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WHAT IS A DIGITAL SYSTEM?

Simply put, a digital system is a system that processes discrete information.
The discrete entities making up this information may represent anything
from simple arithmetic integers, letters of the alphabet, or other abstract
symbols to values for a voltage, a pressure, or any other physical quantity.
To a digital system, what these entities represent is not important in the
processing of the information. What they represent is important, however, to
the human observer who must interpret the results of the process. A digital
system, then, is one that accepts as input digital information representing
numbers, symbols, or physical quantities, processes this input information in
some specific manner, and produces a digital output.

In a large number of computer applications, the computer is required to
process information related to physical guantities, such as pressure or tem-
perature. Since nature is not digital, however, (unless, of course, one wants
to go to the quantum-mechanical level), the physical quantity of time or
temperature or whatever must, somehow, be converted to a digital form
before it can be processed by the computer. The usual way of doing this is to
first take the physical quantity to be processed and convert it into a voltage
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Chapter 1 Introduction to Digital Systems

or a current.! This is done by using a transducer—a device that converts
energy coming into it in one form to energy in another form at its output. A
thermocouple is a good example of a temperature transducer: it produces an
output voltage proportional to its ambient temperature. This output voltage
becomes an analog of the temperature of the device.

We use analogs of physical quantities all the time. For example, the
position of the mercury in a thermometer is an analog of the temperature,
and the angular position of the hands of a clock is the analog of the time. The
analog of a physical quantity is, like the quantity itself, usually a continuous
variable. Since a computer operates only on discrete entities, which usually
can be associated with numbers, the continuous variable representing the
physical quantity must first be converted to a digital form. This conversion is
carried out by an analog-to-digital converter (ADC).? The digital output from
the ADC, then, is a discrete approxirmation to the actual value of the continu-
ous physical variabie. The computer or other digital system can now process

the information for whatever purpose is required.
Let us take a look at a typical digital system where these ideas are put

together to perform a simple task. Suppose we have to maintain a given
constant temperature in a liquid, such as the developer used in a photo-
graphic processing lab. To do this we must measure the temperature of the
developer and then use the resuit of our measurement to turn on or turn off a
heating element that surrounds the developer. To perform this task, a ther-
mocouple might be used as the transducer that converts the temperature of
the liquid to an analog voltage. This voltage would then be converted to a
digital value of sufficient precision to ensure the accurate control of the
temperature. The resulting digital value would then be used by some digital
system, such as a microprocessor, to determine whether the heating element
should be on or off. This digital system is also an example of a feedback
control system, in which the result of an action taken by the system, in this
case turning the heater element on or off, is “‘fed back’’ in order to determine
whether a new and different action should be taken.

! Atleast, this is what might be expected of an electrical engineer. A mechanical engineer, on
the other hand, might prefer to convert the physical quantity into a position of a lever or a
gear.

? A device that carries out the reverse process, converting a digital quantity back to an analog
value, is called a digiral-to-analog converter (DAC).
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1.2
WHY ARE DIGITAL SYSTEMS SO PERVASIVE?

We might logically ask in the example above why we should use a digital
system for this simple control function. After all, mechanical thermostats,
which perform the given task, are readily available and inexpensive. To
answer this question we need to look closer at why more and more of the
everyday products that we encounter are becoming digital. There are three
fundamental reasons that this is happening:

1. Flexibility
2. Reliability
3. Cost

Consider, for example, the temperature control system described above. It is
obvious that the system described could easily be replaced by a mechanical
thermostat. However, suppose we wish, at a later time, to add some features
to the system, such as, for example, the ability to automaticaily change the
temperature of the developer at different stages of the development process.
Such a programmable thermostat is easily achieved using digital systems. In
fact, if we were to use a microprocessor as part of such a temperature control
system, we could control not only the temperature of the developer but the
entire film development process. This idea is precisely why ‘‘same day’’ film
processing services are so readily available. Clearly, it would be difficult to
obtain this degree of flexibility in any other way with the ease with which we
can accomplish it using a digital system.

To get some idea of how reliable digital systems can be, we need only
look at the way in which information is represented in these systems. A
digital system processes information in a discrete form which is normally
binary. The two values of a binary digit, or bit, are 1 and 0. These values are
commonly represented in a digital system by two different voltages. In fact,
the 1 is usually represented by a range of voltages and the 0 by another,
nonoverlapping range of voltages. In one implementing technology, the TTL
(transistor-transistor logic) technology, a 1 is represented by voltages in the
range of 2 to 5 volts (V) and a 0 is represented by voltages in the range of 0 to
1 V. Because these values are represented by a range of voltage, any minor
change in voltage level due to noise or other external events will not cause a
0 to be misinterpreted as a 1, or vice versa. As we shall see in the next
chapter, arbitrary numbers and symbols can be represented by strings of 1s
and 0s. It is possible to design these digital representations so that even if
noise is so large as to change the voltage corresponding to a 1 to the range for
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a 0, for example, the original representation can be re-created. A good exam-
ple of this is a compact disk (CD), in which digital information, representing
sound, is encoded in such a way that a 1-mm hole could be drilled through the
disk without the loss of a single note!® Obviously, this degree of reliability
makes digital systems extremely attractive for any application requiring
highly reliable operation, and especially for applications where a human life
depends on the outcome of this operation.

Digital systems from their very inception have been flexible and reli-
able. Their more recent use in every day items, such as watches, calculators,
and household appliances, has come about because of their very low cost.
The cost of digital devices has dropped dramatically over the past 30 years.
This is illustrated by the cost of some of the 7400 series small-scale digital
integrated circuits, which in the early 1960s was around $70 apiece. These
devices, which are still available and extensively used, can be purchased for
less than 15 cents today. A similar reduction in cost can be seen in one of the
first microprocessors, the Intel 8080. This device, which appeared in produc-
tion around 1972, originally cost about $300. Its price at one point in recent
years dropped to around $2 or less. The cost of computer memory has
followed similar trends. In the 1950s, memory costs were generally figured in
the dollars per bit range, whereas today the cost is more likely to be in
millicents per bit. These dramatic cost reductions have come about because
of advances in integrated circuit technology, specificaily, the ability to put
hundreds of thousands of transistors on a piece of silicon roughly 6 mm
4 inch) on a side. Clearly, the trend is for increasingly complex functions to
be integrated in silicon at increasingly reduced prices.

01.3
ORGANIZATION OF THE BOOK

The purpose of this book, then, is to introduce the student to the basic
concepts required to design a digital system. For this purpose the book is
organized into nine chapters, each dealing with a subject either essential or
just very helpful to the design of digital systems. A number of examples are
given throughout the text in order to illustrate the various concepts. Each
chapter ends with an annotated bibliography giving sources for further infor-
mation on topics discussed within the chapter and a set of exercise problems

3 An excellent discussion of this error-correction ability can be found in the article *“The
Digital Reproduction of Sound,” by John Monforte, which appeared in the December 1984
issue of Scientific American.
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which further illustrate these principles. Chapters 2 through 5 cover the
essential material required for the design of any digital system, whether it be
a computer or a simple controlier, such as the temperature controller de-
scribed in this chapter. Chapters 6 and 7 describe concepts which can make
large-scale systems easier to design and more efficient in implementation.
Chapter 8 discusses a number of special issues that are becoming, for one
reason or another, such as VLSI (very large-scale integration) design and
artificial intelligence, of increasing interest. Finally, Chapter 9, which does
not heavily depend on the material in Chapters 6, 7, and 8, describes in some
detail how these ideas can be put together to construct a large-scale digital
system—for example, in the design of a computer or a controller for an
industrial process. A very brief description of the subjects covered in each of
these chapters follows.

Chapter 2 discusses number representations and methods of informa-
tion coding. This chapter also discusses binary arithmetic in some detail.

Chapter 3 defines and details the algebra required for digital system
design—Boolean algebra and its subset switching aigebra.

Chapter 4 introduces the fundamental building block of digital system
design, the logic gate. A symbology standard that helps to clarify the opera-
tion of circuits designed using these gates is also discussed. Together with
the switching algebra presented in Chapter 3, this chapter serves as an intro-
duction to combinational circuit design. Combinational circuits are those in
which the output is a function only of the circuit inputs at any given instant of
time.

Chapter S introduces a class of circuits called sequential circuits, in
which circuit outputs are fed back to the input. This causes the output to
become a function of not only the current input but also some past sequence
of inputs. This chapter also introduces the flip-fiop circuit element and shows
how this device can be used in the sequential circuit to control the time at
which the outputs change. Since this time of change is controlled by a single
system clock, circuits of this type are generally referred to as synchronous or
clocked sequential circuits. This is the class of sequential circuits that is
generally used to control the operations within a computer.

In Chapter 6, sequential circuits that are not controlled by a clock are
investigated. Since no clock is present in such a system to synchronize the
circuit outputs, such circuits are referred to as asynchronous sequential
circuits, or sequential circuits operating in the fundamental mode. Flip-flops
themselves are analyzed and designed in this chapter, along with many other
very useful fundamental-mode devices.

Chapter 7 deals with sequential circuits in which more than one clock
signal is present. We will refer to such systems as multiply clocked sequen-
tial circuits. This chapter also briefly discusses a particular subclass called
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pulse-mode circuits, in which the input clock signals are considered to b
very short pulses.

In Chapter 8 a number of special topics are introduced that are impor
tant in various application areas of digital systems; for example, VLSI desigr
and artificial intelligence. '

Finally, Chapter 9 applies the ideas developed in preceding chapters t
the design of large-scale digital systems. This chapter gives a model for sucl
systems and presents methods for organizing their design.
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0 2.1
INTRODUCTION

It may be obviou§ that a digital computer operates only on numbers. The way
in which the machine operates on these numbers, however, is a function of
what the numbers represent (do they represent themselves, other numbers,
or alphanumeric. characters?) and in what form they are represented.
Clearly, the design of the central processing unit, the portion of the com-
puter that handles all arithmetic and logic operations, cannot be carried out
without a complete knowledge of the form in which the numbers are repre-
sented in the machine. Furthermore, this form is generally quite different
from the way nimbers must be represented to the human operator, and so
there has to be some type of conversion in the computer input/output
system.

The purpose of this chapter, then, is to discuss the various ways in
which numbers and other quantities are represented and manipulated in a
computer. In addition, various forms of data encoding, as well as binary

arithmetic, will be examined.
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BASE CONVERSION

radix

The number system we most often use is the decimal system. For various
reasons, which will be examined later, the decimal number system is not a
convenient one for a computer to use. Computers work most efficiently on
information that is binary. Since computers are not good with decimal num-
bers and people are gemerally not very proficient with the use of binary
numbers, some type of conversion between these systems must occur at the
interface between people and computers. In this section we examine the
various issues involved in the conversion.

2.2.1 Radix r-to-Decimal Conversion

A positional notation has long been used for writing numbers. In such a
representation the position of each digit indicates the weight associated with
the digit.! In particular, the number 276.5 would be interpreted as

2 X 102+ 7 x 101 + 6 x 10°+ 5 x 1071 = 276.5 (2.2.1)

The various powers of 10 used in this representation, which are the respec-
tive weights, are indicative of the assumption that the number 276.5 was
written as a decimal number, or a number written in base 10. The base of a
number is also referred to as the radix of the system.

In general, the radix of a system can be anything; 5 or 12 or —3, or even
an irrational number, such as 7 or e. Usually, however, the radix of number
systems is taken as a positive integer. When a number is written in a base
other than 10, the radix used must somehow be noted so that the number can
be properly interpreted. Usually, this is indicated by placing the number in
parentheses and attaching a subscript at the end to indicate the base. Thus
(1321), indicates that the number 1321 has a radix of 4 and would be inter-
preted as follows:

(132D =1 X $#+3 x4 +2x4 +1 x4 (2.2.2)

Note that if the arithmetic in Equation (2.2.2) is carried out in the decimal
system, the number (1321), must be the same as the number 121 in base 10!
In general, a number of radix r, A,, can be written as

! The Roman numeral system is an example of a system that uses a nonweighted notation for
representing numbers.
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A, = (@1 " * * Q. G=y " * " Qo) = 2 a;r' (2.2.3)

i=-m

where the a; are digits in the radix r system and where the point (.) is termed
the radix point, which, as is customary, separates the integral and fractional
parts of the number. Carrying out the arithmetic of Equation (2.2.3) in the
decimal number system results in the decimal equivalent of A,. For example,
consider the problem of finding the decimal number equivalent to (364.213);.
The value is found by using the notation of Equation (2.2.3) as follows:

(364.213); =3 X TP+ 6 x 7T +4x 0 +2x771+1x72+3x73
= (193.314868 . . )y

where the trailing points indicate that additional fractional digits occur.

2.2.2 Decimal-to-Radix r Conversions

Conversion from some radix r to decimal is quite straightforward, as just
indicated. The question that naturally arises next is how to convert from
decimal to an arbitrary radix equivalent. To see how this process may be
carried out, let B, be a given decimal number that is to be converted to a
nurnber A, radix r. That is,

By = A, = (@n@n-1* * - do) (2.2.4)
or, expanding A,,
Bo=a;"+ a1+ - +art+ a 2.2.5)
Now, if By, is divided by r, Equation (2.2.5) becomes

B a
= g - -+a2r+a1)+—r—0

B8+ )

where Int and Frac indicate the integral and fractional parts of By/r. From
Equation (2.2.6), we see that

(2.2.6)

= Rem (ffp “’) (2.2.7)



Chapter 2 Number Systems

where Rem means the remainder of By/r. If this process is now repeated
starting with Int(By/r), the next remainder will be @, and the next integral
part will be a,r""2 + a,.,r** + + - - + a;. Continuing this process until no
integral part remains will produce the digits of A,.

Consider as an example the problem of finding the base 3 equivalent of
(278)10. The work may be carried out as follows:

Quotient Remainder

3)278
3)92 2 =g,
3)30 2=a
3)10 0=a
33 1 = a;
3)1 0=qay
0 1= as
Stop

Thus
(278)10 = (101022);

As a check, convert (101022); back to decimal:
(101022); = 1 x 3F + 1 X 3P +2x 3+ 2 = (278

Numbers, in general, have fractional parts as well as integral parts.
Conversion of these fractional parts to an equivalent radix r representation
may be carried out in a manner similar to the conversion of the integral parts.
Let By, now represent a fractional decimal number equivalent to a fractional
number A, in radix r. Thus

Bp=A = 0.a_ya-3* * " a-p)

2.2.8
=g ¢ V+ari+ 4 ag_,rm ( )

Multiplying the result of Equation (2.2.8) by r yields

rBiy=a_; + (@2rt 4+« + + a_,rmt) (2.2.9)
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from which the integral part becomes a_,. The fractional part, (@_or~' + - - -
+ a_,r~™*Y), when multiplied by r yields a-,, and so on. Thus repeated
multiplication by r yields the successive digits of the radix r representation of

the fractional number B),.
As an example, consider the conversion of (0.27),, = (7). The process

goes as follows:

Integer Fraction

.27
x4
a-y = 1 .08
2(_4_
a.; = 0 .32
ﬁ
duy = | .28
x4
d_4 = 1 A2

Thus (0.27); = (0.1011 . . .);, and as a check,

0.1011. . )y =1x4"1+1xX43+1 X444+ .-
{0.2695 . . o

As is generally the case, this conversion process yields a nonexact equiva-
lent. This fact must be taken into account when computation is done with a
computer not using the decimal system.

The conversion of general decimal numbers with both integral and
fractional parts can now easily be handled by simply converting each part
separately and combining the results. For example, solve the equation
(123.56),0 = (?). First, convert the integral part:

7)123

717 4
7 2 3
0o 2
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Next, convert the fractional part:

56
x7

x7
x7

x7

The result then becomes
(123.56),9 = (234.3630 . . .);

where, as usual, the trailing points mean the result is not exact.
Conversion between two nondecimal systems can be handled most eas-
ily by using the decimal system as an intermediate step. For example, the
problem of solving (1354.24) = (?), would be accomplished by first convert-
ing from base 6 to base 10 and then converting this base 10 number to base 4.

Thus

(1354.24)s = (358.4444 . . )y
= (11212.1301 . . .),

2.2.3 Counting in a Radix r System

In the conversion process just described, it is interesting to note that the only
numerical values the digits may take fall in the range of 0 to r — 1. Further-
more, note that

10, =1 X1 +0XrP=rp (2.2.10)

Because of these two observations, counting in radix r always produces the
sequence of numbers 0, 1,2, . . ., (r— 1,10, 11,12, . . . , 1(r = 1),
. . . . Figure 2.2.1 shows the counting sequence for various radices.
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Decimal r=2 r=3 r=28

0 0 0 0

1 1 1 1

2 10 2 2

3 11 10 3

4 100 1 4

5 101 12 5

6 110 20 6

7 111 21 7

8 1000 22 10

9 1001 100 11
10 1010 101 12 Figure 2.2.1
11 1011 102 13 Counting in various systems of
12 1100 110 14 different radix r.

When r > 10, a problem arises in the representation of those digits x in
the range 9 < x < r, since no standard symbols exist for these numbers. By
convention, capital letters are used to represent these digits. Thus, for » = 16
(the hexadectmal system), the counting sequence would be 0, 1, 2, 3, 4, 5, 6,
7,8,9,A,B,C,D,E,F, 10, . . . , where (A);s = (10)y9, (B)1s = (11)49, and
SO on.

2.2.4 Binary, Octal, and Hexadecimal
Converslons

Normally, computations within a computer are carried out in the binary, or
base 2, system. This is principally because digital circuits are usually two-
state devices. Circuit elements having more than two states do exist, but
these generally suffer from low reliability and other difficulties, some of
which will be alluded to later.

Conversion from binary to decimal, and vice versa, is carried out as
described above but is generally much easier than conversions between deci-
mal and a radix larger than 2. An example will help illustrate: Convert (132),
to (x);. The conversion goes as follows:

2132
2)66 0
2)33 0
2)16 1
2)8 0
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214
212
21

0

—_0 O D

and thus (132),, = (10000100),, which, as a check, yields
27+ 22 =128 + 4 = (132)y

In a binary number, each binary digit, or bif, is weighted as a power of 2.
Thus, as this example illustrates, conversion from binary to decimal requires
only the addition of the powers of 2 corresponding to the 1s in the number.
Generally, working with binary numbers is somewhat cumbersome, be-
cause of the large number of bits required to make up even small decimal
equivalents. For this reason, the octal and hexadecimal, or just hex, systems
are commonly used to represent these numbers. To see the relationship
between binary, octal, and hex, consider the binary number 110101011:2

110101011 = 1 X 22+ 1 X 27+ 0 X 26+ 1x 25+ 0 x 24
+1X22+0x22+1x214+1x2

=(1X2+1IX21+0x209204+ (1 Xx22+0x2+1 %292
+(O0x22+1x2'+1x292°

=6X 2P +5x2N+3x2)

=6 X8 +5x8 +3x 8§

= (653)s

This example illustrates the extreme ease of conversion from binary to octal.
The conversion simply involves grouping the bits in threes and writing the
decimal value of each group. Thus

(101 111 100),
=(5 T 4%

In an exactly analogous fashion, the conversion from binary to hex can be
simply carried out by grouping the bits it fours. Consider, for example, the
following conversion:

(0001 0111 1100),
=(1 7 C )

2 The subscript 2 is omitted here because the number was described as a binary number.




Section 2.3 Binary Arithmetic 15

where C represents the twelfth hex digit.
If it is necessary to convert a number from hex to octal, or vice versa, it
is generally easier to use binary rather than decimal as the intermediate step.

For example,

(1A8E);s = (7 = (0001 1010 1000 1110),
= (001 101 010 001 110),
=(1 5 2 1 6)

The result here is obtained by doing nothing more than writing the hex
number in binary and then regrouping the bits to form the octal result.

0 2.3

BINARY ARITHMETIC
Carrying out arithmetic operations in binary may take a bit of getting used to,
but it is generally simpler than it is in decimal, since the addition and multipli-
cation tables are so simple. These tables are given in Figure 2.3.1.

addition Consider as an example of the addition process the sum of the two

binary numbers A = 10111010 and B = 110111. The addition is carried out as
follows:

11111 (carries from preceding bit position)
10111010
+ 110111

11110001

As a check, we note that A = (186),, and B = (55), and thus the decimal
value of A + B is 241, which is equal to binary 11110001.

In carrying out the addition in the example above, a number of incidents
occurred where more than two bits had to be added. This, of course, was
caused in each case by the carry generated by the addition of the previous

0+0=20 0x0=10
0+1=1 0x1=0
_ _ Figure 2.3.1
I+1=10 I x1=1(ayAddition and {b) muitiplication tables

(a) (b) for binary numbers.
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Carry in A, B, Sum, Carry out
0 0 0 0 0
0 0 1 1 0
0 i 0 1 0
0 1 1 0 1
1 .0 0 1 [}
1 0 1 0 1
1 1 0 0 1
| 1 1 I 1

Figure 2.3.2 Addition table including carries.

bits. An alternative representation for the addition table of Figure 2.3.1
which includes the carry to be added as well as the carry generated is given in
Figure 2.3.2. It will be shown later that this table can be used, in the form
given, to generate hardware that performs binary addition in a computer’s
central processing unit. In using this table it should be noted that the number
in the *‘carry in’’ column of the table is the carry that has been generated by
addition of the numbers in the previous column, i — 1, of bits and the carry
out is the carry in of the next column of bits, ¢ + 1.

As with decimal arithmetic, muitiplication uses both the multiplication
table and the addition table. The process is carried out by first multiplying the
multiplicand by each digit of the multiplier to form a set of partial products.
These partial products are then added to form the final product. For exam-

ple,

101100 multiplicand
x 1011 multiplier
101100
101100 partial products
000000
101100
111100100 product

This result is easily checked by multiplying the decimal equivalents of the
binary multiplicand and multiplier as follows:

(101100); X (1011), = 44 x 11 = 484 = (111100100),
Subtraction and division introduce the same extra complexities in bi-

nary as they do in decimal arithmetic: borrowing, and estimating quotient
digits. Consider first the problem of subtraction. A subtraction table may be
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(=2
[ |
-
HH
- - O

with a borrow from the next  Figure 2.3.3
higher bit position Binary subtraction table.

set up in the manner shown in Figure 2.3.3; the table is similar in form to the
addition table given in Figure 2.3.1. Using this table, the difference between
the two binary numbers 10000 and 101 is computed as follows:

0111 resulting bit after borrow

Some other examples are as follows:

1010 — 1 = 1001
110010 — 101 = 101101
1101 — 100101 = —11000

It will be shown in the next section that subtraction can actually be per-
formed by first “*‘coding” the subtrahend and then using addition, thus avoid-
ing the various complications arising because of the borrows.

Long division may be carried out in binary in a manner equivalent to
decimal division, but it is generally much easier, since there is virtually no
need for estimation of quotient digits. An example will best illustrate the
process. Consider the problem of determining 100101/101. There are many
ways of organizing the work. However, a classic approach is as follows:

111 = quotient

101J100101
101

1000
101

111
101
10 = remainder



2.4

Chapter 2 Number Systems

Thus 100101/101 = 111 with a remainder of 10; or, as a check, in decimal the
division problem becomes 37/5 =7 = (111), with a remainder of 2 = (10),. As
a second example, consider the problem 11010111/110:

100011
11011010111
110
1011
_110
1011
110

101

Here the result is 100011 with a remainder of 101, or, in decimal, as a check,
215/6 = 35 with a remainder of 5.

Notice that in both examples, estimating whether or not the divisor will
go into a partial dividend requires only the step of determining whether or
not the partial dividend is greater than or equal to the divisor. If it is, the
value that is put into the quotient has to be a 1; the divisor is then subtracted
from the partial dividend. Ifitis not,a0is placed in the quotient and the next
bit of the dividend is brought down; the process is repeated until a 1 can be
placed in the quotient and the divisor can be subtracted from the resulting
partial dividend.

COMPLEMENT ARITHMETIC

radix
complement

It was mentioned in Section 2.3 that subtraction can be carried out by using
addition if the subtrahend is ‘‘coded’” properly. The implication of this, with
regard to the design of a computer, is that a single piece of hardware, an
adder, can be used to perform all arithmetic operations. This happens be-
cause binary multiplication involves addition only and binary division in-
volves subtraction only. This clearly simplifies the design process as well as
the designed hardware. The purpose of this section, then, is to describe this
coding and show how it can be used for number representation and arith-
metic operations.

2.4.1 Radix and Diminished Radix Complements

Let A be an n-digit integer in radix r representation. Then the radix comple-
ment of A is defined as
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A* = radix compiement of A = r* — A (2.4.1)
and the diminished radix complement is defined as
At = diminished radix complementof A=r"—-A -1 (2.4.2)

To see how the complement representation of a number can be used in the
subtraction process, let A and B be two n-digit numbers? and suppose that
B — A is to be determined. The claim is that the difference can be found by

adding the radix complement of A to B, or

r"— A+ R
=rt+ (B - A)

A*+ B

(2.4.3)

Recall from the preceding section that ro = 10,. Thus 7" in radix r arithmetic
is just 1 followed by n zeros. Two possible cases occur here. First, assume
that B > A. Then the result is positive and Equation (2.4.3) yields the correct
n-digit difference preceded by a 1. An example may help. Let A = 0592 and
B = 3456 be two 4-digit decimal numbers. From Equation (2.4.1),

A* = 10000 — 0592 = 9408 (2.4.4)
and adding this complement to B, we obtain
B + A* = 3456 + 9408 = 1 2864

Ignoring the 1, +2864 is, of course, the correct answer.

The second case occurs when A > B. In this case, Equation (2.4.3) may
be written as »* — (A — B), and since A — B is now positive, the result is, by
definition of the radix complement in Equation (2.4.1), the radix complement
of A — B! That is, the result is a negative number that is in radix complement
form. For example, let A = 6734 and B = 523; then, as before,

A* = 10000 — 6734 = 3266 (2.4.5)

and adding this to B, we have
B + A* = 523 + 3266 = 3789

which is the radix complement of 6211, the difference between 6734 and 523.
Here, however, the result is negative.

3 If the two numbers do not have the same number » of significant digits, then the smaller may
have zeros appended on the left to make up the necessary n digits.
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In the first case, where B — A was positive, n + 1 digits appeared in the
complement sum, with the leftmost being ignored and the remaining digits
being the magnitude of the correct answer. In the second case, where B — A
was negative, the complement sum had only » digits and was the radix
complement of the answer. In this case the magnitude of the answer can be
found by taking the radix complement. In both cases, however, the differ-
ence of A and B was found by the use of addition (ignoring for the moment
that the complement was found by subtraction).

This process is particularly simple when applied to binary numbers.
Consider, for example, the subtraction of A = 110101 from B = 111001, that
is, the problem B — A = (?). The first step is to find the 2’s complement of A.
In this case both numbers have 6 bits, making n = 6 in Equation (2.4.1), so

A* = 1000000 -~ 110101
Before carrying out this subtraction, note that from Equation (2.4.2)
A* = A* + 1 (2.4.6)

50 that

A* = (1000000 — 1 — A) + 1
= (111111 — 110101) + 1
= (001010) + 1
= (001011

The important thing to observe from this is the extreme ease with which the
1’s complement is found: simply interchange 1s and 0Os, which requires no
subtraction at all. The 2's complement is then obtained by adding 1. Continu-
ing with the problem now requires that A* be added to B to obtain the
answer:

A" + B = 001011 + 111001 = 1 000100

Since the result has a carry out of the sixth bit position, the result is positive
and has a value of 100. This, of course, can be checked by simply subtracting
the original two arguments.

In this example, absolutely no subtraction was used to obtain the differ-
ence between two binary numbers, since the 2's complement of A was found
by interchanging 1s and Os and then adding 1 to the result. It is important to
remember that both numbers must contain the same number of bits at the
start. Some further examples will iliustrate this procedure.
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1011011 — 0010110 = 1011011 + 1101001 + 1
=1 1000101 (positive)

10011 — 10111 = 10011 + 01000 + 1 = 11100 (negative 00100)

110100110 — 11001 = 110100110 + 111100110 + 1
=1 110001101 (positive)

1 — 100000 = 000001 + 011111 + 1 = 100001 (negative 011111)

In each of these examples the 2’s complement was generated by taking
the 1’s complement and adding 1. A very simple, and mechanical, alternative
to this is the following. Starting on the right and moving to the left, copy the
rightmost zeros until reaching the first 1. Copy this 1. From this point on
copy the complements of the remaining bits. For example, to convert A=
10110100 to its 2’s complement form, we proceed as follows:

Complement Copy
A = 10110 100
A* = 01001 100

This simple procedure works because in taking the 1’s complement of A, the
rightmost three bits would become 011. After adding 1 to obtain the 2’s
complement, these bits become 100, the original right three bits.

Before proceeding to examine how the sign of a number can be made
part of the number, let us go back for a moment to the decimal system.
Equation (2.4.6) may be used to compute the 10’s complement of A* in
Equation (2.4.4) in a particularly simple manner. Specifically,

A* = (10000 — 1 — 0392) + 1
= (9999 — 0592) + 1
= 9407 + 1
= 9408

Notice that although subtraction was required to get the 9°s complement, it
was a particularly simple subtraction requiring no borrows. This occurred
because each digit of A was subtracted from 9 to obtain the corresponding
digit of A*. Thus, converting A to A* requires at each digit position only a
knowledge of that digit and not the whole number. This can be done by a
“‘table look-up”® procedure (as will be described in Section 2.5.4), which
requires no subtraction at all.

Subtraction can also be carried out using the diminished radix comple-
ment. In this case, however, the carries cannot be ignored. Using the dimin-
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ished radix complement, if a carry is generated it must be added to the result.
This addition is referred to as an end-around carry. For example, consider
the subtraction of 101101 from 111001. Taking the 1's complement of 101101

and adding, we obtain the result

111001
+ 010010 (1's complement of 101101}
001011
1 add end-around carry
001100

As was the case for the radix complement, the generation of a carry implies
that the result of the addition is positive. The absence of a carry implies a’
negative result. Problem 2.11 at the end of this chapter explores the reason
for the end-around carry.

One problem with the diminished radix complement is that the repre-
sentation for the number 0 is not unique. To see this, note that the 1's
complement of 000000 is 111111. Thus both of these numbers must represent
the number 0. The nonuniqueness of the number O is one of the reasons that
the diminished radix complement is seldom used in actual designs.

2.4.2 Binary Signed Representations

In the examples just worked, the sign of the result was inferred by whether or
not a carry was generated out of the high-order bit position. It would be
extremely useful if the sign of the number could be carried as part of the
number itself. In the decimal system that most of us have grown vup with, this
is handled in a sign magnitude representation in which each number is pre-
ceded by a sign, such as +149 or —3765. When the sign is missing, the
number is usually considered to be positive. Such a representation can work
in a computer as well. However, the representation almost always used by
the computer hardware is a signed 2’s complement representation. In this
representation, the leftmost (or most significant) bit is taken as the sign. The
sign of the number is minus if this bit is 1 and plus if it is 0. The bits following
the sign are either the magnitude of the number, if the sign is plus, or the 2's
complement of the magnitude of the number, if the sign is minus. This
representation has many advantages, not the least of which is that a string of
computations may be carried out without regard to the resulting sign at each
step. The sign of the answer will be found as the sign bit of the final result.

In a signed 2's complement representation it is always assumed that the
number of bits in the operands is the same. In a large number of microproces-
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sors this number is 8 bits, which is defined as a byte. Some examples of
numbers represented in this manner are the following:

Signed 2’s complement Sign-magnitude Decimal
00111010 = +0111010 = +58
11100101 = —po11011 = 27
10000001 = -1y = =127
01111111 =  +1111111 = +127

By convention, the number 10000000 is taken as —128. This makes a certain
degree of sense, because —127 — 1 = —128, which, when carried out in
signed 2’s complement arithmetic, vields 10000001 + 11111111 =
(1)10000000, where the carry out of the high-order bit position, shown in
parentheses, is ignored, as before. Thus numbers represented in this form
using 8 bits, or a byte, can take on values ranging from —128 to +127.

To illustrate how this representation carries the sign through a string of
computations, consider a couple of examples using a 4-bit signed 2’s comple-
ment form (4 bits is often referred to as a nibble). Let A = 0011 (+3)and B =
0100 (+4). Then

A + B = 0011 + 0100 = 0111 (+7)
A — B =0011 + 1100 = 1111 (-1
—A + B = 1101 + 0100 = 1 0001 (+1)

where we ignore the carry, as before; and
—-A — B =1101 + 1100 = 1 1001 (=7

where again we ignore the carry. Notice in these examples that the sign bit is
treated in exactly the same way as any other bit and that the carries out of the
sign bit position are ignored.

The addition of two n-bit numbers can result in a number whose value
requires more then n bits to represent. Such a sitnation is referred to as

* overflow if the result is positive and underflow if the result is negative. It is

important that the occurrence of overflow or underflow be detected so that
decisions are not based on incorrect results. In a signed 2's complement
representation, overflow or underflow occurs whenever the sign of the two
arguments is the same but different from the sign of the result. For example,
let A = 01101000 and B = 01011000 be two 8-bit signed 2’s complement
numbers (A = + 104 and B = +88). Since the sum of these two numbers (192)
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is greater than +127, the largest number possible in an 8-bit signed 2’s com-
plement representation, an overflow will occur when we add the two num-
bers. In particular, A + B = 11000000, which indicates a negative result.
Problem 2.15 gives another indication of the occurrence of overflow or
underflow.

CODING

It is usually the case that we interact with a computer via a keyboard in
which each key represents some piece of information such as an alphabetic
or numeric character or a control character (e.g., a tab, a space, or a line
feed). The key inputs must be converted to some binary form before the
computer can process them. This is usually done by assigning a specific
pattern of bits to a byte so that there is a byte stored somewhere in the
computer’s memory to correspond to each keyboard input. One such code is
the ASCII code, which will be discussed in Section 2.5.4.

Information may also enter the computer from external sensors (such as
thermometers or strain gauges), from switches, from shaft position indica-
tors, and from many other devices. All of this information must be converted
in some way to binary for proper handling by the computer. Furthermore, it
may be convenient, in some applications, to handle the numbers internally as
decimal digits which have been suitably encoded in some binary form. This
type of representation is very common in hand-held calculators and other
devices where numeric information must be constantly entered by a human,
processed, and finally returned to the human in numerical form.

Many other reasons exist for coding information; among them are en-
cryption and error detection and correction. The purpose of this section,
then, is to describe a few of the commonly used codes and discuss how they
are internally handled and how we can convert from one code to another.

2.5.1 Binary-Coded Decimal (BCD)
and Excess-3 Codes

One of the most common internal representations for decimal numbers is the
binary-coded decimal, or BCD, representation. In this form, the ten decimal
digits are represented by a 4-bit binary number whose value is the decimal
digit. For example, the digit 9 is coded as 1001. Figure 2.5.1 gives the code
for each of the ten digits. In this form a number such as 1853 would be
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Decimal BCD Excess 3

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 D11

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011 Figure 2.5.1
9 1001 1100 BCD and excess-3 codes.

represented internally as 0001 1000 0101 0011. Addition can be carried out
in BCD by adding two numbers as if they were binary but with some slight
modification to the computational process. Consider, for example, the addi-
tion problem 253 + 314. In BCD this becomes

0010 0101 0011
+ 0011 0001 0100

0101 0110 0111 = 567

which is, of course, the correct answer. The addition in this example was
carried out by simply adding the two numbers in binary. Note that no carries
between digits were generated, because the sum in each digit column never
exceeded 9. If the sum of two digits is a number greater than 9, then one of
two things can happen: either the resulting 4 bits is not a legal BCD code
(i.e., it is not one of the ten in Figure 2.5.1), or a carry occurs out of the 4-bit
group. An example of the first situation would be the addition of, say, 6 + 8,
which in BCD becomes

0110
+ 1000
1110

which is not a legal BCD number. Adding 6 to this result will yield the correct
answer (why?). Thus the answer is

1110
+ 0110
1 0100 =14 in BCD
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The second case will occur for additions such as 8 + 9:

1000
+ 1001
1 0001

In this case we note that although the low-order 4 bits represents a legitimate
BCD number, the result of the addition yields a number greater than 9, as
indicated by the carry, and so the correct answer may be obtained once again
by adding 6. Thus

1 0001
+ 0110

1 0111 =17 in BCD

Consider, as a somewhat more complex example, the problem of finding the
sum of 769 and 358, which in BCD becomes

0111 0110 1001
+ 0011 0101 1000
1010 1011 1 0001
+ 0110 0110 | 0110 add in the 6s

10000/1 0001/1 0111
+ 1 1 add in the carries

1 0001 0010 0111 = 1127 in BCD

It may happen in carrying out the BCD addition that the resuit after
adding in the 6s and the carries is still not a correct BCD number. If this
occurs, we simply apply the correction procedure once more. For example,
consider the sum of 37 and 64, which is found as follows:

0011 0111

+ 0110 0100
1001 1011

+ 0110 add in the 6s
1001 ./1 0001

+ 1 add in the carry
1010 0001

+ 0110 add in the 6

1 0000 0001 = 101 in BCD
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A modified version of BCD, which has some attractive features when
subtraction is required, is the excess-3 code. This is basically the same cod-
ing as BCD except that each digit has 3 added to it. Figure 2.5.1 gives the
specific code values. The attractive characteristics of the excess-3 code is
that it is self-complementing; that is, the 1’s complement of the coded num-
ber vields the 9’s complement of the number itself. For example, 3 has a code
of 0110, whose 1's complement is 1001, which is the excess-3 code for 6, the
9’s complement of 3. Thus subtraction in this binary-coded decimal form can
be easily carried out using the diminished radix complement scheme de-
scribed earlier.

To see how the self-complementing feature of the excess-3 code can be
used for subtraction, consider first the addition of two excess-3 numbers, A
and B. Adding these two excess-3—encoded numbers is perhaps most easily
carried out by first converting each to its BCD equivalent, then adding the
results, as described above, and, finally, converting the result back to ex-
cess-3. To convert an excess-3—encoded number to BCD is a very simple
process. Let X' = X + 3 be an excess-3 digit, where the X is the decimal
equivalent of X'. To obtain X we need only add 13 to X " and take the result
modulo (16).4 For example, let X' = 0111, the excess-3 code for4. Then X' +
1101 = 0111 + 1101 = 1 0100, where we obtain the result modulo (16), 0100,
by ignoring the carry. Converting all of the digits of each of the numbers A
and B in this way, we obtain the respective BCD representations. For exam-
ple, to convert the excess-3—encoded representation of the number 97, 1100
1019, to its equivalent BCD representation, we simply add 1101 (13 decimal)
to each digit, as follows:

1100 1010
+ 110% 1101
1 1001 1 0111

Ignoring the carries generated at each digit position, we obtain the result,
1001 0111, which is, of course, the BCD representation for the decimal

number 97.
Now, to perform the subtraction of two excess-3 numbers, say A' — B’,

we first take the 9°s complement of B’ by interchanging 0s and 1s in the coded
digits. This produces the number B'*. Next we convert the numbers A’ and
B’~ to their BCD equivalents, A and B*. Once this is done, we can add the
results in accordance with diminished radix complement arithmetic to pro-
duce the difference. The final excess-3—encoded result is found by adding 3

4y = x modulo (n) means that y is the remainder obtained upon dividing x by n.
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to each digit of the difference. Problems 2.23 and 2.24, at the end of the
chapter, explore this process a bit more.

2.5.2 BCD-to-Binary and
Binary-to-BCD Conversions

When numbers are entered into a computer from, say, a keyboard, they are
encoded in some way. A string of encoded digits then needs to be converted
to a binary number so that the computer can process the numeric information
thus presented. Suppose that the encoding is in BCD.’ The problem then
becomes one of converting these digits to binary. Recall from Section 2.2.2
that converting from decimal to binary requires repeatedly dividing the deci-
mal number by 2 and using the remainder digits as the successive bits of the
equivalent binary number. The same can be done for BCD in a very simple
way if we make a few observations first.

In the decimal system (or any radix r, system, for that matter) division
by 10, requires only that the radix point be moved one digit position to the
left. The remainder is the digit that moves to the right of the radix point.
Another way of thinking about this is to assume that the radix point stays

shifting fixed and that the number shifis to the right one digit position. Thus, in
binary, the number 1001, which is the BCD code for 9, when divided by 2 by
shifting right, becomes (maintaining 4 bits in the answer) 0100, with 1 being
shifted out of the low-order position. This results in the correct answer of 4
with a remainder of 1. This idea can be used to divide a string of BCD digits
by 2 in a very simple manner. Take, for example, 3609/2. In BCD this
becomes (0011 0110 0000 1001)/2. Shifting each digit to the right one posi-
tion will divide that digit by 2, but for the division to be correct for the entire
number, a correction must be made as follows. If a 1 is shifted out of some
digit position, then 5, that is, (0101) must be added to the next lower digit
position (why?). Thus for this example the division may be carried out as

follows:
(3 6 0 9 )/2
= {0011 0110 0000 1001)/2
= 0001 —1 0011 0000 0100 remainder of 1
+ 0101 add 5 as necessary
0001 1000 0000 Q100
1 8 0 4 remainder of 1

5 It will be shown in Section 2.5.4 that whatever code is used, it can be converted to BCD.
Thus this statement is made without loss of generality.

£

iy L
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Using this simple method of division by 2, we can carry out the conversion
from BCD to binary. Consider the conversion of 0101 0011 to bnary. The
work can be organized as follows:

BCD value / Binary result {remainder)

0101 0011 /
shift 0010 — 0001 /1
add 5 + _101

0010 0110 /1
shift 0001 0011 /01
shift 0000 —1 0001 /101
add 5 + _101
0000 0110/ 101
shift 0000 0011 / 0101
shift 0000 0001 / 10101
shift 0000 0000 / 110101 = 53 decimal

As in Section 2.2.2, this process stops as soon as the dividend goes to zero.

The process of going from binary to BCD is exactly the reverse of the
conversion above except that 0101 is subtracted from any BCD digit greater
than or equal to 5 before the shift is made and a 1 is set up as a carry into the
next-higher-order digit position (why?). An example will illustrate the pro-
cess. Consider the conversion of 1101101 to BCD. The work may be orga-
nized as follows:

BCD result / Binary value

0000 0000 / 1101101

shift left 0000 0001 / 101101
shift left 0000 0011 /01101
subtract 5 — 0101

0000 /1 0001 / 1101
shift left 0001 0011/ 101
shift left 0010 0111/ 01
subtract 5 - 0101

0010 1 0010/01
shift left 0101 0100/ 1
subtract 5 - 0101

0000 /1 0000 0100/ 1

shift left 0001 0000 1001 and stop
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The answer, 109 in BCD, is easily seen to be the correct decimal equivalent
of 1101101 binary.

2.5.3 Other Codes for Representing Numbers

The BCD code is an example of a weighted code in which each bit position
has a corresponding weight associated with it. The number represented by
the code character is found by adding the weights corresponding to each 1in
the code. The weights for the BCD code are 8421, and in fact, the BCD code
is sometimes referred to as an ‘8421 code.”’ Other weighted codes exist and
have been used in various computer systems over the years. A weighted
code, in order to represent the decimal digits, must have weights which can
sum to each of the 9 digits. These weights need not, however, be positive.
Figure 2.5.2 gives some examples of other weighted codes.

As mentioned earlier, one reason for coding a number might be to
permit error detection. One simple error-detection code is the 2-out-of-5
code, in which each digit is represented by a character having 5 bits with two
of them always 1 and the remaining three bits always 0. Since there are 10
such combinations, each decimal digit will correspond to one such combina-
tion. In this representation, if an error occurs, say onc that causes a bit to be
set to a 1, then the error is readily detected by the fact that the received code
does not have exactly two 1s and three 0s. Another simple error-detection
mechanism is the addition of one extra bit whose value is determined so that
the number of 1s in the representation is even (or odd, if one prefers). Sucha
bit is called a parity bit. If an etror occurs in the handling of a number with
the result that a single bit is changed, then the total number of 1s will now be
odd and it will be evident that an error has occurred. Other codes exist that
are capable not only of detecting errors but correcting them as well. Prob-
lems 2.26 through 2.28 at the end of the chapter explore some of these coding
techniques.

Decimal 2421 84-2-1 32211
0 0000 0000 00000
1 0001 0111 00001
2 0010 0110 00100
3 0011 0101 00101
4 0100 0100 0011
5 0101 1011 01101
6 0110 1010 10101
7 o111 1001 i0111
8 1110 1000 11101 Figure 2.5.2
9 111t 1111 1111 Examples of weighted codes.
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Pattern of successive values

0000000011111111  1111111H100000000

00001111 11110000
0011 1100
01 0
0000

0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1041
1001
1000

Figure 2.5.3 Generation of a 4-bit Gray code.

Another very useful and commonly encountered code is the Gray code.
In this code, successive digits differ in only one bit position. For example, a
Gray code sequence for 3 bits would be 000, 001, 011, 010, 110, 111, 101, 100.
The generation of this Gray code sequence is very simple. The pattern of
changing values of the least significant bit for the first four digits is 01 fol-
lowed by its refiection 10; then the sequence 01 followed by 10 is repeated as
many times as necessary. The next bit from the right has a pattern over eight
digits of 0011 (twice the number of Os and 1s) followed by its reflected value
1100. The next bit has the pattern 00001111 (again, twice the number of 0s
and 1s) followed by ifs reflected value 11110000. This process continues for
as many bits as are in the code. For example, a Gray code for 4 bits is
generated as illustrated in Figure 2.5.3. The Gray code is used extensively
for shaft encoders and other applications requiring a single bit change be-
tween characters.

2.5.4 Alphanumeric Codes

Numeric information is not the only information that computers process.
Alphabetic characters, punctuation marks, special characters such as mathe-
matical symbols, and many other nonnumeric items must be encoded into a
binary form before the computer can properly handle them. One such code is
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Char- Char- Char- Char-
acter ASCII EBCDIC | acter ASCII EBCDIC | acter ASCIl EBCDIC | acter ASCII EBCDIC
@ 40 &0 blank 20 40 NUL 00
A 41 Cl a 61 81 ! 21 5A SOH 01
B 42 c2 b 62 82 i 22 7F STX 02
C 43 C3 < 63 83 # 23 7B ETX 03
D 44 C4 d 64 84 $ 24 5B EOT 04 37
E 45 Cs e 65 85 % 25 6C ENQ 05
F 46 Cs f 66 86 & 26 50 ACK 06
G 47 C7 g 67 87 ! 27 D BEL a7 ‘
H 48 Cc8 h 68 88 ( 28 4D BS 08 16
I 49 C9 i 69 89 } 29 5D HT 09 05
J 4A D1 ] 6A 91 * ZA 5C LF 0A 25
K 4B D2 k 6B 92 + 2B 4E VT 0B
L 4C D3 1 6C 93 . 2C 6B FF oC
M 4aD D4 m 6D 94 - 2D 60 CR oD 15
N 4E D5 n 6E 95 . 2E 4B 50 0E
0 4F D6 o 6F 96 / 2F 61 51 oF
P 50 D7 p 70 97 0 0 FO DLE 10
Q 51 D8 q 71 98 1 31 F1 DCt 11
R 52 D9 r 72 99 2 32 F2 DC2 12
S 53 E2 s 73 A2 3 33 F3 DC3 13
T 54 E3 t 74 A3 4 34 F4 DC4 14
U 55 E4 u 75 A4 5 35 F5 NAK i5
v 56 ES5 v 16 A5 6 36 F6 SYN 16
W 57 Eé w I Ab 7 37 F7 ETB 17
X 58 E7 X 78 A7 8 38 F8 CAN 18
Y 59 E8 y 9 A8 9 39 F9 EM 19
z 5A E¢$ z TA A9 : JA SUB 1A
[ 5B { 7B ; 3B S5E ESC iB
\ sC | 7C 4F < 3¢ 4C FS Ic
| 5D } D = iD 7E GS 1D
- SE - 7E > 3E 6E RS 1E
— 5F 6D DEL 7F 07 ? iF 6F uUs 1F

ASCIT

Figure 2.5.4 List of ASCIil and EBCDIC codes. The codes shown on the right are
used for control purposes. Note that not all ASCH characters have
corresponding EBCDIC codes.

ASCII (American Standard Code for Information Interchange), which is
used extensively for representing characters that come from a keyboard. In
this code, 7 bits are used to represent all upper- and lowercase alphabetic and
numeric characters, as well as all of the usual punctuation marks and type-
writer control information, such as line feeds, tabs, and carriage returns. In
many computers, this scheme is extended by using an eighth bit to obtain 128
more characters; usually, these 128 are graphic symbols which can be dis-
played on the terminal screen. Figure 2.5.4 gives an abbreviated list of ASCII
codes and the characters represented by each. This table also lists another
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code used for alphanumerics called EBCDIC (Extended BCD Interchange
Code), which uses all eight bits of a byte to represent the information. In
ASCII, the word HELLO would be stored internally as the five bytes (writ-
ten in hex form) 48, 45, 4C, 4C, 4F.

It quite often happens in computer systems that the codes used for input
and the codes used for output are different. Suppose, for example, that a
keyboard used for data input produces EBCDIC and a display terminal used
for output requires ASCII. Obviously, the computer must make a conversion
between these two forms if information is to be displayed properly. This is
easily done by referring to the table shown in Figure 2.5.4, which could be
stored in the computer’s memory somewhere. If, for example, the EBCDIC
code D5 (the code for the letter N) is entered, the corresponding ASCII code
can be found by first locating DS in the table and observing that the corre-
sponding ASCII code is 4E. This process is called a table look-up and is a
very important technique in the design and use of computers. We will see
much more of this process later.
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1975,

Mano, M. M., Digital Logic and Computer Design, Prentice-Hall, Englewood
Cliffs, N.J., 1979,

A very thorough discussion of binary arithmetic can be found in the
classical text by Flores. Flores discusses algorithms for both signed and
unsigned addition, subtraction, multiplication, and division, in Chapters 2
and 3. This book also covers many advanced topics dealing with computer
computational algorithms. A good discussion of signed arithmetic, as han-
dled in a typical modern microprocessor, can be found in Appendix C of the
text by Camp et al.
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Camp, R. C., T. A. SMmay, and C. J. Triska, Microprocessor Systems Engi-
neering, Matrix Publishers, Chesterland, Chio, 1979.

FLORES, 1., The Logic of Computer Arithmetic, Prentice-Hall, Englewood
Cliffs, N.J., 1963.

The subject of BCD arithmetic is covered by a number of authors.
Chapter 2 of Givone and Roesser gives some good introductory examples. A
very extensive discussion of BCD arithmetic operations, including multipli-
cation and division, can be found in Chu’s book. This discussion is somewhat
advanced, however.

CHu, Y., Computer Organization and Microprogramming, Prentice-Hall,
Englewood Cliffs, N.J., 1972. _

GIvoNE, D. D., and R. P. ROESSER, Microprocessor/Microcomputer: An Intro-
duction, McGraw-Hill, New York, 1980.

The problem of converting between BCD and binary was addressed
many years ago in the paper by Couleur. A design based on the ideas pre-
sented there is given in Chapter 9 of the text by Rhyne. Rhyne also discusses
excess-3 arithmetic. The book by Short gives a simple microprocessor pro-
gram for converting BCD to binary in Section 7.3—4. This method is quite
different from the one presented here.

COULEUR, J. F., “BIDEC—A Binary-to-Decimal or Decimal-to-Binary Con-
verter,”” IEEE Trans. Electron. Comput., Vol. EC-7, No. 6, December 1958,
pp. 313-316.

RHYNE, V. T., Fundamentals of Digital System Design, Prentice-Hall, Engle-
wood Cliffs, N.J., 1973.

SHORT, K. L., Microprocessors and Programmed Logic, Prentice-Hall, Engle-
wood Cliffs, N.J., 1981.

The book by Floyd gives a good discussion of excess-3 addition in
Chapter 2. Floyd shows an alternative to the method presented here. He
also, briefly, discusses the self-complementing properties of this code.

Froyp, T. L., Digital Fundamenztals, 2nd ed., Charles E. Merrill, Columbus,
Ohio, 1982.

There are many classic texts that deal with the coding of information for
purposes of error detection and correction. Three recent volumes, however,
discuss this process in a fairly clear and elementary manner. Schwartz has
included, in Chapter 6 of the third edition of his classic text on information
theory, a basic di=cussion of coding in general. Wilkinson presents an excel-
lent introductory discussion of the Hamming codes. Bertsekas and Gallager
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present a very mice introduction to various applications of parity for the
detection and correction of errors.

BERTSEKAS, D., and R. GALLAGER, Data Networks, Prentice-Hall, Englewood

Cliffs, N.J., 1987.

SCHWARTZ, M., Information, Transmission, Modulation, and Noise, 3rd ed.,

McGraw-Hill, New York, 1980.

WILKINSON, B., Digital System Design, Prentice-Hall International, Hemel

Hempstead, Hertfordshire, England, 1987.

PROBLEMS

2.1.

2.2.

2.3,

24.

Write the decimal equivalent of the following numbers.
(a) (375)

(b) (12211)

(c) (101101),

(d) (251.63);

(e) (1A3.5A);

() (231.65)_3

Convert each of the following decimal numbers to the equivalent number in

the base indicated.
(@) 1375 = (M
(b) 2161 = (7);
(¢) 995 = (Mo
(@) 137.35 = (Ds
(€) 735 = (N
() 0.263 = (N

Convert the following numbers.
(a) (1076)s = (?)

(d) (30211} = (s

(© (1523) = Nz

(d) (137.23)s = (Ms

(e) (1A7.B)is = (s

(fy (122.13)-s = (M3

Convert the following positive binary numbers to decimal.

(a) 1011

(b) 1101011

(¢) 1101.1110

(d) 1111.1011

(e} 110100010.001
(f) 111101.11011
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2.5,

2.6.

2.7

2.8,

2.9,

2.10.

Convert the following decimal numbers to binary.
{a) 12

() 365

(c) 3709

(d) 123.662

(e) 10°

(M) = =3.14159 . . .

Convert as indicated.

@ (1375 = (M2 = (M

(b) (AIEF);s = (72 = (Mss

(€) (11101); = (Vg = (M6

(d) (237.55) = ("2 = (s

{e) (10111.1011); = (Mg = (Ths
(f) (CE13.A2)6 = (72 = (Ms

On an examination, a student wrote (2756)s as the answer to a question. Since
7 and 6 are greater than 3, the largest digit permitted in the radix 6 system, the
answer must be wrong. What would you guess is the most likely decimal
equivalent of this number, and why?

Perform the arithmetic indicated, maintaining your answer in sign-magnitude
form. Check your result by converting each probiem to decimal and repeating
the computation.

(@) (1231), + (1103} = (74

(B) (135C)s + (11036 = (Phis

(©) (110101); — (}011); = (M)

(d) (23)s X (31)4 = (7

(e) (1766)s — (23)s = (7

(£) (11101101),/(11101); = ("

Perform the arithmetic indicated on the following positive binary numbers.
Give your answer in sign-magnitude form.

(a) 10111.101 + 1001.011 = ?

(b) 101101 — 1101 = ?

(c) 1101 - 110110 = ?

(@) 1110001 — 1110100 = ?

(e) (—1101) x (110) = ?

(f) 10001.101 % 111.001 = ?

Using the radix complement representation, perform the following subtrac-
tions. Assume that the numbers are all positive.

(@) (1765)10 — (351)s0 = ?

(M) (5760 — (901} = ?

(c) (1101011); — (10111}, = ?

{d) (101101}, - (110101}, = ?

{e) (100011); — (100100)> = ?

(F) (111111 — () = ?
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2.11.

2.12,

2.13.

2.14.

2.15.

2.16.

When two numbers are subtracted using the radix complement, a carry gener-
ated in the high-order digit positive is ignored. Show that this carry must be
added to the result if the subtraction is carried out using the diminished radix
complement. This carry is termed an end-around carry. (Hint: Recall that the
definition of the diminished radix complement is just the radix complement
minus 1.)

Perform the following binary subtractions, using the diminished radix repre-
sentation. Assume that the numbers are unsigned positive binary numbers.
Give your answers in sign-magnitude form.

{a) 11010 — 1011

(b) 1101 — 1111

(c) 1001 — 1001

(d) 10100 - 11001

(e) 110111 — 1000011

(f) 101110001 — 1110011

Convert the following decimal numbers to 8-bit signed 2°s complement form.
(a) 23

(b) 115

{c) 100

dy —37

(e) ~115

& -77

Assuming that the following binary numbers are in signed 2's complement
form, what is the decimal value, in sign-magnitude form, of the arithmetic
indicated?

(a) 00101101 + 00011110

(h) 11011011 + 00101101

(c) 11100101 + 01011011

(d) 00101101 — 01110111

(e) 11010111 — 11110100

(f) 11110101 — 11100011

Prove: In an n-bit signed 2's complement representation, overflow or under-
flow in the addition of two numbers is indicated either if a carry comes into
the sign bit and no carry goes out or if no carry enters the sign position but a
carry goes out. (Hint: Remember that overflow occurs if the two arguments
have the same sign but produce a result having a different sign.)

Encode the following decimal numbers in BCD and excess-3.
(a) 137

(by 2345

(c) 1236

(d) 1941

(e) 5.9556

(F) 325.599
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2.17.

2.18.
2.19.

2.21.

2.22.

2,23,

Convert each decimal number to BCD and carry out the arithmetic indicated,
leaving the result in sign-magnitude BCD form. Use 10’s complements to
perform the subtractions.

(a) 193 + 488

(b) 1234 + 999

(¢) 375.2 + 26.5

(@) 378 — 149

{e) 275 — 3664

(f) 123.35 - 52.2

Why is an illegal BCD digit converted to a legal BCD digit by adding 6?

Convert each of the following BCD numbers to binary using the procedure
given in Section 2.5.2.

(a) 0010 0111

(b) 1000 1001

{c) 0001 1001 00F1

(d) 0101 1000 0111

(e) 0010 0111 0011 1001

() 1001 1000 0111 0110

Convert each of the following binary numbers to BCD using the procedure
given in Section 2.5.2.

(a) 0111

(b) 10111

(¢) 1110111

(d) 101000

(e) 11010111

@ 11111111

Devise a method similar to that given in Section 2.5.2 for BCD integers to
convert BCD fractions to binary. Recall that conversion of decimal fractions
to binary requires repeated multiplication by 2, which is equivalent to shifting
left one bit position. Use your method to convert 0.0010 0111 (= 0.27 deci-
mal) to binary.

Based on your solution to Problem 2.21, devise a method to convert binary
fractions to BCD.

Using the 9°s complement, perform the following decimal arithmetic. Leave
your answers in complemented form and indicate which results are negative.
(a) 3789 - 145

(b) 1234 — 678

(¢) 375 — 421

(d) 137.225 - 49.117

(e} 100.2 — 263.35

{H —275 — 106
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2.24.

2.25.

2.26.

2.27.

2.28.

2.29.

39

Repeat Problem 2.23 after encoding the decimal numbers in excess-3 code.
Use the fact that the 9’s complement of a decimal number is the 1's comple-
ment of its excess-3~coded form.

Devise a method for representing the sign in a signed, 10’s complement
representation similar to what is done in a signed, 2’s complement representa-

tion.

We say that the distance between two »-bit numbers is the number of bit
positions in which the two numbers differ. A code is said to be of ‘‘minimum
distance k'° if the minimum distance between any two code numbers is k.
Devise a minimum distance 2 coding for the decimal digits 0 to 9. (Hinz: The
BCD code with one extra bit will do the trick.}

Devise a 2-out-of-5 code as described in Section 2.5.3. What is the distance of
this coding scheme?

The most likely error that can occur in the transmission of data is a change in
one bit due to noise in the transmission path. Show that if information is
encoded in some minimum distance 3 code, a single-bit error not only can be
detected but can also be corrected. Devise such a code for the decimal digits
and show an example of how a single-bit error can be corrected. (Hint: Add
three parity bits so that they check parity over three unique subsets of the
now seven bits: four data and three parity.}

Encode your name in both the ASCII and EBCDIC codes.
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Boolean and

Switching Algebra

D 3-1

INTRODUCTION

All engineering disciplines have a mathematical base on which the develop-
ment of concepts depends. The design of digital systems, including com-
puters, is no different. Here the mathematical base is called Boolean alge-
bra.' As one might guess, this mathematical system is named after someone
named Boole, in fact, George Boole, who was one of the first people to
develop a rigorous mathematical structure for investigating the way we rea-
son. Boole’s treatise, published in 1854, was entitled An Investigation of the
Laws of Thought.? No practical application was made of Boolean algebra
until the late 1930s. A. Nakashima, in Japan, in 1937, and, in the following
year, C. E. Shannon, at the Massachusetts Institute of Technology, each
independently applied the algebra of Boole to the analysis of networks of
relays. This was a very important application, since the telephone system at
this time was growing very rapidly and required very large relay networks for

1 It is unfortunately true that many people tend to use the terms Boolean algebra and switch-
ing algebra interchangeably. As we will see shortly, a switching algebra is, strictly speaking, a
subset of Boolean algebra.

? This book was reprinted by Dover Publications in 1954.

41
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switching and otherwise handling calls. If such a system was to grow in a
controlled way, it was essential that a rigorous mathematical base be devel-
oped to describe the general interconnections. Obviously, the application of
Boolean algebra has expanded dramatically over the intervening years as
digital systems have grown and become increasingly more pervasive in our
world.

Because of the importance of switching algebra to the design not only of
computers but of communications systems, control systems, and any other
system that requires or uses digital technology, it is important that we under-
stand the intricacies of the algebra. Thus, in this chapter, Boolean algebra
and its subset, switching algebra, will be defined. We will also investigate
some of the implications of these definitions and examine the various meth-
ods that can be used for handling and simplifying equations.

HE HUNTINGTON POSTULATES

polean
gebra

Algebras are defined by listing a set of statements which are taken to be fact.
These statements are termed the axioms or the postulates of the algebra. One
of the goals of the mathematician is to reduce the number of postulates
required to define an algebra to a minimum consistent set. In 19504, E. V.
Huntington set himself the task of reducing the definition of Boolean algebra
to this minimal set of postulates. He found that all of the results and implica-
tions of the algebra described by Boole could be derived from only six basic
postulates. Using these six, Huntington defined a Boolean algebra as follows:

Huntington Postulates (E. V. Huntington, 1904). The set (B, +, -, ),
where B is the set of elements or constants of the aigebra, the symbols + and
- are two binary operators, and the overbar is a unary operator, is a
Boolean algebra if the following hold true:®

1. Closure. For all elements a and b in the set B,
(i) a + b is an element of B and
(i) a - b is an element of B.
2. (i) There exists a 0 element in B such that for every element 2 in B, 0 +
a=a+0=gaand

3 The terms binary operator and unary operator refer to the number of arguments involved in
the operation: two or one, respectively.
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(i) there exists a 1 element in B such that for every elementain B, 1 -
a=a-1=a.

3. Commutativity. For all elements ¢ and b in the set B.
i) a+ bh=~h+aand
a-b=~b-a

4. Distributivity. For all elements a, &, and ¢ in the set B,
a-(b+c)=a-b+a-cand
(iia+(h-c)=(a+b)-(a+tc)

5. For every element a in the set B, there exists an element & in the set B
such that
i)a+a=1and
(i) a-a=0.

6. There exist at least two distinct elements in B.

A switching algebra is a Boolean algebra in which the number of elements in
the set B is precisely 2.

In this definition, the two binary operators, represented by the signs +
and -, are called the OR and the AND, respectively, and the unary operator,
represented by the overbar —, is called the NOT or the complement opera-
tor. The specific behavior of these operators can be deduced from the postu-
lates, as we will show in a moment. Before we take a close look at switching
algebra, which is really the main subject for the remainder of this book, let us
consider some of the algebraic implications of these postulates by stating and
proving some theorems that will be useful later.

Thearem 3.2.1 [Idempotence|

For all elements a in the set B:

i)a+a=a
(i) a-a~=a

Proof Consider first a + a:

a+a=(a+a-1 [Postulate 2{ii)]
={g+a) (a+aq [Postulate 5(1)]
=aga+a-a [Postulate 4(i1)]
=q-+0 [Postulate 5{ii)]

= a [Postulate 2(i)]
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The proof of the second part follows similarly:

ara=a-a+0 [Postulate 2(i)]
a-a+a-a [Postulate 5(ii)]

a (a+a [Postulate 4(1)]

=q-1 [Postulate 5(i}]

=q [Postulate 2(ii)]
QED

An interesting observation should be made here, and that is that both
the postulates and Theorem 3.2.1 are stated in two parts. The difference
between the two parts is that all ANDs and ORs and all 1s and 0s are
interchanged. This, in fact, is the definition of the dual of a Boolean expres-
sion. Thus part (i) of Theorem 3.2.1 is the dual of part (1). Furthermore, note
that the proof of part (ii) uses, at each step, the dual of the postulate used in
proving the corresponding step of part (i). This results in the principle of
duality.

Principle of Duality
If a2 Boolean statement is proved true, the dual of the statement is also true.

Using this principle, we need only prove the first half of a statement, since
the dual portion is provable by using the dual postulates. Consider as an
example the next theorem.

Theorem 3.2.2

For all elements a in the set B:

@a-0=0-a=0
(i a+1=1+a=1

Proof Consider part (i):

a-0=0+a-0 [Postulate 2(i)]
=g-a+a-0 {Postulate 3(ii)]
=g-(@-+20) [Postulate 4(i)]
= g - (@) [Postulate 2(i)]

=0 [Postulate 5(ii)]
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Also, by postulate 3(i1), a - 0= 0" a. Since the result is true fora - 0 = 0, by
the principle of duality it is also true for a + 1=1. QED

The reader should fill in the proof of the second part of Theorem 3.2.2.

Postulate 5(i) states that the complement of an element is in the set B but
says nothing about the possibility that an element might have another com-
plement. In fact, as the next theorem demonstrates, the complement of an
element is unique, a very important fact to remember.

Theorem 3.2.3

Let a be an element of B. Then & is unique.

Proof We will prove this by assuming that & is not unique and show that this
results in a contradiction. Assume that @ has two distinct complements (not
equal), @ and b. Then, by Postulate 5, we must have that

a+b=1 and ata=1

and

Then

1 [Postulate 2(1)]

[Postulate 4(i}]

]
Q © R RN
)
+
G|
o

- b [Postulate 2(i)]

Next, in a similar way, consider b:

b=b-1

o
T =]
Q'r—l-
G-
2
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From these two cases we observe that
b=a-b=a

which contradicts the assumption that the two complements of a were dis-
tinct. QED

Nothing has been said to this point about the number of elements in -
set B other than that it must be at least 2. It turns out that a general Boolcua
algebra has 2" elements.* We have already mentioned that a switching alge-
bra is basically a two-element Boolean algebra which, obviously, has the two
elements 0 and 1. From this point on, we will restrict our attention to switch-
ing algebras only. A few of the problems given at the end of the chapter will
examine some simple aspects of general Boolean algebras.

The AND, OR, and NOT operators have not yet been formally defined.
However, the way in which they operate on 0 and 1 may be deduced from the
postulates and the theorems just presented. Obviously, for the binary opera-
tors, AND and OR, there are four possibilities for values of the two switching
variables operated on. Let x and y be two such switching variables, where a
switching variable is taken to mean a variable that can take on only the value
0 or 1. Now consider the AND operation, x - y. All of the possibilities for x
and y, along with the resulting value of the AND, x - y, are given in the
following table:

AND
Xy Xy

0 0 0 [Theorem 3.2.1(i)]
0 1 0 [Theorem 3.2.2(1)]
1 0 0 [Postulate 3(ii)]

1 1 1 [Theorem 3.2.1(i1)]

In a similar manner, or by using the principle of duality, the defining table of
values for the OR operator becomes

* The proof of this is beyond the scope of this book and will not be given here, but a readable
proof can be found in Elliott Mendelson, Boolean Algebra and Switching Circuits (Schaum’s
Qutline Series), McGraw-Hill, New York, 1970, beginning on p. 135, Sec. 5.2.
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OR
X ¥y x+y
0 0 0
0 1 1
1 0 1
I 1 1

By simply observing from Theorem 3.2.3 that the complement of a value is
unique, we find, since there are only two possible values that a switching
variable can take on, that the NOT operator must be defined as follows:

NOT
X X
0 1
1 0

Restricting our attention to a switching algebra and then using the defi-
nitions for the three operators just given, we can easily deduce further results
for the algebra by completely enumerating all possible values for the switch-
ing expression.’

Theorem 3.2.4 {Involution)

Let x be a switching variable. Then

(x) =x
Proof We will prove this by complete enumeration:
[63]

0
1

P

X

0
1

o -

Since the left column is identical to the right column and since we have
listed all possibilities, we have proved the result. QED

Another example will further illustrate the process of enumeration.

3 These results also apply to the more general Boolean algebra.
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Theorem 3.2.5
Let x and y be two switching variables. Then

Mx+xy=x
@) x - x+y =x

Proof Again, the proof will be by complete enumeration:

X ¥y x-¥ xX + x'¥

00 0 0o + 0 =0
01 0 0o + 0 =0
1 0 0 1 + 0 =1
11 i 1 + 1 =1

Since the column labeled x and the column labeled x + x - y are exactly the
same, we have proved the result. Part (ii) is, of course, true by the principle
of duality. QED

A number of useful identities may be proved using the idea of complete
enumeration. The following theorem lists a few of these identities. The proof
is left as an exercise for the reader.

Theorem 3.2.6
Let x, y, and z be switching variables. Then

1. Associativity
Mx-(y-=&-y-z
@ x+(y+=x+y +z
2. Dx+x-y=x+y
) x-E+y)=x"y
3. Consensus
Dx y+Xrz+y-z=xy+i-2
i x+y) F+-(y+d=G&+y) T+
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DE MORGAN'S THEOREM

De Morgan’s
Theorem

The complement of a variable in a switching algebra was defined by Postulate
5 of the Huntington postulates. We know that since the algebra is closed, by
Postulate 1, that x + y results in an element in the algebra and thus has a
complement, (x + y). What we would like to know, however, is what this
complement is in terms of the variables and their complements. De Morgan'’s
theorem addresses this question.

Theorem 3.3.1 De Morgan's Theorem

Let x and y be two switching variables. Then

——

@ x+y)=x-7
(i) (x-y)=x+5¥

Proof This may easily be verified by complete enumeration, as follows:

x y x+y (x+vy X vV xX-¥
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 i 0 0 1 0
1 1 i 0 0 0 0

Since column (x + y) is identical to column ¥ - ¥ and all possibilities are
listed, the result is proved. Part (ii) is true by the principle of duality. QED

This result is especially useful for the evaluation of complements of
switching expressions. For example, suppose we are given the expression
[x + vy - (z + w)] involving the variables w, x, y, and z and are asked to put
this in a form where the complements are associated only with individual
variables and not with groups of variables. Using De Morgan’s theorem and
some of the results from Section 3.2, this can easily be done:

E+y G+wl=& [y-Z+wl [Theorem 3.3.1()]
=@ [y+Z+wl [Theorem 3.3.1(ii)]
=@ [§+ @ w] [Theorem 3.3.1(1)}
=x-(¥y+ 2z W) [Theorem 3.2.4]
=x -y+x-7-W [Postulate 4(i)]
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Note in this example that application of De Morgan’s theorem requires that
the original expression first be partitioned into two pieces separated by either
a +, as was the case here, or a center point. Continuing this on each of the
resulting pieces allows successive application of these laws. This result may
be extended to the complement of the AND or the OR of more than two
variables by the following corollary to Theorem 3.3.1:

Corollary 3.3.2

Let x;, Xz, . . . » X, be n switching variables. Then
i) (x;-x3- - X=X txX + X»

(ii) (x1+x2+ .. '+xn)=fl.f2. . 'fn

A second example illustrates this extension.

{[x-(+2))-(y+w-2) (x+2)}
=[X-(y+]l+(y+w-2)+(x+2)
=@+ +N+y-w-n+x-z (3D
=x+y+z+y-[W+@I+x-Z
=x+y+z+y-(W+tz)+XxX-2

As we shall see later, De Morgan's theorem plays a very important part
in the design of the hardware of a computer.

