

s
(b)

10

s3
C 4

s2
� 3

s

]

10 (a)
t3

24
� 3t C 2 (b)

t5

15
� 2t4 C t2

2[
(a)

1

4s4
� 3

s2
C 2

s
(b)

8

s6
� 48

s5
C 1

s3

]

11 (a) 5e3t (b) 2e�2t
[
(a)

5

s� 3
(b)

2

sC 2

]

12 (a) 4 sin 3t (b) 3 cos 2t
[
(a)

12

s2 C 9
(b)

3s

s2 C 4

]

13 (a) 2te2t (b) t2et
[
(a)

2

�s � 2�2
(b)

2

�s� 1�3

]

14 (a) 4t3e�2t (b)
1

2
t4e�3t

[
(a)

24

�s C 2�4
(b)

12

�sC 3�5

]

15 (a) 5e�2t cos 3t (b) 4e�5t sint
[
(a)

5�s C 2�

s2 C 4sC 13
(b)

4

s2 C 10sC 26

]

16 Determine the Laplace transforms of the following waveforms:

(a) a step voltage of 4 V which starts at timet D 0

(b) a step voltage of 5 V which starts at timet D 2s

(c) a ramp voltage which starts at zero and increases at 7 V/s
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(d) a ramp voltage which starts at timet D 2 s and increases at
3 V/s. [

(a)
4

s
(b)

5

s
e�2s (c)

7

s2
(d)

3

s2
e�2s

]

17 Determine the Laplace transforms of the following waveforms:

(a) an impulse voltage of 15 V which starts at timet D 0

(b) an impulse voltage o

f 6 V which starts at time

t D 5

(c) a sinusoidal current of 10 A and angular frequency 8 rad/s.[
(a) 15 (b) 6e�5s (c)

80

s2 C 64

]

18 State the initial value theorem. Verify the theorem for the functions:

(a) 3� 4 sint

(b) �t � 4�2 and state their initial values. [(a) 3 (b) 16]

19 State the final value theorem and state a practical application where
it is of use. Verify the theorem for the function 4C e�2t�sint C cost�
representing a displacement and state it’s final value. [4]

Inverse Laplace transforms and the solution of differential equations

Determine the inverse Laplace transforms in Problems 20 to 27

20 (a)
7

s
(b)

2

s� 5
[(a) 7 (b) 2e5t]

21 (a)
3

2sC 1
(b)

2s

s2 C 4

[
(a)

3

2
e��1/2�t (b) 2 cos 2t

]

22 (a)
1

s2 C 25
(b)

4

s2 C 9

[
(a)

1

5
sin 5t (b)

4

3
sin 3t

]

23 (a)
5s

2s2 C 18
(b)

6

s2

[
(a)

5

2
cos 3t (b) 6t

]

24 (a)
5

s3
(b)

8

s4

[
(a)

5

2
t2 (b)

4

3
t3
]

25 (a)
15

3s2 � 27
(b)

4

�s � 1�3

[
(a)

5

3
sinh 3t (b) 2ett2

]

26 (a)
3

s2 � 4sC 13
(b)

4

2s2 � 8sC 10
[(a) e2t sin 3t (b) 2e2t sint]

27 (a)
sC 1

s2 C 2sC 10
(b)

3

s2 C 6s C 13

[
(a) e�t cos 3t (b)

3

2
e�3t sin 2t

]

Use partial fractions to find the inverse Laplace transforms of the functions
in Problems 28 to 33.
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28
11� 3s

s2 C 2s� 3
[2et � 5e�3t]

29
2s2 � 9s� 35

�sC 1��s � 2��s C 3�
[4e�t � 3e2t C e�3t]

30
2sC 3

�s� 2�2
[2e2t C 7te2t]

31
5s2 � 2s� 19

�sC 3��s � 1�2
[2e�3t C 3et � 4tet]

32
3s2 C 16sC 15

�s C 3�3
[e�3t�3 � 2t� 3t2�]

33
26� s2

s�s2 C 4sC 13�

[
2 � 3e�2t cos 3t � 2

3
e�2t sin 3t

]

In Problems 34 to 39, use Laplace transforms to solve the given differ-
ential equations.

34 9
d2y

dt2
� 24

dy

dt
C 16y D 0, giveny�0� D 3 andy0�0� D 3

[y D �3 � t�e�4/3�t]

35
d2x

dt2
C 100x D 0, givenx�0� D 2 andx0�0� D 0 [x D 2 cos 10t]

36
d2i

dt2
C 1000

di

dt
C 250000i D 0, giveni�0� D 0 andi0�0� D 100

[i D 100te�500t]

37
d2x

dt2
C 6

dx

dt
C 8x D 0, givenx�0� D 4 andx0�0� D 8

[x D 4�3e�2t � 2e�4t]

38
d2y

dt2
� 2

dy

dt
C y D 3e4t, giveny�0� D �2

3
andy0�0� D 4

1

3
[y D �4t � 1�et C 1

3e
4t]

39
d2y

dt2
C 16y D 10 cos 4t, giveny�0� D 3 andy0�0� D 4

[y D 3 cos 4t C sin 4tC 5
4t sin 4t]

Laplace transform analysis of circuit diagrams

40 Determine the impedance of a 2000 pF capacitor in thes-domain.[
1

2 ð 10�9s
� or

5 ð 108

s
�

]

41 Determine the impedance of a 0.4 H inductor in series with a 50�
resistor in thes-domain. [�50C 0.4s� �]
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42 Determine the circuit impedance in thes-domain for the following:

(a) a resistor of 100� in series with a 1µF capacitor

(b) an inductance of 10 mH, a resistance of 500� and a capaci-
tance of 400 nF in series

(c) a 10� resistance in parallel with a 10 mH inductor

(d) a 10 mH inductor in parallel with a 1µF capacitor[
(a)

(
100C 106

s

)
� (b)

(
500C 0.01sC 107

4s

)
�

(c)
0.1s

10C 0.01s
� or

10s

sC 1000
�

(d)
104s

0.01s2 C 106
� or

10�2s

1 C 10�8s2
�

]

