C PFregrameisg lar [nfsraciive Comirgd

Programming
the Parallel Port

Interfacing the PC for Data Acquisition
and Process Control

D‘r”tnp mitrepratriaer TR Sppiicatiani
wilh Lhe i

Cisais gartable spplicsbions fax Lield
ditr wtguiritien

Fragram Interfaces Lo Inplramenis,

sxpuilments and procetses *{ ‘i .;

M pHAMANIAY V.GADRE

Pagei
Programming the Parallel Port
I nterfacing the PC for Data Acquisition and Process Control
Dhananjay V. Gadre
R&D Books
Lawrence, KS 66406
Pageii

Disclaimer:
This netLibrary eBook does not include the ancillary media that was packaged with the original printed
version of the book.

R& D Books

an imprint of Miller Freeman, Inc.
1601 West 23rd Street, Suite 200
Lawrence, KS 66046

USA

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where R& D is aware of atrademark claim, the product name appearsin initial capital letters, in all
capital letters, or in accordance with the vendor's capitalization preference. Readers should contact the
appropriate companies for more complete information on trademarks and trademark registrations. All
trademarks and registered trademarks in this book are the property of their respective holders.

Copyright © 1998 by Miller Freeman, Inc., except where noted otherwise. Published by R& D Books, an
imprint of Miller Freeman, Inc. All rights reserved. Printed in the United States of America. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher; with the exception that the program
listings may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

The programsin this book are presented for instructional value. The programs have been carefully tested,
but are not guaranteed for any particular purpose. The publisher does not offer any warranties and does not
guarantee the accuracy, adequacy, or completeness of any information herein and is not responsible for any
errors or omissions. The publisher assumes no liability for damages resulting from the use of the information
in this book or for any infringement of the intellectual property rights of third parties which would result
from the use of thisinformation.

Distributed in the U.S. and Canada by:
Publishers Group West

P.O. Box 8843

Emeryville, CA 94662

| SBN: 0-87930-513-4

m Miller Freeman

A United News & Media company

Pageiii

To Chaitanya and Sangeeta

Page v

Foreword

No other interface has been so constant since the PC was introduced in 1981. Originally implemented to
provide a"high speed” interface to the latest generation of dot matrix and daisy wheel printers, the parallel
port has become the most common interface used to connect awide variety of peripherals.

For many years, up until around 1989, printers were the only peripheral that took advantage of the parallel
port. The port was viewed primarily as a"printer” port and other types of peripherals did not useit. Then
companies such as Microsolutions and Xircom got the idea that you could actually use the port to get
information back into the computer, and therefore use it as a bi-directional communication port. Being
parallel, you could get much higher performance than using the PC's seria port, with greater ssimplicity.

The old parallel port became an easy-to-use interface for connecting peripherals. With avery simple register
model, it is easy to get information into and out of the PC. The only drawback was that it was relatively
slow. The CPU and platform performance was increasing at a tremendous rate, but the I/O capability of the
PC stayed the same. While the CPU increased 100 fold, the parallel port remained stagnant.

Thisal changed with the formation of the IEEE 1284 Committee in 1992. This committee, sponsored by the
Institute of Electrical and Electronic Engineers, had the charter to develop new, advanced parallel port
modes that would enable high speed bi-directional data transfer through the parallel port. The requirements
was to do this and still be 100% compatible with "standard" parallel port. Working with industry groups and
individuals, the IEEE 1284 committee produced its new standard in 1994. This standard, |EEE St. 1284-
1994, defined new ways of using the parallel port for high speed communication.

Page vi

Two of these new modes are the EPP and ECP modes. Now, rather than being limited to a software-
intensive, 50K b-per-second port, you can get simple datatransfer at rates approaching 2Mb per second. This
40 fold improvement in throughput is even more remarkable considering that the modes also remain
backwards compatible with existing devices and interfaces.

This standard has enabled awide range of peripheras that take advantage of the parallel port. AlImost all
new peripherals provide support viathe parallel port. Thisincludes the traditional uses such as printers,
scanners, CD-ROM, hard drive, port sharing, and tape, as well as some non-traditional uses.

One of the most popular, non-traditional uses of the 1284 parallel port has been as a scientific and data
acquisition interface. The past few years has seen tremendous growth in the use of this port for attaching
control devices and for use as asimple interface for data acquisition instruments. The ability to have the
same PC interface in the lab and on every portable computer makes this the ideal port to attach this type of
equipment.

In this book, Interfacing to the PC using the Parallel Port, Dhananjay provides a clear introduction and
model on how to use the parallel port for these types of applications. Thisistheideal reference book for
anyone wishing to use the PC for interfacing to external devices. Dhananjay presents a step-by-step
approach to the subject. Starting with the basic, "What is the Parallel Port?' and "What is Data Acquisition”,
he leads you up the path to designing peripheral interfaces and writing the software drivers necessary to
control and communicate with your devices.

I'm sure you'll find this an invaluable tool in aiding your understanding of the parallel port and the concepts
and implementations of data acquisition peripherals.

LARRY A. STEIN

Larry Stein isthe Chair of IEEE 1284.3 and 1284.4 Committees. He was instrumental in the development of
the |EE 1284 standard and served as chair of the EPP Committee. Heis currently Vice-President of Warp
Nine Engineering and is the chief architect of the Warp Nine interface cards and | EEE 1284 Peripheral
Interface Controller

Page vii

Acknowledgments

My interest in parallel printer adapters began in 1980 when Professor Vijaya Shankar Varma at the Delhi
University asked meif | could build aresistor DAC for the parallel port. Since then, together with Dr.
Pramod Upadhyay, we have enjoyed building and using many devices on the parallel port. It has been a
pleasure working with them. Most of these gadgets were built at the Centre for Science Education and
Communication (CSEC), University of Delhi.

While we were at it, Professor Pramod Srivastava, Director of CSEC, was a constant source of suggestions
and useful comments. He was an even bigger help in providing financial support for the projects.

Since coming to the Inter-University Centre for Astronomy and Astrophysics (IUCAA) in Pune, India,
Pravin Chordia has been a great help in building many of the devices. Arvind Paranjpye suggested the
photometer interface problem, which was completed as another project. Manjiri Deshpande provided useful
suggestions and evaluated some of the ideas presented here.

Professor S.N. Tandon, my boss at the Instrumentation Laboratory, allowed me to use the facilitiesin the
laboratory for building many of the projects described here. Working with him has been an education for me
and | thank him for many of the things | learned from him.

| learned the finer points of UNIX and Linux from Sunu Engineer. A brilliant programmer that heis, all the
Linux-related projects would have been incomplete without his collaboration. He also read through many of
the chapters in this manuscript and provided critical comments.

Page viii

Thiswork has been possible, in no small measure, because of the atmosphere of academic freedom | enjoy
at IUCAA, and | thank Professor J.V. Narlikar, Director of IUCAA, for creating this wonderful place and
providing me with a chance to work here.

Thanks are due to Dr. James Matey, Contributing Editor of Computersin Physics; to Joan Lynch, Managing
Editor of EDN; to Jon Erickson, Editor-in-Chief of Dr. Dobb's Journal; and to Lindsey Vereen, Editor-in-
Chief of Embedded Systems Programming; for providing me the opportunities to write for their respective
journals.

| thank Jon Erickson (DDJ), Mike Markowitz (EDN), and Lindsey Vereen (ESP), for allowing me to use the
material from their respective journals for this book.

Larry Stein, of Warp Nine Engineering and Chairman of IEEE's P1284 committee, was agreat help in
providing details about the EPP and ECP, and | thank him for that.

Thanks are also due to Santosh Khadilkar for his help in organizing the manuscript for this book. This
manuscript was prepared using the IUCAA computer centre facilities.

| am delighted to thank my wife, Sangeeta, for her encouragement and her patience. She fought like alone
warrior in engaging and containing our son, Chaitanya, while | was busy. It was only because of her support
that thiswork could be undertaken, and | cannot thank her enough.

This acknowledgment would be incomplete without placing on record my deep sense of gratitude to the
foresight of my parents, Aai and Nana, in providing me a decent education even in the face of severe
financial crunch. | think nobody else would be happier than Aai and Nanain seeing this book in print.

DHANANJAY V. GADRE
PUNE, INDIA

Dhananjay Gadre is a Scientific Officer with the Instrumentation Programme of the Inter-University Centre
for Astronomy and Astrophysics, Pune, India. He has been working with the IUCAA for the past four years.
Previously, he was a lecturer at the SGTB Khalsa College, University of Delhi, teaching undergraduate
electronics for about four years. He is now a graduate student at the Microelectronics Research and
Communications Institute, Electrical Engineering Department, University of Idaho, on study leave from
IUCAA.

Page ix
Table of Contents
Foreword i
Acknowledgments vii
Chapter 1 1
Introduction
Why the Parallel Port? 1
What Is Data Acquisition? 2
Intended Audience 3
Organization of the Book 4
Chapter 2 7
How to Build a Computer Interface
What |s an Interface? 7
Examples of Various Schemes for Data Acquisition 7
A Speech Digitizer 8

Data Acquisition for a CCD Camera 11

Signal and Timing Diagram Conventions

Hardware Components

Digital Components

Chapter 3
The Parallel Printer Adapter

Anatomy of the Parallel Printer Port

The DATA Port

The CONTROL Port

The STATUS Port

Printing with the Parallel Adapter

Using the Parallel Printer Adapter

Chapter 4
Programming and Using the Parallel Adapter

PC Data Area

Accessing the Ports

A Break-Out Box for the Parallel Adapter: Lighting LEDs and Reading
Switches

Power Switching Circuits for the Parallel Adapter

Reading DIP Switches

Data Transfer Overheads Using the Standard Parallel Port

Chapter 5
The Enhanced Parallel and Extended Cabability Ports

Page X

The IEEE 1284 1994 Standard 60
The Enhanced Parallel Port 61
EPP Registers 64
EPP BIOS Cadlls 67
High-Speed Digital I/0 using EPP 69
Programming the EPP Controller Chip 69
The Extended Capability Port 74
Electrical Interface for Advanced Adapters 76
Additional Information 77
Chapter 6 79
Analog to Digital and Digital to Analog
What are DACS? 80
Popular DACs 85
What Are ADCs? 91
Popular ADCs 96
Chapter 7 107
Measuring Time and Frequency
Measuring Time Period and Frequency Using Discrete Components 110
An Astronomical Photometer Interface 114
Chapter 8 123

Complete Data Acquisition Systems

Auto-Powered, 8-Bit ADC Interface 124

A Complete 8-Bit Interface Package

A 12-Bit ADC/DAC Interface

Chapter 9
Expanding Port Bits of the Parallel Port

Expansion on the Standard Parallel Adapter
Expansion Using EPP
An 8255-PIO Interface for the EPP

Chapter 10
Using the Parallel Port to Host an EPROM Emulator

Microprocessor Development Using Emulators

Using SmartRAM

Driver Software

EPROM Emulation Using Non-Volatile RAM (NVRAM) Modules

Chapter 11
The Parallel Port as a Host I nterface Port

Interface to the ADSP-2101
Interface to the AT89C2051

Chapter 12
Hosting a Device Programmer

An EPROM Programmer
An AT89C2051 Microcontroller Programmer

Chapter 13
Waveform Generation Using the Parallel Adapter

125

133

Page xi

157

158

163

164

19

181

184

184

186

203

214

223

223

227

249

The Parallel Adapter as a Waveform Generator

Traditional Methods of Waveform Generation

An Unconventional Method of Waveform Generation

Chapter 14
Data Acquisition under Linux

A General-Purpose Data Acquisition System for Linux

Hosting a Weather Station on the WWW

Appendix A
PC Architecture

Introduction

Understanding Microprocessor Systems

Accessing Ports and Memory

Support Sections of a PC

PC System Bus Signals

The PC Ports

Example of aTypical Interface Circuit

Hardware Interrupts

BIOS and DOS Interrupts

Appendix B
References

Books

249

252

254

257

258

2711

Page xii

285

285

286

288

292

293

296

296

300

301

303

303

Articles 303

I ndex 305

Page 1

Chapter 1—
I ntroduction

Data acquisition is the process of gathering information on a phenomenon by acquiring data on one or more
variables. An example of adata acquisition processis recording the variation of ambient temperature as a
function of time. For automated data acquisition, you need suitable sensors and associated hardware that can
connect the sensor(s) to a host computer. Y ou aso need the software necessary to transport and translate the
data from the sensor(s) to the host. This book is not about sensors or associated hardware, but it is about
way's you can connect a sensor and its hardware to a PC using an efficient and unconventional interface: the
parallel port.

Why the Parallel Port?

Conventiona methods for connecting external hardware to a PC include the use of plug-in interface cards.
This approach has several disadvantages, such as:

* If the device is meant for lab or classroom use, placing hardware inside the computer may be too risky for
the machine or the users (who could be beginners). A piece of hardware is easily accessible for probing and
measuring when it is outside the confines of a PC. Inserting an interface card increases the complexity of the
operation. In some cases, adding an interface card could be arecipe for disaster (for instance, when you're
interfacing to a multimeter or logic analyzer or an oscilloscope probe that may create unwelcome el ectrical
shorts).

* Not all computers have an available expansion slot. With shrinking computer sizes, some modern
computers have fewer dlots. Laptop computers do not have

Page 2

any conventional expansion slots (other than PCMCIA dlots). Other computers may have dlots, but those
slots may be devoted to other purposes, such as network cards, sound cards, and fax/modems.

» Many applications that require data acquisition and control do not really require the sophistication of a
motherboard expansion slot. A simpler solution would be cleaner, easier, and cheaper.

An dternative to using an interface card isto design your hardware so that it can connect to the PC through
the parallel printer adapter (i.e., the parallel port). Parallel ports are universally available on al PCs and
compatibles. Another benefit of the parallel port is that the | EEE has continued to improve the parallel port
specification while at the same time retaining backward compatibility with the original parallel port. Over
the past few years, programmers have increasingly favored the parallel port as a means of connecting tape
backup systems, CD-ROM Players, and LAN adapters, as well as various types of high-performance printers.

The parallel port isthus an elegant solution for interfacing a data acquisition device with a PC, and this book
will show you how to do it. The last chapter of the book shows how to interface the parallel port under the
Linux OS. The schemes described in this book are not the only or even the best methods for implementing
data acquisition in every situation. The code in this book is written primarily from a DOS perspective. | have
not sought out the higher end nuances of Windows programming, such as device drivers and Win32 AP
calls. My purpose isto present inexpensive aternatives for data acquisition and to provide abasic
understanding that each reader can then adapt to specific tasks.

What |s Data Acquisition?

Data acquisition is the process of acquiring information about a phenomenon. If you are studying a variation
in ambient temperature with time, your data acquisition could consist of measuring and recording the
temperature either continuously or at some discrete interval. An automated, human-readabl e data acquisition
system for this situation would employ a suitable temperature sensor (e.g., athermister) connected to a strip-
chart recorder. The strip-chart recorder would move the paper in one direction at some rate, and a stylus
driven by the sensor output would plot the temperature in the orthogonal direction, thereby creating a
continuous record of the temperature-time variation. A computerized solution for this scenario would
essentially do the same thing, except that instead of writing the data to a strip-chart, the sensor and its
associated components would transmit the data through some hardware interface to the PC. A computer
running a suitable software package (the data acquisition program) can acquire, display, process, and store
the data. The advantage of using a computer for data acquisition is that a computer has the flexibility to
adapt to changing needs and to further process the resulting data to enhance its usefulness.

Page 3

Figure 1.1 shows the block diagram of a simple computer-assisted data acquisition system. A computer is
connected to the interface hardware. The interface hardware, in turn, is connected to suitable sensors that
will respond to changes in the physical variables for the experiment.

Control isthe process of acquiring data about a phenomenon as a function of some variable and then

regul ating the phenomenon by restricting the variable to a preset value. For instance, if you wanted to
control the temperature of a furnace, you would need data acquisition hardware asin Figure 1.1, aswell as
additional hardware to control a heater heating the furnace. The data acquisition hardware would measure
the furnace temperature (see the sidebar "Trivia Pursuits"), which would then be compared with the
required (preset) value. If the temperature is not equal to the required value, a corrective action would occur.
Figure 1.2 shows the block diagram of a computer-assisted control system.

Intended Audience

This book isfor anyone who isinterested in using the PC for data acquisition or control. If you are
developing data acquisition hardware or instrumentation and looking for a smart way to interface that
hardware to a PC, you'll find some answers in this book. Educators and hobbyists who are looking for
simple, low-cost interface solutions will also find this book useful.

Physical warld, an exparment
of an Industrial procass

Sengors convart information about
different phenomenon 1o a vollage
curment, orchange in resistance

A sultabia
that can be recorded EU communication

link connects the interface
hardware to the computer

Interiace

hardware -Jal—miny- Computer

interface handwam convens
the sensor cutputs to a form
that the computor can use

Figure 1.1
Block diagram of atypical automated data acquisition system.

Page 4

Organization of the Book

| will begin by describing the requirements for interfacing a computer to external control or data acquisition
hardware. Y ou will see that most of these requirements essentially boil down to providing an interface that
has a suitable Anaog to Digital Converter (ADC), Digital to Analog Converter (DAC), and digital latch for
digital output or digital buffer for digital input.

Interface hardware procasses the sensor gulpat
and prevides B o the compuler. The compuier than

controls 1he process by regulating the power source
throwgh tha interface hardwans.

I~

M.H
hardware Comy

Power
f 3 11] fut]

Coammunication Fink

Figure 1.2
Block diagram of a computer control system.

Trivial Pursuits

It may seem impractical to use a computer just to control the temperature of afurnace, and in some cases, it is.
However, for a system that requires very precise, high-quality temperature control, a computer may indeed be a
practical solution. An oven or an ordinary home furnace uses a simple thermostat with an on—off control scheme to
regulate temperature. This design results in considerable fluctuation up and down around the preset value. A
computer could employ a more sophisticated control method, which would reduce fluctuations and achieve a closer
agreement of the preset and the actual temperatures. Some typical control methods for this situation are the
proportional, integral, or derivative methods. A computer isvery well suited to implement such control schemes.

Page 5

Before | describe how to interface these components to the PC, however, | will ook closely at the interface
connection. | will describe the parallel port in detail, describing the first parallel port interface and showing
how the parallel port has evolved to keep pace with increasing PC performance. | will then show you a
variety of ADC and DAC components that you can use in different environments. | will describe waysto
perform digital input and output using the parallel port and how you can convert the PC into avirtual
instrument by connecting a few more components to the parallel port. Subsequent chapters discuss a variety
of development tools that will be of particular interest to microprocessor enthusiasts who are developing and
building microprocessor-based applications (Figure 1.3).

Chapter 2 describes interfacing fundamentals and general requirements for building a computer interface. A
good background in digital electronics will be very helpful for understanding this chapter, but it is not
essential.

Chapter 3 discusses the history of the parallel printer adapter and describes the details of the standard
parallel port.

Chapter 4 describes programming considerations for the parallel port. This chapter also describes the
various ways of using the parallel adapter for simple applications.

Chapter 5 describes the Enhanced Parallel Port (EPP) and the Extended Communications Port (ECP).

Communication
link.

Devel t /
yapmen *-—'l- Computer

Tools

f

Tools like EPROM Emulator,
microcontrodler or EPROM
programmear for developing
micreprocessor applications,

Figure 1.3
Development tools.

Page 6

Chapter 6 looks at various Analog-to-Digital Converters (ADC) and Digital-to-Analog Converters (DAC)
and shows how to interface these ADCs and DACsto a PC using the parallel port. Today, awide variety of
ADCsand DACs are available.

Chapter 7 shows how to build suitable hardware to measure the time period and frequency of digital
signals. This chapter describes an interface for an astronomical photometer.

Chapter 8 presents apair of complete data acquisition systems providing 8-bit and 12-bit resolution.
Chapter 9 describes how to add more bits to the parallel port.

Chapter 10 shows how to use of the parallel port to host an EPROM emulator. An EPROM emulator isa
useful tool for testing microprocessor code for embedded applications.

Chapter 11 describes how to connect the parallel port to an external microprocessor. Two examples show
how the parallel port can be connected to an ADSP-21xx-based circuit and to an AT89C2051 (an 8051
microcontroller variant) controller.

Chapter 12 describes how to use the parallel port to host an EPROM microcontroller programmer.
Chapter 13 discusses various ways to generate digital waveforms using the parallel port.

Chapter 14 discusses a Data Acquisition System (DAS) for the Linux operating system. An example
application describes how this DAS can be used to collect and distribute data across a computer network. In
the example, aweather station provides real-time weather data on the Internet using a World Wide Web
(WWW) facility.

Page 7

Chapter 2—
How to Build a Computer Interface

What Isan Interface?

Aninterfaceis a system consisting of hardware, software, or both that allows two dissimilar components to
interact. Consider, for example, the problem of connecting a special type of printer system manufactured on
the planet Mars with a PC on the Earth. The manufacturer of the printer has provided complete
specifications for the input signals, but these specifications unfortunately do not correspond to either the RS-
232 port or the Centronics printer port attached to the PC. To interface this Martian printer with the
earthbound PC, you must do two things. First, you must build suitable hardware that can connect the PC to
the printer and generate all the signals required by this printer. The signals generated by the PC should meet
the timing as well as the voltage level (or current level) requirements of the printer. Second, you must
provide suitable software routines and drivers that will translate user commands such asm pr i nt

fi | e_nane into signalsthat the printer will understand.

Examples of Various Schemesfor Data Acquisition

There are several ways to use a PC for acquiring data. The method you choose will depend on the following
factors:

* the required acquisition rate, peak as well as average

Page 8
» the nature of the data (for instance, whether it isin digital or analog form)
» the amount of data to be acquired
 whether the source of data communicates through a specific data transfer protocol

The answers to these initial questions will begin to suggest a design for your data acquisition system. You
will start to see whether PC is fast enough to acquire data by polling the data source and whether the data
can be acquired on the fly (or whether you will need to employ data buffersin case the peak datarateis
more than the PC can handle). If the PC needs to process the data while it is being collected, the data
acquisition scheme could have either an interrupt mechanism that interrupts the main program to signal the
arrival of data, or a scheme with some kind of data buffer, or both.

Another important question is: what is the unit of this data? Does the data arrive as bytes or bits. If the data
arrives as bits, we must assembl e these bits into bytes.

If your PC is not fast enough, you must provide an intermediate hardware buffer to retain the data. If the PC
must also analyze the datawhileit iscoming in, you will also need an intermediate data buffer so that
incoming datais not lost. In some situations, the PC cannot process the incoming data until all the data has
arrived. In this case, you must provide avery large buffer to accommodate data for the whole exercise.

A Speech Digitizer

As an example of a data acquisition system, | will briefly describe a computer interface to digitize speech for
a 10-second period. Theideaisto build the necessary hardware and specify the software that will connect a
microphone to a computer such that the computer can acquire a set of numbers that correspond to the
voltage variations as detected by the microphone from the speech signal. Figure 2.1 shows the block
diagram for the speech digitizer. The microphone converts the acoustic signals of the speech to a
corresponding electrical signal. Thissignal is suitably amplified by the pre-amplifier. The pre-amplifier
drives the waveform digitizer, which is nothing but an

Data Acquisition Methods

Broadly, there are two ways of designing the data acquisition software, the polled method and the interrupt method.
The polled method requires that the user program check at regular intervals whether the datais available with the
help of aconstruct caled a'flag’. The state of the flag determines whether datais available. The flag has two states
'0'or '1'. A''0' state could imply data available and a'1' state could mean data not available. The flag is set up by the
data source and after the program detects this state, the data is read and the flag is reset by the user program. The
interrupt method of data acquisition requires that the data source 'interrupt’ the user program through the interrupt
scheme. The user program then suspends it's current operation and executes a special program called Interrupt
SubRoutine (I1SR) to read the data and to acknowledge to the source that the data has been read.

Page 9

Analog to Digital Converter (ADC), which will be described in some detail in a subsequent chapter. The
computer cannot handle an analog electrical signal, so you must use a digitizer to convert the electrical
signal to adigital format. The waveform digitizer connects to the computer through a suitable digital circuit.
The waveform digitizer, together with thisdigital circuit, forms the hardware interface. The hardware
interface connects to the computer using a suitable communication path or link. (There are several methods
for connecting the interface hardware to the computer.)

The block diagram in Figure 2.1 shows the interface link as a bidirectional link that is required to send
conversion commands to the interface circuit. A conversion command from the computer will trigger the
waveform digitizer to take an instantaneous sample of the speech signal and convert it to anumber. After the
conversion is over, the bidirectional link transmits the converted number back to the computer.

The software part of the speech digitizer interface is a program that:
« determines the sampling rate of the speech signal;

* acquires sufficient memory from the operating system of the computer to store the numbers corresponding
to a 10-second speech recording;

* issues awaveform convert command at the required rate;

» reads back the converted number; and

* stores the numbers in afile at the end of the record period.

At this stage, | have arough design of the microphone interface. | must now address two important i ssues:
» the structure of the digital circuit that connects the digitizer to the communication link and

Computer intarfaca for the microphone

Speech Micrpphone : :
signal “

Interface
W\’ (]]—»Prﬂmn e “’;;;T B circuit e Computer

Interface link

Figure2.1
A speech digitizer.

Page 10
e the communication link itsalf.

Thedigital circuit could be of many types and would depend, to some extent, on the choice of the
communication link. The choice of acommunication link also depends on the digital circuit, so the question
becomes a sort of a chicken and egg problem. Options for the digital circuit include:

» Thedigital circuit could be designed such that it receives acommand from the computer program to
initiate a conversion of the digitizer circuit. The digital circuit triggers the digitizer and gets the converted
number. The digital circuit then informs the program that the conversion is over and the converted number is
ready. The program then reads the digital circuit and gets the number. The digital circuit then waits until the
program sends a trigger command for afresh conversion. The data output of the digitizer is presented by the
digital circuit in parallel format (i.e., al the digital bits representing the number are available at the same
time). This scheme means that the communication link must be able to handle data transfer rates of at least
10,000 conversions/s, assuming that the speech isto be sampled at 10,000 samples/s.

* You could design the digital circuit to hold al the data for a 10-second sampling period and transmit the
data at the end of the period. For a 10-second recording at the rate of 10,000 samples/s, the digital circuit
would need 100,000 memory locations. The computer program triggers the data acquisition process, and the
PC isthen free to execute other tasks. The digital circuit in the meantime performs 100,000 conversions,
stores them temporarily in itsinternal memory, and at the end of the recording period, informs the program
that the recording is over and that the data can be read back by the program from the circuit's internal
memory. The computer program then reads out the memory contents of the digital circuit. With this method,
because the communication link is not involved in data transfer in real time, the speed requirement of the
link could be rather low.

* In avariant of the first method, the data could be transferred between the digital circuit and the computer in
serial format. Thisrequires only afew connections between the digital circuit and the computer; but at the
same time, this method means the data transfer rate must support at least 100,000 bits/s (assuming each
converted number can be represented by a 10-bit number).

The communication link could be one of the following:
* the RS-232 serial port
» the Centronics parallel printer adapter
* one of the many motherboard buses. the ISA, EISA, or PCI

» the SCSI bus that is available on many PCs and all Macs or the Universal Serial Bus (USB) on newer
PCs.

Page 11

The RS-232 serial port on the PC offers standard data transfer rates of up to 19200 baud, which translates to
amaximum of about 1,900 bytes/s. Enterprising programmers, however, can program the RS-232 circuit to
transmit and receive at 110,000 baud, which is about 10,000 bytes/s. The choice of the RS-232 port would
put an additional burden on the digital circuit, in the form of a corresponding signal trandlator (the RS-232
protocol uses unconventional voltage levels to encode the low and high-level signals), aswell as an RS-232
communications controller, which translates the serial RS-232 data to parallel format. The RS-232 interface
does not offer any power supply voltages, and the interface circuit would need to have its own suitable
power supply.

The use of amotherboard bus (ISA, EISA, or PCI) would allow data transfers at the fastest rates of all
methods, in the range of 2,000,000 bytes/s and more. The motherboard requires special PCBs with edge
connectors to connect into the motherboard slots and a relatively more complex digital circuit than the
printer adapter solution. The motherboard slots, however, offer al the power supply voltages that the PC
uses (+5, +12, 12, and -5V) to the interface circuit.

The SCSI bus, as well asthe USB, can handle data transfer rates required by the microphone interface but
arerelatively more complex in comparison to all the above methods. Among these communication link
choices, the parallel printer port clearly offers an inviting combination of speed and simplicity.

Data Acquisition for aCCD Camera

As a second example, let me describe a project | am currently working on: designing a controller for a
Charge Coupled Device (CCD) camera and data acquisition system based on the PC.

This CCD camera problem doesn't pertain specifically to the parallel port, but |
include it because it highlights some data buffering options that are important
for both serial and parallel data acquisition.

A CCD camerais an electronic imaging device. The camerais composed of a CCD chip and associated
electronics. The CCD chip convertsincident light into packets of charge distributed over itself in small
charge-trapping pockets called pixels. The associated el ectronics routes these charge packets to the output of
the chip and converts the charge into voltage. The routing of the charge packet from a pixel to the output of
the CCD chip is done using various clock signals called horizontal and vertical shift clocks. The electronics
onboard the CCD controller generates these clock signals. Subsequently, the voltage corresponding to each
pixel isdigitized and sent to the PC. The CCD camerais controlled by the user from the PC and is connected
to the PC

Page 12

through a suitable link. Most often, the link between the camera and the user's PC isa serial link, becausein
the case of this application (the camera will be used with alarge telescope), the distance between the camera
and the user's PC could be more than 20 feet and could even be afew hundred feet.

Figure 2.2 isablock diagram showing the CCD camera system. The user defines the format of the image
through a data acquisition program running on the PC. This PC program then transfers the image parameters
to the CCD controller and waits for the controller to send the image. (The actual processis moreinvolved
than this, but this description is sufficient for the purposes of the present discussion.)

The CCD controller triggers the CCD chip (as per the user parameters) and encodes the CCD pixel voltage
(which isanalog) into adigital number that can be handled by the user PC. For high-performance CCD
cameras, the controller is equipped with a 16-bit ADC, so the data for each pixel consists of two bytes. The
pixel data, now encoded as a number, needs to be sent to the user PC over the serial link. The user PC needs
to be ready to receive the image pixel data and to display, process, and store the image. The CCD control ler
sends each pixel data as two bytes, one after the other. The time between two bytes of the pixel isT1 and
that between two pixelsis T2. To get the image in minimum time, we need to minimize T1 + T2.

Depending upon various constraints, a number of different options for the CCD camera system will emerge.
The constraints are nothing but pure economics:

CCD
Controller Jese—r7 Nput fram CCD chip

Serial Link batwean the user FC and the
{_\ CCD controller

TR i

i
e

oo g

-

=

User PC

__h_ “m-

garial transmiasion
of a byte of data,

Figure2.2
A remote PC connects to a CCD camera for image data acquisition.

Page 13

» How do you get the image into the user PC at a minimum of hardware cost with the greatest possible
elegance and ease of operation?

» How do you make the camera easily serviceable and easily upgradable?
Some possible solutions follow.

Case 1 The user PC needs to get the image as fast as the controller can send it. The user PC cannot wait to
receive each and every byte of the image, because the user PC's primary task isto view and analyze the
images.

Solution To minimize the image acquisition time, you must minimize T1 and T2. Also, because the user
program cannot receive each and every byte of the pixel, one possible solution is to employ image buffer
hardware in the user PC. The image buffer is nothing but read/write memory of sufficient size to store the
incoming image. For instance, if the CCD chip is 1,024 rows with 1,024 pixelsin each row (atypical case),
then the total number of pixelsisroughly one million (1,048,576) pixels. At two bytes/pixel, the required
memory buffer would be about two Mb. The incoming image would be stored in this image buffer, and at
the end of image acquisition, the user program would be informed. The user program would then transfer the
image from the image buffer into the internal memory of the PC and free the image buffer memory to
prepare for the next image. The effective time for the PC program to actually acquire the image is the time
taken by the image buffer to acquire the image plus the time taken by the PC to transfer the image from the
image buffer to internal memory.

Case 2 The user PC needs to acquire the image in the shortest possible time, but the user cannot afford full-
image buffer memory.

Solution For this case, because the constraint is memory available in the PC data acquisition system, the
solution liesin using a small memory buffer that is partitioned into two parts. At any given time, the
incoming datais routed to one section of the buffer. When this buffer isfull, an interrupt is generated, and at
the same time, the incoming datais routed into the second section of the buffer. The interrupt is used to
signal to the user program that the first section of the buffer isfull and the contents should be transferred
into the system memory. The user program then executes an | SR, which transfers the contents of the first
buffer into the PC's internal memory. The data acquisition circuit, in the meantime, is still transferring the
incoming data into the second buffer. When the second buffer isfull, it will again generate an interrupt and
start transferring the incoming data into the first buffer. This process will cycle so that incoming datais
temporarily stored in the buffer before it is transferred into the main memory. An important requirement
while implementing this solution is that the average rate of incoming data should be substantially less than
the average rate at which the PC can transfer data between the buffer memory and the internal memory.
Otherwise this solution cannot be implemented.

Page 14

Case 3 The PC cannot afford buffer memory and must keep the acquisition hardware cost to a bare
minimum.

Solution The incoming datais stored in alatch. (A latch is adevice that stores one data value. We will talk
more about such devices later in this chapter.) A flag is set up to indicate the arrival of the data. The user
program is continually monitoring the state of this flag and as soon as the flag is set, the user program reads
the data latch, resets the flag, stores the data in internal memory, and again starts polling the flag. This
continues until the PC receives the entire image.

Signal and Timing Diagram Conventions

In this book, | will adopt the conventions used in Adam Osborne's and Gerry Kane's classic Osborne 16-Bit
Microprocessor Handbook. One issue of importance in digital circuitsisthe active level of the signal.
Because the digital signal can have two levels (actually three, but I'll discount the third level at the moment),
it isuseful to define

Supply Voltage

1. A low lovel signal s zero voltage

(actusily & range of voltsge sround Low level w0 0H8Re

zerg) and m high level signal is

supply voltege [or & range arcurnd i) High lewal

High hewal

2. Tranaitlon of & low lvel signal o Lo Bavinl /K Tranaition
high keval

4, Transhbon of m high lovel signal to High lewsl

B low lavel \
Low lovel

Prradkal Signada

4. Tranaltkcn of & bunch of paralbel
signals (called BUS) from cne kval
10wt

Transhkor——"

. A abgnal which goes In a high

impedoncs stats also called a floating 1, RYIIRRE J-
nignal. .‘ / P

Floating (high impedence)
duration of the skgnal

Figure 2.3(a)
Timing diagram conventions.

Page 15

which leve is active. Active low signals are shown with abar or an asterisk (WR or WR*) wheras active

high signals do not have a bar or a star. Figures 2.3(a)—c) show the timing diagram conventions for this
book.

Har dwar e Components

So far, | have discussed some basic data acquisition problems and provided possible solutions at a very
preliminary level. In this section, | will describe some of the hardware components used in real data
acquisition systems.

Digital IC Families

The TTL family of digital ICsis one the most popular digital 1Cs. The 74xxx was the first of the TTL
family. Since then many improvements in device processes and fabrication technol ogies have led to the
introduction of more families offering improved performance over the standard 74xxx family. The various
subfamiliesin this series offer high speed of operation, low power dissipation, robust performance, and wide
availability. The various subfamiliesare 74L S, 74ALS, 74S, and 74F series.

6. A BUS with floating signals.

b

—

duration of the signal when it iz
in high impedance, floating state

T. A change of condltion on one signal

cvauses a transition on another signal.
The example shows a high-to-low signal _]'

trangition causing a high-to-low level

transaltlon on another signal. Lt,}"

B. A transition on a signal causes a
transition on a BUS

Figure 2.3(b)
(continued)

Page 16

The CMOS family is another important family of ICs. The 4000 series from Fairchild was the original
member of the CMOS family. The components of this family offer very low power dissipation and wide
supply voltage operation compared to the TTL. The sub families are 74HC, 74HCT and 74C.

Logic Levelsand Noise Margins

Digital components need a supply voltage to operate. The voltage levels at input and output are related to the
supply voltage levels. It may seem that if the digital circuit operates at +10V, the logic low isOV and logic
highis+10V. Thisisnot so. A range of voltages around the two supply levels (0 and +10V) qualifiesasa
valid logic low and logic high.

Take the case of alow-power TTL component. This component operates at +5V supply voltage. The
specifications require that, for error-free operation, an input voltage of up to 0.8V qualifies aslogic low.
Thus, an input voltage between 0 and 0.8V qualifies aslogic low. An input voltage with a minimum of 2.0V
qualifies as logic high. This means that an input voltage between 2.0 and 5.0V qualifies aslogic high.

. More than condition must exist to force

a transition of signals on tha BUS, Example
shows that a transition on one signal during
the time when the other signal is at high
level causes a transition on the BUS signals.

10. A condition on a signal causes changes
on more than one signal level. The example
shows that a high-to-low transition on one
signal causes a high-to-low transition on the
gecond gignal and a pulse on another eignal,

4l ?”

Figure 2.3(c)
(continued)

Page 17

The low-power TTL specification guarantees that the maximum logic low output of the device will be 0.4V
and aminimum logic high voltage will be 2.4V. These are called the worst-case output levels of the device.
(These worst-case figures assume certain load conditions.)

Noise margin is defined as the difference in the voltage levels (for agiven logic) of the input and output of a
device. The maximum acceptable input voltage level for logic low is 0.8V. The maximum output voltage
level for logic low is 0.4V, so the noise margin for logic low is 0.4V (Table 2.1).

For the high-level noise margin, you must consider the input and output voltages at the high end of the
range. A minimum voltage input of 2.0V qualifies aslogic high. The device would generate a minimum
output voltage of 2.4V for logic high. The differenceis 0.4V. So for LSTTL components, the noise margin
is0.4V.

To understand the purpose of the noise margin parameter, consider the case of two components of the same
family, with the output of one device driving the input of the other device. The output of the first deviceis
guaranteed to be less than 0.4V for logic low output. This voltage is connected to the input of the second
device. I'll assume some noise gets added to the output voltage of the first device. How much of this noise
can be tolerated if the second deviceis still to regard the voltage as logic low? Because the device can allow
amaximum of 0.8V aslogic low, the noise can be a minimum of 0.4V. Thisisthe noise margin.

Noise margin figures vary from family to family. For the noise margin of a particular device, consult the
data sheet for the device.

TTL and Variants

The circuit for the standard TTL NAND gate in Figure 2.4 shows a multi-emitter input transistor (transistor
Q1) and an active pull-up output (transistor Q3) providing fast speed and low output impedance. Typical
dissipations are 10mW per gate and a delay time (input to output) of 10ns. At the time these devices were
introduced, this was revolutionary (fast speed and low power dissipation).

Table2.1 Characteristics of various TTL series.

Type Standard S LS ALS AS

Propagation delay time (ns) 10 3 7 4 15

Noise margin ‘0’ (V) 40 .30 .30 40 .30

Noise margin'1' (V) 40 .70 .70 .70 7.0

Power dissipation per gate (mW) 10 20 2 1 2

Fanout 10 10 10 10 10

Page 18
Schottky (S) TTL

In thisseriesof TTL gates, the transistors and diodes are replaced by Schottky transistors and diodes. A
substantial decrease in propagation delay time is achieved as aresult.

L ow-Power Schottky (LS) TTL
This family offers combined advantages of low power dissipation and increased speed of operation.
Advanced Schottky (AS) TTL

This seriesis aresult of further development of the Schottky series of devices. These devices offer faster
speeds (less propagation delay time) than the Schottky series at a much reduced power dissipation.

4K 1

o

Input A
InputB ___

Qutput

Figure2.4
A TTL two-input NAND gate.

Page 19
Advanced L ow-Power Schottky (ALS) TTL

This seriesis aresult of variations of the low-power Schottky series of devices. These devices offer faster

speeds (less propagation delay time) comparable to the Schottky series but offer the lowest power
dissipation.

CMOS and Variants

Besides the TTL components, the other popular digital component series use CMOS technology. The
components of the CMOS family are the CMOS, HCMOS, and the HCM OS devices with TTL thresholds.
The advantage of CMOS components is low power dissipation, wide operating voltage, and better noise
immunity. These features make CMOS components very suitable for use in portable and battery-powered
instruments.

Figure 2.5 shows a CMOS inverter. The CMOS inverter uses only two fets, Q1, a P-channel MOSFET and
Q2, an N-channel MOSFET. When the input is low, the P-channel MOSFET conducts while the N-channel
MOSFET is cut off. The output is a voltage equal to the supply voltage. When the input is high, the state of
the MOSFET s reverse and the output is low.

At any time, either of two MOSFETSs s cut off, hence the power dissipated by the device is extremely small.
The only time the two MOSFET s conduct current is when the MOSFETSs are switching. Therefore, the
dissipation of CMOS components at DC is zero. Only when the switching frequency increases does the
CMOS dissipate. At high frequencies, the power dissipation of CMOS components can equal or even exceed
that of TTL components. The other disadvantage of CMOS componentsis the

vdd
4

l M a1
l.'..

Input 7 Output
O— €
_J -

M a2
-t-
' Vss
Figure 2.5

A CMOS inverter gate.

Page 20

large propagation delay time. This prevents conventional CMOS components from operating at very high
frequencies. The standard CMOS components are available in the CD40xxx series.

A variation of standard CMOS components is the HCMOS series. This family offers the high speed of
Schottky devices and the low power dissipation of CMOS components. These components are available
under the 74HCxxXx series.

The problem with the HCMOS seriesis that its logic thresholds are incompatible with TTL components. It
is not advisable to mix standard TTL and HCMOS components in acircuit, and the TTL output levels may
not be recognized by the CMOS devices. So another variation of the CMOS, called the HCMOS with TTL
thresholds (HCT), was introduced. HCMOS with TTL thresholds has all the advantages of HCMOS
components, except the input logic thresholds were tuned to TTL levels. This seriesis known as the
TA4HCTxxx series. Most circuits described in this book use HCT components unless a particular component
IS not available.

Digital Components
The following sections discuss some contemporary digital 1Cs and their use in various circuits.
Sundry Gate

Almost any circuit may require digital gates. Gates that perform AND, OR, NOT, NAND, XOR, and XNOR
Boolean functions are available in al the digital families cited above. Most popular are the gates from the
HCT family for their low power dissipation and high frequency operation capabilities.

Table 2.2 lists some of the useful gates. Y ou may wish to consider using logic gates with discrete
components, such asa pair of switching diodes to make atwo-input AND gate or asmall signal transistor to
make an inverter. In applications with board space crunch and where the application may allow, such gates
can save board space as well as cost. Say you want atwo-input AND gate. Rather than using a 14-pin DIP
|C package for one gate, you can make this gate using aresistor and a pair of 1N4148-type switching diodes
as shown in the Figure 2.6.

The Buffer 1 C and Some Cousins

Buffer 1Cs have the capacity to drive high current loads, which enable transmission of data at high speeds
through signal cables with large capacitances. These devices also have significantly higher fanouts (more
than 15) than ordinary gates. Normally the buffer IC has an output enable signal that can be used to control
the flow of datato the output, which is very essential in a bus system. Typically the buffer IC has an active

Page 21

low output enable (referred to as OE*) pin. When the output enable signal is not active, the outputs of the
device are in the high impedance state (also called the tristate). Many buffer ICs are also available with a
control pin for each transmission element instead of a single control bit for a group of four gates. Another
variation of the buffer IC isthe bus transceiver |C. This device can transfer data bidirectionally and instead
of an output enable control pin, it has adirection control pin. Table 2.3 shows the various buffer I1Cs.

Table2.2 Some useful TTL gateICs.

Name Description

74HCTO00 Quad, 2-input NAND gate
74HCTO2 Quad, 2-input NOR gate
74HCT04 Hex, inverter

74HCTO8 Quad, 2-input AND gate
74HCT10 Triple, 3-input NAND gate
74HCT14 Hex, Schmitt inverter
74HCT20 Dual, 4-input NAND gate
74HCT32 Quad, 2-input OR gate
74HCT86 Quad, 2-input XOR gate

+5V

R=10K
Input 1 1N4148

—

input 2

o Output

Figure 2.6
A two-input AND gate realized using discrete components.

Page 22
Flip-Flops and Latches

Flip-flops are ubiquitous devices important in any sequential circuit. Flip-flops are also called bistable
multivibrators because they have two stable states. Flip-flops can be made out of discrete gates using
suitable feedback. The various flip-flopsarethe D, SR, JK, and T types (Table 2.4). Flip-flops are used to
remember adigital event and to divide clock frequencies, etc. A group of flip-flops in a package with a
single clock input is called a latch.

Figure 2.7 shows the symbols of two of the flip-flops, shown with edge-triggered clocks. The clocks have
their positive edge as the active edge.

Typically, latch ICs (Table 2.5) have a common clock input and an output enable control pin. The input data
istransferred to the output at the rising (or whatever the particular case may be) edge of the clock. Datais
actually available on the output pins only if the output enable control pinisactive. Typicaly, alatch IC has
a common latch enable pin and an output enable control pin. The data at the output follows the input as long
asthe latch enable pin is active. When the latch enable pin isinactive, the data at the output pinsis frozen to
their last state before the latch enable pin became inactive. The output data appears on the output pins only
when the output enable control pinisin an active state.

Table 2.3 Some useful TTL buffer 1Cs.

Name Description

74HCT240 Inverting, octal tristate buffer

74HCT244 Octal, tristate buffer

7T4HCT245 Octal tristate transceiver

74HCT125 Quad, tristate buffer with active low output enable
74HCT126 Quad, tristate buffer with active high output enable

Table 2.4 Some popular flip-flop 1 Cs.

Name Description

7T4HCT73 Dual, JK flip-flop with clear input
74HCT74 Dual, D-type flip-flop with preset and clear
7T4HCT76 Dual JK flip-flop with preset and clear
74HCT174 Hex D flip-flop with common clear and clock
74HCT273 Octal D flip-flop with clear

74HCT574 Octal D edge-triggered flip-flop with clear

The Decoder and the Multiplexer

Decoders play avital role in interpreting encoded information. A decoder has n input lines and 2" output

lines (Table 2.6). Depending upon the state of the inputs, one of the 2" output linesis active. The active state
of the output may be '1' or '0'. Apart from the input and output lines, there may be some decoder control
input lines. Unless the control input lines are active, none of the outputs of the decoder is active.

A multiplexer is adevice that puts information from many input lines to one output line. This device has 1

output, n select, and 2" input lines.

Praset
|
D L. Q
clock b
I -
l Clear
Preset
I
1 e @
Clock
K _.> I
I Clear
Figure 2.7

Symbolsfor the D and J-K flip-flops.

Table 2.5 Some popular latch I Cs.
Name Description
74HCT373 Octal D-type latch
74HCT573 Octal D-typelatch
Counters

Page 24

Counters, as the name suggests, count. The counter has a clock input pin, areset input pin, and many output
pins depending upon the type of the counter. An 8-bit binary counter would have eight output pins. After the
reset pin is de-asserted, the outputs of the counters are all reset to '0". Thereafter, at each pulse of the clock,
the output of the counters would increase by one. It is not possible to go into the intricacies of counters, but
alist of popular counter ICsisuseful (Table 2.7).

Table 2.6 Some popular decoder and multiplexer 1Cs.
Name Description

74HCT137 3-t0-8-line decoder with address latch
74HCT138 3-t0-8-line decoder

74HCT139 Dual 2-to-4-line decoder

74HCT251 Eight-channel tristate multiplexer

Table 2.7 Some popular counter 1Cs.

Name Description

74L.S90 Decade counter

74HCT4024 Six-stage binary counter

74HCT4040 12-Stage binary counter

74HCT190 Synchronous decade up/down counters with mode control
74HCT191 Synchronous hex up/down counters with mode control

Page 25

Chapter 3—
The Parallel Printer Adapter

The computer industry has at |east four names for the parallel port: the parallel printer adapter, the
Centronics adapter, the Centronics port, or quite simply, the parallel port. Any port that provides parallel
output (as opposed to ports that provide data serialy) isa paralel port, but in PC jargon, the term parallel
port refers to ports conforming to a specification (and later enhancements) for what was originally known as
the parallel printer adapter.

In the early days of personal computers, most printers only could be connected using a serial interfaces.
When printers started to have their own memory buffers, users found the serial link too slow. Manufacturers
started offering printers with a parallel interface that could, in principle, receive data at least eight to ten
times faster than was possible with the serial port. The adapter on the computer that allowed the user to
connect to the parallel printer (i.e., the printer with aparallel input) was the parallel printer adapter.

At the time the parallel printer adapter came into existence, PC processors were al 8-bit processors. So, it
seemed logical to define a data path to a printer with the capacity to transfer eight simultaneous bits of data.

Page 26

Anatomy of the Parallel Printer Port

The best way to understand the design of the parallel printer port isto work through the thought process of
itsoriginal designers. The designers of the parallel printer port knew that:

* The port must provide eight data signals to transfer a byte of datain parallel.

» The computer must be ableto signal to the printer that a byte of datais available on the datalines. This
signal was called the strobe signal.

» The computer must get an acknowledgment signal from the printer. This signal is called the acknowledge
(or ack) signal.

The data, strobe, and ack signals are sufficient to transfer data between the computer and the printer in a
rather raw manner. More signals are needed to exchange more information between the computer and the
printer. Printers are electromechanical devices with three primary tasks: to receive print data from the
computer, to print this data, and to respond to user information (like changes in font, etc.). During occasions
when the printer's internal memory buffer isfull (because the printer cannot print asfast asit can receive
data), the printer must be able to inform the computer that it can't receive more data or that it isbusy. This
signal from the printer to the computer is called the busy signal. The printer also needs to signal the
computer if thereisany error condition (e.g., if the paper has jammed in the printer mechanism or if the
paper is empty). A signal between the printer and computer called the error signal is used for this purpose.
The computer can also use more signalsto control the printer, such asasignal lineto reset the printer at the
start of afresh print run so that any residual datain the printer buffer is flushed out.

Table 3.1 Signalsof a hypothetical parallel printer adapter.

Signal Function Source
DATA (8) transfer print data strobe to instruct the printer that computer
new computer datais available
strobe to instruct the printer that new datais available computer
acknowledge acknowledgment from printer that datais received printer
busy indicates printer is busy printer
error indicate error condition on the printer printer
reset reset the printer computer

Page 27

The signals described in the preceding paragraph form a good foundation for a hypothetical parallel printer
adapter. Table 3.1 shows the signals for this hypothetical port.

From Table 3.1, it is clear that to implement a parallel port, the computer actually needs three independent
ports. an output port to transfer data to the printer, another output port to carry the strobe and reset signals,
and an input port to read the acknowledge, busy, and error signals from the printer.

The actual parallel printer adapter is designed with 17 signals. These signals are distributed across the three
internal ports as follows:

1. an output port with eight data signals called the DATA port;
2. aninput port with five status signals called the STATUS port;
3. another output port with four signals called the CONTROL port.

The block diagram in Figure 3.1 shows the design of the parallel printer adapter. The PC system bus
interface connects the adapter to the microprocessor signals. The output signals from the adapter are
connected to a 25-pin D-type connector. On many

Figure 3.1
Block diagram of the parallel printer adapter.

Page 28

of the new PCs, the parallel printer adapter has been integrated on the motherboard, though plug-in card
adapters are also available.

The block labeled command decoder is hothing but an address decoder. The command decoder has address
lines (AO-A9) asinputs, aswell asthe IOR* and IOW* CONTROL signals and five outputs |abeled data
write, data read, status read, control read, and control write. The data bits DO-D7 are connected to the
outputs of Bufferl, Buffer2, and Buffer3. These data bits also drive the inputs of Latchl and Latch2. The
buffers are enabled only when the BE signal istaken low. Otherwise, the outputs of the buffersarein a
tristate condition. The latches operate when data is presented on the inputs and the clock input is pulsed low.
The rising edge transfers the data on the inputs to the output pins. Besides the output signals from the printer
adapter, the block diagram also shows that one of the STATUS port bits can be used to generate an interrupt
under control from one of the CONTROL port bits.

Table 3.2 Thesignals of the Centronics parallel printer adapter.