SWITCHING FUNCTIONS

switching
Sfunction

A switching function may be defined simply as a mapping from the set of
binary n-tuples® into the set {0, 1} and may be denoted, in the usual way, as,
for example, f{x,, x2, . . . , Xa), Where the x; are switching variables. Since
there are n variables, each of which can take on one of two values, 0 and 1,
there must be a total of 2* possible assignments for these n variables. For
each of the possible assignments, the function f will, of course, take on a
value of either 0 or 1.

¢ An n-tuple is an ordered set of n numbers, such as the 6-tuple (101101), which has six digits.
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fx, v, 2)
0
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e
]

Figure 3.4.1
Truth tabie for a function f(x, y. 2).
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There are quite a number of different ways in which a switching func-
tion may be represented. The expressions given in Section 3.3 are examples
of switching functions; for instance, Equation (3.3.1) is a switching function
on four variables. The purpose of this section, then, is to describe some of
the more commonly used methods for denoting switching functions and to
show how the functions can be derived and how they can be converted from
one form to another.

3.4.1 Truth Tables

As defined above, a switching function is just an association of 0 and 1 with
each of the possible assignments of the variables of a function. Because of
this, a simple way of representing a switching function is to make a list of the
possible variable assignments and note the value the function takes on for
each assignment. Such a list is called a truth table. As an example, some
function f(x, v, z) might have the truth table shown in Figure 3.4.1. From this
table we can determine what value f(x, ¥, z) will take on for any possible
assignment of the three variables. Thus, we can observe thatifx = 1,andy =
0,and z = 1, then f(x, v, z) = L.

To see how a truth table might be created, suppose we would like to
describe a function g{w, x, y, z) whose value is 1 whenever the decimal
equivalent of the four variables, taken as a 4-bit number, is greater than 9.
Such a function would be useful for checking whether or not a 4-bit number
represents a legitimate BCD code. The truth table for this function would be
as shown in Figure 3.4.2. Note that whenever w, x, y, and z, taken as a 4-bit
number with w the high-order bit, takes on a value greater than 9, g takes on
a value of 1.

Suppose now that we are given the function’

hix,y,z2) =X + ¥Z (3.4.1)

7 In what follows, the AND symbol, (-}, will be omitted if no confusion can occur. Thus v - X
will be written as yX.
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w vy 2 fglw x,y2)

0 0 0 0 0

0 0 0 1 0

0 01 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

01 1 0 0

o1 1 1 0

1 0 0 0 0

1 0 0 | 0

1 0 1 0 1

1 0 1 1 1

11 0 0 1

11 0 1 1

L 1 Figure 3.4.2
U ! Truth table for a BCD code checker.

and are asked to construct the corresponding truth table. To do this, we
simply note that 2 = 1 whenever x = 0, without regard to the values of y and
z, and that # = 1 whenevery = land z = 0, without regard to the value of x.
The truth table for A(x, y, z) thus becomes as shown in Figure 3.4.3.

Another example will help illustrate this process further. Assume that
we are given the function

F(x,y,2) = (x + )(yZ + ¥2) (3.4.2)

and again asked to construct the corresponding truth table. In the form given
by Equation (3.4.2), it is not obvious what values of the variables x, y, and z
make F(x, y, z) one. However, if we expand the equation by ANDing the two
terms shown and then simplify the result, we obtain

F(x,y,2) = (x + ¥)(yZ + ¥2)

= xyz + yyz + xyZ (3.4.3)
=yz(x + 1) + xyZ
= yz + xyZ

x ¥y z |MeyD

0 0 0 1

0 0 1 1

0 1 0 1

¢ 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1 Figure 3.4.3

I 11 0 Truth table for the function given in Equation (3.4.1).
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x v z| Flx,y,2

¢ 0 0 0

o 0 1 1

0 1 0 0

0o 1 1 V]

1 0 0 0

1 0 1 1

1 1 0 1 Figure 3.4.4

1 1 1 0 Truth table for the function given in Equation {3.4.2).

From this alternative representation, which consists of a sum of two product
terms, we can easily determine which variable assignments make the func-
tion one. In this case the function is one if y = 0 and z = 1, regardless of the
value of x, orif x = 1,y = 1, and z = 0. The resulting truth table is shown in
Figure 3.4.4.

From the way in which we represent switching functions by truth tables,
it is easy to count the number of possible switching functions on n variables.
For each possible assignment of the n variables, we can define a function
whose value is 0 and we can define another whose value is 1. Since there are
27 possible assignments on the n variables, there must be 2@ possible switch-
ing functions on those n variables. For n = 2, then, there must be 16 possible
functions, and for n = 4, there are 65,536 possible functions. The table in
Figure 3.4.5 lists all of the functions on two variables and lists names given to
some of these functions.

xy =00 01 10 11 Function Name
0o 0 0 0[O0
0 0 0 1| x AND
0 0 1 0| A Implication
0 ¢ 1 11 x
0o 1 0 0] ¥
o 1 0 1|y
0 | 1 0| @+ ¥y ExciusiveOR
0 1 1 1| x+y OR
1 0 0 0| r+y» NOR
1 0 0 1| ¥ +xy Equivalence
1 0 1 0[7F
1 0 1 1} x+¥
1 1 0 0 X
i 1 0 1] Xx+y
1 11 0| &w NAND
1 P11 1

Figure 3.4.5 List of the switching functions on two variabies and the names
given to some of these functions.
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3.4.2 Canonical Forms

The truth table representation for a switching function has its uses, but it is
certainly not very compact, especially for functions of a large number of
variables. There are several alternatives to this tabular representation. One
of the simplest is to list only the assignments for which a function is 1 or,
alternatively, list those for which the function is 0. Such a list is, of course,
unique for any given function, and is referred to as a canonical representa-
tion.?

One way of writing a canonical representation is as an equation or an
expression in terms of the variables. Consider, as an example, the function
f(x,y, z) given by the table of Figure 3.4.1. The function fis 1 whenever x =
0,y=0,and z = 1 or wheneverx =0,y = 1, and z = 0 or wheneverx = 1,
y = 0, and z = 1. It is easily verified, by simply substituting these values for
the variables, that the expression X¥z + ¥yZ + x¥z takes on the value 1 only
when these patticular variable assignments are made, and so fcan be written
as

flx, y, 2) = ¥yz + XyZ + x¥z (3.4.4)

Equation (3.4.4) is made up of the “‘sum™ of three *‘product’ terms,
where each ‘‘product’’ term is the AND of a set of literals. A literal is defined
here as a variable or the complement of a variable. Thus, this equation is
referred to as a sum of products (SOP) expression. In this case the expres-
sion consists of three product terms and nine literals. If a product term
involves all the variables of a function, it is referred to as a minterm. Equa-
tion (3.4.4) is made of minterms only and is therefore called a canonical
minterm expression or expansion of the function flx, ¥, z).

Consider now Equation (3.4.1). Although this equation is an SOP ex-
pression, it is not a canonical minterm expression for A(x, y, z), since the
product terms are not minterms. However, using the truth table shown in
Figure 3.4.3 and proceeding as was done to derive Equation (3.4.4), we can
easily find the canonical minterm expansion to be

hix, y, z) = XyZ + Xyz + XyZ + Xyz + xy2 (3.4.5)
It was mentioned earlier that a canonical representation can also be

made up of a list of the variable assignments that make the function 0. To
write a canonical expression for a function based on the 0 values, all we need

% The term canonical, as used here, refers to a list of items that defines a function with which
other functions can be compared to determine equivalence.
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do is change our point of view with regard to the function. Consider, as an
example, the function A(x, y, z) given in Equation (3.4.5). If an assignment
on the three variables makes the function 4 equal to 0, this assignment must
make & equal to 1. Therefore, first write the canonical minterm expansion for
. From Figure 3.4.3, this becomes, upon listing the minterms for which
h(x,y,2) =0,

h(x, v, z) = X¥Z + x¥z + xy2 (3.4.6)

What we are after is the gzl_nonical representation for &, not . From Theorem
3.2.4 we know that & = (h), and so all that needs to be done to obtain A is to
complement Equation (3.4.6) using De Morgan’s theorem. This yields

W, y,2) =T +y+ (X +y+DE +¥ + D) (3.4.7)

This expression is in quite a different form from that of Equation (3.4.4).
Here we have the ‘‘product’ of three “‘sum’’ terms, and so we will describe
this form as a product of sums (POS) expression. Each sum term involves all
of the variables of the function and is called a maxterm. Thus, Equation
(3.4.5) is referred to as a canonical maxterm expression or expansion of the
function. The canonical maxterm expansion for the function given by Equa-
tion (3.4.2) can be found in a similar manner using the truth table for the
function shown in Figure 3.4.4. In this case we have

F(x,y,z) = F(x, 5, 2)
= (XyZ + XyZ + Xyz + x¥Z + xy2) (3.4.8)
=(x+y+z)(x+y‘-+z)(x+y+f)(f+y+z)(f+y+'z')

Since a canonic representation for a switching function is nothing but a

‘list, it need not be given in literal form; other possibilities exist. One very

common canonic representation for functions is found by treating the vari-
able assignments as binary numbers and then listing the decimal equivalents
of those assignments which cause the function to be 1 or, alternatively, 0.
Using this representation, A(x, y, z) of Figure 3.4.3 would be written as

hix,y,z) =2 mi0,1,2,3,6) (3.4.9)

where the = implies *‘sum’” or OR and the lowercase m implies minterms.
Using the assignments which make 4 zero, the representation in a similar
form would be

hix,y, z) = 11 M@4,5,7) (3.4.10)
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where the IT implies “*product’ or AND and the uppercase M implies max-
terms. We will refer to these canonical forms as the canonical minterm and
maxterm index list representations. Note that conversion from one of these
forms to the other is simply a matter of listing the elements in one that do not
appear in the other.

As another example, consider the BCD checker of Figure 3.4.2, The
min- and maxterm list representations for g(w, x, ¥, z) become

glw, x,y, 2) = Z m(10, 11, 12, 13, 14, 15)

(3.4.11)
=J1 M©,1,2,3,4,5,6,7,8,9

which are found by simply listing the assignments for which g = 1, in the first

case, and for which g = 0, in the second.

The literal form of a canonic representation can be derived quite simply
from the index list form by writing the product or sum term that corresponds
to the index. As mentioned above, the minterm index is simply the decimal
equivalent of the variable assignment that makes the function 1. The max-
term index is the decimal equivalent of the assignment that makes the func-
tion zero. Thus to get the product term that corresponds to a minterm index,
we simply convert the index to binary and then replace each 1 by the corre-
sponding uncomplemented variable and replace each 0 by the corresponding
complemented variable. For example, suppose that 13 is a minterm index of
some function on five variables. Then, since 13 is 01101 in binary, the prod-
uct term corresponding to this index is ABCDE.

Since a maxterm corresponds to the variable assignment that makes the
function 0, the corresponding sum term must be derived in a somewhat
different manner. In this case we first write the product term corresponding
to the index. Since this product term is a minterm of the complement of the
function, the complement of this product term will, therefore, produce the
sum term corresponding to the maxterm index of the original function. Thus
if 23 is a maxterm index of the function, then since 23 = 10111, ABCDE is the
minterm of the complement of the function, (ABCDE)=(A+B+ C+D +
E) is a maxterm of the function. The reader should verify this process by
comparing Equations (3.4.9) with (3.4.5) and (3.4.10} with (3.4.7).

3.4.3 Conversion of SOP and POS Expressions
to Canonic Forms

The equation

f(A, B, C) = AB + AC (3.4.12)
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is in an SOP form, but it is not a canonical minterm expansion of f, because
the product terms are not minterms. It was shown above that the canonic
expansion of f can be found from the truth table for the function. It is not
necessary, however, to generate the truth table to get this expansion. In
Equation (3.4.12), we note that the first product term becomes a minterm if
variable C is included and the second becomes a minterm if variable B is
included. This is easily done by ANDing each product term with 1 in the
following form:

fA,B,C)=AB-1+A-1-C
= AB(C + C) + A(B + B)C (3.4.13)
= ABC + ABC + ABC + ABC

This expression is now a canonical minterm expansion of f with alternate
index list forms of

f(A,B,C)=2m(3,2,7,5)

=11 M0, 1, 4, 6) (3.4.14)

It sometimes occurs that an equation is simpler in the SOP form than in
the POS form, and so it is useful to be able to convert between these two
representations. Again, consider Equation (3.4.12). To get this expression
into a POS form, we may apply Postulate 4(ii} as necessary to break up the
product terms. Thus

f(A, B, C) = AB + AC
= (AB + A)AB + C)
(A + AXA + BXC + A)C + B)
=1-(A+BXA +C)YB+ C)
= (A + B)A + C)B + ()
=(A+ B)YA+ C) (by consensus)

(3.4.15)

In this case, the complexity of the expressions is the same: two sum terms

and four literals.

The sum terms in Equation (3.4.15) can be converted to maxterms by
using the dual process that was used to obtain the minterms in Equation
(3.4.13). The sum term A + B, for example, becomes

A+B=A+B+0
=A+B+CC
=(A+B+C)lA+ B+ C) [byPostulate 4(ii)]
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In a like manner, the remaining sum terms can be converted to maxterms to
produce the canonical maxterm expansion for f of

flA,B,C)=(A+B+CA+B+CYA+B+CYA+B+C) (34.16)

Postulate 4(i) can be used to carry out the reverse process of going from POS
to SOP expressions. The reader should expand Equation (3.4.16) using this
postulate to verify that f(A, B, C) of this equation is equal to f(A, B, C) of
Equation (3.4.13).

SIMPLIFICATION OF SWITCHING FUNCTIONS

cost

Karnaugh
map

Quine-
McCluskey

In general, the cost of implementing an equation in hardware is related
directly to the number of terms and the number of literals in each term of the
expression. It is therefore important that we be able to reduce the complexity
of an equation before it is cast in hardware. The purpose of this section is to
examine some of the various ways by which we can simplify switching
expressions before we implement them.

There are three fundamental approaches we will consider here which
can be used to simplify switching expressions. The first approach uses the
postulates and other results to reduce the form of an expression aigebrai-
cally. This approach generally requires a good deal of experience to accom-
plish a reduction with any degree of facility and is therefore used sparingly. It
is important, however, that we develop some feeling for this process if we
are going to understand the other approaches. The second approach is a
pictorial or diagrammatic approach that uses a map, called a Karnaugh map,
on which the function is plotted. From this plot, groups of minterms that can
combine to form a single product term are easily identified. This approach,
however, is limited in practice to functions of six variables or fewer. The final
technique is one that can be implemented on a computer and can, therefore,
handle functions of an arbitrarily large number of variables. Typical of proce-
dures of this type is one called the Quine—McCluskey algorithm. Each of
these reduction methods will be described in what follows.

3.5.1 Algebraic Manipulation

Since the objective here is to simplify switching functions, we need to define
just what is meant by simplification. Basically, an expression will be consid-
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ered simplified whenever it contains a minimal number of literals and terms,
either product or sum terms. By minimal, we mean that any other expression
having fewer terms and literals will not represent the original function, that
is, will not produce the truth table of the original function. If the minimal
expression is in SOP form, it will be called, naturally enough, a minimal sum
of products (SOP) expression, and if it is in POS form, then it is a minimal
product of sums (POS) expression.

Since we are dealing with a switching algebra, we may use the theorems
and postulates of the algebra to find this minimal form. There are three basic
results on which the reduction procedures heavily depend. For the minimiz-
ing of SOP expressions, these are

Result 1. xy + Xy =¥ (easily verified using distributivity)
Result 2. x + xy=x + Yy [Theorem 3.2.6, part 2(i}]
Result 3. ¥z + xy + yz = ¥z + xy  [Theorem 3.2.6, part 3(iXconsensus)]

Of course, the dual of these results would be used for minimizing functions
given in POS form. Other results are used on occasion, but these three apply
most often. A simple algebraic reduction procedure consists of applying
result 1 to the function until it cannot be applied further, and then doing the
same with result 2. When result 2 can no longer be applied, we go back to
result 1. We continue until neither result 1 nor result 2 applies, and then we
go to result 3. When none of results 1, 2, and 3 can be applied, we may
assume that the minimal form has been found. It turns out that this assump-
tion is not always correct. However, the resulting form is usually close to
minimal. An example will help illustrate this process. Let

flw, x,y, 2} = Wkz + Wxz + xyz + wxy (3.5.1)
= [¥(Wz) + x(Wz)] + xyz + wxy
= Wz + xyz + wxy (result 1)
= wz + wixy) + z{xy)
= Wz + wxy (result 3)

~ As can be seen from this example, it is not always obvious how to factor
the expression at each step so as to apply one of the three results listed
above. This, of course, is the part that takes experience. Consider another
example. Let

g(A, B, C, D) = ABC + ABC + BCD + ACD + ABCD (3.5.2)
= [(AB)T + (AB)C] + BCD + ACD + ABCD
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= AB + BCD + ACD + ABCD (result 1)
= A[B + B(CD)] + BCD + ACD
= A[B + CD] + BCD + ACD (result 2)

= AB + ACD + BCD + ACD

= [A(B) + A(CD) + B(CD)] + ACD

= (AB + ACD) + ACD (result 3)
= AB + ACD + ACD

As a final example, consider the simplification of expression (3.3. 1), whichis
repeated here:

x+y+z+F@W+) +XZ=(x+ID+ [y +IFW+ 2] +2 (353)
=x+Zi+y+w+z+z e

Although none of the three results listed above can be applied at this stage,
this expression clearly simplifies to the constant value 1, because it contains
the term z + Z = 1 and, in the switching algebra, 1 + ‘‘anything” = 1.

These examples illustrate some of the difficulties involved in simplifying
switching expressions algebraically. Although algebraic simplification is not
totally straightforward, it can often result in a simplified form much more
rapidly than use of the other two methods to be described shortly. It is
therefore important that the reader develop some degree of facility with this
process. A number of problems are given at the end of the chapter to help in
this regard. '

3.5.2 Prime implicants

In an SOP expression, each of the product terms is called an implicant of the
function, because it ‘‘implies” the function in the sense that if the product
term is 1 then the function is also 1. Suppose that some function A(w, x, ¥, 2)
has, among others, the four minterms wXxyz, wWxyz, wXyz, and wxyz. Each of
these product terms is, of course, an implicant of 4. In simplifying &, we note
that the first two minterms can combine by observing that the sum is equal to
Ww(¥yz + xyz), which, upon applying result 1 to the term in parentheses,
reduces to wyz. In a similar way, the second two minterms combine to yield
wyz. These two product terms.are also implicants of 4, since /2 = 1 if either is
1. Furthermore, they are smaller, in terms of the number of literals, than the
original minterms. However, these two product terms will also combine to
give the term yz, which is yet a smaller implicant of h. Note here that each of
wyz and wyz, both implicants of A, also implies yz, because any assignment
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that makes either of them 1 also makes yz = 1. Continuing this line of
thought, it would seem that the simplification process involves finding the set
of “‘smallest™ implicants of the given function. Specifically, we will define a
prime implicant as an implicant of a function which does not imply any other
mmplicant of the function. Thus yz is a prime implicant of 4.

For any given switching function, it should be fairly obvious that the set
of prime implicants is unique, since they are derived from a unique set of
minterms. The question is whether we need to use all of the prime implicants
to represent the function in minimal form. To answer this guestion, note that
the prime implicant yz covers or is ““made up’’ of the four minterms wxyz,
wxyz, wXvz, and wxyz. Now, if all of the minterms of a function are covered
by some proper subset of the set of prime implicants, including in the final
expression those not in this subset would vield an expression for the function
which is larger than necessary. As an example, let f(x, ¥, z) = Xy + xz + yz,
which has as minterms Xyz, XyZ, xyz, and xyz. Since none of the terms ¥y, xz,
and yz implies any of the others, they must be the prime implicants of f.
However, xy covers the minterms ¥yz and Xyz, and xz covers xyz and x¥z.
Since all four of the minterms of fare covered by these two prime implicants,
fcanbe written as f(x, y, z) = Xy + xz, which we already knew because of the
consensus theorem, Theorem 3.2.6, part 3(i).

From these observations, we may conclude that the determination of a
minimal SOP expression involves, first, finding all of the prime implicants of
the function and then, second, finding a minimal subset of these prime impli-
cants which covers all of the minterms of the function. Such a subset is called
a minimal cover for the function. Similar observations may be made to find
the minimal POS expression of the function. The two commonly used meth-
ods for finding a minimal closed cover are discussed in the next two sections.

3.5.3 Karnaugh Maps

In 1953, M. Kamaugh published an article describing a geometrical method
for finding 2 minimal closed cover. This approach has been designated, natu-
rally enough, the Karnaugh map method and is based on mapping minterms
onto a surface in such a way that minterms that differ in one literal are
adjacent to each other on the surface. The reason for this mapping is that
when two minterms differ in one literal, they can be combined to form a
product term which has this literal missing. For example, the two minterms
ABC and ABC differ in only one literal, and therefore the sum reduces to
ABC + ABC = BC. Figure 3.5.1 shows a two-variable Karnaugh map. Each
square in the map corresponds to a minterm; these minterms are indicated in
the figure. Observe that every pair of adjacent squares corresponds to two
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AB B 4B
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1 0
i 1
Ed N
45" ™ ,p Figure 3.5.1
f(A. B Two-variable Kamatgh map.

minterms which differ in exactly one literal. Notice that all of the minterms in
the column labeled B contain the literal B and that all of those in the other
column contain B. Similarly for the rows. This figure also gives the mapping
of some function f(A, B), witha 1in each square corresponding to a minterm
of f. The other squares are automatically, at least for the moment, set to 0.
The prime implicants are easily found by grouping the 1 cells into as large 2
block of adjacent cells as possible. For example, the pair of cells AB and AB
group together to give B. A single square in this map is termed a I-cube.
When two adjacent squares are taken together, the result is a 2-cube. Two 2-
cubes that are adjacent, or have a long edge in common, can be grouped to
give a 4-cube, and so on. The largest cubes of 1s, then, represent the prime
implicants (why?). Thus, in Figure 3.5.2, the prime implicants are A and B,
so f(A, B) = A + B, with the coverings explicitly indicated by the circled
regions, in the figure.

By taking two two-variable Karnaugh maps and placing them side by
side after reflecting one of the two variable maps, we obtain a three-variable
map. Taking two three-variable maps and placing them side by side, again
after reflecting one of the maps, we geta four-variable map. This process can
be continued indefinitely, although the practical limit is for maps of six
variables. Figure 3.5.3 shows maps for three and four variables.

Consider the three-variable map for a moment. This map consists of
overlapping regions, three of which are indicated in the figure as regions x, ¥,
and z, each corresponding to an uncomplemented variable. Each regior

Figure 3.5.2
Coverings for the prime implicants of flA B).
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Figure 3.5.3 Kamaugh maps: {a) three-variable map with some regions formed
by the intersection of 4-cubes; {b] four-variable map and the inter-
section of two 8-cubes to form a 4-cube.

contains all of the possible minterms of three variables in which the variable
that names the region appears (in this case) uncomplemented. Thus the
region, or the 4-cube, marked y covers the four minterms ¥yZ, xyz, xyZ, and
xyz. The intersection of two 4-cubes, such as y and z, forms a 2-cube—in this
case, one covering the two minterms ¥yz and xyz, which combine to yield the
product term yz, shown shaded in Figure 3.5.3(a). The intersection of three
4-cubes forms a 1-cube, which contains exactly one minterm. The portion of
the map not covered by a variable corresponds to that covered by the com-
plement of the variable. Notice that the leftmost and the rightmost columns
of the three-variable map are adjacent, since they have the literal Z in com-
mon. Thus, we may think of this map as being wrapped around a cylinder.
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Xz glx, y, )

2 g(x, ¥, 2)
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Figure 3.5.4 Mapping of a function glx. v, 2 {a} the four prime implicants of
gix y. z); {b) a minimal closed cover for gix. y. 2).

The four-variable map is similar, except that a region corresponding to a
literal, such as w or y, as shown in Figure 3.5.3(b), is an 8-cube. Observe that
the intersection of the 8-cubes for # and y forms the 4-cube corresponding to
the product term wy. Note also that the left and right columns of the four-
variable map are adiacent, as are the top and bottom rows. Thus, in this case,
we can think of the map as being located on a torus, or “‘doughnut.”

Consider the mapping of some function g(x, y, z) shown in Figure
3.5.4. The problem is to list all of the prime implicants and to find a minimal
cover from this set. First, we must find the prime implicants from the map
by finding the largest possible cubes that cover subsets of minterms of the
function g. For example, the two adjacent s in the upper left-hand corner
of the map, shown circled in the figure, form a 2-cube not adjacent to any
other 2-cube. Thus this 2-cube must correspond to a prime implicant. The
prime implicant can be found as the intersection of the two 4-cubes which
cover this 2-cube. In this case, the two 4-cubes in question are ¥ and X, and
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so the prime implicant formed by this 2-cube is X¥. In a similar manner,
three other prime implicants are found to be ¥z, xz, and xy, as shown in
Figure 3.5.4(a).

Next we must find a minimal subset of these prime implicants that
covers all of the minterms of g{(x, v, z). To do this, first note the following.
Minterm X¥7 is covered only by the prime implicant Xy, and minterm xyZ is
covered only by prime implicant xy. Thus, these two prime implicants mus?
be included in the minimal SOP form for g(x, y, z). Such a prime implicant—
one that covers a minterm not covered by any other prime implicant—is
called an essential prime implicant. The remaining three minterms can be
covered in two possible ways. However, since minterms X¥z and xyz are both
covered by the two essential prime implicants, all we need worry about is the
one minterm remaining uncovered, x¥z, which can be covered by either of
the remaining prime implicants. For no particular reason, we will choose xz.
Thus, a minimal sum of products representation for g is g(x, y, 2) = Xy +
xy + xz; this is indicated by the circled terms in Figure 3.5.4(b).

Suppose, now, we are given the four-variable function

flw, x,y,2) = Wy + Wy + wxy + xyZ (3.5.4)

and are asked to find a minimal sum of products representation. We will
begin by plotting the function in a Karnaugh map as shown in Figure 3.5.5(a).
To do this we simply place 1s in the squares covered by each product term.
For example, w¥ represents the intersection of the two 8-cubes w and ¥ and is
shown as the 4-cube in the upper left-hand corner of the figure. The remain-
ing covers are also shown in the figure. Now that the function is plotted, we
can find a minimal set of prime implicants that can be used to represent the
function. Figure 3.5.5(b) shows the required cover, which results in the
reduced expression for f of

flw, x,y,2) = Wy + Wz + wxy (3.5.5)

Note that all three prime implicants are essential and cover all of the min-
terms.

The form of the maps that we have just used is not always convenient.
Consider, for example, the function A(x, y, z) given in Figure 3.4.3. Since
this is a truth table given in terms of 1s and (s, it would be easier to plot the
function if the Karnaugh map were labeled in terms of the variable values.
Figure 3.5.6(a) shows a map that is so labeled and gives the plot of 4. It can
be seen that this mapping results in the minimal SOP representation for A of
A(x, y, z) = X + yZ, as shown in Figure 3.5.6(b).

Algebraic equations and truth tables are only two ways of representing
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Wi Wy

Figure 3.5.5

Plots of fiw, x. ¥, Z): (3] plot of
fow, x, ¥.2)  Equation {3.5.4]; [b) plot of the

(b) reduced equation, Eguation {3.5.5).

switching functions. A minterm or maxterm index list is yet another way to
present a function. Suppose we are to minimize the function

g(a, b, ¢, d) = Z m(0, 4, 6, 7,12, 13, 14, 15)
Figure 3.5.7 shows a labeling that makes plotting of g easy. In this form, each

square is labeled with the corresponding minterm index value. For example,
the square labeled 6 corresponds to the assignment on (a, b, ¢, d) of (0110)
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yz

c0 01 11 10
X
0 1 1 1 1
x 1 0 a 0 ]
Zz
fix. y. 2)
(a)
kz ¥
00 o1 11 10
X -
0
x 1 Figure 3.5.6
Karnaugh map labeling used with
truth tables: [a) plot of Alx y. 2}
z from the truth table of Figure
Mx. y.2) 3.4.3; (b} minimal cover for
(b) hix, y. 2).
cd ¢
O 1 0
ab 0 0l 1 1
o0
01
b
11
a
10 0 0 0 0
8 k4 1 10
p Figure 3.5.7
Karnaugh map labeling used

gla. b.e.d} with minterm index fists.
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and the minterm @bcd, which is the intersection of the four 8-cubes a, &, c,
and 4. Thus, to plot g, all we need do is place a 1 in the square representing
each of the minterms of g and place 0s elsewhere. Using this plot, we easily
determine that the minimal SOP representation for g, as shown by the cover
in the figure, is

gla, b, c,d)=ab+ bc + acd

It should be apparent at this point that the three forms for the Karnaugh
map given here each have their own vaiue. For example, if we are given an
expression as an index list and asked to write a2 minimal SOP expression for
the function, we would plot the function on a Karnaugh map having each
square identified by its index value and then replot the function in a map
showing the regions associated with each variable. This was precisely what
was done in the last example, shown in Figure 3.5.7. In general, therefore,
which form of the map we use depends on how the function to be plotted is
given and in what form we are required to express the function.

We have said very little, to this point, about how we would simplify
expressions which are given in product of sums form. There is nothing diffi-
cult about handling such representations if we think of each sum term as the
complement of a product term of the complement of the function. Then,
instead of plotting a 1 on a map in the respective position, we plot a 0. An
example will illustrate this approach. Let

Fla,b,c,d)=(a+b+cXa+c+d)b+d) (3.5.6)

The term (a + b + ©) = (@bc) and so we will plot Os in the 2-cube correspond-
ing to @bc. Doing the same with the other two terms results in the plot shown
in Figure 3.5.8 after 1s are placed in the remaining squares. From this plot we
observe that Equation (3.5.6) is a minimal product of sums expression, since
we have a minimal cover for the 0s of F(a, b, ¢, d). The equivalent minimal
sum of products expression can be found by covering the 1s and is given as

F(a, b, c,d) = ab + ¢d + ad + bc (3.5.7)

This process is easily reversed to obtain a minimal product of sums expres-
sion from any given Karnaugh map by simply covering the 0Os and writing the
sum terms corresponding to each grouping. For example, a minimal product
of sums representation for g(a, b, ¢, d) plotted in the Karnaugh map of
Figure 3.5.7 can be found by covering the 0s as shown in Figure 3.5.9. In this
case the minimal POS expression becomes

gla,b,c,dy=(@+b)b+T¥a+c+ d)
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Figure 3.5.8
Mapping of the function Fla. b, ¢, d]
F{a, b, ¢, d) of Equation [3.5.7).

It was mentioned earlier that the map method is practical for functions
of six variables or fewer. There are two forms usually used for maps of five
and six variables. In one form, a five-variable map is made up of two four-
variable maps laid one on top of the other, with the one on top corresponding
to @ and the one on the bottom corresponding to a. This form is shown in
Figure 3.5.10(a). In the other representation, a reversed image of a four-
variable map, corresponding to g, is placed beside a normal four-variable
map, corresponding to @. This form is shown in Figure 3.5.10(b). Figure
3.5.10 shows the two forms used for mapping the five-variable function

Gla, b, ¢, d. ¢) = bcd + abt + bce + ade (3.5.8)

cd
06 01
ab
00 1
01 1 1 1

10

1 Figure 3.5.9
b,¢,d) Alternative mapping of gia, b, ¢, d}.
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ade

(v)

Figure 3.5.10 Two versions of five-variable Karnaugh map plottings of Equation
{3.5.8): (a) five-variable map made from two overiaid four-variable
lamps; {b} five-variable map made of side-by-side four-variable

maps.

The coverings for two of the prime implicants are shown in this figure. 1
appears that the adjacencies are a little easier to visualize in the form given i
Figure 3.5.10(a). In particular, note the cover for the term b¢e given in Figur
3.5.10(b) and compare it with the same cover given in part (a). These idea
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can be extended in the obvious way to produce the corresponding maps for
six variables.

3.5.4 Don't Care Conditions

It occasionally happens that a switching function is defined in such a way
that not all possible assignments of the variables occur. Such functions are
said to be incompletely specified. For example, let the variables w, x, y, and z
be used to encode BCD numbers and then define the function f(w, x. v, z) as
being 1 whenever the variables represent a BCD number divisible by 3.
Otherwise, f(w, x, ¥, z) is 0. To obtain an algebraic representation for f, we
will plot the function on a Karnaugh map and then determine a minimal SOP
expression. Assuming that only legitimate BCD numbers can occur, the
question becomes, What do we plot as values in the map positions corre-
sponding to the assignments of the variables that will not occur? Obviously,
since they don't occur, we really don’t care what values are plotted. How-
ever, a judicious choice may help in reducing the complexity of the realizing
expression.

Since we don’t care what value f takes on for variable assignments that
won’t occur, we will plot a dash () in the map position corresponding to
these assignments. In deriving a minimal expression for the function, we may
consider the dash as either a 1 or a 0, as we wish. Thus, in finding the largest
covers for the map entries containing a 1, we may use the dashed entries as
1s if this will make our cover larger. Using the don’t cares in this way, fis
plotted as in Figure 3.5.11, from which the expression is written as

Qo
WX
00
01 0
X
il -
W

10 0
Figure 3.5.11
Using don't cares to simplify the
function fiw, x, y, ) of Equation

flw, x, 3,2 3.59).
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flw, x, ¥, 2) = wz + Xyz + xyZ + WxyZ (3.5.9)

Note that had the don’t cares been assigned, a priori, the value 1, then two
more terms would have to be added to Equation (3.5.9), and had they been
assigned the value 0, each term in this equation would contain at least four
literals. Thus the use of the don’t cares has produced a simpler expression
than otherwise possible.

It is important to observe that although six of the possible variable
assignments in the above problem were assumed to be don’t cares, the
function f(w, x, ¥, z) of Equation (3.5.9) does take on a value if any of these
assignments is made. For example, if (w, x, y, z) = (1100), a don’t care in
the map, Equation (3.5.9) reduces to 0. On the other hand, if (w, x, y, z) =
{(1101), also a don’t care, f = 1. As we will se¢ in the next chapter, physical.
realizations are based on switching expressions, such as given in Equation
(3.5.9). Thus a physical output will be produced for all possible physical
inputs regardless of whether the problem statement includes don’t cares
or not.

When a switching function is defined nsing a minterm or maxterm index
list, some method must be found to indicate the terms which are to be
considered don’t cares. This is usually done by writing them as an index list
preceded by the letter d. Thus, in the example above,

fow, x, ¥, 2) = 2 m(0, 3, 6,9 + d(10, 11, 12, 13, 14, 15) (3.5.10)
=11 M, 2, 4,5,7,8) + d(10, 11, 12, 13, 14, 15) o
Note that the don’t cares are the same regardless of whether we are given a

minterm or a maxterm list.
Before proceeding to a discussion of the Quine—McCluskey algorithm,
consider the simplification of the following function of g(a, b, ¢, d). Let

gla, b,c,d) =TI M(3,5,7, 11, 13, 14) + d(2, 6, 8, 9, 12, 15) (3.5.11)

This function is plotted in Figure 3.5.12, from which the reader should verify
that one of the possible minimal SOP expressions and one of the possible

POS expressions are, respectively,®
L 1) ¥ = bc + cd + bd
g b, dy=bctd+bd (3.5.12)
=(b+TNC+d)b+ d)

? Notice, in this particular case, that the POS form is the dual of the SOP form. Functions
having this property are called self~dual functions.
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Figure 3.5.12
d Piot of ga, b, ¢. d) of Equation
gia, b, c,d)  {3.5.11) and a minimal POS cover.

3.5.5 Quine—McCluskey Algorithm

When dealing with functions of more than five variables, the Karnaugh map
method for finding 2 minimal sum of products representation becomes ex-
tremely unwieldy. Furthermore, the map method, which is easy for a person
to use because people are good at recognizing visual patterns, is not good for
computer implementation, since computers, at the moment, are not good at
recognizing such patterns. A tabular method, which is easily implemented on
a computer, is thus desirable for handling functions of large numbers of
variables. One such method is the Quine—McCluskey algorithm. As with all
methods of simplification, the tabular method consists of two parts: finding
the prime implicants, and then finding a minimal cover.’

3.5.5.1 Finding the Prime Implicants. In this method, determination of
the prime implicants is based solely on the fact that xp + Xp = p, where p is
some product of the remaining variables. The process begins with the min-
term list. Each minterm is compared with each of the others in binary form.
When any two differ by only one bit, they are replaced by a new product
term identical to the originals except without the differing literal. For exam-
ple, the two minterms 0110 and 1110, which correspond to the product terms
ABCD and ABCD, respectively, differ in only one bit position and can there-
fore be combined to form a single new product term. The resulting term is

¥ Recent algorithms have been developed which are more efficient than the Quine-McClus-
key algorithm for computer computation. Some of these are referenced in the bibliography at
the end of the chapter.
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-~110, which corresponds to BCD. After all minterms are compared and all
possible combinations are made, this comparison is repeated on the new
product terms generated by this process. Each of the resulting new product
terms is then compared with all of the others. Again, whenever two differ in
exactly one bit position, they may be replaced by a single product term
identical to the originals except without the differing literal. For example, the
terms —110 and -010 can combine to produce the single product term —-10,
corresponding to CD. When a product term cannot be combined on this basis
with any other product term, it is a prime implicant.

In carrying out these steps, we can reduce our effort by grouping the
minterms on the basis of the number of 1s and then making comparisons only
between groups that differ by one 1. The reason for this is that minterms can
differ in only one position only if one has exactly one more 1 than the other.
An example will help illustrate the process. Let

fw, x, ¥, 2) = 2 m(0, 2, 4,5, 8,10, 11, 12, 13, 15) (3.5.13)

For the moment, we will use the assignments corresponding to these min-
term indices in finding the prime implicants (PIs). Thus minterm 5 corre-
sponds to assignment (0101) and to the product term Wxyz. Figure 3.5.13
shows the successive steps in the search process.

List 1 is found by listing the minterm assignments in groups according to
the number of 1s in each assignment.

List 2 is derived from list 1 by combining those terms in list 1 that differ
in exactly one position. This position, corresponding to the variable that is
removed, is indicated with a dash (-) in list 2. For example, the two terms
0000 and 0010, corresponding to the minterms wxyZ and wXyZ, combine to
give the term 00-0, corresponding to the product term wXZ. Since the assign-
ments 0000 and 0010 have combined and therefore cannot be prime impli-
cants, we place a check (#) beside each. We continue, however, comparing
0000 with the rest of the elements in the second group, namely, 0100 and
1000. The resulting list 2 entries are 0—00 and -000. We then repeat the
process of comparing each entry in the second group of list 1 with all entries
in the third group and checking off those that combine. The results form the
second group of list 2. We continue the process until all possible comparisons
have been made.

List 3 is derived in a similar manner to that of list 2. Note, however, that
in making the various comparisons in list 2, the two terms being compared
must have the dash in the same variable position or else they cannot be
products of the same variables and therefore cannot combine. For example,
00—0, in the first group of list 2, can be compared only with 10-0 in the
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List 1 List 2 List 3

0000 000 » 00 *

0010 s 000 s —00  *

0100 » 000 -10- *

1000 » 010 ¥

oLt » 010~

1010 » ~-100 »

1100 10-0

1011 100 »

1101 » -101 ¥

111 101- =
110~ » Figure 3.5.13
-1 * Determination of the prime implicants for
-1 * the function given in Equation (3.5.13).

second group. In this case, these two will combine to form —0-0, shown in
list 3.

As we progress throngh the various comparisons, generating the se-
quence of lists, eventually we will find terms that will not combine with any
other term in the list. Such terms are the prime implicants and are marked
with an asterisk (*). The term 101-in list 2, for example, which corresponds
to wXy, will not combine with anything in the next group and so is a prime
implicant. This process yields the prime implicants indicated by the asterisks
in Figure 3.5.13, namely, wXy, wyz, wxz, XZ, ¥Z, and x¥y.

An alternative representation is to use the minterm indices. Figure
3.5.14 gives the equivalent reduction procedure using these numbers. This
table is organized exactly as before. Making the minterm comparisons is a bit
different, however. A number in a group is compared with a number in a
group below it by subtracting the former from the latter. If the difference is a
power of 2, and is positive, then the two numbers combine to form a reduced

List 1 List 2 List 3

0, 2(2)
0, 4(4)
0, 3(8)
2 10(8)
4, 5(1)
4, 12(8)
8, 10(2)
8, 12(4)
5, 13(8)
10, 11(1)
12, 13(1)
11, 15(4) +
13, 15(2) =

0,2,8102,8 =
0,4,8 124, 8 =
4,5,12,13(1,8) =

]

TYRLRIRNLNNY
TEYNYITININY

Figure 3.5.14 Using the minterm indices to find the prime implicants of
fiw, x, y, Z| given in Equation {3.5.13).
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product term in the next list. For example, comparing minterm 4 with 12, we
get 12 — 4 = 8, which is a power of 2, and positive. Therefore, we combine
the two to give the reduced product term 4, 12(8), where the (8) indicates the
bit position that is missing in the second list. This corresponds to the compar-
ison of 0100 (the 4) and 1100 (the 12), which produces the term ~100, where
the fourth bit position, corresponding to 2° = 8, is the one missing. On the
other hand, comparing 12, in the third group, with 11 in the fourth produces a
difference of —1. These two minterms cannot combine, as is easily verified
by comparing the corresponding assignments, namely, 1100 and 1011, which
differ in three positions.

It is important, in forming the index list for the reduced product terms,
that the lists be kept in lexicographical order. Doing this makes forming the
third list from the second easy. If two terms have the same set of numbers in
parentheses, then they may be compared by subtracting the first numbers in
each list. The two terms then combine to form a term in list 3 if the difference
is a power of 2 and positive. For example, 0, 2(2) and 8, 10(2) both have 2 in
parentheses, and so we subtract the first number in each to get 8 — 0 = 8.
Thus, these two product terms combine to give 0, 2, 8, 10(2, 8) in list 3, which
corresponds to —0-0 or XZ.

3.5.5.2 Finding the Minimal Cover. Once all of the prime implicants have
been determined, a minimal subset must be found which covers the given
function. This is done by setting up a covering table that shows all of the
prime implicants and the minterms covered by each. The first step in deter-
mining a cover is to find all of the essential prime implicants. Figure 3.5.15
shows a table, called a covering table, for the function f(w, x, y, z) given in
Equation (3.5.13), which can be used for this purpose. This table is set up in
terms of the prime implicants given in index list form from Figure 3.5.14.
The rows of this table list the prime implicants (PlIs) and identify, by an
X, the minterms covered by each prime implicant. The essential prime impli-
cants are readily found from this table by counting the number of prime

Minterms

%®

10, 11(1) X X
11, 15(4) X X
13, 15(2) X X
0,2,8 102, 8 X X X X
0,4,8, 124, 8) X X X X
* 4,5 12, 13(1, 8) X X X X

Figure 3.5.15 Covering table for fiw, x. y. z} of Equation (3.5.13).
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Minterms
Prime
impiicants 11 15
10, 1IK{D) X

* 1. 15(4) X X
13, 15(2) x Figure 3.5.16
0, 4,8 124, 8 ure 3.5.16

(4. 8) Reduced covering table for flw, x, y, z) of

Equation {3.5.13).

implicants which cover the minterms. If a minterm is covered by only one PI
(i.e., only one X appears in that minterm’s column), that prime implicant is
essential. In this example we find two essential prime implicants, which are
the two marked by asterisks (*) in Figure 3.5.13.

Since minterms 0, 2, 4, 5, 8, 10, 12, and 13 are covered by the two
essential prime implicants, we may reduce the size of the table by removing
these columns and removing the rows corresponding to the essential Pls.
Figure 3.5.16 shows the resulting table. Note that prime implicant 0, 4, 8,
12(4, 8) covers neither of the minterms 11 and 15 and so could be removed
from the table. From this figure it is easily seen that the remaining two
minterms, 11 and 15, are covered by the prime implicant 11, 15(4). Thus a
minimal sum of products representation for f is found using the three prime
implicants shown in their various forms in Figure 3.5.17. The resulting ex-

pression for fis
flw, x,y,2) = XZ + Xy + wyz (3.5.14)
The reader should verify this result by plotting f on a Karnaugh map.

3,5.5.3 Incorporation of Don't Care Conditions. Although the basic pro-
cedure just outlined also applies when don’t care conditions enter the prob-
lem, some modifications are required in setting up the covering table. Be-
cause of these modifications, some complications may arise in finding a
minimal cover. To illustrate, let us consider the function

gla, b, c,d) =2 m(0,1,3,5, 13,15 + d(2, 6, 10, 11, 12) (3.5.15)

List form Assignment Product term
0,2, 8, 10(2, 8) —0-0 xz
4, 5,12, 13(1, 8) -10- £
11, 15(4) 1-11 wyz

Figure 3.5.17 Prime implicants used to cover the function of Equation (3.5.13).
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List 1 List 2 List 3

0, 1(1)
0, 22

1, 32)
1, 5(4)
2,3
2, 6(4)
2,108)
3, 11(8)
5, 13(8)
10, 11{1)
12, 13(h)
11, 15¢4)
13, 15(2)

0,1,2,3(1,2) *
2,3,10, 111, 8) =

- e GG WD =S

] brclted [ g
TELLLRNNLININY
LIRS L T T T W Y

Figure 3.5.18 Derivation of the prime impficants of Equation {3.5.15).

The first step, as before, is to find the prime implicants. Since we wish to
use the don’t cares to maximize the number of minterms covered by each PI,
we will inciude the don’t cares in the minterm list used to find the prime
implicants. Figure 3.5.18 shows the resulting prime implicant generation.
Note that prime implicant 2, 6(4) is made up of don’t cares only and so it will
be ignored.

Since we don’t care whether the terms 2, 6, 10, 11, and 12 are covered
(they are, after all, don’t care terms), we will not include these in the cover-
ing table. Using these prime implicants, and ignoring the don’t cares, the
covering table becomes as shown in Figure 3.5.19. This table shows only one
essential prime implicant, namely, 0, 1, 2, 3(1, 2), and so we need not con-
sider the first three columns further. Each of the remaining minterms is
covered by more than one prime implicant. Our job now is to select a mini-
mal subset of these prime implicants which covers all of the required min-
terms. In general, there may be many ways in which this can be done.

Minterms
Prime
implicants 0 1 3 s [ 13|15 E
1, 5(4) X X
5, 13(8) X | X
12, 1X1) X
11, 15(4} X
13, 15(2) X [ X
« 0,1,2,31,2) | X | X | X
2,310, 11(1, 8) X

Figure 3.5.19 Covering table for g{a, b, ¢, d) of Equation {3.5.15).
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Usually, however, we will be interested in only a single solution and not al)
such possible covers. Section 3.5.5.4 describes a method that can be used to
determine all of the covers that use a minimal number of product terms and
literals. For now, however, let us concentrate on finding a single, minimal
cover. Proceeding, then, we note in Figure 3.5.19 that prime implicant 11,
15(4) covers only minterm 15, whereas prime implicant 13, 15(2) covers both
minterms 13 and 15. We say that a row of the table is dominated by another
row if all of the minterms covered by the dominated row are also covered by
the other row. A dominated row may, therefore, be removed from the table if
the number of literals associated with the prime implicant of the dominated
row is not less than the corresponding number for the dominating row. Thus,
since 11, 15(4) is dominated by 13, 15(2) and both have the same number of
literals, we may ignore the prime implicant 11, 15(4) and be assured that the
resulting expression is no more complicated than any other possible expres-
sion for the function. Note, also, that after the minterms covered by the
essential prime implicant are removed, prime implicant 1, 5(4) becomes dom-
inated by 5, 13(8). Since both have the same number of literals, we can also
ignore prime implicant 1, 5(4). The resulting, reduced covering table is
shown in Figure 3.5.20.

After the table has been reduced, the remaining two prime implicants
become essential. These are generally referred to as secondary essential
prime implicants, since they become essential only after all other essential
and dominated prime implicants are eliminated. Using the one essential and
the two secondary essential prime implicants, the function g(a, b, ¢, d)
reduces to

gla, b, c,d) = ab + bed + abd (3.5.16)

where @b corresponds to the essential prime implicant and bcd and abd
correspond to the secondary essentital prime implicants given in Figure
3.5.20. As we shall see in Section 3.5.5.4, this is not the only possible mini-
mal expression for g(a, b, ¢, d).

3.5.5.4 Petrick Algorithm. As indicated above, it quite often happens
that there is more than one possible cover for a given function. In fact, it may

Minterms
Prime
implicants 5 13 (15
* 5, 13(8) X | X secondary essential
w 13, 15¢2) X (X secondary essential

Figure 3.5.20 Reduced covering table for g{a, b. ¢, d) of Equation (3.5.15).
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Minterms
Prime

implicants 1 5 7 8 10 | 14
A 01,8918 X X
B 1,5 9,134, 8) X | X
C 8,9 10,11(1.2) X1 X
D 5,7,13,152, 8 X! X
E 6,7,14,15(1, 8) X X
F 10,11, 14, 15(1, 4 X1 X

Figure 3.5.21 Cydlic covering table for A{a, b, ¢, d] of Equation {3.5.17}.

happen that after all essential and secondary essential prime implicants are
found, the remaining minterms can be covered in many ways. This would be
the case if each column in the reduced covering table were to contain at least
two X’s. A table in which this is the case is said to be cyclic. As an example,
let h(a, b, ¢, d) be given by

hia, b, c, d) =2 m(l, 5,7, 8, 10, 14) + d(0, 6, 9,11, 13, 15) (3.5.17)

After the prime implicants are determined, the resulting covering table is as
shown in Figure 3.5.21 and is seen to be cyclic, since every minterm is
covered by at least two prime implicants.

To find a minimal cover, we can reason as follows. Minterm 1 is covered
if we use prime implicant A or B; minterm 5 is covered if we use prime
implicant B or D; and so on, for each of the minterms. The function will be
covered if minterm 1 is covered and minterm 5 is covered and minterm 7 is
covered and the other minterms through minterm 14 are covered. Now, if we
use A to mean ‘‘use prime implicant A,”” then we can write a logical equation
which expresses the requirements for the cover, as follows:

THE FUNCTION IS COVERED
= (A + BYB + D)D + EXA + C){C + F)(E + F) (3.5.18)

Reducing this expression by using the laws of Boolean algebra, we get
THE FUNCTION IS COVERED
= BCE + ABEF + BCDF + ABDF + ACDE + ADEF
+ ACDF + ADF (3.5.19)

Equation (3.5.19) can be interpreted as follows: The function is covered if we
use prime implicants B and C and E or we use the prime implicants A and B
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and E and For . . . . Thus we have found all covers for the function. We
need only select one from among this set which requires the smallest number
of prime implicants and literals. In this case, there are two that require three
prime implicants: BCE and ADF; all of the others require four prime impli-
cants. Since both of these sets of prime implicants require the same number
of literals, we can select either. Let us select prime implicants B, C, and E.
These are as follows:

Pl Index List Assignment Literals
B 1, 5,9, 13(4, 8) --01 cd
C 8,9,10, 111, 2) 10— ab
E 6, 7, 14, 15(1, 8) -11- be

from which h(a, b, ¢, d) becomes
hia, b, c,d) = ¢d + ab + bc (3.5.20)

If we had used prime implicants A, D, and F, we would have obtained the
second minimal SOP expression,

h(a, b, c,d) = bt + bd + ac (3.5.21)

Let us now go back to the covering table for the function g(a, b, c, d)
given in Figure 3.5.19. After we remove the columns associated with the
essential prime implicant 0, 1, 2, 3(1, 2), the reduced table becomes as shown
in Figure 3.5.22. We can find all of the possible covers, including the one
found in Section 3.5.5.3, using the Petrick algorithm, as follows:

ALL MINTERMS ARE COVERED = (A + BXB + C + EXD + E)
= (AC + AE + B)(D + E)
= ACD + AE + BD + BE

5.22
Minterms 3 )
Prime
implicants 5 13 L 15
A 1L54) | X
: > Ig(?) X :{( Figure 3.5.22 _
c 12, :5(4) x Covering table for g{a. b, ¢. g) of Equation
. A x | x (3.5.15] after the essentiai prime implicant 15
£ 13, 15@ removed.
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From Equation (3.5.22), we see that there are actually three ways in which
the minterms 5, 13, and 15 can be covered using only two prime implicants.
Thus the function g(a, b, ¢, d) can be expressed in a minimal SOP form in
three ways, namely,

gla, b, c, d) = ab + btd + abd
= gb + bed + acd (3.5.23)
= @b + acd + abd

where the product term ab is the essential prime implicant. Note here that
the first of the three expressions in Equation (3.5.23) is the one found in
Section 3.5.5.3.

3.5.5.5 Summary of the Quine—McCluskey Algorithm. In summary, the
Quine-McCluskey algorithm for finding a minimal sum of preducts expres-
sion for a given function follows the steps given below. If it is necessary to
find all possible minimal covers, then steps 4 and 5 should be ignored.

Step 1. Using the don’t cares, if any, find the set of all prime implicants of
the function by the procedure outlined in Section 3.5.5.1.

Step 2. Construct a covering table as described in Section 3.5.5.2.

Step 3. Identify all of the essential prime implicants and form a reduced
covering table.

Step 4. Reduce the table further by removing the dominated rows whose
corresponding prime implicants are no simpler than the rows that
dominate them.

Step 5. Identify the secondary essential prime implicants and reduce the
covering table again.

Step 6. Use the Petrick algorithm to select a minimal cover for the remaining
minterms, if any.

3.5.6 Using the Quine-McCluskey Algorithm
to Simplify Muitiple Functions

In the design of large digital systems, it very often happens that many func-
tions must be generated all of which are functions on the same set of vari-
ables. As we shall see in the next chapter, a physical piece of hardware is
required to implement each product term and each literal. It therefore be-
hooves us to reduce the total number of these terms if we wish to obtain
functions which can be physically implemented with the least amount of
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hardware. We could, of course, find minimal SOP expressions for the func-
tions by applying the Quine-McCluskey algorithm to each. However, the
total number of product terms and literals required to implement all of the
functions may be reduced if we recognize that proper selection of product
terms may make it possible to share terms among functions. For example,
the two functions

fila, b, c,d) = abc + ad

and
fia, b,¢c,d) =ab + bt + ad

have the term ad in common. Thus, these two functions require the genera-
tion of only four product terms, using a total of nine literals, to implement.

The Quine—McCluskey algorithm can easily be modified to generate
minimal covers for several functions which maximize the number of terms
that are common among the functions. The basic idea of this modification is
to find all of the prime implicants for each function and then find all of the
prime implicants that are shared among all possible combinations of func-
tions. For example, suppose we are to implement the functions g, g., and
gs. We would first find all of the PIs for each of these functions. Next we
would find all of the PIs that are common to pairs of functions, namely, the
PIs of the functions g,g,, 2123, and g;g;. Finally, we would find all of the Pls
common to all of the functions, namely, g,g2¢:. A covering table can then be
set up using these prime implicants and from it a minimal cover can be found
using the general procedures described in Section 3.5.5.4.

Let us illustrate this process with a simple example. Suppose we are
required to implement the following two functions:

W, X, ¥,Z)=2m@3,4,56,7,11,12,13,14)  (3.5.24)
W, X, Y, Z) =2 m@3,5,11, 13, 1) (3.5.25)

The minterms that are shared between these functions are found by taking
the product of f; and f;. This yields

W, X, Y, )W, X, Y, Z) =2 m(3,5, 11, 13) (3.5.26)

Using the tabular procedure described in Section 3.5.5.1, we can easily
derive the prime implicants for each of these functions. Using these prime
implicants, we can then set up the covering table as described in Section
3.5.5.2. The resulting table is shown in Figure 3.5.23. Notice that this table is



n._‘. __.H

jueatdan swisd jRIjussss
AQ paI3A0D SUIRIUTIY

L+ «

Zaxmy
PUE {7 % ‘X /M)y suogounj aup Joj Igel Bupanod ey

£2°5°g ambyd

X X

@nt‘c
()T 'S

)

(8)e1’s
(PISE ‘11
()5t £l
@'

| €l 1 § £ bl
¢y

11

>
+ [ X

8t ‘e

(FIL'E
B'OFILTI'9'w *
(Z'OL9°s'y
(B'DELTI 'S ¥



Section 3.5 Simplification of Switching Functions 85

f1 f2
3 5 7 il 13 3 5 11 13 15
aQ X
b X X
h
d X X
[4 X X
f X X
g X X
h
h X X
i
i X X
v 12
k X X X X

Figure 3.5.24 Covering table after removal of the essential prime implicants.

organized vertically as three tables, one for each of the functions f,, f;, and
f.f>. The minterms to be covered are those associated with the individual
functions, f; and f5, only. For reference purposes, we have labeled each row
with a letter along the right side of the table.

The next step in the simplification procedure is to find the essential
prime implicants. In this case there is only one: prime implicant c, corre-
sponding to 4, 6, 12, 14(2, 8). This is marked by the asterisk (*) in the table.
After we remove this row and the columns corresponding to the minterms
covered by this prime implicant, indicated by X’s at the bottom of the table,
the table reduces to that shown in Figure 3.5.24.

The table will next be further reduced by finding and eliminating all of
the dominated rows (we are interested here in only one solution, not all
solutions). It can be seen that row j dominates rows a and i and row &
dominates rows ¢ and f. We will therefore remove rows a, e, f, and i. The
resulting table is shown in Figure 3.5.25, from which we see that prime
implicants j and &, 5, 13(8) and 3, 11(8), respectively, become secondary
essential PIs. Again, the minterms covered by these prime implicants are
indicated by the X's at the bottom of the table.

The only minterms not yet covered are minterm 7 of function f; and
minterm 15 of f,. Using the Petrick algorithm, we find that a cover occurs if
weuse band g, or b and h, or d and g, or d and A. Since prime implicant b has
two literals and prime implicant d has three, we will select from either b and
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A fa
3 5 11 13 3 5 B! 13 15
b X
fi
d X
g
I
k X
*j X X X X
N1z ‘
* k X X X X
X X X X X X X X ——

Minterms covered by prime implicants j and &

Figure 3.5.25 Reduced covering table showing the secondary essential Pis.

g, or b and k. Let us arbitrarily pick b, 4,5, 6, 7(1, 2), to cover minterm 7 and
g, 13, 15(2), to cover minterm 15.

We have now found five prime implicants that cover all of the minterms
of both f; and f;. Prime implicants 4, 6, 12, 14(2, 8) and 4, 5, 6, 7(1, 2) are
associated with function £, only. Prime implicant 13, 15(2) is associated with
function f; only. Finally, prime implicants 5, 13(8) and 3, 11(8) are common to
both f; and f;. Using these Pls, the final minimum expression becomes

fUW, X, Y, Z) = XZ + WX + XYZ + XYZ

AW, X, ¥,Z) = WXZ + XYZ + XYZ (3.5.27)

These equations have thus been expressed in a form using a total of 5 distinct
prime implicants which require a totat of 13 literals to implement. If we had
simply minimized each expression, one possible result would be

FW, X, Y, Z) = XZ + WX + XV + X¥Z

W, X, Y, Z) = WXZ + XYZ + XYZ (3.5.28)

which requires 6 distinct product terms using a total of 15 literals.

ANNOTATED BIBLIOGRAPHY

There are numerous books that discuss the general topics covered in this
chapter. An exhaustive list of these would be out of the question; however,



Section 3.5 Simplification of Switching Functions 87

three excellent and very readable books are those by Hill and Peterson,
Mano, and Roth.

Hii, J. F., and G. R. PETERSON, Introduction to Switching Theory and Logi-
cal Design, 3rd ed., Wiley, New York, 1981.

Mano, M. M., Digital Logic and Computer Design, Prentice-Hali, Englewood
Cliffs, N.J., 1979, '

RotH, C. H., Fundamentals of Logic Design, 2nd ed., West Publishing, St.
Paul, Minn., 1979.

A very extensive bibliography of works dealing with all aspects of digi-
tal systems can be found in Muroga. This book also gives excellent discus-
sion of many theoretical topics in switching theory. Muroga also discusses a
number of topics that are important in the design of VLSI circuits that are not
usually found in switching theory texts.

MuRroGa, S., Logic Design and Switching Theory, Wiley-Interscience, New
York, 1979,

Two other references of note, dealing with the general topic of Boolean
and switching algebra, are the books by Miller and Harrison. Both of these
texts present ideas and concepts in a very rigorous, mathematical fashion
and so should be considered *‘advanced’” texts (especially Harrison). These
books are recommended for the more precocious reader only.

HARRISON, M. A., Introduction to Switching and Automata Theory, McGraw-
Hill, New York, 1965.
MiLiLER, R, E., Switching Theory, Wiley, New York, 1965.

On more specific topics, the derivation of the postulates that describe a
Boolean algebra can be found in the original paper by Huntington.

HunTinGTON, E. V., ““Sets of Independent Postulates for the Algebra of
Logic,” Trans. Am. Math. Soc., Vol. 5, July 1904, pp. 288-309.

There are many examples of proof by algebraic manipulation presented
in Chapter 2 of the book by Givone.

Givone, D. D., Introduction to Switching Circuit Theory, McGraw-Hill, New
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describes a very interesting, but quite different, approach, in Chapter 4. He
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Finally, several of the books mentioned above also describe simplifica-
tion procedures that can be applied to circuits having multiple outputs. Two
excellent and readable references are those of Hill and Peterson and of
Givone.

PROBLEMS

3.1. Prove Theorem 3.2.6 using complete enumeration.

3.2. Prove each of the following algebraically. Identify the postulates or theorems

used at each step.
(a) ab+ ab =5
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3.3.

3.4.

3.5.

3.6,
3.7.
3.8,

3.9.

3.10.

3.11.

(b) a+ab=a

(ca+tab=a+b

(d) ab + ac + bc = ab + ac {consensus)
() (xy)=X+7% (De Morgan's theorem)

Construct the truth tables for the AND, OR, and NOT operations in a four-
element Boolean algebra having the elements 0, 1, a, and b.

Assuming an n-element Boolean algebra, how many functions are there on m
variables?

A subset of Boolean functions from which all other Boolean functions can be
derived is said to be functionally complete. For example, since the three
functions AND, OR, and NOT of the Huntington postulates serve to define
all Boolean functions in the algebra, this set is functionally complete. Prove
that the single NAND function, (xy), is functionally complete by showing
how the AND, OR, and NOT functions can be obtained using the NAND
only.

Show that the NOR function (x + y) is functionally complete.
Show that the exclusive-OR function, x¥ + Xy, is not functionally complete.

Determine which of the following equations are valid.
(@@ +ab+hbc+ab+rac=a+b+c

(b) AB + AC + AC = AC + BC + AC

(c) BD +~ CD + ABC + ABC = BD + ACD + ABC
(d) a + b =at + bc+ab+bd

(e) ab=(a + THa + b)@ + b)

Write the dual of each of the following expressions. Simplify your results.
(a) a + bc

(b) @ + T(d + e)

(c) ab + cde

@) (a + b)@ + cd)

(e) (@ + blc + d))(b + Td)

Using De Morgan's theorem, take the complement of each of the expressions
in Problem 3.9. Simplify vour answers.

For each of the given functions, (i} write the function as a minterm list, (ii)
write the function as a maxterm list, (iil) write the function in canonical
minterm form, and (iv) write the function in canonical maxterm form.

@) fla,by=a+b

M) fla, b,c) =a + bT

(©) fla, b, ¢) = ab + dc + bc

) fla, b, c,d) = abc + bd + ¢d

(e} fla, b, c,d, e) =ac+ bde + cde _

(f) fla, b,c,d.e) =(a+ b)T + d + e)b + d)
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3.12.

3.13.

3.14.

3.15.

3.16.
3.17.

Convert the following expressions to 2 product of sums (POS) form.
(a) @bt + ab + bed

() XY+ XY + XYZ

() wxy + wyZ + Xy + wz

(d) abc + abd + bd + td

(e) (A + BCXAB + D) + CD

@) Xy + Dw + wWX(F + 2)

Convert each of the following expressions to a sum of products (SOP) form.
@ (@a+ dba+b+0)

b)) T+F+2)w+y)

(© (X+ yw+z)ix+y+2)

(d) (A+B+D)(B+C+D)

(¢) (A + BCXAB + D) + CD

(f) Xy + Dw + wX(§ + 2)

Algebraically reduce each of the following expressions to a minimal SOP
expression.

(8) @b + bc + abc + ab¢

(b) WXz + xyz + wyz + wyZ + X¥Z + X7

(¢) xz + Xyz + ¥z

(d) at + be + @b + bd

(e) (@ + b)a + cXa + )

(f) ade + bde + abcd + bde + abcg

Plot each of the given functions in a Kamnaugh map.

(a) fla, b, ¢, d) = abc + ad + bt

®) gx,y,z2)=2Xm0,1,4,6,7)

(c) h{A, B, C, D)-—(A+B+C)(A+B+D)(B+C)

@) Gla, b,c,d)=T1M(©,1,3,4,5,7,10, 11, 12, 13)

(e) Ha, b, c,d)is0if a = 1 and (b, ¢, d) consists of an odd number of 1s or if
the number represented by the 3-tuple (b, ¢, d) is divisible by 2, regard-
less of the value of a.

(f) f(A, B, C, D, E)is 1 if the number represented by the 5-tuple (4, B, C.D,
E) is even or is divisible by 3.

List ali of the prime implicants for the functions given in Problem 3.15.

For each of the Karnaugh maps shown in Figure P3.17, write an expression
for the function implemented in minimal sum of products form.
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3.18.

3.19.

3.20.

3.21.

3.22.

3.23.

Repeat Problem 3.17, writing the expression in minimal product of sums
form.

Using Karnaugh maps, find a minimal SOP expression for the following func-
tions.

(@) G(A,B,C)=Xm@0,1,2,4,6)

() fla, b, c, d) = £ m(2,3,6,9, 12, 13, 14) + d(0, 11)

(© hia, b, c,d, e) =2 m(7, 17, 23, 25, 28, 29, 30, 31}

(d) f(W,X,Y,Z2)=TM@3,4,5,8,10, 11, 12}

(€) fla, b, c, d) =TI M(0, 1,3,9,10, 12, 13) + d(7, 8, 11, 14)

® gla, b,c,d) =2 mi(2,3,5, 9 12, 14) + d(0, 4, 6, 8, 10, 13)

Using Karnaugh maps, find a minimal POS expression for the following func-
tions.

@ fiw,x,y) =ZIm®0,2,37)

®) g(x,y,z) =M MQO,27) + 41, 6) .

(© ha, b,c,d)=3m(1,2,3,5, 9, 12,13) + d(4,7, 8, 15}

(d) Fa, b, c,d) =T1 M(0, 1, 2,8,9, 12) + 4(3, 10, 13)

(e) Gla, b, ¢, d, €) = Z m(6, 14, 22, 25, 27, 29, 30, 31)

@) Hu,w,x,y,2) =11 M(Q1,2,5,6,7, 16, 22, 24) + d(0, 8, 15, 30, 31)

Write the prime implicants in product of literals form corresponding to the
minterm list forms shown.

(a) 0, 1(1) on four variables

(b) 8,9, 10, 11(1, 2) on four variables

(c) 0,2, 8, 10(2, 8) on four variables

(d) 5, 13, 21, 29(8, 16) on five variables

(e) 20, 21, 22, 23(1, 2) on five variables

) 0,2,4,6,18, 20, 22(2, 4, 16) on five variables

Write the prime implicants in minterm list form corresponding to the product
of literals form shown.

(a) ab, on two variables

{b) b, on four variables

(c) @, on four variables

{d) acd, on five variables

(e) béd, on five variables

(f) abe, on five variables

Using the Quine-McCluskey algorithm find a minimal cover for each of the

following functions:

(a) F(A,B,C,D)=%m(0,1,2,3,5,7,10, 12}

() #(A,B,C,D)=3mi0,1,2,4,5 7, 8,10) + d(3, 11, 15}

(©) fow, x,y,2) =2 m(0, 1,7, 810, 12, 14, 15) + d(2, 5)

@) fla.b,c,d, e)=2m(3,4,6,7,12,18,19, 20,22, 23, 24, 25, 26, 27, 28, 29,
30, 31)

(e) g(A.B,C,D,E)=3m(0,1,2,3,4,6,8,11, 12,27, 28) + d(9, 16, 17, 18,
19)

1
1
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.24,

3.25,
3.26,

3.27.

3.28.

The following functions yield cyclic covering tables, After finding the prime
implicants, use the Petrick algorithm to find a minimal cover for each func-
tion.

@ flw,x,y,2)=2m(0,1,5,7,8, 12, 14, 15)

(b) gw, x,y,z) = Zm(3,4,6,7,11,12, 13, 15)

(¢) Alw, x, ¥, 2) =2 m(0, 4,5,7, 8, 10, 11, 14, 15)

Find all of the possible solutions for the example given in Section 3.5.6.

Apply the multiple-function version of the Quine-McCluskey algorithm de-
scribed in Section 3.5.6 to the implementation of the three functions f, g, and
h given in Problem 3.24.

Let f(x) be a switching function on the n variables x;, x2, . . . , x, and let
F4x) be the dual of f{x). Prove that
fd(x) =f(i) =f(-‘x‘|’325 LR fﬂ)

A switching function f{x) is said to be unate if there exists an expression for
S such that each of the variables appears in etther complemented or un-
complemented form but not both. For example, f{a, b, ¢} = a + bc is unate,
but g(a, b} = @b + ab is not, since g and b appear in both complemented and
uncomplemented form. Prove that all prime implicants of a unate function
have a minterm in common and therefore that the minimal SOP expression
for a unate function is unigue.
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INTRODUCTION

Blaise Probably the earliest hardware for carrying out digital computation was a

Pascal simple adding machine built by Blaise Pascal for his father, a bookkeeper, in
1645. This machine and the famous calculating engine of Charles Babbage,

Charles circa 1822, were constructed using gears, cams, levers, and the like. These

Babbage machines, and their successors, were basically decimal machines in which

each digit was represented by one of ten possible positions of a ten-toothed
gear or some similar mechanism.

Although the computations these machines performed couid be carried
out in the binary number system, there was no need to do so, since the
machines were mechanical. However, the use of relays and, later, vacuum
tubes and, still later, transistors, all of which are basically switches having
two states, required that binary numeration be used for computing devices.
These binary switches are generally of two types: bilateral and unilateral. A
bilateral switching device, such as a relay contact or a simple switch, allows
information to flow in two directions. A unilateral device, such as a transis-
tor, restricts information flow to only one direction. Switching functions can
be physically implemented using either type of device. By far the most
common devices used today for the implementation of switching functions

95
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sates are unilateral.! Such devices are referred to as gates. In what follows, we will
define a consistent gate symbology and show how to use these devices for the
implementation of switching functions.

1 4.2

GATE SYMBOLOGY

logical vs.
physical

MIL-STD-
8068

Experience has shown that the symbology used in the design of large-scale
digital systems is most important in conveying information about the opera-
tional characteristics of the system as well as the logical intent of the de-
signer. In any digital circuit, there are two points of view from which the
circuit may be analyzed: the logical (or mathematical) and the physical. The
logical point of view considers only the 1 versus 0 behavior of switching
variables and functions. The physical point of view considers the actual
voltage levels used to implement the switching variables. These voltage lev-
els are, of course, what one would observe on an oscilloscope and would
thus indicate how the circuit is actually operating. The physical and the
logical points of view coincide when one voitage level is used to represent a
logical 1 and another, quite different, voltage level is used to represent a
logical 0. Thus, it is important that the symbology used to represent digital
circuits be capable of conveying both physical and logical information.
This need has led to the particular set of symbols and the standard for
their usage that was adopted for general use by the Department of Defense in
February 1962. This is MIL-STD-806B, which is now being used in some
form or another by most of the digital integrated circuit manufacturers in this
country. More recent versions are in existence but, at this time, have gener-
ally not met with as great a degree of acceptance as has standard 806B. More
will be said about these standards at the conclusion of Section 4.2. In what
follows, a symbology standard will be described which is completely compat-
ible with standard 806B but has been extended to reflect current industrial

usage.

