

Copyrighted Moteriel

Contents

P'rfa' r I" 1Mb","h rdlli<m
A,'~ nm. kd~m"n1.'

,

.......bo.... .., aIM! «,
1.1 Inl",J uci ,on
1.2 t"uml>cr s~'tcm.

1.3 ('""wr"''''' !>..~"."Cn num!>..·r ,y'lc"'h
1.4 lI,nal)' aJdition and ,ubt"c'li"n
1.5 Si~nro anthm<t.,
1.6 C"mpkment arilhmd,c
1.7 Complement ""pr",.:ntation f"r binal)' numl>c..
I.g Tho "ahd,,~ "I' r. and 2-, c<>mrl<m<nl arithrncllc
1.9 Orr"'t binal)' r"rr...nlali"n
1,[0 AJd ili"" and subtraclion of 2', cumpkm"nl number>
I,ll Grar hical int<rrr",ation of 2', comrlcm"nt ,op"""nta,ion
I ,12 AJdilim' alld ,ubtra"i"n "I' I', ,x'mpkn"'nl numbe'"
1.13 Multipl",alion of un,i~",xl b;na,) numbe..
1,14 M"ltiplieali" n of ,;gnOO bina,y numh<1'>
1 ,1~ Ilinal)' di"i,i"n
1,16 Floa , i n~ point a'ilhmetic
1.17 Ilinal)' cud", rOf <kcimal digil'
1.1 & n-<;uhc- and di"a",""
1.19 E, ror de",;';"n and ,-orr"'1ion
1.20 Tho /l amming cud<
1.21 (ira) ""de
1.22 The ASCII cod"

",. ,I..an alj:obra
2.1 Inlr"ducti" n
2.2 !lo" lean all"'hra
2.3 [kri,'ro Il.~,lean ol"'ralion,
2,4 1l.",lean fu",-,i"n,
2.~ Tru lh 'able.
2.6 Tho ["po "f a '''ikh
2.7 Tho ,,,itch impk"",nlation "f lhe A1"1> fun,:lion
l.g Tho ''''itch impkmentation of lhe OR funclion
2.9 Tho pling fun,-';"n "I' 'he At" [) anJ O R ~atcs

2.1 0 The inw",ion fu"eli"n
1.11 Gale Of , ,,,i,,-h impk me"la li,," "f a 1I ,~, lean fu",-li,m
2,12 The lkook an lheo""",

Copyrighted Mot.tlal

."
>1"

,,,,,,,,
•tu

ro
u

"n

"rs
te
rs..
zo

"2,1

"

Copyrighted Moterie l

.,

1 13 Coml'klc ",I,
1 14 The ."do, i,·,,·O Il. IXORI [u....1i"n
1 15 The Ih 'Cd ·Mull" r "'luali<>n
1 16 St"l lh<l't)' a nd Ih" V"nn dIagram

" . ,n' lIl/.h rna,.. ond fo....'~'" , i<nplir.... 'i,,"
3.1 InlrOO UCli" n
3.2 Minlenu. "nd ma\lem>'
3.3 Can"",,,al fonu'
3,4 1!<,,,le,," funcli,,", " f 1"0 "anahle<
3.S The Ka,naugh m;Or
3,6 Pl" ll ing Iloo lean fUIKlion' on a Karnaugh map
3.7 Ma" ern" 0" Ihe Karna " ~ h map
3 .~ Siml' lif",alion of 1Io" ,lean fUI"'li,," ,
3.9 The in"""" fU"';l i""
.1.10 'n",,'1 "" re" '.nu,
.1.11 Simplilio::at ion of prodUCI' of m""erm'
.1 .12 TI.... Quine ~k(1 u,key 'a hular ":mplit",alion melhod
.1.13 PfO",," "" nf prim. impli"anl lab""
.1.14 ("yelic prime impl"'.nl 'able,
.1 .15 Semi...·)·"h,; prime implicant 'ahl,..
.1.16 Qui"" Me,n u"" ;' " mpli f.;alion of timClio... conl"i nin~ '<I"n'l ,afC' t, nu,
3.17 Ike, ,,,,,1al'f'ro",-b10(}umc' M,<1",k<)' "mphrlrulK\fI "f 1lo.. >Ioan fu,"-1;">o,
l .l ~ Multil' le oUll'UI ,-ireui!>
3. 19 Tahular m<lhl.t, for mullll' l< " uipul funtlion'
l.W Rro lK"Cd dllI.cn"OJl rna",
3.21 Pl"ll i n~ 11.1»,1< r",m Irulh tahl,..,
3.22 R.adi n~ RO M ruocliun>
3.23 L"ot>i n~ rub fo' RD'l.h
3.24 Crileria ror minimi",ti"n

('"",hin" ;,,,,"l h'l:i<i~n p,i...~pl,...
4 ,1 I" tro..l u,i i" n
4,2 The NAr>;[) fun"'i"n
4,3 NA~D logic ;ml'lementation of AN D and O R fun,i ion.
4 ,4 NA~[) log", iml'lemenlat i<m "f 'um,...,r-1',,><1"'1'
4,5 The NO R rUIKlio"
4.6 !'>OR logic in'rl"",enlali"n or A ND and O R fun"'ion,
4,7 r-;OR I"gic imrlemenlali"n "r rrOd""I'r...Un"
4.8 r>;OR I"gic implemenlati"n or .um,-"f-I',,-..Jl.ICl'
4.9 Bo'o lcan all"'braic analy. i, of NAr-; [) and :-;011. ",,"',ork.
4.10 Symholic ,-ire"il analy":, r,,, r-;AM) and NOR nct",orh
4. II AI'ernali"" r"""lion rcp",,,,nlati,,,,,
~. 1 2 Gate ,i~nal con"cnli" n,
4.13 (ial. e,pun,i"n
4.14 Mi"""lIa",,,' " ' ~ate nelwork<
~. 1 5 bclu<i'·c·Q R and h cl u, i,'C· NO R
4. 1 ~ I'<oi,., ma'gin,

Copyrighted Mot. " . 1

"""~
"ae..
so

""""""""M
"""n
n,.
"n

Copyrighted Moterie l

4.17 P"'!",galion lime
4. I~ Spero."" ..."r 1'",.1<"",
4.19 Fan-<>u,

~ ('"mhinell" nol h'lliri~n " llh ' lS I . ,.i"
5.1 ' '' ''OOUCl i" "
5.2 Multiple.." and d.'a """"'i""
5.3 A, . ilahl< MSI mul'ipl"e",
5,4 1" 'e",,,mll.'Cli,,g mul'iple.."
5.5 The mult;pbe, .< a lIool. a n futt<.1i" n ~neral'"

5.6 Multi-b el mulliple.i"~

5.7 Demulliple, er;
5.8 Multiple\er.demultiple, ,,, data "a"<mi"i"n ,>'''''"'
5.9 D"""d. ",
5.10 [),....·'>tler ""I\'""h
5.11 The d...,>tler a' a min"fm ge"","'o.
5.12 Di'pb)' ,k",>tli"g
5.I) Ett<.·(>tler "i"'uil pritt<.-;plc.
5.1 4 A"ailahl< MSI .tI<oders
5.15 Ett<.. >tling ne".." k,
5.16 Pari'y gene.ali"" and ,·he.;king
5.17 Digi 'al c"m!",,"',,,,
5.1~ Iter. ",.. ,;"'u;t,

6 I.." ·,,,", e nd n ip-n up'
6.1 I" " ooud ,,,"
6.2 The bj,tahlc de"""nl
6.3 The SR bfeh
6,4 The 'n""lIed SR la"'h
6.5 The ,,,,,,,n,,,, IJ laleh
6.6 Latch ,i rni n~ !"' ramder>
6.7 The JK nip-nop
6.8 The ma,ter ,Ia'. JK n;p-n"p
6,9 A,ynchr,,,,,, ,,<eonlrols
6,10 I', a"d 0' , eatehin~

6.11 The m.,ter.,Ia'. SR nip-n"p
6,12 The rol"'-Irig!"'rcd D nip-n" p
6, I) The ed!",-,rig!",rcd JK nip-nop
6.14 The T nip-nop
6.1 S M.:chanic,,1, ... ileh dcl>ou'lI.'ing
h.lh Rcgi, tef<

7 o'U",..... ond "'lIi" 'r>
7.1 Introouction
7.2 The c1'lI.'k ' ignal
73 II.... count" de";gn
7 4 Se. ic< and pa.al\cl connc<,~," " f ''' ''"'ers
7.S Seale...,f· Ii ,,, "p-c""nt..

Copyrighted Motolie l

('""".,,,.• ,...

~,.,
'"
'0;
'0;
'0;".
'''''",n
'"'"'"'"121,,,
12.1
us,n
129
1.11
1.15

142
142
142

'",~
'",~
'"'"152

'"153

'"'"'"'"'"
Ih.l
Ih.l
Ih.l

'M
'"'"

Copyrighted Moterie l

H

",.
"7.10
7.11
7.12
7.13
7.1 4
7.15
7.1~

7.17
7.1~

7.1~

7.~

7.21
7.22
7.23
7.24
7.25
7.26

Th. <k>;~ n ".1" f"r a 'yn<h",n" u, <I,Unle'
Gral' ~uJe ~"unt""

l><,; ~n of J.""Je (iray ",'<k up--<.'o"nlo,
Smk·ul"·l ~ up J""n rounl<f
A'~'n<h"",,,u, hmary .~\"nl<rs

Dccooi n~ of "'l nehronou' rou nle"
A,~'neh r"'l<I'" re"'llaMe e" "n1<"
1 0 l e~ra led eirc"it ~" "nle,,

Ca",adin~ of IC ~ouol'" ehil"
Shirt ",~i"e"
The 4-Nl 74'14 ,hirt ",~i'l'"

The 4--Nl 74~5 uni... r",1 ,hirt ",~i'lcr

The 141M parallelload;n~ ~-l>i l shift ",~is1<r

The u'" of ,hift "'~;'le" a, e"unle" and ""l"eo... ~eneral""

The uniw,1Slaledi.~ram f" , ,hifl ,eg;<Ie"
The de<ign "I' a d«:"oc «>UnlC'
The ring ~"unl•.,-
The ''';<Ied ,;n~ '" John" ," .~>unlcr

Serie< " nd paral lel in'ereonn••;,ion or John" ," eounl."
Shih regi,.." ";lh XO R r",>Jb;"'k
Mul, i_Nl ,ale mull;pli"...

170
170
172
172
17.\

'"'"n.

'"1~.l

'"''"
'"'"'",..
'"I'I~
'"'"zoo

•

,

(·~",k "',h ... " ..""n' i. 1circuit­
~.1 101",J ""h,,0
~.2 Th" baSIC 'l""h'"n"u, '"'j "en,;"I';"'ult
~.3 Ana1y,;, of a eluded 'iCtju"n';al ""'uot
~.4 I>",ign ".po; fo' 'l'nch",n"", ""1uential ~;rcu;ls

8.5 The d", ;!," of a >C<j "elll" d"'1oT
~.6 Th. Muo , . anJ ~kal y ,la'. rna"h",.,
~.7 Ana1y,;, of a'l""u'i.1 .'i,,'uit ;mpkomen,.-d ,.."h JK I1Ip-n,,1"
~.H Sc'l""ut;,,1,'ire";l <k,;~n u,m~ JK n,p.n"p,
~ ,9 Siale red"",ion
~ ,IO Siale .,';gn"",nl
8.11 A I~''' ; lhm ic " ale m"chi"" cham
~ ,12 Con"cr';"u or an ASM c"'", inlo h.rd.,.re
~ ,13 The -one-l,of 'Iale a";gomen,
8,14 Clod ,ke"
~ ,I S Clod limin~ ."n,lr.inl'
~ , I~ A'~'n<h",nou, ;np""
8.17 The hand,ha ke

h en' dri, •• tirc" "
9.1 Inlroduction
9.2 [),;, ign p,,,,"edu'. rOT .')"<\,ron"", ""1uenlia) ci"'u i"
9.J Sl.hle and un"ohle ".'«
9.4 [),.";gn or a lamp ",i'ching cire"i,
9.5 R ",~

9. 6 R",.., free o"ign""'''I'

Copyrighted Moto".'

207

""""""210
21 S
217
2~ 1

2~j

2~5

2~~

232
235
237
238
23~

2-40
2-4~

,~

,~

,~

2-4'1
250
25~

254

'"

•.,
•••••
9.10
9.1]
9.12
9.13
9.1 4
9.15
9.16
9.17
9.1 ~

9.19
9.:~l)

9.21
9.22
9.23
9.24

10.1
10.2
10.3
lOA
1 0.~

10.6
10.7
lo.g
10.9
10.10
10.1]
10.12
10.13
10.14
10.15
10.16
10.17
1 0 . 1 ~

Copyrighted Moteriel

Tb<- pump pmhlcm
[k...i~n " f a ""'1""n,.." d.l<'l:I,,'
SlalO redU<lion for inoomplcld l 'f'l,,-~flod m.chi"",
Compallhlh'l
[kl. , m,nallon "r c",mpalihlo I'""
The """1"" d ia~ram

Th" Slal" redaction 1",1OCC'.lur"
Circui, hM.,d<
Galo dolal'
Th" I"''''''a'ion or <pik...
The ~o"",ali"n or "ulic ha""d< in ",,,,,n," .H~m;lI ""l ...",k,
The eliminali"n "f Slalic ha'a,ds
[).., i ~n "f halard-r,,,,, e"mninalional I).l"O'X.
[).- I ""l ~'n or hala"h in al) ",i,t in~ ""I "·,,,k
H",,, ,d·f,,,,, a,~",·h "m<\Us cireuil dc"i~I)

ll}'namic ha,a,ds
f U"",li<>n h.,.,d"
h·n,i.] h.,,,,,,h

In'md ueli,,n
Schmiu ''';g['C' eireu i"
Schmiu lOP" ' ~a'",

l)j ~i ta l . t l>-anu l"~ ",, c">O"''''"n
....nu l"~"" .I',..j i~; I. 1 ""n...."i"n
Ha"h ""n""l.'"
I n , .~,. , ; n~ A D con...." ..·, llf'l"
.... 0 c·"merlo. 'll"'> u"in~ an emb...Jdc-d 0 A e"nwT1cr
Shaft e"",I>d"" and lin.ar .nn>de""
s..·""i"~ "fm",i,,"
.... I»"lu'" ""<,ode,,
C"n.·..""" from G,a ~ cod. I" ha<e 2
P.l ho:rick c,,><k
Inc", m"" lal onc<><l<rs
Open c,,-,I""'l'" and Ui-'Ial" [<ill'"
u'" or "I"'n c" I1""I'" ~al'"
U'" " r l";--<,lale huff....' and ~ale'

OJhcr il\l.,f..;n~ c,,-'mf'l"I<nt>

256
25~

'M'M
265
267
267

'M'M'M
270
271
27.1
275
m
279
2XI
2 ~2

2X?
:~7

2~7

: ~9

~~

'"'"~.
",
30.1

'"soe

""au
312

'"3]6
320
321

I I l'rUK' aIM,ahlc- IUKi" clc.
I Ll Inlfod UCli" n
11.2 R. ad onl~ n",m",~

I U ROM ,imin~

11.4 Inte, na] ROM ""a,,'ure
11.5 1",,, I"",,," I. li" n ,>(1I<>" k "n ru"",l~'n" u,in~ R()~h

11.6 In'",na] "dd'e>,jn~ lc'Chn'<jU<.... in ROM'
I L7 Mc,"," ')' "..wrc>,i n~

II.~ [lo:, i ~n "r ""lu.nli.1 eireuili u,i n~ RO~h

326
J26
J26
J29
J.l0
HI
J .14
J .15
H7

I LY
I LlO
I rn
I Ll2
I Ll3
11.1 ~

11.15
ILl ~
ILl7

Copyrighted Moterie l

rrog",mmahk I"gic d"·..k,,, I!'l D'1
I'r<'grammahk gal••rra~·' l l't,A'l
Programmahk I"gic artaj" (I' LA,)
rrogrammahk array I" gic (I'A l~

I'r<'grammahk I"gic '1<'<1""0«" (PlS'l
Field l'rogr"mmable l"'1. arraj' (FI'GA,)
Xiliu fidd programmable gale array,
,\cld p",~rammah'"gal. arra~"

AI'.r. cra"'ble programmahle logic d."i,....

337
3.N
~,

,~

~,

ns
357
.II>!
J{"l

n ·\ r i l~"" · 'ic "h ui" .I{>7
12.1 In" OO uCli,," J{,7
12.2 The hair adder .I{>7
123 The rull adder .II>!!
11.~ lIinary , ,,l>lrael i,,n no
12.~ The 4-hi, hinal)' full adder 37l
12.~ CalT)' !<k,k·al>"..d addil~'n 372
11.7 T1Ie 7~2~J.f.hil ,'alT)' I""l ·al>cad add« J7J
12.~ Addi'ion ., urnraCli"n ci",,,it< " ' ing """'rlemen' ari' hme' ic 376
12.Y 0 ,·..0"" 311
11.10 Serial addi'i"n an<! sul>".,~i"o ng
12.11 A""umula'i ng .dder .lS0
1.'.12 Ihim.! ari'hmetlc ""I> MSI add"", 3Sl
12.13 ...dd...,uh"acl"r f"r d''<.'im"l arilhmdic 3SJ
U.l~ The 74S7 'nJ<·c"mplo'menl um' 3S5
12.15 Arithn'l<lie ·l"g;'" "OIl deSIgn 3~1>

12.1~ .",·ailahl. MSI arilhm"';" l.'gic un'l< 3\10
12.17 ,"uh,pl,,·a ' ''. n 392
12.1~ ("omh,na,i"nal malliplic" 39.1
12.19 RO M implem<ol<-J multiplier 3Y4
12.20 The ,h ift and add ",ultlplier 3%
12.21 A"ailah", multiplier ...,dag.. .wI
12.22 Signed arilh"""", ~O l

12.23 Boo,h', alg"ri'hm .wl
12.2~ Impl. m. nla li,," of Iloolh', 31~"rilhm .m4

13 huh di .~",";, ""d I,"'in.:
13 .1 Inlr" d u,1i" n
13.2 b uh lkl""li"" and I"ca,i,,"
13.3 Gale """,i';"i,y
13.4 A fauh 'cst for a 2· input ASP [<"1<

13. ~ p.a,h """sili"'li,,n
13.6 1".11. ",nsilisali"n in """"'h "itl> fan"'''1
13.7 lindo''''''ahk fault,
13.~ ll ridging fa ul"
13.9 The faull d,"""li"n .. 1>1e
13.10 T" ,,·Io,·c1 circuit fa ull d<~",:'~'" in AI"P OR ci"'ui"
13.11 T"o·Ie'el circ"it faull del""li"" in OR.AM) circuits

Copyrighted Mot. lie l

aos
aos
••
412
40

'"'"'",,,
4! .1
~!8

4.12

IJ 12
lJ l.l
0 14
0.,
011>

,-,
A>
A2
A)

A<
AS
A.'
A.'..
"" 10

1Io",loan ,lItr.........,
(''''"1''''1 I",nn. lc.:hn",un
~,nalu~~naI~·';.

no. >an I"'th IN,n. ,cdlniqU<
U........n. r......""~hol ,t~·

.- IoJi< '~ """"
In' " ...""'
8.1...: ,u o(tM rll1k1ional .~m"'" ~~

(lr"l...idn.. , notation
~pk~"'"0(G dcl"ndcllC, ,n fu..........llop< .~..hob
C_'rol. Sd and R,,;ct dc...ndc .,
Bo..~Noo k>p< and C dc "d"..)
(.<>U. , 7. ~nd \l~
SM'~
I'foJn Noo dnicn ~nd A dc,""odtllC,
AnI u"""" and ... drpmdmo..,

4 ~ 1

'"'"'"a~ S
'",,,
~,

~,

~

~,

.4.....·.... ' .. I",oHo

1IJohor'''I'Io',.,,,

Preface to the fourth edition

In this newly revised edition of Digital Logic Design, we have taken the opportunity to
undertake extensive revisions of much material contained in the third edition, whilst
retaining its comprehensive coverage of the subject. Like the previous editions, the
current edition is intended to cover all the material that is needed in a typical
undergraduate or Master's course on Digital Logic Systems, and also to act as a
reference text for graduates working in this field. To this end, we have retained all
elementary material assuming little or no background, but the advanced chapters have
accordingly been revised to take account of recent trends in hardware availability.
A number of additional problems have been set at the end of some of the chapters,
sometimes without answers, in order to allow the reader to exercise his/her design
capabilities without the luxury of being able to refer to worked solutions.

The chapter on instrumentation and interfacing is almost entirely new, and the
chapters on programmable logic devices, and on fault diagnosis and testing, have been
considerably enlarged as a result, on the one hand, of significant advances in the
technology and the range of devices now available to the designer, and on the other
hand to emphasise that logical fault-finding methods, far from being esoteric,
impossible to apply in practice, trivial, or demeaning for a professional engineer to
use, are actually worthy of serious study and application.

Material enclosed in boxes in this manner is usually not needed later in this text,
and is not as important as the main narrative, or sometimes summarises work in the
main text. This material may be rather more demanding than the main text, or be
unusual or obscure in some other manner; generally speaking, proofs of results in
these sections and subsections are not given in detail, and are left as more of a
challenge for the interested reader to work out in full. The first-time reader, or a
reader not aiming for complete coverage of all the material in this text, may safely
ignore these sections and subsections.

Throughout the main part of this edition, we have used the 'old' IEEE logic symbols
rather than the 'new' BS3939 symbols; this is a result of a perceived shift in attitudes in
the engineering profession, and the IEEE symbols are now recommended alongside
the BS symbols. Modern CAD systems are capable of printing the 'old' symbols with
ease, eliminating the major initial advantage of the 'new' symbols when first
introduced. However, as an understanding of the 'new' symbols is also a useful
accomplishment, a summary of the 'new' system is included as an Appendix.

Acknowledgments

Figures based on or adapted from figures and text owned by Xilinx, Inc., courtesy of
Xilinx, Inc. �9 Xilinx, Inc. 1999 All rights reserved.

We are also grateful to Texas Instruments plc for allowing us to use their diagrams.

1 Number systems and codes

1.1 Introduction

A digital logic system may well have a numerical computation capability as well as its
inherent logical capability and consequently it must be able to implement the four
basic arithmetic processes of addition, subtraction, multiplication and division.
Human beings normally perform arithmetic operations using the decimal number
system, but, by comparison, a digital machine is inherently binary in nature and its
numerical calculations are executed using a binary number system,

Since the decimal system has ten digits, a ten-state device is required to represent the
decimal digits, one state being allocated to each of the decimal digits. Ten-state devices
are not readily available in the electrical world, however two-state devices such as
a transistor operating in a switching mode are, and it is for this reason that the binary
number system is of great importance to the digital engineer. In addition to the binary
system, a number of other systems such as the hexadecimal system are used in
conjunction with programmable logic devices, consequently the digital engineer must
be familiar with a variety of different number systems.

It is also true that arithmetic processes executed by a digital machine are not
necessarily identical to the pencil and paper methods which are normally employed
by humans. For example the process of subtraction is carried out as an addition and
this involves the use of complement arithmetic.

Again, a frequent requirement is that the output of a digital machine should be a decimal
display, for obvious reasons. Since the machine normally computes in pure binary, a way
has to be found to represent decimal numbers in terms of binary digits and this requires
a binary coded decimal system. Methods have to be devised so that any numerical
computations carried out in pure binary can be converted into binary coded decimal so
that at the interface with the outside world a decimal display or readout is available.

Coding of information is a basic consideration in the use of a digital system. Codes
are required for decimal numbers, the letters of the alphabet and a variety of other well
used symbols such as =, ?, etc. We previously referred to binary coded decimal as
a coded representation for decimal numbers. This is an example of a weighted code of
which there are a number of examples. In addition to weighted codes there are a variety
of other codes available, for example the XS3 code, and the choice of a suitable code is
not arbitrary. Its properties have to be considered before selection for use. In practice
the most widely used code is the 8-4-2-1 weighted code which is referred to as naturally
binary coded decimal.

The aim of this chapter is to describe the various number systems in common usage and
to develop methods for implementing the four fundamental arithmetic operations on a
machine. Additionally, a brief survey of some of the more common codes will be presented.

2 Digital logic design

1.2 Number systems

The number system most familiar to man is the decimal system. A decimal number
such as (473.85)1o may be expressed in the following form:

(N)I o = 4 x 10 2 + 7 x 101 + 3 x 10 ~ + 8 x 10 -1 + 5 • 10 -2

The number (N)lo consists of a series of decimal digits multiplied by the number
(10)lo raised to some power that depends upon the position of the decimal digit in the
number. The number (10)lO is termed the base or radix of the number system and is
equal to the number of distinguishable digits in the system. For example, in the decimal
system there are ten digits, 0 to 9 inclusive. However, the binary number system has
a base of 2 and has only two digits 0 and 1.

The decimal magnitude (N)lo of a number in any system can be expressed by the
equation:

b n - 1 (N)lo - an-l + an-2b ~-2 + . . . aob ~ + a_lb -l .. + a_mb -m

where n is the number of integral digits and m the number of fractional digits. The base
of the system is b and a is a digit in the number system whose base is b. Using this
equation the binary number (101.11)2 is evaluated as follows:

(N) I 0 - 1 x 2 2 + 0 x 21 + 1 x 2 0 + 1 x 2 -l + 1 x 2 -2

= 4.0 + 0.0 + 1.0 + 0.5 + 0.25

= (5.75)10

Two other number systems of some importance are the octal, or base 8 system, and
the hexadecimal, or base 16 system. The octal system has eight digits, 0 to 7 inclusive.
A typical octal number is (27.2)8 and its decimal value is given by

(N)10 = 2 • 81 + 7 • 80 + 2 x 8 -l

= 16.0 + 7.0 + 0.25

= (23.25)10

In the hexadecimal system there are 16 digits and since there are only ten digits
available some additional ones have to be invented. The additional six digits are by
convention represented by the first six letters of the alphabet, A to F inclusive, whose
corresponding decimal values are

(A)I 6 - (10)10

(D)I 6 -- (13)10

(B)I 6 - (11)10

(E) I 6 - (14)10

(C) l 6 - (12)10
(F) l 6 - - (15)10

A typical hexadecimal number (A2.C)16 has a decimal value which is given by:

(N)I 0 = A x 1 6 1 + 2 • 16 ~ 2 1 5 16 -1

= 160.0 + 2.0 + 0.75

= (162.75)10

Number systems and codes 3

1.3 Conversion between number systems

A number in any base can be divided into two parts, (a) the integral part to the
left of the radix point, and (b) the fractional part to the right of the radix point.
The process of conversion to another base is different for the two parts of the
number.

The decimal value of the integral part (Nl)lO of a base b number is given by:

b "-1 . . . b 1 (NI)10 -- an-1 + an-2 bn-2 -k- al + aob ~

Dividing both sides of the equation by the base b gives"

[Ndlo bn_ 2 bn_ 3 .. bO ao -- an-1 a t- an-2b n-3 k- an-3 + . al + - ~

The result of dividing by the base is to leave the least significant digit of the number
ao as the remainder after the first division. Subsequent repeated divisions will produce
remainders of al, a2. . . a,-1. As an example of the process of repeated division by the
required base the decimal number (100)lO is converted below to its binary, octal and
hexadecimal equivalents:

21100 0

2 [5 0 0

2 125 1

2 1 1 2 0

2 [6 0

2 131
2 I 1 1

0

8lloo 4
8 1 1 2 4

8 [_ ! 1
0

16 I1oo 4 T
16 [6 6

(100)1 o -- (1100100)2 = (144)8 = (64)16

The decimal value of the fractional part (NF)IO of a base b number is given by:

(Nv)lo -- a - lb -1 + a-2 b-2 + . . . a-m b-m

and if both sides are multiplied by the base, then

b (N F) l O - a-1 + a-2b -1 + . . . a - m b -(m-l)

and, the first multiplication reveals the coefficient a-1. Subsequent multiplications will
reveal the coefficients a - z , a - 3 , . . . a-re. As an example of this process (0.265)1o is

4 Digital logic design

converted to its corresponding binary, octal and hexadecimal forms below:

.265 x 2 .265 x 8 .265 x 16

0.530 x 2

1.060 x 2

0.120 x 2

0.240 x 2

2.120 x 8

0.960 x 8

7.680 x 8

5.440 x 8

4.240 x 16

3.840 x 16

D.440 x 16

7.040 x 16

0.480 3.520 0.640

(0. 265)10 = (0.0100)2 (0.20753) 8 (0.43D70)16

and the number (0.265)10 is expressed to five binary, octal and hexadecimal places
respectively.

Octal Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

(a)

Figure 1.1

HD Binary HD Binary

0 000 8 1000
1 001 9 1001
2 010 A 1010
3 011 B 1011
4 100 C 1100
5 101 D 1101
6 110 E 1110
7 111 F 1111

(b)

(a) Octal/binary conversion table
(b) Hexadecimal/binary conversion table

(110 001 011 100) 2

=(6 1 3 4)8

Besides these conversions from decimal to
binary, octal and hexadecimal, it is also
possible to convert from both octal and
hexadecimal to binary and vice versa.

The octal digits from 0 to 7 inclusive can
each be represented by three binary digits
as shown in Figure 1.1 (a). To find the octal
representation of a string of binary digits it
is divided into groups of three, beginning
from the least significant digit. The octal
equivalent for each group of three digits
is then written down with the aid of the
conversion table as shown below:

If the binary number has a fractional part then, to find the octal fractional part, divide
the binary fractional number into groups of three beginning at the binary point and
moving to the right. The corresponding octal equivalents for each group of three are
then found in the conversion table. For example:

(100 001 010 100 .010)

=(4 1 2 4 .2)

Octal numbers can also be converted to binary by replacing each octal digit with the
corresponding three binary digits from the conversion table. For example:

(4 3 2 .7) 8

=(100 011 010 .111)2

Number systems and codes 5

Similarly, each of the sixteen hexadecimal digits can be represented by four binary
digits as shown in Figure 1.1(b). To convert a binary number into hexadecimal,
divide the integral digits into groups of four, beginning at the binary point and
moving left; and divide the fractional digits into groups of four beginning at the
binary point and moving right. Each group of four binary digits is then replaced by
its hexadecimal equivalent from the conversion table as illustrated in the following
example:

(1011 1010 0011 .0010)2

= (B A 3 .2)16

For the reverse conversion, each hexadecimal digit can be replaced by the appropriate
four binary digits from the conversion table. For example"

(4 F �9 C 2)16

- (0100 1111 1100 0010) 2

1.4 Binary addition and subtraction

Addition

The rules for the addition of two single-bit numbers are defined by the table shown
in Figure 1.2 and the addition of two positive 4-bit numbers using these rules is
demonstrated in the following example"

Augend Addend Sum Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 1.2 Rules for the addition of two
binary digits

2 3 22 21 20

Augend 1 0 1 1

Addend 0 1 1 1

Sum 1 0 0 1 0

Carries 1 1 1 1

11

+7

18

where the weighting of the individual digits is shown above each pair of digits.
It will be observed that the carry ripples through the addition from the 2 0 column to
the 2 3 column. Carry ripple is a significant problem that has to be taken into account in
the design of addition circuits.

When two n-bit numbers, whose most significant digits are 1, are added to-
gether they will generate an (n + 1)-bit sum. The additional bit generated is termed
arithmetic overflow. In pencil and paper calculations the extra digit does not create
a problem. However in a digital machine, prior to the addition, the augend and addend
may be stored in separate registers and after it has been performed the sum may well be
returned to one of these two registers. In this case an extra bit must be provided in the
register containing the sum to store the overflow.

6 Digital logic design

Subtraction

The rules for subtraction are summarised in Figure 1.3 and the subtraction of two 4-bit
positive numbers, where the subtrahend is less than the minuend, is illustrated in the
following example:

2 3 2 2 21 2 0

Minuend 1 1 0 0 12

Subtrahend 0 0 1 1 -3

Difference 1 0 0 1 +9
. 1 , " / "

Borrows 1 1

Minuend Subtrahend

0 0
0 1
1 0
1 1

Difference Borrow

0 0
1 1
1 0
0 0

Figure 1.3 Rules for the subtraction of two binary
digits

2 3 2 2 21 2 0

If the subtrahend is greater than the
minuend an arithmetic underflow occurs
which results in a borrow-out at the most
significant bit and the difference is negative
in this case. The borrow-out can be used in
a digital machine to set a 1-bit register and
in doing so will indicate that the difference
is negative. Arithmetic underflow is illus-
trated by the following example:

Minuend 0 0 1 1

Subtrahend 1 1 0 0 -12

Difference 0 1 1 1
. , , / i , , ,

Borrows 1 1

-9

Subtraction is commonly used in a digital machine that performs numerical computa-
tions, for comparing the magnitude of two binary numbers. If arithmetic underflow
occurs the borrow out indicates that the subtrahend is greater than the minuend.
Otherwise the two numbers are either equal or the minuend is greater than the subtrahend.

1.5 Signed arithmetic

The previous section has dealt with positive numbers and only in the case where the
subtrahend is greater than the minuend is the answer negative. It is important that
there should be a distinction made between positive and negative numbers in
a machine. A sign digit can be used to provide this distinction. A negative number is
identified by a 1 that appears in the most significant bit (MSB) position whilst
a positive number is identified by a 0 in that position, so that:

(-23)10 = (1,0010111)2

(-0)~0 = (1,0000000)2

(+23)10 = (0, O010111)2

(+O)lo = (0, 0000000)2

Number systems and codes 7
. . . .

This is termed signed magnitude representation. The range of numbers available
with an 8-bit signed integer is from -127 to + 127 with two possible representations
for zero.

Because the design of a logic circuit capable of numerical computation in signed
magnitude representation is somewhat complex it is rarely used. In practice, numerical
computation in a machine is performed using complement arithmetic.

1.6 Complement arithmetic

This is a powerful yet simple technique which minimises the hardware implemen-
tation of signed arithmetic operations in a digital machine. In practice, when using
complement arithmetic, the process of subtraction becomes one of addition.

In any number system two complements are available. In the binary system they are
(a) the 2's complement or radix complement, and (b) 1 's complement or diminished radix
complement. For the decimal system they are: (a) the 1O's complement or radix com-
plement and (b) the 9's complement or diminished radix complement. It is worth noting
that the use of the l 's complement in the binary system raises certain hardware
implementation difficulties so that signed arithmetic processes are invariably per-
formed using 2's complement notation.

1.7 Complement representation for binary numbers

The 2's complement of a binary number X is defined by the equation

IX]2 -" 2" - X

where [X]2 is the 2's complement representation and n is the number of binary digits
contained in X. For X = 1010 and n = 4 the 2's complement is given by:

IX]2 -~ 2 4 - 1010

= 10000- 1010

--0110

Two other methods are available for determining the 2's complement of X. In the
first method, all the digits are inverted and a 1 is added in the least significant place.
For the second method, the lowest order 1 in X is sensed, and all succeeding higher
digits are inverted. Examples of these two methods follow:

Method 1 Method 2

X = 1010 X = 1010

0101 Invert /
Invert Sense

1 Add

[X]2 = 0 1 1 0 [X]2 = O110

8 Digital logic design

In the 2's complement representation a number is positive if its MSB is 0.
Alternatively, it is negative if its MSB is 1. Examples of two 8,bit numbers in 2's
complement form are given below"

+(19)10 = 0,0010011 -(19)10 = 1,1101101

S.D. Magnitude X S.D. 2's comp [X]2

An n-bit 2's complement number can be changed into an m-bit one, where m > n, by
adding copies of the sign digit to the left of the MSB of the n-bit number. This process
called sign extension is illustrated in the following examples:

n = 4 m = 8

+7 = 0,111 = 0,0000111

- 3 = 1,101 = 1,1111101

The table shown in Figure 1.4 gives some of the 8-bit numbers available in 2's
complement form with their corresponding decimal values. The range of these numbers
is from -128 to + 127 and it will be noticed that it is not symmetrical since there is no
2's complement number corresponding to -128. It will also be observed that zero in
this system is regarded as positive since its sign bit is 0.

The diminished radix complement, as in all number systems, is one less than the
radix complement. In the binary system the l 's complement [X] l is one less than the 2's
complement and is found by inverting all the digits in the binary number, as shown in
the following example"

X = 1010

[X] l - 0101 Invert

W e i g h t i n g , -27

Value -128
=

0
0

0
0

' 1
1

1

2 e 2 s 24

64 32 16
= =

1 1 1
1 1 1

1 0 0

0 0 0
0 0 0
1 1 1
1 1 1

0 0 0
= =

23

8

1
1

0

~

o
0
1
1

0

22 . 21 . 20 I Decimal

4 2 1 i value
= �9

1 1 1 +127
1 1 0 +128

i

0 0 0 +64
i

J =

0 0 1 +1
0 0 0 +0
1 1 1 -1
1 1 0 -2

0 0 0 - 1 2 8
, , �9

Figure 1.4 Tabular representation of 8-bit 2's complement numbers

Number systems and codes 9

Weighting 2 7 2 8 2 5 2 4 2 3 2 2 2 ~

0 1 1 1 1 1 1
0 1 1 1 1 1 1

0 1 0 0 0 0 0

2 o

1
0

Dec. value

+127
+126

0 +64

0 0 0 0 0 0 0 1 +1
0 0 0 0 0 0 0 0 +0
1 1 1 1 1 1 1 1 -0
1 1 1 1 1 1 1 0 -1
1 1 1 1 1 1 0 1 -2

1 0 0 0 0 0 0 0 -127
, ,

Figure 1.5 Tabular representation of 8-bit l's complement numbers

A sign digit is added in the most significant place to distinguish between positive and
negative numbers, 0 for a positive number and 1 for a negative number. The com-
plement is only taken in the case of negative numbers. Examples of 8-bit numbers in
the l's complement representation follow:

- 7 2 - 1,0110111 +25 - 0, 0011001

Although complementation is easily achieved in hardware, the system has the dis-
advantage that there are both positive and negative representations of zero and in the
cases of some numerical computations an end-about carry is generated which has to be
added in at the least significant place. For these reasons the 2's complement represen-
tation is generally preferred for numerical computations in a digital machine.

The table in Figure 1.5 gives a list of some of the 8-bit numbers available in l 's
complement form with their corresponding decimal values. The range of values is from
- 127 to + 127.

1.8 The validity of l ' s and 2's complement arithmetic

By definition [X] 2 - - 2 n - - X and the subtraction Y - X where Y and X are both binary
integers may be written as the addition of Y and the 2's complement of X.

Hence Y - X = Y + [X]2 - 2 n

where n is the number of binary digits contained in X.
The l 's complement [X]I is always one less than the 2's complement so that

[X] 2 - - [X] I - ~ - 1.
To establish that [X]l is the logical inversion of X it is only necessary to show that

X - X = O - X + X + 1 - - 2 n

o r

X + X + 1 --2 n

10 Digital logic design

_ w

Assuming X - 1010 and X - 0101 then the sum of X, X and 1 is

1010 X

0101 X

1
10000

and the underlined digit in this sum has the significance of 2" and it has been shown
that X + X + 1 - 2 n as required.

1.9 Offset binary representation

This representation is useful in some applications, for example analogue-to-digital
conversion and floating point arithmetic. Here the natural binary code is offset

Decimal
number

+7
+6
+5
+4
+3
+2
+1
0

Offset
binary

1,111
1,110
1,101
1,100
1,011
1,010
1,001
1,000

Decimal
number

-1
-2
-3
-4
-5
-6
-7
-8

Offset
binary

0,111
0,110
0,101
0,100
0,011
0,010
0,001
o,ooo

Figure 1.6 Tabular representation of 4-bit offset
binary numbers

by shifting its origin to the most negative
number in the range so that (0)~o occurs near
the mid-point of the range. For positive
numbers the sign bit is 1 and for negative
numbers it is 0. Hence"

(+6)10 = (1, 110)2 (-6)10 = (0, 010)2

A tabulation for excess binary in the range
(-8)10 to (+7)10 is given in Figure 1.6.

In the four representations described,
with the exception of offset binary, positive
numbers remain unchanged when signed.

1.10 Addit ion and subtraction of 2's complement numbers

Addition and subtraction in the 2's complement system are both carried out as
additions. Subtrahends are regarded as negative numbers and are converted to their
2's complement form. They are then added to the positive minuend. When adding
two negative numbers they are both converted to their 2's complement form before
addition takes place. Six possible cases are considered for the addition and subtraction
of two 8-bit numbers where the MSB represents the sign digit and is given a negative
weighting of 27 .

Case 1
< +127
m

Addition of two 8-bit numbers both of which are positive and whose sum is

_27 26

0, 0
0, 0

0, 1

2 5 2 4 2 3 22 21 20

1 0 1 1 0 0
1 1 0 1 0 0

1 0 0 0 0 0

+44
+52

+96

Correct positive answer

Number systems and codes 11

Case 2
> +127.

_27

0,
+ 0,

1,

Addition of two 8-bit numbers both of which are positive and whose sum is

26 25 24 23 22 21 20

1 1 0 0 0 0 1
0 1 1 0 0 0 0

0 0 1 0 0 0 1

+97
+48

145

This gives a negative answer which is clearly wrong, since both numbers are positive.
The incorrect answer is obtained because the sum, 145, cannot be represented by seven
binary digits and arithmetic overflow has occurred from the magnitude section into the
position occupied by the sign digit.

Case 3 Subtraction of two 8-bit numbers when the subtrahend is < the minuend.
Subtrahend in 2's complement form. Difference found by addition.

_27 26 25 24 23 22 21 20

0, 1 1 0 0 0 1 1 +99
+ 1, 1 0 1 1 1 1 1 -33

Discard (1) 0, 1 0 0 0 0 1 0 66

Correct positive answer, but there is a carry out from the sign bit which has to
be discarded. If the working registers happen to be 8-bits wide the carry out is auto-
matically lost.

It will be observed that the numerical value of the subtrahend (-33) can be obtained
directly from its 2's complement representation by including the negative weighting of
the sign digit in the numerical evaluation.

Case 4 Subtraction of two 8-bit numbers with subtrahend > minuend. Subtrahend
in 2's complement form. Difference found by addition.

_27 26 2 s 24 23 22 21 20

0, 0 1 0 0 0 0 1
+ 1, 0 0 1 1 1 0 1

1, 0 1 1 1 1 1 0

+33
-99

- 6 6

Answer is negative and is in 2's complement form. True magnitude is found by taking
the 2's complement of the sum as shown below.

_27 26 25 24 23 22 21 2 o

1, 0 1 1 1 1 1 0
0, 1 0 0 0 0 0 1

1
O, 1 0 0 0 0 1 0

Invert
Add

=66

Case 5 Addition of two negative numbers where the sum > -127. Both numbers are
expressed in 2's complement form.

_27

1,
+ 1,

Discard (1) 1,

26 25 24 23 22 21 2 o

1 1 0 0 0 1 1
1 1 0 0 0 0 0

1 0 0 0 0 1 1

-29
-32

-61

12 Digital logic design

The answer is negative. A carry is generated out of the sign bit position which has to
be discarded. As in the previous case the magnitude is found by taking the 2's
complement of the sum.

Case 6 Addition of two negative numbers where the sum is < - 127. Both numbers
are expressed in 2's complement form.

_27 26 25 24 23 22 21 2 o

1, 1 0 1 0 1 1 1 -41
+ 1, 0 1 0 0 0 0 1 -95

Discard (1) 0, 1 1 1 1 0 0 0 - 136

The answer is positive which is clearly incorrect. The correct answer -136 cannot be
represented by seven binary digits. Figure 1.4 shows that the maximum negative
number that can be represented by eight binary digits is -128.

1.11 Graphical interpretation of 2's complement representation

The 2's complement number system can be represented by sixteen equally spaced points
on the periphery of a circle, as shown in Figure 1.7(a). It will be observed that a decimal
discontinuity occurs in the 2's complement scale between the points marked 0111 and
1000 where the corresponding decimal numbers are +7 and -8 . For the addition of two
numbers whose sum is < 7, such as (2 + 3), the point 0010 corresponding to 2 is first fixed
on the 2's complement scale and a clockwise rotation of three points round the periphery
of the circle is made to the point marked 0101 corresponding to the correct sum of 5.

It is clear that if the sum is > +7, for example (2 + 9), a clockwise rotation through
nine points on the periphery of the circle starting at 0010 crosses the decimal discon-
tinuity into the negative region of the scale and an incorrect answer is obtained.

For subtraction, where the subtrahend < the minuend, for example (5 - 3), the
point 0101 is fixed on the 2's complement scale and an anticlockwise rotation of three
points gives the correct difference of 0010 corresponding to decimal 2 as illustrated in
Figure 1.7(b). An alternative way of obtaining the same result is to make a clockwise
rotation of (2 ~ - X) points from the fixed position 0101 where X = 3. The final
position reached will be 0010 on the 2's complement scale corresponding to +2. It will
be recalled that (2 n - - X) has previously been defined as the 2's complement of X and it

d d 4 4

11C

0000

110(I00

0000 1 1 ~ 0 0 1 .
111/2 �9 . ~ 0 0 1 0

11 1101 i -3 , ~ . ~ 1) " ' ' ' - "])~1011
0100 1100 -4 ,[5+116-X11

1011~ '5 '" . ,' ~.101
--6 " " - ' " " 6

,,, 1001 1000 u 1000 0111
(a) (b)

101 01

I U U I

Figure 1.7 Graphical interpretation of 2's complement arithmetic (a) Addition (b) Subtraction

Number systems and codes 13

follows that a correct answer is obtained by adding the 2's complement of the
subtrahend to the minuend.

1.12 Addit ion and subtract ion o f l ' s c o m p l e m e n t numbers

A difference occurs in the addition and subtraction of l 's complement numbers
when compared with 2's complement arithmetic in two cases only, namely Case 3
and Case 5.

Case 3 Subtraction of two 8-bit numbers with the subtrahend < the minuend.
Subtrahend in l 's complement form. Difference found by addition.

_ 2 7 2 6 2 5 2 4 2 3 22 21 20

0, 1 1 0 0 0 1 1 +99

+ 1, 1 0 1 1 1 1 0 -33

1 0, 1 0 0 0 0 0 1

EAC I �9 1

0, 1 0 0 0 0 1 0 +66

An end-about carry (EAC) added in at the least significant place gives the correct
answer.

Case 5 Addition of two negative numbers whose sum > - 1 2 7 . Both numbers
expressed in l 's complement form.

EAC

_ 2 7 2 6 2 5 2 4 2 3 22 21 20

1, 1 1 0 0 0 1 0 -29

+ 1, 1 0 1 1 1 1 1 -32

1 1, 1 0 0 0 0 0 1

I " 1

1, 1 0 0 0 0 1 0 -61

An end-about carry is again generated and the magnitude is found by taking the l 's
complement of the sum 1,1000010.

Multiplicand Multiplier

Figure 1.8 Rules for binary multiplication

Product 1.13 Mul t ip l i ca t ion o f unsigned
binary numbers

The rules for binary multiplication are
given in tabular form in Figure 1.8 and
an example of the pencil and paper
method of multiplication follows:

14 Digital logic design

Multiplicand 1011 11

Multiplier 1101 13

1011

0000 Partial
1 0 1 1 Products

1011

Product 10001111 143

It will be observed in this example that if two 4-bit unsigned numbers are multiplied
together an 8-bit answer is generated. If an m-bit unsigned number and an n-bit
unsigned number are multiplied together it is a general rule that the product will
contain a maximum of (m + n) bits.

A set of rules for the process of multiplication can be stated as follows:

1. If the least significant bit (LSB) of the multiplier is 1 write down the multiplicand
and shift one place left.

2. If the LSB of the multiplier is 0 write down a number of 0s equal to the number of
bits in the multiplicand and shift one place left.

3. For each bit of the multiplier repeat either (1) or (2).
4. Add all the partial products to form the final product.

Such a set of rules is called an algorithm which the digital designer can, if required,
implement in hardware.