43 An L–R–C network comprises a 20� resistor, a 20 mH inductor
and a 20µF capacitor. Determine in thes-domain (a) the impedance
when the components are connected in series, and (b) the admittance
when the components are connected in parallel.[

(a)
(

20C 0.02sC 1

2 ð 10�5s

)
�

(b) �0.05C 50

s
C 2 ð 10�5s�S

]

44 A circuit consists of a 0.5 M� resistor in series with a 0.5µF capac-
itor. Determine how the voltage across the capacitor varies with time
when there is a step voltage input of 5 V. Assume the initial condi-
tions are zero. [vC D 5�1 � e�4t� volts]

45 An exponential voltage,V D 20e�50t volts is applied to a seriesR–L
circuit, whereR D 10� andL D 0.1 H. If the initial conditions are
zero, find the resulting current. [i D 4e�50t � 4e�100t A]

46 If in Problem 45 a supply of 20.2 sin�10t C ,� volts is applied to the
circuit find the resulting current. Assume the circuit is switched on
when, D 0. [i D 2 sin 10t � 0.2 cos 10t C 0.2e�100t]

47 AnR–C series network has (a) a step input voltageE volts, and (b) a
ramp voltageE volts/s, applied to the input. Use Laplace transforms
to determine expressions for the current flowing in each case. Assume
the capacitor is initially uncharged.[

(a)
E

R
e�t/CR (b) EC�1 � e�t/CR�

]

48 An R–L series network has (a) a step input ofE volts, (b) a ramp
input of 1 V/s, applied across it. Use Laplace transforms to develop
expressions for the voltage across the inductanceL in each case.
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Assume that at timet D 0, currenti D 0.[
(a) Ee�Rt/L (b)

L

R
�1 � e�Rt/L�

]

49 A sinusoidal voltage 5 sint volts is applied to a seriesR–L circuit.
Assuming that at timet D 0, currenti D 0 derive an expression for
the current flowing. [

i D 5

R2 C L2

{
Le��Rt/L� � L cost C R sint

}]

50 Derive an expression for the growth of current through an inductive
coil of resistance 20� and inductance 2 H using Laplace transforms
when a d.c. voltage of 30 V is suddenly applied to the coil.

[i D 1.5 � 1.5e�10t]

51 For the circuit shown in Figure 45.42, derive an equation to represent
the currenti flowing. Assume zero conditions when the switch is
closed. Is the circuit over, critical or under damped?

[i D 4.47e�10t sin 447t mA; underdamped]

10 Ω 0.5 H 10 µF

i

1 V

Figure 45.42

52 If for the circuit of Problem 51,R D 100�, L D 0.5 H andC D
200 µF, derive an equation to represent current.

[i D 2te�100t A]

53 If for the circuit of Problem 51,R D 1k �, L D 0.5 H and C D
200 µF derive an equation to represent current.

[2.01e�1000t sinh 995t A]

54 In aC–R series circuit the 5µF capacitor is charged to a p.d. of
100 V. It is then suddenly discharged through a 1 k� resistor. Deter-
mine, after 10 ms (a) the value of the current, and (b) the voltage
across the resistor.

[(a) 13.53 mA (b) 13.53 V]

55 In the circuit shown in Figure 45.43 the switch has been connected
to point a for some time. It is then suddenly switched to point b.
Derive an expression for current i flowing through the 20� resistor.

[i D 5e�106t A]

100 V

a b

50 nF

20 Ω

Figure 45.43



Assignment 14

This assignment covers the material contained in chapters 42
to 45.

The marks for each question are shown in brackets at the end of
each question.

1 A filter section is to have a characteristic impedance at zero freque-
ncy of 720� and a cut-off frequency of 2 MHz. To meet these
requirements, design (a) a low-pass T section filter, and (b) a low-
pass � section filter. (8)

2 A filter is required to pass all frequencies above 50 kHz and to have a
nominal impedance of 620�. Design (a) a high-pass T section filter,
and (b) a high-pass � section filter to meet these requirements.

(8)

3 Design (a) a suitable ‘m-derived’ T section, and (b) a suitable ‘m-
derived’ � section having a cut-off frequency of 50 kHz, a nominal
impedance of 600� and a frequency of infinite attenuation 30 kHz.

(14)

4 Two coils, A and B, are magnetically coupled; coil A has 400 turns
and a self inductance of 20 mH and coil B has 250 turns and a self
inductance of 50 mH. When a current of 10 A is reversed in coil A,
the change of flux in coil B is 2 mWb. Determine (a) the mutual
inductance between the coils, and (b) the coefficient of coupling.

(4)

5 Two mutually coupled coils P and Q are connected in series to a
200 V d.c. supply. Coil P has an inductance of 0.8 H and resistance
2�; coil Q has an inductance of 1.2 H and a resistance of 5�.
Determine the mutual inductance between the coils if, at a certain
instant after the circuit is connected, the current is 5 A and increasing
at a rate of 7.5 A/s. (5)

6 For the coupled circuit shown in Figure A14.1, calculate the values
of currents IP and IS. (9)Figure A14.1

7 A 4 km transmission line has a characteristic impedance of
600 6 � 30°�. At a particular frequency, the attenuation coefficient
of the line is 0.4 Np/km and the phase-shift coefficient is 0.20 rad/km.
Calculate (a) the magnitude and phase of the voltage at the receiving
end if the sending end voltage is 5.06 0° V, and (b) the magnitude
and phase of the receiving end current. (5)

8 The primary constants of a transmission line at a frequency of 5 kHz
are: resistance, R D 20�/loop km, inductance, L D 3 mH/loop km,



Assignment 14959

capacitance, C D 50 nF/km, and conductance, G D 0.4 mS/km. De-
termine for the line (a) the characteristic impedance, (b) the propa-
gation coefficient, (c) the attenuation coefficient, (d) the phase-shift
coefficient, (e) the wavelength on the line, and (f) the speed of trans-
mission of signal. (13)

9 A loss-free transmission line has a characteristic impedance of
600 6 0°� and is connected to an aerial of impedance �250 C
j200��. Determine (a) the magnitude of the ratio of the reflected to
the incident voltage wave, and (b) the incident voltage if the reflected
voltage is 10 6 60°�. (5)