4.2.1 Gate Symbols and Thelr Meaning

Basically, a gate is a physical device, electronic, mechanical, or otherwise,
which implements a logical operation.? As described above, the symbol that
represents a function must show not only the physical behavior of the gate

| Bilateral devices are, however, used extensively in VLSI circuits and will be discussed
further in Chapter 8,

2 In all that follows, we will assume the use of electronic gates in which voltages are used to
represent the logical values.
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Figure 4.2.1 Gate symbois for {a] the AND and {b] the OR functions with their
respective physical truth tables (¢ and d). {H = high voltage; L =
low voltage.)

but, also, the logical function desired by the designer. The symbols used for
the AND and OR functions are shown in Figure 4.2.1. These symbols are
distinctive symbols, in that their shape corresponds to the intended logical
operation performed by the respective gate. Consider, first, the symbol for
the AND gate shown in Figure 4.2.1(a). This symbol represents a device that
has the following physical behavior: the output, C, is a high voltage if input A
is a high voltage and input B is also a high voltage. In a similar manner, the
symbol for the OR gate, shown in Figure 4.2.1(b), is interpreted physically to
have a high voltage on output C if either input A is a high voltage or input B is
a high voltage, These two interpretations can be summarized in the physical
truth tables give in Figure 4.2.1(c} and (d).

The logical interpretation of these gates depends on how we associate
voltages with logical 1s and 0s. There are obviously two ways in which this
can be done, namely:

1 = high voltage
0 = low voltage

or

1 = low voltage
0 = high voltage

Assume, for the moment, that a high voltage corresponds to a 1 and a low
voltage corresponds to a 0. If we substitute these values into the physical
truth tables given in Figure 4.2.1, we obtain the logical truth tables shown in
Figure 4.2.2(a) and (b). These tables are, of course, the same as derived in
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Figure 4.2.2
A B|C A B|C Logical truth tables resulting from the
1 11 1 1| two possible assignments of voltages to
1 011 1 olo logic levels for the physical gates of
0 1|1 o 10 Figure 4.2.1. {a} AND gate and {b) OR
o olo o ola gate for 1 = high and 0 = low: (c|
AND gate and (d) OR gate for 1 = fow
(©) ) and 0 = high.

Section 3.2, which defined the AND and OR switching functions. If we take
the alternative point of view, that a 1 corresponds to a low voltage and a 0 to
a high voltage, then the logical truth tables that result from this substitution
are shown in Figure 4.2.2(c) and (d). Writing the logical function imple-
mented by tables (c) and (d), we find that the AND gate now realizes the
function C = A + B, or, rewriting in a different form, € = AB; and we find
that the function implemented by the OR gate now is C = AB,orC = A + B.
Thus, we see that a physical gate can implement several different logical
functions, depending only on how we associate the voltage levels with logi-
cal values.

To avoid confusion, we need to indicate how the voltage levels are to be
assigned to the logic levels. We will do this by using the notation X(H) or,
simply, X to indicate that a I corresponds to a high voltage and X(L) or X_ to
indicate that a 1 corresponds to a low voltage. Note that in all that follows, if
no indication is given, it will be assumed that 1 is associated with a high
voltage, as is customary. We will refer to the assignment of a logical 1 to a
low voltage as being asserted low; the reverse situation would be termed
asserted high. .

Consider next the gate shown in Figure 4.2.3. The physical interpreta-
tion of this gate symbol is that the output, C, is low if either input A is low or
input B is low. The ‘‘bubbles’’ (small circles) on the inputs and outputs of the
gate are used to indicate that a low voltage is expected for assertion, and the

Figure 4.2.3

A(L) 'dD:>._ ciL) OR gate that is physically the same as the
1) —q AND gate of Figure 4.2.1{a}.
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Figure 4.2.4 Gate with mixed-logic conventions: (a) mixed-logic symbol; (b)
physical truth table; (c) logical truth table.

OR symbol is used to indicate the physical OR of voltage levels. It is easily
verified that the resulting physical truth table is the same as the one shown in
Figure 4.2.1(c). Since the physical truth tables are identical for the gates
shown in Figures 4.2.1(a) and 4.2.3, the two symbols must represent the
same physical gate. However, the logical functions performed are quite dif-
ferent. If, for example, we now assume that all inputs and outputs to the gate
of Figure 4.2.3 are considered to be a logical 1 when the voltage is low, as
indicated by the labels A(L), B(L), and C(L}, then the logical truth table
becomes, by simply substituting 0 for H and 1 for L in the table of Figure
4.2.1(c), the same as Figure 4.2.2(c). Thus we have implemented the logical
function C = A + B!

Let us now consider the example shown in Figure 4.2.4. The gate sym-
bol itself indicates—if we ignore the correspondences associated with the
labels A, B, and C, which are, after all, arbitrary (the designer knows what
these are supposed to be)—that the output is high if either input is low; in
other words, the OR operation. Now let us look at the logical function
implemented by this gate. To do this, first construct the physical truth table
for the gate; this is shown in Figure 4.2.4(b). The logical truth table can now
be constructed from the physical truth table by replacing the lows and highs
with the logical 1s and 0s assumed by the notation used in Figure 4.2.4(a),
namely, that A is a logical 1 when low, or A is asserted low; that B is asserted
high; and that C is asserted high. Figure 4.2.4(c) is the resulting logical truth
table, from which the switching function realized is

C=A+B 4.2.1)

Consider for a moment how the B entered this equation. By the defini-
tion of the gate symbol, the output is asserted high if either input is asserted
low. The input signal called B is assumed to be a logical 1 when it is high, as
indicated by the notation B(H). The corresponding gate input is a logical 1
when its voltage is low. Thus the logical interpretations of the two points in
the circuit are complementary, and so B appears in the output function as B.
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their respective physical truth tables.
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On the other hand, the driving signal A and the corresponding gate input are
both asserted low, and so no complementation arises. The same holds true
for the output, except that in this case both are asserted high. From this
discussion we observe the following rule:

A logical complementation will arise at any time when the assertion levels on
opposite ends of a line are different.

Before proceeding to analyze more complex circuits, we need to intro-
duce a new gate type called a buffer. Figure 4.2.5(a) shows the logic symbols
associated with this gate and gives the corresponding physical truth table.
We will generally refer to a buffer with a “‘bubble’’ on either the input or the
output as a level shifter® or a NOT gate. Figure 4.2.5(b) shows the associated
symbols for the level shifter and the corresponding physical truth table. The
buffer is generally used to amplify a signal so that it can serve as an input to
many more gates than would be physically possible otherwise. The level
shifter is generally used to shift an assertion level from one value to another
so that either a logical inversion is implemented, which produces the NOT or
complementation operation, or avoided, as needed. Figure 4.2.6 shows the
use of level shifters for these two functions. If we were to remove the level
shifter of Figure 4.2.6(a), input A would appear at the output uncomple-
mented. Similarly, removal of the level shifter, as shown in Figure 4.2.6(b),
would cause A to be complemented.

3 The term level shifter is used here to indicate a gate that converts one logic level to another.
This term may also be used, in other contexts, to indicate a device for shifting one voltage
level to another because of conflicting electrical or electronic requirements.
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Figure 4.2.6 Use of the level shifter (a} to create or (b} to remove a logical com-
plernentation or inversion.

4.2.2 Analysis of Mixed-Logic Circuits

When we use the ideas just presented, the analysis of rather complex circuits
becomes a straightforward job. The basic analysis procedure consists of
performing the AND function for AND gates and the OR function for OR
gates, and complementing a function whenever an assertion-level mismatch
occurs. Figure 4.2.7 shows a moderately complex gate network realizing
some switching function. The problem is to write the switching expression
for the function implemented. The analysis is done by writing the function
implemented at the output of each gate without reference to any bubbies at
these outputs. Complementations are generated wherever mismatches occur
on the inputs. For example, the output of gate 1 realizes the function A + B
regardiess of the fact a bubble occurs at this output. When this output is used
as an input to gate 2, it appears uncomplemented, because the input to gate 2
also has a bubble (recall rule 1). However, it appears complemented at the
input to gate 3, because there is a logical mismatch at that input. Continuing
the process of writing equations on a line-by-line basis, the function realized

becomes

F=[(A+B)CI(A+B)+ D]+ DE 4.2.2)

AH) — A+ B
B(H) ﬁ’®

1 (A + B)]
(L) Q) —
[(4+ B8)CI[(4+ B)+ D]

D(H) q ATE +D :g@— F(H)
E(H) E

Figure 4.2.7 Analysis of a mixed-logic circuit.
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Figure 4.2.B Second analysis example.

As a second example of this analysis process, consider the circuit
shown in Figure 4.2.8. In this example notice that level shifter 1 is used to
shift the assertion level of input A from a low to a high, thus matching the
input to gate 2. Level shifter 5, on the other hand, is used to create a
complementation, in this case producing the term (C + D). Since the output
of gate 8 is asserted low and the assumed assertion level for the signal Z is
also low, the output is uncomplemented and becomes

Z=(A+B)NC+ D)+ (F+BE +(C+ D)) (4.2.3)

A very important observation should be made at this point. If an oscillo-
scope is connected to some point in the circuit, the voltage behavior of a
correctly operating circuit can be predicted by knowing the logical function
and the assertion level of the gate output driving the point under test. For
example, the output of gate 4 in Figure 4.2.7 realizes the logical function

[(A + BYCKAB + D) = (A + B)CD (4.2.4)

Thus, this output will be a low voltage if C is asserted and D is not asserted
(or is negated) and either A or B is asserted. In terms of the physical assertion
levels, this output is low if C is low and D is low (negated) and either A or B,
or both, are high. .

If we peruse a 7400 series TTL* data book, we will notice very quickly
that although there are a lot of different gates, none is shown in the form of

4 TTL, or transistor-transistor logic, is the most common technology used today for the
implementation of simple to moderately complex logical functions. Other technologies, such
as MOS, or metal-oxide-semiconductor, and CMOS, or complementary MOS, are typically
used for very complex circuits.
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Figure 4.2.9 NAND (a) and NOR (b} equivaient symbaols.

gate 2, 3, or 5 of Figure 4.2.7. In fact, no single gate package exits which
implements gate 3. However, it is easily verified by examination of the
physical truth tables that gate 2 is equivalent to the so-called NOR gate and
gate 5 is equivalent to the so-called NAND gate, both of whose symbols
appear in the data book. Figure 4.2.9 shows the physically equivalent repre-
sentations for these two gates. The name “NOR™ comes from the function
implemented by the gate if one assumes that all inputs and outputs are
asserted high. This function is

C=(A+B) =AB (4.2.5)

which is the ““NOT of the OR of A and B,”” or NOR. Similarly for the
NAND, whose function, assuming that all inputs and outputs are asserted
high, is

C=(AB)=A+8B (4.2.6)

It is important to note, however, that if the output is assumed to be a logical 1
when low while the inputs are taken as a 1 when high, then the logical
functions implemented in the two cases are the OR and the AND, respec-
tively.

It will be useful later to be able to convert between physically equivalent
mixed-logic AND and OR symbols as done in Figure 4.2.9. The general
conversion process is easily accomplished by use of the following rule:

Rule 2

To convert a mixed-logic AND gate symbol to a physically equivalent mixed-
logic OR gate symbol, change the AND symbol to an OR symbol, place
bubbles on all signal lines in the OR symbol that did not have bubbles in the
AND symbol, and remove all bubbles on signal lines in the OR symbol that
had bubbles in the AND symbol. Conversion of a mixed-logic OR to a mixed-
logic AND is done in exactly the same manner.

As an example, Figure 4.2.10(a) shows a three-input mixed-logic AND gate
symbol that is to be converted to a physically equivalent OR gate symbol.
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Figure 4.2.10 Two physically equivalent gate symbals: {a) mixed logic AND gate
symbol; {b} OR symbol physically equivalent to part (a).

Applying rule 2 to this AND gate results in the OR gate symbol of Figure
4.2.10(b). We can easily verify that these two symbols represent exactly the
same physical device by constructing a phvsical truth table. We do this by
observing that the output of the gate shown in Figure 4.2. 10(a) is low if inputs
A and B are high AND input C is low. The resulting physical truth table is
shown in Figure 4.2.11(a). The corresponding table for the OR gate shown in
Figure 4.2.10(b) is derived by observing that the output D is high if either A is
low OR B is low OR C is high. The resulting physical truth table is shown in
Figure 4.2.11(b). Since these two tables are identical, the two devices must
be the same physically even though the logical behavior of one is an OR and
that of the other is an AND.

4.2.3 Synthesis of Switching Functions
Using Mixed Logic

Suppose we are given a switching fu}lction such as
Z=EF(AB+C+ D)+ GH (4.2.7)

and are asked to design a gate network that implements the function using
only NAND gates and NOT gates (level shifters). Further assume that all
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Figure 4.2.11 Physical truth table for the gates of (a) Figure 4.2.10{a) and (b)
Figure 4.2.10{b).
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signals are asserted high. Our job now is to carry out a design and draw the
circuit diagram in a manner that indicates the exact logical form of the
equation. The design procedure, starting with an equation, is very straight-
forward and may be summarized by the followng steps:

Step 1. Ignoring logical complementations, lay out a circuit implementing
the equation with AND and OR gates only. The result for this exam-
ple is shown in Figure 4.2.12.

Step 2. Affix **bubbles,’”” or assertion-level indicators, to each gate to pro-
duce the physical gate required by the problem constraints. In this
case, NANDs are required. Figure 4.2.9(a) shows the two equivalent
symbols that can be used for this gate. Figure 4.2.13 shows the result
of this step.

Step 3. Add level shifters as necessary to either create or remove logical
complementations. Figure 4.2.14 shows the result of this final step.

A(H}
B(H)
C(H)

Z(H)

G(H) —
H(H} ~—

Figure 4.2.13 Result of synthesis step 2, which yields the function Z =
(AB + C + D)EF + GH.
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Figure 4.2.14 Final realization of Equation {4.2.7).

A second example will further illustrate this process. Suppose that we
are given the function

fla, b, ¢) = (a + bcXac + bt) (4.2.8)

and told that the output, £, and input, a, are asserted low. Inputs b and ¢ are
then assumed to be asserted high. Further, suppose that we are allowed to
use NANDs, NORs, and NOTs in our design. The impiementation of Equa-
tion (4.2.8) then starts by applying step 1. The result is shown in Figure
4.2.15. Notice that all complementations have been ignored here.

The application of step 2 requires that we select a gate type. Since the
output, f, is asserted low, we will select a NAND as the output gate so that
there is a match between the gate output and the signal line, f. Since we are
not constrained to the use of a single gate type, we can select the rest of the
gates so that the resulting implementation yields a function as close as possi-
ble to that of Equation (4.2.8). Figure 4.2.16 shows the resulting circuit after

a(L})

b(H)
e(H)

:)— L

oL

Figure 4.2.15 Resuit of synthesis step 1 appiied to Equation (4.2.8).
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Figure 4.2.16 Final implementation of Equation (4.2.8).

applying step 3. Notice in this realization that the complementation of the
term (@c + bt) is obtained by the mismatch between the output of NOR gate
1 and the input to NAND gate 2. The reader should determine how this
realization changes if only NANDs and NOTs are used.

If one examines the TTL data books, one will observe that in addition to
NANDs, NORs, and NOTs, there are also AND and OR gates, although not
in as great a variety. A logical question, then, is, If such gates are available,
why should one be concerned with NANDs and NORs—why not implement
everything using AND, OR, and NOT gates? The primary reason stems from
the fact that computers and their related memories and peripherals generally
require a large number of signals that are asserted low (i.e., that cause some
significant action to occur when low). In addition, the NAND and NOR gates
are generally faster than AND and OR gates. Finally, the NAND gate (and
also the NOR gate) is a universal gate in that all functions can be imple-
mented with this gate only (refer to Problems 3.5, 3.6, 4.7 and 4.8). For these
reasons, implementations of switching functions using NANDs, NORs, and
NOTs are usually preferable to implementations using ANDs, ORs, and

NOTs.

4.2.4 Converting lll-Formed Circuits
to Standard Form

It would certainly be nice if everyone designing digital systems in the real
world would adhere to the symbology usage just described, since it would
certainly make schematic diagrams easier to read, understand, and maintain.
In fact, most integrated circuit manufacturers and original equipment manu-
facturers (OEMs) do use the symbology presented above. Unfortunately,
others do not. In many textbooks, technical periodicals, and hobby maga-
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zines, one may find circuits drawn as shown in Figure 4.2.17, for example.
We will refer to circuits like this as being ill-formed. The difficulty of analysis
is obvious: if an oscilloscope is connected to Z, what conditions of voltage
levels on A, B, C, D, E, and F will cause Zto be a high voltage (or did the
designer want it to be a low voltage in the first place?)? Asked another way:
What switching function of the primary input variables is Z, and what func-
tion did the designer want to implement? The analysis can clearly be carried
out, but it is complicated by the fact that there are assertion-level mis-
matches on almost every line! De Morgan's theorem will have to be applied
repeatedly to such circuits to answer the question, and this is a process
highly susceptible to error.

ill-formed What is needed for the analysis of ill-formed circuits like that shown in

circuits Figure 4.2.17 is a simple procedure to redraw the circuit-so as to make it
readable. Fortunately, this is quite straightforward. To illustrate the proce-
dure, assume that all signals in Figure 4.2.17 are asserted high. The proce-
dure is as follows:

Step 1. Convert the gate that generates the output to a physically equivalent
gate so that no assertion-level mismatch occurs at the output. In the
case at hand, we need to convert the OR symbol at the output to a
physically equivalent AND symbol so as to remove the logical mis-
match at the output. The result of this step is shown in Figure 4.2. 18.

Step 2. Convert the gate symbols driving the output gate so that no level
mismatches occur between the gates. In this case, no mismatches
occur, and so no change is necessary.

Step 3. Continue on succeeding levels converting the gate symbols so that
mismatches in assertion levels are eliminated or minimized. Note
that no physical gate can be changed or added, since this would
change the original physical circuit. Figure 4.2.19 shows the result of
this step.
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Figure 4.2.18 First-level conversion of Figure 4.2.17.

The principal objective of this process is to move the mismatches as
close to the inputs as possible. Since expressions implemented at various
points in the circuit are simpler as we get closer to the inputs, any application
of De Morgan’s theorem will be easier if this is done. We will refer to circuit
diagrams drawn in this fashion as being given in standard form. It is now
easy to determine that the logical function implemented by the original cir-
cut 18

Z = A[B + CD(F + E)] (4.2.9)

4.2.5 Some Notes on Other Symbol Usage
and Other Standards

The symbols used here are those of MIL-STD-806B. Although the H and L
tags on the signal lines are not a part of standard 806B, they are used exten-
sively in industry. Unfortunately, the literature, including the semiconductor
manufacturers, does not use the tagged symbols to any great extent. Rather,
the usual usage is to use a complementation indicator (usually an overbar) to
indicate an asserted low signal and to use no tag to indicate an asserted high.

A(HJ—-DO—LO

B(H)

C(H)

F(H) ___19_]_0

Figure 4.2.19 Readable circuit in standard form equivalent to the circuit of Fig-
ure 4.2.17.

Z(H)
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A )‘:>— C Figure 4.2.20
8 s Exclusive-OR gate.

Thus

A(L) = A

and
AH) = A

Although most IC houses use this convention, only a few, Texas Instruments
included, remove any possible ambiguity by specifying their devices’ behav-
jor with a physical truth table and not a table of 1s and 0s.

There are two other symbols that are part of standard 806B and appear
commonly in the literature which have not, as yet, been discussed. The first
is the exclusive-OR symbol, shown in Figure 4.2.20. The logical function
realized by this symbol is

C=A@®B=AB+ AB (4.2.10)

““Bubbles’’ may appear in this symbol in exactly the same way as with any
other gate symbol and carry the same physical meaning as before. The sec-
ond symbol not mentioned thus far is actually two: the wired OR and wired
AND. Figure 4.2.21 shows these two symbols. Actually, these symbols do
not represent gates at all! They represent a logical function generated by
physically soldering the outputs of two circuits—outputs A and B or outputs
D and E—together to form a single signal, called C or F, respectively. These
connections occur most frequently on devices having an ‘‘open-collector”
output. An open-collector output is just the collector voltage of a transistor
having an uncommitted collector. Figure 4.2.22 shows two such gates con-
nected together in this fashion. It is easy to see that C will be a high voltage,
+5 V, if both transistors A and B are off—the AND operation. Alternatively,

Figure 4.2.21 ~'Wired” OR and AND symbols.
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@ Figure 4.2.22
Two open-collector gates connected in a

= wired-logic arrangement.

C will be a low voltage, or at ground, if either transistor A or transistor B is
on—the OR operation. The symbol selected to depict this wired logic should
be based on the function actually wanted by the designer,

The symbol used for the wired OR operation, unfortunately, does not
follow the standards which we have just described. The appropriate symbol
for such an interpretation would be as shown in Figure 4.2.23. Such a symbol
is not used, however.

Other standards do exist, and so also do other forms for the symbols.
Notable is the current IEEE Std. 91-1973 (ANSI-Y32.14-1973). This stand-
ard modifies the interpretation of the bubble in a somewhat confusing,
although consistent, way and adds a set of gate symbols in addition to those
given above. The Appendix describes some of these changes. This standard
has not been generally accepted by industry. It is for this reason that we do
not use it in this text. It is unfortunate that acceptance of this standard has
been slow, since it very clearly shows both the physical and the logical
behavior of a design.

Both the symbology standard used here and Std. 91-1973 are well suited
for describing small to medium-sized systems. As integrated circuits become
more complex, however, this simple symbology becomes inadequate. What
is needed is a symbology which clearly describes the function of such large-

Figure 4.2.23
Appropriate, but unused, symbol for the wired OR.
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scale circuits. Such a notation has recently been introduced as I[EEE Std. 91-
1984. In this standard, the symbols are generally uniform, rather than distinc-
tive, as used here, and the functions of the inputs and outputs are indicated
by a special notation termed dependency notation. Since we will be dealing
with rather simple circuits throughout this text, we will not introduce this
standard here. A basic introduction to this new symbology and to depend-
ency notation is given in the Appeundix. Further references can be found in
the bibliographies at the end of this chapter and at the end of the Appendix.

SWITCHING CIRCUIT DESIGN EXAMPLES

The design of computers and other large-scale digital systems is usually
accomplished by breaking the system up into small portions, each of which is
designed separately. By approaching the problem in this way, each compo-
nent can be individually tested. Thus, when the final system is assembled,
the likelihood of its functioning properly the first time is tremendously in-
creased. The design of each of the smaller subsections follows a very well-
defined procedure. First, the problem is specified by describing the specific
function and operation of the subsystem. This specification, usually in writ-
ten form, is then translated into a set of switching expressions which are
implemented using gates and other digital components. The schematic dia-
grams that result are then used to build the component and finally test it for
proper operation. In what follows, we will illustrate this design procedure by
looking at a number of examples.

4.3.1 Binary Adder

The heart of any computer is clearly its central processing unit (CPU), which
is made up of circuitry that can perform arithmetic and logical operations on
information. Among the arithmetic operations, addition is the most used.
What we would like to do in this section is to design a piece of hardware that
can be used to add two signed 2’s complement numbers.

We can think of the adder as being a logic network having two sets of
inputs, each consisting of » bits, and an (n + 1)-bit output, where the extra
output bit is used to give the carry generated by the addition. For any reason-
able value of n, we quickly see that a truth table representation for the n-bit
adder is not feasible. For example, if n = 8, a reasonable size for most
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Figure 4.3.1
Truth tabile for a 1-bit binary adder.
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microprocessors, there will be 16 bits on the input—38 bits for each of the two
numbers—meaning a truth table with 2 = 65,536 entries. Obviously, this
approach leaves something to be desired. However, if we change our point of
view and consider the process to be one of adding two 1-bit numbers, the
problem becomes very simple, indeed.

Let us consider what happens in the addition of two n-bit numbers at the
ith bit position. First, we add the two bits of the given numbers, A, and B;.
Once this is done we must add to this result any carry that came from the
next lower-order bit addition (i.e., the addition of A;-, and B;_,). The result of
this addition will give a single bit for the sum and a single bit for the carry into
the next higher position. Figure 4.3.1 gives a truth table for this single-bit
addition. This table was first derived in Section 2.3. In this table, C; is the
carry in and C;,, is the carry out of the ith bit position, and S; is the sum bit
for the ith position.

By plotting S; and C;., in Karnaugh maps and finding a minimal SOP
expression for each, we obtain the equations

S,’ = EE,C, + I,‘B,‘éj + A,RC + AiBiCi

4.3.1
Cioy = AB; + AC, + BC, “-3.0

We could, of course, implement these equations directly in a “‘two-level”
circuit.’ Such an implementation would require five gates for S; and four
gates for C;.,. However, by factoring S;, we find, from the following equa-
tion, that it is equal to the Exclusive OR of A;, B;, and C;:

S; = (A;B; + A;B)C; + (A;B; + A;B)C;

43.2
-A®BOC @32

5 The term ‘‘two-level” refers to using a group of ANDs at the input level to implement the
product terms, then ORing these at the second level to generate the output.
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Ci+1

Figure 4.3.2 Implementation of the 1-bit adder.

§; can now be implemented using two Exclusive OR gates. C;;, can be
factored as well to produce a result which will also yield a simpler implemen-
tation. This is done as follows:

C,‘+] = A,‘B,‘ + A;'E,‘C,' + Z,'B,‘C;
= A;B; + (A;B; + A;B)C; (4.3.3)
= A;B; + (A; @ B)C;

In this case, only three additional gates are required to implement C., since
the Exclusive OR of A; and B; has already been implemented. The resulting
gate realization is shown in Figure 4.3.2.

In this realization we may note that the first exclusive OR generates the
sum of A and B, while the second adds in the carry. Since the Exclusive OR

4, B, A, B Ay By
L
A B A4 B Cy 4 8 G| T
Cou s Cou 5 Cout 5
- Sy - 5 S,

Figure 4.3.3 iterative network of full adders that realizes an n-bit adder.
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gate, in each case, is performing ‘‘half’’ of the addition task, this gate is
sometimes referred to as a half adder. The circuit shown in Figure 4.3.2 is
then referred to as a full adder.

Now, our original problem was to design an a-bit adder, not just a 1-bit
adder. By cascading these full adders so that the carry out from one becomes
the carry in to the next higher bit position, adders of arbitrary length can be
created. This iteration of circuit elements is shown in Figure 4.3.3. Note that
for proper operation the carry in to the least significant bit is set to a 0 by
tying it to a low voltage; specifically, ground.

As we shall see in the next chapter, the ‘‘propagation” of a carry
through this sequence of adders can take a great deal of time and thus slow
down the addition process. One solution to this problem is to design 2-bit or
4-bit full adders, a process more complicated than the design of 1-bit adders
but still tractable. These multibit adders can then be cascaded in the same
manner as for the single-bit adder to produce an n-bit adder. If we assume
that it takes as long to propagate a carry through one 4-bit adder as it does to
propagate through a 1-bit adder, then the effective time to perform the addi-
tion process can be reduced by a factor of 4. We will discuss this design in
Section 4.4.

4.3.2 Comparison of Two Binary Numbers

Another operation that is performed quite often in computation is that of
comparing two numbers. What we want to do is to determine whether num-
ber A is greater than, less than, or equal to number B. One way of doing this
is to subtract the two numbers and look at the result. Another approach, and
the one we will take here, is to design a specific circuit which makes this
comparison directly.

The algorithm, or procedure, for performing this comparison can be
described as follows. Given the numbers A and B, we begin the comparison
by looking at the high-order bits. If the high-order bit of A is 1 and that of B is
0, then A is greater than B. If the high-order bit of Bis a 1 and thatof Ais a0,
then A is less than B. However, if the high-order bits are the same, either
both 0 or both 1, we must look at the bits of the next higher order. By
continuing this bit-by-bit comparison from left to right, we will eventually
determine the ordering of the two numbers.

Using this algorithm, we can design a 1-bit comparator and then, by
cascading n of these, produce an »n-bit comparator, just as we did in Section
4.3.1 for the n-bit adder. Each 1-bit comparator must have four imputs and
two outputs. The four inputs are, first, the two bits to be compared, A; and
B;; then a bit E,, that indicates whether the bits to the left of the ith bit are all
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Truth table for a |-bit comparator.
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equal; and a bit G, that tells whether it has already been determined that A is
greater than B. The two outputs are the ‘‘equals’ and ‘‘greater than’” indica-
tors that exist after the ith bits are compared. We will refer to these as E,
and G, , respectively. Figure 4.3.4 shows the truth table for this circuit.

Note that if E,, and G, are both 0, then A has already been determined
to be less th.in B. Thus the ith bits are irrelevant, or don’t cares. The same
situation o .urs if G, = 1 and E;; = 0, except that now A is greater than B.
Only when all of the higher-order bits are the same (E;, = 1 and G, = 0) do
the ith bits matter. Observe also that E;, = G;, = 1 is not possible, since this
would imply that A was equal to B and, simultaneously, greater than B.
Plotting this truth table in the Karnaugh map of Figure 4.3.5, we arrive at the
following design equations:

Eou = EpAiB; + EnAB;

= En(AB; + AB) 4.3.4)
= Ei(A; @ B;)
Gout = Gin + EinAl'Bi
A;. B A;
Eq: Cin 00 01 11 10
411] 00 00 00 00
H] 01 1]} ]} 0t
Gy,
i - - - -
Ein
10 10 00 10 01
Bf
EOU[’ GOH[

Figure 4.3.5 Kamaugh map from Figure 4.3.4.
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Figure 4.3.6 Design of an r1-bit binary comparator: (a} implerentation of the
1-pit comparator; (b) iterative array of 1-bit comparators forming an
rbit comparator.

A little thought shows that these equations make a great deal of sense,
since the first is 1 only if A; = B; and every pair of bits to the left are equal,
and the second is 1 either if A has already been determined to be greater than
B or if that determination occurs at this bit position. Figure 4.3.6(a) shows
the 1-bit comparator implementation, and Figure 4.3.6(b) shows how these
are cascaded to produce the n-bit comparator. The output from the least
significant comparator gives the final comparison result: £ and G.

4.3.3 Digital Multiplexers and Demultipiexers

It quite often happens, in the design of large-scale digital systems, that a
single line is required to carry two or more different digital signals. of
course, only one signal at a time can be placed on the one line. What is
required is a device that will allow us to select, at different instants, the
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Figure 4.3.7
A 4-line to 1-line muitiplexer/selector.
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signal we wish to place on this common line. Such a circuit is referred to as a
multiplexer or data selector.

Assume that we have four lines, I, I;, I3, and Iy, which are to be
multiplexed on a single line, Y. Since there are four inputs, we will need two
additional inputs to the multiplexer to select which of the I inputs is to appear
at the output. Call these select lines S; and S,. Figure 4.3.7 shows a truth
table for the resulting multiplexer. We can write the equation for Y directly
from this table:

Y= Iu§|§0, + I,flsg, + Ilegg, + I3S]S0 (435)

Figure 4.3.8 shows the resulting gate implementation, assuming that all in-
puts and outputs are asserted high, and an appropriate symbol for the multi-
plexer.6 We shall see in Section 8.4 and Problems 4.16 through 4.18 that
multiplexers can also be used to directly implement simple switching func-
tions.

The principle function of the multiplexer, or simply MUX, is to select
one of several signals to be transmitted on a common wire. A device that
performs the reverse task of connecting the common wire to one of several
other signal lines is called a demultiplexer, or DEMUX. Figure 4.3.9 shows a
truth table for a 1-line to 4-line demultiplexer. In this table the common input
line is E and the select lines are §; and S,. The outputs are Y5, Y, ¥, and ¥,.
It is easily seen from this table, or simply from the word statement of the
problem, that

Y, = IS5,

Y= 155, 4.3.6)
Yz = IS]SO e
Y3 = IS]So

¢ The Appendix gives an IEEE standard symbol for this multiplexer, or MUX.
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(a} {(b)

Figure 4.3.8 Gate implementation (3] of the 4-line to !-line multiplexer/selector
of Figure 4.3.7 and its schematic symbol {b}.

Figure 4.3.10 shows the 1mplementat10n of this device and an appropriate
symbol for the demultiplexer.’

The demultiplexer has another application that is perhaps more com-
monly encountered than the demultiplexing function. Notice from Equations
(4.3.6) that if 7 = 1, the output whose subscript corresponds to the decimal
equivalent of the select lines will also be 1. Thus we can decode the 2-bit
input appearing on these select lines, (S, Sp). An example of the use of this
might be determining when a counter reaches a certain value so that some
special action might take place (counters are discussed in Chapter 5). Be-
cause of this decoding ability the demultiplexer is also commonly referred to
as a decoder.

4.3.4 Priority Encoder

In any computer system, there are a number of I/O devices that can commu-
nicate with the central processor. Each of these devices may request the
attention of the central processor at any time. For example, when a user

? Figure A.3.3 gives the IEEE standard symbeol for this device and presents an alternative
form for the truth table which is more concise than that of Figure 4.3.9.
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strikes a key on the computer’s keyboard, the computer must respond by
reading the value of the key depressed or else the information may be lost.
Obviously, the processor cannot handle all of the requests simultaneously.
There is a need, therefore, to somehow queue up the various requests and
handle them one at a time. However, not all of the requests for service to the
central processor have the same degree of urgency. For example, the human
pressing a key on the keyboard will hold that key down for a hundred milli-
seconds or longer, whereas data found on a disk drive will be present for only
a few microseconds or less. Obviously, if both requests are made at the same
time, the disk needs to be taken care of before the key is read, since its
information will vanish long before the human's finger is removed from the
key. Thus, some mechanism is needed to identify the priority of the request
for service. The basic idea is that each device which can request the service
of the central processor is assigned a priority level. Then when a device

Y3(L)

Y, (L)

Y1 (L)

YYY Y

Yo(L)

(b)

5 So
(a)

Figure 4.3.10 Gate implementation {a) of a I-line to 4-line demultiplexer/de-
coder and its schematic symbol {b}.
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P, P, P, Py|Y Y, R

¢ 0 0 - - 0

1 - -1 1 1

0 1 - -1 0 1

0 0 1 ~|0 1 1 Figure 4.3.11

0 0 0 10 O i Truth table for a four-level priority encoder.

wants service, it makes the request by asserting a line corresponding to its
priority level. A piece of hardware, called a priority encoder, then deter-
mines which line is requesting service at the highest priority and generates a
number corresponding to this priority.

Let us consider the design of a four-level priority encoder. Let the
request lines be Py, P, Py, and Py, where P; has the highest priority. Since
there are four levels, we need two outputs to encode the various requesting
levels. Let these two outputs be ¥, and ¥,. If we encode (Y, ¥;) from (00) to
(11) to represent the requests on lines Py to P;, respectively, we will need one
more output, R, to differentiate between no request and a level 0 request.
Figure 4.3.11 shows the truth table for this priority encoder.

The necessary design equations can be derived directly from this truth
table or by plotting the table in a Karnaugh map. In either case, it is easily
verified that these equations become

=P +nP
Yo = P; + PP, 4.3.7)
R=P3+P2’+P1+P0

If we assume that the inputs and the output R are asserted low, which is the
usual case for this function, and that the Y, and Y, are asserted high, then the
resulting realization becomes as shown in Figure 4.3.12.

P(L) ®— ¥, )
Pz(L) —_—
D
Y, (H)
P ——d > :)O_ ' ’
Py(L) = S

Figure 4.3.12 implementation of the four-level priority encoder.
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COMBINATIONAL LOGIC DESIGN
USING ROMs AND PLAs

address
ROM

At the end of Section 4.3.1, we discussed the possibility of designing a 2- or
4-bit adder which could be cascaded to form an n-bit adder, as was done for
the 1-bit adder designed there. The advantage of such a multibit adder is that
it can speed up the addition process. Let us consider how we would carry out
the design of the 2-bit adder. This circuit would have five inputs, two for the
number A, two for the number B, and one for the carry in. It would also have
three outputs, two for the sum bits and one for the carry out. Let A; and A, be
the bits of one of the numbers and let B, and B, be the bits of the second. The
sum bits will be represented by S, and S,. Finally, let C;, be the carry in and
C,.: be the carry generated by this addition. The truth table for this adder can
be organized as two tables, one for C;, = 0 and one for C;, = 1. This is shown
in Figure 4.4.1.

Either by plotting the outputs in five-variable Karnaugh maps or by use
of the Quine-McCluskey algorithm, the equations for the sum bits and the
carries can be derived. These equations are

So = CinAoBy + CinAgBy + CinAoBy + CinAoBo
S = C.D(A;AgBl + A BBy + AjApB, + A, BBy
+ Cm(A B]Bo + A AuB] + A B, Bg + AAuB))
+ A,A,B,B, + A,AcB\By + A AoB:By + A,AoB\B, (4.4.1)
Cout = A()B]Bo + AleBo + CmB Bo + ConBj + CmA B(}
+ CipnAd1Ag + ALB

It will obviously take a large number of gates to implement these equations.
The implementation of a 4-bit adder will be even more complex. What we
would like is a single device that could be used to implement a wide range of
complex functions. Fortunately, two such devices exist; read-only memories
(ROMs) and programmable logic arrays (PLAs).

4.4.1 Read-Only Memory [ROM)

We can think of a read-only memory as a table or dictionary that contains
information. To look something up in this table we need a pointer or an index
that identifies the location of a particular piece of information. This index is
referred to as an address. This address is numeric and is generally selected to
be uniquely associated with a particular piece of information. Most ROMs



Section 4.4 Combinational Logic Design Using ROMs and PLAs 123

Inputs C.=0 c, =1
B 3o

A a ! B, § Con 5 So Cou
0 0 0 0 0 0 o U] 1 0
0 0 0 i 0 1 0 1 0 0
0 0 1 0 1 0 o 1 1 0
0 0 1 1 1 1 ¢ 0 0 1
0 1 ] 0 0 1 0] 1 0 0
0 1 0 1 1 0 ¢ 1 1 0
0 1 1 0 1 1 0 0 0 1
0 1 | 1 0 0 1 1] ¥ 1
1 0 0 0 I 0 0 1 I 0
1 0 9 1 1 1 0 0 0 |
i 0 1 0 0 0 1 0 1 1
1 0 1 1 0 1 1 1 0 1
1 1 ¢ 0 1 1 0 0 0 1
1 1 i i 0 0 1 0 1 1
1 1 1 0 0 1 1 1 0 1
1 1 1 i i 0 1 1 1 1

Figure 4.4.1 Truth table for a 2-bit adder.

store information in 8-bit, or byte, quantities. Figure 4.4.2 shows a symbol
for a ROM that stores 32 bytes of information. When the address lines,
A{4 : 0),® take on some value, say 00001, then the information stored in the
ROM corresponding to this address will appear on the output lines, D{7:0).

To see how such a device can be used to implement a switching func-
tion, and in particular the 2-bit adder, consider the truth table of F igure 4.4.1.
The inputs to the adder represent minterms for the individual output func-
tions. These minterms identify when a particular output function is 1 and
when it is 0. Thus, if the values of the function are stored in the memory, then
the inputs can be thought of as addresses which point to these values. Al-
though ROMs usually store information in 8-bit bytes, we may associate a
particular output function with a particular bit in the byte. Thus, letting D(0}
correspond to the carry out, Co, and D(2) and D(1) correspond to the sum
bits, S, and S,, respectively, we can make the read-only memory implement
the 2-bit adder if the information stored is as shown in the abbreviated table
of Figure 4.4.3, which is just the information found in the truth table for the
adder given in Figure 4.4.1.

Note, in this example, that we could implement five more functions of
the input variables by using the ROM data lines that are not being used for
the adder function. For example, we might let D(3) be 1 whenever the num-
bers A and B were equal. In a similar fashion we might also implement the
“‘greater than’> and *‘less than’ signals as well.

% The notation A(4:0) is a shorthand notation meaning that there are five lines, labeled A(4),
A(3), A(2), A(1), and A(0), with A(4) being the most significant and A(0) the least significant.
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st
ROM

A 4:0)

8data  Figure 4.4.2
lines A 32-pyte ROM.

This example illustrates that read-only memories can be used to imple-
ment very complex switching functions by storing in the ROM the value of
the function corresponding to the assignments of the input variables. Thus,
functions implemented by ROMs need not be minimized, since we are basi-
cally implementing the function from the minterm (or maxterm) list (i.e., we
are implementing the function in canonical form).

Many different types of read-only memory exist. Some have the infor-
mation stored in them at the time they are manufactured. These are said to be
mask-programmed. Others can be programmed, or loaded with the required
information, by the user. Such read-only memories are referred to as pro-
grammable read-only memories (PROMs). Programming of these ROMs
generally requires special equipment to erase, if possible, any information
that might be in the ROM and then store any new information required.
These ROMs come in basically two types. One type cannot be erased and
therefore can be programmed only once. The second type, erasable pro-

Address lines ROM data output lines
Not used
Ca Ay Ay B By 5 S Cou
Ald) A3 A(2) All) A(0) 7 Ce D(3) D(2) D Dy
0 0 0 0 0 — — 0 0 0
0 0 1] 0 | _— — 0 1 0
0 0 0 l 0 —_ _— 1 0 0
0 0 0 i I — — 1 | 0
: . o e l' . o o - . 1 A :
1 | 1 I _ —_ i 1 1

Figure 4.4.3 Contents of the ROM that implements the 2-bit adder of Figure
4.4.1.
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grammable read-only memories (EPROMs), can be used over and over again
to store many different data sets. Generally, the process of erasing involves
erasing every byte in the memory and usually takes several minutes. Once
programmed, information can be read from EPROMs at computer speeds.
We might say that EPROMs are “‘mostly”’ read-only memories. ROMs also
come in a great variety of sizes. Modern EPROMs range in size from 4K
(4096) bytes, denoted as 4K X 8, 10 128K x 8 and larger. The nonerasable
PROMs are generally very small, on the order of up to a few hundred bytes.
The number of variables that a function can have and be implemented with
ROM s is limited by the number of address lines on the ROM. Thus, functions
of up to 16 variables can be implemented with a 64K x 8 EPROM.

4.4.2 Programmable Logic Arrays {PLAs}

Another device which can be used to implement complex functions of many
variables is a programmable logic array (PLA). Figure 4.4.4(a) shows a
simplified schematic for a PLA. A PLA consists of a set of AND gates, each
input of which can be connected to any input of the PLA itself or the comple-
ment of any input, and a set of OR gates, whose inputs can be connected to
any of the AND gate outputs. The outputs of the OR gates serve as outputs of
the device. In this diagram, a single line is shown at the input of each of the
AND gates. This line is used to represent z lines, each of which can be
connected to a different device input or its complement. A similar situation
exists for the OR gate inputs. This is shown in Figure 4.4.4(b) and (c). Thus
arbitrary functions of the input variables can be implemented in sum of
products (SOP) form with the PLA.

Consider, for example, the implementation of the adder outputs Sp and
C,: using 2 PLA having 5 inputs, 11 product terms, and 2 outputs. In order to
implement these functions, we need to program the PLA. Programming a
PLA consists of making connections between the device inputs—Ci,, A, Ao,
B,, and By, in this case—and the AND gate inputs, as well as between the
AND gate outputs, forming the product terms, and the OR gate inputs. The
required connections are shown in a programming diagram. A programming
diagram is created by placing an X at the intersection of two lines that are to
be connected. Thus, from the equations for Sy and Ci, given in equation
group (4.4.1), we see that we need four product terms to form §, and seven
product terms to form C,,,,. Note, in this case, that S, and C,,, do not share a
common product term, and thus a total of eleven AND gates are necessary
for their implementation. Figure 4.4.5 shows the programming diagram used
to implement these two functions. In this diagram, for example, we see that
S, is formed by ORing the outputs from the AND gates labeled a, 4, ¢, and 4.
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Figure 4.4.4 Programmable logic array: (a) simplified diagram; (b) AND inputs;
{c} OR inputs.

This is indicated by the X’s at the intersection of these AND gate outputs and
the inputs to the OR gate that forms S,. The product term formed by AND
gate a, Ci, A, B, is indicated by the X’s at the intersection of the input to this
gate with inputs C... A, and B,. The other product terms are indicated ina
similar manner.

PLAs, like ROMs, exist in a multitude of different types. At present
they are available in mask-programmed versions as well as in one-time-only
programmable and erasable programmable versions. Sizes of these devices
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also vary greatly, but the devices usually have more than eight inputs and
outputs. A typical example is the ‘‘field-programmable logic array” (FPLA)
produced by Signetics, the 825100, which has 16 inputs, § outputs, and 48
product terms. The number of product terms that can be implemented is the
important factor in the use of a PLA device. Since the number of product
terms in any such device is limited, it is important that the function to be
implemented be in minimal sum of products form.

— LT m

\J\J\HL/\/YYO
Tﬂt T 1”

2171912181 VU

Cin 4 1 AD Bl BO SO Caul

Figure 4.4.5 PLA programming diagram for the 2-bit adder outputs 5, and Cge-
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4.4.3 Some Comments on Implementation

The examples shown above clearly indicate that the implementing of switch-
ing functions using a PLA requires a somewhat different strategy from imple-
menting them using a ROM. In the case of the ROM, we are actually imple-
menting the truth table for the function and thus we need to express the
function in terms of its minterms or maxterms, usually in the form of an
index list. In the case of the PLA, however, we are implementing general
product terms, not just minterms. Since PLAs have a limited number of
AND gates, we need to find minimal SOP forms for the functions to be
implemented. This requires the application of simplification procedures such
as those described in Section 3.5 and, generally, the multiple-output simplifi-
cation procedures given in Section 3.5.6.

Another important difference between ROMs and PLAs is that of
speed. As we shall discuss in the next chapter, physical devices have associ-
ated propagation delays. This is the delay from the time an input changes
until the output changes. It is generally true that PLAs have much shorter
propagation delays than ROMs and so are best used in situations requiring a
high speed of operation. ROMs, on the other hand, are usually less expen-
sive.
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>ROBLEMS

4.1. For each of the gates shown in Figure P4.1:
(a) Construct the physical truth table.
(b) Construct the logical truth table.
(c¢) Write an expression for the logical function implemented.

A(L) A(L) ——
cm C(H)
B(H) _ B(L) -

(2) (b)

AHy—3 A{L)
CH) B(H) D(L)
B(L) - C(H)

(¢) (d)

A(L) A(L) '
B{L) D(H) B(L)—Q D(H)
(L) C(L) |

(e) )

Figure P4.1

4.2. Construct alternative symbols physically equivalent to the gates shown in

Figure P4.2,
= =
— = -
(a) t)
—q —
D =D
— —Q

(c) (d) Figure P4.2

4.3. Which gates in Problem 4.1 are physically equivalent?

4.4. Construct the physical and the logical truth tables for each of the circuits
shown in Figure P4.4.
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O Yoo Do
by ) oL
B(L)

(a) (b}

AH) —
B(H) : ) D—D(H)
crL) —‘

(c)

Figure P4.4

Write the function implemented by each of the circuits shown in Figure P4.5.

Suppose that an oscilloscope probe were placed on the output of gate A of
Figure P4.5(a). What would the output of gate A look like if the inputs to the
circuit are as shown in Figure P4.67

One of the reasons that NAND gates are used so extensively in the design of
digital systems is that they can be used, alone, to implement any given
switching function. Assuming all inputs are asserted high, show how to use
the two-input NAND gate shown in Figure 4.2.9(a) to implement the NOT,
the AND, and the OR operations.

Repeat Problem 4.7 using the NOR gate of Figure 4.2.9(b).
Repeat Problem 4.7 using the implication gate shown in Figure P4.1(c).

Not all gates can be used by themselves to implement all switching functions.

That is, not all gates implement functions that are functionally complete as

discussed in Problem 3.5. For example, the exclusive-OR is not functionally

complete and therefore its gate implementation cannot be used alone to im-

plement all switching functions.

(a) What characteristic(s) must a function possess in order to be functionally
complete?

(b) Which of the 16 functions on two variables shown in Figure 3.4.5 are
functionally complete?

Using only NAND gates, implement the following functions and show a
schematic drawn in standard form. Assume that all inputs and outputs are
asserted high. You may use gates having two, three, or four inputs in your
designs. o

(@) fila, b, ) = ab + @bt _

) gila, b, ¢, d) = ab(td + cd)
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ACH)

DC q e
B(L) —GD—!
(L) ,
E(L)
(a)
Xy {H) —OD—"
Xy (H) ————— }_Lo
Xy(H) ———1
X, (H) —CD
X (H) ——-——-—"D__l—*
X, (L) —OD—:
(b)
A(L) -———d}
B(H) ————C
C(H) ——CD>—J_

D(H)

E(H) ——-DO——]_d
G(L) ____}"_-Q}
H(H) —

<)

D—— Z(H)

o

Figure P4.5

© folw, x, ¥, 2) = w + X(y + Wz}

@) gofa, b,c,d, e, f)=a+ beld + ¢f) + ade

(e} hfa, b,c,d,e)=(a+b)T+d+ )b + d)

(f) hg(W, X ¥, Z) = WE?Z + W(xyf + y:f)

@ filp, g, 7.8, L u, v, w) = (pq + r)lt + v(u + w)]

4.12. Repeat Problem 4.11 using two, three, or four input NOR gates.
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4.13.
4.14.
4.15.

4.16.

4.17.
4.18.

419,

4.20.

4.21.

4.22.

4.23.

1 I

Figure P4.6

Repeat Problem 4.11 using only two input NAND gates.
Repeat Problem 4.11 using only the implication gate shown in Figure P4.1(c).

Redraw the circuits shown in Figure P4.15 in standard form and write the
functions implemented by each.

Suppose that you are given the 4-line to 1-line multiplexer of Figure 4.3.8 and
are told to implement the function f(x, y, z) = x¥ + ¥Z using only this circuit.
Can this be done, and if so, how would you connect the asserted high inputs
x, v, and z to the multiplexer to do the job? [ Hint: Put the equation for f(x, v,
z) in the form of Equation (4.3.5).]

Repeat Problem 4.16 implementing the function g(x, y, z) = Wxy + zXv.
Show how vou could use two 4-line to 1-line MUXs to implement the function
h(w, x, ¥, x, 2) = wWxy + (w + XN¥z + y2).

Show how you could use two I-line to 4-line decoders, shown in Figure
4.3.10, to decode three bits.

Show how you could use a 4-line to 1-line multiplexer and a I-line to 4-line
demultiplexer to create a circuit that could connect one of four lines to any
one of four other lines. Give some examples where the ability to do this might
be useful.

Design a circuit using NANDs, NORs, and level shifters only that takes a 4-
bit BCD number as an input and produces a 4-bit excess-3—coded number as
an output. Assume that the inputs are asserted high and the outputs are
asserted low.

Add an output to Problem 4.21 that is asserted low if the input is not a legal
BCD number.

You are to design a one-digit BCD adder as follows. There are to be nine
inputs, eight of which represent the two 4-bit BCD digits and the ninth of
which is a carry into the adder. The output is five bits: four for the BCD sum
digit and the fifth for the carry out. Figure P4.23 shows the circuit symboli-
cally. Assume that all inputs and outputs are asserted high. (Hint: You may
want to use the adder of Figure 4.3.3 as part of your circuit.)
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4.24.

4.25,

4.26.

4.27.

(a) Using only NANDs, NORs, and level shifters, design the circuit and give
a correctly drawn schematic diagram for your design.

(b) Given a 1024-byte ROM, indicate how you would program the ROM to
implement the BCD adder.

(¢) Assume you can purchase single integrated circuits (ICs) having either
four 2-input NANDs, three 3-input NANDs, two 4-input NANDs, one &-
input NAND, four 2-input NORs, three 3-input NORs, or six level shift-
ers or NOT gates. Assuming that the price of each of these ICs is 15 cents
and the price of the ROM is $5, which of your designs, (a) or (b), is
cheaper?

(d) Suppose that because of the cost of printed circuit boards, IC sockets,
and the like, it costs an additional 50 cents per IC to implement either of
your designs. Mow which solution is the cheaper?

[ 1] L]

Az A; A; Ay By, B, B, B, Ca
BCD adder
Coul 33 SZ Sl S(J

BRR

Figure P4.23

What would be the size specifications for a PL A that could be used to imple-
ment the BCD adder of Problem 4.23? Give the number of inputs, outputs,
and product terms required.

Design a circuit that accepts an 8-bit, signed 2’s complement number as its
input and produces the 2’s complement of the number at the output. Your
design must use only NANDs, NORs, and NOTs which are available in the
IC packages described in part (c) of Problem 4.23. Show a schematic of your
design drawn in standard form. {Hint: There are two approaches that you
may want to consider. The first is based on the fact that the 2’s complement is
the 1s complement plus 1. The second is based on the method of copying the
rightmost zeros until reaching a ! and then copying the complements of each
bit, except the first 1 (cf. Section 2.4.1).]

Design an 8-bit subtractor that performs the operation A — B, where 4 and B
are in signed, 2’s complement form. The result is to be an 8-bit, signed 2’s
complement number with borrow.

The element in a computer that performs arithmetic and logical operations is
referred to as an arithmetic/logic unit, or simply an ALU. In this problem you
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4.28.

4.29.

4.30.

are to design a simple ALU by extending your design of Problem 4.26 so that,
in addition to subtraction, you can perform addition and the logical opera-
tions of AND, OR, and exclusive-OR. Furthermore, your ALU is to be able
to take the 1s complement of either input.

In your design vou may use full adders, such as shown in Figure 4.3.3,
MUXs or DEMUXs of either four or eight lines, plus NAND, NOR, and
NOT gates. Your ALU design need not be cascadable.

Design an overflow/underflow detector that produces a 1 if the addition or
subtraction of two 8-bit numbers, such as in the ALU of Problem 4.27, pro-
duces a result greater than can be accommodated by 8 bits. Draw a standard
form schematic using only NAND, NOR, and NOT gates.

Design a circuit that multiplies a 4-bit number by the decimal constant 9. You
may use any of the circuits discussed in the text or problems. (Hint: Note that
9N = 8N + IN.)

Based on your designs for Problems 4.25 through 4.29, perform a cost analy-
sis similar to that requested in Problem 4.23.
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Sequential

Circuits

5.1
INTRODUCTION
Up to this point, we have dealt with switching networks whose outputs are
functions only of the present input. It is possible for such networks to exhibit
‘““memory,”’ in the sense that the outputs can be made functions of not only
the present inputs, but also some set of past inputs as well. Such systems are
termed sequential, since the outputs may be functions of a sequence of past
sequential inputs. Basically, sequential circuits have memory because one or more of
circuits the outputs are *‘fed back™ to serve as inputs to the network. Thus the next

output will, somehow, be a function of the present inputs and the last output.
To understand how this can happen, we must first introduce time as a vari-

able in the system.

5.1.1 Delay in Gate Networks

We basically assumed, in our discussion of gates that a change in the output
of the gate occurred at exactly the same instant of time that an input change
occurred. This, of course, will not happen, since the gate is composed of
electrical components that possess capacitance (among other things) to some
degree. Since voltage cannot change instantaneously across a capacitor, the

137
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Figure 5.1.1 Propagation delay in a NAND GATE: {a) nonideal NAND: (b) ideal
NAND with delay; (c) timing diagram.

output of a gate cannot change simultaneously with the input. The time
required for the output of a gate to change in response to a change in an input
is referred to as propagation delay. Propagation delays for standard TTL
(transistor-transistor logic) gates and other TTL devices vary but are usually
in the range of 1 to 15 nanoseconds (ns).! Figure 5.1.1 shows how the input
and output of a typical TTL NAND gate change in time. Although it is
usually the case that the delay for a high-to-low transition (d) is different
from the delay for a low-to-high transition (d;,), for analysis purposes we may
assume these to be the same. Figure 5.1.1(b) shows a model of the gate that
can be used for purposes of analysis. This model consists of an ideal NAND
gate, which has zero propagation delay, followed by a delay element.

A delay element simply passes changes on the input to the output de-
layed by some constant value.? To see how this model works, consider what
happens at the ideal gate output, X, and at the delay element output, C, as
the gate inputs change. Suppose that A has been low and B has been high for
a very long time prior to some time 7,, as shown in the timing diagram of
Figure 5.1.1(c). The gate output and the delay output will then both be high.
If input A now goes high at time 7,, the ideal gate output, X, will immediately

! To put things in perspective, light travels approximately 30 cm (1 foot) in 1 nanosecond.

2 In reality an instantaneous change at the input of a delay element does not appear as an
instantaneous change at the output. This is due to the fact that delays are caused by capaci-
tance.and inductance, as mentioned earlier, which are inherent in the circuit.
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go low. This high-to-low transition of X will then appear at the output of the
delay element d seconds later. In a similar way, if B then goes low at time 1,
X will immediately go high, followed by C going high d seconds after that. By
using this model we can examine the behavior of networks of gates as inputs
change.

Consider the gate network shown in Figure 5.1.2, which realizes the

function
f(A, B, C) = AB + AC (5.1.1)

Suppose initially that inputs B and C are high and A is low, thus making the
output high, or a logical 1. Now, suppose that at time ¢,, input A goes from
low to high. What happens at the output? To determine this, we need to
follow the change in input A through the circuit to the output. We may
assume, for this analysis, that the propagation delays through all of the gates
are the same. Such an assumption, although strictly speaking not true, is
good enough for our purposes. Now, when A goes high, lines x and y will
both go low after a propagation delay d. The change in x will affect line z after
another propagation delay d, at which time z will go high. Since y is low at
this instant of time, the output, f, will stay high, as it should, from Equation
(5.1.1).

Next, consider what happens at time ¢,. When input A goes low, both of
the lines x and y will go high after time interval 4. Note that now both y and z
are high, which means that the output, f, must go low after another interval
d. At about this time, line z will go low, since x and C are now both high.
Since z has gone low, the output must change once again and go high. All
signals will now stay at these values. We see from this analysis that although
the output, £, should, by Equation (5.1.1), have remained asserted, it has, in
fact, changed for a brief period of time. This change is called a “*glitch”” and
arises because of the physical delays in a network.? Glitches can cause sys-
tems to fail and should, therefore, be avoided.

To see how glitches may be avoided, let us consider the cause of the
glitch in the circuit of Figure 5.1.2. Basically, the glitch occurred because
there were two separate paths from input A to the output, each having a
different number of delays-—one path, A-y-f, having two delays and the
other, A-x-z-f, having three deilays. This difference in path length causes the
output to ‘‘see’” A go low before it ‘‘sees’” A go high. Thus, both product
terms in Equation (5.1.1), as seen by the output, are 0. If, however, the

* Glitches of this type are associated with what are gencrally referred to as “*hazards,” in this
case, a static hazard, since the output was not supposed to change. The identification and
elimination of hazards will be discussed in Chapter 6.
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Figure 5.1.2 Generation of a “glitch” in a combinational circuit; {a) realization of
Equation {5.1.1); (b} timing diagrams assuming that 8 and C are
both high throughout

consensus term BC (see Theorem 3.2.6 of Section 3.2) is added to Equation
(5.1.1), the glitch will vanish, because BC = 1 throughout the various transi-
tions on A and A. With the consensus term, Equation (5.1.1) will become:

f(A, B,C) = AB + AC = AB + AC + BC (5.1.2)

Figure 5.1.3(a) shows how the consensus term is added in the Karnaugh
map, and the resulting implementation is shown in Figure 5.1.3(b). This
example illustrates the fact that the removal of consensus terms in logic
circuits may cause undesired behavior. Thus, simplifying logic circuits is not
necessarily the best thing to do.

5.1.2 Feedback

As mentioned above, a sequential circuit is one in which the output is a
function of not just the present inputs but some set of past inputs as well.
This form of “‘memory”’ is created in any system where outputs are ““fed
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Figure 5.1.3 Glitchiess imptementation of Equation {5.1.1): {a) added consensus
term: {b) final realization.

back’ through a delay to the inputs. Effectively, the delay ‘‘remembers”
some portion of the past history.

In the analysis of the combinational circuit of Figure 5.1.2, each gate
had an associated delay which was considered individually when we ana-
lyzed the time behavior of the circuit. If we are to make the assumption that

the combinational logic has been designed in such a way as to have no
glitches, then a simplification can bé made in the modeling process.? Since no
glitches occur, we are interested only in the time it takes for a signal to
propagate from the input to the output. Thus, we can combine all of the
delays into a single, lumped delay at the output. This is shown in the feed-
back model of Figure 5.1.4. In this figure, the symbol X(7) represents a set of
n inputs and the symbol Z(?) a set of m outputs. The symbol Q(z) is referred
to as the current state of the system and is made up of a set ﬂr@pgts
whose value will become Q(¢ + d), the next state, at a time interval d from

now. The delays shown in this model make it possible for us to separate the

4 It is generally possible to remove glitches in combinational networks by adding logic, as was
done above when the consensus term was used to eliminate the glitch. Thus the assumption of

a glitchless circuit is realistic.
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Figure 5.1.4 Model of a combinational circuit with feedback.

present state from the next state. Thus we see that the output of such a

system is a function of the present input and the present : state and that the

next state is also a function of the present input and the present state.

A few simple, but important, observations can be made from the model
shown in Figure 5.1.4. First, the delay represents memory in the system,
since it holds, or remembers, the present state of the circuit while the circuit
computes the next state. Second, whenever an input changes, both the out-
puts and the next state variables will change. With a change in the next state
variables, one of two things can occur: either Q(r) = Q(z + d) or Q(1) *
Q( + d). In the first case, the system is stable: nothing changes, except
possibly the Z’s. In the second case, the system is unstable: in addition to
possible changes in the outputs Z, the input state variables Q(?) will change
after the appropriate time delay. This change in the Q inputs may cause
further changes in the next state variables. Two things can occur in such an
unstable system:; either the system will eventually become stable or it will
continue to have changes forever. The latter case is usually an undesirable
situation.’

The model shown in Figure 5.1.4 is an example of an asynchronous or
fundamental-mode sequential circuit. As we shall see in the next section,
such sequential circuits are extremely important in the design of memory
elements for computers. However, because of the possibility of long-term
instability in such systems, reliable design of large-scale asynchronous se-
quential circuits is very difficult, if not impossible. We will investigate the
processes of analysis and design of such circuits in Chapter 6.

5 This is, however, the exact behavior needed to produce oscillation for a computer’s
“*clock.™
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FLIP-FLOPS

Aip-flop

In Section 5.1.2 we saw that a combinational circuit with feedback can be
analyzed using the model given in Figure 5.1.4. In this section, we are going
to use this model to examine a specific feedback circuit, called an SR flip-
flop. This particular circuit forms the basis for all commonly used flip-flop
types as well as computer memory. We will then examine the many different
types of flip-flops that are available and define their operating characteristics.
In succeeding sections, we will use these devices to design counters and
sequential controllers. _

Before proceeding, we should note that the term “‘flip-flop™” is a generic
term applied generally to electronic devices having two stable states. The
flip-flop can be placed in one or the other of these states by applying various
signals to its inputs. As we shall see, there are many types of flip-fiops and
many ways to control them.

5.2.1 Simple SR Flip-Fiop

Figure 5.2.1(a) shows a simple two-gate combinational circuit having one
feedback signal called Q that is shown to be asserted high. The two inputs to
the circuit, S and R, are both asserted low, as indicated in the figure. Figure
5.2.1(b) shows the circuit after the delays have been moved to the output.
This figure is in the form of the sequential circuit model of Figure 5.1.4, The
analysis of this circuit is easily carried out by writing the equation for the
next-state variable Q(z + d). This equation becomes

Q@ + d) =S + RO() (5.2.1)

On the basis of this equation, the timing analysis can be carried out as shown
in Figure 5.2.2; remember that § and R are asserted low and Q is asserted
high. Equation (5.2.1) states that if § = 0 and R = 0, then the next state will
be equal to the present state: a stable situation. In this situation, the output,
Q, which can be either a 0 or a 1, will not change over time. Assume that
¢g=0,andlet Sgofromaltoal(e., from a high to a low) at time ¢,. The
next state, Q(t + d), from Equation (5.2.1), will thus be equal to 1, which
means that after a delay of time interval d, the present state, Q(¢), will also be
1. When S returns to 0 at a time #,, the output, Q, will have changed to 1 and
will continue to be 1 thereafter. We can see the cause of this from Figure
5.2.1. Once Q has gone high, X will go low since R is high at this time. Since
X is low, Q¢ + d) will be forced high. This, however, is the value of the
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Figure 5.2.1 Simple SR flip-flop: {a) two-gate circuit with feedback; (b} model
with delay.
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Figure 5.2.2 Timing diagram for the SR flip-flop modei of Figure 5.2.1.



SR flip-flop

Section 5.2 Flip-Flops 145

—g sy QU — S R | Q(r + d)
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Figure 5.2.3 Symbol for the SR flip-flap (a} and its truth table definition (b).

current output, so we have a stable situation. We say in this case that the
output has been set to 1 by assertion of the S input. Now suppose that R goes
to 1 at time #;. From Equation (5.2.1) we see that the next state will become
0, as will the present state after a delay of time interval 4. When R returns to
0 at time #,, the output, Q, will continue to have the value 0 from then on or
unti! § changes again.

Once more the physical cause of this can be seen from Figure 5.2.1. In
this case Q being low causes X to be high. Since now both X and § are high,
Q(t + d) must be low matching the output Q(7). Again, a stable situation. We
say that the output in this case is reset to 0 by the assertion of the R input.
This circuit is called a set-reset (SR) flip-flop, since a momentary assertion of
the S input sets the output to 1 and a momentary assertion of the R input
resets the output to 0. Once the flip-flop is placed in some state, it will
remember its state until the next input change. Thus the flip flop can *‘store™
1 bit of information.

If we look a bit closer at the SR flip-flop of Figure 5.2.1, we may
observe, ignoring propagation delay differences between the two signals,
that the line labeled x takes on the opposite value of the output { as long as §
and R are not both simultaneously asserted. If both S and R are asserted, as,
for example, at time #5 in Figure 5.2.2, then both O and x will be high, as is
easily verified by an examination of Figure 5.2.1 and the timing diagram of
Figure 5.2.2. If we assume that this never occurs or is never allowed to
occur, then we can think of the signal x either as O oras Q(L). Figure 5.2.3(a)
shows the symbol we will use for this flip-flop under the condition that § and
R are never asserted at the same time, and Figure 5.2.3(b) gives the defining
physical truth table for the flip-flop. In this symbol, the preferred label for
line x of Figure 5.2.1(a) is Q. or Q(L}).6

¢ The simple SR flip-flop shown in Figure 5.2.1 is generally referred to in the IC data catalogs
as an “*S-R latch.”
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Figure 5.2.4 Clocked SR flip-fiop.

R(H)

5.2.2 Clocked SR Fiip-Flop

In the basic flip-fiop, changes in the output occur whenever either input
changes. In a computer, separate operations occur at specific instances of
time defined by an internal ‘‘clock.’” Thus, to use the basic flip-flop in the
design of a computer, we must make certain that the outputs change only at
very specific instances of time. This can be accomplished by adding a clock
input to the flip-flop, as shown in Figure 5.2.4. In this flip-flop, the output ¢
will be unaffected by any change in the § and R lines as long as the clock, G,
is negated. The output is allowed to change only when G is asserted. Note,
however, that as long as G is asserted, the output will follow the changes in
the S and R lines. This is an example of what we will refer to as a latch-mode
Alip-flop. Specifically, a latch-mode flip-flop is one whose outputs ‘‘function-
ally” follow the inputs for as long as the clock line is asserted. This means
that the flip-fiop basically becomes a simple combinational circuit in which
the bistable nature of the device becomes transparent.

Another type of clocked flip-flop using the basic SR flip-flop circuit is
the D flip-flop. This device has one input, D, and, of course, the clock. The
output Q equals the input D whenever the clock line is asserted. Figure 5.2.5
shows the circuit for a D-type latch-mode flip-flop. This type of flip-flop is
used extensively in the design of computers and other digital systems for the
temporary storage of information and is often referred to simply as a latch or

Q(L)

D(H)
Clock = G(H) . i Q(H)

Figure 5.2.5 Clocked D-type flip-flop.
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Figure 5.2.6 Master-slave SR flip-flop.

as a transparent latch. Use of the term transparent reflects the fact that @ =
D if G is asserted and thus the signal behaves as if the flip-flop is not present.

In the latch-mode SR flip-flop, if the § and R lines change more than
once while the G line is asserted, the output Q will also change more than
once. This, quite often, is an undesirable characteristic. Suppose we wish the
output to change only once during the period that the clock is asserted and to
take on the value specified by the last input change. This can be done by
using two SR flip-flops in tandem, as shown in Figure 5.2.6. Such an arrange-
ment is referred to as a master-slave flip-flop. In the master-slave SR flip-
flop, the output of the slave flip-flop takes on the value of the output of the
master while the clock is negated. When the clock is asserted, the slave flip-
flop latches, or holds, this value while the master flip-flop changes to its new
value. This new value is then passed to the output when the clock is once
again negated.

A rather serious problem, however, exists in the master-slave flip-flop.
As we saw in Section 5.1, glitches can occur in combinational circuits be-
cause of differing propagation delays in the network. Suppose that the S and
R inputs are both to be negated while the clock line is asserted. This, of
course, should result in the output of the flip-flop remaining at its old value at
the end of the clock pulse.” Figure 5.2.7 shows what can happen if a glitch
should occur during this interval. We see from this figure that the glitch
causes the output to change when it is supposed to stay the same. Such a
situation could cause a large system to fail, with potentially catastrophic
conseguences. For this reason, master-slave flip-flops are not in general use
today.

7 A clock pulse, as used here, is taken to mean a signal which is asserted for some period of
time and then is negated for another period of time. Although this action usually occurs with
regularity in a computer, regularity is not an essential feature for driving flip-flops.
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Figure 5.2.7 Timing diagram for a glitch-induced output error.

5.2.3 Edge-Triggered Flip-Flops

A type of flip-flop that avoids the glitch problem, and many similar noise-
induced problems as well, is the edge-triggered flip-flop. In this flip-flop, the
next output value is dependent only on the values of the inputs at the time
when the clock line goes from low to high (or high to low) and is totally
unaffected by any change on the inputs at any other time. Since the transition
of a clock signal from low to high is usually very fast (a few nanoseconds),
the likelihood that the inputs will change during this period is extremely
small, indeed. In fact, the designer of a system using these devices should
make sure that this never happens. The analysis and design of edge-triggered
flip-flops will be discussed in Chapter 6. Figure 5.2.8 shows symbols used for
the four basic types of edge-triggered flip-flops, along with their respective
physical truth tables. Only two of these, however, are generally available as
integrated circuits: the D and the JK flip-flops. Note that if there is a **bub-
ble” at the clock input, then the output changes on a negative, or high-to-
low, transition of the clock. If no bubble is present, then the output changes
on the positive, or low-to-high, clock transition. In these truth tables, and
all that follows, we will use an uppercase letter to refer to the next state
and a lowercase letter to refer to the present state. Thus Q = Q@ + d) and
g = Q).

The characteristic behavior of each of these flip-flops is defined by the
truth tables of Figure 5.2.8. It is sometimes convenient, however, to repre-
sent this behavior by the characteristic equation of the flip-flop. For exam-
ple, Equation (5.2.1) is the characteristic equation for the SR flip-flop. The
characteristic equations for the various flip-flops can be derived from the
truth tables that define them. For example, for the JK flip-flop, assuming that
inputs J and K and output Q are asserted high, as indicated in Figure 5.2.8(b),
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we see that

0=gJK+JK +gJK=gK+JK+gJ (5.2.2)
=gK + qJ o

These equations apply at the time the active clock edge occurs.
Each of these flip-flops have characteristics useful in different applica-
tions. The D, or delay, flip-flop, as mentioned earlier, is used extensively for
temporarily storing information in a computer. A collection of D flip-flops
might make up a ‘‘register’’ in the central processing unit of a computer. The
7, or toggle, flip-fiop is most often used for the design of counters, as we shall
see in the next section. A quick examination of the truth tables for the

—qDp o)} J o) b
_C>
—5 @(L) o— —Jx olLip—
D Clk 0 J K Ck Q
Lt L L L 3 q
H 4 H L H 7 L
H L 3 H
@ HH 3| 3
(b)
—_—) 7 QH) }—— —_— 5 QH)f—
—Q>
—_— L) o —_J R LP—
r cx | o s R Ck | @
L 4 q L L 7 q
H q L H 7} L
H L 73 H
(c) H H 3 not allowed

(d)

Figure 5.2.8 Four basic edge-triggered flip-flops: (a) D flip-flop; {b) JK fiip-flop;
{c) T fiip-flop; [d} SR flip-flop.
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Figure 5.2.9 Current state—next state truth tables for the various flip-flops: (a} D
fiip-flop; {b) JK flip-flop; (c) T flip-Rop; (d) SR flip-fiop.

various flip-flops shows that the JK is a combination of both the T and the SR
flip-fiops. Specifically, if the condition that the J and K lines are never as-
serted at the same time is maintained, then the JK is exactly equivalent to the
SR, with J equal to the S input and X equal to the R input. If the J and X lines
are tied together, the resulting single line is equivalent to the toggle flip-flop’s
T input. This, of course, helps to explain why only the D and the JK flip-flops
are generally available as integrated circuits.