In practice, the hardware implementation of the multiplication of unsigned numbers
differs from the pencil and paper method in one important aspect. The partial products
are accumulated as they are generated rather than all being added together at the end.
An example of the shift and add technique is given below:

Multiplicand (MD)
Multiplier (MR)

1st Partial Product (PPI)
MR bit M = 1, add MD

PP2
Shift PP2 one place right
M = 0, MD not added. PP3
Shift PP3 one place fight
M = 1. Add MD

PP4
Shift PP4 one place right
M = 1. Add MD

1011
1101

0000
1011

1011
01011
01011
001011
1011

110111
0110111
1011

11
13

10001111 143

1.14 Multiplication of signed binary numbers

Multiplication in a computer must be implemented with signed arithmetic. Providing the
multiplicand and the multiplier are both positive, the shift and add process is valid.

Number systems and codes 15

However, assuming that the multiplier or the multiplicand, or both, are negative,
2's complement arithmetic must be employed. The introduction of the sign digits and
the use of the 2's complement form for negative numbers introduces a number of
complications. Correction factors are required for certain cases and the required correc-
tion methods lead to complicated logic correction circuits. An alternative and more elegant
method is due to A D Booth. With this scheme the procedure is the same regardless of
signs. The method is beyond the scope of this introductory treatment of number systems
and the reader is recommended to consult Lewin (see bibliography).

1 . 1 5 B i n a r y d iv i s ion

The division process to be described here is based on a well known technique used in
digital machines for comparing the magnitudes of two numbers relative to one
another. The technique consists of subtracting the two numbers to be compared and
if the minuend > the subtrahend, a carry is generated and the sign of the result is
positive. Alternatively, if the minuend < the subtrahend, no carry is generated and the
sign of the result is negative. Complement arithmetic is used so that the subtraction
operation becomes an addition. This is illustrated in the following two examples which
cover the two conditions described previously.

Case 1 Case 2

Minuend > Subtrahend Minuend < Subtrahend

+6 0,110 +4 0,100

- 4 1,100 - 6 1,010

+ 2 10,010 - 2 1,110

carry positive no carry negative
generated result generated result

The rules for division of two single bit numbers are summarised in the table shown in
Figure 1.9.

The division process can be regarded as one of repeated subtraction of the divisor X
from the dividend Y. The number of times the divisor can be subtracted is the quotient
Q and the residue after the last subtraction is the remainder R where R < X.
The division equation may be written as:

Y = Q X + R

where

R < X .

When the divisor is to be subtracted from the dividend or a partial remainder, there are
only two possibilities. Either it will subtract and a positive result is obtained or it will

16 Digital logic design

Dividend

0
0
1
1

. . . .

Divisor Quotient

0 Indeterminate
1 0
0 o=
1 1

. . . .

Figure 1.9 Rules for binary division

Remainder

Indeterminate
1

Indeterminate
0

not subtract and a negative result is obtained. This leads to the restoring division
process illustrated in the following example:

Divisor = +6 = 0, 110. 2's complement of divisor = 1,010. Dividend - +39 -
0, 100111
Carry out Co

0,100111
1~010

0 1,110111
0,100111
1,0011 lx
1~010

1 0,0111Ix
0,1111xx
1~010

1 0,001 lxx
0,011 xxx
1~010

0 1,101xxx
0,011 xxx

Subtract divisor

- v e answer, Co - 0, Q = 0
Restore Dividend
Shift left
Subtract divisor

+ve answer, C o - 1, Q - 1
Shift left
Subtract divisor

+ve answer, C o - 1, Q - 1
Shift left
Subtract divisor

- v e answer, Co - 0, Q - 0
2's complement o f - v e remainder

Q - 0,0110 R - 0,011

The algorithm used to perform the division process can be summarised as follows:

1. Align the most significant bits of the divisor and dividend.
2. Add the 2's complement of the divisor to the dividend.
3. If the most significant digit is 1 and C o - 0 the answer is negative. Restore the

dividend, shift it left and record the quotient bit Q -- Co --0.
4. If the most significant digit is 0 and Co - 1, the answer is positive, the subtraction is

valid. Shift the dividend left and record the quotient bit Q = Co = 1.
5. Repeat (2), (3), and (4) until the least significant digits of the dividend and divisor

are aligned.

1.16 Floating point arithmetic

There are two possible methods that can be used for representing binary numbers in
a computer. They are the fixed point and floating point systems. In practice, in a fixed
point system, binary numbers are expressed as fractions with the radix point positioned

Number systems and codes 17

immediately right of the sign digit. For example, in a machine using 8-bit registers
1110.0 would be represented as

0 . 1 1 1 0 0 0 0 - 1 1 1 0 x 2 -4

by moving the radix point four places to the left.
Unfortunately there are problems associated with fixed point arithmetic. It has been

shown in the section on 2's complement arithmetic that if the sum of two 8-bit numbers
is > 127 or < - 1 2 7 an additional bit is generated and an incorrect answer is obtained.
Assuming 8-bit registers are being used in the machine, the range of the registers has
been exceeded. The same problem exists for the multiplication and division operations.
If two 8-bit numbers are multiplied, one by the other, then in many cases a double-
length product will be formed and this would require a 16-bit register. Similarly, for the
division operations, a fractional quotient can only be formed if the divisor is greater
than the dividend.

To overcome the range problems experienced with fixed point representation
a floating point system can be used. Numbers in this system are expressed in the
following form:

n = m • e

where m, the mantissa, is the fractional representation of n and e is the exponent.
When performing a computation, a normalised form of the mantissa is used.

Normalisation is achieved by adjusting the exponent so that the mantissa has a 1 in
its most significant digit position. When this condition is satisfied:

0.5 < Iml < 1

The exponent part of the number may be represented by a number which is the
sum of the exponent and a constant bias. The principle of a biased exponent is
perhaps more easily understood using the decimal system. Consider the following
two decimal numbers:

+1492 .9187- +.14929187 x 10 +4

-.00034123 - -.34123000 • 10 -3

which have been normalised. An alternative way of expressing these numbers would be

+. 14929187 • 10 +4 - +. 14929187e + 4

-.34123000 x 10 -3 = -.34123000e - 3

Assuming that the bias constant to be added to the exponent is 16 and that the
exponent part of the numbers is positioned to the left of the fractional part, the two
numbers would have the following form"

+. 14929187 x 10 + 4 - - +20, 14929187

-.34123000 x 10 -3 - - 13, 34123000

The addition of the constant 16 to the exponent expresses in two decimal digits any
exponent between 10 +15 and 10 -16 and consequently increases the range of numbers
the machine can handle.

18 Digital logic design

1 . 1 7 B i n a r y c o d e s for d e c i m a l d ig i t s

Frequently there is a need for a decimal output even though digital machines operate
in pure binary. As a result at the interface between a digital device and the outside
world facilities must be provided to convert pure binary to a decimal representation.
In practice, for example, calculators have been designed to work entirely in a decimal
mode. In such cases decimal digits are represented by a string of binary digits referred
to as a code. Four bits are required to represent the ten decimal digits, and since there
are 24 combinations of four binary digits, six combinations are not used and the code is
said to contain redundancy.

The four binary digits can be allocated to ten decimal digits in a purely arbitrary
manner and it is possible to generate 2.9 • 101~ four-bit codes, only a few of which
have any practical application. The most common group of codes for representing
decimal numbers are weighted and there are 17 of these codes. For this group of codes
the sum of the weights must be > 9 < 15 and examples of four of them are given in the
tabulation shown in Figure 1.10.

Of this group the most commonly used weighted code is naturally binary coded
decimal (NBCD) which uses the first ten combinations of the 4-bit binary count from
0000 to 1001 inclusive. The code weighting for NBCD is 8, 4, 2, 1 and this can be used
to find the corresponding decimal value of a given code. For example"

1001 = 8 x 1 + 4 x 0 + 2 x 0 + 1 x 1 = (9)10

Weighted codes having some negative weights are also available. Such a code
is the 8, 4, - 2 , - 1 which, like the 2, 4, 2, 1 code, has the useful property of
self-complementation. By complementing each of the bits of a given codeword,
a new codeword is formed which represents the 9's complement of the decimal
digit represented by the original codeword. For example, in the 8, 4, - 2 , - 1 code
01 l0 represents (2)10 and, after self-complementation, 1001 represents (7)10 which
is the 9's complement of (7)~0. Another example of a self-complementing code is
the XS3 code. This is not a weighted code but contains combinations of natural
binary in the range (3)10 to (12)10. The decimal value allocated to each binary
code is defined to be 3 less than its actual value. For example, (1)10 is represented
by 0100.

Decimal
digit

0
1
2
3
4
5
6
7
8
9

NBCD
8,4,2,1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

BCD
7,4,2,1

0000
0001
0010
0011
0100
0101
0110
1000
1001
1010

BCD BCD
2,4,2,1 8,4,-2,-1

0000
0001
0010
0011
0100
1011
1100
1101
1110
1111

0000
0111
0110
0101
0100
1011
1010
1001
1000
1111

Figure 1.10 Binary codes for the decimal digits

Excess 3
XS3

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

Number systems and codes 19

Decimal
digit

Biquinary
2-out-of 5 5043210

0 00011 0100001
1 00101 0100010
2 00110 0100100
3 01001 0101000
4 01010 0110000
5 011 O0 1000001
6 10001 1000010
7 1 O010 10001 O0
8 101 O0 1 O01000
9 11000 1010000

Figure 1.11 Codes for the decimal
digits using more than four bits

There are some codes that use more than 4 bits to
represent a decimal digit. Two examples of these are
the 2-out-of-5 code and the biquinary code both of which
are tabulated in Figure 1.11. It will be observed that each
codeword in the 2-out-of-5 tabulation contains two l 's
and a single error that complements one of the bits will
generate an invalid code. The biquinary code is
a weighted code where seven binary digits represent
each of the decimal digits. The two most significant bits
in each codeword, 01 and 10 indicate whether the digit
represented is in the range (0)10 to (4)10 or (5)10 to (9)10
respectively. Each code combination contains only two
l's and the complementation of a single bit in a code-
word will generate an invalid code.

1.18 n-cubes and distance

An n-bit string of binary digits can be visualised as being positioned at the vertex of
what is termed an n-cube. Examples of 1, 2, and 3-cubes are illustrated in Figure 1.12.
It will be observed from these diagrams that there is a single bit difference between the
binary strings positioned at adjacent vertices. As the length of the string increases the
number of vertices, 2", also increases and it becomes increasingly difficult to construct
an n-cube for values of n > 4.

The distance between any two vertices on an n-cube is defined as the number of
bit positions in which the two binary strings differ. Alternatively this is called the
Hamming distance. A pair of adjacent vertices labelled 000 and 100 are a distance of
1 apart while the two binary strings 00101010 and 10111010 are a distance 2 apart.
A more formal approach to the concept of distance follows:

The modulo-2 sum of two binary digits is given in the four following equations:

0 | 1 G 0 = I

0 | 1 @ 1 - 0

The mod-2 sum is zero if the 2 bits are identical and is 1 if the 2 bits are different.
The weight of a codeword g is defined as the number of l 's contained in the word.

For a combination of all the O's g(0) = 0, and for the corresponding combinations of
all the l 's g(1) = k, where k is the number of bits in codeword g.

0 I O0 01

10 11
(a) (b)

100 101

O0

111

010 011
(c)

Figure 1.12 n-Cubes for n = 1, 2, 3 (a) 1-cube (b) 2-cube (c) 3-cube

20 Digital logic design

The distance between two codewords W 1 and WE is defined as the number of
disagreements between them so that

d(Wl, W2)- ~ Wig (~ W2i

= g(Wl • W2)

where Wli and W2i are the ith bits of the two codewords.
For the distance between W1 and Wo where Wo is the code combination consisting

of all the O's

d(W~, Wo) - g(W~)

and for the distance between W~ and W. where W~ is the code combination consisting
of all the l 's

d(W~, Wu)- k - g(W~).

The minimum distance of a code dm~,, is the minimum value of d(Wi, Wj) and for
a complete code dmi,, = 1 when Wi and Wj are adjacent codewords.

1.19 Error detection and correction

An error occurs in a digital system because of the corruption of the data by some
external influence such as noise. To improve the reliability of the system, methods are
used to indicate the occurrence of an error and in some systems arrangements are made
for both the detection and correction of errors. A single-bit error occurs when a 0 is
converted to a 1 or vice versa. Multiple errors may also occur, but it is normally
assumed that these are less likely to occur than single-bit errors.

The practical way of reducing error probability in a digital system is to introduce
a controlled amount of redundancy. The 2-out-of-5 code is a typical example of such
a code. In all, there are 2 5 combinations of five bits of which only ten are used, the
remaining twenty two combinations being redundant. The ten combinations used, are
the only combinations which contain two l's and are tabulated in Figure 1.11. Any odd
number of errors in a specified codeword will result in the received word having an
odd number of l's. Double or quadruple errors will also be detected unless a 1 is com-
pensated by an error in a 0, thus ensuring the received codeword still contains two l's.

The concept of distance is crucial in the design and understanding of error detecting
codes. All single-bit errors will be detected if there is a minimum distance of 2 between
all possible pairs of codewords. A minimum distance of 2 can be achieved by adding
an extra bit to the transmitted word. This additional bit is called a parity bit.
Two different parity systems are currently in use. In an even parity system the parity
bit to be added to the codeword is chosen so that the number of l 's in the modified
word is even, whilst in the odd parity system the added bit is chosen so that the number
of l 's in the modified word is odd.

A 3-bit code is tabulated in Figure 1.13 alongside the modified codewords to
which the even and odd parity bits have been added. It will be observed from this
tabulation that a minimum distance of 2 is maintained between all adjacent pairs of
modified codewords.

Number systems and codes 21

Modified Code
Original

Code Even Odd
parity parity

000 0000 0001
001 0011 0010
010 0101 0100
011 0110 0111
1 O0 1 O01 1000
101 1010 1011
110 1100 1101
111 1111 1110

Figure 1.13 Modification of 3-bit
code by even and odd parity bits

A 2-dimensional form of parity checking that will
detect and correct single-bit errors is available for dealing
with an array of words, for example, stored in memory.
The technique is termed iterativeparity checking. An array
formed from 4-bit words is shown in Figure 1.14(a).
Parity bits providing even parity are attached to each
row and column. After attachment of the parity bits, the
array shown in Figure 1.14(b) is obtained.

A single-bit error in this array can be both detected
and corrected. The method allows the position in the
array where the error has occurred to be identified and
correction can then take place. For example, a single-bit

xl x2 x3 x4
0 0 1 0

1 0 1 0

1 0 1 1

1 1 0 0

(a)
vertical check Pv
bits

Xl X2 X3 X4
0 0 1 0

1 0 1 0

1 0 1 1

1 1 0 0

1 1 1 1

(b)

Ph horizontal c h e c k
bits

1

0

1

0

0 4- check of the
parity bits

1 0 1 0

1 0 1 0

1 0 1 1

1 1 0 0

(~) 1 1 1

(e)

|
0

1

0

(9

Figure 1.14 (a) 2-dimensional code array (b) with horizontal and vertical check bits and (c) detection of the
position of a single bit error

error occurring in the most significant bit of the first 4-bit word in the array is
identified as an error by using boldface, then re-computing the parity checks gives
the array shown in Figure 1.14(c).

The error detection and correction procedure for the array consists, first, of checking
the row parities and that reveals that there is an error in the top row of the array.
At this point in the procedure it is not possible to determine which bit in the row is in
error. However if a bit-by-bit XOR is taken of all the words in the array excepting the
row in error but including the column check row the column in error is identified and
the error corrected.

1.20 The Hamming code

This code provides a minimum distance of three between codewords, a necessary
condition that must be provided in order to achieve single-bit error detection and

22 Digital logic design

correction. For any value of r, where r represents the number of check bits, 2 ~ - 1
codeword bits can be formed consisting of r check bits and k message bits where
k = 2 ~ - 1 - r. For r - 3, k <_ 4 so that four message bits are the maximum number
that can be checked for r - 3.

The bit positions in the codeword are numbered from 1 to 2 r - 1 and any position in
the codeword whose number is a power of 2 contains a parity bit. For a 7-bit codeword
the parity bits occupy positions 1, 2 and 4 so that the format of the transmitted
codeword is"

bit position 7, 6, 5, 4, 3, 2, 1

C -- k4k3k2r3k l r2 r l

The bit positions occupied by the parity bits 4, 2 and 1 when converted to binary are
100, 010 and 001. Each of these conversions contains a single 1 and are grouped with
message bits k4k3kEkl whose numbers contain a 1 in the same bit position. For example,
rl in bit position 001 is grouped with message bits that occupy the bit positions 011 (3),
l01 (5) and 111(7). It is then arranged that for a given combination of message bits the
parity bit is allocated so that even parity is achieved.

The value of parity bit rl is given by XORing the message bits in bit positions 7, 5
and 3. Hence:

rl = k 4 ~ k 2 ~ k l

The value of parity bit r2 is obtained by XORing the message bits in positions 7, 6 and
3 so that

r2 = k4 �9 k3 ~)kl

Finally r 3 is obtained by XORing the message bits in bit positions 7, 6 and 5

r3 = k 2 0 k 3 0 k 4

Consider, as an example of the use of the Hamming code, the message bits
k4kakEkl - 1101. For this message the parity check bits to be transmitted with the
message bits are:

rls = 1 G 0 @ 1 = 0

r 2 s = l ~ l ~ l = l

r 3 s - 1 G 1 G 0 = 0

and the transmitted codeword is

k4k3k2r3kl r2rl - 11 O0110

Assuming that the message bit k~ is in error when the codeword is received, then at the
receiving end

k4k3k2r3kl r2rl -- 1100010

Number systems and codes 23

Re-computing the parity at the receiving end gives

r l r - - 1 @ 0 @ 0 = 1

r2r-- 1 @ 1 @ 0 - 0

r3r = 1 @ 1 @ 0 - 0

The position of the error can be obtained by XORing the transmitted and received
parity bits:

rls �9 r l r - - 0 ~) 1 -- 1)

r2s �9 r2r - - 1 @ 0 - 1 / syndrome indicating error

r3r O r3r -- 0 0 0 -- 0

The syndrome S = 011 and indicates there is an error in the third bit position.

1.21 Gray code

A Gray code is one in which only one digit changes as a transition is made from one
code combination to the next in the sequence. In terms of distance, a Gray code is a
unit distance code. One particular form of Gray code is called ref lected binary, which
can be constructed using the following technique. The two binary digits 0 and 1 are
reflected about a horizontal line and the digits above the line are prefixed by 0 and
below the line by 1 as shown below:

0 0
0 1

i

1 1
1 0

It will be observed that in this tabulation of four 2-bit codes adjacent combinations
differ in one digit place only. This process can now be extended by reflecting the four

2-bit combinations placed below the combination 10 and

Reflected
binary

000
001
011
010
110
111
101
100

Natural
binary

000
001
010
011
100
101
110
111

Figure 1.15 Tabulation of
3-bit natural binary and 3-bit
reflected binary

then proceeding as described previously. The eight 3-bit
combinations generated are tabulated in Figure 1.15 along-
side the eight 3-bit combinations of the binary number
system. An alternative method of translating from the binary
number system to the Gray code tabulated in Figure 1.15
is to use the expression:

gi -- bi G bi+l

where the ith Gray code digit is found by taking the mod-2 sum
of the ith and (i + 1)th digit of the binary number. Thus the Gray
code corresponding to 110 in binary is generated as follows:

g o = b o G b l = 0 0 1 = 1

g l = b l @ b 2 = l @ l = O

g2 - - b2 E) b 3 - b2 = 1

b3 assumed to be 0

24 Digital logic design

Figure 1.16 (a) Natural binary coded disc (b) Gray coded disc

When a transition is being made from 001 to 010 in natural binary, two digits should
change simultaneously. If the two changes do not coincide, then transient states of 011 or
000 may occur. This generation of transient states is of significance in the design of angular
digital encoders which are used to measure the angular position of a rotating shaft.

The encoder disc shown in Figure 1.16(a) has an arrangement of metallic areas
placed on a non-conducting base. All the metallic areas are electrically interconnected
and are supplied through a fixed brush in contact with a continuous metallic ring which
rotates with the shaft. Three other brushes are positioned radially in fixed positions
relative to the axis of the rotating shaft. As the disc rotates, the brushes are connected to
the supply voltage whenever they are in contact with the metallic part of the disc.

Mechanical assembly is not perfect, and the two right-hand brushes, because of this
imperfection, may simultaneously be in contact with metallic regions as the transition
from 001 to 010 is made, thus generating the transient output 011. The solution to this
problem is to employ Gray code encoding on the disc, as illustrated in Figure 1.16(b),
so that at any boundary on the disc, contact with one brush only is changing.

A single disc with 10 tracks employing a 10-bit Gray code will give a resolution of 1 in
1024. One disadvantage of this type of mechanical encoding is associated with brush wear
and mechanical vibration which can break contact between the brush and rotating disc.

1.22 The A S C I I code

Codes are not only used to represent numerical data but can also represent non-
numeric data such as the alphabet. The most common alphanumeric code in present
use is the American Standard Code for Information Interchange (ASCII). This code has
been adopted by the computing fraternity as the basis for a standard alphanumeric
code. It is a 7-bit code which provides 128 different characters, including upper-case
alphabet, lower-case alphabet, decimal digits, punctuation symbols, and control characters.
An eighth parity bit can also be used with the code to provide protection against
errors. Information other than data is carried by the control characters. For example
STX (start of text) and ETX (end of text) are used to define the limits of a block of data
and EOT defines the end of transmission. The code is tabulated in Figure 1.17(a) where
the more compact form of the hexadecimal code has been used. Control characters are
listed in Figure 1.17(b).

Number systems and codes 25

Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII

00 NUL 10 DLE 20 SP 30 0 40 @ 50 P 60 " 70 p
01 SOH 11 DC 1 21 t 31 1 41 A 51 Q 61 a 71 q

02 STX 12 DC 2 22 " 32 2 42 B 52 R 62 b 72 r

03 ETX 13 DC 3 23 s 33 3 43 C 53 S 63 c 73 s

04 EOT 14 DC 4 24 $ 34 4 44 D 54 T 64 d 74 t
05 ENQ 15 NAK 25 % 35 5 45 E 55 U 65 �9 75 u

06 ACK 16 SYN 26 & 36 6 46 F 56 V 66 f 76 v

07 BEL 17 ETB 27 " 37 7 47 G 57 W 67 g 77 w

08 BS 18 CAN 28 (38 8 48 H 58 X 68 h 78 x

09 HT 19 EM 29) 39 9 49 I 59 Y 69 i 79 y
0A LF 1A SUB 2A * 3A �9 4A J 5A Z 6A j 7A z

0B VT 1B ESC 2B + 3B ; 4B K 5B [6B k 7B {

0C FF 1C FS 2C , 3C < 4C L 5C \ 6C I 7C I

0D CR 1D GS 2D - 3D = 4D M 5D] 6D m 7D }

0E SO 1E RS 2E 3E > 4E N 5E ^ 6E n 7E -

OF SI 1F US 2F / 3F ? 4F O 5F _ 6F o 7F DEL

(a)

Code
HD Symbol Function

.

O0 NUL All the O's

01 SOH Indicates start of header field
02 STX Indicates start of text

03 ETX Indicates end of text
04 EOT Termination of transmission

05 ENQ Enquire if terminal is on
06 ACK Informs Tx of receipt of error free data

10 DLE Data link escape
15 NACK Informs Tx of receipt of data containing errors

16 SYN Establishes bit and character synchronism

17 ETB Indicates the end of block of data
. . . .

(b)

Figure 1.17 (a) The ASCII code (b) ASCII characters for control of communication

Hex O0 01 10 11

Bits 1 O0 01 10 11 O0 01 10 11 O0 01 10 11 O0 01 10 11
4567 Jr 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0 NUL DLE SP &
0001 1 SOH SBA
0010 2 STX EUA SYN
0011 3 ETX I C
0100 4
0101 5 PT NL
0110 6 ETB
0111 7 ESC EOT
1000 8
1001 9 EM
1010 A �9 ! = '
1011 B - $. #
1100 C DUP RA < % @
1 1 0 1 D SF ENQ NAK (i - �9
1110 E FM + �9 > =
1111 F ITB SUB I ? "

0 .

/ a A J
b s B K S 2
c I t C L T 3
d m u D M U 4
�9 n v E N V 5
f o w F 0 W 6

p x G P X 7
q y H Q Y 8

i r z I R Z 9

Figure 1.18 The EBCDIC code

One of the most important alternatives to ASCII coding is the Extended Binary
Coded Decimal Interchange Code (EBCDIC) which was used by IBM and ICL main-
frames amongst others. As in the case of ASCII the decimal digits 0 to 9, the lower-
and upper-case alphabet, special symbols and control codes are all assigned unique

26 Digital logic design

binary values although in the case of EBCDIC these values are all 8 bits in length.
Consequently by comparison with ASCII the code contains a considerable amount
of redundancy. The code, tabulated in Figure 1.18, is based upon an NBCD coding
where the four least significant bits (nybble) do not take on a value greater than (9)~0.
Because of this feature the coding of the alphabet is not contiguous.

P r o b l e m s

1.1 Convert the following binary numbers to base 10:

(a) 10101101 (b) 110110.1

1.2 Convert the following octal numbers to base 10"

(a) 273 (b) 1021

1.3 Convert the following hexadecimal numbers to base 10:

(a) 145 (b) A2C1

1.4 Convert the following decimal numbers to base 2:

1.5

1.6

1.7

1.8

1.9

1.10

1.11

(c) 1.00101

(c) 16.432

(c) 1A.B2

(a) 122 (b) 98 (c) 48.45

Convert the following decimal numbers to octal:

(a) 522 (b) 1119 (c) 129.25

Convert the following decimal numbers to hexadecimal:

(a) 1145 (b) 2421 (c) 192.86

The following arithmetic operations are correct for at least one number system.
Determine possible radices for the given operations.

(a) 3142 + 2413 = 5555 (b) ~-~ 1 3

(c) 2 3 + 4 4 + 1 4 + 3 2 = 2 2 3 (d) ~ = 6

Determine the base b in each of the following cases:

(a) (361)10 =(551)b (b) (859)10 =(5B7)b (c) (982)10 =(1726)b

Perform the following binary arithmetic operations showing all carries and
borrows

(a) 101011 + 10111

(b) 1101 + 1110 + 1001

(r 11101 - 10110

(d) 1100.010 - 1000.111

Write the 8-bit signed magnitude, 2's complement and l's complement form of
the following decimal numbers:

(a) + 119 (b) - 7 7 (c) - 3

Perform the following arithmetic operations using 2's complement arithmetic and
assuming a word length of 8 bits:

79 64 87
-42 +37 -99

Number systems and codes 27

1.12

1.13

1.14

1.15

1.16

1.17

1.18

Form the radix complement and diminished radix complement for each of the
following numbers:

(a) (01011)2 (b) (5291)10 (c) (4723)8

(d) (ABC1)16

Perform the multiplication of the following unsigned binary numbers:

(a) 1110 • 1101 (b) 10101 • 1110 (c) 11001 • 10101

Perform the following multiplications using signed binary numbers:

(a) +7 x - 9 (b) +12 x +9 (c) -13 x - 8

Perform the following divisions using the restoring division process:

(a) 101010 + 0101 (b) 1100110 + 1001

Perform the following arithmetic operations using the NBCD code to represent
the decimal numbers:

(a) 79 + 101 (b) 87 + 179 (c) 98 - 43

Perform the following arithmetic operations using signed NBCD arithmetic:

(a) 85 + 67 (b) 43 - 92

Write out the following decimal weighted codes:

(a) 7, 4, 2, 1 (c) 2, 4, 2, 1

(d) 5, 2, 1, 1 (d) 8, 4 , - 2 , - 1

2 Boolean algebra

2.1 Introduction

In a digital system the electrical signals that are used have two voltage levels which
may, for example, be 5 and 0 volts. The electrical devices used in these systems can
generally exist indefinitely in one of these two possible voltage states, providing the
power supply is maintained. For example, a bipolar transistor that is non-conducting
in a 5 volt system will have approximately 5 volts between collector and emitter.
However, when the transistor is turned on and is conducting, it can be arranged, with
a suitable choice of load, that the voltage between collector and emitter is
approximately zero. The two voltage levels employed in a digital circuit can be
arbitrarily assigned values of 0 and 1. The two states defined in this way can have
logical significance in that they can indicate the presence of a particular condition or,
alternatively, its absence.

An algebra developed in the nineteenth century by George Boole (1815-1864), an
English mathematician, is well suited for representing the situation above. This branch
of mathematics, called Boolean algebra, is a discrete algebra in which the variables can
have one of two values, either 0 or 1. Associated with the algebra is a number of
theorems which allow the manipulation and simplification of Boolean equations.

Shannon, who was the first to develop information theory, became aware that
Boolean algebra was useful in the design of switching networks. Initially, the algebra
was used in the design of relay networks. More recently switching circuits were
implemented using discrete components but rapid technological advances have seen
the introduction of MSI, LSI and VLSI devices and because of the sophisticated and
versatile nature of these components there have been significant changes in the design
techniques used by engineers. In spite of these changes it is still essential for engineers
to have a good working knowledge of traditional switching theory.

2.2 Boolean algebra

Any mathematical system has a minimal set of basic definitions which are assumed to
be true and from which all information about the system may be determined. In the
case of Boolean Algebra the three basic definitions are:

NOT. The NOT of a variable is 1 if, and only if, the variable itself is 0 and vice versa.
NOT A is written as A. Thus if A = 0, then A = 1 and if A = 1 then A = 0. Since A has
only two possible values it follows that A = A.

To refer to both A and A which define the opposite values of the same variable, the
term literal is used, where a literal is defined as a variable with or without a
complement bar.

Boolean algebra 29

AND. The AND of two variables is 1 if, and only if, both the variables are 1. AND is
written as A AND B or as A.B or alternatively as AB. Thus AB = 1 only when
A = B = I .

OR. The OR of two variables is 1 if either (or both) of the variables is 1. OR is
written a s A O R B o r a s A + B . T h u s A + B = l i f A = l o r B - 1 o r A - B - 1 .

In addition to the above basic operations, one other function, the Exclusive-OR, is
required for arithmetic-related operations.

XOR. The Exclusive-OR of two variables is 1 if either of them but not both is 1. The
XOR operation is written as A XOR B or as A @ B. Thus A @ B = 1 if A = 1 and
B = 0 or i fA = 0 and B = 1.

2.3 Derived Boolean operations

The following Boolean operations are derived from the three basic operations by
complementing or inverting those operations:

NAND. N O T - AND = NOT of (A AND B) or AB

NOR. N O T - OR = NOT of (A OR B) or A + B

XNOR. Exclusive NOR = NOT of (A XOR B) or A @ B, which is sometimes referred
to as the coincidence function and is written A | B.

2.4 Boolean functions

A Boolean function consists of a number of Boolean variables joined by the Boolean
connectives AND and OR. For example

f (A, B, C, D) = ABC + CD + B

o r

g(a, B, C, D) = (a + B + C)(C + D)(A + B)

The dual of a function is obtained by changing the AND operations to OR operations
and vice versa, and simultaneously changing any l 's to O's and vice versa. Thus the
dual of the function f = (ABC + CD + B) is given by

fd(A, B, C, D) = (A + S + C)(C + D)B

Two functions are equivalent providing they have the same value (1 or 0) for each of
the possible combinations of the variables.

�9 Two functions are complementary if one function equals 1 when the other function
equals 0 and vice versa. The complement of a function can be found by complementing
each literal in the dual of that function. Thus the complement of f (A, B, C,D)=
ABC + CD + B is

f (A, B, C, D) = (A + B + C)(C + D)B

In evaluating Boolean equations AND operations are performed before OR
operations unless the OR operation is enclosed within brackets.

30 Digital logic design

2.5 Truth tables

A truth table provides the basic method of describing a Boolean function. It contains
a row for every combination of the variables and prescribes the value of the function
(0 or 1) for each of these combinations. For the 3-variable function f (A , B, C) whose
truth table appears in Figure 2.1, there are 2 3 combinations and the value of the
function for each of these combinations is listed in the right hand column. The
Boolean function described by the truth table is provided by the logical sum of those
combinations for which the function has a value o f f = 1. Hence

Minterms A B C

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

mo
ml
irk
ma
m4
ms
me
rnr

Figure 2.1 Truth table for f = ~ ml,m2,m3,m5

f (A, B, C) = ABC + ABC + ABC + ABC

Each combination of the variables is called a
u

minterm. For example, ml = ABC and the
function tabulated in Figure 2.1 can be
described as a sum of minterms so that

E ml m2m3m5 f

Alternatively, a minterm can be identified by
its subscript and the function can be defined
by the following equation

f = ~-'~ 1,2, 3, 5

A Boolean function expressed as a sum of minterms is termed the canonical sum-
of-products form of the function.

The inverse function f is obtained by taking the logical sum of those combinations
for which f = 0. From Figure 2.1

f - ABC + ABC + ABC + ABC

and by inversion using the principle of duality

f - (A + B+ C)(A + B+ C)(A + B + C)(A + B+ C)

Each term in this equation is called a maxterm and the Boolean function is expressed
as a product of maxterms. The resulting expression is called the canonical product-
of-sums form of the function and it may be written as

f -- 1-[M o M 4 M 6 M 7

and in terms of the maxterm subscripts the function may be written

f -] - I0 ,4 , 6, 7

The truth table representation of a Boolean function has strict limitations. The
number of rows in the table for an n-variable function is 2 n and if n > 5 the
construction of the table is tedious, time consuming and prone to error. For this
reason this method of representation is of little practical use to the circuit designer.

2.6 The logic of a switch

Consider the circuit shown in Figure 2.2(a) consisting of a voltage source having an
internal resistance Ri connected in series with a switch X and a resistance R.

Boo&an algebra 31

With the switch closed

I ___

Vo -- I R --

V

R i + R
VR

R i + R

Assuming Ri << R then Vo "~ V and the voltage across the switch is zero. If the switch
is open I = 0 and the source voltage appears across the switch terminals so that

Vo - 0. The two states of the output voltage can be
A

/
_ _

Ri -x- 1
Vo

(a)

A f

O 0

1 1

(b)

Figure 2.2 (a) An on~off switch circuit
(b) the truth table for the switch circuit

defined in terms of a Boolean variable f. When
Vo = 0, f = 0 and when Vo-~ V, f = 1. These two
states correspond to the two possible states of the
switch, open and closed, which can also be
described in terms of a Boolean variable A. When
X is open A - 0 and when X is closed A - 1. These
results are tabulated in the truth table shown in
Figure 2.2(b) and from an inspection of the table it
is clear that f - A.

2.7 The switch implementation of the AND function

Two switches X and Y are connected in series with a voltage source V and resistance
R. The two possible states of the switches X and Y are defined by the Boolean
variables A and B. When the two switches are open, A - B - 0, and when they are
closed A = B = 1. The output voltage can also be expressed in terms of a Boolean
variable f whose value depends upon the absence or presence of the voltage Vo across
the resistance R.

There are four possible combinations of the variables A and B, and these are
tabulated in the truth table shown in Figure 2.3(a). For example, if X is open and Y is
open, then A = B = 0 and Vo = 0, hence f = 0. If, however, X and Y are both closed,
then A = B = 1, Vo -~ V, and it follows that f = 1.

The truth table shown in Figure 2.3(b) is that of the A N D function, sometimes
referred to as the Boolean multiplication funct ion. The rules of Boolean multiplication
are identical to those of binary multiplication and they are summarised in Figure
2.3(c).

A B
I I

I [
X Y A B f

o o o

R i 0 1 0
V 1 0 0

T 1 1 1
(a) (b)

0.0=0
0.1=0
1.0:0
1.1=1

(c)

Figure 2.3 (a) Switch implementation of the AND function (b) Truth table for the AND function (c) Rules of
binary and Boo&an multiplication

32 Digital logic design

f=AB

D ,
Figure 2.4 Conventional
symbol for the AND gate

In practice, the A N D function is implemented by a high
speed electronic gate which is capable of operating in a few
nanoseconds. One of the generally accepted symbols for the
gate is shown in Figure 2.4. The output of the gate is 1 only if
both inputs A and B are 1. For any other combination of the
input variables the output is 0.

2.8 The switch implementation of the OR function

A parallel connection of two switches X and Y with a voltage source V and a resistor
R is shown in Figure 2.5(a). The two possible states of the switches are defined by the
Boolean variables A and B. When both switches are open A = B = 0 and when they
are both closed A = B = 1. The corresponding states of the output voltage, 0 and Vo,
are expressed in terms of the Boolean var iab lefwhose value depends upon the absence
or presence of the output voltage. If both switches are open A - B --- 0 and it is then
clear that the current in the circuit I = 0 and the output voltage Vo = 0. For this
condition f = 0. If switch X is closed and switch Y is open then A = 1 and B = 0, a
conducting path is available through closed switch X, so Vo -~ V and for this condition
f = l .

A
/

x - 1
B I

i /

~" R Vo

l
(a)

A B f

0 0 0
0 1 1
1 0 1
1 1 1

0 + 0 = 0 0 + 0 = 0
0 + 1 = 1 0 + 1 = 1
1 + 0 = 1 1 + 0 = 1
1 + 1 = 1 1 + 1 = 0 Carry 1

Boolean Binary
addition addition

(b) (c)

Figure 2.5 (a) Switch implementation of the OR function (b) Truth table for the OR function (c) rules of binary
and Boolean addition

The truth table of the OR function, sometimes referred to as the Boolean addition
function, is shown in Figure 2.5(b). There are four possible combinations of A and B which
correspond to the four possible open and closed conditions of the two switches X and Y.
Examination of the truth table shows that the Boolean variable representing the output
voltage f = 1 if X is closed or Y is closed or if both X and Y are closed simultaneously.
For the Exclusive-OR function if A - B - 1, f - 0, so strictly speaking, the OR
function should be referred to as the Inclusive-OR function since f = 1 when A = B = 1.

The rules of Boolean addition are tabulated alongside the rules of binary addition in
Figure 2.5(c) and it will be noted that they differ in one respect. For binary addition

1 + 1 = (10)2 where 0 is the sum digit and 1 is the carry to
AB ~ f = A +

Figure 2.6 Conventional sym-
bol for the OR gate

the next stage of the addition, whereas in the case of
Boolean addition 1 + 1 = 1.

The OR function is normally implemented by an
electronic gate which can be represented by the symbol
shown in Figure 2.6. The output of this 2-input gate will

Boolean algebra 33

be 1 if input A - 1 or input B - 1 or if both inputs A and B are simultaneously 1. For
the remaining combination A - B = 0 the output will be 0.

2.9 The gating function of the A N D and OR gates

Control of the transmission of a string of digital data can be achieved by either of the
two basic gates when they are operated in a gating mode. The B input in Figure 2.7
can be used as a control or mode input, while the data stream is applied at input A. If

A 0 , 1 ~ 01 A 0 , 1 ~ 0 0

trol) trol)
Transmission Inhibition

(a) (b)

Figure 2.7 The gating function of an AND gate

B = 1 the gate is open and the data stream is
transmitted, as shown in Figure 2.7(a). If
B = 0 the gate is closed and data transmis-
sion is inhibited, as shown in Figure 2.7(b).
The 2-input OR gate shown in Figure 2.8
will perform the same gating function if the
B input is used as a control input.

, , ,

IB (control) [B (control)
Transmission Inhibition

(a) (b)

Figure 2.8 The gating function of an OR gate

, A

UT T
(a)

A A- f

0 1 1
1 0 1

(b)

Figure 2.9 (a) Switch circuit and (b) the truth
table for f = A +

A
I I

m I '~
oi- - I

v i
(a)

A /[

o I
I o

(b)

-~ 2.10 The inversion function

Consider the switching arrangement shown
in Figure 2.9(a) connected in series with the
voltage source V and resistance R. The
switch has a pair of ganged contacts, one of
which is normally open, whilst the other is
normally closed. For the upper contact
A - 0 when it is open and for the lower
closed contact A - 1. The variable A is the
inverse of A and the inversion operation is
defined by the bar over the Boolean variable
A. The output voltage Vo, as in the case of
the OR and AND functions, is represented
by the Boolean variable f.

The truth table for the circuit is shown in
Figure 2.9(b) and it is clear that the output
voltage Vo-~ V irrespective of the state of
the switch. Hence the equation of this
circuit may be written as:

A + A - 1

which is an algebraic statement of the
complementation theorem. The dual of this
equation is obtained by replacing the + with
a �9 and by changing 1 to 0. Hence:

Figure 2.10 (a) Switch circuit and (b) the truth
table for f = A. fI A . A - - 0

The switch contacts for this circuit and the corresponding truth table are shown in
Figure 2.10.

34 Digital logic design

A ~~>o f=,~

Figure 2.11 Conventional representation
of an inverter

Figure 2.12 The theorem of double
inversion

In practice, the inversion operation is imple-
mented by an electronic gate which is represented
symbolically in Figure 2.11. The inversion circle
at the output of the gate is widely used in logic
circuits to indicate the inversion of a Boolean
variable. When two inverters are connected in
series, as shown in Figure 2.12, a double
inversion takes place and the output of the
second inverter is the same as the input A to the
first inverter.

2.11 Gate or switch implementation of a Boolean function

The implementation of the Boolean funct ionf = A(B + C) + BD using either switches
or, alternatively, gates is illustrated in Figure 2.13. In the switch contact, circuit a + in
the equation is interpreted as a pair of parallel branches whilst a �9 is interpreted as a
series connection. Normally closed switch contacts are identified by a bar over the
switch variable.

2.12 The Boolean theorems

In the field of Logic Design it is the function of the designer to develop a Boolean
expression which describes the required circuit performance. Algebraic manipulation
of this expression with the aid of the Boolean Theorems can produce a simpler
implementation of the circuit. There are a number of these theorems which can be
used for simplifying a Boolean expression, and some of those in general use can be
verified directly by using the method of perfect induction. The method involves
inserting the two possible values 0 and 1 into a statement of the selected theorem in
order to confirm the validity of the theorem in both cases. For example, the
Idempotency theorem states that

A + A - A

For A - 1, 1 + 1 - 1, and for A - 0, 0 + 0 - 0 and these results verify that the
theorem is true. Boolean theorems exist in pairs and the second form of Idempotency
is obtained by taking the dual of A + A = A and may be written as

A.A - A

I B
A �9 =

m I I ; o
P; I m l l

I

B

D

(a) (b)

Figure 2.13 f = A(B + C) + BD implemented (a) with switches and (b) with gates

Booleanalgebra 35

Theorem Function Dual

Idempotency A+ A= A A. A = A

Union& f A+0=A A . I = A

Intersection l A+1=1 A.0=0

Complementation A+,~ = 1 A.,~= 0
n

Inversion (~)=A

Figure 2.14 The single variable theorems

There are a number of Boolean theorems, including
Idempotency, which involve a single variable. These
are listed in Figure 2.14, and it is left to the reader
to verify them using the method of perfect
induction.

Commutation, Association and Distribution are
three of a group of theorems involved with more
than one variable. Each of these theorems occurs as
a pair, the original accompanied by its dual. The
first two of these theorems are identical to the laws

of commutation and association for addition and multiplication of integers.
Commutation states

A + B = B + A and A B = B A

which follows directly from the truth tables that define the AND and OR functions.
Association states that

A + (B + C) = (A + B) + C and A (B C) = (A B) C

and clearly the parentheses are unnecessary since the order in which two or more
variables are ANDed or ORed is irrelevant.

Factorisation of Boolean functions can be achieved by the application of the
distribution theorem whose two forms are

A + BC = (A + B)(A + C) and A(B + C) = AB + A C

A B C BC A + B C A + B A + C (A + B) (A + C)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

The second form of distribution is
identical to the same process in ordinary
algebra, and a proof of the first form of
the theorem by truth table is shown in
Figure 2.15.

The Absorption or Redundancy the-
orem is a further example of a Boolean
theorem which involves more than a
single variable. The theorem states:

A + A B = A

Figure 2.15 Proof of the D&tribution theorem by truth
table

A + A B - A.1 + AB

= A(B + B) + AB

= AB + AB + AB

= AB + AB

= A (B + B)

- A Complementation

and it may be proved by the application
of a number of the single variable
theorems as follows:

Intersection

Complementation

Distribution

Idempotency

Distribution

The equation f = A. 1 + AB is expressed in the sum-of-products (S-of-P) form, where
each of the terms in the equation are called product terms. It follows that in any Boolean
equation that is expressed in S-of-P form, a product term that contains all the factors of
another product term is redundant. For example, in the equat ionf - AD + ABD § A CD

36 Digital logic design

I
= P ~ - - 4 ,---.O

A

Figure 2.16 Switch contact circuits illustrating the absorption theorem A = A + A B

the product terms ABD and A CD can be eliminated because each contains all the factors
present in the product term AD, and the expression can be reduced to f = AD.

The switch contact circuit for the equation f - A + AB is illustrated in Figure 2.16.
This diagram clearly shows that if switch contact A is made, then a connection exists
between points P and Q irrespective of whether switch contact B is open or closed and
consequently switch contact B is redundant.

Yet another example of a Boolean theorem which involves more than one variable is
the Consensus theorem. Consider the function f - A C + BC which contains the
variable C in one of the terms and its complement C in the other. An optional product
or consensus term can be formed by taking the product of the remaining two variables,
in this case A and B. Furthermore, the optional product can be added to the original
f unc t ion f to give a new funct ionf ' - A C + B6" + AB whose value is identical to the
original function for all values of the variables A, B and C. This can be proved
algebraically as follows:

f ' - A C + B6" + A B - A C + BC + AB(C + C')

= A C + BC + A B C + A B C

= AC(1 + B) + BC'(1 + A)

b u t (l + A) - (l + B) - 1, h e n c e f ' - f - A C + B C .
The consensus term can be defined as one whose presence in a Boolean function

does not alter the value of the function, and in the example given the optional product
A B is redundant. However, consensus terms have their uses, since when they are
formed and introduced into a Boolean equation they may eliminate other terms and
simplify the original equation. For example:

f - C + A B C

The consensus term A B is added to the original equation to give

m

f - C + A B C + AB

f - C + A B Absorption theorem

It should be noted that after the elimination of the original term ABC, A B is no longer
optional, it is now essential.

The technique of forming consensus terms and adding them to a function without
altering its value is a useful one. It will be seen in a later chapter that the technique can
be used to eliminate static hazards in combinational circuits.

Boolean algebra 37

A B ,~ B A"B,~+B

0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1

1 1 0 0 0 0

Figure 2.17 Proof of
De Morgan's theorem for
two variables

The last theorem involving more than one variable is
De Morgan's theorem, named after a mathematician Augustus
De Morgan, a contemporary of Boole. The truth table in
Figure 2.17 demonstrates the validity of one form of this theorem

A B - A + B

whilst the second form of the theorem is obtained by applying
the principle of duality to the above equation so that

m

A + B = A B

These theorems express the complements of the AND and OR functions in terms of
the complements of the variables A and B, and are probably the most useful of all the
Boolean theorems.

De Morgan's theorem can be applied to any number of variables, and the truth
table of Figure 2.17 only verifies the law for two variables. For an arbitrary number
of variables the theorem requires a proof by finite induction. First, the theorem is
proved for n = 2 using the method of perfect induction. An assumption is then made
that the theorem is true for n = h, and if this is true it can be shown that it is also
true for n = h + 1.

A summary of the Boolean theorems involved with more than a single variable is
tabulated in Figure 2.18.