10 A low loss transmission line has a mismatched load such that the
reflection coefficient at the termination is 0.56 � 150°. The character-
istic impedance of the line is 200�. Determine (a) the standing wave
ratio, (b) the load impedance, and (c) the incident current flowing if
the reflected current is 15 mA. (11)

11 Determine, in the s-domain, the impedance of (a) an inductance of
1 mH, a resistance of 100� and a capacitance of 2 µF connected
in series, and (b) a 50� resistance in parallel with an inductance
of 5 mH. (6)

12 A sinusoidal voltage 9 sin 2t volts is applied to a series R–L circuit.
Assuming that at time t D 0, current i D 0 and that resistance, R D
6� and inductance, L D 1.5 H, determine using Laplace transforms
an expression for the current flowing in the circuit. (12)



Main formulae for part 3
advanced circuit theory and
technology

Complex numbers: z D a C jb D r�cos� C j sin�� D r 6 �,

wherej2 D �1 Modulus,r D jzj D
√

�a2 C b2�

Argument,� D argz D arctan
b

a
Addition: �a C jb� C �c C jb� D �a C c� C j�b C d�

Subtraction:�a C jb� � �c C jd� D �a � c� C j�b � d�

Complex equations: Ifa C jb D c C jd, thena D c andb D d

If z1 D r1 6 �1 andz2 D r2 6 �2 then

Multiplication: z1z2 D r1r2 6 ��1 C �2� and Division:
z1

z2
D r1

r2

6 ��1 � �2�

De Moivre’s theorem: [r 6 �]n D rn 6 n� D rn�cosn� C j sinn��

General: Z D V

I
D R C j�XL � XC� D jZj6 �,

wherejZj D
√

[R2 C �XL � XC�2] and� D arctan
XL � XC

R

XL D 2�fL XC D 1

2�fC
Y D I

V
D 1

Z
D G C jB

Series:ZT D Z1 C Z2 C Z3 Ð Ð Ð
Parallel:

1

ZT
D 1

Z1
C 1

Z2
C 1

Z3
C Ð Ð Ð

P D VI cos� or P D I2
RR S D VI Q D VI sin�

Power factorD cos� D R

Z
If V D a C jb andI D c C jd thenP D ac C bd

Q D bc � ad S D VIŁ D P C jQ

R–L –C series circuit: fr D 1

2�
p
�LC�

Q D ωrL

R
D 1

ωrCR
D 1

R

√
L

C

D VL

V
D VC

V
D fr

f2 � f1

fr D p
�f1f2�
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LR –C network:
fr D 1

2�

√(
1

LC
� R2

L2

)
RD D L

CR
Q D IC

Ir
D ωrL

R

LR –CR network:
fr D 1

2�
p
�LC�

√(
R2
L � L/C

R2
C � L/C

)

Determinants: ∣∣∣∣ a b
c d

∣∣∣∣ D ad � bc

∣∣∣∣∣∣
a b c
d e f
g h j

∣∣∣∣∣∣ D a
∣∣∣∣ e f
h j

∣∣∣∣� b
∣∣∣∣d f
g j

∣∣∣∣C c
∣∣∣∣d e
g h

∣∣∣∣

Delta-star: Z1 D ZAZB

ZA C ZB C ZC
etc

Star-delta: ZA D Z1Z2 C Z2Z3 C Z3Z1

Z2
etc

Impedance matching: jzj D
(
N1

N2

)2

jZLj

Complex waveforms:
I D

√(
I2

0 C I2
1m C I2

2m C . . .

2

)

iAV D 1

�

∫ �
0 id�ωt� form factorD r.m.s

mean
P D V0I0 C V1I1 cos�1 C V2I2 cos�2 C . . . or P D I2R

power factor D P

VI

Harmonic resonance:nωL D 1

nωC

Harmonic analysis: a0 ³ 1

p

p∑
kD1

yk an ³ 2

p

p∑
kD1

yk cosnxk

bn ³ 2

p

p∑
kD1

yk sinnxk

Hysteresis and Eddy
current:

Hysteresis loss/cycleD A˛ˇ J/m3 or hysteresis lossD khvf�Bm�n W

Eddy current loss/cycleD ke�Bm�2f2t3 W
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Dielectric loss: Series representation: tanυ D RSωCS D 1/Q

Parallel representation: tanυ D 1

RpωCp

Loss angleυ D �90° � ��

Power factorD cos� ³ tanυ

Dielectric power lossD V2ωC tanυ

Field theory: Coaxial cable:C D 2�ε0εr

ln
b

a

F/m E D V

r ln
b

a

V/m

L D µ0µr

2�

(
1

4
C ln

b

a

)
H/m

Twin line: C D �ε0εr

ln
D

a

F/m L D µ0µr

�

(
1

4
C ln

D

a

)
H/m

Energy stored: in a capacitor,W D 1
2CV2 J; in an inductorW D 1

2LI
2 J

in electric field per unit volume,ωf D 1
2DE D 1

2ε0εrE
2 D D2

2ε0εr
J/m3

in a non-magnetic medium,ωf D 1
2BH D 1

2µ0H2 D B2

2µ0
J/m3

Attenuators: Logarithmic ratios: in decibelsD 10 lg
P2

P1
D 20 lg

V2

V1
D 20 lg

I2

I1

in nepersD 1
2 ln

P2

P1
D ln

V2

V1
D ln

I2

I1

SymmetricalT-attenuator:R0 D
√

�R2
1 C 2R1R2� D p

�ROCRSC�

R1 D R0

(
N � 1

N C 1

)
R2 D R0

(
2N

N2 � 1

)

Symmetrical�-attenuator:R0 D
√(

R1R2
2

R1 C 2R2

)
D p

�ROCRSC�

R1 D R0

(
N2 � 1

2N

)
R2 D R0

(
N C 1

N � 1

)

L-section attenuator: R1 D p
[ROA�ROA � ROB�]

R2 D
√(

ROAR2
OB

ROA � ROB

)
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Filter networks Low-passT or �: fC D 1