The defining truth tables of Figure 5.2.8 clearly and unambiguously
show the behavior of the four basic flip-flop types. However, in the design
process, a different version of these tables will be useful. In the design, or
synthesis, process we must design logic that generates signals at the inputs to
the flip-flops that will cause them to produce specific outputs on the next
clock pulse. For example, suppose that the current output of a JK flip-flop is
1 and the next value is required to also be 1. What should the J and X inputs
to the flip-flop be? From Figure 5.2.8(b), we see that two conditions on the
inputs will cause the output to remain 1. The first is when J = land K =0, a
condition causing the output to be set to 1, and the second is whenJ = 0 and
K = 0, a condition resuiting in no change in the output. Thus, the value of J
becomes a don’t care and the value of X must be 0 for the output to remain a
1. The remaining combinations are determined in a similar manner. This
“‘present-state—next-state’’ behavior is shown in the tables of Figure 5.2.9
for each of the basic flip-flops. These tables will be used extensively in the
design of sequential circuits and should therefore be committed to memory.
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Consider the three—flip-flop circuit shown in Figure 5.3.1(a). The analysis of
this circuit is most easily carried out by writing the flip-flop input equations,
i.e., the equations for 7,, 7>, and T3, and then, on the basis of the truth table
defining the T flip-flop shown in Figure 5.2.8(c), constructing a table showing
how the outputs, ¢, ¢-, and g;, change on each occurrence of the clock
pulse. For example, if 7 = 1, then the output of this flip-fiop, g2, will toggle,
or change value, when the clock signal goes from a low to a high. If, on the
other hand, 7, = 0, then the output of the flip-flop will not change when the
clock changes. The flip-flop input equations are easily seen to be

T] =1
T, = q (5.3.1)
I: = qq

Using these input equations, we can determine the successive output
values of each flip-flop. The three outputs at any given time, taken collec-
tively, are referred to as the state of the machine. The table that shows how
the outputs change and the circuit moves from state to state with each clock
pulse is, therefore, referred to as a state transition table. This table is shown
in Figure 5.3.1(b). As we indicated in Section 5.2.3, the current state of the
machine is indicated with lowercase letters and the next state with uppercase
letters. Thus g; is taken as the present output of flip-flop 1, and @ is taken as
the next value of this output. (This practice will be followed in the remainder
of this text.) From this figure, it is easily seen that the three outputs, g, gz,
and g5, change in such a way as to count the clock pulses, at least to 7, and
thus the circuit is a counter. '

The sequence of states that a counter goes through can also be shown in
a state diagram. The state diagram for the counter shown in Figure 5.3.1 is
given in Figure 5.3.2. As can be seen from this figure, the state diagram
consists of nodes, whose labels represent the state of the network at particu-
lar times. These nodes are connected to each other by directed edges, which
show what state the system will go to on the next clock pulse. Such a
diagram is very useful for visualizing the behavior of more general sequential
circuits, as we shall see shortly.

Counters, of course, need not count in the sequence just given. We may
want a counter to count in a Gray code sequence or some other sequence not
representing a binary counting sequence. Suppose that we are required to
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Figure 5.3.1 {a) A 3-bit binary counter made up of T flip-fiops and [b) its state
transition table,

design a counter that counts in the Gray code sequence, 000, 001, 011, 010,
110, 111, 101, 100, 000, . . . . The question is, How do we proceed with the
design? The analysis procedure that was used above began by deriving the
flip-flop input equations. These were then used, in conjunction with the truth
table that defined the flip-flops, to derive a state transition table. What we

v WG

Figure 5.3.2 State diagram for the counter of Figure 5.3.1.
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Present state Next state Flip-flop inputs
& o

0 o 04 O 0 1 o - 0 - 1 -
0 0 1 0 1 1 0 1 - - 0
0 1 1 0 1 o|lo - - 0 - 1
0 1 0 1 i 0 1 - - 0 o -
1 1 0 1 ] 1 - 0 - 0 1 -
1 1 1 1 0 1 0 - I - 0
1 0 1 ] 0 o}y - ¢ 0 - = 1
1 0 0ol © 0 01 - 1 o - o -

Figure 5.3.3 Excitation table for a Gray code courter.

need to do for the design of a counter is exactly the reverse: derive the state
transition table, and then, using the definition of the flip-flop to be used in the
counter being designed, derive the flip-flop input equations. To carry out the
process, let us assume that we are to do the design using JK flip-fiops. Figure
5.3.3 shows the state transition table for the specified count sequence and the
values that the J and X lines for each flip-flop must take on to generate the
required next-state values. This table is usually referred to as an excitation
table, since it gives the flip-flop input values necessary to cause the flip-flops
to change state in a particular way. The values for J and K are easily obtained
from the current state—next state tables given in Figure 5.2.9. For example, if
the current state of flip-flop 1 is 0 and the next state is to be a 1, then, from
Figure 5.2.9(b), we see that J = 1 and that K becomes a don’t care. The
resulting excitation table is shown in Figure 5.3.3.

The equations for the flip-flop inputs can easily be derived from the
excitation table by plotting the J and K values in Karnaugh maps. These are
shown in Figure 5.3.4, from which the flip-flop input equations are seen to be

Ji = q1q2
- (5.3.2)
K; = q.1q:
Jr = q1qs
K> = q1g9;

Sy = §:G3 + a5
Ky = ggs + @:24: = J)

Using equations (5.3.2), the physical implementation of the Gray code
counter becomes as shown in Figure 5.3.5. Note the use of both the asserted
low and asserted high flip-flop outputs to generate the various functions
without the use of level shifters. The reader should verify that this counter
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Figure 5.3.5 Schematic for the Gray code counter.
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Figure 5.3.6 Excitation table for the five-state counter.

does implement the specified Gray code counter by deriving the state transi-
tion table as was done in the previous analysis example. This table should
look exactly like the excitation table of Figure 5.3.3 except that this time the
don’t cares will have values assigned to them.

Before we examine sequential circuits that are more general than
counters, let us consider one more example. Suppose that we are required to
design a five-state counter that counts in the sequence 0, 1, 2, 3, 4, 0, 1,
.. . .Since there are five distinct states, we will need at least three flip-flops
to encode these states. Furthermore, since three variables can encode eight
states and we are only using five, we have three extra states to contend with.
The question is: What do we do with these three extra states? Since they are
not included in the count sequence, let us simply treat them as “‘don’t
cares.”’ The resulting excitation table for the five-state counter, using JK flip-
flops, is shown in Figure 5.3.6.

The flip-flop input equations can now be derived from the excitation
table by plotting the values for J and K in Karnaugh maps, as was done in the
last example. These plots are shown in Figure 5.3.7, from which the equa-
tions are easily seen to be

Jr = q1q0

K,=1

Li=K =g (5.3.3)
Jo= ¢

K=1

The resulting counter is shown in Figure 5.3.8.

Let us now consider the don’t care state transitions. As mentioned
earlier, any don’t cares that appear during the design process will have
specific values assigned to them in the final physical implementation. Thus,
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Figure 5.3.7 Flip-flop excitation tables for the five-state counter.

when power is applied to the circuit, it could start in one of the unspecified
states. This is due to the fact that the starting state of a flip-flop, upon
application of power, is a random event.® The question then is: If the counter
starts in one of the unspecified states, will it work as designed? To answer
this question we must determine what the state transitions associated with

£ The starting state is actually determined by external circuit parameters, principally the
capacitance and resistance of circuit elements attached to the outputs of the flip-fiop.
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Figure 5.3.8 Schematic for the five-state counter.

the don’t care states are in the final realization. To see what these state
transitions are, we must analyze the counter implementation shown in Figure
5.3.8. Using Equations (5.3.3) we can construct the counters state transition
table as shown in Figure 5.3.9. Figure 5.3.10 shows the corresponding state
diagram. Notice from this diagram that the next state after each of the three
unspecified states is in the desired count sequence.

In general, the state transitions associated with unspecified entries in
the state transition table are of no real concern and can usually be ignored.
This is due to the fact that most flip-flops are designed with additional inputs
that allow them to be preset to eithera 0 or a 1, as needed. Two examples are
shown in Section 6.3. Thus no matter what state the counter comes up in
when the power is turned on, it can be initialized to the start of the count
sequence using these extra control inputs. We shall see examples of this in
later chapters.

Present state Flip-flop inputs Next state
e @ g | K N K h K|G O O
0 0 0 O 1 0 0 1 1 0 0 I
0 0 1 ¢ 1 1 i 1 1 0 | 0
(] [ 0 0 i 0 0 | 1 0 1 1
0 1 1 t 1 1 1 1 ] 1 0 0
1 0 9 0 1 0 1] 0 1 0 0 0
I 0 1 0 1 1 1 0 1 0 1 0
1 0 0 1 0 0 0 1 0 1 0
1 1 1 1 1 1 1 0 1 0 0 0

Figure 5.3.9 State transition table for the counter shown in Figure 5.3.8.
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Figure 5.3.10 State diagram for the five-state counter shown in Figure 5.3.8.

SYNCHRONOUS, OR CLOCKED, SEQUENTIAL CIRCUITS
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In Figure 5.1.4 a model for a sequential circuit was shown. This circuit was
termed an asynchronous sequential circuit, since there was nothing to con-
trol the time at which the outputs change except for the propagation delays
and the times at which the inputs change. Because it is generally not possible
to control, with any degree of accuracy, the propagation delays inherent in
the circuit, circuits of this type are of little use in the implementation of large-
scale systems. However, if the feedback delays are replaced by clocked flip-
flops, a type of sequential circuit whose behavior is easily controlled is
created.? Such a circuit will be called a clocked, or synchronous, sequential
circuit. In this section we will investigate clocked sequential circuits by first
showing models that can be used for their analysis. We will then look at the
problems associated with the analysis and design of such machines.

5.4.1 Models for Clocked Sequential Circuits

As indicated above, if we replace the delay elements in Figure 5.1.4 with
some type of clocked flip-flop, a clocked, or synchronous, sequential circuit
results. Such a circuit is also, sometimes, referred to as a state machine. The
model that resuits when we replace the delays with D-type flip-flops is shown
in Figure 5.4.1(a). This model is referred to as the Mealy model. It is easily
seen from this figure that the next state, Q, is a function of the current state,

® The flip-flops cannot actually replace the physical delays in the circuit. What they do is to
prevent changes on the inputs from causing changes in the feedback lines except at the point in
time at which the flip-flop outputs change, and this is controlled by the clock.
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Figure 5.4.1 Mealy model {a} and Moore madel (b} for sequential circuits.

gq. and the current inputs, X.'° This is also true of the outputs. Z. In other
words, we may express Q and Z as follows:

Q =1(q,X) (5.4.1)
Z = h(q, X)

An alternative model arises if we assume that the sequential circuit’s
outputs are functions only of the state of the machine. The counters of
Section 5.3 are examples of this form of sequential circuit. Figure 5.4.1(b)
shows the general model resulting from this assumption, when we further
assume that D flip-flops are used in the feedback paths. This is referred to as
the Moore model, in which

Q = (g, X) (5.4.2)
Z = h(g)

16 Remember that the symbols Q, g, X, and Z refer not to a single signal but to a collection of
state variables (flip-flop outputs), inputs, and outputs.
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The models given in Figure 5.4.1 use edge-triggered D flip-flops in the
feedback paths. Since D flip-flops simply transfer the input of the flip-flop to
the output when the asserted clock transition occurs, the next state, Q, of the
system is, in fact, the value of the D flip-flop inputs, D; that is, D = Q. If,
however, we were to use other flip-flop types, such as JK, the next state, or
set of next flip-flop outputs, becomes a function of these inputs as defined by
the tables in Figure 5.2.8. Thus, the outputs labeled Q in Figure 5.4.1 become
the flip-flop inputs required to generate the next state. We will see examples
of this in what follows.

5.4.2 Analysis of Clocked Sequential Circuits

The analysis of the behavior of clocked sequential circuits requires that we
determine the output equations (the Z’s) and the next-state equations (the
Q’s), from which we can derive the state transition table, or state table, and a
state diagram similar to the one we derived in Section 5.3. Consider, for
example, the clocked sequential circuit shown in Figure 5.4.2. The next state
equations and output equation are easily derived from this circuit. They are,
respectively,

Q= q1q9: + 942 (=Dy
0: = X + gox (= D») (5.4.3)
Z=gqg +§X

We see that since Z is a function of both the state variables g, and g, and the
input X, this circuit fits the Mealy model.

Although equations (5.4.3) completely defines the behavior of the se-
quential circuit shown in Figure 5.4.2, they are a little awkward to use in
trying to determine the sequence of outputs that will be produced by a given
sequence of inputs. By plotting these equations in the form of a state table,
the behavior of the system becomes a bit clearer. Figure 5.4.3(a) shows this
plot.

Assuming that the goal of analysis is to be able to predict how the
outputs of the sequential circuit will change as the inputs change, we need
not know the specific values that the state variables take on as the inputs
change. We only need to distinguish between states to predict the behavior of
the machine. Thus, we may replace the specific values that the state vari-
ables can take on by simple labels. For example, we might make the follow-
ing replacements for the states (g;, g2): (00) = A, (01) = B, (1) = C, and
(10) = D. The resulting symbolic state table is shown in Figure 5.4.3(b).
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5D

P P Z(H)

—>
DD

Clk

Figure 5.4.2 Synchronous sequential circuit to be anatyzed.

state diagram An alternative representation to the state table is a state diagram. We
use one of two forms for the state diagram, depending on the sequential
directed circuit model being used. In both cases the state diagram is a directed linear

linear graph  graph in which the nodes represent the states of the machine and the edges
represent the inputs required to move from one state to the next. In the
Mealy model, the outputs are a function of both the input and the state, and
therefore the outputs must be associated with the edges in the state diagram.

X

0 1 X=0 X=1
00 001 010 A Al B,0
(03 110 100 B c G DO

qz
11 011 001 C B, 1 4,1
7
10 101 11 D D, 1 C, 1
Qy, @0a. Z Next state, output

(a) (b}

Figure 5.4.3 State tables for the circuit of Figure 5.4.2: [a) state transition table;
{b} symbolic state table.
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Figure 5.4.4
State diagram corresponding to the
state table of Figure 5.4.3.

In the Moore model, the outputs are functions only of the state, and so
the outputs, for this model, are associated with the nodes. F igure 5.4.4 shows
the state diagram for the sequential circuit of Figure 5.4.2. In this diagram the
edges are labeled in the form X/Z. This state diagram defines the behavior of
the system. For example, suppose that we start in state A and apply the input
sequence 101101; the output sequence that results will be, from either the
state table or the state diagram, 001001.

X(H)
— Jl Yl .
—cp
K, - Z,(H)
5nLooY
—0p
} K, o—
__Q_j

Clk

Figure 5.4.5 Example of a Moore machine.
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As a second example, let us analyze the sequential circuit shown in
Figure 5.4.5. Our analysis objective is, once again, to produce a state table
and a state diagram that identifies the behavior of this circuit. The circuit
shown in this figure differs from the one shown in Figure 5.4.2 in that this
circuit uses JK flip-flops instead of D flip-flops. Thus, the flip-flop input
equations are not equivalent to the next state equations, as they would be for
D flip-flops. However, we can easily obtain the next-state values by first
writing the flip-flop input equations, or excitation equations, and then use the
table defining the JX flip-flop, given in Figure 5.2.8(b), to derive the next
state values. The input and output equations for this circuit become

Ji = Xy,
K =%
Jz =X

—_ 5.4.4
K; = Xy, ( :
2 =¥
Z, = V¥

A second difference between this example and that of Figure 5.4.2 now
becomes apparent. That is, the outputs are functions of the state variables
onty, and so the Moore model is to be used for this analysis.

The inputs of equations (5.4.4) are plotted in the excitation tables of
Figure 5.4.6(2); the resulting transition and state tables are also given in
Figure 5.4.6. To see how the state table is derived from the flip-flop excita-
tion tables, refer to Figure 5.2.8(b). Consider, for example, the first row of
the excitation tables in Figure 5.4.6(a). For X = 0, J, and K, are 0 and 1,
which causes the flip-flop to reset; and therefore Y, = 0, as shown in Figure
5.4.6(c). The same situation occurs when X = 1. On the other hand, when
X = 0, J, and K; are 0 and 0, respectively. Thus, the flip-flop output should
not change. Since the current state variable, y;, 1s 0, the next-state value, Y5,
must also be 0. When X = 1, however, J, and K, are 1 and 0 and therefore
Y, = 1. The remainder of the assigned table, Figure 5.4.6(c), is completedina
similar manner. Figure 5.4.6(d) shows the symbolic state table, where the
states are assigned as follows: A = (00), B = (01), C = {11}, and D = (10).

The output of a Moore machine is associated only with the value of the
state variables and thus the outputs for this circuit are plotted along the right
side of the state tables to correspond to the appropriate state variable values.
Figure 5.4.7 shows the state diagram that corresponds to this state table.
Note that the outputs are shown not on the edges of the graph, but in the
nodes associated with the states that cause these outputs.
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X
Y1 V2 0 1 Y ¥a X 0 1 yoyal 2w 2
00 ot 01 00 00 10 Q0 10
o1 00 10 o1 00 10 0l 11
11 00 10 11 01 10 il 00
i0 01 01 10 01 10 10 00
JJ, K: Jz, Kz
(a) (b)
x
Y ¥ 0 1 2.2, X=0 X=1 Z.Z;
00 00 01 10 4 A B 10
0t 01 11 1t B B C 11
11 10 1l 00 c D C 00
10 o0 01 00 D A B 00
Yo Y, Next state
(©) (d)

Figure 5.4.6 Flip-flop excitation and state tables for the sequential circuit of
Figure 5.4.5: (a) excitation tables; {b} output table; [c] state
transition table; (d) state tabte.

State/Z,, Z,

Figure 5.4.7
State diagram of the Moore machine of
Figure 5.4.5.
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5.4.3 Design of Clocked Sequential Circuits

As was the case with the design of counters in Section 5.3, the design of more
general sequential circuits is just the reverse process of the analysis. There
are basically five steps in this process:

Step 1. From the problem statement, obtain a state diagram and a state
table.

Step 2. Assign a coding to the states to form a transition table.

Step 3. Specify a flip-flop to use and derive the flip-flop excitation tables
from the transition table.

Step 4. Derive the flip-flop input equations and the circuit output equations
from these tables.

Step 5. Draw a circuit diagram.

We can best illustrate this design process by an example.

PROBLEM STATEMENT 1

Design a sequential circuit that generates the two-phase clock shown in
Figure 5.4.8. The clock output is to be controlled by an input X. If X = 1,
the clock output is to run normally. If x = 0, however, the output is to be
held at the current value until X goes to 1.

We begin the design of the two-phase clock generator by constructing a
state diagram. From Figure 5.4.8 we see that one cycle consists of four
subintervals labeled A, B, C, and D. Thus if we assume that the period of the
system clock is equal to one of these subintervals, we need four states, one
for each of these time intervals, Furthermore, assuming that both phase
outputs are asserted high, the output sequence is to be (P, Py) = (1, 1),
(1, 0), (1, 1), and (0, 0). Before we construct a state diagram for this problem

|<————1 cycle——»-|
L[
| [

|
|
[ | | [
IAIB'C'D'
|

Figure 5.4.8 Two-phase clock of problem statement I
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we must decide whether to make this a Mealy or a Moore machine. At the
moment there is no reason to select one model over the other. Thus, for this
example, we will arbitrarily assume a Moore model. We will use the Mealy
model for the next two examples. Based on these assumptions and the prob-
lem statement, the state diagram and the state table for this two-phase clock
appear in Figure 5.4.9. Note that as long as the input, X, is 1, the machine
functions exactly like a counter. The principal difference between this exam-
ple and the counters discussed earlier is that the outputs for the two-phase
clock generator cannot be the same as the state assignments. The reason is
that two of the output combinations, corresponding to states A and C in
Figure 5.4.9, are identical, both (1, 1).

Our next task is to encode the states and selecta flip-flop type to be used
for the implementation. Since there are four states we will need two state
variables to encode them, say y, and y;. The actual coding for the states A, B,
C, and D is arbitrary. We observed above, however, that while X' = 1, the
machine behaves like a simple counter. Thus let us encode the states in a
simple counting sequence. We will have more to say about this state encod-
ing or assignment problem in the next example. Figure 5.4.10 gives the
resulting state transition table and the output table for this encoding.

Since we are basically dealing with a counter, let us select T flip-flops
for the implementation. To derive the flip-flop input equations we need first
to derive the flip-flop excitation table. This can easily be done using the state
transition table of Figure 5.4.10(a) and the present state-next state truth
table for the T flip-flop shown in Figure 5.2.9(c). This is done in a manner

PPy
A A B 11
B B c 10
C C D 11
D D A 00
Next state

(@) (b}

Figure 5.4.9 State diagram (a) and corresponding state table {b) for the two-
phase clock generator.
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X
Y1 X 0 ! »ive | 218
A=00]| o 01
0 00 1
=01 0
B o1 1 ol 0
p=11[ 11 00
! 11 00
c=10| 10 i 10 11
Y., ¥y ®)

(@)

-
Figure 5.4.10 State transition table (a) and output table {b) for the two-phase
clock generator.

similar to the derivation of the excitation tables for the JX flip-flops used in
the Gray code counter of Section 5.3. Figure 5.4.11 shows the resulting

tables from which the flip-flop input equations are easily seen to be

T=X (5.4.5)
T, = X» o
x x x *
i 0 1 - 0 ]
00 0 [ 00 0 1
01 0 1 01 0 1
Yo Yo
11 0] 1 11 4] 1
Y1 ¥1

10 o} 0 10 0 1
T Ty

Figure 5.4.11

Flip-flop excitation tables for the two-phase clock generator.
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Clk

Figure 5.4.12 Final reaiization for the two-phase clock generator.

The output equations can be derived from the output table given in Figure
5.4.10(b). These equations are

Py=y + ¥
P =%

(5.4.6)

Figure 5.4.12 shows the resulting implementation for the two-phase clock
generator. '

PROBLEM STATEMENT 2

Design a sequential circuit having one input, X, and one output, Z. Zis to
be 1 whenever the four most recent inputs are 1011, where the most recent
input is the rightmost in the string. Overlapping of sequences is allowed so
that the input sequence 1011011 will produce an output of 0001001. The
input X is to be asserted low, and the output Z is to be asserted high.

We begin the design process by constructing a state diagram for a se-
quential circuit to meet these requirements. In doing this, we should try to
associate a specific meaning with each state in the diagram. For example, in
the state diagram of Figure 5.4.13, let state A correspond to the situation
where we have seen no part of the input sequence. Then let state B be the
state corresponding to seeing the first 1 in the sequence. C can correspond to
10, and D to 101. By the statement of the problem, a 1 on the input while the
circuit is in state D should produce a 1 out, but what is the next state? Well,
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since this 1 can also be taken as the first 1 in the sequence, we should go to
state B. This is the sequence of states that will result if the input sequence is
the one desired. What happens, however, if thhs sequence is broken? For
example, suppose the current input is 101, which would put us in state D, and
then a 0 comes in. In this case, the desired sequence is broken; however, the
last 1 of 101 becomes the first 1 of 10, which corresponds to state C. There-
fore, an input of 0 in state D will cause us to go to state C. Continuing in this
way, we arrive at the state diagram of Figure 5.4.13.

We have drawn this state diagram for a Mealy machine. There is actu-
ally nothing in the problem statement that would indicate a preference. It is
generally true, however, that Moore machines usually require more states
than the equivalent Mealy machine, as we shall shortly see. Thus, we will
use the Mealy model whenever possible. More will be said about the model
equivalences or lack thereof in Section 5.6.

The state table for this sequence detector can easily be constructed from
the state diagram. This is done in Figure 5.4.14(a). In order to derive the flip-
flop input equations, we first must have an assignment, or coding, for the
states required in this problem. Since there are four states, we must have two
state variables to distinguish each of the states, Call these ¥; and Y;. We
may, at this stage, assign states to state variable values arbitrarily. Assume
the assignment is made on (Y, Y;) as follows: (00) = A, (01) = B, (11) = C,
and (10) = D. On the basis of this assignment, the state transition table
becomes as shown in Figure 5.4.14(b).

Before we can derive the flip-flop input equations, we must specify the
type of flip-flop to be used in the design. For this example, let us use JX flip-
flops. The flip-flop excitation tables can now be derived from the state table

No part of
sequence seen

0/0

Seen 101

Figure 5.4.13 State diagram for a sequence detector that detects the sequence
1011,
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X
X=0 X=1 Yi bz 0 |
A 4,0 B.0 00 000 010
B C.0 B, 0 01 110 010
C A0 D, 0 11 0c0 100
D C.0 B, 1 10 110 o1t
Next state, output Y, ¥ 2

(a) (b)

Figure 5.4.14 Flip-flop state tables (a} and state transition table (b) for the
sequence detector of Figure 5.4. 13.

using Figure 5.2.14(b) in exactly the same way as was done for the counter
design example in Section 5.3. The resulting excitation tables are shown in
Figure 5.4.15.

Now, from the state table of Figure 5.4.14 and the excitation tables of
Figure 5.4.15, we may derive the flip-flop input equations and the network
output equations. These equations become

Iy = X}’z

K=Xn+Xn=X®y

L=ywt+X (5.4.7)
K=y

Z=ynX

Equations (5.4.7) yield the final circuit implementation shown in Figure
5.4.16. The reader should verify these results by deriving the state diagram of
Figure 5.4.13 from the circuit diagram of Figure 5.4.16, using the analysis
procedure of Section 5.4.2.

It should be appreciated that the complexity of the implementing equa-
tions depends on how this assignment is made. Ideally, we would like to
assign states in such a way as to make the equations as simple as possible.
This general state assignment problem is a very difficult problem and will not
be discussed here. A number of references to this problem are given at the
end of the chapter. Although the general problem is very difficult, there are a
couple of rules of thumb that can be used which usually lead to fairly simple
implementing equations. These rules, in order of importance, may be stated
as follows:
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Y1 ¥
- - 0 1
| }
g, X,
X X
0 F -] -
- - 0 0
Y2 ¥

A A0
oY s

A K,

Figure 5.4.15 Flip-flop excitation tabies for the sequence detector of Figure
54.13.

Rule 1

States that have the same next state for a given input should be adjacent.
Priority should be given to states having common next states for the largest

number of inputs.

Rule 2
States that are the next state of a given state should be adjacent.

The rationale for rule 1 is that when two rows are adjacent and the state
variable in the same column of these two rows is the same, this state variable
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v,

Figure 5.4.1& Implementation of the 1011 detector.

will have a term which is independent of the state variable that differs be-
tween the two rows. Thus, the final equations will have simpler terms. The
reason for the second rule is that when these states are adjacent they will
differ in only one state variable. Thus, the state variables that are common
may share common terms.

We can illustrate the application of these rules with the last example.
Referring now to the state table of Figure 5.4.14(a}, we see that by rule 1,
states B and D should be adjacent, since they map into the same next states
for each input: C for X = 0 and B for X = 1. Further, by rule 2, we would like
to make B and C adjacent. This leaves state A to be adjacent to either C or D.
Applying rule 2, we see that A and D shounld be adjacent, because these are
the next state of state C. The resulting state table and transition table are
shown in Figure 5.4.17(a) and (b). The excitation tables for the JK flip-flops
are shown in Figure 5.4.17(c). The resulting flip-flop input equations become

Ji=5

Ki=»w+X

=X (5.4.8)
K,=X

Z = yiy:X
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These equations are clearly simpler than those of equation (5.4.7), and thus
the rules of thumb have, indeed, done their job.
Let us consider another design example.

PROBLEM STATEMENT 3

Design a two-input (A and B), one-output (Z) sequential circuit (using a
Mealy model) having the following characteristics: Z = A(t)A(z — 1) until
the B input becomes 1, at which time Z = A(¢) + A(t — 1), The next
occurrence of a 1 on input B causes Z to switch back to the AND operation.
Z continues to switch between the OR operation and the AND operation on
each occurrence of 1 at input B. Assume that both inputs and the output are

asserted high.

As before, we began the design process by constructing the state dia-
gram, which is always the most difficult part. Let us begin by assuming that Z

¥ ¥a xX=0 X = Y1 ¥1 0 !
0 C A, 0 D, 0 00 100 110
01 B C,0 B.0 01 000 010
1] D C, 0 B,1 11 Qo0 011
10 A 4,0 B.0 10 100 019
Y, Yo X
(a) (b)
X X
1- 1- 0- 1~
0- 0- -1 -0
¥2 V2
-1 -1 -1 -0
¥1 Y1
-0 -1 0 -
I, K, T Ks

(¢}

Figure 5.4.17 Tables resulting after applying the rules of thumb to the state
table of Figure 5.4.14{a}: {a) permuted state table; (b} state
transition table; [c) excitation tables.
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implements the AND and derive a portion of the state diagram corresponding
to this part of the problem. To get ourselves started, let us hold B = 0 for a
while and develop the state diagram based on changes in A. Again, let a
meaning be associated with each state in the system. Referring now to Figure
5.4.18, let state S, correspond to the case in which the last value of A was 0.
If a 0 occurs next on input A, then we will stay in this state and produce an
output of 0. Next, if A becomes a 1, we need to go to a state corresponding to
the case in which the last value of A was 1. Call this state S,. An input oflon
A while the circuit is in the S, state will, of course, take us back to §, and will
produce an output of 1, since the last two inputs on A were 1. An input of 0
on A, on the other hand, will take us back to Sq. A similar argument can be
made if we assume that Z is to implement the OR operation. In this case, 5>
will correspond to the case in which the last A was 0, and S, will correspond
to that in which the last A was 1.

The next step in deriving the state diagram is to connect the two pieces
just derived. Suppose we are in state Sp and B becomes a 1. Two possibilities
arise. First, A can be a 0, in which case the two inputs, A and B, are O1. The 1
on B must cause us to switch to the OR operation, and the 0 on A must cause
us to go to the state in the OR diagram corresponding to the case in which the
last A was 0. The resulting state is S,. But what is the output? Should we
make the output the AND operation, which is what it was, or should we
make the output the OR operation, which is what it is supposed to switch to?
Nothing in the statement of the problem tells us what to do, so we may
arbitrarily decide. Let us assume, then, that Z takes on the last operation

00/0 10/1 = AB/Z
OEBON
10/0
10/1
OO
00/1
. . Figure 5.4.18
Partial state diagram for the function

00/0 10/1 generator.
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00/0 10/1

AND

OR

Figure 5.4.19 Final state diagram for the function generator.

required before the switch. Thus, the output in this case will be 0. Figure
5.4.19 shows this transition. Next, assume that A is 1 while B is 1 and, again,
we are in state S,. In this case, we must go to state S;, which corresponds to
the state in which the last A was a 1, and the output is to switch to the OR
operation. On the assumption that the output is the function of the last two A
inputs before the switch, the output here becomes a 0. Repeating these
arguments starting in each of the other states results in the state diagram of
Figure 5.4.19, which is the desired final diagram. The state table shown in
Figure 5.4.20(a) is derived from this state diagram.

The next step in the design process is to assign states and reconstruct
the state diagram on the basis of this assignment. Since there are four states,
we need two state variables to code the states. Let the state variables be Y,
and ¥,. Applying the rules of thumb given above, we see that by rule 1, states
S and §, should be adjacent, as should states S, and §;. Application of rule 2
does not give us any further information, so let us assume that §, and §, are
adjacent. Thus, we may assume a coding for the states (Y}, Y3) of §, = (0, 0),
$;=1(0, 1), S, = (1, 1), and S; = (1, 0). The resulting encoded state table 1S
shown in Figure 5.4.20(b).
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AB AB
Y ¥ 00 ol 1 10 Y- ¥z 00 ) 11 10
00 Sy Sp.0 { 55,0 | 55,0} 5.0 S, 00| 000 110 100 010
01 §,| $5.0 | S,0 | 83,1 | 51! 5, 01| 000 110 101 011
1t S| S50 S0 F St | Sal s, 114 110 000 011 101
10 8] 8,11 5.1 ] S0 3.1 5, 10} 111 001 011 101
Next state, output Y, Y, 2
(2} (b),

Figure 5.4.20 ({a) State table for the function generator; (b) state transition table.

Assuming the use of T flip-flops, the flip-flop excitation tables become as
shown in Figure 5.4.21, from which the flip-flop input equations become

T| =B
T, = ABy,y, + ABy\¥: + ABY\y>
+ ABy1y: + AByy; + ABy\ ¥ (5.4.9)
+ AB¥:¥; + ABy1y2
=APB®y Dn
4 A
0 L 1 0 0 1 0 1
0 1 1 0 | 0 1 0
¥Y2 ¥Ya
0 i 1 0 0 1 0 1
Y1 ¥
0 1 1 0 1 0 1 0
B B
T T

Figure 5.4.21 Flip-flop excitation tables.
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The output can be derived from the state tables of Figure 5.4.20 and is seen to
be

Z=y¥ t Ay (5.4.10)

Figure 5.4.22 shows the final realization based on these equations.

It was mentioned earlier that the complexity of the realizing equations
for a sequential circuit can depend heavily on the way in which the states are
assigned. As an example, consider the state assignment for the problem just
completed. Suppose that states S, and §; were as assigned above but that
S, = (10) and §; = (11). The resulting assigned state table would appear as
shown in Figure 5.4.23, from which it may be verified that

Tl =B
T, =Ay, + A7, =A@y (5.4.11)
Z=yy: + Ay, + Ay2

Clearly, the equation for T; is much simpler than the one derived in the
equations of group (5.4.9), although the equation for Z is slightly more com-
plex. The resulting implementation will be somewhat simpler because of this.

DHDL], — >

Y

7

Clk

Figure 5.4.22 Final realization for the function generator circuit.
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A B
Y- ¥z 00 01 il 10
S, 0o} ooo 100 134] 010
g 01 000 100 1t ol
5 N 101 001 01t 111
§, 16| 100 | 000 | oLl | 11 Figure 5.4.23
Altemative state assignment and
¥1. ¥5. Z  the resuiting encoded state table.
05.5

SIMPLIFICATION OF SEQUENTIAL CIRCUITS

Definition
5.5.1

equivalence
relation

Definition
5.5.2

It can very easily happen that the designer of a sequential circuit will create a
state diagram or table having more states than are actually required to imple-
ment the design. Since the number of flip-flops in the feedback path, as well
as the complexity of the implementing equations, depends on the number of
states, it is important that they be reduced to a minimum. In order to do this,
we must introduce the concept of equivalent states. This is done in the
following definition.

The relationship between states p and g specified in this definition is an
example of an equivalence relation, which is defined as follows:
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The equivalence relation we are most familiar with is the algebraic equality,
represented by the symbol =. It is easy to verify that state equivalence
satisfies all three of the properties in definition 5.5.2 and 1s, therefore, an
equivalence relation (see Problem 5.35).

The definition of state equivalence just given does not help much in
determining whether two states are equal, since we would have to test them
against every possible input string of which we might conceive. Fortunately,
this really is not necessary. Note that two states will be distinguishable, or
not equal, if we can find at least one input string that produces, on the last
input, two different outputs depending on the state we started in. For exam-
ple, consider machine M, whose state table is given in Figure 5.5.1. We can
see immediately, from the state table, that states A and B are not equal, since
if we start in A and apply a 1 on the input X, we get an output Z of 0; but if we
do the same thing starting in B, we get a 1 out. Thus A and B cannot be equal.
However, what can we say about A and C? Well, the outputs are the same:
for X = 0 the outputs are both 0, as they are, also, for X = 1. This does not,
however, mean that the states are necessarily equal. Note that when X = 0,
the pair of states AC goes to the pair of states BD (A goes to B and C goes to
D) and when X = 1, AC maps into AB. We say that AC implies BD and AB,
or that BD and AB are implied by AC. Now if B and D are equal and if A and
B are equal, then A and C must also be equal (why?). However, we have
already observed that state A is not equal to state B and, therefore, state A
cannot be equal to state C (why?).

By continuing this process for every possible pair of states, we can
determine which pairs are equivalent and which are not. This search process
can be simplified tremendously by making a table giving all pairs and listing,
for each, the set of implied pairs. This set of implied pairs is called an
implication set. Figure 5.5.2(a) shows the resulting implication table. If the
members of a pair have different outputs for some input, they are not an

X=0 X=1
Al 2o 4,0
Bl F.o E.l
c| bpo 8,0
p| B0 4.0
|l co B |
Fl 40 E 0
¢ £0 G, 0 Figure 5.5.1 State table for

Next state, output  machine A,
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(a) (k)

Figure 5.5.2 Implication tables for machine M: (3] initiai; (b] final.

equal pair and so we indicate this in the table by simply crossing out the
entry. For example, the entry for AB is crossed out, since A and B have
different outputs for an input of 1. On the other hand, if a pair map into a
single state for each possible input and the outputs are the same, as is true of
AD, then the pair must be equal. This is shown in the table by a dash (—).

The identification of equivalent states proceeds as follows. Go to each
table entry that is not crossed out and examine the implied pairs in the entry.
If any of these pairs corresponds to a table entry that has already been
crossed out, then the states corresponding to this position in the table cannot
be equal and so the entry is crossed out. By making repeated passes through
the implication table, eventually we reach a point where no further entries
may be removed. The resulting implication table for machine M is shown in
Figure 5.5.2(b).

The pairs corresponding to entries in the table that have not been
crossed out are AD, AG, BE, CF, and DG. From this collection, we note that
states A, D, and G are equal to each other: A equals G, and D equals G. So,
too, state B is equal to state E and state C is equal to state F. We may now
reduce the original table by replacing each occurrence of D and G by state A,
each occurrence of state E by state B, and, finally, each occurrence of state
by state C. The resulting, reduced state table is shown in Figure 5.5.3.

Let us consider one more example, this time a Moore machine. Figure
5.5.4 shows the state table for some machine M'. As before, the implication
table shown in Figure 5.5.5(a) is set up by comparing each row with all others
that have the same output. For example, since the output corresponding to
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X=0 X=I

(ADG)Y A B,0 A0

(BEy B| C,0 | B1

(CFy C| A0 8,0

Figure 5.5.3
Next state, outpuz  Three-state machine equivalent to machine M.

states A and B differ, A cannot equal B and thus we cross out the correspond-
ing entry in the implication table. A and C can be compared, however, since
the output associated with each state is the same, zero in this case. The
implied pairs are BG and BC, which are entered in the appropriate position of
the implication table. As with the last example, there is a state pair, CH,
which maps into a single state for both input values; G when X equals 0 and B
when X equals 1. This is again shown by the dash (—) in the implication
table.

As before, once the implication table is set up, we check each entry that
is not crossed out to determine if any implied pair corresponds to a crossed-out

A B C 0
B B G 1
C G B 0
D E F 0
E C D 1
F A E 0
G B H 0
¥ G B )
Figure 5.5.4 State table for machine M'.
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AE
EF

BE

cH FH EH

BG _ | E6 4G | Be
BC BF | BE | BH
A c D E F G

(a) {b)

Figure 5.5.5 Implication table for machine M' of Figure 5.5.4.

entry. Figure 5.5.5(b) shows the final implication table. The pairs corre-
sponding to entries not crossed out in this table are equivalent. In this case
these are AD, AG, BE, CF,CH, DG, and FH. Thus A, D, and G are equal, as
are B and E and C, F, and H. The resuiting simplified machine is shown in
Figure 5.5.6, which is found, as before, by simple construction of a state
table corresponding to states A, B, and C and then replacing the next state
transitions by states that are equivalent to one of these three. For example, in
the original state table B goes to H when X equals 0. In the reduced table we
replace H by its equivalent, C in this case.

Other techniques for carrying out this reduction process exist. Some of
these can be found in the references cited at the end of the chapter. There are
also methods, similar to that just described, for reducing machines which are

(ADG) A B c 0

(BE) B C A 1
Figure 5.5.6

(CFH) C| 4 B |0 State table for the simplified machine
equivalent to machine Af',
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not completely specified, that is, machines which, for various reasons, may
have unspecified, or don't care, next states or outputs. Such machines are
commonly encountered in the design of very large digital systems such as the
control unit for a computer. Usually, such machines arise out of very highly
structured problems to begin with and, as a consequence, end up having, if
not an absolute minimal number of states, at least a near mimimal number.
Because of this we will not discuss this process here. Procedures for reduc-
ing incompletely specified machines can be found in the references given at
the end of the chapter.

D 5.6

MEALY—-MOORE EQUIVALENCE
AND OTHER SEQUENTIAL CIRCUITS

We saw in Section 5.5 that there are two fundamental models for sequential
circuits, the only difference between them being that the output in one is a
function of the state variables only and in the other the output is a function of
both the state variables and the current inputs. There must, of course, be an
equivalence between these two models, since nothing fundamental can stop
us from designing a system starting from eithér point of view. For example, a
state diagram corresponding to the sequence detector of Section 5.4.3, as-
suming a Moore model instead of a Mealy:model, is shown in Figure 5.6.1.

Figure 5.6.1 Moore version of the 1011 sequence detector of Figure 5.4.13.
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Assuming that state A is the initial state in the Mealy version and state S is
the initial state in the Moore version, it can be verified that these two state
diagrams will produce output sequences that are identical for identical input
sequences. '

To investigate the conversion between models, consider, first, the con-
version from a Moore machine to a Mealy machine. By assuming that the
output associated with a state in the Moore machine can be associated with
the incoming edges for an equivalent state in the Mealy machine, we will
obtain the conversion shown in Figure 5.6.2(a). The reverse of this must give
the Mealy to Moore equivalence. There is, however, a complication that
arises in this case. If the outputs on all incoming edges of a state are the
same, then this output becomes the output for the equivalent Moore state, If,
however, the outputs are different, then the state must be ““split’’ so that one .
Moore state will exist for each of the different incoming-edge outputs. Figure
5.6.2(b) shows this conversion. Application of this Mealy to Moore conver-
sion process to the state diagram of Figure 5.4.13 yields the state diagram of
Figure 5.6.1, where state B has been split into states S, and §,. The remain-
ing states correspond as follows: A = 8, C = §;, and D = §;.

Starting with Figure 5.6.1, we can convert back to the Mealy equiva-
lent, as shown in Figure 5.6.3. As is apparent, this machine has five states
rather than four as in the original machine, However, it can easily be veri-

X, X2
X X,/Z
(a)
X,

X2,
X,/z, =

Xy, x;
®)

Figure 5.6.2 State equivalence in the Mealy-Moore conversion process: {a)
Moore to Mealy transformation; (b) Mealy to Moore transformation,
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Figure 5.6.3 Mealy machine derived from the Moore machine of Figure 5.6.1.

fied, using the simplification procedure described in Section 5.5, that states
S, and S, in this transformed state diagram are equivalent. Thus we obtain
the original four-state machine.

Although Mealy and Moore machines are equivalent in the sense just
described, there are some important timing differences which should be
noted. Since the output of a Moore machine is a function of the state only,
the output must be stable (i.e., unchanging) as iong as the state is fixed. Thus
changes in the inputs between state changes cannot affect the output. In the
Mealy machine, on the other hand, the outputs are functions of both the
inputs and the state variables and so the output will change whenever either
the input changes or the state changes. These two cases are shown in Figure
5.6.4. From this figure we see that the output of a Moore machine is always
valid, except for the time required for all signals to settle down immediately
after the state change. Alternatively, the output of a Mealy machine is valid
only at the instant that the state changes. Even though the timing between
these two models is quite different, they will produce the same results if the
output is interpreted at the correct point in time.

An interesting question that arises is whether we should use the Mealy
or Moore model in the design of a sequential circuit. As we have just seen
from the discussion of the conversion from one model to the other, a Mealy
model generally has fewer states than the equivalent Moore machine. Thus,
if our goal is to produce the least complex design, it follows that we should
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Clack ——I 1
b QR :
|

Q :rx

Z i x

(a)

(b)

Figure 5.6.4 Timing differences between the Mealy and Moore models:
{a) Moore machine timing; (b} Mealy machine timing.

use the Mealy model. However, from the discussion of the timing differences
between the two models, we observed that the output of the Moore machine
is stable for the entire clock cycle, whereas the output of the Mealy machine
is correct only at the time the active clock edge occurs. The conclusion that
we can draw from these two observations is that unless there is a specific
reason for the output to remain constant throughout a clock period, the
Mealy model should be used in the design. The two-phase clock generator
discussed in Section 5.4.3 is an example of a case where a Moore machine is
required. This is due to the fact that the clock outputs must change only at
the times specified in the problem statement.

We have mentioned asynchronous sequential circuits and have spent a
good deal of time examining synchronous sequential circuits in this chapter.
The principal difference between these two circuits is that the state changes
and output changes are dependent on level changes in all of the inputs in the
asynchronous case and only on a single clock input in the synchronous case.
The term ‘‘level change’’ is used to mean that an input which has been at one
voltage level for some period of time changes to another level and stays at
this level for another period of time. A type of sequential circuit which is
intermediate to these two is the pulse-mode circuit. This is basically an
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asynchronous sequential circuit in which one or more of the inpuis are as-
sumed to be ‘‘pulses.”” A pulse is defined, in a rather imprecise way here, as
an assertion of an input which is long enough to allow the gates to see the
change but short enough to be negated by the time any state changes caused
by the input change are seen on the feedback paths. Obviously, pulses of this
type are hard to control, and so pulse-mode circuits using ‘‘real’” pulses are
seldom encountered. A more practical variation on this theme is to use flip-
flops in the feedback paths in a manner similar to clocked sequential circuits
to control the times of state change. The incoming pulses thus appear as not
one but many clocks. Circuits of this type have important application in
many problems. We examine these two additional varieties of sequential
circuits in Chapters 6 and 7.
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Friedman discusses a procedure for converting Mealy machines to
Moore machines and vice versa, in Chapter 5. A discussion of this machine
conversion similar to that given here is also given in Chapter 11 of Hill and
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PROBLEMS

§.1. For each of the circuits shown in Figure P5.1, complete the timing diagram
indicated. Assume that each gate has a propagation delay 4 which is much
less than the time between changes of any of the signals.
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Figure P5.1
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5.2,

5.3,

54.

5.5.

Repeat Probiem 5.1 using the circuits given in Problem 4.4 as follows:
(a) Repeat Problem 5.1(a) using Problem 4.4(a).
(b) Repeat Problem 5.1(b) using Problem 4.4(c).
(¢c) Repeat Problem 5.1(c) using Problem 4.4(b).

Suppose that the propagation delay of each gate in the 1-bit adder shown in

Figure 4.3.2 is 10 ns.

(a) What is the minimum time for the sum, S;, and carry, C, to be gener-
ated after a change in input, C;? Assume that A, and B; do not change.

(b) What is the maximum time required to generate the sum and carry bits
after a change in either A; or B; assuming that C; does not change?

Suppose that we cascade eight 1-bit adders, as shown in Figure 4.3.3, to
produce an 8-bit adder. What is the maximum time required to add two
numbers and produce a correct sum at the adder output?

Complete the timing analysis for the circuit shown in Figure P5.5. Assume
that all gates have the same delay and that it is much less than the time

between transitions on input A.

A

4 - 20 ns -
(2)

A —»f 5ns
(b}

A —l-'_1 2ns
(e

Figure P5.5

5.6. Redo the timing analysis of the NAND gate SR flip-flop shown in Figures

5.2.1 and 5.2.2, assuming that each gate has a delay of d seconds associated
with it. '
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5.7. Repeat Problem 5.6 for the flip-fiop shown in Figure P3.7.
(a) First use the timing diagram shown in Figure 5.2.2.
(b) Next, use the same timing but invert inputs § and R.

R o:> 0

5§ — X
| Figure P5.7

5.8. Complete the timing analysis for the circuit shown in Figure P5.8. Assume ail
gates have the same delay and that it is much greater than the switching time
of input A.

A ' ' A

(a) (b

i I IR I

Figure P5.8

5.9. Assume that each gate in the circuit shown in Figure P5.9 has a propagation
delay of d seconds. Assume, further, that input T has been low for a very long
time and then goes high for an interval x » d. Construct a timing diagram for

output Q.

o

:.,}_dD

1 —

Figure P5.9
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5.10. Derive the characteristic equation for the flip-flop of Figure P5.9.

5.11. Complete the indicated timing diagrams for the circuit shown in Figure P5.11.
Assume that the propagation delay of the flip-flops is d.

X
D ¢ D or—20

A

r

]
g l -
g | L~ LI L

Figure P5.11

5.12. Repeat Problem 5.11 for the circuit shown in Figure P5.12.

X
A D@ D Q20

B
Figure P5.12

§.13. Derive the characteristic equation for each of the flip-flops shown in Figure
5 2 8. Remember that the characteristic equation for these edge-triggered flip-
flops is the equation that governs the output on the active edge of the clock.

§.14. Derive the characteristic equation for the X Y flip-flop defined in Figure P5.14.

1 ol— X Y ¢k | @€
L L 4 g

e L v ¢ H
H L H

¥ o— H H 1 7

Figure P5.14
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5.15. Construct state diagrams for the counting sequences generated by the circuits
shown in Figure P5.15.

¥y ¥y Yy
D A D, Dy A
l Clack
{a)
Y, Y, Y,
Lo, K SN K Jo A Ko
Clock
' 1]
+ +
)]

Figure P5.15
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5.16.

hift register  5.17.

5.18.

phnson 5.19.
yunter

Using the flip-flops indicated, design a counter that counts in the sequence 0,
1,5,2,6,0, ... :

(a) T fiip-flop

() D flip-flop

{c) JK flip-flop

A simple 3-bit shift register is shown in Figure P5.17, As can be seen from this
figure, the contents of the register are shifted to the right one bit position on
each active transition of the clock, with input X being shifted into the left-
most bit position. Construct a complete state diagram for this device.

X—1D, &y Dy @ D, Q

o— > o— J_> O

Clock

Figure P5.17

How could you use the idea of a shift register to design the sequence detector
discussed in Section 5.4?

Figure P5.19 shows a simple example of a Johnson counter. As can be seen,
this counter is simply a shift register with a simple combinational feedback.
Construct the state diagram for this counter.

Y, Y Yq
D g J D ¢ p g —|
D— > [ »d
Clock
ﬁ
\ N

Figure P5.1%
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5.20. Figure P5.20 shows a generalized form for the Johnson counter. Derive an
equation for the number of states in the counting sequence as a function of the
length of the counter, n, and the number of outputs ANDed in the feedback
path, f. Assume that the sequence starts with all zeros (i.e., 0000 - - - 00}.

H
D gr—:+--—D er—:--—1p 2 D o
> [ > [D— > O >
Clock J_- r
—
AN -
I
Figure P5.20

5.21. Derive the state diagrams for the clocked sequential circuits shown in Figure
P5.21. Show the state diagram in the proper Mealy or Moore form.

5.22. Show how you would convert from each of the following flip-flops into the
alternative flip-flop indicated:

(@ DwT
(b TtoD
(c) DtoJK
(d) JKtoD
(e) TtoJK

5.23. For the state diagram shown in Figure P5.23, what is the output sequence
generated by the input sequence x = 10111001, assuming that you start in
state 8,7

5.24. Using D flip-flops, design a machine that impiements the state diagram of
Figure P5.23.

5.25. Repeat Problem 5.24 using T flip-flops.

5.26. Design a circuit using D flip-flops that implements the machine whose state
diagram is given in Figure P5.26.

5.27. Repeat Problem 5.26 using JK flip-flops.

5.28. Based on your design for Problem 5.26, reconstruct the state diagram imple-

mented, showing all possible states. What happens if on turning on the power
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0
w_;

riiwp—r—-

7

\/

b ¥, (L) 0—1—

Cloci
(a)
2, @, (L) Oy 2,
Jy A K, Jy K,
Clock
X
(b}

Figure P5.21
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5.29,

5.30.
5.31.

5.32.

5.33.

/1 Figure P5.23

0/0

Figure P5.26

to your design the flip-flops happen to start in one of the states not found in
Figure P5.267

Construct a Moore machine whose output is 1 if the last five inputs were
11010. Use JK flip-fiops in your design.

Repeat Problem 5.29, but construct a Mealy machine this time.

A 3-bit counter is to be designed on the basis of the following specifications. If
an input X is 1, the counter is to count in the sequence 000, 001, 010, 011, 100,
101, 110, 111, . . . . If X = 0, the counter is to count in the sequence 000,
001, 100, 010, 000 . . . . Design this counter using JK flip-flops.

Design a one-input (X), two-output (Z,, Z;) circuit whose outputs represent
the number of 1s that have appeared in the last three inputs.

Using the XY flip-flop of Problem 5.14, design a sequential circuit to imple-
ment the machine whose state diagram is given in Figure P5.23.
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X=0 X=1
A B, 1 C. 1
B E.Q ¢.0
C C 1 A,0
b D,0 B, 1
E F, 1 C, 1
F H 0 D, 0
] G, 0 F, 1
H F 1 1 .
¢ Figure P5.36
X=0 X=1 Z
A E C 0
B B C 1
C A E 1
D E D 0
E D B 0
Figure P5.37

0/0

Figure P5.38
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5.34.

5.35.

5.36.

5.37.

5.38.

A certain sequential circuit has the following next state equations:

Y, = Xy, + x¥
PEA T A (P5.34.1)
Yo = xy1 + X3 ¥0
The characteristic equation for a JK flip-flop is ¥ = yK + ¥J. If we plug this
into equation pair (P5.34.1), we obtain
Y, = ®y, + xF = niK + i
1= XW i:{l_ Y1 1_ )’1_1 (P5.34.2)
Yo = xy. + X¥1 ¥ = yoKo + ¥olo
Solve eqtiation pair P5.34.2 for K\, Ji, Ky, and Jg in terms of the variables x,
v, and yq. (Hint: Note thatif Y; = f= g, thenf @ g = 0, and that the flip-flop
inputs take on the general form, for example, Ky = coX¥,\¥, + + -+ +
e Xy1y2.)
Show that the concept of indistinguishable states as defined in Definition 5.5.1
is an equivalence relation.

Find a minimal state machine equivalent to the machine whose state table is
given in Figure P5.36.

Find a minimal state machine equivalent to the machine whose state table is
given in Figure P5.37.

For each of the state diagrams shown in Figure P5.38, convert to the alterna-
tive form; that is, convert the Mealy machine in part (a) to a Moore machine
and convert the Moore machine of part (b) to a Mealy machine.
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Asynchronous
Sequential Circuits

INTRODUCTION

In Chapter 5 we introduced the idea of a combinational circuit with feedback.
Such a circuit was termed a sequential circuit, since its outputs were depen-
dent on some past sequence of inputs. In circuits of this type the output
behavior is controlled by the physical delays of the various gates used to
implement the circuit. As was pointed out in that chapter, a simple model for
such circuits can be derived if we assume that the circuit is “‘glitch’ free.
This model was shown in Figure 5.1.4 and is repeated here as Figure 6.1.1.
Since the delays in these circuits are not generally controllable, designing
reliable circuits of this type is usually difficult. By replacing the delays with
flip-flops, as was done in the model of Figure 5.4.1, we were able to com-
pletely control the feedback paths and therefore generate sequential circuits
that performed predictably and reliably. There is, however, a “‘caich-22,”"
and that is that the circuit operates reliably only if the flip-flops operate
reliably as well. The flip-flops themselves can only be modeled as shown in
Figure 6.1.1. Thus, if the clocked sequential circuit is to work properly, we
must develop techniques for designing reliable flip-flops.

In this chapter, then, we will investigate the analysis and design of
sequential circuits that basically must be modeled as in Figure 6.1.1. These

201
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X(t) —— r'_—’ Z(r)

Combinational Y +d)
logic

Y(n) l—b

Figure 6.1.1 Model of a combinational circuit with feedback.

circuits will be termed asynchronous sequential circuits, since their output
behavior is controlled by the changes in the input variables, which are,
generally, not synchronized in any way. As was pointed out in Section 5.1.2,
two possible things can occur in circuits of the type shown in Figure 6.1.1.
First, if

Yz + d) = yi(1)

for all i, then the circuit will be stable; that is, as long as the inputs do not
change, neither the outputs nor the secondary variables will change. Second,
if, for some combination of inputs and secondaries,

Yt + d) # yd)

for some i, the circuit is unstable; that is, the present value of the secondary
variable will change after propagation delay time d. If an unstable situation
occurs, one of two things will happen. Either this change can result in an-
other change, and so on indefinitely, or, after some finite number of changes,
a stable state will be reached. In general, the inputs in an asynchronous
circuit can change at any time, including times during which the outputs are
changing. This, of course, can make analysis extremely difficult, because we
are never sure of the input values at any given instant of time. If, however,
we assume that no input makes a change until all of the outputs and state
variables are stable, and then that only one input changes at a time, circuit
analysis becomes considerably easier. Asynchronous sequential circuits in
which this assumption is made are generally referred to as fundamental-
mode sequential circuits.' In what follows we will be interested only in
asynchronous sequential circuits that operate in this fundamental mode. We

1 Another term that is encountered in the literature is level-mode, although this is not as
COmMmon.
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will, of course, be interested in flip-flops, but the techniques to be developed
are applicable to many other circuits as well.

Before we begin our investigation of asynchronous circuits, a little his-
torical and physical perspective is in order. Circuits of the type to be exam-
ined in this chapter have a very desirable characteristic, namely, that they
can process information at a speed limited only by the longest propagation
delay path in the implementation. Since current technology allows the design
of gates having propagation delays of the order of several picoseconds (1
picosecond = 10~'2 second) and since it is possible to construct all combina-
tional functions using only two levels of gates—an AND level to implement
the minterms, followed by an OR level—it is conceivable that computers
could be designed that can perform basic operations very fast, indeed. In
fact, a computer having an arithmetic unit based on this idea was designed
and built at the University of Illinois in the mid-1950s. At the time, Illiac II,
as it was named, was the fastest computer in the world. Many much faster
computers exist today, even though they are not asynchronous. Their great
speed is principally due to improvements in the technology used to imple-
ment the hardware. As we shall soon see, designing large-scale asynchron-
ous systems is, if not impossible, fraught with tremendous problems of relia-
bility. Most of these problems can be handled by the manner in which the
requisite functions are implemented (i.e., the form of the equations). Unfor-
tunately, some of these problems can be managed only by controlling the
feedback delays—which was the reason for inserting the flip-flops in the
feedback paths in the first place!

ANALYSIS PROBLEM

primary
variables

secondary
variables

As was the case in the analysis of clocked sequential circuits, the analysis
of asynchronous sequential circuits involves determining how the outputs of
the circuit change with changes in the inputs. These outputs are functions
of the primary variables—the inputs—and of the signals associated with the
feedback path delays. These feedback variables are usually referred to as the
secondary variables and represent the state of the system at any instant of
time. The process of identifying the circuit output behavior is not signifi-
cantly different from what we saw in the last chapter. However, since there
are no flip-flops in the feedback paths, identification of the state, or second-
ary, variables may not always be easy.

In general, the analysis of an asynchronous sequential circuit begins by
identifying and *‘cutting’’ all of the feedback paths at the output of the gates
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Figure 6.2.1 Asynchronous circuit anatysis model.

that drive these feedbacks so that the resulting circuit is purely combina-
tional.Z The gate outputs which are cut will be labeled with a capital letter 1o
indicate that this is the next value of the secondary variable, and all of the
gate inputs that are driven by this line will be labeled with a lowercase letter
to indicate the current value of the secondary variable. This conforms to the
labeling of current state versus next state that was used in Chapter 5. Figure
6.2.1 shows this general model. The reader should compare it with Figure
6.1.1. We may now write equations for the outputs and the next value of the
secondary variables in terms of the current secondary variables and the
inputs. The equations for the secondary variables are referred to as the
excitation equations. Plotting the excitation equations for the secondary
variables in a Karnaugh map results in an excitation table (or matrix) that
shows how the secondaries change with changing inputs. Using the excita-
tion matrix, we can easily predict the output behavior. Since each entry in
the excitation table represents the next value of the secondary variables,
each entry in the table can be ¢ither stable or unstable. By circling the stable
states, we produce what is sometimes referred to as a transition table {or
matrix). This table makes it easy to identify the transitions from one stable
state to another caused by a single variable change on the inputs, as well as
output changes produced by these input changes.

6.2.1 Derivation of the Excitation Table

Perhaps the best way to explain the process of fundamental-model sequential
circuit analysis is with an example. Consider, therefore, the circuit shown in
Figure 6.2.2(a). As indicated above, the first task is to identify the feedback
paths, The circuit clearly has only one feedback path, as indicated. On
cutting this path at the output of the gate that drives it, we create the second-

2 Although it is not always easy 1o identify a minimal set of feedback paths, cutting more paths
than necessary will not change the analysis outcome, but will only make it more difficult by
adding secondary variables.
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ary variable Y, as shown in the figure. We also produce the purely combina-
tional circuit shown in Figure 6.2.2(b). The excitation equation for this sec-
ondary variable is now easily derived:

Y=DG + y(D + G) (6.2.1)

We may observe also from Figure 6.2.2(a) that the output is simply equal to
the secondary variable, so

zZ=Y (6.2.2)

If Equation (6.2.1) is now plotted in a Karnaugh map, we obtain the
excitation table shown in Figure 6.2.3(a). Since the output, in this case, is a
function of the secondary variable only, we have a Moore-type sequential
circuit. To identify the behavior of this circuit on the basis of the excitation

DH) ):
G(H} ' — Z(H)

AY

C -
/

Feedback path

(a)

lG)((E; ' ) _dD———— Y =2Z(H)

¥

{b)

Figure 6.2.2 Analysis of a simple latch-mode O fiip-Aop: {a) circuit with a single
feedback path; |b) feedback path cut to produce a combinational
circuit for analysis.
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1 1 ] 1 1 1
Y
(2}
D,G
00 01 11 10 Z
y .
O] 1 O]
O]« OO
Y Figure 6.2.3
Excitation tabie {a) and transition
(b) tables {b) for the circuit of Figure 6.2.2.

table, we first must identify the stable states. Recalling that a state is “‘sta-
ble”’ if the next value of the state variables is the same as the current value,
we can identify those circuit states which are stable, in this example, by
finding the entries in the table for which Y = y. Since the rows of the table are
labeled according to the value of y, an entry in the table corresponds to a
stable state if the plotted value for Y is the same as the row label. The stable
states for this example are shown by the circled entries in the transition table
of Figure 6.2.3(b).

To see how the transition table can now be used to understand the
behavior of the circuit, let us assume that the inputs are (D, G) = (0, 0). The
main question is, What is the output Z? To answer this question, we must
know the rotal state of the machine, where we define the total state as the
value of both the primary variables, D and G, and the secondary variable, y.
The total state thus corresponds to one entry in the transition table. Since we
know the value of the inputs, we know that this entry must be one of the two
in the column labeled (D, G) = (0, 0) in Figure 6.2.3(b). In this case, both of
these entries are stable. For the moment, let us assume that we are in the
stable total state (D, G, y) = (0, 0 1) as indicated by the asterisk (*) in Figure
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6.2.4(a). Now, unless an input changes, we will stay in this state indefinitely,
and the output will be Z = 1.

Suppose that input G changes from a 0 to a 1. This corresponds to
moving one column to the right, as indicated in Figure 6.2.4(a). This state,
however, is unstable, since it requires that the next value of the state variable
Y be 0 when the present value y is 1. Thus, after some delay, y will change to
a 1; this change corresponds to moving up one row in the transition table, as
shown by the arrows in the figure. The resulting total state (D, G, y) =
(0, 1, 0) is stable, with an output of Z = 0. Thus we have moved from a stable
state in which the output is 1 to a stable state in which the output is 0 by
holding D = 0 and changing G from a 0 to a 1. As shown in Figure 6.2.4(b),
if we now hold G at 1 and change D to a 1, we will move to total state
(D, G, y) = (1, 1, 1) with an output of 1. If D changes back to a 0, we will
move back to total state (D, G, y) = (0, 1, 0). This loop is shown in the figure.
In this loop we see that as long as the G input stays 1, the output will follow
the input (i.e., if G = 1, then Z = D).

Continuing in the above manner, we can trace out all of the paths that
lead from one stable state to another in the transition table. Simply stated,
the process of tracing the paths involves changing an input variable, which

Figure 6.2.4
Some of the many possible transi-
tions in the circuit of Figure 6.2.2:
{a} transition from total state (O, O,
Y 1) to (0, 1, 0); (b} the output follows
the input, O, as long as G is as-
(b) serted.
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causes the circuit to move over a column and then, depending on whether the
resulting state is stable or not, move up or down within this column until a
stable state is encountered. By carrying out this analysis for all of the possi-
ble paths, we can see that the circuit shown in Figure 6.2.2 is just the latch-
mode D flip-flop discussed in Section 5.2. The behavior of this flip-flop can be
described in words as having an output which is a stable 1 or 0, regardless of
what input D does, as longas G = 0 and which takes on the value of the input
when G = 1. The reader should trace out each of the possible transitions
from one stable state to another to verify this behavior.

6.2.2 Race Conditions and Cycles

In the analysis above, we tacitly assumed that only one input changed at any |
instant of time. From a physical point of view, this seems to be a very good
assumption, since even if ““‘chance’’ causes the signals D and G, in the last
example, to change at exactly the same instant of time, their effects on the
outputs will occur at different times, because the propagation delays from the
two inputs to the outputs will be different. A similar argument holds for two
or more secondary variables changing at the same instant of time. If, how-
ever, it is required that two secondary variables change simultaneously, then
the behavior of the circuit may not be completely predictable.

Consider the *‘fragment” of the transition table shown in Figure
6.2.5(a). Suppose that the circuit corresponding to this table is sitting in the

A B
Y Yo 00 01

00}

ol

11§

10 11

Y. Yo ' Y, Y
(a) (b}

Figure 6.2.5 Example of a noncritical race: {a) ¥ changes before y&; (b} yo
changes before y;.
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stable state (A4, B, y,, vo) = (0, 1, 0, 0) and input B changes froma 1 to a (.
The circuit will move to total state (4, B, y;, y¢) = (0, 0, 0, 0), which shows a
next state value of (¥,, ¥y) = (1, 1). This situation requires that both state
variables change from (0, 0) to (1, 1)! From a physical point of view, the
simultaneous changing of two signals in a circuit is highly unlikely—one is
bound to change slightly ahead of the other. Such a condition, where two or
more variables are required to change at the same time, is termed a race
condition. So the question is, How do we determine what happens next? In
this case, we cannot say what happens for certain, but we can predict one of
two outcomes. Suppose that variable y, changes first, so that (y,;, yo) goes
from a value of (0, 0) to (1, 0). This corresponds to moving to the bottom row
of transition table, as shown in Figure 6.2.5(a). Since the resulting state is
still unstable, requiring ( y,, yo) to be equal to (1, 1), the circuit has entered a
cycle, a condition in which we move from one unstable state to another. The
circuit must now move up a row in the table, as shown in the figure, and thus
end in the stable state (A, B, y;, yo) = (0, 0, 1, 1). Note that this transition is
not a race, since the next change requires only a single variable change (yq
changes from a0 toa 1; y, is already a 1 at this point). This final stable state is
where the transition table for the circuit indicates we were supposed to end
(we needed to go from (v;, yo) = (0, 0) to (1, 1)).

Suppose, on the other hand, that y, changes first, so that (y;, y,) goes
from (0, 0) to (0, 1), corresponding to moving down one row in the transition
table, as shown in Figure 6.2.5(b). The circuit now ends up in the total state
(A, B, yi, yo) = (0, 0, 0, 1), which is also unstable, requiring (¥, yo) to be
equal to (1, 1). The circuit has thus entered another cycle and must move
down one more row to the stable state (A, B, yi, ¥o! = (0, 0, 1, 1), where it
will remain until another input change occurs.

We note in this particular example that regardless of the outcome of the
race, the circuit will always end up in the same stable state. Such a race
condition is referred to as a noncritical race, since the race outcome is not
critical in determining the final stable state. Consider, on the other hand,
what might happen in the case illustrated in Figure 6.2.6(a). In this case, if yq
changes first, the circuit will not end up in total state (A, B, y;, yo) = (0,0, 1,
1), but rather in (0, 0, 0, 1), since this is also stable. In this case, the circuit
can end up in one of two different states, depending upon the outcome of the
race. Such a race condition is termed a critical race.

Obviously, critical races must be avoided in designing such circuits if
predictable and reliable behavior is to be guaranteed. We shall see in Section
6.5 that it is always possible to eliminate race conditions in asynchronous
sequential circuits, although there may be a cost in terms of additional hard-
ware. In fact, it is easy to see, in the example shown in Figure 6.2.6(a), that if
the entry in the flow table at total state (A, B, y;, yo) = (0, 0, 0, 0) had been
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{a) (b)

Figure 6.2.6 Example of a critical race: {a) incorrect response; {b) desired re-
sponse.

changed from (¥, ¥o) = (1, D to (1, 0), as shown in Figure 6.2.6(b), y, would
have been forced to change first and the circuit would have worked correctly.
In this case, the secondary variables would have gone through a cycle of (0,
0) — (1, 0) - (1, 1), which is the final stable state.

6.2.3 Static and Dynamic Hazards

Before looking at some more complex analysis examples, let us consider
another situation that can cause asynchronous circuits to operate improp-
erly. Consider the circuit shown in Figure 6.2.7. Proceeding as was done
above, the excitation equation for this circuit becomes

Y = AB + Ay (6.2.3)

;E:; }_—dD—-‘— Y
>

Figure 6.2.7 Circuit with a static hazard.
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A. B A A B

Y a0 o1 bl ) Y oo

LK | ®
SlcBll ] O

Static hazard
(a) (0)

Figure 6.2.8 Excitation matrix {a) and transition matrix {b) for circuit of Figure
6.2.7. Transition matrix shows possitle glitch-induced transitions.

Figure 6.2.8(z) shows the excitation table, and Figure 6.2.8(b) gives the
corresponding transition table. Equation (6.2.3) has a consensis term that is
missing, namely, By. As we demonstrated in Section 5.1, when such a term is
missing in a combinational circuit, a ‘‘glitch’ can occur, causing the out-
put—the secondary variable, in this case—to momentarily change value.
Such a situation is referred to as a static hazard, since the output is supposed
to remain constant, or static, while an input changes. This particular exam-
ple, in fact, is the circuit analyzed in Figure 5.1.2 with the output fed back to
one of the inputs. As was shown in that example, the output, in this case y,
will momentarily go to a 0 when input A goes froma 1 toa0 if both B and y
are initially 1. Looking at the transition table of Figure 6.2.8, this means that
if the circuit is initially in the stable total state (A, B, y) = (1, 1, 1), as shown
in Figure 6.2.8(b), and A goes froma 1to a0, it is possible that the circuit
could end up in stable state (4, B, y) = (0, 1, 0) rather than the one intended,
(0, 1, 1). This is due to the fact that the glitch on the secondary variable, v,
will cause it to momentarily go to a 0. Whether or not this momentary change
in y causes the circuit to end in the incorrect state depends on the relative
delays through each of the gates. Only a complete timing analysis can deter-
mine if the circuit will operate incorrectly. However, such a hazardous situa-
tion can always be avoided by including the consensus terms. Another way
of putting this is that all static hazards can be avoided if all blocks of 1s in the
excitation tables for each of the secondary variables are connected by the
redundant consensus terms. For this example, this means adding the consen-
sus term as shown in Figure 6.2.9(a), which results in the circuit realization
shown in Figure 6.2.9(b).
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Figure 6.2.9 Removal of static hazard by connecting adjacent Is with the con-
sensus term: {a] excitation table with added consensus term,
(b} added gate to remove “glitch.”