Commutation

Association

Distribution

Absorption

De Morgan

Consensus

Function

A+B=B+A

A+(B+ G~=(A+ B)+ C

A+ BC=(A+ B)(A+ C~

A+AB=A

ATB=~.B

AC+ B~=

AB+AC+B~

Dual

AB+ BA

A(BC~ = (AB)C

A(B+ G'~= AB+ AC

A(A+ B)=A

A-B=l]+ B

(A+G-~(B+C~=

(A+ B)(A+ G'~(B+ C~

Figure 2.18 Boolean theorems involving more than one variable

The generalised statement of De Morgan's theorem along with Shannon's
Expansion theorem are tabulated in Figure 2.19. The proof of Shannon's theorem
by induction for the variable A~ requires the substitution of the two possible values of
A~, 0 and 1, into either of the two forms of the theorem appearing in the tabulation.
For A 1 - 1 in the first form of the theorem

f (1 ,Az, A3,. . .An) - l f (1 ,Az, A3,. . .An) + Of(O, A2, A3,. ..An)

=f(1,A2, A3, . . .an)

and for A1 - 0

f(O, A2, A3,. . .An) = 0"f(1, A2, A3,. . .An) + l 'f(0, A2, A3,. . .An)

=f(O, A2, A3,. . .An)

38 Digital logic design

De Morgan's [
theorem

Expansion [
theorem

A1 + A2 + A3 . . . An= A,1"/]2"/]3... J]n

A,'A2"A3"'" An = '~, +/]2 + ~3"'" '~n

f(A1, A2, A3""An)=Alf(1, A 2, A3, ' "An)+ ~lf(O, A2, A3, '"An)

f(A 1, A 2, A3... An) = [A 1 + f(0, A 2, A3,... An)][~ 1 + f(1, A 2, A3,... An)]

Figure 2.19 Boolean theorems involving n variables

Similarly, the theorem can be verified for any of the n - 1 remaining variables using
this method.

2.13 Complete sets

Any Boolean function can be implemented using only AND and INVERT gates since
the OR function can be generated by a combination of these two gates, as shown in
Figure 2.20(a). It follows that these two gates can implement any arbitrary Boolean
function and they are said to form a complete set. Similarly, the OR and INVERT
gates also form a complete set since the AND function can be implemented by a
combination of these two gates, as shown in Figure 2.20(b).

i~ + A B i~ ~ r ~ o A + B
L /

B B

(a) (b)

Figure 2.20 Complete sets (a) OR~INVERT (b) AND~INVERT

The derived gates NAND and NOR are in themselves a complete set since, for
example, a series combination of two NAND gates will generate the AND function
[Figure 2.21(a)]. In this connection the second NAND gate has all its inputs
commoned and acts as an inverter. Similarly, the OR function can be generated by two
NOR gates in series (Figure 2.21(b)), where the second NOR gate is implementing the
inversion function. It follows that any arbitrary Boolean function can be implemented
by either of these gates.

A A

l
NAND Inverter NOR Inverter

Figure 2.21 Complete sets formed by (a) series combination of two NAND gates and (b) series combination of two
NOR gates

2.14 The exclusive-OR (XOR) function

The XOR or Mod-2 addition operation is defined by the equation
D

A ~ B = A B + AB

Boo&an algebra 39

An alternative way of expressing this relationship is

A @ B = (A + B)(A + B)

The laws of Association, Commutation and Distribution are also valid for the XOR
operation. They are

A @(B@ C) - (A @ B)@ C
A @ B = B G A
A(B @ C) = AB @ A C

Association
Commutation
Distribution

If Boolean algebraic equations are written in terms of the XOR function, the following
identities may prove useful:

A @ A - O A @ A - 1
A @ I = A A @ 0 = A
A + B = A ~ B ~ 3 A B
A + B = A @B if A B - O

I fA @ B = C then A = B@ C, B - A @ C and A @ B@ C - 0
A1 @ A2 @. . . @ A, = 0 for an even number of variables of value 1, and 1 for an odd
number of variables of value 1.

2.15 The Reed-Muller equation

A canonical equation can also be defined in terms of the AND and XOR functions,
and for a single variable may be written as

I

f (A) = foA + f lA

and since A and A are mutually exclusive, the expression may be written as
D

f (A) - foA @AA
=~(1 @ A) @ f l A

=J; �9 (j~ @fl)A
= co @ClA

For two Boolean variables, the canonical sum-of-products equation may be written

f(A2,A1) = foA2A1 + flA2A1 + f2A2A1 + f3A2A1

where fo, fl , fz and f3 take on the value of 0 or 1 depending upon whether their
associated minterms are present. For example if fo = 1 and fl = f2 - f 3 - 0 then

f(A2,A1) = A2A1

Since mjmk -- 0 for j -r k the logical addition symbol + can be replaced by @ and the
canonical sum-of-products may now be written as

f(A2,A1) = foA2A1 @ flA2A1 @ f2A2A1 @ f3A2A1

The inverted variables A2 and AI can be replaced by (A2 @ 1) and (A1 @ 1) respectively.
Hence

f(A2, A1) - fo (A2 | 1)(A1 �9 1)| @ 1)A1 Gf2A2(A1 �9 1)Of3A2A1

40 Digital logic design

Multiplying out and collecting terms produces the following equation

f(A2A1) =fo @ (fo Gf2)A2 G (fo Ofl)A1 �9 (fo @fl @f2 @f3)AzA1

This is the canonical XOR sum for two Boolean variables and is called the
Reed-Muller canonical equation. If co=fo , c l=fo@f2 , c2=fo@f l , and
c3 = fo | @f2 @ f3, the equation may be written

f (A z , AI) = co G clA2 E3 czA1 G c3AzA1

and it will be observed that the equation contains only the AND and XOR functions
which, like the AND and INVERT functions, form a complete set.

2.16 Set theory and the Venn diagram

Set theory is concerned with the combination of sets and the theorems associated with the
theory are identical to the theorems of Boolean algebra. In spite of their identical structures
the algebra of sets looks somewhat different since the connectives used, U and N, replace +
and. in Boolean algebra.

Consider the two sets of decimal digits A = {0, 5, 6, 9} and
B = {0, 1,7, 9}. The union of these two sets, written A U B, is
defined as the set that contains all the digits in A or B or both.
Hence A U B = {0, 1,5, 6, 7, 9} and it is clear that union is
analogous to the OR function. Intersection of the two sets,

2, 3, 4, 8 written A n B is defined as that set which contains all those
digits that are common to the two sets A and B. Hence

Figure 2.22 Visual repre- A n B = {0, 9} and this function is analogous to the AND
sentation of Set theory function. If it happens that there are no common digits in these

two sets, A n B is referred to as the null set which is represented
A B symbolically by 4~. Finally, the set which contains all the

decimal digits is referred to as the universal set and can be
represented diagramatically by a rectangle.

These results can be represented on the Venn diagram
shown in Figure 2.22 where the rectangle represents the

Figure 2.23 Venn diagram universal set containing all the decimal digits, while the
illustrating the four minterms intersecting circles represent the sets A and B. Venn diagrams
of two Boo&an variables are also able to demonstrate graphically the meaning of
Boolean functions. For example, all the minterms of two Boolean variables are
displayed in Figure 2.23 whilst the three Venn diagrams in Figure 2.24 illustrate with
shading some typical Boolean expressions. In Chapter 3 it will be shown how the

Figure 2.24 Venn diagrams for three Boolean expressions

A~I+,~B AB+ AC AC+~C+ A~

Boo&an algebra 41

structure of the Venn diagram can be modified to form a Karnaugh map which is widely
used for the simplification of Boolean functions.

Problems

2.1 Using the theorems of Boolean algebra simplify the following expressions:

fl (a, B, C, D) - B + BCD + BCD + AB + fiB + BC

f2(A, B, C, D) - (AB + C + D)(C + D)(C. + D)(C + D + .E)

f3(A, B, C) - BC(C + A C) + (2 + C)(AB + A C)

2.2 Simplify each of the following expressions using the method of optional
products"

fl (a, B, C, D) - a C + BCD + ABC + a CD

f2(A, B, C, D) = B + AB + A CD + A C

f3(A, B, C, D) = W + ABD + ABC + ABD + A CD

2.3 Prove that (A + B)(A + C) - AC + AB without using perfect induction.
2.4 Construct a truth table for the following functions and from the truth table obtain

an expression for the inverse functions"

f l (A, B, C) = A + ~ c

U2(A, S, C) = A C + S C + A S

f3(A, B, C) = (A + B)(A + B + C)

f4(a, B, C, D) = BD + a C + BD

2.5 Find the inverse of the following expressions and do not simplify your result

f l (A, B, 63 = A + SC

f2(A, B, C, D) = A(B + C) + BD(A + C)

f3(A, B, C, D, E) = [AB + C(.A + DE)][/~ + A C(E +/~/))]

2.6 Expand and simplify the following expressions using De Morgan's theorem.

A (A, B, C) = (A + B)(ABC)(2C)

fz(a, B, C) = (AB + BC) + (BC + AB)

f3(a, B, C) = (AB + BC)(AC + A C)

2.7 Prove the following identities

(1) AB + AB = (A + B)(A + B)

(2) (AB + C)B = ABC + ABC + ABC

(3) BC + AD = (e + A)(B + A)(B + D)(A + C)(C + D)

2.8 For the following two 4-variable functions

f~ = A + B + C + D

f2 = A + C + B D

42 Digital logic design

Figure P2.9

2.11

2.12

2.13

2.14

how many of the input minterms are included in each of these functions and
how many are not? What are the minterm expressions for the two functions?
Simplify both functions using the theorems of Boolean algebra.

2.9 Given the timing diagram shown

I ! !
I I I

I I
I i I

2.10

f , (A , B, c) = A + B(O + D)
f2fA, B, C) = (A + B)(B + C) + (AB + C)

in Figure P2.9 find the displayed
function expressed as a sum of
minterms and also find the func-
tion as a product of maxterms.
Simplify the minterm expression,
using the Boolean theorems, and
find the inverse of the simplified
expression.
Draw (i) the switch contact
circuits and (ii) the AND/OR
implementations for the follow-
ing Boolean functions.

f3(A, B, C, D) = (A + B + C)(A + D) + BC + A(B + D)((; + D)

The main stairway in a block of fiats has three switches for controlling the lights.
Switch A is located at the top of the stairs, switch B is located halfway up the
stairs and switch C is positioned at the bottom of the stairs. Design a logic
network to control the lights on the staircase.
Sketch the following functions on a Venn diagram:

f l (A, B) = AB + AB

f2(A, B, C) = ABC + ABC + ABC + ABC + ABC + ABC

f3(A, B, C) = A C + A C + BC + AB
_ _

f4(A, s , c) = AB + A C
Prove

A @ B - A @ B
A e B - A ~ B
AB + AB - AB + AB

A lift door control is to operate in the following manner. When the lift stops
at a floor the door will open and a signal is generated that remains on until all
the passengers are on or off the lift. An additional signal is also generated to
ensure that the doors do not close on a passenger in the doorway. Doors will
close if a call button has been pressed on another floor or if a lift passenger
has pressed a button for another floor. Set up a truth table for the design of
the lift control and derive the corresponding switching equation.

3 Karnaugh maps and function
simplification

3.1 Introduction

One of the objectives of the digital designer when using discrete gates is to keep
the number of gates to a minimum when implementing a Boolean function.
The smaller the number of gates used, the lower the cost of the circuit. Simpli-
fication could be achieved by a purely algebraic process, but this can be tedious, and
the designer is not always sure that the simplest solution has been produced at the end
of the process.

A much easier method of simplification is to plot the function on a Karnaugh
map (or 'K-map') and with the help of a number of simple rules to reduce the
Boolean function to its minimal form. This particular method is very straightforward
up to and including six variables. Above six variables it is better to use a tabulation
method such as that due to Quine and McCluskey which, after programming, can be
run on a computer.

3.2 Minterms and maxterms

As explained in section 2.5, a minterm (sometimes called a 'product term' or 'P-term')
of n variables is the logical AND of all n variables where any of the n variables may be
represented by the variable itself or its complement. In the case of two variables A and
B there are four possible combinations of the variables, and these are tabulated in
Figure 3.1. Corresponding to these four combinations of the variables there are four
possible minterms which can be obtained as follows. In the first row of the table A - 0
and B - 0, hence A B - 1. The minterm is formed using the values of the variables
which make the value of the minterm equal to 1, hence m o - AB. The other three
minterms are obtained in the same way.

As also explained in section 2.5, a maxterm
A B Minterms Maxterms (sometimes called a 'sum term' or 'S-term') of n

variables is the logical OR of all n variables
0 0 mo=AB Mo=A+B
0 1 m~ = ,4B M~ = A + B where any one of the variables may be rep-
1 0 rna=AO M a = , ~ + B resented by its true or complemented form.
1 1 m a= A B M 3 = , 4 + B The maxterms are formed using the values

Figure 3.1 The minterms and maxterms o f two of the variables which make the value of the
variables maxterm equal to 0.

44 Digital logic design

Now, for A - 0 and B - 0 we have that

mo - A B - 1, and r~o - A B - O,

giving

r~0 - M0 - A + B,

i.e. the maxterm is the logical complement of its corresponding minterm. The other
three maxterms can be obtained by the same method.

For three variables A, B, and C there are eight possible combinations of the
variables and consequently there are eight minterms and eight maxterms. If there are
n variables there are 2 ~ possible combinations of those variables and this leads to 2 ~
minterms and 2 ~ maxterms. It is clear that the number of minterms and maxterms rises
exponentially with n.

One important property of minterms is that the logical OR of all 2" minterms is
equal to logical 1, i.e.

2 n - 1

Zmi - 1
i=0

The dual of this equation is

2 n - - 1

I I M,
i=0

= 0

where 1-I signifies the Boolean product (AND), so that the logical product of all the
maxterms is equal to logical zero. For example, in the case of two variables the logical
sum (OR) of all the minterms is given by the expression

Sum = A B + A B + A B + A B

= A(B + B) + A(B + B)

= A + A

= 1

Taking the dual of the expression for the sum gives

(A + B)(A + B)(A + B)(A + B) = 0

and this represents the logical product of all the maxterms of two variables.

3.3 Canonical forms

Also mentioned in section 2.5 is the concept of the canonical form, a term used to
describe a Boolean function that is written either as a sum of minterms, or as
a product of maxterms. For example, using three variables A, B, and C, the equation

n m

f (A, B, C) = A(B ~ C) + A B C

Karnaugh maps and function simplification 45

is not written explicitly as a sum of minterms (or a product of maxterms) and so is not
in canonical form. Simple Boolean algebraic manipulation produces the same function
in canonical form written as the logical sum of three minterms:

f (A, B, C) - ABC + ABC + ABC

while the following equation is written as the product of three maxterms and so is also
in canonical form:

f (A, B, C) - (A + B + C)(A + B + C)(A + B + C)

3.4 Boolean functions of two variables

There are a specific number of Boolean functions of two variables. Each Boolean
function in its canonical form will consist of a certain number of minterms; for
example, f (A , B) - AB + AB is a Boolean function of two variables and contains
two of the four available minterms. The total number of Boolean functions of two
variables can be obtained in the following manner.

Figure 3.2 shows a table in which the presence of a minterm in a two-variable function
is indicated by a 1, and its absence by a 0. For example, if the minterm AB is included
in the expression, its presence will be represented by a 1 in the position of that minterm
in the table. If not included, its absence will be indicated by a 0. In the case where all
four minterms are absent, this will be indicated by a column of four 0s, as shown in the
table, and it follows that the corresponding Boolean function will be f0 - 0.

Minterms fo fl f2 f3 f4 fs fe f~ fe f9 flo fll f12 fla f14 f15

mo = .~B 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
m~ = /~B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
mi = AB 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
rns = AB 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 3.2 Table for determining all the Boolean functions of two variables

fo=0
f l=AB
f2=AB
fa=A
f4=~B
fs=B
fe=,~B+AB
h=A+B
fs=,~B==,T+"B
fg=,~k-AB
flo=B
fll=A+B
f12=,~
fla=~'+B
fl 4=,~+ B==A-'B
f15=1

False
AND
AND (not El)
Identity
AND (not A)
Identity
Exclusive OR
OR
NOR
Equality
NOT
OR (not B)
NOT
OR (not A)
NAND
True

Figure 3.3 The 16 Boolean
functions of two variables

There are two ways in which the entry in the first row
can be allocated: it can be either 0 or 1. There are also two
ways in which the entry in the second row can be allocated.
When combined with the first row allocation this leads
to four ways in which the first two rows can be allocated
with 0s and Is. For four rows, it follows that there are
2 4 = 16 ways in which the 0s and l s can be allocated.
These allocations are shown in Figure 3.2 and the 16
Boolean functions of two variables can be written down
immediately from this table and are tabulated in Figure 3.3.

As the number of variables increases, the number of
Boolean functions that can be formed increases rapidly.
For three Boolean variables there are 28 = 256 possible
Boolean functions, for four variables there are 216=
65 536 possible Boolean functions and for n variables
there are 2 (2") possible Boolean functions.

46 Digital logic design

3.5 The Karnaugh map

For two variables there are four minterms and these can be conveniently placed on
a 'map' as shown in Figure 3.4. The map consists of a square divided into four cells,

one for each of the minterms. The possible values of the
A ~ 0 1 variable A are written down the left hand side of the map,

labelling the corresponding rows of the map, while the
~,'~'~ . ~ possible values of the variable B are written along the top

0 6" 6 ~" of the map, labelling the corresponding columns of the
map. Hence, the top left-hand cell represents the minterm
where A - 0 and B - O, i.e. the minterm AB. The bottom

1 /,'~ ,,/~ right-hand cell represents the minterm A B where A - 1
6 ~ ~ and B - 1. This kind of map is called a Karnaugh map

or K-map.

Figure 3.4 The map for two Karnaugh maps can be labelled and marked in a
Boolean variables variety of ways. For example, each cell can be numbered

with the decimal subscript of the minterm that occupies
the cell. In this case, the bottom right-hand cell would be numbered with 3, as shown
in Figure 3.5(a). The cell numbering shown in Figure 3.5(a) assumes that A is the
most significant bit in the binary to decimal conversion, and B the least significant bit.
Since A has weighting 2 and B has weighting 1, this is sometimes indicated in
abbreviated form as A, B = 2, 1 (which is not a conventional equation, but merely
indicates the respective weights of A and B). Alternatively, the cells can be marked with
the binary representation of their corresponding subscript, as shown in Figure 3.5(b).
A further possibility for the axis labels is to use A, A, B,/~ instead of 0 and 1, as shown
in Figure 3.5(c).

For three variables, the map contains eight cells, one for each of the possible minterms as
shown in Figure 3.6(a), drawn for the weighting A , B , C =_ 4,2, 1. The variable A is

A'~O B 0 1 ~ B B
0 1 ~ ~ ~" 00 01

1 2 3 A 10 11

(a) (b) (c)

Figure 3.5 Alternative methods for marking
a Karnaugh map

allocated to the two rows of the map, while
the variables B and C are allocated to the
four columns. There are four combinations
of these two variables, and each combin-
ation is allocated to a column of the map.

The columns and rows are allocated in
the way shown so that two adjacent
columns are always associated with the
true value of a variable or, alternatively,

its complement. An examination of Figure 3.6(a) shows that the first two columns are
associated with B, the second and third columns are associated with C, and the third
and fourth columns are associated with B. The reason for allocating the variables to
the columns in this way will be clearer when the procedure for minimisation of
a Boolean function is discussed later in this chapter. Note, however, that the column
labels along the top of the K-map are the same as the Gray code order for two binary
variables (see section 1.21). The reason for this is that the underlying principle of the
K-map is that in moving from one cell to an adjacent cell either vertically or horizon-
tally, the value of one (and only one) Boolean variable may change, and of course
similarly Gray codes must change by just one digit only at each step. An alternative
method of labelling the axes of a 3-variable K-map is shown in Figure 3.6(b), which

Karnaugh maps and function simplification 47

' ~ C O0 01 11 10
I I

000 001 011 010

A 100 101 111 110

I I
C

(a) (b)

Figure 3.6 Karnaugh maps for three variables

makes clear that two adjacent columns are always associated with either the true value
or the complement of a variable.

The 4-variable K-map is shown in two forms, differing only in the axis labelling
method, in Figure 3.7. Since there are 16 minterms for four variables, the map contains
16 cells and each cell has been marked with the decimal subscript of its respective
minterm, using the weighting A,B, C,D = 8, 4,2, 1. Note that in Figure 3.7(a), both
axes are labelled in Gray code order.

In the case of five variables, it is convenient to use two 16-cell maps rather than one
32-cell map, as shown in Figure 3.8(a). The right-hand map is allocated to the true
value of E, while the left-hand map is associated with the complement of variable E.

, oo
O0 0

OI 4

II 12

I0 8

OI II I0

I 3 2
, , ,

5 7 6
,,

13 15 14

9 I I I0

(a)

Figure 3.7 Karnaugh maps for four variables

I I

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

I I
D
(b)

I B

oo

oo o

OI 8

I I 2 4

I 0 16

C
OI I I I 0 ,4 O 0 OI I I I 0 I I

10, 14 12 9 11 15 1 3 - 9 / 1 1 / / 1 3 / l A- 2~284 2~260 15/~14 2~2~] [.q l / B
26 30 28 25 27 :51 29 , ~ 0

I I

~" (0) E(1) D

Key to diagonal splits: I ~

(a) (b)

Figure 3.8 Karnaugh maps for five variables, using the weighting A, B, C, D, E = 16, 8, 4, 2,1

48 Digital logic design

An alternative is to start with a single 4-variable K-map, and to subdivide each original
square cell diagonally, as shown in Figure 3.8(b) to produce a single 32-cell map, so that
the cells now become triangles; E is associated with the upper-left triangles, and E with
the lower-right triangles.

For six variables, there are 64 minterms, and so 64 cells are required; the possibilities
are to use four 16-cell maps, or two 32-cell maps, or a single 64-cell map produced
by taking a 32-cell map and subdividing each original square cell diagonally again
to produce four triangular cells in the space of each original square cell, as shown
in Figure 3.9. In each case, all possible combinations of E and F are accom-
modated uniquely.

,, oo
O0 0

_

OI 16
_

I I 4 8

I0 32

A~ O0

O0 2

OI 18 22 30 26

II 50 54 62 58

I0 34

01 II 10 , d o \ 00 01 II 10

4 12 8 O~ I 5 13 g

20 28 24 C 17

52 60 56 I 49

36 44 40 I 33 37 45

(00) ~ ~" (00
O= I~ ~0 48 X O0 O= ==

= ,

6 14 10 O0 3 7 15

OI 19 23 31

II 51

38 46 42 tO 35 39 47

21 29 25

53 61 57

41

I0

II

27

55 63 59

43

s i~o) E'Fl l l)
(a)

A

c
i !

32 \ \
I I

D
rN ,-,- /1

Key to d iagonal splits: [E~F[
V =t- "N

(b)

Figure 3.9 Karnaugh maps for six variables, using the weighting A, B, C, D, E, F =_ 32,16, 8, 4, 2,1

Karnaugh maps and function simplification 49

3.6 Plotting Boolean functions on a Karnaugh map

For two variables, the K-map consists of four cells, one for each of the minterms.
The function f - AB is shown plotted in Figure 3.10(a). It occupies the top right-hand

'4x'•, 0 I '4~0# 0 I
0 I

I I I I

(a) (b)

Figure 3.10 (a) f = f iB (b) f = A B + A B = A

cell of the map, this being indicated by
marking the cell with a 1.

Consider now the function f = A
which does not depend upon the
second variable, B; it is, of course, not
in canonical form, as the minterms must
involve both variables or their com-
plements. Using the complementation
theorem this may be expanded to give
the canonical form

f - A(B + B) - AB + AB

This function is plotted in Figure 3.10(b) and occupies the two cells on the bottom row
of the map. Hence, this single-variable function occupies two adjacent cells when
plotted on a 2-variable K-map.

Since for three variables there are eight minterms, a 3-variable function f (A, B, C)
requires an eight-cell K-map, as shown in Figure 3.11(a). The function
f - ABC + ABC is shown plotted on this map. The marked cells in this case are not
adjacent and this is an indication that the two terms which make up this function
cannot be combined to form a simpler function.

The 2-variable term BC plotted on a 3-variable map occupies two adjacent cells, as
shown in Figure 3.1 l(b). This is because BC is the logical sum of the two minterms
ABC and ABC, since

f - ABC + ABC

= (A + A)BC

-- BC.

A one-variable term plotted on a 3-variable map occupies four adjacent cells.
For example, the term f - C is shown plotted on Figure 3.11 (c). An inspection of this
map seems to indicate that the four cells are not adjacent. However, it is a fundamental

A~'~C O0 Ol II I0 ~ C
1

0 I , 0

I ! I

Co0

0 I

I I

Ol I I I0

(c)

I

O0 Ol II I0

(b)

Figure 3.11 (a) f = A B C + A B C (b) f = B C (c) f = C;

' b

50 Digital logic design

oo

I0

oo

Ol II

O#

(a)

I0 Ol II I0 A ~
O0

Ol
....

II

I0

II

I 0 I I

Figure 3.12

(b)

,o A oo o, ,, ,o

I I O 0 l l t

Ol

II

I 0 I I I

(r (a)

(a) f = ABCD (b) f = ACD (c) f = Bs (d) f = B

I

principle applying to K-maps for three and more variables that the map may "wrap
around" in such a way that the right and left ends may be rolled over to form a cylinder
with a vertical axis. Alternatively, it may be imagined that the map has been drawn
upon a cylindrical tin. If this is done, it is clear that the left-hand and right-hand
columns are now adjacent. Alternatively, it will be observed that in the top left-hand
cell, the binary representation (000) of the minterm ABC differs by one digit only
from 010, the binary representation of the minterm (ABC) in the top right-hand cell.
It is a general rule that two minterms that differ in only one variable correspond
to adjacent cells on the K-map, as also must binary representations that differ in
only one digit. Clearly this also applies to the bottom left-hand and bottom right-hand
cells.

As in the cases of the 2-variable and 3-variable maps, on a 4-variable map a minterm
occupies one cell, as shown in Figure 3.12(a). Similarly, product terms of three, two
and one variables, when plotted on a four-variable map, will occupy two, four and
eight adjacent cells, respectively, as shown in Figures 3.12(b, c, d). Inspection of Figure
3.12(d) shows that the top and bottom rows of the K-map may be regarded as
adjacent, and, as in the case of the 3-variable map, the first and last columns of the
map may also be regarded as adjacent.

3.7 Maxterms on the Karnaugh map

As we have seen, minterms occupy just one cell on any K-map. For example, the
minterm ABC of three variables is plotted on a 3-variable K-map in Figure 3.13(a).

Karnaugh maps and function simplification 51

A~%0 01 11 10 A~_ c /11 10

1 , , + A b w

(a) (b)

Figure 3.13 K-map plot of (a) minterm ABC (b) maxterm A + B +

The name 'minterm' derives from the fact that it is represented by the smallest possible
distinguishable area on the map.

A maxterm, such as A + B + C, from section 3.2 is the complement of the
corresponding minterm ABC. Plotting a maxterm on a Karnaugh map requires further
consideration. It has been seen earlier that each individual term (A,B, andC)
corresponds to four adjacent cells on the map. As explained in section 2.16, the
Boolean OR function corresponds closely to the 'set union' operation (U) performed
on areas indicating sets in a Venn diagram, and so the required map area for the
maxterm is the combined area formed by the union of the three areas, one for
each individual term. The three individual areas are shown in Figure 3.13(b), and the
combined area is that area whose cells are filled with 1. It is clear from Figure 3.13(b)
that the resultant combined area for this maxterm is indeed the logical complement
of the plot of the corresponding minterm, as shown in Figure 3.13(a). Wherever one
of these maps has 1 marked in a certain cell, the other has 0, and wherever it has 0,
the other has 1. The name 'maxterm' is obviously derived from the fact that the
maxterm occupies all but one cell on any size of K-map; it represents the 'maximum
distinguishable area' on the map.

3.8 Simplification of Boolean functions

The process of simplifying a Boolean function with the aid of a K-map is simply
a process of finding adjacencies on the function plot. This is best explained with the aid
of a very simple example. Suppose that it is required to simplify the Boolean function

m _ m

f - AB + AB + AB. Using Boolean algebra alone, it can be readily found that

f - B(A + A) + A B - - AB + B

and at first sight it may be difficult to see any further simplification. However, suppose that
f i s plotted on a 2-variable K-map, as in Figure 3.14. The functionfis specified in canonical

sum-of-minterms form, so all that is necessary is to place 1 in each
B

J

A(1 13
J

Figure 3.14 Karnaugh
map for the function
f = 71B + AB + AB

cell corresponding to the minterms in the given expression.
The next stage of the simplification process is to group together

adjacent cells containing Is. (In this context, note carefully that
'adjacent' means 'horizontally or vertically', not 'diagonally'.)
Therefore, the bottom two cells, corresponding to A alone, may
be grouped together. Similarly, the two left-hand cells, corres-
ponding to B alone, may also be grouped together, as indicated
in Figure 3.14.

52 Digital logic design

The final stage is to write down the final simplified expression for the function
obtained from the groupings thus identified. In this case, therefore, f = A + B. This is
certainly simpler than the previous 'simplest' expression f = AB + B obtained using
Boolean algebra, but it still may not be obvious that these two expressions are actually
representations of the same function. This can be shown immediately by expanding the
expression obtained from the K-map as

f = A + B

= A(B + B) + B(A + A)

= AB + AB + BA + BA

= 2 B + AB + AB

and so the original expression for f has been proven equal to the simpler expression
obtained from the K-map.

Of course, this is a trivial example, and serves only to illustrate the procedure and
its validity. Its power may be demonstrated by examining a more complex example,
such as

f - Z 0 , 1,2, 3,4, 6, 7, 8, 12, 13.

Here, the function f has been specified using the 'numerical minterm' canonical form
introduced in section 2.5, where f is specified as a sum of the minterms indicated
in decimal form. The first stage in the minimisation is to plot f on a Karnaugh map.
In doing so, it is necessary to specify the relative weightings of the map variables, and
here the weighting A, B, C, D = 8, 4, 2, 1 is used.

The K-map form with numerical labels (e.g., Figure 3.7(a)) and the K-map form
with direct symbolic axis labels (e.g., Figure 3.7(b)) are alternatives that correspond to
the numerical and algebraic methods of expressing Boolean functions. Of course, the
final simplified function is always independent of the mechanics used in finding it.
Here, as the function is specified in numerical form, the numerical labelling of the map
is used. Each numerical minterm corresponds to one cell on the map. The plot of the
function is shown in Figure 3.15, in which it is clear that there are four separate
encircled adjacencies or 'groups'; three of these are 4-cell adjacencies and one is a two-
cell adjacency. The four cells on the top row of the map can be represented by the term
AB, the four cells in the first column of the map by CD, the top right-hand four cells by
A C, and the 2-cell adjacency by ABC. Hence the simplified function may be written

f = A B + CD + A C + ABC
CO

A O0 OI II I0 The enclosed adjacencies are termed the prime
O O ~ 1 ~ I #1 I~ j implicantsof the function.

If a prime implicant is needed to ensure full coverage
I I I of the plotted function it is termed an essentialprime

OI I k_.._ ...'.,fl implicant. In the preceding example ABC is essential,
~1 -~' since it is the only prime implicant selected that

I I I~ covers the cell containing the minterm ABCD (1101).
IM~ The other three prime implicants are also essential

I0 since they too are covering cells not covered by any
other prime implicant. For example, CD is the only

Figure 3.15 f = A B + CD + A C + A B C prime implicant covering cell 0100.

Karnaugh maps and function simplification 53

It is now clear why the four variables were allocated to the columns and rows in the
manner shown. The allocation used ensures that cells associated with the variables
C, C,/5 and D always lie in two adjacent columns while the cells associated with the
variables A, A,/~ and B always lie in two adjacent rows. If the allocation had been
made in strict numerical order, i.e. 00, 01, 10, 11, then the cells associated with D,
for example, would not have been in adjacent columns and simplification would no
longer have been a process of looking for adjacencies.

Simplification of 5-variable functions is a little more complicated. As an example,
consider the function

f = ~--'~ 0, 1,2, 3, 4, 5, 10, 11, 13, 14, 15, 16, 20, 21,24, 25, 26, 29, 30, 31

which is shown plotted in Figure 3.16. The simplification procedure can be carried out
as follows:

1. First find the simplified functions for each of the two maps f~ and fe in the way
previously described:

m

f~ = B D E + B D E + A C D E + A B C E

and

fE = C D E + B C E + A B D E + A C D E + A B C E

oc

ol

IO

Ol II

I i I

I

IO

L.,
o o

oc

OI

II

IO

OI II I0

I I ~ j

I rl

U
, . ,

f E
Figure 3.16 f = B D E + BDF. + C D E + B C E + A B C + A C D + A C D E + A B D E

2. The second step is to look for possible combinations between prime implicants identi-
fied on the two maps that will result in an overall simplification of the logical sum of the
two functions, f g + f e . For example, A B C E is a prime implicant offg and A B C E is
a prime implicant of fe. These two will combine to form one 3-variable term ABC.
It is also possible to add a non-essential prime implicant to the equation for fg, namely
A CDE. The cells corresponding to A CDF, on the fg map have already been covered
by prime implicants A B C E and BDE. The non-essential prime implicant A C D E
will combine with the essential prime implicant A CDE on the fe map to form one
3-variable term A CD. Hence, the equations for f~ and f e may be written as follows:

f p~ -- B D E + B D E + A C D E + A B C E + A C D E

f E -- C D E + B C E + A B D E + A B C E + A C D E

forms forms
A B C A C D

54 Digital logic design

and the simplified function is

f = BDE + BDE + CDE + BCE + A B C + A CD + A CDE + A B D E

3.9 The inverse function

In some cases it is more economical to implement the inverse of the function rather
than implement the given function. For example, suppose the given function is

f (A , B , C , D) = ~ 2 , 6, 7,8, 12, 13

This is plotted in Figure 3.17(a) and the simplified function obtained from this map is

f = A B C + A B C + A CD + A CD

O0 OI

O0
i
I 011
I

,o

(a) (b)

I I I0 d- A,, I

C

I
.

,4

D

(c)
CD

OI II

oo

Oi IM.~_ 0

I0

II 0 0

(d}

IO (:o o_v
Figure 3.17 (a) Plot o f f = ABC" + flBC + ftCL) + ACD and (b) its implementation (c) Plot of the inverse
function f = AC + AC + BD and (d) the implementation of f from the inverse function

To implement this function, four 3-input AND gates and one 4-input OR gate
are required as shown in Figure 3.17(b). Besides these gates, the inverses of A, C,
and D must be produced, needing three logic inverters, and there are 17 logic signal
interconnections in the circuit.

Karnaugh maps and function simplification 55

The inverse function is represented by 0s plotted in the unmarked cells of
Figure 3.17(a). These cells represent those combinations of the variables for which
f = 0. For clarity, a separate map in Figure 3.17(c) shows the plot of the inverse
function. From this map the simplified form of the inverse function is obtained and is
given by the equation

f = AC + AC + BD.

This implementation o f f is shown in Figure 3.17(d). In order to generate f, the inverse
m

function f is inverted using an inverter. This implementation requires three 2-input
AND gates, one 3-input OR gate, and four inverters including the three needed to
produce A, B and C. The number of logic signal interconnections is 11. Because of the
particular form o f f in this case, th!s is a much simpler circuit than the original circuit
generating f directly in Figure 3.17(b), although generation of the complement of
a function may not always be advantageous; selection of the best implementation
is discussed further in section 3.24.

3 . 1 0 ' D o n ' t c a r e ' t e r m s

In some logic problems certain combinations of the variables may never occur.
For example, the NBCD code tabulated in Figure 3.18(a) is frequently used to
represent the decimal digits. This 4-bit code has 16 possible combinations, only ten
of which are used. The remaining six combinations, namely 1010, 1011, 1100, 1101,
1110 and 1111, cannot occur in practice unless fault conditions exist, and as
a consequence can be used for simplification purposes. Such terms are usually referred
to as 'don't care' or 'can't happen' terms.

Dec imal
d ig i t

0
I

2
3
4
5
6
7

8
9

i

,4 B C D

0 0 0
0 0 0
0 0 I
0 0 I
0 I 0
0 I 0
0 I I
0 I 1
I 0 0
I 0 0

0
I

0
I

0
0
0
I

0
I

, 4 _l ! : 0 ! - I

B] Dec imal ! =
decode
logic ~ - �9

/ I ~ ~

A~

(b)

10

oo Ol

GGUU

@

(a) (c)

Figure 3 . 1 8 (a) The NBCD code (b) Block schematic for the NBCD to decimal converter (c) Karnaugh map for
determining the decimal decode logic

56 Digital logic design

If the NBCD code is to be converted to give a decimal output, as indicated by the
block diagram in Figure 3.18(b), decode logic has to be used. Ten individual decode
circuits will be required, one for each decimal digit.

The K-map used for determining the individual functions is shown in Figure 3.18(c).
On this map the 'can't happen' or 'don't care' terms are marked X which indicates that
the entry in the cell can be 0 or 1, whichever suits the designer. The remaining 10 cells
are marked with the decimal digit corresponding to the cell code. For example, the cell
defined by A B C D - 0000 is marked with the decimal digit 0. This cell cannot be
combined with any of the cells marked X, so that the output indicating the decimal
digit 0 is given by the minterm A B C D . Similarly, the cell corresponding to decimal
digit 1 cannot be combined with any adjacent cell marked X, so that the output
indicating the decimal digit 1 is given by the minterm A B C D . However, the cell
corresponding to decimal digit 2 is adjacent to one of the 'don't care' cells marked
X as shown on the K-map, so that the output indicating the decimal digit 2 is given by
the expression B C D which is simpler than a minterm.

The equations for the remaining decimal digits can be found in the same way, and
are given by the following Boolean expressions.

3 - B C D 4 - B C D 5 = B C D 6 - BCE)

7 = B C D 8 = A D 9 = A D

With the exception of the results for decimal digits 0 and 1, all of these expressions
are simpler than the corresponding minterms. A significant simplification has
been achieved by exploiting the 'don't care' states in this K-map. This would be
reflected in a corresponding simplification of the logic circuits used for performing
this decoding.

This particular example is somewhat unusual in the sense that all of the 'don't care'
states have been included in the final answer. However, since the whole point of 'don't
care' states is that it is irrelevant whether or not they are included in the final simplified
expressions, it is quite possible that in other problems some 'don't cares' will not be
included. The logic designer has complete freedom to choose whether or not any
particular 'don't care' is included, according to the best way of simplifying the final
result, as long as it is absolutely certain that these states will never occur.

Summary of rules for simplifying functions using Karnaugh maps

1. All Is and no 0s must be included in groups of cells (unless the inverse function is
being implemented, in which case all 0s and no Is must be included).

2. Group adjacent (horizontal or vertical) cells only.
3. The allowable group sizes are 1, 2, 4, or 8 (or higher powers of 2) only.
4. To obtain the simplest form, use the largest size groups possible. Use the fewest

groups possible.
5. Use overlaps freely to achieve the goals of point 4 above.
6. The 3-variable map can 'wrap around' horizontally, and the 4-variable map can

'wrap around' both vertically and horizontally.
7. Include 'don't cares' within groups as needed to achieve the goals of point

4 above. 'Don' t cares' should not be included if by so doing the groups are not
made larger or fewer.

Karnaugh maps and function simplification 57

3.11 Simplification of products of maxterms

As explained in section 2.5, Boolean expressions can be expressed as products of
maxterms, sometimes referred to as the 'product of sums', 'P-of-S' or 'POS' form.
Except in the simplest cases, these types of expressions are not easy to plot directly on
a K-map. However, the inverse function will be directly expressed as a sum of
minterms ('sum of products', 'S-of-P' or 'SOP' form) which can then be plotted
immediately. The complement of this map (i.e., the cells corresponding to 0s) then
represents the complement of the inverse function which is, of course, the original
function. For example, suppose

f = A + B

and by De Morgan's theorem

f = AB.

, 4 ' • 0 I ~ 0
"

0 0 I

I 0 I I

(a) (b)

Figure 3.19 (a) f = AB (b) f = :1 + k

00

01

10

01 11 10

god
0

x

7"= ~.D +/~BD + AB~

Figure 3.20 Plot o f the inverse function
f = CD + 71BD + ABC, using the
weighting A, B, C, D - 8, 4, 2, 1

This function can be plotted directly on a K-map but
in this case the cell containing the term AB is marked
with a 0 as shown in Figure 3.19(a). In this simple
case the cells representing the original function
f - A + B are marked with 1 s and have been plotted
directly on the map shown in Figure 3.19(b). It will
be observed that the marked cells in this diagram are
the unmarked cells in Figure 3.19(a).

If a Boolean function is expressed as a sum of
minterms, perhaps with a number of 'don't care'
minterms, and the simplest equivalent product of
sums is required, then the way to proceed is to plot
as 0s the minterms missing from the sum of minterms.
For example, the zeros of the function f = ~ 0, 2,
4, 6, 7, 8, 11, 14, 15, together with 'don't care'
minterms 1, 9, 10, 13, are plotted in Figure 3.20; the
zeros correspond to the three missing minterms 3, 5,
and 12.

The inverse function is shown plotted in Figure 3.20.
Simplifying, using the techniques previously described,
gives the minimal inverse function"

f = CD + ABD + ABC.

Note that in this case, the 'don't care' minterm (10)10 is not included in the
minimised groupings, whereas the other three 'don't cares' are included. Taking the
complement of this expression (see section 2.4) gives the required simplest (minimal)
product of sums:

f = (C + D)(A + B + D)(A + B + C).

58 Digital logic design

3.12 The Quine-McCluskey tabular simplification method

When a function of more than six variables has to be simplified, mapping techniques
become increasingly difficult to employ and alternative methods have to be con-
sidered. A commonly used alternative is the Quine-McCluskey tabular method.
This technique is tedious, time consuming, and subject to error when performed by
hand. However, these difficulties can be overcome by writing a program which allows
the simplification process to be run on a computer. The method is based on the
complementation theorem which can be applied to the simplification process system-
atically. This theorem is illustrated by the simple case

f = ABC + ABC

which can be expressed as

f = AB(C + C)

and hence the function can be simplified immediately as

f = A B .

When the two terms ABC and ABC are plotted on a K-map (Figure 3.21(a)) it will be
observed that since they are occupying adjacent cells they are combinable and will
form one 2-variable term.

An alternative way of identifying Boolean terms that will combine is to examine
their binary equivalents. For example, the binary equivalents of the two terms in the
given equation are ABC = 111 and ABC = 110, and it will be noted that they differ in
one digit place only. It is a general rule that if the binary equivalents of two Boolean
terms differ in one digit place only, they are combinable. An examination of the K-map
in Figure 3.21(a)confirms the rule, since it can be seen that any pair of adjacent
cells on this map have a single digit difference between their corresponding binary
representations.

If the given equation had been

f = ABC + ABC

then the binary equivalents of the two minterms are ABC = 001 and A/~C"- 100.
Since the binary equivalents of the two terms differ in two digit places they are not

AN•Co0 01 11 10 A~ O0 01 10 11
\8C

0 0 I

I 1 1 1 1

Figure 3.21

f =AB f :ABC *ABC
(a) (b)

(a) Plot o f f = A B C + ABC, two combinable terms (b) Plot o f two non-combinable terms

Karnaugh maps and function simplification 59

combinable. Furthermore, when plotted on the K-map (see Figure 3.21(b)) it will be
observed that they do not occupy adjacent cells.

The first step in the Quine-McCluskey method is to tabulate the function to
be simplified in sectionalised form such that section 1 lists the single minterm, if
present in the function, containing no 1 s. Then, section 2 lists any minterms containing
one 1, and so on, until section n lists the minterms containing (n - 1) 1 s. As an example,
the 4-variable function

f(A,B,C,D)-- ~ 0 ,1 ,2 ,5 ,6 ,7 ,9 ,10 ,11 ,14

is shown tabulated in Figure 3.22(a) with corresponding binary and decimal equivalents
of the minterms in adjacent columns.

The next step is to form all possible combinations between the terms in sections
1 and 2. For example, the term 0000 combines with the term 0001 to form 000-,

0001
0010
0101
0110
1001
1010
0111
1011
1110

1
2
5
6

9

10
7
11
14

000- 0,1
00-0 0,2
0-01 1,5
-001 1,9
0-10 2.6 V'
-010 2,10 V'
01-1 5,7
011- 6,7
- 1 1 0 6 , 1 4 I /
10-1 9,11
101- 10,11
1-10 10,14 l /

- - 1 0 2 , 6 , 1 0 , 1 4

0 1 2 5 6 7 9 1 0 1 1 1 4

ABC ~, ,

ABD ;

ACD

BCD
ABD
ABC

m

ABD

.ABC

. CD

(a)

0,1
' 0 .2

�9 1,5
i

)

, 1,9
())

' 6 ,7

~- - 9 ,11

' ~ 10,11
!I ' ! 2,6,10,14

m - - m

ABC
m _ _

ABD

ACD

BCD
ABD
ABC

w

ABD

ABC

0 1 5 7 9 1 1

0,1 'I
�9 0 ,2

;' ,~ 1,5

,~ ~ 1,9

,; ;~ 5,7
- 6 .7

,- ~- 9.11

- 10.11

(b)
~ C D

AB"X O0 01 11 10

oo 1 C D
01 C D 1

,,

11 1

1o

f = CD + ABD + ABD + ABC

(d)

(c)

Figure 3.22 Simplification using Quine-McCluskey tabulation method (a) Tabulation (b) Prime implicant table
(c) Reduced prime implicant table (d) Plot of function

60 Digital logic design

a dash being placed in the position where the combination has occurred. This term
appears at the top of the second column of the tabulation and the decimal equivalents
0 and 1 of the combining terms are placed by it. At the same time, terms 0 and 1 are
checked off in the first column of the tabulation. When all combinations between
sections 1 and 2 have been generated, then all possible combinations between sections
2 and 3 are formed. These combinations are tabulated in the next section of the
second column.

When the second column is complete, a third column is formed by combining
terms in adjacent sections of the second column. A combination of two terms is only
possible if the dash in both terms occupies the same position and only one bit differs.
Terms in the second column used to form terms in the third column are checked
off and the decimal equivalents of the combining terms are placed at the side of the
generated term.

After the tabulation is completed, all those terms that are not checked off are prime
implicants of the function. The Boolean form of the prime implicants can be obtained
from their binary representations. For example, the first term in the second column of
the tabulation is 000- = ABC, the dash indicating that variable D is missing from
this prime implicant. The decimal numbers to the right of the prime implicant indicate
the cells it covers on the K-map.

The extracted prime implicants are now used to form the prime implicant table
shown in Figure 3.22(b). In this table each column represents a minterm of the
function and the column is headed by its decimal equivalent. Additionally, a row is
placed in the table for each of the prime implicants with their Boolean form appearing
at the left-hand end of the rows and the cells that they cover at the right-hand end of
the rows. Crosses are entered where a cell column and a prime implicant row intersect
provided the cell allocated to the column is covered by the prime implicant allocated to
the row.

If a column has only one X in it then the prime implicant corresponding to that X
is 'essential'. In Figure 3.22(b) the column headed '14' contains only one X which
appears at the intersection with the row allocated to prime implicant CD and it
follows that C/) is essential. To indicate this, it is marked with an * in the table.
There are four Xs in the CD row and the columns associated with them may now be
removed from the table since the cells allocated to these columns are covered by this
prime implieant.

The table is now redrawn in Figure 3.22(c) with columns 2, 6, 10 and 14 removed, as
well as the row for the essential prime implicant CD. If ABD is selected as one of the
required prime implicants then cells 9 and 11 are covered, and rows ABD and ABC can
be removed from the table as well as the columns headed 9 and 11. To cover cells 5 and
7 prime implicant ABD is selected. Rows ABC and ABD and also the columns headed
5 and 7 can now be removed from the table. The remaining two cells, 0 and 1, are
covered by prime implicant ABC thus eliminating the prime implicants ABD, A CD
and BCD from the solution.

The selected prime implicants are C{),ABD, JlBD and ABC and the simplified
function is

f = CD + ABD + ABD + ABC.

The solution is shown plotted in Figure 3.22(d).

Karnaugh maps and function simplification 61

3.13 Properties of prime implicant tables

There are two features of prime implicant tables that can be utilised during the
function simplification process"

1. Dominating rows: an example of a dominating row is shown in Figure 3.23(a).
Row P contains all of the minterms contained in row Q, and so row P is said to
dominate row Q. (The columns associated with row Q are a subset of the columns
associated with row P.) If row P were selected then the minterms associated with
prime implicant Q would be covered, so that therefore row Q can be removed from
the table.