�
p
�LC�

R0 D
√

L

C

C D 1

�R0fC
L D R0

�fC

Z0T D R0

√√√√
[
1 �

(
ω

ωC

)2
]

Z0� D R0√√√√
[
1 �

(
ω

ωC

)2
]

High-passT or �: fC D 1

4�
p
�LC�

R0 D
√

L

C

C D 1

4�R0fC
L D R0

4�fC

Z0T D R0

√[
1 �

(
ωC

ω

)2
]

Z0� D R0√[
1 �

(
ωC

ω

)2
]

Low and high-pass:

Z0TZ0� D Z1Z2 D R2
0

I1

I2
D I2

I3
D I3

I4
D e5 D e˛Cjˇ D e˛ 6 ˇ

Phase anglě D ω
p
�LC�

time delayD p
�LC�

‘m-derived filter sections:

Low-pass m D
√√√√
[
1 �

(
fC

f1

)2
]

High pass m D
√√√√
[
1 �

(
f1
fC

)2
]

Magnetically coupled
circuits

E2 D �M
dI1

dt
D šjωMI1

M D N2
d�2

dI1
D N1

d�1

dI2
D k

p
�L1L2� D LA � LB

4
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Transmission lines: Phase delay̌ D ω
p
�LC� wavelength7 D 2�

ˇ

velocity of propagationu D f7 D ω

ˇ

IR D ISe
�n5 D ISe

�n˛ 6 �nˇ

VR D VSe
�n5 D VSe

�n˛ 6 �nˇ

Z0 D p
�ZOCZSC� D

√
R C jωL

G C jωC

5 D p
[�R C jωL��G C jωC�]

Reflection coefficient, 9 D Ir
Ii

D ZO � ZR

ZO C ZR
D �Vr

Vi

Standing-wave ratio, s D Imax

Imin
D Ii C Ir

Ii � Ir
D 1 C j9j

1 � j9j
Pr

Pt
D
(
s � 1

s C 1

)2

Transients: C � R circuit t D CR

Charging: vC D V�1 � e��t/CR�� vr D Ve��t/CR� i D Ie��t/CR�

Dischargin: vc D vR D Ve��t/CR� i D Ie��t/CR�

L � R circuit t D L

R
Current growth:vL D Ve��Rt/L�

vR D V�1 � e��Rt/L��

i D I�1 � e��Rt/L��

Current decay: vL D vR D Ve��Rt/L� i D Ie��Rt/L�
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Standard electrical
quantities — their symbols
and units

QUANTITY UNIT
QUANTITY SYMBOL UNIT SYMBOL

Admittance Y siemen S
Angular frequency ω radians per second rad/s
Area A square metres m2

Attenuation coefficient
(or constant)

˛ neper per metre Np/m

Capacitance C farad F
Charge Q coulomb C
Charge density � coulomb per square

metre
C/m2

Conductance G siemen S
Current I ampere A
Current density J ampere per square

metre
A/m2

Efficiency � per-unit or per cent p.u. or %
Electric field strength E volt per metre V/m
Electric flux  coulomb C
Electric flux density D coulomb per square

metre
C/m2

Electromotive force E volt V
Energy W joule J
Field strength, electric E volt per metre V/m
Field strength, magnetic H ampere per metre A/m
Flux, electric  coulomb C
Flux, magnetic  weber Wb
Flux density, electric D coulomb per square

metre
C/m2

Flux density, magnetic B tesla T
Force F newton N
Frequency f hertz Hz
Frequency, angular ω radians per second rad/s
Frequency, rotational n revolutions per

second
rev/s

Impedance Z ohm �
Inductance, self L henry H
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QUANTITY UNIT
QUANTITY SYMBOL UNIT SYMBOL

Inductance, mutual M henry H
length l metre m
Loss angle υ radian or degrees rad or °

Magnetic field strength H ampere per metre A/m
Magnetic flux  weber Wb
Magnetic flux density B tesla T
Magnetic flux linkage  weber Wb
Magnetising force H ampere per metre A/m
Magnetomotive force Fm ampere A
Mutual inductance M henry H
Number of phases m – –

Number of pole-pairs p – –

Number of turns (of a
winding)

N – –

Period, Periodic time T second s
Permeability, absolute  henry per metre H/m
Permeability of free

space
 0 henry per metre H/m

Permeability, relative  r – –

Permeance  weber per ampere Wb/A or
or per henry /H

Permittivity, absolute ε farad per metre F/m
Permittivity of free

space
ε0 farad per metre F/m

Permittivity, relative εr – –

Phase-change
coefficient

ˇ radian per metre rad/m

Potential, Potential
difference

V volt V

Power, active P watt W
Power, apparent S volt ampere VA
Power, reactive Q volt ampere reactive var
Propagation coefficient

(or constant)
( – –

Quality factor,
magnification

Q – –

Quantity of electricity Q coulomb C
Reactance X ohm �
Reflection coefficient * – –

Relative permeability  r – –

Relative permittivity εr – –

Reluctance Rm ampere per weber or A/Wb or
per henry /H

Resistance R ohm �



Standard electrical quantities — their symbols and units969

Resistance, temperature
coefficient of

˛ per degree Celsius
or per kelvin

/°C or/K

Resistivity * ohm metre �m
Slip s per unit or per cent p.u. or %
Standing wave ratio s – –

Susceptance B siemen S
Temperature coefficient

of resistance
˛ per degree Celsius

or per kelvin
/°C or/K

Temperature,
thermodynamic

T kelvin K

Time t second s
Torque T newton metre Nm
Velocity v metre per second m/s
Velocity, angular ω radian per second rad/s
Volume V cubic metres m3

Wavelength . metre m

(Note that m/s may also be written as ms�1, C/m2 as Cm�2, /K as K�1, and so on.)