DB-25 |[Centronic | Register /0 Bit Name Function

1 1 Control Out Cco* nSTROBE Active Low. Indicates
valid datais on the data
lines

2-9 2-9 Data Out D1-D8 |DATA_1-DATA_8 | Eight datalines. Output
only in older SPP

10 10 Status In S6 nNACK A low asserted pulse to

indicate that the last
character was received

11 11 Status In Sr* BUSY A high signal asserted
by the printer to indicate
that it is busy and cannot

take data
12 12 Status In S5 PE Paper empty
13 13 Status In A SELECT Asserted high to indicate

that the printer is online

14 14 Control Out C1* AUTO FEED Active low. Instructs the
printer to automatically
insert aline feed for
each carriage return

(table continued on next page)

Page 29

Table 3.2 shows the signals of the actual parallel printer adapter (along with some other details). Table 3.3
shows some of the commonly encountered addresses for the three ports. However, one need not guess the
port address for a particular system. It is possible to find out the exact port address from the system

information in a PC.

The DATA Port

Figure 3.1 shows that the DATA port section of the adapter consists of Bufferl and Latchl. When the CPU

wants to transmit data to the printer, it write eight bits into the DATA port latch. The latch outputs are
labeled DO-D7. DO isthe least significant bit, and D7 is the most significant bit. The latch outputs are

available on pins 2—7 of the output connector. The DATA port output signals are also connected to the input
of Bufferl. Bufferl works as a read-back input port (see example in the Appendix). The

Table 3.2 (continued)
DB-25 Centronic Register 1/0 Bit Name Function
15 32 Status In S3 NERROR Signal by printer to the
computer to indicate an
error condition
16 31 Control Out C2 nINIT Active low. Used to
reset printer
17 36 Control Out C3* NSELECT- IN Active low. Used to
indicate to the printer
that it is selected
18-25 19, 21, 23, GROUND
25, 27, 29,
30, 34

Table 3.3 Typical port addresses for the three ports of the Centronics printer

adapter.

Port LPT1: PC LPT2: PC LPT3: AT
DATA 3BChx 379h 278h
STATUS 3BDh 379h 279h
CONTROL 3BEh 37Ah 27Ah

Page 30

IBM PC/AT technical manual refersto this buffer as the data wrap buffer. The hex address of this port is
x78h or x7Ch. (Thex could be 2 or 3.) Thus, writing a byte to this address causes a byte to be latched in

the data latch, and reading from this address sends the byte in the data | atch to the microprocessor.

Figure 3.2 shows the output details for the DATA port. (Figure 3.2 is adapted from the IBM PC/AT
technical manual.) Datais written to a device labeled 74L S374, which, according to the data sheets, isa
tristate, octal, D-type, edge-triggered flip-flop (referred to as the latch) . On the positive (rising edge)
transition of the clock signal, the outputs of this device are set up to the D inputs. The outputs of the IC are
the DATA port outputs available on pins 2—7 of the D-type output connector. The clock input of the latchis
connected to the data write output of the command decoder block. Thissignal is activated anytime the
microprocessor executes a port write bus cycle with the port addressx78h or x7Ch.

The outputs of the latch are filtered through a 27-ohm resistor and a 2.2-nF capacitor before connecting to
the output connector pins. The RC circuit slows down the rising and falling edge of the output voltage of the
DATA port. The RC circuit ensures that any voltage transition (a high to low aswell asalow to high) is
gentle and not abrupt.

Figure 3.2
Output details of the DATA port.

Page 31

An abrupt voltage transition on the printer cable is likely to induce noise on other DATA port lines or other
signal lines and corrupt the data. With the RC circuit, thislikelihood is reduced. The values of the resistor
and the capacitor provide atime constant of about 60ns. With this time constant, very fast glitches (of
durations less that 100ns) would be removed. The output drive capacity of the 74LS374 latch is as follows:

 Sink current: 24mA maximum,

» Source current: —2.6mA maximum,

* High-level output voltage: 2.4V DC minimum, and
* Low-level output voltage: 0.5V DC maximum.

The wrap-back buffer or the read-back buffer input pins are connected to the connector pinsdirectly. This
buffer isa 74LS244 |C, which is an octal tristate line receiver. When a data read instruction is executed by
the microprocessor, the output enable pin of the IC is enabled and the data on the D-type connector pinsis
read into the microprocessor.

For smple parallel ports, the wrap-back buffer can be justified only as a diagnostic tool. Because the DATA
port pins drive acable, it islikely that the DATA signals could get shorted to ground or +5V (inside the
printer or the destination circuit). The logic on the pins could then be permanently at O or 1. With the wrap-
back buffer, the software can detect if the pins are stuck on some logic. On bidirectional and other advanced
parallel ports (discussed in the next chapter), the wrap-back buffer is not merely for diagnostics. In these
advanced designs, the wrap-back buffer reads external data, not necessarily data generated by the adapter.

Some programmers have used the ordinary DATA port bits for datainput. The ideais asfollows: At the
start, the DATA port output latch iswritten with Oxf f h (255 decimal). The pins of the port are then
connected to the external device. Aslong as the output device can override the voltage set by the latch
output, the data wrap-back buffer will read the data generated by the external device. However, this situation
puts alot of stresson the 74LS374 latch. | do not recommend this trick for data input on the DATA port.

The CONTROL Port

The CONTROL port of the adapter provides the necessary control signalsto the printer. As shown in Table
3.2, the CONTROL port has four outputs on the output D-type connector. The CONTROL port has another
signal that is not available on the connector, and that is the IRQ EN signal, which the driver program can use
to enable interrupt generation with the help of the STATUS port signal (nACK), as described in the next
section.

Page 32

Figure 3.3 shows a block diagram of the CONTROL port. This block diagram is adapted from the IBM PC/
AT technical manual. The output drivers of the CONTROL port signals are open collector inverters (referred
to as OCI in the diagram). The open collector inverters are pulled up with resistors of the value 4.7K ohm.
One of the outputs of the CONTROL port, CO* (nSTROBE), is aso filtered using an RC circuit similar to
the ones used at the DATA port output.

The output of the CONTROL port is derived from ahex D flip-flop IC, 74LS174. The data for the
CONTROL port is latched by the low-going pulse from the command decoder, Control Write, to the
74L.S174 1C. Three of the outputs of the IC, CO, C1, and C3 are inverted by an open collector inverter
(labeled OCI in the diagram) IC.

Figure 3.3
Output details of the CONTROL port.

Page 33

These open collector drivers are pulled up with 4.7Kohm resistors. The other output of the CONTROL port,
C2, isinverted by an ordinary inverter (labeled | in the diagram) before driving an OCI driver. Thefifth
output of the CONTROL port isthe IRQ EN signal, which is not available on the output D-type connector
but is used to enable or disable the interrupt generation from one of the STATUS port signals (nACK) as
described below.

The state of all the CONTROL port signals can be read back using the wrap-back buffer IC, 74LS240, as
shown in the diagram. This IC inverts the signals that pass through. The IRQ EN signal isread using a
7415126 tristate buffer. The read process is controlled by the control read signal from the command
decoder. The way the circuit is set up, the wrap-back buffer provides the same state of the CONTROL
signals as have been latched in the 74LS174 I C.

Appropriate inverters are included to cancel any signal inversion in the read-back path. Thus, if the
microprocessor sends the following byte to the CONTROL port latch:

Data bits: D7 D6 D5 D4 D3 D2 D1 DO
Value: 0 1 0 0 0 1 1 0

the wrap-back register provides the following byte:

Data bits: D7 D6 D5 D4 D3 D2 D1 DO
Value: 0 1 0 0 0 X X X

The Xin the last three bits means that these bits have an indeterminate state owing to the fact that only five

bits are asserted by the wrap-back register when the control read operation is performed by the
M Croprocessor.

It isinteresting to note that the output drivers of all the CONTROL port signals are open collector devices
with pull-up resistors. The advantage of such aconfiguration isthat it allows the CONTROL port bits to
read external data. To use the CONTROL port as an input port, the microprocessor sets the CONTROL port
outputs to logic 1s. If any external logic is applied to these pins, the wrap-back input port for the

CONTROL port will read the logic state applied by the external source.

The STATUS Port

The STATUS port provides the printer adapter with the facility to read the status of the printer through
various signals. The STATUS port is at an address next to the DATA port. Typica hex addresses are
0x379h or 0x3BDh. The STATUS port signals are labeled S7 for the most significant bit to SO, though SO

does not exist. Signals up to S3 are available. The STATUS port signals have the following functions.

Page 34

S7* (BUSY) Thissignal from the printer indicates that the printer is busy and cannot take more data. It is
important to note that thissignal isinverted by aNOT gate on the adapter board. That iswhy the signal is
labeled S7* and not S7. The implication of thisinversion is that low voltage applied on the connector pin

will be read as a high voltage by the microprocessor.

S6 (NACK) Thisisasignal that the printer generates in response to the strobe signal from the adapter as an
acknowledgment. Normally the signal is high and after the printer is strobed, the printer responds by taking
thissignal low and then high again.

S5 (PE) Thisisasignal that the printer generates to indicate that there is no paper in the printer. Normally
the signal is held low by the printer, and when the printer paper is exhausted, the signal goes high.

A (SELECT) Thissignal is asserted high by the printer to indicate that the printer is enabled. When the
printer is disabled (to feed or advance paper or to change afont on the printer), thissignal is low.

S3 (NERROR) Thisisagenera error indicator signal on the printer. There could be many reasons for the
cause of the error, such as jammed paper or an internal error. In the event of an error, the signal is set to low
voltage.

The STATUS port signal S6 (nACK) can be routed with the help of asignal from the CONTROL port, such
that it acts as an interrupt input (IRQ7 or IRQ5). Therising edge of the nACK signal (alow to high
transition) will generate, if enabled with the appropriate CONTROL port bit, alow to high transition on the
IRQ7 or the IRQ5 interrupt line. If the particular IRQ (5 or 7) has been enabled by the program, the CPU
will execute an Interrupt Subroutine.

The origina designers of the printer adapter probably thought of allowing an interrupt-driven printer driver.
After each character istransferred to the printer, the printer acknowledges by generating a high-to-low-to-
high pulse on the nACK line and the low-to-high transition could trigger an interrupt that would transmit the
next character to the printer. However, given the latency in executing the interrupt subroutine after the
interrupt is generated — on the original PC, the worst case interrupt latency is more than 110pus— it was not
practical to use an interrupt-based printer driver. Generally, IRQ5 and IRQ7 can be used for other
applications.

Figure 3.4 shows the output details of the STATUS port. This block diagram is adapted from the IBM PC/
AT technical manual. The figure shows that four of the STATUS port bits are connected to a 74L.S240 I C,
which isan octal tristate buffer with output inverters (as shown by the bubbles at the output of the IC). Three
of the

Page 35

four signalsto thisIC are passed through aNOT gate. These inverters cancel the further inversion that the
signals encounter at the output of the L S240 buffer IC. Only the BUSY signal goesto the buffer IC
uninverted. The logic of the BUSY signal isinverted when it is received by the microprocessor. The fifth
signal, NnERROR, is received by atristate buffer 74LS126. Thissignal is also transmitted to the PC system
databusin an uninverted state. Thus, of al the STATUS port signals, only the BUSY signal isinverted and
so isreferred to as S7*. The other signals are S6, S5, $4, and S3. As can be seen from the figure, the S6
(nACK) signal of the STATUS port can also be used to generate an interrupt on the IRQ5 or IRQ7 line
under control of the CONTROL port bit 4 (IRQ EN). If the IRQ EN bit of the CONTROL port is high, it
enables the 74L S126 buffer, and the nACK signal passes to the IRQ5 (or the IRQ7) input pin of the
Programmable Interrupt Controller IC (8259).

Figure 3.4
Output details of the STATUS port.

Page 36

Printing with the Parallel Adapter

Figure 3.5, atiming diagram for the parallel printer adapter, shows how only three signals, besides the
DATA port signals, can be used to transmit data to the printer and to read back the status of the printer. The
signasare: NSTROBE, BUSY, and nACK.

Unlike a microprocessor system bus, the DATA port signals are aways active (the data bus signals on
typical microprocessor systems can go in tristate). The PC setsthe DATA port signal lines with the
appropriate logic and after some delay, typically 0.5us, generates the nSTROBE signal. The nNSTROBE
signal isalow-going pulse, typically of 0.5us duration. After that, the nSTROBE signal is pulled high. The
dataon the DATA port signal linesis held valid for some time even after the nSTROBE signal is pulled to
logic high. Again, the data on the DATA port signalsis held valid for about 0.5us. This ensures that datais
properly latched in any device with a requirement of nonzero data hold time.

In response to the low-going NSTROBE pulse from the PC, the printer responds by setting its BUSY signal
high. The printer can hold the BUSY signal high for an indeterminate amount of time. After the datais
evaluated and used by the printer, the printer pulses the nACK signal to say that it is ready for more data.

Valld data

DATA Port
bits

nSTRODE

BUSY

nACK

Figure 3.5
Timing diagram of the data transfer from a PC to a printer using the parallel printer adapter.

Page 37

Typically, about 7us after the low-going nACK pulse, the printer takes the BUSY signal low again. The PC
transmits more data only when it detects that the BUSY signal islow. After adelay of 5us from the time the
BUSY signal istaken low, the printer puts the nACK signal high again.

Using the Parallel Printer Adapter

With a standard parallel port, you have access to a 5-bit input port, a 4-bit output port, and another 8-bit
output port. The 4-bit output port can also be configured as a 4-bit input port. All 17 signal lines are
accessible under program control and can be used for TTL signal level datatransfer in to and out of the PC.
Aninterrupt input signal is also available. The paralel port signals are available on the rear panel of PCson
a 25-pin D-type female connector. To connect a PC and a printer, a ready-made cable with a 25-pin D-type
male connector on one end and a 36-pin Centronics male connector on the other end is available. This cable
can also be used to connect the parallel port to any other circuit.

However, it isimportant to choose good-quality cables. Many of the cheap cables are reported to have afew
signal lines missing. This may go undetected if you only need to connect the PC and a printer, but for any
other use, missing signal lines could be disastrous. Y ou may want to make your own cable of the required
length and quality. (The 1284 standard does define a compliant, high quality cable, which should be used.)

Page 39

Chapter 4—
Programming and Using the Parallel Adapter

This chapter looks at problems associated with programming and using the parallel port. The C programsin
this chapter and in later chapters have been tested (unless otherwise indicated) with the Turbo C v2.0
compiler. | believe these programs can be used without any change with the higher versions of the Turbo C
or Borland C compilers and, after minor modifications, with other compilers such as the Microsoft C
compiler. The later sections of this chapter provide examples for connecting hardware to the parallel port.

PC Data Area

When you decide to use the parallel port for a nonprinting application, the first thing you must determineis
the address of the parallel port adapter. Most PCs use one of three possible parallel port addresses.
Fortunately, MS-DOS stores the addresses of most hardware in a specific area of memory called the BIOS
data area. The base addresses of the parallel adapters are also available in this area. The PC recognizes up to
three logical parallel adapters. By examining this area, the user can find out if the PC is equipped with a
parallel adapter and, if so, the base address of the parallel adapter.

Listing 4.1 isaroutine that reads the memory of the PC and finds out the base address of the parallel
adapter. The program allows the user to detect whether the PC

Page 40

is equipped with aparallel adapter and, if so, requests the user to enter anumber 1, 2, or 3. Accordingly, the
program reads the BIOS area and determines if the parallel adapter is present. If the parallel adapter is
present, the value read is nonzero and is the base address of the adapter. The base address of the adapter is
the port address of the DATA port. The STATUS port is at an address |ocation one higher than the DATA
port address, and the STATUS port is at an address location two higher than the DATA port address. Listing
4.1 is a stand-alone piece of code that can be executed on a DOS-based PC to detect if a printer adapter is
present. In real application circuits, this piece of code is vital for the functioning of the add-on circuits.

Accessing the Ports

It is important to realize that two of the parallel port's internal ports, the STATUS and CONTROL ports, are
incomplete (i.e., of apossible eight bits, these ports have only five and four signals, respectively, available
on the output connector). Also, many of the port bits have an inverter between the bit and the output
connector pin. The DATA port isfree of any such intrigue and can be used very cleanly.

To transfer data to an output port, use the function macro

out portb(port_address, data);

The first argument of the function macro is the address of the destination port, and the second argument is
the data to be transmitted. The first argument can be a constant or avariable of thetypei nt and the second

argument is a constant (a byte of data) or a variable of type char .

To read data from an input port, use the function macro

data vari able = inportb(port_address);

Theinstruction returns a byte that is transferred into the variable dat a_var i abl e, which should be of
typechar .

A Break-Out Box for the Parallel Adapter:
Lighting LEDs and Reading Switches

A break-out box is a piece of equipment that is usually used to simplify troubleshooting. Break-out boxes for
RS-232 serial ports are very common. The break-out box | will describe isasimple circuit with afew LEDSs,
resistors, and a couple of jumpers, mounted on a small PCB with a male 25-pin D-type connector, that can
be plugged into the PC's parallel adapter connector. The purpose of this break-out box is to acquaint you
with the working of the parallel adapter ports (Listing 4.2), in particular of the STATUS and CONTROL
ports.

Page 41

Listing 4.1 Find the base address of the parallel adapter.

/ *detect.c*/

/*This piece of code determnes if the PC has any parallel adapter*/
/*1f yes, it finds out and prints the addresses of the DATA, CONTROL */
/ *and the STATUS ports*/

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

mai n()
{
int dport, cport, sport, select, offset;
clrscr(); /*clear screen*/
printf("\tProgramto detect the parallel printer adapter.\n");
printf("Enter 1, 2 or 3 to detect LPT1, LPT2 or LPT3 respectively.\n\n");

/*wait for a keystroke*/
sel ect =get ch();

[*loop indefinitely if the key pressed is not "1', '2" or "3 */
while ((select '="1") && (select !'="2") && (select '="3"))
{
printf("lInvalid nunber. Enter 1, 2 or 3\n");
sel ect =get ch();

}
if(select =="1") offset = 0x08;
if (select =="2") offset = 0xO0a;
if (select =="3") offset = 0xOc;

/*now | ook into BIOS area to determine the address of the particul ar*/
[*paral |l el adapter*/
dport =peek(0x40, offset);

/[*If the address is zero, neans that particular parallel adapter*/
/*1s not present. No point in continuing. Abort the code here*/

i f (dpor
{
pri nt
exit(

}

t == 0)

f("Sorry, On this nmachine LPT%l does not exist\n", select-'0");
0);

/*else print the port addresses of the DATA, STATUS and CONTROL ports*/

printf("
printf("
printf("
printf("

\nLPT% detected!\n", select -'0");
DATA port is %\ n", dport);

STATUS port is %\n", dport+1);
CONTROL port is %&\n", dport+2);

Page 42

Asyou can see from the circuit diagram in Figure 4.1, the LEDs are connected to the outputs of the DATA
port as well as to the outputs of the CONTROL port. The outputs of the CONTROL port are connected to
the LEDs through a set of two-way jumpers that allow the CONTROL port signals to either connect to the
LEDS or to the signals of the DATA port. The STATUS port signals are connected to the DATA port
signals through another set of jumpers. With this jumper switch arrangement, the STATUS port signals can
be disconnected from the DATA port signals. This allows you to program the DATA port to an arbitrary
sequence and to read this sequence back through the STATUS port.

Figure4.1
Circuit diagram for the parallel adapter break-out box.

Page 43

Listing 4.2 Play with the parallel ports using the break-out box.

/~k
#i ncl ude
#i ncl ude
#i ncl ude

unsi gned

bob. c*/

<dos. h>
<coni 0. h>
<stdi 0. h>

char sel ection;

voi d play_dport(void)

{

}

static unsigned char a;

/ *r epeat

till a key is pressed*/

whi | e(! kbhit())

{

out por
printf
at++;

sl eep(

}
getch();

t b(0x378, a);
("\ nDATA port = 9", a);

1);

voi d play_cport (void)

{

static unsigned char c;

whi | e(!kbhit())

{
out port b(0x37a, c);
printf("\nCONTROL port = %X, c);
c++;
sl eep(1);

}

getch();

}

voi d dout _ci n(voi d)
{
static unsigned char dout, cin;
out port b(0x37a, 0x04);
whi | e(! kbhit())
{
out port b(0x378, dout);
ci n=i nportb(0x37a) & OxOf;
printf("\nDATA port = %, CONTROL port raw = %X
CONTROL port corrected = %", dout & OxOf, cin, OxOb "~ cin);
dout ++;
sl eep(1);

}
getch();

Page 44
Listing 4.2 (continued)

voi d dout _si n(voi d)
{
static unsigned char dout, sin;
whi | e(!' kbhit())
{
out port b(0x378, dout);
si n=i nportb(0x379) & Oxf8§;
printf("\nDATA port = 9%, STATUS port = %X,
STATUS port corrected = %", (dout & Oxf8)>>3, sin>>3,
0x80 & (sin>>3)); dout =dout +8;
sl eep(1);
}
getch();

}

unsi gned char get_sel ecti on(voi d)

{
puts("\nPlay with DATA Port\t\t\tD\n");
put s(" DATA port output, CONTROL port input\tCn");
put s(" DATA port output, STATUS port input\tS\n");
puts("CONTROL port output\t\t\tOn");
puts("Exit \t\t\t\t\tX\n");
printf("Enter selection: ");

gets(&selection);
sel ection | = 0x20;
return sel ection;

}
mai n()
{
for(;;){

get _sel ection();
switch (selection) {
case 'd': printf("\nCase D\n");
play_dport();

br eak; case 'c': printf("\nCase CQn");
dout _cin(); br eak;
case 's': printf("\nCase S\n");
dout _sin();
br eak;

case '0': printf("\nCase O n");
play_cport();
br eak;
case 'x': printf("\nBye . . . Play nme again!\n");
exit(0);
default: printf("\nError\n");

Page 45

The DATA port signals are also connected to the CONTROL port signals to show how the CONTROL port
can be used to read external data. With the two-way jumper switches connected to the CONTROL port
signals, these signals can either light the LEDs in one position of the switch or connect to the DATA port
signals in the other switch position. DATA port signals are connected to the CONTROL port through 220-
ohm resistors. Thisisto ensure that if the CONTROL port output is 0, the DATA port signal outputs are not
pulled low.

Power Switching Circuitsfor the Parallel Adapter

To control real-world devices, you need to control power through the devices either in an on/off mode or in
a continuously (linearly) varying mode. Simple devices can be controlled through relays and solenoids.

To control relays (electromechanical aswell as solid-state) and solenoids, you need some sort of switch, a
transistor switch for example. The outputs of the parallel ports use transistor switches. However, these
switches cannot handle voltages and currents more than 5V and a few milliamps — most relays need
substantially larger voltages and currents to operate.

To activate relays, you need switches with high current and voltage capacity. There are many types of
switches that can be configured to meet a specific requirement. Rather than go in for switches made out of
discrete components, it is worthwhile to hunt for fully integrated switches. Sometimes, however, it may be
the case that your requirements cannot be met with integrated components and you may be forced to look for
discrete solutions,

Y ou may encounter a need to switch currents at very high frequencies, asis the case of switches used to
drive stepper motors. With advancesin MOSFET technology, high-speed and high-power switches using
MOSFETs have become more common and popular compared to transistor switches. The problem with
MOSFET switchesisthe need for suitable drivers. Because MOSFET s turn on and off, voltages are different
from those available from digital outputs, so driving MOSFETS can sometimes be tricky. However, TTL-
compatible MOSFET drivers can alleviate such problems.

ULNZ2003A Driver

The ULNZ2003A are high-voltage, high-current darlington arrays containing seven open collector darlington
pairs with common emitters. Each of the seven channels can handle 500mA of sustained current with peaks
of 600mA. Each of the channels has a suppression diode that can be used while driving inductive |oads
(such asrelays) as freewheeling diodes.

Page 46

The ULN2003A input is TTL compatible. Typical uses of these driversinclude driving solenoids, relays,
DC motors, LED displays, thermal print heads, etc. The IC isavailable in a 16-pin DIP package and other
packages. The outputs of the drivers can also be paralleled for higher currents, though this may require a
suitable load-sharing mechanism.

Figure 4.2 shows the block diagram of the ULN2003A darlington array driver IC. For each of the drivers,
there is a diode with the anode connected to the output and the cathode connected to a common point for all
seven diodes. The outputs are open-collector, which means that external load is connected between the
power supply and the output of the driver. The power supply can be any positive voltage less than +50V, as
specified by the data sheets. The load value should be such that it needs sustained currents less than 500mA
and peak currents less than 600mA/driver.

Figure 4.3 shows three relays being driven by the outputs of three drivers from the ULN2003A IC. One end
of the relay cail is connected to the output of the driver and the other end is connected to the +ve supply
voltage. The value of this voltage will

TTL inputs Opan Collactor

>C Outputs

Figure 4.2
ULN2003A darlington array.

Page 47

depend upon the relay coil voltage ratings. The diode common point is also connected to the +ve supply
voltage. The input to the ULN2003A IC is TTL voltages — the output of the DATA port of the parallel
adapter, for example. With this arrangement, the DATA port signals could be used to control each of the
relays.

Therelay terminals labeled NC (Normally Closed), common, and NO (Normally Open) could be used to
switch whatever voltage may need to be switched. Typically, the relay terminals are used to switch the
mains supply (220V AC or 115V AC, as may be the case) to the required load (a heater, alamp, etc.), but of
course, the relay may be used to switch any voltage (AC or DC) aslong as the relay contact can handle the
voltage and the current.

MQOSFET Drivers

Using MOSFET s for power switching is getting extremely popular and there are reasons for that. It is
relatively easier to use MOSFETSs than bipolar transistors (BJT) for large switching currents. Power
MOSFETSs are getting cheaper than the bipolar transistors for

4 Ve (<50 Volts)
el e o
NC 1
TTL Inputs i Relay 1
' Commaon:
L]
Relay — _A—ﬂ G
Controll |~ “pky| T]TTTTTTTTTTC S
Aelay _ E}" . R N e o g il R
Conirol 2 | . NG :
Relay ': Ralay 2
Conlrol 3 __[::""| - cmmunf
HO 1
T R .
> NC i
I::"':'[: Relay 3
Comman,
——[:'::-GLH No

ULNZ0O03A

Figure4.3
ULNZ2003A drivers used to drive inductive | oads.

Page 48

comparable voltage and current characteristics. However, it is very easy to encounter some pitfalls while
using MOSFETSs. This chapter examines some of the problems and possible solutions.

MOSFETSs have become popular for four reasons:

Speed MOSFETSs are inherently faster than BJT s because only a single majority carrier (electrons or holes)
isinvolved. The switching speeds of the MOSFET s depend upon the charging and discharging of device
capacitances (which are not insignificant), independent of temperature.

I nput characteristics The MOSFET input, the gate, is electrically isolated from the device source and has a
DC resistance of tens of megaohms. The MOSFETSs are typically turned on at 10V or less (there are some
varieties called logic level switching types which turn on at 2V and are suitable to be driven directly off the
output of a TTL gate). The gate drive requirement is nearly independent of the load circuit.

Operating parameters Unlike BJTs, MOSFETs do not require derating of the power handling capacity as a
function of applied voltage. The operating levels are clearly determined by the peak current ratings, power
capabilities, and the breakdown voltages of the devices.

On voltage The On voltage is determined by the device On resistance (resistance between the drain and
source of the MOSFET). For low power MOSFETS, thisis small and for power MOSFETSs this can be
somewhat large. But alarge On resistance has the benefit that many devices can be operated in parallel with
load sharing.

MOSFETswork like BJTs. To turn an NPN BJT on, you need to supply a base current and a base-emitter
voltage that is greater than the threshold voltage (between 0.7 and 1.0V). The base current required to turn
the BJT on depends upon the load current and collector current to base current ratio (called the 3). Similarly,
for N-channel MOSFETS, you need to apply a gate voltage greater than the gate source threshold. At DC,
the required gate current is very small (on the order of microamps) and is not a problem, but at higher
frequencies, the input capacitance of the MOSFET (which is much larger than that of the BJT) requires
transient current, which can be much larger than that of a comparable BJT. The popular belief that
MOSFETs only require avery small, negligible gate current is shattered once you look at the following
figures. Take atypical case of the input capacitance of a big power MOSFET as 5,000pF. Assume that the
gate voltage must switch from 0 to 10V in 1us (so that the output load can switch in that time). To charge a
capacitance of 5,000 pf to 10V in 1usrequires acharging current, |, whichis

.l’Jc ==V
whichis

1, = 5000+ 107« 10/107° = 50mA

Page 49

Thisis not an insignificant amount of current and definitely not something atypical logic gate can provide,
so to drive MOSFETs with logic outputs, you need to pay attention to the turn-on current requirement at the
required switching rate and the turn-on threshold voltage. If these cannot be provided by the output of the
logic device, an intermediate driver must be used.

Thus, driving MOSFETs from digital logic outputs not only require a sufficient voltage to turn the MOSFET
on but may also require significant amounts of gate currents. Asfar as turn-on gate voltage, a 10V gate drive
will turn amost any MOSFET on. Many MOSFETS have much lower (1.0-1.5V) gate threshold voltages
and these are specially suitable for use with TTL digital outputs.

Drain Drain

) =1k

Source Source

N Channel MOSFET P Channel MOSFET

+60V

1N4007 7 N\

Shutter Coil
74HCTO4 Drain
Gate

IRFE10
Data bit
of the Parallel adapter Source
DATA port

77
Figure4.4

MOSFET symbols and a MOSFET-controlled mechanical shutter.

Page 50

Figure 4.4 shows the symbols of N- and P-channel MOSFETS. Figure 4.4 also shows asimple circuit to
drive a mechanical shutter coil that operates at +60V power supply. The N-channel MOSFET IRF610 which
has low Vgs voltage, is used to drive the shutter coil. The gate of the MOSFET is driven by the output of a
74HCTO4 inverter. The inverter is driven by one of the bits of the parallel adapter DATA port bits.

Figure4.5
A DIP switch interface for the parallel adapter.

Page 51

Reading DIP Switches

There are times when you need to read DIP switches. DIP switches are useful input devices very commonly
used to implement user choice. Figure 4.5 shows the circuit to interface three DIP switches of eight bits each
to the parallel adapter. Only three signal lines of the parallel adapter are used.

The heart of the circuit isa 74HCT165 parallel-in, serial-out shift register. Many of these shift registers can
be cascaded using the SER signal pin. The shift register has an input latch that isloaded with the logic levels
presented at the input pins (A—H) by application of the LOAD signal. In this circuit, one terminal of the DIP
switchesis connected to the input of the shift register, and the other terminal is grounded. When the switch
is open, the input to the shift register is high (for TTL-compatible logic only, for other logic family, use pull
up resistors of 1Kohm value). When the switch is closed, the logic input is low.

The other input to the shift registersis the CLK input. Each edge of the CLK signal shifts the data stored in
the latch to the output QH pin of the IC. The output of the shift register is connected to the STATUS port bit
S7*.

The DIP switch reader program begins by issuing the LOAD pulse and then generates 24 CLK signals. After
each CLK signal it reads the status of the S7* pin and storesit in avariable. In the end, al the bits are
separated and put in relevant variables. Listing 4.3 isthe driver program for reading three DIP switches of
eight bits each.

Listing 4.3 Driver program to read DI P switches.

[*rd_dip.c*/

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

#1 ncl ude <coni o. h>
#i ncl ude <process. h>

/* This programre allows the conmputer to read a set of DIP swtches
These switches are connected to corresponding shift registers,
whi ch convert their parallel data into serial
The serial data is read at the printer (parallel) port of the PC
The MSB of the printer Status port (S7*) is used as the input data bit */

/* D3 D2 D1 DO */

#def i ne RESET_VALUE OXFF /1 1 1 1 %
#defi ne GEN_LOAD OXFE /[*1 1 1 0 *
#define GEN_CLOCK OXFD /1 1 0 1 *

Page 52

Listing 4.3 (continued)

#define DIP_SW3 [*total nunber of DIP swtches*/
#define BITS SWS8 /[*bits in 1 DIP switch */

voi d mai n(voi d)
{
int dport |ptl, sport Iptl, shift reg[6], tenp, in_count, out_count,
col umms, rows;

/* Sign ON */
clrscr();
printf("DIP Switch reading program?");
printf
("\nReads the Shift register connected to Printer Control & Status Port");
printf("\nLOAD ---> D0.");
printf("\nSH FT --> D1.");

printf("\nDATA ---> S7.");
printf("\n\n\nD. V. GADRE") ;

/*Get LPT1 port addresses */
dport | ptl = peek(0x40, 0x08);
i f(dport_Iptl ==0)

{

printf("\n\n\nLPT! not available . . . aborting\n\n\n");
exit(l);

}

printf("\n\n\nLPT1 address = %\ n\n", dport _Iptl);
sport_Iptl = dport_I|ptl + 1; /* status port address */

[* Initialize the Printer DATA Port?*/
out portb(dport | ptl, RESET VALUE);

/* kbhit to see of keyboard is hit */
/* conme out of l|oop, if so*/

while (!kbhit())

{

/* CGenerate LOAD signal on DO bit for the shift registers */
out portb(dport | ptl, GEN LOAD);
out portb(dport | ptl, RESET_VALUE);

for(out _count=0; out_count<Dl P_SW out_count ++)
/* nunber of DIP Switches */

{

for(in_count=0; in_count<BI TS SW i n_count++)
/* nunber of bits / Switch */
{

Page 53

Data Transfer Over heads Using the Standard Parallel Port

The previous chapter described how the standard parallel port is used to transfer datato a printer. This
section will examine the problem of data transfer from a software perspective. This exercise, which will help
explain why datatransfer using the standard printer port is slow and why vendors and developers felt the
need to develop afaster interface, will lead to the reasons behind the devel opment of the Enhanced Parallel
Port (EPP) and the Extended Capability Port (ECP) — topics for the next chapter.

Listing 4.3 (continued)

/* Read the Status Port bit S7*/

tenp = inportb(sport Iptl) ;

tenp = tenp ~ 0x80; /[*invert bit no. 7%/

tenp = tenp >> 7; [*shift it to the | ower nost position*/
tenp = tenp & 0x01; /*mask all bits except the last bit*/

/* Concatenate it in the variable */
shift_reg[out_count] = shift _reg[out_count] << 1;
/* shift the bit one left*/
shift _reg[out _count] = shift reg[out_count] & Oxfffe;
/* make the LSB 0*/
shift _reg[out_count] = shift_reg[out_count] | tenp;
/* place the new bit in the LSB*/
shift_reg[out_count]=shift_reg[out_count] & Oxff;
/| * keep only the | owest 8 bits*/
out portb(dport | ptl, GEN CLOCK); /* clock for the next bit*/
out portb(dport | ptl, RESET VALUE)

}
printf("Switch %d = %X\ n", out_count, shift_reg[out_count]);
}
printf("\n");
del ay(500); /*wait for .5 seconds*/
}
/* Repeat |oop */
return;

Page 54

Listing 4.4 Transfer data to an external device.

/*prin_dat.c*/

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

#1 ncl ude <coni o. h>
#i ncl ude <process. h>

#define BUF_LEN 1000

/*d obal variables that store the addresses of the three ports of the
standard printer adapter*/

unsi gned int dport, cport, sport;

mai n()

{

[*the followng array stores data to be transfered to the external device*/
unsi gned char print_buffer[1000], tenp;
unsi gned i nt count;

[*Get LPT1 port addresses */
dport = peek(0x40, 0x08);

i f(dport
{

== O)

printf("\n\n\nLPT! not available . . . aborting\n\n\n");

exit(1l);

}
printf("\nLPT1 address = %", dport);
cport = dport +2; /[* control port address */
sport = dport + 1, /* status port address */

[*this statenent puts all the CONTROL port signals to logic 1*/
out portb(cport, 0x04);

/*setup a loop to transfer the required data points*/
for(count =0; count<BUF_LEN; count ++)

{

/*First check if the external device is not BUSY*/
/*the BUSY signal is the nsb of the status port, so read the status
port, isolate the 7th bit and wait till it becomes 1. Since the bit
is inverted, a BUSY | ow neans that the register bit is 1. In the
foll ow ng exanpl e sone sort of tinmeout feature nust be included for
practical use*/

t enp=i nport b(sport);

tenp=tenp & 0x80;

Page 55

Listing 4.4 gives areasonable estimate of what it takes, from a software perspective, to transfer datafrom a
PC to an external device like aprinter. In Listing 4.4, you can easily see that to transfer even asingle byte,
the processor has to execute at least 10 instructions. Of these many instructions, at least five read and write
to the three ports of the parallel printer adapter. Thus, on even the fastest PC, the bottleneck in data transfer
rateisthe port 1/O instructions. As aresult, data transfer rates using the standard printer adapter to an
external device never exceed 200—-300K bps. If the PC needs to read byte data from an external device,
consider your speed to be in the range of 100-250K bps, at best. Thisis because the standard printer adapter
can only read four bits at atime. So to read byte-wide data, it must perform two read operations, one to read
the lower nibble and the other to read the higher nibble, and then assembl e the two nibbles to get the byte.
That's not all. The byte has the seventh and third bits inverted, so a bit inversion operation must also be done
on this assembled byte to get the real byte. The following example shows how the standard printer adapter is
used to read external data using the STATUS port signals.

Figure 4.6 shows a block diagram to read external data through the STATUS port signals. This example
shows only the rudiments of a practical circuit. In this example circuit, | have not shown the external source
of data or any scheme of synchronization between the source and the PC.

Listing 4.4 (continued)

whil e(tenp ! = 0x80)
{
t enp=i nportb(sport);
tenp=tenp & OX7f;
}

/*OK, now the external device is ready so punp sone data*/
out portb(dport, print_buffer[count]);

/ *now pul se the nSTROBE signal |ow and then high agai n*/

/ *make sure that the other CONTROL signals are not disturbed*/
t enp=i nportb(cport);

temp=tenp | 0x01; /*this makes the external signal |ow/
/ *nSTROBE occupi es the | sb of the CONTROL port register*/

out portb(cport, temnp);
tenp=tenp & Oxfe; /*make it high agai n*/
out portb(cport, tenp);

Page 56

The external source produces data bits DO-D7 (please do not confuse these with the outputs of the DATA
port of the printer adapter). These eight data bits are fed to the inputs of two 74HCT 244 tristate buffer I1Cs.
Each | C has two independent sections. Each of the sections has an enable signal, as shown by the bubble at
the lower right side of the IC block. The circuit is arranged in such a fashion that, at any instant of time, only
one of the two sectionsis enabled and the other is disabled. Thisis achieved by using the inverter output to
generate one of the enable signals. The uninverted signal controls the other enable signal. Signal CO* from
the CONTROL port is used to enable the buffer blocks.

Each output of the buffer ICsis shorted to a corresponding signal from the other block. Thus, from the eight
inputs to the buffer IC, you get four signals. To read a byte, the PC puts the CO* signal to logic O, reads the
STATUS port, and temporarily storesit. It then changes the CO* signal to logic 1, and then reads the
STATUS port once more. Reading the STATUS port each time, you get a byte, from which you have to

discard the lower nibble. Then using the two nibbles, the program generates one byte, as shown in Listing
4.5.

87" - D7
8 -l g— 2 D6
85 = & Butfer DS
54 - & D4
D3

‘244 D2

Buffer D1

Do

co*

Inverter

Figure 4.6
Using the standard printer adapter to read external byte-wide data.

Page 57

The number of operations required to receive a byte of data through the STATUS port of a standard parallel
adapter is even greater than the number of operations required to send data out through the DATA port. One
way to address this problem isto have a parallel printer adapter with a bidirectional DATA port. IBM, for
example introduced this feature in its PS/2 computers. Many of the clones today have this feature. Having a
bidirectional DATA port saves many steps when reading data. However, it is still necessary to switch the
direction of the DATA port to receive data. This would need to be done only once, provided no data needs to
be sent out the DATA port during this time.

The next chapter looks at the need for high-speed parallel ports and the solution in terms of the EPP and the
ECP.

Listing 4.5 Read external data using the STATUS port.

/ *read_dat.c*/

#1 ncl ude <stdio. h>
#1 ncl ude <dos. h>

#i ncl ude <coni o. h>
#i ncl ude <process. h>

#defi ne READ LEN 1000 /*nunber of data points to read*/

/ *d obal variables that store the addresses of the three ports of the
standard printer adapter*/

unsi gned int dport, cport, sport;

mai n()

{
/

the followng array stores data that is received fromthe external device/
unsi gned char input_buffer[1000], low nib, high_nib, real byte, tenp;

unsi gned i nt count;

/*Get LPT1 port addresses */
dport = peek(0x40, 0x08);

i f(dport ==0)
{
printf("\n\n\nLPT! not available . . . aborting\n\n\n");
exit(1);
}
printf("\nLPT1 address = %", dport);
cport = dport +2; /* control port address */
sport = dport + 1, /* status port address */

Page 58

Listing 4.5 (continued)

/*this statement puts all the CONTROL port signals to logic 1*/
out portb(cport, 0x04);

/*setup a loop to read the required data points*/
for(count =0; count <READ_LEN; count ++)

{

/*in practice, some sort of synchronization code will go here*/
t enp=i nportb(cport);

tenmp=tenp | O0xO01; /*this makes the external C0* signal |ow/
out portb(cport, tenp);

| ow_ni b=i nportb(sport);

tenp=tenp & Oxfe; / *make external CO* signal high again*/

out portb(cport, tenp);
hi gh_ni b=i nportb(sport);

| ow ni b=l ow nib >> 4;
[*shift the 4 upper bits to | ower 4 positions*/
lownib = lownib & OxOf; /*make sure upper 4 bits are all 0s */

hi gh_ni b=hi gh_ni b & 0xf 0; /*to make lower 4 bits all 0s */
real _byte = high_nib | |ow_nib; /* OR the two bytes together*/

real byte=real byte ™ 0x88;
[*flip the 7th and the 3rd bit and now the real byte is ready*/

/ *now store it*/
i nput _buffer[count]=real byte;

}

Page 59

Chapter 5—
The Enhanced Parallel and Extended Cabability Ports

The parallel printer adapter is such a versatile port that people started using it for applications other than
printing. The use of the parallel port soon began spreading to such applications as tape backup systems, CD-
ROM players, and LAN adapters. However, the performance of the parallel printer adapter was severely
limited by the data transfer rates from the PC to the peripheral (about 250K bps maximum) and by the lack of
a high-speed protocol to transfer data from the peripheral back to the PC. In addition, due to the lack of a
standardized electrical interface, the maximum distance between the PC and the external peripheral was
l[imited to about six feet.

Until about 1991, the features offered by the standard parallel port (in terms of speed, data buffering, etc.)
didn't progress as quickly as the performance characteristics of host computers. In 1991 various printer
manufacturers formed a group called the Network Printing Alliance (NPA). This organization sought to
develop a standard for the control of printers across a network. As part of their work, NPA decided to look at
the parallel port and to define new protocols that would increase performance and provide bidirectional
communication while retaining backward compatibility with existing parallel ports.

The NPA wanted to implement a set of parameters that would require a high-performance bidirectional
connection to the PC with backward compatibility, so they approached the |EEE with arequest to constitute
a committee with that task. The IEEE 1284 committee decided to aim for a bidirectional data transfer rate
greater than

Page 60

1Mbps. The committee released the standard “Standard Signaling Method for a Bidirectional Parallel
Peripheral Interface for Personal Computers' in March 1994. This standard gave rise to the Enhanced
Parallel Port (EPP).

This chapter discusses the EPP standard and provides details about the EPP mode of operation. | will
describe how to transfer datain EPP mode with an example circuit and communication routines. | will also
look at the Extended Capability Port (ECP) protocol and the proposed electrical interface for new parallel
ports.

Thel EEE 1284 1994 Standard

The |IEEE 1284 standard (hence forth referred to as 1284) provides bidirectional communication between the
PC and external peripheral devices at arate of 20-50 times faster than the original parallel port. The
protocol remains backward compatible with all the existing parallel port peripherals and printers.

|EEE 1284 defines five modes of data transfer, in either the forward direction (referenced to the PC), reverse
direction, or both directions (bidirectional datatransfer in a half-duplex format). The five modes have been
distributed according to direction (see Table 5.1). The truly bidirectional modes are the EPP and the ECP
modes, in which asingle /O cycle can transfer data to the external device while checking for aBUSY signal
and generating the nSTROBE signal. EPP and ECP modes also allow the PC to read a byte of data from the
external device, complete with al handshaking, in one 1/0O cycle.

All parallel ports can implement a bidirectional link using the nibble or byte mode. However, both these
methods are software intensive. The data transfer software in a PC checksif the peripheral is ready (by
probing the BUSY line), then places outgoing data onto the data lines and generates a strobe signal on one of
the control lines.

Table5.1 |IEEE 1284 data transfer modes.

Forward direction only

» Compatibility mode: Centronics or Standard mode

Reverse direction only

* Nibble mode: four bits at atime using status lines for data

* Bytemode: eight bits at atime using data lines, referred to as "bidirectional” port

Bidirectional

* EPP mode: enhanced parallel port

» ECP mode: extended capability port

Page 61

Similarly, when reading data, the PC reads the data on the data lines (in byte mode) or a nibble on the status
lines (in nibble mode) and then generates an acknowledge signal. All thisis software intensive and limits the
data transfer rates to between 50 and 150K bps.

Newer PCs are equipped with [/O controllers with EPP and ECP capabilities and have hardware to assist
with the data transfer. In EPP mode, a data byte can be transferred by asingle IN or OUT instruction to the I/
O controller, which then handles the handshaking and strobe signal generation. Clearly, data transfer rates
on such a machine are then limited by the rate at which the instruction can be executed. Typically transfer
rates around 1-1.75Mbps can be achieved easily on contemporary machines.

The 1284 standard not only specifies the data transfer protocol but also defines a physical and electrical
interface. In addition, IEEE 1284 provides a method for the host and the peripheral s to recognize the
supported modes and negotiate the requested mode. What the IEEE 1284 standard does not do is specify
how certain conditions are to be interpreted by the host. For instance, the standard does not specify how an
EPP device signalsthat it has data to send or that an error condition has occurred. Asyou will see, the EPP
protocol has the ability to signal an address or command. The standard does not provide a definition or
meaning to any particular address or command, just a method to send. The 1284 standard is alow-level
physical layer protocol.

The Enhanced Parallel Port

The Enhanced Parallel Port protocol was originally developed by Intel, Xircom, and Zenith Data Systems to
provide a high-performance parallel port link that was backward compatible with existing parallel port
peripherals and interfaces. Intel implemented this protocol in the 360SL 1/0O controller chip set. However,
thiswas prior to the establishment of the IEEE 1284 committee.

Because EPP-capable parallel ports were available before the release of the IEEE 1284 standard thereis
small deviation in the pre-lEEE EPP ports from the 1284 EPP ports.

The EPP protocol defines four types of data transfer:
1. Datawrite cycle

2. Dataread cycle

3. Address write cycle

4. Addressread cycle

Data cycles are used to transfer data to and from peripheral devices and address cycles are used to exchange
device addresses, control information, etc. An address cycle can be viewed as two different data cycles.

Page 62

The EPP Protocol defines the SPP signal names, as shown in Table 5.2. Of the 17 SPP signals, EPP utilizes
14 signals for data transfer, handshake, and strobe purposes. The rest of the unused signals can be used by
the peripheral designer for product-specific purposes.

The datawrite (Figure 5.1) cycles asfollows:
1. Program executes an I/O write cycle to the EPP DATA port
2. ThenWRITE lineis asserted and the datais output on the parallel port datalines

3. The data strobe is asserted because NWAIT is asserted low

Table5.2 EPP signal definitions.

SPP signal EPP signal Direction EPP signal description

nSTROBE NWRITE Out Active low. Indicates awrite
operation; high for aread cycle

NAUTOFEED NnDATASTB Out Active low. Indicates
DATA_Read or DATA_Write
operation in progress

NnSELECTIN nADDRSTB Out Active low. Indicates
ADDRESS Read or
ADDRESS Write operation in
progress

nINIT NRESET Out Active low. Peripheral reset

nACK NnINTR In Periphera interrupt. Used to
generate an interrupt to the host

BUSY nWAIT In Handshake signal. When low, it
indicatesthat it isOK to start a
cycle (assert strobe); when high,
it indicatesitis OK to end the
cycle (de-assert strobe)

D8] ADI[8:]1] Bidirectional Bidirectional address/data lines

PE user defined In Can be used by peripheral

SELECT user defined In Can be used by peripheral

NERROR user defined In Can be used by peripheral

4. The port waits for the acknowledge signal from the peripheral (NnWAIT de-asserted)

5. The data strobe is de-asserted and the EPP cycle ends

6. TheISA I/0O cycle ends

7. n\WAIT is asserted low to indicate that the next cycle may begin

The data read (see Figure 5.3) cycles asfollows:

1. Program executes an I/O read cycle to the EPP DATA port

2. The data strobe is asserted because NWAIT is asserted |low

3. The port reads the data bits and the data strobe is de-asserted

4. The port waits for the acknowledge from the peripheral (N\WAIT de-asserted)

5. The EPP cycle ends

6. The ISA cycle ends

The address read and write cycles operate exactly the same way except that the nDATASTB signal is
replaced by the nADDRSTB signal.

Page 63

Figures 5.2 and 5.4 show the address write and read cycles. In essence, the EPP signals can be viewed as the
signals of ageneral purpose microprocessor, with an 8-bit multiplexed address and a data bus. The control

bus of this system could be seen as

-‘ .2 ,3 4 5 15 17
nlOW : \ 1 I : ' i} :
nWRITE \ :' ‘ : :H ,
nDataSirobe : ; :\ / r
nWAIT : i E :./ : _

DATA -< v.uu?nm
Figure5.1

The data write cycle.

Page 64

the collection of the six signals, composed of the nWRITE, nlOW, nlOR, nAddr-Strobe, nDataStrobe, and
NWAIT signals. Thisis shown in Figure 5.5

EPP Registers

The register model for the EPP mode of operation is an extension of the IBM parallel port registers. As
shown in Table 5.3, the SPP (Standard Parallel Port) register definitions include three registers offset from
the port's base address: DATA port, STATUS port, and CONTROL port. The base address is the address
where the data register is located in the PC's I/O space. Thisis commonly 0x378h or 0x278h for LPT1

and LPT2. The most common EPP implementations expand this to use ports not defined by the standard
parallel port specification. Thisisshownin Table 5.3.

By generating asingle I/O writeinstructionto base_addr ess + 4 (0x27Ch for example), the EPP
controller will generate the necessary handshake signals and strobes to transfer the data using an EPP
Dat a_W i t e cycle. I/O instructions to the base addresses, ports O through 2, will cause the enhanced

parallel port to behave exactly like the standard parallel port. This guarantees compatibility with standard
parallel port peripherals and printers. Address cycles are generated when read or write 1/O operations are
generated to base_address + 3.

o JR P I ——

e e -

nioW

NWRITE

lllll

liLl.rlh

" Y

'Dnia

Valid:

Jdrassdessaaa

=
<
=]

Figure5.2
The address write cycle.

Page 65

L R R

nlOR

rrsassssnmafa

A A A T T SR

nWRITE

nDataStrobe

nYWAIT

DATA

-

Ry W

Figure 5.3
The dataread cycle.

-
th

1
nlOR Ty

...
e o P ol __:}:"r,.....-... et i

"‘“‘i“‘i“‘ﬁ T T P T S T S T

=

Valid

Figure5.4
The address read cycle.

Page 66

Ports 5 through 7 are sometimes used differently by various hardware implementations. Sometimes they are
used to implement 16- or 32-bit software interfaces, or sometimes they are used as configuration registers.
Sometimes they aren't used at all. Most controllers use these addresses to support 32-bit 1/O instructions.

The ISA controller will intercept the 32-bit I/0O and actually generate four fast 8-bit I/O cyclesto registers
+4 through +7. Thefirst cycle will be to the addressed 1/0 port using byte O (bits 0-7), the second cycle will
be to port+l using byte 1, then port+2 using byte 2, and finally port+3 using byte 3. These additional cycles
are generated by hardware and are transparent to the software. The total time for these four

Enhanced Parallel Port

Multiplexed Address/Data Bus
nlOW -
nlOR P

nWRITE -
nWAIT g
nAddrStro -
nDataStrobe -
Figure 5.5

The EPP signals are analogous to a
general-purpose microprocessor bus.

Page 67

cycles will be less than four independent 8-bit cycles. This enables the software to use 32-bit 1/O operations
for EPP data transfer. Address cycles are still limited to 8-bit I/O. The ability to transfer data to or from the
PC by the use of asingle instruction is what enables EPP-mode parallel portsto transfer data at | SA bus
speeds. Rather than having the software implement an I/O-intensive software loop, a block of data can be
transferred with asingle REP O instruction. Depending upon the host adapter port implementation and the
capability of the peripheral, an EPP port can transfer data from 500K bps to nearly 2Mbps. This data transfer
rate is more than enough to enable network adapters, CD-ROM, tape backup, and other peripheralsto
operate at nearly | SA bus performance levels.