2. Dominating columns: an example of a dominating column is illustrated in Figure 3.23(b).
Minterm S is covered by all of the prime implicants which cover minterm R, so that
coverage of cell S is guaranteed by selecting a row that covers minterm R. (The rows
covering column R are a subset of the rows covering column S.) Therefore, the
dominating column, S, may be removed from the table.

R S

Dominating
row

Dominated
row

Dominated
column

I

I
Dominating

column

(a) (b)

Figure 3.23 (a) An example of a dominating row (b) An example of a dominating column

3.14 Cyclic prime implicant tables

A prime implicant table is said to be cyclic if

1. It does not have any essential prime implicants, which implies that there are two Xs
in every column.

2. There are no dominance relations among the rows and columns.

A typical example of a function which generates a cyclic prime implicant table is
shown in Figure 3.24(a). The equation of the function is

f - ~-~ 0, 1, 3, 4, 7, 12, 14, 15.

cJ uo!taunJ Ivuqu!ut aa!touaatlo
a~lt So tOld (f) [f uo!launf lmu!u!ut atlt fo tOld (a) alqvt tuva!lduq auqad paanpaa aagt.m d (p) alqot tuvo!lduq

~uaad paanpa~I (a) f uoltaunf Jof alqvt tuz~a!ldus! auqad (q) g['trI '~I 'L '~"~'I '0 g = f fo tOld (•) Iq,'s o.m~!sl

(~) (o)
3gV+O3g+OgV+a3V=~'/ 03g+DgV+O3V+38V=~/

OL OL

oo oo

(o)

(

91

[P)

'+'!+i, '++

"01

v ,, ! (?t'[tl -

m lSt'?t) -

I ~v~, (Sl 'L) Jr-

='M IL'(I

U~
~rtt
UU

r
r

r

+, ,.,~;v ,+

rl ~I ?

c~ �9
r

r

i~ P "~)
L

)

(~' "Of

tl~i'"P)

[?i'[i I "

[Sl'~t I

tSl*+I

:L'tl

11:1) ",I v

Ll'O!

t"t f _t~., t"~
~v

,|

it Tt CI /.

q)

I

i
i
i
I

!
i
!

3
==

'i '
)

I=)

c'~ !)) '-'
iP

, , ,21

c ;~ c) 0t .. r r

,,,, ,, c.. 2 ,.. tt

? c) to

V t l 0 Ol It O0 ~811~

~tu.ud oql oldtuexo s!ql aod "sx OA~I U!mUO3 Olqm s.tql u! sutunlo:) lI e lt~ql pamasqo
~q II.tA~ l.t pue (q)~E's osn~.t~I u! UOA!~ S! uot.lcmnj ~ql aoj olqm slm+:)!Idtu! otuud oqL

(1,'o)a~v = .~ (~ I 'L)a~g = p

(z['t,)a~g = q (t'0a~_v =

(v~ 'z~)agv = s (~'t)ag_v = q

(~ I 't, I)DgV = a (I 'O)3gV = v

A~OI0 q UOA!~ 0.re uo!lounj s!q~ jo slueo.tldtu ! om!ad olq.tssod tlV

ug!~dp a!go 1 lm!,~!(1 "(,9

Karnaugh maps and function simplification 63

implicant associated with row a is selected as one of the required prime implicants.
Since it covers cells 0 and 1, the corresponding two columns headed 0 and 1 can be
deleted from the table. After their removal, row c dominates row b, so that row b may
be also deleted. The reduced prime implicants table after these deletions is given in
Figure 3.24(c).

Column 3 in the reduced table contains only one X, hence the prime implicant
associated with row c will form one of the terms of the simplified function and columns
3 and 7 can now be removed from the reduced table. A further reduced prime implicant
table is shown in Figure 3.24(d).

Column 15 in this table contains only one X, consequently the prime implicant
associated with row e will be a term in the simplified function and columns 14 and 15
may now be removed from this table. After removal, row h dominates both rows g and
i and they can be deleted too, leaving the prime implicant associated with row h as the
last term required for a minimal sum which is given by

f l = a + c + e + h

= A B C + A CD + A B C + B C D

The simplified function is shown plotted in Figure 3.24(e).
If the prime implicant associated with row i had been selected initially then the

following alternative minimal function would have been obtained:

f2 = A CD + A B D + B C D + A B D

and is shown plotted in Figure 3.24(f).

3.15 Semi-cyclic prime implicant tables

A semi-cyclic prime implicant table differs from a cyclic prime implicant table in one
respect only. In the cyclic table, the number of cells covered by each prime implicant is
identical. For the semi-cyclic table, the prime implicants do not necessarily cover the
same number of cells.

An example of the K-map plot of a 5-variable function which generates a semi-cyclic
table is shown in Figure 3.25(a), and the corresponding prime implicant table appears
in Figure 3.25(b). Examination of the prime implicant table reveals that rows a, b, c
and deach contain four Xs, which means that the corresponding prime implicants
consist of three Boolean variables. The remaining rows in the table all contain two Xs
and the corresponding prime implicants consist of four Boolean variables. Since each
column contains two Xs, a prime implicant has to be selected to start the simplification
process. The correct procedure is to select a row containing four Xs. Such a selection
may lead to a reduced chip count and certainly would reduce the number of inter-
connections. Examination of the prime implicant table shows that if prime implicants
c and d are selected then in order to ensure that all of the cells 0, 2, 8, 9, 10, 11, 16, 17,
18 and 19 are covered, it is only necessary to select one of the prime implicants a and b.
When the columns for these cells are removed from the table simplification continues
by making one of the following two selections:

1. Select h, then i can be removed from the table and the solution is

f = (a or b) + c + d + (e or g) + h + (j or k)

64 Digital logic design

AB 11 10

o o L

o,

,-q

CD
AB OO 0 1 11

O0

o,

11 3 k,~

m[o]m

10

(a)

0 2 6 9 10 11 15 16 17 18 IS 23 25 31

(0, 2 , e , I o)
o

b (0, 2,16,1e)
_ _

(0 , 9 , 1 0 , 1 1) : : ,,, _ _

(1 6 , 1 7 , 1 8 , 1 9)
i , I ~ , I , f i , ,

(11, 15)
�9 . ,~,, .

(iek 3i)
g -,

(2,' 31)

" ~ '" ~ (,0 2 3)
i -. ,~

(iT 2 5) J ,.-

(9 , 2 5)
k ! , 1 , I ,

(b)

Figure 3.25 (a) Plot of S-variable function that generates a semi-cyclic prime implicant table (b) Semi-cyclic prime
implicant table

2. Select g, then row e can be removed from the table and the solution is

f = (a or b) + c + d + g + h + (j or k)

3.16 Quine-McCluskey simplification of functions containing
'don't care' terms

When the initial tabulation is drawn up, the 'don't care' or 'can't happen' terms should
be included, since such terms may be covered by the prime implicants of the function.
However, when the prime implicant table is constructed, columns do not have to
be included for the 'can't happen' terms. These terms do not necessarily have to
be covered, although they may be, for the reason given above. All other terms
require columns in the prime implicant table since, of necessity, they must be covered.
An example of handling 'don't care' terms is given below in the next section,
section 3.17.

Karnaugh maps and function simplification 65

3.17 Decimal approach to Quine-McCluskey simplification
of Boolean functions

The decimal approach to the Quine-McCluskey simplification of Boolean functions
provides a simpler tabulation; also, since decimal representation of Boolean terms
is employed, errors are less likely to occur, and when they do they are easier to spot.
However, the rules for the implementation of this approach are somewhat different.
For example, if the decimal difference between a pair of numbers in adjacent sections
of the tabulation is a power of 2 and the one in the upper section is less than the one in
the lower section, then the terms will combine. An example of the application of this
rule follows:

No. of ls Decimal Binary

0 0 0000
1 1 0001

Difference = 1 - 20 000-

Upper section
Lower section

This alternative approach will be demonstrated by simplifying the function

f (A , B , C , D) - ~ 0 , 3, 5, 6, 7, 8, 12, 15

together with 'don't care' (or 'can't happen') minterms 2, 9, 11, 13, and using the
weighting A, B, C, D = 8, 4, 2, 1. The first step is to tabulate in decimal form all the
minterms specified, including the 'don' t cares', sectionalised according to the number
of ls in each minterm, as shown in Figure 3.26(a).

In the second column of the table all those terms that differ by a power of 2 are
combined and tabulated, providing the number in the upper section of the first column
tabulation is less than the number in the adjacent lower section. The numbers in
parentheses by the side of each term in this column represent the power of 2 by which
the two combining terms differ. As the terms in the first column are used to form
a combination in the second column, they are checked off.

The numbers in parentheses in the second column also indicate which digit has
disappeared in the process of combination. To obtain the combined term, the decimal
values of the weightings for each binary variable must be used. For example, the first
entry in the second column of the tabulation is 0, 2(2), where the (2) indicates that the
Boolean variable that is weighted 2 has been eliminated from these two minterms in
this combination. The weighting key A, B, C, D = 8, 4, 2, 1 shows that it is variable C
that has been eliminated. The two original terms in the combination are 0 = ABCD
and 2 - ABCD, so that after the removal of C the result is ABD.

When preparing the third column in the table the conditions for combination are:

1. The number in parentheses for the term in the upper section shall be the same as
for the term in the adjacent lower section. For example, the two terms 2, 3(1)
(Figure 3.26(a), column 2, section 2) and 6, 7(1) (Figure 3.26(a), column 2, section 3)
are candidates for combination as the (1) in both terms indicates that the same digit
is missing in each.

2. The difference between the first two digits and the second two digits in the two
terms to be combined shall be the same power of 2. For example, for the terms
2, 3(1) and 6, 7(1), the difference between each pair of digits is 4 - 22.

66 Digital logic design

Numl:~r of decimal
i s

0 0 4

1 2 ,/
$, /

|

2 3 J

5 , /

6 ,/

9 ,/

12 J
,, ,

3 ? J

11 ,/

1 3 , /
�9 +

1, 15 J

0,2 (2)

o,e (8)

2,3 (1) J

2,6 (~) J

8,9 (1) ,/

8,12 (1,1 ~/
,,

3,71~) ,/

3,11 (8) J
5,7 (2) V

5,13 (8) #

6,7(1) J

9,11(2) J

9,13(1,) J
12,13(1) J

?, 15 (81 4

11,15 (1,) 4

13,15 (2) 4
, , i , , , ,

(a)

either

W-

-M-
(()))

i) ' ' c , c , c , ,
) :

2,3,6,? (1,~)
:,r '4,:~

8,9,12,13 (1,1,1

V | l d L j l l I ~ 11111111

~,?,TI, VS (~,e)-
~ t i i i u j q

5.7.13.15 12,81

7,..*~...:~ ' ~. 21
9o11,13,15 12,4)
. �9 : . . : .
~dll I J l l Ij ~8

(o,21

(0 ,1)

(2 ,3 ,6 ,7)

(I,1,12,131

13,?,11,151

(S,?,13,16)

(!1,11,13,15)

(b)

,~BO

AB~ ~ 01 11 10

ol J

BOB" (c)

F i g u r e 3 .26 Simplification using the decimal approach (a) Tabulation (b) Prime implicant table (c) Plot of
function f = A C + BD + A C + ABD (or BCD)

Karnaugh maps and function simplification 67

The second number included in parentheses in the third column indicates the
position of the second variable that has been removed by the combination. In the
example given, the combined term is 2, 3, 6, 7(1, 4).

The Boolean expression corresponding to minterm 2 is A B C D and the eliminated
digits (1, 4), together with the weighting key A, B, C, D _= 8, 4, 2, 1, indicate that B and
D are to be eliminated, and hence the reduced term formed by the combination is A C.

Terms in the second column are checked off as they are used to form further reduced
terms in the third column. When the third column is complete, no further tabulation in
a fourth column is possible since there are no terms in the third columns in adjacent
sections that have the same numbers in parentheses.

The unchecked terms represent the prime implicants of the function. The prime
implicant table shown in Figure 3.26(b) is now constructed and it will be noted that
there are no columns for 'can't happen' terms. This table is reduced in the manner
previously described and provides two equally simple solutions. The essential prime
implicants are

2, 3, 6, 7(1,4) - AC

8,9, 12, 13(1,4) - AC

5, 7, 13, 15(2, 8) -- BD

and either 0, 2(2) - ABD or 0, 8(8) - BCD.

There are two equally simple solutions and they are

f l - - A C + A C + BD + ABD

f2 = A C + A C + BD + BCD

A K-map of the function is plotted in Figure 3.26(c) and the map simplification
confirms the two solutions given above.

3.18 Multiple output circuits

Suppose that it is required to produce a circuit with two outputs, one equal to
the function f l - AB + BC and the other equal to the function f 2 - A C + BC.
The K-maps for these two functions are shown in Figures 3.27(a) and (b) respectively,
and as no further simplification is possible the simplest circuits are shown in
Figures 3.27(c) and (d) respectively. Assuming such an independent implementation,
a total of six gates, two inverters, and 14 interconnections are required.

However, independent implementation has overlooked the possibility of finding
a joint optimal implementation requiring a smaller number of gates and inter-
connections.

Examination of the two K-maps shows that the minterm A B C is common to both
maps and is therefore common to both functions. Bearing this commonality in mind,
the two functions can be rewritten as

- +

and
m

f2 = B c + A B C

68 Digital logic design

Figure 3.27 (a) and (b) Karnaugh maps for the functions fl = fib + BC and f2 = AC + BC respectively;
(c) and (d) independent implementations of:[] and f2 respectively

w

A
B

rv

B

These modified functions can now be imple-
mented using a common gate to produce

n

the minterm ABC, as shown in Figure 3.28.
This optimum implementation requires

~ only five gates, two inverters, and 13 inter-
D - connections.

In general, to minimise several multiple
output functions simultaneously in this way,

D ~2 the K-maps for all possible Boolean output
I products (ANDs of outputs) must be plotted

and examined in addition to the K-maps for
each individual function. In the example
considered above, this means that the K-maps
for the two functions in Figures 3.27(a) and
(b) must be supplemented by the K-map
of the product function fl" f2 as shown in
Figure 3.29.

The K-map of the product function results in the multiple
output prime implicant ABC that is common to both functions,
and since this cell has only to be covered once it does not have
to be covered again when considering the maps of the individ-
ual functions. In fact, if the multiple output prime implicant is
definitely to be covered, the corresponding cells can be treated
as 'don't cares' on the individual function maps. On the individ-
ual function maps (Figures 3.27(a) and (b)) the cells that are
shaded are both covered by just one of the prime implicants of
the single-output functions. It follows that an essential prime
implicant for a particular single-output function must contain
a minimum of one cell distinguished in this way.

Figure 3.28 Multiple output circuit showing the
optimum implementation of the two functions
fl and f2

Br
ANN O0 01

0

, (9

11 10

Figure 3.29 Karnaugh
map for the product
function fl �9 f2

To minimise multiple output functions with three output lines, fl, f2 and f3, then
there are four possible product terms that must be considered, i.e. f l" f2, f l" f3,

Karnaugh maps and function simplification 69

A 2
oo

01 11 10

,o (o LO
6 = T_,0,6,8,9,11,15

A ~ D o 0

01

11

10

f2 = Z0,8,9,12,14

A ~ U 0 0 01 11 10

oo @

01

11

10

01 11

6 = :~0,2,10
~

01 11 10 A O0 01 11 10

oo| (i)
01 01

11 11

fl'f2 = T_,0,8,9 frf3 = T.,O f2"f3 = TO

01 11 10 AB~Do0

01

11

10

f~'fz6 = ZO

Figure 3.30 Function and product maps for determining multiple output circuit

and f2" ~ , and the three-term product Ji "f2" f3, as well as the three individual func-
tion K-maps. A typical problem is illustrated in Figure 3.30, where the prime impli-
cants are shown as loops on each K-map.

The prime implicant of the fl �9 j~ �9 j~ map is ABCD and this term must appear in
each of the three function equations. The selection of this prime implicant implies
that it has been covered on all seven maps. Since this is the only term entered on the
f2" f3 and f l" f3 maps no further consideration of these two maps is required.
However, on the f l" f2 map, cells 8 and 9 remain to be covered so that the term
ABC' corresponding to these two cells must appear in the function equations for
fl and f2.

The same procedure for selecting prime implicants can be adopted for the three
function maps, and the tabulation below gives the prime implicants that have been
selected in this particular solution of the problem:

fi, .~, f3 ABCD

A,f2 ABC
BCD

f2 ABD

fl ACD, ABCD

70 Digital logic design

The selected prime implicants are marked with asterisks in Figure 3.30, and combining
terms from the above tabulation leads to the following three function equations:

f l = A B C D + A B C + A CD + A B C D

f2 - A B C D + A B C + A B D

f3 = A B C D + BCD

The implementation of the three functions appears in Figure 3.31. Nine gates and 29
inputs are required for this implementation. If the functions had been individually
implemented, 12 gates and 37 inputs would have been required.

It will be seen later, in Chapter 11, that in practice the use of programmable devices such
as logic arrays offers an efficient approach to implementing multiple output circuits, but the
same design principles are still valid because the most efficient use of a programmable device
is obtained by collectively optimising the multiple outputs as explained in this section.

Number of K-maps needed to find minimal implementation of n output functions

To design a minimal implementation for n output functions, clearly a K-map is needed
for all the possible product terms involving any pair of functions, and any three
functions, and so on up to and including the final K-map for all the functions ANDed
together, as well as for all the individual functions concerned. Imagine that each of
these K-maps is labelled with an n-bit binary integer, the bits numbered from 1 to n
inclusive, corresponding to functions fl to f~ respectively. This label is determined by
writing a binary 1 in all bits corresponding to the output function(s) contained in the
product or function plotted in that K-map, and binary 0 is written in all the other bits.
For example, in the case where there are five output functions, the K-map for f3 is
labelled 00100, the map for f2" f4 is labelled 01010, and the map for fl �9 f2" f3 �9 f4" f5
is labelled 1 l ll 1. There is, of course, no K-map labelled 00000. The total number of
K-maps is therefore the total number of distinct arrangements of 0 and 1 in n places,
excluding the case of all 0s, and therefore corresponding to all possible integers from
(1)2 up to and including the largest value label which corresponds to the K-map for the
product of all the functions. Adding the number (1)2 to the largest label gives the
binary integer represented by 1 followed by n 0s. This binary integer has a value 2 ", so
that the number of distinct n-bit labels, including the disallowed value of all 0s, is
therefore 2 ". Hence the total number of allowed K-maps is 2 n - 1. It follows that the
number of extra K-maps needed to consider the product terms is given by 2 ~ - n - 1.

For four output functions, 15 K-maps in total must be considered and for five output
functions, 31 K-maps in total must be considered. Clearly this is a very unwieldy process
and for greater than four output functions the minimisation procedure described in this
section using K-maps is impractical. In this case, a tabulation method based upon the
Quine-McCluskey method should be used.

3.19 Tabular methods for multiple output functions

As a simple example of using tabular methods for large numbers of simultaneous
output functions, the same multiple-output problem solved above in section 3.18 using
map techniques will be reworked using decimal representation for the minterms.

Karnaugh maps and function simplification 71

A
B
C
u

D

A
C
D

m

A
B
D

B
r

D

Figure 3.31 Multiple output implementation for functions defined in Figure 3.30

As in Figure 3.30, the three required output functions are:

fl = y ~ 0 , 6 , 8 , 9 , 11, 15

f2 - y ~ 0, 8,9, 12, 14

f3 = Y~0,2, 10

For each decimal minterm, there is a binary tag that identifies the output functions
which include that minterm. For a total of n output functions, the tag is an n-bit binary
integer where the bits are numbered from 1 to n inclusive, corresponding to functions
fl to f , respectively. The tag is determined by writing a binary 1 in all bits corres-
ponding to the output function(s) containing that minterm, and writing binary 0 in all
the other bits. For example, in the present problem, decimal minterm 14 is included
only in function f2, so its tag is 010.

The method proceeds as shown in Figure 3.32. The first column in Figure 3.32(a)
contains all the minterms in the three output functions expressed in decimal form and
sectionalised according to the number of ls in each term. Beside each minterm are the
tag columns for fl, f2, and f3.

In the second column all those terms in adjacent sections differing by a power
of 2 are combined, provided the number in the upper section is less than the
number in the adjacent lower section and that they have 1 entries in corresponding
positions in the tag columns. The terms in the first column used to form a combination
tabulated in the second column can then be checked off, providing the combination
formed in the second column has ls in the same position in the tag columns as the
terms from which it is formed. The number in parentheses by the side of each term in
the second column is the power of 2 by which the two combining terms differ.
Additionally, this number also indicates the digit that disappeared from the binary
representation of the minterms when combination took place.

7 2 Digital logic design

dec. fl f2 f3
0 1 1 1 *
2 0 0 1 l /
8 1 1 O r '
6 1 0 0 "
9 1 1 0 = /

10 0 0 l V '
12 0 1 O I /
11 1 0 O r '
14 0 1 O r '
15 1 0 O r '

~, f= f3
0,2 (2) 0 0 1 .
Or8 ' (8) 1 1 0 *

2 ,10(8) 0 0 1 .
8,9 (1) 1 1 0 *

8,12 (4) 0 1 O*
9,11 (2) 1 0 O .

12f14 (2) 0 1 O .
11,15 (4) 1 0 O .

(a)

0 6 8 9 1 1 1 5

11,15
9,11

6

12,14
8,12

2,10
0,2

8,9
0,8

0

mmm,m4

iiii
iiiii
IIIi1'11

I

0

!

!

I

I

- ' 1 - - " - -

I
!

I

I

o

T
o

,

i

I
i

!

f l -T ,6+ (11 ,15)+ ,

0 8 9 1

Im l

I' 1

l|l

~14 0 2 1 0

d

!

!

|
!

I

I
. , . , ,

!

I l l
' '

i '
0
|

o,

I

~4Li ',

I l l . . i - - -- " 4 - - - - -

I
i

0
f=- T..,(12,141. . f2"

(b)

. , . , ,

. , . , ,

. m . . .

, . , , , . , ,

Z(2,10)+

b
c

:},,

'},,
g

j fl"f2"f3

0 8 9 0 8 9 0

9,11

8,12

0,2

8,9
0,8

0

d I
t
O

" 0 " " " " r " " "

I
I

i

i
I

i

I
I

i L 1
o l

I

I

I
I

I
I

I
I

.J .,,., ,........

I

I

I .

I

I

I

" " i
I
i
v
!

I
I

-I
I
!

b

�9 r=

g

j fl"f2"f3

(c)

Figure 3.32 Simplification of multiple output functions (a) Tabulation (b) Prime implicant table
(c) Reduced prime implicant table

Karnaugh maps and function simplification 73

To form a third column, the number in parentheses for a term in the upper section
must be identical to that of a term in an adjacent lower section. Examination of the
second column in Figure 3.32(a) shows that this condition is never satisfied and a third
column cannot be formed. The unchecked terms, marked with an asterisk, are the
prime implicants of the three output functions.

The prime implicant table shown in Figure 3.32(b) has been divided into three
vertical sections, one for each of the output functions. The individual sections contain
a vertical line for each of the minterms associated with that function. A row is provided
for each of the prime implicants and they have also been sectionalised so that the first
horizontal section consists of the prime implicants which are associated with fl only,
and lower down the table sections have been allocated to those prime implicants which
are associated with more than one of the output functions. Xs have been inserted in
the table in accordance with the rules described in section 3.12 earlier in this chapter.

Prime implicants a and c can be removed from the table since they are essential for
the output function fl but for neither of the other two functions. Since cells 6, 11 and
15 are covered by these prime implicants the columns headed by these numbers in the
first vertical section of the table can also be removed. Prime implicant d is essential for
J~ only, and can be removed from the table. This leads to the removal of the columns
headed 12 and 14 in the second vertical section of the table. Similarly, prime implicantf
is essential for f3 only, and can be removed from the table, allowing the columns
headed 2 and 10 in the third vertical section to be removed.

A reduced prime implicant table is shown in Figure 3.32(c). Prime implicant h is
essential to cover cell 9 inf2. h is common to bothfl and f2 and will appear in those two
output functions. Only cell 0 remains to be covered, and since the corresponding
minterm is common to all three functions, the prime implicant j will appear in each
of the output equations.

Hence in terms of the prime implicants"

fl = a + c + h + j

f2 = d + h + j

f3 = f + j

These equations, when written in terms of the Boolean variables A, B, C and D, can be
shown to be identical to those obtained in the previous section. Implementation of
these functions is illustrated in Figure 3.31.

3.20 Reduced dimension maps

K-maps are only useful up to and including functions with six variables, but in the case of
a function having a larger number of variables and providing the function does not
contain too many terms it can be useful to plot it on a reduced dimension map (RDM).
Such a map is one in which the individual cells can now contain variables, so that a map
for n variables can be used to represent functions having n + 1 or even n + 2 variables.

Consider the four-variable map shown in Figure 3.33(a). The two-cell loops on
this map occupy those cells where the combinations of the variables A, B, and C
are constant. For example, in the top left-hand corner of the map the two cells
looped correspond to A = 0, B = 0, and C = 0. In effect, this K-map consists of
eight sub-maps, each sub-map being used to plot the single variable D. However, the

74 Digital logic design

CD
A~ ~ , . , , 00 01 11 10

% .

oo

01 4 1(~---~1 7 6

11 12 13 15 14
0 f - ~ d 3

10 9 11 10
1) (13

00

0

0,1

1

3,2

4,5 7,6
01 1

12,13
11 1

8,9
10

D

15,14
D

11,10
O

(a) (b)

Figure 3.33 (a) 4-variable map showing 2-cell loopings (b) Reduced dimension map for function plotted in (a)

same information may also be displayed in a map of eight cells by indicating the value of
the function in each sub-map by a map-entered variable (MEV) written in one cell. So, to
reduce the dimensionality of the map by the single variable D, all the MEVs must be one
of the four possibilities D , /) , 0, or 1 as determined by the following conversion table
applied to each sub-map in turn and using the sub-map's values of A, B, and C.

Value of function f o r . . .

D - O Dffil MEV

0 0 0
0 1 D
1 0 D
1 1 1

The resultant map is known as a reduced dimension map or RDM, and for the function
shown in Figure 3.33(a) the RDM is shown in Figure 3.33(b). Each cell of the RDM
corresponds to the appropriate two adjacent looped cells in the full map shown in Figure
3.33(a). By using this nomenclature, the same function has now been plotted on
a 3-variable K-map whereas before, it was plotted on a 4-variable K-map.

It is also possible to start with a map that already contains MEVs and reduce its
dimensions further. For example, the RDM shown in Figure 3.34(a) contains the MEV
E and it is required to reduce the map dimension from four to three. Looping cells,
four separate terms can be identified, and they are:

I m m

Term p - (A B C) D E

Term q - (A B C) D E + (ABC)D

= (ABC)(D + E)

Term r - (A B C) D E

Term s - (ABC)D + (A B C) D E

= (ABC)(D + E)

Karnaugh maps and function simplification 75

ABx~Do0

O0

01

, o

11 10

~00B%0 01 11 10
P q
DE D+E

s r
1 D + E B E

(a) (b)

Figure 3.34 (a) Five-variable function plotted on a 3-variable map (b) Further dimension reduction of function
plotted in (a)

This 5-variable function plotted on a 3-variable RDM is shown in Figure 3.34(b).
In this case the axes of the K-map have been labelled in the same way as previous
3-variable K-maps (e.g., Figure 3.6) which disguises the one-to-one correspondence
between cells in the RDM and pairs of cells in the previous 4-variable map.

3.21 Plotting RDMs from truth tables

A 3-variable function is defined by the truth table shown in Figure 3.35. It is
required to plot this function on a 2-variable map with the third variable C being

A B C f

0 0 0 1
0 0 1 1
o ~ b - ' 6
o I ._L_I_.
1 0 0 1
i o .J_.9.
1 I 0 X
1 1 1 X

A• 0 1

0 1 C

1 C X

Figure 3.35 Development of an
RDM from a truth table

A B C D
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

0 l r 0 0
0 1 0 1
0 1 1 0

I

o 1 LI__?_
1 0 1 0 0
1 0 , , 0 1
1 0 ' , 1 0
1 0 ' , 1 1

. I -

1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

f
0
1
0
1

. _ .

1
0
X

.9
1
0
1
1

0
0
0
X

0 1

D+ CB CB+ CBX
= = B

CB+CB
+CD=
c+B

designated as the MEV. The table is first divided hor-
izontally and vertically by the dotted lines to give the
four possible combinations of the variables A and B.
Entries are then made in the appropriate cell of the
RDM for each of these four combinations. For exam-
ple, with A - 0 and B - l, the table shows that f - 1
when C = l, and that f = 0, when C = 0, so C is entered
in the appropriate cell of the RDM. The other entries
are obtained in the same way. For both minterms ABC
and ABC, f is listed as a 'don't care' and so this

is the entry on the RDM. Using the same
method, a more complex example (that of plot-
ting a 4-variable function on a 2-variable
RDM) is shown in Figure 3.36. Firstly, each
cell on the K-map is identified with a 4-line
section of the truth table, where variables A
and B are constant. Next, the entry in the
RDM is calculated as shown. 'Don' t cares'
are indicated by writing X after the variables
giving the 'don't care' state. For the cell identi-

CDX fled by A - 0, B = 1 (the top right-hand cell),
the original function is indicated by the
entry CD+CDX. A simple 2-variable
K-map of variables C and D shows that
this may be simplified to D although this
loses some information (i.e., the 'don't care'
minterm ABCD) about the original function f.

Figure 3.36 Plotting a 4-variable function on a
2-variable R D M

76 Digital logic design

Therefore, in this case, either entry can be used depending on the degree of sophistica-
tion required.

/

A~ 0 1 A~ 3.22 Reading RDM functions

1 C 1
/

/

/
BC

(a) (b)

Figure 3.37 Reading an RDM
(a) The original plot (b) Looping the
Cs to form the terms A C and BC

f = AB(C + C) + ABC + ABC

= AB(C + C + C + C) + ABC + ABC

= 2B(C + c) + 2c(k + B) + kC(2 + A)
= A B + A C + B C

and the final result can also be written down directly from Figures 3.37(a) and (b)
by inspection.

A three-variable function has been plotted on a
2-variable RDM in Figure 3.37(a) with C being the
MEV. The entry 1 on the map can be replaced by
C + C and adjacent identical MEVs can be looped
as shown in Figure 3.37(b). The loops thus formed
represent the terms A C and BC, so that the function
can be written as

3.23 Looping rules for RDMs

To develop the principles presented in elementary form in the previous section
(section 3.22), this section lists the rules for reading and simplifying a function
presented on an RDM. Figure 3.38 shows some typical examples.

1. Cells containing identical entries may be looped together according to the usual
K-map rules (see section 3.10) and the entry (common to all the looped cells)

O0 01 11 10 O0 01

o o
, , ,

, @ ,

(a) Encircled term read as ABCQ

11 10

(b) Encircled term read as ;~BQ

0

01 11 10 BA~C O0 01 11

1-"

(c) Encircled term read as ABQ

Figure 3.38 Looping rules for RDMs

10

(d) Encircled term read as ;~CQ

Karnaugh maps and function simplification 77

A• O0

0 X

Figure 3.39

01

D

1

(a)

11 1o oo oi 1 1 / 1o
j .

ox o cx

,,x ,, , O> ox / t e l
/ /

ABC BCD
(b)

(a) Typical 3-variable RDM for a 4-variable function (b) RDM after minimisation

is ANDed with the usual result from the looping. Thus, in Figures 3.38 (a) and (b)
the contributions to the function are ABCQ and ABQ respectively.

2. A cell entry of Q adjacent to a cell containing 1 may be looped together to give Q
ANDed with the OR of the two cells, together with the usual result from the cell
containing 1. This is the situation treated in section 3.22, and further illustrated in
Figure 3.38(c) where the contribution to the function is Q(ABC + ABC) + ABC =
ABQ + ABC. Similar results apply to larger groups of cells with identical entries,
if they are adjacent to cells containing 1 that may be used to obtain an allowable
group size.

3. A cell entry of Q adjacent to a cell containing a 'don't care' or X may be looped
together to give Q ANDed with the OR of the two cells. This is illustrated
in Figure 3.38(d) where the contribution to the function is A CQ. Larger groups
of cells with either entries of Q or entries of X give the usual looping result ANDed
with Q.

To illustrate these rules further, Figure 3.39 shows an RDM for a 4-variable
function. Term A/) is obtained by looping the entire top row; term BCD is obtained
by looping the two right-hand cells, and the term ABC is not needed as essentially it
has been included in the two previous loops in the form ABC(D + D). Finally, the term
ABC cannot be combined with any other cells in a way that simplifies the result.
Therefore, the final result is f = AD + BCD + ABC.

3.24 Criteria for minimisation

During the infancy of Digital Logic design, Boolean functions were typically imple-
mented by using individual logic gates, perhaps made using discrete components.
The use of K-maps and Quine-McCluskey minimisation techniques were of direct
importance in developing all but the most trivial of designs, to economise on the
number of components used. As the technology developed from those early days,
firstly integrated circuit gates of various types were produced, and then successively
larger scale integration has been used in developing integrated circuits containing
greater numbers of logic gates, and capable of progressively more sophisticated logic
functions. 'SSI' (small scale integration) chips contained just a handful of individual
gates on one chip; 'MSI' (medium scale integration) chips contained a number of
more complex functions, such as flip-flops; 'LSI' (large scale integration) and 'ELSI'
(extra-large scale integration) chips contained the equivalent of several thousand
conventional gates, typically arranged to function as a specialised logic unit, such as

78 Digital logic design

a basic calculator, and 'VLSI' (very large scale integration) chips contain much greater
numbers of logic gates, as exemplified by current microprocessor chips and similar
components containing the equivalent of millions of logic gates.

Amongst VLSI chips are the so-called programmable logic devices or PLDs which
can be used to implement custom Boolean logic functions, and for all but the smallest
logic designs these chips are currently the method of choice for implementing a new
logic design. These chips are of enormous importance and are covered in detail in
Chapter 11. However, a logic designer still needs to be familiar with the basics of
function minimisation in order to understand the fundamental processes involved in
programming a PLD, and also if the designer becomes involved in the gate-level design
of a new custom VLSI chip. In addition, for smaller designs which, in principle, can use
any type of logic gate and that are impractical or uneconomic to implement using
PLDs, optimisation using Karnaugh maps or Quine-McCluskey minimisation in order
to obtain the simplest possible circuit is one of several principles that might be used in
the design. However, other design criteria include:

1. minimal cos t - it may be cheaper to use certain components as opposed to others,
2. minimised number of gates - one interpretation of the 'simplest' solution,
3. smallest s i z e - depending upon whether chips are available that can directly

implement parts of the functions required,
4. minimised chip count - depending upon which chips are available and how their

internal gate structure can be used,
5. minimised number of chip-to-chip interconnections, which are a source of

unreliability,
6. the use of only one type of gate (e.g. only NAND gates) in order to reduce the

number of standard parts that must be stored in case of malfunction (see also
Chapter 4), and

7. minimal propagation delay (see chapter 4) - in cases where the very fastest circuit
operation is required.

Which of these design principles is used in practice depends largely upon the
function of the circuit being designed, its intended use, and its intended market.
In some cases, it may be necessary to experiment with several equivalent circuit designs
in order to choose the one that best meets the chosen criteria.

Problems

3.1 Expand the following Boolean functions into their canonical form:

(a) jfi (A, B, C) = AB + C

(b) A (A, B, C) = AB + 2 C + AkC

(c) f3 = B + CD + ABD + ABCD

3.2 Simplify the following three-variable Boolean functions algebraically:

(a) fl = ~ 1, 2, 5, 6

(b) f2 = ~ 0 , 1, 2, 3, 7

(c) fl = ~ 3, 5, 6, 7

Karnaugh maps and function simplification 79

3.3 (a) Express the three-variable function f = y~ 0, 1 as a product of maxterms.

(b) Express the three-variable functionf = l-I o, 1, 2, 5, 6, 7 as a sum of minterms.

(c) Determine the inverse function o f f = ~ 3, 5, 6, 7 and express it as a product
of maxterms.

3.4 Find the minimised sum-of-products expression equal to:

(a) fl(A, B, C) = y~ O, 1, 3, 4, 6, 7
(b) fz(A, B, C, D) = y~ 0, 1, 2, 3, 7, 8, 9, 11, 12, 15
(c) f3(A, B, C, D) = II 0, 4, 5, 6, 7, 8, 9, 10
(d) ~(A, B, C, D, E) = ~ 0, 1, 3, 5, 6, 7, 8, 9, 10, 15, 16, 20, 21,

22, 23, 24, 25, 28, 29, 30, 31.

3.5 Minimise the following functions using the 'don't care' terms for simplification
wherever possible:

(a) f(A, B, C) = ~ 3, 5 with 'don't care' terms 0, 7
(b) f(A, B, C, D) = ~ 1, 2, 3, 5, 6, 7, 10, 11 with 'don't care' terms 9, 12, 15
(c) f(A, B, C, D) = II o, 4, 7, 11, 14 but terms 6, 8, 9, 13 are 'don't cares'
(d) f(A, B, C, D, E) = ~ 4, 5, 6, 7, 12, 14, 16, 20, 21, 24, 26, 27, 31 with

'don't care' terms 0, 11, 19, 22, 30

3.6 Find the minimised product-of-sums expression equal to:

(a) f (A, B, C)= Y~ O, 1, 2, 5, 7
(b) f(A, B, C, D) = ~ 0, 1, 9, 10, 11
(c) f(A, B, C, D, E) = ~ 1, 2, 5, 6, 10, 11, 14, 15, 16, 17, 20, 21
(d) f(A, B, C, D) = Y~ 5, 7, 9, 10, 11 with 'don't care' terms 2, 13, 15

3.7 Find the minimised sum-of-products expression for the logical product F = F1F2
of the following pairs of functions:

(a) F~(A, B, C, D)= ~ 1, 3, 5, 7
Fz(A, B, C, D)= ~ 2, 3, 6, 7

(b) F~(A, B, C, D) = ~ 1, 3, 5, 6, 8, 10, 11, 12, 13
F2(A, B, C, D) = ~ 0, 3, 5, 8, 9, 11, 13, 15

(c) FI(A, B, C)= II o, 3, 6, 7
Fz(A, B, C)= I-I 1 ,3 ,7

3.8 The XS3 code is used to represent the ten decimal digits. Develop the decode logic
for converting from XS3 to decimal.

3.9 Minimise the following functions using the Quine-McCluskey tabular method:

(a) f(A, B, C, D) = ~ 0 , 1, 3, 6, 9, 10, 11, 12, 14, 15
(b) f(A, B, C, D, e) = y~ o, 1, 5, 8, 11, 12, 14, 16, 20, 21, 25, 27, 28, 30, 31

with 'don't care' terms 2, 7, 13, 22, 23
(c) f(A, B, C, D) = 1-I 0, 3, 4, 5, 11, 12, 13, 15 but terms 2, 6, 8 'can't happen'.

80 Digital logic design

3.10 Minimise the following functions using the Quine-McCluskey decimal tabulation
method"

(a) f(A, B, C, D)= ~ 2, 3, 4, 7, 8, 11, 13, 14 with 'can't happen' terms 1, 5, 10
(b) f(A, B, C, D, E) = ~ 0, 1, 2, 3, 5, 11, 12, 13, 17, 19, 20, 22, 23, 25, 27, 28,

29, 31 with 'can't happen' terms 7, 15, 21
(c) f(A, B, C, D) = II 2, 4, 6, 7, 8, l l, 12, 13, 15

3.11 Plot the following 4-variable function on a 3-variable RDM.

f(A, B, C, D) = Y]~ l, 3, 7, 8, 10, 11, 13, 14

3.12 Plot the following 4-variable function on a 2-variable RDM.

f(A, B, C, D) = Y] 0, 2, 5, 7, 9, 10

01

oo E

11 10

01 E 1
m

11 E

10 1 .~

Figure P3.13

3.13 Reduce the 4-variable RDM shown in Figure P3.13 to
a three-variable RDM.

3.14 Construct a truth table for the functionf(A, B, C, D) =
0, 1,5, 6, 1 l, 12, 14, 15 with 'don't care' terms 3, 7, 9

and develop a 2-variable RDM with the aid of the truth
table.

3.15 Determine the Boolean function represented by the
following RDM maps.

- ~ C o 0

0 1

1

(a)

01 11 10

D D X D

DX~ 1

Figure P3.15

(b)

1

AB

B 1 1

(c)

01 11 10

1 1

X X 1

4 Combinational logic
design principles

4.1 Introduction

The gates dealt with in the two preceding chapters have been the AND, OR and NOT
gates. These gates are the easiest to handle using the formal methods of Karnaugh maps
and Quine-McCluskey minimisation, but in practice, logic circuits are often actually
implemented using NAND and NOR gates. Historically this was because these gates
were the easiest to fabricate using readily available logic technologies, and in the case of
certain technologies currently at the research stage these types of limitations are still
present. Although AND and OR gates are also available using most types of SSI
technologies, there is a smaller selection of them, they may be more expensive, and they
may have slightly poorer performance (e.g. longer propagation delay, the short delay
time introduced by a logic gate). Simple combinations of gates are also available in the
mature SSI technologies, such as the AND-OR-INVERT (AOI) function and the
expandable AND-OR (AO) function. Other derived logic functions are also commonly
available now, such as Exclusive-OR (XOR) gates and Exclusive-NOR (XNOR) gates.
The purpose of this chapter is to describe design techniques used for implementing
actual logic designs, building upon the theoretical approaches of Chapter 3.

4.2 The NAND function

The NAND function is defined by the equation

f = (A . B)

A B f
0 0 1
0 1 1 "~ ~" "i"

!

I 1 1 0
t

(a)

AB ~ f=AB

(b)

f -B f=_B

(c) (d)

Figure 4.1 (a) Truth table for the NAND
function (b) Conventional circuit symbol for
a NAND gate (c) and (d) The NAND gate
used as an inverter

and the truth table for the function is given in
Figure 4.1 (a). This table shows that the output of
the gate is 1 if either or both inputs are 0 and that
the output is 0 only if both inputs are 1. Using
de Morgan's theorem (section 2.12) it is clear that
an alternative equation for the NAND function is

f - (A . B) = A + B .

The usual symbol for a two-input NAND gate is
shown in Figure 4.1(b).

If the A input of the gate is permanently
connected to logic 1 level, then clearly the output
is given by

f = (A . B) - (1 . B) = B

82 Digital logic design

so that the N A N D gate is now acting as an inverter. This can also be observed
directly from the truth table. The only relevant rows in the truth table are those
enclosed by the dotted lines in Figure 4.1 (a). An examination of these rows shows that
if B = 0 then f = 1, and if B - 1 then f = 0. Another way of achieving logic inversion
using a N A N D gate is by connecting both inputs to the same logic level, whence if
A = B then

f = (A. B) = (B. B) = B.

These two connections are illustrated in Figures 4.1(c) and (d). There are two
important provisos that must be emphasised at this point:

1. All inputs to real logic gates must be connected to a well-defined logic level, either
0 or 1, at all times. If a logic gate input is left unconnected, the gate will either operate
erratically or may even be destroyed through excessive power dissipation caused by
transient input voltage levels outside the gate's design limits. Any unused inputs to
a NAND gate should be connected to logic 1 level, and this is often achieved by
connecting all the appropriate inputs to the positive supply rail through resistors
whose exact value is unimportant but is usually around 10kft. In principle, gate
inputs may be connected directly to the supply rail without using a resistor, but this is
not usually recommended as the resistor affords a measure of protection to the
delicate gate input against large voltage surges and spikes on the power supply rails.
Alternatively, an unused input may be connected to one of the used inputs, but with
some risk of reduced performance, as explained in point 2 below.

2. In some logic families, there is a small speed penalty, usually measured in
nanoseconds, but significant in certain circumstances if logic inputs are commoned
(i.e., using the inversion circuit of Figure 4. l(d)). The technical reason for this is the
increased effective capacitance of two gate inputs, compared with that of a single
gate input, that must be driven by the preceding gate, and which therefore takes
slightly longer to charge to the correct logic level. It is therefore preferable to use
only the inversion circuit of Figure 4.1(c) if operating speed is likely to be an
important issue in the design.

4.3 NAND logic implementation of AND and OR functions

~ f~AB
Figure 4.2 NAND logic implementation of
the AND function

_ ~B=A+B

Figure 4.3 NAND logic implementation of
the OR function

Implementation of the AND function using
N A N D gates alone is achieved by connecting
two NAND gates in cascade, as shown in
Figure 4.2. The second NAND gate acts as an
inverter, and converts the circuit's function from
N A N D to AND.

If f = (A. B) = A + B, then the OR function
can be implemented by performing the NAND
operation on the inverted variables. The same
deduction can also be made from a Karnaugh
map of the OR function. The implementation of
the OR function using NAND gates is illustrated
in Figure 4.3.

Combinational logic design principles 83

4.4 N A N D logic implementation of, sums-of-products

Figure 4.4(a) shows a straightforward implementation of the functionf = AB + CD using
AND/OR logic. The diagram shows that there are two levels of logic in this circuit, the first
level consisting of the OR gate and the second of the two AND gates; therefore, this
function and similar functions are referred to as two-level-sum-of-products expressions.

This circuit can be translated into a N A N D circuit by using the transformations
developed in section 4.3 above. The translation is shown in Figure 4.4(b), where the
first block enclosed by dotted lines represents the two A N D gates, and the second
block constitutes the OR gates. It can be seen that in both branches of the circuit there
are two single input N A N D gates in cascade and these will simply produce a double
inversion of the signals AB and CD. As a consequence, the four gates shown crossed
through are redundant, and the circuit reduces to that shown in Figure 4.4(c).
This diagram shows that there is a one-to-one translation from the A N D / O R con-
figuration to the corresponding N A N D configuration.

An even more complicated function such as
_ w

f -- (A + BD)C + (C + D)(A + C)B

can be regarded as a two-level sum-of-products since it can be expressed in the
following form:

f - PQ + RST

where

P - A + B D , Q - C

, Level 2
A ,

~ ~

(a)

e Level 1

f = A B + CD

!

I

A~
B~

I
I
I

c,,
o,.

!

!

o

I
I

I
i I

j t OR Gate AND Gates .,~

(c)

(b)

I
!
!

I

I

! :
o
!

!

!

. !

Figure 4.4 (a) The function f = A B + CD implemented with AND~OR logic (b) Transformation of the AND~OR
circuit to a N A N D circuit (c) The simplest N A N D implementation o f f = A B + CD

84 Digital logic design

P A + B D ~

R C + D

(a)

(b)

c < - > i

(c)

Figure 4.5 (a) Basic circuits for the implementation o f f = (A + BD)C + (C + s + C)B (b) The NAND logic
implementation of C + D (c) The NAND logic implementation o f f = (A + BD)C + (C + D)(A + C)B

and

R = C + /) , S = A + C , T - B .

Hence, the implementation must be of the form shown in Figure 4.5(a).
In order to generate a term such as R = C +/5 using a NAND gate, the required

expression is rewritten (using De Morgan's theorem) as R = (C + D) = (C - D) .

That is, to the inputs of a NAND gate are connected the inverses of the variables that
must be summed by the NAND gate, as shown in Figure 4.5(b). The complete circuit
for the implementation of the given function is shown in Figure 4.5(c).

The technique described above for the implementation of a Boolean function using
NAND gates alone does not necessarily lead to the minimal NAND implementation.
However, sometimes by using a factorisation process it is a simple matter to produce
a NAND implementation which leads to a circuit that requires a smaller number of
gates. For example, consider the function

f = A C + A B + C D .

Direct implementation of this function as a two-level sum-of-products circuit leads
to the circuit shown in Figure 4.6(a) which requires one 3-input NAN D " gate, three
two-input NAND gates and two NAND gates connected as inverters.

However, the expression can also be written in the form

f = A (B + C) + CD

and this function can be implemented using five NAND gates, as shown in Figure 4.6(b).
Alternatively, the expression may be written in the form

f = C(A + D) + AB

Combinational logic design principles 85

(a)

c•c)• B+

Er-) "

(b)

A ~ C

le)

Figure 4.6 (a), (b) and (c) Three ways of implementing f = AC" + AB + CD

and this can be implemented in the form shown in Figure 4.6(c), which requires eight
NAND gates.