Greek alphabet

LETTER UPPER CASE LOWER CASE

Alpha A ˛
Beta B ˇ
Gamma  �
Delta  υ
Epsilon E ε
Zeta Z �
Eta H 	
Theta  �
Iota I �
Kappa K 

Lambda  �
Mu M �
Nu N �
Xi  �
Omicron O o
Pi  �
Rho P �
Sigma  �
Tau T �
Upsilon  �
Phi  �
Chi X �
Psi   
Omega ! ω



Common prefixes

PREFIX NAME MEANING:
multiply by

E exa 1018

P peta 1015

T tera 1012

G giga 109

M mega 106

k kilo 103

h hecto 102

da deca 101

d deci 10�1

c centi 10�2

m milli 10�3

� micro 10�6

n nano 10�9

p pico 10�12

f femto 10�15

a atto 10�18



Resistor colour coding
and ohmic values

Colour code for fixed
resistors COLOUR SIGNIFICANT MULTIPLIER TOLERANCE

FIGURES

Silver – 10�2 š 10%
Gold – 10�1 š 5%
Black 0 1 –
Brown 1 10 š 1%
Red 2 102 š 2%
Orange 3 103 –
Yellow 4 104 –
Green 5 105 š 0.5%
Blue 6 106 š 0.25%
Violet 7 107 š 0.1%
Grey 8 108 –
White 9 109 –
None – – š 20%

Thus, for a four-band fixed resistor (i.e. resistance values with two
significant figures):

yellow-violet-orange-red indicates 47 k� with a tolerance ofš 2%

orange-orange-silver-brown indicates 0.33� with a tolerance ofš 1%

and brown-black-brown indicates 100� with a tolerance ofš 20%

(Note that the first band is the one nearest the end of the resistor).

For a five-band fixed resistor (i.e. resistance values with three significant
figures):

red-yellow-white-orange-brown indicates 249 k� with a tolerance of
š 1%

(Note that the fifth band is 1.5 to 2 times wider than the other bands).
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Letter and digit code
for resistors

RESISTANCE MARKED AS:
VALUE

0.47 � R47
1 � 1R0
4.7 � 4R7
47 � 47R
100 � 100R
1 k� 1K0
10 k� 10K
10 M� 10M

Tolerance is indicated as follows:

F D š1%, G D š2%, J D š5%, K D š10% andM D š20%

Thus, for example, R33MD 0.33�š 20%

4R7K D 4.7 �š 10%

390RJD 390�š 5%

6K8F D 6.8 k�š 1%

68KK D 68 k�š 10%

4M7M D 4.7 M�š 20%



Index

Absolute permeability, 77, 689
permittivity, 59

A.c. bridges, 130, 476, 585
generator, 193, 666
values, 195

Acceptor circuit, 226
Active power, 232, 238, 464
Admittance, 444
Alkaline cell, 38
Alternating current, 193

waveforms, 194
Ammeter, 13, 115
Ampere, 3, 4
Amplifier gain, 285
Amplitude, 121, 195
Analogue instrument, 113

-to-digital conversion, 293
Anderson bridge, 608
Anode, 32
Antinode, 892
Apparent power, 232, 238,

464, 466
Argand diagram, 415
Argument, 421
Armature, 352

reaction, 353
Assymetrical �-section, 875

T-section, 875
Atom, 11, 690
Attenuation, 128, 758, 763

bands, 790
coefficient, 816, 883
constant, 874

Attenuators, 758
assymetrical �, 775
assymetrical T, 775
cascade, 782
L-section, 779
symmetrical �, 760, 767
symmetrical T, 759, 764

Attraction type of m.i. instrument,
113

Auto transformers, 337

Auxiliary equation, 911, 912
Avalanche effect, 143
Average value, 196
Avometer, 118

Back e.m.f., 364
Band-pass filter, 792

-stop filter, 792
Bandwidth, 229, 280, 504
Base, 145
Battery, 35
Bell, electric, 20, 91
B-H curves, 77, 78
Bipolar junction transistor, 145
Bridge, a.c., 130, 476

rectifier, 208
Brush contact loss, 363
Brushes, 351
Buffer amplifier, 286

Calibration accuracy, 131
Candela, 3
Capacitance, 57, 61, 711, 722

between concentric cylinders,
725

of isolated twin line, 773, 870
Capacitive reactance, 214, 430
Capacitors, 55, 57

discharging, 70, 266
in parallel 63
in series 64
parallel plate 61, 711
practical types 69, 715

Car ignition, 20
Cartesian complex numbers, 415
Cathode, 32

ray oscilloscope, 13, 121
double beam, 122

Cell, 32, 36
capacity, 39

Ceramic capacitor, 69
Characteristic impedance, 759, 875

of filters, 792
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Characteristics, d.c. generator, 358
d.c. machines, 369
transistor, 150

Charge, 4, 12, 58
density, 59

Charged particles, 31
Charging of cell, 34, 38

capacitor, 260, 901
Chemical effect of electric

current, 20, 31
Choke, 106
Circuit magnification factor, 497
Closed-loop gain, 283
Coaxial cable, 721
Coefficient of coupling, 843
Coercive force, 84, 692
Cofactor, 534
Coils in series, cumulatively

coupled, 845
differentially coupled, 846

Collector, 145
Combination of waveforms, 204
Commercial bridge, 131
Common-mode rejection ratio,

281
Commutation, 351
Commutator, 351, 352
Complex conjugate, 417

equations, 419
Complex frequency, 931
Complex numbers, 415

applications to parallel
networks, 444, 448

applications to series circuits,
429

Cartesian form, 415
De Moivres theorem, 423
determination of power, 465
equations, 419
operations involving, 417
polar form, 421

Complex wave, 124, 631
form factor, 648
general equation, 632
harmonics in single-phase

circuits, 653
mean value, 648
power associated with, 650

resonance due to harmonics,
664

r.m.s. value, 645
sources of harmonics, 666
waveform considerations, 683

Composite filters, 833
Compound winding, 353

wound generator, 360
motor, 372

Concentric cable, 725
field plotting, 731

Conductance, 6, 444, 870
Conductor, 12, 16, 137
Constant-current source, 181
Constant-k high-pass filter, 811

low-pass filter, 801
Contact potential, 140, 141
Continuity tester, 118
Continuous loading, 884
Cooker, 20
Copper loss, 330, 362
Core loss, 362

component, 319
Corrosion, 33
Coulomb, 4, 12
Coulomb’s law, 56
Coupled circuits, 849

dot rule, 857
Coupling coefficient, 843
Crest value, 195
Critically damped circuit, 911,