The EPP protocol and current implementations provide a high degree of coupling between the peripheral
driver and the peripheral. What this means is the software driver is always able to determine and control the
state of communication to the peripheral at any given time. Block transfers and intermixing of read and write
operations are thus easily accomplished. Thistype of coupling isideal for many register-oriented or real-
time controlled peripherals such as network adapters, data acquisition, portable hard drives, and other
devices.

EPP BIOS Calls

Writing directly to the 1/O controller (implementing the EPP) will always offer the fastest data transfer rates,
but in some cases, you may wish to use the EPP BIOS calls for data transfer. Using BIOS calls allows data
transfer without messing with the 1/0

Table 5.3 EPP register definitions.

Name Offset Mode Type Description

SPP DATA port +0 SPP w Standard SPP DATA
port. No autostrobing

SPP STATUS port +1 SPP R Reads the input status
lines on the interface

SPP CONTROL port +2 SPP wW Sets the state of the
output control lines

EPP ADDRESS port +3 EPP R/W Generates an interlocked
address read or write
cycle

EPP DATA port +4—7 EPP R/W Generates an interlocked

dataread or write cycle

Page 68

controller chip. Another advantage of using the BIOS is that even though the host may not have an EPP-
capable port, the software will still run using the EPP emulation mode, though at a highly reduced rate.

EPP BIOS calls provide away to perform single 1/0 cycles aswell as block transfers. Although the BIOS
specifications cannot be reproduced here, | will describe some useful calls.

I nstal | ati on Check Thisisused to test for the presence of an EPP port.

Set Mode Thisisused to set the operating mode of the EPP port.

Get Mbde Thisisused to query the current operating mode of the EPP port.

| nt errupt Control Thisisusedto enable or disable the interrupt associated with the EPP port.
EPP Reset Thisisused to reset the peripheral connected to the EPP port.

Addr ess Read Thisisused to perform an address read 1/0O cycle.

Address Wit e Thisisused to perform an address write I/O cycle.

Wi te Byt e Thisisused to output asingle byte viathe EPP data port.

Wi te Bl ock Thisisused to output ablock of user-specified datafrom adefined buffer viathe EPP data
port data from a defined buffer via the EPP data port.

Read Byt e Thisisused to read asingle byte viathe EPP data port.

Read Bl ock Thisisused to input a stream of bytes into a user-defined buffer viathe EPP data port.

Devi ce | nterrupt Thisisusedto alow an EPP device driver to install an interrupt handler. Use this
call whenever an EPP device interrupt occurs.

At this point in time, the EPP BIOS has been implemented by only afew companies. Most drivers will have
to be written to use the registers directly. In the next section, I'll provide an example of high-speed digital 1/
O routines using EPP BIOS calls.

The full proposed specification for the EPP BIOS can be obtained from the
|EEE P1284.3 draft specification.

Page 69

High-Speed Digital 1/0 Using EPP

Figure 5.6 shows the schematics for asimple DATA and ADDRESS I/0O expansion port. The circuit shows
two latches and two buffers and a simple decoding circuit. The circuit can be easily understood using the
timing diagrams for the DATA and ADDRESS transfers described earlier in this chapter.

The latches are used to store a DATA byte aswell as an ADDRESS byte. The buffers are also read as
DATA input aswell as ADDRESS input. In this simple circuit, the BUSY signal is generated from the
combination of the nNDATASTB and the N ADDRSTB signals. In amore complex circuit (e.g., acircuit using
aprocessor), the BUSY signal could be generated when the processor actually reads the data (or the address)
S0 asto ensure that data or address is not |ost.

Listing 5.1 shows the routines to implement high-speed digital 1/0 using EPP BIOS calls. The codeis
commented so that you can modified it for a given task.

Programming the EPP Controller Chip

Listing 5.1 uses the EPP in the previous section with the help of BIOS routine calls. The use of BIOS
routines to access and communicate through the EPP of the PC is useful because it allows data transfer
without the need for any knowledge of the underlying hardware details. All PCs are equipped with EPP
controller chips (generally, the EPP isapart of abig I/O controller 1C that contains a floppy controller and
seria port controller as well as the EPP controller). Various manufacturers have implemented various
functions in their respective chips and it is very difficult to develop a single piece of code that can be used to
program all the EPP controllers directly.

Recall from Table 5.3 that the EPP port map consists of at |east five registers: the SPP DATA port, SPP
STATUS port, SPP CONTROL port, EPP ADDRESS port and the EPP DATA port. To be able to use the
EPP ADDRESS and the EPP DATA ports, the EPP controller chip must be programmed into the EPP mode
of operation. The default mode of operation of the parallel adaptersin the PC is the standard parallel adapter
mode (the SPP mode). To change the mode of operation, the controller chips have some sort of Extended
Configuration Register (ECR). There seemsto be a general understanding among the manufacturers that the
ECR register would be placed at an address offset of 0x402h from the base address of the parallel adapter.

If the base address of the parallel adapter is0x378h, then the ECR will be accessible at address 0x77Ah.

By writing to the ECR register, the user can select one of the many modes of operation that the particul ar
EPP controller supports. This has created some confusion, because the various manufacturers have
implemented arbitrary mode selection bytes. As an example, Standard Microsystems Corporation, a major
manufacturer of multimode parallel port and floppy disk controllers, offers the FDC37C665/66 chip. This

Page 70

Figure 5.6
Digital 1/0 prototype circuit.

Page 71

chip has an ECR at an address offset of 0x402 and it requires a mode selection to be byte written into the
ECR. The various mode selection bytes are shown in Table 5.4.

National Semiconductor is another major supplier of multimode controller chips. Table 5.5 is the description
of ECR mode selection for National Semiconductor's PC87332 chip.

Tables 5.4 and 5.5 show that the two chips are not identical, and thus it difficult to write common code to
program the EPP controller chip.

However, in spite of these differences, there seems to be a similarity in accessing the various ports for all
these chips. If you want to program the EPP controller chip directly, you must have the details of the
particular chip used in your system.

Listing 51 Routinesfor high-speed I/0 using EPP BIOS calls.

/| *epp_io.c*/

/*Set of Routines for Digital I/O using the Enhanced Parall e
Port. The routines invoke EPP BI OS calls.

Uses Turbo C 2.0 or better

Typi cal results:

Bl ock transfer rates: 65 Miytes in 73 secs on 486/ 66

*/

#i ncl ude<dos. h>
#i ncl ude<ti ne. h>
#i ncl ude<st di 0. h>

#defi ne FALSE O
#defi ne TRUE 1

void far (*pointr)();

i nt epp_config(void);

int epp_wite_byte(unsigned char tx_value);

int epp_wite_block(unsigned char *source_ptr, int count);
i nt epp_read_byte(unsigned char *rx_val ue);

i nt epp_read_bl ock(unsigned char *dest ptr, int count);

i nt epp_config(voi d)

{
unsi gned char tenp_ah, tenp_al, tenp cl, tenp_ch;
_AX=0x0200;
__DX=0;
_CH'FE;

Listing 5.1 (continued)

Page 72

}

_BL="P'; _BH='P';
geni nt errupt (0x17);
tenp_ah=_AH
tenp_al =_AL;
tenp_ch=_CH
tenp_cl = _CL;

i f(tenp_ah
i f(tenp_al
i f(tenp_ch
i f(tenp_cl

0) return FALSE

0x45) return FALSE;
0x50) return FALSE;
0x50) return FALSE;

pointr = MK FP(_DX , _BX)
_AH=D,

_DL=0;

_AL=0x04;

pointr();

t enp_ah=_AH,

if(tenmp_ah !'= 0) return FALSE;
return TRUE;

int epp_wite_byte(unsigned char tx_val ue)

{

int epp_wite_ block(unsigned char *source ptr,

{

unsi gned char tenp_ah;

_AH=7,

_DL=0;

_AL=t x_val ue;
pointr();
tenp_ah=_AH

if(tenp_ah !'= 0) {return FALSE;}
return TRUE;

unsi gned char tenp_ah;

_SI =FP_OFF(source_ptr);
_ES=FP_SE@ source _ptr);
_AH=8;

_DL=0;

_CX=count;

pointr();

i nt

count)

Page 73

Listing 5.1 (continued)

t enp_ah=AH,
if(tenp_ah !'= 0)
{

}
return TRUE;

printf("\nBlock wite tinmeout error"); return FALSE;

}

i nt epp_read_byte(unsigned char *rx_val ue)

{
unsi gned char tenp_ah;
_AH=9;
_DL=0;
pointr();
*rx_val ue=_AL;
tenp_ah=_AH
if(tenp_ah '= 0) {return FALSE;}
return TRUE;
}

i nt epp_read_bl ock(unsigned char *dest ptr, int count)
{
unsi gned char tenp_ah;
_ DI =FP_OFF(dest _ptr);
_ES=FP_SEG dest ptr);
_AH=0x0a;
_DL=0;
_CX=count;
pointr();
tenp_ah=_AH;
if(tenp_ah !'= 0) {return FALSE;}
return TRUE;

}

mai n()
{
int ret _value, ret val
tine_t start, end;
unsi gned char buf_out[10000], buf _in[10000], rx_in;

clrscr();
printf("Fast Digital I/O using the Enhanced Parallel Port");
printf("\nUses EPP BI OGS Cal | s\ nDhananjay V. Gadre\nJuly 1996");

Page 74

In spite of these differences, the common approach in programming the EPP chip directly, would involve the
following steps:

1. Detect, if the system is equipped with any EPP controller chip.
2. Select the correct mode byte for the particular EPP chip, so that the EPP mode is selected.

3. Write to the EPP ADDRESS port or the EPP DATA port to perform the required EPP transfers.

The Extended Capability Port

The Extended Capability Port (ECP) was proposed by Hewlett Packard and Microsoft. The ideawas to

provide a high-performance, multiple-capability communication channel between the PC and advanced

printer/scanner-type instruments. In this category fall such instruments as a multifunction FAX/scanner/
printer devices.

Listing 5.1 (continued)

ret_value = epp_config();
if(ret_value == FALSE) { printf("\nNo EPP"); exit(1);}
printf("\nEPP Present");
printf("\n\nWiting Data Byte");
ret_val = epp_wite_byte(0xab);
if (ret_val == TRUE) printf("\nWite Byte Successful");
el se printf("\nTi meout error");
printf("\n\nWiting Data Bl ock");
start=ti me(NULL);
for(ret_value=0; ret_value<l1000; ret_val uet+)
ret _val =epp_write_bl ock(buf out, 52428);
end=ti me(NULL) ;
printf("\nTinme taken= %l seconds for 50 Moytes", end-start);

printf("\n\nReading Data Byte..");
ret val =epp_read byte(& x_in);
I f (ret_val == TRUE)
printf("\nRead Data Byte Successful, %", rx_in);
el se printf("\nRead Data byte failed");
printf("\n\nReadi ng Data Bl ock..");
ret val =epp_read_bl ock(buf _in, 1000);
if (ret_val == TRUE) printf("\nRead Data Bl ock Successful");
el se printf("\nRead Data bl ock failed");

Page 75

Similar to the EPP protocol, the ECP aso configures the signals of the parallel adapter into a bus structure.
However, unlike the EPP, which uses the bus to transfer data and addresses to and from the periphera
device, the ECP defines a more powerful protocol that allows multiple logical devicesto coexist on the
parallel adapter. The ECP also allows real-time data compression while transferring data across the
peripherall device. The data compression isreferred to as Run_Length Encoding (RLE). Thisfeatureis
particularly useful for scanners and printers that need to transfer large raster data. To use the RLE feature,
the peripheral aswell as the host must support it. The ECP defines two types of data transfers between the
host (the PC) and the peripheral in either direction:

Table 5.4 ECR mode description for the FDC37C665/66 chip.
Mode (bits 7, 6, and 5 of the ECR) Description

000 SPP mode

001 PS/2 parallel port mode

010 Parallel port data FIFO mode
011 ECP mode

100 EPP mode

101 Reserved

110 Test mode

111 Configuration mode

Table 5.5 ECR mode description for the PC87332 chip.

Mode (bits 7, 6, and 5 of the ECR) Description

000 SPP mode

001 PS/2 parallel port mode

010 Parallel port data FIFO mode
011 ECP mode

100 Reserved

101 Reserved

110 FIFO test mode

111 Configuration mode

Page 76
» Datatransfer
o .Command transfer

Note that the ECP transfers commands rather than mere addresses across the channel. This suggests a
complex hardware and software hierarchy to interpret, decode, and execute the commands. The commands
can be composed of logical channel addresses or the run length count.

The commands as well as data are eight bits and are transferred on the eight DATA port bits. The HostAck
signal identifies whether the data on the DATA port linesis data or acommand. The type of the command is
identified by looking at the most significant bit (MSB) of the command byte. If the MSB is 1, the rest of the
bits represent the RLE count (thus the RLE count is between 0 and 127). If the MSB is 0, the rest of the bits
represent the channel address (the channel address could be any number between 0 and 127).

Electrical Interface for Advanced Adapters

The |EEE 1284 committee, besides defining the many exotic data transfer modes for the parallel adapter, has
also done a great job in defining the electrical interface for the PC as well as the peripheral devices. Itis
hoped that the general anarchy that reigns in the physical implementation of the parallel adapters will one
day be arrested and a standard compatible interface will emerge in the future. In fact, with many varieties of
the CONTROL port and the STATUS port, it is probably impossible to guarantee operation of high-speed
protocols such as the EPP and the ECP.

The |IEEE defines two levels of electrical interfaces: level | and level 1. Level | interfaceisintended for
products and devices that do not need to operate at high speeds but only need to use the reverse data transfer
capabilities. Thislevel is expected to be used for short distances. For devices that need to transfer data at full
EPP and ECP specifications and for longer distances, the level 11 interface is recommended. The level |1
interface requires the following of the drivers:

 Open circuit high-level voltage shall be less than 5.5V; low-level voltage shall be greater than —0.5V
* Steady-state high-level voltage shall be at least 2.4V at aload sink of 14mA.
» Steady-state low-level voltage shall be at most 0.4V at aload source of 14mA.

 The driver output impedance measured at the connector shall be 50+5 ohms measured at an output voltage
of (Vg —Vy)/2.

» The driver slew rate shall be between 0.05 to 0.40V/ns.

The receiver features are:

Page 77

» Thereceiver high-level input threshold voltage shall not exceed 2.0V and the low-level input voltage
threshold shall be at least 0.8V

 The receiver shall withstand voltage transients between —2.0 and 7.0V without damage or improper
operation.

* The receiver shall provide input hysteresis of at least 0.2V but not more than 1.2V

» Thelow-level sink current shall not exceed 20pA at 2.0V and the high-level source current not more than
20pA at 0.8V

* Total input capacitance shall be less than 50pF

Driver and receiver |Cs meeting the IEEE1284 level |1 specifications are being produced by Texas
Instruments and National Semiconductor.

Additional Information

Thereisalot of activity in the standards arena associated with the 1284 parallel port standard. Two
committees of note are the |IEEE P1284.3 and |EEE P1284.4 committees. The P1284.3 committeeis
developing a standard protocol to implement port sharing (multiple devices on one parallel port) and aso a
full Data Link layer protocol for the 1284 port. The P1284.4 committee is devel oping a transport protocol
that implements the concept of Multiple Logical Channels for a single communication channel. This
protocol istargeted at printing and multifunction devices that connect to the parallel port. For more
information, you can check the web site http://www.fapo.com/ieee1284.htm. From this web site you can

find more information on the parallel port standard, as well as information on the new standards under
development.

Page 79

Chapter 6—
Analog to Digital and Digital to Analog

Modern computers handle information represented as discrete binary voltages. However, to influence and
interact with the external world, the computer must produce results that are analog, or continuously varying.
This interfacing of the computer to the real world is achieved through devices that convert voltages to and
from the analog domain. These special devices are called Analog to Digital Converters (ADCs) and Digital
to Analog Converters (DACs). ADCs and DACs map the infinite levels of analog voltagesto a discrete,
finite set of digital levels.

http://www.fapo.com/ieee1284.htm

Figure 6.1 shows the quantization of a steadily increasing analog voltage (which varies from aminimum to a
maximum voltage through infinite levels) to discrete voltage levels. The first column shows two discrete
levels, the second column shows four discrete levels, and the last column shows eight levels. Each discrete
level is represented by a number or code. In thisfigure, the voltage thresholds at which the digital code
changes have been marked on the vertical axisin the upper row of plots. In all three cases, when the analog
voltage exceeds the voltage threshold, the number representing the voltage also changes. In the first case,
because there is only one voltage threshold, the digital code changes after the analog voltage exceeds this
threshold. To represent two digital codes, you could use any bit. So, the corresponding digital code for the
two voltage levels could be 0 and 1. In the second case, there are three thresholds, and four discrete levels

can be associated with these levels. To represent these four levels, you need two bits, with 00, 01, 10, and
11 asthe corresponding digital
Page 80

codes. In the last case, you have seven thresholds, and hence, eight levels, for which you need eight codes:
000, 001, 010,011,100,101,110,and 111.

Asyou increase the number of quantization levels, the digital representation becomes closer to the actual
analog voltage. In Figure 6.1, the three types of conversions are called 1-bit, 2-bit, and 3-bit conversions,
respectively. (The term n-bit indicates how many digital bits are used for the representation.) With n bits,

you will have 2" possible digital codes. Typically, engineers use 8-, 10-, 12-, 16-bit, etc. converters,
depending upon the required resolution.

What Are DACSs?

DACs are electronic devices that convert adigital code to an analog output in the form of a current or
voltage. Functionally, the DAC has n digital input lines and one output line that provides analog voltage or
current. The analog output is proportional to the weighted sum of the digital inputs:

H
Vnm = K= E ﬂ_fJ‘Ii y L I‘l|
i=1
where, K is a constant and by is the jth digital input, which could be O or 1.

Figure 6.1
Quantization of analog voltage to discrete levels.

Page 81
The various types of DAC implementations are:
* current switched,
» scaled resistor,
* R-2R ladder, and
* pulse width modulation.

The following sections discuss the various DA C implementations.

Current-Switched DAC

In a current-switched DAC, each of the digital (binary) input lines switches a current source proportional to
the weight of the input bit. The digital bit in one logic state allows the current to flow, and in the other logic
state stops any current flow. All input current sources are connected at acommon point, and the sum of this
current is the output for current output DACs, or this current is fed to a current-to-voltage converter (a
resistor isthe ssmplest current-to-voltage converter) to produce a voltage output.

Figure 6.2 illustrates a 4-bit, current-switched, voltage output DAC. The digital input bits are marked as B3
(MSB), B2, B1, and BO (LSB). The most significant bit (B3) is controlling a current source of magnitude 8l,
and the least significant bit (BO)

B3
(MSB)

; m

Bz Y
21
— » .
Vout

B1 [

QI
BO F

(LSH)

Fr A

Figure 6.2
Current-switched DAC.

Page 82

is controlling a current source of magnitude I. If any bit is 1, the corresponding current flows. If the bit is O,

no current flows. The current sources are connected at the inverting pin of an operational amplifier, which
acts as a current summing junction. The sum of al the currents flowing into this junction pass into the

5K ohm resistor in the feedback path of the operational amplifier. The current flow through the resistor
produces a voltage drop across the resistor, which appears at the output of the operational amplifier.

The voltage output of the operational amplifier when all the bitsare 0 is0V, and the voltage output for all
thebitsat logic 1 is15 x | x 5,000V. If | isset to 0. ImA, this voltage corresponds to 7.5V. Because the

least significant bit (LSB) is controlling a current source of 1, which is 0.1mA, the step size of the voltage
output is 0.5V (i.e., when the input number changes by one, the output voltage changes by 0.5V).

If the input number is0110, the sum of the currentsis 61, which is 0.6mA. This current flows into a 5,000-
ohm resistor so the output voltage is 3V. If the number changesto 0111 (a change of one), the sum of the

currentsis 71, which is equal to 0.7mA, and the corresponding voltage output is 3.5V. Thus the LSB of the
DAC isequal to 0.5V. The processis similar for DACs of higher resolution (i.e., having more hits).

Scaled-Resistance DAC

Scaled-resistance DACs use an array of weighted resistances connected to the inverting input of an
operational amplifier. The noninverting input is connected to ground. The junction of all the resistors offers
a zero impedance to the currents flowing through the resistors. The sum of these currents flow into the
feedback resistor connected between the output and the inverting terminal, producing a voltage drop across
the resistor that appears at the output, similar to the switched-current DAC. The schemeis shown in Figure
6.3.

Figure 6.3 shows four bits B3 (MSB) to BO (LSB) controlling a double-pole switch. The common terminal
of the switch is connected to aresistor. The resistor for the B3 hit is the lowest value (10K ohm), which
provides the largest current. One pole of the switch connects to the +ve supply voltage and the other pole
connects to ground. If you assume that alogic 1 connects the common terminal to +ve supply and alogic O

connects to ground, for a supply voltage of 10V, the currents produced for the four resistances would be 1.0,
0.5, 0.25, and 0.125mA. The maximum currents would flow when all the bits are at logic 1. The total current
would be 1.0 + 0.5+ 0.25 + 0.125 = 1.875mA..

The voltage generated at this current at the output is the voltage drop across the 5K ohm feedback resistance
and is9.375V. Every LSB change in the input code would make the output voltage change by 0.625V.

Page 83
R-2R Ladder DAC

The problem with the practical implementation of the scaled-resistance DAC is the difficult requirement of
producing accurate resistances over arange of 1:2,000 for a 12-bit DAC. For lower resolution DACs, this
may not be a problem, but with increasing resolutions, it is difficult to create these resistances. A better
method is the R-2R ladder, which uses only two values of resistances: R and 2R (50 and 100K ohm, for
example).

Figure 6.4 shows a 5-hit R-2R ladder DAC. A reference voltage source supplies voltage to the ladder of
resistances. The resistances with values R are connected in series and the last one is connected to ground.
The resistances of value 2R are connected at the junction of two R resistances, and these resistances are
connected to a common point of atwo-pole switch. One of the poles of the switch is grounded and the other
poleis connected to the virtual ground of an inverting amplifier configuration (so called because the other
terminal, the noninverting terminal, is grounded; because of the high input impedance and high gain
amplifier, the voltage drop between the two input terminals of the op-amp is very close to zero).

o+

G- 59
[10KQ 5K 02

L — Resistor ——l—3% ' Rezistor

—
=

- Lo

m

ot

P Bt
- P
?_'/"

L ‘n. 52

v DY
B2 ek] 20K0

B L

* O e ““i..w _I

1 -, S Vout
Bl gL 1 1 40K o,

.‘._‘__, ol ...F.h"IJl‘lnl'._.

K E:.L‘il g0
L [BOK
{LSB) F— T .

rr A

e

Figure 6.3
Scaled-resistance DAC.

Page 84

Figure 6.5 shows the equivalent circuit of the R-2R ladder. The voltage at each R-R-2R resistor junction is
half the voltage to the left and double the voltage to the right of the junction. Assume the reference voltage
is10V: R =50Kohm and 2R = 00K ohm. With voltages at each of the R-R-2R junctions dropping by half,
the currents flowing in each of the 2R resistance arms are 10/100, 5/100, 2.5/100, 1.25/100, and 0.625/100K
amperes, which trandlates to 100, 50, 25, 12.5, and 6.25pA. Thus the currents decrease in ratios of
increasing powers of two.

TRt e by sen oo

i _D— Vout
Yirtual Ground

Figure 6.4
R-2R ladder DAC.

Figure 6.5
Equivalent circuit of the R-2R ladder.

Page 85
Pulse Width Modulation (PWM) DACs

Thistype of DAC is usually available embedded within certain microcontrollers. The idea behind this type
of DAC isthat adigital wave of fixed frequency and variable duty cyle has a DC value proportional to its
duty cycle. If thiswave is properly low-pass filtered, the output of the filter will be the average voltage of
the pulse wave. Typicaly, PWM DACs are used where the response time requirement is slow (e.g., the
temperature control system for awater bath).

Multiplying DACs

As the name suggests, multiplying DACs are devices that alow multiplication of an analog voltage (or
current) with adigital code. In all the previous examples, the DAC output was a function of either a
reference voltage or areference current. If, instead of generating this current or voltage internally, the DAC
allows the user to supply it from the outside, the DAC output will be | x inputbinarycode or V,4 X
inputbinarycode. The result isamultiplying DAC. All DACs do not allow the reference current or voltage to
be supplied from an external source. DACsthat allow this are specifically called multiplying DACs.

Popular DACs

Some common DACs are:

* DAC0800

* AD558

* AD7548

* MAX521

The following sections describe each popular DACs.
DAC0800

The DACO0800 series of DACs are monolithic, 8-bit, current output DACs. These devices offer 100ns
settling time and can also be used as multiplying DACs with a40:1 variation in the reference current. The
full scale error is+1 LSB. The operating supply voltage is +4.5 to +18V. The digital inputs can accept TTL
signalsdirectly (irrespective of the supply voltage). Figure 6.6 shows atypical operating scheme. The
components in the figure produce 20V p-p output.

To use this DAC, you need to connect the output of a suitable latch to the inputs of the DAC. Other
components are suitably selected according to the DAC output voltage requirement.

Page 86

The DAC hastwo current sink output pins lout and lout* (i.e., the current flow into the DAC). The output
current is controlled by the input code as well as the reference current setup by the R, resistance and the
externa reference voltage source. In the block diagram these values are 5SKohm and 10V, respectively. This
produces a reference current |, of 2.0mA. The total output current is |, = (inputcode/256)I, . The two
output currents are generated such that | + 1 = lior-

If I, 1S Set to zero by connecting the lout signal pin to ground, 1, = I, = (inputcode/256)I 4. Y ou can
convert this current to voltage by connecting a suitable resistor between a +ve supply voltage and the current
output pin.

AD558

AD558 is a complete voltage output DAC in two calibrated ranges. This device has an internal precision
reference voltage source. An AD558 can operate with awidely varying supply voltage — between +5 and
+15V — and has a direct microprocessor interface (so you don't need alatch to feed the DAC).

The block diagram in Figure 6.7 shows an input latch, which must be connected to the microprocessor data
bus. The datais set up on the latch input lines and a latching pulse is used to latch the data. The latch outputs
drive the 8-hit voltage output DAC. In case the data is to be driven from the outputs of an existing latch (e.
g., the outputs of the DATA port of the parallel adapter), you can make the input latch of the AD558
transparent by connecting the input control pins to ground. The output pins of the DAC allow the user to
select a0-2.56V and a 0—10V output range.

Digital Inputs

Rraf.
5K

PAANA

20 Vp-p Vout

Ground

Figure 6.6
20V p-p output DAC using DACO0800.

Page 87
AD7548

AD7548 is a 12-bit voltage output DAC that can be directly connected to an 8-bit microprocessor data bus.
The DAC isfabricated with CMOS technology, which operates at +5, +12, or +15V power supply voltages.
Internally, the DAC isimplemented using a R-2R ladder. The data to the DAC isloaded in two cycles. The
data can be loaded such that it is left or right justified. It can also be loaded with the least significant byte
first or the most significant byte first. (See the device data sheets for details of the various loading formats.)
Figure 6.8 shows the format of an AD7548 connected to the parallel adapter. The voltage output of the DAC
inthiscaseis

¥ = ¥

out refl

® (inpulcode) 4096

Digital Bus input

TT AT

Contral
B-bit Latch

Logle
FREEEER T

reference
voltage —irt B-Bit DAC
r Voul Sense
AR

Youl Select

2K

Ground

Figure 6.7
Block diagram of the voltage output DAC AD558.

Page 88

where inputcode is a 12-hit number (between 0 and 4095) from the DATA port of the parallel port.

Figure 6.8
Circuit schematic of the AD7548 interface to the parallel adapter.

Page 89

The reference voltage V, is provided by a 1.2V reference zener diode, so the maximum voltage output is

approximately 1.2V. The LSB of the system is 1.2/4,096V, which is approximately 0.3mV. Listing 6.1isa
program to interface the 12-bit AD7548 ADC to the DATA port of the parallel adapter.

Listing 6.1 Interfacefor the 12-bit AD7548 ADC.

/| *pc_dac. c*/
/*Programto interface the 12-bit AD7548 ADC to the DATA port of the
paral | el adapter*/

#i ncl ude <stdio. h>
#i ncl ude <dos. h>

#1 ncl ude <coni o. h>
#i ncl ude <process. h>

#define BUF_LEN 1000

/ *d obal variables that store the addresses of two of three ports of the
standard printer adapter*/
/*for interfacing the DAC to the parallel adapter we need the DATA

port and the CONTROL port*/

unsi gned int dport, cport;

mai n()
{
/*the following array stores data to be transfered to the DAC
connected to the DATA port*/
unsi gned int dac_array[BUF_LEN], count, in_tenp;
unsi gned char tenp;

/*Get LPT1 port addresses */
dport = peek(0x40, 0x08);
i f(dport ==0)
{
printf("\n\n\nLPT! not available . . . aborting\n\n\n");
exit(1);
}
printf("\nLPT1 address = %", dport);
cport = dport +2; /* control port address */

MAX521

Page 90

MAX521 isan octal, 8-hit, voltage output DAC with asimple two-wire serial interface to alow
communication between multiple devices. The MAX521 operates from asingle +5V supply voltage, and the
voltage outputs can swing rail-to-rail. The DAC has five reference inputs that can be set to any voltage
between the supply voltage levels. The MAX521 isavailable in a 20-pin DIP package. ThisDAC is
described in complete detail, including an interface to the parallel adapter, in Chapter 8.

Listing 6.1 (continued)

/*this statenent puts all the CONTROL port signals to logic 1*/

out portb(cport, 0x04);

/*setup a loop to transfer the required data points*/
for(count =0; count <BUF _LEN; count ++)

{

/| *The DAC data is stored in the integer variable such that the

| east significant 12 bits of the 16 bits contain the DAC data.

The DATA port is 8-bits wide so the 12-bits data is transferred

in tw passes. In the first pass, the MSB data is transferred,
which is 4 bits. In the next pass, the lower 8 bits are transferred

and the LDAC si gnal

is activated

*/
in_tenp = dac_array[count];
in_tenp = in_tenp>>8§;

t enp=(unsi gned char)

/*transfer the higher byte in the | ower position*/
i n_tenp;

/*copy the low byte of the int into a char variabl e*/

out port b(dport, tenp); /*output it to the DATA port*/
tenp = inportb(cport);
tenp = tenp & Oxfb; /*make C2 | ow, to pul se CSVMSB* | ow*/
out portb(cport, tenp);

tenp = tenp | 0x01;

/ *pul se CO* |low to generate WR* */

out portb(cport, tenp);

tenp = tenp & Oxfe;

/ *make CO* hi gh again*/

out portb(cport, tenp);

tenp = tenp | 0x04;

/[*make C2 hi gh agai n*/

out portb(cport, tenp);

in_tenp = dac_array[count];
in tenp = in_tenp & OxOf;

t enp=(unsi gned char)

in_tenp; /* put the |lower byte of the integer
variable in a char variabl e*/

Page 91
What Are ADCs?

Analog-to-Digital Converter (ADC) devices convert analog signals (in the form of voltage or current) to
numbers that the computer can handle. Functionally, the ADC has n output (digital) bits for an n-bit
converter. The input bits indicate the digital equivalent of the analog quantity at the ADC input. Besides
these output lines, the ADC has a Start Conversion (SC) signal that signals the ADC to begin conversion.
Unlike DACs, most ADCs are slow compared to the digital circuits that operate them. The control circuit
issues the SC signal to the ADC. After the end of the conversion, the ADC signals to the control circuit that
the conversion is over and that the data can be read. Thisisindicated using the End Of Conversion (EOC)
signal. To alow the output of the ADC to be connected on a common bus, there may be an output enable
(OE) signal, which the control circuit must activate for the converted data to appear on the output bits.

Sometypical ADC signals are shown in Figure 6.9. The various types of ADCs are described in the
following sections. Each type offers various conversion speeds, noise performance levels, resolutions (some
ADC types do not come with large resolution), and costs, and each type is suited for a different application.

Flash ADCs

Flash ADCs are the fastest ADCs, and they are also the easiest to understand. For an n-bit converter, aflash
ADC requires (2n — 1) comparators. For a 10-bit flash converter, you

Listing 6.1 (continued)

out portb(dport, tenp); /*load the DATA port with the |ower byte for
t he DAC*/
temp = inport(cport);tenp = tenp | 0x02;
outportb(cport, tenp); /*make Cl* |ow so that CSLSB* and LDAC are | ow/

tenp = tenp | O0x01; /*pulse CO* |ow to generate WR* */
out portb(cport, tenp);

tenp = tenp & Oxfe; / *make CO* hi gh again*/
out portb(cport, tenp);

tenp = tenp & Oxfd; / *make C1* hi gh again*/
out portb(cport, tenp);

}

Page 92

must have 1,023 comparators on the chip, which is quite demanding not only in terms of fabricating sheer
number of components but also in terms of power consumption.

Figure 6.10 shows the block diagram of a 2-bit flash ADC. For a 2-bit ADC, you need three comparators, as
shown. The comparators have inverting and noninverting inputs. All the noninverting inputs are shorted
together and the input voltage is connected here. The three inverting inputs are connected to a resistor
network of resistor values R/2 and R. For a 3V reference driving the resistor network, the resistors are
arranged such that the three comparators get a voltage equal to 2.5, 1.5, and 0.5V from the top comparator to
the bottom comparator, respectively.

The three outputs of the comparators feed a digital combinational circuit, which produces two output bits
from these three input bits. Table 6.1 shows the outputs of the comparators and the outputs of the ADC for
hypothetical values of the input voltage.

Typical speedsfor flash ADCs are 10 to 1,000 Msamples/s, and typical resolutions are 8-bit and 10-bit.
Flash ADCs are used for applications such as frame grabbers and digital scopes.

Sampling ADCs

The sampling ADC, also called the successive approximation ADC, is a closed loop anal og-to-digital
converter. A sampling ADC uses the successive approximation algorithm to implement the conversion. The
successive approximation algorithm begins by assuming the input voltage is exactly half the range of the
ADC. The control unit

_
Output __
data | Analog
—— to
Analog Input
=1 Digital gnp
—
Start -] Converter
Conversiom™]
End of
Conversion
QOutput
Enable I
Figure 6.9

Typical signals of an analog-to-digital converter.

Page 93

Table 6.1 Flash ADC input and output values.

Vin (V) Comparator output ADC output
28 111 11

20 011 10

1.0 001 01

0.25 000 00

I +3 Volts
RS2

D2

:
o

: a1
Vin | i D1 Combinatioh
T i Legic
4 Qo
o (Encoder)
R

Do

Y Y Y

Figure 6.10
A 3-bit flash-type anal og-to-digital converter.

Page 94

produces the code for this assumption and feeds this code to a DAC. The DAC output is compared with the
input voltage using a comparator. If the comparison indicates the initial assumption was wrong (i.e., the
assumed voltage was higher or lower than the input voltage), the control unit adjusts the previous
assumption and initiates another comparison. This process continues recursively until the least significant bit
iswithin tolerance. The end value is the code representing the input voltage, and this code is output on the
output lines of the ADC.

Figure 6.11 shows the block diagram of a sampling ADC. Because the input voltage can change during the
conversion process, an error could occur in the result. To minimize the errors, the ADC is equipped with a
device called a sample-and-hold amplifier, which samples the input voltage and stores this voltage on a
capacitor, disconnecting the input during the conversion process. This ensures that even though the input
voltage may change, the voltage presented to the ADC comparator remains fixed.

I ntegrating ADCs

Integrating ADCs are slow but accurate converters useful for voltage measurements in noisy environments.
Integrating ADCs are typically used in voltmeter and similar instrumentation applications.

Theidea of an integrating ADC isto charge a capacitor with a current proportional to the input analog
voltageto afixed time T. After time T elapses, the capacitor is discharged at a constant rate through a
current sink. The time it takes for the capacitor to

CLOCK input
Vin
2 - = End Of Converslon
Control
— & Unit b Siart Conversion

Qutput
Registor
(N-Bit)

N-Bit Path ..j

Figure 6.11
An n-bit sampling-type anal og-to-digital converter.

Page 95

discharge to OV is proportional to the input voltage. A counter counts a stable clock pulse during the time
the capacitor is discharging through the current sink. The count accumulated by the counter isthe ADC
output.

The advantage is that the component's absolute accuracy is not important — only the short-term stability is
important. The capacitor charging time T should be a multiple of the power line time period.

Figure 6.12 shows the charging and discharging of the capacitor for two input voltages. The higher input
voltage charges the capacitor to a higher voltage, and hence, the capacitor takes alonger time to discharge
compared to the time required to discharge alesser input voltage. The capacitor dischargesinto a current
sink, so the rate of discharge (i.e., the slope of the discharge graph) will be same for the two cases.

Figure 6.13 shows the block diagram of the integrating ADC. The control circuit resets the counter at the
beginning of the discharge cycle. The zero voltage switch detects when the capacitor voltage becomes zero.
At that moment, the zero voltage switch signalsto the control circuit, which stops the counters.

1 Capacitor voltage

Noisy input
voltage

-
i
it
]
]

.-'l'

T = x/f seconds.
f is power frequency in Hz.

Figure 6.12
Charge and discharge of the capacitor in an integrating ADC.

Page 96

Popular ADCs

Some popular and widely available ADC devices are:
« ADCO0804

* MAX158

* MAX186

* MAX111

The following sections discuss these popular ADCs. In these examples, you will perhaps see a bias towards
Maxim ADCs. Thisbiasis not necessarily because Maxim makes the best ADCs, but because Maxim is
very generous in providing samples. For certain critical applications (such as applications demanding high
resolutions of 16 bits, high speeds of 500K samples/s, low noise, and low cost) Analog Devices makes some
excellent converters. Similarly, Harris, Linear Devices, National Semiconductors, Texas Instruments, and
Burr-Brown are some of the mgjor ADC manufacturers. It is useful to investigate all the options before
settling on any particular device. The four devices | have chosen represent a reasonably wide selection of
available ADCs.

ADCO0804

ADCO0804 isavery old (some call it obsolete) industry standard, single-chip ADC. Originally produced by
National Semiconductors, the ADC0804 is also second sourced by Harris.

Yoltags to
Vin Converter r—
o
Lln_-no o 0—
I=K*Vin \G 5:"":'
(ﬁ 4' -) gwitc

— Current Sink
Ix

—
e i
] —

—

Figure 6.13
Block diagram of an integrating ADC.

Page 97

The ADC0804 is an 8-hit successive approximation ADC. It isavailable in a 20-pin DIP package. The
ADC0804 works at +5V supply voltage and consumes only 1.5mA of current, ideal for low-power portable
data acquisition applications.

The successive approximation principle involves comparing the input voltage with an internally generated
voltage until abest match isfound. The internal voltage is generated across a tapped resistor array connected
to the internal voltage reference source. The most significant bit is tested first, and eight subsequent
comparisons provide an 8-bit binary code. After the last comparison, this 8-bit code is transferred to an
output latch and can be read by manipulating the R[3 and C§ signals. The ADC has an internal oscillator
but does not include resonating components, which must be supplied externally. Otherwise, an externa
clock signal can be connected to the CLK IN input pin. The ADC operates with a maximum clock signal of
640KHz. To usethe internal oscillator of the ADC, you must have an external resistor and a capacitor of the

appropriate values.

ADCOB04

3— cs* Voo f———up 45V
—31 RD" R c
& ——3WR* CLKR —MV——{ I—;|7
-k—AN INTR*
—k3 "'\;"\, Data7 CLKC
— k3 % Datab
-K % Datas Vin+ Differential
—k3 % Datad Inputs
~k—AN, Data3 Vi | ——
-k—AN, Data2
~kKp—AN\——]patat vret/2 | ~e——— reference
-k—AN Datad Dgnd _r)7 voltage
'rra
+5V +5V
]| 52
L—o RD* /717 ::\e - WR*
Figure 6.14

A manually triggered ADC0804 ADC circuit with the pinouts.

Page 98

Figure 6.14 shows the block diagram of acircuit to convert analog voltage at the input of the ADC and to
display the result on LEDs. The ADC conversion processis triggered by an on—off switch. The datais
output to the LEDs when the other switch is operated.

To convert an input voltage into an 8-bit digital code, the user needs to manipulate the WR*, CS*, and RD*
signal inputs. These signals are normally (i.e., when the ADC is not being used) set to alogic high state. The
process of converting an analog voltage to adigital code involves the following steps:

1. trigger a conversion process,
2. wait for the conversion process to end;
3. read the resultant digital code.

The CS* signal (the Chip Select signal of the ADC) can be thought of as a master control signal that must be
enabled in the conversion as well as the readout process. Together with CS*, the WR* signal is used in the
conversion process. To initiate conversion, the CS* is put to alogic low state. Thisisfollowed by alogic
high-to-low transition on the WR* signal pin, which puts the ADC in aRESET condition. The output signal
INTR* is set high to indicate the initiation of the conversion process. Conversion starts after 1-8 clock
cycles have elapsed after the WR* signal transits to logic high. Thereafter, the ADC takes the requisite
number of clock cycles to complete the conversion. At the end of the process, the INTR* signal makes a
high-to-low transition. The resultant code is then available and can be read from the eight DATA bits, or a
new conversion process can be initiated.

Toread the digital data, RD* is set low by the user (with CS* at logic zero). The digital data appears at the
data output pins at this moment and can be suitably read. This also setsthe INTR* signal to logic high,
which isthe default level of INTR*.

Figure 6.15 shows the timing diagram of a conversion and readout process using an ADC0804.

MAX158

MAX158 is an 8-channel, 8-bit fast (3js conversion time) sampling ADC system. It includes an internal
reference voltage source and a built-in sample-and-hold amplifier. All the features of the MAX158 and a PC
parallel adapter interface are described in alater chapter.

MAX186

MAX186 is a 12-bit, 8-channel serial ADC system with built-in voltage reference, internal sample, and hold
amplifier and multiplexer. The ADC offers various modes of operation, such as single-ended conversion,
differential conversion, and sleep mode. The maximum current conversion is 2mA and 100pA during low-
power modes (sleep

Page 99

mode). This ADC is also described in alater chapter, complete with aworking schematic and code for a
parallel adapter PC interface.

MAX111

MAX111/MAX110 isaseria 14-bit, dual-channel ADC from Maxim. The MAX111/ MAX110 ADC uses
an internal auto-calibration technique to achieve 14-bit resolu-

iii
=

A W A

T 3= |nternal conversion time
i 1 1o 8 clock i
Internal Status ; Giook ayo “!(
(Last DATA read) : issssssassscsnssan L
INTR* /
(Last DATA net read) L

Start Conversion Process

--

RD*

DATA Valid
DATA O/P

- lib‘ "y
- III-III-IIIIII‘---I--I -Illi!-IIIIII.-I-.--'I‘I'--I---"I-l'-

-t
fsssmsmaa’

Output DATA Read Process

Figure 6.15
Timing diagram of the conversion and readout process of the ADC0804.

Page 100

tion without any external component. The ADC offers two channels of ADC conversion and operates with
650uA current, thus making it ideal for portable, battery-operated data acquisition operations. We plan to
use this interface with a battery-operated astronomical photometer to record night sky brightness and other
observations together with alaptop computer.

MAX111 operates from asingle +5V power supply and converts differential signal in the range of +1.5V or
differential signalsin the range of 0-1.5V.

MAX 111 can operate from an external or an internal oversampling clock, which isused for the ADC
conversion. To start a conversion, digital datais shifted into the MAX111 serial register after pulling the CS
low. T8 canonly be pulled low when BUSY isinactive. MAX111 has afully static serial 1/0 shift register
that can beread at any serial clock (SCLK) rates from DC to 2MHz. Input datato the ADC is clocked in at
the rising edge of the SCLK and the output data from the ADC (conversion result) is clocked out at the
SCLK falling edge and should be read on the SCLK rising edge.

The data clocked into the ADC determines the ADC operation. That data could initiate a new conversion,
calibrate the ADC, perform an offset null, change an ADC channel, or change the oversampling clock
divider ratio. The format of this control word is shown in Table 6.2.

Figure 6.16 shows the MAX111-to-PC interface. The ADC draws power from an external battery source
stabilized by alocal 78L05 regulator.

Listing 6.2 shows a program that will acquire and display samples from the MAX111. The interface works
by monitoring the status of the BUSY * signal, which indicatesif the ADC is busy with a conversion. A 0 on

this pin indicates that the ADC is still converting. The program reads the status of BUSY* on the S6 pin of
the printer port (STATUS port bit 6). When the program finds BUSY* at logic 1, it pullsthe CS* signal of

the ADC low to start a new conversion process. It then generates 16 clock pulses on the DO pin of the printer
port, which is connected to the SCLK signal pin of the ADC. Synchronized to these pulses, the program
generates a seria bit stream on pin D7 of the printer port connected to the Din pin of the ADC. This bit
stream contains the control word with the format described in Table 6.2. Output datafrom the ADC is
clocked out on the Dout pin on the falling edges of the SCLK pulses. The program reads this data on the S7*
signal pin of the printer port. The CS* signal is pulled up after the 16 clock pulses are generated. The ADC
pullsits BUSY* signa low while the conversion isin progress. The conversion time depends upon the
SCLK freguency and the format of the control word. In this circuit, the internal RC oscillator is used for the
conversion clock. The converted datais clocked out in the next round of the clocking sequence by the ADC.

Figure 6.17 shows the timing diagram of atypica conversion and readout sequence recorded on alogic
analyzer.

Page 101

Table6.2 ADC control word.
Bit # 15 14 13 12 11 10 9 8

No-op NU NU CONV4 | CONV3 CONV?2 CONV1 DVv4
Bit# 7 6 5 4 3 2 1 0

DV2 NU NU CHS CAL NUL PDX PD
Bit name Function
No-op If thishitis 1, the remaining 15 bits are transferred to the control register and a new conversion

begins when CS* returns high

NU Not used, should be set low

CONV1+4 Conversion time control bits

DV4-2 Oversampling clock ratio control bits

CHS Input channel select; logic 1 selects channel 2, low selects channel 1
CAL Gain calibration bit; a high bit selects gain calibration mode

NUL Internal offset null bit; logic high selects this mode

PDX Oscillator power-down bit, selected With Logic high

PD Analog power-down bit, selected with logic high

Page 102

Figure 6.16
PC interface for the MAX111 ADC.

Page 103

Figure 6.17
Timing diagram of the conversion and readout process of the MAX111.

Listing 6.2 Interfacefor the 14-bit MAX111 ADC.

[*max111. c*/

#i ncl ude<st di 0. h>

#i ncl ude<dos. h>

#1 ncl ude<ti ne. h>

#1 ncl ude <coni o. h>
#i ncl ude <process. h>

/* Interface for 14 bit MAX111 */

/*
Printer adapter pin usage

DO (2)
Cl* (14)= CS*
S7* (11)= Dout
S6 (10)= BUSY

*/

#defi ne TRUE 1
#defi ne FALSE O

Page 104

Listing 6.2 (continued)

/* d obal variable has address of DATA port of LPT1 */
unsigned int dport Iptl; /* data port address*/

int chk_|pt(void); [*Check if LPT1l is present*/
voi d di sbl e_adc(voi d); [*Pull ADC CS* high to disable ADC*/
voi d enabl e_adc(voi d); /*Pull ADC CS* | ow to enabl e ADC+/

voi d chk_adc_status(void); /*Check ADC for End of Conversion*/
unsi gned int read_adc(unsigned int prog word);

unsi gned int read_adc(unsigned int prog word)

{
unsi gned char tenp2, tenpl, tenp3;
unsigned int tenp_val, adc_val, out _val;

out val =prog_word,;
chk_adc_status();
enabl e_adc();
adc_val =0;

for(tenp2=0; tenp2<16; tenp2++)
{
tenpl=i nportb(dport _Iptl);
tenmpl=tenpl & Ox7e;

tenp_val =out _val << tenp2;
tenp_val =tenp_val >> 8;
tenp_val =tenp_val & 0x0080;

tenmpl=tenpl | (unsigned char)tenp_val

out portb(dport | ptl, tenpl); / *send dat a*/
tenpl=tenpl | 0x01
out portb(dport | ptl, tenpl); / *send Scl k*/

tenp3=i nport b(dport | ptl+l) & Ox80; /*read data*/
tenmp3=tenp3 * 0x80

tenp_val =(unsi gned int)tenp3;

t enp_val =t enp_val <<8;

tenp_val =tenp_val & 0x8000;
tenp_val =t enp_val >>t enp2;

adc_val =tenp_val | adc_val;

tenpl=tenpl & Oxfe;
out portb(dport | ptl, tenpl);

Page 105

Listing 6.2 (continued)

out portb(dport | pt1+2, (inportb(dport_Iptl+2) & Oxfd));
return adc_val;

}
voi d chk_adc_status(void)
{
unsi gned char tenpa;
t enpa=i nportb(dport_I pt1+1);
t enpa=t enpa & 0x40;
whi |l e(!tenpa)
{
t enpa=i nportb(dport | pt1+1);
t enpa=t enpa & 0x40;
}
}

voi d di sabl e_adc(voi d)

unsi gned char tenpx;

t enpx=i nport b(dport | pt1+2);
t enpx=t enpx & 0Oxfd;
out portb(dport | pt1+2, tenpx);

}
voi d enabl e_adc(voi d)
{
unsi gned char tenpy;
t enpy=i nportb(dport | pt1+2);
tenpy=tenpy | 0x2;
out portb(dport | pt1+2, tenpy);
}
int chk_|pt(void)
{
[*Get LPT1 port addresses */
dport | ptl = peek(0x40, 0x08);
i f(dport Iptl == 0)
return FALSE;
/[* else return TRUE */
return TRUE;
}

Page 106

Listing 6.2 (continued)

mai n()

{
float final _vol
unsi gned int adc_val;
unsi gned char tenpl;
clrscr();

/[*Check if Printer port is present*/
if(chk_Ipt() == FALSE)
{

}
printf("\nPrinter port is at % hex", dport_Iptl);

printf("\nPrinter port not available . . . aborting”); exit(1);

/*Di sabl e the ADC*/
di sabl e_adc();

/ *set clock and data | ow*/

t enpl=i nportb(dport | ptl);
tenpl=tenpl & Ox7e,

out portb(dport_Iptl, tenpl);

printf("\nWaiting for the ADCto be ready . . .");

chk_adc_status();
printf("\nADC is ready for conversion . . .");

[*perform offset correction for channel 1 */
adc_val =read_adc(0x8c8c);

[*perform gain claibration*/
adc_val =read_adc(0x8c88);

[*performoffset null*/
adc_val =read_adc(0x8c84);

/ *Now convert indefinately on channel 1*/
for(;;)

{
adc_val =read_adc(0x8c80);
adc_val =adc_val & Ox3fff;
final _vol =(fl oat)adc_val;
final _vol =(final _vol/16384)*1.2235; /*Vref=1.2235V*/
printf("\nADC Val ue=%2. 4f Volts", final _vol);
del ay(1000);
}
}
Page 107
Chapter 7—

Measuring Time and Frequency

For many applications, you must measure the frequency of some signal or the time interval between two
activities. This chapter describes how to provide frequency and period measurement capability to a PC using
the parallel port. The examplesin this chapter use alow-resolution 32.768KHz crystal commonly used in
electronic clocks. Y ou can adapt the examples in this chapter to your own specific needs.

If you adapt these examples for your own applications, be aware that you may
need to adjust the hardware and software components accordingly. Y ou may
find, for instance, that the frequency meter should have a higher resolution or a
wider length than what is described.

Figure 7.1 isthe block diagram of a simple frequency counter. The frequency counter block diagram shows
the input frequency entering the box labeled Input Amplifier + Waveshaper. This circuit isasuitable
amplifier of suitable gain (such that even signals with feeble amplitude can be recorded) with input
protection (for signals with voltages above the operating voltages of the circuit). For nondigital input

signals, the circuit has a waveshaper that produces digital signals from the input signals. Typically a Schmidt
trigger circuit would be used at this point. The output of the input amplifier and waveshaper is a neat digital
signal with ameasurable frequency. This

Page 108

signal isfed into the second box |abeled Controlled Gate. As the name implies, the controlled gate circuit
regul ates the propagation of the incoming signals to the counter chain under control of the gate control
signal from the time base generator. In its ssimplest form, the controlled gate is nothing but an AND gate.
Oneinput of the AND gate is connected to the incoming signals and the other input is connected to the gate
control signal. Aslong asthe gate control signal islow (which you assume is the inactive state of the control
signal), the input signal is blocked by the AND gate (i.e., the output of the AND gate is always low). When
the gate control signal goes high, the AND gate allows the incoming signal to progress into the counter
chain circuit.