In this example the implementation shown in Figure 4.6(b) uses the smallest number
of NAND gates; it requires three levels of logic, as does the circuit in Figure 4.6(a).
Factorisation of a Boolean function will lead to an increase in the number of logic
levels required, and consequently this will increase the propagation delay through the
circuit. The shortest delay time is always obtained with the two-level sum-of-products
implementation. If complemented variables are available then the circuit of Figure 4.6(a)
would provide minimum propagation delay since only two levels of logic would
be required.

4.5 The N O R function

A B f

"6 G'-f I

tO 1 0
" ~ " 0 " 6

1 1 0

(a)

,~ A + B

(b)

t_-g t=ff
B

(c) (d)

Figure 4.7 (a) Truth table for the NOR function
(b) Conventional circuit symbol for a NOR gate
(c) and (d) The NOR gate used as an inverter

The NOR function is defined by the equation

f - A + B

which, by using De Morgan's theorem, can
be alternatively expressed as

f - A . B .

The truth table is shown in Figure 4.7(a)
and the conventional symbol used to rep-
resent the gate is shown in Figure 4.7(b).
An examination of the truth table shows that
if any one, or both, of the inputs are 1 the
gate output is 0, while the output is only 1
provided both inputs are 0.

86 Digital logic design

If the input A of the gate is permanently connected to logic 0 level then clearly the
output is given by

f = (A + B) = (0 + B) = B

so that the NOR gate is now acting as an inverter. This can also be observed directly
from the truth table. The only relevant rows in the truth table are those enclosed by
the dotted lines in Figure 4.7(a). An examination of these rows shows that if B = 0
then f = 1, and if B = 1 then f = 0. Another way of achieving logic inversion using
a NOR gate is by connecting both inputs to the same logic level, whence if A = B
then

f = (A + B) = (B + B) = B

These two connections are illustrated in Figures 4.7(c) and (d).
As noted above in section 4.2, unused inputs to any gate must never be left 'floating' or

unconnected. Unused NOR gate inputs are often connected to logic 0 level, usually
achieved in practice simply by connecting the input directly to the ground (0V) of the
digital logic circuit. Alternatively, unused inputs in a NOR gate can be connected to one
of the used inputs, but again with the risk of reduced performance, as explained above in
section 4.2.

4.6 NOR logic implementation of AND and OR functions

The implementation of the OR function using NOR gates is achieved by connecting
two NOR gates in cascade, as shown in Figure 4.8(a). In this arrangement the first
NOR gate performs the NOR operation on the two input variables A and B while the
second gate acts as an inverter, as described in the previous section.

AB D A+B~f'A+B
A

- AB

(a) (b)

Figure 4.8 Implementation of (a) the OR function and (b) the AND function using NOR gates

The circuit for generating the AND function can be developed as follows.
Since NOR gates are being used for the implementation of the function, the output
gate will be a NOR gate whose output is f = AB, as shown in Figure 4.8(b).
In order to obtain this output, the inputs to the gate should be A and B, since
(by De Morgan's theorem) (A + B) = A . B - AB. Therefore, the output NOR gate is
preceded by two further NOR gates, both used as inverters, one for each variable.

4.7 NOR logic implementation of products-of-sums

A function such as f - (A + B)(C + D) is called a two-level product-of-sums
expression. A possible implementation of this function using OR/AND logic is

Combinational logic design principles 87

f = (A + B) (C+D)

, ,,,
f = (A + B) (C + D) , ,"

A A ! , ' '

e B" ,
I

I i !
- I i l I

C~ , '
C D~ -I "~ . - - ~ ' V ~ d. L J ~ N x , ~ ,

D ,~. . / - ~ i : ~ I I

OR Gates , ' A N D Gate ,
I I I _ I (a)

(b)
A
B

(A+e)(C+O)

C
o i

(c)

Figure 4.9 (a) f = (A + B)(C + D) implemented with OR~AND logic (b) Transformation of the OR~AND circuit
to a NOR circuit (c) The NOR implementation o f f = (A + B)(C + D)

shown in Figure 4.9(a). This circuit can be converted to a circuit using NOR gates
only by using the transformations developed in the previous section, as shown in
Figure 4.9(b). An examination of this circuit shows that two pairs of the NOR gates in
this implementation are redundant since they are merely producing a pair of double
inversions, and therefore they have been crossed through in Figure 4.9(b).

The simplest form of the circuit using NOR gates is shown in Figure 4.9(c), and it
can be seen that there is a one-to-one transformation from the OR/AND circuit to the
corresponding NOR circuit.

4.8 NOR logic implementation of sums-of-products

It frequently happens that a Boolean function is expressed as a sum of product
terms (sometimes, but not necessarily, minterms) and if this function is to be
implemented using NOR gates then it must first be converted to the product-of-sums
form. For example, suppose that it is required to implement, using only NOR gates,
the function

f = ~ 0, 1, 3, 4, 5, 8, 12, 13, 15.
1

The absent minterms in this summation represent the inverse function, f , and are
plotted as 0s on the K-map shown in Figure 4.10(a). Simplifying,

f = CD + A B C + ABD.

Hence, by De Morgan's theorem,

f = (C + D)(A + B + C)(A + B + D)

This is the minimal product-of-sums form of the original Boolean function and it is
shown implemented using NOR gates in Figure 4.10(b).

88 Digital logic design

CD
A O 0 0 l

OC

OI

II I0

0

,o (; - N o ~ J

(a)

(b)

Figure 4.10 NOR implementation of a

sum-of-products expression (a) Plot of the
inverse function (b) Implementation of
minimised product-of-sums expression

4.9 Boolean algebraic analysis of
NAND and NOR networks

Analysis of NAND and NOR networks
is often much more time-consuming than
the analysis of comparable AND/OR
networks because of the inversions that take
place at the outputs of each NAND or NOR
gate. For example, consider the NAND
network implemented in Figure 4.5(c) and
redrawn for convenience without the inverters
in Figure 4.11. The outputs of the various
NAND gates in the network are labelled
p, q, r, s, t, u and f

There are two main approaches to ana-
lysing this circuit using Boolean Algebra. In
the method shown below, complementation
bars (generated by the inversion at the output
of each gate) are removed using De Morgan's
theorem, as the analysis proceeds. Firstly,
expressions are derived for the intermediate
circuit outputs:

p = B D = B + D

q = Ap = A (B + D) = A + (B + D) = A + BD

r = Cq = C(A + BD) = C + (A + BD) = C + A . (BD) = C + A (B + D)

s = C D = C + D
m

u = A C = A + C

t = sBu = (C + D)B(A + C) - (C + D) + B + (A + C) = CD + B + A C.

, _ ; Then, the expression for the circuit output

, B can be constructed:
',o

' : -

A , [C + A(B + D)] + [CD + B + A C]
- - o I1 o - -

- - - ~

,..'-rr.~ = C(A + BD) + (C + D)B(A + C).

Figure 4.11 Circuit to illustrate the analysis of
a N A N D gate network In an alternative approach, the comple-

mentation bars may be retained until the
final expression for the output has been obtained. By repeated application of
De Morgan's theorem, the expression for the output can then be reduced to that
obtained using the first method. The steps in this method will not be shown in detail as
the final result must be the same as that deduced above, but if this method is used

Combinational logic design principles 89

particular care is needed to ensure that the complementation bars are applied to the
correct parts of their corresponding expressions.

For both of these methods it will be seen that a considerable amount of algebraic
manipulation is needed; however, the same basic approaches are applicable to NOR
networks as well as to NAND networks.

4.10 Symbolic circuit analysis for N A N D and NOR networks

This alternative method of analysing a logic network depends upon the fact that the
NAND function can be implemented by an AND gate in cascade with a NOT gate
(see Figure 4.12(a)) or, alternatively, it can be implemented by an OR gate whose
inputs are inverted, as shown in Figure 4.12(b).

The lower section of Figure 4.11, enclosed by the dotted lines (see Figure 4.13(a)),
can now be represented by the network shown in Figure 4.13(b). Double inversions
appear on two of the input lines to the OR gate and can be eliminated, while the inversion
on the B input line can be represented by an inversion circle (or 'inversion bubble') at the
OR gate input. This modified form of the circuit is shown in Figure 4.13(c) and the
output t of this section of the original network can immediately be written down as
t = CD + B + A C, which agrees with the e~pression obtained for t using Boolean
algebra in the preceding section.

A .~

(a)

A

(b)

Figure 4.12 Alternative implementations of a NAND gate

!

D

1 B t,_ !

I
I
I
I

I j

(a)

m

c o,F-

o

A

C
D s

= B t

(c)

(b)

Figure 4.13 Transformation from NAND/NAND to AND~OR configuration

t

90 Digital logic design

gD

Figure 4.14 The NAND network of Figure
4.11 transformed into a more readily analysable
network

Using the same transformations, the upper
part of the network shown in Figure 4.11 can
also be modified and the whole network can
be redrawn in a form which is easier to
analyse, as shown in Figure 4.14.

Similar transformations are available for
NOR gates, as shown in Figures 4.15(a) and (b),
and the method of analysis for a NOR
network is then analogous to that used in
the NAND network.

(a) (b)

Figure 4.15 Alternative implementations of a NOR gate

4.11 Alternative function representations

The alternative representations for the NAND and NOR functions developed
in section 4.10 can be shown in a more compact form using inversion circles.
For example, using De Morgan's theorem, the NAND function may be expressed as

f = (A . B) = A + B ,

and an alternative representation for the NAND function consists of an OR gate with
inversion circles at its inputs, as shown in Figure 4.16(a). The NOR function, again
using De Morgan's theorem, is given by

f = A + B = A . B ,

and an alternative representation of this function requires an AND gate with inversion
circles at its inputs (see Figure 4.16(b)).

For the AND and OR functions, alternative representations are obtained by
inverting the defining equations for the NAND and NOR functions. Hence

o

AB = AB = A + B

(a)

~ . ~ ~ f = A ~ f=~,~ A+ B= B ,

Ibl

I

(c) (d)

Figure 4.16 Alternative representations for (a) the NAND function, (b) the NOR function, (c) the AND function,
(d) the OR function

Combinational logic design principles 91

and
Q D

A + B = A + B - A . B

For the AND function, the alternative representation consists of an OR gate with
inversion circles at each of its inputs and also at its output (see Figure 4.16(c)), while
the OR function requires an AND gate with inversion circles at each of its inputs and
also at its output (see Figure 4.16(d)).

One way to remember De Morgan's theorem is that in an AND, NAND, OR, or
NOR combination of Boolean variables or inverses, an inversion bar across all the
variables may be split or joined at will, provided the operator combining them is
changed simultaneously (i.e. '+ ' is changed to '.', or '.' is changed to '+'). This rule
corresponds precisely with using alternative representations based upon De Morgan's
theorem in circuit diagrams. An AND gate symbol may be swapped for an OR gate
symbol, and vice-versa, provided that simultaneously the inversion circles are swapped
either from the output to all the inputs, or from all the inputs to the single output.
This procedure will often make the circuit diagram easier to understand but will not
affect the Boolean operation of the circuit.

4.12 Gate signal conventions

In a practical gate network it is always assumed that the AND and OR functions are
implemented within the confines of their distinctive shape symbols. The absence of
inversion circles drawn at the input(s) to a gate circuit symbol indicates that the
corresponding gate input is active high, i.e. the usual case, where logic 0 and 1 are
passed unchanged to the gate itself. However, the presence of inversion circle(s) drawn
at the input(s) to a gate circuit symbol indicates that the corresponding gate input is
active low, and logic levels are inverted before being presented to the basic gate symbol.
(In practice, the inversion(s) and the gate function are often undertaken by an
integrated circuit whose operations cannot be physically separated in this manner, but
the method of analysis and the nomenclature are still often used.) Similarly, at a gate
output, an inversion circle indicates an active low output, i.e. when the gate is activated
(the basic gate alone has output 1) the final output is 0. Finally, the absence of the
inversion circle indicates an active high output, i.e. an output of 1 when the gate is
activated. Sometimes, the use of active low logic lines is described in terms of the
negative logic convention, where logic 1 is represented by 0V and logic 0 is represented
by (for example) +5 V, but this approach will not be developed further here. The usual
voltage representations (logic 0 = 0V, logic 1 - + 5 V) , used throughout this book,
are referred to as the positive logic convention.

4.13 Gate expansion

Suppose that a NAND gate is required with more inputs than are available from one
device. The number of inputs can be increased by the use of AND circuits
synthesised from NAND gates, as shown in Figure 4.17(a) or, if they are available,
AND gates can be used to achieve the same effect. However, an alternative method
of obtaining the logical AND of many signals is shown in Chapter 13. A similar

92 Digital logic design

- ~ f - X Y where X.. A B CD j , - - , .
and Y=EFGH

(a)

B+C+D

(b)

Figure 4.17 (a) Expansion of NAND gate inputs by means of AND circuits synthesised fiom NAND gates
(b) Expansion of NOR gate inputs by means of OR circuits synthesised from NOR gates

technique may be used to increase the number of inputs to a NOR gate, as illustrated
in Figure 4.17(b).

The extent to which the number of inputs to a gate may be expanded depends upon
the 'fan-in', defined as the number of inputs available on each gate, and the type of
gates available in a particular logic family. For example, in the type 74TTL families,
NAND gates with up to eight inputs are available; hence, using a two-level expansion,
a NAND equivalent with up to 64 inputs could be obtained using 17 NAND gates
(or eight AND gates plus one NAND gate).

4.14 Miscellaneous gate networks

A gate network performing the AND-OR-NOT (or AND-OR-INVERT) operation is
illustrated in Figure 4.18(a), and this network is sometimes available as a circuit

+CD

o

la)

A

B

(b)

m . .

B) (C+ D) f,. A?

(c) (d)

Figure 4.18 (a) The AND-OR-NOT module (b) connected as a NOR gate (c) generating a 2-level
product-of-sums and (d) connected as an AND gate

Combinational logic design principles 93

element in its own right (for example, as the type number 74XX51 in the 74TTL logic
families where XX indicates the particular type of technology used, such as Low Power
Schottky (LS or ALS)). It forms the complement of a two-level sum-of-products, as
shown in Figure 4.18(a). The network can also be used as a NOR gate either by
commoning the inputs to each AND gate, as shown in Figure 4.18(b) or, better, by
connecting one of each AND gate's inputs to logic 1 level. Alternatively, if inverted
variables are connected to the AND gate inputs, then the network will form a two-level
product-of-sums, as shown in Figure 4.18(c) since, using De Morgan's theorem:

f = (A. B) + (C. D) = (A. B). (C. D) = (A + B). (C + D).

If the network is used as a NOR gate but inverted variables are connected to the input
of each AND gate, the network generates the AND function (see Figure 4.18(d)), since

n m

f = A + B = A B .

The AND-OR configuration, without a final inversion, is also sometimes available as
a unit (for example, type number 74XX52 in the 74TTL logic families). This network
is illustrated in Figure 4.19(a), and its basic use is to form a two-level sum-of-products.

A l '

a!
+CD

C .

(a)

A

B

A+a+C+O

f ,A'Oco

(c)

(b)

Figure 4.19 (a) The AND-OR network (b) The A N D - O R network used as an OR gate (c) The A N D - O R network
used as a N A N D gate

94 Digital logic design

The network generates the OR function either by commoning the inputs to each AND
gate (Figure 4.19(b)) or, better, by connecting one of each AND gate's inputs to logic
1 level. For single inverted inputs this connection generates the N A N D function as
shown in Figure 4.19(c).

Some of the networks described are capable of expansion. Expander chips are
available which generate the AND function for a specified number of input variables.
For example, type 74XX61 in the 74TTL family consists of three AND gates, each of
which generates a functionf = ABC. This output can then be used as an additional input
to the OR gate in an expandable AND-OR network or, alternatively, as an additional
input to the NOR gate in an expandable AND-OR-NOT network such as the 74XX53.

Other gates available include gates provided with a strobe input which can be
regarded as an input that either enables or disables the gate. For example, the 74XX25
consists of twin four-input NOR gates with a strobe input. The output of each gate on
this chip is given by f = G(A + B + C + D), where G is the strobe input. If G = 0 then
the gate is disabled (giving an output f = 1) and conversely if G = 1 then the gate is
enabled to give f = (A + B + C + D).

4.15 Exclusive-OR and exclusive-NOR

The Exclusive-OR (XOR) function was defined in section 2.14 by the Boolean
equation

- - n

f = A B + A B = A ~ B

where the symbol ~ is used to indicate the XOR operation. The truth table for this
operation is given in Figure 4.20(a) and the conventional symbol for the practical logic
gate that implements the XOR operation is shown in Figure 4.20(b).

The XOR operation is identical to the conventional Boolean OR operation using
variables A and B except that it excludes the case f = 1 when A = B = 1, hence the
name Exclusive-OR. When the XOR operation is performed on all possible
combinations of two binary digits (see Figure 4.20(c)) the modulo-2 sum is obtained,
where the modulo-2 sum is defined as the conventional numerical sum of the two
digits but ignoring the carry-out bit. For example, the modulo-2 sum of 1 + 1 = 0.

Since the XOR function generates the modulo-2 sum of two binary digits it is
apparent that it has a direct application in the design of arithmetic circuits. It also has
applications in fault-detection systems (see section 13.13) and in error detection and
correction circuits found in data-transmission systems. Here, the modulo-2 sum of
a number of binary digits is obtained and generates the parity function which is
commonly used as an error-control function.

A B f O �9 0 , 0
0 0 0 A ~ - ' - ~ f = A O B 0 @ I �9 !
0 1 1 B t | 0 �9 !
1 0 1
1 1 0 1 �9 ! �9 0

(a) (b) (c)

Figure 4.20 (a) Truth table for XOR function (b) Conventional symbol for XOR gate (c) The modulo-2 sum of
two binary digits

Combinational logic design principles 95

A

= B

(a)

A

B

(b)

A (A~ =,~ + AB

= AE)B

B (,~B)= B+ AB

(c)

I ~ A+B
f= AeB

A

(d)

Figure 4.21 Basic gate implementations of the)(OR function." (a) using AND~OR gates (b) using NAND gates
only (c) minimal NAND implementation and (d) NOR implementation

There are a number of ways of implementing the XOR function and these include
implementation with AND, OR and NOT gates, as illustrated in Figure 4.21(a).
The minimised implementation is obtained by algebraic manipulation of the
XOR function f = AB + AB. Adding AA and BB to the right-hand side of the
equation gives

f = a . B
= A B + B B + A B + AA

= B(A + B) + A(A + B).

This can be implemented with just four NAND gates (see Figure 4.21(c)).
From Figure 4.21 (c), it is clear that the output of the circuit is given by:

f -- (A + AB)(B + AB)

= A B + A B

= A @ B

= A @ B .

Alternatively, rewriting B(A + B) + A(A + B) = (A + B)(A + B) gives a two-level
product-of-sums that can be implemented using five NOR gates (see Figure 4.21(d)).
The output of this circuit is

f = (A + B) + (A + B)

= (A + B)(A + B)

= AB + AB

= A @ B .

96 Digital logic design

A

D
(a)

OD

(b)

Figure 4.22 (a) Serial cascade of Exclusive-OR gates (not recommended) (b) Parallel cascade of Exclusive-OR
gates (preferred)

Although the XOR operation can be implemented in a number of ways by a
combination of discrete gates as shown in Figure 4.21, it is available directly on SSI
chips in the 74TTL family; for example, the 74XX86 chip provides four two-input
XOR gates. In many cases, the easiest way to handle the XOR operation in Boolean
expressions is to substitute the defining Boolean equation (A ~ B = AB + AB) and
then to use the usual rules of Boolean Algebra, but section 2.14 includes some
additional useful results that may shorten such analysis.

If the XOR is indeed of a greater number of variables than can be accommodated
by one XOR gate, it is necessary to cascade XOR gates. Two possible approaches are
illustrated in Figure 4.22. In the first method (Figure 4.22(a)) the XOR gates are
connected serially to produce the XOR of four variables, and in the second method
two XOR gates operate 'in tandem' to feed the third. Both methods use exactly the
same number of gates but the method of Figure 4.22(a) requires three levels of logic,
whereas the method of Figure 4.22(b) requires only two levels of logic. If the time
delay introduced by each gate is important then the total propagation time delay
through the second configuration (Figure 4.22(b)) will clearly be less than the time
delay for the first circuit (Figure 4.22(a)), and so generally the parallel configuration of
Figure 4.22(b) is preferred. If the XOR of eight variables is required, then for the serial
method seven levels of logic are needed, whereas the parallel connection requires only
three levels.

The XOR gate can also be used as a controlled inverter. This is illustrated in Figure 4.23
where one input to the 2-input gate is for binary data, while the second input is
supplied with a control signal M which may be either 0 or 1. If M = 0 the gate transmits
the input data unchanged to its output, but for M - 1 the gate inverts the input data.

DataO,1)~~1.=. DataO,1F~~ 1~1,0 --
F'M-O

Transmission Inversion
(a) (b)

Figure 4.23 The XOR gate as a controlled inverter
(a) Transmission (b) Inversion

This particular connection can be used in
conjunction with an adder circuit, and
the combination of adder and controlled
inverter can then be used as an adder/sub-
tractor (see later). The controlled inverter
also has applications in data processing
circuits where it is required to complement
data under external control.

Combinational logic design principles 97

A• 0

0

1 1

(a)

I

(b)

f = A E) B

(c)

A B f
0 0 1
0 1 0
1 0 0
1 1 1

(d)

8 !

A+(A~)
=,~(A+B)
-~B

B + (~
=~A+B)
=AB

(e)

f=,~B+AB
=A~B

Figure 4.24 K-maps for (a) the Exclusive-OR function, and (b) the Exclusive-NOR function (c) Circuit symbol
of the Exclusive-NOR function (d) Truth table for the coincidence (XNOR) operation (e) Minimal NOR gate
implementation of the XNOR operation

K-maps for the XOR function and its complement are shown in Figures 4.24(a) and (b).
Selecting those combinations of the variables which make the value of the complement
function equal to 1 leads to the Boolean equation

f = A G B - A B + A B - A @ B - A O B

where A @ B indicates the EXCLUSIVE-NOR (XNOR) function, sometimes written
as A | The XNOR function has the v a l u e f = 1 when A = B = 0 or A = B = 1
(i.e., when A - B), and hence is sometimes alternatively termed the 'coincidence'
function. The conventional circuit symbol for the X N O R gate is simply an XOR gate
followed by an inversion circle, as shown in Figure 4.24(c), and the truth table for the
function is shown in Figure 4.24(d).

The XNOR operation is, like the XOR operation, also Commutative and
Associative. This is clear from its close relation to the XOR operation. In addition,
since it is clear that

(AeB) e c
= (A e B) e C
= A e (B e C)

= A e (B e C)

= A e (B e C)
=Ae(BeC) ,

(using the Boolean relation for the X N O R operation),

(using the Associative property of the XOR operation),

(using the Boolean relation for the X N O R operation),

(using the Boolean relation for the X N O R operation),

it has therefore been proved that the X N O R of three variables is equal to the XOR of
the same three variables:

(A @ B)~3 C - A @ B@ C.

98 Digital logic design

XNOR gates are available in the mature logic technologies but may also be
implemented using other gates. Apart from simply inverting the output of an XOR
gate, the XNOR may be implemented using only four NOR gates, as shown in Figure
4.24(e). The XNOR operation gives an output of logic 1 whenever the two input
binary digits are equal, and consequently it has an application in those circuits that
are designed to compare the magnitudes of two equal length strings of binary digits.
This theme will be developed further in Chapter 5.

4.16 Noise margins

In Chapter 2 it was established that logic 0 and logic 1 can be represented by two
voltages, usually 0 V and 5 V. The required power supply voltage (Vcc) is tightly
specified for the common 74TTL transistor-transistor logic family of discrete gates,
the original versions of which used bipolar transistor technology. However, in practice
manufacturers design their logic gates to accept and operate correctly with logic
voltage values considerably different from these ideal values.

Acceptable values for the low level (logic 0) and for the high level (logic l) are as
defined in Figure 4.25 for the 74LS series of logic gates. The symbol VOL(max) denotes

the maximum output voltage that any gate
Voltage will produce when it is in logic state 0, and
(v) 1" VOH(min) is the minimum gate output voltage

2.7 VoH(min) that any gate will produce when it is in logic
2.0 r (,,~n) state 1. Both VOL(max) and VOH(min) a re defined

Indeterminate for worst-case loading conditions. The symbol
region ViL(max) denotes the maximum gate input

voltage guaranteed to be recognised as
0.8 VIL (max)
0.5 VoL(max) logic 0, and ViH(min) is the minimum gate

input voltage guaranteed to be recognised
Figure 4.25 74LS(TTL) series logic levels as logic 1.

The region between these two voltage levels
(either at input or output) is indeterminate. If a voltage in this range is presented to
a logic gate input then its operation is not guaranteed to be sensible as neither a correct
logic 0 nor a correct logic 1 is being applied. In practice it often happens that the gate
output will oscillate at high frequency in this case, or perhaps will stay at a constant
value that is itself within the indeterminate region, thus presenting further problems to
the next gate in the logic system.

Since the voltages specifying logic state 1 are minimum values, in practice any voltage
between the specified minimum and the supply voltage Vcc may be produced and will
be recognised correctly as denoting logic state 1. Also, since the voltages specifying logic
state 0 are maximum values, in practice any voltage between the specified maximum and
0 V may be produced and will be recognised correctly as denoting logic state 0.

Suppose a 74LS series gate gives a logic 0 output of +0.5 V (just within the specification);
then, a corrupting noise voltage of more than +0.3 V superimposed on this value will result
in the input to the next gate being in the indeterminate region where it will not be
recognised as logic 0. Therefore, the logic 0 noise margin (or noise immunity) is defined as

N L = VIL(max) -- VOL(max).

Combinational logic design principles 99

Similarly, the logic 1 noise margin is defined as

NH = ~OH(min) - - ~IH(m i n)-

Many digital logic devices intemally use field-effect transistors which are made using a
metal-oxide-semiconductor (MOS) structure. The most important MOS logic technology
employs complementary metal oxide semiconductor (CMOS) transistors. In practice,
the noise margins for the CMOS family can be much greater than those for the
74TTL family. The noise margins for typical members of the two families are tabulated
for comparison:

Parameter 74LS (TTL) CMOS (4000 series)

VOH(min) 2.7 V 4.95 V
ViH(min) 2.0 V 3.50 V
VIL(max) 0.8 V 0.05 V
VOL(max) 0.5 V 1.45 V

NH 0.7 V 1.25 V
NL 0.3 V 1.20 V

4.17 Propagation time

Suppose that a rectangular voltage pulse is applied to the input of a logic inverter, as
shown in Figure 4.26. For any practical logic gate there will be a time delay or
propagation time between the change in the input voltage to the corresponding change

V I I I II

o -

V i !
!

(a) "~,
I

0 0

t - - - ~

J_ t,H~ :; tpt. ~--
! ,

, !

(b)

~ 5 0 % : ~ 5 0 %
I I
I I ~ - , . -4~
I o

' , / , I I

, 5 0 % i 5 0 %
I I
I , |

' ' ___~ __-~tou~- t--,-
t p H L

(c)
F i g u r e 4 . 2 6 (a) Rectangular voltage pulse applied at the input of an inverter (b) Idealised timing diagrams
(c) Practical timing diagrams

100 Digital logic design

in the output voltage, and this delay is denoted by /PHL when the output voltage
changes from a high to a low level. When the output voltage changes from a low to
a high level, the propagation delay time is denoted by tpL H. These two propagation
delays may, in principle, have different values. Although described here only in terms of
a simple logic inverter, all logic components show propagation time effects to varying
degrees, and in the case of complex components there may be differing values of tpHL
and taL H according to which inputs and which outputs are being considered.

The timing diagrams of Figure 4.26(b) are somewhat idealised since they imply that
all the voltage transitions take place instantaneously. In practice, the input and output
voltages will not change instantaneously, and the propagation times /PHL and /PLH
are therefore usually defined as the time delays between the voltages halfway between
the steady voltage levels achieved, sometimes called the '50% points', as shown in
Figure 4.26(c).

The propagation delays specified by manufacturers usually fall into three categories:
minimum, typical and maximum. This is because there is a manufacturing spread for
these parameters. In effect, the manufacturer is stating that the maximum delay will
never be exceeded, and the wise logic designer will ensure that the design operates
correctly if the gates used only meet the maximum quoted values (i.e. 'worst case design').

For the 74TTL logic family, typical values of propagation delay lie in the range 2 to
33 ns depending upon the particular type of technology being employed (the most
common of which are currently LS or ALS, and high-speed CMOS gates (HCT) that
are designed to be compatible and interchangeable with TTL gates). Reduction in the
propagation delay using bipolar technology can be achieved by employing emitter
coupled logic (ECL) where propagation delays as low as 1 ns can be achieved.
However, CMOS circuits are widely used in a great number of present system designs.
They have the advantages of cheapness, low power consumption per gate and
considerably higher packing densities (the number of gates manufactured per chip).

Electronic engineers are also interested in the rise and fall times of the voltage
waveforms. The rise time is defined as the time taken for the voltage to change from
10% to 90% of its final value, while the fall time is defined as the time taken to change
from 90% to 10% of its initial value. This parameter is also frequently referred to as
the transition time.

4.18 Speed-power products

The propagation time per gate (i.e. the delay time introduced into the signal path
by using a logic gate) multiplied by the electrical power dissipated in each gate
(fed from the power supply) is approximately equal to the energy stored within the
gate as a result of maintaining either a 0 or 1 logic level at the output. This is not an
absolute or accurate measure, for the obvious reasons that the power dissipation
depends to a greater or lesser extent upon the logic state at the gate output, and also
because some power is lost in the gate circuitry not directly associated with the bit
storage within the gate. However, this product is a useful 'figure of merit' for a family
of logic gates.

The goal of many technologists designing logic gate families is to make this speed-
power product or 'energy per gate' as small as possible in order to produce large logic
systems with minimised power consumption. The speed-power product also indicates

Combinational logic design principles 101

how successful the particular technology has been in reducing the stored energy in
each gate. Assuming that using a certain technology the speed-power product has been
reduced as far as is commercially practical, then fast operation of a logic circuit
(i.e. small gate delay) requires a correspondingly large power dissipation per gate, and
if the number of logic gates is increased as well then the total power consumption on
the chip may increase so drastically that special cooling measures must be taken,
including the use of heat-sinking and forced cooling. One very visible manifestation of
the problems of using large numbers of logic gates is the fact that certain versions of
the Intel 'Pentium' processor now require a small electrically driven fan mounted on
top of the actual processor chip. Larger computing systems sometimes require the use
of liquid coolant.

Experimental, and usually very simple, logic systems in research laboratories are
currently able to establish logic levels based upon the storage of individual electrons,
which at current gate size limits corresponds to a speed-power product of around
2 • 10 -21 J. Using current technology, this represents the ultimate limitation on the
energy stored per gate. Some values of the speed-power product for some
representative commercial logic families are tabulated below. In this table, the
standard, S, LS and ALS types refer to the original 74(TTL) series of conventional
silicon ICs. The HCT logic family uses silicon CMOS technology but is compatible
with TTL gates as its logic voltage levels are similar. The 4000 series is an older CMOS
logic family; and GaAs logic devices are at the experimental, research, or low-volume
development stages at the time of writing. The values given are typical only, as the
precise values frequently depend upon the output state of the gate concerned, the
logic function in question, and also the power supply voltages (e.g., in the case of
CMOS gates).

Gate type Typical gate Typical power Typical maximum
delay/ns per gate/~tW clock speed/MHz

Typical speed-power
product/10 -15 J

Standard 10 10000 35 100000
S 3 19000 125 57000
LS 5 2000 60 10000
ALS 5 1300 60 6500
HCT 7 2.5 50 17.5
4000 60 6 5 360
ECL 2 25000 200 50000
GaAs 0.08 1000 4000 80

4.19 Fan-out

The number of gate inputs that can be connected to a single driving gate output
without overloading the driving gate is termed the fan-out. The limitation is usually
that of the available current drive from the gate output compared to the current
required to drive the gate inputs. Information on current capabilities and require-
ments, supplied on the manufacturers' data sheets, allows the designer to calculate
fan-out values.

102 Digital logic design

For example, in the 74LS(TTL) series, the maximum low state current required by
a gate input, IlL(max), is 0.4 mA whilst a 74LS series gate output is capable of sinking
a current of at least IOL(min)= 8 mA. Hence, the ratio of currents in the low state is
given by

IOL(min) 8 mA
= = 20

/IL(max) 0.4 mA

In the logic high state, the maximum current required at the input of a 74LS series gate
is IIH(max) -- 20 laA while a 74LS series gate output is capable of sourcing a current of
at least IOH(min) --400 IrA. Hence

IOH(min) _ _ 400 p A - - 20
IIH(max) 20 ~tA

The fan-out is defined as the worst-case (i.e., the least value) obtained from these
calculations, so that in this case the fan-out is 20; up to 20 gate inputs can be connected
to one gate output in the 74LS series. Similar calculations can be made for other
variants in the type 74 families. By coincidence, in the 74LS series the possible fan-out
in both states is identical; in some logic families the calculations analogous to those
above yield different results for the two states, in which case the lower value must
be quoted as the fan-out. In certain CMOS technologies at low frequencies the
gate input current is essentially zero since the gates have an extremely high input
impedance, and so the fan-out is infinite (as many gate inputs as desired may be
connected to one output). However, at high frequencies, the gate input capacitance
becomes an important consideration (current must be supplied to charge the effec-
tive input capacitance of the gates sufficiently quickly) and the fan-out is reduced to
a finite value.

Sometimes the term 'fan-out' is used in a more informal sense to indicate
the number of gate inputs actually connected to a given output. For example, if
a single gate output is connected to three gate inputs then the fan-out may be said to
be three, irrespective of the maximum number of inputs that could be connected to
one output.

Problems

4.1 Implement the following functions using only N A N D gates:

(a) A - AB + (B + C)A

(b) f2 = (AB + C)(B + D) + A(B + C)(D + E).

4.2 Minimise the following functions and implement the minimised function using
only N A N D gates:

(a) f (A , B , C) - y']0, 1,2, 3,4, 5, 6

(b) f (A, B, C, D) - ~-]~0,2, 8,9, 10, 12, 13, 14

(c) f (A ,B , C,D,E) - y~ 8, 9, 10, 11, 15, 16, 17, 18, 19,20,21,22,23,24,25,26,27,31

Combinational logic design principles 103

4.3 Implement the following Boolean functions using only NOR gates:
(a) fl - A(A + B)(B + CD)

(b) f2 = A(B + C + DE)(B + CO + AE)

4.4 Find the minimum product-of-sums form for each of the following functions and
implement the functions using NOR gates only:
(a) f (A , B, C) = ~ O, 2, 4, 6, 7
(b) f (A , B , C,D) = y~'~ 0, 1,2,3,4,9, 10, 13, 14
(c) f (A, B, C, D, E) - Y'~0, 1,2, 3,4,6, 10, 11, 12, 13, 14, 15, 16,29,31

4.5 Using a simple factoring technique, implement each of the following functions in
as many ways as possible using only NAND gates:

(a) fl = BCD + BCD + A

(b) f2 = A C + BC + AD

(c) f3 = ABD + ABC + CD

4.6 Implement the following functions using only NAND gates having a maximum
fan-in of three:

(a) f l = ABC + AD + BCD + A CD

(b) f2 = AB + AD + BD + CD + A C

(c) f3 = ABCD + ABCD + ABD + CD

4.7 Analyse the circuits shown in Figures P4.7(a), (b) and (c), to produce Boolean
algebraic expressions for the circuit outputs:

A

B ,

C
(a)

G ~

(b)

A B ' D '

C -

D , ~ I
E

-i >
F �9

(c)
' i) G

Figure P4.7

104 Digital logic design

4.8 Analyse the circuits shown in Figures P4.7(a), (b) and (c) by removing as many
inversion circles as possible.

4.9 Implement the following functions using only NOR gates having a maximum
fan-in of three:

(a) f~ = (A + B)(C + D)(B + C)(A + D)(A + C)

(b) f2 = (AC + BC)(A + C)

(c) f3 = AS + BCD + AnD

4.10 Express the following equations in their minimal sum-of-products form:

(a) f l = A(A �9 B �9 C)

(b) f2 = A ' [(A e B) ~ C]

(c) f3 = A + (A ~ B 6} C)

(d) f4 = A + (A �9 s) �9 c

4.11 Prove the following identities:

(a) (A r B r C") = A r (B r C)

(b) (A ~ B ~ AB)(A ~ C ~ A C) - A + BC

5 Combinational logic design with
MSI circuits

5.1 Introduction

Since the introduction of MSI and LSI circuits, the traditional methods of logic
design have largely been superseded. Traditionally, the design engineer has developed
a Boolean equation as the solution to a particular problem. This function has then
been minimised and implemented using SSI circuits.

In practice, many combinational circuits may have a large number of inputs and
outputs, and consequently the use of truth tables in the design of such circuits is
impractical. Furthermore, it is not economical to provide sufficient pins on an IC
package to allow access to each of the gates that can be provided on a single chip.
Many functions such as counting, adding and parity checking are common in a large
number of designs, and a useful library of digital circuits for implementing these
functions has been developed. As fabrication techniques improved it became possible
to implement these functions on a single chip.

The development of MSI circuits has led to the technique of splitting a complex
design into a number of sub-systems. This leaves the designer the task of inter-
connecting available MSI functions in a manner which satisfies the initial design
specification.

5.2 Multiplexers and data selection

A multiplexer (MUX) selects 1-out-of-n lines where n is usually 2, 4, 8 or 16. A block
diagram of a multiplexer having four input data lines do, dl, d2 and d3 and com-
plementary outputs f and f is shown in Figure 5.1(a). The device has two control or
selection lines A and B and an enable line E. Gate implementation of a 4-to-1 multi-
plexer is shown in Figure 5.1(b). In essence, the circuit is an AOI module having
complementary outputs. The characteristic equation of the multiplexer is

f = ABdo + ABdl + ABd2 + ABd3

Individual data lines are selected by the application of the appropriate binary signal to
control lines A and B. When A/~ = 1 the output of the MUX is do, and when ,4B = 1
the output is dl, etc. When the input enable is E = 1 the four A N D gates are enabled.
With E = 0 multiplexer operation is inhibited.

106 Digital logic design

E

I

MUX

-I

TT
A B

(a)

Figure 5.1

f ~

f

|

Lx zx
B

(b)

(a) Block diagram of a 4-input multiplexer and (b) its gate implementation

5.3 Available MSI multiplexers

The sizes of multiplexer available in the TTL family are limited by pin availability on
standard MSI chips. With 16-pin chips, multiplexers having 2, 4, and 8 data lines are
available and with 24-pin chips it is possible to provide a multiplexer with 16 data lines.

The 74157, a 16-pin chip, provides quadruple 2-to-1 multiplexers, where each multi-
plexer consists of a 2-wide, 3-input AO gate, with one input for data, one for selection,
and the third which is the strobe or enable line. A logic diagram, the truth table and
a traditional block diagram are shown in Figure 5.2. The numbers in parentheses on
the input and output lines are the pin numbers.

The 16-pin 74353 is a dual 4-to-1 data selector/multiplexer. Each multiplexer consists
of a 4-input 4-wide AOI gate with tri-state control (see Chapter 10) on the NOR output
gates. The output control lines also act as separate enable inputs for the two devices,
both of which are controlled by the common select lines. A logic diagram for the 74353,
its function table and block diagram are shown in Figure 5.3.

At the upper end of the scale, the 74251 is an 8-to-1 multiplexer having comple-
mentary tri-state outputs. It consists of a 4-input 8-wide AOI gate with an enable
strobe. There is also the 24-pin 74150, a 16-to-1 multiplexer/data selector which
consists of a 5-input 16-wide AOI gate. The number of pins available on this chip
limits the device to a single-output line.

5.4 Interconnecting multiplexers

Data within a digital system is normally processed in parallel form in order to increase
the speed of operation. If the output of the system has to be transmitted over
a relatively long distance then a parallel-to-serial conversion will take place so that
the data can be transmitted serially over a single transmission line. This eliminates the
requirement of individual transmission lines, one for each bit. The arrangement of
Figure 5.4 can be regarded as an example of parallel-to-serial conversion. An 8-bit

Combinational logic design with MS! circuits 107

(2)
1A

(3)
1B

1Y

(5)
2A ,

(6)
2B ' -

2Y

(11)
3A, ,

(10)
3B

3Y

(14)
4A

4B

SELE

(13)

STROBE (15) (15) t
" ~ ~ (1)

/
(a) (2) /

�9 (3) 1

Inputs Outputs (51

L S'trobe 'Select A, B 'Y (6)
1 x x x 0

(11) 0 0 0 x 0
0 0 1 x 1 (10)

, ,

0 1 x 0 0 (14)
0 1 x 1 1

�9 (13)
x = don't care

74157

Strobe
1Y

Select

1A

1B 2Y

2A

2B

3A 3Y

3B

4A
4Y 4B

(b) (c)

! (4)

(7)

(9)

(12)

Figure 5.2 The 74157 quadruple 2-to-1 multiplexer (a) Logic diagram (b) Truth table (c) Traditional logic
symbol

word is presented in parallel at the data inputs of the two multiplexers and is clocked
from the the output in serial form. The MUX not enabled will give an output of logic
0. In the absence of the binary counter this arrangement can be used for the selection of
1-out-of-8 data lines. Selection of the required data line is made by the selection inputs
A, B and E.

The principle of data selection can be extended to allow the selection of 1-out-of-64
lines. This can be achievedusing nine 8-to-1 multiplexers (see Figure 5.5) arranged in
two levels of multiplexing.

If ABC = 001 Multiplexer M 1 is enabled and input D 1 is selected on multiplexer M8
If DEF = 111 Data X15 is selected and is output on line .gO 1
Then ABCDEF = 001111 selects X15 and outputs it at Z on M8.

5.5 The multiplexer as a Boolean function generator

For a 4-to-1 MUX the characteristic equation is

f - ABdo + ABdl + ABd2 + ABd3

108 Digital logic design

OUTPUT (1)
CONTROL

1G

(6)
1C0 "-

1C1 (5)

DATA I

IC3 (3)

(7) OUTPUT
1Y

2C0 10)

2C1 (11)

DATA 2
2C2 (12

2C3 (13

(9) OUTPUT
2Y

OUTPUT (
CONTROL

2G

Select

A B
X X

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

x = don't care

Inputs

:Data "

c, c, q q
X X X X

0 x x x
1 x x x
x 0 x x
x 1 x x
x x 0 x
x x 1 x
x x x 0
X x x 1

(a)

, r,

Outputs
Control Outputs

G , y '

1 High Z
0 1
0 0
0 1
0 0
0 1
0 0
0 1
0 0

,,

(1)
: 1G

(15)
c 2G

(8)
1C0

(5)
1C1

(4)
1C2

(3)
-, 1C3

(10)
2C0

(11)
------- 2C1
(12)

2C2
(13)

2(33

(b) (c)

74353

1Y

2Y

(7)

(9)

Figure 5.3 The 74353 dual 4-to-I multiplexer (a) Logic diagram (b) Function table (c) Traditional logic diagram

where A and B are Boolean variables, applied at the select inputs, which can be factored
out ofany Boolean function ofn variables, as shown below. The remaining n - 2 variables,
referred to as the residue variables, can be formed into residue functions which can then be
applied at the data inputs. In practice, the residue functions can be implemented by
discrete logic gates or, alternatively, by other multiplexers. If, for example, a 3-variable
function f(A, B, C) is to be generated and the variables A and B are applied at the select
inputs, the residue functions expressed in terms of the variable C can be applied, one at
each of the data inputs. The four available residue functions are C, C, 1 and 0. In all,

Combinational logic design with MS/circuits 109

,,D [_
4-t0-1 MUX 4-t0-1 MUX

E1 E2
do d4
d, ~ ds f2
d2 M1 do M2

C~ E ~ fl ch f2 fl+f2
Binary A A A
C~ [- i B B

V
(a)

Inputs Outputs
E A B E1 E2 fl+f2

0 0 0 1 0 do
0 0 1 1 0 dl
0 1 0 1 0 d2
0 1 1 1 0 d3
1 0 0 0 1 d4
1 0 1 0 1 d5
1 1 0 0 1 de
1 1 1 0 1 d7

(b)

Figure 5.4 (a) Combination of two MUXs providing a 1-out-of-8 Data

there are 44 = 256 possible combinations of the four residue functions and a multiplexer
with four data inputs can generate any of the 256 possible Boolean functions of
3 variables.

For a 4-to-1 line MUX there are three possible choices for the Boolean variables to be
applied at the selection inputs. They are AB, A C and BC. These combinations can be
associated with individual data lines, as shown in Figure 5.6. Assuming that A and B
are chosen as selection inputs, then for the condition AB = 00 the top two left-hand cells
on the K-map in Figure 5.6(a) are associated with the data line do. Similarly, for the
condition AB = 01 the top two right-hand cells on the K-map are specified and are
associated with data line dl. In effect, the 3-variable map has been divided into four
1-variable maps each of which are associated with one of the four data input lines and
also with the residue variable C. Association of selection inputs AC and BC is shown in
Figures 5.6(b) and (c).

As an example, the 3-variable function

f (A , B , C) = ~ 0 , 1, 3,4,7

will be implemented using a 4-to-1 MUX. The function is first plotted on the K-map in
Figure 5.7, and an arbitrary choice of selection variables is made, in this case A and B.
Simplification takes place on each of the 1-variable maps and the resulting residue
functions are:

d o = l d ~ = C d 2 = C d 3 = C

1 l0 Digital logic design

m

X0
X1
X2
X3
X4
X5
X6
X7

X8
X9
XIO
X l l
X12
X13
X14
X15

X56
X57

.

X58
X59
X60
X61
X62
X63

EN
DO
D1
D2
D3 8-to-1
D4
DS MMU0 x
D6
D7
D
E
F

EN
DO
D1
D2

ID3 8-to-1
D4
D5 M y
D6
D7
D
E
F

EN
DO
D1
D2
D3 8-to-1
D4 D5 MMUX
D6
D7
D
E
F

XO0

XO~

X07

EN
DO
D1
D2
D3 8-to-1
D4
o5
D6
D7
A
B
13

Figure 5.5 Interconnection of Multiplexers for the selection of 1-out-of-64 lines

If the complement of the variable C is available, implementation of this function can be
achieved with a single M U X such as the 74353 dual 4-to-1 MUX. If C is not available
an inverter is required, as shown in Figure 5.7.

If the choice of selection variables had been A and C then the inputs to the data lines
m

would be do = B, d l = 1, d2 = B and d3 = B. For selection variables B and C the input
to the data lines would be do = 1, dl - A, d2 = 0 and d3 - 1.

Combinational logic design with MS! circuits 111

.BC .BG BC
A ~ 00 01 11 10 A \ 00 01 11 10 A~-00 01 11 10

o(r

(a) (b) (c)

Figure 5,6 Association of data lines with control signals for a four-input multiplexer. The control variables are
A and B in (a), A and C in (b), and B and C in (c)

A•,Co0 01 11

,G 0

(a)

10

5V

R= 1 k.O
4-to-1 MUX

- I 1 A B
Select variables

(b)

f(A,B,C)

Figure 5.7 (a) K-map plot o f f = ~ O, 1, 3, 4, 7 (b) implementation of the function by 4-to-1 MUX

Alternatively, the residue functions can be found directly from the truth table of the
Boolean function to be implemented. For the function

f (A ,B , C,D) = y ~ 0, 1,3,4,5,9, 10, 11, 14, 15

the truth table is listed in Figure 5.8. The selection variables A, B and C are sectionalised
and isolated from the residue variable D. For the combination of these variables
ABC = 000, f = 1 for both D = 0 and D = 1 and the residue function is do = 1.
The method used here is analogous to plotting an RDM map from a truth table
(see Chapter 3). Similarly, for ABC = 100, f = 1 for D = 1 and residue function d4 = D.
Implementation of the function using an 8-to-1 multiplexer is shown in Figure 5.8.
Other implementations can be found using an alternative choice of the selection variables.