947
Cumulative compound motor, 372
Curie temperature, 692
Current, 3, 4, 11

division, 48, 449
magnification, 249, 519
main effects of, 20
transformer, 342

Curvilinear squares, 720, 721
Cut-off frequency, 790
Cycle, 194

Damping, 98, 946
device, 113

D.c. circuit theory, 167, 174
generators, 350, 356
machine construction, 352
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machine losses, 362
machines, 350
motors, 96, 364, 368
motor starter, 376
potentiometer, 130
transients, 259

Decibel, 126, 761
meter, 127

Delta connection, 298, 302,
603

-star transformation, 603
De Moivre’s theorem, 423
Depletion layer, 140
De Sauty bridge, 130, 482
Design impedance, 799
Detector types, a.c. bridges,

478
Determinants, 532, 538
Deviation from resonant

frequency, 509
Diamagnetism, 690
Dielectric, 57, 60, 711

hysteresis, 715
liquid, 715
loss, 715, 717
strength, 67, 712
stress, 727

Differential amplifier, 288, 289
compound motor, 373
voltage amplifier, 279

Differential equation solution,
921, 925

Differentiator circuit, 275
Diffusion, 141
Digital voltmeter, 117
Dimensions of most economical

cable, 728
Dirac function, 919
Discharging of capacitors, 70, 904

cells, 34, 38
Dissipation factor, 716
Distortion on transmission line,

882
Diverter, 379
Domains, 692
Doping, 138
Dot rule for coupled circuits, 857
Double beam oscilloscope, 122

cage induction motor, 405

Dust core, 698, 706
Dynamic current gain, 153, 156

resistance, 248, 517

Eddy current loss, 330, 696
Effective value, 196
Efficiency of d.c. generator, 363

d.c. motor, 373
induction motor, 395
transformer, 330

Electrical energy, 7, 18
power, 7, 16
symbols, 10, 910
measuring instruments and

measurements, 112
Electric bell, 20, 91

cell, 32
field strength, 57, 711
fire, 20
flux density, 59, 711
potential, 6

Electrochemical series, 32
Electrodes, 32
Electrolysis, 31
Electrolyte, 31, 37
Electrolytic capacitors, 70
Electromagnetic induction, 100

laws of, 101
Electromagnetic wave, 870
Electromagnetism, 89
Electromagnets, 91
Electron, 11, 31
Electronic instruments, 117
Electroplating, 20, 32
Electrostatic field, 55
E.m.f., 6, 34

equation of transformer, 320
in armature winding, 353

Emitter, 145
Energy, 5

associated with travelling wave,
886

electrical, 7, 18
stored in capacitor, 68
electric field, 737, 738
electromagnetic field, 750
magnetic field of inductor, 107,

750
Equipotential lines, 721
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Errors, measurement, 131
Exponential growth and decay

curves, 260
Even function, 683

Farad, 57
Faraday’s laws of electromagnetic

induction, 101
Ferrites, 692, 698, 706
Ferromagnetic-cored coils, 667

materials, 80, 691
Field plotting, 720, 731

theory, 620
Filter networks, 790

band-pass, 792
band-stop, 792
composite, 833
high-pass, 791, 807
low-pass, 791, 797
‘m derived’, 825
time delay, 822

Final value theorem, 920, 921
Fleming’s left-hand rule, 94

right-hand rule, 101
Flux density, 75, 688

linkage, 741
magnetic, 75, 688

Force, 4
on a charge, 98

current-carrying conductor,
90

Forced magnetization, 669
resonant frequency, 519

Form factor, 196, 648
Formulae, 164, 409, 960
Forward bias, 140, 145

characteristics, 140, 142
Free magnetization, 668
Frequency, 121, 194, 201

resonant, 247
Friction and windage losses, 362
Fourier series, 633
Full wave rectification, 208
Fundamental, 124, 631
Furnace, 20
Fuse, 20

Galvanometer, 129
Gas insulation, 715
Generator, 20

a.c., 102, 193
efficiency of, 363

Germanium, 138
Gravitational force, 4
Greek alphabet, 971
Grip rule, 90

Half-power points, 230, 508
-wave rectification, 208
-wave rectifier, 643

Harmonic analysis, 124, 633, 678
numerical method, 678
resonance, 664
synthesis, 633

Harmonics, 124, 631
in single phase circuits, 653
sources of, 666

Hay bridge, 130, 480
Heating effect of electric current,

20
Heaviside bridge, 130
Henry, 104, 741
Hertz, 121, 194
High-pass filter, 791, 807

ladder, 796
‘m derived’, 831

Hole, 138
Hysteresis, 84, 692, 693

loop, 84, 692, 693
loss, 84, 330, 693

Image impedance, 775
Imaginary numbers, 415
Impedance, 216, 220

matching, 623
triangle, 216, 220

Impulse, 919
Incident wave, 885
Induced e.m.f., 102, 741
Inductance, 104, 741, 841, 872

mutual, 104, 108
of a coil, 107
of a concentric cylinder, 741
of an isolated twin line, 746,

870
Induction motor, three-phase, 386

construction, 390
copper loss, 395
double cage, 405
impedance and current, 394
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losses and efficiency, 395
principle of operation, 390
production of rotating magnetic

field, 387
rotor e.m.f. and frequency, 393
starting, 403
torque equation, 397

-speed characteristic, 401
uses, 405

Inductive circuit, switching, 275
reactance, 214, 430

Inductors, 106
Initial conditions, 949

value theorem, 920
Initial slope and three-point

method, 261
Input bias current, 280

impedance, 283, 285
offset current, 280

voltage, 281
Insertion loss, 772
Instantaneous values, 195
Instrument ‘loading’ effect, 118
Insulation resistance tester, 118
Insulator, 12, 16, 137
Integrator circuit, 275

op amp, 288
Internal resistance of a cell, 34
Interpoles, 352
Inverse Laplace transform, 921
Inverting op amp, 282
Ion, 12, 31
Iron, 20
Iron loss, 330, 362
Isolating transformer, 340
Iterative impedance, 759, 775