The time base generator and the control circuit are at the heart of the frequency counter. The time base
generator generates the control signal for the control gate. Consider that you want to measure the frequency
to aresolution of 1Hz. A gate control signal of one second will open the gate for one second and the
counters will measure the frequency, which would be resolved to 1Hz. For aresolution of 10 Hz, a gate
control signal of 0.1 second is sufficient, and so on. The other important matter is the accuracy of the gate
control signal. The overall accuracy of the instrument is dependent upon the accuracy of the gate control
signal. Typically, the time base generator uses some sort of a crystal oscillator followed by a chain of
frequency dividers to generate the gate control signal. The divider chain inside the time base generator also
provides the user the option to choose different values of gate control signals for a particular resolution.
High-quality (more accurate) frequency counters employ a stabilization circuit within the time base
generator circuit to minimize short- and long-term fluctuations in the time base signal.

Input
w Amplifiar | I I I_I Display
. + Controllad Counter ar
W Gate chain Readout
shaper
Gate E““"fﬂ Reset Counters
|_.____._| T seconds
Time base generator

and Control circult

Figure7.1
Block diagram of a simple frequency counter.

Page 109

Besides generating the time base signal (i.e., the gate control signal), this part of the frequency counter also
controls the chain of counters with their inputs connected to the controlled gate. At the beginning of a
measurement cycle, the control circuit generates asignal to clear the contents of the counters and reset them
to zero, then the gate control signal is generated. Because the counter chain has a zero value before the gate
is enabled, the count in the chain of counters at the end of the gate control signal shows the number of pulses
that it has accumulated in that period. From this information, you can easily calculate the frequency of the
input signal. In simple circuits, this calculation involves mere shifting of the decimal point to an appropriate
location.

The outputs of the chain of countersis connected to the display or a suitable readout circuit. In stand-alone
devices, this would be some sort of seven-segment LED or LCD display. For computer-controlled devices,
this circuit would be composed of suitable latches and buffer ICs. The period counter worksin asimilar
fashion to a frequency counter, as you can see from the block diagram in Figure 7.2. The fundamental
difference between the frequency counter and the period counter is the nomenclature of the gate control
signal. In the case of the frequency counter, the gate control signal is generated locally and is used to count
the number of pulses during a given time period. In the case of the period counter, the time base generator
generates a high-frequency signal (much higher than the frequency of the input signal whose period isto be
measured). The gate control circuit is controlled by the input signal, which allows the counters to be clocked
by the high-frequency signal from the time base generator. At the end of each period of the input signal, the
count accumulated by the countersis proportional to the period of the input signal. Suppose the time base
generator is set to afrequency 1IMHz. If the input signal is 100Hz (i.e., atime period

input
/\\/ Ampiitier | | Display
—* =~ Controlled] | counter ar
e Gate Gate chaln Readout
shapar contral
Juunnn Rosat Countors
F Hz
Time base generator
and Control elreult
Figure 7.2

Block diagram of a simple period counter.

Page 110

of 10ms), the count accumulated in the counters will be 10,000. Because the units of the time base signad is
1us, the input period will be seen as 10,000us.

For low-frequency signals, it is convenient to measure the period of the signal and to cal cul ate the frequency
from these figures rather than measure the frequency directly. At high frequencies, it is advantageous to
measure the frequency and then interpret the period if required.

Y ou can easily build either a stand-alone frequency/period counter with an integral display or a computer-
controlled frequency/period counter. The advantage of the computer-controlled instrument is that the
resultant data can be processed within the computer.

In the next section, | will describe a general-purpose, inexpensive frequency and period counter interface for
the PC. My goadl isto demonstrate the principles behind the operation of a parallel-port-controlled frequency
and period counter If you adapt this design for your own uses, there are many areas in which you may wish
to choose different components. | have used an inexpensive time base generator with aclock crystal of
32,768Hz. Y ou may want to replace this with more accurate 1 or 10MHz crystal components. However,
changing the crystal may require replacing some of the CMOS components, which may not work at the high
10MHz frequency. Similar componentsin the HCTTL family should be available.

My idea of using alow-frequency crystal and CMOS components was to keep
the current consumption down. The circuit (as shown in the schematic in the
next section) consumed a mere 5SmA current. Thistiny current requirement can
even be met by squeezing current out of the PC's serial port, an idea extremely
attractive and enterprising for portable applications.

Measuring Time Period and Frequency Using Discrete Components

The block diagram in Figure 7.3 shows the scheme for the PC parallel-adapter-controlled frequency and
time period counter. The input signal passes through the block labeled Input Signal Conditioner (which, in
the actual circuit, correspondsto a pair of diodes that protect the circuit from accidental overvoltages). The
output of thisblock isfed to adigital multiplexer, which is also fed the output of the time base generator
block. The time base generator produces two signals, with frequencies of 1 and 32,768Hz.

The digital multiplexer block has two channels, with inputs A1, A2 and B1, B2 and outputs Y1, Y2. The Y
outputs get the signal on either pin A or B depending on the Mux control signal. When the Mux control
signal isO,Y1=Aland Y2=A2 Al

Page 111

is connected to the input signal and A2 is connected to the time base frequency of 32,768Hz. Thisisthe
period counter mode of operation. To begin a cycle of acquisition, the PC program resets the counters
through the parallel adapter. The Y 1 output of the multiplexer (which isthe input signal) is divided by two,
so the ON time of the resultant signal is equal to the period of the input signal.

Figure 7.4 shows the timing diagram for the instrument's period counter mode. The input pulse is converted
into a square wave by the divider circuit. The high time of the resultant signal is equal to the period of the
input signal. Thissignal acts as the gate control signal for the gate. The other signal to the gate is the output
of the time base generator, which in our case thisisadigital wave with afrequency of 32,768Hz (a period of
about 30.5us). The forth signal in the timing diagram is the output of the gate that goes to the counter and
readout circuit.

A PC program controls the counter circuit by monitoring the gate control signal. At the time of an
acquisition cycle, the program resets the counters and waits for one high period of the gate control signal to
elapse. After the high period of the gate control signal elapses, the PC reads out the counters through the
STATUS port input bits.

In the frequency counter mode of the circuit, the roles of the input signal and the time base signals are
interchanged. The multiplexer is so arranged that now the time base generator signal of 1Hz is used asthe
gate control signal. Thisis shown in the

gt Stgnal Gate Control Signal
JUL | wem | 7
Signal ——g— A1 ¥i |t divide
Inpist B1 by 2
Signal ﬂwﬂtﬁ
.
Muliiplaxer s
"h_‘\) Coundars -
A2
T bl B2 ¥z aind -
Basa L Readau
gonaralar Cireult L
Mux Control
=
J2TEA Hz To PC Paralled

Adaplar

./

Figure 7.3
A computer-controlled frequency and period counter.

Page 112

timing diagram of the frequency counting mode in Figure 7.5. The 1Hz signal at the output Y 1 of the
multiplexer is divided by the divider circuit to generate a high-time pulse of one second, as shown in the
timing diagram. The other output of the multiplexer, Y 2, is now the input signal of whatever frequency. The
counters are now allowed to increment for a duration of one second by the gate control signal, during which
time they accumulate a count equal to the frequency of the input signal. At the end of the one-second period,
the PC again reads out the accumulated count through the STATUS port signals, as in the previous case.

Figure 7.6 shows the circuit schematic for the frequency and period counter. The input signal is connected
through the 1K ohm resistor to the 1N4148 diode pair, which provide anominal protection to the circuit
against accidental overvoltages. Thissigna

Input Signal |

Gate Control Signal
Time Base | || " “ “ u “ “ H || || || || || || " | || H || “ “ ” “ || |] “ || |
Output

Qutput of the Gate ”Hl ‘”Hl |I|H |H H “ ‘H””Il

Figure7.4
Timing diagram for the period counter mode.

Time Base 1 Hz
':II.I'I'PU-'I

Gate Control Signal 1 sacand

Input Signal

Output of the Gate ||| |||| “ [[" "l ”l I| || || " || |”
Figure 7.5

Timing diagram for the frequency counter mode.

Page 113

Figure 7.6
Circuit schematic for the frequency and period counter.

Page 114

is then connected to the IC U8 (74HCT257), which isadigital multiplexer. |IC 74HCT257 is afour-channel
multiplexer, of which only two channels are used.

The input signal is connected to the A1 and B2 inputs of the two channels. The time base generator circuit is
built around IC U7 (74HC4060), which is an oscillatorcum-binary counter IC. The IC provides adigital
signal of frequency equal to the crystal, which in our case isthe 32,768Hz crystal. The other output of the IC
isa0.5Hz signal, which is divided with the help of aD flip-flop to provide a 1Hz signal. The 32,768 and
1Hz signals are connected to the A2 and B1 inputs of the digital multiplexer.

One of the outputs of the multiplexer, Y 1, is connected to another D flip-flop to provide adivision of two.
The output of the flip-flop is connected to the input of a NAND gate, U9A. The output of the flip-flop isaso
connected to the STATUS port signal S3. The gate isformed out of NAND gates U9A and 9B. The output
of the gate is connected to the counter inputs. The other input to the gate is the output Y 2 of the digital
multiplexer.

The counters are formed out of inexpensive 74HC4040 binary counters. These are 12-bit counters, and you
need two of them to provide a 16-bit counter — a 24-bit count option is also available. The counters and the
divide-by-two flip-flop (U4B) can be reset under program control with the help of signal CO* of the
CONTROL port. The outputs of the counters are connected to the tristate buffer |C (74HCT244) inputs. The
buffers have their outputs shorted such that only four signals result. (Y ou saw this sametrick in a previous
chapter.) Data flow through the tristate buffersis controlled by the outputs of the 3-to-8 decoder IC, U3
(74HCT138). The decoder IC isdriven by the DATA port signals DO, D1, and D2. Signal D3 of the DATA
port is connected to the mux control input of the digital multiplexer and is used to control the frequency/
period counter mode of operation of the circuit.

The acquisition cycle first selects the correct mode of operation (frequency counter or period counter)
through the D3 signal of the DATA port. Then the program resets the counters and the flip-flop (U4B) and
starts monitoring the output of thisflip-flop. It allows the output to go from logic O to logic 1 and back to

logic 0. At thistime, the program reads the counters by manipulating the DO, D1, and D2 signals.

For frequency counter mode, the count obtained by reading the binary counters is the frequency of the input
signal with aresolution of 1Hz. For the time counter option, the resultant count must by normalized by
multiplying it with the period of the time base generator circuit (32,768Hz).

An Astronomical Photometer Interface

Hereisavariation of the frequency counter circuit that is very useful to an astronomer. In my laboratory, |
needed a computer interface for a photometer (SSP3 by OPTEC) for photometric observations. The
photometer produces low pulse width pulses. The frequency of these pulsesis proportional to the incident
light intensity. Photometric

Page 115

observations involve accumulating the pulses for arequired period of time. Thisis easily achieved by gating
a counter with a presettable timer. An 8053 programmable timer type device with three timers/countersis
well suited for this application. An 8053 device can be interfaced to the PC viathe ISA BUS. You can
configure the 8053 to have one timer to gate the incoming pulses to the two other counters cascaded to form
a 32-bit counter. The 8053 timer will alow a high-resolution gating period. In practice, however, such a
wide selection of gating timeis hardly used.

|, however, decided to use the printer adapter to connect the photometer. This choice was al so dictated by
the need to share the photometer between many computers without having to remove the computer interface
from inside the computer. An added penalty for this approach could be an extra power supply for the circuit.
However, the need for additional power was avoided in this case by using the RS-232 signal lines to power
the frugal requirements of the interface circuit.

The block diagram in Figure 7.7 shows what is required of this circuit. The pulses from the photometer
connect to the gate circuit. The gate is controlled by the output of a digital multiplexer. The digital
multiplexer has eight inputs, which are outputs of the time base generator circuit. These signals are square
waves of the required integration window period.

Figure 7.7
Block diagram of the photometer interface circuit.

Page 116

One of these eight signalsis selected by the multiplexer and acts as the gate control signal. The selection of
the required period is done by the three DATA port signals. The gate output is connected to the chain of
binary counters and the output of these counters drives the tristate buffer | Cs connected in the usual fashion
to the four STATUS port signals. At the beginning of each acquisition cycle, the counters are cleared by one
of the CONTROL port signals.

Figure 7.8 shows the acquisition circuit schematic. Using CM OS-type components keeps the current
consumption small; sufficiently small to be powered by the RS-232 signal lines. IC U7 (74HC4060) uses a
32,768Hz crystal to generate the gating signal of 1/8, 1/4, and 1/2Hz. This signal is further divided by U8
(74HCT4024) to generate the rest of the five periods. These eight gating signals drive U4 (74HCT151), al-
of-8 digital multiplexer. Three lower bits of the printer adapter DATA PORT are used as the select input of
this multiplexer.

The output of the multiplexer drives U9-A (74HCT74) and aD type flip-flop in a divide-by-two mode to
generate asignal with ON time from 0.125 to 16 seconds. The output of the flip-flop gates the input pul ses
through the AND gate (U10-A, B) to the counter chain. During each cycle of acquisition, the CONTROL
PORT bit CO is used to reset the flip-flop U9-A and the binary counters U5 and U6. A rising edge of the
gate signal sets U9-A, enabling the incoming pul ses to reach the binary counter chain U5 and U6, which are
12-bit binary counters. At the end of the gate period, the counters are frozen with the accumulated count. Of
the twenty-four bits output from these counters, only sixteen (four nibbles) can be read by the program. The
sixteen bits are multiplexed by U1 and U2 (74HCT244) to generate four bits. IC U3 (74HCT138) decides
which one of the four nibblesis routed to the STATUS port. The output of the counters U5 and U6 is read
by the program four bits at atime by reading the STATUS port and manipulating the four nibblesto form a
16-bit integer.

Figure 7.9 shows the power supply that is used to power the photometer interface circuit. Because the
consumption of the circuit is small (Ilessthan 5mA), it can be easily powered by squeezing this current out of
the RS-232 signal lines. The RS-232 lines are driven to +V cc and passed through a 78L05 regulator to
produce the +5V needed by the circuit. Note that a 78L 05-type regulator is not ideally suited for such
applications. Thisis because the regulator itself needs about 3mA of quiescent current. Another option for
the power supply circuit isto use the 5V low-power zener IC (LM335). The zener |C requires a mere 400pA
quiescent current and is more suitable than the hungry 78L05.

The photometer generating TTL level pulsesis connected to the interface by a suitable cable. The control
program (Listing 7.1) prompts the user to enter the required gate period and then starts acquiring data. The
datais displayed on the screen asit is acquired. The program can be modified to store the numbersin a user-
defined output file at the end of the acquisition.

Page 117

Figure 7.8
Photometer interface circuit schematic.

Figure7.9
A power supply derived from the RS-232 serial port signal pins can supply
current up to 10mA, which is sufficient for the photometer circuit.

Listing 7.1 The photometer interface.

Page 118

Page 119

/ *phot 0. c*/

/******************************~k***********************************/
/* Programto denonstrate the working of the Photoneter interface */
/* through the parallel printer adapter. Connect the interface to */

/* LPT1 & COML. Connect the photoneter to the interface. */
/~k************************************~k~k***************************/
/* Conmpile with TurboC Ver. 2.0 */

/**/

#i ncl ude <stdi o. h>

#i ncl ude <dos. h>

#i ncl ude <coni o. h>

#i ncl ude <process. h>

i nt nodem control _reg, dport_|ptl, cport_|ptl, sport_|ptl;

/| * Declare the subroutines */
unsi gned char get _integ tine(void);
unsi gned int get_count(void);
unsi gned char get _integ_tine(void)

{ .

int tenp;
clrscr();
printf("Character Integration tine\n");
printf("0 00. 125 sec\n");
printf("1 00. 250 sec\n");
printf("2 00.5 sec\n");
printf("3 01.0 sec\n");
printf("4 02.0 sec\n");
printf("5 04.0 sec\n");
printf("6 08.0 sec\n");
printf("7 16.0 sec\n");
t enp=get char () ;
switch(tenp)

{

case '0': return O; break;

case '1': return 1;break;

case '2': return 2; break;

case '3': return 3; break;

case '4': return 4; break;

case '5': return 5; break;

case '6': return 6; break;

case '7': return 7; break;

def aul t: return 100;
}

Listing 7.1 (continued)

Page 120

unsi gned i nt get_count (void)

{

unsi gned char nmonitor, nib 0, nib_ 1, nib_2, nib_3;

/* Reset the binary counters U6, U7 & the flipflop U4-A */
/* The Control port bit CO of the printer adapter is used */
out portb(cport Iptl,1);

out portb(cport | ptl,0);

/* Monitor the o/p of flipflop Ud-A */

/* Wait in the loop till it is zero */
monitor = 0;
whi l e(nmonitor == 0) nonitor = inportb(sport _|ptl) & 0x08;

/* Now the flipflop has enabled the counters */

/[* So, wait till the counting is over */

noni tor = 0x08;

whi | e(nmoni tor == 0x08) nonitor = inportb(sport |ptl) & 0xO08;

/* Read the four nibbles*/

/* Ni bble 3, the nost significant nibble*/
out portb(dport | ptl, 3);

nib 3 = inportb(sport |ptl);

/* Nibble 2 */
out portb(dport | pt1, 02);
nib_2 = (inportb(sport_I|ptl) >>4);

/* Nibble 1 */
out portb(dport Iptl,1);
nib 1 = inportb(sport |ptl);

/* Nibble 0, the least significant */
out portb(dport | ptl,0);
nib 0 =(inportb(sport |ptl) >> 4);

[* put all the nibbles in one integer variable */

nib 1 =nib_1 & 0x0fO0;
nib 1 =nib_1 | nib_0;
nib 1 =nib_1 "~ 0x88;
nib _3=nib_3 & 0xO0fO0;
nib 3 =nib_3 | nib_2;
nib 3 =nib_3 * 0x88;

Listing 7.1 (continued)

Page 121

VOi

/* Return the unsigned integer */
return (nib_3*256 + nib_1);

d mai n(voi d)
unsi gned char int_w n;

[* Sign ON */

clrscr();

printf("Photometer interface for the I1BM PCs & conpati bl es,
printf("\nUses the parallel printer adapter for counting");
printf("\n& he RS-232 port for the power supply");
printf("\n\nBy: D.V.GADRE");

[* Get COML register address */
nodem control _reg = peek(0x40, 0) +4;

i f(nmodem control _reg == 4)
{
printf("\n\n\nCOML not available . . . aborting\n\n\n");
exit(1);
}

printf("\n\n\nCOML address = %", peek(0x40,0));

/[*Get LPT1 port addresses */
dport | ptl = peek(0x40, 0x08);

i f(dport _Iptl == 0)

{
printf("\n\n\nLPT1 not available . . . aborting\n\n\n");
exit(1);
}
printf("\nLPT1 address = %", dport _|ptl);
cport Iptl = dport _Iptl +2; /* control port address */
sport |Iptl = dport Iptl + 1; /* status port address */

/[* put power On on COML */

out port b(nmodem control _reg, 03);
printf("\nPutting Power ON . . .\n\n\n");
sl eep(1);

/* CGet the integration tinme w ndow */
int_ wn = get _integ_tinme();

while(int_ win<O || int_ wn >7) int_wn = get_integ time();
clrscr();

Ver si on

1.0");

Page 122

Listing 7.1 (continued)

printf("Using integration wi ndow %d\n\n", int_wn);
whi [e(! kbhit())
{

/* set integration tinme */
outportb(dport Iptl, int_wn);

/* Get the accumul ated count & print it on the screen */
printf("% ", get _count());
}

Page 123

Chapter 8—
Complete Data Acquisition Systems

Now that | have described how to interface various digital components, it istime to build a complete
interface system. A complete interface system offers the following.

» Analog input
» Analog output
* Digital input
* Digital output

The choice of the components for the analog input and output is determined by the required speed of
conversion and the required resolution. This chapter describes designs that offer 8-bit and 12-hit resolution.
Both solutions are general -purpose designs and can be adapted as required for special situations. Y ou could
also build similar systems using other components (such as timers, ADCs, and DACSs).

Page 124

Auto-Powered, 8-Bit ADC Interface

Before describing the two complete designs, | will begin with avery simple 8-bit, single-channel ADC that
you can easily build with only a handful of components:. two |Cs, a couple of diodes, capacitors, and a zener.
The circuit can fit on asmall general-purpose PCB, which you can mount directly on the printer port
connector using a mating connector. The power supply for the ADC is supplied by the RS-232 port of the
PC.

This auto or "zero-powered" ADC circuit is built around the popular and inexpensive 8-bit ADC, the
ADCO0804. | described the functioning of this ADC in some detail in Chapter 6.

Figure 8.1 shows the schematic of an 8-bit ADC for the parallel adapter using only two ICs: an ADC0804
ADC and a 74HCT 244 tristate buffer. Also shown is the power supply for the circuit. The circuit is set up
such that the ADC conversion process is triggered by the C3* bit of the CONTROL port. The converted data
is controlled by the C2 bit of the CONTROL port connected to the RD* pin of the ADC. After the ADC
conversion is complete, the C2 bit is taken low and the conversion data appears on the output data lines of
the ADC. Then the datais read into the PC with the help of the four STATUS port lines: $4, S5, S6, and
S7*. The eight data output bits of the ADC are routed through the tristate buffer |C such that only four bits
of the ADC data appear on the output lines of the tristate buffer at atime. The two buffer sections of the
tristate IC are controlled by the CO* and the C1* bits of the CONTROL port. Initially, both lines are held
high.

The conversion process of the ADC istriggered by taking the C3* line momentarily low and then high
again. The end of conversion is monitored by the INTR output of the ADC, which is read through the S3 bit
of the adapter's STATUS port. At the end of conversion, the C2 line is taken low. This makes the conversion
data appear at the inputs of the buffer IC. Now C1* istaken low, and the STATUS port isread once; C1* is
taken high again, and CO* istaken low. This makes the high nibble of the ADC data appear on the STATUS
port lines. The STATUS port is read again, and the CO* signal istaken high again. The program then takes
the two nibbles that were the result of reading the STATUS port twice and makes a byte out of them. This
byteis the result of the ADC conversion. A fresh conversion can now begin.

The power to the circuit is taken out of the PC's COM1 serial RS-232 port. That iswhy the system is
referred to as an auto-powered or zero-powered ADC system. The ADC requires amere 1.5mA maximum
current for operation.

Listing 8.1 is aprogram that operates the ADC system and checksif the ADC is connected. It then triggers
conversion on the ADC, reads the ADC data, and displays the data on the PC screen.

Page 125

It should be noted that, in the form shown in Figure 8.1, the ADC can only sample very low frequency input
analog signals (not more than afew hundred Hertz) because the sample-and-hold amplifier has been omitted.

A Complete 8-Bit I nterface Package
This section describes a circuit scheme to implement a package that offers analog 1/0 with aresolution of

eight bits. The most important component of the circuit isthe

Figure 8.1
Circuit schematic for a simple auto-powered 8-bit ADC.

Page 126

ADC interface. For this circuit, | have chosen afast, 8-channel, 8-bit ADC — the MAX158 from Maxim.
Besides the ADC, the circuit offers a single-channel 8-bit DAC, 8-bit output latch for digital output, and an
8-bit digital input buffer, read as two 4-bit nibbles.

The features of this package are:

* 8-channel, 8-bit ADC with a 2.8us conversion time;

« 8-hit digital output to connect to an 8-bit DAC, such asa DACOS;
* eight bits of digital output; and

* eight bits of digital input.

The block diagram of the circuit is shown in Figure 8.2. The ADC has eight analog input channels. The
output of the ADC conversion is available on the eight data output pins of the ADC. To select a particular
channel for conversion, three of the eight channel address pins— AO, Al, and A2 — are available. The user
puts a 3-bit number on these pins before initiating a conversion. After a conversion isinitiated by the user,
the ADC signals that the conversion is over on the INT* pin of the ADC.

Listing 8.1 Program to operate the ADC system.

/| *zero_pw.c*/
#i ncl ude <stdi o. h>
#i ncl ude <dos. h>
#1 ncl ude <coni o. h>
#i ncl ude <process. h>
/[* C3* C2 C1* CO* */

#defi ne RESET VALUE 0X04 /*0 10 0 *
#defi ne START_ADC CONV 0X0c /*1 10 0 *
#defi ne READ_UPPER NI BBLE 0X01 /*0 00 1 *
#define READ LOWER NI BBLE 0X02 /*0 01 0 *

voi d mai n(voi d)
{
int nodemcontrol _reg, dport |ptl, cport |ptl, sport |ptil;
unsi gned char adc_status, adc_val, upper_nib, lower_nib, intr_status;

/* Sign ON */
clrscr();
printf
("Zero Power (Well, alnost!) ADC for the printer adapter, Version 1.0");
printf("\nD.V. GADRE") ;

[* Get COML register address */
nmodem control _reg = peek(0x40, 0) +4;

i f(nodem control _reg == 4)
{
printf("\n\n\nCOML not available . . . aborting\n\n\n");
exit(1);
}

printf("\n\n\nCOML address = %", peek(0x40,0));

Page 127

Figure 8.2 shows how to interface a high-speed, 8-channel, 8-bit ADC to the printer port. The unused
decoder outputs are used to connect other things, such as adigital output latch and a DAC, to make a
complete analog—digital 1/0O system.

MAX158 Features and Mode of Operation

Figure 8.3 isa simplified timing diagram of the MAX158 ADC conversion and read-out process. To
appreciate the diagram, you must understand the meaning of the various timing characteristics symbols
(Table 8.1). Thefirst signal in Figure 8.3 is CS*, the Chip Select signal. Thisisan activelow signal. To
initiate a conversion and to read

Tr-sinte
Switch
(1] MAX158
84-57 Datad 1]
_L Datal n Analog
Data2 12 Voltage
m Datad I3 Inputs
" Datad]
Datas 15
J.' Datas -]
L Data7 7
l:hlrtlj -
flip-fiop 'EI: —
(=] >
o=
1D Channel salect
M8 ,h ghine
Co-C2 Dacoder i
= ap
5D
e
D

Figure 8.2
Interface a high-speed, 8-channel, 8-bit ADC to the printer port.

Page 128

back the converted value, CS* must be held low. Next, RD*, the Read signal to the ADC, must be brought
tologic 0. Tcssis the time difference between these two signals. From the timing characteristics table, the

Tcss minimum accepted value is zero, which means that CS* and RD* can both be pulsed low at the same
time. To initiate a conversion, the ADC needs a 3-bit value for the channel number on which the conversion
will be started, as shown by the third signal on the timing diagram. The address

Listing 8.1 (continued)

/*Get LPT1 port addresses */
dport | ptl = peek(0x40, 0x08);
i f(dport_Iptl ==0)

{
printf("\n\n\nLPT1 not available . . . aborting\n\n\n");
exit(1l);
}
printf("\nLPT1 address = %", dport_|ptl);
cport I ptl = dport _Iptl +2; /* control port address */
sport |Iptl = dport Iptl + 1; /* status port address */

/* put power On on COML */

out port b(nmodem control _reg, 03);
printf("\nPutting Power ON . ")

/* check if ADC is connected & working*/

[*start ADC conversion & wait for 1 nms, this puts INTRto logic '0" */
/* reset the control port */

out portb(cport | ptl, RESET_VALUE);

sl eep(1);

/* start conversion */

out portb(cport | ptl, START_ADC CONV);

out portb(cport | ptl, RESET_VALUE);

sl eep(1);

/* hopefully the conversion is over, so read the INTR status */
[* if everything is OK |INIR should be '0" */

adc_status = inportb(sport_|ptl) & 0x08;

out portb(cport | ptl, READ LONER NI BBLE);

out portb(cport | ptl, RESET VALUE);

/* read the I NTR status again */
[* if everything is OK |INIR should be "1'" */
intr_status = inportb(sport_|ptl) & 0x08;
if(!'((adc_status == 0) && (intr_status == 0x08)))
{
printf("\'n\n\nADC not connected . . . aborting\n\n\n");
exit(1);
}

/* acquire ADC sanple */
whi | e(!kbhit())

Page 129

for the required channel must be set Tas seconds before the falling edge of the RD* signal. Tas minimum is
zero. The ADC now starts a conversion. After atime of Tcrd seconds, which is the conversion time of the
ADC, the ADC completes the conversion and indicates that it is finished by taking the INT* signal low.
INT* isthe fourth signal shown in the timing diagram. Time Tcrd has a minimum of 1.6us and a maximum
of 2.8us. Thusthe conversion time for the ADC lies between 1.6 and 2.8us. After time Tacc2 of the falling
edge of the INT* signal, the converted data appears on the eight data lines. Tacc2 is the data access time and
the maximum value is 50ns. During the conversion, the data lines are in a high-impedance state, as shown
by the last signal in the timing diagram.

Table 8.1 Timing characteristics symbols.
Symbol Parameter Min. Max. Units
Tcss CS* to RD* setup time 0 ns
Tas Multiplexer address setup time 0 ns
Terd Conversion time 16 2.8 us
Tacc2 Data accesstime 50 ns
Tinth RD* to INT* delay 75 ns
Tcsh CS* to RD* hold time 0 ns
i Tecsh o
cs* \ . S A
Tess \ i
s -—,-\!'_ Terd , =
Tas | : I?\ : i
addres : : :
[} H [— [—
' Tinth | L
INT* \ . Tacc2
Figure 8.3

A simplified timing diagram shows the various
signals associated with the MAX 158 ADC.

Page 130

The converted data is available on the data lines until the RD* and the CS* signals are both low. If the RD*
and CS* signals are taken high, it indicates that the data has been read. INT* then goes high within a
maximum of 75ns after the RD* is taken high, and the data lines go into high-impedance state again. (The
CS* signal can be taken high thereafter or even at the same time as the low-to-high transition of the RD*
signal because Tcsh minimum time is0ns.) A fresh conversion can now beinitiated by pulsing CS* and
RD* low again.

Now that | have describe the conversion and readout process for the MAX 158, | will add the parallel port
signalsto the design. The block diagram (Figure 8.2) shows three CONTROL port signals, CO, C1, and C2,
driving a 3-to-8 decoder. The decoder has eight, active low output signals numbered 0 to 7. Output O drives
an active low clear signal of aD flip-flop. The Q output of this flip-flop provides the RD* and CS* signal to
the ADC. Output 1 of the decoder drives the clock input of the flip-flop.

The decoder outputs also drive two 4-hit, tristate switches numbered O and 1. The four outputs of these
switches are shorted to make four total outputs driving the STATUS input pins $4 to S7. The input to the
tristate switches is the data output of the ADC.

The three channel address bits of the ADC are connected to the data output pins DO-D2 of the DATA port
of the parallel port.

Listing 8.1 (continued)

{
out portb(cport | ptl, RESET VALUE);

start _conv: out portb(cport | ptl, START_ADC CONV);
out portb(cport | ptl, RESET_VALUE);
wait _for_conv: adc_status = inportb(sport | ptl) & 0xO08;
whi | e(adc_st at us)
{
adc_status = inportb(sport | ptl) & 0x08;
}

read_upper _ni bbl e: out portb(cport | ptl, READ UPPER NI BBLE);
upper_nib = inportb(sport_|ptl) & 0xOfO0;
out portb(cport | ptl, RESET_VALUE);

read_| ower _ni bbl e: out portb(cport | ptl, READ LONER N BBLE);
| ower _nib = inportb(sport | ptl) >> 4;
out portb(cport | ptl, RESET_VALUE);

adc_val = (lower_nib | upper_nib) ~ 0x88;
del ay(10);

printf("sanple = % ", adc_val);

}

Page 131

The conversion program on the PC sets the required address on the channel address pins and puts CO, C1,
and C2 high. This enables output 7 of the decoder. To start a conversion, CO, C1, and C2 are made low, thus
enabling output O of the decoder, which clears the flip-flop and Q goesto logic 0. From the previous
discussion, you know that a high-to-low transition on the CS* and RD* signals will start a conversion. At
the end of the conversion process, the data is available on the data output lines of the ADC, and in the
present state of the logic, the lower nibble (Data0-Data3) is available on the STATUS port lines, which the
conversion program reads. The program then changes CO, C1, and C2 such that decoder output O goes high
and output 1 goeslow. This does not change the flip-flop output and CS* and RD* are low. However,
because decoder output 1 islow, the tristate switch number 1 is enabled and the higher nibble (Datad—Data?)
of the ADC output datais routed to the STATUS port lines. The program then reads this nibble. By shifting
and ANDing the two nibblesit has read, a complete byte is created, which is the ADC conversion result for
the selected channel.

Now, the program changes CO, C1, and C2 such that decoder output 7 goes low and output 1 goes high. This
low-to-high transition on output 1 clocks the flip-flop and its output Q goes high, thereby disabling the RD*
and CS* signal of the ADC.

Circuit Schematic for the 8-Bit Package

The schematic diagram in Figure 8.4 shows the complete circuit diagram of the ADC interface, as well the
digital output and digital input sections. The signals from the parallel port appear on the J1 DB-25 pin
connector. These signals are:

* DO-D7, the DATA port output pins;

» CO*, C1*, C2, and C3*, the CONTROL port pins,
* 4, S5, S6, and S7*, the STATUS port pins;

* ground.

The CONTROL port signals CO*, C1*, and C2 drivethe A, B, C inputs of IC 74HCT138 (U3), a 3-to-8
decoder. C3* isunused in this system. The decoder outputsare YO to Y7 and are labeled SEL_Oto SEL_7.
SEL_0isconnected to pin 1 (clear input) of IC 74HCT74 (U4-A), aD typeflip-flop. SEL_1 drivespin 3
(clock input) of the flip-flop. SEL_0 and SEL_1 also connect to pin 1 and 19 of IC 74HCT244 (U3), an octal
tristate buffer. It isimportant to note here that only one of the eight outputs of the decoder can be low and
the rest will be high.

The inputs of the tristate buffer (U3) are connected to the data outputs of the ADC DBO-DB7. The tristate
switch IC has two sections. Section 1 hasinputs 1As and outputs 1Y's; Section 2 has inputs 2As and outputs
2Ys. The value at the input is transmitted to the corresponding outputs, if the section enabling pin 1 and 19,
respectively, islow, the section enable pinisactive low. Thusif pin 1 islow, the inputs at section 1As

Page 132

Figure 8.4
Circuit schematic for a complete 8-bit analog and digital input and output.

Page 133

are output to the corresponding outputs 1Y's. If pin 1 is high, the outputs 1Y s go into a high-impedance state.
In the circuit, pins 1 and 19 of the tristate buffer (U2) are driven by the decoder outputs, which means that
only one of the two sections of the buffer will be enabled. The outputs of the other section will bein ahigh-
impedance state.

Each output of two sections of the tristate buffer is shorted to the corresponding pin of the other section and
then connected to the STATUS port pins. In this configuration, the STATUS port pinswill read either DBO—
DB3 or DB4-DB7 outputs of the ADC, depending on whether Section 1 or Section 2 of the buffer IC is
enabled. If both the sections are disabled, the STATUS port pins will not be able to read any data from the
ADC.

The ADC channel address pins A0, Al, and A2 are connected to DO, D1, and D2 pins of the DATA port.
RD* and CS* signals are shorted and driven by the Q output of the flip-flop (IC U4-A). The end of
conversion signal from the ADC, INT*, is connected to the STATUS port signal S3. The user program
monitors the state of this pin before reading out the ADC data. The inputs of the ADC are labeled VIN_1to
VIN_8. Theinput range of the analog voltage that can be applied is determined by the voltage on signals
Vref+ and Vref—of the ADC. | have connected Vref+ to the REF OUT signal and Vref—to ground.
Nominally, the REF OUT signal of the ADC provides a stable +2.5V. So the range of the ADC input signals
(VIN_1to VIN_8)is0-2.5V. Capacitors C1 and C2 provide noise filtering for the REF OUT signal and C3
and C4 filter the +5V supply to the ADC.

|Cs U5 and U6 are 8-hit registers. The clock inputs of these ICsare driven by SEL_2 and SEL_3 signals of
the decoder. The inputs of the ICs are driven by the DATA port output signals DO-D7. The outputs of these
ICsareD_OUTOto D_OUT7 and DACO to DACY, respectively. D_OUTO to D_OUT7 outputs provide the
user with eight bits of digital outputs and can be used to drive relays, LEDs, etc. DACO to DAC7 signal
outputs are supposed to be inputsto arelevant 8-bit DAC. If required, the user can use these outputs as
ordinary digital output pins.

U7 isalso an 8-hit tristate buffer IC. Theinputs are labeled D_INO to D_IN7 and provide the user with eight
bits of digital input. These inputs can be used to read digital signals from switches, sensors (with digital
output levels), etc. The two sections of the buffer are enabled by signals from the SEL_4 and SEL_5 outputs
of the decoder, respectively. Decoder outputs SEL_6 and SEL_7 are unused at the moment — you can use
them for any for other tasks specific to your own design.

Listing 8.2 (di 0. ¢) shows code to interface the various outputs and inputs of the system to the PC (i.e.,
how to read the ADC, how to read digital input bits, etc.).

A 12-Bit ADC/DAC Interface

The previous section described a complete 8-bit interface system. 8-bit systems are useful for a variety of
routine data acquisition applications. However, in many applications, 8-bit resolution may be insufficient.
How would you know if your resolution

Page 134

isinsufficient? Say you want to read the ambient temperature, which is expected to lie between 0 and 50°C,
and we want to resolve to 1/25 of adegree. The resolution of the encoding device (i.e., the ADC) should be
better than 1 part in 50 x 25 = 1,250. So clearly, an 8-bit ADC, which can resolve 1 part in 256, is not
suitable. Even a10-bit ADC (which can resolve 1 part in 1,024) would be unsuitable. A 12-bit ADC, which
can resolve 1 part in 4,096, would be fine. Similarly, for different occasions, one would have to decide if the
ADC (and similarly DAC) resolutions are meeting the requirement.

In this section | describe a 12-bit ADC system that is built around the popular MAX186 ADC from Maxim.
The system offers 8-bit DAC using the MAX521 DAC from Maxim. Both devices are seria input and
output devices. Connecting them to the

Listing 8.2 Driver software for the 8-bit interface package.

/*di o.c*/

/*8-bit analog and digital 1/O progrant/
/ *uses MAX158 ADC*/

#i ncl ude <stdio. h>

#i ncl ude <dos. h>

#i ncl ude <coni o. h>

#i ncl ude <process. h>

/* used for the CONTROL port with C3* held high*/
/[*C2, C1l* and CO* are used as the inputs of a 3-8 decoder*/
/* C3* C2 C1* Qo* */

#define LLL 3 /* 0 0 1 1 */
#define LLH 2 /* 0 0 1 0 */
#define LHL 1 /[* 0 0 0 1 */
#define LHH O /[* 0 0 0 0 */
#define HLL 7 /[* 0 1 1 1 */
#define HLH 6 /[* 0 1 1 0 */
#define HHL 5 /[* 0 1 0 1 */
#define HHH 4 /* 0 1 0 0 */

#defi ne WAI T_TI ME 100000
unsi gned int dport, cport, sport;
i nt chk_adc(voi d)

{
unsi gned char int_stat;
/* check if ADC is connected & working*/
[*put RD* and CS* to high. INT* should be high*/
out portb(cport, LLH);
out portb(cport, HHH);
del ay(10); i nt_stat=inportb(sport);
int_stat=int_stat & 0x08;
[*printf("\nStat=%", int_stat);*/
if(int_stat !'= 0x08) return 0; /* ADC is not connected*/

Listing 8.2 (continued)

Page 135

}

out portb(cport, LLL); /*trigger ADC conversion*/
out portb(cport, HHH);
del ay(10);

i nt_stat=i nportb(sport);
int_stat=int_stat & 0x08;
[*printf("\nStat=%", int_stat);*/
if(int_stat !'=0) return O;

out portb(cport, LLH);

/[*el se just conplete the readout and return success*/
out portb(cport, HHH);

return 1;

i nt adc_convert (unsi gned char chan_num unsigned char *val ue_ptr)

{

VOi

unsi gned char [ow_nib, high_nib, stat;
| ong ti nmeout =0;

t i meout =0;
chan_num=chan_num & 0x07;
out portb(dport, chan_num;

out portb(cport, LLL); / *trigger ADC conversion*/
stat= (inportb(sport) & 0x08); /*wait till conversion over*/
while (stat == 0x08)

{

if(timeout > WAIT_TIME)return O; [*return for tinmeout*/

stat= (inportb(sport) & 0x08);

ti meout ++;

}

| ow_ni b=i nportb(sport);
out portb(cport, LLH);
hi gh_ni b=i nportb(sport);
out portb(cport, HHH);

*value_ptr = ((low_nib >> 4) & Ox0f) | (high_nib & 0xfO0);
*val ue_ptr= *value_ptr " 0x88;
return 1;

d read_digital _i p(unsigned char *digital _ip)

unsi gned char | ow, high
out portb(cport, HLL);

| ow=i nportb(sport);

out portb(cport, HLH);

hi gh=i nport b(sport);

out portb(cport, HHH);

*digital _ip= ((low>4) & 0x0f) | (high & 0xf0);
*digital _ip=*digital _ip ™ 0x88;

return,;

Listing 8.2 (continued)

Page 136

voi d dout port2(unsigned char val ue)

{
out portb(dport, value);
out portb(cport, LHL);
out portb(cport, HHH);
return;

}

voi d dac_out (unsi gned char val ue)

{
out portb(dport, value);
out portb(cport, LHH);
out portb(cport, HHH);
return;

}

mai n()

{

unsi gned char adc_status, adc_val, upper_nib, |ower_nib,
unsi gned char result, channel =0; fl oat voltage;

[* Sign ON */
clrscr();

i ntr_status;

printf("Fast, 8-bit, 8 channel ADC interface the printer adapter”);

printf("\nD.V. GADRE") ;

/*Get LPT1 port addresses */
dport = peek(0x40, 0x08);

i f(dport ==0)
{
printf("\n\n\nLPT! not available . . . aborting\n\n\n");
exit(1);
}
printf("\nLPT1 address = %", dport);
cport = dport +2; /* control port address */
sport = dport + 1, /* status port address */

out portb(cport, 0x04); /*Init the control port to all 1's*/

out portb(cport, 0x02); /*pulse Y1 |ow of the decoder*/
out portb(cport, 0x04);

if(chk_adc() == 0)
{

printf("\n\n\nADC i nterface not connected or not powered .

\n\n");
exit(1);
}

aborting\n

Page 137

parallel port is easy and uses only afew of the port signals, leaving quite afew of the port bitsto the user for

digital 1/0.

The features of this system are:

* eight channels of 12-bit ADC inputs with arange of 0-4.095V;
* eight channels of 8-bit DAC outputs with arange of 0-5V;

* 12 digital linesfor input and output.

Listing 8.2 (continued)

/* acquire ADC sanple */
whi | e(!kbhit())

{
i f (adc_convert (channel, &result) == 0)
{
printf("\nError in ADC Conversion, channel %l. Aborting.."
exit(1);
}

printf("\nChannel %X, Voltage = %.2f Volts", channel,

0.01 * (float)result);
sleep(l);
}

/ *Now reading data fromthe 8 bit digital i/p channel*/
whi | e(! kbhit())

{ read _digital ip(&esult);
printf("\nDigital I/P = 9% (hex)", result);
sleep(l);

}

/*Now witing data to the 8 bit digital o/p channel 2%/
whi [e(! kbhit())

{

dout _port2(result++);

sl eep(1);

}

/*Now witing data to the 8 bit digital o/p connected to a DAC*/

whi [e(! kbhit())
{
dac_out (resul t ++);
sl eep(1);
}

channel) ;

Page 138

Before | describe the circuit schematic, it is very important to understand the features and modes of
operation of the ADC and DAC ICs. An understanding of the ADC and DAC is useful not only for
understanding the circuit schematic and the driver routines, but also for altering the circuit schematic if you
wish to configure the ADC/DAC system in some other way.

MAX186 ADC Features

MAX186 is acomplete ADC system, combining an 8-channel analog multiplexer, a sample-and-hold
amplifier, aseria datatransfer interface, a voltage reference, and a 12-bit resolution successive
approximation converter. All these features are packed into a 20-pin DIP package (other packaging styles
are also offered). MAX186 consumes extremely |low power and offers power-down modes and high
conversion rates. The power-down modes can be invoked in software as well as hardware. The IC can
operate from asingle +5V aswell asfrom a+5V power supply. The analog inputs to

cs* Dout
SCLK SSTRB
Din Vdd
SHDN* DGND
Vss
CHO
CH1
CH2 REFADJ
CH3 Vref
CH4
CH5
CH6
CH7
AGND

Figure 8.5
Block diagram of MAX186 ADC.

Page 139

the ADC can be configured via software to accept either unipolar or bipolar voltages. The inputs can also be
configured to operate as single-ended inputs or differential inputs. The ADC has an internal voltage
reference source of 4.096V, but the user can choose not to use this reference and supply an external voltage
between +2.50 and +5.0V. This gives the user the advantage of adjusting the span of the ADC according to
need (e.g., if the input analog voltage is expected to be in the range of 0 to +3.0V, choosing areference
voltage of 3.0V will provide the user the entire ADC input range with a better resolution).

The MAX186 is an extremely fast device. It can convert at up to 133,000 samples/s at the fastest serial clock
frequency. This ADC is best suited for devices with an

Table 8.2 MAX186 ADC signals.

Signal Name Function

Cs Active low chip select input.

SCLK Seria clock input. Clocks datain and out of the ADC. In the external clock
mode, the duty cycle must be 45-55%.

Din Seria datainput. Datais clocked at the rising edge of SCLK.

SHDN* Three-level shutdown input. A low input putsthe ADC in low power mode

and conversions are stopped. A high input puts the reference buffer amplifier
ininternal compensation mode. A floating input putsit in external
compensation mode.

CHO-CH7 Analog inputs.

AGND Analog ground and input for single-ended conversions.

Dout Seria dataoutput. Datais clocked out at the falling edge of SCLK.

SSTRB Seria strobe output. In external clock mode, it pulses high for one clock
period before the MSB decision.

DGND Digital ground.

Vdd Positive supply voltage. +5V +5%.

Vss Negative supply voltage. -5V +5% or AGND.

REFADJ Input to the reference buffer amplifier.

Vref Reference voltage for AD conversion. Also output of the reference buffer

amplifier (+4.096V). Also, input for an external precision reference voltage
source.

Page 140

extremely fast serial port (e.g., some DSPs and microcontrollers). MAX186 is also an inexpensive device
that is easily adapted to the parallel port, even though the parallel port is suited for reading parallel data. The
trick isto convert the parallel port into a program-controlled serial device capable of shifting digital datain
and out. The added penalty is the reduced conversion speeds. With contemporary PCs, the conversion rate
using the parallel port isalittle over 5,000 samples/s. However, the advantages of using the MAX 186 (small
Size, very low power consumption, single supply operation) are too good to lose in favor of more exotic,
parallel ADCs.

Figure 8.5 shows the block diagram of the MA X186 and its various associated signals. Table 8.2 identifies
the function of each signal.

MAX186 Conversion and Readout Process

To initiate a conversion, you must supply the MAX 186 with a control byte. The control byteisinput into the
ADC through the Din signal input. To clock the control byte, either an internally or externally generated
clock signal (on the SCLK pin) could be used. To keep the hardware small and simple, it is necessary to use
the external clock mode. The format of the control byte is shown in Figure 8.6.

To clock the control byte into the MAX186, pull the CS* pin low. A rising edge on SCLK clocks abit into
Din. The control byte format requires that the first bit to be

MSB LSB

START | SEL2 SEL1 SELD |UNVBP* | SGLDF]PDM PDO

START: The first logic "1’ bit after C3* goes low defines the start of the Control byte
SELZ, SEL1, SELD: Thess 3 bits salect which of the & channals will be used for conversion

UNIBP*: 1=Unipolar; input can range between 0 to +Vref;
0=Bipolar; input can range batween +Virelf2 1o -Vrel2

SGLMDF*: 1=single ended; O=Diffarential

PD1, PDO: Defines clock & power down modes.
i) 0 : Full power down mode
0 1 :Fast power down mode
1 0 :Internal clock mode
1 1 : Extarnal clock mode
Figure 8.6
MA X186 control byte format.

Page 141

shifted in should be 1. This defines the beginning of the control byte. Until this start bit is clocked in, any
number of Os can be clocked in by the SCLK signal without any effect. The control byte must be

I XXXXXX11 binary. Xs denote the required channel and conversion mode. The data is shown as most
significant bit . . . least significant bit from left to right. The two least significant bitsare 11 (to select the

external clock mode option).The control byte value for starting a conversion on channel O in unipolar, single-
ended conversion mode using the external clock is10000011 binary or 83h.

Figure 8.7 shows the conversion and readout process on ADC channel 0. The timing diagram shows five
traces, namely CS*, the chip select signal; SCLK, the serial clock required for programming the ADC and
the subsequent readout; Din, which carries the programming information (the control byte); SSTRB, which
the ADC generates to indicate the beginning of the readout process; and Dout, the actual data output from
the ADC. The dataon signal Dinis clocked into the ADC at the rising edge of the SCLK signal. Thefirst bit
clocked inis D7. To begin the conversion, D7 needsto be set to 1, as can also be seen from the value of the
control byte calculated earlier in this section. So, Dinisset to 1 and the first SCLK rising edge is applied to

the ADC. The SCLK isthen taken low. Thereafter, Din is set to each of the subsequent bits of the control
byte before applying SCLK. At the end of eight SCLK pulses, the

cs* _l _

T 2 3 4 &5 & F &8 # 101 12 13 14 15 16 17 18 1% 20 31 2 I3 24

SCLK

T T Tl

- EEAsEaE -.1-.-.;.-.L
4 FTTTT"

SSTRB .

R LR T e]
-

FE RS E Y EEEEESEE ..
-

F LTI LI TIT LY
e] ——————— =

T ey
B e

F-) PR

=

) [———
=

=

A T T Y]
- amssds

Figure 8.7
Timing diagram of atypical MAX 186 conversion process as recorded on alogic analyzer.

Page 142

Din bit isnot required and is set to 0. At the falling edge of the eighth SCLK pulse, the ADC setsthe
SSTRB bit to 1. At the falling edge of the ninth SCLK bit, SSTRB istaken to 0.

At therising edge of the ninth SCLK signal, the ADC outputs data on the Dout signal, one bit for each of the
next 15 rising edges of the SCLK signal. The data on the ninth pulseis 0 and the actual conversion result is
effective after the 10th rising edge to the 21st rising edge. Thereafter, for the next three edges, the ADC
outputs 0s. To initiate a conversion and read out the result, a simple microprocessor circuit with minimal
parts would need three output bits and one input bit. The output bits would be needed to generate the Din
and SCLK signal and the input bit to read the Dout signal from the ADC.

Output Port
Qutd
Out1
ol MAX186
From _ -
Microprocessor 2 SCLK
out? Cc5*
= Din
Input Port Dout
lnDL—l
In1
In2
o
Microprocessor
In?

Figure 8.8
Block diagram of asimple circuit to interface the MAX186 ADC.

Page 143

The diagram in Figure 8.8 shows an output port with output signals Out0—Out7 and an input port with
signas In0-In7. The Din, SCLK, and CS* signals are driven by the output port signals and the Dout signal
is connected to one of the bits of the input port. There is no particular reason to connect the signalsin the
order that they are shown, but as you will see, it makes programming a bit easier if Din and Dout are
connected to an MSB and L SB, respectively, of the ports.

The input to the output port and the output of the input port are connected to the data bus of the
microprocessor. The microprocessor can read the Dout signal by reading the port bit on the input port and
can control the ADC signals CS*, SCLK, and Din by writing to the output port.

SDA
SCL

A1
ADO

REFO
REF1
REF2
REF3
REF4

MAX521

dac_out 0
dac_out_1
dac_out 2

L

dac out 3
dac_out_4
dac_out_5
dac_out_6
dac_out_7
DGND

L]

BEEREERER

AGND

Figure 8.9
Block diagram of the MAX521 DAC.

Page 144

The program running on the microprocessor begins by setting CS* low and then outputting the control byte
on the Din signal, synchronized with the rising edge of the SCLK signal. After generating eight SCLK clock
pulses, it starts reading the Dout pin of the ADC through the input port after each rising edge of the SCLK
clock pulse for the next 16 SCLK clock pulses. The program then reconstructs the 12-bit result data from the
16 Dout values that it has previously read. After this, the microprocessor can initiate a new conversion and
readout process.

The input and output signals that are needed by the ADC are generated by the DATA port, CONTROL port,
and STATUS port bits.