Another hazard associated with combinational circuits which can cause
asynchronous circuits to fail is the dynamic hazard. In a dynamic hazard, an
output may change several times for a single change in an input. Dynamic
hazards, like static hazards, can be eliminated logically by simply rearrang-
ing the form of the equation or by adding consensus terms. Figure 6.2.10
shows a typical circuit that has a dynamic hazard. The unsimplified equation
for the output of this circuit is

f(B,p,q,r) = rB(B+ @ + pgB (6.2.4)

Notice, in this equation, that B appears in the term BB as well asina
term by itself. This is a characteristic of the dynamic hazard. Figure 6.2.11
shows the effect of this hazard on the output. It is assumed, in this figure,
that all gate delays are the same and that inputs p, g, and r are all “‘high.”
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Flgure 6.2.10 Example of a circuit having & dynamic hazard.

Dynamic hazards are caused by the occurrence of three or more paths from
an input to the output, each path having a different delay. By refactoring the
implementing equation to eliminate these multiple paths, the dynamic hazard
can be removed. In this case, all we need do is to write the equation as

f(B,p,q,r)=rgB + pgB (6.2.5)

and implement the circuit accordingly.

6.2.4 Another Analysis Example

Before preceeding much further, let us apply the discussion above to the
analysis of another circuit. As mentioned at the beginning of this section, the
first step in analyzing a fundamental mode sequential circuit is to identify and
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Figure 6.2.11 Timing diagram showing the effects of the dynamic hazard. As-
sume that signais p, g, and r are all high.
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b—— ( = circuit output

Figure 6.2.12 Fundamental mode circuit to be analyzed.

cut the feedback paths so that a purely combinational circuit results. In many
cases the location of these feedback paths may not be obvious. Take, for
example, the circuit shown in Figure 6.2.12. It would appear that there are
six feedback paths: between gates 3and 5, 3, and 4,4and 6, 1 and 2, 1 and 3,
and 2 and 6. Notice, however, that if we break the path from the output of
gate 2, we have broken both of the paths between 2 and 1 and 2 and 6. The
same applies for the outputs from gates 3 and 6. Thus we only need three
secondary variables, not six. Let us select as the secondaries the outputs of
gates 6, 3, and 2, as indicated in Figure 6.2.12. Upon redrawing this circuit
we get the circuit shown in Figure 6.2.13, which clearly has no feedback
paths. The equations for the secondary variables, Y3, Y;, and Q, are now

> s =Dt

. [

q P=gy,

Figure 6.2.13 Circuit of Figure 6.2.12 with all feedback paths broken.
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easily seen to be

Yr=vlqy) + T+yoT=qva+ T+ yy.T
Y, =g+ nyd (6.2.6)
Q= gy: + w1

Upon plotting these equations and circling the stable states, we can derive
the transition table shown in Figure 6.2.14 from which the behavior of the
circuit can be determined. This is done by starting in some given state, say
total state (¥, Yy, Q, T) = (0101). As shown in Figure 6.2.14, when T goes to
0 the circuit moves to the left and then down one row, ending in the stable
total state (1100). If T is next changed to a 1, we see from the figure that the
machine goes to stable fotal state (1111). By continuing in this fashion we can
trace all of the possible state transitions. These are shown in Figure 6.2.14.
Note that the output, O in this case, changes from a 1 to a 0, or visa versa,
only when T goes from a 0 to a 1. Thus we see that this circuit is basically the
edge-triggered T flip-flop shown in Figure 6.2.15. Note from Figures 6.2.12
and 6.2.13 that P = gy;. An examination of the transition table of Figure
6.2.14 shows that the stable values of P(L) will always have the same logical
value as the stable values of Q(H). Thus P = Q(L).

Let us now examine the circuit of Figure 6.2.12 for hazards and races.
First consider the guestion of races. The transition table of Figure 6.2.14

T
¥ 4 0 !
000 116 010 —=
001 100 000
011 100 000

10 Q@ staysat 0

110 QgoesfromOtol

111 Q staysat 1

101 ———— (@ goes from 1 to @

100 110 110

nne -

Figure 6.2.14 State transition table for the circuit shown in Figure 6.2.12.
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OH) f——
—_—tT

oLy p— Figure 6.2.15
Symbol for the edge-triggered, T fiip-flop.

shows clearly that there are no allowed transitions in which more than one
variable changes at a time. Thus there are no races. Note, however, that
there is a four-step cycle in which only one variable changes at a time in
going from the stable total state (Y;, Y1, @, T) = (1010) to (0101). Specifi-
cally, the cycle is (1010) — (1011) — (0011) — (0001) — (0101).

The existence of static hazards can be determined by individually plot-
ting Equations (6.2.6). Figure 6.2.16 shows the resulting excitation tables.
From these tables it is clear that there are no static hazards associated with
Y, and Q since all groups of adjacent 1s are connected. However, the transi-
tion from a to b, shown in Figure 6.2.14 and indicated by the shaded area in

q q
T 1| o 0 T | % 1){ © 0
i 0 1 1 0 0
B yl
Y E 1 1 1) o
Ya Y2 — —
HeViIE L1 1/ o 0
T Y, T Y,
q
0 0 0 0
0 0 0 0

bg

& 0 0 1 1)

Figure 6.2.16 Excitation tables for the circuit of Figure 6.2.12.
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the excitation matrix for Y», is questionable since there is no direct overlap of
the two covers. Note, however, that since every entry in the column T=0of
Figure 6.2.14 has ¥, = 1, there is no way that Y> can change and therefore no
way that the circuit can end up in a state other than (Y,, Y7, @, T) = (1010).
Thus the circuit cannot operate improperly due to static hazards.

The final question is: Are there any dynamic hazards? Recall that a
dynamic hazard required the existence of three or more paths from an input
variable to an output variable. This could, of course, involve secondary
variables as well as the primary variables. Recall also that the possible exis-
tence of dynamic hazards is indicated by terms of the form BB. The only
equation that has such a term is that for ¥;. In this case the term is y»¥,
which arises from the term y»(gy2) = ¥2(§ + ¥2) appearing in the equation for
Y, as given in Equations (6.2.6). Figure 6.2.13 clearly shows, however, that
there are no more than two paths between the secondary input y; and any of
the three outputs, Y», ¥;, and Q. Thus there can be no dynamic hazard in this
circuit.

We shall see in Section 6.6 that there is yet another type of hazard,
called an essential hazard. The circuit of Figure 6.2.12, although free of races
and static and dynamic hazards, does possess an essential hazard. Generally,
the essential hazard rarely causes problems, as is the case here.

ANALYSIS OF THE 7474 EDGE-TRIGGERED D FLIP-FLOP

7474
74LS876

asynchronous
set and clear

TTL

In Chapter 5 we introduced the concept of an edge-triggered clocked flip-flop
whose outputs were unaffected by the inputs except at the time that a transi-
tion occurred on the clock line. These flip-flops were used throughout Chap-
ter 5 for controlling the feedback paths in clocked sequential circuits. As we
shall see in Chapter 9, these flip-flops are also very important for use in the
temporary storage of information in large-scale digital systems, such as com-
puters. The two most commonly encountered flip-flops of this type are the
7474 and 74L.S76 edge-triggered D and edge-triggered JK, respectively. The
symbols for these devices are shown in Figure 6.3.1, along with their defining
truth tables. Each of these flip-flops has two ‘‘asynchronous’’ inputs, S (set)
and C (clear). These inputs are referred to as asynchronous because they
cause the flip-flop output to be set to a 1 or cleared to a 0 regardless of the
state of the other inputs. This is shown in the defining truth tables.

If we were to look up the 7474 in a 7400 series TTL (transistor-transistor
logic) data book (or catalog), we would see the logic circuit given in Figure
6.3.2(2). What we would like to do, now, is to apply the analysis procedures
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S(L) S}
— [ eH) — —_—J g
7474 —CP> 741876
—_— L)y p— —K QL) P
C(L) (L)

D | Cr| Set | ck} @ J K | Cr | Set |Ck ] @
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(b)

Figure 6.3.1 Flip-flops with asynchronous presets and clears. (a} D flip-flop, type
7474; [b) JK fiip-flop, type 74L576.

given in Section 6.2 to this circuit and verify that the flip-flop behaves as
specified. Let us begin our analysis by observing how the set and clear lines
affect the output (. It is easily seen that if § is asserted low and C'is high, the
outputs of all of the OR gates are high, thus making the circuit output, O,
high, or 1, regardiess of the values of D and C1k. Conversely, if § is high and
C is low, the output of all of the AND gates will be low, causing Q to go low,
or to 0, again without regard to the value of the other inputs. If, however,
both S and C are high, the output Q will be affected by the inputs D and Clk
only. Thus, to investigate the dynamic behavior of this circuit, we will as-
sume that both of the asynchronous inputs S and C are tied to a high voltage.
(What happens if both S and C are low?) Figure 6.3.2(b) shows the resulting
simplified circuit.

To begin our analysis of the circuit of Figure 6.3.2(b), we need to first
identify the secondary variables corresponding to the feedback loops. It is
not difficult to see that there are three such loops, which, when cut, produce
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3
S(L) cD-—

C(L}

Q(H)

I

1
b - QL)
Clk{H} by .

\
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D(H)
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Yo(L) 3
) Q(H)
Lq"\ Y, (H (L)
CIk(H) 9 > 1 () )
D(H) X

(b)

Figure 6.3.2 Implementation of the 7474 edge-triggered D fip-flop: {a) imple-
mentation including the asynchronous set and clear; [b) implemen-
tation with asynchronous set and clear tied high.
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a combinational circuit. The resulting secondary variables are labeled g, i,
and Q, the circuit output, in this figure. With this choice for the secondaries,
the excitation equations become

Q=y + yig
Y, =y, + C + Dy, (6.3.1)
Yo = C(yo + vi\D)

where C corresponds to the signal Clk in Figure 6.3.2. Plotting these equa-
tions and circling the stable states produces the transition matrix showr in
Figure 6.3.3.

Using the transition table, it is easy now to verify the behavior of the
7474. Before doing this, however, let us first examine the circuit to see
whether there are any races or hazards. Checking for race conditions is a
very straightforward process. A race condition will occur if two or more of

C, D
&Y Vo 00 01 11 Lo
(=] a b
o0l 110 110 111 111
1.
011 i11¢ 110 111 111
— e
010 ott || ooe
3
111 110 110 @@
101 110 110 111 111
100 010 010 000 000

Q.Y, Y,

Figure 6.3.3 Checking for race conditions in the 7474 D flip-flop.
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the state variables g, v,, and y, are required to change at the same instant of
time. To identify a race, then, we start in a stable state and examine the
entries in the same row to which the circuit can move, assuming that only
one input changes at any given instant of time. If any of these entries requires
more than one state variable to change, we have found a race. Consider, for
example, the stable total state (C, D, g, ¥, yo) = (1. 1, 0, 0, 0) shown as a in
Figure 6.3.3. Only two possible moves are allowed from here. The first is to
the stable total state (1, 0, 0, 0, 0), called b in the figure, and the other is to
total state (0, 1, 0, 0, 0), marked c. The second of these two is unstable,
requiring the state variables (g, ¥1, Yo), to change from (0, 0, 0) to 0, 1, 0),
which produces a final stable state, which is state d in the figure. Since only
one of the state variables must change in this example, no race occurs.

Since races can also occur in cycles, we must check all of the possible
cycles to make sure that each step in the cycle requires only a single variable
change. Consider, for example, the cycle that occurs when we start in the
stable total state (0, 1, 0, 1, 0), marked 4 in Figure 6.3.3 (which is the state we
ended in, in the example above). If C now changes froma0to a1, the circuit
will move right to e in the column labeled (C, D) = (1, 1). This requires the
state variables to change from (g, y:, Yo} = (0, 1, 0) to (0, 1, 1), which forces
the system to move up one row to f. But the entry in this row requires the
variables to change again from (0, 1, 1} to (1, 1, 1), which takes us down three
rows to the stable total state (1, 1, 1, 1, 1). Since each step in this cycle
requires only a single secondary variable change, no race condition exists.
Proceeding in this manner with each of the other stable states in the transi-
tion matrix, we can verify that this circuit is race-free.

To determine whether the circuit is free of static hazards, we need only
check the excitation tables for each of the state variables to determine
whether groups of adjacent 1s are connected by overlapping groups of 1s.
Figure 6.3.4 shows the excitation tables for each of the state variables. Note
that all groups of Is overlap, so that no glitch can occur on any of the state
variables and so no static hazard exists in this circuit.

Finally, we note that since none of the equations has the characteristic
form shown in Equation (6.2.4), which indicates the presence of a dynamic
hazard, this circuit is free of dynamic hazards as well.

Analysis of the functional behavior of this circuit can now be carried out
by tracing the various paths through the transition table which the circuit can
follow. Take, for example, the situation where C and D are both 0 and the
output Q = 1. If C goes high, the truth table for this flip-flop, given in Figure
6.3.1, indicates that the output is to change to a 0. This corresponds to the
path shown in Figure 6.3.5 starting in a total stable state (C, D, g, y1, Yo) =
(0, 0, 1, 1, 0), marked q in the figure, and ending at d, which is total state
(1, 0, 0, 0, 0). Observe the three-step cycle required to get to the final stable
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Figure 6.3.5 Example transition causing the output to change on a clock edge.

state: a to b, b to ¢, and ¢ to d. If, now, C returns to 0, the circuit will move
over to the unstable total state (0, 0, 0, 0, 0), or entry ¢, and then down to the
final stable state (0, 0, 0, 1, 0), entry f. The reader can trace through the many
other possible paths in the circuit in a similar fashion.

Before leaving this example, it might be helpful to examine the time
behavior of this circuit. Consider, for example, the path taken by the circuit
in going from stable total state (C, D, ¢, y1,¥9) =(0,1,0, 1,0 to (1, 1, 1, 1, 1),
which is shown as the path d, e, f, g in the transition matrix of Figure 6.3.3.
Figure 6.3.6 shows the sequence of changes occurring during this path transi-
tion. The timing diagrams shown in this figure are similar to what one might
see on an oscilloscope and verify the circuit behavior as predicted by the
transition matrix. Note in this example that output Q(H) changes before the
output Q(L) = y. This is typical of flip-fiops having both asserted high and
asserted low outputs present.
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Figure 6.3.6 Timing diagram for the 7474, showing a cycle in the state variables.
(] 6.4

SYNTHESIS OF ASYNCHRONOUS SEQUENTIAL CIRCUITS

primitive
flow table

The synthesis process for asynchronous sequential circuits begins by creat-
ing the primitive flow table, a table analogous to the state table of synchro-
nous sequential circuit design. As was the case in clocked circuits, the next
steps involve, possibly, the simplification of the table followed by assigning
values to the required state variables. In Chapter 5 we paid little attention to
how the variables were assigned, since the assignment could not affect the
operation of the circuit, although it could affect the complexity of implemen-
tation. In the case of asynchre  ous circuits, however, this somewhat cava-
lier attitude must be avoided. F.ere the state assignment is critical in creating
circuits that are race-free. We also did not worry too much about glitches in
Chapter 5, since the state could change only on a clock edge and by the time
this occurred any glitches in the circuit would be gone. In the present case,
however, glitches can cause the circuit to malfunction and thus must be
avoided if we are to design reliable asynchronous circuits.

It is clear from this that the design of asynchronous sequential circuits
must be attended with a great deal more care than was required for synchro-
nous sequential circuits. Although the design processes are similar in most
respects, the problems of races and hazards require some modification in the
procedure. Perhaps the best way to describe the process of designing asyn-
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chronous sequential circuits is with an example. Consider, then, the follow-
ing problem.

DESIGN PROBLEM

There are many applications where we would like to be able to turn a clock
on and off using a manual switch. Usually a clock consists of pulses occur-
ring at some fixed rate. We might be tempted to solve this problem simply
by ANDing the switch with the clock. The difficulty is that since the switch
is not synchronized to the clock, we might turn the switch on in the middie
of a pulse and in so doing produce an output pulse shorter than that re-
quired by whatever system is being driven by the clock. Similarly, our
switch might turn off in the middle of a pulse. Thus, what we want is a
circuit that will produce nothing but complete pulses as long as the switch is
on, regardless of when it was turned on or off. We will refer to this circuit
as a gated oscillator.

&6.4.1 Derivation of the Primitive Flow Table

One of the most direct ways in which we can begin the design process is to
construct a timing diagram showing the various ways in which the inputs can
change and showing also the output desired for each combination of inputs
and each sequence of combinations. Figure 6.4.1 shows a typical timing
diagram for the gated oscillator. A state in this timing diagram will be taken
as a unique combination of the inputs and the associated outputs. Thus we
begin the design process by identifying the sequence of states encountered in
the timing diagram. We will arbitrarily start at the state labeled 0 in Figure
6.4.1, in which (C, G, Z) = (1, 0, 0). (We are assuming here that all assertion
levels are high.) The next state in the timing diagram occurs when C goes
low. We will call this state 1. When C goes back high, we have returned to
state 0. Now if G goes high while C is high, we move to a state not yet
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Figure 6.4.1 Typical timing diagram for the gated oscillator.
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encountered. We will call this state 2. Proceeding through the timing diagram
and introducing new states as necessary, we produce the sequence of states
shown in the figure.

The next step in the design process is to plot the sequence of state
changes in a table similar to a state table called a primitive flow rable. A
primitive flow table has a single stable state associated with each row. This
stable state is circled. The other entries in the row show to what stable state
the circuit is to move for each of the possible changes in the inputs. Figure
6.4.2(a) shows the completed primitive flow table generated from the timing
diagram of Figure 6.4.1. To illustrate how this table is derived from the
timing diagram, consider the first row of the table, which corresponds to the
stable state 0, circled in the figure. In the timing diagram, we move from state
0 to state 1 when the inputs change from (C, G) = (1, 0) 1o (0, 0). Thus, an
uncircled 1, indicating an unstable state, is entered in the first row under the
column labeled (C, G) = (0, 0). We now create a new row having a circled 1,
corresponding to a stable state, in this column, the second row in Figure
6.4.2. This will be the state we end up in after C changes froma 1 to a2 0. The
transition from stable state to stable state in this flow table is exactly equiva-
lent to the way we move around in a transition table.

Consider next the move from state 1 to state 0 in the timing diagram.
When this occurs we must place an entry in the primitive flow table indicat-
ing an unstable 0 in the column headed (1, 0). This, of course, means that we
will return to the stable state 0 in the first row. In the timing diagram, the next
change is from state 0 to a new state labeled 2 corresponding to an input of

00 01 11 10 00 01 11 10

- | o jo @3*00
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Figure 6.4.2 Primitive flow table derived from the timing diagram of Figure 6.4.1:
{a) table derived directly from timing diagram; (b) added missing
transitions.
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(C, &) = (1, 1). Thus we make an entry of an uncircled 2. indicating an
unstable state, in the first row in the column labeled (C, G) = (1, 1). We must
now create a new row having a stable state 2 in this column. This becomes
the third row, in which a circled 2 appears, again indicating a stable state.

If we continue to create new rows in this way on the basis of the
sequence of states described by the timing diagram of Figure 6.4.1, we will
end up with the primitive flow table for the gated oscillator shown in Figure
6.4.2(a). Note, in this table, that a number of transitions have not occurred in
the timing diagram. For example, no transition has occurred in the first row
from the stable state 0 to the column headed (C, G) = (0, 1). Such a transition
would require that (C, G) change from (1, 0) to (0, 1), which means that both
inputs would have to change simultaneously, a situation we have assumed all
along cannot happen, or, at worst, is highly unlikely. Thus we will not worry
about this entry and will simply take it as a don’t care. Two other entries in
the table cannot be dismissed so lightly. These are labeled x and y in Figure
6.4.2. Neither of these entries requires both inputs to change simultaneously,
and so both are possible, although no transitions into these states have oc-
curred in the sample timing diagram. These entries can be handled in one of
two ways: either fill in the entry with a reasonable value, or leave the entry as
a don't care.

Filling in entries in the primitive flow table that do not occur in the
sample timing diagram with ‘‘reasonable’’ values is usually not difficult.
Consider, for example, the situation that exists if we start in stable state 2
and have the inputs change from (C, G) = (1, 1) to (1, 0), corresponding 1o
moving from stable state 2 to the position labeled x in the figure. This situa-
tion happens when gate G goes high while C is high and then goes low before
C goes back low. We may consider this a kind of glitch and simply ignore
such spurious changes by forcing the circuit to go back to state 0 so that the
output will not be affected, as shown in Figure 6.4.2(b). A similar situation
exists if we start in stable state 5 and the inputs change from (1, 0) to (1, 1),
the entry labeled y in the figure. This corresponds to G dropping in the middle
of a clock pulse C and then going high again before the clock goes away.
Again we have a glitch on G, and again, we ignore it by causing the system to
return, in this case, to state 4, so that the output stays 1. The final primitive
flow table with all of the possible transitions shown is given in Figure
6.4.2(b).

6.4.2 Reduced Flow Table

The next step in designing an asynchronous sequential circuit is to reduce the
primitive flow table to a table having as few rows as possible. We would like
to do this because the flow table will eventually become the excitation table,
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in which the number of rows determines the number of state variables and,
therefore, the complexity of the implementation.

The process of reducing the primitive flow table involves “‘merging’’
sets of two or more rows into a single row. We may merge two rows of the
primitive flow table if, when the state labels in corresponding columns are
matched up, each pair contains either two like entries or at least one don’t
care. When two rows are merged, a stable entry and an unstable entry
become stable and two unstable entries stay unstable. For example, the first

and second rows of the primitive flow table of Figure 6.4.2(b), corresponding

to stable state 0 and 1, respectively, can be merged. The resulting row would
have a stable 1 in the first column, an unstable 3 in the second column, an
unstable 2 in the third column, and a stable 0 in the last colutn. Continuing
to compare the rows in pairs, we can see that the rows corresponding to
stable states 0 and 2 as well as those corresponding to stable states 1 and 2
can merge. We can describe all of this by a merger diagram showing which
rows can merge and what the output value is that is associated with each row
in the primitive flow table. Such a merger diagram is shown in Figure 6.4.3.
In this diagram, the row state is given inside the circle and the output corre-
sponding to this row is shown adjacent to the circle. We refer to the circled
entries as nodes. Nodes which correspond to rows that can be merged are
connected by a line, or edge. Thus, nodes 0 and 1 are connected, as are 0 and
3 and 1 and 2. The remaining connections in the merger diagram can be
verified by observing, in Figure 6.4.2, that the corresponding rows can
merge.

In general, a set of rows in a primitive flow table can be merged into a
single row if the set is strongly connected in the merger diagram. ‘‘Strongly
connected’’ means that each state in the set can be merged with every other
state in the set. For example, Figure 6.4.4 shows strongly connected merger
diagrams for four and five states. Since our objective is to reduce the primi-
tive flow table to a minimum number of rows, we would like to find the

1 l Figure 6.4.3
4 Merger diagram for the primitive flow table of
Figure 6.4.2.
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Figure 6.4.4 Strongly connected groups of four and five states.

strongly connected subsets of rows in the merger diagram and combine these
merged flow  into a single row in the merged flow table. Referring now to Figure 6.4.3, we
table see that the group of states 0, 1, 2 and the group 3, 4, 5 are both strongly
connected and so each may be merged into a single row to produce the
merged two-row flow table shown in Figure 6.4.5(a).

00 01 11 10 Z

(2}
C, G
00 0l 11 10
a 0 0 0 0
[ 0 0 1 1

(b)

Figure 6.4.5 {a) Developing the merged flow table; {b) output matrix.
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Since the outputs in the merged flow table are associated with the indi-
vidual stable states and not the separate rows (we merged the rows without
regard to the associated outputs, after all), we must also derive an output
matrix to accompany the merged flow table. On the surface, this is easy
enough to do: simply place the output associated with each stable state in
the corresponding position of the output matrix. For now, let us also set the
output at unstable state entries to the value of the output associated with
the corresponding stable state. Figure 6.4.5(b) shows the resulting output

matrix.

6.4.3 Generation of the Excitation Table and
Final Circuit

Once we have obtained the merged flow table, we need to convert it to a
transition matrix from which we can derive the equations for the secondary
variables and thus implement the design. To get the transition matrix, we
must first determine the number of state variables required and then assign
them values for each row in the flow table. In the present example, this is
easy. Since there are only two_rows, we need only one state variable. Call
this variable y. Figure 6.4.6 shows the resulting transition matrix, and Figure
6.4.7 shows the excitation and output matrices for the secondary variable y.
The equations for the secondary variable and the output can now be derived
from the excitation matrix and the output matrix:

Y=CG+ yC + yG 6.4.1

We have included the term yG in Equation (6.4.1) to prevent a static hazard.
Figure 6.4.8 shows the resulting circuit, which realizes the gated oscillator
required by the problem statement.

¥ 00 01 11 10

Figure 6.4.5
Y  Resulting transitfon matrix.
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Y Z

Figure 6.4.7 Final excitation and output matrices.

6.4.4 Merging When Multiple Choices Exist

Before we proceed with our discussion of the design process, let us pause for
a moment and take a closer look at the merging process. As indicated in the
last example, the merger diagram is set up by comparing pairs of rows. As
pointed out above, two rows can be merged if in each column either the state
labels are the same or one or both entries are don’t cares. By comparing all
possible pairs of rows in this way, the merger diagram is created. The next
problem is to identify the largest strongly connected subsets of these rows
which can merge into a single row. In the example just given, this choice
turned out to be unique. This, usually, is not the case. The guestion then is:
Given multiple ways in which rows can be merged, how do we select from
the various possibilities?

In general, the objective of merging is to reduce the number of rows in
the flow table to 2 minimum. Thus, if a merger diagram shows that multiple
choices are possible, each producing the same minimal number of rows in the
merged flow table, we must base our choice on some other criteria. Observe
that if a set of rows are merged all of which have the same output, then the

I

G(H) — — ¥ (H)

) — Z(H)

Figure 6.4.8 Final realization of the gated osciltator.
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Figure 6.4.9 Example of muitipie choices for row merging: (a} merging rows with
common outputs; [b} merging rows with mixed outputs.

output will be a function only of the state variables corresponding to the
merged row. If, on the other harnid, rows are merged which have different
outputs, then the output will be not only a function of the state variables, but
also a function of the inputs, as was the case in the above example. Thus we
may conclude that when a choice for merging is present we should select a
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merger that reduces the complexity of the output function. Consider, for
example, the merger diagram shown in Figure 6.4.9. In this diagram there are
two possible mergers: (0, 1, 2) and (3, 4), on the one hand, and (0. 1) and
(2, 3, 4), on the other. The first of these might produce the merged flow table
shown in Figure 6.4.9(a), from which we easily observe that the output Z is
just equal to the state variable y used to encode the rows of the flow table.
The second possible merger, shown in Figure 6.4.9(b), might produce the
merged flow table and the corresponding output table shown, from which we
see that the output Z is equal to yB. In the first case, no extra hardware will
be required to implement the output Z. In the second case, we will need to
add an extra gate to implement this output.

METHODS TO AVOID RACES

adjacency
diagram

The example designed above turned out to be a fairly simple circuit. Unfortu-
nately, other asynchronous designs involve problems that did not appear in
the last example. One such is the problem of assigning states so that races are
avoided. As was mentioned earlier, races can always be eliminated. How-
ever, this may require adding states to the merged flow table.

Let us begin this discussion with an example. Consider the merged flow
table shown in Figure 6.5.1(a). Since there are four rows in this table, two
state variables are required to encode the corresponding four states. The
problem now is to assign values to the state variables so that no races will
occur. Recall that a race condition occurs if two or more state variables are
required to change at the same instant of time. Thus, if the merged flow table
indicates that the circuit is to move from a row with an unstable state to a row
that is stable, the assignment of the state variables for these two rows must
differ in only one bit. We will refer to these rows as being adjacent. For
example, consider the column labeled (x, y) = (0, 0) in Figure 6.5.1(2). In this
column, row ¢ must be adjacent to b so that when the circuit moves from
stable state 3 to stable state 1, no race will occur whenever y changes from a
1toa0and x is 0. Similarly, rows a and d must be adjacent. Examination of
the column (x, y) = (1, 1) shows that rows a and ¢ as well as rows b and d
must also be adjacent. These required adjacencies will be shown in an adja-
cency diagram, in which rows that must have assignments differing in only
one variable are connected by a solid line. Figure 6.5.1(b) shows the resulting
required adjacencies.

Now consider the remainder of the merged flow table. First examine the
column labeled (x, y) = (1, 0). Note here that there are two unstable states 6.
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Figure 6.5.1 Example of avoiding races by creating cycles: (a) merged flow table;

{b) adjacency diagram; (c) state tabie; (d} resulting transition matrix.

To move directly to the stable state 6 from either of these unstable states
would require that both rows a and b and rows ¢ and b be adjacent. Since
rows b and ¢ are already required to differ in only one bit, we need worry
only about the adjacency of rows a and b. In this case, we do not have to
make these two rows adjacent, since we could create a cycle by making the
unstable state 6 in row a go, first, to the unstable state 6 in row ¢ and then to
the stable state 6 in row b. Thus the adjacency of rows a and b is not
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essential. This is shown by the dorted line in the adjacency diagram. An
identical argument holds for the adjacencies required in column (x, y} =
(0, 1). In this case, however, the adjacencies are ¢ and »# and a and d. Since a
must be adjacent to d, we can again create a cycle so that « first goes to d and
then to ». Thus the adjacency between a and b is not essential. Figure
6.5.1(b) shows the completed diagram and an assignment for the state vari-
ables that will produce the required adjacencies. Figure 6.5.1(c) shows the
flow table in terms of the rows and explicitly shows the necessary cycles.
This table is basically equivalent to the state table of Chapter 5. Using the
state assignments indicated, Figure 6.5.1(d) shows the resulting transition
matrix from which the equations for the secondary variables may be derived.

Consider next the merged flow table of Figure 6.5.2(a). The adjacency
diagram for this flow table is shown in Figure 6.5.2(b). It should be fairly
clear there is no way that, using only two state variables, we can make row a
simultaneously adjacent to rows b, ¢, and d. However, if we use three state
variables instead of two to encode the rows of the flow table, we may be able
to accommodate all of the required adjacencies by creating cycles. Figure
6.5.3 shows all possible-adjacencies for each of the eight assignments on the
three variables. Using this adjacency map, we may derive the appropriate
cycles to generate a race-free transition matrix. Let us begin with the re-
quirement that row g be adjacent to rows b, ¢, and d. This is arranged by
assigning a to (0, 0, 0}, 10 (0, 0, 1), c to (1, 0, 0), and 4 to (0, 1, 0), as shown
in the figure. To make row d adjacent to row ¢, we can create a cycle through
assignment (1, 1, 0), which is referred to as row e in the figure. Similarly,
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Figure 6.5.2 Flow table in which cycles cannot be used to eliminate races:
{a) merged flow table; {b} adjacency diagram.
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Figure 6.5.5 Using don't cares to create cycles: {a) flow table fragment; (b} adja-
cency diagram; [c) state table fragment.
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rows b and ¢ can be made adjacent via assignment (1, 0, 1), or fin the figure;
and assignment (0, 1, 1), or g in the figure, makes a cycle to connect rows b
and d. Figure 6.5.4(a) shows the resulting state table, and Figure 6.5.4(b)
shows the final transition table. Note that all of the entries in the transition
table not involved in any of these paths are assigned don’t care values
(why?).

Before leaving this section, we should note that don’t cares in the
merged flow table can always be used to create cycles and thus avoid races.
Figure 6.5.5 shows a simple illustration of this principle.

ESSENTIAL HAZARD

essential
hazard

The essential hazard is quite different from the hazards encountered to this
point. This hazard is a function not of the circuit design, but, rather, of the
problem statement itself. Thus the essential hazard cannot be removed by
simply rearranging the form of the implementing equations: it can be elimi-
nated only by the introduction of delay in the circuit. Fortunately, the essen-
tial hazard rarely causes troubles. However, the designer of an asynchronous
circuit must be on the lookout for this problem and, when it is encountered,
must analyze the resulting circuit to ensure that inherent circuit delays in the
design will not cause malfunction. If necessary, the designer will have to
introduce physical delay in the design to eliminate problems caused by this
hazard.

The essential hazard is fairly easy to identify in the merged flow table.
An essential hazard occurs whenever a single change in an input variable
causes the circuit to end in a different state from the one it would end in if the
variable changed three times in succession. Figure 6.6.1(a) shows a flow
table having this characteristic, and therefore, an essential hazard. For ex-
ample, if x = 0 and we start in state 1, a single change of x to a 1 takes us to
state 2. Two more changes of x, from 1 to a 0 and then back to a 1, takes us to
state 4, not state 2, and so an essential hazard is indicated. To illustrate how
the essential hazard operates, consider the transition table shown in Figure
6.6.1(b). Assume that we start in stable state (¥, yo) = (0, 0) and x goes from
0 to 1. Suppose, further, that this change in x is delayed much longer in
arriving at secondary y; than at y,. Now Yy, receiving the change in x and
also seeing y; = 0, moves to total state (y;, yo, X) = (001), which requires that
it change to a 1. If ¥, sees the change in y, but not yet the change in x, the
system appears to be in total state (010) to ), which requires it to change to a
1. This change in ¥; makes Y see total state (110), whereas Y, now sees total
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Figure 6.6.1 Essential hazard: (a) flow table with essential hazard; (b faulty
behavior.

state (111). Suppose at this time that the change in x is seen at Y;. ¥, now
moves over to total state (111). Since Y; is also there and is required to
change to a zero while Y is to remain a 1, the system moves to the total state
(101), which is stable. Thus, because of the propagation delay difference in
the input reaching the two secondary variables, the circuit ends up in state 4
when it should end in state 2.

As can be discerned from this discussion, as long as the delays from an
input to the circuit secondaries are held close to the same, the essential
hazard will not generally cause difficulties. However, any circuit possessing
an essential hazard must be examined to determine whether erroneous be-
havior will result. This analysis basically requires deriving a timing diagram
for the conditions associated with the hazard. Problem 6.11 at the end of the
chapter will take a closer look at this process.

O 6.7
SOME DESIGN EXAMPLES

Now that we have studied the process of asynchronous sequential circuit
synthesis, Iet us apply these techniques to the design of some useful circuits.
Four designs will be carried out in this section: a switch debouncer, a pulse
generator, a double edge-triggered SR flip-flop, and the 7474 edge-triggered
D flip-flop analyzed in Section 6.3.
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Figure 6.7.1

— A Switch debouncer circuit,

6.7.1 Circuit to Debounce Switches

Mechanical switches such as light switches, toggle switches, and the like are
usually thought of as devices which, when thrown one way, open a circuit
and, when thrown the other, close the circuit. The switch shown in Figure
6.7.1is called a double-throw switch, since it controls two circuits: one when
in the up position and one when in the down position. Since switches are
mechanical devices, the rocker arm—the portion of the switch that moves
from one contact to another—has mass. The contacts also possess a certain
amount of elasticity. Thus, when the rocker arm strikes a contact, it will
usually ‘‘bounce,’’ perhaps several times, before finally coming to rest. On
the other hand, when a contact is broken, if the switch is clean, the break will
be ‘‘clean.’’ Figure 6.7.2 shows the voltages that might appear at the contacts
A and B in Figure 6.7.1 as the switch moves from contact B to contact A and
then back again. Note, in this figure, that when this switch is thrown there
will be a period of time during which no contact is made. Switches of this
type are referred to as break before make switches. What we would now like
to design is a circuit that will produce a single output change for each single
change in the switch position. This circuit is, sometimes, referred to as a
switch debouncer.

We will begin the design using the example timing diagram shown in
Figure 6.7.2. Since this timing diagram represents all of the possible transi-

i ! ! } I
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Y] 1 2 3 2 3 2 3 010 1 0O

Figure 6.7.2 Typical timing diagram illustrating the switch bounce.
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Figure 6.7.3 Primitive flow table (a} and merger diagram {b) for the debouncer.

tions that can occur, an entry not filled in the primitive flow table can be
considered a don’t care. The primitive flow table derived from this timing
diagram and the corresponding merger diagram are shown in Figure 6.7.3

After merging state 0 with state 1 and state 2 with state 3, we end up
with the two-row flow table shown in Figure 6.7.4(a). When we make the
assignment on the single state variable y, as indicated, the corresponding
excitation table becomes as shown in Figure 6.7.4(b). The resulting excita-
tion equation for the secondary variable ¥ becomes

Y=B+yA 6.7.1)

The output Z is clearly equal to the secondary variable y, from these tables.
Figure 6.7.5 shows the resulting implementation, which, interestingly, is

AR AB

% 00 01 11 10 z ¥ 00 o]} 11 10
0 - 0 0 - 0
1 - 1 i - 0

(a) (b)

Figure 6.7.4 Final flow table (a) and excitation matrix (b} for the switch de-
bouncer.



Section 6.7 Some Design Examples 241

+

A .
$ _dD—»— Z
B
N =W

Figure 6.7.5 Final realization of the switch debouncer.

nothing but the cross-coupled NAND gate SR flip-flop discussed in Chapter
5.

6.7.2 Pulse Generator

A very useful piece of test equipment is a circuit that can produce an output
pulse whenever a switch is pressed. Usually, the pulse required is much
shorter than the time during which the switch is pushed. In this example, we
will assume that we have a “‘debounced’’ switch and a regularly occurring
string of clock pulses that can be used to create the single pulse required.
This circuit is very similar to the gated oscillator described in Section 6.4,
The principal difference is that the output is one clock cycle here, rather than
several cycles as in the case of the latter.

Figure 6.7.6 shows a typical timing diagram that might occur in the use
of this puise generator. On the basis of this timing diagram we can generate
the primitive flow table shown in Figure 6.7.7. There are four entries in this
flow table which do not have corresponding occurrences in the timing dia-
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| .
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;flr‘ ! Ir_l.[l
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S I RN
I L
0]0334540]0[62370

Figure 6.7.6 Typical timing diagram for a puise generator,
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Figure 6.7.7 Primitive fiow table for the pulse generator.

gram. These are labeled w, x, y, and z in the figure. A thoughtful analysis of
each of these shows how we might logically assign the entries. For example,
the entry marked w corresponds to the situation where the circuit is sitting in
stable state 2 and G goes low. Since we got to state 2 by starting in state 0 and
having G go high, this entry corresponds to a glitch on input G and thus we
may ignore it and return to state 0. The remaining three entries correspond-
ing to the situations shown in the figure are assigned values similarly.
Upon merging states 0, 1, and 6, states 4 and 5, and states 7and 3, in
accordance with the merger diagram of Figure 6.7.8(a), we obtain the merged
flow table shown in Figure 6.7.8(b). The adjacencies required to avoid race
conditions are shown in Figure 6.7.9(a). Using the assignments shown, we
may obtain the transition matrix shown in Figure 6.7.9(b). Note that the
entry labeled X in this figure can be assigned any value except 11. This is due
to the fact that the race condition that exists in this column is nongcritical.
The output matrix, which is shown in Figure 6.7.9(c), may be derived on
the basis of the following considerations. First, all outputs corresponding to
stable states must be assigned in accordance with the outputs given in the
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Figure 6.7.8 Merger diagram (a) and the final merged flow table {b) for the
pulse generator.
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Figure 6.7.9 Adjacency diagram (a), transition table {b), and output matrix {c) for
the pulse generator.
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primitive flow table. Second, outputs corresponding to unstable entries in the
transition table must be assigned so that no change occurs in an output when
the circuit moves between stable states requiring the same output. If, how-
ever, the circuit is to move from a stable state having one output value to a
stable state having another, the outputs can be assigned as don’t cares, since
we don’t care whether the output changes after arriving at the final state or
before. This is the situation with the outputs labeled a, &, and ¢ in Figure
6.7.9(c). The don’t care entry in the transition matrix must, however, be
treated a bit more carefully. If the don't care condition can actually be
reached from a stable state in the row, then the don’t care must be assigned
so that the output will not momentarily change. Usually, however, the don’t
cares cannot actually be reached from a stable state by a single input change
(why?). This is the case of entry d in the output matrix. In such a case, the
entry may be assigned a don’t care value.

The excitation tables generated from the transition table are shown in
Figure 6.7.10. By making sure that all adjacent groups of 1s are covered in
the excitation tables and using the output matrix shown in Figure 6.7.9(c), we
find the resulting implementing equations to be

Y =G + Cyo
Yo = Cyq + CGF, + 7170G 6.7.2)
Z = Cyo

Figure 6.7.11 shows a direct implementation of the equations (6.7.2).
Although this circuit will work as shown, we can simplify it somewhat. Note

i

C, G C, G
00 01 i1 10 00 01 i1 10
Yi: Yo Yo Yoo

00 0 0] 0 0 00 0

01 ¢ 01 0
1] ¢ 11 0
10 0 10 0 0 0 0

Figure 6.7.10 Excitation matrices for the pulse generator,
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Figure 6.7.11 Direct realization of the pulse generator for Equation {6.7.2).

that in the equation for ¥, we require the generation of the complement of ;.
Although this signal is not directly present in the circuit, we can find a signal
that will work. If we assume that the signal at point a in Figure 6.7.11 is
asserted high, then the function realized is G + ¥,. If now we connect point a
to point b, removing, of course, the level shifter ¢, the resulting equation for
Y, becomes

Yo = Cyo + CG(G + 7)) + yoG(G + 7)) (6.7.3)

which is logically equivalent to the corresponding equation given in (6.7.2).
We can do this, however, only if no hazards are introduced by this factoring.
In this case, there are none. The verification of this fact will be explored in
Problems 6.9 and 6.10 at the end of the chapter. The resulting realization is
shown in Figure 6.7.12.

6.7.3 Double Edge-Triggered SR Flip-Flop

The circuit we will design next is one that can be very useful in certain
applications but is not currently available as an integrated circuit (IC). This
circuit is basically a normal SR flip-flop except that the output is set if a low-
to-high transition occurs on the set input and is cleared, or reset, if a low-to-
high change occurs on the reset input. The output of this flip-flop is unaf-
fected by the input at any other time. From this verbal statement, the
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Figure 6.7.12 Finai realization of the pulse generator.

primitive flow table can be derived: it is shown in Figure 6.7.13(a). The
corresponding merger diagram is shown in Figure 6.7.13(b). Merging the
pairs of states 0 and 3, 1 and 2, 5and 7, and 4 and 6 will produce the merged
flow table given in Figure 6.7.13(c).

In order to avoid races, we may assign states as indicated in the adja-
cency diagram shown in Figure 6.7.14(a) to produce the transition matrix
shown in Figure 6.7.14(b). (Note that the rows of the transition table are not
in the same order as in the merged flow table.) This transition matrix leads to
the following equations for the secondary variables:

Y, = )’l)jg + 508 + yR 6.7.4)

Yo = miR + ¥8 + yon
Note here that cycles were created, as indicated, in columns (S, R) = (0, 1)
and (1, 0) to accommodate the transitions from state 2 to state 3 and state 0 to
state 1 without creating a critical race.

The output matrix for this circuit is shown in Figure 6.7.15. As in the
last example, all stable states are assigned outputs corresponding to those
required in the primitive flow table. Unstable states that are encountered in
moving between two stable states with the same output are assigned the
common output value. The entries in the table shown in Figure 6.7.15
marked c and d become don’t cares, because they are involved in a transition
from a stable state with one output value to another stable state with a
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Figure 6.7.13 Derivation of the merged flow table for the dual edge-triggered
SR flip-flop: (a) primitive flow table; (o) merger diagram; {c} merged
flow table.

different output. The entries marked 2 and b in the figure are a bit different.
These entries are involved in the cycles shown in the transition matrix,
Figure 6.7.14(b). We can make the output associated with the first step in
each of these cycles a don’t care. However, the second step must be associ-
ated with the final output desired (why?). Wethus end with the output matrix
shown, from which the equation for the qutput becomes

Z =y, (6.7.5)
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Figure 6.7.14 Resulting transition matrix for the special SR flip-fiop: () adjacency
diagram; (b) transition table.

a not too surprising result, considering the way in which the flow table was
merged.

Implementing Equations (6.7.4) and (6.7.5) directly results in the circuit
shown in Figure 6.7.16. As in the last example, note that if the signal at point
a in the circuit is assumed to be asserted high, then the logical function
implemented at this point is § + ¥,. Further, note that if the signal at point b

5.R
Y1 Yo 00 10 11 10
¢ b
0| o 0 -
01| o 0 0 0
a d

10 1 1 1 1

Figure 6.7.15
2  Output matrix for the SR flip-flop.



Section 6.7 Some Design Exampies 249

Figure 6.7.16 Direct implementation of the 5K flip-flop defined by Equations
{6.7.4} and {6.7.5).

is assumed to be asserted high, then the logical function implemented at this
point is ¥, + ¥,. Now if we connect point a to point ¢ and point & to point d,
removing, once again, the level shifter ¢, we will end up with a circuit
realizing the following equation for y;:

Y = nR + 33 + 7o) + S(§ + 7o) (6.7.6)

which is logically equivalent to the equation given for Y; in equation pair
(6.7.4). Before implementing the function in this form, we must, of course,
verify that no hazards are created by this factoring.

The reader can easily verify that there are no static hazards by observ-
ing that all adjacent groups of s in the transition matrix are connected by
Equations (6.7.4). A possible dynamic hazard, however, is indicated in
Equation (6.7.6) by the existence of the terms y,R + y¥,. As mentioned in
Section 6.2.3, although this is an indicator, a dynamic hazard requires three
or more paths from an input, y, in this case, to an output, ¥, here, all having
different path lengths before a glitch can occur. In the case at hand there are
in fact three paths but only two different path lengths, two paths of length 2
and one of length 3. Thus this dynamic hazard cannot cause problems. The
final realization for this dual edge-triggered SR flip-flop is shown in Figure
6.7.17.
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Figure 6.2,17 Final impiementation of the dual edge-triggered SR flip-flop.

6.7.4 Design of the 7474
Edge-Triggered D Flip-Flop

In Section 6.3, we analyzed the 7474 and demonstrated that its behavior is as
defined by the manufacturers. Now that we have investigated the process of
asynchronous circuit synthesis, it might be useful to design the 7474 and see
if our design matches that of the actual device. We will begin this design, as
usual, by deriving the primitive flow table. As was done in previous exam-
pies, we derive the primitive fiow table by accounting for all possible relative
changes in the inputs C and D. Figure 6.7.18 shows the completed flow table
based on identifying these changes. For example, if we start in state 1, which
has a corresponding output of 0, and the clock, C, goes high, the output
should stay 0, since input D is 0. This corresponds to moving to state 2 in the
figure. If, however, D goes to a 1 before the clock changes, we will go to state
3. In this state, the circuit will be waiting for a 0-to-1 change on C, which will
cause the output to take on the value of D by going to state 5. By continuing
in this way, we account for all of the possible transitions in the primitive fiow
table.

We next must reduce the primitive flow table by merging appropriate
states. Figure 6.7.19(a) shows the merger diagram corresponding to the prim-
itive flow table of Figure 6.7.18. From this diagram, we can sc¢ that states 1,
2, and 4 and states 5, 6, and 8 can each be merged into a single row. We will
leave states 3 and 7 as single rows in the flow table. Figure 6.7.19(b) shows
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Figure 6.7.18 Primitive flow taple for the 7474 edge-triggered [ flip-flop.
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Figure 6.7.20 Transition table for the 7474 {a) adjacency diagram; (b} transition
matrix.

the resulting merged flow table. Note that since the rows that were merged
had the same outputs, the output becomes associated with rows of the
merged table. :

The adjacency diagram shown in Figure 6.7 .20(2) shows that no prob-
lem exists with assigning states to avoid races. The assignment shown in the
figure is one of several possibilities that will work. On the basis of this
assignment, we may derive the transition table shown in Figure 6.7.20(b).

Yo

Y, ¥,

Figure 6.7.21 Excitation matrices for the 7474 D flip-flop.
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D

Figure 6.7.22 Direct implementation of the 7474 using seven gates.

If we now look back at the transition table derived during the analysis of
the 7474 and shown in Figure 6.3.3, we will observe that our design to this
point requires only two state variables, whereas the actual device required
three state variables. As we shall see shortly, the addition of the extra state
variable is a product of the desire to reduce the total number of gates in the
implementation to a minimum. So, for the moment, let us proceed with the
analysis based on the four-state transition table given in Figure 6.7.20. Figure
6.7.21 shows the excitation tables for the two state variables y; and y,, from
which the corresponding equations become

Y = yiyo + 1€ + %C
= yC + »i(¥ + O)
Yy, = CD + yoD + y,C
= yoC + D(yo + C)

6.7.7)

(6.7.8)

Figure 6.7.22 shows the resulting implementation, in which a total of 7 gates
are used to realize Equations (6.7.7) and (6.7.8). Note the marked similarity
between this circuit and the one shown in Figure 6.3.2(b).

A level shifter is required in the implementation shown in Figure 6.7.22
to match the output of yo, which is asserted high, to the input of gate 6, which
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Figure 6.7.23 Circuit resuiting from using g to generate the complement of Y;.

is asserted low. As we saw in the last two examples, it is quite often possible
to obtain the complement of secondary variables at the output of the gate
through which the secondary variable is fed back. In this case, this would be
the output of gate 4. If we use this output, as shown in the circuit of Figure
6.7.23, we will end up with the following equation for the output Y;:

Yi = »C + »i(Cyo + C) (6.7.9)

which is logically equivalent to Equation (6.7.7) for Y,. This change, how-
ever, produces a static hazard in the circuit in going from state 8 to state 5, or
vice versa.’ Our task now is to remove this static hazard.

Before we proceed much further with this example, let us introduce a
new secondary variable, ¥;, in the circuit of Figure 6.7.23. This will make the
equations simpler and thus, we should hope, the identification of a point in
the circuit that may be used to remove the static hazard easier. Doing this
produces the equations

Yo = yoC + Dy: (6.7.10)
Y) = yC + »1¥y2 (6.7.11)
Y;=%C +C (6.7.12)

3 This can be verified by the reader by plotting Equation (6.7.9) and observing that two
adjacent groups of 1s are no longer connected. :
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Figure 6.7.24 Excitation table showing the presence of a static hazard: (a] transi-
tion table for the circuit of Figure 6.7.23; (b] excitation table for Y.
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The static hazard clearly shows up in Equation (6.7.12) in the appearance of
both the € and C terms. The equations for ¥; and Y;, on the other hand, do
not contain any hazards. Thus, to make the circuit work properly, we must
eliminate the hazard in the equation for Y,. To do this, let us plot these
equations to produce a transition table so that we can determine which states
are stable, and then we will take a closer look at a plot of ¥;. These plots are
shown in Figure 6.7.24(a) and (b), respectively.

The static hazard clearly shows up in the plot of ¥, shown in Figure
6.2.24(b). As usual, to eliminate this problem, we must connect the two
disjoint groups of 1s by placing an additional term into the equation for Y.
An obvious term to add would be Dy,. However, this is not really necessary.
The static hazard occurs when the circuit moves from one stable state to
another in the same row. In this case, the only place where such an event
occurs between the two disconnected blocks of 1s is in moving from a to b in
Figure 6.7.24(a), corresponding to moving from total state (C, D,yy,¥1,¥0) =
©,1,1,1, ) to (1, 1, 1, 1, 1). This is shown by the shaded area in Figure
6.7.24(b). Thus, to eliminate the problem, we need only connect the Is in the
shaded area! A term that will do this and is readily available in the circuit is
the output of gate 5, which, if assumed to be asserted low, is Dy, . If we add
this term to the equation for Y;, two things will happen. First, the static
hazard, and its corresponding glitch, will vanish. Second, the entries in the

. } g(L) 5

Y

Connection to
remove the static —1 |
hazard

f
bhg
¥

Figure 6.7.25 Final realization of the 7474.
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transition table marked x and y, corresponding to total states (C, D, ¥2, ¥1, ¥o)
=(1,1,1, 1,0 and (1, 1, 1, 0, 0), will change from (Y, ¥, ¥5) = (0, 1, 1) and
0,0, Dto(1, 1, 1) and (1, 0, 1), respectively. Since neither of these states 1s
stable, nor can they be reached by stable states in their respective rows, nor
are they involved in any cycles in their column needed to avoid races, this
change makes no difference. Thus, we may make this connection and so end
with the circuit shown in Figure 6.7.25, which is exactly equivalent to the
circuit given for the 7474 by the manufacturer.

Ul 6.8
FINAL COMMENT

The four examples given in Section 6.7 went from fairly easy to quite convo-
luted. The last example, in particular, illustrates the fact that designing asyn-
chronous sequential circuits, especially if they are to be minimized, requires
a great deal of experience and careful analysis. This, along with the existence
of the essential hazard and other, more complex hazards that may occur
when we allow more than one variable to change at a time, makes designing
large circuits of this type very difficult, but not impossible.

ANNOTATED BIBLIOGRAPHY

A very readable introduction to the ideas of asynchronous sequential circuit
analysis and design can be found in the classic text by Maley and Earle.
Another classic work, that by McCluskey, gives a slightly different view of
the materia} presented in this chapter and also gives a good presentation of
the various hazards encountered in fundamental-mode circuits. (In fact,
McCluskey seems to be the originator of the term ‘“‘fundamental mode.”’)

MaLEY, G. A., and I. EarL, The Logic Design of Transistor Digital Com-
puters, Prentice-Hall, Englewood Cliffs, N.J., 1963.

McCLUSKEY, E. 1., Introduction to the Theory of Switching Circuits, McGraw-
Hill, New York, 1965.

Several other, more recent texts also discuss this topic. Among these
are the texts by Kohavi, Friedman, Hill and Peterson, and Wakerly.
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Englewood Cliffs, N.J., 1990.

Finally, a very fine presentation of asynchronous sequential circuits,

with many examples using modern integrated circuit devices, can be found in
the book by Fletcher. This presentation contains an anatysis of an integrated
circuit, the 74120, that was designed to function as either a gated oscillator,
as described in Section 6.4, or a pulse generator, as designed in Section

6.7.2.

FLETCHER, W. L., An Engineering Approach to Digital Design, Prentice-Hall,

Englewood Cliffs, N.J., 1980.

PROBLEMS

6.1.

6.2.

6.3.

6.4,

6.5.

6.6.

6.7.

6.8.

Plot the output Z for the circuit whose flow table and output matrix are given
in Figure P6.1(a) if the input signals appear as shown in Figure P6.1(b).

Find a race-free assignment for the secondary variables in the fiow tables of
Figure P6.2.

Show that the two outputs of the type 7474 flip-flop, Q(H) and Q(L), have the
timing relationship shown in Figure P6.3.

Complete the output table shown in Figure P6.4 and assign secondaries to
avoid races.

Construct a transition table for the circuit shown in Figure P6.5.

The circuit shown in Figure P6.6 is claimed by the designer to be free of all
glitches and other timing problems that might cause the circuit not to function
properly. Analyze this circuit and explain why the designer is far off base.

Construct a transition table for the circuit shown in Figure P6.7. Under what
conditions will this circuit oscillate? Assuming all gate delays are equal to
time interval ¢, what will be the frequency of oscillation?

The circuit given in Problem 6.7 operates like a JK flip-flop if a pulse of the
correct duration appears on input C. What is the maximum length of this

pulse?
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6.9. Prove that no static or dynamic hazard is introduced by the use of the term
GG + ¥, in Equation (6.7.3). (Hint: Show that all groups of adjacent 1s are
connected.)

6.10. Verify that the implementation of the pulse generator given in Figure 6.7.12,
which was derived from Equations (6.7.2) and (6.7.3), is free of hazards and
races.

6.11. Consider the merged flow table shown in Figure P6.11. This flow table ex-
hibits an essential hazard. Complete the design and determine, by analyzing
the timing of the circuit, whether or not this hazard can cause problems.
{Hint: Refer to the example in Section 6.2.4.)

O 2

: 1 &
(3) 4

1 @ Figure P6.11

6.12. Design an edge-triggered 7 flip-flop as defined by the truth table given in
Figure P6.12.

Figure P6.12

6.13. Add asynchronous asserted low *‘set’ and “‘clear’” inputs to the edge-trig-
gered T flip-flop of Problem 6.12.
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6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

Does your design of the 7 flip-flop contain any hazards? If so, show where
you might place delays to eliminate them.

Assuming that the required behavior of the circuit given in Figure P6.6 is
given by the transition table shown in Figure P6.15, complete the design of
the circuit so as to eliminate all races and hazards.

A, B
yp Y00 01 11 10 z

11 01 10 0
J Ol |
11

Q0

11 10 0l 01 0

Y. Y Figure P&6.15

Using NOR gates and level shifters only, design a simple SR flip-flop as
defined by the truth table of Figure 5.2.3.

Devise a flip-flop symbol, similar to those given in Chapter 5, for the double
edge-triggered SR flip-flop of Section 6.7.3.

Add asynchronous set and clear lines to the double edge-triggered flip-flop
given in Figure 6.7.17.

The Motorola 6800 microprocessor requires a two-phase nonoverlapping
clock as shown in Figure P6.19(a). Show that the circiiit of Figure P6.19%(b)
produces the required outputs . when the input, C, is a regularly occurring
clock.

If the NORs shown in Problem 6.19 are replaced by NAND gates, will the
same nonoverlapping two-phase clock be generated? What is the difference in
outputs between these two circuits?

Design an asynchronous sequential circuit having two inputs, A and C, and
one output, Z. If A is high during the occurrence of two consecutive changes
on input C, then Z is to go high on the next low-to-high change of C and stay
high until C goes low. Figure P6.21 shows an example.

Design a fundamental mode circuit having two inputs, A and B, and one
output, Z, such that Z goes high if and only if A is high and then B goes high. Z
is to stay at 1, regardless of the value of B, until A goes low.
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(b

Figure P6.19

Figure P6.21

6.23. Design a circuit having two inputs, € and G, and two outputs, R and £, in
which C is assumed to be a regularly occurring clock and G is a pulse that
lasts for at least one complete clock cycle. A pulse equal to a clock pulse is to
appear on R when G goes high, and a pulse is to appear on F when G goes
low. Figure P6.23 shows a typical timing diagram for this circuit.

Cfl[lll_'_Jlr_ll_I[—lr—l
¢ 1

Figure P6.23
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6.24.

6.25.

6.26.

You are to design a drag race win indicator circuit. Your circuit has two
inputs, L, and L, which are pulses and two outputs, W, and W,, which are
used to indicate the winner. The input pulses come from photo detectors that
are placed at the end of each car’s lane and are triggered when a car passes
the finish line. The outputs are used to control two lights, one in each lane,
that are to be used to indicate which car crossed the finish line first. If pulse L,
occurs before L,, W, is set to 1 and W; is cleared to 0. If pulse L, occurs
before L,, W» is set and W, is cleared. Design the necessary circuit.

For the drag race detector to function properly, both outputs must be set to 0
initially. Add the necessary reset circuitry to your solution of Problem 6.24.

Repeat Problem 6.24 assuming that there are three lanes rather than two. In
this case, each lane is to have two lights, one white for a win in the lane and
one yellow for a second place finish in the lane. Thus if car 1 finished ahead of
car 2, with car 3 coming in last, the white light in lane 1 and the yellow light in
lane 2 will be on. No lights will be on in lane 3. Design the circuit to perform
this task.
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Pulse-Mode or
Multiply Clocked
Sequential Circuits

O 7.1

INTRODUCTION
There are numerous problems that the engineer may encounter in which
inputs occur as ‘‘pulses’” and in which there is no naturally occurring clock
that can be synchronized with these pulses to produce the type of clocked
sequential circuit discussed in Chapter 5. A couple of examples come to
mind immediately: a vending machine in which coins dropped in the slot
produce pulses that control the selection and delivery of a canned soft drink
or a candy bar; or a demand-access highway intersection in which the arrival
of vehicles generates randomly occurring signals to control the sequencing of
a traffic light. These examples illustrate a type of sequential circuit in which

pulse-mode there is more than one clock signal that can control the output. We will refer

sequential to circuits of this type, those having one or more inputs that are *‘pulses,” as

circuits pulse-mode sequential circuits, or, perhaps better, multiply clocked sequen-

multiply tial circuits.

clocked One classical form of a pulse-mode circuit is very similar to the clocked

i::fc":;;"“’ sequential circuits described in Chapter 5 except that the state flip-flops are

not edge-triggered. Typically, the flip-flops in the feedback paths are the
simple SR flip-flops shown in Figure 7.1.1 A model for a pulse-mode circuit
would then appear as shown in Figure 7.1.2, where the inputs P are the

265
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QD s omb— swrw| o®
L L — Undefined
L H H
H L L
~—XA R(L} Q(L) H H q

Q(L)
(a) (b) ()

Figure 7.1.1 (a) Simple cross-coupled NAND gate SR fiip-flop: (b) SR flip-flop
symbol; {c) physical truth table.

“‘pulsed’’ inputs and the inputs X are ““level” inputs. In order for the circuit
to operate properly, the fiip-flop excitation equations take on the form

Si=PifuX,q) + - -+ + PfulX, @ (7.1.1)
R =PgiX,qQ+- "+ P.gin(X, @ (7.1.2)

for all flip-flops i. A pulse input P;, as used in this model, is then defined as a
signal having two characteristics:

1. The pulse is asserted long enough to cause the flip-flop outputs to
change.

2. It is shorter than the minimum delay through the combinational logic, so
that it is gone, or negated, before the inputs to the flip-flops can change
once more,

If the first characteristic is not met, the flip-flops may fail to change value
when they are supposed to, if they indeed change at all. If the second charac-
teristic is not met, changes in the flip-flop outputs may cause further changes
in the flip-flop inputs, which could resuit in a transition to an incorrect final
state. This could happen if the input pulse is still present on the flip-flop
inputs when the logic output changes occur. To prevent either case, the
width of the input pulses must be very carefully controlled. Such control,
especially in light of today’s high-speed technology, is chancy, at best.
Because of the many problems arising naturally in engineering that
require outputs of a system to be controlled by momentary changes in inputs,
the basic concept of a sequential circuit having “‘pulsed”’ inputs is still impor-
tant. However, because there are impracticalities in precisely controlling
delays, as required by the model suggested above, the view taken in this
chapter regarding what constitutes a pulse and how such momentarily occur-
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Figure 7.1.2 General putse-mode model.

ring signals affect the outputs will be rather different. Our goal here will be to
describe a design methodology for multiply clocked sequential circuits that is
both physically implementable and reliable.

O 7.2
BASIC PULSE-MODE CIRCUIT MODEL

As suggested above, there is really only one way to make a pulse-mode
system function reliably. That is to insert delay in the outputs of the state flip-
flops so that input pulses can ‘‘vanish’’ long before the changes in their
outputs appear at the state inputs to the feedback circuit and can still be long
enough to affect the state flip-flops. There generally are two ways to insert
such delay. One approach is to use linear circuit elements such as capacitors
and resistors to produce the necessary delays. Problems 7.1 through 7.4, at
the end of the chapter, will examine this situation more closely. Although
this approach can work, it is made unnecessary by a second approach that
can be used: delay can be inserted through the use of a second rank of edge-
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triggered flip-flops that can prevent the state flip-flop output changes from
appearing at the logic inputs until the point in time at which the pulsed inputs
are negated. This will be the approach taken here.

Figure 7.2.1 shows one form of the general model that we will use for
defining a pulse-mode circuit. In this model, there are three sets of inputs:

1. Level inputs X
2. Pulsed inputs P
3. Current-state inputs q

Combinational logic is used to generate two sets of outputs:

1. Normal circuit outputs Z, which may be pulsed or level
2. Flip-flop inputs, § and R, in this model’

The state flip-flops are organized into two ranks:

1. A master rank
2. A slave rank

The set and reset inputs to the master rank are controlled by the S and R
outputs of the combinational logic, which are pulsed, as indicated in Equa-
tions (7.1.1) and (7.1.2); and the clock inputs of the slave rank are controlled
by the point in time at which all pulse inputs are negated. (This model
assumes asserted high signals on all inputs, although this is clearly not neces-
sary.)

In this model, a signal will be considered a pulse if it meets two criteria:
purpose and form. Specifically, a pulse will be defined as a signal:

1. Whose purpose is to control the time at which a state change is to occur,
and
2. Which meets the following physical criteria:
(a) A pulse must be long enough to allow the master rank of state flip-
flops to change state.
(b) No more than one pulse input is to be asserted at any given tnstant
of time.
(c) The time between occurrences of input pulses must be long enough
that all changes in level inputs will have propagated to the circuit
outputs.

f Both the master-rank and the slave-rank flip-flops can, of course, be of any type, as we shall
illustrate later.
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Figure 7.2.1 Multiply clocked sequential circuit model.

On the basis of these specifications, the combinational logic outputs will
generally appear as follows:

Z:' = hi(x9 P; q) - (7.2.1)
S§=PfiiX, +- - -+ P.fn(X, q) (7.2.2)
R; = Plgjl(xs qQ+ - -+ Pngjn(x-,- Q) (7.2.3)

It should be noted that outputs Z; may be levels or pulses, depending on the
function that the output is to perform.? It should also be observed that since
no two pulses are asserted at the same time, any output that is to appear as a
pulse must have a functional form similar to that for the flip-flop § and R
inputs as shown in Equations (7.2.2) and (7.2.3).

Before we look at some examples and at the design procedure for cir-
cuits having multiple clocks, let us consider some timing aspects of the pulse-

I Jf Z;, in Equation (7.2.1), is independent of any pulsed inputs, it will be a level signal.
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Figure 7.2.2 Timing in the master-siave multiply clocked sequential Circuit.

mode mode!l shown in Figure 7.2.1. Specifically, let us look at the general
form for the timing shown in Figure 7.2.2. Assume that at time ¢, all inputs
have been stable for quite some time, with the pulsed inputs being negated.
Now suppose that at time ¢, the level inputs change. This will cause the
functions f and g in Equations (7.2.2) and (7.2.3) to take on new values, but
since all of the pulsed inputs are §, all of the S and R flip-flop inputs will be 0
also (a high voltage, in this case). Suppose, now, that at time £, pulse input P,
is asserted. (Remember that all other pulsed inputs are still negated, because
of the definition of a pulse cited above.) This will also cause the various flip-
flop S and R inputs to change, so that the outputs of the master rank, the y; in
the circuit, will change. However, this change cannot be passed on to the
input of the combinational circuit, on account of the presence of the slave
rank. Therefore, no further change in the outputs or flip-flop inputs can
occur. If now the pulse input P, is negated at time #3, the master flip-flop
outputs will be passed to the outputs of the slave rank, q, causing the system
state to change and thus setting everything up for the next occurrence of an
input pulse. '

D 7 .3
ANALYSIS EXAMPLE

Let us now examine a typical pulse-mode circuit and see how we can deter-
mine its behavior. Figure 7.3.1 shows a circuit having two pulsed inputs, A
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Figure 7.3.1 Pulse-mode circuit to be analyzed.

Ul

and B, two level outputs, Z, and Z;,* and one pulsed output, Z;. This particu-
jar example has a master rank of simple SR flip-fiops and a slave rank of
edge-triggered D flip-flops, as shown in the model of Figure 7.2.1. As usual,
the objective of analyzing the circuit is to determine how the outputs change
with changes on the inputs——pulses, in this case. To begin the analysis of the
circuit of Figure 7.3.1, let us, as usual, write the flip-flop input equations and
the circuit output equations in terms of the circuit inputs and the state vari-
“ables:

S, = Bq,

" Ry = Bqg
S = Az, (7.3.1)
Ry = Agp
Z, = q
Zy = qogdy T Godn (7.3.2)
Z; = Aq\qo

3 These outputs are level because they are dependent on the state variables only and not on
any of the pulse inputs. :
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The equations for the set and reset inputs are plotted in Figure 7.3.2(a).
Note here that only two columns, one for each of the pulsed inputs, are
shown. We can do this because, by the definition of a puise given above, no
two pulses can be asserted simultaneously and, therefore, there is no need 10
show all of the possible combinations of pulsed inputs. Using the definition of
the simple SR flip-flop given in Figure 7.1.1, we obtain the plot for the
master-rank flip-flop outputs ¥, and ¥, given in Figure 7.3.2(b). Note here
that we have also plotted the “‘level’’ outputs, Z, and Z,, as being associated
with rows in the table, This is done because these outputs are dependent only
on the state variables. Since the outputs of the slave rank, @, and @y, will be
equal to the outputs of the master rank at the time that both input pulses A
and B are negated, the table shown in Figure 7.3.2(b) becomes the encoded
state table for the pulse-mode circuit. The output table corresponding to the
pulsed output Z, is given in Figure 7.3.2(c). Figure 7.3.3 shows a state dia-
gram corresponding this state table. Since an input pulse is the signal that
causes a transition from one state to another, each edge in this figure is

A B A B
00 10 10 00
00 10 01 00
du Hy
00 01 01 00
'R g1
00 01 10 00
SRy S5y, Ry
(a)
g1 da 5 Z. 24 UaRRit A B
00 01 10 00 00 0 1]
01 0g 11 01 01 0 0
11 10 0l 10 11 I 0
10 il 00 I 10 0 0
Y. Y= G Qo Z

(0 {¢)

Figure 7.3.2 Derivation of the state table for the circuit of Figure 7.3.1: {a) flip-
flop excitation tables; (b} encoded state table with the level out-
puts; [c} pulsed output matrix.
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Figure 7.3.3 Derived state diagram for the circuit of Figure 7.3.1.

labeled with the pulse that causes the transition. To indicate which pulse
output is associated with which state transition, the name of the output which
occurs on a given state transition will be shown on the transition edge. Thus,
the notation A/Z, on the edge connecting states 00 and 01 indicates that
pulsed input A causes the transition and produces a pulsed output at Z,. If no
output is indicated, then no pulse output is generated on the transition. The
value of the level outputs will be shown in the state circles. Thus the state
diagram for this example contains elements of both the Moore model, where
outputs are associated with the states, and the Mealy model, where outputs
are associated with state transitions.

Using the state diagram of Figure 7.3.3, we can now determine how
the outputs of the circuit given in Figure 7.3.1 change as pulses occur on the
inputs. Suppose we start in state 00. If the input pulses now occur in the
sequence A, B, A, B, etc., the outputs will change in the sequence 00, 01, 10,
11, 00, etc., which is basically a normal counting sequence: 0, 1, 2,3,0, . . .
If, at some point, an A pulse (or a B pulse) occurs twice in succession, the
counting sequence will be reversed. For example, the input pulse sequence
ABABBABABAB, starting in state 00, will produce the output sequence
012303210321. Finally, we note that a pulse will appear on output Z; every
fourth input pulse only if the circuit is counting in an ‘‘up’’ sequence, that is,
01230123. . . . Thus Z, can be used to-indicate whether the circuit is count-
ing up or down.

0 7.4
DESIGN PROBLEM

The synthesis of pulse-mode circuits, as defined here, is not appreciably
different from the synthesis of clocked sequential circuits. As we saw in the
last section, and, indeed, in the last two chapters, the first step is to convert
the verbal statement of the problem to a state diagram or state table. Once
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this is done, the rest of the process becomes fairly mechanical. Specifically,
for pulse-mode circuits, we must first create a state diagram or state table
indicating which inputs and outputs are pulses and which are level signals.
We must then derive the master-rank flip-flop input equations along with the

output equations. Finally, we implement these equations with the circuit

elements available.

Although the process of designing multiply clocked circuits is quite
similar to clocked sequential circuit design, there are some variations that
will be encountered. In order to illustrate this process more fully, consider

the following design problem.