Joule, 5, 7, 18, 68, 107

Kelvin, 3
Kettle, 20
Kilo-, 4, 14
Kilowatt-hour, 7, 18
Kirchhoff’s laws, 167, 531

in the s-domain, 932
network analysis, 535

Ladder network, 795
Lag, angle of, 201
Lamps in series and parallel, 52

Lap winding, 352, 353
Laplace transforms, 901, 914

by partial fractions, 923
capacitor, 930
definition of, 915
elementary functions, 915
inductor, 930
initial

conditions, 949
value theorem, 920

inverse, 921
L–R–C c

ircuit, 944

of derivatives, 920
resistor, 930
to solve differential equations,

925
Laws of electromagnetic

induction, 101
L–C parallel network, 241
Lead, angle of, 201
Lead-acid cell, 37
Leakage currents, 715
Leclanché cell, 36
Lenz’s law, 101
Level compounded machine, 361
Lifting magnet, 20, 92
Liquid dielectrics, 715
Linear device, 14

scale, 113
Loading effect, 118, 132
Load line, 154
Local action, 32, 33
Logarithmic ratios, 126, 761
Long shunt compound motor, 373
Loop currents, 545

inductance, 748
Loss angle, 484, 715
Losses in d.c. machines, 362

induction motor, 395
transformers, 330

Loudspeaker, 93
Low-pass filter, 791, 797

ladder, 795
‘m derived’, 828

LR–C parallel network, 243, 516
resonance, 516

LR–CR parallel network
resonance, 517

L–R–Ccircuit using Laplace
transforms, 944
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L–R–C

series circuit, 432, 491,

910
L-section attenuator, 779
Luminous intensity, 3
Lumped loading, 884

Magnetically coupled circuits, 841
Magnetic effect of electric current,

20
field, 74, 89, 688

strength, 77, 689
due to electric current, 89

flux, 75, 688
density, 75, 688

force, 74
moment, 690
properties of materials, 690
screens, 80
space constant, 77, 689

Magnetising component, 319
force, 77, 689

Magnetization curves, 77, 689
Magnetomotive force, 76, 688
Magnification factor, 497
Majority carriers, 139, 141
Matched network, 772
Matching transformer, 334, 623
Maximum power transfer

theorems, d.c., 187
a.c., 617

Maximum value, 195
Maxwell bridge, 130, 479

–Wien bridge, 481
Maxwell’s theorem, 546
Mean value, 196

of complex wave, 648
Measurement errors, 131

of power in three phase
systems, 306

‘m derived’ filter, 825
Mega-, 4, 14
Megger, 118
Mercury cell, 37
Mesh-connection, 298, 603

-current analysis, 545
Mica capacitor, 69
Micro-, 4, 14
Microelectronic systems, 671
Milli-, 4, 14
Minor, 534

Minority carriers, 140, 141
Mismatched load, 885
Modulus, 421
Mole, 3
Moore’s circle technique, 722
Motor, 20, 96, 350, 364

compound, 372
cooling, 381
d.c., principle of operation, 94
speed control, 377
starter, 376

Moving coil instrument, principle
of, 97, 114

rectifier instrument, 114
Moving iron instrument, 113, 114
Multimeter, 13, 118
Multiples, 4, 14, 972
Multiplier, 116
Mutual inductance, 104, 108, 842

Nano-, 4
Natural frequency, 519
Negative feedback, 280
Nepers, 761
Network analysis, 531
Neutral point, 298
Neutron, 11
Newton, 4
Nickel–iron alloys, 705
Nodal analysis, 550
Node, 550, 892
Nominal impedance, 799, 809
Non-linear device, 14

scale, 113
Nonpermanent magnetic materials,

704
Norton and Thévenin equivalent

networks, 184, 593
Norton’s theorem, 181, 587
n–p–n tra

nsistor, 147

n–type material, 138
Nucleus, 11
Null method of measurement, 129

Odd functions, 683
Ohm, 6, 13
Ohmic values, 973
Ohmmeter, 13, 117
Ohm’s law, 14
Operational amplifiers, 278
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inverting amplifier, 282
non-inverting amplifier, 285
parameters, 280
summing amplifier, 286, 291
transfer characteristics, 279
voltage comparator, 288, 293
voltage follower, 286

Overdamped circuit, 911, 947
Over-compounded machine, 361
Owen bridge, 130, 481

Paper capacitor, 69
Parallel networks, 45, 238, 448

plate capacitor, 61, 711
resonance, 247, 515

Paramagnetism, 690
Partial fractions, 923
Passbands, 790
Peak factor, 196

-to-peak value, 195
value, 121, 195

Period, 194, 631
Periodic function, 631

time, 121, 194, 201
Permanent magnet, 74

magnetic materials, 706
Permeability, absolute, 77, 689

of free space, 77, 689
relative, 77, 689

Permeance, 689
Permittivity, absolute, 59

of free space, 59, 78
relative, 59, 711

Phase delay, 871, 872
shift coefficient, 816, 874, 883

Phasor, 200
Pico-, 4
�-attenuator, 759, 767

-connection, 603
Plastic capacitors, 70
p–n junction, 139
p–n–p tra

nsistor, 147

Polar form of complex number,
421

Polarization, 32, 33, 711
Poles, 352
Potential difference, 6, 13

divider, 44
gradient, 57

Potentiometer, 130

Power, 5
associated with complex waves,

650
factor, 232, 238, 464, 652, 716

improvement, 252, 470
gain, 157
in a.c. circuits, 230, 459
in three phase systems, 303
loss, 717
triangle, 232, 464