MAX521 Features

This application uses the MAX521 to provide the user with eight channels of 8-bit DAC. Because thisisa
12-bit system, you may be wondering why | have chosen an 8-bit part for the DAC. The answer is that,
although the MAX521 is an 8-bit DAC system, its digital interface is common to many of the 12-bit DACs
manufactured by Maxim, and you can easily replace the MAX521 with a suitable device and some
modification to the driver software. The principle of connecting a 12-bit DAC is the same.

MAX521 isavoltage-out DAC and has a ssmple two-wire digital interface. These two wires can be
connected to more MAX521s (atotal of up to four). The IC operates from asingle +5V supply. Even with a
+5V supply, the outputs of the DACs can swing from 0 to +5V. The |C has five reference voltage inputs that
have arange that can be set to anywhere between 0 and +5V. Figure 8.9 shows the block diagram of the
MAX521. Table 8.3 liststhe MAX521 DAC signals.

The MAX521 has five reference inputs. Thefirst four DACs each have independent reference inputs and the
last four share a common reference voltage input. The digital interface allows the |C to communicate to the
host at a maximum of 400K bps. The input of the DACs has a dual data buffer. One of the buffer outputs
drives the DACs while the other can be loaded with a new input. All the DACs can be set to a new value
independently or simultaneously. The IC can aso be programmed to a low-power mode, during which the
supply current is reduced to 4uA only. The power-on reset circuit inside the IC sets all the DAC outputsto
OV when power isinitialy applied.

The output of an 8-bit DAC is

Vr = +V inpur/256)

where input is an 8-bit number and V, is the reference voltage for the channel.
Data Transfer to a MAX521

The operation of the MAX521 is slightly more complex than the operation of the MAX186. The MAX521
uses a simple two-wire interface. Up to four MAX521s can be connected to one set of these two-wire
interfaces. This means that a host system

Page 145

with two output lines can be used to program up to 32 DACs! To send commands and data to the MAX521,
the host sends logic sequences on the SDA and SCL lines. Otherwise, these lines are held to 1. The two-wire

interface of the MAX521 is compatible with the 12C interface. To maintain compatibility with |2C, external
pull-up resistors on the SDA and SCL lines are required.

MAX521 isareceive-only device, so it cannot transmit data. The host only needs two output signal lines for
SDA and SCL signals. The SCL clock frequency is limited to 400KHz. The host starts communication by
first sending the address of the device followed by the rest of the information, which could be a command
byte or command byte and data byte pair. Each such transmission begins with a START condition, as

Table 8.3 Signal description of the MAX521 DAC.

Signal Name Function

OouTO DACO voltage output

OouT1 DAC1 voltage output

ouT2 DAC2 voltage output

OouT3 DAC3 voltage output

OouT4 DA C4 voltage output

OuUT5 DACS5 voltage output

OouT6 DACG voltage output

ouT7 DAC?7 voltage output

REFO Reference voltage input for DACO
REF1 Reference voltage input for DAC1
REF2 Reference voltage input for DAC2
REF3 Reference voltage input for DAC3
REF4 Reference voltage input for DACs 4, 5, 6, and 7
SCL Seria clock input

SDA Seria datainput

ADO Addressinput 0. Sets IC's slave address
AD1 Addressinput 1. SetsIC's slave address
Vdd Power supply, +5V

DGND Digital ground

AGND Analog ground

Page 146

shown in the timing diagram in Figure 8.10, followed by the device address (called the slave address) and
command byte/data byte pairs or acommand byte alone. The end of transmission is signaled by the STOP
condition on the SDA and SCL lines.

The SDA signal is allowed to change only when the SCL signal islow, except during the START and STOP
conditions. For the START condition, the SDA signal makes a high-to-low transition while the SCL signal
is high. Datato the MAX521 is transmitted in 8-bit packets (which could be an address byte, the command
byte, or the data byte) and it needs nine clock pulses on the SCL signal line. During the ninth SCL pulse, the
SDA lineisheld low, as shown in the timing diagram. The STOP condition is signaled by alow-to-high
transition on the SDA signal line when the SCL signal is held high.

The address and command bytes transfer important information to the MAX521. The address byte is needed
to select one of a maximum of four devices that could be connected to the SDA-SCL signal lines. After the
host begins communication with the START condition, all slave devices on the bus (here the busisreferred
to the SDA and SCL signal lines) start listening. The first information byte is the address byte. The dave
devices compare the address bits ADO and AD1 with the ADO and AD1 pin condition onthe IC. In case a
match occurs, the subsequent transmission is for that slave device. The next transmission is either a
command byte or acommand byte/data byte pair. In either case, the data byte, if present, follows the
command byte, as shown in Figure 8.11. Table 8.4 shows the bit sequence of the command byte and the
function of each bit.

All the possible combinations of address byte, command byte, and data byte for the MAX521 are:

Figure 8.10
Communication format for MAX521 serial DAC.

Page 147
1. START condition, slave address byte, command byte/output data byte pair, STOP condition.
2. START condition, slave address byte, command byte, STOP condition.
3. START condition, slave address byte, multiple command byte/output data byte pairs, STOP condition.

Figure 8.12 shows how to connect up to four MAX521s on a single bus from the host. The four devices are
distinguished by the different addresses set on the ADO and AD1 lines. Each of the MAX521s compares
these bits with the address bits in the address byte transmission from the host.

Figure 8.11
Structure of the address and command bytes.

Table 8.4 Bits of the command byte for the MAX521.

Bit Name Function

R2,R1, RO Reserved bits. Set to 0.

RST RESET bit. A1 on thisbit resets all DAC registers.

PD Power-down bit. A 1 on this bit putsthe MAX521 in a power-
down mode; a 0 returns the MAX521 to normal state.

A2, A1, A0 Address hits. defines address of the DAC to which the subsequent
data byte will be addressed.

ACK Acknowledgment bit. set to 0.

Circuit Schematic for the 12-Bit ADC/DAC System

Page 148

Figure 8.13 shows the circuit schematic for the 12-bit MAX 186 and 8-bit MAX521 DAC interface to the
parallel port. Because the interface for the two devicesis seria, the number of 1/0O lines required to connect
the parallel port to the ADC and the DAC are very few.

Host
@ SDA paxszy ADOf——=GND
¥
§-— 5CL AD1F——*GND
123 SDA payssy ADDF——=145Y
#2
®— scL AD1 == GND
3 SDA gaysyy ADO F——+GND
¥3
$—scL AD| |ty 5 ¥
4
®—{scL ADY | o5 Y
Y 1
SDA SCL

Figure 8.12
Connecting multiple MAX521s on a single bus.

Page 149

The interface uses D7, D6, D5, and DO bits of the DATA port; S7 of the STATUS port; and CO of the
CONTROL port. All the components and the 25-pin D male connector can be put on asmall PCB the size of
asmall dongle, such that this attachment can be directly connected to the 25-pin D female connector of the
PC parallel port.

Listing 8.3 isthe driver software for the 12-bit ADC system.

Figure 8.13
Circuit schematic for 12-bit ADC and 8-bit DAC interface.

Page 150

Listing 8.3 Driver software for 12-bit ADC system.

/[*ana_i o.c*/

[*12bit, 8 channel ADC and 8 bit 8 channel DAC interface
Uses MAX186 and MAX521

Dhananjay V. CGadre

*/

#i ncl ude<st di 0. h>

#1 ncl ude<dos. h>

#i ncl ude<ti ne. h>

#i ncl ude <coni 0. h>
#i ncl ude <process. h>

/* D5 is SDA = data; D6 is SCL=cl ock */
#define H H Oxff
#define H L Oxdf
#define L_H Oxbf
#define L_L Ox9f

#defi ne TRUE 1
#defi ne FALSE O

/ *ADC control bytes for the 8 channel s*/
unsi gned char adc_con_byte[8];

/* d obal variable has address of DATA port of LPT1 */
unsi gned int dport | pt1; /* data port address*/
unsi gned char dport_val ue, cport_value; /*data and control port status*/

/| *Check if LPT1 is present*/
int chk_|pt(void);

/* This generates the SLAVE address for the MAX-521 */
voi d set _up(void);

/ *MAX521 start sequence*/
voi d st_seq(void);

/ *MAX521 end sequence*/
voi d end_seq(void);

/* sets DAC address & the correspondi ng val ue */
voi d out _to_dac(unsigned int dac_nunber, unsigned int dac_val ue);

[*check if ADC is connected*/
i nt chk_adc(void);
Page 151

Listing 8.3 (continued)

/*start ADC conversion and get the result*/
int read_adc(int channel _nunber);

voi d st_seq(voi d)

{
unsi gned i nt tenpa;
t enpa=i nportb(dport | ptl) & Ox9f;
tenpa=tenpa | (0x60 & H H);

/*CGenerate start sequence for MAX-521*/
out portb(dport | ptl, tenpa);

tenpa= tenpa & 0x9f;

tenpa= tenpa | (H.L & 0x60);

out portb(dport | ptl, tenpa);
tenpa=tenpa & L_L,;

out portb(dport_I ptl, tenpa);

}

voi d end_seq(voi d)

{
unsi gned char tenpb;
t enpb=i nportb(dport | ptl) & Ox9f;
tempb=tenpb | (0x60 & H L);
/* generate stop sequence */
out portb(dport | ptl, tenpb);
t enpb=tenpb | (0x60 & H H);
out portb(dport | ptl, tenpb);

}

int chk_|pt(void)

{

/[*Get LPT1 port addresses */
dport | ptl = peek(0x40, 0x80);

i f(dport Iptl == 0) return FALSE;
return TRUE;

i nt chk_adc(voi d)

{
unsi gned char tenpl;
out portb(dport | pt1+2, 0x01);
tenpl=i nportb(dport | ptl);
tenpl=tenpl & Ox7e;
out portb(dport I ptl, tenpl);
t enpl=i nportb(dport_| pt1+2);

Page 152

Listing 8.3 (continued)

tenpl=tenpl & Oxfe;
out portb(dport | pt1+2, tenpl);
del ay(10);
tenpl=i nportb(dport | pt1+1);
tenpl=t enpl & 0x80;
if(tenpl) return FALSE;
t enpl=i nport b(dport | pt1+2);
tenpl=tenpl | 0x01
out port b(dport_I pt1+2, tenpl);
del ay(10);
t enpl=i nportb(dport | pt1+1);
tenmpl=t enpl & 0x80;
if(!'tenmpl) return FALSE;
adc_con_byt e[0] =0x8f ;
adc_con_byt e[1] =0xcf;
adc_con_byt e[2] =0x9f ;
adc_con_byt e[3] =0xdf ;
adc_con_byt e[4] =Oxaf;
adc_con_byt e[5] =Oxef ;
adc_con_byt e[6] =0xbf ;
adc_con_byt e[7] =0xf f;
return TRUE;

}

/*start ADC conversion and get the result*/
int read_adc(int channel _numnber)
{
int adc_val, tenp_val;
unsi gned char chan_num=0, tenpl, tenp2, tenp3, datal20];
| ong | oop;
out portb(dport _| pt1+2, 0x01);
t enpl=adc_con_byt e[channel _nunber];
for(tenp2=0; tenp2<8; tenp2++)
{
tenp3= (tenpl << tenp2) & 0x80;
tenp3=tenp3 & 0x81
dport val ue=i nportb(dport | ptl);
dport val ue=dport _val ue & 0x7e;
dport _val ue=dport _value | tenp3;
out portb(dport | ptl, dport_val ue);
dport val ue=dport _value | 1;

out portb(dport | ptl, dport_val ue);
out portb(dport | ptl, dport_val ue);

/* this is to make the cl k 50% duty cycl e*/
/* Duty cycle as neasured with a 66 MHz 486 is 48% */

Page 153

Listing 8.3 (continued)

dport _val ue=dport_val ue & Oxfe;
out portb(dport | ptl, dport_val ue);

}

dport _val ue=dport_val ue & Ox7f;

out portb(dport | ptl, dport _val ue);

for(tenp2=0; tenp2<16; tenp2++)

{
dport _val ue = dport_val ue & Ox7e;
dport _val ue=dport _val ue | 0x01;
out portb(dport | ptl, dport_val ue);
data[tenp2] =(inportb(dport_|ptl+l) & 0x80);
dport _val ue=dport_val ue & Oxfe;
out portb(dport | ptl, dport_val ue);
out portb(dport | ptl, dport val ue);

}

adc_val =0;

for(tenp2=0; tenp2<16; tenp2++)
{

tenp_val =((unsigned int) data[tenp2] & Ox00ff) << 8§;
adc_val = adc_val | ((tenp_val ~ 0x8000) >> tenp2);

}

adc_val =adc_val >> 3;

return adc_val;

voi d set _up(void)

unsi gned char tenp, sda_val =0x50, tenpx;
/*sda_val is set for ADL=AD0O=0*/
unsigned int | p_count;

/* Read DATA port */
t enp=i nportb(dport | ptl);

/* Send Sl ave address byte */
for (I p_count=0; |p_count<8; |p_count++)
{
/* Send SDA */
temp=tenp & L_L;
t enpx=sda_val & 0x80;
tempx = (tenpx >> 2) & 0x20;
tenp = tenpx | tenp;
out portb(dport I ptl, tenp);

/* setup SCL */

tenp = tenp | 0x40 ;

Page 154

Listing 8.3 (continued)

out portb(dport |Iptl , tenp);

/* reset SCL */
tenp = tenmp & L_H
out portb(dport I ptl, tenp);

/* get new val ue for SDA */
sda_val = sda_val <<l1

}

/* Send ack */
tenp = tenp & Ox9f;
out portb(dport | ptl, tenp);
tenp = tenp | 0x40;

out portb(dport | ptl, tenp);
tenp = tenp & Ox9f;

out portb(dport | ptl, tenp);

voi d out _to_dac(unsigned int dac_nunber, unsigned int dac_val ue)

unsi gned char dac_address, tenpy;
unsi gned int counter, value, tenpl;

t enpl=i nportb(dport I ptl);
dac_address = 0x07 & ((char) dac_nunber) ;
val ue = (char) dac_val ue;

/[* Send command byte to MAX-521 */
/* Set DAC address into MAX-521 */
for(counter=0; counter<8; counter++)

{
tenpl = tenpl & L_L;
t enpy=dac_address & 0x80;
tempy = (tenpy >> 2) & 0x20;
tenmpl = tenmpy | tenpl,;
out portb(dport | ptl, tenpl);
tenpl = tenpl | 0x40;
out portb(dport | ptl, tenpl);
tenpl = tenpl & L_H,
out portb(dport | ptl, tenpl);
dac_address = dac_address << 1,
}

/* Send ack */
templ = tenpl & Ox9f;
out portb(dport | ptl, tenpl);

Listing 8.3 (continued)

Page 155

VOi

tenpl = tenmpl | 0x40;
out portb(dport | ptl, tenpl);
tenpl = tenpl & Ox9f;
out portb(dport I ptl, tenpl);

/* Send value to the sel ected DAC */
for(counter=0; counter<8; counter++)

{

tenmpl = tenpl & L_L;

tenpy = val ue & 0x80;

tenpy = (tenpy >> 2) & 0x20;
tenpl = tenpy | tenpl;

out portb(dport |Iptl , tenpl);
tenpl = tenpl | 0x40;
out portb(dport _I ptl, tenpl);
tenmpl = tenpl & L_H,
out portb(dport | ptl, tenpl);
val ue = val ue << 1;
}
/* Send ack */
tenpl = tenpl & Ox9f;
out portb(dport_Iptl, tenpl);
tenpl = tenpl | 0x40;
out portb(dport |Iptl , tenpl);
tenpl = tenpl & Ox9f;
out portb(dport_Iptl , tenpl);

d mai n(voi d)

clrscr();
printf("\nMulti-channel Analog I/O for the PC")
printf("\n8 Channel 12-bit ADC');
printf("\n8 Channel 8-bit DACs");
printf("\nDhananjay V. Gadre, 1996.\n\n");
if(chk_Ipt() == FALSE)

{printf("\nNo Parallel Port. Aborting .
out portb(dport | ptl, Oxff);

i f(chk_adc() == FALSE)
{printf("\nNo ADC Connected. Aborting

/*Convert voltage on ADC channel */

");

");

exit(l);}

exit(l);}

printf("\nADC Channel 2 Value = % nV', read adc(2));

printf("\n\nProgramm ng the 8 DACs..");
[*Program the DACs*/

Page 156

Listing 8.3 (continued)

/* Cenerate start sequence for MAX-521%*/
st _seq();

[*setup address*/
set _up();

/*out put to the DACs*/
out to _dac(0, 0);

out _to_dac(1, 0x20);
out _to_dac(2, 0x40);
out to _dac(3, 0x60);
out _to_dac(4, 0x80);
out _to_dac(5, 0xa0);
out _to_dac(6, 0xc0);
out to _dac(7, 0xe0);

/* generate stop sequence */
end_seq();

Page 157

Chapter 9—
Expanding Port Bits of the Parallel Port

For many complex applications, the 17 1/0 bits that the parallel adapter offers may be insufficient. There are
many ways to expand the 1/O ports — the choice of a solution may depend on whether you're using the
parallel adapter in the standard form or the enhanced form. Although the amount of extra hardware required
to add I/O portsto the parallel adapter remains more or less the same for the standard adapter and the
enhanced adapter, the software overheads are dightly larger for the standard adapter expansion.

The following sections present three case studies that demonstrate the various ways to expand the 1/0 on the
parallel adapter. In the preceding chapter, | touched on the topic of 1/0 expansion, specifically in case of the
8-bit interface package. This chapter will explicitly present and explain the expansion mechanism.

Thefirst example offers four digital output ports. The second example offers two digital output and two
digital input ports. Each port has eight bits. The first and second examples use the parallel adapter in the
standard form. The third scheme shows how to add up to eight digital output ports to an enhanced parallel
adapter. This circuit can be easily modified to add digital input ports. The third example interfaces an 8255-
PPIO chip to an enhanced parallel adapter. The 8255 chip has three digital 1/0 ports. This scheme offerstrue
software programmability in the sense that all three ports can be configured in any mode (input or output)
without introducing extra hardware.

Page 158

Expansion on the Standard Parallel Adapter

In this section, I'll examine some schemes for using the parallel adapter to add more digital input and output
ports. One way to expand the standard parallel adapter isto think of the DATA port signals as some sort of
data bus that can be connected to the inputs of latch ICs. The problem is then to generate strobe pulses for
these latch ICs. In this configuration, the CONTROL port signals can be used to generate the trigger (strobe)
pulses for the latch |Cs. With four CONTROL port signals, four latches can be triggered directly to capture
the data provided by the signals of the DATA port. Thisis shown in the block diagram in Figure 9.1.

TAHCT2T3 Latches
8 bits of DATA port
g oulput
> Oto 7
Standard
Parallel adapter - Digital
signals oulput
> Bto 15
c—ll
2 oulput
> 16 to 23
]
Drigital
Kl cutput
4w
. >

Figure9.1
A simple scheme to add four digital output ports to the standard parallel adapter.

Page 159

In Figure 9.1, four latch ICslike 74HCT273 (octal latch) are used. The inputs to these I Cs are connected to
the DATA port signal pins. These latch |Cs have a clock input pin. A rising edge on this pin latches the
input at the input pinsinto the latch, and this latched value is available on the output pin until another rising
edge is generated on the clock input pin. Each of the four CONTROL port outputs is connected to the clock
input pin of the latch IC. When you want to transfer data into one of the latches, the required data is output
on the DATA port and the respective CONTROL port pin is pulsed once to latch the data into that latch.
Listing 9.1 shows the code for this scheme.

If you need to add more than four ports, the solution is to connect the CONTROL port outputs to a decoder.
With four CONTROL port pins, you could use a 4-to-16 decoder and add up to 15 digital output ports.

Listing 9.1 Provide extra digital output ports on the standard parallel port.

/ *expandop. c*/
/*programto provide extra digital output ports (max 4) on the
standard parallel port.*/

#1 ncl ude <stdio. h>
#i ncl ude <dos. h>

#i ncl ude <coni o. h>
#i ncl ude <process. h>

#defi ne BUF_DEPTH 100 /* 100 data points to send to each port*/

/ *d obal variables that store the addresses of the three ports of the
standard printer adapter*/
unsi gned int dport, cport, sport:

/*routines to generate pul se on each of the 4 control port pins*/
voi d pul se_cO(voi d);
voi d pul se_c1(void);
voi d pul se_c2(voi d);
voi d pul se_c3(voi d);

voi d pul se_cO(void) /*generates a low to high pulse on CO pin*/
{

unsi gned char tenp;

t enp=i nportb(cport);

tenp=tenp | 0x01

out portb(cport, tenp);

delay(1);

tenp=tenp & Oxfe;

Page 160

The following example shows how to use a decoder to add two digital output ports and two digital input
ports. Figure 9.2 shows the block diagram of this expansion scheme. The standard adapter is only equipped
to read five bits at atime. A previous

Listing 9.1 (continued)

VOi

VOi

VOi

out portb(cport, tenp);
del ay(1);

d pul se_cl(void) /*generates a low to high pulse on Cl1 pin*/

unsi gned char tenp;

t enp=i nportb(cport);
tenp=tenp | 0x02;

out portb(cport, tenp);
del ay(1);

tenp=tenp & Oxfd;

out portb(cport, tenp);
delay(1);

d pul se_c2(void) /*generates a low to high pulse on C2 pin*/

unsi gned char tenp;

t enp=i nportb(cport);
tenp=tenp & Oxfb;

out portb(cport, tenp);
delay(1);

tenp=tenp | 0x04;

out portb(cport, tenp);
delay(1);

d pul se _c3(void) /*generates a low to high pulse on C3 pin*/

unsi gned char tenp;

t enp=i nportb(cport);
tenp=tenp | 0xO08;

out portb(cport, tenp);
delay(1);

tenp=tenp & Oxf7;

out portb(cport, tenp);
delay(1);

Page 161

Listing 9.1 (continued)

mai n()

{

/*the followng array stores data to be transfered to the external
ports, port_ 0O, port_1, port_2 and port_3*/
unsi gned char port 0 buf[100], port_1 buf[100], port_2 buf[100],
port 3 buf[100], tenp;
unsi gned int count;
/*Get LPT1 port addresses */
dport = peek(0x40, 0x08);

i f(dport ==0)
{
printf("\n\n\nLPT! not available . . . aborting\n\n\n");
exit(1);
}
printf("\nLPT1 address = %", dport);
cport = dport +2; /* control port address */
sport = dport + 1, /* status port address */

[*this statement puts all the CONTROL port signals to logic 1*/
out portb(cport, 0x04);

[*setup a loop to transfer the required data points*/

for (count =0; count <BUF_DEPTH; count ++)
{
/*transfer data to port 0*/
[*first output data to the DATA port*/
out portb(dport, port_O_buf[count]);
/* now generate a pul se on CONTROL port pin CO */
pul se _c0();
/*transfer data to port 1*/
[*first output data to the DATA port*/
out portb(dport, port_1 buf[count]);
/* now generate a pul se on CONTROL port pin Cl1 */
pul se_cl();
/*transfer data to port 2*/
[*first output data to the DATA port*/
out portb(dport, port_2 buf[count]);
/* now generate a pulse on CONTROL port pin C2 */
pul se_c2();
/*transfer data to port 3*/
/*first output data to the DATA port*/
out portb(dport, port_3 buf[count]);
/* now generate a pul se on CONTROL port pin C3 */
pul se _c3();
}

Page 162

chapter discussed how to connect an 8-bit ADC to the parallel adapter using tristate buffers to interface the 8-
bit ADC datawith the four STATUS port bits.

2 to 4 decoder

B bits of DATA port

co*

c1*

24

to 4 decoder

C2

ca"-—-u-

4 STATUS

port bits

Figure 9.2
Another scheme to add three digital output ports and
two digital input ports to the standard parallel adapter.

TAHCTZ73 Latches

oultput
16 to 23

Digital Buffer (74HCT244)

Digital
Input
Dol

Digital
Input
dt07

Digital
Input
8to 11

Digital
Input
1210 15

Page 163

The present example uses a pair of 2-to-4 decoder 1Cs (actually it is better to use a 3-t0-8 decoder in
practice, but | will use the 2-to-4 decoder for the purpose of thisillustration). The first decoder is driven by
the CONTROL port pins CO* and C1*, and the other decoder is driven by C2 and C3*. The first decoder
outputs generate latching pulses for three output latch ICs (like the ones used in the last example).

The second decoder (driven by the C2 and C3* pins of the CONTROL port) generates the enable signal for
the four sections (two each in a 74HCT244 | C) of the tristate buffer ICs. Each tristate buffer section has four
input pins. The outputs of the buffers are shorted to create four signalsin al, and these are connected to the
STATUS port pins. The four outputs of the decoder will enable any one of the four buffer sections, and if
the program reads the STATUS port, the inputs of that buffer section will be read into the STATUS port.

Note that with four outputs of the decoder, | have connected four tristate buffer sections, but with four other
decoder outputs, | connected only three latch ICs. | cannot connect four latches in such a configuration
because | must allow one unused output, which will serve as the default output signal. If | connect alatch to
this output too, data will be written into thislatch. The same principle appliesif | were to connect a 4-to-16
decoder. | would be able to use only 15 latches.

Expansion Using EPP

The main disadvantage in using the standard parallel port for digital input and output is that the software
overheads result in reduced data transfer speeds. You learned in Chapter 5 that the EPP is well suited for
data transfer at respectable data transfer rates. Typical data input or output on a 486 machine with a 66MHz
clock rate can be close to 900K bps. In this section, you will see how to use the EPP for digital 1/0O expansion.

The best way to understand the EPP interface is to think of it as a general-purpose, multiplexed, data and
address bus. Normally, datais transferred out as data, but the same lines can also be used to transmit the
address of the destination device. For expanding digital 1/O, the trick isto trap the address of the destination
device and decode it before generating the data strobe.

In the block diagram in Figure 9.3, afew latches are shown with their inputs connected to the output of the
DATA port signals. The DATA port signals carry data as well as destination port address information. The
PC program can choose to write an address to the adapter or it can choose to write the data. Y ou can also
write an address byte followed by a data byte, or you can write an address byte followed by reading a data
byte. In addition to the data output latches, Figure 9.3 shows an address latch. The address latch has the
DATA port connected to its inputs and the clock input connected to the address strobe signal (actually, the
address strobe signal is generated by ORing the nADDRSTB and nWRITE signal). This arrangement traps
any address that is sent on the EPP. The output of the address latch is connected to the input of a

Page 164

suitable decoder. The other input to the decoder is the data strobe signal (which in practice is generated by
ORing the NDATASTB and the n\WRITE signals). The data latches have their clock inputs connected to
each output of the decoder. To write data into any data latch, the program first sets the address for that latch
into the address latch and then sends the data on the DATA port pins.

Similar schemes can read data from many digital input ports. Figure 9.4 shows the circuit diagram for afour-
port digital output expansion using the EPP. The software for this scheme can be easily modified using code
segments from the next section or those presented in Chapter 5.

An 8255-PI O Interface for the EPP

Now that you know how to expand the digital 1/O bits of the parallel port using discrete components, it is
worthwhile to seeif you can do the same thing using programmable 1/O devices like the venerable and
ubiquitous 8255-PPIO chip.

Data Latch Data Laich Cata Latch

EPP Signals

Bits

Address
and Dl
flus
To Other data latc hes
[
Address Strobe [
> — =
Adddress Lateh Address Dacoder
Oata Stroba
Figure 9.3

Block diagram of the expansion scheme using EPP.

Page 165

Figure 9.4
Circuit to add extra digital output ports using the EPP.

Page 166

The advantage of using the 8255 chip isthat it can be programmed to act as input or output without any
changes in the hardware. Thus, a single 8255 configuration can be used in a variety of applications with
various I/O requirements.

A look at the details of the 8255 chip will give you a better ideaits capabilities. In this example | will use the
parallel adapter in EPP mode using the BIOS routines discussed in Chapter 5. However, it would be asimple
matter to replace the BIOS routines with code that accesses the parallel adapter chip directly or that uses the
parallel adapter in the standard form.

The 8255-PPI1O

The 8255 programmabl e peripheral interface is a general-purpose, programmable I/O device originally
designed for Intel microprocessors. It is packaged in a40-pin DIP package and isfully TTL compatible. It
has 24 1/0 pinsthat can be individually programmed in two groups of 12 bits each. To the user, these 24
lines are like three ports of eight bits each. These ports are called port A, port B, and port C. These 24 bits
can be used in three major modes of operation.

The three modes are:

» Mode 0: Each group of 12 1/0 bits can be programmed in sets of four bits, each to be used as input or
output.

» Mode 1: Each group can be programmed to have eight lines of input or output and three of the four
remaining lines of that group provide strobe, handshake, and interrupt functions. The other line can be used
asagenera 1/0O line.

Table 9.1 Basic operations of the 8255-PPI O chip.

Operation Al A0 RD* WR*

0
@

Port A read

Port B read

Port C read

Port A write

Port B write

Port C write

Control port write

Data bus tristate

Illegal condition

Rl x]lololo]lolr]r]r
ololr|o]lo|lo]lolo|lo]| o

0
0
0
1
1
1
1
X
0
1

x|lr|lx|r]lr|lo|lolr|lo]lo
xlr|x|r]lo|lr|lo|lolr]o

Data bus tristate

Page 167

» Mode 2: Thisisabidirectional mode of operation with eight bits as the bidirectional bus. It usesfive lines
from the second group for handshaking. The second group's eight lines can be used in mode O or mode 1 and
three lines of the first group can be used as general 1/0 lines (or handshake lines for lines of the second
group). All three of the ports can be programmed in mode 0. Only port A and B can be used for mode 1. If
ports A and B are used in mode 1, port C provides the supporting function to ports A and B. Mode 2 is only
applicable to port A.

The 8255 chip has an internal data bus buffer that allows the chip to be connected to the system data bus.
The data busis used to transmit and receive data to and from the CPU and to exchange control and status
information with the CPU. The data bus buffer transfers this information to the control/status unit (port A,
port B, or port C, depending on the state of the A0, A1, WR*, and RD* lines, as shown in Table 9.1).

The block diagram in Figure 9.5 shows the internal scheme of the 8255 chip. The chip is accessed only
when the chip select pin, CS*, is held low. Additionally, datais

Y --—-‘Ifh.-
Y ———i—
p Vo
' PAT o PAD
;
H
Bl-dirsctionsl |
D@ bus ;
Bootit b Heu s
. PCT 1o PCA
-
i
\
H
' o
: PC3 o PCO
:
L]
L]
H
A D
l*‘“_ll—l—

PET o PED

lt*

|

L E R B R L L L E B L LR LKL ERELREELEESEELIYETTE YT EFEYT]

Figure 9.5
Block diagram of the 8255-PPIO chip.

Page 168

read by the CPU from the 8255 chip when the read pin RD* is also taken low. This pin is used when the
CPU wantsto read status data or input data from the 8255 chip. When the CPU wants to write control data
or output data to the 8255, the write pin WR* is taken low (instead of the RD* pin).

To access the many ports inside the 8255 chip, the chip has two address lines, A0 and Al. Table 9.1 shows
the operation of the 8255 chip in response to the signal on its pins.

The three ports of the 8255 chip can be programmed as input or output using the many features described
earlier in this section. The individual bits of port C can be set and reset under program control. This very
useful feature is required when digital signals are used to control devices such as LEDs, lamps, or relays.
With this feature, any bit on port C can be set or reset without bothering with retaining the state of the other
bits. This mode of operation is called bit set/reset mode, and it only applies to port C bits.

CONTROL word

D7 |D6 | DS |D4 D3| D2 | D1 | DO

l Group B

Port C [Lower)
1 = input

0 = cutput
Port@

1 = input

0 = oulput
Mode Selection

* 0= Mode 0
1 = Moda 1

Mode sat Flag Group A
1 = activa Port C {uppar)
1 = Input

0 = oulput
Port A
*T 1 =inpul
0 = oulput
Mode Selection

00 = Moda O
04 = Mode 1, 1X = Bods 2

Figure 9.6
Control word format to program the 8255 chip in the various modes.

Page 169

To use the ports of the 8255, the user program must write an appropriate control word into the control
register of the 8255. Thereafter, the individual ports can be accessed as desired. Figure 9.6 shows the format
of the control byte.

Listing 9.2 shows how to program the 8255 in mode O with ports A and B as inputs and port C as output.
The code is written with the assumption that the 8255 isinterfaced in the I/O port map of the PC at the base
address 0x300h, as listed in the code. The base address of 0x300h corresponds to port A, 0x301h to Port

B, and 0x302h to port C. The last address would be 0x303h, which would be the address of the control
register.

The 8255 supports many modes of operation. Thisis because of the large number of combinations of the
three ports that the user can independently program. It is useful to refer to the 8255 data sheets for complete
details on the various modes of operation. The bit set/reset mode is another interesting feature of the 8255.
Bit set/reset mode is applicable only to port C of the 8255. Figure 9.7 shows the various combina-

Listing 9.2 1/0 mode with port A and B asinputs and C as output.

/*8255 in I/O nobde with Port A and B as Inputs and C as out put*/
/ *8255 i o0.c*/

#i ncl ude<dos. h>

#i ncl ude<st di 0. h>

#defi ne BASE_ADDRESS 0x300

mai n()

{

unsi gned char control _byte, tenp;

control byt e=0x92; /*10010010*/
/*This control byte prograns the 8255 in the I/O node with all the
ports in node 0. Port A and B as inputs and C as output*/

out port b(BASE_ADDRESS+3, control byte);
/*this |oads the control register of the 8255 with nunmber 0x92*/

/*Now any of the 8255 ports can be used. */

/*to read the port A and B just do the follow ng*/

t enp= i nport b(BASE_ADDRESS) ; /*this reads port A*/
tenp = inportb(BASE_ADDRESS + 1); /*this reads port B*/
out port b(BASE_ADDRESS+2, tenp);

/*this wite the contents of tenp into port C+/

Page 170

tions of control words that set or reset each and every bit of port C. Listing 9.3 is a piece of code that
generates pulses on all the bits of port C one after the other.

The code is written with the assumption that the 8255 is interfaced in the I/O port map of the PC at the base
address0x300h, aslisted in the code. The base address 0x300h would correspond to port A. The last

address used would be 0x303h, which is the address of the control register.

Parallel Adapter I nterface to 8255

The last step isto connect the 8255-PPIO chip to the parallel adapter. This section describes the circuit
diagram to connect the 8255 to an EPP. and Listing 9.4 implements the interface using BIOS calls.

Figure 9.8 shows the circuit schematic to interface an 8255-PPIO to an EPP. The circuit shows the EPP
signals on the various pins of the 25-pin D male connector. The

CONTROL word

D7 | D6 |D5| D4 | D3 |D2 | D1 DO

I | ! Bit Set / Reset
x X X 1= g8t

L-,_v_) 0 = resst
Dont care ¥

0 i) o —= PCOD

0 0 1 |—e PCi

Bt Sof / Roast Flag . PCZ

0 = mctive

PC5

1 1 0 fp—- PCB

1 1 1 PC7

Figure 9.7
Control word format to program the Port C bits as set/reset.

Page 171

DATA port signals are referred to as DATAOO0-DATAOQY signals, which are connected to the 8255 data
input/output pins labeled DO-D7, aswell asto the input of the 74HCT273 address latch. The CLR input of
thislatch is connected to the NnRESET sig-

Listing 9.3 Generate walking pulses on all the port C bits.

/*Programto generate wal king pul ses on all the port C bits*/
/| *8255 exp. c*/

#i ncl ude<dos. h>

#i ncl ude<st di 0. h>

#defi ne BASE_ADDRESS 0x300

mai n()

{
unsi gned char control _byte[16], tenp;
[*This buffer stores the control byte set a bit and then to reset it*/
/*For 8 bits there are 16 bytes*/

control _byte[0] =0x01; /*set bit 0*/
control byte[1] =0x00; /*reset bit 0*/
control byte[0] =0x03; /*set bit 1*/
control byte[1] =0x02; /*reset bit 1*/
control _byte[0] =0x05; /*set bit 2*/
control byte[1] =0x04; /*reset bit 2*/
control byte[0] =0x07; /*set bit 3*/
control _byte[1] =0x06; /*reset bit 3*/
control _byte[0] =0x09; /*set bit 4*/
control byte[1] =0x08; /*reset bit 4*/
control byte[0] =0x0b; /*set bit 5*/
control byte[1] =0x0a; /*reset bit 5*/
control byte[0] =0x0d; /*set bit 6*/
control byte[1] =0x0c; /*reset bit 6*/
control byte[0] =0x0f; /*set bit 7*/
control byte[1] =0Ox0e; /*reset bit 7*/

while(!kbhit()) /*continue till the keyboard is pressed*/
{
for(tenp=0; tenp<l6; tenp++)
out port b(BASE_ADDRESS+3, control _byte[tenp]);
/*it nmust be noted that to set or reset the port C bits, using the
bit set/reset node, the information nmust be witten into the
control register and NOT the port C*/

}

Page 172

Figure 9.8
Schematic for an 8255 interface to an EPP.

Page 173

nal of the EPP. The CLK input for the latch is labeled address wr* and is generated by ORing the
NADDRSTB and the "\WRITE signal using the 74HCT32 OR gate. The address latch outputs labeled A0 and
A1 provide the address A0 and A1 input to the 8255 chip. The CS* signal for the 8255 chip is generated by
inverting the Q2 output of the address latch. Thisis ensure that, at reset, the latch output would be 0, and

with the inverter (using the 74HCTO0 NAND gate), the CS* will be at logic 1 and will keep the 8255 chip
deselected. Thiswill avoid possible contention on the DATA port signals.

The RD* and WR* input signals for the 8255 chip are generated by ORing the nDATASTB with the
complement of the nWRITE signal and nDATASTB and nWRITE signals, respectively. The reset input for
the 8255 is generated by inverting the nRESET signal output of the EPP.

To transfer data to the 8255, the address for the 8255 port isfirst latched into the address latch. In the next
cycle, the PC writes (or reads) the data to (or from) the designated port. Figure 9.9 shows the logic analyzer
trace of the various EPP signals during a composite address write + data write EPP BIOS call. Thiswas
captured from a 486 PC running at 66 MHz clock speed.

Listing 9.4 shows the various routines to interface the 8255-PPIO to an EPP using BIOS calls. It would not
be difficult to generate the similar code for a standard parallel port or for an enhanced port accessed directly
through the controller chip. The connection between the parallel adapter and the 8255 need not change, even
if you decide to use different driver software to use the 8255.

;500 nS 500 nS
nwRTE L | BuS
DATA L Addreas of the destination port [Data for the port

nADDRSTE

s 1] | []

-

¥ 2000
nDATASTB | : u
JR—— !.|—

50 RS

Figure 9.9
Timing diagram of a composite address write + data
write EPP BIOS call on a 486 PC at 66MHz.

Page 174

Listing 9.4 Implement 8255 interface.

/* 8255 epp.c */

/*
Set of Routines for Parallel Port expander using the Enhanced Parall el
Paral l el Port protocol for 8255-PPI O The routines invoke EPP BICS calls.

Dhananjay V. Gadre
*/

#i ncl ude<dos. h>

#i ncl ude<ti ne. h>

#1 ncl ude<st di o. h>
#i ncl ude<pr ocess. h>
#i ncl ude<coni o. h>

#defi ne FALSE O
#defi ne TRUE 1

/* Define the Port addresses of the 8255-PPlI O */

#defi ne PORT_A 0x04
#defi ne PORT_B 0x0c
#define PORT_C 0x14

#defi ne CON_PORT Ox1c

void far (*pointr)();

int epp_config(void);

int epp_wite_block(unsigned char *source_ptr, int count);

int epp_witea wited(unsigned char port_address, unsigned char tx_value);
int epp_witea(unsigned char port_address);

int epp_wite byte(unsigned char tx_val ue);

int epp_wite_byte(unsigned char tx_val ue)

{
unsi gned char tenp_ah;
_AH=T;
_DL=0;
_AL=t x_val ue;
pointr();
tenp_ah=_AH

if(tenp_ah !'= 0) {return FALSE;}
return TRUE;

Page 175

Listing 9.4 (continued)

int epp_witea(unsigned char port _address)
{

unsi gned char tenp_ah;

_AH=5;

_DL=0;

_AL=port _address;

pointr();

tenp_ah=_AH

if(tenp_ah !'= 0) {return FALSE;}

return TRUE;

int epp_ witea wited(unsigned char port_address, unsigned char tx_val ue)

unsi gned char tenp_ah;

_AH=0x0c;

_DL=0;

_AL=port _address;

_DH= tx_val ue;

pointr();

tenp_ah=_AH;

if(tenp_ah !'= 0) {return FALSE;}
return TRUE;

i nt epp_config(void)

unsi gned char tenp_ah, tenp_al, tenp cl, tenp_ch;
_AX=0x0200;

__DX=0;

_CH="E;

_BL="P';

_BH=' P

geni nterrupt (0x17);
tenp_ah=_AH
tenp_al = AL;
tenp_ch=_CH;
tenp_cl =_CL;

if(tenp_ah !

= 0) return FALSE
if(tenmp_al !

[

[

0x45) return FALSE;
0x50) return FALSE;
0x50) return FALSE;

if(temp_ch !
i f(tenp_cl

Page 176

Listing 9.4 (continued)

pointr = MK_FP(_DX , _BX)
_AHAD,

_DL=0;

_AL=0x04;

pointr();

tenp_ah=_AH

if(tenp_ah !'= 0) return FALSE;
return TRUE;

int epp_wite_block(unsigned char *source_ptr, int count)

unsi gned char tenp_ah;

_SI =FP_OFF(source_ptr);

_ES=FP_SE@ source _ptr);

_AH=8;

_DL=0;

_CX=count;

pointr();

tenp_ah=_AH

if(tenp_ah '=0) {printf("\nBlock wite timeout error"); return FALSE;}
return TRUE;

}

mai n()
{
int ret value, ret val
tine_t start, end;
unsi gned char buf_out[10000], rx_in;

clrscr();

printf("\nPort Expander using 8255- PPl O and EPP protocol\n");
ret _value = epp_config();

if(ret_value == FALSE) { printf("\nNo EPP BICS"); exit(1);}

printf("\nEPP BI OS Present");
printf("\nGenerating a Square wave on Port C bits of the PPIO");
printf("\nSetting address and transnmitting a data byte");

if(epp_witea(CON_PORT) == FALSE)
{printf("\nSet address failed.."); exit(1);}

[* witing Ox80 to Control port puts all the three port of the
8255 in Qutput node */

if(epp_wite_ byte(0x80) == FALSE)
{printf("\nWite command byte failed.."); exit(1);}

Page 177

Listing 9.4 (continued)

whi | e(! kbhi t ())
{

if(epp_ witea wited(PORT_C, 0) = FALSE)
{printf("\nWite data byte failed.."); exit(1);}

if(epp_witea wited(PORT_C, Oxff) = FALSE)
{printf("\nWite data byte failed.."); exit(1);}

}

/* Another way to access the 8255 data ports. Set the destination
address once and then keeping witing data to the destination port */

/*Set Port B Address*/
if(epp_witea(PORT_B) == FALSE)
{printf("\nSet address failed.."); exit(1);}

whi | e(! kbhit())
{

[*write Ox00 to the Port B of the 8255*/
if(epp_wite byte(0) == FALSE)
{printf("\nWite data byte failed.."); exit(1);}

/[*Wite Oxff to the Port B of the 8255*/
if(epp_wite_byte(Oxff) == FALSE)
{printf("\nWite data byte failed.."); exit(1l);

}

/* Transferring data to Port B using block transfer node */

printf("\n\nWiting Data Block to the | ast address");

i f (epp_wite_block(buf _out, 10000) == TRUE)
printf("\nBlock wite successful");

else printf("\nBlock wite failed");

return 1;

Page 179

Chapter 10—
Using the Parallel Port to Host an EPROM Emulator

The PC isanideal machine for hosting microprocessor development tools. The reason for thisisthe
availability of awide variety of assemblers, compilers, and simulators — programs that are essential for
developing microprocessor code.

Imagine you want to develop a microprocessor-based circuit for remote data acquisition. Figure 10.1 shows
the block diagram for this application. The components of the circuit are:

» microcontroller or amicroprocessor. Typically, a microcontroller is used because it offers increased
hardware features, such as timers/counters, 1/0 ports, on-chip memory, etc.;

* program and data memory. The program memory could be an EPROM. The data memory is RAM IC of
sufficient capacity to store the data;

EPROM stands for Erasable Programmable Read Only Memory. EPROM 1Cs
are memory devices that can be programmed with the required code and can
also be erased by exposing the chip to UV radiation through the chip's quartz
window. Y ou can program the EPROM chip using a special device programmer
called an EPROM programmer. To erase the chip, you need a special UV light
source.

Page 180

» communication link to the host computer to upload the parameters and, subsequently, to download the
recorded data to the host;

» digitizer or an ADC that converts the sensor outputs to bits that the microprocessor reads and storesin the
data memory;

* power conditioning circuit to convert the raw battery voltage to levels required by the various components
of the circuit.

The steps in developing this application include:

1. formulate the requirements of the circuit in terms operational features, required hardware, power
consumption, etc.;

2. finalize the hardware design with afew iterations;

3. draw aflowchart of the software showing major routines, etc.;

4. write preliminary code and test the code on asimulator if oneis available;
5. fabricate a hardware prototype board;

6. use a cross compiler or cross assembler for the selected microprocessor;

7. burn the executable code in an EPROM and test it on the prototype; in case of errors, correct the code,
erase the EPROM, and burn the new code into the EPROM again; and

8. iterate from step six until the system starts working without errors.

For a system as complex as this example, the software could take a few thousand assembler lines and is not
asimple affair. In asystem as big as this, using this method involves alot of time for debugging code,
erasing and burning new code in the

pcontroller

Program Data or
Mamary Mamary | jt processor

Fraom
Sensora

Digltizer

[1T1

post X,

Communication

| Link Power | Raw power source

condilioner fe—

Figure 10.1
A microprocessor-based remote data acquisition circuit.

Page 181

EPROM, and testing the system. Mistakes are bound to occur, and it is better to assume that mistakes will
occur and be prepared to tackle them. Some tools that help circumvent the lengthy iterations of burning and
erasing EPROMs are discussed in the next section.

Microprocessor Development Using Emulators

The most convenient (as well as the most expensive) tool for designing microprocessor-based circuits and
code is amicroprocessor (or microcontroller) emulator. A processor emulator, also called an In-Circuit
Emulator (ICE) is, as the name suggests, a piece of hardware that mimics the processor. An ICE isusually
supplied by the microprocessor manufacturer (but recently, third party companies have begun to offer
emul ators — sometimes even before the processor manufacturer can offer one). The connector footprint of
the emulator isidentical to the actual microprocessor and is supposed to be inserted into the socket on the
target board, where eventually the actual processor will sit. This emulator hardware has a connection to the
PC (called the umbilical cord by some) that allows test code to be downloaded from the PC into the
emulator.

One way to use the I CE as a development tool isto take the bare target circuit board and populate it with the
minimum of components — just enough to support an ICE. The ICE is then plugged into this partialy
populated PCB. Code to test very rudimentary functions is then downloaded into the |CE from the PC host
(the PC host is equipped with the necessary editor, assembler, compiler debugger, etc.), and preliminary
tests are performed on the circuit. These may just include looking for address strobes on the PCB.

Progressively, more components are soldered onto the PCB, and more test routines are downloaded to
perform more tests. Eventually, you reach a point where all the components have been soldered, and
physical and logical connections between the various components on the PCB have been tested. Now isthe
time to integrate the various routines into the compl ete system software. Here, also, the ICE is of great help.
The designer can download version after version of the system software into the | CE until the performance
meets the requirements.

The ICE aso allows the user to trace each and every instruction and monitor the effect of the instruction
execution using any suitable device (alogic analyzer or an oscilloscope). The emulator will execute one
instruction and then wait for the user to proceed. When the code is acceptable, the ICE is removed from the
socket and the developed code is burned into a suitable ROM/EPROM . After the actual microprocessor is
placed in the target socket, the PCB hardware and software are ready.

The other approach to using an ICE isonly dlightly different from the first approach. The aternative isto put
all the components except the processor and the ROM/EPROM in place and test everything with the I CE.
Using this approach may

Page 182

discover some problems, such as wrong circuit tracks or bad design, which would be alittle difficult to
correct with all the components soldered in place.

An ICE is an expensive piece of equipment and is sometimes beyond the reach of many designers. Another
disadvantage of an ICE isthat it is very specific to the microprocessor you are using. There is no such thing
asauniversal ICE. For every processor type you haveto buy an ICE.

Thereisasimple solution to this problem, though there are some trade-offs. At the cost of reduced
debugging and trace features, this low-cost solution allows emulation and a fraction of the cost of an ICE.
The solution isto use an EPROM/ROM emulator instead of a processor emul ator.

Figure 10.2 shows the block diagram of SmartRAM, an extremely ssmple EPROM emulator. SmartRAM
can emulate 2Kb EPROMs, which may look tiny by prevailing standards, but the idea behind SmartRAM
can be extended to support emulation of larger capacity EPROM and ROM devices.

B bits ol
DATA

DATA Bus

c5*
Emidation
Headar
<o ¥,
LT vatate | [Aadressun] —_]
Addresa Dulter ; L
Genorator | .- T T
cr*
Heset 2
c2 j p
"5"'-‘—-'-‘_0‘:"
E s Nt ——
.3 ,.- ; Lo OE*
—0 | 7 .
Mode —
awiteh 61_{: i
©: "
Figure 10.2

Block diagram of a simple EPROM emulator.

Page 183

SmartRAM with 2Kb EPROM support is more than enough for relatively smaller applications that are
programmed using assembly language. For larger applications, 2Kb of memory may be insufficient and you
may need to augment the capacity of SmartRAM. Also, for a microprocessor application developed using C
or another high-level language, 2Kb of memory may be too small, and you may need to think of a higher
capacity EPROM emulator. SmartRAM's simple design is open to modifications. Figure 10.2 shows inputs
to atristate buffer connected to the DATA port signal pins. The outputs of the buffer are connected to the
data pins of a2Kb RAM chip. An address generator block provides the address for the RAM chip. The
outputs of the address generator are also passed through the tristate buffer 1C. The address and data bus of
the RAM is also connected to a DIP socket called the emulation header. The connection between the RAM
and the DIP header is by means of suitable wires. A three-pole switch is used. One pole of the switch
controls the tristate buffers. In one position of the switch, the emulator is put in the emulation mode. In the
other position, the emulator operates in the load mode. In the load mode, the tristate buffers are enabled and
the address bits from the address generator block connect to the RAM IC. Also, the DATA port signals
connect to the data pins of the RAM. Besides this, two control pins of the RAM, the CS* and the WR*
signals, get connected to the CONTROL port bits C2 and C3*.

Also, the CS* and OE* signals from the emulation header are disconnected during the load mode of
operation. In this mode, the PC program can write values into any of the locations of the RAM. To do o, it
first resets the address generator (which makes the address value equal to 0). Then it generates as many
clock pulsesfor the CLK input of the address generator as the address of the RAM chip to which that byte
needs to be written. If the program is required to load the value 0x44h inlocation 167 (decimal), the PC
resets the address generator and generates 167 clock pulses. This puts the address value to 167 (the required
value). The program then outputs 0x44h on the DATA port signals and generates the CS* and WR*
signals. Thiswrites 0x44h into the address location 167 of the RAM.

In the emulation mode of operation, the switch disables al the tristate buffers and connects the OE* and
CS* signals from the emulation header to the RAM chip. Because the emulation header is a DIP socket with
the same specifications as the EPROM chip it emulates, the DIP socket can be inserted in the target EPROM
socket. The microprocessor on the target board can now access the code stored in the RAM chip (which the
processor believesis being read out of an EPROM). When you need to change the code, you just have to
turn the target PCB power off, remove the emul ation socket from the EPROM socket on the target board,
and put the switch on the emulator in load mode. This allows new code to be loaded into the RAM, after
which the emulator is ready again for emulation.

Page 184

Using SmartRAM

To use SmartRAM, you need an external +5V power supply that can supply up to 100mA of current. The
actual current consumption of the emulator is much less. Figure 10.3 shows a circuit schematic of the
SmartRAM EPROM emulator.

The emulator is connected to the parallel adapter connector. The emulation header is disconnected from the
target socket. After connecting the power supply, the mode switch is put in the load mode and the
SmartRAM program on the PC is executed. This SmartRAM driver program offers the following options:

* L: Load intelhex format object code into the PC buffer memory;

*F startadd endadd const ant : Fillsthe PC buffer memory from address st ar t add to endadd
with a constant value;

* D xx: Dumps buffer memory contents from address xx onward onto the screen;
» W Writes the emulator RAM with the contents of the PC buffer memory;
* Q Quitsthe program.