DESIGN PROBLEM

A certain stepping motor has four binary inputs; i.e., each input takes on
either a high voltage (12 V) or a low voltage (0 V). If these inputs are
changed in a specific sequence, the motor will rotate clockwise 1.8 degrees
per step. The reverse sequence will cause the motor to rotate in the coun-
terclockwise direction. Referring to the motor inputs as Fy, F,,F;,and Fy,
the motor will rotate clockwise one step for each change of these inputs in
the sequence (Fy, F, F3, F;) = (1010), (1001}, (0101), (0110), (1010), etc.
Reversing this sequence will cause the motor to rotate in the opposite
direction. We would like to design a digital circuit that will control this step
sequence. The specification for this design requires two pulsed inputs, A
and B, and, of course, the four ‘‘level’” outputs, F, F,, F3, and F,. Repeti-
tive pulses on input A are to cause the motor to rotate clockwise, and
repetitive pulses on input B are to cause the motor to rotate counterclock-
wise. The rate at which these pulses occur will determine the rotation rate
of the motor. It is, of course, assumed that the input pulses never occur at
the same time. It is also assumed that these pulses do not occur at a rate
faster than the motor can be stepped.

7.4.1 Setting Up the State Table

To begin the design, we must first develop the state diagram or the state
table. In this case, we will begin by creating the state diagram. Figure 7.4.1(a)
shows this diagram. Since the outputs in this problem are levels, we refer-
ence them to the states, and therefore they appear, as in a Moore model, in
the state circles. The edges which connect one state to the next are labeled
according to the pulse that causes the state transition. Thus, an edge labeled
B means that a pulse on the B input, while the A input is negated, will cause
the state transition indicated. Figure 7.4.1(b) shows the corresponding state
table.



Section 7.4 Design Problem 275

(a)

A

4y 4o A & FrnFyu Py Fa 44y A B Fy. Fy, Fy, Fy
[V A S 1010 00 ol 10 1016
o S| 5, 5, 1001 o] 1 00 1001
1St 5, s, 0101 " 10 ol 0101
10 5, 3 Sy 0110 10 00 Il Q110
Next state 2. &

(b} (<)

Figure 7.4.1 Derivation of the encoded state table: (a) stepping motor control
state diagram; (b} state table; (c} encoded state table.

Encoding the states is generaily no different from the case for a clocked
sequential circuit. However, as in the case of other sequential circuits, as-
signing codes to the state variables so that states which are adjacent differ in
only one bit position eliminates races and tends to reduce the complexity of
the implementing equations. Therefore, the states for this motor controller
are assigned as shown in Figure 7.4.1(b). The resulting encoded state table is
shown in Figure 7.4.1(c). Using either of these tables, (b) or (c), we find the
equations for the outputs to be

F,=4q
F,=a (7.4.1)
F; = do
Fy=qo

The reader should try other state encodings to see how the various choices
affect the complexity of the output realizations. Obviously, the choice se-
lected here produces output equations which are as simple as we might hope

for.
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7.4.2 Developing the Master-Rank
Flip-Flop Equations

The circuit analyzed in the last section, shown in Figure 7.3.1, had a master
rank made up of simple SR flip-flops in which the set and reset inputs were
controiled to produce the required state transitions. There is, in general, no
reason why the master rank of flip-flops could not be made up of some edge-
triggered flip-flop such as the D or the JK type. In such a situation, the clock
inputs would be controlled specifically by combinations of the pulse and level
inputs, while the other flip-flop inputs, D or JK, for example, would be
controlled by the level inputs only. To illustrate the use of each, we will
design the motor controller using, first, simple SR flip-flops for the master
rank, and then edge-triggered D flip-flops, such as the 7474. Problems at the
end of the chapter will illustrate the use of other types of edge-triggered flip-
flops.

7.4.2.1 Controlling the Flip-Flop Set and Reset Inputs. [n order to deter-
mine the flip-flop input equations, we need to determine what combinations
of S and R will cause the flip-flop outputs to change as required by the
encoded state table. This was done in Chapter 5 using a present-state—next-
state table for the specified flip-flop. Figure 7.4.2 shows this table for the
simple SR flip-flop being used here. This is the same table as derived in
Chapter 5 and given in Figure 5.2.9(d). The excitation tables for the master-
rank state flip-flops can now be derived in exactly the same way as was done
in Chapter 5. Specifically, from the current-state table we can determine
what the current state is and what the réquired next state is to be. Using the
present-state—next-state table for the SR fiip-flop, we can determine the
values of (8,, R,) and (S,, Ry) required to produce this transition. For exam-
ple, we see from the encoded state table that if the circuit is in state (g;, go) =
(0, 0) and a pulse occurs on the A input, the circuit is to move to state o, 1).
This requires, by the present-state-next-state table of Figure 7.4.2, that the
master-rank SR inputs be (), R)) = (0, =) and (5;, Ry) = (1, 0). Figure 7.4.3
shows the excitation tables for the master rank. Using these tables, we can
now derive the flip-flop input equations, as follows:

Sy = Agy + Bgo
Ry = AG + Bay (7.4.2)
So = Ag, + Bqg
Ry = Aq: + Bq,

The implementation of the motor controller based on Equations (7.4.2)
and (7.4.1) and the model shown in Figure 7.2.1 is shown in Figure 7.4.4.
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0 0 0 -
1
? : i g Figure 7.4.2
L0 Present-state—next-state table for the simple SR
0 1 flip-flop of Figure 7.1.1.

This implementation involves a lot of AND-OR logic, which could very
easily be created using a PLA device as described in Chapter 4. Problems
712 and 7.13, at the end of the chapter, illustrate this point further.

7.4.2.2 Controiling the Edge-Triggered Flip-Flop Clock Input. As men-
tioned above, there is no reason why the master rank flip-flops must be of the
SR type. We could equally well use an edge-triggered D or JK or T or any
other, similar flip-flop. The difference in the design involves only the present-
state-next-state tables associated with the chosen flip-flop. In Section 5.2,
we derived these tables for the various flip-flops assuming that a single clock
was responsible for the change in state. Here, however, there is generally
more than one clock that produces state changes. Since the clock inputs of
these flip-flops must be controlled by some combination of pulse inputs, the
corresponding state transition tables must be modified to include the flip-fiop
clock input changes necessary to cause the required state variable changes.

Figure 7.4.5 shows the present-state—next-state tables for the edge-
triggered D and JK flip-flops. Although the clock inputs to these flip-flops are
edge-sensitive, their values are shown in these tables asaQora 1. The |
indicates that the clock is to make an asserted transition, and a 0 indicates it
is not. Notice in these tables that some entries show two possible values for
the inputs. For example, in the table for the D flip-flop, there are two ways in
which a current state of 0 can stay 0. First, if the D input is held at 0, then

A B A B
0- 10 10 0-
10 0- -0 01
4y 0
-0 01 0l -0
4 4
01 -0 0- 10
S Ry Sy Ry

Figure 7.4.3 Master-rank flip-flop excitation tables.
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S0 b, & Fy
R, b— — F,
S ¥, D, G Fa
R 1 —F3
; w: D)
8 |/

Figure 7.4.4 Firial implementation for the stepping motor controller.

whether the clock charges or not, the output will not change. Second, if the
clock is not changed, the output cannot change and so will remain Q. Similar
considerations apply to all of the other table entries shown in Figure 7.4.5(a)
and (b). )

Let us now implement the master rank of the stepping motor controller
using edge-triggered D flip-flops. From the present-state—next-state table for

g @ D Cik g @ J K Ck
0 - - - 0
o o | 0 o o | o - _
1 0 0 1 1 0 - | 1
bo- - - 0
! ] _ 0 1 | - 0 -
(2) (b}

Figure 7.4.5 Present-state—next-state tables for the edge-triggered D flip-flop (a)
and JK flip-flop (b).
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do L)
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Dy, Clky Dy, Clk,
(a) (b)

Figure 7.4.6 Edge-triggered D flip-flop excitation tables.

this flip-flop shown in Figure 7.4.5(a) and the encoded state table for the
motor controller shown in Figure 7.4.1(c}, we can obtain the excitation tables
shown in Figure 7.4.6 for the two state flip-flops. There are several places in
these tables having two possible values for D and Clk. We must, of course,
select one or the other for the final implementation. This can be done by
considering the function of each of these inputs. The function of the D input
is to take on a stable value equivalent to the next output value, while the
function of the clock input is to identify the time at which this change is to
take place. Thus, the D input must be a signal whose value is stable at the
time the clocked input is asserted. In other words, the D inputs must not be
functions of the pulsed inputs. The CIk inputs, on the other hand, must be
functions of the pulsed inputs in order to identify when the state transitions
are to occur. :

In order for the D inputs of the flip-flops to be independent of the pulsed
inputs, it is necessary, in any given row of the excitation table, for the value
of D to be the same in all of the columns. Thus, for examptle, in the top row of
the excitation table given in Figure 7.4.6(a) (this row corresponds to (g, go)
= (0, 0)), we must choose between the two possible entries in the A column
so that D, is independent of A and B. Since D, mugt be 1 for an input of B, we
must choose the circled entry in the A column, sifce D, is a don’t care and
can thus be made a 1. ‘The remaining circled entries in Figure 7.4.6(a) are
selected for the same reason: to make D, indgpendent of the pulsed inputs A
and B. In exactly the same way, the alternative terms in Figure 7.4.6(b) are

selected. , ,
Plots based on these selections are shown in Figure 7.4.7 for each of the
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Figure 7.4.7 Individual fiip-flop excitation tables for the stepping motor control-

ler implemented using edge-triggered D fiip-flops.
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Figure 7.4.8 Implementation of the stepping motor controller in which the clock
input of the master rank is controlied.
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flip-flop inputs. The equations derived from these tables are easily seen to be

D, = q

' 7.4.
CIk, = Alg D o) + BG @ 0 (7.43)

and
Dy = qo

Clky = AQ D 30) + Bl ® a0 744

The resulting implementation is shown in Fig__lire 7.4.8.

O 7.5
ADDITIONAL DESIGN EXAMPLES _

The design of multiply clocked or pulse-mode sequential circuits was illus-
trated by the stepping motor controller design in Section 7.4. In order to
further illustrate this design process and to see how other flip-flop types can
be used, two more examples will be given. In the first, we will design a simple
combinational lock which requires pushing a set of buttons in a particular
sequence to open. In the second example, we will look at a simple vending
machine design.

7.5.1 Design of a Simple Combinational Lock

The problem here is to design a simple combinational lock having two but-
tons, A and B, by which a person can enter a sequence representing a
particular lock ‘‘code,” and another button, R, used to reset the lock. To
open the lock, a person would first push the reset button R and then enter the
particular sequence of pushes on the A and B buttons representing the lock’s
code. If a mistake is made in entering the code, the R button can be pressed
and the code sequence reentered. A level output that is used to open the lock
is to be generated when the correct input sequence has been entered. The
input pulses in this design are to be asserted high, while the level output, Z, is
to be asserted low. It will also be assumed that the input pulses, which are
derived from the switches 4, B, and R, have been ‘‘debounced’ as de-
scribed, for example, in Chapter 6. This is necessary so that a single push of a
button results in a single input pulse to the circuit.

To begin the design, we must first develop a state diagram. Before we
can do this, however, we need to know the code sequence for the lock. In
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order to keep the problem reasonably simple, let us assume that a three-pulse
code is to be used and that for this lock the code sequence is to be ABA.
Although such a simple coding is not very practical (there are, after all, only
8 possible such three-pulse codes), it will illustrate the design process very
well. Problems 7.17, 7.18, and 7.19, at the end of the chapter, will investigate
ways in which such a lock concept might be expanded to make it more
practical.

Figure 7.5.1(a) shows the state diagram for this design. This diagram is
generated on the basis of the following considerations. Starting in state So, if
the correct input sequence is entered, ABA in this case, the system will go
first to state §;, then to state S,, and finally to the Open state. If an illegal
combination occurs at any given time, the system will enter the NO state and

R

G- o A 8 R z
000 5,1 S, NO S |0
001 5} NO s, S, |0
011 5, Open NO So 0
010 No| NO NO 5, |0
L0  Open ~ - Sy !

111 - - - -
101 - - - -
100 - - - -

{b)

Figure 7.5.1 State diagram (a) and state table {b) for the combination lock.
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1.4 4 4 5 R 7
Sq 000 001 010 000 0
5 001 ola 011 000 0
Sy Ol Lo 010 000 0
NO 010 010 010 000 0
Qpen 110 - - Q00 1
11 - - - -
101 - - - -
100 - - - -

Q1. @y, Qo

Figure 7.5.2 Encoded state tabie for the combinational lock.

stay there, regardless of further pulses on A and B, until the reset button is
pushed. Once the system is in the Open state, the output Z will be asserted
and the lock will open. The circuit will always return to the initial state S,
when the reset button R is pushed. Figure 7.5.1(b) shows the corresponding
state table. Note here that we have left as don’t cares the entries correspond-
ing to the Open state and input pulses on either A or B. This is done because
we really don't care where the system goes once the lock has been opened. It
is presumed that the operator will press the reset button after closing the lock
and before entering the next input sequence.

Our next job in designing this lock is to encode the states. Since there
are five states, we will need a total of three state variables for this purpose.
We will refer to these as Q,, Q,, and Q. Assigning these states as shown in
Figure 7.5.1(b}, we can obtain the assigned-state table shown in Figure 7.5.2.
Using the present-state~next-state table for the SR flip-flop as given in Figure
7.4.2, we can derive the excitation tables for the master rank. These are
shown in Figure 7.5.3, from which the flip-flop input equations become

$: = Aqigo

R, = R (7.5.1)
Si=Aq + B

7.5.2
R| = R ( 5 )
So = Aq1Go

7.5.
Ro = Ago + Bqy + R (7:5:3)
Z=g (7.5.4)

The resulting physical implementation is shown in Figure 7.5.4.
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Figure 7.5.3 Excitation equations for the combinational lock.

7.5.2 Simple Vending Machine

In this example we will design a controller for a rather primitive vending
machine. Although this example is not necessarily realistic by today's vend-
ing machine standards, it will help us introduce some additional concepts.
(Machines of the type to be described might have been found in gas stations
along old U.S. 40 or Route 66 back in the 1940s and 1950s, dispensing
cigarettes, soft drinks, chewing gum, or the like.) As shown in Figure 7.5.5,
this machine has three pulse inputs, P, Px, and R, and three outputs, §, A,
and X. The product to be dispensed costs 20 cents, and the machine takes
dimes only, although the coin slot is Jarge enough to accommodate any coin.
The pulse inputs, therefore, take on the following meaning. Py, is a pulse
generated when a dime is dropped in the slot. Py is a pulse which indicates
that a coin of some other denomination was inserted in the machine. The
pulse R is from the coin return lever, so that you can change your mind and
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Figure 7.5.4 Implementation of the simple combinational lock.

—] P § p—>p— Select
Coin return request ——p~§ R A > Return all coins
—pd Py X p— Return last coin

Figure 7.5.5 Simpie vending machine controller.
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Sl so | Sex| s

1 S| $5.5 | S0, X| So.4

Next state, output pulse
(a) (b}

Figure 7.5.6 State diagram {a) and state table [b) for the simple vending ma-
chine.

get your money back if you have not yet dropped 20 cents in the machine. It
is assumed here that once the 20 cents has been inserted, the product will be
delivered. The three outputs are used to control the following functions. If a
coin other than a dime is inserted, it is to be returned to the purchaser
immediately. Output pulse X is used for this function. If a dime has been
collected and the coin return lever is activated, output pulse A is generated to
release the collected dime. Finally, once the 20 cents has been entered, a
select pulse, S, is generated to allow the product to be delivered.

Given these specifications, the state diagram shown in Figure 7.5.6(a)
can be constructed. In this case, the outputs, since they are pulses, are
associated with the state diagram edges and not with the individual states.
Notice here that if the coin return lever is pressed before any coins have been
inserted, the vending machine generates no output but stays in state ;. Also
note that no output pulses are generated when the first dime is inserted. The
machine here needs only to keep track of the fact that the dime has been
entered, and this is done by moving to state Sjp. The state table correspond-
ing to this state diagram is shown in Figure 7.5.6(b).

Since there are only two states, only one state variable need be used.
Figure 7.5.7 shows the state assignment and the resulting assigned-state
table. In this table, we have shown the output that is associated with a

S5 1l os|ux|oa4

(@ Figure 7.5.7

Assigned-state table for the vending
@, output pulse  machine.
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particular state transition and input pulse by its label. For example, the entry
1, X, corresponding to the entry marked (a} in this figure, is used to indicate
that the next state is 1 and a pulse is to occur on output X, only. The entry 1,
marked (b) in the figure, means that the machine is to go to state 1 and no
output pulse is to occur, since none is specifically indicated. From this table
the output equations can be derived:

X = PX
S = Pyg (7.5.5)
A = Rqg

To complete the design, we need to specify the type of flip-flop to be
used in the master rank. Suppose, for this example, we select the edge-
triggered JK flip-flop whose present-state—next-state table was derived in
Section 7.4 and shown in Figure 7.4.5(b). Using this table and the state
transition table of Figure 7.5.7, we obtain the flip-flop excitation table shown
in Figure 7.5.8. As in the last example, where we used edge-triggered D flip-
flops, only the clock input is to be a function of the pulse inputs. Thus, the
selection of the J, X, and Clk inputs in the three cells of the figure in which
two possible choices are shown must be made so that the J and K inputs are
independent of the pulse inputs. This means, as before, that the selection of
the alternatives has to be done so that in a given row the value of J is the
same for every column. This must also be true for the values of K. The
circled entries in the figure show the required selections. These entries are
plotted in Figure 7.5.9 for J, K, and Clk.

Using the plots for the JK flip-flop inputs given in Figure 7.5.9, the
equations for these inputs become

J=1
K=1 (7.5.6)
Clk = Pw + Rq

Figure 7.5.10 shows the resulting physical implementation.

Py Py R
1)
0-- | 0--
=)
L it —0- -1 Figure 7.5.8
Initial flip-flop excitation table showing

J.K,Clk the required choices.
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P Py

R P Py R

Clk

Figure 7.5.9 Final flip-flop input equations.

+
F §
P J Y D Q
—p>
R
|— K [o— > o
4 )
Py T 7

Figure 7.5.10

Final realization for the simpie vending machine.
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In this example, the values, for both J and K ended up being a constant
1. It can be shown, as will be done in Problem 7.21, that this is always
possible when using JX flip-flops in the master rank. Thus, if the master rank
in a multiply clocked sequential circuit is implemented using either JK or T
fiip-flops (a T is just a JK with the inputs tied together), we need develop
equations for the clock inputs only and tie the level flip-flop inputs to a log-
ical 1.

Before leaving this example, one final observation should be made.
Note in equations (7.5.6) that the clock input to the master rank is indepen-
dent of the pulsed input Py. This means that the master rank cannot change
because of input Py. Thus, there is no need to use Py to clock the slave rank,
since no state change will occur in any case. The implication of this is that
the slave rank need be clocked only by the pulse inputs that are actually
required to change the state of the master rank, namely, Py, and R. This may
help simplify a particular circuit implementation.

NOTES ON MIXiNG LEVEL SIGNALS AND PULSES

level inputs

Figure 6.3.1, repeated here as Figure 7.6.1, shows the definition of two
commonly available flip-flops: the 7474 and the 74L.576. These flip-fiops have
three distinct classes of inputs. The first class are the level inputs associated
with the D and the J and K inputs. The second class are the inputs to the
clocks, which are edge-sensitive (i.e., the flip-fiop changes state on an input
edge). The third class of signals are the asynchronous inputs used to set or
reset the flip-flop outputs. This latter input set takes precedence over all of
the others, as shown in the defining truth tables of Figure 7.6.1. As we have
seen in the last few sections of this chapter, pulse-mode circuits can be
designed in which either the set and reset inputs of the master-rank flip-flops
or the level and clock inputs to these flip-flops are controlled. There is no
fundamental reason why we cannot design a system in which we control
both, as is possible using the 7474 or 74L.576 type flip-flops. In fact, there are
many practical problems in which this approach can be very useful.

To see how we might design a system in which we control the asyn-
chronous inputs as well as the level and the clock inputs, let us first look at
the characteristics of the signals used at these three inputs. The level inputs
are basically signals that stay at some value for relatively long periods of
time. Specifically, these signals stay at a fixed value during occurrences of
the various input pulses. We may think of the inputs to the flip-flop clock as
being rather different from the asynchronous set and reset inputs in that their
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Figure 7.6.1 Flip-flops with asynchronous presets and clears: {a) D flip-flops. type
7474; (b} JK flip-fliap, type 74L576.

level at any instant of time is unimportant. The thing that matters is the time
at which there is an active level change. Because of this, we will refer to
these inputs as edge inputs. Since the asynchronous inputs take precedence
over all of the others, assertion levels on these inputs must not persist for
long periods of time; otherwise, the activity on the other inputs will be
masked. Thus, these inputs must be asserted for relatively the shortest peri-
ods of time. We will refer to these inputs as being pulsed inputs.

Level, edge, and pulsed inputs can be mixed easily under the correct
conditions. First; as always, pulsed inputs cannot overlap. Second, no pulse
input must be active at the time an edge input occurs. If this should happen,
the edge will have no effect, because the asynchronous inputs take prece-
dence over all other inputs. Finally, in logical combinations of edge inputs,
the level of one edge signal must not mask the occurrence of an asserted
transition on another edge input. This means, assuming an asserted transi-
tion on the clock input of low to high, that the clock input must be low when

an asserted transition on any edge signal occurs.



Intel 8085

single-
stepping

Section 7.6 Notes on Mixing Level Signals and Puises 291

To illustrate how we can approach a design in which all of these various
input types are used, consider the following problem.

PROBLEM

The Intel 8085 microprocessor has a control line caliled READY, which can
be used to stop the processor at specific times. In particular, if READY is
asserted, the processor will run normally. If READY is negated, the pro-
cessor will stop and remain inactive for as long as READY is negated. A
special time of interest to us is during the period of time that the processor
is *“fetching’’ an instruction from memory. What we would like to do is
design a piece of hardware that will allow us to stop the microprocessor at
this point so that we can physically examine various signals in the micro-
computer system. We would then like to be able to push a button and have
the microprocessor execute the current instruction and then stop at the
beginning of the next. This is usually referred to as single-stepping. We
would also like to have a switch that can be used to select either the single-
step mode of operation or a normal mode in which the processor runs
continuously without interruption. To implement this function, we clearly
need two switches: SS, to single-step the processor, and ST, to select
between the run mode and the single-szep mode. We also need some infor-
mation from the processor identifying the time at which the *‘fetch cycle”
begins so that we can negate the READY input and stop the microproces-
sor. Using various other outputs on the microprocessor, we can generate
two pulsed signals F) and F; which serve this function. F is a pulse which
occurs, once, on entering the fetch cycle. F, is a string of pulses that
continues for as long as the processor is going through or is stopped in the
fetch cycle. There is no overlap between these two pulsed inputs. Our job
now is to design the specific hardware to implement this function.*

We now have the basic information to design the system. To-do the
design, we need, first, to classify the various inputs and outputs. The output
READY and the input ST are easily classified as level signals, since they are
set up for relatively long periods of time. Once the processor is stopped, the
effect of pushing switch SS is to cause the processor to execute the current
instruction and fetch the next. Since the processor is much faster than the
reaction time of whoever has pushed the switch button, the switch will more
than likely still be depressed after the processor completes the execution of
the current instruction. Thus, input SS is categorized as an edge input, since

s For those readers having some knowledge of the 8085 and wanting to know specifics, F) is
formed by the signal ALE $:5q, and F; is generated by CLK §:5,, where S, and §; are the
8085 status signals, CLK is the 8085’s clock output signal, and ALE is the 8085's Address
Latch Enable signal.
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Microprocessor
fetch cycle . _,l

Figure 7.6.2 Timing refationship between pulsed inputs £ and £;.

it is only the time at which it is depressed that is important.’ The final two
inputs, F; and F,, are easily seen to match our idea of pulse inputs. Figure
7.6.2 shows the relative timing of the pulsed inputs F, and F;. Since these
signals are generated by the microprocessor, their timing relation is always
maintained as shown in this figure.

From these classifications for the various signals, we can now construct
the state transition table. This is shown in Figure 7.6.3. In deriving this table,
we have assigned state S, to the single-step mode of operation and state S to
the normal running mode. To begin, suppose the processor is running not-
mally and is, therefore, sitting in state §; with the READY output equal to 1.
Pulses on inputs F, and F, and any edge that might occur on the SS input
because the single-step button is momentarily depressed should not affect
the output, and so the circuit will stay in state §;.

Suppose now that while the microprocessor is running, the step switch
ST is thrown so that input ST = 1. Since we want to negate the READY
signal as soon as the microprocessor enters the instruction fetch cvcle, we
will use F, to cause the circuit to switch to the single-step mode. Since we are
going to use F) to stop the microprocessor, we will make the circuit indepen-
dent of F, by the assignment shown in the F; column under ST = 1. Once
input pulse F, occurs, the circuit switches to state So, which causes the
microprocessor to stop. As long as the microprocessor is halted, F, will not
occur again, and thus we have the don’t cares shown at (b) in Figure 7.6.3. In
order to change the state and cause the processor to run until the next
instruction is encountered, the single-step switch SS must be asserted. This
may happen while the processor is running in the single-step mode (this is
highly unlikely, however; why?). We have, therefore, set this entry in the
state table equal to state §,.

Let us now consider what happens if the circuit is in the single-step
mode (ST = 1) and the microprocessor has been halted—it is sitting in state
S,—and ST switches to a 0, indicating that the processor should start running
normally. This change in ST will cause the circuit to move to the left half of

5 We assume here that all switches have been properly ‘‘debounced.”
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Figure 7.6.3 State table for the single-step circuit

the state table shown in Figure 7.6.3. Since the processor has stopped in a
fetch cycle, there will be continuous pulses occurring on the F, input. These
F; pulses will cause the circuit to next move to the run state S, as shown in
the figure. The don’t care shown at (g) in Figure 7.6.3 reflects the fact that
once the microprocessor has halted (because READY = 0), pulse F; will not
occur again until the processor resumes running and encounters the next
fetch cycle.

With the state table of Figure 7.6.3 and the state assignment indicated,
we arrive at the assigned-state table shown in Figure 7.6.4(a). Since the
pulsed inputs F, and F; control the asynchronous set and reset inputs of the
master flip-flop and the edge input SS controls the fiip-flop clock, the excita-
tion table becomes as shown in Figure 7.6.4(b). On the basis of this excitation
matrix, the flip-flop input equations become

§=ST F

R =ST F,
D=glT +ST) +¢qT +ST) =1
Clk =ST-8§+ST-88 =SS

(7.6.1)

We could, of course, implement these equations directly in the master-
slave model described in previous sections. However, a little thought can
simplify the final realization somewhat. Recall that the reason for the master-
slave organization was to prevent changes in those circuit pulse inputs that
cause the state flip-flop outputs to change from causing further change in
these state flip-flops until all pulse inputs are once again negated. Changes in
state flip-flop outputs can affect the state flip-flop inputs only if the inputs are
functions of the state flip-flop outputs. If this is not the case, then there is no
need for the slave rank of flip-flops. Equations (7.6.1) show that, in this case,
none of the flip-flop inputs are functions of their outputs, and so we can
eliminate the slave rank. Figure 7.6.5 shows the final implementation for this
microprocessor single-step control circuit.
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Figure 7.6.4 Development of the flip-flop excitation table: (a) state table;
{b) excitation table.

ST

+ et

55

£

S(L)
Q(H)

7474

@)
R(L)

READY

Figure 7.6.5 Final realization of the microprocessor single-step circuit.
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PROBLEMS
Schmitt- 7.1. A buffer with a Schmitr-trigger input is one in which the output goes from a
trigger low to a high voltage when the input goes above a threshold voltage and

returns to a low voltage when the input drops below another, quite different,
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7.2.

1.3.

threshold voltage.® Such circuits are said to possess hysteresis. Figure P7.1(a}
shows a plot of input versus output voltage for a buffer having a Schmitt-
trigger input and the symbol that is used to identify such gates. Gates of this
type can be used effectively to produce controlled delays in digital circuits, as
we shall explore in this and the next three problems.

Figure P7.1(b) shows a circut consisting of two buffers, one of which
has a Schmitt-trigger input, and an RC network. Assume that the output of
buffer @ switches between 0 and 5 V and that its output impedance is 0 ohms
(). Further assume that the output of the Schmitt-trigger buffer goes high
when the input goes above 1.” V and goes low when the input drops below 0.9
V. Draw a timing diagram s':swing the timing relationship between the input
A and the signals X and B ir. the circuit of Figure P7.1(b). Assume that R=10
kQ and C = 10 uF.

Vout -
— |
(a)

lc

(b}
Figure P7.1

Wha values of R and C in the circuit of Problem 7.1 would be required to
produce the following delays? Assume that the propagation delay through
each of the buffers is 10 ns {nanoseconds).

(¢ 1 microsecond (us)

(¢ 1 millisecond (ms)

i) 5s

Suppose that the minimum propagation delay through the logic in the circuit
shown in Figure 7.1.2 is 30 ns and the propagation delay through the flip-flops
is 10 ns. What range of input pulse widths will result in a correctly operating
circuit? Construct a timing diagram showing the timing relationship between
the various signals in the figure.

§ Other types of gates may also have Schmitt-trigger inputs.
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7.4.

7.5,

7.6.

7.7.

7.8.

7.9.
7.10.
7.11.

712,

7.13.

7.14.

7.15.
7.16.
7.17.

How much delay would be required in the outputs of the state flip-flops in the
model of Figure 7.1.2 to make the circuit operate properly if the input pulse
widths vary between 100 ns and 150 ns?

Construct a timing diagram for the circuit of Figure 7.3.1, assuming that the
circuit starts in state (Q, Qo) = (0, 0) and the inputs occur in the sequence
shown in Figure P7.5.

RN I N B SR—
5 -

Figure P7.5

Derive state diagrams and state tables for the multiply clocked sequential
circuits shown in Figure P7.6(a) and (b). Assume that A, B, and C are all pulse
inputs.

Construct timing diagrams showing how the circuits of Problem 7.6 respond
to the following input sequencies:

(a) AABA applied to the circuit of Figure P7.6()

(b) ABBCA applied to the circuit of Figure P7.6(b).

Design multiply clocked circuits to implement the machines shown in Figure
P7.8. Use SR flip-flops in the master rank. '

Repeat Problem 7.8 using edge-triggered D flip-flops in the master rank.
Repeat Problem 7.8 using edge-triggered JK flip-flops in the master rank.

Design the stepping motor controller of Section 7.4 using edge-triggered JK
flip-flops.

Suppose you are given a programmable logic array having 6 inputs and 8
outputs with 12 product terms. Show a PLA programming diagram similar to
that shown in Figure 4.4.5 that would implement the stepping motor control-
ler of Figure 7.4.4.

Show a PLA programming diagram for the implementation of the master-rank
inputs and the slave-rank clock shown in Figure 7.4.8 using the PLA device
described in Problem 7.12.

Derive the present-state—next-state tables, similar to those of Figure 7.4.5,
for an edge-triggered T flip-flop.

Repeat Problem 7.14 for an edge-triggered SR flip-flop.
Repeat Problem 7.14 for the XY flip-flop defined in Problem 5.11.

A circuit, which we will refer to as a pulse identify (PI) circuit, is to be
designed having four pulsed inputs, A, B, C, and R, and two outputs, X and Y,
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A B c
A B z Sy Sy 83, Z, -
5, S, 0 5| Sp 2y 5 Sy, 2,
S S, 1 S, - - S5, Z)
8, - 0 Sy S, - -
Next state Next state, output pulse
(a) (&)
A B z,
8, S, 5,, 2, 1
5 S, 55 0

Next state, output pulse
{c)
Figure P7.8

which are the outputs of two flip-flops. Design a circuit that will cause the
outputs of the flip-flops (X, ¥) to set to (00) if pulse R occurs, (01) if pulse A
occurs, (10) if pulse B occurs, and (11) if pulse C occurs. Use SR-type flip-
flops in the master rank for this problem.

7.18. Suppose you are given » pulse identify circuits as described int Problem 7.17

7.19.

7.20.

Design a circuit that will cause the ith P1 circuit to set in accordance with the
input that produces the ith pulse on the inputs A, B, and C after being reset tc
00 by a pulse on input R. For example, suppose that after a pulse occurs or
input R, three pulses occur on A, and two pulses occur on B, and one pulse
occurs on C. If another pulse occurs on input C, then the output of the
seventh PI circuit should set to 11 to reflect the fact that the seventh puls
among A, B, and C has occurred on input C. (Hint: Think of a counter tha
enables one P! after another upon occurrence of pulses on A, B, and C and i
reset to enable the first P1 on a pulse on R. Once all PIs have been set to thei
value, a table look-up, using a ROM, could be performed that decodes the
pulse sequence to open the lock of Section 7.5.1.)

How could you apply the ideas presented in Problems 7.17 and 7.18 to th
design of a combinational lock whose combination could be easily changed

Redesign the vending machine of Section 7.5.2 assuming that both dimes ans
nickels are accepted.
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7.21. Prove that all multiply clocked sequential circuits designed using JKX flip-flops
in the master rank can always be implemented by a design in which J = K =
1. (Hint: Consider a row in an excitation table in which one entry goes from a
0 to a 0 and another entry, in the same row, goes from a 0 to a 1. What must
always be the choice for J7)
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18.1

INTRODUCTION

In this chapter we examine a number of topics that are of special interest in
various areas of digital system design and application. In Section 8.2, for
example, we will look at networks of logic elements that can pass informa-
tion in either direction. Such elements are called bilateral elements and are
becoming more important in the design of CMOS (complementary metal-
oxide-semiconductor!) integrated circuits, especially at the VLSI (very
large-scale integration) level. In Section 8.3, we will introduce threshold
logic. Threshold gates are of special interest because they simulate some
types of neuron behavior and so are useful in the simulation of neural net-
works. Sections 8.4, 8.5, and 8.6 will deal with special methods by which
complex switching functions can be implemented. First, we will look at a
method for representing a switching function in a form other than the simple
SOP or POS forms. These alternative representations can often reduce the
amount of hardware required to implement a given function. We will next
examine a class of functions called symmetric functions, which occur fre-

I Another translation of this acronym is **complementary metal-oxide-silicon."
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quently in real-world designs. The recognition of symmetric functions is
important, since they can be implemented in some very economical ways
using either bilateral elements or gates. Finally, we will take a closer look at
iterative networks, which were first discussed in Chapter 4.

BILATERAL NETWORKS

bilateral
device

In Chapter 4 we introduced the logic gate as a physical device used for the
implementation of switching functions. In the gate, information can flow in
only one direction: from input to output. in a bilateral device, however,
information can flow in either direction, although there is generally a prefer-
ence. The classic bilateral device used for switching function implementation
has been the relay. Such circuits have been, and, to a lesser degree, still are,
prevalent in telephone switching systems, which, of course, were the sys-
tems that prompted the development of switching algebra. Although the use
of relays is declining, the use of MOS transistors, which are also bilateral
devices, is increasing in the design of VLSI systems. Thus, it is important to
understand some of the principles and incumbent problems associated with
bilateral devices.

The basic model of a bilateral device is shown in Figure 8.2.1(a). In this
model, an information path exists from A to B, or vice versa, which can be
enabled by the control signal C.? The control line effectively turns the flow of
information through the device either on or off. Figure 8.2.1(b) shows these
signals as they exist in a relay. In operation, a current supplied to the relay
coil at C produces a magnetic field that pulls the contact labeled A into the
contact labeled B and thus closes the circuit from A to B. If no current flows
in C, a spring pulls contact A up and away from contact B, thus opening the
circuit from A to B. In the case of the NMOS transistor shown in Figure
8.2.1(c), a positive voltage applied to the control, or gate, line C will cause
current to flow in the circuit AB. If the voltage at C is 0, then the circuit AB
will be open and no current can flow. Figure 8.2.2 shows the three types of
bilateral elements most commonly encountered. This figure shows for each
the symbol, the relay arrangement, and the CMOS equivalent® of the relay

? The information referred to here is usually represented by a current flow. Other physical
mechanisms exist for carrying information, such as pressure or voltage.

1 CMOS involves the integration of both PMOS and NMOS transistors on the same piece of
silicon. Although the behavior of these transistors is not exactly equivalent physically to the
corresponding relay circuit shown in Figure 8.2.2, the logical behavior is the same. The
bibliography at the end of this chapter gives a number of excellent references to the design of
digital circuits using MOS and CMOS technologies.
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A O0———

A ——— Controt ——8 B O'J AOTCB

(a)

(b}

Figure 8.2.1 Model (a), relay equivalent {b), and NMOS transistor implementa-
tion of a bilateral device.

A

o

oo oo o—f
A i Lo
A

O G S I

o4
ERE R
1 L
S

Figure 8.2,2 Three common bilateral elements: {a) normally open; (b] normally
ciosed; (c) transfer connection. First row, symbol; second row. relay
implementation; third row, CMOS transistor implementation.
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implementation. In what follows, we will discuss bilateral networks in terms
of relay contacts simply because they are much easier to understand. in all
cases, the CMOS equivalent circuit can be derived using the equivalences
shown in the figure.

The basic three types of bilateral elements—normally open, normally
closed, and the transfer element—as shown in Figure 8.2.2, can be combined
in various ways to produce the necessary logical operations required to
implement switching functions. Consider, for example, the relay circuits
shown in Figure 8.2.3. In the circuit shown in part (a), we easily observe that
the light L will be on if switch A, which is normally open, is closed and
switch B, also normally open, is closed. Similarly, in Figure 8.2.3(c), the
lamp will be lit if either switch C is closed or switch D is closed. The series
connection of switches, therefore, corresponds to the AND function, and the
parallel connection of switches corresponds to the OR function. The NOT
operation can be thought of as a switch that is normally closed and, when
thrown, opens up so that the circuit is broken. This is shown in Figure
8.2.3(b) and (d). The transfer contact is useful for implementing the exclu-
sive-OR function, as shown in Figure 8.2.3(d). This connection is precisely
the one used to wire ‘‘two-way'’ switches in homes (i.e., two switches at
different locations which can individually control a single light}.

Combinations of series and parallel circuits can be used to implement

A B A
f}——l |
-:a) Serie_s = ANDT (b) I:Ormally closo:rl-r= NOT
i i
Ly [ L
— A B L

(¢) Parallel = OR (d) Transfer contacts = exclusive OR

1
L

Figure B.2.3 AND, OR, NOT, and exclusive-OR switch connections.
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¥ b
— a b
i T
A +— B ] ¢ ]
d 3 ___", L*F
d e
I’_d (b)

(a)

Figure 8.2.4 Series-paraliei implementation {a) and reduced network (bridge)
realization (b} for the function given by Equation {8.2.1).

arbitrary switching functions. For example, Figure 8.2.4(a) shows the series-
parallel network that implements the function

fla, b, c,d) = ab + acé + de + dcb 8.2.1)

= a{b + ¢F) + d(Z + cb) (8.2
This can easily be verified by listing all of the paths that exist from A to B and
summing the result to produce Equation (8.2.1).

The implementation of Equation (8.2.1) given in Figure 8.2.4(a) requires
that three of the switches, &, ¢, and e, have two contacts each, since these
variables appear in two different parts of the network. Obviously, a switch
having two pairs of contacts is going to be more expensive than one having
only one pair. Figure 8.2.4(b) shows a non-series-parallel implementation for
this function, called a bridge network, which requires that each switch have
only one pair of contacts. Clearly, the implementation in part (b) is better—
simpler—than that of part (a). But how do we find such an implementation?

To investigate the question of how we might reduce the number of
contacts in a series-parallel network, let us consider first the implementation
of the function

Tw, x,¥,2) = th“’ wy + xyz (8.2.2)
= wiXx + y) + xyz

A series-parallel realization for this function is shown in Figure 8.2.5(a).
In this realization, we can observe that the two occurrences of switch y share
a connection at the right side. It would seem reasonable that the bottom
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—
|
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' (b)

Remove
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=l

.

ﬁ_

(a}

Figure 8.2.5 Reducing a series-parallel realization by muitiple use of contacts:
fa) contacts that can be shared; {b) reduced network.

switch y could be removed if a connection was made between points 1 and 2
in the figure. The resulting, reduced network is shown in Figure 8.2.5(b). To
verify that this reduced network still represents the original function, we
need only list the product terms corresponding to all possible paths from left
to right. These are the following: wx, wy, xyz, and xz¥, the latter of which is
equal to zero. In this example, since the OR of all of these paths yields the
original function, the reduced network realizes the given function. However,
if the original equation had been

T(w, x, ¥,2) = wx + wy + xy2

(8.2.3)
= wi{x +y) + xyz

a problem would exist with the reduced implementation, since the path
xz¥ = 0, in the original realization, would now become xzx = xz, which is not
a product term in Equation (8.2.3). In this case, sharing a contact introduces
a sneak path which generates a term not in the original expression. Thus, the
removal of one of the y contacts would not be possible.

Putting these ideas together, the process of realizing a switching func-
tion with relay contacts involves basically the following five steps:

Step 1. Write the expression in a minimal SOP (or POS) form.

Step 2. Factor the expression to reduce the number of literals as much as
possible.*

4 We will look at some aspects of this problem in Section 8.4, where we deal with functional
decomposition.
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Step 3. Implement the factored expression i a series-parallel form.

Step 4. Eliminate the occurrence of multiple contacts that share a connec-
tion by removing one of the contacts after the unshared connections

are connected.

Step 5. Check for sneak paths by writing the equation for the circuit just
formed. If sneak paths exist, remove them by reinserting the appro-

priate contact removed in step 4.

An example will illustrate this process. Suppose we are required to
implement the function

G(a, b, ¢, d) = ad + bed + bed

— - 2.4
d{a + bc) + bed ®.2.4)

Equation (8.2.4) gives the original SOP representation required by step 1 and
the factored form required by step 2. Figure 8.2.6(a) shows the series-parallel
realization for this reduced expression. In this realization, the order of the
literals in the series circuit for bcd is modified so that the two ¢ contacts can
share a connection and so the contacts 4 and 4 can be implemented as a
transfer contact. After elimination of the bottom c¢ contact, a reduced net-
work is created as shown in Figure 8.2.6(b). It can be verified, by listing all of
the paths from left to right, that the resulting realization does yield the given
function. Note, also, that this realization requires two simple contacts and
two transfer contacts. If the contacts labeled 4 and & in the bottom series
connection in Figure 8.2.6(a) were reversed, the resulting network would
require two separate switches for d and 4 and two switches for b and &
{why?).

a
—il
ir

A
o= A
.

d b e 1l
L i
(b)
(a)

Figure B.2.6 Implementation for G{a, b, ¢, d) of Equation (8.2.4): {a} original
series-parallel implementation; {b) reduced, bridge realization.
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1
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Figure 8.2.7 Reduction of the network of Figure 8.2.4: (a} original series-parallel;
[b) partially reduced form.

Let us now go back to the network given in Figure 8.2.4(a) and see how
we can get the reduced version shown in Figure 8.2.4(b). We see in part (a)
that both pairs of contacts b and  have a common connection, and so one of
each may be eliminated as indicated in Figure 8.2.7(a) by connecting point |
to point 2 and point 3 to point 4. After we remove the two extra contacts, the
network of Figure 8.2.7(b) is generated. Note here that the two occurrences
of contact ¢ now are in parallel, and so one can be removed forthwith,
yielding the circuit shown in Figure 8.2.4(b).

This section has only scratched the surface of bilateral switching net-
work design. It does, however, indicate some of the processes required in
the design and, at least, one of the problems—sneak paths—that can arise in
attempting to reduce networks of switches or any other network of bilateral
elements. There is extens: e literature in which further details are given.
Some references to it are given at the end of this chapter.

THRESHOLD LOGIC

In a sense, a threshold gate is a generalized logic gate, for instead of realizing
a simple operation such as AND, OR, or NOT, a single threshold gate can
realize fairty complex switching functions. For example, a single threshold
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gate can realize the function
f(A,B,C,D,E)=AB + AC + ADE + BCDE (8.3.1)

Obviously, if a single gate can realize functions as complex as this, there is
certainly some economic advantage in using threshold gates to realize arbi-
trary switching functions. This, of course, was one of the principal reasons
for the early interest in gates of this type. In fact, at least one computer using
this technology was built in the 1950s and 1960s. For numerous reasons,
some of which will become apparent as we proceed, the anticipated eco-
nomic advantages of threshold logic were never realized. However, because
a threshold gate has properties similar to those of neurons, an increasing
interest has developed in the past few years in their potential applications to
adaptive control systems, learning automata, and pattern recognition.

Before defining a threshold function, let us first define the following sets
of binary n-tuples. Let f(x) = flx;, x>, . . . ,x,)bea switching function on
n variables. Then define the sets

Af) = {a|f@ = 1} 8.3.2)
B(f) = {b|f(b) = 0} (8.3.3)
D(f) = {d | f(d) is unspecified} (8.3.4)

where a, b, and d are binary a-tuples or binary assignments on the variables
of f. The set A(f) is simply the set of all true vectors of f; the set B( )
represents the set of all false vectors of f; and the set D(f) is the set of don’t
care vectors. Using these three sets of binary r-tuples, we can now define a
threshold function.
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We can think of a threshold function in a geometric way if we recognize
that the set of points which satisfy the equation

Wixg + waxy + 0 s cwx, =T (8.3.7)

lie on a plane in Euclidean n-space. Thus a switching function is a threshold
function if an n-dimension hyperplane can be found that separates the true
vectors from the false vectors. For this reason, threshold functions are also
often referred to as linearly separable functions. This geometric interpreta-
tion can easily be illustrated. As an example, Figure 8.3.1 shows a 3-cube in
which the vertices are.the eight possible binary 3-tuples. Shown also in this
figure is a plane separating the vectors A( £) = {(101), (100), (000)} from the
set B(f) = {(010), (001), (011), (110), (111)}. The function thus defined,
namely, f(x, X3, X3) = x| X2 + X2X3,is & threshold function with a structure,
satisfying inequalities (8.3.5) and (8.3.6), of [1, =2, —1; 0].

Before we proceed, we need to make some modification in our notation
to avoid confusion later. Since the subject of threshold functions involves
both the logical OR operation and the arithmetic sum, we will need some
distinctive notation to differentiate between the two. For this purpose, in all
that follows in this section only, we will use the symbol v to represent the OR
operation and + to represent the arithmetic sum. Thus A v B will be taken to
be the logical OR of switching variables A and B. This use of v for the OR
operation is classic.

Before examining some of the properties of threshold functions, let us
take a look at one of the possible physical implementations of a threshoid
gate. A threshold gate is a very simplé device to implement, as is illustrated

(i (110}

(100 €

(o1 - 010

(001) (000)

Figure 8.3.1 Hyperpiane separating the true and false vectors of the function
Xy f-Yz + 22}3.
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Figure 8.3.2 Simple two-input threshold gate.

by the two-input gate shown in Figure 8.3.2. In this example, the output
transistor will be turned on, causing the output voltage V, to go to zero, if the
transistor base voltage, Vj, is greater than zero. * The transistor will be off,
producmg an output voltage of E; , if Vis negative. To determine under what
conditions this will occur, we first disconnect the transistor and the diode
and then write the node equation at the base of the transistor,

L, h b v B
VB(RT R,+R2) RYR R (8.3.8)

from which we see that the base voltage will be positive if

Vi,V B
Rl + R, = R; {8.3.9)

and will be negative otherwise. Inequality (8.3.9) can be interpreted as com-
paring a weighted sum of input voltages to a scaled output, threshold voltage.
If the weighted sum of the inputs is greater than the threshold value, then the
transistor turns on; otherwise, it stays off. Comparing inequalities (8.3.9) and
(8.3.5), we see that, for this gate, w), = 1/R;, w; = 1/R,, and the threshold
T= E|/RT. .

5 Actually, the transistor will turn on if V} is greater than about 0.6 V. However, this fact does
not materially change the following analysis. {
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8.3.1 Unate Functions

Before we investigate some of the properties of threshold functions and
methods that we can use to determine whether a given function is linearly
separable, let us first take a look at a class of functions that are very impor-
tant in the study of threshold logic. These functions are referred to as unate
functions and are defined as follows.

From this definition, the following two lemmas naturally arise.

Lemma 8.3.1
Let f(x) be positive (negative) in the variable x;. Then f(x) may be factored as

f@=xfivh (f&x)=xfivf) (8.3.10)

where f; and f; are functions independent of x; and where f> implies f;,
denoted £, = fi. '

Proof If f(x) is positive in the variable x;, then the factorization is possible,
by Definition 8.3.2. Consider now the second part of the theorem. We say
that £ = f, if any assignment of the variables making f; = 1 also makes f, = 1.
Now, if we can find a factorization of the form of Equation (8.3.10) and if b
does not imply f;, then we can obtain the required implication as follows:

f® =xfivh=x{fivRvh=xfivh

where f; = fi v /2. Clearly, if f; = 1, then so also will f; = 1 and we have found
a factorization as specified in the lemma. QED

An easily proved converse to Lemma 8.3.1 exists and is given as Lemma
8.3.2:
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Lemma 8.3.2

Let f(x) be a switching function on n variables. Then f(x) can be factored as
f) = xfivXifs (8.3.11)

where f; = fix | 1 = x;) and f» = f(x | ¢ — x;). (This principle is usually
referred to as the Shannon decomposition theorem.) If = f1 (if fy = f>), then
f(x) may be written as

f&xy=xfivh (8.3.12)
(fx) = fivXf) (8.3.13)

The next theorem and its corollary are also easily proved, and so the
proof will not be given here but will be developed in problems at the end of

the chapter.

Theorem 8.3.3

A necessary and sufficient condition for a switching function to be unate is
that all of the function's prime implicants share a common minterm.

Caroltary 8.3.4

The minimal SOP expression for a unate function is unique. Another way of
saying this is that all of the prime implicants of a unate function are essential.

From these results, we can determine whether a function is unate sim-
ply by finding a minimal SOP expression for the function and checking to see
that it satisfies the definition, or by finding the prime implicants and looking
for a common minterm. Take, for example, the function

f(xh X2, X35 -x4) = Z m(31 6! ?s lle 13’ 145 ]5) (83.14)

The prime implicants for this function are 13, 15(2) and 3, 7, 11, 15(4, 8) and
6, 7, 14, 15(1, 8), which clearly have the minterm 15 in common, and the
function is, therefore, unate. The minimal SOP expression for this unate
function is

Flxy, Xz, X3, Xg) = X2X3 V X3Xa V X1X2Xs (8.3.15)
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As we shall see in a moment, all threshold functions are unate. Unfortu-
nately, not all unate functions are linearly separable. In fact, the function just
given in Equation (8.3.15) isnota threshold function, even though it is unate.

8.3.2 Basic Threshold Function Properties

Let us now examine some of the properties of threshold functions. We will
begin with two results that show how the signs of the weights and threshold
are related to complementation of variables and functions.

Theorem 8.3.5

Let f(x) be a threshold function with structure [w; T1. Then the function
f(x| %, — x;) (the original function with variable x; replaced by x; everywhere)
is a threshold function with structure [w;, wa, . . ., —Wi, . . ., Wy}
T — w;l.

Proof The proof follows from the observation that substituting X; for x;
everywhere is equivalent to substituting 1 — x; for x; in all of the inequalities.
Thus we have

wix, + 0+ wll —x)+ - c+wx, =T

for all x in A(f), and

wix, + -+ will —x) T+ et wx, =T -1
for all x in B(f); which can be rewritten as

W o (mwx w2 T W
for all x in A(f), and

wix + o (mwx F Fwx, = (T—wy) —

for all x in B(f). From these last two inequalities, we se¢ that the resulting

function is a threshold function with a structure found by simply replacing w;
by ~w;and Tby T — w;. ‘ QED

As an example, consider the function

FX) = x; v x2%3 (8.3.16)
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which is a threshold function having a structure [2, 1, 1; 2]. By Theorem
8.3.5, the function

g(x) = x, v Xhx3 (8.3.17)

must also be a threshold function, with a structure {2, —1, t; 1]. This can
easily be verified by finding all of the assignments on x;, x2, and x; that make
the sum 2x, — x; + x3 = |. The resulting assignments are (100), (110), (101},
(111), and (001), from which the function having these as true vectors is just
the one given in Equation (8.3.17).

Theorem 8.3.6

If £(x) is a threshold function on # variables with a structure [w: T7, then f(x)
is also a threshold function, with structure [—w; 1 — T1].

Proof If we multiply the inequalities (8.3.5) and (8.3.6) of Definition 8.3.1 by
—1, we obtain

—w-a(j) = -T for all a(j) in the set A(f)
and
-w-b)=1-T for all b(k) in the set B(f)
These inequalities correspond to a new threshold function g(x) having a

structure {—w; 1 — T, in which A{g) = _B(f) and B(g) = A(f). But B(f) =
A(f) and A(f) = B(f), and so g(x) = f{(x). QED

As an example, consider the threshold function given in Equation
(8.3.16). The complement of this function is

f(x) = X%, v X3) | (8.3.18)

which, by Theorem 8.3.6, must also be a threshold function with structure
[-2, =1, —1; —1]. The reader should verify this result by setting up the
appropriate inequalities and showing that they are all satisfied.

Notice that all of the example threshold functions given to this point
were unate. What we will show now is that this is a general property of
threshold functions. Since the property of unateness is a very easy property
to identify, it can be very useful in identifying which switching functions
cannot be threshold functions. This property, unfortunately, cannot be used
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to determine whether a given function is a threshold function, as we shall see
shortly.

Lemma 8.3.7

If f(x) is a threshold function with structure [w; T), then fix | 1 — x;) isa
threshold function with the same structure except that w; = 0 and the new
threshold equals T — w;. The function f(x | 0 — x;) is also a threshold
function, with the same structure as f(x) except that w; = 0 (the new thresh-
old is the same as the old, in this case).

Proof The proof of this lemma follows directly from the definition of a
threshold function (Definition 8.3.1) when we simply plug x; = 1 and x; = 0
into all of the inequalities. Thus, for example, as a result of plugging x; = 1
into the inequalities, the inequality

wx, + o wxt ot wx, =T
becomes
wixy oo )+ WX, = Wi o <+ (Ox; + wy)
+- o +wx, =T
or, rearranging,
wix; + o+ 0x - s wx, =T —w QED

An example will help to illustrate this result. Consider the threshold function
fX) = x /X2 v x X3 v X X v XaX3 Xy (8.3.19)

whose structure is [3, =2, 1, —1; 1]. From Lemma 8.3.7, the function f(x | 1
— x,) is a threshold function whose structure must be [3, —2,1, 0;: 2]). To
verify this, all we need do is to check the appropriate inequalities as follows.
First, we note that ‘

fx| 1= x) = x5 vxx = gx, x, X3) (8.3.20)

which by the lemma is supposed to be a threshold function with the just cited
structure. The true vectors of g are (ignoring variable x,, which have been
assigned the permanent value of 1)

A(g) = {(100), (101), (111)}
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with the false vectors being the remaining five. Thus, the inequalities re-
quired by Definition 8.3.1 become

W, =T  (100)
wy + wy=T  (101)
wi o+ watwi=T (11D

and
w; + ws =T7T-1 (110)
wy + wy =T — 1 0in)
W, =T-1 (010)
wy=T—=1 (001
0=T-1 (000)
These inequalities are readily verified by substituting w) = 3, wy = =2, w3 =
l,and T = 2.

We can now present and prove the statement made earlier that all
threshold functions are unate.

Theorem 8.3.8
Let f(x) be a threshold function on n variables. Then f(x) is unate.

Proof Assume that f(x) is a threshold function with structure [w; T]. With-
out loss of generality, we can factor f as

f =x.fivih

where f; = f(x | 1 = x,) and f3 = f{x | 0 = x,) are functions independent of the
variable x;. From Lemma 8.3.7, f; is a threshold function with a structure
[0, wa, . . ., wy; T — wy] and f; is a threshold function having structure
[0, w>, . . ., w,; T]. There are now two cases to consider:

Case !. Assume that 7= T — w,. Now if a is a true vector of f5, then since
wyay + wiaz + - - - + wya, = T =T — w;, a must also be a true
vector of f, and therefore f, = f.

Case 2. Assume that T < T — w,. Then if a is a true vector of f|, then since
waa, + wias + -+ - + wya, = T — wy > T, a must also be a true
vector of f; and so f; = f>.
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Now, by Lemma 8.3.2, if case 1 holds, then fcan be factored as f(x) x, fi v fr.
If case 2 holds, then f can be factored as f(x) = f; v X f,. Thus, since, for all
variables, f is positive, in case 1, or negative, in case 2, f(x) is unate. QED

8.3.3 Determination of Linear Separability

The fact that all threshold functions are unate makes it easier to determine
whether a given switching function is a threshold function or not. First, if the
given function is not unate, then it cannot be a threshold function, by Theo-
rem 8.3.8. Second, if it is a unate function, we may consider, in our further
determination, only the positive version of the given function, where the
positive version is just the given function with all variables appearing uncom-
plemented. We can do this because of Theorem 8.3.5. In fact, as the follow-
ing lemma, stated here without proof, shows, this may significantly reduce
the number of inequalities that need to be solved to determine whether a
particular function is a threshold function or not.

Lemma 8.3.9

Let £(x) be a threshold fuaction with structure [w; T]. Then if f(x) is positive
(negative) in variable x;, then a structure exists in which w; > 0 (w; < 0).

Basically, this lemma states that given a positive threshold function, a struc-
ture exists having all positive weights.

Using the results we have to this point, let us explore how we would
determine whether a given switching function is a threshoid function or not.
Consider, for example, the function

flx1, x2, x3, x0) = % m(9, 12, 13, 14, 15) (8.3.21)

First we need to derive a minimal sum of products expression for this func-
tion. In this case, this is easily done and produces the function

Flxy, Xa, X3, Xg) = X1 X2 Vv X1 XaXs (8.3.22)
which is clearly unate and so could represent a threshold function, although
this is not yet guaranteed. The next step in the determination of linear sepa-

rability is to make the unate function positive. Thus Equation (8.3.22) be-
comes

Silxy, x2, xé, Xq) = X X2V X1 X3X4 (8.3.23)
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We can now set up and solve the inequalities corresponding to this equation
that are stated in Definition 8.3.1. If a solution to the set of inequalities
exists, then f; is a threshold function and we will have found its structure.
Because of Theorem 8.3.5, f must also be a threshold function with the
structure determined by that theorem.

Because the function f, of Equation (8.3.23) is a completely specified
function on four variables, there will be a total of 16 inequalities in the set to
be solved:

wi+w, +wy+tw, =T (11n

Wy + wa + wy =T (1110) ]

W, + Wi +wy =T (1101) (8.3.24)
W, + Wy =T (1100) <«

W +wy+w, =T (1011) «

which correspond to the true vectors A(f1); and

w, + wy =7T-1 (1010) «
W +wysT -1 {1001) «
Wy =T-1 (1000)
watwy+wg=T -1 (0111} «
T =T-1 (0110}
W +wa=T-1 (0101) (8.3.25)
Wy =7T-1 (0100)
wy +w, =T =1 (0011)
W =T-1 (0010)
wy=T—1 (0001)
0=T-1 (0000)

which correspond to the false vectors B(f)).

Although there are 16 of these inequalities, we need not base our solu-
tion on all of them. In fact, we can save ourselves a great deal of effort if we
make a few simple observations. First, notice that if the inequalities corre-
sponding to assignments (1100) and (101 1) (indicated by arrows in inequali-
ties (8.3.24)) are satisfied, then the remaining inequalities of (8.3.24) will be
satisfied, since all of the weights are positive, by Theorem 8.3.5. Thus, we
need to use only two of the five inequalities corresponding to the true vectors
of f,. Second, notice that if the inequalities corresponding to false vectors
(1010), (1001), and (0111) (again, marked by the arrows) are satisfied, then so
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also will be the remaining inequalities of (8.3.25), again because we know
that the weights will be positive. Thus, we end up with a set of 5 inequalities
that need to be solved rather than the original 16.

Given the function f;, it is easy to determine at the outset what this
minimal set will be, on the basis of the following definitions.

For example, let a = (110101), b = (100101), and ¢ = (011001). Then, by
Definition 8.3.3, a > b, but ¢ is not comparable to either a or b.

In the above example, the vectors (1100) and (1011) are minimal true vectors
and the vectors (0111), (1001), and (1010) are maximal false vectors of f,.
On the basis of these definitions and the argument given in the above
example, it is easy to see what we need to solve only the set of inequalities
corresponding to the minimal true vectors and maximal false vectors of a
positive function f in order to determine whether it is or is not a threshold
function. Thus the inequalities that need to be solved for the above example

are the following:

Wy + wa =T (1100)
e +wy+we=T (1011)
W + Wy =T-1 (1010) (8.3.26)
W) +we=sT— 1 (1001)
Wyt ws+wy=<T—1  (0111)

A conceptually simple approach to solving systems of linear inequalities
is by variable elimination. For example, we can eliminate the variable T in
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the inequalities of (8.3.26) by observing that if we use the first

inequalities, we obtain the inequalities
w+wy =T =w,
Similarly, we arrive at the set

w+w=Tz=w
w+w,=T=w,

W|+W3+W42 = W

Upon reducing these, we find that

v

W3+]
W4+1

Wo

v

W2

W

vV

1
1
W2+l

Wy

v

W3

v

L
which can be further reduced to

W3+i->—2
wy+ 122

¥
v

5
VoW

1
1

=
=
v

3
(Y

W)

+ + 4+ + +

W3+1

wy + 1
wy + wy + 1
wy + 1
wy + 1
ws + wy 1

W3+W4+]

W3+W4+123

W2+122+l=3
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and third

(8.3.27)

(8.3.28)

(8.3.29)

The inequalities in group (8.3.29) are certainly consistent and can be
satisfied by the weights (wy, wy, w3, wy) = (3,2, 1, 1). If we plug these values
into set (8.3.27), we obtain the result that 5 = T = 5. Thus, the functionf;is a
threshold function with a structure of {3, 2, 1, 1: 5], and by Theorem 8.3.5,
the original function given in Equation (8.3.21) is a threshold function with

structure 3, 2, —1, 1: 4}.
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8.3.4 Final Comments on Threshold Functions

This introduction to threshold logic has been, by necessity, brief. Entire
books have been written on the subject, two of which are cited in the bibliog-
raphy at the end of the chapter. One of the reasons that threshold logic has
never been extensively used is seen in the difficulty of determining whether a
given function is a threshold function or not. At present, there is only one
more or less practical way in which this can be done, and that is by solving
the system of linear inequalities associated with each function in question.
We have shown here one approach to this process that is more or less
suitable for “*hand computation.”” For more complex functions, the use of
linear programming makes it possible for a computer to quickly and easily
carry out the solution of the required inequalities. Other approaches have
been investigated, but none, to this point, are easily carried out and guaran-
tee the identification of all threshold functions. There are some methods
which can easily be carried out by hand or computer but which do
not guarantee the identification of all threshold functions. Problems 8.11,
8.12, and 8.13, at the end of the chapter, explore one such method. Putting
this in another way, there exist no ‘‘simple’’ necessary and sufficient con-
ditions to determine whether a given switching function is a threshold fun-
ction—this can only be done by solving the given system of linear inequal-
ities.

A second difficulty that arises with threshold logic is that of determining
a realization, using the minimal number of threshold gates, for switching
functions that are not threshold functions. One approach which works, but
requires extensive computation, is to use integer linear programming. The
bibliography at the end of the chapter gives some references to the subject of
linear programming and integer linear programming formulations that can be
used for the general determination of threshold realizability.

For these reasons and others, threshold logic is not extensively used in
the design of digital systems today. However, as we mentioned in the intro-
duction to this section, a threshold gate, in some respects, ‘‘looks like’’ a
neuron. This analogy comes about because the output of a neuron “*fires,”” or
is asserted, if the weighted sum of the inputs is ‘‘great enough.”” Neurons are
generally adaptive entities, in that their output behavior can be modified by
past experience. This can be done by changing the point at which the
weighted sum of inputs causes the output to become asserted, and so a
neuron can change its response behavior. Threshold gates are capable of
doing exactly the same thing—their threshotd, too, can be altered—and, as a
consequence, are becoming more and more interesting to investigators in-
volved in adaptive systems research.
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(]84
FUNCTIONAL DECOMPOSITION

The simplification procedures presented in Chapter 4 resulted in a sum of
products or a product of sums expression which could then be implemented
by a “two-level’” gate network. For an SOP expression, the first level con-
sists of AND gates to form the product terms and the second level consists of
an OR gate to form the sum. This two-level realization is always possible.
However, such an approach may require more ICs in the final realization
than might be necessary when other devices, such as PLAs or muitiplexers,
are used. As we saw in Chapter 4, a programmable logic array device (PLA)
can be used to implement some very complex functions on a set of » vari-
ables with only a single integrated circuit. ROMs and (as indicated in Prob-
lem 4.13) multiplexers can also be used in a similar manner. But what hap-
pens if the function to be implemented is a function of more variables than
the PLA, ROM, or MUX can handle? We will investigate one approach to
this problem in this section.

8.4.1 Using a Multiplexer (MUX] to
Implement General Functions

Let us begin by taking a brief look at how we can use a multiplexer to
implement general functions. Figure 8.4.1 shows the 4-line to 1-line MUX
designed in Section 4.3 and its truth table. Consider now how we might
implement the function

fx,y,2) =xy +y2Z (8.4.1)
which is just the function required in Problem 4.16. Recall from Equation

(4.3.5) and the truth table of Figure 8.4.1(b) that the output of the MUX is
given by

Y= EIEOIO + §|So[1 + 513_012 + SlSﬂI3 (842)
In general, we can write an expression of three variables as

g(a, b, C) = EE(E_}:(O + CK]) + ab(EK2 + CK3) (8 43)
+ ab(cK, + cKs) + ab(cKg + cK;7) o

where the K, are constants determined by the value of the function for the
corresponding minterm. Now, comparing Equations (8.4.2) and (8.4.3), we
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5y S Iy I I I3 Y

0 0 0 - - -

0 0 1 - - - 1
0 1 - 0 - - 0
0 1 - 1 - - 1
1 0 - - 0 - 0
1 0 - - - 1
i 1 - - - 0 0
1 1 - - - 1 i

(a) )

Figure 8.4.1 A 4ine to 1-fine MUX {a) and its defining truth table (b).

see that to implement a function of three variables using a 4-line to 1-line
MUX, we need to assign two of the variables to the select inputs S; and §,
and associate the third variable with the inputs £;. We may observe that the
terms in parentheses in Equation (8.4.3) take on one of the four values,
namely, ¢, ¢, 0, or 1, depending on the associated constants.® Thus we can
connect the inputs of the MUX eithertoa l,toa0,ortoacorc depending
on the function being implemented.

Let us now go back and look at the function f(x, y, z) given in Equation
(8.4.1), which is to be implemented using the MUX of Figure 8.4.1. First, we
need to decide which variables are to be associated with the select inputs S,
and S, . In this case, let us sety = §; and z = S. The reason for this is that x
appears in Equation (8.4.1) uncomplemented, whereas both y and z appear
complemented. Thus, we will not need the complement of x, and therefore,
no extra inverters will be necessary in the final implementation. Next, we
need to rewrite this function in the form of Equation (8.4.3). In this case, we

obtain
flx, v, 2) = ¥I(x) + ¥z2(x) + yz(1) + yz(0) (8.4.4)

Using this equation and the associations just mentioned, the implementation
of the function using a 4-line to 1-line multiplexer becomes as shown in

Figure 8.4.2.

6 A very interesting, and useful, method for plotting the factorization given in Equation (8.4.3)
in a two-variable Karnaugh map can be found in Chapter 3 of Fletcher (refer 10 the annotated
bibliography). Using the variable-entered-map technique described in this reference, each
entry in a two-variable map of ¢ and 4 contains either 1, 0, ¢, or C.
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fix, vy, )

Figure 8.4.2
MUX implementation of Equation
8.4.1).

Consider one more example before going on. Suppose we wish to imple-
ment the following function using our 4-input MUX:

g(A,B,C)=A+ BC + BC (8.4.5)

Since all of the variables appear in complemented form at least once in this
function, there is no particular reason to select one of the variables over the
other to be associated with the / inputs. Therefore, just for the sake of
discussion, let us associate the variable C with the / inputs and let A = §, and
B = S,. If we now plot this function in the map shown in Figure 8.4.3, we can
quickly identify what the function association is to be with each of the MUX
inputs. Specifically, the column A B must have an associated coefficient of

A

AB AB AB AB

00 01 11 10

0 1 1 1 0

PR

Iy H) I L«——C-0+C-1=C
\ \————E-!+C-O=E
Cr14+C1=1

Figure 8.4.3 Plot of the function of Equation {8.4.5} showing the MUX input
functions. '
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Flgure 8.4.4 Final MUX implementation of Equation {8.4.5).

C(1) + C(1) = 1. Similarly for column AB. Column AB, on the other hand,
has a coefficient of C(1) + C(0) = C, while column AB has a coefficient of
TO) + C)=C Thus =5 =15= C, and I, = C. The resulting
implementation is shown in Figure 8.4.4. _

These ideas are easily extended to jarger MUXs and to functions in
which the MUX inputs are associated with more than a single variable.
Problems at the end of the chapter investigate this a bit further. As we will
next see, we can sometimes cascade MUXs to implement particularly diffi-
cult functions, thus reducing the amount of hardware necessary to imple-
ment a given function.

8.4.2 Simpie Disjoint Decomposition of Functions

Devices such as MUXs, PLAs, and ROM:s can each be used to implement
functions on several variables. But what happens if the number of variables
required by a given function is greater than can be handled by the given
device? Suppose, for example, that we are given a function of five variables
and are asked to implement the function using a four-input MUX, if possible.
As an example, consider the function '

f(A, B, C, D, E) = DE + CD + ABDE + ACDE + BCDE

=3 m(l, 2,6 7,9 10,14, 15,17, 18, (8.4.6)
22, 23, 26, 27, 30, 31)

This function can clearly not be implemented with a single four-input MUX
unless we choose to make the inputs to the MUX functions of at least three of
the variables. In such a case, the MUX would be realizing the function given
in Equation (8.4.2) with the I,’s equal to some function of the remaining three
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variables. For example, if we were to let §; = D and §; = E, then the [;’s
would be functions of the form g,(A, B, C). We could, of course, realize each
of these functions using a separate four-input MUX. In general, all of these
g:'s will be different functions of the remaining variables. However, it may
happen that some of the g;’s equal others, or equal the complement of others,
or equal a constant 0 or 1. In such a case, the function—in this case, f{(A, B,
C, D, E)—can be factored as

A, B,C, D, E) = f(g(A, B, (), D, E) (8.4.7)

Such a factorization is termed a simple disjoint decomposition of f. We will
refer to the function g(A, B, C) as the independent function. Without loss of
generality, a simple disjoint decomposition is defined as a factorization of the

form
f(xl’ .. 9xﬂ)=f(g(xls = e . sxp)s xp‘rls LI vxn) (8°48)

where p and n — p are greater than or equal to 2.7 In the current example, if
we can factor f as in Equation (8.4.7), then we can implement f(A, B, C, D,
E) using only two MUXSs, one to implement g(A, B, C) and the other to
implement f(g, D, E). If we plot the function f as shown in Figure 8.4.5, a
very striking thing appears. In this plot, each of the rows represents a func-
tion of A, B, and C which is either equal to 0 or to 1 or to some function g(A,
B, C)or g(A, B, C). Thus, we see that f(A, B, C, D, E) does have a simple
disjoint decomposition in which

g(A,B,C)=AB+ C (8.4.9)
The original function can now be factored as

f(A, B, C, D, E) = (0()DE + (AB + C)DE

+ (AB + C)DE + ()DE 8.4.10)

A two-MUX realization based on this factorization is shown in Figure 8.4.6.

7 Every switching function, by the Shannon decomposition theorem, has a simple disjoint
decomposition of the form

f{xlv S R Xﬂ') = xl.fl(xlv ey -"’u) + -?Ifl)(xl ----- I”)

Thus, we are interested in simple disjoint decompositions in which the n and n — p, in
Equation (8.4.8), are 2 or greater,
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ABC

pEN_ 000 001 o1 010 110 Lit 101 100
00| o 0 0 0 0 0 0 0 |e—op
ol 0 0 ] 0 0 0 | | e 7450
| o 1 1 0 1 i | 0 |50
o] 1 ! ! 1 ! ! l b |

Figure 8.4.5 Plotof iA B C D, E) showing the simple disjunctive decomposi-
tion.