Prefixes, 914
Primary cell, 20, 36

constants, 871
Principal node, 550
Product-arm bridge, 478
Propagation coefficient, 815, 877

constant, 816, 874
Protons, 11
Prototype filter, 803, 811
p-type material, 138

Q-factor, 227, 249, 495, 519
in parallel, 520
in series, 502

Quantity of electric charge, 12

Rating of a machine, 464
transformer, 317

Ratio-arm bridge, 478
R–C parallel network 240

series circuit 220, 431, 901
Reactive power, 232, 238, 464,

466
Real number, 415
Rectangular complex number, 415
Rectification, 143, 208
Rectifier, 143, 666
Reference level, 126
Reflected impedance, 852

wave, 885
Reflection coefficient, 887
Regulation of a transformer, 329
Rejector circuit, 249
Relative permeability, 77, 689

permittivity, 59, 711
Relay, 20, 92
Reluctance, 80, 689
Remanence, 84, 692
Repulsion type of m.i. instrument,

113
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Residual flux density, 84
Resistance, 6, 13, 23, 870

internal, 34
matching, 334
variation, 3

Resistivity, 23
Resistor colour coding, 973
Resonance, by tuning capacitors,

854
due to harmonics, 664
parallel, 247, 515
series, 222, 225, 491

Reverse bias, 140, 145
characteristics, 140, 142

R–L–C circuit using Laplace
transforms

R–L–C

series circuit, 221, 432

R–L parallel network, 238
series circuit, 215, 430, 906

R.m.s. value, 121, 196
complex wave, 645

Roots of auxiliary equation, 912

s-domain, 931
Kirchhoff’s laws, 932

Saturation flux density, 84, 692
Schering bridge, 131, 483, 487
Screw rule, 90
Secondary cell, 20, 37

line constants, 874
Selective resonance, 664
Selectivity, 229, 230, 506
Self-excited generator, 356
Semiconductor diodes, 137, 140
Semiconductors, 137
Separately-excited generator, 356
Separation of hysteresis and eddy

current losses, 701
Series circuit, 42

a.c., 213, 429
Series magnetic circuit, 81

resonance, 222, 225, 491
winding, 353
wound motor, 371, 378
generator, 360

Shells, 11
Short-shunt compound motor, 373
Shunt, 115

field regulator, 377
winding, 353

wound generator, 358
motor, 368, 377

Siemens, 7, 444
Silicon, 138
Silicon-iron alloys, 705
Simple cell, 32
Simultaneous equations using

determinants, 532
Single-phase parallel a.c. network,

238
series a.c. circuit, 213
supply, 297

Sine wave, 194, 201
general equation, 200

S.I. units, 3
Skin effect, 741
Slew rate, 282
Slip, 391
Soldering iron, 20
Solenoid, 90
Speed control of d.c. motors, 377
Squirrel-cage rotor, 390
Standing wave, 890

ratio, 894
Star connection, 298, 603

-delta transformation, 611
Star point, 298
Stator, 352
Steady state, 260, 901
Steinmetz index, 694
Step input,

L–R–C circuit, 910

R–C circuit, 901
R–L circuit, 906

Stopbands, 790
Streamline, 721
Sub-multiples, 14, 914
Summing amplifier, 286, 291

point, 287
Superposition theorem, 171, 562
Susceptance, 444
Symmetrical �-attenuator, 759,

767
T-attenuator, 759, 764

Synchronous speed, 387, 388

Tangent method, 261
T-attenuator, 759, 764

-connection, 603
Telephone receiver, 20, 90
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Temperature coefficient of
resistance, 26

Tesla, 75, 688
Thermal effects of dielectrics, 714

runaway, 158
Thermodynamic temperature, 3
Thévenin’s theorem, 176, 575
Thévinin and Norton equivalent

networks, 184, 593
Three-phase induction motors, 386

construction, 390
copper loss, 395
double cage, 405
impedance and current, 394
losses and efficiency, 395
principle of operation, 390
production of rotating magnetic

field, 387
rotor e.m.f. and frequency, 393
starting, 403
torque equation, 397

-speed characteristics, 401
uses, 405

Three-phase systems, 297
advantages of, 312
power, 303

Three-phase transformers, 340
Thyristor, 669
Time constant, C–R circuit, 260,

905
L–R circuit, 269

Time delay, 822
Titanium oxide capacitor, 70
Torque of a d.c. machine, 365
Torque-speed characteristic of

induction motor, 401
Transfer characteristics, 279
Transformation ratio, 316
Transformer, 20, 108, 315

a.f., 325
auto, 337
cooling, 326
construction, 325
current, 342
e.m.f. equation, 320
equivalent circuit, 326
isolating, 340
losses and efficiency, 330
maximum efficiency, 333
no-load phasor diagram, 319

on-load phasor diagram, 324
power, 325
principle of operation, 316
regulation, 329
r.f., 326
three-phase, 340
voltage, 343
windings, 326

Transient curves, C–R, 260, 261,
901

L-R, 268, 269, 906
Transients, 259, 901
Transistor, 145, 667

action, 147, 148
amplifier, 152
characteristics, 150
connections, 149
symbols, 149

Transit time, 823
Transmission lines, 869

current and voltage
relationships, 873

distortion, 882
primary constants, 869
secondary constants, 874
standing waves, 890
wave reflection, 887

Trapezoidal rule, 679
Travelling wave, 870
True power, 232, 238, 464
Two port networks, 758

in cascade, 782

Under compounded machine,
361

Underdamped circuit, 911, 947
Unit of electricity, 18
Units, 3, 8

S.I., 3
Universal bridge, 131

Instrument, 118

Vacuum, 59
Valves, 667
Variable air capacitor, 69
Velocity of propagation, 872, 883
Virtual earth, 282
Volt, 6, 13
Voltage, 12, 13

comparator, 288, 293
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Voltage (cont.)
-follower op amp, 286
gain, 156
magnification at resonance,

227, 498
transformer, 343
triangle, 216, 220

Voltmeter, 13, 115

Water heater, 20
Watt, 5, 16
Wattmeter, 118
Waveform analyser, 633

considerations, 683
harmonics 124, 631

Waveforms, 194
combination of, 204

Wavelength, 872
Wave reflection, 885

winding, 352, 353
Weber, 75
Weight, 4
Wheatstone bridge, 129, 179
Wien bridge, 131, 484,

487
Work, 5
Wound rotor, 390

Yoke, 352

Zener diode, 143

effect 143
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