Using the single letter commands shown above, the user can load intelhex object code, change individual
memory contents, load an entire block of memory with afixed value, and finally, transfer the PC memory
buffer into the emulator RAM. At this point, you are ready to use the emulator in emulation mode. To do
this, power up the target PCB and insert the emulator into the target EPROM socket. After that the emulator
switch is put in emulation mode and the target microprocessor is reset. The microprocessor now starts
reading the emulator for the code.

It isimportant to note that the emulator socket should never be pulled out of alivetarget PCB whilein
emulation mode. To remove the emulator socket, turn off the target power and the emulator power, then
plug out the emulator header from the EPROM socket.

Driver Software

In the last section we looked at the possible features of the SmartRAM EPROM emulator. Even though | am
not providing any driver software for the emulator, it should be possible to code a simple program to control
the emulator as sketched in the last section (Listing 10.1).

Page 185

Figure 10.3
Circuit schematic of the SmartRAM EPROM emul ator.

Page 186

EPROM Emulation Using Non-Volatile RAM (NVRAM) Modules

Aswe have seen, EPROM emulation is afairly established, in-expensive method of code development for
embedded processors. Many vendors supply EPROM emulators with multiple device emulation facility;
from the measly 2Kb EPROMs to 1Mb devices.

In the last example, we have also seen that EPROM emulators have a host computer link connected to the
emulation hardware and a pod that emulates the required EPROM. With afew jumper settings on the
emulator besides changing to a suitable pod, the device can be used to emulate a different EPROM.

Listing 10.1 Driver software for the SmartRAM project.

/[* nvemul .c */

/*
EPROM Enul at or usi ng NVRAM nodul e.
32Kbyt e capacity.
Dhananjay V. Gadre
12th July 1997
*/

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
#i ncl ude<dos. h>

#i ncl ude<pr ocess. h>
#i ncl ude<ti ne. h>

#i ncl ude<al | oc. h>
#i ncl ude<ct ype. h>
#1 ncl ude<stdl i b. h>
#i ncl ude<string. h>

/* port addresses of the parallel adapter */
unsi gned int dport, sport, cport;

/* these ports control data, voltage to the ZIF socket, */

/* control the tri-state buffers respectively */
unsi gned char port_0, port_1, port_2, port_3, error_byte;

#defi ne MEMORY 32768 /* |ast address of the target controller nmenory */

Page 187

However, there is a problem with using such emulatorsin applications that have cramped PCB real-estate, or
in a stacked PCB configuration or under circumstances which do not offer any space to place the host
computer or the emulator hardware. These cases may sound bizzare, but they arereal. What to do in such
circumstances? Well thereis away out of thisdilemma. My solution is to use now freely available Non
Volatile RAM (NVRAM) module to mimic the required EPROMs. NVRAM modules are made by many
manufacturers, including Dallas Semiconductors. The memory module contains the standard RAM chip
together with a Lithium battery to retain the memory contents. It is said that the lithium battery can retain the
memory contents for upto 10 years from the time the memory isfirst used in circuit. Thus, it isvery easy to
use the NVRAM module as a portable data transfer element.

In this section, we look at a new and novel method of EPROM emulation. | describe a scheme to load any
required datainto a 32Kb NVRAM module using a simple hardware that can be connected to the parallel
port. After writing and verifying the contents of the NVRAM, the NVRAM can be removed from the code
writer hardware and plugged into the required EPROM socket.

The PC driver software (which is specifically written for EPROM emulation) can read intelhex object files
and write the data into the NVRAM module. The data that is written into the module is also verified by the
driver software.

Circuit Description

The circuit, RamWriter, uses a 32Kb NVRAM, module, the DS1230 from Dallas Semiconductors as the
emulator element. Other ssimilar NVRAM modules can aso be used. NVRAM modules are pin compatible
with SRAM and EEPROM components but the pin out is alittle different from an EPROM device. We will
come to thisalittle later and discuss ways and means to circumvent the problem.

RamWriter connects to the PC host through our dear parallel port. Figure 10.4 shows the circuit diagram for
RamWriter. The data to the NVRAM iswritten by the latch U2 (74HCT573). The WR*, CS* and OE*
signals for module are generated by the U1 latch (74HCT273). At power on, al the control signals (OE*,
CS* and WR*) are disabled. During data verify, the datais read back by the U9 buffer by the STATUS port
of the parallel port.

The address for the module is generated by the U3 and U4 latches (74HCT273). The clock signals for all the
latches is generated by the 4 CONTROL port signals CO*, C1 *, C2 and C3*. Theinputsto all the latchesis
provided by the output of the DATA port of the parallel port.

LED D2 provides power on indication and D3 provides information when the data is being written to or
being read from the module. J2 isa 25 pin D' mail connector that fits directly onto the 25 pin 'D' female
parallel port connector.

Page 188

Figure 10.4
Circuit schematic of the NVRAM-based EPROM emulator.

Page 189

To alow ease of insertion and removal of the module, a 28 pin ZIF socket is used for the NVRAM module.
The circuit needs external +5V TTL grade power supply at lessthan 25 mA current.

Driver Software

The driver software iswritten in C and compiled under Borland C compiler. The software reads intelhex
object files and writes the code into the NVRAM module. It can detect if the moduleis missing. Any error in
data verification is also detected and reported. At the end of the exercise, the circuit power supply is
switched off and the NVRAM module is removed from the RamWriter. It can now be used to emulate a
32K byte EPROM. Which brings us to the problem of differing pinouts of NVRAM and EPROM. The
NVRAM and EPROM share the same pinout except the pins 1 and 27. The following table lists the
functions of these two pins for the EPROM and the NVRAM.

Pin # NVRAM EPROM
1 Al4 Vpp
27 WR* Al4

During the use of the EPROM in acircuit, the Vpp pinisheld at +5V. During emulation, the WR* pin of the
NVRAM isaso held to itsinactive state i.e. +5V. So the following modification which can be easily built
into any application circuit will allow the use of the NVRAM as an EPROM.

Jumper
Pin abc Pin
l========- PP ®F-------- 27

Ald of the processor

The modification shown above involves the use of a3 pin jumper switch which needs to be set
appropriately. When using the NVRAM, pinsaand b of the jumper are shorted. When using EPROM, pins b
and c are shorted. Also, pins 1 and 27 are pulled up to +5V with a 10Kohm resistors. These additions can
easily be incorporated into the application circuit.

Page 190
Typical Uses

This EPROM emulator can be used in any application that uses a 8 bit data path to execute the code. Any 8-
bit microprocessor and 8 bit controllers with external program memory could benefit from this device. Also,
ADSP21xx range of DSP controllers from Analog Devices use EPROM to load the internal program (which
IS 24-bits) memory from an external byte-wide EPROM at reset. | have used the RamWriter to develop code
for a 8031 based application and another ADSP-2105 DSP based application.

Besides using this tool for EPROM emulation, the driver software can be easily modified to read NVRAM
contents and store the data into a file in applications where the NVRAM is used as a portable data transfer
element asin data loggers etc.

Listing 10.1 (continued)

/* the Intelhex file has |ines of code. each line begins with a : */
/* next is nunber of bytes in the line */

/* offset in the hex file where the line length is stored */
#define LL 1

[* offset in the hex file where the destination address is stored */
#defi ne ADDR 3
#defi ne ZERCS 7

/* offset of the beginning of the code */
#defi ne CODE_ST 9

/* local global variables */
unsi gned char ranf MEMORY+10] ;
unsi gned int curr_address;
FILE *fp1l;

/* defines for portl */
#def i ne ENB_DATA 0x80
#defi ne DI S_DATA Ox7F
#defi ne ENB_LOW 0x40
#defi ne ENB_HI GH Oxbf
#define ENB_.WR 0x20
#define ENB_CE 0x10
#define ENB_.CS 0x09

/* local routines */
int initialze(void); /* initialzes the external hardware */

Page 191

Listing 10.1 (continued)

/* read the intelhex format file & fill up the internal buffer */
int fill_buffer(void);

/* check if the programmer is connected and if +12V is ON */
int chk_witer(void);
int wite_ verify bytes(void);

/* routines to generate pul se on each of the 4 control port pins */
voi d pul se_cO(voi d);
voi d pul se_c1(void);
voi d pul se_c2(voi d);
voi d pul se_c3(voi d);

voi d pul se_cO(void)
{
unsi gned char tenp;
t enp=i nportb(cport);
tenp=tenp & Oxfe;
out portb(cport, tenp);
out portb(cport, tenp);
out portb(cport, tenp);
tenp=tenp | 0x01
out portb(cport, tenp);
}

voi d pul se_c1(void)
{
unsi gned char tenp;
t enp=i nportb(cport);
tenp=tenp | 0x02
out portb(cport, tenp);
out portb(cport, tenp);
out portb(cport, tenp);
tenp=tenp & Oxfd;
out portb(cport, tenp);
}

voi d pul se_c2(void)

{
unsi gned char tenp;
t enp=i nportb(cport);
tenp=tenp & Oxfb;
out portb(cport, tenp);
out portb(cport, tenp);
out portb(cport, tenp);
tenp=tenp | 0x04;
out portb(cport, tenp);

Listing 10.1 (continued)

Page 192

voi d pul se_c3(void)
{
unsi gned char tenp;
t enp=i nportb(cport);
tenp=tenp | 0xO08;
out portb(cport, tenp);
out portb(cport, tenp);
out portb(cport, tenp);
tenp=tenp & Oxf7;
out portb(cport, tenp);
}

char chartoi (char val)
{
unsi gned char tenp;
tenp = toupper(val);
i f(tenp>0x39) {tenp = tenp -0x37;}
el se {tenp=t enp-0x30;}
return tenp;

int initialize(void)

dport = peek(0x40, 8);

sport =dport +1;

cport =dport +2;

i f(dport ==0) return O;

out portb(dport, 0);

out portb(cport, 0x05); /* all cport outputs high,
out portb(cport, 0x0a); /* all cport pins are |ow,
out portb(cport, 0x05); /* all cport outputs high,
port 0=0;

port 1=0;

port_2=0;

port _3=0;

return 1;

}

/* read the intelhex format file & fill up the internal
int fill_buffer(void)
{

unsi gned char ch, tenp4, tenpl, tenp2, tenp3,;

unsi gned char chk_sum=0, buf[600], nunf10];

unsigned int line_length, address, line_tenp, tenpx,

except CO */
except CO */
except CO */

buffer */

count =0;

Page 193

Listing 10.1 (continued)

count =0;
whi l e(!feof (fpl))
{
chk_sum=0;
[* check if start of line ="':" */

fgets(buf, 600, fpl);
tempx=strl en(buf);

[* printf("\n\nString | ength=%@\n", tenpx); */
[* printf("\n\n%", buf); */

if(buf[O0] !'=":") {printf("\nError

Source file not in Intelhex format. Aborting");
fclose(fpl);

return O;

}

/* convert the next 2 characters to a byte which equals line length */
tenpl=buf[LL];
t enp2=buf [LL+1];
if(lisxdigit(templ) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

if(tisxdigit(temp2)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

}

tenp4 = chartoi (tenpl);
chk_sumrchk_sum + 16*t enp4;
line_ | ength=(int)tenp4;

tenp4=chartoi (tenp2);

chk_sumechk_sum + t enp4;

line length = 16*line_length + (int)tenp4;
[* printf("Entries=% ", line_length); */

i f(line_length ==0) {
return count;

}

Page 194

Listing 10.1 (continued)

t enpl=buf [ADDR] ;

t enp2=buf [ADDR+1] ;
t enp3=buf [ADDR+2] ;
t enp4=buf [ADDR+3] ;

if(tisxdigit(tenmpl)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

if(l'isxdigit(tenmp2)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

if(lisxdigit(tenp3)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

if(lisxdigit(tenp4)) {
printf("\nError in source file. Aborting");
fclose(fpl);

return O;
}
ch = chartoi (tenpl);
tenpl=ch;

ch = chartoi (tenp2);
t enp2=ch;

chk_sum = chk_sum + 16*tenpl + tenp2;

ch = chartoi (tenp3);

t enp3=ch;

ch = chartoi (tenp4);

t enp4=ch;

chk_sum = chk_sum + 16*tenp3 + tenp4;
address = 0x1000 * (int)tenpl + 0Ox100 *

(int)tenp2 + Ox10*(int)tenp3 + (int)tenps;

Page 195

Listing 10.1 (continued)

[* printf("Start Address=% hex\n", address); */
i f (address > MEMORY)

{
printf("\nError in source file. Bad address. Aborting");
fclose(fpl);
return O;

}

/* check for the next byte. It has to be 00 * */
t enpl=buf [ZERCS] ;
t enp2=buf [ZERCS+1] ;

if(tisxdigit(tenpl)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

if(lisxdigit(temp2)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

}

ch = chartoi (tenpl);
tenpl=ch;

ch=chartoi (tenp2);

t enp2=ch;

ch = 16*tenpl + tenp2;
if(ch 1= 0)

{

printf("\nError . . . Source file not in Intel hex format. Aborting");
fclose(fpl);
return O;

}

/* now read bytes fromthe file & put it in buffer */
for(line_tenp=0; line_tenp<line_length; |ine_tenp++)
{
tenpl=buf[2*li ne_t enp+CODE_ST] ;
tenp2=buf [2*1 i ne_t enp+CODE_ST+1] ;

if('isxdigit(templ)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O

Page 196
Listing 10.1 (continued)

i f(lisxdigit(temp2)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

}

ch = chartoi (tenpl);
tenpl=ch;

ch=chartoi (tenp2);

t enp2=ch;

ch = 16*tenpl + tenp2;
chk_sumechk_sum + ch

i f (address > MEMORY)

{
printf("\nError in source file. Bad address. Aborting");
fclose(fpl);
return O

}

[* printf("9X ",ch); */
rani addr ess] =ch;

addr ess++;

count ++;

}

/* get the next byte. this is the chksum */

t enpl=buf[2*1i ne_| engt h+CODE_ST] ;
tenp2=buf [2*| i ne_I| engt h+CODE_ST+1] ;

if(lisxdigit(templ)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

if(lisxdigit(tenp2)) {
printf("\nError in source file. Aborting");
fclose(fpl);
return O;

}

ch = chartoi (tenpl);

tenpl=ch:

ch=chartoi (tenp2);

t enp2=ch;

ch = 16*tenpl + tenp2;

chk_sumechk_sum + ch

Listing 10.1 (continued)

Page 197

}

[* printf("csum=%", chk_sum); */
i f(chk_sum!=0)

{

}

printf("\nChecksum Error . . . Aborting");
fclose(fpl);
return O;

return count;

}

int wite_ verify bytes(void)

{

unsi gned char tenp, |low_tenp, high_tenp, |ow addr,

| ong program | engt h;

for(program.| ength=0; programl|ength < MEMORY; program | ength++)

{

curr_address=program | engt h;
/* generate the address for the NVRAM */

/* this puts the data into the data | atch
but the latch is yet to be enabled */

port O=rani program | engt h];

out portb(dport, port_0);

pul se_cO0();

/* enable the data on the data pins */
port _1=port_1 | ENB_DATA

out portb(dport, port_1);

pul se_cl();

/* wite data to the NVRAM */
| ow_addr =(unsi gned char) program | engt h;

hi gh_addr =(unsi gned char) ((program.|ength>>8) & 0x00ff);

port 2=hi gh_addr;
out portb(dport, port_2);
pul se_c2();

port 3=l ow _addr;
out portb(dport, port_3);
pul se_c3();

hi gh_addr;

Page 198
Listing 10.1 (continued)

/* generate chip select */
port _l1=port_1 | ENB_CS
out portb(dport, port_1);
pul se _cl();

/* generate wite strobe */
port l1=port_ 1 | ENB WR

out portb(dport, port_1);
pul se_cl();

/* disable wite strobe */
port_1=port_1 & ~ENB_WR;
out portb(dport, port_1);
pul se_cl();

/* disable data fromthe data output pin of the source */
port _1=port_1 & DI S _DATA

out portb(dport, port_1);

pul se_cl();

/* now enabl e read strobe to read back the data */
port l1=port_1 | ENB_CE;

out portb(dport, port_1);

pul se_cl();

/* read | ow ni bble */
port l1=port_ 1 | ENB_LOW
out portb(dport, port_1);
pul se_cl();

| ow _t enp=i nportb(sport);

/* read high nibble */
port_1=port_1 & ENB H GH
out portb(dport, port_1);
pul se _cl();

hi gh_t enp=i nportb(sport);

/* disabl e cs strobe */
port 1=port_1 & ~ENB CS;
out portb(dport, port_1);
pul se_cl();

temp= (high_tenmp & 0xf0) | ((low_tenp >>4) & OxO0f);
temp=tenp * 0x88;

Page 199

Listing 10.1 (continued)

}

[* printf("9X ", tenp); */
if(temp !'= ranfprogram.|ength])

{
error_byte=tenp;
printf("\nError in programverify at address %X (hex).
Aborting . . .", program.length);
printf("\nProgram data %X, read back data %X\ n",
ranf program | ength], temp);
return O;
}

for(programlength=0; programlength < MEMORY; program .| ength++)

{

curr_address=program | engt h;
/* generate the address for the NVRAM */

/* wite data to the NVRAM */
| ow_addr =(unsi gned char) program | engt h;
hi gh_addr=(unsi gned char) ((program.|ength>>8) & 0x00ff);

port _2=hi gh_addr;
out portb(dport, port_2);
pul se_c2();

port_3=l ow_addr;
out portb(dport, port_3);
pul se_c3();

/* generate chip select */
port l1=port_1 | ENB_CS
out portb(dport, port_1);
pul se_cl1();

/* now enabl e read strobe to read back the data */
port_1=port_1 | ENB_OE;

out portb(dport, port_1);

pul se_cl();

/* read | ow ni bble */
port_l1=port_1 | ENB_LOW
out portb(dport, port_1);
pul se_cl();

| ow t enp=i nportb(sport);

Page 200
Listing 10.1 (continued)

/* read high nibble */
port _1=port_1 & ENB H GH;
out portb(dport, port_1);
pul se_cl1();

hi gh_t enp=i nport b(sport);

/* disable cs strobe */
port_1=port_1 & ~ENB_CS;
out portb(dport, port_1);
pul se _cl();

tenp= (high_tenp & Oxf0) | ((low tenp >>4) & OxOf);
tenmp=tenp * 0x88;
printf ("9 ", tenp);
if(temp !'= raniprogram.length])
{
error_byte=tenp;
printf("\nError in programverify at address %X (hex).
Aborting . . .", program.length);
printf("\nProgram data %X, read back data %X\ n",
ranf program | ength], temp);
return O;
}
}

return 1;

}

mai n(argc, argv)
i nt argc;
char *argv[];
{
tine_t start, endt;
unsi gned | ong tenp;
int byte value, return_val, total bytes;

printf("\n\n\n\t EPROM Enmul at or usi ng NVRAM nodul e Ver: 1.0\n");

printf("\t------mmmm e o \n");

printf("\t\t Dhananjay V. Gadre");

printf("\n\t\t July 1997.\n"); [/* 12th July 1997 */

if(argc '= 2) {
printf("\nError . . . Specify Intel hex source filenane. Aborting");
printf("\nFormat: Atnmel P intel hex_sourcefile");
exit(-1);

Page 201
Listing 10.1 (continued)

if((fpl=fopen(argv[1l], "r")) == NULL) {

printf("\nError . . . Cannot open source file. Aborting");
exit(-1);
}
return_val=initialize(); /* Initialize the printer adapter port */
if(return_val == 0) {printf("\nLPT1 not available. Aborting . . .");
fclose(fpl);
exit(-1);
}
printf("\nLPT1 DATA port address = %X (hex)", dport);
printf("\nChecking internal nmenory buffer . . .");
for(tenmp=0; tenp < MEMORY; tenp++)
{
ranf tenp] =(unsi gned char) tenp;
}
for(tenmp=0; tenp < MEMORY; tenp++)
{
if(ranftenp] !'= (unsigned char) tenp)
{
printf("\nError in internal nenory allocation . . . Aborting.");
fclose(fpl):
exit(-1);
}
}
printf("\nlnternal nenory buffer OK");
printf("\nReading Intel hex source file . . .:");
return_val =fill _buffer();
if(return_val == 0) {
exit(0);
}

Page 202
Listing 10.1 (continued)

printf("\nlntel hex file % read successful.
Total bytes read =%", argv[1l], return_val);

fclose(fpl);

printf("\nStoring data in NVRAM nodul e and Verifying . . .\n");
return_val=wite verify bytes();
if(return_val == 0) {

printf("\nFailed to store data in NVRAM at address:
%X (hex)\n", curr_address);
printf("Program value: 9%\ n", ranfcurr_address]);
printf("Verify value: %\n", error_byte);
exit(-1);
}

printf("\nData stored in NVRAM and verified");
printf("\nPower Of the RAMNiter and renpove the NVRAM nodul e");
return 1;

}

Page 203

Chapter 11—
The Parallel Port AsaHost I nterface Port

This chapter looks at using the parallel adapter as a channel for communicating between the PC processor
and another embedded processor. Many complex control applications must perform intensive mathematical
calculations. One approach to tackling this problem is to use the PC as an all-in-one device to provide a user
interface, amathematical calculation engine, and 1/0 to the external device that needs to be controlled.
Another approach isto use the PC only to provide a user interface and to use a separate embedded controller
such as aDigital Signal Processor (DSP) to perform the math and 1/O. The latter solution is especialy
attractive because it does not put any demands upon the PC resources (as long as the PC can provide a
suitable graphical user interface). Motion control systems typically use this approach. If you are going to
interface the PC with aDSP, it isimportant to provide a suitable communication channel between the PC
and the embedded controller.

If the required data transfer rate between the PC and the controller is higher than the rate provided by the
serial RS-232 port, the parallel adapter is a good candidate for a communications interface.

This chapter examines the problem of communicating between the PC processor and an external controller
through the parallel adapter. Two examplesillustrate the ideas. The first example shows an interface
between the PC and a powerful and popular DSP, the ADSP-2101. The other example shows the interface
between the PC and an 8051-like controller, the AT89C2051 microcontroller.

Page 204

Interfaceto the ADSP-2101

| needed to connect an ADSP-2101-based Charge Coupled Device (CCD) camera controller to a PC for
diagnostic purposes. Eventually the controller would be connected to the PC through a high-speed optical
fiber link. The RS-232 interface was ruled out because of the required data transfer rate (>20Kbps). Also, |
did not want to invest in a dedicated asynchronous transmission circuit on the controller. The solution was to
use the parallel printer adapter on the PC as alink between the camera controller and the PC.

The CCD Camera Controller

The camera controller is built around a fixed-point DSP from Analog Devices, the ADSP-2101. Use of
DSPs in embedded control applications reflects a growing trend.

DSP Processor Card

Optical fibre link

WARIchp /v To Host

Communication card

Temp. & Shutter Control,
& Telemetry card

Bias & Clock driver card 2 ToCCD

Signal conditioning &
ADC card

Figure 11.1
A CCD camera controller.

Page 205

| found DSPs from Analog Devices especially attractive in terms of ease of use, availability, price,
devel opment tools, documentation, and customer support.

The ADSP-2101:

* isafast microcomputer,

* executes any instruction in one clock cycle,

* has zero overhead looping, and

* has two buffered synchronous serial ports capable of transmission rates up to SMbps.

As acamera controller, the DSP helps acquire CCD images. The image parameters are set by the user
through a host computer. These parameters define the exposure time, size of the CCD image, pixel, row
binning, etc. To do thisthe ADSP-2101.:

* receives commands from the host,

« waits for the signal integration time,

» generates CCD clock waveforms to shift out each pixel signal,
» reads CCD pixel signal voltage through an ADC, and

« transfers the ADC data over a suitable link to the host.

Figure 11.1 shows the block diagram for such a camera controller. The serial link between the host and the
controller isimplemented with a high-speed optical fiber link (in the final configuration). The components
of the controller are:

* A backplane bus that carries interconnections between the various cards of the CCD controller.

» An ADSP-2101 processor card to implement a programmabl e waveform generator, an optional host
communication link (using the synchronous serial interface of the DSP), aserial ADC interface, and a
backplane bus interface to connect to the other components of the controller. The waveform generator isa
crucial component of a CCD controller. Having a programmable waveform generator allows the user to
operate the CCD camerain awide variety of modes by merely downloading a new waveform description
table from the host.

* A high-speed (50Mbps) serial link using a TAXI chip set. The TAXI chip set interfaces to a 850nm fiber
optic physical link. This card connects to the backplane bus. The TAXI chip receives 8-bit-wide characters
from the DSP card, to be transmitted on the fiber link to the host. Received characters from the host are read
by the DSP, eight bits at atime.

* A temperature controller, shutter driver, and telemetry card connected to the backplane bus. This card hasa
temperature controller (of the proportional control type) to maintain the temperature of the CCD chip. The
temperature is set by a preset potentiometer on this card. A voltage multiplier using a high-frequency
transformer charges areservoir capacitor. This capacitor discharges into the shutter through aFET switch
when the shutter is to be operated. The DSP controls the

Page 206

voltage multiplier and the shutter operation. A multichannel 12-bit serial ADC is used to read chip
temperature, dewar temperature, shutter status, etc. This card also has stepper motor drivers for controlling
two stepper motors.

» An analog signal processor (with double-correlated sampling) and serial ADC card. This card also
connects to the backplane bus. The signal processor circuitry receives the CCD pixel voltage from the
backplane bus. This voltage is encoded by the 16-bit serial ADC. The serial ADC control signals on the
backplane bus are derived from the serial port of the DSP.

» A CCD clock bias and driver card. This card uses the majority of waveform signals (generated by the DSP
processor card) present on the backplane bus. These signal's pass through appropriate line drivers before
being filtered on the backplane card. The CCD clock levels are referenced by the bias voltage generator on
this card. The bias voltages are generated by 24 DACs, which areinitialized and controlled by the DSP.

CCD Controller Testing

The most important components of the controller are the DSP processor card, the bias and clock driver card,
and the signal conditioning and ADC card. Any attempt at prototyping a CCD controller must start with a
focus on these functions. However, in order to test the functions and the performance of the CCD controller,
a host computer must send parameters and receive encoded data. A possible solution isto implement an RS-
232 serial link to the PC. | ruled out the RS-232 port in this case, however, because of its low data transfer
rates and the required investment in additional hardware. Using the parallel printer adapter for bidirectional
data transfer would not only give me a high enough data transfer rate, but it would allow me to use common
latches, buffers, and decoders. At a software level, only the device-level routines would need to be modified.

A host interface port to connect the controller hardware to the PC through the parallel printer adapter (as
described below) simplifies evaluation of ADC performance and allows you to test the waveform generator
algorithm and the noise characteristics of the signal-conditioning circuit.

Connecting the Controller and the Parallel Adapter

Thecircuit in Figure 11.2 converts the parallel printer adapter into a ssimple host interface port. The port can
connect virtually any processor to the PC for bidirectional data transfer. A conservative estimate of the data
transfer rates between the PC (a 486/66MHz) and the CCD controller is the range of 20-50K bps. The test
program uses routines in Listing 11.1 for communication. Suitable programs are written for the

Page 207

Figure 11.2
PC interface for ADSP-2101 DSP.

Page 208

DSP on the CCD controller. Coding parts of the routines in assembler can significantly increase data transfer
rates.

To convert the parallel printer adapter into a host interface, the host uses the DATA port to transmit eight
bits of datato the application. A flip-flop U6-A isreset to indicate to the application hardware that a data
byteisavailable. Thisflag could also be

Listing 11.1 Connect the PC to the DSP-based CCD controller.

/| *dsp_pc.c*/
/* Programto connect the PC through the printer adapter to the
DSP based CCD controller.*/

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
#i ncl ude<dos. h>

#i ncl ude<pr ocess. h>
#i ncl ude<ti ne. h>

/* external variables */
extern unsi gned dport, sport, cport;
/* external routines. gets the addresses of the 3 ports fromthe DOS

data RAM */
extern void set | pt_base_address(int);

/* status port */

#define pin_11 0x80
#define pin_10 0x40
#define pin_12 0x20
#define pin_13 0x10
#define pin_32 0x08

/* control port */

#define pin_17 0x08
#define pin_16 0x04
#define pin_14 0x02
#define pin_1 0x01

/* op & ip senmaphores */
#define i p_buffer_flag 0x04
#define i p_buffer Flag Oxfb

Page 209

used to interrupt the application hardware if necessary. The DSP application hardware, in this case, reads the
DATA bitsthrough itsinput port buffer U5 and sets up the flag U6-A. The host program monitors U6-A
before transmitting a new byte.

To receive a byte from the application hardware, the host monitors flag U6-B. If flag U6-B isreset, it
indicates that a byte isready for the host. Reading this byte is atricky process because the parallel printer
adapter is capable of reading only five bits at atime. To overcome this shortcoming, tristate buffers U1 and
U2 areused. Ul allows eight bits at its input and transmits only four of these to the output. Nibble control
pins 1G and 2G on U1 and U2 are controlled by the decoder outputs of U4 to determine which four of the 16
possible inputs are connected to the output pins. The four output pins of U1 and U2 are connected to the
STATUS port hits.

The host program manipulates the decoder U4 to enable the lower four bits of the incoming byte to reach the
STATUS port. The STATUS port is then read and its contents temporarily stored away. The decoder is now
manipul ated to read the upper four

Listing 11.1 (continued)

/* this flag is on bit 2 (pin 16) of the control port
and can set by a logic low on the pin 16*/

#define op_latch_flag 0x08
#define op_latch_Flag Oxf7

/* this flag is set by pulsing a low on pin 17 (bit 3)
of the control port. SET condition of this flag indicates
that the oplatch contains a new byte */

/* local routines */
unsi gned char txstat(void);
/* check to see if the o/p latch is enpty; enpty=0 */

unsi gned char rxstat(void);
/* check to see if the i/p buffer has any char; enpty=0 */

voi d tx(unsigned char); /[* transmt the char to the latch */
unsi gned char rx(void); /* receive a char fromthe buffer */
voi d enabl e_ni bbl e(unsi gned char);

/* this function controls which nibble gets connected to

the status port pins */

/* txstat: This routines checks pin_13 of printer adapter status port
if the PINis SET, the o/p latch is full & should not be witten to
again. Wien the DSP reads the latch, the PINis RESET. Now the | atch
can be witten to again */

Page 210

bits of the byte into the STATUS port. The actual byte is reconstructed by shifting the first STATUS port
read four bits to the right and bitwise ORing with the second STATUS port read result. The seventh and the
third bits are complemented to reconstruct the actual byte. Thereafter, flag U6-B is set to indicate to the
application hardware that the current byte has been read by the host. A note of caution here. The process of

Listing 11.1 (continued)

/* return value: 1 is latch ful
Oif latch enpty

*/
unsi gned char txstat (void)
{
char | atch_stat us;
enabl e_ni bbl e(1); /* this function connects the sport to nibble 1*/
| at ch_status=i nportb(sport) & pin_13;
return | atch_stat us;
}

/* rxstat: this function checks pin_12 of the status port. If the PINis
set, the buffer is full & should be read. if RESET, it is enpty. */

/* return val ue: Oif the buffer is enpty
1if the buffer is full
*/
unsi gned char rxstat(void)
{
char buffer_status;
enabl e_ni bbl e(1); /* this function connects the sport to nibble 1%/
buf fer _status=i nportb(sport) & pin_12;
return buffer_status;
}

/* tx: This routine latches a byte into the o/p latch */
/* return val ue: none */

voi d tx(unsigned char op_byte)

unsi gned char tenp;
out portb(dport, op_byte); /* latch the byte*/

/*
now set up the op latch flag to indicate that a new byte is
avail abl e

*/

Page 211

reading the eight bits of incoming data and the setting up of the flag by the host is not an atomic operation.
Theflag is set up by executing afew instructions by the host program. On my 486/66MHz PC this translates
to about 5ys.

To have an error-free data transmission, the application hardware waits for, say, 10us after it detects that the
byte has been read by the host before it transmits a new byte to the host. Such a precaution is not required
for the data transmission from the host to the application hardware because reading the byte and setting up
flag U6-A is an atomic operation.

Listing 11.1 (continued)

}

tenp=i nportb(cport) & (Oxff ~ op_latch flag);
tenp=tenp ® op_latch_flag;

out portb(cport, tenp);

tenp=tenp ~ op_latch _flag;

tenp=tenp | op_latch_flag;

tenp=tenp ~ op_latch_flag;

out portb(cport, tenp);

return;

/* rx: This routine reads the i/p 8 bit buffer */
/* return value: the byte read fromthe buffer */

unsi gned char rx(voi d)

{

unsi gned char ip_byte, tenp;

enabl e ni bble(3); /* set the buffer to read the | ower nibble */
t enp=i nportb(sport);

tenp=tenp >> 4,

enabl e _ni bble(2); /* set up the buffer to read upper nibble */
i p_byte=inportb(sport);

ip_byte = ip _byte & OxfO; /* reset lower 4 bits */

i p_byte=0x88 ™ (ip_byte | tenmp);

/* concatenate the 2 nibbles & flip 7th & 3rd bit */

/* now reset the flag to indicate that the byte has been read */
tenp=i nportb(cport) & (Oxff ~ ip_buffer_flag);

out portb(cport, tenp);

tenp = tenp | ip_buffer flag;

out portb(cport, tenp);

return ip_byte; /* return the converted byte */

Page 212

Driver Software

A sample program to communicate bidirectionally through the Host Interface Port (HIP) isillustrated in
Listing 11.1. Thelisting contains four routines that help to regulate data flow.

Listing 11.1 (continued)

VOi

{

ma

d enabl e_ni bbl e(unsi gned char ni bbl e_nunber)

unsi gned char cport _status;

cport_status=(inportb(cport) & Oxfc) ; /* isolate bit 0 & 1*/
ni bbl e_nunber = ni bbl e_nunber & 0x03;

ni bbl e_nunmber = 0x03 ™ ni bble _nunber; /* invert bit 0 & 1 */
cport_status=cport_status | nibble_nunber;

out portb(cport, cport_status);

return;

n()

unsi gned | ong count;

unsi gned char portval, tenpp, tenpq;

time t t1,t2;

FILE *fpl

int tenp=1;

clrscr();

printf("\n\nFinding Printer adapter Ipt%d . . .", tenp);
set | pt _base_address(tenp);

i f(dport == 0)

{
printf("\nPrinter adapter |pt% not installed . . .", tenp); exit(0);
}
el se
{

printf("found. Base address: %hex", dport);

portval =i nportb(sport);

printf("\n\n Dr D6 D5 D4 D3 D2 DI DO");

printf("\nStatus port value = % MW WX %X U X X X", \
(portval & pin_11)>>7, (portval & pin_10)>>6, (portval & pin_12)>>5, \
(portval & pin_13)>>4, (portval & pin_32)>>3);

portval =i nportb(cport);

printf("\nControl port value = X X X X ™ %™ "W 9w ", \
(portval & pin_17)>>3, (portval & pin_16)>>2, (portval & pin_14)>>1, \
(portval & pin_1));

portval =i nportb(dport);

Page 213

Thefunctionr xst at () reads the status of flag U6-B, which is reset by the controller to indicate that a
byte has been latched into U3. r xst at () isused by mai n() to detect the presence of anew byte before

reading the byte.

Functiont xst at () returnsthe status of flag U6-A. When the host program transmits a byte to the
controller, it resets th flag. After the controller reads the byte, U6-A is set by the controller. t xst at () is
used by the host program to ensure that any previously transmitted byte has been read by the controller.

Thefunctionsr x() andt x() receive and transmit a byte, respectively. Function r x() reads the byte sent
by the controller (asindicated by alogic O of flag U6-B). After the byteisread, r x() setsU6-B tologic 1.
Functiont x () setsup flag U6-A after a byteislatched into the DATA port register of the printer adapter.

Listing 11.1 (continued)

("\'nDat a port val ue
(portval & 0x80)>>7,
(portval & 0x10)>>4,

printf("\n\n\n");
}

/* set up reset states on the contro

out portb(cport, 0x04);
fpl=fopen("tx_rx", "w');

t1=time(NULL); /* just to log tine */
for (count=0; count <256; count ++)

{
while (!txstat());

(portval
(portval
(portval & 0x02)>>1, portval

& 0x40) >>6,
& 0x08) >>3,
& 0x01);

™ X X X", \
(portval & 0x20)>>5, \
(portval & 0x04)>>2, \

pins to logic 1 */

/* wait till the DSP application reads the previous byte*/

tx(tenmpp); /* transmt a byte*/

whil e(rxstat());

/* wait till a byte is transmtted by the DSP */

tempg=rx() ;

/* byte is available, read it */

fprintf(fpl, "TX=%, RX=%\n "
/* store it inafile */

t empp=t enpp++;
}
fclose(fpl);
t 2=t i me(NULL) ;

printf("tinme taken = % d secs",

t enpa) ;

Page 214

The main program reads the status of the printer adapter ports and then transmits a sequence of 256 bytesto
the DSP application circuit. The application circuit echoes back the recelved bytes. Thisisagood test to see
if any bytes are missing. | have run this program extensively and found it to work faithfully.

It is possible to add interrupt capability to the HIP. The interrupt signal is derived from pin 10 of the 25-pin
D aswell as the 36-pin Centronics connector (connected to bit 6 of the STATUS port). A logic 1 on
CONTROL port bit 4 enables pin 10 to interrupt the PC. The interrupt signal could be derived from flag U6-
A or U6-B. Apart from incorporating an interrupt routine, the current HIP design would need modifications.

It isimportant to note that with increasing PC speeds, it is quite possible to induce glitches on the
CONTROL port hits, especialy if you are using the standard printer cable. It is advisable to use a cable with
twisted pair wires for each signal.

Interfaceto the AT89C2051

Atmel's AT89Cxx51 represents arange of high-performance 8-bit microcomputers. AT89C2051 is alow-
voltage CMOS microcomputer with 2Kb of flash programmable and erasable read-only memory (PEROM).
Components of the AT89Cxx51 series exhibit compatibility with the MSC-51 components with regard to
the instruction set and object code. AT89C2051 is manufactured with static internal memory and operates at
up to 24MHz clock frequency.

The use of the AT89C2051 is especially attractive for the large number of 8051 devotees because it offers a
complete port from the existing 8051 or similar devicesin avariety of applications, resulting in reduced
board space, components, and cost. Consider atypical system comprised of a suitable EPROM, address
latch, 8051, and other associated components. In many applications the 8051 offers enough on-chip digital 1/
O that additional external I/0O components are not required. In such a system, asingle AT89C2051 can be
used to replace the EPROM, latch, and 8051, provided the system software can be contained within 2Kb, all
without investing any time or effort in learning a new system. AT89C2051 is packaged in a 20-pin PDIP as
well as SOIC. The AT89C2051 has the following features:

* 2Kb of on-chip FLASH PROGRAM memory
* 128 bytes of internal RAM

* Fully static operation: 0—24MHz

* Instruction compatibility with MCS51
*151/Olines

* Full-duplex programmable serial port

* 16-bit programmable timers

 On-chip analog comparator

* Low-power and power-down modes

Page 215
* Wide operating voltages. 2.7-6V
* 20-pin DIP/SOIC package

The use of static memory allows the device to be operated down to zero frequency. The AT89C2051 aso
offers two software-sel ectable save-power modes. |dle mode stops the CPU, retaining the contents of the
internal RAM while the timer/counter, interrupt system, and the serial ports function normally. Power-down
mode saves the RAM contents but freezes the oscillator, disabling all other activity until the next hardware
reset. Atmel has very judiciously squeezed a host of 8051 hardware features in a 20-pin package, and that is
what makes AT89C2051 such an exciting device; coupled with thisisthe internal 2Kb PEROM, which
greatly smplifies the task of reprogramming the device.

The amount of PEROM available on the AT89C2051 is sufficient for alot of applications, including use in
portable instruments, supervisory control applications, autonomous robots, and many more. Use as
controllersin portable instruments is further simplified by the low power consumption and wide operating
voltage range.

Hardware /O Features

The AT89C2051 allows 15 bits of 1/0O configured as eight bits on Port1 and seven bits on Port3. Port1 and
Port3 are compatible with P1 and P3 on a 8051, except Port1.0 and Port1.1.

Portl pins P1.0 and P1.1 require externa pull-ups. P1.0 and P1.1 pins also serve asinputs to an on-chip
analog comparator (+ve and —ve inputs, respectively). Portl output buffers have a 20mA sink current
capacity and can drive LEDs directly. By writing 1sto the Port1 bits, they can be used as input bits.

Port3 pins P3.0 to P3.5 and P3.7 are seven bidirectional I/0O pinswith internal pull-ups. P3.6 isinternaly
connected to the output of the on-chip comparator and is not accessible as a general-purpose 1/O pin. Port3
bits can also sink up to 20mA of current and when written with 1s, can be used as inputs.

Port3 pins can also serve the aternative functions listed in Table 11.1. If the user wants to implement these
aternative functions, the pin cannot aso be used for general-purpose |/0.

Oscillator Characteristics

The AT89C2051 data sheet states that the on-chip oscillator can be used together with a ceramic resonator
(aswell asaresonant crystal element) to provide the basic clock to the microcomputer. An external clock
source with suitable levels can be used instead of a crystal or aresonator. The operation is similar to that of
an 8051. AT89C2051 can be operated with a clock frequency between 0 and 24MHz. Thisis possible
because the chip uses static memory.

Page 216
Special Function Registers

The AT89C2051 has aregister set identical to the 8051. Thusit is possible to port any existing 8051
application to an AT89C2051 without changing the object code as long as the software limitsitself to the
available hardware resources, including memory and ports. This meansthat all jumps (I j np) and calls

(I cal I) must be limited to a maximum physical address of Ox 7FFh. This aso appliesto all the other
instructions that access memory in someform (e.g.,,cj ne jnp A + DPTR j nb, etc). The processor
does not support external DATA or PROGRAM memory access.

Using the AT89C2051

Applications that need low current consumption, power-down or sleep modes of operation, a serial port,
timers, interrupts, and 1/O pins and have small board space could use the AT89Cxx51 series.

| needed a 12-bit multichannel ADC to connect to old, discarded PCs in a certain application. Rather than
invest in new parallel ADCs, | decided to seeif my existing inventory of MAX186 ADCs could be of any
use. The MAX 186 had everything | needed, except that it operates at seria clock with a minimum clock
frequency requirement of 10us, which would be difficult to generate under program control on old, slow
PCs. | decided to build a general-purpose interface that could be used in other applications. | found that |
could use the AT89C2051 very nicely. The result of my design was an elegant solution that offers a nibble-
wide input and output interface, which, though tailored to connect to the PC parallel port, can be used
anywhere else.

Table11.1 Port3 alternative functions.

Port Pin Alternative Function

P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INTG (external interrupt O)
P3.3 INT1 (externa interrupt 1)
P3.4 TO (timer O external input)
P3.5 T1 (timer 1 external input)

Page 217

Parallelizing Serial ADC Data

Using an 8051-capacity controller to parallelize serial ADC data could be considered overkill, but rather
than spend time selecting new components, | found it more appropriate to use available components and get
the larger instrument working. The AT89C2051 microcontroller usesits serial port signal pins TxD and RxD
to connect to the MAX186. The microcontroller serial port operates in mode 0, in which the serial port
works as a shift register, either for input or output. In the shift register mode, the TxD pin supplies the shift
clock, and the RxD pin provides the data or reads the external data as per the direction. The controller
program programs the serial port as an output shift register in the beginning of the acquisition cycle, during
which the MA X186 needs 8-bit conversion parameters, channel numbers, etc. After this 8-bit datais shifted
out, the controller program converts the serial port as an input shift register and reads back the converted
ADC data as two bytes.

Figure 11.3 shows the block diagram and Figure 11.4 shows the circuit schematic of the AT89C2051-to-

MAX186 interface connected to the parallel adapter. Figure 11.5 shows the wiring scheme to connect the
AT89C2051 controller board to the PC printer adapter. The user interface of the converter consists of the
following signals:

» four bits of mode inputs that determine the mode of operation for the converter;
e atrigger input that triggers the converter into the requested mode; and

* aclear status input that is used to erase previous status information.

The outputs of the converter are:

« four bits of data;

ATBRCI051
ode MAX186 |
Salact
i fe— mnang
Drigital Impaut
ReD faE————3n - sck fe— oA
P Se— - L PSSP §
Trigges ———3t — fe———ssThn fE—
Charn ~E————— |
Chaay ——3

W*—-
1 e __I_= 0.
03~

Figure 11.3

Connecting the AT89C2051 to a serial ADC.

Page 218

Figure11.4
A parallel adapter interface to connect to aMA X186
serial ADC through the AT89C2051 microcontroller.

Page 219
« adone flag that indicates the end of |ast operation; and
« an error flag to indicate an attempt to use an unimplemented mode of operation.

The mode input to the converter determines what task the controller will perform when it istriggered. With
four bits of mode input, up to 16 modes of operation can be implemented. For this design, only 11
combinations are required. The rest can be used for later expansion. The modes are shown in Table 11.2.

Using the Converter

Thisinterface is designed in such afashion that it can be used in any embedded application as part of a small
data acquisition system or a bigger instrument. It is useful to note that the interface isideally suited for data
acquisition on PC compatibles using the parallel printer adapter. The converter provides access to eight
channels of 12-bit ADC. The analog input voltage range of the ADC is 0—4.095V and, at 12 bits, a
resolution of ImV. Listing 11.2 provides the C code to interface the AT89C2051 controller through the PC
parallel port.

A

Ji=1 /—CI TRIGGER
.n-@ ¢ CLEAR_STATUS

Ji-2 ——] MODE_0
..11-:?-- {__] DONE

Jl-]>—<:| MODE_1
.n-@—-

Ji-4 >——] uoDE_2
4:-1?-——

n-5>—<:| MODE_3

ET

Ji=10 MOATAZ

Ji=11 MOATAS

di=12 MOATAY

9!

—_— Ji=1 MDATAD
Figure 11.5
Wiring diagram to connect the
microcontroller to the parallel adapter.

Page 220

Table 11.2 Converter operation modes.

Mode Action

start ADC conversion on channel 0O

start ADC conversion on channel 1

start ADC conversion on channel 2

start ADC conversion on channel 3

start ADC conversion on channel 4

start ADC conversion on channel 5

start ADC conversion on channel 6

start ADC conversion on channel 7

read nibble 0 of the last ADC conversion result

Ol NjJOOjJO) W DN]F—L]O

read nibble 1 of the last ADC conversion result

=
o

read nibble 2 of the last ADC conversion result

Listing 11.2 Implement the AT89C2051 interface.

/ *sadc_ip.c*/

#i ncl ude <stdio. h>
#i ncl ude <dos. h>

#i ncl ude <coni o. h>
#i ncl ude <process. h>
#i ncl ude<ti ne. h>

voi d mai n(voi d)

{
int dport _|ptl, cport_|ptl, sport_|ptl, del;
unsi gned char adc_status, adc_val, cport, chan_num
unsigned char nib_ 0, nib_ 1, nib_2, nib_3, tenp, nibble[5];

[* Sign ON */
clrscr();
printf
(" AT89C2051 based serial ADC adapter for the printer port, Version 1.0");
printf("\nD.V. GADRE") ;

/*Get LPT1 port addresses */
dport | ptl = peek(0x40, 0x08);
i f(dport _Iptl == 0)
{
printf("\n\n\nLPT! not available . . . aborting\n\n\n");

Page 221

Listing 11.2 (continued)

exit(1);
}
printf("\nLPT1 address = %", dport _|ptl);
cport Iptl = dport _|ptl +2; [* control port address */
sport | ptl = dport_Iptl + 1; /* status port address */

/*initialize the ADC strobe signal s*/
cport =04;
out portb(cport | ptl, cport);

/*clear the status of controller*/

/*this generates a | ow going pulse on Cl* pin of the control port*/
cport=cport | 02;

outport(cport_Iptl, cport);

cport=cport & Oxfd;

outport(cport_Iptl, cport);

/* check if ADC is connected & working*/
adc_status=i nportb(sport | ptl);
adc_status=adc_status & 0x08;
i f(adc_status == 0) printf("\nADC connected\n");
chan_nume=0; /*set channel nunber*/
for(;:)
{

/| *set channel nunber to the controller*/

out portb(dport | ptl, chan_num;

/*trigger the controller to read the channel nunber*/
cport=cport | 01,
outportb(cport I ptl, cport);

/*wait till it reads the channel nunber and conpl etes conversion*/
adc_status=i nportb(sport_|ptl);
adc_st atus=adc_status & 0x08;
whi | e(adc_status == 0)
{
adc_status=i nportb(sport_|ptl);
adc_st atus=adc_status & 0x08;

}

/ *renove the trigger pulse. take it igh to renove the trigger*/
cport=cport & Oxfe;
out portb(cport Iptl, cport);

[*clear the status of controller*/
cport=cport | 02;

Page 222

Listing 11.2 (continued)

outport(cport | ptl, cport):
cport=cport & Oxfd;
outport(cport_|ptl, cport);

/ *now read the converted data*/
for(tenp=8; tenp<ll; tenp++)

{
/*set data port to read nibble O, 1 and 2 in that order*/

out portb(dport | ptl, tenp);

/*trigger the converter to performthe read ni bble process*/
cport=cport | 01;
out portb(cport | ptl, cport);

[*wait till it conpletes the task*/
adc_status=i nportb(sport | ptl);
adc_status=adc_status & 0x08;
whi | e(adc_st at us ==0)

{
adc_st at us=i nportb(sport | ptl);
adc_status=adc_status & 0x08;

}

/*renove the trigger pul se*/
cport=cport & Oxfe;
outportb(cport _Iptl, cport);

/*clear the status of controller*/
cport=cport | 02;
outport(cport_Iptl, cport);
cport=cport & Oxfd;
outport(cport | ptl, cport);

/*read the nibble and store it tenporarily*/
adc_val =i nportb(sport | ptl);
ni bbl e[t enp- 8] =(adc_val ~ 0x80) >> 4;
}

/*construct the full 12 bit nunber fromthe stored nibbl es*/
printf("\n % nV', nibble[0] + 16*nibble[1l] + 256*ni bble[2]);
sleep(l); /*sleep for 1 sec*/

Page 223

Chapter 12—
Hosting a Device Programmer

This chapter describes how to use the parallel adapter to host a device programmer. In an earlier chapter,
you saw how the parallel adapter is used to emulate EPROM/ROM memory. After you have used the
emulator to generate the code for a particular microprocessor application, the next step in making the
microprocessor circuit run on its own is transferring the developed code into EPROM. To do this, you need
an EPROM programmer. |f the microcontroller you're using hasits own internal memory, you need a
programmer that can handle that particular controller. Commercial device programmers can often program a
large number of devices ranging from ordinary EPROMsto PAL and PLA devicesto microcontrollers. In
this chapter | describe an EPROM programmer, as well as a programmer for the AT89C2051
microcontroller that was used in an application in the previous chapter.

An EPROM Programmer

An EPROM isamemory device that allows digital information, which could be a piece of code (as
developed with the help of the EPROM emulator), to be stored semipermanently. The storage of code inside
the memory is achieved with the help of special programming agorithms and hardware. After the datais
stored in the device, the

Page 224

dataisretained, even if the supply voltage is not applied. To erase the data from the chip, the device needsto
be exposed to UV radiation for a specified period of time.

Figure 12.1 shows the setup for programming the EPROM. Figure 12.2 shows the timing diagram for
programming the EPROM. The timing diagram indicates that the address bus is supplied with the address of
the required location that needs to be programmed. Then the program datais applied to the data bus of the
EPROM device, and the Vpp pin of the deviceis applied a voltage of +12.5V. To permanently write the data
into the device, a pulse on the CS* pin of the deviceis applied for 1ms. To ensure that the data has been
written properly, the data needs to be read back. To do this, the CS* pin istaken high at the end of the 1ms
programming pulse and the OE* pinistaken low. After that the CS* pinisalso taken low. This puts the
EPROM in read mode and the contents of the location whose address is on the address bus is output on the
data bus.

The programmer compares this data with the data that was programmed into the chip. If the comparisonis
true (that the read-back datais equal to the programmed data), the data write is complete. However, in the
case in which the comparison is not true, this procedure is repeated a maximum of 20 times. If the device
still is not programmed, the EPROM s faulty and cannot be used. In case the data gets programmed in one
of the intermediate cycles, an extra pulse of 1Imsduration is applied just as a precaution, and the
programming cycle ends. Now the next data byte at the next memory location can be applied. Thiscycleis
repeated until all required data bytes have been programmed into the device.