The general problem of determining whether a given switching function
has a simple disjoint decomposition s not an easy one. One approach, how-
ever, which is very straightforward, is to use a set of charts which give the
location of the minterms with respect to a given partitioning of the variables
into two groups of two or more variables each. Such a set of charts is

decomposition commonly referred to as a decomposition chart.® For functions of four vari-
chart ables, there are three subcharts in the set. These are shown in Figure 8.4.7,
along with the plot of the function

f(A, B, C, D) =2 m(0, 1, 11, 13, 15) (8.4.11)

In this plot, the 1s of f are shown circled. If a simple disjoint decomposition
for f exists, then in at least one of the subcharts, the rows or columns each
should be identifiable with the function 0, 1, g, or g, where g is the indepen-
dent function. From Figure 8.4.7 we see that the plot of f given in the
subchart corresponding to the partition AD and BC has rows satisfying this
requirement. In particular, the row corresponding to AD = 00 can be associ-
ated with the independent function

g(B, C) = BC (8.4.12)
as can the row corresponding to AD = 01. The row AD = 10, however, is
associated with the function 0. Finally, the row AD = 11 corresponds to the
§ In many texts, *‘decomposition charts’” also applies to the charts showing partitions having a

single variable, and in at least one book (Kohavi), a zero-variable chart is included in the
definition.




f{4, B, C.D, E}

Figure 8.4.6 Final two-MUX realization of A, B, C, D, E).

BD
10 11 AC 00 01 10 11
2 3 00 4 5
01| 4 5 6 7 o| 2 3 6 7
w| 8 9 10 o} 8 9 12
i n 14 1l o 14
BC
AD 00 ol 10 1
00
01
10
11

Chart showing simple
disjoint decomposition

Figure 8.4.7 Four-variable decomposition chart showing the plots of Equation
(8411}
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function (A, B) = B + C. Thus a simple disjoint decomposition exists for f
and is given as

flA, B, C, D) = ADg(B, C) + ADg(B, C) + AD(0) + ADg(B, C)

o (8.4.13)
= A(BC) + AD(B + ()

Let us now return to the five-variable function given in Equation (8.4.6).
Figure 8.4.8 shows f(A, B, C, D, E) plotted in two of the ten possible
subcharts of a five-variable decomposition chart. Figure 8.4.8(a) shows the
plot in terms of the partition ABC and DE. From this chart, we see that the

ABC
DE 000 001 010 (1191 100 101 110 111
00 0 4 8 12 16 20 24 28
01
10
11
{a)
CDE
AB 000 001 010 11 0] 31.4) 101 110 111
00 0
01 8
10 16
11 24

(b}

Figure B.4.8 Two possible plots of the function of Equation (8.4.6).
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first row corresponds to 0 and the third row to the function 1. The last row
can be associated with the function AB + C, which is just the independent
function given in Equation (8.4.9); and the second row is just the comple-
ment of this function. The resulting factorization is that given in Equation
(8.4.10).

Consider now the chart shown in Figure 8.4.8(b). Note that although the
rows of this chart cannot be associated with an independent function, its
complement, or the constant 0 or 1, the columns can. In this particular case,
we end up with a simple disjunctive decomposition of the form

f(A, B, C, D, E) = (CDE + CDE + CDE) + AB(CDE)
+ (ABYCDE) (8.4.14)

= DE + CD + (AB)CDE + (AB)}(CDE)

where the independent function is g(A, B) = AB.
There are, of course, many other forms of decomposition possible.
Some of these are explored in the references given at the end of the chapter.

SYMMETRIC

FUNCTIONS

As we saw in Section 8.4, it is sometimes possible to simplify the implemen-
tation of a function by using more than two levels of gates. One class of
functions which generally has simpler realizations if multiple levels of logic
are used is the symmetric function class, to be defined below. The implemen-
tation of symmetric functions is especially simple using bilateral devices in a
non-series-parallel, or bridge, network configuration. Further, such bilateral
implementations can easily be accomplished without introducing sneak
paths. The purpose of this section, then, is to introduce the concept of a
symmetric function. We will first introduce some basic definitions and prop-
erties of these functions. We will then show how we can determine whether a
given function is a symmetric function. And finally, we will show a non-
series-parallel network of bilateral elements that can be used to implement all
symmetric functions on n variables.

8.5.1 Basic Properties of Symmetric Functions

Before introducing the concept of a symmetric function, let us first define
some notation that will be useful in what follows.
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The purpose of this notation is to make it possible to refer to literals
rather than variables in defining a symmetric function.

Take, for example, the function

f(xy, %2, X3) = X1 X255 + 015X + XXX (8.5.2)

This function remains exactly the same function if we interchange, for exam-
ple, the variables x, and x,, as follows:

flxz, X1, x3) = X201 X3 + x02Xpx3 + XX X3 (8.5.3)
Any other permutation of literals x,, x;, and x; results in precisely the same

function as given in Equation (8.5.2), and thus f(x, xz, x3) is a symmetric
function of these literals.

Theorem 8.5.1

A necessary and sufficient condition that a switching function f(x,, xa,

... . x,) on n variables be symmetric on the literals x/', x¥, . . ., xJis
that it be definable by a set of integers M = {a, 42, . . . , @nf such that the
function takes on the value 1 when and only whena;,i=1,2, . . . ,m, of

the literals take on the value 1.

Proof First, assume that the function f is 1 if any a; of the literals are 1.
Clearly, any permutation of a, literals will not change the fact that the func-
tion is 1. Thus, a function is symmetric if it can be represented by the set M.

9 Some authors reverse this definition. See, for example, the Hill and Peterson text cited in the
biblicgraphy. The reason we choose the notation used here is that a vector of the form (100},
corresponding to the superscripts on the product term x1x3x9. produce a minterm x;52X;
which corresponds to the superscript vector.
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Next, assume that f is symmetric. Let b = (b, b,, . . . , b,) be an
assignment on the n variables for which fis 1, that is, for which f(b,, b,,
, b,} = 1. Assume that & of the n bits in this assignment are 1. Now a

permutation of the literals of symmetry amounts to a permutation of the bits
in the assignment b. Since such a permutation of bits in this assignment
cannot change the number of is, and since f is symmetric, & must be an
element of the set M. A similar argument holds for all other assignments
which make f = 1 and for which the number of 1s in the assignment differs
from %. Thus, a symmetric function generates the set M. QED

We will denote a symmetric function as Sy(x4', . . . , x%). For example, the
function of Equation (8.5.2) is a symmetric function which is 1 if any two of
its variables are 1 and so will be denoted as

flx, x2, x3) = Sa(xy, X2, x3) (8.5.4)

Another example will further illustrate the notation and the concept.
Consider the function

= ABC + ABC + ABC + ABC -
This function is symmetric with the set M = {2, 3}. To verify the symmetric
property, we would need to check the functions resulting from all possible
permutations of the literals A, B, and C; for example, the permutation (C, A,
B)— (A, B, C). Upon making the substitutions indicated in Equation (8.5.5),
i.e., replacing A by C, Bby A, and C by B, the resulting function would be

2(A, B, C) = CAB + CAB + CAB + CAB (8.5.6)

which is the same as given in Equation (8.5.5).

A number of properties of symmetric functions can be derived from the
definition and Theorem 8.5.1. Some of these, along with some simple exam-
ples, are given below without proof. Problems at the end of the chapter will
explore the validity of these results and will introduce some other interesting

results.

Theorem 8.5.2 .
Let Sy and Sy be two symmetric functions on the same set of » literals. Then

) Sy + Sv=35p where P=MWUN
(ii) SuSy = SQ where Q =MNN
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where the symbols U and I ~resent the set union and the set intersection,
respectively.

A simple example can be shown by considering the following functions
So. and S, 4, which are symmetric functions on the same set of four literals:

Sox + S14a= 38014
SoaS14 = 5

The reader should verify these identities by expanding both functions into

SOP expressions and then ANDing and ORing these expressions as indi-

cated.

Theorem 8.5.3

Let S, be a symmetric function on some set of # literals. Then
(Sym) = Sq

where M is simply the set of numbers in the range 0 to » that are not in the
set M.

For example, consider the symmetric function on four variables given above,
namely, So,. By Theorem 8.5.3, the complement of this function becomes

(So.1) = S23.4
Theorem 8.5.4
Let Splxf, x5, . . ., x/") be a symmetric function on the » literals x4l x32,
., x". LetM = {a,, @2, . . . , a). Then, without loss of generality,
n
Sw(x), x2, . LX) = xS X L xl)
+ NS0 - X, . LX)

where N={a, - 1l,aa— 1, ... ,a,~ 1}, in which 0 — 1 is ignored.

e 8 b crTa cad  pes
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As an example, the function

f(A, B, C) = S;AA, B, C)
= ABC + ABC + ABC + ABC
= A(BC + BC) + A(BC + BC)
= AS\(B, C) + AS,.(B, C)

(8.5.7)

8.5.2 Identification of Symmetric Functions

The identification of symmetric functions is not always easy. A simple,
brute-force approach would be to simply try all permutations of the variables
and observe the resulting functions. A far less exhaustive approach can be
found if we first understand some of the characteristics of these functions.

Let us begin by assuming that we are dealing with functions which are
symmetric in uncomplemented variables only. Actually, we can do this with-
out loss of generality, because any'symmetric function which involves com-
plemented variables can be transformed to a symmetric function of uncom-
plemented variables only by simply substituting new, uncomplemented
variables for the complemented variables. For example, the function g(A, B,
C) of Equation (8.5.5), which is symmetric in the variables A, B, and C, can
be converted to a function h(A, B, D) that is symmetric in the uncomple-
mented variables A, B, and D simply by replacing every C in Equation (8.5.5)
by D. The resulting function becomes

h(A,B,D)=g(A,B,C|D—C)
= ABD + ABD + ABD + ABD (8.5.8)
= $:3(A, B, D)

Now, let Sp(x1, x2, . . . , x,) be a symmetric function and let k be an

element of the set M. From the proof of Theorem 8.5.1, there must be (ﬁ)

minterms which have exactly &k 1s, where the notation (z) indicates the

number of combinations of »n things taken k at a time, which is defined as
follows:

(ﬁ) - a;"_n;'(—)ukn (8.5.9)



336

Chapter 8 Speclal Topics in Switching Theory

For example, the minterms for the function §,3(A, B, C) are just 001, 010,
100, and 111, which are the three minterms having one of the three variables
set to 1 and the one minterm having three of three variables set to 1. Note
also that the number of minterms for which A = L1is 2, which is the number of
minterms for which B = 1 and is also the number for which C = 1. In general,
the number of minterms in which a variabie equals 1 must be the same for all
variables. since the function is symmetric. We can summarize these facts by
listing the minterms, in binary form, in a table as follows:

A B C | Rowssm

0 0 1 |

0 1 0 1

1 0 0 1

1 1 1 3

2 2 2 (Column sum

The column sum in this table indicates the number of minterms for which the
respective variables (or, more generally, literals) are 1. The row sums are
used to count the number of occurrences of minterms having a specific
number of literals. In this case there are three minterms having a single
variable equal to 1 and one minterm having all three variables equal to 1. This
is, of course, precisely what is required for the function S;3(A, B, C).

Let us now apply these ideas to see whether the following function is
symmetric in its uncomplemented variables:

f(A, B, C,D)=32m(3,56,7,9, 10, 11, 12, 13, 14 (8.5.10)

We will begin our investigation by making up a table, as was done for the
function S,3(A, B, C) given above. This is shown in Table 8.5.1. This table
shows that the column sums for all of the variables are the same and so the
function may be symmetric. We need to check the row sums next to see that
they occur the correct number of times. In this table there are two types of
minterms: those having two 1s and those having three Is. If this function is

symmetric, then there must be (;) = 6 rows having a row sum of 2, and there

must be (g) = 4 rows having a row sum of 3. We can see from Table 8.5.1

that both of these conditions are satisfied and so this function must be sym-
metric and equal to

f(A, B, C,D) = $:5(A, B, C, D) (8.5.11)
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TABLE 8.5.1

Testing the function
fiA, B, C, D)

A B C D |Rowsum
0 0 1 1 2

0 I ¢ 1 2

o 1 1 0 2

o 1 1 1 3

I 0 0 1 2

1 0 1 ¢ 2

1 0 1 1 3

1 1 0 0 2
11 0 1 3

1 1 1 0 3

6 6 6 6 | Columnsum

The reader can easily verify this by writing out the function in minimal SOP
form and then permuting the variables in various ways.

Let us next consider the function g(A, B, C, D) shown in Table 8.5.2(a).
In this table, we see that all of the column sums are not the same, and thus we
know that if this function is symmetric, it is not symmetric in all of its
uncomplemented variables. We do not, however, at this stage have any
evidence to indicate that g is not symmetric in some set of literals. We may
note that this function consists of seven minterms. Thus a column sum of 4 in
this table can be made a column sum of 7 — 4 = 3 if the column is comple-
mented. By complementing the B column to produce the table shown in
Table 8.5.2(b), we obtain column sums of 3 for all of the variables. Now if the
row sums occur the requisite number of times, the function g will be a
symmetric function on the variables A, B, C, and D. In this case, we must

TABLE 8.5.2

Testing table for g(A. 8. C,. D)= 3 m{1,2. 4,7, 8,13, 14]

A B c D | Row sum A E C D | Rowsum
0 0 0 1 1 0 1 0 1 2

0 0 1 0 1 0 1 1 0 2

0 1 0 0 1 [} 0 0 0 0

0 1 1 1 3 0] 0 1 1 2

1 0 0 0 3 1 1 0 0 2

1 1 0 1 3 1 0 0 1 2

i 1 1 0 3 1 0 1 (] 2

3 4 3 3 Column sum 3 3 3 3  Column sum

(a) )



338

Chapter 8 Special Topics in Switching Theory

have (;) = 6 rows having a row sum of 2 and one row having a row sum of 0,

which is, in fact, the case here. Thus the function g(A, B, C, D) is symmetric
and equal to

g(A, B, C, D) = 8,,(A, B, C, D) (8.5.12)

The preceding example illustrates, in an indirect manner, one mecha-
nism for determining whether or not a given function is symmetric. Specifi-
cally, we have the following theorem:

Theorem 8.5.5

A switching function on n variables cannot be symmetric in any set of literals
if either (a) more than two column sums occur or {b) exactly two column
sums occur whose sum does not equal the number of minterms of the func-

tion.

The validity of this result follows from the fact that in either case, comple-
mentation of any set of columns cannot result in a column sum that is the

. same for all of the columns. With this theorem, we now have a very powerful

method to determine whether a function is not symmetric. This, unfortu-
nately, does not immediately simplify the job of determining whether the
function is symmetric.

Let us next consider the example shown in Table 8.5.3. We see in this
case that although the column sums are all the same, the row sums do not
maitch the requirements. In this case, that amounts to having one row with a
sum of 0, one row with a sum of 4, and six rows with a sum of 2. Although the
row sums are not correct, the function may still be symmetric in some set of
literals. Unfortunately, in this case, since the column sums are all the same,
we have no clue as to which variables need to be complemented. However,
Theorem 8.5.4 may be of some help here. First we will select an arbitrary
variable of k, say A, and then factor the function using the Shannon decom- -
position theorem to obtain :

h(4, B, C, D) = A(©, B, C, D) + Ak(1,B,C,D) (5.1

Now if the two functions #(0, B, C, D) and (1, B, C, D) are symmetric in the
same set of literals, then by Theorem 8.5.4 the original function A(A4, B,C,D)
is also symmetric. Table 8.5.3(b) shows the resulting plots. We see from this

&

plot that if we complement either column B or columns € and D, symmetric .;
functions will result. Complementing column B produces the plot shown in -




Section 8.5 Symmetric Functions 339

TABLE 8.5.3
Set of testing tables for the function hjA, B. C, D} = X m{0, 5, 6. 9. 10, 15]
A B C D | Rowsum A=0 A=
B
0 0 0 0 0 C D | Rowsum B C D | Rowsum
ot 0 1 2 0 0 0 0 0 0 I I
¢ 1 0 2 10 1 2 0 10 |
o 0 1 2 1t 0 2 I | 3
I 0 1 0 2
1 11 i 4 2 1 1 Column sum t 2 2 Columnsum
3 3 3 3 Columnsum (b)
(a)
A=0 A=
B C D | Rowsum B C D | Rowsum
P 0 0 1 1 0 1 2
o 0 |1 1 1 1 0 2
0 I 0 H o 1 1 2
I 1 ! Column sum 2 2 2 Column sum

()

Table 8.5.3(c), from which we see that from Equation (8.5.13) and Theorem
8.5.4 the function A(A, B, C, D) becomes

KA, B, C, D) = AS(B, C, D) + AS«B, C, D) (8.5.14)
= 544, B, C, D) o

This example illustrates, again in an indirect way, another condition
that will indicate that a given switching function cannot be symmetric in any
set of literals. In this example, the column sums were all the same, namely,
3. Further, this column sum was exactly half of the number of rows. Thus,
any column could be complemented without changing this column sum.
Because of this we were able to complement a subset of the columns, A and
B in this case, to produce a table showing that the original function was
symmetric. If the column sums had been the same but not equal to half of the
number of rows, then complementing any subset of the columns, except all
of them, would have resulted in a table in which the column sums differed,
and thus the function could not have been symmetric. Complementing all of
the columns cannot change the fact that the row sums are not the required
values (why?). Thus we have the following theorem.
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Theorem 8.5.6

Any switching function that has a testing table in which the column sums are
equal but not equal to exactly half of the number of minterms and that does
not have the requisite number of row sums cannot be symmetric in any set of

literals.

Theorems 8.5.4, 8.5.5, and 8.5.6 give us the basic tools necessary to
determine whether or not a given function is symmetric. The determination
process can be summarized in the following steps:

Step 1.

Step 2.

Step 3.

Prepare a testing table and obtain the column and row sums. Next,

check the table to determine on the basis of Theorems 8.5.5 and

8.5.6 whether the function cannot be a symmetric function, as fol-

lows:

(a) If there are more than two column sums or if there are exactly
two column sums the sum of which is not equal to the number of
rows, stop—the function is not symmetric.

(b) If there is exactly one column sum and it is not equal to exactly
half of the number of rows in the table and the row sums do not
occur the requisite number of times, then stop-—the function is
not symmetric.

Go to step 2.

If the column sums are all the same, then proceed to step 3. Other-

wise, complement the necessary columns to make the column sums

the same. If the resulting row sums occur the required number of
times, then the function is symmetric. Otherwise, it is not.

If the column sums are all the same and the row sums occur the
required number of times, the function is symmetric. if the row sums
do not occur the necessary number of times and the column sum is
equal to half the number of rows, then expand the function about any
one of its variables to produce a function of the form

f(-xlsx'ls “« o 9xn) =f]h(x29 v sxn)+xlg(x23 L axn)

Test the functions 4 and g to determine whether they are symmetric
in the same set of literals. If either or both is not symmetric or if both
are symmetric but not on the same set of literals, then f is not
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symmetric. If both & and g are symmetric in the same set of literals,
then f is symmetric, by Theorem 8.5.4.

8.5.3 Bilateral-Network Realizations of
Symmetric Functions

The implementation of a symmetric function in a bilateral network is particu-
larly easy. Figure 8.5.1 shows a general network that realizes all of the
symmetric functions that are symmetric on the literals a, b, and c (i.e., the
uncomplemented variables). The extension of this pattern to four and more
variables is obvious. To obtain a function such as S;;, we simply tie the given
outputs together, as shown in Figure 8.5.2(a). After removing the unused
contacts, we obtain the network shown in Figure 8.5.2(b). Noting that the
contacts ¢ and ¢ now are in parallel, the circuit can be simplified further as
shown in part (c) of the figure.

The implementation of functions which are symmetric in one or more
complemented variables follows in exactly the same manner except that the
contacts corresponding to the complemented variables are complemented.
For example, the implementation of the function §i(a, b, ¢) is shown in
Figure 8.5.3.

53((3. b.O)

S-(a. b.0)

~|

S{a. b. &)

\- oy

1/
T 1 sy
A

-

[ E——

Figure 8.5.1 Three-variable bilateral network that realizes all of the symmetric
functions on the three literals a, b, and c.
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Spla, b,c)+ 5 (a. b, 0)
= Sﬂ.l{ﬂ', b, (')

W
AT
(a)
b T
) 4 . )4
_l- Al l AT J.
a & .c
T.T:7 :
- W ) L
Al .

(¢}

Figure 8.5.2 implementation of 5,:{a, &, ¢): (a) initial implementation; {b) imple-
mentation after removing the unused contacts; (c} final, simplified
implementation.



0 8.6

Section 8.6 Iterative Networks 343

Syia. b, c) Sytu.b.c)

Figure 8.5.3 Implementation of S5(a, b, c): (a) initial; {b) final.

ITERATIVE NETWORKS

cells

fterative
network

In Section 4.3 we introduced the idea of an iterative network in the design of
the adder and comparator circuits. In these examples we designed a circuit to
implement the specified function for a single bit and then cascaded the result
to implement the function for n bits. In order to do this we had to create our
designs in such a way that information could be passed not only from input to
output but from one bit position to the next. In the case of the adder, infor-
mation was passed from right to left (i.e., from low-order bit to high-order
bit). In the case of the comparator, this bit-to-bit transfer of information went
from left to right. In general, of course, this bit-to-bit information could be
required to flow in both directions.'’ Figure 8.6.1 shows a model for a net-
work of this type in which information flows from left to right. Such a
network, one made up of a cascade of identical cells, is called an iterative
network. The cell in the model of Figure 8.6.1 consists of some switching
network which has cell inputs X;, cell outputs F;, and what we will refer to
here as secondary variables consisting of the secondary inputs C;., and

b Circuits of this type, requiring information flow in both directions. possess feedback and
thus have the characteristics of sequential circuits. Because of this we will not discuss such
circuits here. However. we will show in one. of the problems at the end of the chapter a
technique that can be used for handling this situation.
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Cell inputs
X;
C|'+ 1 Ci
Secondary ————#] Cell i pnnep- Secondary
inputs outputs
F;
Cell outputs
(a}
xn-l xn—-z XG
c" C”_l Cn_z Cl CD
1 Celln-—1 w1 Cellp-2 p—> - — cel0 [T
Fn—l Fn-z FD

(b)

Figure 8.6.1 Modei for an iterative network: [a) model for the cell: {bj cascade of
cells.

secondary outputs C;, where the boldface notation implies that, generally,
there is more than one variable involved. The secondary variables carry the
intercell information. Although the switching network making up each cell is
usually combinational, there is no reason why it could not be a sequential
circuit. As we shall see in a moment, the secondary variables serve a func-
tion remarkably similar to that of the state variables in a sequential circuit.

The synthesis process is most easily explained by using an example.
Suppose that we are required to determine whether an n-bit number contains
four or more Is. As was the case in the adder problem of Chapter 4, writing
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X;

Secondary inputs 0 {
no ls A A.0 8.0
one 1 B B.O c.o0
twols C C.0 Do
three 1s D D.0 E.l
fourls £ E 1 E. 1l

Secondary output F;

Figure 8.6.2 Cell tabie for an iterative network that checks for four or more Is.

and implementing an equation that realizes this function for even reasonably
small values of n, such as, for example, 8, would be quite difficult. We will
therefore use the idea of an iterative network to carry out the design. To
begin the design, consider cell i. In this case, the cell input is just the ith bit of
the input number. The cell output is to be 1 if there are four or more bits that
are 1 in the set from the ith bit to the highest-order bit. This cell output is 0
otherwise. The cell secondary inputs must then carry the information about
the number of 1s to the left of the ith bit, and the cell secondary outputs must
pass on the number of 1s to the left of the (i — 1)st bit. Figure 8.6.2 shows a
cell table for this iterative network cell. Each row in this cell table, corre-
sponding to the secondary inputs to cell i, indicates the particular number of
1s seen to the left of the current cell. The entries in each row show what the

X
Yivia¥imaYise

i

0 1

000 000. 0 001,0 | 4

001 001.0 01,0 B

Otl 011,90 010,0 [ C
010 010,0 1o, 1 | D
110 1101 110.1 £

Vs Yip Yoo F

i

Figure 8.6.3 Encoded cell table for the four Is checker.
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Yi+l.2

Vierr =
Yisio
(a)
Xn—-! Xn-Z
Yn2
Yo Celln -1 Celln —2
YH.O
= Fn-—l Fn-Z
(b}

Cell O —

Fo
Final output

Figure 8.6.4 Final realization for the four 1s checker: {a cell implementation;

{b) iterated set of ceils.
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secondary outputs, which are the secondary inputs to cell i — 1, should be.
These secondary outputs then represent the number of 1s to the left of the
(i — 1)st cell.

Since there are five rows in the cell table of Figure 8.6.2, we will need
three secondary variables to distinguish these rows. Figure 8.6.3 shows one
of the many possible encoded cell tables for this function. By plotting the
secondary outputs and the cell outputs in a Karmaugh map, we see that the
resulting functions become

Fi=Ya= Y+ Y YeX
Yii = Yiq + YioXi (8.6.1)
Yio = YiroXi + YieruXi

The resulting implementation is shown in Figure 8.6.4(a). Concatenating
these cells produces the final iterative network shown in Figure 8.6.4(b).
Note here that the secondary inputs to the leftmost cell are all 0, correspond-
ing to the situation of no 1s to the left. Finally, we note that the circuit
output, the one that shows that the input number X contains four or more s,
is just the output of the rightmost cell, F;.

If we look at the cell table of Figure 8.6.2, we notice a remarkable
similarity to the state table of a sequential machine. In fact, there is an
interesting correspondence between these two switching circuit types. If we
were given the problem of developing a clocked sequential circuit having a
single input and a single output which was to be | whenever the number of 1s
in the string of input bits was 4 or greater, we would derive a state table that
was identical to the cell table of Figure 8.6.2. In the case of the sequential
circuit, we have a time sequence of inputs X; and in the iterative network we
present all of the inputs at one time. Both circuits perform the same function,
but one does it in time and the other in space. This space-time trade-off can
sometimes be used to advantage.
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Two excellent books that deal with linear programming are those by
Gass and by Cooper and Steinberg. Both are quite readable. In addition to
linear programming, Cooper and Steinberg discuss other optimization prob-
lems and methods of solution. The threshold logic text by Muroga aiso shows

the appropriate formulation of the linear programming problem for determin-
ing whether a given function is a threshold function.

COOPER, L., and D. STEINBERG, Introduction fo Methods of Optimization,
W. B. Saunders, Philadelphia, 1970.

Gass, S. 1., Linear Programming; Methods and Applications, 2nd ed., Mc-
Graw-Hill, New York, 1964.

There are many books that describe the use of the multiplexer in the
implementation of switching functions. These include Hill and Peterson,
Mano, and Givone. In addition, Chapter 4 of Ercegovac and Lang goes into
great detail, with many examples, on the use not only of multiplexers but of
demultipiexers as well.
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ErRceGovacC, M. D., and T. LanG, Digital Systems and Hardware!Firmware
Algorithms, Wiley, New York, 1985.
G1vonE, D. D., Introduction to Switching Circuit Theory, McGraw-Hill, New
York, 1970.
Mano, M. M., Digital Logic and Computer Design, Prentice-Hall, Englewood
Cliffs, N.J., 1978.

An extensive treatment of functional decomposition may be found in
either Hill and Peterson or Kohavi. These books also do a very good job of
discussing symmetric functions.

Iterative network design is discussed by numerous authors. Notable
texts are those by Hill and Peterson, Kohavi, Ercegovac and Lang, Fried-
man, Givone, and Roth.

FRIEDMAN, A. D., Fundamentals of Logic Design and Switching Theory,
Computer Science Press, Rockville, Md., 1986.

RoTH, C. H., Fundamentals of Logic Design, 2nd ed., West Publishing, St.
Paul, Minn., 1978.

PROBLEMS

8.1. Using contact networks, implement the following functions. Reduce your
implementation as much as possible.
(@) fla, b, ¢, d) = ab? + abd + bc + ad_
(b) h(A, B, C, D)= ABC + AD + ADBC
() gw, x,y,2) =2 m(,11,13, 14)

8.2. Design a contact network that can turn 2 light on or off independently from
three different locations (a three-way switch).

8.3. How many possible paths are there in the contact network shown in Figure
P8.3? Under what conditions will sneak paths occur in this circuit?

a b ¢
I1 . A1 . d
1L J_ 1 J- I
—— d -4 b
-l— T |

Ny . 114

£

|
F

gl

Figure P8.3
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8.4.

B.5.

8.7.

8.8.
8.9.

8.10.

8.11.

The contact network shown in Figure P8.4 implements the function
flA, B, C) = AB + AC + BC

Show that the top C contact (marked 1 in the figure) can be eliminated if a
transfer contact is introduced.

A B
il Ik
| i
o)
— 1
1f
B C
—|! 11
H 11
Figure P8.4

Generally, a transfer contact is cheaper than two pairs of contacts. With this
in mind, find a minimal contact realization for the function given in Equation

(8.2.3).

The function given in Equation (8.3.1) is unate. Show that all of its prime
implicants are essential.

The function specified by the hyperplane shown in Figure 8.3.1 is a threshold
function and is unate. Show that the two prime implicants of this function
share a minterm. What is this minterm?

Prove Theorem 8.3.3.

Determine which of the following functions are threshold functions by setting
up and solving the system of linear inequalities associated with the minimal
true and maximal false vectors. You will want to make the functions positive
first.

(a) ABC

(b) A + BC

© AB+C)

(d) AB + AC + BC

(e} AB + BC

() AB+ CD

Prove that the function of Equation (8.3.15) is not a threshold function by
showing that no structure can be found that satisfies Definition 8.3.1.

Prove: Let g(x) be a positive threshold function on n variables with structure
[w: T). Then
(@ yg(x) is a threshold function with structure [w,, w; 7,], where

w,zw+1-T and T, =T+ w
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8.12,

8.13,

8.14.

8.15.

8.16.

8.17.

8.18.
8.19.

8.20.

(b) y + g(x) is a threshold function with structure {w,, w; 7,], where
w, =T and T,=T

Prove: Let fi(x) and f2(x) be two positive threshold functions on the same set
of n variables with structures [w; T,] and [w; T:], respectively. Assume that
T> > T,. Then

yhHi(x) + fo(x)
is also a threshold function, with structure {w., w; T,], where
W, = Tg - T] and Ty = Tg

Using the result of Problems 8.11 and 8.12, determine structures for each of
the following threshold functions:

() AB + AC + AD + BCD

{(b) ABC + ABD

(c) AB + ACD + BED

(d) AB + ACD + ACE + ACF + ADE + BCD + BCE

Implement the following functions, using one 4-line to 1-line MUX:
(a) AB + AC‘ + BC

() AB+O) _

(c) ABC + ABC + ABC + ABC

(d) ABC + ACD + BCD

Determine which of the following functions have simple disjoint decomposi-
tions, and identify the independent function.

@) fiw, x,y,z) = Lm0, 2, 4, 6,10, 11, 14, 15)

() 2(A, B, C, D)= AB+AC+AD+BCD

() h(a, b,c,d) = bT + atd + acd + dbed + abed

@ FW,X,Y,Zy=TIM(1,2,3,56,911, 12, 14

Derive a complete five-variable decomposition chart. Use this chart to deter-
mine any and all simple digjoint decompositions for the following functions:
(a) ABDE + ABDE + CDE + CDE + ACD + BCD

() = m©,1,4,7,8,9, 10, [1, 12, 13, 14, 15, 18, 19, 21, 22)

(¢) £ m(3,6,7,8,9 10,12, 13, 18, 19, 23, 24, 25, 28, 29, 30)

(d) ABCE + ABCD + ABC + ABE + BE + CDE

Prove Theorem 8.5.2. [Hint: Consider the set of true vectors for each func-
tion as defined in Equations (8.3.2) through (8.3.4).]

Prove Theorem 8.5.3.

Prove: If Sadx;, . . ., x,) is a symmetric function, then
:S_M(xl, e e xn) = SN(fl, [P f,.)
where N={n—-a,n—az, . ...n—axpand M =(a, . . ., an).

Is the dual of a symmetric function symmetric?
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8.21.

8.22.

8.23.

8.24.

Design an iterative network cell having a single input, X;, and a single output,
Z,, such that Z; = 1 if the number of 1s on the inputs to the right of cell { and

including cell i is odd.

Design an iterative network cell having a single input, X;, and a single output,
Z:, such that Z; = 1if X5, = X; and zero otherwise.

An iterative network cell is to be designed having one input, X;, and one
output, Z;, such that Z; = 1 if (Xisz, Xis1. Xi) = (1, 0, 1) and 0 otherwise.
Design the cell and show the necessary boundary values for the secondary
variables.

Design an iterative network cell having one input, X;, and one output, Z;,
such that Z; = 1 if there are an even number of 1s to the left of cell i and an
even number of 1s to the right of cell i. (Hint: It is probably easiest to break
this design into two parts; one part to check for an even number of Is to the
left and one part to check for an even number of s to the right.)
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Large-Scale System
Design

D 9.1

INTRODUCTION

Up to this point we have dealt with the analysis and design of rather small
digital systems. The real world is generally a bit more complex. The small-
scale systems we have been dealing with are characterized by having a few
states and a very small number of inputs and outputs. In the case of a
computer, it is easily seen that the design would involve an extremely large
number of inputs and outputs and an equally large number of states to imple-
ment all of the necessary instructions. Trying to carry out a design of such
complexity with the tools discussed in the last few chapters would be very
difficult indeed. The usual practice in engineering, when confronted with
very complex design problems, is to break the design up into smaller, more
manageable pieces and then, by connecting the pieces, implement the de-
sired system.

Figure 9.1.1 shows a model for large-scale systems that can be used to
simplify the design process.' Basically, we can think of a large digital system
as consisting of two main parts: a processing section and a control section.

1 This model can also be used for a computer by adding a block for memory. Such a computer
model is generally referred to as the von Neumann model.
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Control in Data in
Control Processor
Control out Data out

Figure 9.1.1 Model of a large-scale digital system.

The processing section, or processing unit, takes information on its inputs,
processes this information in some well-defined manner, and then produces
outputs which represent the desired system response. 1t is the principal
responsibility of the control section to ensure that this process is carried out
in the correct manner. This is done by sending information to the processing
unit to tell it what is to be done at each step of the process. The control unit
also gets information back from the processing unit telling the controller how
the process is going. This information is then used by the controller to set up
the next step in the required process. The controller may also receive infor-
mation from outside the system that can affect the process, and it can also
generate control information to be used by other, external systems.

In this chapter we examine the design process and the components
involved in the processing unit and then take a look at some general methods
for specifying and designing the controller. We will then go through three
complete design examples to illustrate the processes described.

REGISTERS

register
binary cell

The processing unit consists of, among other things, combinational logic for
carrying out arithmetic and logical operations. This logic is designed using
methods already described. Since information coming in is processed over
some finite period of time, the processing unit must also have hardware to
temporarily store both incoming information and intermediate results. This is
the function of a register. A register is a collection of binary cells, each of
which stores one bit of information. Usually, a binary cell is made up of a
flip-flop, and so a register is an ordered collection of flip-flops.
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DO(7) DO(6) DO(0)
¥, Y Y,
D A Dy A Dy
DI(7) DI(6) DI(0)
4 Load

Figure 9.2.1 An B-bit storage register.

A particularly useful type of flip-flop is one that, in addition to its normal
characteristics, has preset and clear capability (i.e., a flip-flop that can be set
to 1 or cleared to 0 without being clocked). The 7474 and 74L.876, which are
edge-triggered D and JK flip-flops, respectively, are good examples of flip-
flops possessing this characteristic. These devices were discussed in the Jast
two chapters and will be used extensively in what follows. The reader should
review the defining truth tables for those flip-flops given in Figure 7.6.1.

9.2.1 Storage Registers

There are many types of registers usefu! in the design of large-scale systems.
Perhaps the most common is used to temporarily store information, usually
in the form of one or two bytes.? Figure 9.2.1 shows a schematic of a storage
register using edge-triggered D flip-flops. Latch-mode D flip-flops, or trans-
parent latches, such as the one shown in Figure 5.2.5, are also quite often
used for this type of register. In Figure 9.2.1, information that is present on
the input lines DI(i) will appear on the output lines DO(i/} when the clock is
asserted. This information will not change until the next clock pulse occurs,
and during the intervening time, the stored data is available for use by other
processing elements in the system.

Every moderately complex system may use several registers of varying
size and function. It would clearly be inconvenient, and perhaps a bit confus-
ing, to show all of these various registers in the detail given in Figure 9.2.1.
What we wiil do to avoid this complexity is to replace the detailed schematic

2 Two bytes of information is quite often referred to as a word, and four bytes may be referred
to as a double word.
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diagram with a block diagram showing the various inputs, outputs, and con-
trol lines associated with the register. Figure 9.2.2(a) shows such a block
diagram symbol for the storage register of Figure 9.2.1. As systems grow in
complexity and size to what one might encounter in the design of a com-
puter, even this simple symbol may be too detailed for clear presentation of
the entire system—and this, after ali, is what a schematic drawing is sup-
posed to do. Figure 9.2.2(b) shows a more concise symbol for the storage
register. In this symbo! the hash mark (/) on a line indicates that this line
actually represents not just one wire, but several wires. The number of wires
represented is given by the number adjacent to the hash mark. The labels
DO(7:0) and DI{7:0) are used to indicate that the eight lines going out are
given the names DO(7), DO(6), eic., and those coming in are given corre-
sponding names. The convention taken here is that the left number of the 7:0
is the index given to the most significant bit, while the right number, 0 in this

|| |

DO(T) DO(6) e DO(0)
Storage register Load <}—
DI{7) DI(6) .- DI(0)
(a)
st
DO{7:.0}
Storage
register Load <
DI{7:00

Jrs

(b)

Figure 9.2.2 Symbols for a storage register: (a) block diagram symbol for a stor-
age register; [b) simplified symbot for a storage register.
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DO(7) DO(6) DO(0)
Y‘;‘ Yﬁ YO
D
7 A Dg A Dy A
Right_in
LSHIFT
(2)
DO(7) DO(6) DO}
Shift register Right_in p=——
LSHIFT
A

Figure 9.2.3 (a] An 8-bit shift left register; (b} block diagram symbol! for an 8-bit
shift register.

(b)

case, is the index given to the least significant bit. The remaining indices are
assigned in successive order.’

9.2.2 Shift Registers

Another very useful register is the shift register. The shift register is used for
a number of chores, including converting parallel information to serial and
vice versa. Figure 9.2.3 shows a shift register that shifts information in the
register one bit position left each time the clock line is asserted. If one bit of

3 A new logic symbology standard, IEEE Std. 91-1984, has recently been proposed which
basically uses a uniform symbol to represent all register functions. Although it has some
features that would strongly recommend it, and many more that would not, this standard will
not be used here. The Appendix gives an introduction to this standard and shows the standard
symbols used for many of the registers. counters, and similar devices, designed in this chap-

ter.



Chapter 9 Large-Scale System Design

Figure 9.2.4 State diagram of a 3-bit left-shifting shift register.

information appears on the right_in line at each clock assertion, a complete
byte of information will be assembled in the register and appear at the out-
puts after eight clock pulses. Of course, a right-shifting register looks similar
except that each flip-flop output is fed to the flip-flop on its right.
Obviously, the design of a simple shift register need not be accompanied
by the general sequential circuit design procedure discussed in Chapter J,
although the end result would be the same. In fact, it might be instructive, at
this point, to review this process. To simplify our task of designing, directly,

o0 | 000 001 011 010

01 100 101 111 110

11 100 101 111 110

10 000 001 01 010

DDy Dy

Figure 9.2.5 Excitation table for the left-shifting shift register. in terms of Figure
9.2.4, Y, = DOJil, x = Right_in, and the clock that drives this circuit
is equal to LSHIFT. '
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a shift register that shifts left, using methods of Chapter 5, we will assume
that we are designing a 3-bit shift register. We begin by constructing a state
diagram as shown in Figure 9.2.4. Although this state diagram is not overly
complex, one can certainly imagine how large it would become for an 8-bit
shift register.

The next step in the design process is to develop the flip-flop input
equations. Assuming D flip-flops, this task is fairly simple. Figure 9.2.5
shows the flip-flop excitation table from which the flip-flop input equations
can be derived. The resulting equations are

D, =y,
Dy =y (9.2.1)
Dg =X

Letting ¥; = DO(i) and x = Right_in, we end up with a 3-bit version of Figure
9.2.3. This is certainly what we expected from the statement of the original
problem.

What we should observe from this example is the following. There is no
need to take complex steps to solve simply stated problems: in this case, that
a register is to be designed that shifts a bit coming in from the right, one bit
position left on each clock pulse. Even registers having very complex func-
tions may be designed without the use of the formal procedures if each
function is designed separately, with all functions being integrated into a
whole at the end. This process is most readily shown by the next example.

A more general type of shift register, called a universal shift register, is
one that can shift right or left and can be loaded in parallel, if so desired, thus
giving it the capability of a storage register as weli. Using the philosophy just
espoused, this register can be designed as follows. If we assume the use of D
flip-flops in our register, then the D input to the ith flip-flop must come from
one of three sources. For a left shift, this input must come from the (i — 1)st
flip-flop; for a right shift, it must come from the (i + 1)st flip-fiop; and for a
parallel load, it must come from the ith input. By using a multiplexer, as, for
example, the 4-line to 1-line MUX of Figure 4.3.8, we may select one of these
three lines as an input to each flip-flop. In fact, if we use this multiplexer, we
can add a ‘‘do nothing’” operation, in which the output does not change when
a clock occurs. Figure 9.2.6 shows a block diagram symbol for such a register
and a schematic diagram showing how the internal flip-flops are intercon-
nected. The select lines for the MUX are coded to function as shown in Table
9.2.1. The notation L/R used in this table and in Figure 9.2.6 indicates that
the register is to shift left when the line is high and is to shift right when the
line is low.
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DO(3) DO(2) DO(1) DO(0)
g e Q

Cr o Cr Cir o Cir [o— Clear

D D
I . l l l Clock
' L‘ Load

—/ LIR
Left_in &
I Right_in
DI(3) DI(2)

{a)

DO(3) Do) DO DO(0)
Clock <p——
— Clear Load
Universal shift register —
. L/R }——
— Left_in
Right_in |
DI(3) DY(2) DK1Y DI(0)

(b)

Figure 9.2.6 Universal (left-right} presettable shift register: {a) schematic diagram;
{b) black diagram.
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TABLE 9.2.1
Universal shift register
multiplexer control

LIR Load Function
0 0 shift right
1 0 shift left
0 1 foad input information
into register
1 1 do nothing

In this coding, the combination 11 is used to cause the contents of the
shift register to remain unchanged after each clock pulse. It does this by
reloading each flip-flop with what it aiready contains. Large systems gener-
ally have a common clock that is distributed to all of the registers in the
system. Thus, this 11 combination plays the role of disabling the register
during certain periods of time when the information in the register is being
used by other portions of the system. Another approach to this register
disable would be to AND the clock line with a separate enable signal so that
the clock can effectively be turned off. This alternative, however, has some
disadvantages, which we shall look at a bit later.

Finally, we note that in this shift register, D flip-flops having an asyn-
chronous clear input are used to add a clear capability to the register without
increasing the complexity of the design. The use of this added capability will
be further illustrated in the examples of Section 9.5.

9.2.3 Counters Revisited

Counters are used quite often in large-scale systems to keep track of the
number of times a certain process is repeated. Sometimes a single counter
may be used at different times for different count values. A counter which is
quite useful for such functions is one which can be initially cleared to 0 and
also preset to some given value, like a storage register. What we would like
to have is a counter which can be cleared, enabled to count, and preset to
some value, and which supplies a signal out indicating when the counter has
reached its maximum count value, usually 11 - - - 1. Figure 9.2.7 shows a
binary 4-bit look-ahead carry counter that meets these requirements. The
design of this counter is based on the following considerations. First, the
counting function is most easily carried out by the use of 7 flip-flops, as was
discussed in Chapter S. Second, the storage register function would appear
to be carried out most easily by the use of D flip-flops. A JK flip-flop can
easily be made into either a D or a T flip-flop by appropriate connections to
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its inputs. Specifically, for a T flip-fiop, the J and K lines must be equal, and
for a D flip-flop these inputs must be complements of each other. Thus, if an
input L is used to select either the load function, when L = |, or the count
function, when L = 0, and if DI(/) is the data input to the /th flip-flop, then the
appropriate input equations become

J.=L-DIG) + L- DO — DDOG — 2) - - - D(0) ©9.2.2
K, =L -DI(i)+ L-DO( — )DOG — 2) - - - D(0) -

where the term DO(i — NDO¢ — 2) - - - DO(0) is the carry into the ith bit
position during the count operation.

As an example of the use of this type of counter, consider the following
problem. A circuit is to be designed having a 1-MHz clock as an input. A
single pulse is to be produced at the output at a rate which is some fractional
value of the input frequency. In particular, this rate is to be in the range from
one-sixteenth of the input frequency to half the input frequency. Further, this
output rate is to be programmable; that is, the frequency should be change-
able by an external digital system. A circuit to perform this function will be
referred to as a programmable frequency divider. Such a device is commonly
used in serial communications to match the receiver data rate to the transmit-
ter data rate and vice versa.

To begin the solution of this problem, we must first come up with an
algorithm, or plan of attack, which will satisfy the problem’s requirements.
Consider the presettable counter of Figure 9.2.7. If this counter is preset 1o,
say, 12 and is clocked by the 1-MHz input clock, then the C,, line will be
asserted on the third input clock pulse when the count value equals 15. Now
consider what happens if C,, is fed back to the L input and 12, that is, 1100,
is held on the counter inputs, say, by connecting them to a high or a low
voltage as necessary. Since we have connected C,,, to the L line, the counter
will be loaded with 12 on the next, or fourth, clock pulse, and C,, will go
low. After three more clock pulses, C,, will again go high and the process
will repeat. We can see that the output, C,,, is produced on every fourth
clock pulse. Obviously, if the counter inputs were held at 9, C,, would be
produced on every seventh clock pulse, and so on. Figure 9.2.8 shows the
timing involved at the point where C,, is asserted. The important thing to
note here is that, because of propagation delays in the flip-flops, Cou 18
asserted after the clock goes high and will be asserted at the time the next
low-to-high transition of the clock occurs.

In order to be able to program the counter input value, we need to place
a 4-bit storage register on the input to the counter so that an external system
can load the register with the desired count. The storage register output will
then serve as the input to the counter, so that the load-count-load sequence
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Clock

Count 14 15 N X N+1

Cour \.\
/

New value loaded here

Figure 9.2.8 C,, timing with respect to the clock and count vaive.

can continue repeatedly. Figure 9.2.9 shows the final design that meets the
requirements of the problem. In this design, the pulse that is to be generated
can be obtained from the C,, line. Note that the frequency division is ob-
tained by subtracting the division factor n from 16 and loading this number
into the storage register. Thus, the counter will be loaded with numbers in
the range of 0, for a division factor of 16, to 14, for a division factor of 2. One
might ask the question, what happens if a division factor of 1 is required?
will the frequency divider work in this case? The answer to this question is
no, and the reason is simple. A division factor of 1 would require loading the
counter with 15 each time the counter reaches 15! Since C, is the signal that

Ourput
pulse

DOG) DO DO DO ear oo

Cout Counter G Clock

DI(3) DI(2) DI(1} DO L

DO(3) DO(2) DO(1) DO(0Q)

Storage register Load ———

DI3) DI(2) DI(1) DI(0)

T

Figure 9.2.9 Programmabie frequency divider constructed from a presettable
counter and a storage register.




algorithm

093

Section 9.3 Register Transfer Notation 365

generates the output pulse, this would result in C,, always staying high,
resulting in a DC, or steady, signal out.

The solution to the problem of designing a programmable frequency
divider required the generation of an afgorithm to perform the task required.
Basically, an algorithm is nothing more than a specific plan to solve a specific
problem. Algorithms may be defined in many ways, although the most com-
mon is to somehow list the steps needed to perform a given task. In the case
of the frequency divider, the steps are:

1. Load the counter with 16 — n, where n is the division factor.
2. Count successive clock pulses until the count reaches 15.
3. Then go back to step 1.

In Section 9.4 we shall look at methods for defining complex algorithms that
can easily be converted into hardware realizations. We shall first, however,
introduce a special notation that can make the design process and algorithm
implementation easier.

REGISTER TRANSFER NOTATION

The systems we are concerned with here are digital systems made up of
combinational logic that is designed to perform some processing task; regis-
ters for temporarily storing information, counting events, and the like; and
other sequential circuits for controlling the processes. In order to define
algorithms for such systems it is necessary to define a notation which shows
how information in the systém is to be processed. We will refer to such a
notation as a register transfer notation,* since it is used to show how infor-
mation in one register is processed and passed on to another register for
further processing. In the frequency divider designed at the end of Section
9.2.3, for example, the register involved was a counter, which was first
loaded with a constant and then incremented. After each increment, the
count value was tested to see whether it was equal to 5. If not. the counter
was incremented again. If the value was 15, then the counter was loaded with
the constant once more and the process continued. All of the elements mak-
ing up this process will be defined in what follows.

4 Although there are currently no standards for a register transfer notation, the notation given
here is typical of what may be found in the literature.



register
transfer

Chapter 9 Large-Scale System Design
9.3.1 Basic Notation

In Section 9.2 we defined a register as an ordered set of binary cells, each
storing one bit of information. ln order to refer to a given register, it must
have a name. Since we may also wish to refer to individual bits, or collec-
tions of bits, we must also indicate how the bits of the register are numbered.
Thus, in general, a register will be indicated by the notation

Register_name(i:j} (9.3.1)

where i is the leftmost, or most significant, bit of the register and j is the
rightmost, or least significant, bit. The intervening bits are numbered succes-
sively from i to j. For an n-bit register, it will usually be the case thati = n —
I and j = 0. Thus, the 4-bit register whose name is CAT will be denoted as
CAT(3:0), which is equivalent to the ordered set of bits (CAT(3), CAT(2),
CAT(1), CAT(0)). Once a register is defined, we may refer to it by its name
only, if such a reference can be made without confusion. Thus, register
CAT(3:0) may also be referred to simply as register CAT.

It is quite ofien necessary to refer to some subset of the bits of a
register. Such a subset is referred to as a subregister. For example, the left
half of register DOG(15:0} would be DOG(15:8), which we might wish to
refer to as register LEFT_DOG. Noncontiguous bits in a register may also
be referred to by use of the notation.

Register_name{a: b, c:d, . - B (9.3.2)

where the indices «, b, ¢, d, etc., are all in the range of i to j of expression
(9.3.1). For example, the subregister RAT(12:10, 1:0) of register RAT(15:0)
would be the ordered set of bits (RAT(12), RAT(11), RAT(10), RAT(1),
RAT(0)).

In a computer, information flows from one register to another, usually
after some intermediate process occurs. By the transfer of information from
register A to register B, we mean that after the transfer, register B contains a
copy of the contents of register A and register A is unchanged. We will
denote a simple register transfer by the notation

Register_1{a: b) — Register_2{c:d) (9.3.3)

where the leftmost bit of register 1 is copied into the leftmost bit of register 2,
the next bit of register 1 is copied into the next bit of register 2, and so on.
Obviously, the register transfer makes sense only if both registers contain
the same number of bits.
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As an example of the application of this notation, let us define the 8-bit
register A(7:0) and require that the contents of this register be shifted right
one bit position, with the leftmost bit being unaffected. This transfer would
be denoted as

A(7:1) — AG:0) (9.3.4)

Thus, if A contained (01101011) before this transfer, then A will contain
(00110101) after the transfer.

Many times it is necessary to preset a register to some constant value.
This was done in Section 9.2.3 with the presettable counter used in the
frequency divider example. We will indicate the presetting of a register by
the notation

n — Register{i:j} (9.3.5)

where 7 is the number to be loaded into the register—in binary, of course.
Thus, 145 — A({7:0) would mean that register A would contain (10010001)
after the transfer is completed. The use of a constant is also essential for
counting. For example, the notation A + 1 — A would mean that the contents
of register A are incremented by | so that the number in the register is [
greater after the transfer than before.

Functions of registers are also easily indicated. The general form for
functions of two registers would be

flA{a: by, B{c:d)) — C(i:j)
or simply
A, B)—= C (9.3.6)

For example, we might write A + B — C to mean that register C is to be
loaded with the arithmetic sum of the contents of registers A and B. Thus, if
A and B are 8-bit registers and A contains (00010111) and B contains
(00100100, then after the transfer, C would contain (00111011).

It very often happens that one of several possible transfers is to be
executed, depending on some condition such as the value of the number held
in a register. This was the case for the frequency divider of Section 9.2.3. In
order to represent such transfers, we need to introduce a pair of register
functions. The first is called the value function, denoted

val (Register{i:j)) (9.3.7)
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and defined as the numeric value of the number held in the register. For

example, if register A(7:0) contains (00111011), then val (A) = 59 (base 10).
characteristic The second register function we will need is calied the characteristic func-
Sfunction tion, denoted

ch (Register{i:j), k) (9.3.8)

and defined as being 1 if val (Register(i:j)) = k and 0 otherwise. Thus, if val
(A) = 59, then ch (4, 59) = 1, whereas ch (A, 60) = 0. As an example,
consider the following transfer:

ch(R, A +ch(R,1)B + ch(R, 2) (A plus B)
+ ch (R, 3) (A minus B)— C (9.3.9)

where the registers are defined as R(1:0), A(7:0), B{7:0), and C(7:0). The
result of this transfer is that register C will be loaded with the contents of
register A if val (R) = 0, the contents of register B if val (R) = 1, the
arithmetic sum of registers A and B if val (R) = 2, or the arithmetic difference

between registers A and B if val (R) = 3.
If the register being used to select the function is only 1 bit long, then the
logical vatue of this bit may be used to control the transfer. Thus, for exam-

ple, the notation
xA(7:0) + XB(7:0) — C(7:0}
would mean that C is loaded with the contents of register A if x = 1 or the
contents of register B if x = 0.
Using the notation just developed, we can now describe the frequency
divider circuit by the following register transfer:

C,u(Storage_register{3:0)) + Cou(Counter(3:0) plus 1) — Counter(3:0)

where Co = ch (Counter(3:0), 15).°

9.3.2 Hardware Consliderations

iy 3

A typical storage register was shown in Figure 9.2.2. An examination of this
figure shows that there are three types of signals associated with the register:

5 The use of the plus (+) can often be misinterpreted—does it mean arithmetic ‘addition or
logic OR? In what follows, we will spell out the arithmetic *‘plus™ whenever confusion can %

occur.
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{s

DO(7:0}

B(7:0) Load < (A—+B)

DI{7:0)

A8

DO<7:0}

A(7:0)  Load < {Load 4)

DI(7:07

+s

Figure 9.3.1 Pair of registers used to implement the transfer A(7:0y — B(7:0).

input, output, and control (the clock signal used to load the register). Using
registers of this type, the transfer

A(7:0) — B(7:0)

is carried out by connecting the outputs of register A to the inputs of register
B and clocking the Load signal of register B. Figure 9.3.1 shows this inter-
connection.

More complex registers, such as the universal shift register of Figure
9.2.7, require more than just the clocking signal for control. In this case, in
addition to the clock signal, two other control lines, Load and L/R, are
required to control the specific function of the register. Thus, we may ob-
serve that the control signals associated with a given register are made up of
two types of signals: timing (the clock) and function (Load and L/R). In
general, all registers will have associated with them four classes of signals,
namely,

1. Inputs

2. Outputs

3. Function select
4. Timing

Since these signals are common to all registers, we need not give each a
separate name or specific identity in the register transfer notation described
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above. The connections required to implement a specific transfer can be
inferred from the transfer notation itself. In particular, outputs associated
with the register or function of registers on the left of the transfer arrow will
be connected to inputs of the register on the right of the transfer arrow. The
required connections for function control may be inferred from the register
function described and the specific register used for the implementation. The
transfer is finally carried out by the timing or clock signal associated with the
receiving register.
For example, suppose we are given the register transfers

XL(A) + XR(B) — R(A) (9.3.10)
XB(0) + XB(3)—= A(3) 9.3.11)

where the registers and subregisters are defined as A(3:0), B(3:0), L(A)} =
AG: 1), R(A) = A{2:0), and R(8) = B(2:0). This transfer causes A to shift
right, with the low-order bit of B going into the high-order bit of A if X = 1. If
X = 0, A is simply loaded with the contents of 8 Using the universal shift
register shown in Figure 9.2.7 and a 4-bit version of the general storage
register shown in Figure 9.2.3, the interconnections required to implement
the transfers of expressions (9.3.10) and (9.3.11) are as shown in Figure

I

DO(3) DO(2) PO DO(D) «}— Effect transfer
Load p—m—m—— X
Left i A{3:0) _
eft_in {Universal shift register) L/R
Right_in |— NC
DI(3) DI(Z} DI(1) Di-)
(Gro-und)
DO(3)  DO(2) DO(l)  DOW) <}— Load register 8

B{3:00
(Storage register)

DI(3) DI(2) DI(1}) DI(0)

Figure 9.3.2 Implementation of the transfers of expressions (9.3.10) and [9.3.11}.
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9.3.2. These connections are made on the basis of the following consider-
ations. Since we are never shifting right, Right_in need not be connected to
anything. The derivation of the control equations is based on the MUX
control defined in Table 9.2.1 of Section 9.2.2 and goes as follows. To shift
right, X = 1, L/R = 0, and Load = 0. To load register 4, X = 0, L/IR =0,and
Load = 1. Shifting left and doing nothing are not required by this problem.
Thus we have the following truth table:

X | LIR Load

0, 0 0 shift right
1 0 1 load
and therefore
LIR=0 and Load = X (9.3.12)

From these equations we see that L/R needs to be grounded and Load needs
to be connected to input X. Transfer (3.3.11) further indicates that 8(0) must
be connected to Left_in of register A.

In large-scale systems, there will generally be many registers, each
having several control signals. In order to write the specific set of control
equations for a given system, we must associate a control signal with a
specific register. We will do this using the notation

Register_name(control_signal]

where the square brackets are used to indicate that the name enclosed is the
name of a control signal. In the above case, we will write equation pair
(9.3.12) as

A[L/R] =10 and AfLoad] = X (9.3.13)

The register transfers (9.3.10) and (9.3.11) do not indicate specific con-
nections between registers A and B. For example, these transfers do not
indicate, specifically, that DO(0} of register B{3:0), or B[DO(0)], is to be
connected to input DI(0) of register A and Left_in of register A{3:0), or
A[Left_in] and A[D1(0)]. These connections are dependent on the specific
registers used to implement the required transfers. The point of this is that
the register transfer notation developed in Section 9.3.1 is used to describe
what transfers must occur to implement an algorithm but not how the trans-
fers are actually implemented in hardware. The hardware implementation
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must be inferred from the transfer itself and the specific choice of registers
used to implement the transfer. We shall see further examples of this in what |

follows.

FLOWCHARTS AND STATE DIAGRAMS

entry point

exit point

terminal
point

The specification of a control algorithm for a digital system requires writing a
specific sequence of register transfers. In computer programming, flowcharts
are used extensively to define algorithms. Since we are dealing here with
control processes that involve the manipulation of information in particular
ways and in particular sequences, it would seem that a flowchart would be a
convenient way of describing the required algorithm. As described earlier,
the control unit of large-scale digital systems is nothing but a simple clocked
sequential circuit having inputs, outputs, and states. As we shall see in a
moment, flowcharts and state diagrams are equivalent, in a limited sense.
Thus a flowchart, with its graphic representation of information and process
flow, is an ideal way of representing a sequential circuit making up the
control mechanism in a large-scale system.

9.4.1 Flowcharts

Although flowcharts used for programming purposes have many different
elements, only four will be needed in what follows. These are shown in
Figure 9.4.1 and are defined in the following paragraphs.

The entry point flowchart element is used to indicate one of two things:
the starting point of the algorithm being implemented, or a continuation point
in an algorithm when the flowchart becomes too large to be included on one
page. This second use for the entry point requires a corresponding exit point.
Control algorithms that are useful never stop (except, possibly for the control -
of a bomb!).¢ Thus there is actually no terminal point in an algorithm. The
exit point element is used only to indicate the label of the entry point element
for continuation of the algorithm. Figure 9.4.2 shows an example of how the
entry point and exit point flowchart elements are used. In this case, the
portion of the algorithm on page 1 is continued on page 2 at the page 2 entry

§ The AT&T computer 3B2 has a shutdown mechanism that represents a terminal point inthe -3
algorithm. When the computer's power switch is manually turned off, the computer updates
all disk information necessary and then the computer’s contro! mechanism, not the operator, -

finally shuts the power off.
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(a} (b}

Is statement val (A¢i: /)
P true?

vo---vn

Binary decision block

Multivalued decision block

(d)

Figure 9.4.1 Basic flowchart elements: {3) entry point; (b} exit point; [} transfer
block; {d) decision block.

point A;. When the page 2 portion of the algorithm is completed, it returns to
page 1| via the exit and entry point pair labeled A,.

The transfer block is used to indicate, explicitly, what transfer is re-
quired at a particular stage in the algorithm. This transfer is indicated within
the block by the use of the register transfer notation described in Section 9.3.

The decision block is used to identify which path in an algorithm is to be
followed next. This is done by indicating, in the block, what condition is
required to continue on a given path. Figure 9.4.1(d} shows two common

Figure 9.4.2 Using entry and exit points to continue algorithms on multiple
pages.
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ways in which the condition can be specified. A decision block always has
one entry point but will have two or more exit points, depending on the
indicated condition. For example, if the condition is val (A(1:0)), then there
will be four possible ways to leave the decision block, one for each value of

register A{1:0).

9.4.2 Flowchart-State Diagram Equivalence

Figure 9.4.3(a) shows a typical state diagram having one input, X, one output
Z. and three states. We may make a correspondence between these elements
and those of a flowchart in the following way. First, the way in which we
jeave a decision block in a control algorithm is dependent on information
coming into the control unit from outside (refer to Figure 9.1.1). Thus the
information in a decision block constitutes input information to the control-
ler. Second, the transfers indicated in the transfer blocks are brought about
by outputs from the controller and thus transfer blocks represent outputs
from the system. Finally, at any given instant of time, we will be somewhere
in the flowchart, either waiting for the next input to be read or simply waiting
for the next clock pulse. Thus the state of the system corresponds to edges in
the flowchart. The position of the states is indicated in the flowchart by the
hash marks (/) on edges corresponding to the state, with the state label
adjacent to the hash mark. Figure 9.4.3(b) shows the flowchart equivalent to
the state diagram of Figure 9.4.3(a) based on these equivalences.

Given a flowchart with the states indicated, we may easily derive the
corresponding state diagram. To see how we might do this, consider the
flowchart shown in Figure 9.4.4(a), which represents some arbitrary algo-
rithm. In this figure the 7;’s represent the transfers required by the algorithm
and the ;s represent the condition on which the decisions are made. Let us
begin at state S,. From the flowchart, we see that we will stay in state S, if
0, = 0. orif 0, is 1. Thus there will be a self-loop on state S, with input 0.
Further, since there are no transfers in this path in the flowchart, there are no
outputs generated. The resulting state diagram elements are shown in Figure
9.4.4(b) as the self-loop on state S,. Note that this path is dependent only on
input O, and so the other inputs, @, and Q;, become don’t cares and are -
therefore not shown. In the state diagram, a dash (=) on the output side of any f
slash (/) is used to indicate that no transfers are to occur. All of this amounts
to a shorthand notation for Q,, Q. Qv/T1, Ta, Ty, Tuy Ts, Ty = 0-—/000000,
where the dashes here are don't cares, as usual. In a similar way, we go from
state S, to state S, if ¢, = 1, and since there are no transfers in this path, the °
edge from state S, to state §, in the state diagram is labeled Q,/—, which :
corresponds to Q,, Qs Q/T), Ta, Ts, Ty, Ts, Ty = 1-—/000000.
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/0 /1

o/1 = X/Z

Z=0
-’/—-s
S
Yes
=17 Z=1
No
Z=1 Z=1

(b

Figure 9.4.3 5tate diagram {a} and flowchart equivaient (b).
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Before proceeding, let us define what we mean by a path. As used here,
a path is a sequence of flowchart elements which takes us from one state to
another. Consider now the possible paths from state §;. An examination of
the flowchart of Figure 9.4.4(a) shows that there are three paths from state
S,: two going to S; and one going to ;. The conditions for traversing these
paths are dependent on inputs (decisions) @, and (s only. In particular, we
will go from 5, to S ifeither @ = lor @, =0 and Qs = 1. Otherwise, we will
go to state §;. The transfers required in each path are easily found from the
flowchart. The corresponding state diagram edges are shown labeled in Fig-
ure 9.4.4(b) using our shorthand notation. For example, the edge labeled

(a)

Figure 9.4.4 Derivation of a state diagram from 2 flowchart: [aj control algorithm
flowchart; {b) equivalent state diagram. :
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Q, /- | g,/-

§2Q3."T1, Tg, T4

52 63-,7.]: Tz él-/TS= T6

0,0:/T5. Ts 0:23/T2, T, Ts
(b)

Figure 9.4.4 continued

QZQBITh T,, T, is equivalent to O, Q:, /T, T, Ty, Ty, Ts, Ty =
Z01/110100. The rest of the control state diagram is easily determined by
continuing 1o list all paths along with their associated conditions and trans-
fers.

9.4.3 Derlvation of the Control Equations

To see how we may derive the control equations, specifically, the outputs
and the next-state equations, let us refer, for the moment, back to the state
diagram of Figure 9.4.3(a). The design procedure described in Chapter 5
started by assigning values to the state variables needed to encode the vari-
ous states. In this case, we have three states, so we will need two state

TABLE 9.4.1
State assignment
for Figure 9.4.3

State | ¥, ¥
5o 0 0
b 0 1
s: l ]
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variables, ¥, and Y,. We may arbitrarily assign states as shown in Table
9.4.1. We are now ready to write the appropriate equations. Let us begin
with the equation for the output, Z. The sequential circuit represented by the
state diagram of Figure 9.4.3(a) is a Mealy machine, and therefore we know
that the output Z is a function of both the input X and the current state.
Without constructing the assigned-state table, and ignoring the don’t care
conditions,” we may write an equation for Z by observing that Z = 1 if we are
in state §, and X = 1 or X = 0 or, on the other hand, if we are in state S, and

X = 0. The resulting equation is

Z=s(X+X)+ X

- 9.4.1
$ + SgX ( )

where the lowercase s;’s represent the current state. As was done in Chapter
5, we will represent the next state using capital S;’s. Equation (9.4.1) can be
written in terms of the state variables by replacing the s;’s by the assignment
given in Table 9.4.1. The resuiting equation becomes

Z = Fiyo + ¥1¥eX = F1y0 + %X (9.4.2)

The nexi-state equations can be derived in a similar manner. In particu-
lar, we may write, directly from the state diagram, the following three equa-
tions relating the next state to the current state and input:

Sp = SOX + 5.X
S, = 50X + 51X + 5:X (9.4.3)
S5 = Slf

The first of these three equations says, for example, that we will be in state S
if either we started in state Sp and X = 0 or we started in state S; and X = 1.
To develop the equations for the state variables, we can construct a *“‘com-
pound’” truth table based on the state assignment given in Table 9.4.1 that
shows the assignment for the next state and the equation, from equation set
{9.4.3), required to reach this next-state assignment. This is shown in Table
9.4.2. From this table we may write the equations for the state variables by
writing the sum of the expressions for which each state variable is 1. Thus we

have

Y, = Si + S‘) (SDX + S|X + S')X) + (S]X) (9-44)

7 Since two state variables can encode four states and we have only three states, don’t cares
will be associated with the output and the state variable equations.
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TABLE 9.4.2
Table of next-state
conditions
Next state

Y, Y, | Condition
S¢= 0 O | spX + 55X _
5= 0 1 X + 80X + X
S: = 1 1 s,X

or, upon substituting the assignments for the states given in Tables 9.4.1 and
9.4.2,

Y = (fIYOX) _
Y, = (%X +_)71po + yiyeX) + (F1y0X) (9.4.5)
= X + yoX

It can be shown that Equations (9.4.2) and (9.4.5) are the equations that
would arise from the assigned-state table with the don’t cares set to 0. (This
should be verified by the reader.)

Equations (9.4.1) and (9.4.3), from which Equations (9.4.2) and (9.4.5)
are derived, may be obtained directly from the flowchart shown in Figure
9.4.3(b) by observing what input conditions are required for each path in the
flowchart and which transfers occur when traversing these paths. For exam-
ple, Z = 1 whenever we go over path §, to 5, $;10 8;, or S t0 §). The first
and last paths require that X = i, and the second path requires that X = 0.
Since we can obtain the design equations directly from the flowchart, there
is, therefore, no need to derive an equivalent state diagram, although this is
always possible.

Let us now return to the flowchart of Figure 9.4.4(a) for a bit more
complex example of the process used for deriving the design equations from
the flowchart. From this figure, we can see that there are conditions associ-
ated with each path and each transfer and these conditions need not be the
same. For example, the condition for taking the path § -8, or §3-§; is that
0, = 1 or Q5 = 1 or both. However, transfer T; occurs only if @, = 1
regardiess of which path is taken. Note also that the path 5,-S; has no
conditions on it at all, although the transfers 7, and 75 do have associated
conditions.

To summarize all of these possibilities in a systematic way, we may
construct a path-transfer table which identifies each path and its associated
condition and all transfers that are required in traversing the path along with
their associated conditions. The path-transfer table corresponding to the
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Path | Path condition | Transfer |Transfer condition
Sp-So o - -
So-5y G - -
5)-5; 0:+ 0y I, Ty -
T, )
74 ;0
§)-53 0.0 . -
53-8 ¢, + @5 7, Ts -
Ty )
Ty 0,0
5353 0,0, T Ts -
55-5p - Ts -
n 0,
Ty 0,

Figure 9.4.5 Path-transfer table for the flowchart of Figure 9.4.4.

flowcharted algorithm of Figure 9.4.4(a) is shown in Figure 9.4.5. We may
now write the design equations based on information in this table. Let us
begin by writing the next-state equations. Consider, first, the ways in which
we can end up in state Sy. There are two paths for which S, is the terminal
state: Sp-So and 5:-So. By ANDing the initial states and their corresponding
path conditions and then ORing the results for each path, the next-state
equations for S, can be written. Thus we obtain

So = 500 + 52 (9.4.6)

The remaining equations are derived in a similar fashion and are found to be
as follows:

S] = SQQ] (947)
Sz = Sl(_gz_+ Qg) :{_’ E,(Qz + Q3) (948) |
53 = 5:0:03 + 530:0s (9.4.9)

Derivation of the transfer equations proceeds in a similar manner. In the
case of the transfers, however, transfer conditions must be ANDed with the

path conditions and current state. Let us consider transfer T, for example.
T, is associated with paths 5,-52, §1-53, and S,-S;. By ORing the conditions
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required for the transfer T, for each of these paths, we obtain the equation

T, = [5:(Q: + Q) + [5:0:05] + [:0] (9.4.10)
=5 + 5,0

The remaining equations are derived similarly:

T, =5 + 5 (9.4.11)
T = (5 + 5300 (9.4.12)
T, = (s + 50:0; (9.4.13)
Ts = 83 + 5:0, (9.4.14)
Ty =5, (9.4.15)

To write all of the equations in terms of the state variables requires that
we make a state assignment. Since there are four states, we will, of course,
need two state variables, y, and y,. When we make the assignment as shown
in Table 9.4.3, the transfer equations become

T, = y1yo + 150> (9.4.16)
I, = F1yo + y1¥%0 = Yo 9.4.17)
T; = yoQ» (9.4.18)
T, = y00: 05 (9.4.19)
Ts = yiyo + 15002 = y1¥0 + %102 (9.4.20)
Ts = miyo (9.4.21)

On the basis of the state assignment of Tab]e 9.4.3, we may determine
the state variable equations as follows:

Yi=858+5%
= (s; + 53)(Q2 + D) (9.4.22)
=y + O

Yo=5+5
= 5001 + {51 + 590:05 (9.4.23)

= 50, + y.10.0;

Equations (9.4.16) through (9.4.23) represent the final design equations.
Once the state-variable flip-flops are specified, the flip-flop input equations
can be generated, as was done in Chapter 5; the basic design process is then
complete.
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TABLE 9.4.3
State assignment
for Figure 9.4.4

State | I, Yo
So 0 0
5, 1] 1
S 1 ¢
Ss 1 1

9.4.4 Placement of States for
Register Control and Timing

Before we look at some design examples, we need to examine carefully the
derivation of the timing and control equations which are specific to the
registers used to implement the given algorithm. As we observed in Section
9.3.2, there are two classes of signals associated with the control of a regis-
ter: timing and function. We may think of the function signals as level signals
generated by combinational logic which implement the transfer equations.
These level signals are functions only of the state variables and the various
system inputs. The timing signals, on the other hand, represent quite a differ-
ent situation.