5.6 Multi-level multiplexing

The implementation of Boolean functions may be achieved more economically and
with fewer interconnections by using more than one level of multiplexing. Using the
method described in the previous example for the function

f (A , B, C, D) - y ~ 0, 1,2, 5, 7, 9, 15, can't happen terms 4, 11, 13

the residue functions are found to be

d o - d 2 = 1, d5 = d 6 - - 0 , d 3 - d 4 = d 7 - D , dl - D

112 Digital logic design

A B C

0 0 0
0 0 0

0 0 1
0 0 1

0 1 0
0 1 0

0 1 1
0 1 1

1 0 0
1 0 0

1 0 1
1 0 1

1 1 0
1 1 0

1 1 1
1 1 1

D f

0 1
1 1 do= l

0
1 1 d l = D

0 1
1 1 d2=1

0
1 d3=O

0
1 1 d , = D

o , 1
1 1 d s = l

0
1 de=O

0 1
1 1 d7=1

(a)

f
5V

R=I k,Q

_ ooo
001

I 1[Ol o I I01011 8-to-1
D iloo Mux
1 '101

u

T

110
111

[!
A B C

Select variables

(b)

f(A,B,C,D)

Figure 5.11 (a) Truth table for f= ~ O, 1, 3, 4, 5, 9, 10, 11, 14, 15 and (b) function implementation

assuming A, B and C have been chosen as the selection variables. The implementation
of the function using an 8-to-1 MUX is shown in Figure 5.9. A typical 8-to-I MUX
that could be used in this design is the 74251. This is a 16 pin device having 8 data
inputs, 3 selection inputs, true and complemented outputs and a strobe line not shown
in Figure 5.9 which would be held at logic 0 level.

To implement the same function using two levels of multiplexing, a 4-to-I multi-
plexer M5 is used to generate the function output. The function and the 'can't happen'
terms are listed in the left-hand column of Figure 5.9(c). The selection variables for the
output MUX are C and D and the variables A and B form the residue functions
required at the four inputs.

The first level of multiplexing will consist of four 2-to-1 multiplexers, each of them
having B as the select variable. Their inputs can be determined by examining the
listings in each of the four right-hand columns in Figure 5.9(c). For the column headed
CD there are two terms, AB and the 'can't happen' term AB. When the selection
variable B = 0, the required input is A and when the selection variable B = 1, the
required input is 0 since AB is a 'can't happen' term. The first level inputs obtained
from the three remaining columns of Figure 5.9(c) are marked on the function
implementation diagram shown in Figure 5.9(d). It is immediately apparent from an
inspection of this diagram that multiplexers M2, M3 and M4 are redundant.
The number of interconnections required is ten and an inverter for the variable A
may be required. Two multiplexer packages are needed, neither of them being fully
utilised; this may or may not be a disadvantage as far as space requirements are
concerned.

It is also possible to implement the function using three levels of multiplexing.
For this arrangement the conventional architecture requires four 2-to-1 multiplexers
at the first level, two at the second level and one at the output level although some of
these multiplexers may be found to be redundant prior to implementation. The tech-
nique used to find the MUX inputs at the first level is identical to that used for two level

Combinational logic design with M S ! circuits 113

A B C
0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1 1
0 1 1
1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 1 0
1 1 1
1 1 1

D f
01
11 do=l
01
10 d,=D
0 X
11 d2=1
00
11 ds=D
00
11 d,=D
00
1X ds=0
00
l X d6=0
00
11 d,=D
(a)

A B C D
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

CL~

rA:l / x
I I 1 AB

(c)

'~ Io i~B
O [1M1[

IB

D_ ~

+5V 1 ~

T- ' 8-to-1
-~ 100 MUX

Al d
2-to-1 MUX

;~ Jo J~B ol~M~ j
IE

E

o

(b)

~ . . / ~ , - - - ! .~ ! ~ + , ~ . ~ "~ ,(A,B,~,o>

, . ~ 1 i, Ic I Io

f(A,B,C,D)

4- to-1 MUX

t 0(~11 f (A, B, C, D)
10 M5
11

I~ Io

(e)

Figure 5.9 Example of multi-level implementation of a 4 variable function (a) and (b) single-level
(c) and (d) 2-level and (e) 3-level

114 Digital logic design

multiplexing. It consists of first finding the residue functions at the inputs to the output
and second level multiplexers and finally determining the input residue functions at
the first level from the second level listings. Implementation of the function using
three levels of multiplexing is shown in Figure 5.9(e). The residue functions at each
level of multiplexing are marked on the diagram and it will be observed that M2, M3,
M4 and M5 are redundant. The implementation requires a single quad 2-to-1 MUX
and an inverter if the complement of variable A is not available. The number of pin
connections used for this implementation is ten, but only one multiplexer package is
needed. In general the possibility of redundancy in a multi-variable function is highest
when the smallest multiplexer elements are used.

5.7 Demultiplexers

As the name infers, a demultiplexer performs the opposite function to that of
a multiplexer. A single data line can be connected to any one of the output lines
provided by the choice of an appropriate select signal. If there are s select inputs then
the number of output lines to which the data can be routed is n = 2 ~. The structure of
a demultiplexer is identical to that of a decoder. A basic 2-to-4 line decoder and its
associated enable line is shown in Figure 5.10. If the enable line is now used as a data
input the data can be routed to any one of the outputs. If, for example, A = B = 0 and
the data input = 1 then output Y0 = 1 and the remaining three outputs are 0.
Any decoder having an enable line can function as a demultiplexer and for this reason
they are listed as decoder/demultiplexers in manufacturers' catalogues.

A typical example of a 3-to-8 line decoder/demultiplexer, the 74138, is shown
in Figure 5.11. The 74138 with three enable inputs has a flexible enabling system.
If the package is to be used as a demultiplexer then input lines G2A and G2B can
be grounded and G1 can be used as the input line for data. When the input G1 = 1
the eight output NAND gates are enabled. If the select signal is now A B C = 000,
the output Y0 = 0 While all other results remain at 1.

Data / Enable

A D

Figure 5.10 Basic demultiplexer

Combinational logic design with MSI circuits 115

INPUTS G2A (4)
G2B ~ " (5)

I

SELECT
INPUTS

A

B

C , I J ~ ,

Inputs

;Enable "
G1 G2A G28
x 1 1
0 x x
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

x = don't care

Select
C B A
X X X

X X X

0 0 0
0 0 1
0 I 0
0 I I
I 0 0
I 0 1
1 I 0
1 I I

(a)

Outputs

'YO Y'; Y2 Y3 Y+ YS YS Y7
1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 I

. . . .

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
0 1 1
1 0 1
1 1 0

(b)

Figure 5.11 The 74138 3-to-8 line decoder/demultiplexer

~ t y0,~

, . .~ ~ j = - - -) Y1

_ ~ l > . ~) Y2

- ~ 1 Y3

~ m - ~ 1 Y4 - =

J

,---4

, Y 6
|

DATA
OUTPUTS

5.8 Multiplexer/demultiplexer data transmission system

A simple data transmission system can be implemented using a multiplexer and
a demultiplexer in conjunction with an interconnecting single line link. Such a system
used over a relatively short distance such as 500 metres can result in a significant
reduction in the number of lines required to transmit the data. A block diagram of the
system is shown in Figure 5.12 where the 74251 8-to-1 multiplexer is linked to the
74138 3-to-8 line decoder, operating as a demultiplexer, by a single cable. The data
presented in parallel at the MUX inputs is converted into a serial format for transmis-
sion, while at the receiving end the demultiplexer routes the serial data, in the correct
sequence, to one of the eight output lines. The transmitted data is said to have been
time division multiplexed since the eight input bits are appearing on the interconnecting
link at different times.

For satisfactory communication, the select signals a t the two ends of the link must
be identical at any given instant. The common select signals generated by a Mod-8
counter at the transmitting end also have to be transmitted to the receiving end. The use
of TDM has reduced the total number of lines required for the interconnection from
eight to four .

116 Digital logic design

Ck

=Is
;I ~176 D1

D3

;I ~ D5
oe

-i, D7
A

74251 Y

TBTCT
[!

1' 1

Mod-8 counter

Transmission r,_.~

..... link 1 " "

/
/ ~G2A

_L 1
-- A I , B

DO
D1
D2 r
D3 ~ = 74138
D4 L
D5 [
D6 ,
D7[=

Figure 5.12 A TDM transmission link

A typical example where a short range transmission link might be employed is
a security system where access to a building is monitored at a number of sensitive
points. Signals from the outstations are time division multiplexed and transmitted to
the demultiplexer at a central security office where a visual display will reveal any
breach of security at the points of access.

5.9 Decoders

The basic function of an MSI decoder having n inputs is to select l-out-of-2" output
lines. For example, if there are three inputs, the decoder will select l-out-of-8 lines.
In this case there is one output line for every input combination and the device is called
a complete decoder. The selected output is identified either by a 1, when all other
outputs are 0, or by a 0 when all other outputs are 1. In the first case the output is said
to be active high while in the second case it is said to be active low.

The structure of a 2-to-4 line decoder is illustrated in Figure 5.13. It consists of an
array of four N A N D gates, one of which is selected for each combination of the input
signals A and B. When AB = 00 the gate marked 00 is selected, and provided the chip
has been enabled, the output of the gate marked 00 will be 0 while the outputs of the
other three gates in the array are 1. A function table and a block diagram are also
shown in Figure 5.13. Symbol X/Y on the block diagram indicates that the device
converts from code X to code Y. Inputs A and B are allocated weights such that the
weighting of B is 21 while that of A is 2 ~ Hence the range of the sum of the weights is
0 to 3 and this is indicated on the block diagram by the notation 0.

It will be seen that the logic diagram of the basic decoder is identical to that of the
basic demultiplexer (see Figure 5.10) provided the data line is used to enable the
decoder. The decoder may also be regarded as a minterm generator. Each output
generates one minterm. An alternative way of looking at the decoder circuit is to regard
A and B as address signals. Each combination of A and B defines a unique address
which can access a location having that address. An example of this application occurs

Combinational logic design with M S I circuits 117

B
Select

A
. , , . , . . ,

Select

Y1

Y2

Y3

(a)

Inputs
E "'B" A
1 x x
0 0 0
0 0 1
0 1 0
0 1 1

Outputs
YO YI Y2 Y3
1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

. . . .

x = don't care
(b)

E X/Y
YO

YI

Y2 :)0
Icl

Figure 5 . 1 3 (a) Basic structure of a 2-to-4 line decoder (b) Function table (c) Block diagram

in computer memories where an address decoder is used to access data stored in an
address location identified by an address signal.

The basic decoder has only one level of logic. One n-input NAND or AND gate is
required for each of the 2 ~ output lines. As n becomes large, the fan-in of the gates used
also becomes large. For example, a 1Kbyte memory has 1024 memory locations, and using
the simple structure in Figure 5.13 the address decoder would require 1024 ten-input
AND or, alternatively, NAND gates. To alleviate the fan-in problem tree and coincident

architectures are employed (see section 5.10).
A typical example of a decoder available in the TTL family is the 74138 3-to-8 line

decoder. The gate level circuit, along with the function table, is shown in Figure 5.11.
More flexible enabling arrangements are provided on this chip in that there are three
independent enable pins. The Boolean function for enabling the chip is

En = G1 . G'2 -A . G-2-i~ G1 + G 2 A + G 2 B

To enable the gates in the array G1 = 1 and G2A = G2B = 0. The selected output then
depends upon the input combination of A, B and C. For C = 0 and B = A = 1 output
Y3 = 0 and all the other outputs are 1.

Another commonly used decoding module in the TTL family is the 74154 4,to-16
line decoder. The logic circuit of the decoder and its function table a re shown in
Figure 5.14. A decoder can be used for converting any 4-bit code which is used
to represent the decimal digits to give a decimal output. The Gray code tabulated in
Figure 5.15 can be converted to decimal by selecting the appropriate outputs .

l 18 Digital logic design

/

G1
G2

INPUTS

(le)

A B

F D

CI D

m l
l m

A

(1)
I

L
12) 1

(3) 2

---1" 141
I 3

o ['
[(e) 5
L

L

-T. ,
L

-T .
D -

----f" 11o)
�9 I 9

"-'-1" (11)
! 10

. - - - r (13)
[-~-- 11

._..f.
I 12

, - - --"-7 (15) 13
B

-.--I"
i 14

le r
!

(a)

0

15

/

> OUTPUTS

INPUTS

G1 G2 D C B A
L L L L L L

L L L L L H

L L L L H L

L L L L H H

L L L H L L

L L L H L H

L L L H H L

L L L H H H

L L H L L L

L L H L L H

L L H L H L

L L H L H H

L L H H L L

L L H H L H

L L H H H L

L L H H H H

L H X X X X

H L X X X X
H H X X X X

OUTPUTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L H H H H H H H H H H H H H H H

H L H H H H H H H H H H H H H H

H H L H H H H H H H H H H H H H

H H H L H H H H H H H H H H H H

H H H H L H H H H H H H H H H H

H H H H H L H H H H H H H H H H

H H H H H H L H H H H H H H H H

H H H H H H H L H H H H H H H H

H H H H H H H H L H H H H H H H

H H H H H H H H H L H H H H H H

H H H H H H H H H H L H H H H H

H H H H H H H H H H H L H H H H

H H H H H H H H H H H H L H H H

H H H H H H H H H H H H H L H H

H H H H H H H H H H H H H H L H

H H H H H H H H H H H H H H H L

H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H H H

H = high level, L = low level, X = irrelevant

(b)

F i g u r e 5 .14 The 74154 4-to-16 line decoder (a) Logic circuit and (b) Function table

Combinational logic design with MSI circuits 119

Dec. Gray code
digit 'D C B A

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1
4 0 1 1 0
5 1 1 1 0
6 1 1 1 1
7 1 1 0 1
8 1 1 0 0
9 0 1 0 0

74154
4/16 Y0

G1 Y1
Ga Y2

Y3
Y4
Y5
Y6
Y7
Y8
Y9

Y10

0 Y12
15 Y13

Y14
Y15

(a) (b)

(0)10
(1)10

(2)10
(9)10

(4)1o
(3)1o

:)

,,

(8)10
(7)1o
(5)10

(6)10

Figure 5.15 Gray code to decimal conversion with 74154 4-to-16 line coder (a) Code tabulation
(b) Implementation

2,~
00 0

01 4

11 x

10 8

01 11 10

1 3 2

7 6

x x x

9 x x

Figure 5.16 K-map for NBCD/
decimal conversion

There are two types of NBCD/decimal decoders
available. First, the decoder that implements the
minterm corresponding to decimal digit five, so that
(5)1o = ABCD. For the second type, the digit (5)~0 is
simplified by combining the minterm ABCD with the
adjacent 'can't happen' term ABCD so that (5)10 =
BCD, as illustrated on the K-map in Figure 5.16.
A typical example of a 4-to-10 line NBCD/decimal
decoder in the TTL family is the 7442 which rejects all
false data since it is implemented without minimisation.
For the decimal decoder that employs simplification
techniques the appearance at the input terminals of the
minterm ABCD will be recognised as (5)10 or (9)1o
depending upon the simplification.

5.10 Decoder networks

When a large decoding network is required it cannot be implemented in a single MSI
package because of the large number of pins needed. For example, a 6-to-64 line
decoder requires seventy pins for input and output in addition to those for enabling
the package and the voltage supply. The decoding range can be extended by
interconnecting decoder chips. Two possible schemes are available, (a) tree decoding
and (b) coincident or 2-dimensional decoding.

A block diagram of a 4-to- 16 line tree decoder is shown in Figure 5.17. It consists of
the interconnection of five 2-to-4 line decoders. This requires three dual 2-to-4 line
chips with four interconnections between the two levels of decoding where the select
lines in the second level of decoding are commoned. An extension of the scheme would
require extra levels of decoding and a 6-to-64 line decoder is obtained by the addition
of one extra level of decoding consisting of a bank of sixteen 2-to-4 line decoders.
The alternative approach of coincident decoding is also illustrated in Figure 5.17.
Here the 4-to-16 line decoder consists of two 2-to-4 line decoders, available on a single

120 Digital logic design

1/2 74139

1/2 74139

1Y1
Selec C 0 lY2

o F T ~

>..~ XO
>'-~ XI

>'-" X3

1/2 74139

'Sel 2Y~
c o :v2
D F 2 ~'I Enable, 1G 2/4 1Y0] ~ , (S A) ' ' 0 1Y2

(e)

1/2 74139

1/2 74139

S e l ~ 2G 2/4 2Y0 >-,., Xl_..~
2YI >-..,-. X13

L F :v~ , - - - m--~

1/274139

0 21,'2

(b)

Select
Enable

I II
2G A B

n

CO

CO

CD

CO

1/2 74139

X12

X13

)(15

Figure 5.17 (a) 4-to-16 line tree decoder (b) 4-to-16 line coincident decoder

chip, and, in addition, sixteen NOR gates. Assuming that four 2-input NOR gates are
available on a single chip, a total of five chips are needed for the implementation of this
scheme. The coincidence scheme clearly requires more chips and more interconnec-
tions than the corresponding tree decoder and as the number of inputs increases, the
superiority of the tree decoder becomes more marked.

In spite of this disadvantage, coincident decoders are widely used in conjunction
with memory arrays because the NOR gates can be incorporated in the array. The choice

Combinational logic design with MS/circuits 121

of a coincident decoder in this application leads to a significant reduction in the
number of lines to be taken to the memory array. In this example (see Figure 5.17)
the tree decoder requires 16 lines, while for the coincident arrangement only 8 lines
are needed and the gap widens significantly as the number of decoder inputs increases.
For 10 inputs, the tree decoder needs 1024 lines compared with 64 for the coincident
decoder.

5.11 T h e decoder as a minterm generator

The 16 outputs of a 4-to-16 line decoder such as the 74154 each correspond to the
inverse of one of the sixteen minterms of four Boolean variables. If A = B = C =
D = 0 the output 0 of the decoder is active low while all other outputs are 1, and
c a n be identified as m0. The decoder can generate the inverse of the 16 minterms
and can be used in conjunction with one N A N D gate to implement a Boolean
function of four variables. As an example of this application the four variable
function

f (A,B, C,D) = ~ 0, 1, 5, 8, 10, 12, 13, 15

is implemented in Figure 5.18.
The Boolean function can also be expressed in the following alternative minterm

forms:

f = mo + ml + m5 + m8 + mlo + m12 -t- m13 -t- m15

f = m 2 + m 3 + m 4 + m 6 + m 7 q- m 9 q- m l l + m l 4

f = if/2 �9 if/3 �9 if/4 �9 if/6 �9 if/7 �9 if/9 �9 f f / l l �9 if/14

The first two forms of these equations require a decoder whose output is active high
while the third form needs an active low decoder. The gates required at the decoder
outputs in these three cases are OR, NOR and AND respectively, and their con-
figuration will depend entirely on the available gate fan-in. If, for example, the
maximum available fan-in for OR gates is four, then an interconnection of three gates

Enable{ cr

74154

G1
G2

4/16

0
15

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

I

I

i
Figure 5.18 Decoder implementation of a 4-variable Boolean-function

f(A,B,C,D)

122 Digital logic design

would be needed and such a complication may well be regarded as uneconomic and
an alternative implementation of the function would then have to be sought.

5.12 Display decoding

Many devices in everyday use such as calculators, digital watches, car radios and a wide
range of measuring instruments have an illuminated decimal display. Light emitting
diode (LED) or liquid crystal display (LCD) segments provide the illuminated display
output. A single display element consists of seven segments arranged in the configura-
tion shown in Figure 5.19. In the same diagram the numerical allocations and resultant
displays for each of the 10 decimal combinations of four binary digits, after decoding,
are also shown.

LEDs emit light energy when the anode of the device is positive with respect to
its cathode. There are two possible connections, common anode and common cathode.
For the common anode connection illustrated in Figure 5.20 the seven anodes are
connected to a common voltage supply while the cathodes are controlled individually.
To illuminate a segment an active low signal is required at the cathode. For the
common cathode connection (see Figure 5.20) an active high signal on the individually
controlled anodes is required in order to activate the LEDs.

There are two types of LCD in use. Reflective LCDs use ambient light such as
sunlight or normal room light to activate the device. Back-lit LCDs use the light
generated by part of the display. These devices have gained in popularity because
of their low power consumption and are eminently suitable for battery powered
displays. However it should be pointed out that LEDs always provide a much
brighter display.

A typical example of a display decoder is the 7449 BCD/seven-segment decoder
(see Figure 5.21) which consists of an array of seven AOI gates, one for each segment.
The AOI gate is an AND/OR circuit followed by an inverter. For this reason the
inverse function for each segment appears at the outputs and can be obtained by
plotting the O's tabulated in the truth table. For segment a the O's in the column headed
a are plotted on a K-map and simplified, This then gives the inverse Boolean function
for the a segment:

a = BD + A C + ABCD

The inverse functions for the remaining six segments can be determined using the same
method. When the blanking input is held at 1 the four NAND gates are enabled.
If this input is held at 0 the NAND gates are disabled and the segment outputs are
inhibited.

' i:_ I
0 1 2 3 4 5 6 7 8 9

Figure 5.19 Segment identification and resultant numerical displays

Combinational logic design with MSI circuits
,, , , , , , , i

123

Figure 5.20 LED segment connections (a) common anode (b) common cathode

5.13 Encoder circuit principles

An encoder performs the inverse operation to that of a decoder. For an encoder having
2 n inputs there will be n outputs. Hence, for n = 2 there are four input lines and two
output lines.

A typical example of the use of an encoding circuit is illustrated in Figure 5.22 where
a number of peripherals P0, P l, P2 and P3 are serviced by a central processing unit.
Each peripheral can generate a flag when it wishes to be serviced by the CPU. The flags
from all the peripherals are ORed to generate a master flag. This signal requests the CPU
to interrupt its current activity and jump to the service routine of the interrupting peripheral.
It is then the function of the encoder to identify the peripheral whose flag has been raised.

124 Digital logic design

INPUT (7)
A

INPUTB

INPUTc (2)

INPUT (4) I~_ .
D Is ~ "

BLANKING (3)
INPUT

i

i . . .~) OUTPUT
a

(10} OUTPUT . . . , . .

b

(9) OUTPUT
C

(8) OUTPUT
d

(8) OUTPUT
e

(a)

(13) OUTPUT
f

OUTPUT
g

Dec Input
o r

Function O C B A BI
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1
BI x x x x 0

x - don't care

(b)

Output

= b c d e f g

1 1 1 1 1 1 0
0 1 1 0 0 0 0
1 1 0 1 1 0 1
1 1 1 1 0 0 1
0 1 1 0 0 1 1
1 0 1 1 0 1 1
0 0 1 1 1 1 1
1 1 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 0 0 1 1
0 0 0 1 1 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 1
1 0 0 1 0 1 1
0 0 0 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

' ~ B A o 0 01 11 10

01 ~ ~'0

11 0.~ FO - ~ .

lO

a = BD +,~C + ABCD

(c)

Figure 5.21 (a) The 7449 BCD/seven segment decoder (b) Truth table and (c) K-map for segments

The encoder truth table (see Figure 5.22) allocates one of the four combinations of
the address variables A and B to each of the peripherals. The equations for the address
variables and the master flag are

A = A + J ;
B=/, +f3

M F = fo + fl +./'2 + f3

Combinational logic design with MS/circuits 125

ro

, C P U

(a)

Inputs

fo f, f2 f3
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

Outputs

ABMF
000' i 1 1 1
1 0 1
0 1 1
0 0 1

(b)

MF

1r

Figure 5.22 (a) Block diagram for a 4-input encoding system (b) Truth table (c) Implementation

The implementation of these equations is shown in Figure 5.22.
In this arrangement the encoder is designed to identify one, and only one, of the

peripherals at any given instant. However, in practice, there is nothing to prevent two
or more peripherals requesting service at the same time. To deal with this situation
a system of priorities can be attached to the peripheral flags. When more than one flag
is raised, the CPU services the peripheral whose flag has the highest priority. When it
has been serviced, the flag is turned to the off condition and the peripheral having the
next highest priority is serviced.

A truth table for a priority encoder and the circuit implementation are shown in
Figure 5.23. The truth table assumes that the higher the subscript of the interrupting
flag, the higher its priority. The following equations are obtained from the truth table:

A =f3 +f3f2 =f3 +f2
S =f3 +f3f2A =f3 +AA

MF =fo + f l +f2 +f3

5.14 Available MSI encoders

Two MSI encoder packages are available in the '74 series'. The 74147 has nine active
low inputs, one for each of the decimal digits (1)10 to (9)10 inclusive, and encodes them
to four active low outputs D, C, B and A. A block diagram and truth table for the
package are shown in Figure 5.24. It should be observed that the digit (0)10 is available
when all the inputs are high and one immediate practical application of the device is

126 Digi tal logic design

Inputs Outputs

fo f, f2 f3 A B MF'
0 0 0 0 x x 0
x x x 1 1 1 1
x x 1 0 1 0 1
x 1 0 0 0 1 1
1 0 0 0 0 0 1

x ,, don ' t c a r e

MF

t:
t:

f , - - - - . - - - j

(a) (b)

Flru,re 5.23 (a) Truth table for a 4-input priority encoder (b) Implementation

74147
Encoder

g ~ , ,

B

0

. D

1 1 1 1 1 1 1 1 1
X X X X X X X X O
X X X X X X X O 1
X X X X X X O 1 1
X X X X X O 1 1 1
X X X X O 1 1 1 1
X X X O 1 1 1 1 1
X X 0 1 1 1 1 1 1
X 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1

1 1 1 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0

(a) (b)

Figure 5.24 The 74147 decimal/NBCD priority encoder (a) Block diagram (b) Truth table

the conversion of the ten decimal digits to the inverted form of the NBCD code.
A second practical application is when the device is used in conjunction with a
keyboard where the individual decimally identified keypads would generate an
inverted NBCD output corresponding to each decimal digit. If two keys are pressed
simultaneously the one having the higher decimal digit takes precedence.

Another practical example of an encoding circuit is the 74148 8-to-3 line priority
encoder. A logic circuit diagram and the corresponding truth table are shown in
Figure 5.25. The circuit consists of an array of four AOI gates with chip-enabling
facilities provided by an active low enable input signal El . A group select signal G S and
an enable output signal E O are also provided when the encoder is to be operated in
conjunction with other encoders. This situation will arise when the number of signals
to be encoded is greater than eight. An active low signal at the E I input ensures that all
the AND gates in the AOI array are enabled. The enable output equation is

E O = E I . O . 1 �9 2 . 3 . 4 . 5 . 6 . 7

and this signal is active low, provided all the requesting signals are high and the chip
has been enabled. The group select equation is

G S = E l + O . 1 �9 2 . 3 . 4 . 5 . 6 . 7 . E I

Combinational logic design with MS! circuits 127

EO

A1

El ~) (a)

, , , , , ,

Inpu ts

E l : 0 I 2 3 4 5 6 7
. .

I x x x x x x x x

0 1 1 1 1 1 1 1 1
0 x x x x x x x 0
0 x x x x x x 0 1
0 x x x x x 0 1 1

0 x x x x 0 1 1 1
0 x x x 0 1 1 1 1
0 x x 0 1 1 1 1 1
0 x 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1

x = don ' t care
(b)

Ou tpu ts

A2 A1 A0 GS E0

I I 1 1 1
1 1 I 1 0
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 I
1 1 0 0 1
I 1 1 0 1

Figure 5.25 The 74148 8-to-3 line priority encoder (a) Logic diagram (b) Function table

and this signal is active low provided the chip is enabled and at least one of the
requesting signals is active low.

5.15 Encoding networks

Figure 5.26 illustrates the interconnection of nine 8-to-3 line encoders, four 8-input
NAND gates and 3 NOT gates, to form a 64-to-6 line encoder network. Since the

128 Digital logic design

X63

X60

X54

74148/7

X S 5

X 4 "

X7

XO "

74148/6

74148/9

I l t l l

~ i ~ ~ i i O l ~
I I I I I
I I I I I
I I I i i
I I I I I
I I I I I ,

'""'ll I I I I I I
I I I I I I
I I I I I I
, , , , , , GS8
' ' ' ' ' ' - 6 I I I I I I
I I I I I I
I I I I I I
, , , , , , ~ 8
' ' ' '' ' A18 Z4 I I I I I I
. 0 A ~
I I I I I I ,,

I I I I I I

I I I I I I

I I I I I I
I I I I I I

I I I I I I _ _

" I , . , + v ~ Z 2
i l g3 j -

: ! - z ,

F i g u r e 5 . 2 6 A 64-to-6 line encoder network

Z 0

enable inputs EI7 and EI8 of encoders 7 and 8 are connected to ground, these chips
are permanently enabled. Assuming that X60 = 0, then E07 = 1 and encoder 6 and all
subsequent encoders at the first level of encoding are disabled. In general, the encoding
chips at this level are enabled until a chip is reached in the chain where at least one of
the requesting signals X~ = 0, then all subsequent encoders are disabled.

Assume that for encoder 7, X60 = 0 so that the input pin labelled 4 is active low and
consequently ,427 = 0 and ,417 = ,407 = 1. Since all other first level encoders are
disabled, their .40, .41 and ,42 outputs are all 1. The A27 input to g3 = 0 while all
other inputs to that gate are 1, hence Z2 = 1; for gates g2 and g l all inputs are 1, hence
Z1 = Z 0 = 0 .

Combinational logic design with M S I circuits 129

The group select signal GS7 = 0 since encoder 7 is enabled and X60 = 0. All other
group select signals on the first level encoders are 1. The input pin labelled 7 on
encoder 8 is active low, hence A28 = A 18 = A08 and after inversion of these signals
Z5 = Z4 = Z3 = 1. It follows that if X60 = 0 the encoder network output is
111100 = (60)10 .

Since one of the input signals to encoder 8 is active low, its group select signal GS8 is
low, having made a transition from 1 to 0. This group select signal will therefore give
an indication that at least one of the 64 requesting signals is active low.

If there are no active low requesting signals the 3-line outputs of all the eight first-level
encoders are high; consequently all the inputs to g l, g2 and g3 are high so that
Z0 = Z1 = Z2 = 0. Additionally, all first-level group select signals are high so that
after inversion Z3 = Z4 = Z5 = 0 and the network output is 000000.

5.16 Parity generation and checking

When data is transmitted from one location to another it is desirable to know at
the receiving end whether the received data is free of error. A simple form of
error detection can be achieved by adding an extra bit to the transmitted word.
This additional bit is called the parity bit.

The two different systems currently in use are the even and odd parity systems. In the
even parity system the parity bit added to the word to be transmitted is chosen so that
the number of l 's in the modified word are even. This is illustrated in the following
example where the 7-bit A s c I I code for the decimal digit (9)10 is 0111001. An add-
itional 0 in the most significant place is required to give even parity in the modified
word which is now written

(9)!0 = 00111001

L-~added parity bit

Alternatively, in an odd parity system, the added parity bit ensures that the modified
code word contains an odd number of l's. For the ASCII code for (9)~o the modified
codeword which will be transmitted is

(9)10 = 10111001

L--~parity bit

The truth table for a 3-bit even/odd parity generator is shown in Figure 5.27 where
D2, Dl and Do represent the data to be transmitted, and po and Pe represent the odd
and even parity bits to be generated by the parity generation circuit. The Boolean
equation for Pe extracted from the truth table is

Pe = D2D1Do + D2DIDo + D2D1Do + D2D1Do

and this equation can be manipulated algebraically to give

Pe = D2 @D1 @D0

130 Digital logic design

(a)
Iqputs Outputs

02 01 O0 Po Pe

0 0

0 0

0 1

0 1

! 0

1 0

1 I

1 I

0 I 0

1 0 1

0 0 1

I ! 0

0 0 !

I 1 0

0 I 0

I 0 I

(b)

Wrom r ~
tmnsmitter ~ 0 ~

To
receiver

Po

Figure 5.27 (a) Truth table for parity generator (b) Implementation of parity generator

From an examination of the truth table it can be seen that po is the inverse ofpe so that

Po = D2 �9 D I ~ Do

The implementation of these equations is shown in Figure 5.27. The addition of extra
data bits simply adds extra XOR terms to the above equations.

When the transmitted data arrives at the receiving end, a logic circuit is used to
check the modified data. In even and odd parity checking the output is 1 when an error
has been detected. A truth table for the two types of parity checking functions and the
implementation of these functions is shown in Figure 5.28. The parity checking
functions extracted from the truth table for the even and odd parity systems are:

Fe = D2 ~ DI ~ Do ~ pe

and

Fo - D2 ~ D i ~ Do ~ Po

As a general rule in a digital system where the transmission link is relatively short, it
may be assumed that the probability of a single-bit error is small and that of a 2-bit
error and higher order errors is extremely small. The parity checking system just
described will detect any odd number of errors, but it cannot detect an even number
of errors because such errors will not destroy the parity of the transmitted group of bits.

A practical example of a 9-bit parity generator/checker is the 74180 MSI gate circuit
shown in Figure 5.29 with its associated truth table. A tree structure of XOR and
XNOR gates is used on this package and it is left to the reader to show that the output
of the last XNOR gate in the tree is the complement of the XORing of the eight inputs
A to H. The pair of AOI gates at the output provides the facility of an additional extra
bit input which can be utilised in either the parity generation or checking modes.

Combinational logic design with MSI circuits 131

Inputs

/9o
or

D2 D1 Do p,

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1

1 1 0
1 1 1

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Outputs

F, Fo

0 1
1 0
1 0
0 1
1 0
0 1
0 1
1 0
1 0
0 1
0 1
1 0
0 1
1 0
1 0
0 1

From
transmitter

Figure 5.28

(a)

To
receiver

p, m

orpo) ~ Fo

(b)
(a) Truth table for parity-checking circuit (b) Implementation of parity checking function

The 74280 (see Figure 5.30) is a more recent 9 bit parity generator/checker which
utilises AOI gates rather than XOR or XNOR gates for implementing the parity
function and has a shorter propagation time than the 74180. For the tree structure
of the 74180 the number of logic levels required for implementation is greater than the
number required for the 74280, giving a significant difference in the propagation times
of the two devices.

Parity generation and checking for longer word lengths may also be achieved by
cascading chips. For example, the two 74280s shown in cascade in Figure 5.31 will
provide parity generation for a 17-bit word while ten 9-bit 74280s arranged in two
levels can be used for parity generator/checkers for word lengths of up to 81 bits.

5.17 Digital comparators

The basic comparison element is the XNOR coincidence gate. The output of the gate is
high, provided both inputs are either low or, alternatively, high. This is indicated in
Figure 5.32 where f = 0 if A = B = 0 or, alternatively, if A - B = 1. In practice,
comparators may be required to indicate more than equality. There are three possible

132 Digital logic design

DATA
INPUTS '~

~ A
B

G -I.M.

H-~
OOO (4)

INPUT

EVEN (3)
INPUT

Inputs Outputs

Zof 1'sat Z Z
A thru H Even Odd Even Odd

Even 1 0 1 0
Odd 1 0 0 1
Even 0 1 0 1
Odd 0 1 1 0

x 1 1 0 0
x 0 0 1 1

(a)

74180
(8)

A
(9)

- B
(10)

C
(11)

D
(12)

E
(13)

F
(1)

, G
(2)

H

(4) i Odd

(31 J Even

(s)

EVEN
OUTPUT

Figure 5.29

(6)

ODD
OUTPUT

Z Even

I: Odd

(5)

(6)

(b) (c)

The 74180 9-bit odd/even parity generator/checker (a) Gate circuit (b) Function table (c) Logic symbol

conditions at the output of a comparator circuit, one for A > B, a second for A = B
and a third for A < B. A suitable N A N D implementation for a single bit comparator
which gives an output for all the three specified conditions is illustrated in Figure 5.33.

The usual problem for a comparator is the comparison of two multi-digit words
such as A = A3A2AI and B = B3BzBI. To compare two such words it is necessary to
develop an algorithm which can be used as the basis of a hardware implementation.
Such an algorithm is:

1. Examine the most significant pair of digits. If A3 > B3 then A > B; if A3 < B3 then
A < B; if A3 = B3 no decision can be made about the relative magnitude of the two
words and the next pair of digits must be examined.

2. If A2 > B2 and A3- -B3 then A > B; if A2 < B2 and A3- -B3 then A < B; if
A3- -B3 and A2 = B2 no conclusion can yet be drawn regarding the relative
magnitudes of the two words and the last pair of digits must be examined.

3. If AI > BI,A2 = B2 and A3 - B 3 then A > B; if A] < B~,A2 = B2 and A3 = B3
then A < B; if A3 - B3, A2 = B3 and A1 = B] then A = B.

If the most significant pair of digits are equal, then
_ m

E3 -- A 3B3 -+- A 3B3

Combinational logic design with M S ! circuits 133

Figure 5 . 3 0 The 74280 9-bit odd/even parity generator/checker

, D

E

I A

B

C

7 4 2 8 0
,

Y- Even

! i';
7 4 2 8 0

, ,

1 = Even
Y- E v e n

0 = Odd

1 = Odd
Z O d d -

1 - 0 = Even

Figure 5.31 Cascading of parity generators/
checkers

BA ,,) ~) 0 f = A B*=A B

Figure 5.32 The coincidence gate

If the next most significant pair and the least
significant pair are equal, then

E2 -- AEB2 q- AEB2 a n d E1 = A1BI q- AIB1

If A = B then

E - EIE2E3 - 1

The equation for determining whether A > B is

A > B - A3B3 + E3A2B2 + E3E2A1BI

The first term in this equation A3B3 = 1 if A > B,
and if that is the case, then A > B. The second
term E3A2B2 = 1 if A 3 - B3 and A2 > B2 and if
those two conditions exist then A > B. Finally,
the third term E3 E2A 1 B1 - - 1 if A3 - B3, A2 - B2
and A1 - - B1. If those three conditions are satis-
fied then A > B.

The equation for determining whether A < B is

A < B - A3B3 + E3A2B2 + E3E2A1B1

This equation has the same form as the equation
for A > B and can be developed using the same
line of reasoning. Alternatively

A < B - E + A > B

= E . A > B

The implementation of a 3-bit comparator based
on the single bit comparator of Figure 5.33 and
using the equations developed above is shown in

134 Digital logic design

A 3 ,

A

8

a D

i _~~)r = A>B

_ A = B w

Figure 5.33 The single-bit comparator

A 2 n

>
&

A1

B1 >2

--E

Figure 5.34 The 3-bit comparator

Figure 5.34. If an Identity Comparator is all that is required then the tree structure
illustrated in Figure 5.35 will suffice.

There are a number of comparators available in the TTL family. The 7485 is
a 16-pin 4-bit magnitude comparator providing three outputs, A = B, A > B and
A < B. Facilities are provided for cascading comparator chips so that words of greater
length can be compared. The gate level circuit for the 7485 is shown in Figure 5.36
along with its function table. The logic of this circuit is based on the equations
developed for the 3-bit comparator.

For each pair of input variables an XNOR gate generates the individual equality
functions. The four equality functions and any input equality signal are ANDed
to provide the A = B output. The A > B and A < B functions are generated by two
6-wide AOI gates.

Combinational logic design with M S I circuits 135

A) D
B1

A,) D
82

t~

Figure 5.35 4-bit identity comparator

A number of different 8-bit comparators
are available in the 74 TTL family. Some,
such as the 74688, are identity comparators
and generate an active low P = Q output
when comparing the magnitudes of two
8-bit words. Others, such as the 74682,
produce active low outputs for P = Q and
P > Q. The third output P < Q is obtained
by applying the P - Q and P > Q outputs
to the inputs of a N A N D gate, as illustrated
in Figure 5.37. The small triangle pointing in
the direction of signal flow denotes that the
74682 package has amplification, that is, its
output has a higher output current available
than is usual in the MSI TTL series.
The hysteresis symbol at the inputs denotes
a package whose input characteristics
exhibit hysteresis as would be the case with
Schmitt Trigger circuits. Open-collector and

totem-pole outputs are also available in the comparator group and some chips such as
the 74886 have either one or two enable pins.

5.18 lterative circuits

An iterative network consists of a number of identical cells interconnected in a regular
manner as shown in Figure 5.38. X1, X2, Xn are termed the primary input signals
while Z1, Z2, Z~ are termed the primary output signals, al, a2, a~+l are
termed the secondary inputs or outputs depending on whether these signals are entering or
leaving a cell. The structure of an iterative circuit may be defined as one which receives
the incoming primary data in parallel form where each cell processes the incoming
primary and secondary data and generates a secondary output signal which is transmitted
to the next cell. Secondary data is transmitted along the chain of cells and the time taken
to reach steady state is determined by the delay times of the individual cells and their
interconnections. The disadvantage of this design method is the amount of hardware
required and the space it occupies. However, with the introduction of MSI and LSI
circuits, the length of the interconnections has been reduced quite dramatically.

Magnitude comparison is a possible choice for an iterative design. It will be assumed
that the two words to be compared, A and B, are to be scanned from the most
significant end to the least significant end of the words. A block diagram for the ith
cell is shown in Figure 5.39. There are two secondary signals, xi and yi, at the cell input
and X~+l and yi+l at its output. Two secondary signals are required since there are three
possible pieces of information to be transmitted along the chain which are defined by
the following combinations of those signals:

1. xiy i = O0
2. x iy i --- 01
3. x iy i - - - 10

A = B up to cell i
A > B up to cell i
A < B up to cell i

136 Digital logic design

A3 (15)

B3
(1)

~ 2 ~ 2
......._...................---.

B ~ , . . ~ jr~3B 3

A'B

B2

A>B

A 2 ~ ' ~".~/

B 2 _ . _
(14)

A<B (2)
A=B ~
A>B

A=B

A1
B1

A<B

A0 ~,v..

130 --.
(9)

(a)

Cascading Comparing
Inputs Inputs

A3 ,83 A3, B3 A3.83 A0.80 A > B A < B A , I
A 3 > ~ x x x x x
A3<8~ x x x x x
A 3 - 8 ~ A 2 > B 2 x x x x
A3=8~ A 2 < 0 2 x x x x
A3=B~ A 2 = 8 2 A 1 > 8 1 x x x
A 3 - B : A 2 - B 2 A I < B 1 x x x
A3 B~ ,8,2 B2 A I - B 1 A 0 > B 0 x x
A 3 - 8 ~ A2 , ,B2 A 1 - 8 1 A 0 < 8 0 x x
A3-11~ A 2 - B 2 A I - B 1 ,8,0-80 1 0
A3 , ,B3 A 2 - B 2 A1 , ,81 A 0 - 8 0 0 1
A 3 - 8 3 A 2 - B 2 A 1 - 8 1 A0 , ,B0 0 0

(b)

O m p u =

A > B A < B A . B
x 1
x 0
x 1
x 0
x 1
x 0
x 1
x 0
0 1
0 0
1 0

0 0
I 0
0 0
I 0
0 0
I 0
0 0
I 0
0 0
I 0
0 I

(1)

(14)
(12)

(11)

(10)

(9)
(4)

(3)
(2)

7485

A3

B3
~ A , ? .

B2
A1 A > B

B1 A=~
A0 A <
B0

A > B

A = B

A < B

(c)

(5) _

(e) _

(7) _
v

F i g u r e 5 .36 The 7485 4-bit magnitude comparator (a) Gate level circuit (b) Function table (c) Logic symbol

The K-map plotted in Figure 5.39 summarises the logical behaviour of the ith cell
for all possible combinations of the primary and secondary input signals. For example,
if xiyi = 00 and A i = 0 and B i - 1 then the secondary output signal combination
Xi+lyi+l -- 10 which will indicate to the (i + 1)th cell that A < B.

Two separate maps for X~+l and yi+l are plotted and after simplification the
following equations are obtained:

Xi+l : Xi + y i A i B i

Yi+l -- Yi 't- x i A i B i

Combinational logic design with M S ! circuits 137

(17)
(15)
(13)
(11)

(8)
(6)
(4)
(2)

(18)
(16)
(14)
(12)

(9)
(7)

i-g
(a)

74682
P7
P6
P5
P4
P3
P2
P1
P()
Q7
o~
1;15
Q4
Q3
Q2
1211

D

P

P=Q

P>Q

Q

(19) P=O

(1)[
- y

Figure 5.37 The 74682 8-bit comparator
connected to give the three outputs P= Q,
P > Q and e < Q

The first cell can be designed by assuming
that the two digits preceding the most signi-
ficant digits A and B are both O's, hence
Xlyl = 00 and

x2 - - h l B 1

Y2 = A1B2

In order to give magnitude comparison, an out-
put circuit is required. The implementation of
the ith cell and the magnitude output circuit are
shown in Figure 5.39.

The gate count for the 7485 MSI 4-bit
comparator and the iterative magnitude compara-
tors is identical. However, the number of logic
levels needed for the iterative comparator
is more than twice the number needed
for the 7485 and consequently there would
be a significant difference in the propagation

*'-1-1
lz,

I x=

Cell
2

lz.

l

Figure 5.38 Structure of an iterative circuit

an+l

times for the two circuits due to the ripple effect in the iterative circuit. For
this reason in practical situations the iterative comparator design is less likely to
be used.

It is also possible to use the same technique to design an iterative adder. A typical
cell has the two digits to be added as the primary inputs and the sum would
appear at the primary outputs. The carry may have to travel the whole length of
the chain of single-bit adder cells and a long delay occurs before steady state
is reached. To eliminate the delay 4-bit adders are now provided with carry look-
ahead circuits.

Iteration can, however, be used in a wider sense of the word. If, for example, it is
required to compare the magnitude of two 16-bit words, then four 4-bit 7485 com-
parators have to be connected in cascade. A cumulative delay due to the delays of the
individual 4-bit packages will appear at the output of the last package in the cascade.
Similarly, 16-bit addition requires four 4-bit 74283s connected in cascade thus forming
an iterative array where the delay at the output is the sum of the individual delays of
each 4-bit package.

138 Digital logic design

Xi ~1 IXi+I

y, ZI Ce"' lyi+l

(a)

O0 01 11 10

O0 O0 10 O0 01

01 01 01 01 01

11 XX XX XX XX

10 10 10 10 10

xi.1 Yi.1

(b)

xlyl• &

oo U
11 10

01

" Ix x x x~
,o ~ i

t | ,

Xi.1
(c)

xlyi• &
O0 01 11 10

oo

o, 9 1 1L~
1 1 ~ x x x~

10

A,

Xn.1

Yn.1

xi

B,

(d)

--• A>B

~ A=B

[- ~ ' ~ ~ A < B

(e)

Figure 5.39 Iterative Word Comparator (a) ith cell (b) joint map for secondary signal output (c) K-map plots for
xi+ t and Yi+ ! (d) cell implementation (e) magnitude outputs

Problems

5.1 Implement the following 3-variable Boolean functions using 4-input multiplexers:

(a) f = ~ 0, 2, 3, 5, 7, control variables A and B

(b) f = ~ 1, 3, 4, 6, 7, control variables B and C

(c) f = ~ 0, 2, 4, 5, 6, 7, control variables A and C

5.2 Implement the following 4-variable Boolean functions using 4-input multiplexers
and N A N D gates:

(a) f = ~ 0, 1, 3, 5, 6, 8, 9, 11, 12, 13, control variables A and B

(b) f = ~ 0, 7, 8, 9, 10, 11, 15, control variables B and C

Combinational logic design with MSI circuits 139

(c) f = ~ 0, 1, 3, 5, 9, 10, 11, 13, 14, 15, control variables C and D

(d) f = ~ 1, 8, 9, 12, 13, 14, 15, control variables A and D

5.3 Implement the following 5-variable Boolean functions using 4-input multi-
plexers:

(a) f = ~ 0, 1, 2, 3, 4, 8, 9, 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 29, 30, 31

(b) f = ~ 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 30, 31

5.4 Implement the following 6-variable Boolean function using

(a) four-input multiplexers and NAND gates, and

(b) eight-input multiplexers and 4-input multiplexers.

f =)-'~ 0, 1, 3, 5, 7, 12, 14, 16, 18, 20, 22, 26, 28, 30, 32, 34, 37, 39, 41, 43, 45,

50, 51, 53, 60, 61, 62, 63.