There are many variants of the actual programming algorithm. In the early days of EPROMS, it was advised
to apply a single programming pulse for a 50ms duration.

Data Jo—u Vec(+5Y)
Bus
Address L Vpp (+#12.5V)
Bus EPROM
o be
QE* Programmad
E* -l
Figure12.1

Programming setup for an EPROM.

Page 225

Then amore intelligent approach appeared, in which the supply voltage during programming was raised to
6V and a 100us programming pulse was applied. For most EPROMSs, the method discussed in this section
seems to work. If this approach doesn't work for your situation, see the manufacturer's data sheets for amore
exact programming approach.

Figure 12.3 shows the suggested circuit diagram for a parallel adapter-based EPROM programmer. The
exampl e shows the programmer for 27256-based EPROMS, and it should be easy to adapt the circuit for
other EPROMSs. Please note that thisis not a tested circuit.

The circuit shows four latch ICs (a 74HCT573 and three 74HCT273) connected to the DATA port signals of
the parallel adapter. The clock signals of these I Cs are provided by the CONTROL port signals C1*, C2, and
C3*. The CONTROL port signal that drives the clock input of the 75SHCT573 IC is CO*, and the default
state for thissignal is 0. To latch data into the 74HCT573 latch, the program generates a high-going pulse
on CO*. The driver program of the project should put the default state of the respective clock signals on the
CO*, C1*, C2, and C3*. For the 74HCT273 octal flipflops, the PC program generates alow-going pulse on
the respective clock input pins.

|C 74HCT573 (U2) supplies the program data to the EPROM. The I C has an output enable control pin,
which is controlled by output bit 7 of another latch (IC U1, 74HCT273). At power on, thishitisclearedto O

and thus the output of the inverter that drives the OE* signal of the 74HCT573 IC isat logic 1, putting the

output to a high-impedance (tristate) state. The data bits of the EPROM are read back by the parallel port
through the tristate buffers USA and U9B. When the EPROM datais being

LE £ 2 X 2 K LR

A

Address X
Bus
Programming data Data Flu-u tram the dwltn{..mngum ming

Vpp U\E-/ _

OE*

cs*
Figure 12.2

Timing diagram for programming an EPROM.

-

Page 226

Figure 12.3
A 27256 EPROM programmer.

Page 227

read, the data output of the U2 latch, which is also connected to the EPROM data bits, is disabled under
program control. The EPROM outputs internal data when its CS* and OE* signals are low. The OE* and the
CS* signals of the EPROM are controlled by bit 3 and bit 2 of the latch IC, U1. At power reset, these are
cleared so the EPROM outputs its data on the data pins. The Vpp voltage to the EPROM is supplied by the
Q1 and Q2 transistors, which are driven by output bit 4 of the latch IC, UL. At reset, the Q1 transistor is cut
off, so the diode D1 conducts, and the Vpp voltage is +5V. When bit 4 of Ul is 1, Q1 conducts and the

voltage at the Vpp pinis+12.5V.

The address to the EPROM s supplied by the latch ICs U3 and U4. The address output at reset is0000h.

For every byte, anew address is written into these latches under program control. With 16 address lines,
EPROMSs up to 64 Kb capacity can easily be handled by this circuit. Using the unused lines of latch IC U1,
even larger capacity EPROMSs can be programmed.

An AT89C2051 Microcontroller Programmer

In the previous chapter, you saw an application based around the 8051-compatible AT89C2051. This
microcontroller has internal programmable flash memory. Programming flash memory devicesis similar to
programming EPROM devices except

Table 12.1 AT89C2051 programming modes.

Mode RST P3.2 P3.3 P3.4 P3.5 P3.7

Write code data(1.2) 12V |low-going L H H H
pulse

Read code data(}) H H L L H H

Write lock bit 1 12v low-going H H H H
pulse

Write lock bit 2 12v low-going H H L L
pulse

Chip erase 12V low-going H L L L
pulse)

Read signature byte H H L L L L

Iinternal PEROM address is reset to 000h on the rising edge of RST and advanced by a positive

pulse onthe XTAL1 pin.

2P3.1 is pulled low during programming.

3Chip erase requires a 10ms pulse.

Page 228

that the required duration of the programming pulseis rather small. In this section, | describe asimple
programmer for AT89C2051 built around the parallel adapter.

The AT89C2051 can be programmed using a suitable programmer out of the target system. (The
AT89C2051 cannot be programmed in situ.) Table 12.1 shows the various modes for erasing, programming,
and verifying the chip.

The code memory is programmed one byte at atime. To reprogram any nonblank byte after the chip has
been programmed, the entire chip hasto be electrically erased. Erasing the chip is a simple task that requires
only afew milliseconds. Figure 12.4 shows the signals required to program the microcontroller chip, and
Figure 12.5 shows how to verify the contents of the controller memory.

AT89C2051 Programmer Hardware

Figure 12.6 shows a simple erase—program-verify type of programmer for the Atmel microcontroller. You
can add additional features, such as support for security bytes, by modifying the driver software.

The circuit diagram in Figure 12.6 shows a 20-pin ZIF socket into which the controller will be inserted. The
controller needs a certain power-up sequence. After the

ATEIC2051
ROY/BSY. e —1 pai Vee -L:— +5V

PROG—3= P3.2
T —— P33 [P S— P'l'lzlﬂl‘ll'l'l DATA

Mode = P4

——= PA5

GMD —l oND RST fee—o Vin/!/vpp

Figure12.4
Programming the flash memory in an AT89C2051.

Page 229

power is applied to the controller, the controller must be erased. Only after the controller is erased can it be
programmed with the user code.

The program data to the controller is supplied by the output of the 74HCT573 latch IC, U2. The data from
the controller can be read back using the U9 buffer |C. When the programmer driver software needs to read
the controller data, it disables the U2 latch (that supplies the program data to the controller) and generates
signalsto the controller to read the data. The 8-bit datais read back from the controller in two nibbles.

The other flip-flop ICs, U1, U3, and U4 (all 74HCT273) are used to generate programming control signals
for the controller. Z2 and Z3 are two reed relay switches that are used to switch the power and programming
voltage to the controller. On reset, the relays are off and the power to the controller ZIF socket is
disconnected. All the other control signals to the socket are in tristate condition.

After reset, the PC program reads the intelhex object code file. It then asks the user to put the controller
chip, which needs to be programmed, into the ZIF socket. After the user puts in the chip, the program
applies power to the chip and then erases the controller chip.

After the chip has been erased, the PC program applies the necessary program signals to the chip and
programs a byte in the first location. These signalsinclude the

ATESC2051

Vee F(— 5V
Vih ——3 P32
BET
Mode S— S
—_— P35
————— .
i FaT
et —t ATALI
GND — i GND RST fe&——— Vih

Figure 12.5
Verifying the flash memory in an AT89C2051.

Page 230

Figure 12.6
Atmel AT89C2051 programmer.

Page 231

mode selection bits on the P3.3, P3.4, P3.5, and P3.7 bits of the controller chip, as described in the last
section. To program the byte, the PC applies a+12V pulse using the voltage switch comprised of transistors
Q1 and Q2. It then applies control signalsto read back the programmed byte from the controller. This read-
back byte is compared with the original byte to check whether the controller is being programmed correctly.
In case of failure, the PC program prints an error message, disconnects all power and control signals from
the ZIF socket, and exits. If the read-back byte compares correctly with the programmed byte, the PC
generates control signals to increment the internal address counter of the controller chip (by generating a
pulse on the XTAL1 pin) and programs subsequent bytes into the controller until all 2,048 bytes have been
programmed into the controller.

Listing 12.1 shows the AT89C2051 programmer driver software.

Listing 12.1 AT89C2051 programmer driver software.

/*

par x. ¢

At mel AT89C2051 Progr ammer
Dhananjay V. CGadre

*/

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
#i ncl ude<dos. h>

#i ncl ude<pr ocess. h>
#1 ncl ude<ti ne. h>

#i ncl ude<al | oc. h>
#i ncl ude<ct ype. h>
#i ncl ude<stdl i b. h>
#i ncl ude<stri ng. h>

/ *port addresses of the parallel adapter*/
unsi gned int dport, sport, cport;

/ *these ports control data to the uC, voltage to the ZIF socket.*/
/*control the tri-state buffers respectivel y*/

Page 232

Listing 12.1 (continued)

unsi gned char port 0O, port_1, port_2, port_3, error_byte;
#defi ne MEMORY 2048 /*| ast address of the target controller nenory*/

/*the Intelhex file has lines of code. each line begins with a: */
/*next is nunber of bytes in the |ine*/

#define LL 1 /*offset in the hex file where the line length is stored*/
#define ADDR 3 /

offset in the hex file where the destination address is stored/

#def i ne ZERCS 7

#define CODE ST 9 /*offset of the beginning of the code*/

/* status port */

#define pin_11 0x80
#define pin_10 0x40
#define pin_12 0x20
#define pin_13 0x10
#define pin_15 0x08

/* control port */

#define pin_1 0x01
#define pin_14 0x02
#define pin_16 0x04
#def i ne pin_17 0x08

/*define to be used with port_ 1*/
#def i ne ENB_DATA 0X80 /*OR t his*/

#defi ne ENB_LOW 0X20 /*OR this*/
#define ENB_H GH Oxdf /*1101 1111, AND this*/
#define SW12V_ON Ox08 /*OR this*/
#defi ne SW5V_ON 0x10 /*OR this*/
#defi ne SW 12V _OFF OxF7 /*AND thi s*/
#define SW5V_OFF OxEF /*AND this*/
#define PULSE 0O 0x06 /* OR this 0000 0110 */
#defi ne PULSE 5 OxFD /* AND this 1111 1101 */
#define PULSE 12 OxF9 /[* AND this 1111 1001 */

/*define to be used with port_2*/
#defi ne XTAL1 0x80
#defi ne P32 0x40
#defi ne P33 0x20
#defi ne P34 0x10
#defi ne P35 0x08
#defi ne P37 0x04

Page 233

Listing 12.1 (continued)

/*defines to be used with port_ 3*/
#defi ne XTAL1 CON 0x80
#define P32 CON 0x40
#define P33_CON 0x20
#define P34 CON 0x10
#define P35 CON 0x08
#define P37 _CON 0x04

/ *1 ocal gl obal vari abl es*/
unsi gned char ranf2100];
unsi gned int curr_address;

FILE *fp1l;

/* local routines */

int initialze(void); /* initialzes the external hardware */
int fill _buffer(void); /

read the intelhex format file & fill up the internal buffer/

i nt chk_programer(void); /

*check if the progranmer is connected and if +12V is ON+/

int erase_chip(void);

int burn_verify bytes(void);

int vO_on(void); /*apply Ovolts on RST pin*/

int vb _on(void); /*apply 5volts onmthe RST pin*/

int vl12 on(void); /*apply 12V on the RST pin*/

int power_off(void); /*renove power to the ZIF socket and float all pins*/

int power_on(void): [/* apply power and put 0 V on RST and XTAL1 pi n*/
/*rest all pins float and wait for nore than 10 ns*/

voi d shutdown(void); /*routine to disable everything and to shutdown power*/
/*so that the chip can be renoved*/

/*routines to generate pul se on each of the 4 control port pins*/
voi d pul se_cO(voi d);

voi d pul se_cl1(void);
voi d pul se_c2(void);
voi d pul se_c3(voi d);

voi d pul se_cO(voi d)

{

unsi gned char tenp;

t enp=i nportb(cport);
tenp=tenp & Oxfe;

out portb(cport, tenp);

delay(1);
tenmp=tenp | 0x01

out portb(cport, tenp);

del ay(1);

Listing 12.1 (continued)

Page 234

VOi

{

VOi

VOi

d pul se_c1(void)
unsi gned char tenp;

t enp=i nportb(cport);
temp=tenp | 0x02;

out portb(cport, tenp);

del ay(1);
tenp=tenp & Oxfd;

out portb(cport, tenp);

del ay(1);

d pul se_c2(voi d)

unsi gned char tenp;
t enp=i nportb(cport);
tenp=tenp & Oxfb;

out portb(cport, temp);

del ay(1);
tenmp=tenp | 0x04;

out portb(cport, tenp);

del ay(1);

d pul se_c3(voi d)
unsi gned char tenp;

t enp=i nportb(cport);
tenp=tenp | 0x08;

out portb(cport, tenp);

del ay(1);
tenp=tenp & Oxf7;

out portb(cport, tenp);

delay(1);
}
char chartoi (char val)
{
unsi gned char tenp;
tenp = toupper(val);
I f(tenp>0x39) {tenp = tenp -0x37;}
el se {tenp=tenp-0x30;}
return tenp;
}

Page 235

Listing 12.1 (continued)

int initialize(void)
{
dport = peek(0x40, 8);
sport =dport +1;
cport =dport +2;
i f(dport ==0) return O;

out portb(dport, 0);

out portb(cport, 0x05); /*all cport outputs high, except CO*/
out portb(cport, 0x0a); /*all cport pins are |ow, except CO*/
out portb(cport, 0x05); /*all cport outputs high, except CO*/
port _0=0;

port _1=0;

port_ 2=0;

port 3=0;

return 1;

}
int fill _buffer(void)

/*read the intelhex format file & fill up the
internal buffer */
{
unsi gned char ch, tenp4, tenpl, tenp2, tenp3,;
unsi gned char chk_sum=0, buf[600], nuni10];

int line_ length, address, |ine_tenp, tenpx, count=0;
count =0;
whi l e(!feof (fpl))
{ chk _sum=0;
/* check if start of line =":" */

fgets(buf, 600, fpl);
t empx=strl en(buf);

[*printf("\n\nString | engt h=%\ n", tenpx);*/

[*printf("\n\n%", buf);*/

if(buf[0] !I'=":")

{
printf("\nError . . . Source file not in Intelhex format. Aborting");
fclose(fpl);
return O;

}

Page 241

Listing 12.1 (continued)

int burn_verify_ bytes(void)

{
unsi gned char tenp, |ow tenp, high tenp;
i nt program| ength,;
/*put P3.3 P3.4 P3.5 and P3.7 to 0111*/
[*apply data to the port0*/
[*put RST to 12Vv*/
[*pul se P3.2 for 2 ns*/
/*RST to 5V*/
/*P3.3, P3.4, P3.5 P3.7 to 0011*/
/*read data back and conpare*/

for(program.| engt h=0; program.| engt h<MEMORY; program | ength++)
[*for(;;)*/
{

curr_address=program | engt h;

port 2=port_2 & ~(P33);

port 2=port 2 | P34 | P35 | P37;

out portb(dport, port_ 2);

pul se_c2();

/*this puts the data into the data latch but the latch is yet to
be enabl ed*/

port _O=rani program | engt h];

out portb(dport, port_0):

pul se_c0();

[*put 12V on the RST pin*/
v12 on();

/ *enabl e the data on the data pins*/
port _1=port_1 | ENB_DATA;

out portb(dport, port_1);

pul se _cl1();

del ay(1);

/*now generate a pul se on P3.2*/
port 2=port_ 2 & ~(P32);

out portb(dport, port_ 2);

pul se_c2();

del ay(10);

port _2=port_2 | P32;
out portb(dport, port_2);
pul se_c2();

Listing 12.1 (continued)

Page 242

/ *now di sable the data | atch which sent the progranmm ng data*/
port | =port_1 & ~(ENB_DATA);

out portb(dport, port_1);

pul se_cl();

delay(1);
/ *put 5V on the RST pin*/
v5_on();

/*set P3.3 P3.4 P3.5 and P3.7 to read back the data*/
port 2=port 2 & ~(P33) & ~(P34);

port_2=port_2 | P35 | P37,

out portb(dport, port_2);

pul se_c2();

/ *read | ow ni bbl e*/
port_l1=port_1 | ENB_LOW
out portb(dport, port_1);
pul se _cl1();

| ow_t enp=i nportb(sport);

/ *read hi gh nibbl e*/

port _1=port_1 & ENB H GH;
out portb(dport, port_1);
pul se_cl();

hi gh_t enp=i nport b(sport);

temp= (high_tenp & Oxf0) | ((low_tenp >>4) & O0xOf);
tenmp=tenp ~ 0x88
if(tenp !'= ranfprogram.l ength])

{

}

error_byte=tenp;
printf(
"\nError in programverify at address %X (hex). Aborting .
program | engt h);
printf(
"\ nProgram data %, read back data %X\ n",
ranf program | ength], tenp);
shut down() ;
return O;

/| *generate a pul se on XTAL1 to increnment the address counter*/
port 2= port_2 | XTALL

out portb(dport, port_2);

pul se_c2();

Listing 12.1 (continued)

Page 243

port_2=port_2 & ~(XTAL1);
out portb(dport, port_2);
pul se_c2();

}

return 1;

int vO_on(void) /*apply 0 volts on RST pin*/
{

unsi gned char port_val, tenp;

port l1=port_1 | PULSE O; /*PULSE 0 is 0x06*/
out portb(dport, port_1);

/ *now generate a | ow pul se on C1* */
pul se_cl1();
return 1;

int v5_on(void) [*apply 5 volts on the RST pin*/
{

unsi gned char port_val, tenp;

port_1=port_1 | PULSE_O; /*PULSE_O is 0000 0110*/
port_1=port_1 & PULSE_5; /*PULSE_ 5 is 1111 1101*/
out portb(dport. port_1):

pul se_cl1();

return 1;

int vi2_on(void) /*apply 12 Volts on the RST pin*/
{

unsi gned char port_val, tenp;

port _l1=port_1 | PULSE O; /[*PULSE 0 is 0000 0110*/
port 1=port_1 & PULSE_12; /*PULSE 12 is 1111 1001*/
out portb(dport, port_1);

pul se_cl1();

return 1;

Listing 12.1 (continued)

Page 244

i nt power_off(void) /*renove power to the ZIF socket and float all pins*/

{

}

unsi gned char port_val, tenp;

vO_on(); /[* put O volts on the RST pin*/
port _1=port_1 & SW12V_COFF

port _1=port_ 1 & SW5V_CFF

out portb(dport, port_1); [*switch off power to the ZIF socket*/
pul se_cl1();

return 1;

int power_on(void) /* apply power and put O V on RST and XTAL1l pin*/

/* rest all pins float and wait for nore than 10 ns*/
/* then put RST and P32 to 5V*/

unsi gned char port_val, tenp;
vO_on(); [*put OV on RST pin*/

port l1=port_ 1 | SW12V_ON | *prepare port_1*/
port_1=port_1 | SWH5V_ON;

port_3=port_3 | XTAL1l _CON;, /*enable the XTAL1l control pin of port3*/

t enp=i nportb(cport); [*prepare pul se on cl*/
tenp=tenp | 0x02;

out portb(dport, port_1); /[*out put for port_1*/
out portb(cport, tenp); /*pul se cl1 | ow and back to hi gh*/

tenp=tenp & Oxfd;
out portb(cport, tenp);

out portb(dport, port_3);
/*this puts XTAL1 control to 1 and hence XTAL1l to 0*/
tenp=tenp | 0xO08; / *pul se ¢3 | ow and hi gh agai n*/
out portb(cport, tenp);
tenp=tenp & Oxf7;
out portb(cport, tenp);

del ay(2);
sl eep(1);

Listing 12.1 (continued)

Page 245

VOi

mai

/*now put RST and P3.2 to 5 Volts*/

port_2=port_2 | P32;

port 3=port_3 | P32_CON,

v5 on();

out portb(dport, port_2);

pul se_c2();

out portb(dport, port_3);

pul se_c3();

return 1;

d shut down(voi d)

port _3=0;

out portb(dport, port_3);

pul se_c3();

port _1=0;

out portb(dport, port_1);

pul se _cl1();

port_2=0;

out portb(dport, port_

pul se_c2();

return;

n(argc, argv)

i nt argc;
char *argv|[];

{

tinme_t start, endt;
unsi gned | ong tenp;

int byte value, return_val,

printf("\ n\n\n\tAtnel

2);

AT89C2051 uC Progranmer:

/*to make P32 hi gh*/

/*to enable P32 to reach the ZIF pin*/

[*this makes RST 5Vv*/

total bytes;

Version 1.0\ n");

printf("\t--------mmm e \n");

printf("\t\t
printf("\n\t\t

Apri |

Dhananjay V. Gadre");

1997.\n"); /* 30th April 1997*/

Page 246

Listing 12.1 (continued)

\n'

if(argc !'= 2)

{
printf("\nError . . . Specify Intel hex source filenane. Aborting");
printf("\nFormat: Atnmel P intel hex_sourcefile");
exit(-1);

}

i f((fpl=fopen(argv[1], "r")) == NULL)

{
printf("\nError . . . Cannot open source file. Aborting");
exit(-1);

}

return_val =initialize(); /*Initialize the printer adapter port*/
if(return_val == 0)

{
printf("\nLPT1 not available. Aborting . . .");
fclose(fpl);
exit(-1);

}

printf("\nLPT1 DATA port address = %X (hex)", dport);

power of f();

printf("\nReading Intel hex source file . . .:");
return_val =fill_buffer();
if(return_val == 0)
{
exit(0);
}

printf("\nlntel hex file % read successful. Total bytes read =%",
argv[1l], return_val);

fclose(fpl);
printf("\n\nPut the target mcrocontroller in the ZI F socket and press a key

")

getch();

power _on();

printf("\nErasing the Mcrocontroller . . .\n");
erase_chip();

printf("\nProgrammi ng and Verifying . . .\n");

return_val =burn_verify_ bytes();

Page 247
Listing 12.1 (continued)

if(return_val == 0)

{

printf("\nFailed to programthe controller at address: % (hex)\n",
curr_address);
printf("Program value: 9%\ n", ranfcurr_address]);
printf("Verify value: 9%\n", error_byte);
exit(-1);
}
printf("\nMcrocontroller programed and verified");
power _of f();
shut down) ;

printf("\nNow renove the controller fromthe ZI F socket and press a key");
getch();

Page 249

Chapter 13—
Waveform Generation Using the Parallel Adapter

Multichannel digital waveform generators are very useful as general-purpose test instruments for generating
known synchronized test waveforms. Another area where multichannel waveform generators are extremely
useful is CCD cameras. CCD chips used in these cameras rely on a number of precise, synchronized clock
waveforms to collect the charge accumulated in each of the light-sensitive pixels at the output pin of the
chip. This chapter looks at some ideas for generating multichannel digital waveforms. After you discover
that atable-top instrument with a multichannel, arbitrary digital waveform generation facility doesn't come
cheap, you may want to consider some of the following alternatives.

TheParallel Adapter Asa Waveform Generator

Y ou can use the output signals of the parallel adapter under suitable program control to generate many
channels of digital waveforms. First, plot the required states for the waveform generator on a sheet of paper.
Then mark the time duration of each state and assign each state to one of the many signals of the parallel
port. Thereafter, bunch the relevant states together and tabulate the numbers representing each state.

Figure 13.1 shows an example of a waveform composed of five digital waves with 12 states. Therelative
duration of each state is shown in the figure. The minimum

Page 250

durationis 1 unit and the maximum is 4 units. I'll assign 1 unit to be 10us. Be aware of the limitsthat this
arrangement poses (e.g., it may not be possible to generate this bunch of waveform with 1 unit of 100ns).
Typically, waveforms in which each state is >1ps may be possible.

Thefigure is al'so marked with the logic of each wave. The next step is to assign each of the wavesto a bit of
aparallel adapter port. | will assign these waveforms to the bits of the DATA port as follows: waveform O to
DO, 1to D1, and so on. The unused bits of the DATA port have been set to logic O .The 12 states (and

duration) are asfollows:

1. 0x16h, (3 units)
2. 0x1Fh, (3 units)
3. 0x1Eh, (1 unit)
4.0x14h, (4 units)
5.0x16h, (1 unit)

6. 0x0Ah, (1 unit)

L] L] | I | ® ® 0] " [] [] []]
: E :] I . A S N :
s E : o P s
g : 0 1 e o 0:i0] 1 1 v1 oo O
: ' HE B : S :
[P [I | ® ® @ L] L] 1] [] 1] (]
'] v 5 ' S '
" " [] { I | []]] []]]
. ' : : ! ! S .
1 1T e o LIS T TR T B - B R
L} L i LI | L} L] L] L] L] L]
i B [[T | [] (] [l [] [W
’] : 1 S : T I ¥ 1 :
. - = = B : ooy :
- ' HEH N : t ip+ o+ O :
2) 1 b 1 M1 ¢l >0 :0 :0 : : 0 :
P L] [. L I | n L] L] L] L] L]
]] : !] 2 8 : S S .
¥] [I LI | L} (] L] L} L] L]
] 4 ' 4 E— . '
¥ L} B i L} (] L] L] L]
v 0 : 0 T LR B B o: 0 '
3 | Tm— .ll.l i L] L] (] i1 i ")
i [] [| n] L [] §
' ' - S : - :
¥ L] L. E® 0 L}] L] L] L] L]
I] P s
5 ¢ 1 3 1 o1 8l 0 17 101050 LI
' I R o L P PR
.3 3 o4 T2y otz o4
' ' s I i H : g o vz '
' ' ooy LS U o - = '
' ' i v : - :

Figure 13.1
A sample multichannel digital waveform.

Page 251

7.0x0Bh, (3 units)
8. 0x1Bh, (2 units)
9. 0x0Bh, (2 units)
10. 0x0Ah, (2 units)
11. 0x02h, (2 units)
12. 0x12h, (4 units)

| must now write a program that allocates a buffer of size 12 and initialize the buffer with the values
generated above. Next, | need to create a delay routine that provides adelay of 1 unit, which in this case
corresponds to 10us. Listing 13.1 illustrates this example. Y ou should create a delay routine specific to your
own hardware if you want to run the waveform generation program. For this case, the unit of each stateis
10us, so the delay routine provides delay in multiples of 10us, depending upon the argument passed to it.
The main program initializes two arrays, one with the required state values and the other with the
corresponding state time. Then an infinite loop is entered in which, first of all, the externa interrupts are
disabled. This ensures that during the time the waveform generator is generating the required states, it runs
uninterrupted. At the end of one run, the interrupts are enabled so that pending interrupts can be serviced
before the waveforms are generated again.

Listing 13.1 Arbitrary waveform generator.

[*sarbit.c*/
/ *Super sinple Arbitrary waveform generator*/

#i ncl ude<st di 0. h>
#i ncl ude<dos. h>

#defi ne MAX_STATES 12

#define UNIT 100 /*define the count for UN T*/
[*for our case UNIT nust translate to 10 us*/

/*a specific delay routine tuned to produced the required del ay*/
voi d nydel (unsigned int);

voi d nydel (unsigned int dtine)
{
unsigned int |ooptine, tenp;
for(looptime=0; |ooptinme<dtine; |ooptinme++)
for(tenp=0;tenp<UNIT; tenp++);

Page 252

Asyou can see, this scheme has many problems. For every waveform generation requirement, you have to
plot the waveform and mark all state and time entries. Then you have to alter Listing 13.1 to meet specific
requirements. Also, you will have to adjust the delay count if you want to use the program on a different
machine.

The other serious problem is the lack of repeatability of the waveforms. After each bunch of waveformsis
generated, the system interrupts are enabled — you cannot disable the interrupts forever — which means
that the time after which the waveform generator will run again is arbitrary; for serious applications this may
be unacceptable.

Traditional M ethods of Waveform Gener ation

Conventiona methods of digital waveform generation involve storing the required waveform patternsin
memory and then clocking a binary counter that provides address and readout signals to the memory device.
The diagram in Figure 13.2 illustrates this scheme. The memory device, such asan EPROM or ROM is
loaded with the required waveform pattern. The unit of timeis the time period of the basic clock source,
which in turn is dictated by the required resolution. If the two closest edges

Listing 13.1 (continued)

mai n()

{ unsi gned char wstate[12], tenp=0;
unsi gned i nt wdel ay[12];
unsi gned i nt dport=0x378;
/*set the address of the DATA port*/

/*assign the required states to the array el enents*/
wst at e[0] =0x16;
wst at e[1] =0x1F;
wst at e[2] =Ox1E;
wst at e[3] =0x14:
wst at e[4] =0x16;
wst at e[5] =0x0A;
wst at e[6] =0x0B;
wst at e[7] =0x1B
wst at e[8] =0x0B;
wst at e[9] =0xO0A;
wst at e[10] =0x02;
wst at e[11] =0x12;

/[*assign the required delay tine to the array el enents*/
wdel ay[0] =3;
wdel ay[1] =3;

Page 253

are 1us apart, the basic clock of the system must be at least 1js. If the total duration of the sequenceis
100ms, the number of memory locations would be 100,000 locations. So for an 8-hit digital waveform with
aresolution of 1usand alength of 100ms, a 128Kb EPROM would be suitable for storing the required
sequence.

Simpler methods of waveform generation using this scheme would probably store the required waveform at
one time outside the waveform generation circuit (using, say, an EPROM programmer), then the memory
chip would be plugged into the circuit. For in situ waveform loading capability, a more complex control
circuit (along with a communication link to a host) would be needed.

One drawback of this schemeisthat it requires alarge memory capacity. That in itself is not a problem, but
one has to generate large sequences of data and carefully program the memory chip. Any error in thiswould
result as an error in the output waveform. With so many bytes to program, the chances of mistake are not
insignificant. The total number of bytes required to store the waveform sequence is equal to the ratio of the
total time of the waveform to the required resolution. (In the last example, theratio r is 100ms/1us =
100,000 bytes.) If more digital signals are required, additional memory isrequired. This scheme of
waveform generation would need 28

Listing 13.1 (continued)

wdel ay[2] =1;
wdel ay[3] =4;
wdel ay[4] =1;
wdel ay[5] =1;
wdel ay[6] =3;
wdel ay[7] =2;
wdel ay[8] =2;
wdel ay[9] =2;
wdel ay[10] =2;
wdel ay[11] =4;
/*do it for ever*/
for(;;)
{
di sable(); /*disable external interrupts*/
/*generate the wavefornms with getting disturbed*/
for(tenmp=0; tenp<MAX STATES; tenp++)
{
out portb(dport, wstate[tenp]);
nydel (wdel ay[tenp]);
}

enabl e(); /*now enable interrupts agai n*/
/*so that pending interrupts can be serviced*/

Page 254

memory locations. The clock to increment the binary counters generating the memory address runs at 1us
(because this is the minimum time between any two edges). If, however, | ater the waveform just alittle bit
so that the time between two of the edges is 100ns, the number of required memory locations increases to
280 locations.

An Unconventional Method of Waveform Gener ation

In addition to the common method of generating digital waveform sequences discussed in the preceding
section, another method can save on the required number of memory bytes. The previous method encodes
the required state in memory locations. The alternative method not only stores the required state but also
stores the required duration for that state. Thus, instead of storing each and every entry at arate deter-

Erasabla
Memory (E——
|
Bi Data -
ey Lines ™
Counter tldﬂ"“‘ .
Chain nes Waveform
i Qutputs
p————
A AR
Output
Enabla
Basic
Clock
qgenerator
and
Control
Clreult
Figure 13.2

Conventional, digital, multichannel waveform generation mechanism.

Page 255

mined by the required resolution for the required waveform table, this method only stores the transitions and
the time between two transitions. The required time between each transition is loaded into a programmable
down-counter, which is clocked by a source of clock at arate equal to the required minimum time on the
waveform sequence. With every clock tick, the counter decrements by one, and when the count reaches zero,
the counter stops. This generates the timer expire signal. The timer expire signal enables the waveform state
FIFO and reads the top byte, latching it into the output state latch. The timer expire signal also enables the
lower waveform duration FIFO, reads out the entry, and loads it into the counter. The counter then startsto
count down again till it reaches zero, and the output of the state latch remains stable for this duration.

The FIFOs are |oaded by the PC with suitable values, as required by the particular waveform sequence.
These values are previously calculated and stored as a waveform table file, say, in asimple four-digit hex
format, as shown in Listing 13.2. The first two hex digits may represent the state and the next two hex digits
the duration. If | use a programmable timer with 8-bit input, the duration could be changed between 1 and
255 units of clock period. For some cases, a duration of 255 units may be insufficient, so arepesat entry
could also be used, as shown in Listing 13.2.

The reason for using the FIFOs to store waveform state and duration valuesis that aslong as the FIFOs are
not empty, waveform generation can go on without any active supervision of the PC. This means that
precise waveform sequences can be generated. The PC monitors the FIFO-full signal and, aslong as the
FIFO isnot full (or the end of the waveform table file is not reached), it transfers data to the two FIFOs. The
depth of the FIFOs should be sufficient to tide over any period for which

Listing 13.2 Structure of afileto store the waveform table.

[*Possi ble structure of the file to store the waveformtabl e*/
[*The file has 10 entri es*/

1603 /*1st entry*/

2340

2060

21FF /*here the duration required is nore than the 8-bit range of
2180 /*the tine. So a repeat entry is used in this |ine*/

2050

1021

1F02

0F20

OE40

[*end of the file*/

Page 256

the PC cannot service the FIFOs. If the worst case latency in writing to the FIFOs is 100ps (due to servicing
interrupts or other activities) and if the frequency of the basic clock is 100ns, with an assumption that a
worst case waveform isonly 1 unit of time for every state, the FIFO should have sufficient depth that it can
survive 100us. With 100ns for each waveform state, the required FIFO depth is 1,000. Thus a 1Kb-deep
FIFO can be used.

Y ou can see that this method is much like the first method of waveform generation (which used the ports of
the parallel adapter to output the required sequence under program control), except here the time between
the two transitions of the waveform sequence is counted by an external timer.

The block diagram of this unconventional waveform generator is shown in Figure 13.3. For an 8-bit
implementation, two FIFOs, each of 8-hit width, are required. A suitable programmable timer could be the
7415592, which is an 8-bit programmable up-counter.

FIFO Cutput

Ay Latch
= -
Wavelorm
States OE b Output

WH* [e Wavelorm
; Signala

DATA Bt
of the
parallal
adaplor

FIFD Progra-

Momory 1o mmable | | Timer axpiry
Timer slgnal

duration OE

oY LA

Basic
Clock Basic clock
Ganaralor
and Control
Clroubt

Figure 13.3
An elegant method for generating multichannel arbitrary digital waveform sequences.

Page 257

Chapter 14—
Data Acquisition under Linux

This chapter describes how to port hardware devel oped under DOS over to Linux. Linux isaUnix-like
multiuser, multitasking operating system for PC platforms with a 80386 or higher processor. Linux has
made great inroads into the Unix market. The reason for this successis because Linux is freefor all practical
purposes and runs on the popular PC machines.

Linux began as a hobby for Linus Torvalds, a graduate student at Helsinki University, and it quickly caught
the imagination of scores of kernel hackers al over the world. Today, you can obtain Linux free over the
Internet or pay about US$50 for aLinux CD-ROM distribution kit. There are score of books explaining the
features of Linux and a monthly Linux periodical aswell. All the arguments for the choice of Unix asan
operating system hold true for Linux. For the experimenter wanting to connect computers to external
hardware for data logging and/or control, connecting to a machine running Linux (or Unix) is a nightmare;
at least thisis very true for those who have grown up with BBC micros, ZXs, and IBM PCs (running DOS).
These machines allow you to connect to the required hardware with asimple BASIC program. However,
only asingle task at atime could run on these machines and any programming error could crash the system.
These machines allowed the user complete control of the computer hardware without any supervisory
control. With machines running Linux, thisis no longer true. Errorsin user programs under Linux cannot
crash the entire machine. However, Linux requires special device driversto connect any deviceto the
computer. In order to understand how to interface Linux machines to external hardware, you must start with

an understanding of the philosophy of device interfacing under Unix. Linux, like Unix, interfacesto
hardware devices through a special set of filesthat are part of the file systenn. These files are called device
filesand are of two types. character devicesfiles or block device files.

Page 258

The use of afile-like interface to hardware devices promotes a uniform approach to data transfer. Thisalso
compels adevice driver to be written in a uniform manner, presenting a uniform set of interfaces via the fops
(file operations) structure. All hardware device-specific functions are encapsulated in the open, cl ose,
read,witeamdi ocnt| modules of the fops structure. This enables you to use the same file-level

access control mechanisms to control access to the hardware device. The next question is whether the 1/0O
ports of the PC should be accessed directly. The answer isyes, but you must invoke system root privileges
to directly access the hardware.

In this chapter, | will describe such adevice driver, which was created for a 12-bit resolution, multichannel
ADC system. In the second part of the chapter, | will show an application of this system: a weather data
recording and display facility for the Internet.

A General-Purpose Data Acquisition System for Linux

This section describes a general-purpose data acquisition system for Linux. The end result isasimple
hardware unit that, together with the SanSonl1gp_das device driver described later in this chapter, can be
hooked to a PC parallel port to record eight channels of analog voltage. The input range for each channel is
0-4.095V. The rate at which the data can be recorded is limited by the speed of the PC (for a486 DX2 at
66MHz, the speed is about 160ps/sample, as compared to 220us on a 386 at 20Mhz). The hardware used in
this example isthe MAX186 ADC interface for the parallel adapter, described in Chapter 8.

The SanSon device driver was developed in collaboration with my friend, Sunu
Engineer. The acronym SanSon is a deep secret known only to our wives.

Testing Hardware On Linux

If adding hardware to a Linux machine requires you to add a specialized device driver, how can you run
preliminary tests without the aid of the device driver? The answer isthat, if you login with root privileges,
all ports are accessible without any supervisory control. This alows the user to test the hardware, but puts
the machine at the risk of a system crash.

Thecodein Listing 14.1 (t est por t . ¢) shows how to access I/O ports with root privileges. The parallel

adapter DATA port address was determined by putting the machine in DOS mode — later in this chapter |
will show how to obtain the parallel adapter DATA port address from within Linux. The functioni oper m

() isanimportant function. With this function, the program obtains permission to access requested

Page 259

ports. Y ou can also use the similar functioni opl (), buti opl () givesunlimited access to the program
and should be avoided. Another feature that isimportant to note is the syntax of the macro out b() . DOS
programmers are used to the similar function out por t b(port _address, port_val ue), but with
the gcc compiler, the structureisout b(port _val ue, port _address) . The programinthe
following listing sends a

Listing 14.1 Access |/O portswith root privileges.

/* testport.c */

/* conpile as: gcc -0 testport.c */

/* Execution is possible only as a superuser*/

/* ___ */

#i ncl ude <asmi o. h>
#i ncl ude <asm segnent. h>
#i ncl ude <asm system h>
#i ncl ude <uni std. h>

int ioperm);
#defi ne port_add 0x378

voi d main()

{

unsi gned char test val ue;
int ret_val ue;

ret val ue=i operm(data_port, 3, 1);

if (ret_value == -1)
{
printf("Cannot get I/O perm ssion\n");
exit(-1);
}
out b(0x55, port _add);

t est val ue=i nb(port _add);
printf("\nvalue at Data port= %\n", test val ue);

t est _val ue=i nb(port_add+1);
printf("\nvalue at the Status Port= %\n", test_val ue);

t est _val ue=i nb(port_add+2);
printf("\nValue at Control Port= %\n", test_value);

Page 260

byte to the DATA port and reads it back. It also reads the contents of the STATUS and CONTROL
registers. The value sent to the DATA port and the value read back should be the same, unless the port bits
are being pulled externaly.

The SanSon Device Driver

Now that you know how to access the parallel adapter port with superuser privileges, it istime to discuss the
devicedriver.

As mentioned previoudly, it isimportant to have a device driver for the ADC under Linux so that the
computer can operate the device efficiently (while in user mode) in a multitasking environment. It is not
possible to detail the construction of a character device driver under Linux here, so | will mention only the
most relevant features and the procedure we used when we wrote the SanSon device driver.

1. Write and test the code to evaluate the ADC performance with superuser privileges.

2. Write a character device driver for the ADC and link it to the kernel at compile time.

3. Write a set of functions that can be used at the user level to open the device and read the datain real time.
The following sections detail the implementation of this process.

Initial Steps

As mentioned in the section "Testing Hardware on Linux," we wrote some test code as superuser to access
the parallel port directly using thei oper n() ori opl () calsin Linux, which allow the program to

access awindow of specified width into the 1/0 space. The code tests for the presence of a parallel port,
identifies which port is to be used, tests for the presence of the device (i.e., the ADC), and reads data from
the device directly using the Linux i nb() and out b() calls.

As mentioned before, this testing can cause the system to hang (with a reboot as the only option), so you
must be careful while doing this on afully operational multiuser system. Also, it is better to usethei oper m

() call rather thani opl (), becausei oper () alows only restricted accessto /O ports.

Once satisfied that the ADC isworking as expected, move on to the process of constructing the device
driver and integrating it into the kernel.

Structure of the Device Driver
Thedriver code is structured as follows:
e includes

* global variables

Page 261

» adc_open: opensthe device for reading if it is not already open (i.e., checks whether the variable
adc_busy isset, and if not, permits the user program to open the device file corresponding to the ADC and
read from it

e adc_cl ose: closesthe device and frees it

» adc_r ead: transmits the control byte corresponding to the minor device selected (Channel Chosen),
readsani nt from the ADC (the result of the conversion process, properly offset) and transfersit to the user
space from the kernel space

test parall el port:testsforthe presence of aparalel port and returns the port address (Not
Robust or Complete in the current implementation)

*t est _adc: testswhether the ADC is connected and powered on in the specified parallel port
e adc_f ops: declares and initializes structure
eadc_i nit: described later in this section

For the newer Linux kernels (1.2 onward), thereisadirectory called / usr/ src/ I i nux/ dri vers/
char where the character device driver codes are placed. Thedriver hasadr i ver nane_i ni t function,
which, for the newer kernels, returnsani nt and takesavoi d, which serves as the point of linking to the
kernel. In the source code nem c¢ (available on the companion code disk) directory / usr/ src/ | i nux/
dri vers/ char,thereisthefunctionchr _dev_i ni t inwhich onesimply addsadevi cenane_i ni t
call and recompilesthe kernel.

Listing 14.2 (ADC. c) isthe complete device driver code, which containstheadc i ni t code. Listing 14.3
isthe header file ADC. h used by ADC. c.

Linking the Device Driver into the Kernel

The process of recompilation of the kernel involves:
ecdto/usr/src/linux/drivers/char

 edit Confi g. i n toinclude

bool 'SanSon Ceneral Purpose ADC Support' CONFI G_SANSON_ADC

 Edit the Makefile to include

i f def CONFI G_SANSON _ADC
L_OBJS += ADC. 0

endi f
ecdto/usr/src/linux

» typemake confi g and answer all queries appropriately

«typemake cl ean; make dep

« typemake zl mage to be safe, and wait for the make to finish (this can take 45 minutes or more)

Listing 14.2 Device driver code.

Page 262

/* ADC.c */

#i ncl ude<l i nux/ errno. h>
#i ncl ude<l i nux/fs. h>

#i ncl ude<l i nux/ maj or . h>
#1 ncl ude<l i nux/ kernel . h>
#i ncl ude<l i nux/ si gnal . h>
#i ncl ude<! i nux/ nodul e. h>
#1 ncl ude<l i nux/ sched. h>
#1 ncl ude<asni i o. h>

#i ncl ude<asni segnent . h>
#i ncl ude<asni syst em h>

#i ncl ude " ADC. h"
extern int printk(const char* fnt,

i nt adc_busy=0;
/* continued

Listing 14.3 Header file used by ADC. c.

)

*/

/* ADC. h */

#i ncl ude<sys/ioctl. h>
#defi ne ADC_ MAJOR 31
#define ADC_M NOR 8

#defi ne CHANNEL O 0
#defi ne CHANNEL 1 1
#defi ne CHANNEL 2 2
#def i ne CHANNEL 3 3
#defi ne CHANNEL 4 4
#defi ne CHANNEL 5 5
#defi ne CHANNEL 6 6
#defi ne CHANNEL 7 7

#define PARALLEL 1 0x378
#defi ne PARALLEL 2 0x3bc
#defi ne PARALLEL 3 0x278

#define ADC_BUSY 1
#defi ne ADC_FREE 0

#def i ne ADC_AVAI LABLE 1
#defi ne ADC_NOT_AVAI LABLE 0

Listing 14.2 (continued)

Page 263

unsi gned short data_port,control port,status_port;
static int adc_open(struct inode * inode,struct file * file)

{

unsi gned i nt m nor=M NOR(i node->i _rdev);

if (mnor>7) return - ENCDEV,
i f (adc_busy==ADC BUSY) return -EBUSY,;

adc_busy==ADC_BUSY;
return O;

}

static void adc_cl ose(struct inode * inode,struct file * file)

{
}

static int adc_read(struct inode * inode,struct file * file,
char * buf,int count)

adc_busy=ADC FREE;

{
unsi gned char data[16];

i nt adc_val;

unsigned int tenp_val;

int tenpl, tenp2,tenp3;

unsi gned i nt m nor=M NOR(i node->i _rdev);

if (count < 1) return -EINVAL,
switch (mnor)
{
case CHANNEL_ O:
t enpl=0x8f;
br eak;
case CHANNEL 1:
t enpl=0xcf;
br eak;
case CHANNEL 2:
t enpl=0x9f;
br eak;
case CHANNEL_3:
t enpl=0xdf;
br eak;
case CHANNEL_4:
t enpl=0xaf;
br eak;
case CHANNEL 5:
t enpl=0xef;
br eak;

Page 264

» for safety, make a bootdisk with your old kernel

* copy thezl mage fileindirectory / usr/ src/ 1 i nux/arch/i 386/ boot to/vm i nuz or whatever
your kernel imageis

stypel il oifyouuseLILO

* reboot

« if the kernel hangs, boot with the bootdisk, fix bugs, and go through the same steps again

» skipthemake cl ean (after you have done it once) to speed up the compilation and linking process

Listing 14.2 (continued)

case CHANNEL_6:
t enpl=0xbf ;
br eak;
case CHANNEL_7:
t enpl=0xff;
br eak;
defaul t:
t enpl=0x8f;
br eak;
}
cli();
for(tenp2=0; tenp2<8; tenp2++)
{
tenp3= (tenpl << tenp2) & 0x80;
out b(tenp3, data_port);
tenp3=tenmp3 | 1,
out b(tenp3, data_port);
outb(tenp3,data_port); /* this is to make the clk 50% duty cycl e*/

/* Duty cycle as nmeasured with a 66 MHz 486 is 48% */
tenp3=t enp3 & Oxfe;
out b(tenp3, data_port);

}

tenp3=t enp3 & Ox7f;

out b(tenp3, data_port);

for(tenp2=0; tenp2<16; tenp2++)
{
tenmp3= 01,
out b(tenp3, data_port);
dat a[t enp2] =i nb(dat a_port +1) &x80;

Page 265

» make the devicefilesin/ dev directory:

nknod /dev/adcO ¢ 31 O
nknod /dev/adcl ¢ 31 1
nknod /dev/adc2 c 31 2
nknod /dev/adc3 ¢ 31 3
nknod /dev/adc4 c 31 4
nknod /dev/adc5 ¢ 31 5
nknod /dev/adc6 ¢ 31 6
nknod /dev/adc7 ¢ 31 7

Listing 14.2 (continued)

tenp3=t enp3 & Oxfe;
out b(tenp3, data_port);
out b(tenp3, data_port);

}
sti();
adc_val =0;

for(tenp2=0; tenp2<16; tenp2++)

{
tenp_val =((unsigned int) data[tenp2] & 0Ox00ff) << 8§;
adc_val = adc_val | ((tenp_val ~ 0x8000) >> tenp2);

}

adc_val =adc_val >> 3;

put _fs word(adc_val, buf);

[* printk("ADC: Input value fromport: %\ n",adc_val); */
return 1;

}

static struct file_operations adc_fops=
{ NULL,
adc_read,
NULL,
NULL,
NULL,
NULL,
NULL,
adc_open,
adc_cl ose,
NULL
b

Page 266

Listing 14.2 (continued)

int init_nodul e(void)

{
unsi gned char ret_val,test_val =0x00;
out b(test val, PARALLEL _1);
ret val =i nb(PARALLEL 1) ;
if (ret_val ==test_val)
{
data_port =PARALLEL_ 1;
}
el se
{
out b(test val, PARALLEL 2);
ret val =i nb(PARALLEL 2);
I f (ret_val ==test_val)
{
dat a_port =PARALLEL_2;
}
el se
{
dat a_port =PARALLEL_3;
}
}
printk("ADC. init nodule \n");
if (register_chrdev(ADC MAJOR, "adc", &adc_fops))
{
printk("Register_chrdev failed: Qitting\n");
return -EIQ
}
el se
{
printk("ADC. Device Registered\n");
return O;
}
}
voi d cl eanup_nodul e(voi d)
{
i nt busy=0;

printk("ADC. C eanup Module \n");
i f (adc_busy==ADC BUSY) busy=1;
if (busy) printk("ADC. Device busy, renove |ater\n");
if (unregister_chrdev(ADC MAJOR, "adc")! =0)
{

}

printk("ADC. Cl ean up nodule failed\n");

Page 267

After compilation and linking, the resulting kernel isinstalled in the system. The ADC device is connected
to the parallel port and powered on. While booting, the kernel callstheadc i ni t function, which

* tests the parallel port to find the port base address,
» tests whether ADC is connected to the port and powered on, and
* if yes, registers the device with the kernel with a chosen mgjor number (in this case 31).

Listing 14.2 (continued)

el se
{
printk("d ean up nodul e succeeded\n");
}
}
unsi gned short test parallel (void)
{

unsi gned char ret_val,test_ val =0x55;
unsi gned short dport;

out b(test _val, PARALLEL_3);
ret _val =i nb(PARALLEL_3);
if (ret_val ==test _val)

{
dpor t =PARALLEL_3;
}
el se
{
out b(test _val, PARALLEL 1);
ret val =i nb(PARALLEL_1);
if (ret_val ==test _val)
{
dport =PARALLEL_1;
}
el se
{

out b(test _val , PARALLEL_ 2);
ret val =i nb(PARALLEL_ 2);

Page 268
Dynamically I nstalling Modules

Another way to include the device driver into the kernel isto dynamically insert it into arunning kernel.
Thisrequires that the device driver contain two functions: i ni t _nodul e and cl eanup_nodul e.

Dynamic installation into arunning kernel is done through thei nsnod ADC. o command. The dynamic
installation can be removed by the command r nmod ADC. This also requires that the string
ker nel _ver si on bedefined in the driver as:

Listing 14.2 (continued)

if (ret_val ==test_val)

{
}

el se

{

dpor t =PARALLEL_1:

printk("No Parallel Port Available\n");
return -EIQ

}
}
return(dport);

}

int test_adc(void)
{
unsi gned char chyte;
cbyt e=i nb(dat a_port +2) ;
cbyt e=cbyt e&0xf e;
out b(cbyte, data_port +2);
cbyt e=i nb(dat a_port +1);
cbyt e=cbyte & 0x80;
if (cbyte) return ADC_NOT_AVAI LABLE;
cbyt e=i nb(dat a_port +2);
cbyt e=cbyt e| 0x01;
out b(cbyte, data_port +2);
cbyt e=i nb(data_port+1);
cbyt e=cbyt e&0x80;
if ('cbyte) return ADC NOT_AVAI LABLE;
return ADC _AVAI LABLE;

}

int adc_init(void)

{

int adc_stat;

Page 269
static char * kernel'versi on=UTS RELEASE;

If the kernel complains of a mismatched version, the module can beinstalled usingi nsnod - f ADC. o.
Thei ni t _nmodul e function does the job of testing and registering the ADC driver with the kernel.

Listing 14.2 (continued)

printk("\n\n");
printk(" General Purpose DAS : Gadre and Engineer \n");
printk(" Copyright 1996 The Peshwe at | UCAA , Pune\n");

data_port=test_parallel();

if (data_port!=0x378 && data_ port!=0x278 && data_port!=0x3bc)

{
printk("Parallel Port Not Avail able\n");

return -ElI NVAL;
}

printk("The Code detected % as the parallel port in this machine\n",
data_port);
adc_stat=test adc();

i f (adc_stat==1)

{
printk("ADC. registering driver\n");
If (register_chrdev(ADC MAJCOR, "adc", &dc_fops))
{
printk("Register _chrdev failed: Quitting\n");
return -ElQ
}
el se
{
printk("ADC. Device Registered\n");
printk(" \t\t SanSon DAS testing Successful \t\t \n\n");
return O;
}
}

printk("ADC not connected\n");
printk(" \n\n");
return -ElQ

Page 270
Using the ADC

Once the registration is complete, it is very simple to use the ADC. If you wish to use the user functions
provided in fileuadc. c (available on the companion code disk), simply use the call:

adc(CHANNEL_NUMBER, DEVI CE_OPEN)

followed by any number of adc(CHANNEL _NUMBER, DEVI CE_READ) callsand finally an adc
(CHANNEL_NUMBER, DEVI CE_CLOSE) cal | . Then repesat the process with any channel (0-7). The

code as currently implemented allows only one user process to access any one channel of the ADC at a
given time. The various channels on the ADC are configured as single-ended, unipolar inputs. The low-level
way to access a channel isto open (with asystem open call) the devicefileinthe/ dev directory

corresponding to the required channel number. The filesarenamed / dev/ adcO-/ dev/ adc7 and are
made using the mknod command as superuser:

mknod /dev/adcO ¢ MAJOR M NOR

Eight such files are made with the same major number (31 in this case) and different minor numbers (0-7)
for the eight channels of the ADC. If the open returns true, one can read two unsigned char s from the

buffer obtained using ar ead call on thefile

Listing 14.4 Access a device using a user function call.