Let us examine the timing problem by looking at the 4-bit presettable
binary counter of Figure 9.2.7. We will refer to this counter as register C.
There are three possible transfers that can be associated with this counter:
load, clear, and increment the register. Suppose, for a given application, that
the following two transfer equations are derived from the control flowchart:

(n->C) = LDC = 5,f(x)

9.4.24
(C +1— C) = INCC = s5;2(x) ( )
where f(x) and g(x) are functions of the application inputs x and where nisa
constant. Based on Figure 9.2.7, we see that the function control signal L is
simply equal, in this case, to the transfer LDC. We will denote this as

C[L] = LDC = 5;f(x) (9.4.25)

where the brackets identify the argument as a control line associated with
register C, as was done in Section 9.3. In order to carry out the transfers of
expression (9.4.24), we must clock the register if either transfer is to occur.
Thus we need to determine C[clock]. The simplest approach, and the one to
be taken here, is to simply AND the system clock, SYSCLK, with the
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condittons. Thus

Clclock] = (LDC + INCC) - SYSCLK (9.4.26)

With this arrangement, the transfer will actually occur on the rising edge of
the system clock, since the counter was designed using rising edge-triggered
flip-flops. The question that next arises is, When do we change the state of
the control system? There are two simple approaches we might take here: we
can cause the state change to occur at the same time as the transfer or after
the transfer. Since the former approach offers some difficulties, to be dis-
cussed in a moment, we will take the latter approach in what follows. In
this approach the transfer will occur first, on the low-to-high transition of
SYSCLK, and then the state change will occur on the high-to-low transition
of the clock, as shown in Figure 9.4.6. This two-phase type of operation is
fairly common. Thus, the clocking of register C will happen before any
change in state actually occurs.

This two-phase clocking scheme does present a potential difficulty that
must be avoided. Since the transfers associated with a path occur before the
state changes, we must ensure that no transfer in a path can cause the path
conditions to change in such a way as to cause the system to end up in a state
other than the one it would have ended up in before the transfer or in such a
way as to affect other transfers in the path. An example is shown in Figure
9.4.7(a). To see what happens in this case, assume that val (A) = n when the
system reaches state i. According to the flowchart, we should then increment
A and go to state j. However, what will actually happen is that A will be
incremented, which will cause the answer to the question “‘Is A = n?"’ to
change from yes to no. Two things will then occur. First, it is clear from the
flowchart that we will end up not in state j, but, rather, in state k. Second,
transfer T; will also be executed. This can be seen from Figure 9.4.7(b) by
observing that

clock for transfer T, = ch (A, n) 5; SYSCLK (9.4.27)
Now, when we enter state {, this clock signal is low, because ch (A, n) =0.

However, once A is incremented, ch (A, n) = | and Equation (9.4.27) be-
comes 1, so that the clocking of transfer T, occurs. Thus, we not only end up

SYSCLK ‘ ; t

Figure 9.4.6 Assumed ﬁming for control algorithm implementation.
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SYSCLK

A val(A)=n val(A)=n +1

A+1=>4 T,

1® 1®

Clock T, = ch(A, 1) si.5YSCLK
(a) (b)

Clock A+1—+A

—————

Clock transfer T

Tl
)7C

Figure %.4.7 State placement that can cause undesired transfers and state
changes: [a) faulty state placement, {b} unwanted transfer caused
by states of part {a}; c) position of state to correct the problern of

part {a).

(c)

in the wrong state, but we perform a transfer that is not intended. This
problem is easily solved by simply placing a state between a transfer and any
decision point that can be affected by that iransfer. Thus, in Figure 9.4.7(a),
we can eliminate the problem by placing an extra state between the decision
block and the transfer A + 1 — A, as shown in Figure 9,4.7(c).

From this example, we see one important factor in the placement of
states in a control flowchart:

Rule 1

A state must separate any transfer from any decision that is affected by the
transfer.

This is not the only criterion for state placement, though. In general, we may
place as many transfers between states as can be physically carried out
simultaneously. On the other hand, we could not, for example, simulta-
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neously perform the transfers 0— C and C + 1-» C.? Thus, a second rule for
state placement is:

Rule 2

A state must separate transfers that cannot be performed simultaneously.

We need to start somewhere the process of state placement. In all that
follows, we start by placing a state at the entry point to an algorithm. Thus
the third rule for state placement is:

Rule 3

Place a state at the entry point to an algorithm.

Starting with the entry point state, the next state should be placed as far
down in the algorithm as is allowed by the other two rules.

These rules should be taken as guides to the placement of states in a
control flowchart and not as absolute rules never to be broken. In fact, as we
shall see in the next section, any of these guides may be broken if no unde-
sired behavior results.

Before leaving the subject of register control, let us look at the alterna-
tive to the two-phase timing scheme mentioned above. 1t would seem that we
could eliminate the problems of wrong states and unwanted transfers if we
caused the state to change at exactly the same time that a transfer is made. In
fact, as long as all of the flip-flops—registers as well as state flip-flops—are
edge-triggered, this can be done. However, there is a serious problem associ-
ated with this approach, namely, clock skew. When a clock signal is distrib-
uted throughout a large system, it may happen that the clock arrives at one
register before it arrives at another, thus causing the registers to change at
slightly different times. This situation is referred to as clock skew and is
caused by different propagation delays from one register to another. In the
example cited above, the clocking of the register involved in the transfer was
derived using combinational logic, whereas the clock controlling the state
change comes directly from the clock generator or the system clock. Thus
there will be a significant time delay between the arrival of the clocking
signals for the register and that of the signals for the state flip-flops, as shown
in Figure 9.4.8. The resulting clock skew can produce the same unwanted
system behavior as the two-phase clocking scheme described above.

8 This is, of course, equivalent to the single transfer 1 — C. However. in the control algorithm
it may be essential that the clearing of C and the incrementation of C' be separate events.
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State Processor
flip-flops flip-flops
FaX FaX

System clock

(z)

System clock [

|
Clack ¢ —_— I*— Delay due to distance from the clock source

|
|
Clock & — }=—— Propagation delay through the logic

(b)

Figure 9.4.8 ustration of clock skew: {a) impiementation of control and proces-
sor clocks; (b resuiting timing and clock skew:.

One way of eliminating, or at least reducing, clock skew is to connect
the clock generator directly to the clock input of alf of the fiip-flops without
going through any combinational logic. Unfortunately, this requires that all
of the registers be designed to have a **do nothing’’ mode, as shown for the
universal shift register of Figure 9.2.6, whose control functions were given in
Table 9.2.1. Obviously, such a requirement will increase the complexity of
the register design. Furthermore, even if this is done, clock skew can still
occur on account of differences in the physical distances between registers.
In this case, registers close to the clock generator will receive the clock
before registers farther away.® For these reasons, we use the two-phase
clocking system in all that follows.

% The propagation delay of signals on wires is of the order of 1 nanosecond per foot (30 cm).
Thus, in very high-speed systems, where propagation delays through gates and flip-flops may
be of the order of tens of picoseconds. even very short differences in path length can lead to
incorrect system operation.
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DESIGN PROCESS AND SOME EXAMPLES

The process of designing a large-scale system is not much different from the
design process followed in Chapter 5. However, since such systems are
generally characterized by having two components, the control unit and the
processor unit, as shown in Figure 9.1.1, we must not only specify the
controller, on the basis of a given algorithm, but the processing unit as well.
We may outline the design process as follows:

1. Define the problem. Identify exactly what the system is supposed to do,
in a global sense.

2. Identify the registers and other elements in the processor. What hard-
ware is required to perform the required task?

3. Develop a control algorithm. On the basis of the problem and the as-
sumed processor hardware, develop a control algorithm flowchart. This
step and step 2 generally must be done together, or, at least, iteratively.

4. Develop the transfer and state variable equations. This step proceeds
as was described in Section 9.4.

5. Write the specific register and other control equations. On the basis of
the specific registers required to implement the algorithm and the con-
trol equations of part 4, derive the necessary equations to make all of
the processor components function as required.

Perhaps the best way to illustrate this process is by giving some exam-
ples. Three will be given here. The first example is a hardware system that is
used to multiply two unsigned positive 8-bit numbers to form a 16-bit result.
The second example, a digital speedometer for a bicycle, illustrates an alter-
native timing scheme, as well as some interesting asynchronous timing situa-
tions. The third example is the design of a serial data transmitter.

9.5.1 Serlal Hardware Muitipller System

In this example, we will design a hardware system that multiplies two 8-bit
unsigned (positive) numbers together to produce a 16-bit result. The algo-
rithm we shall use is based on the usual pencil-and-paper method, which is
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best illustrated with an example. Suppose the problem is to multiply 1001 by
1011. The work is carried out as follows:

1001
x 1011

1001

1001
0000
1001

1100011

This process begins by multiplying the multiplicand by the rightmost bit of
the multiplier to form a partial product. The multiplicand is next multiplied
by the next-least significant bit of the multiplier, with the result being added
to this partial product, after shifting one bit position, to form the next partial
product. This process is then repeated for each of the remaining bits of the
multiplier.

Figure 9.5.1(a) shows the general organization of the hardware needed
to carry out this process. This hardware consists of a register to hold the
multiplier, Q(7:0), a register to hold the multiplicand, P{7:0), and a register
to hold the sum invotved in creating the partial products, A(8:0). Associated
with register A is an extra bit, A(8), used to hold any carry generated when
the sum is formed by the adder shown in the figure. Since the product is
found after performing the add and shift process eight times, a 3-bit counter
is also needed for determining when the multiplication is complete. This
counter is shown as CNT(2:0} in the figure. Finally, we will need some type
of flag, MF in Figure 9.5.1(a), to indicate when the multiplication process is
to begin. This flag fip-flop can aiso indicate to the ““outside world’” when the
multiplication is finished. We will assume that the multiplication process is to
start when the flag is set and we will indicate completion of the process by
clearing the flag. Figure 9.5.1(b) shows the control flowchart describing the
add-shift multiplication algorithm carried out on this hardware. In this figure,
the transfer SR(A, 0) — (A, Q) is defined by the transfers

A1) — A(7:0), 0 — A(8)
Q(7:1) = Q{6:0), A(0) — Q(7)

and the transfer P + A — A is defined as

P(7:0) + A{7:0) = A(7:0), carry — A(8).
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Figure 9.5.1 An B x 8 muitiplication system: {a) multiplier block diagram,
(b} shift-and-add multiplication aigorithm.
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Before discussing the placement of the states, we need to determine the
function of each register and then specify a design for each. The function of
the P register is simply to hold the multiplicand and can, therefore, be imple-
mented by the 8-bit storage register shown in Figure 9.2.1. Although the Q
register needs only to be capable of shifting right in this algorithm, it clearly
must be loaded with the multiplier before the algorithm is carried out. Thus,
we will implement this register with the universal shift register of Figure
9.2.6. The partial product register, A, not only must have the capability of
being loaded and shifted, but it must also be capable of being cleared. These
functions can all be met, once again, using the universal shift register. In this
case, however, a 9-bit version is required to accommodate the carry bit. The
counter, which must be capable of being cleared as well as being able to
count, can be implemented using the 4-bit counter of Figure 9.2.8. Finally,
the multiply flag, MF, may be implemented using the type 7474 edge-trig-
gered D flip-lop with asynchronous Set and Clr.

The placement of states in the algorithm flowchart is based on the two-
phase clock scheme presented in Section 9.4. We start with the state S, at the
beginning of the algorithm. State S, must be placed prior to the test for **Q(0)
= 17, since the resulting path taken could involve the addition of A and P,
which cannot occur simultaneously with the clearing of register A. State S, is
used to separate the modification of A, due to an addition, from the shifting of
A. Finally, state §, separates the incrementation of CNT from a decision
based on val(CNT) after this incrementation. On the basis of this state place-
ment in the flowchart of Figure 9.5.1(b), we may construct the path-transfer
table as shown in Figure 9.5.2. Note in this figure that the notation CNT(3) is
used to indicate that val(CNT) = 0 and CNT(3) is used to indicate that
val{CNT) # 0. This is done because we are using the 4-bit counter of

Path Path condition | Transfer |Transfer condition

S-S MF - -

So-$, MF CLRA -
CLRCNT -

5,5 _ ADDPA Q)

53-83 - SHRAQ -
INCCNT -

55-5, CNT@3) CLRMF -

53-8, CNT(3} - -

Figure 9.5.2 Path-transfer table for the serial multiplier.
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Figure 9.2.7. When the fourth bit of this counter, CNT(3), goes to 1, we have
counted 8 clock pulses, and the low-order 3 bits will be 0. Thus, CNT(3)
corresponds to val (CNT) = 0. The transfer and the next-state equations are
easily written from this table and are given as follows:

(0— A) = CLRA = 5 MF
(0 = CNT) = CLRCNT = s, MF
(P + A— A) = ADDPA = 5,0(0)

(SR(4, Q) = (4, @) = SHRAQ = s, 9.3.0
(CNT + 1 = CNT) = INCCNT = s,
(0 — MF) = CLRMF = 5; CNT(3)
So = 5o MF + s3 CNT(3)
$, = sy MF + 5, CNT(3
1= 8o 53 3) 9.5.2)
Sg = 5
53 =5

Note in equation set (9.5.1) that an acronym is given to each of the transfers
to simplify reference to them. These acronyms are selected so that they
indicate the transfer. For example, CLRA meéans to’ CLeaR register A.
ADDPA is used to denote the transfer ADD register P to register A.

From the transfer equations given in group (9.5.1) and the registers
specified above, we may next derive the specific control equations required
by each register:

MF[CLR] = CLRMF - SYSCLK
A[CLR] = CLRA - SYSCLK
A[Load] = ADDPA
A[CLK] = (SHRAQ + ADDPA) - SYSCLK (9.5.3)
Q[CLK] = SHRAQ - SYSCLK
CNT{L] = CLRCNT
CNT[CLK] = (INCCNT + CLRCNT) - SYSCLK

where SYSCLK is the system clock. The resulting processing unit is shown
in Figure 9.5.3. In this figure the lines labeled with a question mark are
signals that must be supplied by the *‘outside world™” to load the multiplier
and multiplicand and to set the MF flag.
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TABLE 9.5.1
Next-state conditions

Next state

¥, 1 Condition

S$5=0 0 |5%MF+ 5CNT(3)
$=0 I | sy MF + 5 CNT(3)
.S'; = 1 Q 5
5 =1 I [ 5

The equations for the state variables can be found from equation set
(9.5.2) and Table 9.5.1. From this table we may obtain the equations for ¥
and Y, as follows:

Di=Yy=85+85=5+s=7Fyt+y

D, =Yy=8,+ 8§ =5 MF + 5, CNT(3) + s,
= 7170 MF + ;30 CNT() + y,7, (9.5.4)
=¥, MF + y,%, + y, CNT(3)

The final realization for the control unit of the muitiplier is shown in
Figure 9.5.4. Before we leave this example, let us consider using a PLA
device to implement this control unit. Suppose that we are given a logic array
IC having at least six outputs, at least five inputs, and at least seven product
terms. With such a device we can implement the controller with two ICs,
because a 7474 1C contains two D flip-flops in the same package. Figure 9.5.5
shows the programming diagram for the logic array, and Figure 9.5.6 shows a
block diagram of the final implementation.

9.5.2 Bicycle Speedometer

What we would like to do in this second example is design a system that can
be used to keep track of the speed of a bicycle and display the speed numeri-
cally using an LED or an LCD display. Speed is a function of two factors:
distance traveled and time of travel. A time scale is easily generated by using
an oscillator whose output frequency can be very accurately set and main-
tained. The distance traveled during a specified time interval can be mea-
sured by counting the number of turns of the bicycie wheel during this time
interval. Although speed is actually defined as the ratio of distance and time,
we do not actually have to perform any division to obtain the bicycle’s speed.
This can be determined by counting the number of revolutions of the wheel
during a fixed period of time and then looking up the speed corresponding to
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__/
)
T\
X— = = ) —
[\
* )} X
i ) \
__/
Y
—¥ ) ¥
¥, ¥y CNT(3) Q©) MF D, D, CLRMF ADDPA
SHRAQ CLRA
INCCNT CLRCNT

Figure 9.5.5 Programming diagram for a logic array that implements the control-

ler ingic for the serial multiplier system.

this number in a table, stored in a ROM. This, in fact, is what we did in
Chapter 4 as one method for converting from one code to another.

On the basis of this simple idea, we can now begin to specify the general
hardware needed to implement the speedometer. A block diagram of this
hardware is shown in Figure 9.5.7. First, we will need an oscillator to gener-
ate the time standard. This oscillator will also serve as the system clock,
SCLK. The specific time interval can then be measured by counting a fixed
number of clock pulses using a simple counter, which we will refer to here as
TC. At the end of the count interval a timer flag, T, will be set that will signal
the control unit to update the display. A second counter, which we will call
the revolution counter, C, will be used to count the number of wheel revolu-
tions during this time interval. The design of the counters T and C will be
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¥ oy D g

Yo Dy D Q

Programmable
logic array

(PLA) P D

CLRMF
CNT(3) ADDFPA

SHRAQ

20)  (NCONT)
CLRA

MF (CLRCNT)

SYSCLK

Figure 9.5.6 Biock diagram of the controller for the serial multiply circuit

based on that of the 4-bit counter shown in Figure 9.2.7. Thus w can preset
the counters as well as generate a carry out. Since the speed display should
be held fixed during the measurement interval, the value of the revolution
counter must be stored in a register, the display counter, D, at the end of the
time interval. The output of this register serves as the address input to the
display converter ROM used for storing the conversion table. The output of
the ROMs will then be used to drive the display. We will describe how this is
done a little later.

There are, of course, many ways in which we can determine that the
wheel has gone around once. One of the simplest is to attach one or more
magnets to spokes, say on the front wheel, and to attach to the fork a
magnetic reed switch or other device that can detect a strong magnetic field.
Each time the wheel goes around, this sensor will put out a pulse that can be
used to set a flip-flop, called the wheel flag, W, whose output is used by the
system control unit to update the revolution counter, C.
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w T TC
(whet%;;f):nsor (timer flag) [ (time counter)
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C System
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ROMs pray

Flgure 9.5.7 Biock diagram of the bicycle speedometer.

The control algorithm for this speedometer is easily described in words
as follows. On each SCLK pulse the timer flag, T, is first checked to deter-
mine whether the time interval is up. If it is, then the display is updated. The
next task, regardless of the state of T, is to check the wheel flag, W, to see if
the wheel has gone around one more time. If it has, then the revolution
counter, C, is updated. Finally, if either of the flags, T or W, have been set,
they are reset in preparation for the next event. Figure 9.5.8 shows the
flowchart for this algorithm.

The placement of states in Figure 9.5.8 is based on the two-phase clock
scheme and the resulting guidelines given in Section 9.4.4. We begin by
placing state S, at the entry point to the algorithm. It might appear that state
S, should be placed between the transfer of C to D and the clearing of C.
However, since we will implement C using a presettable counter, C can be
cleared by loading it with 0, a synchronous operation, rather than by use of
the asynchronous clear function shown in Figure 9.2.7. Thus both operations
can be carried out simultaneously. State S;, however, must be placed before
the transfer that clears T to comply with Rule 1 given in Section 9.4.4. For
the same reason, state S, must be placed ahead of the clearing of the wheel

flag, W
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o-wheAc+i-c

Figure 9.5.8 Contral algorithm for the bicycle speedometer.

The control equations can now be derived from the path-transfer table
shown in Figure 9.5.9. These equations are as follows:

(C— D) =CD = 5,T

{0 = C) = CLRC = 5T

(0—»T) = CLRT = s, (9.5.5)
(C + 1 C) = INCC = 5,TW + s\W

(0— W) = CLRW = s

where

Se = SoTW + Sl-w— + 5
S, = soT (9.5.6)
S, = SoTw + 5W
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Path Path condition Transfer Transfer condition
0-0 W

0-1 T CD,CLRC

0-2 TwW INCC

1-0 w CLRT

1-2 W CLRT, INCC

2-0 CLRW

Figure 9.5.9 Path-transfer table for the bicycle speedometer algorithm given in
Figure 9.5.8.

Table 9.5.2 gives a state assignment for the three states required by the
algorithm. Based on this assignment, the control equations (9.5.5) become

CD = ¥ 15T
CLRC = 7%, T
CLRT = ¥iYo (9.5.7)
INCC = ¥, W(T + yp)
CLRW = y%,

and

Yo = 8, = 5T = ¥ ¥l

Y] = Sz = S(}Tw + S|W = )_’IW(T + }’o) (958)

TABLE 9.5.2
State assignment
for Figure 9.5.9

State Y| Yy
Su 0 0
Ay 0 1
S» i 0
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T(L)
. R
4 ) CD, CLRC
D, Y
P 0" CLRT(L)
— I Y
—d
, :D—— CLRW
b, N—
—— INCC
W(L)

SCLK(L)

Figure 9.5.10 Control unit of the bicycle speedometer.

If we use D flip-flops in the control unit, these equations correspond to the
respective D inputs (i.e., Yy = Do and ¥; = Dy). The resulting control unit is
shown in Figure 9.5.10.

Before deriving the individual control equations for each register, we
must determine the type and size of all of the various registers. For simplic-
ity, we will assume that the two counters, TC and C, are of the same type as
the presettable binary counter shown in Figure 9.2.7, although not necessar-
ily of the same size. We will also use the storage register shown in Figure
9.3.2 for the display register D. To determine the size of these counters and
registers, we need to estimate time intervals, possible speeds, number of
revolutions, and other quantities we will be dealing with.

To begin with, the typical, average speed for the touring cyclist is |
around 15 mph. Racing cyclists may run 30 mph or faster!® and cyclists
coasting down a hill may approach 60 mph (not meant for ‘‘nervous Nel-

10 In the 1989 Tour de France, Greg LeMond averaged approximately 35 mph for a 15-mile
sprint to win the Tour.
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lies™). Therefore, 60 mph would seem to be a reasonable upper bound on the
speed. Now at 60 mph the bicycle would be moving at 88 ft/sec. Based on the
fact that the circumference of a 27-in wheel is 7.069 ft at 60 mph the wheel
would be rotating at 12.45 rev/sec. At 1 mph the wheel would be rotating at
0.207 rev/sec. This means that for a wheel having one magnet on it, and
moving at 1 mph, we would have to wait about 5 sec for each pulse from the
wheel sensor. This also implies that we would be unable to distinguish a 1-
mph change in speed by counting sensor pulses over a time interval less than
5 sec. (Why?) Updating the speed at 5 sec or longer intervals would also
seem to be a rather long time. To increase the update rate to, say, every 1
sec, we could place five magnets around the wheel. In this case we would
have 1.037 pulses/sec at 1 mph and 62.25 pulses/sec at 60 mph. To count 62+
pulses in a 1-sec interval we would need a 7-bit counter since a 6-bit counter
can only count to 61. On the other hand, if we used a 6-bit counter, the
maximum speed that could be measured would be 58.8 mph, which is close
enough to 60 for our purposes. Based on these considerations we will make
the following specifications:

1. Use five magnets around the front wheel.
2. The speed range is from 0 to 58 mph.

3. Update the speed every 1 sec.
4. The revolution counter, C, must be 6 bits to count the 61 pulses/sec at
58 mph.

To determine the frequency of the system clock, SCLK, we observe
that since we must update the revolution counter every 17.2 ms {= 1/58
pulse/sec) at 58 mph, the clock period must be shorter than this. In fact,
since it is possible that the algorithm must go through three states for each
update, the system clock must be at least three times faster than the maxi-
mum pulse rate. To ensure that no wheel pulses are lost, let us assume that
SCLK is at least four times as fast. This means that SCLK must have a
period of at most 4.3 ms and thus a frequency of at least 232.56 Hz. If we
were to use an 8-bit counter for TC and make the clock frequency equal to
256 Hz, a frequency larger than the minimum required, a carry out, Cou,
would be generated every 1 sec, exactly. This carry out could then be used to
set the T flag once every second. Thus:

5. The time counter, TC, is to be 8 bits.

‘We have now defined all of the components for our bicycle computer
except two, namely, the wheel sensor flag, W, and the display system. Letus
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Figure 9.5.11 \Whee! sensor flag and timing: (a} wheel sensor flip-fiop; {b) typical
timing for the wheel sensor flag.

first look at the sensor flag. As indicated in Figure 9.5.7, the sensor flag, W, 18
set by the occurrence of a pulse from the wheel sensor. Since this pulse
occurs asynchronously with respect to the system clock and its duration is
uncontrollable., we must be careful in the design of this flag. What we must
ensure is that the occurrence of a pulse, which might be very short,'! is not
only seen by the control algorithm but is present on a rising edge of SCLK.

U Refer to Problem 9.19 at the end of the chapter for an estimate of this number.
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Figure 9.5.11(a) shows one method for capturing and synchronizing the pulse
to the system clock. A pulse coming from the wheel sensor will set flip-flop
A. Flip-flop B, the output of which is the wheel flag, W, will then be set on the
next high-to-low transition of SCLK. Thus W will be set prior to the rising
edge of the system clock, which is used to cause a transfer. Once the control
unit sees W set it will first increment the revolution counter and then clear
the wheel flag. As can be seen from the figure, W is cleared by resetting flip-
fiop A. The low at the output of flip-flop A will then be passed to the output of
flip-flop B on the next high-to-low transition of SCLK, as shown in the timing
diagram of Figure 9.5.11(b).

The display system for this speedometer is an LED or an LCD 7 seg-
ment display as shown in Figure 9.5.12. In this device there is one line
coming in for each of the seven display segments. To turn on a segment we
need only put a 1 on the corresponding input. Thus each of the numbers from
0 to 9 can be displayed by turning on the appropriate subset of segments as
shown in Figure 9.5.12(b). Since our speedometer is to have a range from 0 to
58 mph, we will need two such displays. To cause the displays to show the
speed corresponding to the count held in D, we will need to convert this
count to seven lines for each display. We will do this using two ROMs,
HIROM and LOROM, which will be used to convert the 6-bit count to two 7-
bit codes corresponding to the appropriate segment values to display the
speed. These ROMs are shown as the “‘display converter ROMs™’ in Figure
9.5.7. For example, if the count value in the D register is 21, corresponding
to 20.24 mph, we would want to display 20. To do this, we would have to

;.

INSA:G>

IN<A:G> A B ¢ D E F G
0 1 1 1 1 1 1 0

— tlo 1 1 0 0o 0o o0

2 1 1 0 i 1 0 1

3 i 1 1 1 0 0 1

F G 5 4o 1t 1 0 0 1 1
EE—— 5 1 0 1 1 0 1 1

6 1 0 1 1 1 1 1

E C 7 1 1 1 0 0 0 0
8 1 1 ¢+ 1 1 1 1

D 9 1 1 1 1 0 1 1

(a) Segment identification (b) Input coding for display of the 10 digits

Figure 9.5.12 Seven-segment display: (a) segment identification; {b) input coding
for display of the ten digits.
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Figure 9.5.13 Final schematic for the processing unit of the bicycle speedometer.
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have stored in the two converter ROMs the following values, which are
obtained from Figure 9.5.12: ‘

ABCDEFG
HIROM(@21) = 1101101 which displays a 2
LOROM(2D) = 1111110 which dispiays a 0

Based on Equations (9.5.7) and the register specifications above, we
may now complete the system design by deriving the individual register
control equations. These are as follows:

T[CLR] = CLRT-SCLK
D[CLK] = CD-SCLK
C[L] = CLRC (9.5.9)
CICLK] = (CLRC + INCC)-SCLK
W[CLR] = CLRW-SCLK

Figure 9.5.13 shows the final realization for the bicycle speedometer.

9.5.3 An RS-232, Serial Data Transmitter

Before leaving this chapter, let us consider one more design example. In
general, computers are not very useful unless they can communicate with the
outside world via modems, printers, video terminals, and so on. There are
basically two ways to make connections between the computer and these
devices: parallel or serial. In a parallel connection a byte of information is
transmitted at a single instant of time. In a serial connection a byte of infor-

mation is transmitted one bit at a time. Clearly, the parallel connection is the .

faster way to transmit information. However, as long as the external device
is much slower than the computer, the lower data rate of the serial connec-
tion becomes of little importance. This is the case for printers and modems.
Since the serial connection also requires many fewer wires than the parallel
connection (one to transmit, one to receive, and a ground) the serial connec-
tion is preferred to the parallel connection. Thus devices such as printers are
quite often connected to a computer using a serial data link.

The most common type of serial data link is that associated with the RS-
232 type of interface. In this format, data are transmitted asynchronously in
frames of 10 or more bits, as shown in Figure 9.5.14. In this format the 8 data
bits are transmitted one after the other preceded by a start bit and ending
with a stop bit. The rate at which the bits are transmitted is referred to as the
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Least significant bit Most significant bit
1 T ! 1 T T T
& Data bits
Start Stop
bit bit

Figure 9.5.14 Asynchronous, serial data transmission.

baud rate, the unit of which, in this case, is bits/sec.'? Although the bits can
be transmitted in any order, the usual sequence is from least significant to
most significant, as indicated in Figure 9.5.14.

The term asynchronous is used here to characterize the fact that there is
no specific clock associated with the bits. In order to identify a particular bit
position we must know the baud rate. Then after the start bit is observed, the
value of the first bit will be one bit time later, the second bit one bit time
beyond that, and so on. Because there is no clock to synchronize the receiv-
ing of the data, the transmitter must accurately maintain the baud rate during
the transmission of a frame. If this is not done, the receiver, which assumes
that data are arriving at a particular baud rate, cannot properly identify bit
positions and thus data will be lost.

What we would like to do in this example is design a serial data trans-
mitter that can be loaded in parallel by the computer and then transmits the
data using the asynchronous serial protoco! shown in Figure 9.5.14. The
basic idea for the design is to load a 10-bit shift register with the data byte
along with a 0 at the beginning, for the start bit, and a 1 at the end, for the
stop bit. We explore the design of the companion receiver in the problems at
the end of the chapter.

Figure 9.5.15 shows a block diagram of a system that can be used for
this purpose. The operation of this system is fairly simple. A byte to be
transmitted is first loaded into the transmit register, TR, by the computer.
This is done by placing the data to be transmitted on the data bus, D{7:0},
and then pulsing the load line, LD, as shown in Figure 9.5.16. For the control
unit to know that data to be transmitted are present in TR a flag must be set.
Since the computer is not synchronized to the data transmitter, we must
synchronize the assertion of this flag to the transmitter’s clock, SCLK. This
is done in a manner similar to the synchronization of the wheel sensor flag in
the bicycle speedometer example. The loading of TR causes the transmit
register full, TRF, flip-flop to be set. On the next low-to-high transition of the

12 The actual unit of a baud is information wnits per second which is not always the same as
bits per second.
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~To computer
A

TRF LD D<7:0>
_______ e
+ A8
W
L > TR <7:0>
R

T

D CLRTRFF(L)

SCLK —-—*

Baud
Cont_rol . rate
unit
clock
Q
TRFF

Figure 9.5.15 Block diagram of the serial data transmitter.

system clock, SCLK, the transmit register full flag, TRFF, will also be set.
This informs the control unit that data are present in the TR. Note from
Figure 9.5.15 that the data are actually loaded into the transmit register on
the trailing edge of LD. This is the usual practice in computer interfaces to
ensure that the data on lines D(7:0) are valid before they are actually trans-
ferred to the peripheral device.

D<7:0> X X
Data loaded

LD m// into TR here

TRF

Figure 9.5.16 Extemal timing associated with the loading of the transmit regis-
ter, TR.
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Once the current byte in the transmit shift register has been sent, the transmit
register full flag is checked to see if another byte is waiting to be sent. If so,
the process is repeated. Figure 9.5.17 shows the control algorithm for this
process. The clock used in this system might be derived using the program-
mable frequency divider described in Section 9.2.3. In such an application,
we would refer to the frequency divider as a baud rate generator.

1, TR<7:0>.0
+TSR<9:0> | LDTSR

0 — TRFF | CLRTRFF

ch(TSR, 1} °
=17

L(TSR)—+ R(TSR)
0 = TSR(9} SRTSR

Figure 9.5.17 Control algorithm for the serial data transmitter.

jt

Once the control unit sees that TR contains data it does two things.
First, it moves the data into the transmit shift register, TSR, along with the
start and stop bits, and begins transmitting. Second, as it loads TSR, it also
clears the TRF flip-flop, along with TRFF, which informs the computer that ¢
the transmit register is now empty and ready to receive the next data byte.
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The placement of the states in the control algorithm is fairly simple. As
usual, we start with state S, at the entry point. It appears that the next state
must be placed between the transfers LDTSR and CLRTREFF so that the
clearing of the transmit register full flag does not change the state of the
condition **“TRFF = 1°’ before the correct state transition is effected. How-
ever, by delaying the clearing of TRFF by one clock period, this problem can
be avoided. To do this, we first clear flip-flop TRF in Figure 9.5.15. On the
next clock pulse flip-flop TRFF will be cleared and the one clock period delay
is accomplished. Thus the next state, state §;, can be placed so as to control
the looping process associated with shifting the data out of TSR. Since all of
the required transfers can be carried out between these two states, there is no
need for any further states. Based on this state placement the control and
next state equations can be written directly from Figure 9.5.17. These are

LDTSR = s, - TRFF
CLRTRFF = LDTSR (9.5.10)
SRTSR = 5, - X

where X = ¢h(TSR, 1), and

So =50  TRFF + 5 X 9.5.11)
S, = 5o TRFF + 5, - X

Since there are only two states, Soand §,, we need only one state variable, Y.
If we let So = Y and §, = Y and assume that the controller uses D flip-flops,

Equations (9.5.10) and (9.5.11) become

LDTSR = y - TRFF
CLRTRFF = LDTSR
SRTSR =y - X
D=5 -TRFF +y X

(9.5.12)

The resulting control unit becomes as shown in Figure 9.5.18.

To complete the design we need to specify the transmit register, TR,
and the transmit shift register, TSR. The transmit register only needs to be
loaded by an external source, sO weé can us¢ the simple storage register
shown in Figure 9.2.2. The transmit shift register needs to be able to shift as
well as be loaded. Thus we can make TR a 10-bit version of the universal
shift register shown in Figure 9.2.6. Based on these selections, the control



CLTRFF(L)

L

—\
__/
X =ch(TSR, 1) ---cD—:)_0

ﬁ)

SRTSR
SCLK
Figure 9.5.18 Control unit for the serial data transmitter.
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Figure .5.19 Processing unit for the serial data transmitter.
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equations associated with each register and flag flip-flop become

TRICLK] = LD
RF[CLR] = CLRTRFF(L)
TSR[CLK]} = (LDTSR + SRTSR)SCLK
TSRILOAD] = LDTSR
TSRIL/R] = 0 (refer to Table 9.2.1)
TSR[Left_in] = 0

9.5.13)

Figure 9.5.19 shows the final implementation of the asynchronous, serial
data transmitter.

O 9.6
FINAL COMMENTS AND OBSERVATIONS

In this chapter we have demonstrated that the design of medium- to large-
scale digital systems can be approached in a very systematic way. This
process involves breaking the problem up into two designs: the design of the
processing unit and the design of the controller. The design of the control
unit is based on a careful specification of the control algorithm, in this case,
by using a flowchart. The processing unit is made up of the various compo-
nent parts required to implement the requisite algorithm. Each of these parts
can be designed by further breaking down its function into smaller compo-
nents, as was demonstrated in Section 9.2. Thus the process of designing any
large-scale system involves breaking the specification up into small compo-
nents which can be easily described using methods developed in this book
and then combining these elements into the larger system. As indicated in the
bicycle speedometer example, however, the problem of unsynchronized in-
puts requires special care. In this case, the unsynchronized wheel sensor was
synchronized to the system clock using the double-ranked flip-flop arrange-
ment shown in Figure 9.5.11. Once this was done, timing in the control
algorithm was based solely on this system clock. This approach is common
under such circumstances and is generally a good one to take.

ANNOTATED BIBLIOGRAPHY

An excellent reference to the design procedures discussed in this chapter can
be found in the classic book by Bartee, Lebow, and Reed. The more recent
texts by Hayes and Mano also give a complete description of large-scale
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system design specifically as related to the design of computers. Hayes also
discusses the use of flowcharts for specifying the control algorithm. Muroga,
in Chapter 9, gives a rather brief but instructive explanation of flowchart

usage as well.
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An interesting alternative to block diagrams, register transfers, and
flowcharts for the specification of large-scale systems and control can be
found in the book by Bell and Newell. At the top level of system design, the
PMS (processor-memory-switch) description system is used to specify the
specific system requirements. The low-level design specification is then
given by the 1SP (instruction-set processor) description. The PMS system,
described by Bell and Newell, has gained a good deal of acceptance for the
description of computer systems. A recent book by Gorsline gives an excel-
lent discussion of this system and uses it in a coherent computer design

example.

BELL, C. G., and A. NEWELL, Computer Structures: Readings and Examples,
McGraw-Hill, New York, 1971.

GoORSLINE, G. W., Computer Organization: Hardware!Software, 2nd ed.,
Prentice-Hall, Englewood Cliffs, N.J., 1986.

PROBLEMS

9.1. Design a 4-bit counter that counts either in binary or BCD depending on a
control line MODE. When MODE = 0, the counter is to count in binary, and
when MODE = 1, the counter is to count in BCD.

9.2. Add circuitry to your design in Problem 9.1 to generate a carry out of the
high-order bit so that two or more such counters can be cascaded to form
longer binary or BCD counters.

9.3, Design an 8-bit register having three control inputs, ROT(2:0), that rotates
the register contents left as many bit positions as given by the decimal equiva-
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924.

9.6.

9.7.

9.8.

92.9.

9.10.

9.11.

lent of the number contained in ROT, namely, val (ROT(2:0)). For example,
suppose that ROT = 011 = 3 (base 10) and assume that the register contains
10100110. After the clock is asserted, the register will contain 00110101. If val
(ROT{2:0)) = 0, the register is to be loaded with external information on the
assertion of the clock.

Construct the register transfer equations that describe the register designed in
Problem 9.3. :

Write the transfers needed to implement the following statement: If A is
negative, then clear register B; otherwise, make register B negative.

Let A(7:0) and B(7:0) be two 8-bit registers that contain two BCD digits
each. Write the appropriate set of transfers to add A and B and place the
result in C(8:0), where the ninth bit contains any carry generated out of the
high-order digit.

Modify the design of the programmable frequency counter so that a division
factor of 1 can be obtained.

Design a system that implements the register transfer given in Equation
9.3.9).

Construct a flowchart showing the algorithm used in the programmable fre-
quency divider.

Construct flowcharts corresponding to the state diagrams shown in Figure
P9.10.

1/0 00/0 1i/1

1/0 ~1/0
(a) (b)
Figure P9.10

Write the control equations required to implement the algorithms of Problem
9.10.
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9.12.

Construct the path-transfer table corresponding to the control algorithm
given in Figure PS.12.

9.13.

9.14.

9.15.

9.16.

Figure P9.12

Write the appropriate next-state and transfer equations for the algorithm of
Figure P9.12.

Suppose for a certain algorithm it is essential fhat the following three trans-

2

1
¥

fers each be accomplished in one clock cycle (refer to footnote 8): - .

@ 00—~ C

MmC+1-C

(€ 0—=CandC+1—=C , :

Design a register capable of doing these three things in the required one clock
cycle.

Based on existing small-scale TTL integrated circuits (say, the 7400 Series),
how many 1Cs would be required to implement the muitiplier control unit
shown in Figure 9.5.47

Design a circuit that produces a single output pulse that is synchronized to the
system clock, SCLK, when an unsynchronized pulse, X, of duration Ty >
Tscok - Figure P9.16 shows an example of the required timing.
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9.17.

9.18.

9.19.

9.20.

9.21.

9.22,

P S —b D
SYSCLK
SYSCLK I | I l l l l |

I
I i
I I

X | !
I ! e ———
; !

P

Figure P9.16

Repeat Problem 9.18 assuming this time that Ty < Ts¢ k. Refer to Figure
P9.17.

ssax [T LU LTL

—_— .

Figure P9.17

What happens in the bicycle speedometer if the maximum speed is exceeded?
For example, what occurs if the bicycle is actually running 70 mph?

In the bicycle computer described in Section 9.5.2, suppose that the magnetic
reed switch used to count wheel revolutions responds to the magnets at-
tached to the wheel spokes when a magnet is within 0.5 in. What would be the
output pulse width at 58 mph?

Specify the hardware needed in the bicycle speedometer design to display the
fractional miles/hr on a third seven-segment display.

Consider the bicycle speedometer of Section 9.5.2. Construct a timing dia-
gram showing the worst-case timing for speeds within the range 0 to 58 mph.
“Worst case’" here means the longest time the ¢ontrol unit updates the wheel
counter, C.

How might you modify the design of the bicycle speedometer to make it
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9.23.

9.24.

9.25,

9.26.

9.27.

9.28.

9.29.

9.30.

9.31.

appear that the speed is being updated twice a second without modifying the
number of sensors (1) or the number of spoke magnets (5)?

Redesign the bicycle speedometer 50 that the wheel sensor directly drives the
C register, thus eliminating the wheel sensor flag. C is then to be reset by the -

controller using the C register’s asynchronous clear line. In your design,
synchronize the wheel sensor pulse to the system clock using your solution to

Problem 9.16 or 9.17, whichever is appropriate for this occasion. What are
the consequences of not synchronizing the wheel sensor pulse to the system

clock?

Design a system that will convert three-digit BCD numbers to binary using

the algorithm discussed in Section 2.5.3. Let By(3:0), B\(3:0), and By(3:0) be -

the 4-bit registers used to hold the BCD numbers, and let R{9:0) be the
register used to hold the final value.

(a) Specify the characteristics of these registers and design each.

(b) Identify all other registers and logic necessary to carry out this transfor-

mation.
(¢) Construct a flowchart which implements the necessary control algorithm.

(d) Write all of the necessary control equations.

(e) Construct a schematic diagram of the compieted control unit and proc-

essing unit.

Describe the modification in the design of the BCD-to-binary converter in
Problem 9.19 that would be necessary to make it possible to convert binary
numbers in R to a corresponding BCD equivalent in registers By, B, and By. |

Construct a timing diagram for the serial data transmitter described in Section |
9.5.3 showing what happens from the time the computer loads a byte to be

transmitted and the completion of the transmission.

Design the logic shown in Figure 9.5.19, which is used to derive ch(TSR, 1) =
X.

Suppose that you only have the 4-bit version of the universal shift register
shown in Figure 9.2.6. Show how you would design the 10-bit shift register
required by the serial data transmitter of Section 9.5.3 using these 4-bit ver-

sions.

In the serial data transmitter of Section 9.5.3, the end of transmission was
determined by detecting when the transmit shift register contained 1. Modify
the design so that a counter is used to indicate the end of transmission.

Modify the design of the serial data transmitter of Section 9.5.3 so that an
even parity bit is generated and sent as the last bit before the stop bit.

Construct a block diagram of a serial data receiver similar to the transmitter
of Section 9.5.3. Your design must include the ability to receive new data
while the computer is reading the last data item received. This is analogous to
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9.32,

9.33.

the situation in the data transmitter where the computer can load the next
byte to be transferred while the current byte is being transmitted.

Design a shift register system that can receive a byte of data transmitted in
the asynchronous format given in Figure 9.5.14. Give all details including the
algorithm. (Hint: Assume that you have a system clock that is twice the baud
rate of the incoming signal. Use this clock then to detect the center of a bit
time once the start bit has been detected.)

Based on your answers to Problems 9.31 and 9.32, complete the design of the
serial data receiver.
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An Introduction to
IEEE Std. 91-1984

0O A.Y

INTRODUCTION

As we pointed out in Chapter 4, the choice of symbols used to construct logic
diagrams is very important for quickly and clearly conveying information
about the designer’s logical intent. The symbols described in that chapter are
those currently used by industry for this purpose. In effect, these symbols
are the atoms or the basic building blocks for all digital system designs.
However, as we pointed out in Chapter 9, when designing large-scale sys-
tems containing more complex functions such as counters, shift registers,
and multiplexers, we require some type of simplification. Basically, we want
to replace the detaited logic drawing for the complex function with a simple
block symbol that represents the function. In Chapter 9 we did this by draw-
ing a rectangle and labeling it with the function performed. This approach
works fine as long as we have only a few different types of counter, muiti-
plexer, or whatever. A simple perusal of any IC catalog shows, however,
that there are a tremendous number of different devices available to the
system designer. Thus there is a clear need for some type of simplified
symbol that identifies the function performed by the device without showing
the detailed logic. ANSI/IEEE Std. 91-1984 addresses this issue.

419
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Appendix An introduction to IEEE 5td. 91-1984

Essentially, Standard 91-1984 consists of two parts: small-scale sym-
bols, which include the distinctive symbols introduced in Chapter 4; and
large-scale symbols, which identify the function performed by a given block
without small-scale detail. A third part of this symbology, and one we will
mention only briefly later, shows certain physical characteristics of devices,
such as drive capability, tri-state outputs, and hysteresis. The purpose of this
appendix, then, is to briefly describe these symbols and show how to inter-
pret them. We will first describe the small-scale symbols and compare them
with those used in this book. We will then introduce the large-scale symbols.
We will not attempt to describe all the details of this standard; this is done in
the references given at the end of the appendix. We will, however, introduce
the more commonly encountered elements of the symbology and illustrate
their use with examples. .

One final comment before getting into some of the symbology detail. All
standards are written to be as precise as possible and yet still allow room for
variation in style and usage. Ultimately, it is the frequent usage of a particu-
lar form that causes it to become standardized in some loose but generally
accepted manner. This is true of grammatical style in English (we rarely
encounter a ‘‘thee’” or a “‘thou” these days!) as well as programming lan-
guages. For example, the programming language Pascal allows for a tremen-
dous variation in style. Yet the highly structured, **properly’” indented form
for Pascal programs appears to be the accepted norm. Symbology standards
are no different. Since Standard 91-1984 is a relatively new standard, gener-
ally acceptable style has not yet been developed by usage. Thus, as we look
through the literature, we may find a variety in the form of the IEEE stan-
dard symbol for a given device. As use of the symbology continues,! this
style and form will become more *‘standardized.” This appendix, then, gives
an indication of some of the currently used forms for the new standard
symbology.

SYMBOLS USED FOR GATES AND FLIP-FLOPS

qualifving
symbol

There are two types of small-scale symbols: those with distinctive shape and
those with uniform shape. The distinctive-shape symbols are equivalent to
those used throughout this book. The uniform symbols use a rectangle to
represent all gates. The type of gate represented is indicated by a qualifving
symbol inside the rectangle. Since the uniform symbols have no apparent

! The use of this new symbology will certainly continue. since its use is currently mandatory
on logic diagrams drawn for the Department of Defense.’



Section A.2 Symbols Used for Gates and Flip-Flops 421

direction, care must be taken in identifying inputs and outputs. By conven-
tion, inputs come in on the left of the rectangle and outputs leave on the
right. If, however, confusion can occur, arrows may be placed on lines to
explicitly identify inputs and outputs. Figure A.2.1 shows the equivalences
that exist between the uniform and the distinctive symbols. Although not
part of the standard, the qualifying symbols for the OR (=1) and the exclu-
sive-OR (=1) occasionally appear in the literature as + for the OR and XOR
for the exclusive-OR.
Uniform - Distinctive

&

(] wremm—

>
h
T
[}

(a)

a

b ——4

i

(b)

o
]
T n
?
&

(¢

|
Y

@

Figure A.2.1 (a—e] Equivalences between the uniform symbois and the distinc-
tive symbols: {a) AND; [b) OR; {c) exclusive OR {XOR); {d) buffer
with left-to-right information flow; (e) buffer with right-to-left infor-
mation fiow. Uniform symbol Jabeiing for odd parity (f} and even
parity (g).
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positive logic
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Figure A.2.1 continued

This standard also modifies the meaning of the *‘bubble.’” The bubble,
as we have used it throughout this book, means that the corresponding signal
is asserted low (i.e., that the signal is interpreted as a logical 1 when its
voltage is low). The bubble in Standard 91-1984 and also in the earlier 1IEEE
Std. 91-1973 indicates a logical complementation. In this interpretation, itis
assumed that all signals in a digital system are asserted high ( positive logic)
or are asserted low (negative logic) but never some high and some low. In
other words, mixed logic is not allowed. In order to indicate a signal that is
asserted low, or active low, in a mixed-logic system, a new symbol is intro-
duced. This new asserted low indicator appears as an open “ramp,’’ or half
arrow, as shown in Figure A.2.2. In what follows, we will use this symbol to
indicate a signal that is asserted, or active, low.

In using the uniform symbols available in 1IEEE Std. 91-1984, some
further economies of notation become available. For example, Figure
A.2.3(a) shows a circuit, using the distinctive symbols used in this text,
which realizes the function

f(A,B,C)=(A+ B)C

Figure A.2.3(b) shows the equivalent new symbol using the uniform
symbols. '

In Standard 91—1984, bistabie devices (latches and flip-flops) are sepa-
rated into four distinct categories, namely, transparent latches, edge-trig-
gered flip-flops, pulse-triggered (master-slave) flip-flops, and data lockout
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D B D Figure A.2.2

IEEE Std. 91-1984 as used in this book Assertion-level indication equivalence.

flip-flops. The first three of these were discussed in Chapter 5. Figure A.2.4
shows these four flip-flop types and their interpretation in the symbology
used in Chapters 4 and 5. This interpretation can be put into words as
follows: '

Transparent latch: The output functionally follows the input for as long as
the input C is asserted.

Pulse-triggered flip-flop: The output takes on the value required of the
inputs whenever the input C goes from its asserted value to its nonasserted
value, or is negated. The inputs, D in this case, must not change while C is
asserted or else the output may be unpredictable (refer to the discussion of
the problem encountered in master-stave flip-flops caused by glitches, given
in Section 5.2). '
Edge-triggered flip-flops: The output takes on the value required by the
inputs at the time that input C is asserted.

Flip-flops with data lockout: These flip-flops are a combination of the pulse-
triggered and edge-triggered flip-flop. Basically, at the time that input C is
negated, the output takes. on the value that the inputs required at the time
that the C input was asserted.

Note, in these examples, that the symboi " Jused at the outputs of the pulse-
triggered and the data lockout flip-flops simply implies that the output does
not change until the input labeled C returns to its negated value after first
being asserted. The labels 1D and Cl, shown in the I[EEE Std. 91-1984
symbols in this figure, have very specific meanings within the standard, as we
shall see in the next section. '

A(H)

B(H)

C(HY D

tat

F(H

) F(HY

b

Figure A.2.3 Comparison of implementations of the function (A + B]E: {aj dis-
tinctive symbol method; {b) uniform symbol method.
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SYMBOLS FOR MEDIUM- TO LARGE-SCALE DEVICES

dependency
notation

selection
Junction

As mentioned above, perhaps the most important aspect of IEEE Std. 91—
1984 is its ability to show the functional behavior of complex circuits with a
simple symbol. The reason that the standard can accomplish this task is that
it uses a special notation referred to as dependency notation. An example of
this is the C1 and 1D labels used in the flip-flops just described. Basically,
dependency notation allows the separation of the control functions from the
data functions and shows, explicitly, how the control signals affect the data
function. In general, identification of the controlling signal is made by a
letter, indicating the dependency type, followed by a number, which is used
to indicate the signal lines controlled by this controlling signal. The con-
trolled lines are generally indicated by a number or one or more numbers
followed by a letter. Thus, C1 is a controlling input of dependency type C,
and 1D is the line controlled by Cl, in this case, the D input of the flip-flop. It
should be noted here that the number following the controlling input can by
anything. This number is used only for referencing the control inputs to the
other signals. In the remainder of this section we define some of the more
commonly encountered dependency types used in the new symbology and
show a number of examples of their use.

A.3.1 G Dependency Type

The G dependency is used basically to perform a selection function. A very
simple illustration of the use of the G dependency is found in the two-line
multiplexer (MUX) shown in Figure A.3.1. The standard symbol shows a
rectangle that is identified as a multiplexer by the qualifying symbol MUX.
The inputs b and ¢ are selected to appear at output d by the value of the
selection input, a. The IEEE equivalent is formed by labeling input a with a
G followed by a number, 3 in this case, which identifies the inputs affected by
this signal. Thus, if the selection input G is asserted, the 3 in the figure, then
d takes on the value of input 4, and if the selection input G is negated or NOT
asserted, the 3 in the figure, then d takes on the value of input c.

In Chapter 4 we designed a four-line MUX, as shown in Figure 4.3.8.
Figure A.3.2 shows the corresponding 1EEE symbol. Note that in this case,
there are two selection inputs that can be used to select one of four signals.
These inputs, S and S|, are labeled 0 and 1, to indicate the powers of 2 used
in the coding and a **G’’ followed by a series of numbers, 0 through 3, which
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(§ ———

MUX
a G3 b
— >—

Y
¢ J
(@) (b)

Wi

Figure A.3.1 G dependency used in a two-iine multiplexer (MUX): {a} IEEE Sym-
bol for the MUX; {b) equivalent circuit.

MUX
Sy == 0
S, — }09
1 3
husaree Y
fHhy —0
LT 1
fy =2
I —1s

(a} by

Figure A.3.2 Expanded G dependency in a four-line MUX. {a] block diagram
symbol introduced in Chapter 4; (b} IEEE symbol.

DMUX
— S
a 0
0 GO— b a | d ¢ | g
b— ? pP—c 0 0 e 0 0 0
_ o 1 0 ¢ 0 0
) P 1 0 ¢ 0 ¢ 0
1 1 0 0 @& ¢
P

(@) (b

Figure A.3.3 (3} IEEE standard symbol describing a DMUX. {b) DMUX truth
table.
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Figure A.3.4
IEEE symbol for the 7415138 eight-fine demuiti-

plexer.

identify the signals affected by these G inputs. The selected inputs are la-
beled in accordance with this selection code.?

A demultiplexer is basically the opposite of the multiplexer. By under-
standing the G dependency just given, we should be able to interpret the
operation of the demultiplexer (DMUX) shown in Figure A.3.3. This symbol
states that the selection inputs, @ and b, are used to choose one of the
outputs, d, e, f, or g, to take on the value of input c. In this case, note further
that the outputs are all asserted low!

Before examining the next type of dependency, let us look at one more
example of the use of these symbols. A 74LS138 is an eight-line decoder-
demultiplexer that has three input lines that are ANDed together to form the
signal that will appear at the selected output. Figure A.3.4 shows the 1IEEE
symbol for this device. In this case, the symbol is a compound symbol made
up of a large rectangle for the DMUX that encloses a smaller rectangle
showing the AND operation. As an example of the interpretation of this
symbol, if the inputs (c, b, a) = (1, 1, 0), then output 6 (m in the figure), which
is the decimal equivalent of 110, will take on the value of the AND of inputs
d, e, and f, that is, m = def. All of the other outputs will be negated: in this
case, they will be high. Note also that the outputs and the two inputs 4 and e
are all asserted low.

EN Dependency Type

enable
function

The EN dependency is used to enable the functioning of a device or a set of
lines, usually only outputs. For example, suppose we wish to add an addi-
tional input signal CS to the MUX shown in Figure A.3.2 that controls the

2 Although the numbers selected here correspond to the encoded values of inputs §; and S,
this need not be the case. In general, these can be any four successive digits which are then
associated with the encoded values of the inputs.
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Figure A.3.5 Four-line MUX with device enable CS.

output. If CS = 0, then the output will be 0 regardless of the inputs; and if
CS = 1, the device will serve its normal function as a MUX. Figure A.3.5
shows the resulting symbol and a simple equivalence.

In general, if an EN input is not foliowed by a number, it is assumed to
affect all outputs. If the EN input is followed by a number, then it affects
only those outputs which carry the same number. For example, Figure A.3.6
shows a two-line MUX having two outputs, e and f, which are identical if
input b is 1 (low, in this case). On the other hand, if input & is 0, then output f
will be 0 regardless of the other inputs, whereas output ¢ will take on the
required value of input c or d, depending on the value of the select input 4.

A.3.3 Common-Control Block

Before examining some of the other common dependency types, let us look
at how we can put together compound symbols having common control.
Suppose we wish to show a circuit having two 2-input MUXs with a common

MUX MUX
ﬂ‘-——-Gl p— ﬂ'—"-—‘*-""Gl r————— 7
- -
= !
c 1 ¢ 1 [~
d ——1 — d n
b JL’\
V

Figure A.3.6 Two-ine MUX with an enable for one of the outputs.
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select and enable. Figure A.3.7(a) shows a symbo! for this circuit that is
composed of two parts. The ‘““spade-shaped’” symbol at the top of this draw-
ing, referred to as the common-control block, is used to show the control
signals that are common to the two multiplexers. The MUXs are indicated by
the two rectangles stacked below the control block. Only the top MUX
symbol shows the dependency, since the other MUX is assumed to be identi-

Common-control block

MUX

@ ———— 1]
b EN
[ i

— g
d 1
e ——

h

f —

(a)

Figure A.3.7 Two Z-line MUXs with common select and enable control: {a) IEEE
symbol; (b) equivalent circuit.
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| G
EN

MUX
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DMUX

— Figure A.3.8
——  Symbol for a MUX and a DMUX having common
control,

—]

cal. Figure A.3.7(b) shows the physical implementation of this compound
MUX.

In this figure, the qualifying symbol was placed in the common-control
block. This was done because each of the blocks controlled had the same
function. It can happen that there is control common to dissimilar functional
blocks. For example, Figure A.3.8 shows a circuit that consists of a MUX
and a DMUX both controlled by the same set of input signals. In this case,
the qualifying symbols are shown in their corresponding blocks.

A34 C .Dependency Type

The C dependency is used to identify a control function, usually associated
with flip-flop operation. We have already encountered this function in the
flip-flop symbols shown in Figure A.2.4. Basically, whenever a control input
C is active, all of the inputs, functions, and outputs dependent on this signal
perform their required function. For example, consider the edge-triggered
flip-flop shown in Figure A.2.4(c). When the Cl input is asserted (goes froma
low to a high), the flip-flop functions by passing the controlled input, 1D, to
the output.

In Section 9.2, we introduced the idea of a register. Figures 9.2.2 and
9.2.3 show symbols for an 8-bit storage register. The IEEE standard symbol
corresponding to this storage register is shown in Figure A.3.9. This symbol
is identified as a storage register by the qualifying symbol RG shown in the
control block. Note the *‘plain English> specification for the purpose of the
Load input found in square brackets in the common-control block. The use
of these extra labels is generally a good idea, since they make the symbol’s
functions more quickly discernible.
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Another useful register introduced in Chapter 9 was the shift register.
Figure A.3.10 shows the IEEE standard symbol equivalent to the serial in-
parallel out shift register discussed in Section 9.2 and shown in Figure 9.2.3.
In this standard symbol, the qualifying symbol SRG8 is used to indicate an
8-bit shift register. The control symbol C1 — is used here to indicate that
when this input goes from a low to a high (the asserted transition, in this
case), the register contents are to be shifted away from the control block
as input Right_in is loaded into the flip-flop. If the arrow had been reversed,
the active transition of C1 would have caused the register to shift toward
the control block. Since this device has been identified as a shift register, the
internal connections from stage to stage are assumed and therefore not ex-
plicitly shown. '

A.3.5 S and R Dependency Types

In Figure 7.6.1 we showed a commonly encountered symbol for two popular
flip-flops: the 7474 and the 74L.S76. Figure A.3.11 shows the 1EEE standard
symbols used for these devices. In this figure, the S and R dependencies are
“understood to serve the asynchronous set and reset, or clear, functions
described in Chapter 9. The C dependency was described above.

RG
Load ——> C1[load]
DI(0) —— 1D —— DO
DI(7) = ' — DO(7)

Figure A.3.9 An 8-bit storage register.
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SRG8

LSHIFT > Cl =

Right_in 1D DO(0)

—— D7)

Figure A.3.10 [EEE symbol for the 8-bit shift register of Figure 9.2.3.

A.3.6 M Dependency Type

Registers, counters, and other complex circuits can have several functions
associated with them, as was shown by the universal shift register designed
in Chapter 9. This shift register had four functions: shift left, shift right, load,

rode and do nothing. These modes of operation were controlled by the two input
unction control signals Load and L/R. The function of the M dependency is to show
T 3
N
L o Q(H) —u Q(H)
D —p 1
— S
NN QL) 1K Q(L)
PR R

@ ' (®)

Figure A.3.11 IEEE standard symbol for {a) the 7474 and [b} the 74L576 edge-
triggered flip-flops.
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SRG4
Load 0 } 0
_ M-
L/R 1 3
Clock > C4/0 /2
Clear ~—== R
Right_in 0, 4D
DO(()
DKO) ——=—-} 1,4D
DI{1y —— 1,4D DO(1)
D12} DO(2)
Left_in 2.4D
DO3)
Di(3) 1,4D

433

Figure A.3.12 IEEE symbol for the universal shift register of Figure 9.2.6.

the signals that control this mode selection activity and to show which inputs
and outputs, and, perhaps, controls, are affected by these signals. Figure
A.3.12 shows the IEEE symbol equivalent to the universal shift register
shown in Figure 9.2.6. In this figure, we see that there are two inputs that
control the mode. These are labeled 0 and 1, corresponding to inputs Load
and L/R, respectively. As was described for the G dependency used in
Figure A.3.2, these two inputs are used to encode the modes M0 through M3.
The signals which are affected by these modes are then prefixed by one of
these numbers.

Most dependency is not only associated with various inputs and outputs
but may be associated with other control signals as well. For example, the
dependency notation that appears at the dynamic input, C4/0 «/2—, indi-
cates some association with two of the four modes, 0 and 2 in this case. This
notation consists of three parts, separated by slashes (/), and is interpreted as
follows. First, the C4 indicates that this is a control input that can affect all
other signals prefixed by a 4. The second part of the notation ()< indicates
that when this control signal is active and mode 0 is selected, a shift toward
the control block will be effected. This corresponds to a right shift of the
register shown in Figure 9.2.6. Finally, the third part of the notation (2—)
indicates that a shift away from the control block, or a left shift in Figure
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9.2.6. occurs on an active transition of the control unit if mode 2 is selected.
If neither mode 0 nor mode 2 is selected, then, although an active transition
on this input will not cause a shift, some other function, such as loading, may
oceur. In this case, if the mode is 1, then the inputs labeled 1,4D will be
active and each of the flip-flops will be loaded with the information present
on its respective input. The ordering of the labels is important. In this case,
mode 1 must be selected first and then control input 4 must go active. [na
similar manner, the input fabeled 0,4D will be active and load the top flip-flop
with information on the input Right_in if mode 0 is selected (a shift away
from the control block) and control input 4 is active. Similarly, the bottom
flip-fop will be loaded with the information on input Left_in if mede 2 is
selected (a shift toward the control block) and the control input makes an
active transition. Finally, note that if mode 3 is selected, no action occurs,
since no corresponding activity is shown on the control input, nor are any
inputs conditioned by this mode. This is the **do nothing’’ mode.

Before leaving this example, we should note that the final control input
R (Clear, in the figure) is just the asynchronous reset described earlier; it
causes all four of the flip-flops to reset to 0. One last comment is in order.
Observe that the third fiip-flop has no internal labeling. This is because it is
identical to the one immediately above. In general, elements are labeled only

CTR4

L —— M1
Clock »C2/T+ CT=15p—
Clear —Lo R
D10y ——% 1, 2D DO{O)
D1} ~—— L—— DO(1)
Di(2} — DO(2)
DI DO(3)

Figure A.3.13 IEEE symbol for the presettable counter of Figure 9.2.7.
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CTR4
L Mt [load]
M2[count]

Clock > C3f2+

Clear — I R

D0} —=—) 1,3D b—— DO}
DI{])} =—— DO
DI{2) mmend D02
DI(3} e p——— DOH{3)

CT=15

Figure A.3.14 Alternative symbol equivalent to that of Figure A.3.13.

if they differ from the elements they follow. Thus, in this example, the fourth
flip-flop is labeled, since it differs from the preceding three.

Another example of the use of the M, or mode, dependency is shown in
Figure A.3.13. This figure shows the standard symbol used to indicate the
operation of the presettable binary counter shown in Figure 9.2.7. The 4-bit
binary counter function is indicated by the qualifying symbol CTR4. If this
had been a decimal counter, the qualifying symbol would have been
CTRDIV10, which indicates a counter that divides by 10. In this symbol, we
see that when the mode line, M1, is asserted and the dynamic input goes
from a low to a high, the four flip-flops are loaded with the values appearing
on their respective inputs. On the other hand, if the mode line is negated,
then an active transition of the dynamic input causes the counter to incre-
ment by 1, as shown by the notation 1+. A counter that counts down would
be indicated by the notation I—. Finally, the common output shown on the
control block labeled CT = 15 takes on the value 1 whenever the count
reaches 15.

Figure A.3.14 shows an alternative symbol for this counter in which the
mode select line has been split into two lines, labeled M1 and M2. Another
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difference between the symbols of Figures A.3.13 and A.3.14 is the common
output element block shown at the bottom of the counter separated from the
main counter body by a double line. The common element is used to indicate
an output that is generally a function of all of the elements that appear above
it.

A.3.7 A Dependency Type

In dealing with memories such as the ROM discussed in Chapter 4, another
dependency type must be introduced to indicate which character in the ROM
is to be accessed. The A dependency is used for this function and serves to
give the address of the required character. Figure A.3.15 shows the IEEE
symbol that might be used to indicate the ROM of Figure 4.4.2. The qualify-
ing symbol, ROM32 x 8, indicates that this is a ROM and gives its size. The
five inputs a, b, ¢, d, and e form the address, which takes on values in the
range 0 through 31. The A associated with the outputs simply indicates that
the output is dependent on the value of this address.

Figure A.3.16 shows a symbol that might be used for a read-write mem-
ory (a RAM, or random-access memory). In this symbol, there are 10 ad-
dress inputs, AQ through A9, which identify which character in the RAM is
to be accessed. This device also has a control input, C1024, which serves the
function of writing information appearing on the inputs into the addressed
memory location. This is indicated by the notation A, 1024D that appears at

ROM32 X 8

“lo

d ——

|

©
A e )
b

Figure A.3.15
Address dependency as used in the symbol for
the 32- x 8-bit ROM of Figure 4.4.2.
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RAM1024 X 4
,

a0 — o
Al
A2
A3 v ——
A4
as — [ Ao
A6
A7
A8
A9

— C1024

—{ s 10240 | 4p—

Figure A.3.16
Symbol used to show a read-write memory
{RAM] having 1024 four-bit characters.

the inputs to the memory. Thus, if the control input is asserted, information
will be written into the addressed location. If the control input is negated,
information located at the addressed location will appear at the output but
will not be changed. '

A.3.8 Z Dependency Type

The Z dependency type is used to show interconnection. Basically, all the Z_
symbol does is to identify a signal at one point in a circuit that appears at
another. It simply transfers the value of the signal at the former to the latter.
Figure A.3.17 shows a simple example of this usage. Although this symbol
does not often appear, the reader should be aware of its presence.

a ——t Zi 530‘“? ip——b = a Res} of.the . b
circuit ‘ gircuit
N
V

Figure A.3.17 Basic Z dependency.
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SYMBOLS USED TO IDENTIFY
PHYSICAL CHARACTERISTICS

open-
collecror

tri-state

We mentioned in the introduction to this appendix that a third aspect of
IEEE Std. 91-1984 is a set of symbols used to identify various physical
characteristics of devices. By ‘*physical’’ characteristics, we mean electrical
or electronic characteristics associated with the inputs or the outputs. Al-
though this is not part of the subject of this text, it is useful to be aware of
these symbols. It should be noted, however, that these symbols do not, in
any way, change the logical interpretation of digital schematic diagrams that
may be encountered; they simply add a bit more information about the elec-
trical characteristics of the device.

Figure A.4.1 summarizes the four most commonly encountered sym-
bols representing physical attributes of logical devices. The first symbol,
shown as Figure A.4.1(a), shows the symbol, that would appear at the output
of an open-collector device. Open-collector outputs were introduced in Sec-
tion 4.2, and an example was shown in Figure 4.2.18. Figure A.4.1(b) shows
the symbol for a tri-state output. The output of a tri-state device has three
values: a high voltage, a low voltage, and a disconnected value. The discon-
nected value is equivalent to a wire that is connected to nothing, at least on
this end, the device output end. The third commonly encountered output
characteristic is extra drive capability. An output with this capability can
drive, or serve as the input to, more devices than would normally be possi-
ble. The symbol for this capability is shown in Figure A.4.1(c). Finaily, a
characteristic of inputs that is very important in many applications is that of

9 \Y4

(a) )

D (Left to right)
q (Right to Ieft)

(€ (d)

Figure A.4.1 Four commonly encountered symbois indicating specific physical
attributes for inputs and outputs; (a} open collector output, {b) tri-
state output; {¢} output with extra drive capability {arrow points in
direction of signal flow); (d] input with hysteresis.
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hysteresis hysteresis. A device with hysteresis has the capability of responding to two
different threshoid voltages at the input, choosing one or the other depending
on whether the input is going from low to high or vice versa. This hysteresis,
or bi-threshold, effect is exactly what is encountered in the household ther-
mostat. [n this case, the furnace “‘kicks on’’ when the ambient temperature
falls slightly below the temperature set on the thermostat and “‘kicks off
when the ambient temperature rises slightly above the value set. Circuits of
this type were introduced in Problem 7.1.
There are other symbols that are part of the 1IEEE standard to show
input/output physical attributes which are encountered on occasion. These
may be found in the references cited in the bibliography.

ANNOTATED BIBLIOGRAPHY

No attempt has been made to be comprehensive in the discussion of the
IEEE Std. 91-1984 symbology presented in this appendix. However, the
most commonly encountered dependency notation and usage have been in-
troduced. A very nice booklet by Mann (1987) gives many more details and
shows a large number of examples. Mann has also produced a small pam-
phlet (1984) that summarizes the IEEE standard. The pamphlet is also repro-
duced as Appendix A of Sandige.

MANN, F. A., “"Overview of IEEE Std. 91-1984: Explanation of Logic Sym-
bols,”” Texas Instruments, Inc., Carrollton, Tex., Publ. SDYZ001, 1984.

ManNN, F. A., “Using Funcitonat Logic Symbols: Application of IEEE Std.
91-1984,” Texas Instruments, Inc., Carrollton, Tex., Publ. SZZZ003, 1987.

SANDIGE, R. S., Modern Digital Design, McGraw-Hill, New York, 1990.

A copy of this standard, entitled Standard: 091-1984 Graphics Symbols
Jor Logic Functions, can be obtained by writing the 1EEE at the following
address:

Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street
New York, New York 10017

Finally, a recent book dealing with logic design by McCluskey uses this
symbology throughout. This book gives a number of practical design prob-
lems and many examples of the usage of these new 1EEE symbols. The book
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by Sandige mentioned above, and that of Wakerly, also uses these symbols
to some degree.

McCLuskey, E. )., Logic Design Principles with Emphasis on Testable Semi-
custom Circuits, Prentice-Hall, Englewood Cliffs, N.J., 1986.

WAKERLY, J. F.. Digital Design Principles and Practices, Prentice-Hall,
Englewood Cliffs, N.J., 1990.
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