5.5 Design a circuit for converting from the 8421 code to the 5421 code and implement
the design with 4-to-1 multiplexers.

5.6 Design an NBCD to seven-segment decoder which is able to accept decimal
information expressed in NBCD and generates outputs which select segments
in the seven-segment indicator for displaying the appropriate decimal digit.
The arrangement of the seven segments is shown in Figure P5.6(a) and the
segmental representation of each decimal digit is shown in Figure P5.6(b).
Implement the design using (a) NAND gates, (b) NOR gates and (c) 8-to-1
multiplexers.

(a)
a

o/ /c
d

(b)

I - I I I - - I I I / ' I
I I i

IF-///
I I I /

Figure P5.6 (a) Arrangement of segments (b) Segmental representation of decimal digits

5.7 A combinational circuit is defined by the equations

f l = .4B + , 4 B C

f 2 = A + B + C

f3 = a B + a B

Design a circuit which will implement these three equations using a decoder and
NAND gates external to the decoder.

5.8 The tabulation below gives details of four frequently used codes. Using 4-to-10 line
decoders and external logic, design three code converters for converting from 8421
to each of the other three codes.

140 Digital logic design

o

Binary number 8421 2421 XS3 XS3 Gray

0000 0 0
0001 1 1
0010 2 2 0
0011 3 3 0
0100 4 4 1 4
0101 5 2 3
0110 6 3 1
0111 7 4 2
1000 8 5
1001 9 6
1010 7 9
1011 5 8
1100 6 9 5
1101 7 6
1110 8 8
1111 9 7

5.9 A combinational circuit is defined by the equations

f l = A B C + ,4BC

f 2 = A + B + C + D

f3 = A + B + CD + AD

f4 = ,4 CD + ,4 CD + BCD + BCD

Design a circuit which will implement these four equations using a decoder with
NAND gates external to the decoder.

5.10 Design a 5-to-32 line decoder. The decoders available are:

(1) 2-to-4 line decoder, active low outputs and a single active low enable.

(2) 3-to-8 line decoder, active low outputs with two active low and one active
high enable.

5.11 Implement the following 4-variable functions using a decoder having active low
outputs and NAND gates:

fl =)-~ 0, 1, 3,9, 12, 14

f2 = ~~ 5, 9, 10, 12, 13, 15

j~ = I-I0, 3, 8,11,12,15

f4 = I-[1,2, 7, 8,11,12,14

5.12 Develop a 3-to-8 line decoder using NOR gates only, and draw its logic diagram.

5.13 Develop a circuit that resolves priority among eight active low flag inputs f0 to f7
where~ has highest priority. The address outputs of the encoder should be active
high.

Combinational logic design with MSI circuits 141

5.14 Draw the logic diagram for an 8-to-3 line encoder using just three 4-input N A N D
gates.

5.15 Develop a set of equations which can be used for implementing a circuit that
compares two 4-bit words A and B and gives an active high output for each of the
three possible conditions, A > B, A = B and A < B.

5.16 Design an iterative circuit with the aid of a space state diagram that will give an
output Z = 1 when three consecutive O's have occurred in a string of binary
digits.

5.17 Design an iterative circuit that will give an output Z = 1 when the sequence 010
occurs in a string of 10 binary digits that appear in parallel form.

6 Latches and flip-flops

6.1 Introduction

A digital logic circuit or system is usually made up of combinational elements such as
N A N D and NOR gates and memory elements which may, for example, be discrete
flip-flops or latches. Alternatively, an interconnection of these devices may be found in
a shift register, a counter, or in a variety of MSI and LSI packages.

With the introduction of memory elements as components in digital systems, an
additional variable, time, has been introduced and must be taken into account when
designing digital systems. In effect, logic operations can be performed sequentially,
information being stored in a memory element and released at some specified instant
later so that it can take part in a controlled combinational operation. Systems operat-
ing in this way are called sequentially operated systems.

There has always been considerable confusion over the use of the terms latch andflip-
flop. It will be assumed in this book that a flip-flop is a device which changes its state at
times when a change is taking place in the clock signal. The flip-flop is said to be either
leading edge or trailing edge triggered, the edges referred to being those of the clock
signal. On the other hand an asynchronous latch, without a control line, is continuously
monitoring the input signals and changes its state at times when an input signal is
changing. A synchronous latch is also continuously monitoring the input signals but in
this case a change of state at the output can only occur when the control signal is active.
In both cases the latch is driven by events, but for the synchronous latch the control
signal has to be high before the input can be translated into a change at the output.

6.2 The bistable element

By cross coupling a pair of N A N D gates which are both connected as inverters,
a bistable element is formed. There are two possible states for the element: (a) Q = 0,
Q = 1 and (b) Q = 1, Q = 0 (see Figure 6.1). Initially, when the circuit is switched on,

(a) (b)
1

i ~
I,

1
�9 0 - 1

0 --,,,

0 1 0

Figure 6.1 (a) and (b) The two states of a pair of cross-coupled NAND gates

Latches and flip-flops 143

Your

t

Figure 6.2 Voltage transfer
characteristic of a gate. A Ideal,
B practical

Volr f
metastable

..V.01 One)"

, , , i ,

the bistable element will take up one of these two states
and without external intervention will remain in that
state indefinitely, or until the power has been removed.
Figure 6.2 shows the ideal voltage transfer characteristic
A of a logic gate and it will be seen that there is a sudden
change from 0 to 1 midway between logic 0 and logic 1.
In practice, the gate characteristic will be similar to that
shown in B.

The bistable element shown in Figure 6.1 is made up of
two such gates whose characteristics are assumed to be
identical. The two characteristics can be plotted on the

same axes such that the Vgl(out) and Vg2(in)
axes are coincident. Similarly, the Vs,(in)
and the Vg2(out) axes are also coincident
(see Figure 6.3). The two characteristic curves
intersect at three points. Two of the points of
intersection are the stable states referred to
previously and are defined by Vgl(~) = Vg2(outs)

Voaom) and Vg2(ins)= Vgl(outs).
The third point of intersection defines a

metastable state which lies between the logic
0 and the logic 1 voltages. If the circuit should
enter this state it can easily be shown that a
small interfering noise voltage will immedi-
ately drive the circuit back to one of its two

Vo, ,

Figure 6.3 The stable and metastable points
of a pair of cross-coupled NAND gates

stable states. The state to which it will return depends upon the direction of the noise
voltage relative to the metastable voltage. If, on the other hand, a small noise voltage
occurs when the circuit is in either of its two stable states, then it will return to its
original state.

6.3 The SR latch

The SR latch is shown symbolically in Figure 6.4(a), the set and reset inputs being
labelled S and R respectively, and the complementary outputs Q and Q respectively.
The state table for the latch is shown in Figure 6.4(b). In the first three columns of the
table all combinations of the present states of S, R, and Q are tabulated, i.e. their states
at time t. The fourth column is a tabulation of the next state of the latch, Q at time
t+6 t .

Examination of the table shows that a change of the state of the latch occurs in rows
4 and 5 only. In row 4 the latch is being reset or turned off, i.e. its state is changing
from 1 to 0 as a consequence of the application of a reset input R = 1. In row 5 the
latch is being set or turned on, i.e. its state is changing from 0 to 1 as a result of the
application of a set input S = 1. For rows 1 and 2, S = R = 0, and there is no change of
state. On row 3, R = 1 and this signal in normal circumstances would turn the latch off
but Q = 0 and the signal R = 1 leaves the state unchanged. On row 6, S = 1 and this
signal would normally turn the latch on, but Q = 1 and the latch is already turned on,
and consequently there will be no further change of state. Finally, if S = R = 1 both

144 Digital logic design

(a)
S Q

R C3

(c) ~R

I~176
RtQ '

~ O 0 01 11 10

0 0 (~ 0 0

lO x x)
(d) O~'

(b)

Row

Present state

g ~ Q'

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1}
1 1 0

Next
state

Q,~,

0
1
0
0
1
1

Forbiddq ,n
combin~

I

Turn-off
Turn-on

Flpre 6.4 The SR latch (a) Symbolic representation (b) State table (c) External state diagram (d) K-map plot

outputs Q and Q are 1, and in general this is regarded as invalid circuit operation. For
this reason the condition S = R = 1 is a forbidden input condition, this restriction
being expressed algebraically by requiring S R = O.

From the state table the turn-on condition is given by

Turn-on = S R Q

and the turn-off condition is given by

Turn-off = S R Q

With the aid of these two equations the external state diagram can be constructed and
is shown in Figure 6.4(c). The transition from Q = 0 to Q = 1 is made when S R = 1
and the reverse transition occurs when S R = 1.

Any change appearing at the output of the latch does so immediately after a change
has taken place at the input and is delayed only by the propagation time of the gates
that make up the latch. The characteristic equation of the latch is obtained by plotting
those combinations for which Qt+6, = 1 in conjunction with the 'can't happen' terms
on the K-map shown in Figure 6.4(d). After simplification:

Qt+6t = (S + ~Q)t

The implementation of this equation using NAND gates is shown in Figure 6.5(a) and
appears in more conventional form in Figure 6.5(b).

It should be observed that the characteristic equation is a Boolean equation but with
a difference from the combinational equations that have been seen hitherto. Time has
been introduced into the equation and the value of Q on the fight-hand side of the
equation may well be different from the value of Q on the left-hand side simply because
these two values of Q are being observed at different times.

Simplifying the O's and 'can't happen' terms in Figure 6.4(d) gives the simplest form
of the complementary function. From the map:

Q'+e' = (,.qQ + R)'

Latches and flip-flops 145

I1

" D

I
1 1 �9

S , ~ S O

o

(a) 1 (b)

Figure 6.5 (a) NAND implementation of the SR latch (b) the conventional representation

and inverting this function

Qt+6t = (~Q + R)t

at+~t = [(s + Q)R] t

This is the second form of the characteristic equation expressed as a product of sums
and is implemented with N O R gates in Figure 6.6(a), The more conventional repre-
sentation is shown in Figure 6.6(b).

(a)

I

S
m , Q

R = Q

(b)

S t R t

0 0
0 1
1 0
1 1

Qt~t

No Change
0
1

Forbidden

(c)

Figure 6.6 (a) NOR gate representation of the SR latch (b) the conventional representation (c) state table

Qt Qt.~t S R

0 0 0 X
o I ' 1 o
I 0 0 I
I I X 0

Figure 6.7 The steering
table for the SR latch

The behaviour of the SR latch can be described in a slightly
different way by means of the steering table shown in Figure 6.7.
This table shows every possible output transition which can
occur in the first two columns, including 0 ~ 0 and 1 ~ 1 both
of which are regarded as transitions, while the last two columns
give the values o f S and R which will produce these transitions.
For example, in the first row the 0 ~ 0 transition will occur
providing S = 0 and R = 0 or 1. Since R can be either 0 or 1

this is indicated in the R column by the symbol X. For the second row the 0 ~ 1
transition is generated if S = 1. Since S and R cannot simultaneously be 1, it
follows that R = 0. The entries for the other two rows can be determined in a similar
fashion.

146 Digital logic design

1 , ;
So J ' ~ J~'--~, J,

1 [' I; ! : !,
! i i I I

, ~-lll, l,II I[, R 0 . " " ' . J r ' t , ' - ' _ ' '
o o

Figure 6.8 SR latch timing diagram

An ideal timing diagram for the SR latch is shown in
Figure 6.8 where it is assumed that the changes in S, R
and Q are instantaneous. Propagation delays are
shown on the diagram and also arrows indicating those
output transitions caused by a specified input tran-
sition. For S = R = 1 both Q and Q take the same

logic level but when one of the inputs is returned to 0 the latch returns to its normal
complementary behaviour.

If gates gl and g2 are removed from the gate circuit shown in Figure 6.5(b) the SR
latch is modified and becomes an SR latch. The stable condition for this latch is
S = R = 1, and the forbidden state is S = R = 0. If, in the modified circuit, Q = 0,

then S must make a transition from 1 to 0 to set the latch.

sb
$ 0

R 0

Figure 6.9 SR latch with AND
function for the set inputs

Conversely, if Q = 1, R must make a 1 to 0 transition in
order to reset the latch.

Latches such as the 74279 are also available with more
inputs. A typical example is shown in Figure 6.9 where
there is a choice of two set inputs. The set function is equal
to the AND of the two inputs S~ and Sb.

6.4 The controlled SR latch

By means of the simple modification shown in Figure 6.10(a), the transparency of the
latch can be controlled by the signal G. If G = 0, the outputs of gates gl and g2 will
always be 1, irrespective of the present values of S and R, or of any changes which may
occur in either of these two signals. When G makes a transition from 0 ~ 1, gl and g2
are enabled and the latch becomes active. The state of the signals S and R at this time,
or any subsequent 0 ~ 1 transitions of these signals during the active period, have
an immediate effect on the output of the latch. A timing diagram illustrating this
controlled transparency is shown in Figure 6.10(b). The inputs affected by control

$
-

(s}

O'o ,! , ,I ,
l J u , '

I I , ,

I I

1 i
I _

1 " �9

~] I ,
(b}

! i I [__

I !

' I ' I I

Figure 6.10 (a) The controlled SR latch and (b) its timing diagram

Latches and flip-flops 147

signal G are termed synchronous inputs and a latch operated with this type of control is
termed a gated latch.

6.5 The controlled D latch

If an inverter is connected from the S input line to the R input of a controlled SR latch
as shown in Figure 6.11 (a), the circuit becomes a controlled D latch, and the symbolic
representation of this modified latch is shown in Figure 6.1 l(b). Making this con-
nection results in a modification of the SR state diagram. Since S and R can never
be simultaneously 1 or 0, the first two rows and the last two rows of the SR state table
can be deleted. As there is no independent R signal, the R column can also be deleted
and the S column becomes the D column. The modified state table is shown in
Figure 6.11 (c) and the characteristic equation may be written as:

Qt+~t = (DO_. + DQ) t= D t

When the latch is enabled by the control signal G, it takes up the present state of the
input signal D, delayed only by the propagation time of the latch. The external state
diagram is shown in Figure 6.1 l(d) and a timing diagram for the latch appears in
Figure 6.11 (e). Latching points are shown at X, Y and Z. At these points the present
state of Q is latched and cannot change until G makes a 0 ~ 1 transition again.

The controlled D latch has the advantage that it only requires one data input and
there is no input condition that has to be avoided. It is also possible to have D latches

i
(a) (b)

Dt 0 t Qt+~

o o o

o 1
1 1 1

(c)

DG

o . o F L

(d)

I ,,F--!. I " !
i

1 i Oo ! l_J] i,,l__J ii! I i i i ! �9 !

' i ' n Oo I _Ix .~ VI: ' IZ

(e)

Figure 6.11 (a) The controlled D latch (b) Symbolic representation (c) State table (d) External state diagram
(e) Timing diagram

148 Digital logic design

Present Next
state state

d d d d "~'

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

O0 01 11 10

U,c

(a) (b)

Figure 6.12 Controlled D Latch (a) full state diagram (b) K-map plot

with more inputs and the most common type is the dual port latch which has two D
inputs and two control signals G~ and G2. Clearly the two control signals cannot
simultaneously be 1.

The state table developed in Figure 6.1 l(c) does not take into account the action
of the control signal G. A revised form of this table is shown in Figure 6.12(a) and
a K-map plot of Qt+6t appears in Figure 6.12(b). This leads to the following modified
characteristic equation:

Qt+~t = (GQ + OG)'

Since there are two l's in adjacent cells on the K-map, a static hazard is present in this
K-map (see Chapter 9). To eliminate the hazard a third term DQ is added to cover the
adjacent l's, and the hazard-free characteristic equation of the controlled D latch
follows below:

Qt+6t = (GQ + DG + DQ) t

6.6 Latch timing parameters

There are three important timing parameters to be considered when designing circuits
containing controlled latches:

Set-up time, t~,. The time interval preceding the deactivating transition of the
control signal G during which the signal input must be maintained to ensure that it
will be latched correctly,

Hold time, th. The time interval following the deactivating transition of the control
signal G for which the input has to be maintained to ensure its latching.

Control pulse width, tp. The time interval during which the control signal G is active.
The above timing parameters are illustrated in Figure 6.13. Other delays to be

considered by the designer are the propagation delays defined earlier in Chapter 4.
Satisfying the hold and set-up times ensures that a latch input change provides

a stable output state before the next input change occurs. This is of significant
importance since latches are used in circuits that operate in the fundamental mode.
This mode of operation requires that further input changes will not take place until
a stable state has been reached.

Latches and flip-flops 149

1 ,
!

!
I
!
!

!
I

~ t p ~

I]
I
I
I
I

I
Figure 6.13 Set-up time and hold time

6.7 The JK flip-flop

The latch circuits previously described are not suitable for operation in synchronous
sequential circuits because of their transparency. For synchronous circuits a clock
signal is provided which governs the time at which the outputs of the memory elements
are allowed to change state. In a synchronous circuit, flip-flops are used as the basic
memory element, a typical example being the JKFF. Unlike latches, they only respond
to a transition on a clock input or to a change in an asynchronous input such as Clear.

The symbolic representation of the JKFF is shown in Figure 6.14(a) and the state
table describing its logical operation is in Figure 6.14(b). The logical operation of this

(a)

J ' S
O

Ck

K R
O

(c)
KtOt

j t ~ O0 01 11 10

o 71
,3)U ,C

Q~t

(d)

KJ"I,

(el

J l~ Ot O~t
, ,

I 0 0 0 0

2 0 0 I I

3 0 I 0 0

oJ = , (~ - - ~ - - ~ ' ; , o

" 6 I 0 I I

70 ! o)~
. Q_ . -7 ? ; . _ .

T u r n - o f f
/

0 0 0 X

0 I I X

I 0 X I
I I X 0

(b)

(f)

Figure 6.14 The JK flip-flop (a) symbolic representation (b) state table (c) representation of JK flip-flop by an
SR latch and two AND gates (d) K-map plot of Q,+6t (e) state diagram (f) steering table

150 Digital logic design

flip-flop differs in one respect from that of the SR latch in that it is allowable for J and K
to be simultaneously equal to 1. When J = K = 1, the flip-flop toggles, i.e. in row 7
the flip-flop changes state from 0 to 1, while in row 8 the converse action takes place.
In rows 4 and 5 normal reset and set operations take place, as described for the SR
latch in section 6.3.

An examination of the state table shows that the flip-flop is turned on in rows 5 and 7,
while it is turned off in rows 4 and 8. The turn on condition for Q is

S = J K Q + JKQ

= J Q

The turn off condition for Q is

R = J KQ + JKQ

= KQ

These two equations indicate that a JK flip-flop may be regarded as an SR latch
preceded by two AND gates which implement the turn-on and turn-off functions
respectively, as illustrated in Figure 6.14(c).

The characteristic equation of the JK flip-flop is obtained by plotting the present
state conditions on the K-map shown in Figure 6.14(d). After simplification, the
characteristic equation can be written as

Qt+~t = (JO_. + KQ)

The state diagram describing the terminal behaviour of the flip-flop is shown in
Figure 6.14(e). Assuming that the flip-flop is clocked and is presently in the state
Q = 0 with J = 1 and Ck changing from 0 to 1, it makes a transition to the state Q = 1.
Similarly, in the state Q = 1 with K = 1 and Ck changing from 0 to 1 it makes
a transition to Q = 0.

A steering table for the JK flip-flop derived from the state stable is shown in
Figure 6.14(f). Comparing the steering table of the SR latch and the JK flip-flop in
Figures 6.7 and 6.14(f), it will be noticed that the JK flip-flop has more 'X' or 'don't
care' input conditions. In practice, the increased number of 'don't care' terms leads to
simpler combinational logic when designing a sequential logic circuit.

A JK flip-flop can be implemented by connecting the output of two AND gates in
Figure 6.14(c) to the S and R inputs of the controlled latch shown in Figure 6.10(a).
The Q and Q outputs of this latch and its clock connections are fed to the inputs of the
two AND gates in conjunction with the J and K inputs, as shown in Figure 6.15(a).
Notice that the AND gates are formed from two pairs of NAND gates in cascade,
namely g5 and g7, and g6 and g8. Clearly, gates g7 and gl, and gates g8 and g2, give
a double inversion and are redundant, thus reducing the JKFF to an array of four
gates only, as shown in Figure 6.15(b).

As in the case of the controlled latches described earlier in this chapter, the flip-flop is
disabled when Ck = 0 and is active when Ck = 1. Unfortunately, the connection
shown in Figure 6.15(b) exhibits instability when J = K = 1 and Ck = 1 due to the
feedback of the complementary output signals to the input. The state diagram indi-
cates that under these conditions the Q output is oscillatory and will remain so until
such time as the Ck makes a 1 ~ 0 transition when the clock is disabled.

Latches and flip-flops 151

(a)

ck 11 " . 11 " . ~ ~ , , . ~

(b)

Ck - [

J-
Figure 6.15 (a) NAND implementation of JK flipflop and (b) its reduced form

6.8 The master / s lave J K fl ip-flop

In order to overcome the difficulties described in the previous section, a master/slave
JKFF can be used. It consists of two SR latches, the master and the slave, connected in
cascade, as shown in Figure 6.16(a). The master is clocked in the normal way, while the
clock signal to the slave is inverted. Assuming that changes in the J and K signals are
only allowed to occur when the clock is low, the master then being disabled, changes in
its output will take place on the rising edge of the clock pulse and these changes are
transmitted to the input of the slave. However, no change can occur at the output of
the slave until the rising edge of the inverted clock pulse, which is the trailing edge of the

J ~

K-~-,

I ,' M a s t e r " : ,
I I=,~ , ~ ,
I I

I I
I 1"
I I I

S l a v e k
I
I
!

' 0
J - . ,

I
I
I
I - - ,Q
I
I
!
I
I

(a)

F-LF] n C k 0
1 a a l ,

J ' ' I ' ' J o ' ' " "
I I I I

I I I -

K 0 ' ' I; ; I
i i i i

J I 1 ',I: , I ,
t : ~ O , , o ,

1 "I " "I 0 0 _ . _ , ,

(b)

vL
I i i i ! i

I ' ' ' ' ' ' I I I I I I I
I I I I I I

I " " " ' " ' '1 I I I I I I
I I I I I I

' I ' ' I ' : I : I I I I
, I I ~ I

I I I

:1 :L_._J

KJ't o.o o
jrt

ic)

Figure 6.16 (a) The master~slave JK flip-flop (b) The timing diagram (c) The external state diagram

152 Digital logic design

clock pulse. Consequently changes in Q and Q which are fed back to the input of the
master do not take place until the trailing edge of the clock pulse arrives. In terms of
the state diagram shown in Figure 6.16(c), when J K = 1, the transition of Q from
0 ---} 1 is made on the trailing edge of the clock pulse. The flip-flop will remain in that
state until the trailing edge of the next clock pulse when the reverse transition will take
place. The flip-flop is then said to be operating in a toggling mode which is analogous
to the unstable oscillatory condition described earlier. However, the toggling of Q is
now controlled while the condition J = K = 1 is maintained, and the flip-flop will
toggle on the trailing edge of each successive clock pulse. Timing diagrams for the
master/slave JKFF are given in Figure 6.16(b).

6.9 Asynchronous controls (direct preset and clear)

As well as the J, K and Ck inputs a master/slave JKFF may have one or two additional
controls which allow both the master and the slave to assume one of their two states
irrespective of whether Ck - 0 or 1. These asynchronous controls are usually called
preset and clear. Most commercially available flip-flops are provided with a clear
control whereas the preset control is not quite as common. The operation of these
controls is described in the table shown in Figure 6.17(a) and a circuit including these
controls appears in Figure 6.17(b).

With both controls at 0 they are inactive, and the flip-flop is under the control of J,
K and Ck. If Cl = 1 and Pr = 0 both master and slave are cleared so that Qm = Q = o.
If Cl = 0 and Pr = 1 the flip-flop is preset and Qm - Q = 1. Active high signals on the
Pr and CI lines will override signals on the J and K lines. These signals are normally only
used during the asynchronous periods when the clock is low. Typically, the clear
control might be used to clear all the flip-flops in an array when the power is first
switched on.

cI Pr O

Forbidden 1 1
Clear 1 0 0

Preset 0 1 1
Enable 0 0 X

Pr

Ck

C/

(a)

r

(b)

Figure 6.1-7 (a) Pr and CI control tabulation (b) Master~Slave JK flip-flop with Pr and CI controls �9

Latches and flip-flops 153

6.10 l's and O's catching

Although the uncontrolled toggling has been eliminated by the master/slave con-
nection, unfortunately the master/slave JK flip-flop exhibits another difficulty which
may lead to faulty circuit operation in the presence of noise spikes. This phenomenon
is termed 1 's or O's catching.

In practice the JKFF may be in the hold condition with J = K = 0 and the outputs
of the master and the slave Qm = Qs = 0; then, when the clock goes high, the master is
enabled. If now a positive going noise spike appears at the J input, Qm makes
a transition from 0 ~ 1 and on the trailing edge of the same clock pulse Q~ also makes
a 0 --, 1 transition. This spurious transition is referred to as l's catching. An example
of l's catching is illustrated in Figure 6.16. Similarly a 1 --, 0 transition will be made by
Qs if initially J = K = 0 and a positive going spike appears at the K input when the
clock is high. Such a transition is referred to as O's catching, and is also illustrated in
Figure 6.18.

1
Ck

0

1
CE

0

1
J

0

1
K

0

noise spike

1

0

1
o.

0

Figure 6.18 Example of 1 's and O's catching caused by noise spikes on the J and K lines

6.11 The master/slave SR flip-flop

Figure 6.19 Master~slave SR flip-flop

It is also possible to construct a master/slave SR
flip-flop from two SR latches connected in cascade
as shown in Figure 6.19. In practice there is very
little application for this device and it has been
largely superseded in the manufacturers' catalogues
by the master/slave JK flip-flop.

The master/slave SRFF, unlike the SR latch and
the controlled SR latch, is no longer transparent.
Any change at the output of the slave cannot take

154 Digital logic design

place until the trailing edge of a clock pulse. However, like the JKFF, faulty operation
may occur due to l's and O's catching,

6.12 The edge- tr iggered D fl ip-fl0p

A negative-edge triggered D type master/slave flip-flop consists of a pair of D-latches
connected, as shown in Figure 6.20(a). The master follows the D input while the clock is
high, and latches the value of the input at the output of the master on the trailing edge
of the clock pulse. The master is now disabled and will remain so until the clock goes
high again. When the clock goes low the inverted clock signal at the clock input of the
slave enables it, and the output of the master is transferred to the output of the slave.
When the clock next goes high the slave is disabled and will remain so until the clock
goes low again. Edge-triggering is indicated on the symbolic diagram in Figure 6.20(b)
by the triangle at the clock input. This triangle is termed a dynamic input indicator.
Timing diagrams describing the behaviour are shown in Figure 6.20(c).

m~m m ~ m o m m m m m m o m m | a m m I p Im m | m m m m | m m m m m | m m m m | |

D ! i ii

o i ;
'

o o D
I !

I

I I
O

~ . | - !

1 C~o I i l-I n
, , I [

'_1; : - I : ' D 0 o o

! I !
1 I O ~

~ : i : i1!

' il :1 O o

(a) (b)

, I �9 I I I

O I I
I I I I
I I I I

!l : il ', | _n

! I

il !t_
(c)

ckI
(

~.j (o)

Figure 6.20 Master/slave D-type flip-flip (a) Negative-edge triggered (b) Symblic representation
(c) Timing diagram (d) Positive-edge triggered (e) Symbolic diagram

Latches and flip-flops 155

The circuit of Figure of 6.20(a) can be modified to provide leading-edge triggering
by including a second inverter in the clock line [see Figure 6.20(d)]. The corresponding
symbolic diagram is shown in Figure 6.20(e).

The problem of l 's and O's catching does not arise with this type of flip-flop.
Assuming a negative-edge triggered device and that the leading edge of a positive
going noise spike occurs when Qm = 0 and the master clock Ck = 1, then the master
latch will be set to 1. However, on the trailing edge of the spike, the master clock still
being high, the master latch will be reset to 0 before the slave latch is enabled by the
inverted clock signal.

An alternative configuration of a D F F that can operate in noisy conditions because
of data lockout at the input has a wide range of applications. The flip-flop, which is
leading-edge triggered, consists of three pairs of cross-coupled N A N D gates, each pair
constituting a basic Sf(latch, of the type shown in Figure 6.21(a). The latch is in a
stable state when S = k = 1, Q 0 and Q = 1. To change the state of the flip-flop
must make a 1 ~ 0 transition and this action will set the flip-flop to Q = 1 as shown in
the diagram.

The three latches are interconnected as shown in Figure 6.21(b), with gl and g2 com-
prising one latch while g3 and g4 comprise a second latch. The output latch is formed by

m o

gates g5 and g6. In order to maintain the output latch in a stable state, both S and R
must be held at 1 and this is achieved when the clock Ck = 0 since the outputs of g2
and g3 are then 1. If additionally D = 0, then the remaining signals at different parts of
the circuit can easily be determined, and they have been inserted in Figure 6.21 (b).

When the data D is changed from 0 ---+ 1 during the asynchronous period then the
output of g4 changes from 1 ~ 0 which initiates a 0 ~ 1 transition at the output of gl
and that change is transferred to the input of g2 as shown in Figure 6.21 (b). The time
delay before this change occurs is equal to the sum of the gate delays g4 and g~ and is
the set-up time for the flip-flop. The inference is that there should be no change in Ck
until after the elapse of the set-up time.

After the set-up time, the clock is allowed to go high, and as a consequence the
output of g2, S, makes a 1 ~ 0 transition. The change in S initiates a change of state in
the output latch and Q makes a 0 ~ 1 transition followed by a 1 ~ 0 transition in Q.
It should be noticed that there is no change in /~ as a consequence of the clock
going high. This is because the lower input of g3 made a 1 --+ 0 transition during the

m

set-up time. The time taken for S to change 1 ---+ 0 is the hold time and is equal to the
gate delay of g2. It is essential that there should be no change in D during this period.
The changes taking place in the circuit after the clock transition from 0 ~ 1 are
recorded in Figure 6.21 (c).

If a change in D from 1 ~ 0 takes place after the hold time has elapsed and while
the clock is still high, there will be no further change in the flip-flop output. The con-
sequence of such a transition is that the output of g4 makes a 0 ~ 1 transition which
is transferred to one of the inputs of both gl and g3 withoutaffecting their outputs.
Hence S and /~ remain unchanged, as do the outputs Q and Q of the flip-flop.

The set-up and hold times represent important timing constraints which have some
influence on the maximum clock frequency at which the device can be operated.
Additionally, if these two factors are not taken into consideration during the circuit
design stage, data may be missed, and required transitions may not take place. It is also
possible" to have transient outputs, referred to as partial sets and resets. When these
occur, a change of state has been initiated, but before it has been completed

156 Dig i ta l logic design

1---0
S

(a)

1--.'0
0~1

= Q = 0---1

Q = 1---0

1 1~ ~ Q=O

1 ~ 4 ~ =1

0---1
D--- - 1--,'0

(b)

Ck ~.-.L-- I ,

~ O
0---1

1 1-'0

(c)
- - _

Figure 6.21 (a) The basic SR flip-flop (b) Edge triggered flip-flop. The diagram shows the effect of a 0 --, 1
transition on the D line (c) Effect of a 0 ---, 1 transition on the clock line

the flip-flop returns to its original state. Alternatively, the flip-flop may enter the
metastable state and stay there for a time which cannot be precisely defined.

In general edge-triggered DFFs take up less space on a silicon chip than the edge-
triggered JKFF and for this reason are the most widely used of the various flip-flops

Latches and flip-flops 157

described in this chapter. Furthermore, the DFF having a single data input is easier to
program.

6.13 The edge-triggered JK flip-flop

The edge-triggered DFF described in the previous section can be modified to
provide an edge-triggered JKFF which eliminates the problem of l 's and O's catch-
ing. The modified circuit is shown in Figure 6.22. In this circuit the outputs of the
D F F are fed back to the AND/OR gates preceding the flip-flop, in conjunction with
the J and K inputs. If J = K = 1 and the complementary output of the flip,flop

= 1 then the input to the DFF is D = 1 and the Q output becomes 1. If, on the
other hand, J = K = 1 and the complementary output Q = 0 then the input D = 0
and the output becomes Q = 0. Clearly for the condition J = K = 1, the flip-flop
toggles. It is left to the reader to show that the flip-flop is turned on when J = 1,
K = 0 and Q = 0 and that turn-off occurs when J = 0, K = 1 and Q = 1. Additionally,
i f J = K = 0 no change will occur at the output. Combining the above results leads to the
steering table for the JKFF developed earlier in this chapter.

m ~ ~
I

Figure 6.22 The edge-triggered JK flip-flop

6.14 The T flip-flop

This flip-flop is symbolically represented by the diagram shown in Figure 6.23(a) and
its behaviour is described by means of the state table shown in Figure 6.23(b). It will be
noted that if T t --- 1 and Q t = 0 a transition is made such that Qt+6t = 1, and if T t = 1
and Qt __ 1 a transition is made such that Qt+6t = 0. The circuit is said to toggle, and

' 1 T Qt Qt+6t

- o-,.1 o 1 01 "
0--,,1 1 0 11

"_n o n FL 0

0 1 5 1 1 1
0

(a) (b) (c) (d)

Figure 6.23 The T flip-flop (a) Symbolic representation (b) State table (c) JK master/slave flip-flop connected as
a T flip-flop (<t) Timing diagram

158 Digital logic design

indeed, the TFF is frequently called a toggle circuit. The equation describing the
behaviour of the flip-flop can be extracted from the state table. The equation is
obtained by writing down the present state conditions which give a value of
Qt+6t = 1. H e n c e :

Qt+6t = (f,Q + TO_.)t

= (T ~ Q)t

Rather than implementing the above equation, it is a simple matter to develop a T flip-
flop from a master/slave JK flip-flop. All that is required is that the J and K inputs should
be permanently connected to 1, as illustrated in Figure 6.23(c), and that the toggle signal T
should be connected to the clock input. On the rising edge of every T input pulse, the flip-
flop will change state, as shown in Figure 6.23(d). The flip-flop is now behaving in
a toggling mode in the sense that the Q output is alternately taking up the 0 and 1 states.
This circuit is the basis of all counting circuits. It is, in fact, a scale-of-two counter.

i , l | ,

(al

T 1
o

D . O
0 : : :-
1

~ I ! L_
(b)

Figure 6.24 (a) D flip-flop connected as a T flip-flop
(b) Timing diagram

Enable

ckl
En Ck QI ~

0 X Qt
1 0-,,1 ~t

Figure 6.25 T flip-flop with enable~disable facility

Additionally, an examination of the tim-
ing diagram shows that the frequency of
the output waveform Q is half the fre-
quency of the T input and for this reason
it is also called a divide-by-two circuit.

The D flip-flop can, like the JKFF,
be converted to a TFF by connecting
the Q output to the D-input and the
toggling signal T to the clock input.
The connections for this modification
and a timing diagram are shown in
Figure 6.24. An alternative connection,
shown in Figure 6.25, uses an XOR gate
to provide an enable/disable signal and
the behaviour of the circuit is described
in the accompanying table. Similar enable/
disable arrangements can be provided
with the converted JKFF.

6.15 Mechanical switch debouncing

Because of contact bounce it is almost impossible to obtain a clean transition from
5 to 0 V when the switch is moved from position 1 to position 2 in Figure 6.26(a).
The voltage bounces between 0 and 5 V for a few milli-seconds before it settles to its
steady value of 0 V. A typical voltage waveform is shown in the diagram and the
voltage variations occurring are unacceptable in many circuits.

The effects of contact bounce can be eliminated at the output by using an SR latch
as shown in Figure 6.26(b). Assuming that the switch is presently in position 1, then S is
low and the Q output is high. When the switch is moved to position 2, S goes high,
R goes low and Q goes low a few nanoseconds afterwards. If the connection
at position 2 is now broken due to contact bounce, both S and R are now high and
no further voltage change takes place at the Q output. The converse action takes place
if the switch is now moved back to position 1.

Latches and flip-flops 159

+5V

Output 5 V

0V

(a)

Contact bounce

+5V

2

ov l
g / - Output

=

t

R

V

(b)

Figure 6.26 (a) Effect of contact bounce (b) debouncing using an SR latch

6.16 Registers

Registers are very important elements in a digital system and the structure of these
devices highlights the difference between the behaviour of latches and flip-flops.
The basic requirements of a register are that it should be able to store data and that it
should also provide the facility for moving data either to the fight or left. For example,
the 4-bit register storing the data 1011 may be required to shift this data to the right until
the contents of the register are 0000. This process should be carried out in an orderly
fashion, one bit at a time, so that after the receipt of the first shift pulse the contents of the
register should be 0101. After the receipt of the second shift pulse the contents should be
0010, and after the receipt of four shift pulses the contents should be 0000.

An array of D latches is able to store the data 1011, as shown in Figure 6.27(a). On
the application of a load signal at the control inputs of the latches, because of the
transparency of the latches, the data appears almost immediately at the output of the
latches. If the stored data is to be shifted to the right, the array of latches would be

I i _
(a)

I i[~
Shift 1 0 Da D4

i I
(b)

Figure 6.27 (a) Four D latches store data and (b) the failure to shift data with D latches

160 Digital logic design

Input
data
Shift ~ ~ ~

Flpre 6.28 A D flip-flop shift register

connected, as shown in Figure 6.27(b). Unfortunately on the rising edge of the first shift
pulse and because of the transparency of the latches the contents of the register would
almost immediately become 0000, delayed only by the propagation times of the indi-
vidual latches. Clearly, in order for the above scheme to allow a shift of one bit for
each shift pulse, some delay must be inserted in the connection between each latch.

In practice, this delay can be provided by the edge-triggered D flip-flops shown in
Figure 6.28. On the rising edge of the first shift pulse the data is held at the output of
the master latches which are directly connected to the inputs of the slave latches; the
slave latches are activated and the latch inputs are transferred to their outputs, which
are of course the flip-flop outputs. The data has shifted one place to the right under the
control of the first shift pulse. After the arrival of three more shift pulses the contents
of the register will be 0000. The use of a flip-flop as a storage element in the register
allows the orderly shift of data.

A more detailed account of the structure and operation of registers appears in the
next chapter.

P r o b l e m s

S O

R o

R ~ ~ ' ~ 0 (: 0 _ (b)

--*t

--~t

(a)

Figure P6.1

6.1 An SR latch constructed from NAND gates is shown in Figure P6.1(a).
Determine the logic levels at points a, b and c under the following conditions:

(a) S = 0 , R = 0 a n d Q = 0
(b) As in (a), but S changes from 0 ~ 1
(c) S = 0, R = 0 and Q = 1, and R changes from 0 ~ 1.

I

Figure P6.2

ol

o!
Waveforms for S and R are shown in Figure P6.1 (b). Draw the
corresponding waveform for Q assuming that the initial value
of Q = 0 .

6.2 A positive edge triggered D-type flip-flop combines two D latches,
as shown in Figure P6.2. With the aid of a timing diagram show
that the flip-flop senses the input data present at the rising edge
of the clock and produces a corresponding output.

Latches and flip-flops 161

6.3 A master/slave JK flip-flop is shown in Figure P6.3. Assuming that the initial
condition of the flip-flop is J = K = Qm -- Qs = o, trace the logic levels through
the diagram for the following changes. (N.B.: changes in J and K take place in the
time intervals between clock pulses.)

(i) J = 0 4 1 , K = 0 4 0 , Clock pulse 1 applied
(ii) J = 1 ~ 1, K = 0 ~ 1, Clock pulse 2 applied
(iii) J = 1 ~ 0, K = 1 ~ 0, Clock pulse 3 applied
(iv) J = 0 ~ 1, K = 0 ~ 0, Clock pulse 4 applied

Gk

o.

Figure P6.3

Draw a timing diagram displaying the J, K, Qm and Q~ waveforms for the period
of four clock pulses.

Assuming the same initial conditions, determine the final value of Q~ as the
inputs are changed in the following order:

(v) C k = O 4 1 , J = O 4 1 , C k = l---,O
(vi) J = 0 4 1 , C k = 0 4 1 , K = 0 4 1 , J = 1 4 0 , C k = 1 4 0

6.4 With the aid of external logic, show that a D-type flip-flop can be converted to a
JK flip-flop. Construct a timing diagram for the JK flip-flop and show that the
circuit produces an output which depends only on the input data present at the
instant of the rising edge of the clock pulse.

6.5 A JK flip-flop is modified, as shown in Figure P6.5, to form

I
K "IK ̂ I

I
Figure P6.5

O 6 r

v

a J 'K flip-flop. Draw the state table for this flip-flop and
derive its characteristic equation.

6.6 Draw the external state diagram for the flip-flop whose
characteristic equations are

(a) Qt+~t = (x @ Y ~3 Q)t
(b) at+~t = (x | Y | Q)t

6.7 The waveforms shown in Figure P6.7(a) are to be applied to the circuit shown in
Figure P6.7(b); assuming the initial value of Q = 0, determine the Q output.

6.8 Given the S and R waveforms for an SR latch shown in Figure P6.8 and assuming
the initial value of Q = 0 plot the time variations of the Q output of the latch.
How does the Q output vary if the latch is controlled by the G waveform?

6.9 Using timing diagrams analyse the behaviour of the clocked SR flip-flop shown in
Figure P6.9.

1 6 2 Digital logic design

(a) A1 "" I I
0 I I

1
B

0

0

I! II
U

F

(b) A
B

C

D
i

D
Figure P6.7

i

Figure P6.8

!
I

!
M

F

S " I

Ck

Figure P6.9

7 Counters and registers

7.1 Introduction

A counting circuit composed of memory elements, such as flip-flops and electronic
gates, is the simplest form of sequential circuit available. All sequential circuits are of
two types, (1) synchronous (clock driven) and (2) asynchronous (event driven).
In synchronous circuits, changes in the circuit state are synchronised to the normally
periodic clock pulses, whereas in event driven circuits state changes are governed by
events such as, for example, the occurrence of a system fault.

Counting circuits can be in either of the two categories described above. All counter
circuits count clock pulses and store the number received in an array of memory
elements. In the case of synchronous counters the flip-flops are all clocked at precisely
the same instant in time, whereas in an asynchronous circuit only the least significant
stage is clocked, and succeeding flip-flops are clocked at later times which depend on
the flip-flop propagation times. Design of synchronous counters is generally more
complex than that of asynchronous counters.

Counters are fundamental and important components of a digital system and can be
used for timing, control or sequencing operations. Alternatively, they can be used for
frequency division and in some cases there may be a non-binary count, for example
a Gray code counter or a BCD counter. In practice it would be most unusual for the
logic designer to design a counter circuit since there are a large number available on
MSI chips. Nevertheless, it is important that the reader should be aware of the basic
design techniques employed.

7.2 The clock signal

An essential feature of a synchronous system is that flip-flops which are part of the
system should all change at the same instant in time. This is achieved by the use of
a synchronising signal which is formally known as the clock. The clock signal is
normally periodic, and there must always be a sufficient time period between adjacent
clock pulses to ensure that the combinational logic has reached its steady state con-
dition before the next clock pulse in the sequence arrives.

In general, as shown in Figure 7.1, an idealised form of clock signal will approximate
to a square wave, and the period in the cycle when the clock is high is termed the active
period. Flip-flop transitions, initiated by the synchronising clock, are arranged to take
place on either the leading edge or, alternatively, the trailing edge of a clock pulse, and
these two types of flip-flop operation should not be used in the same circuit. The active
clock edge will initiate a change of state in a synchronous circuit providing there is no

164 Digital logic design

J Pulse width

Leading
edge

I

I" I Trailing
edge

tp = periodic time

Figure 7.1 The clock pulse

�9 I I

other external input to the circuit. It should be recognised that transitions in clock
values from low to high and vice versa are never instantaneous, but providing the
flip-flop changes take place during the course of the transition, the conditions for
synchronous operation are satisfied.

7.3 Basic counter design

The simplest possible counter is the scale-of-two counter which has only two states,
0 and 1. Since the output of the flip-flop can only exist in one of these states at any time
the counter can be implemented with a single flip-flop.

One design technique is to draw up a state table in which the first column represents
the present state of the counter while the second column gives the next state of the
counter after the arrival of a clock pulse, as shown in Figure 7.2(a). The table identifies

Present
state
A t

Next
state
A t+~t

JA KA

1
o x

Qt Qt~t j K

0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

(a) (b)

A=O Ck
JA

Ck J'L l J'-L. A 1 I

ii o
A=I

(c) (d) (e)

I I /

Figure 7.2 Scale-of-two counter (a) State table (b) Steering table of JKflip-flop (c) Implementation
(d) State diagram (e) Timing diagram

Counters and registers 165

the transitions that have to be made as the counter moves from its present state to the
next state. Assuming that the circuit is to be implemented with a JK flip-flop, the
inputs required to produce the transitions tabulated in the state table can be obtained
from the JK flip-flop steering table shown in Figure 7.2(b). Since the entries in the
J and K columns of the state table are all either 'don't cares' or 1 it follows that
JA =KA = 1.

The counter is implemented in Figure 7.2 along with the state diagram and a timing
diagram. The state diagram is both the internal and external state diagram since A = 0
and A = 1 represent the internal state of the circuit as well as being the externally
displayed count. Examination of the timing diagram shows the flip-flop toggling
continously from 0 to 1 and 1 to 0 but it should be recognised that the timing diagram
is idealised since flip-flop delays and rise and tall times of the clock have not been taken
into account.

A scale-of-four up counter has four states and requires two flip-flops. The design
method used for the scale-of-two counter can be extended to cover the scale-of-four
counter and the required flip-flop inputs are JA = KA = 1 and JB = Ks = A.

For a scale-of-eight counter, the state table is tabulated in Figure 7.3. The design of
the A and B stages employs the techniques used for the design of the scale-of-two
counter and adding a further stage to the counter in no way alters the design of the

(a) (b)

(c)

(e)

d B t At Ct .~t Bt~t At*~t Jc Kc

0 0 0 0 0 1 0 X
0 0 1 0 1 0 0 X
0 1 0 0 1 1 0 X
0 1 1 1 0 0 1 X
1 0 0 1 0 1 X 0
1 0 1 1 1 0 X 0
1 1 0 1 1 1 X 0
1 1 1 0 0 0 X 1

o N
I I

1 X X LXJ X
v

Jc = AB

c • A . . 10
0 X X ~ "~ X

Kc= AB

(d)

CBA
000

Ck

20

A I _ .i >

C 22

A@ I'--I I"' 1 i--q I L

r i g , , 1 1 . ! " L

. I L_

Figure 7.3 Scale-of-eight counter (a) State table (b) State diagram (c) K-maps (d) Implementation
(e) Timing diagram

166 Digi tal logic design

earlier stages. Hence JA = KA = 1 and J s = K s = A . K-maps for J c = K c are plotted
in Figure 7.3 and, after simplification, the input signals for the C flip-flop are found to
be J c = K c = A B . Implementation of the counter and the state diagram are also
shown in Figure 7.3.

Results for the three flip-flops are tabulated below:

JA - - KA = 1 JB = KB = A J c = K c = A B = J B B

and, by observation of these equations, it is clear that"

c 8 ~ E B 2

0 0 0 0 I I I
I 0 0 I I I 0
2 0 I 0 I 0 I
3 0 I I I 0 0
4 I 0 0 0 I I
5 I 0 I 0 I 0
6 I I 0 0 0 I
7 I I I 0 0 0

Figure 7.4 Using the com-
plementary outputs o f a chain
o f flip-flops to count down

J o - - K D - - A B C - J c C a n d

JN = KN = A B C . . . (N - 1) - J (u - I) (N - 1)

Synchronous down-counters can also be designed using
the techniques employed for upcounters, and the following
flip-flop equations are obtained:

Ja = Ka = 1 J s = K s = A J c = K c = A B = J s B

JN = A B C . . . (N - 1) = J (N - I) (N - 1)

It is also possible, in the case of binary counters, to use an
up-counter to count down by utilizing the complementary
flip-flop outputs. This is illustrated for a scale-of-eight
counter in the tabulation shown in Figure 7.4.