/* use_adc.c */

/* conpile as : gcc -O use_adc.c */
/* Ordinary user node */

#i ncl ude "uadc. h"

i nt mai n(voi d)
{
int ret _val;
long i;

ret val =adc(CHANNEL_3, DEVI CE_OPEN) ;
if (ret_val==0) printf("Device Successfully Opened\n");
for (i=0;i<=1000000L; i ++)
{
ret val =adc(CHANNEL 3, DEVI CE_READ) ;
printf("Data fromdevice is %\ n",ret_val);
}
ret val =adc(CHANNEL 3, DEVI CE_CLCSE) ;
return O;

Page 271

descriptor returned by an open. These two can be reassembled to form the actual output, after typecasting
toani nt . Thedevicefile must befinally closed withacl ose(fil e descri ptor) cal.

Listings 14.4 and 14.5 are sample programs using the user functions and accessing the driver at a system
function level. Listing 14.4 (use_adc. c¢) shows how to access the device using a user function call.

Listing 14.5 shows how to access the device using the system open call.

Using the DAS to Log Temperature

The data acquisition system described in this section records the ambient temperature of the surroundings
using the circuit schematic below and the user codein Listing 14.6 (I og_t enp. ¢). The code accesses

ADC channel 3 using the function adc() .

o +5Y
|

f
Y R1 (2Kohm)
/

Channel 3 input ¢------ o

A

% LM236 Temp. sensor

ADC input GND {mmmns o
f* log'temp.c */

f* uadc.c *f
S ouadc.h */f

Hosting a Weather Station On the WWW

In view of the increasing importance of the Internet as an information transfer medium, you may someday
wish to implement a scheme that acquires datain real time and places it on the net. In this section, | will
describe an extremely simple scheme to acquire experimental data using suitable hardware in a networked
environment and distribute this data over a network. In the absence of any standards for

Page 272
dynamic information distribution, | have chosen to implement a design that is most importantly:

» simple — the required hardware and software is easily constructed and maintained, inexpensive, and
readily available, and

* stable — the design must have a high degree of reliability.

The system described here relies on a compact data acquisition card that we have built, which plugsinto a
free parallel port on a PC together with a corresponding Linux

Listing 14.5 Access a device using the syssemopen cal | .

/* sys_adc.c */
/* conpile as : gcc -O sys_adc.c */
/* used in Ordinary user node */

#i ncl ude <stdi o. h>

#i ncl ude <fcntl. h>

#i ncl ude <sys/ioctl.h>
#1 ncl ude "adc. h"

i nt mai n(voi d)

{

int fd;

unsi gned char buf[5];

i nt count=2;

int i;

f d=open("/ dev/ adc3", O RDONLY)

if (fd<0)

{
printf("Could not open device\n");
abort();

}

el se

{
printf("ADC Channel 3 opened\n");

}

for (i=0;i<=100;1 ++)

{
read(fd, buf, count);
printf("Reading No:% % \n",i, ((int)buf[1]*256+(int)buf[0]));
sleep(1);

}

cl ose(fd);

return O;

}

Page 273

driver described in the last section. The data is acquired through user-mode interfaces and converted to
HTML format for distribution on the net by a daemon program.

/* Open adc device */

i f (adc(channel , DEVI CE_OPEN) != -4)
/[* channel = ADC channel = 0 to 7 */
{

/* Read a data value from adc */
dat a_poi nt =adc(channel , DEVI CE_READ);

Listing 14.6 Access ADC channel 3using adc() .

/* log_tenp.c */

/* conpile uadc.c with: gcc -c uadc.c */

/* then conpile with: gcc -Olog_tenp.c uadc.o */
/* used in Ordinary user node */

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude "uadc. h"

int main(int argc, char * argv[]))
{

i nt data_point;

float tenp;

int i;

if (argc < 3)

{
fprintf(stderr,"Usage: argv[0] Nunber_of mnutes output file\n");
return -1;

}

i f (adc(CHANNEL_3, DEVI CE_OPEN))
{
outfil e=fopen(argv[2],"w");
for (i=0;i<atoi(argv[1l]);i++)
{
dat a_poi nt =adc(CHANNEL 3, DEVI CE_READ) ;
tenmp=(fl oat) (data_point-2730)/10.0;
fprintf(outfile,"%d % \n",i,tenp);
sl eep(60);

}
adc(CHANNEL_3, DEVI CE_CLOSE) ;

}

return O;

Page 274

/* C ose the adc device */
adc(channel , DEVI CE_CLOSE)
}

el se
{
/[* |If device could not be opened log error and exit */
fprintf(logfile,"Could not open device\n");
fclose(logfile);
fclose(outfile);
exit(-1);

}

Weather | nformation On the Web

Even small weather stations are extremely expensive devices. Many web sites use off-the-shelf devicesto
maintain local weather information on their web pages. Temperature, wind speed and direction, rain, and
humidity are important weather parameters. Each of these parameters may need to be recorded at different
rates.

g e

Linux FC intarince Box ™= Wadithar
pe € Sansors

re
A

Temparaturs

14

Figure 14.1
The structure of aweather information provider

Page 275

Listing 14.7 Record temperatures at one-minute intervals.

/ *adc_read. c*/
/ *For weat her data | oggi ng systent/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#1 ncl ude <uni std. h>
#i ncl ude <tine. h>

/* Personal includes and defines */

#i ncl ude "uadc. h"

#defi ne USAGE "sanpling rate(in seconds)(0-300) num sanpl es(1-20)
channel (0-7)"

/* End Personal includes */

/* Prototypes */

int adc(int,int);

/* End Prototypes */

int main(int argc,char *argv[])
{
/* Sanpling rate (in seconds) passed to sleep system call
and Nunber of sanples */
i nt sanpling_rate, num sanpl es;

[* Channel number of adc read from */
i nt channel ;

/[* Nunber of points in data file */
i nt num _poi nt =1;

/* The integer value returned by adc */
i nt data_poi nt=0;

/* The tenperature obtained by rescaling the integer val ue returned by
adc */
float tenp;

/* An index variable */
int i;

/* File pointers for input , output and log files */
FILE * infile;
FILE * outfile;
FILE * | ogfile;

/[* POSIX type tine_t for time systemcall */
time t init _time,current tine;

Page 276

How Do You Do | t?

The sketch in Figure 14.1 shows the plan. The PC marked X acts as the weather information server. This
machine reads and logs weather data from the sensors (box B) through the interface box (box A) at regular
intervals. The sensors could be for recording temperature, wind speed, wind direction, humidity, and rain.

Weather Data Logger Program

The prototype system collects weather data only for ambient temperature. The weather datais recorded at
intervals of one minute. The dataislogged in afile with atimestamp. At any instant, data corresponding to
the last 15 minutesis maintained. A daemon running at a frequency of once every 15 minutes does the job of
processing the datato produce afilein HTML format containing statistics, such as mean, maximum, and
minimum for the period in question, along with diurnal data, such as the maximum and minimum with
timestamps.

Network link

Power supply

=P NN
({ el

Printer Adapter Temperature
BENSOr

Figure 14.2
Diagram of the weather monitor system.

Page 277

Listing 14.7 isa C program that records temperatures at one-minute intervalsin atemperature data file. The
fileismaintained as a FIFO with arecord of the last 15 readings. The weather monitor reads temperature
data from an | C-based temperature sensor (Figure 14.2). The temperature sensor is connected to one of the
channels of a multichannel ADC through the parallel adapter. The SanSon device driver is used by a user
program running as a daemon on the Linux machine to record temperature readings every minute.

Listing 14.7 (continued)

/* A string for ctine systemcall to convert tine t type to a friendlier
format */
char *tinestr;

/* A string to read into and a char * to check the status of fgets */
char instring[80];
char *fget_stat;

/* Parse and assign command |ine argunments */
if (argc '=4)
{
fprintf(stderr,"% %\n",argv[0], USACE); exit(-2);
}
sanpling_rate=atoi(argv[1]);
num sanpl es=at oi (argv[2]);
channel =at oi (argv[3]);
/* Debuggi ng purposes only */
#i f def DEB
fprintf(stderr,”Channel Nunmber: %\t Sanpling Rate: % Seconds \t
Nunber of Sanples : % \n",

#endi f

/* CGet Starting tinme (Returns tinme as seconds el apsed since 00:00: 00

channel , sanpli ng_rat e, num sanpl es) ;

January 1,1970 */
init_time=tinme(NULL);

/[* ctime converts tinme to a string of form Sun Jun 28 00: 00: 00 1996 */

timestr=ctine((const tine_t *)& nit_tine);

/* Wite starting time into logfile */

| ogfi | e=fopen("adcerr.log","w');
fprintf(logfile,"Start Tinme: %",tinmestr);
fflush(logfile);

/* Open the output file (tenperature.dat) */
outfil e=fopen("tenperature.dat","w'");

Listing 14.8 isa PERL script that processes the information available in the temperature data file to produce
an output filein HTML format containing the current average temperature and the minimum and maximum
temperature records for the day. Note that the PERL script filename on the DOS companion disk has been

truncated tor ead_dat . per

Listing 14.7 (continued)

[* Start The infinite | oop */
for(;;)

{

/* Open adc device */
I f (adc(channel , DEVI CE_OPEN) ! = -4)

{

/* Read a data value fromadc */
dat a_poi nt =adc(channel , DEVI CE_READ) ;

[* Set tine of data read */
current time=time(NULL);

/* Convert to an easier format */
timestr=ctine((const tinme_t *)¤t _tine);

/* Rescale the data as per sensor requirenments */
tenp=(fl oat) (data_point-2730)/10.0;

/ * Debuggi ng purposes only */

#i f def DEB

fprintf(stderr,"Tenperature: ¥3.1f \t Tinme: %\n

#endi f

}

,tenp,tinmestr);

/* Close the adc device */
adc(channel , DEVI CE_CLOSE)

el se

{

/* 1f device could not be opened log error and exit */
fprintf(logfile,"Could not open device now \n");

/*

fclose(logfile);
fclose(outfile);
exit(-1);

Initially at startup wite numsanples data points (Sanpled at a
sanpling _rate(in seconds) interval) to the output file . This is
read by anot her program which averages, finds m ni mumand nmaxi mum
and outputs a HTM. file containing the relevant data */

Page 279

Listing 14.9 isashell script to initiate the data acquisition. Note that the shell script filename on the DOS
companion disk has been truncatedtost art _| o. sh.

Additional Features

Apart from adding more sensors, the system would be more useful if you added longer statistics about the
weather parameters (e.g., the temperature readings for amonth or more or daily maximum and minimum
temperatures for amonth). Y ou could easily make such modifications to the present system.

Listing 14.7 (continued)

i f (num_poi nt <=num sanpl es)

{
/* Just a precaution in case outfile is open to flush it */
fclose(outfile);
/* Open output file in append node */
outfil e=fopen ("tenperature.dat","a");
/

* Qutput the tenperature as a float and tinme of reading as a string */

fprintf(outfile,"9%3. 1f 9%",tenp,tinmestr);
fclose(outfile);
/[* Increment nunber of points witten to file */
num poi nt ++;

}

el se

{

[* If the nunber of points in file is greater than num sanples */
i f (num_poi nt >num sanpl es)
{
/[* Open the output file (tenperature.dat) as read only
and a tenporary file (tenperature.datt) . Copy the | ast fourteen
| ines of tenperature.dat to the tenporary file */

i nfile=fopen("tenperature.dat", "r");
outfil e=fopen("tenperature.datt”, "w');
for(i=0;i<=14;i++)

{
fgets(instring,32,infile);

if (i>0) fprintf(outfile,"%",instring);
}

fclose(infile);
fclose(outfile);

Page 280
Listing 14.7 (continued)

/* Delete original file (tenperature.dat) and copy the tenporary
file to tenperature.dat */

infile=fopen("tenperature.datt","r");

outfil e=fopen("tenperature.dat","w'");

while ((fget_stat=fgets(instring,32,infile))!=NULL)

{

}

fclose(infile);

fprintf(outfile,"%",instring);

/* Delete tenmpfile */
unlink("tenperature.datt"):

/* Wite the current data point and time stanp to
tenperature.dat. This ensures that tenperature. dat
al ways contains the nost recent fifteen tenperature val ues */
fprintf(outfile,"9%3. 1f %", tenp,tinestr);

/* Flush and cl ose out put stream */
fflush(outfile);
fclose(outfile);
} /* End if (num_point>num sanples) */
} /* End if (num_point<=num sanples) */

/* Sleep for sixty seconds (Sanpling at one mnute intervals) */
sl eep(sanpling rate);
} /* Infinite Loop */
} [* Close Main */

Page 281
Listing 14.8 Produce an HTMLfileusing PERL.

#! [usr/ bi n/ perl
#read_dat a_aver age. per|

Nunber of Sanple points to make running average of is supplied as a
conmmand |ine argumt
$num sanpl es=3$ARGV| 0] ;

Set mninmumand maximumto arbitrarily high and | ow val ues respectively
$mn_tenp = 100. O;

$max_tenp = -100. 0;

@n ni mune=split(/ +/,localtime());

$mn_tenp_tinme=$m ni munf 3] ;

$mi n_tenp_dat e=$ni ni nuni 1] . " ". $mi ni nuni 2] ;

@raxi mum=split(/ +/,localtinme());

$max_tenp_ti me=$nmaxi muni 3] ;

$max_t enp_dat e=$maxi nun{ 1] . " ". $maxi nuni 2] ;

Infinite Loop to run as a daenon

for(;;)

{
Open tenperature.dat for input (contains $num sanples |ines of the
format tenperature Sun Jul 28 00:00: 00 1996

open(I NFI LE, "<tenperature.dat”) || die "Can't open inputfile”;

Read all the data into a single array
Each elenent of array contains one line of file

@ nput s=<I NFI LE>;
cl ose(| NFI LE) ;

$num | ines contains nunber of lines in the file
$num | i nes=@ nput s;

Check to see if the nunber of lines is greater than nunber of sanple
points to average over
if ($numlines >= $num sanpl es)
{
If true then average over the tenperature field and also find the
m ni rum and maxi nrum val ues for tenperature.

Initialize counter,sum and average
$counter = 1;

$sum = 0. 0;

$average = 0.0;

Listing 14.8 (continued)

Page 282

whi | e($counter <= $num sanpl es)

{
Split each el enent of input array on whitespace
@lata = split(/ +/,$inputs[$numlines-$counter]);
Extract the first field as tenperature
$t enperature = $data[0];
$data_tinme = $data[4];
$dat a_date= $data[2]." ".S$data[3];
if ($data_date ne $m n_tenp_date)
{
$nmi n_t enp_dat e=$dat a_dat e;
$m n_t enp=$t enper at ur e;
$m n_tenp tinme=%$dat a[4] ;
$max_t enp_dat e=$dat a_dat e;
$max_t enp=$t enper at ur e;
$max_tenp_ti me=$dat a[4] ;
}
Find the m ni mum and maxi num tenperature of num sanple points
if ($tenperature < $min_tenp)
{ $mn_tenp = $tenperature;
$mn_tenp_tine=$data_tine;
$m n_t enp_dat e=$dat a_dat ¢;
}
if ($tenperature > $nmax_tenp)
{ $max_tenp = S$tenperature;
$max_tenp_ tine=$data tine;
$nmax_t enp_dat e=$dat a_dat e;
}
$sum += $t enper at ur e;
$count er ++;
}

Conput e average
$average = $suni ($counter-1);
$current _time=l ocal ti ne;

Open output file in HTM. format (Weat her. htnml)

open(QUTFI LE, ">Weat her.htm ") || die "can't wite output HTM. file\n";

print OUTFI LE " <HTM.><TI TLE>\ n";
print OUTFILE " The Weat her at | UCAA\n";
print OUTFILE "</ TITLE>\ n";

print OUTFI LE "<BODY bgcol or=\"\#000000\" text=\"\#ffffff\

"1ink=\"\#00ff 00\ " al i nk=\"\#ff 0000\
"viink=\"\#fff0o0\">\n";

Listing 14.8 (continued)

Page 283

print OUTFILE "<CENTER>\n<HR>\n";
print OUTFILE "<H1>The Weather at IUCAA </H1>";
print OUTFILE "<HR></CENTER>\n";
print OUTFILE "<FONT text=\"\#f0033\
" >Time of record (IST) is $current_time\n
\n";
printf OUTFILE ("<FONT text=\"\#f0033\
" >Average Temperature for the past $num_samples
minutes:\t %3.1f degrees Celsius\n",$average);
printf OUTFILE ("<FONT text=\"\#f0033\
" ><HR>\nMinimumTemperature:%3.1f degrees Celsius at
$min_temp_time on $min_temp_date\n<HR>\nMaximum
Temperature:%3.1f degrees Celsius at $max_temp_time on
$max_temp_date<HR>\n",$min_temp,$max_temp);
print OUTFILE "
\n";
print OUTFILE "
\n";
print OUTFILE "
\n";
print OUTFILE "<A HREF=\"http://iucaa.iucaa.ernet.in/~ilab/
instrumentation.html\">Back to Instrumentation\n";
print OUTFILE "</BODY ></HTML>\n";
close(OUTFILE);

Move Weather.html ~ilab/public_html
system("mv Weather.html ..");

else

{
sleep(15*60);

}

End of If $num_lines >= $num_samples condition
sleep(15*60);

}
End infinite loop

Listing 14.9 Shell script to initiate data acquisition.

Page 284

http://iucaa.iucaa.ernet.in/~ilab/

#!'/ bi n/ sh

echo "d eani ng evrythi ng\ n"
make cl ean

echo "Starting Tenperature reader \n"
./ladc_read 60 15 7 &
sl eep 15m

echo "Starting HTM. constructor \n"
./ read_data_average.perl 15 &

Page 285

Appendix A—
PC Architecture

I ntroduction

The IBM PC was introduced in August 1981. At that time it was a unique, high-performance computer for
the general public. It was also the first personal computer from IBM. The computer was designed such that
additional hardware could be added if the user desired. The computer offered performance that, until then,
was not available to the general public. IBM also allowed other manufacturers to duplicate (clone) the PC
design. Soon a multitude of PC varieties was available on the market, some offering improved performance
and, most significantly, some less expensive than the original IBM model.

The original PC used the 8088 processor from Intel. The 8088 processor is part of the x86 family of
processors. In 1983, IBM introduced the PC/XT and in 1984, the PC/AT. The PC/XT (XT for extended
technology) was essentially a PC with ahard disk. The PC/AT (AT for advanced technology) modified the
PC architecture substantially. To begin with, it used the much more powerful 80286 processor. Also, the
data bus inside the computer was increased from 8 to 16 bits. Computers must fetch code and data from
memory, and a 16-bit bus enabled the processor to fetch the same datain half the time by doubling the width
of the data bus. The PC/AT also added more hardware features, as detailed later in this appendix.

The PC/AT (or simply the AT) increased performance by afactor of 10. If the original PC took 10 seconds
to run aprogram, the AT did it in one second. As more powerful processorsin the x86 family were
introduced by Intel, newer and more pow-

Page 286

erful PCswere designed and produced. However, even with the introduction and availability of higher
performance PCs, the basic structure hasn't changed from the original PC. Thisis because, to keep newer
machines compatible to the large base of DOS programs, manufacturers have been forced to retain
operational similarity with the PC. To understand the operation of the parallel port, it is very important to
understand the architecture of the PC and, more importantly, the architecture of microprocessor systemsin
general. In the following sections, I'll described the architecture of the IBM-compatible PC.

Under standing Microprocessor Systems

To appreciate the design of PC compatibles, it is useful to understand how a general -purpose computer
circuit is structured. Every computer has five essential components:

1. Arithmetic Logic Unit (ALU);
2. Control unit (CU);

3. Memory;

4. Input device; and

5. Output device.

In most modern computers, the microprocessor combines the functions of the ALU and the CU. A
microprocessor aso needs a few registers and some control circuitry. A register is alatch that can be used to
store information and read back information. A register, unlike a memory location, does not have an
address — it is accessed by a symbolic name. The number of registers and the complexity of the ALU, CU,
and control circuitry vary from microprocessor to microprocessor. Simple microprocessors may have only a
few registers, and some advanced microprocessors may contain hundreds of registers.

By itself, amicroprocessor cannot do anything useful. The designer must add memory to store user
programs, user data, and program results and I/O devices to communicate with the external world (like a
keyboard, video terminal, etc.). A microprocessor circuit works by fetching user programs from the external
memory, decoding the program element (called the instruction), and executing the instruction.

To fetch an instruction from memory, the processor must have away of signaling external memory and
indicating whether it needs to read data or write data. The control bus provides a means of accessing
external memory. The CPU (or the microprocessor) aso needs an address bus that carries addressing
information. A component called the data bus transfers data in and out of the CPU to registers, memory, or
ports.

Figure A. 1 shows the essential blocks of a simple microprocessor system. The microprocessor system
works by reading the program stored in memory and executing the program instructions.

Page 287

Every instruction is composed of an opcode and an optional operand. Simple
instructions only have an opcode; more complex instructions have one or more
operands or arguments. An example of an instruction with operandsisthe add

instruction: add X, y. Theinstruction is composed of the opcode add and the
operands or arguments on which the add operation is performed, X and y .

After the two numbers are added, they must be stored somewhere.

This

instruction could transfer the result back into one of the variables, X. Thus,

add x,y would amounttox=x+y.

The memory device is used not only to read program instructions, but to store the results of the program,
variable values, etc. Eventually the program will generate data that must be sent out of the system through

an output device, such as the screen, printer, or modem.

Memory is addressed though the address bus. Typically, microprocessors have between 16 and 32 address
lines (some modern varieties have even more), resulting in an address space of from 65,536 to more than
4,294,967,000 locations. Each memory location can store data. The range of the data depends upon the
width of the data bus. Typically, data buses come in widths from 8 to 32 or even 64 bits. The number of data
bitsis used as an indicator of the power of the microprocessor, which is often classified as an 8-, 16-, or 32-

bit processor.

Momaory
{ROM andfor RAM)

Data Bus
Microprocessor
Control Bus
Address Bus
Input and
Input and Qutput Qutput
Ports .[devices
Figure A.1

Block diagram of a simple microprocessor system.

Page 288

The control bus of amicroprocessor has signals that regul ate smooth data transfer in to and out of the
processor to memory or to the ports. Because only one data bus connects to so many ports, devices, and
memory locations, it isimportant that the data bus talks to only one component at any time; otherwise,
conflicting voltages applied to the data bus from independent devices could result in a condition called bus
contention, which could damage the processor or other components of the circuit.

A general-purpose microprocessor system has at least two types of memory: memory for permanent storage,
called ROM or EPROM, and memory whose contents can be modified at any time, called Random Access
Memory (RAM). ROM or EPROM is used to store the startup program, and RAM is used to load user
programs from storage devices such as the disk. When you power-up the PC, the permanently stored
program in the PC checks memory and other 1/O devices and |oads the operating system. Subsequently,
when the user wants to execute a program of choice, the program is loaded from the disk into RAM and
executed.

A microprocessor in an embedded system, such as the processor in a washing machine, doesn't have RAM
to store user programs. The processor in such systems is expected to execute a program stored in the system
ROM or EPROM that controls the device.

Bigger and bigger programs are being written, and demand for processors with
large memory-handling capacity isincreasing. When the PC was introduced in
1981, contemporary home computers were limited to 64Kb of memory, and a
PC with 640K b of memory was held in awe. It seemed that with 640K b of
memory, one couldn't ask for more. Today, it isimpossible to think of running
common application programs on this, and PCs with as much as 64Mb (a 100-
fold increase) are now common.

Accessing Portsand Memory

Given amicroprocessor that distinguishes between memory devices and /O port devices, there must be a
signal that indicates the nature of the device that the microprocessor wants to communicate with (Table
A.1). Then there must be set of signals that indicate the nature of the activity (e.g., whether the
microprocessor is reading the device or writing to it). The four signals shown below indicate the nature of
the activity. The signals are shown with an asterisk to indicate that the active level of the signalsislogic 0.

| OR* to indicate that the microprocessor will read from an input port whose address is set on the address
bus;

Page 289

Table A.1 Port addresses on the PC/AT.

Port address Device

000h- 00f h First DMA chip (8237)
020h-021h First interrupt controller (8259)
040h- 043h Interval timer (8253)
060h- 063h Keyboard controller (8042), 8255-PPIO on PC
070h-071h Real-time clock
080h-083h DMA page register

0aOh- Oaf h Second interrupt controller
OcOh-0cfh Second DMA chip
0eOh-0ffh Reserved

100h- 1f f h Available for expansion
200h- 20f h Game adapter
210h-217h Reserved

220h- 26f h Available for expansion
278h-27f h Parallel port

2b0h- 2df h EGA adapter

2f 8h-2ffh COM2

300h-31fh Prototype adapter
320h-32f h Available for expansion
378h-37fh Parallel port

380h- 38f h SDLC adapter

3a0h-3af h Reserved

3b0Oh- 3bf h Monochrome adapter
3cOh-3cfh EGA

3d0h- 3df h CGA

3e0h-3e7h Reserved

3f Oh- 3f 7h Disk controller
3f8h-3ffh COoM1

Page 290

| OW* to indicate that the microprocessor will write to an output port whose address is set on the address
bus,

MR* to indicate that the microprocessor will read from a memory location whose address is on the address
bus;

MW* to indicate that the microprocessor will write to a memory location whose address is on the address
bus.

The microprocessor initiates the reading or writing activity and issues the relevant signals. Each activity is
for afixed amount of time that depends upon the microprocessor frequency of operation. Microprocessors
operating at different frequencies issue signals of different duration.

Figure A.2 shows the timing diagram for a memory read operation. The CLOCK signal, the MR* signal, and
the state of the ADDRESS and DATA buses are shown. This diagram shows the execution part of the
instruction. The execution of thisinstruction would be preceded by the fetch and decode instructions, which
| have not shown.

Figure A.2 shows that the memory read operation takes five clock cycles. During the first clock cycle, the
microprocessor puts the source address of the memory loca-

. T1 : T2 y T3 . T4 . T :
CLOCK |
ADDRESS ____| E i i : : i
MR :* : ! ; E

' ! . ' Valld data !

’ / H

S ¢

Figure A.2
Timing diagram for a memory read operation in a hypothetical microprocessor system.

Page 291

tion. During the second cycle, the MR* signal is asserted. It isimportant to note that the assertion levels of
al thesignas (MR*, MW*, IOR* and IOW*) arelogic 0. The assertion of the MR* signals must be used to

enable the memory location that would then drive the data bus. The memory device has the whole of T2, T3,
and about half of T4 to put data on the data bus. Data from the memory device must be available after the
rising edge of the T4 clock signal and must remain stabletill the MR* signal is deasserted. The actual time
for all the signals would be translated from the duration of the clock signal together with atable provided by
the microprocessor manufacturer that lists the minimum and maximum worst-case timings. These values are
used by the circuit designer to determine whether the selected memory device meets al the requirements and
whether it will perform without failing in the system.

A similar timing diagram in Figure A.3 is shown for a port write operation. Here, the active signal is |IOW*.
The processor sets up the address of the destination port during T1. During T3, it sets up the data that isto
be written into the port and asserts the IOW* signal. The datais held stable through T4 and alittle time after
that. The IOW* signal is deasserted at the end of T4. The rising edge of the IOW* signal would be used to
latch the data into the destination port.

m , T2 ., T8 . T4 . TS

L]
- — 1 [[

CLOCK

F ===

ADDRESS

ccscpasssslessmm

oW

Valld datn |
|

f

LR R R

X

DATA

= - rEa sl

Figure A.3
Timing diagram for a port write operation in a hypothetical microprocessor system.

Page 292

Support Sectionsof a PC

The computer system needs other peripheral devices to do the many things the microprocessor cannot do on
its own. These support functions are performed by IC devices with some additional circuitry. Many of these
| Cs communicate with the CPU over the system bus as ports of the CPU. These chips are selected for
optimum performance and programmability from among a wide range of components made by various
manufacturers. Most of these support chips were originally designed by Intel. These chips and their
functions are:

Peripheral Programmable /O (PPIO) controller Thisisthe chip (8255 in the original PC and the AT)
that the CPU uses to control other devices of the PC aswell as to interface the PC keyboard. This chip has
many input and output pins used to control the CPU speaker, read data generated by the keyboard, etc. In
early PCs, the CPU used this chip to read system information at the time of the boot-up sequence. In modern
PCs, this chip and many others have been replaced by a single, large multifunction IC.

Programmable Interrupt Controller (PIC) The PIC isthe heart of the PC interrupt structure. PIC is used
by the CPU to respond to alarge number of hardware interrupts generated by the other sections of the PC.
Essentialy, the PIC isasort of interrupt multiplexer. The CPU of the PC has an interrupt line, but with the
addition of PIC, which has many interrupt inputs (and one interrupt output connected to the CPU interrupt),
the PC can respond to many more interrupts. The PIC is used by the serial ports (RS-232), floppy disk
controllers, PC timer, and other components to grab the attention of the CPU. For every interrupt input of
the PIC, the PC maintains alist of interrupt vectors. An interrupt vector isthe address of a specia subroutine
called the Interrupt Subroutine. When the CPU receives an interrupt, it looks at the interrupt vector list and
gets the address of the Interrupt SubRoutine (ISR) that needs to be executed in response. The original PC
and the XT were equipped with asingle PIC, which could handle up to eight interrupt inputs. In the AT and
other machines, there are two PICs alowing up to 15 interrupt inputs.

The Direct Memory Access (DMA) controller DMA is aconcept that allows direct access of the memory
by some devices without the involvement of the CPU. Data transfer using DMA is extremely fast. The DMA
controller facilitates such transfers between the memory and the ports. DMA is used by floppy and hard disk
controllers.

Programmable Interval Timer (PIT) Thisdeviceis used to generate timing signals at regular intervals.
These timing signals are used to update the current time of

Page 293

day. The PIT used in the PC has three channels. One of the other channels of the PIT is used to generate
tones on the speaker under control of the PPIO chip.

Video controller This section of the PC interfaces the monitor to the CPU and allows graphics and text
output on the screen.

All of these PC components communicate with the CPU over the system bus.

PC System Bus Signals

All computer systems (general or embedded) need a system bus. The system busis a name for the collection
of signals that include the data bus, address bus, control bus, and other important signals of the computer
system. In a general-purpose computer system such as the PC, the system bus isimportant because it allows
the user to expand the operation of the system according to specific requirements and to tailor the system to
specific needs. With the system bus, the user can add memory, add new devices, or even change the
complete character of the system. For example, it is very common to take a PC, remove things that are not
needed, add required ports or devices, and convert the system to a dedicated embedded system. Without the
system bus, this type of conversion would be impossible.

When the PC was introduced, it had a system bus without a specific name. With time, new features were
added and the system bus changed features as well as name. Today, many types of system busses are
available on the PC motherboard. The most common ones are: |SA, EISA, and PCl. Some machines have
more than one system bus, providing a combination of 1SA, EISA, and PCI. In this section, | will confine
the discussion to the good old nameless system bus that was a forerunner to the ISA bus.

The system bus is accessible through 62-pin card slots on the PC motherboard. These slots are used to insert
circuit boards with amating card edge connector. Different computers have different numbers of card dots.
The original PC had five such identical slots. PCswith as few as three and as many as seven slots are
available. Obvioudly, the PC with more slots has more options for expansion. The card slots have 62 signals,
including signals for the data bus, address bus, control bus, and power supply bus. All the signalsare TTL
compatible and are generated by the microprocessor and other system components, such as the interrupt
controller, DMA controller, etc. The signals and their functions are:

DO-D7 (1/0) The data bus. The 8-bit data busis bidirectional and is used for data transfer from and to the
adapter cards that fit into the card slots.

A0-A19 (O) The address bus has 20 bits and indicates the address of the data transfer between the CPU and
other devices or the DMA controller and other devices.

Page 294

|OW* (O) Thissignal is generated either by the processor or the DMA controller to indicate data transfer to
the addressed destination port isin progress.

|OR* (O) Thissignal, generated by the processor or the DMA controller, indicates that datais read from the
addressed port.

MEMW?*(O) This signal, generated by the CPU or the DMA controller, indicates that the CPU or the DMA
controller wants to write data into the addressed memory location.

MEMR* (O) Thissignal, generated by the CPU or the DMA controller, indicates that the CPU or the DMA
controller wants to read data from the addressed memory location.

RESET DRV (O) Thissignal provides the reset signal to ports and other devices during power up or during
ahardware reset. It isan active high signal.

IRQ2- RQ7 (I) These are the interrupt inputs to the Programmabl e Interrupt Controller (PIC) chip on the
motherboard.

CLK (O) Thisisthe highest frequency available on the card ot and is three times the OSC frequency.

OSC (O) Thisisthe clock signal to which all the IOW*, and other strobe signals are referenced to. It hasa
frequency between 4.77MHz on the original PC to 8VIHz on newer PCs.

ALE (O) Theisthe Address Latch Enable signal. During atransfer to or from the CPU, the CPU places the
address on the address lines. The original CPU had the lower eight address lines multiplexed with the eight
data bits. The ALE signal is ademultiplexer signal for the address information. On the system bus, the
address and the data bits are already demultiplexed and the ALE signal is only used as a synchronization
signal to indicate the beginning of a bus cycle.

TC (O) Thissignal is generated by the system DMA controller to indicate that one of the channels has
completed the programmed transfer cycles.

AEN (O) The AEN signal is generated by the DMA controller to indicate that aDMA cycleisin progress.
A DMA cycle could involve a port read and a memory write. However, the port address on the expansion
card should not respond to the port read bus cycle if it is not intended. By using the AEN signal, the card
circuit can

Page 295

detect whether the bus cycle isissued by the CPU or the DMA controller and respond accordingly. A high
AEN indicates a bus cycle issued by a DMA controller.

/O CH RDY (I) Thissignal isused by the card circuit to indicate to the CPU or the DMA controller to
insert wait states in the bus cycle. Up to 10 clock cycles can be inserted.

/O CH CK* (1) Thissignal can be used by the circuit on a plug-in card to indicate an error to the
motherboard. An NMI hardware interrupt corresponding to INTZ2 is generated by the motherboard circuit in
response to alow I/O CH CK* signal.

DRQ1-DRQ3 (1) Thisisan input signal to the DMA controller on the motherboard. When a port device
wants to transfer data to and from memory, it can use the DMA transfer cycle. The operation of the DMA
transfer cycleis controller by the DMA controller. DRQL1 to DRQS3 are the three inputs to the DMA
controller. At reset, the system ROM BIOS puts DRQ1 at the highest priority and DRQS3 at the lowest. The
DMA controller has four channels, DRQO is used on the motherboard to generate dummy read cycles to
refresh dynamic memory.

DACKO0*-DACK3* (O) These are the four status outputs of the DMA controller that indicate the
acceptance of the DRQ request. The DMA transfer cycles begin after the DACK* lineis put to 0.

Card Slots

| |
Powar Intarrupt M e e
supply [| Controlier o R
| : |
! l | Adermss,
System I s : I
ROM, cPU Bus CUEEA Contol and
RAM T—-— Controller [— - 1
[TR
| |
DMA =¥
Controller ., Sikgnats
| |
FigureA.4

Block diagram of a PC motherboard.

Page 296

Power supply The motherboard provides +5, +12, -5, and —12V voltages to the card slots. The +ve voltages
are guaranteed to be within £5% of their nominal values and the —ve voltages between +10%.

The PC Ports

Figure A.4 shows the structure of the original PC motherboard. Note that the design does not include
display, serial, or parallel adapters. Thisis because the original PC had all these interface devicesin the form
of plug-in cards that fit in the expansion card slots.

The expansion slots were connected to the motherboard through what is called the system bus controller. As
PCs evolved, many of these devices were integrated on the motherboard. The system bus also was modified
into alocal bus and a system bus. More and more components were connected to the CPU through the local
bus. The system bus remained to provide compatibility with the original PC and XT and also to provide
system expansion capabilities to the user.

During the late 80s, the system bus was standardized as the Industry Standard Architecture (ISA) bus. A
little later, a newer system bus, called the EISA bus, was offered for operation on the PC. A still newer bus
called the Peripheral Component Interconnect (PCI) busis now popular.

Almost all the peripheral devices, such as the display adapter, parallel port, seria port, and disk controller
have been integrated on the motherboard, thereby significantly reducing the size of the PC. Figure A.5
shows the block diagram of a modern PC. The ports required by the devices are mapped onto the system bus.

Example of a Typical Interface Circuit

Consider a case where you needed to build asimple I/O expansion port (much like a parallel port) with eight
bits of input and eight bits of output. Y ou will map these portsin the 300h—31f h 1/O address range with a
facility to change the address with the help of DIP switches within the 300h—31f h range. The advantage
of such a scheme isthat the ports can be used even in a system with other cards using the same address
range. If there is another card in the system with four ports addressed between 300h and 303h then, with
the help of the DIP switches, you could relocate the port addresses on the card to be, say, 304h. Figure A.6
shows the block diagram of this simple I/O board.

Instead of using discrete 1/0 chips (like the ones used in the preceding example), designers often use
programmable 1/0 chips. One of Intel's most popular 1/0 chipsis the 8255-PPIO. The original PC used an
8255 chip on the motherboard to control the keyboard and speaker, read system DIP switches (used to
encode system configura-

Page 297

tion information at boot time), etc. The 8255 was mapped at the 60h—63h /O addressin the original PC.

Figure A.7 shows the circuit schematic of the PC-based digital Input and Output card. J1 isthe PC system
bus interface. It contains the address, data, control, and power signals (+5V and gnd). The data bits are
numbered D7-DO0, and the address bits are numbered A19-A0. The signal hames are shown inside the J1
connector, and the numbers outside are the pin numbers. The connector has 2 sides, A and B. The address
and data bits are on side A of the connector; the control signals are on side B. The circuit uses the following
signals from the system bus:

D0-D7 The eight data bits.

A9-A2 Eight of the 20 address bits. For 1/O interfacing, the processor uses only the lower 16 address lines
AO0-A15. In the PC design, of these 16 address lines, only the lower 10 address lines, AO-A9, are decoded.
Thus, the number of possible portsin the PCislimited to 1,024 ports (1,024 input ports and 1,024 output
ports). Of the 10 address lines in this example, | use only the higher eight address bits. Because the A0 and
A1 address bits are not used, for any setting of the A9-A2 address bits on the

ISA/EISA Bus
l-—-l |

Expansion card
slots
r—t |
Memory
| - |
i—v—-ﬂ- I
CPU
Co-processor FCl Bus
cache memory Intarince
l I

Figure A.5
Block diagram of amodern PC.

Page 298

card, each port would have four possible addresses (e.g., if you set the address of the card to 300h, the ports
would still respond to 301h, 302h, and 303h. (This scheme is not advisable in real situations— | have
chosen it here for simplicity at the cost of wasted port addresses.)

AEN Thisisthe signal that indicates whether the current bus cycleisaDMA or anon-DMA cycle. The card
needs to respond to only non-DMA bus cycles. | usethe AEN signal to disable the card when the AEN
signal isactive.

|OW* and | OR* These are the signals that indicate whether the bus cycleisto transfer data to or from the
port.

+5V and gnd These lines power the circuit.

i jﬁ_ 5.-__;.-.:':— :ﬂ’i “ _._.: .
wall B

Address | i ﬁ .
Bus I n-.t"-E- ﬁ“fﬂi:' : |
Address T
decoder |
Control RIS S ﬁ
PR b
Bus i e DIP swilches

PC System Bus

Figure A.6
Block diagram of asimple I/O expansion board.
Page 299
Figure A.7
Circuit schematic of asimple 1/0O expansion board.
Page 300

IC U1 (74HCT245), abus transceiver, connects to the data bits of the system bus. This|IC hasthe direction
control bit DIR and the master enable bit OE*. When the DIR bit is low, the IC transfers data on the B side
tothe A side. When it is high, dataon the A sideistransferred to the B side. ThisIC is used to isolate the

data bus from the rest of the circuit. With a buffer |C between the data bus and the rest of the 1/0O ports, the

system bus is offered a constant load and is isolated from the rest of the circuit.

The address decoder circuit is composed of the IC U4 (74HCT688), an 8-bit comparator circuit. The IC has
the master enable input pin G and active low output F= Q. The comparison inputs are Q7—Q0 and P7—P0.
When al the Q bits match with the corresponding P bits, the output goes low, otherwise the output is high.
In this circuit, the P inputs are driven by a set of eight DIP switches and the Q inputs are connected to the
A9-A2 address bits. The DIP switches are set to the required address combination. When the G input
connected to the AEN signal of the system busislow, and address bits A9-A2 match the DIP switch setting,
P = Q goeslow. The output of the comparator IC is further qualified with the IOW* and IOR* signals.
When either of these signalsislow, which indicates that a port I/O bus cycle isin progress, the output of
gate UGA goes low. When UBA output islow and F = is also low, the output of gate USA goes low. This
indicates that an I/O cycle for the circuit isin progress. Thissignal is used to enable the U1 data bus buffer.
Depending upon which signal, IOR* or IOW*, islow, either USC output islow or U5SD output islow. The
outputs of these gates drive the 8-bit digital input and outputs |Cs U2 and U3, respectively.

|Cs U2 and U3 provide the eight bits of digital input and output, respectively. U2 is a buffer |C with enable
input OE*. U3 is an 8-hit register with clock input. It also has areset input, which | have tied to +5V. The
output of U2 isread by the data bus buffer IC U1, and the input to the U3 register IC is provided by the data
bus buffer.

An interesting modification to this circuit is to connect the eight digital output pinsto the eight digital input
pins(i.e.,, DOUT 0toDIN_ 0, DOUT _1toDIN_1, etc.). With this modification, the digital input lines could
be used to read back the data on the digital output lines. Such an output port is called a read-back port. The
output ports on the parallel printer port are read-back ports.

Hardwar e Interrupts

All CPUs have had some sort of interrupt structure built into the CPU chip. The 8088 chip (and later PC
chips) have hardware as well as software interrupt features. In all, the 8088 CPU can process 256 interrupt
sources. | will consider hardware interrupts in this section and software interrupts in the next section. In the
context of programming and using the parallel port, interrupts are very useful because the parallel port has
one of the available hardware interrupts, which you can access through the output connector.

Interrupts in a PC are generated either by the external hardware or as the result of a mathematical exception.
The hardware interrupts in a PC are handled by the 8259

Page 301

Programmable Interrupt Controller (PIC) IC by Intel. In a PC, an 8259 provides the capability of eight
hardware interruptsto 1/O devices. In an AT, an additional 8259 provides atotal of 15 interrupts.

Interrupts are generated when an I/O device needs the attention of the CPU. The device signasthe PIC,
which in turn generates ainterrupt to the CPU. The CPU suspends program execution after finishing the
current instruction. It then saves the current instruction pointer register onto the stack and proceeds to
execute the Interrupt SubRoutine (I1SR). After the ISR is completed, the CPU reloads the program counter
from the stack (to which it was saved when the interrupt occurred) and restarts the suspended program
execution.

On the PC, the 8259-PIC alows eight interrupt channels. Table A.2 shows the hardware interrupt sources
and their uses.

BIOSand DOS Interrupts

The software interrupts of the PC are classified as either BIOS or DOS interrupts. BIOS interrupts are
universal to all PCs and point to subroutines inside the PC ROM BIOS to provide uniform access to the

system hardware for the user programs. These interrupts are built into the PC system.

DOS interrupts, which are also software interrupts, are not built into the PC system; they are provided by the
operating system of the PC. These interrupts and corresponding subroutines are loaded into the computer
after the operating system has been loaded. Usually, these interrupt routines are used by internal DOS

programs.

Table A.2 Hardware interrupts on the PC and PC/AT.

I nterrupt Name Use

NMI Parity error

IRQO System timer

IRQ1 Keyboard

IRQ2 Free on PC, cascaded to IRQ8-15 on AT
IRQ3 COM1

IRQ4 COM2

IRQ5 Hard disk (on XT and AT)
IRQ6 Floppy disk

IRQ7 LPT1

IRQ8 (AT only) Real-time clock (RTC)
IRQ9 (AT only) Free

IRQ10 (AT only) Free

IRQ11 (AT only) Free

IRQ12 (AT only) Free

IRQ13 (AT only) Numeric coprocessor
IRQ14 (AT only) Hard disk

IRQ15 (AT only) Free

Page 302

Page 303

Appendix B—
References

Books

Eggebrecht, Lewis C. Interfacing to the IBM PC. Howard W. Sams and Co.

Green, D. C. Digita Electronic Technology, 2nd Edition. Longman Scientific and Technical.
Horowitz, Paul and Winfield Hill. The Art of Electronics, 2nd Edition. Cambridge University Press.
Messmer, Hans-Peter. The Indispensable PC Hardware Book, 2nd Edition. Addison Wesley.
Osborne, Adam and Gerry Kane. Osborne 16 Bit Microprocessor Handbook. Osborne/McGraw Hill.

Royer, Jeffery P. Handbook of Software and Hardware Interfacing for IBM PCs. Prentice Hall Inc.

Articles

Gadre, Dhananjay V. PC counter uses parallel printer port. Electronics World + Wireless World December
1993.

Gadre, Dhananjay V. The parallel printer adapter finds new uses as an instrument interface. EDN June 22,
1995.

Page 304
Gadre, Dhananjay V. A 'zero power' ADC for the IBM PC. Design Ideas. EDN July 6, 1995.
Gadre, Dhananjay V. Multi channel 12-bit ADC connectsto PC. Design Ideas, EDN April 25, 1996.
Gadre, Dhananjay V. The parallel adapter as a host interface port. Dr. Dobb's Journal April 1996.
Gadre, Dhananjay V. Atmel's AT89C2051 microcontroller. Dr. Dobb's Journal July 1997.
Gadre, Dhananjay V. and Larry A. Stein. The enhanced parallel port. Dr. Dobb's Journal October 1997.

Gadre, Dhananjay V. and Sunu Engineer. "A data acquisition system for Linux." Dr. Dobb's Journal,
February 1998.

Gadre, Dhananjay V., P. K. Upadhyay, and V. S. Varma. Catching the right bus, part 2: Using a parall€el
printer adapter as an inexpensive interface. Computersin Physics 8(1), Jan/Feb 1994.

Sunu Engineer and Dhananjay V. Gadre. Data acquisition and distribution in a networked environment.
Embedded Systems Programming March 1997.

| ndex

Numerics

74HCT 165 shift register 51

74HCT273 for additional output ports 158-163
78L05 voltage regulator 116

8255-PIO Interface 164-173

8255-PPIO block diagram 167

8255-PPIO control word format 168

8255-PPIO operations 166

A

accessing PC ports 40
acknowledge signal 26-27
AD558 85, 86

AD7548 85, 87-89

ADC 79, 91-103

ADC control word 101

ADCO0804 9699

ADCO0804 interface to parallel port 124-133
ADSP-2101 DSP 207
ADSP-2101 features 205

analog signal 8-9, 12

arbitrary waveform generator 251
astronomical photometer 114-119

AT89C2051 features 214

Page 305

AT89C2051 flash memory programming 228
AT89C2051 flash memory verification 229
AT89C2051 oscillator characteristics 215

automated data acquisition 1-3

B

bidirectiona datatransfer 5960
bit, byte, word 8

break-out box 4045

buffer IC 20-21

byte mode 60, 61

C

CCD camerall-14

CCD camera controller using ADSP-2101 204—206
CMOS and variants 19-20

communication between PC and controller 203, 205206
compatibility mode 60

components of a CCD controller 205-206
composite address write + datawrite 173

computer control 4

connecting ADSP-2101 and parallel port 206211
connecting multiple MAX521s on asingle bus 148
CONTROL port 27, 28, 31-33, 34, 35

CONTROL port address 29

CONTROL port output details 32

conventional waveform generator 252

counter 24

current-switched DAC 81-82

D
DAC 79, 80-90

DACO08 85

darlington array driver 46

data acquisition 1-4

data acquisition system 2—-3

DATA port 27, 29-31, 32, 33, 36
DATA port address 29

DATA port output details 30

data transfer from a PC to external 55
data transfer overheads 53-57
decoder 23

developing applications using microprocessors 181183
device driver 257

device driver structure 260-261
digital IC families 15-16

digital signal 8-11, 1216, 19, 20-22

DIP switch 51

E

ECP 60-61, 74-76

ECR mode for FDC37C665/66 75

ECR mode for PC87332 75

electrical interface for IEEE1284 parallel ports 59-61, 7677

emulator 6

Page 306

EPP 6076

EPP address read cycle 61, 65

EPP address write cycle 61, 64
EPP BIOS cals 6768, 69, 71
EPP dataread cycle 61, 65

EPP datawrite cycle 61, 63

EPP port map 69

EPP registers 6467

EPP signal definitions 62

EPROM 179

EPROM emulator 6, 182186, 190
EPROM eraser 179

EPROM programmer 6, 223-227
EPROM programmer timing diagram 225
error signal 26-27

expansion using EPP 163-164
expansion using SPP 158-163

Extended Configuration Register 69

F

FIFO-based waveform generator 255-256
finding port addresses 39, 41

flash ADC 91-93

flip-flop 22

fops 258

frequency counter 107-114

H

hardware interfacing 7-9, 13-15

host interface port 206, 212

|EEE 1284 standard 6061
In-Circuit Emulator 181
integrating ADC 94-96
interfacing 7-11

interrupt latency on PCs 34
interrupt subRoutine 8
interrupts 8

IRQ EN signal 31, 33

ISA, PCI, EISA 10

L

latch 14, 22

linking device driver into kernel 261-267

Linux 257

LM335 zener 116

M

MAX111 96, 99-100, 102, 103

MAX158 96, 98

MAX158 timing characteristics 127-131

MAX186 96, 98-99

MAX186 ADC signals 139

MAX186 ADC timing diagram 141

MAX186 block diagram 138

Page 307

MAX186 control byte format 140-142
MAX186 simple interface 142
MAX521 85, 90

MAX521 address byte 146-147
MAX521 block diagram 143
MAX521 command byte 145-147
MAX521 datatransfer 144-147
MAX521 signal description 145
microntroller programmer 227-231
Mode 0 operation of 8255-PPIO 166
Mode 1 operation of 8255-PPIO 166
Mode 2 operation of 8255-PPIO 167
MOFSETIRF610 50

MOSFET driver 45, 47-50
MOSFET gate current 48

MOSFET input characteristics 48
MOSFET On voltage 48

MOSFET speed 45, 48

multiplexer 23

multiplying DAC 85

N

Network Printing Alliance 59

nibble mode 60, 61

P
parallel port bit expansion 157-173

parallel printer port anatomy 26—29

PC data area 3940

PC to printer data transfer 36

period counter 109-114

plug-in interface card disadvantages 12
port 7, 10, 11

power switching circuits 45-50

printer cable 31

printer port block diagram 27

programmer 2, 6

PWM DAC 85

R

r-2r ladder DAC 83-84

read-back port 29

reading DIP switches through parallel port 51
reading external data using the STATUS port 55, 57
record temperature 1-4

relay control 45, 46, 47

RS-2327, 10

RS-232 powered +5V supply 116

Run Length Encoding 75, 76

S

sampling ADC 92-94

scaled-resistance DAC 82

shutter control with MOFSET switch 50
shutter control with MOSFET switch 49

signa convention 14

SmartRAM EPROM emulator 184-185
software driver 7

software interfacing 7-9

speech digitizer 8-11

speed of PC 20

STATUS port 27, 28, 31, 33-35
STATUS port address 29

STATUS port output details 35

strobe signal 2627, 34

successive approximation principle 97

T

testing hardware on Linux 258-260
time base generator 108111, 114-115
timing diagram convention 14
transceiver IC 21

TTL and Variants 17

TTL characteristics 17

TTL gates 18, 21

typical signal of sampling ADC 92

U

ULNZ2003A driver 4547

unconventional waveform generator 256

w

waveform generator 249-252

weather information on WWW 271-279

Page 308

wrap-back port 33