7.4 Series and parallel connection of counters

There are two ways of connecting the inputs to successive flip-flops and these
are illustrated in Figure 7.5. In the first method, the gates providing the J and K
inputs to adjacent flip-flops in the counter are all fed in parallel. As the number
of stages increases, the fan-in to the AND gates also increases. However, the gate
delay at the input to each flip-flop is identical and equal to tg, the time delay of a single
AND gate.

In the second method, the fan-in for each of the AND gates is always two, but the
gate delay at the inputs to the flip-flops increases with the number of stages in the

A ~C = AB A ~ K c = AB

B B

!
E

A ~ J D = K D = A B C I ~ ' ' = " -

C C i
, ,

o D

(a) (b)

Figure 7.5 Flip-flop input gates for (a) parallel connection and (b) series connection

Counters and registers 167

counter. Examination of Figure 7.5(b) shows that the gate delay at the Jc input is tg, at
the Jn input is 2tg, and so on. Since longer gate delays are experienced at each
successive flip-flop input in the chain if this method of connection is used, it is clear
that the upper frequency limit of a counter using this method is lower than one using
the parallel connection.

If the switching time of individual flip-flops is tf, then, for the parallel connection,
the upper frequency limit is given by

1
f u - ~ tg + tl

While for the series connection

1
f~ = (N - 2)tg + tf

where N is the number of stages in the counter.
For the parallel connection, the first two flip-flops are required to drive N - 2

gates, the third flip-flop N - 3 gates and so on, whereas, for the serial connection,
all the flip-flops in the counting chain, except the last one, are required to drive one
gate only.

7.5 Scale-of-five up-counter

Often a counter with a scale that is not a power of 2 is required. For example, a scale-
of-five counter has five states and requires three flip-flops. This will leave three unused
states on the state diagram, as shown in Figure 7.6(a). The state table [Figure 7.6(b)]
has been developed using the JK steering table, as illustrated in the case of the scale-of-2
counter (see Figure 7.2(b)). The unused states have been plotted as 'can't happen'
terms on the K-maps for the flip-flop input signals Jc, Js, JA, Ks. All the entries in the
KA and Kc columns are either 1 or X. Hence KA = Kc = 1.

If, for some reason, the counter enters one of the unused states, for example when
the power is switched on, or due to faulty circuit operation, it is interesting to note its
subsequent behaviour. This can be determined by examining the flip-flop input signals.
For example:

(CBA) t= 101. J c - A B = O ; K c = 1;

J s = K s = A = I ;

J A = C = O ; K A : I ;

FFC resets

FFB toggles

FFA resets

On the receipt of the next clock pulse, CBA - 010.
The next states for the unused states 110 and 111 are 010 and 000 respectively. If the

counter should enter any one of the unused states it will return to the correct counting
sequence after one clock pulse. The transitions that would occur under these circum-
stances are shown dotted on the state diagram in Figure 7.6(a). The implementation of
the counter is shown in Figure 7.6(d).

168 Digital logic design

CBA ~--~ I Unused 1000 ~ - - t 1111 state

10o, i I;ool

010 " 011 01
I , ,
I I
|

10 I

I
Unused
states

(a)

d B t A' ~ ' B t~' A'~' Jc

0 0 0 0 0 1 0
0 0 1 0 1 0 0
0 1 0 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 0 0 X

Kc J8 KB JA KA

X 0 X 1 X
X 1 X X 1
X X 0 1 X
X X 1 X 1
1 0 X 0 X

(b)

c•Ao0 01 11 10

o N
1 X X ~ l X

Jc= AB

c~0A~I 01 11 10
x x 1~

1 X X X

JA=C
(c)

c•Ao0 01 11 10

1

JB=A
BA

C~O0 01 11 10

KB= A

1

Ck

2 o 2 ~

[KA A i l K"

(d)

z~

Figure 7.6 Scale-of-5 counter (a) State diagram (b) State table (c) K-maps for flip-flop input signals (d) Circuit
implementation

In practice, it would be more logical to return all the unused states directly to the
initial state CBA = 000 as shown in Figure 7.7(a). The state table for the modified
counter is also shown in Figure 7.7 along with the K-maps for determining the flip-flop
input signals. Implementation of the modified counter is shown in Figure 7.7(d) and it
will be noted that a Clear signal has been provided for resetting the flip-flops to the
starting state.

Counters and registers 169

So

s~ 1 lob-r-k: ICBAL
IOOO1\ _r'L

s, !OOl

s, 1111 r olo I = 1o11
82
(a)

rs4

I S3

~p~.e C~ Bt A t C t+6t B t+6t A Jc Kc JB KB JA KA t+6t

So 0 0 0 0 0 1 0 X 0 X 1 X
$1 0 0 1 0 1 0 0 X 1 X X 1
$2 0 1 0 0 1 1 0 X X 0 1 X
Sa 0 1 1 1 0 0 1 X X 1 X 1
$4 1 0 0 0 0 0 X 1 0 X 0 X
$5 1 0 1 0 0 0 X 1 0 X X 1
Se 1 1 0 0 0 0 X 1 X 1 0 X
S? 1 1 1 0 0 0 X 1 X 1 X 1

(b)

C T 0 0 01 11 10 C'~ A00 01 11 10
Cx x

1 X X ~) X 1 X X

Jc= AB JB= AC o oA:o,,,,o
x x , ?

l~xLx 1JO ~ x x
Ks=A+ C, JA= C

Kc= KA= I

(c)

22 20

Clear

(d)

Figure 7.7 Modified scale-of-5 counter

170 Digital logic design

7.6 The design steps for a synchronous counter

The scale-of-eight and the scale-of-five counters have been designed from basic prin-
ciples in sections 7.3 and 7.5, and it is convenient at this point to summarise the design
steps in the form of the following algorithm.

1. Define the count sequence.
2. Construct a state table for the counter where the left hand column is a tabulation of

the present state, and the right hand column is a tabulation of the corresponding
next states.

3. Any unused states should be tabulated in the present state column of the state table
and should have, as their next state, the initial state in the count sequence, usually 000.

4. Select the type (D, JK, or RS) and number of flip-flops to be used, bearing in mind
that 2 ~ > p where n is the number of flip-flop outputs and p is the magnitude of the
count sequence.

5. Tabulate the flip-flop inputs for each change of the state of the counter as specified
by the state table.

6. Plot the tabulated FF input signals on K-maps.
7. Simplify the FF input signals wherever possible.
8. Implement the counter, including the Clock and Clear signals.

Although DFFs can be used for the design of synchronous counters, the designer
must recognise that the flip-flop transitions are taken directly from the next state
entries and consequently there are no 'don't cares' available for simplification of the
flip-flop input functions, and this leads to more complex logic.

Using the steps set out in the algorithm, a decade-up counter has been designed.
The state diagram, state table, the tabulation of the JK input signals and their corres-
ponding K-maps, and the implementation of the counter are all shown in Figure 7.8.
It is suggested that as an exercise in logic design, the reader should check the validity of
this design.

The BCD count frequently has to be displayed in decimal form. The simplest
possible decimal representation is obtained by using a 4-to-10 line decoder. The ten
outputs of the decoder may be active low or active high, depending on the MSI
decoder selected. However, this method only gives an indication that a particular
decimal digit has been received. More frequently, a BCD/seven segment decoder would
be employed, as described in Chapter 5. In this case, the decimal digit received will be
displayed as a decimal digit by the seven segments.

7.7 Gray code counters

Consider the transition from state 0001 to 0010 in the decade binary up-counter
and assume that FFB changes faster than FFA. The sequence of changes that take
place is:

D C B A
0 0 0 1
0 0 1 1 (transient state)
0 0 1 0

Counters and registers 171

I,, I I,o,,I I,o, oi
t J-L ~ J-L ~ J-L

I = ' - -

t
1001

I I " O h I + ~ Io ' i j [L I

(a)

Present
State

Next
State

D C B A D C B A
, ,

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

(b)

Flip- Flop inputs
. . . .

J o K o J c Kc Ja KB JA KA

0 X 0 X 0 X 1 X
0 X 0 X 1 X X 1
0 X 0 X X 0 1 X
0 X 1 X X 1 X 1
0 X X 0 0 X 1 X
0 X X 0 1 X X 1
0 X X 0 X 0 1 X
1 X X 1 X 1 X 1
X 0 0 X 0 X 1 X
X 1 0 X 0 X X 1
X 1 0 X X 1 0 X
X 1 0 X X 1 X 1
X 1 X 1 0 X 0 X
X 1 X 1 0 X X 1
X 1 X 1 X 1 0 X
X 1 X 1 X 1 X 1

oo o, ,, ,o oo o, ,, ,o

oo x I ~ r ~ T ~ I
o, M ~ II• iixiixll
,, x x | x ,, Ib !!, !!, !! ql
,o x x x x ,oi I , ,W_L~LOI

Jo=ABC Ko =A+B+C

BA \ BA .~BA ~BA \ BA
~--~00 O, 11 10 O0 O, 11 10 DC 00 01~ 10 DC O0 O, 11 10

oo I~ ~ x x x x o r r ~ , x o x ~ - r ~ ~o,,,,o~__~x q
o, x x | , I~ o � 8 9 o x x , ' L, x x ,J

, , (~x x , q xx ,, x x x x (' 'Uq ' x x
,o ~ x x x J , x x , , ~ x , ~ O C r U x

Jc = ABD Kc = D+ABC ,Is = BD Ks = S+O JA = D+BC KA = I

(c)

2 a 22 2'

. o - .

="r = - - " ~ I' ! g ~ i I i
Ck

(d)

Figure 7 . 8 Scale-of-lO up counter (a) State diagram (b) State table (c) K-maps (d) Implementation

If a 4-to-10 line decoder is being used to convert the binary output of the counter to
a decimal representation, a spike will occur on the (3)10 output, and this is clearly
incorrect circuit operation. This can occur at any point in the counting sequence where
more than one flip-flop is required to change state during a transition. Faulty operation
of this kind can be eliminated by using a Gray code counter in which only one flip-flop
changes state at each transition.

172 Digital logic design

O0 0 11 10 O0 01 11
. . . . * '1 I " II~- - - ,

iml ,i i=
+I,I + , +
"-+ol---+ ' + ', ,

i

(a) (b) :

Figure 7.9 (a) and (b) Alternative Gray code
paths through K-maps

There are a number of Gray codes suitable
for decade counting and they can be developed
by plotting a closed path on a K-map that con-
sists of ten adjacent cells. Two such examples are
shown in Figure 7.9. Both of them are reflected
binary codes, the first, in Figure 7.9(a), being
reflected about 110, the first combination in
this sequence being 0000; while the second, in
Figure 7.9(b) is reflected about 100, the first
combination in the sequence being 0100.

7.8 Design of decade Gray code up-counter

The counter is to be designed using the Gray code established in Figure 7.9(a). All the
unused states are to be returned to the initial count combination (KI~. This will ensure
that if the counter enters one of the unused states due to faulty operation it will return to
the correct count sequence after the receipt of a single clock pulse. The state table gives
the transitions for each of the JKFFs as the counter progresses from one state to the
next, and with the aid of the JK steering table (see Figure 7.2) the flip-flop input signals
J and K can be obtained for each transition. These signals are tabulated on the fight-hand
side of the state table. Eight K-maps are needed, one for each of the flip-flop input signals,
and the J and K inputs are obtained after map simplification. The state diagram, state
table, K-maps and counter implementation are all shown in Figure 7.10.

7.9 Scale-of-16 up/down counter

In many applications a counter must be able to count both up and down. For a scale-of-16
up-counter the equations are:

YAu = KA~ = 1; Ynu = KBu = A; Yeu = Keu = AB; and JDu = KDu = A B C

and for a scale-of-16 down counter the equations are:

J a a = K a a = l ; Jmd = KBd = A; Jed = Kcd = AB; and Jod = KDd = A B C

Normally, a control signal Z is available for controlling the direction of the count.
Counting up takes place when Z = 1 and counting down when Z = 0. The modified
equations for up/down counting are:

J A = K A ~ I

JB = ZJBu + ZJBa = Z A + Z A

KB = ZKB~ + ZKBa = Z A + Z A

Similarly

Jc = K c = Z A B + Z A B

and

JD = KD = Z A B C + Z A B C

The implementation of the counter is shown in Figure 7.11.

Counters and registers 173

[~ . J - L [~ J - I = I 11~i.~ I

I 10011__.___.J 1011 I I ~ ~ ~1 ~ I1~! Jx ' + J-L I ..?LI+ I

Iolo1 E �9 11o101

(a)

Present
state

D C B A

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0
0 1 0 0
0 1 0 1
0 1 1 1
1 1 0 0
1 1 0 1
1 1 1 1

Next
state

D C B A

0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 O 0
0 0 0 0
0 0 0 0
0 0 0 0

Rip-flop Inputs

Jo Ko Jc Kc Je Ke JA KA

0 X 0 X 0 X 1 X
0 X 0 X 1 X X 0
0 X 0 X X 0 X 1
0 X 1 X X 0 0 X
1 X X 0 X 0 0 X
X 0 X 1 X 0 0 X
X 0 0 X X 0 1 X
X 0 0 X X 1 X 0
X 0 0 X 0 X X 1
X 1 0 X 0 X 0 X
0 X X 1 0 X 0 X
0 X X 1 0 X X 1
0 X X 1 X 1 X 1
X 1 X 1 0 X 0 X
X 1 X 1 0 X X 1
X 1 X 1 X 1 X 1

(b)

BA BA
DC ~ O0 01 11 10 DC ~ O0 01 11 10

O0 0 0 ' ~ x x x

01 ~ 01 x x ~ - - ~ x

11 x x x ~ 11 1 ~.I.._L)

10 x X X X 10 ~ I

BA BA
DC ~ O0 01 11 10 Dc'~O0 01 11 10

oo A oorx jfx~ x~ix I
01 x x x ~ 0 1 ~

11 X X X X 11 If I II 1 II I II 111

lO IO I x xl,.~,.~l.~~l

Jo=~BC Ko = ,~B + AC Jc = ,~BD K,: = A + B + D

BA BA
DC ~ O0 01 11 10 DC ~ O0 01 11 10

O0 (~ x.~ x O0 x x

01 x x 01 x ~ - ' - ~

11 x x 11 x x ~ . ~

10 X X 10 X ~ _ ~)

BA BA

Dc~ O0 01 11 10 DG'~O0 01 11 10
~ x D x ooi=! l f ~ l

Ol x x o 1 1 ~
11 x x , , I t : ~ ~ ~ l
1o x ~ ~ ,olxlz_i_~l l x l

�9 Is =ADO Ke = AC+AD JA=BCD+BCD K~= C+BD+BD

Clear I
Ck

o c I s r

(d)

Figure 7 . 1 0 Scale-of-lO Gray code up-counter (a) State diagram (b) State table (c) K-maps (d) Implementation

7.10 Asynchronous binary counters

The simplest type of counter available is the 'tipple through' or asynchronous counter.
For this type of counter the individual FFs are not controlled by a synchronous clock
pulse. Withdrawal of clock synchronisation reduces the amount of circuitry required
for implementation of the counter. For counts that are powers o f 2, the counter

174 Digital logic design

2 ' , ! I 2 ' , I I 2'

Figure 7.11 Scale-of-16 up~down counter

(a)
20 21 C 22

~ I
(b)

So " " : ', I ', S1 ', ~ ', $3 ', 84 :

,,_tin F;-1 M
Ss :

~oo I, !o J, Io I1
1 I I BOO 0 1 1 0

1 I COO 0 0 0 1

(c)

~ [- ~ ,,
x.l~ v ,~_,~

!

!
!

!
!

:
s6 : s? :

Io I1 lo

, 1 lo

Figure 7.12 (a)Implementation of, and (b) timing diagrams for a three-stage ripple-through counter (c) The
ripple-through effect in the counter

consists of a cascade of TFFs (JKFFs with J = K = 1) as shown in Figure 7.12(a).
The output of each flip-flop provides the clock signal for the next one in the chain and
the input signal pulses are connected to the clock of the first stage. The time diagrams
for a scale-of-eight up-counter are shown in Figure 7.12(b), where all changes of

Counters and registers 175

state take place on the trailing edge of the pulses applied to the clock terminals of the
three flip-flops A, B and C. Examination of the time diagrams shows that FFA
changes state on each trailing edge of the input pulses X.

The output of FFA is used as the clock pulse for FFB, and a change of state of this
flip-flop occurs on the trailing edge of the A pulses. Similarly, the output of FFB
provides the clock pulse for FFC and this flip-flop changes state on the trailing edge of
the B pulses. The various states of the counter, and the binary digits associated with
each, state are marked on the time diagrams.

A scale-of-eight counter is also a frequency division circuit. An inspection of the time
diagrams shows that the output of FFC produces one pulse for every eight input pulses
X. It follows that if the frequency of the input pulses is f then the frequency at the
output of FFC is f/8. Similarly, the output of FFB is f /4 and the output of FFA is f/2.
Every stage of this counter divides the frequency of the succeeding stage by two.

The idealised behaviour of the counter is shown in Figure 7.12. On the trailing edge
of the eighth input pulse, the outputs of the three flip-flops are all shown changing
simultaneously from 1 to 0. In practice, these changes ripple through the counter and
FFA does not change to 0 until time tf, the propagation delay of FFA, after the trailing
edge of the eighth X pulse. Similarly, FFB and FFC change at times 2tf and 3tf,
respectively, after the trailing edge of the eighth pulse being counted.

If a tipple-through counter has n stages, then the maximum ripple-through delay of
the counter is ntf. Assuming that the period of the input pulses X is T, then

T > ntf

and the upper frequency limit of the counter is given by

1 1
A <- nt I

m

After modifying the up-counter, shown in Figure 7.12, so that signals A and B are used
as the clock signals for FFB and FFC respectively, the circuit will operate as a scale-of-8
down counter. For up/down counting, a further modification is required. XOR gates
are used for transmitting the true or inverted signals from the outputs of FFA and
FFB to the succeeding stages of the counter, as shown in Figure 7.13. If the mode
control M is set to 0, A and B are transmitted to the clock inputs of FFB and FFC
respectively, giving an up-count. For M = 1, A and B are both inverted before
transmission to the succeeding stages and this initiates a down-counting mode.
Initialisation of the counter is provided by the active-low CI inputs.

, ~ I I & A JB B Jc C

x l
"l J"

Figure 7.13 3-stage scale-of-8 asynchronous up~down counter

2 a

176 Digital logic design

7.11 Decoding of asynchronous counters

Decoding problems can occur with asynchronous counters due to the different delay
times occurring at the outputs of each of the FFs in the counting chain. Consider, for
example, the transition from CBA = 001 to CBA = 010 in the scale-of-8 up-counter.
The sequence of changes that take place is

CBA
0 0 1
0 0 0 transient state
0 1 0

The least significant flip-flop A makes the transition from 1 to 0 before the next most
significant flip-flop B changes from 0 to 1. During the transient period a spike or glitch
will appear at the output of the gate that decodes (0),0. The generation of the glitch is
shown in Figure 7.14.

At some stages of the count, more than one transient state may occur. Consider the
possible sequence of changes that may take place when CBA changes from 011 to 100:

CBA
0 1 1
0 1 0 transient states
0 0 0
1 0 0

In this case the transient states will generate spikes at the outputs of the gates that
decode (0)lo and (2),0.

If the circuits are to be used to give a visual display, the generation of spikes of
a very short time duration will not show on the display and arc of no consequence.
However, if the counter is used to control some other digital circuit, the spikes may
initiate false circuit operation and the designer should take steps to eliminate their
effect. The problem can be overcome by generating a strobe pulse which disables
all the decoding gates when the clock goes high. At time 3tf, when the three FFs

I

Xo i
I
I

A o

I
B

0

I I

I
G
0

I N CB~ o

Figure 7.14 Generation of a decoding spike by an asynchronous counter

Counters and registers 177

>3tf

l I
I I

r
Figure 7.15 Elimination of decoding spikes
using a strobe

have all reached their final state, the strobe
pulse goes high and enables all the decoding
gates. The strobe remains high until the
leading edge of the next clock pulse arrives.
This sequence of events is illustrated in
Figure 7.15.

7.12 Asynchronous resettable counters

An asynchronous resettable counter can be used when scales that are not a power
of 2 are required. A scale-of-N counter of this type is allowed to count up to the
number N, and a logic signal testing for this number is used to clear all the flip-flops
in the counter. The state diagram for a resettable scale-of-5 counter is shown in
Figure 7.16(a). The counter remains in each of the first five states for one clock
period, but on entering $5, the sixth state (101), a reset signal r = A B C is generated
by a N A N D gate. Circuit implementation and the timing diagrams are shown in
Figures 7.16(b) and (c).

The reset times for the individual flip-flops in the counter may well be different.
For example, in the circuit described, FFA may reset faster than FFC. The negative-
going reset signal will cease to exist when FFA is cleared and is simply not wide
enough to reset FFC. This problem can be overcome by latching the reset signal until

So ,o,1 s,

s, Ioo, l

s , | o,o__t---l o,, ! s,
la)

2 0 $ 21

1 !1 , , , I I 1 I,,, =1 1

(b)

S o l s,:

I
Ao i

, , x (. r ' t)

jo-,
1 ! A,~C i i

I
Bo 1 !

. i i
I Co,

r" I,,
0

l
LL_i

(c) (e)

Figure 7.16 Resettable scale-of-five counter (a) State diagram (b) Implementation (c) Timing diagrams (d) State
diagram for the latching circuit (e) Implementation of the latching circuit

178 Digital logic design

the leading edge of the sixth clock pulse arrives, as indicated by the dotted lines on
the timing diagrams. A suitable state diagram for the latching circuit is shown in
Figure 7.16(d).

The turn-on condition for Q is S = A B C

The turn-off condition for Q is R = X

This yields

Qt+6, = (A B C + .~Q)t

This 2-level sum-of-products is shown implemented in Figure 7.16(e). It is, in fact, the
0

implementation of an S R latch and the output of the gate marked 4 is the com-
plementary output of the latch. In this circuit, the output Q of gate 3 becomes 1 when

_ m

the counter enters $5. It then follows that Q becomes 0. Hence Q = r is used to clear
the flip-flops in the counter. The latching circuit remains in this condition until the
sixth X pulse arrives. This resets the flip-flop and Q = r becomes 1 again. The cycle
of operation of the latching circuit is completed when A B C is detected again.

7.13 Integrated circuit counters

In practice, synchronous and asynchronous counters can be designed using discrete
JK, D and T flip-flops; however, in the type 74 series, counters already packaged on IC
chips are readily available. For their use in a digital system, the designer needs to study
the manufacturer's data sheet carefully in order to understand the various modes of
operation of the circuit.

A typical example of a synchronous presettable counter is the 74ALS560. The logic
diagram for the counter is shown, along with its function table, in Figure 7.17.
It consists of four DFFs which operate on the leading edge of the clock signal.
The flip-flops are provided with tri-state outputs which can be put into the high
impedance state when G = 1.

The function table shows that when asynchronous clear A C L R is low, it overrides all
other control inputs and unconditionally clears the four flip-flops. Alternatively, when
synchronous clear S C L R goes low, the FFs are cleared on the leading edge of the next
clock pulse. Data can be loaded into the counter at terminals A, B, C and D when
asynchronous load A L O A D is low, otherwise if synchronous load S L O A D goes low,
then on the leading edge of the next clock pulse the data will be loaded into the four
DFFs. The count enable signals E N P and E N T are set high for counting. E N T also
provides the additional function of enabling the ripple carry output (RCO) gate.
An alternative carry output is provided by the clocked carry output (CCO) gate,
which, unlike RCO, is free of glitches. Cascading of counters is achieved by connecting
either R C O or CCO to the E N T terminal of the next counter in the chain.

The 74176 is an example of a presettable asynchronous counter. A logic diagram for
this device, along with a function table, is shown in Figure 7.18. It consists of four
trailing edge triggered flip-flops, two of them being TFFs and the other two being
JKFFs. The logic for clearing, loading and counting is identical for each of the four
flip-flops and is

Pr = R . D . C IL . R = D + CIL + R

Counters and registers 179

(, ! 7 l , ,

I l l)
B IT - - - - - - - - - - -

Y

__.. liD)
III~Ull ----

m.o~u) '" "'

12)
c u c

_ - _ - . (e)
A C U R - - - . -

(:CO

RCO

QA

on

~t------- oc

(13)
oo

(a)

Inputs

' A ~ ' A L O A D S ~ SLOAD ENT ENP CLK

X X X X X X X
L X X X X X X
H L X X X X X
H H L X X X 1"
H H H L X X 1"
H H H H H H T
H H H H L X X
H H H H X L X

Operation

Q outputs disabled
Asynchronous clear
Asynchronous load
Synchronous clear
Synchronous load
Count
Inhibit counting
Inhibit counting

(b)

Figure 7.17 The 74ALS560 synchronous 4-bit counter with tri-state outputs (a) logic diagram (b) function table

180 Digital logic design

(a) Counl~

I~'oset ~" _ ~ 0

5 ~ijPr
i:a B

Input X ~ > '
/

- !

(b)

Count/Load
L X

H
, ,

Operation

Asynchronous common reset
Asynchronous load
Count

C/

(c)

!1 ~ '2 2 2 3

Count D C 8 A

0 o o o o
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 1 0 0 0
6 1 0 0 1
7 1 0 1 0
8 1 0 1 1
9 1 1 0 0

, ,

Figure 7.18 (a) The 74176 operation as a decade counter (b) function table (c) mode 2 count sequence

and the equation for clearing the individual flip-flops is:

CI = (CIL + R) . (D + CIL + R)

which, after manipulation, reduces to:

CI = R(CIL + D)

In order to clear all the FFs in the counter, R E S E T must be low, and for counting
R E S E T and C O U N T / L O A D both must be high.

Assuming all the FFs are cleared, the count follows the normal binary sequence up
to, and including, the count of nine. On the trailing edge of the tenth input pulse X,
FFA makes a transition from 1 ---, 0, which would normally induce a transition in
FFB, changing its state from 0 ---, 1. However, at this instant, JB = KB = D = 0 and
consequently FFB remains in the reset condition. At the same instant it is also
necessary to clear FFD. Now Jo = BC = 0 and K D - D = 1, hence when A makes
a 1 ---, 0 transition at the trailing edge of the tenth input pulse X, FFD is reset. All the
FFs are now reset to 0 and are awaiting the arrival of the next input pulse.

The 74176 has three modes of operation:

1. To operate as a decade counter, an external interconnection has to be made from
A to the clock input of FFB, the incoming count being connected to the clock pin
of FFA.

Counters and registers 181

2. For the count tabulated in Figure 7.18(c), the output D is externally connected to
the clock pin of FFA and the input count is applied at the clock pin of FFB.

3. To operate as a scale-of-2 and scale-of-5 counter, no external connections are
required. FFA provides the scale-of-2 count with the input count applied at its
clock pin. FFs B, C, and D are used as the scale-of-5 counter, the input count being
fed to the clock pin of FFB.

A second asynchronous counter, the 74290, is available as an IC package. It consists
of two parts: a single flip-flop acting as a scale-of-2 counter, and three other flip-flops
acting as a scale-of-5 counter. In order to use the package effectively, it is not essential
to have a detailed knowledge of the circuit. However, the digital designer must be

(a) (b)

(c)

,,, , ,

>Ain I
>B~ O

R0(I) 74290 i ! R0(2)
R9(1)
R9(2) I

v

Reset inputs
R0(1) R0(2)R9(1) R9(2)

1 1 0 X
1 1 X 0
X X 1 1
X 0 X 0
0 X 0 X
0 X X 0
X 0 0 X

Outputs
D C E A

0
o ~ ~ ~ o
1 , 0 0 1

Count
Count
Count
Count

i

(d)

X r > A i n

R0(I)
R0(21
R9(11
R9(2)

T

74290

D L

c , i
8 [-
A ~

(e)

/ rl_

I L.

Figure 7.19 (a) Chip connections for the 74290 (b) Truth table for the reset inputs (c) The 74290 connected as
a scale-of-six counter (d) The 74290 scale-of-six counter timing diagrams (e) Elimination of spikes with the enable
signal, E

182 Digital logic design

familiar with the package connections and in order to use it intelligently, must under-
stand the basic principles of counting. For the 74290, the important chip connections
are shown in Figure 7.18(a). They are:

1. Four outputs, D, C, B and A, where D is the most significant digit
2. Input terminal Ain where the input count is connected
3. Input terminal Bin which is connected to output A when the counter is operating in

the decade mode. Otherwise the input count can be connected to Bin when in the
scale-of-5 mode.

4. R0(1) and R0(2), which are direct clear terminals. Both must be held at 1 to clear all
the FFs.

5. R9(1) and R9(2), which set a count of nine in the counter if they are both held at 1.

One other operating rule must be observed, and that is, for normal counting, at least
one of the R0 terminals and one of the R9 terminals must be held at 0. A function table
defining the operation of the reset terminals is given in Figure 7.19(b).

Having become familiar with the chip connections, it is now possible to make use of
the package. If a scale-of-6 counter is required, the package is connected as shown in
Figure 7.19(c). In this configuration the chip is acting as a resettable ripple counter.
When the output combination B = C -- 1 and A = 0 is reached, terminals R0(I) and
R0(2) make a transition to 1 and all the flip-flops are cleared.

xi.
> Ain

74293

R0(1)

R0(2)

!

Figure 7.20 The 74293 used as a

scale-of- 13 ripple counter

The timing diagrams for this connection are shown
in Figure 7.19(d) and it will be seen that after a count
of five the output of FFB becomes 1 for a very short
period of time, leading to a spike output on the
B line. If the output data is to be decoded, it is
desirable that this should be done during clearly
defined time intervals in order that the spikes of this
type can be eliminated. This can be achieved by
means of a strobe which only enables the output
gates at appropriate times. The method is illustrated
in Figure 7.19(e).

The closely related 74293 package consists of
a scale-of-2 counter along with a scale-of-8 counter.
An example of this chip connected as a scale-of-13
resettable counter is illustrated in Figure 7.20.

7.14 Cascading of IC counter chips

If two counter chips, such as the 74290 and the 74293, are cascaded and a frequency
of 320 kHz is applied at the input terminal of the 74290, as shown in Figure 7.21,
the frequency of the signal appearing at the output of the 74293 will be 2 kHz.

, ,_! 74290 1 3 2 k . . I 74293
-I - . 0 1 - l ' - " I -

Figure 7.21 Two IC counters connected in cascade and dividing the frequency input by 160

Counters and registers 183

!!!!
I i

7 - ~ n X - ~ A o i D~ C~ B~ A~
I I 74290

r Boin 10 0
R9(1) R9(2) R0(1) R0(2)

Lj

- 1

I ! ! !
D, C, B, A, l

Alin 74290 I

Blin 101 I
(~ (2) Ro(., , (2)1

1
Figure 7.22 Two 74290 chips in cascade forming a scale-of-92 counter

When frequency division by a large number is required, the only practical way of
achieving this is to use a cascade of counter chips.

Another example of the cascading of counter chips is shown in Figure 7.22.
If a scale-of-92 counter is required, this can be achieved by cascading two 74290s.
The most significant digit output Do of the first chip is connected to terminal Alin of
the second chip and acts as the clock signal for it. For every ten X pulses there is one Do
pulse, and on the tenth X pulse the chip labelled 10 ~ makes a transition from 1001 to
0000 and the chip labelled 101 makes a transition from 0000 to 0001. The counter is
allowed to count up to 92 when the signal representing this number is fed back via the
latch circuit to the clear inputs of the two chips. The latching circuit eliminates
problems that may be caused by the flip-flops having different resetting times.

7.15 Shift registers

A shiftregister is a sequential logic device which consists of a cascade of FFs contained
in a single IC package. The output of each FF in the cascade is connected to the input
of the succeeding FF, and data can be shifted from left to right or vice versa by the
clock which is frequently referred to as the shift pulse. A basic 4-stage register is shown
in Figure 7.23 along with a series of timing diagrams. The register consists of four
trailing edge triggered master/slave JKFFs which, alternatively, could be either master/
slave SR or D flip-flops. The timing diagrams illustrate the serial movement of 1 bit o f
data from the input of the register to its output. This operation requires four clock
pulses, the data moving from one FF in the cascade to the succeeding one on the
receipt of the next clock pulse.

Shift registers can be classified into four distinct groups.

1. Serial-in~serial-out (SISO), in which data can be moved serially in and out of the
register, one bit at a time.

2. Serial-in/parallehout (SIPO), in which the register is loaded serially, one bit at
a time, and when an output is required the data stored in the register can be read in
parallel form.

184 Digital logic design

~ --~ KA ,~

Ck

1

1

Data I
0

JB B

B

I ! I 1

l
c I

L
t -- '*

1

C 0

1
D 0

Figure 7.23 Basic 4-bit shift register with timing diagrams

3. Parallel-in~serial-out (PISO), in which all the flip-flops are loaded simultaneously
and when an output is required, the data stored is removed serially from the register
one bit at a time under clock control.

4. Parallel-in/parallel-out (PIPO), in which all the flip-flops in the register are loaded
simultaneously, and when an output is required the flip-flops are read simul-
taneously.

Additional to the input and output terminals, a shift register will have an asynchronous
clear terminal which is used to drive all the FFs in the register to logic O. For those shift
registers having parallel data inputs, an asynchronous preset or load is required for
entering the data pattern into the register. A clock input is also required for shifting
data through the register.

It is also possible to classify shift registers according to their input arrangements"

1. Double-rail input. For this type of register there are two input terminals for either
the J and K inputs or, alternatively, the S and R inputs.

2. Single-rail input, as illustrated in Figure 7.23. Here the first flip-flop in the
cascade has been converted into a DFF by placing an inverter between the J and K
input lines.

There can also be double-rail output, where the true and complementary outputs of
the last flip-flop in the register are brought out to separate pins, or, alternatively, there

Counters and registers 185

can be a single-rail output where only the true output of the last flip-flop is made
available at a pin.

Data can be transferred by shift registers in either serial or parallel form. Serial transfer
between two 4-bit registers will require four clock pulses and one interconnection,
while parallel transfer between two registers needs four interconnections. The type of
transfer to be used depends upon the distance between the sending and receiving
registers. For registers which are near to one another, parallel transfer will be faster,
even if more interconnections are needed, but for registers some distance apart, the
large number of interconnections required would prove to be uneconomic both in
terms of cost and space.

7.16 The 4-bit 7494 shift register

This register, shown in Figure 7.24, can be operated in the serial-in/serial-out
mode or, alternatively, as a dual source parallel-in/serial-out register. The register
consists of four SR master/slave flip-flops, four AOI gates and four inverter
drivers. In order to prepare the register for operation, the FFs are set to logic 0 by
applying logic 1 at the CLEAR input. Data can now be loaded asynchronously
into each stage of the register by setting the corresponding preset enable inputs,
PE1 or PE2, high. For serial operation, the true and inverted data are set up at the
R and S inputs of the first flip-flop in the register. On the trailing edge of the
clock pulse the data is entered into the master and appears at the slave input.
When the leading edge of the clock pulse arrives, the data is transferred to the
output of the slave.

I PE1 0

Serial input - - ~ 4 Ck ~>o_ jlRAcI ~ l ~B

CLEAR [~

f lPr ~oPrcl Output

cj

Figure 7.24 The 7494 shift register with serial and parallel loading

186 Digital logic design

7.17 The 4-bit 7495 universal shift register

A typical example of a versatile shift register is the 7495 and its logic diagram
is shown in Figure 7.25. It has facilities for parallel loading and parallel output,
serial loading and serial output, and, additionally, it has shift-left and shift-right
facilities. This is, in effect, a universal shift register which can operate in all
the four modes previously described, besides having the facility of bi-directional
shifting.

The mode control (MC) signal controls whether data inputs are serial or parallel.
With MC = 0, the AND gates marked 1 are enabled. In this mode data is serially
entered under the control of Ckl. Alternatively, with MC = 1, the AND gates marked 2
are enabled. In this case the input data is entered in parallel and appears at the
data outputs after the 1 ~ 0 transition of Ck2. Shift right takes place on the 1 ~ 0
transition of Ckl and the shift left operation takes place on the 1 ~ 0 transition of
Ck2 when MC = 1 by connecting the output of each flip-flop to the parallel input of
the previous flip-flop, as shown in Figure 7.25.

(a) Data inputs
. . . . JL

_'A 18 IC I O
M'~Lt

control

Input

c/n
Right sit i'T~

Left shift

'A " 8 "C
�9 _ - y ,

Data outputs

" D

Porollel
(b) outputs

.J.l i - t
input for " - " I i
right sh i f t [four-bit?4"J= L _ I

shirt register 1-1

~ J

Porollehnput

Clock

] ser~ol input ,or
shift left

Figure 7.25 (a) The 7495 universal shift register (b) The 7495 connections for bi-directional shifting

Counters and registers 187

7.18 The 74165 parallel loading 8-bit shift register

An example of an 8-bit shift register is the 74165 (see Figure 7.26) which can be operated
as a SISO or a SIPO. It consists of eight SRFFs with parallel access which is enabled
when the Shift/Load signal is low. The data is loaded asynchronously into the eight flip-
flops on a 1 ~ 0 transition of the Shift/Load signal. When loading, the two gates
associated with Clock and Clock Inhibit are disabled, and shifting cannot take place.
Serial transmission of data is also inhibited when Clock Inhibit and Shift/Load are high,
but on returning Clock Inhibit to logic 0, shifting from left to fight can take place.

PAIIAILI[
INFUT|

. . . .

t A �9 c o e F o . ~

Figure 7.26 The 74165 parallel load 8-bit shift register

7.19 The use of shift registers as counters and sequence generators

An alternative method of designing digital counters or sequence generators is to use
a shift register chip. A typical shift register counter configuration is shown in
Figure 7.27. The individual flip-flops form part of an N-stage shift register and the
connections between individual flip-flops are internal to the chip. The output of each
stage and its complement are both available, and they may be used to drive combin-
ational feedback logic which provides the J and K inputs to the least significant stage
of the register. Such a circuit can be used to generate specified binary sequences or,
alternatively, it can operate as a scale-of-M counter, where M < 2 N.

The input-output relationships for each stage of the counter, shown in Figure 7.27,
are defined by the following set of equations:

A t+6t = f (A , ft , B ,B , . . . , N , N)

B t + f t - - A t, C t+et = B t, etc.

] - - F e e d b a c k l o g i c = flA. ~ B, B, N,~I)
L - - " e

JA A

..... I > -
-

~ , , -

Figure 7.27 Basic configuration of a feedback shift register

188 Digital logic design

The feedback circuit produces either a 1 or a 0 which is fed to the input of FFA where
it determines the next state of A on receipt of the next clock pulse. For example,
assuming that the N-stage shift register is in the state N.. .CBA = 0...001, the next
state of the shift register will be either 0...010 or 0...011, depending on whether the
feedback logic provides a 0 or a 1 at the J-input of FFA.

7.20 The universal state diagram for shift registers

The transition table for a two-stage left-shift register is shown in Figure 7.28(a). If the
shift register is initially in the state 00 there are two possible next states. These are 00, if
the J-input to the least significant stage of the register is a 0, or 01, if the J-input is a 1.
Similarly, if the initial state of the shift register is 01 then the two possible next states
are either 10 or 11.

The transition table can be translated into the universal state diagram shown in
Figure 7.28(b), which is also called the De Bruijn diagram. It will be noted that the shift
register is permanently 'locked' in the state 00 if the feedback signal is a 0 and similarly
it is 'locked' in the state 11 if a 1 is provided by the feedback logic.

A similar transition table can be developed for a 3-stage shift register, and this can
be translated into a universal state diagram, as shown in Figure 7.29. The universal
state diagram for a 4-stage register shown in Figure 7.30 has been developed in the
same way, and clearly as the number of stages in the register increases the complexity
of this type of diagram increases rapidly.

(') F ' ' ~ 1 7 6 I
oo I - ~

I v

I - ' ~ I - " - I
O0 Ol I0 II

1 1

0

(b)

Figure 7.28 Two-stage shift register (a) Transition table (b) Universal state diagram

(a) I ' ooo 'I
ooo I oo,- . l

I " - - ~ 1 7 6 I ~
I - ' 00" I , l - ' ~ i - " ~- I , F I"'-1,

ooo oK) o,, ,oo ,o, ,,o ,,,

(b) S~ S~
~.,n, , . a . , j /~
'I 0

Figure 7.29 Three-stage shift register (a) Transition table, (b) Universal state diagram

Counters and registers 189

St S3 S7
I I " " 1 !

o
~. Sz V / " ~ ~ Sal

s4 ~ S~o/o Se3

o L._...J o
Se S~z SI4

Figure 7.30 Universal state diagram for a four-stage shift register

The universal state diagram is a departure from the kind of state diagram that
defines a single count sequence. All possible internal states of the register and all
possible transitions between states are shown on the universal state diagram. The logic
designer may choose a suitable sequence of states on the diagram and design the
feedback logic that will allow the register to cycle through the chosen sequence.

7.21 The design of a decade counter

The first step in the design is to choose a ten-state sequence on the universal state
diagram for a 4-stage register. One possible sequence is"

So-S 1 -S2-S5-S 11 -S6-S 13-S 10-S4-S8-S0

It should be noted that this is not the only ten state sequence available on the universal
state diagram.

The second step in the design is to draw up the state table, as shown in Figure 7.31 (a)
in order to determine the logical value of the feedback function for each change of
state. For example, in going from So to S1, the output of FFA must change from 0 to 1,
and hence the required input to this flip-flop, JA -- 1. This is the logical value of the
feedback function required for this change of state, and it is entered in the right hand
column of the state table.

The feedback function and the unused states are plotted on a 4-variable K-map
(see Figure 7.3 l(b)). It should be noted that S15 is an unused state and it appears that
the S]5 cell on the K-map should have been marked with an X. However, a general rule
that should be followed when designing this type of counter is that the entry in the S15
cell should always be a 0, and that in the So cell should always be a 1, irrespective of
whether these two states are in the counting sequence. This ensures that the counter
will never be locked in either the 0000 or 1111 states.

Minimising, the feedback function is found to be

f - JA - BD + A CD + A CD

If the counter enters an unused state due to faulty circuit operation, it will return to the
correct sequence after a maximum of five clock pulses. The return to the correct

1 9 0 Digital logic design

(a)

(c)

(d)

rd.d. S 0 C O A f ' J A i

0 So 0 0 0 0 I
I S, 0 0 0 I 0
2 S= 0 0 I 0 I
3 Ss 0 I 0 i I
4 Sla I 0 I I 0
5 Se 0 I I 0 I

6 S~= I I 0 I 0
7 Sm I 0 I 0 0
8 84 0 I 0 0 0
9 Se I 0 0 0 0

(b)

DC~n00 01 11 10

c•
01 1C1-- ~-- ~ 1J

11 X X

10 X

~ St

~ ~ i-x-.==-~ J"t i , f'l. ~ J-L i 1 J-t i ' /
OOil

: '~=L~_U-~I~176176 = ~~176 I - ' - - ! ,o,, 1

IS1 So S, St TFt Sl S.

n. T s, s, S~ % t ' l t

S,4 S ,

4 >

- ~ A
| i

Ck

C/

Jm B Jc C Jo D- -
~> ~> ",>
_K. ~ Kc ~ - - - - - . ~ Ko 5

w

(e) Outputs

A

4-to-16
line

decoder

Yo
Y1
Y2
Y3
Y4
Ys

Y9
YlO
Y l 1 ~
Y12
Y13
Y14
Yls

(0)10
(1)10
(2)10

(8)10
(3)10

.... (5)10

"------'--(9)1o

(7)10
(4)10

~ (6)10

Figure 7.31 (a) State table for shift register counter (b) K-map for the feedback function f = JA
(c)Ful! state diagram (d) Implementation of shift register counter (e) Count sequence used to generate
a circulating ring of ten 1 's

Counters and registers 191

sequence when faulty operation occurs is illustrated in the full state diagram shown in
Figure 7.31(c), and implementation of the counter is shown in Figure 7.31(d).
If a decimal display is required, then the counter, in conjunction with the appropriate
combinational logic, can be used to drive a seven segment indicator. Alternatively,
the flip-flop outputs can be fed to the input terminals of a 4-to-16 line decoder
(see Figure 7.31 (e)), whose outputs will be either active low or active high depending
on the MSI package selected. If, for example, DCBA = 1101 the corresponding
decimal output is (6)~0 and will appear at the decoder output terminal marked YI3-

It will be observed that if the decoder outputs are active high they will produce
a continuously circulating ring of ten pulses which could be used to initiate operations
in other sequential logic circuits.

7.22 The ring counter

The simplest type of shift register counter is the ring counter, where feedback from the
last stage of the register feeds the input of the first stage, as shown in Figure 7.32(a).
The register has ten stages and it can be used as a decimal counter since the number
of stages is equal to the number of states. The data contained in each stage is
shifted to the next stage on the receipt of a clock pulse, and the counter circulates a
1 which is initially preset in the least significant stage of the register, all other stages

+5V

Ck

-u-

,/__
Pr

~ A

['> _

%A
Y

'i
Pr

Je B "

>

q

(a)
. . . . , , , , , ,

Clock pulse /. Z N G F E D C 8 A

o 0 0 0 0 0 0 0 0 0 I

, o o o o o o o o , o
2 0 0 0 0 0 0 0 I 0 0
3 0 0 0 0 0 0 I 0 0 0

4 0 0 0 0 0 I 0 0 0 0
5 0 0 0 0 I 0 0 0 0 0
6 0 0 0 I 0 0 0 0 0 0

7 0 0 I 0 0 0 0 0 0 0
8 0 I 0 0 0 0 0 0 0 0
9 I 0 0 0 0 0 0 0 0 0

r i

(b)

Figure 7.32 (a) The ring counter and (b) the counting sequence for a lO-stage ring counter

192 Digital logic design

�9 .v]
Pr Pr e

JA A - ~Ja " - " - - "

_> . >.

ck - Y Y

. --~w ~ L

,

Figure 7.33 The self-starting self-correcting ring counter

being simultaneously cleared. The count sequence of the register is tabulated in
Figure 7.32(b).

The ten outputs of the ring counter can be used directly as decimal outputs without
the need for a decoding network. Alternatively, the circulating 1 can be used to enable
a group of logic circuits sequentially. The number of stages required in this case will be
equal to the number of circuits to be enabled.

An obvious advantage of the ring counter is its simplicity. Additionally, it has
spike-free outputs since decoding logic is not required. However, it has the disadvantage
of not having a binary readout and its counting sequence is radically changed if,
through faulty circuit operation, it enters one of the many unused states.

A binary counter, synchronous or asynchronous, having ten stages will have
2~~ = 1024 counting states and can count up to 1023, whereas the decimal ring counter
only has 10 counting states and it follows that there are 2 l~ - 10 = 1014 unused states.
If the counter, for some reason, enters one of these states it enters a forbidden counting
sequence, of which there are many, and it will never again re-enter the correct counting
sequence unless forced to do so.

The circuit of Figure 7.32(a) can be modified so that it becomes both self-starting
and self-correcting. The required modification is shown in Figure 7.33. The input to
FFA is:

JA = A B C D E F G H I

and this can only b e l p r o v i d e d A = B = C = D = E = F = G - - H - - I = 0 .
Clearly, if any section of the counter, except the last one, contains a 1, JA - 0 and

the counter will now enter the required sequence within a maximum of 9 clock pulses.
If, for some reason, the counter enters a false state, the counter is also self-correcting
and will return to the correct sequence after, at most, 9 clock pulses.

7.23 The twisted ring or Johnson counter

As the name implies, the difference between the twisted ring counter and the ordinary
ring counter is that the feedback is taken from the complementary output of the last
stage in the register and is connected to the J-input of the first stage, while the inverted

Counters and registers 193

(a)
I

i; \ /

Ck

"1-1-

r >

l

A ~ JB B

r >
T

JE E, - j

-r-

(b)

Clock pulse

0
I

2
5
4

5
6

7
8

9

L r

0
0
0
0
0
I
I

I

I

I

C

(e)

o,

oo S2

01 1 S14J 2

11 1

10 2 2

0 0 0 0 I

0 0 0 I I

0 0 I I I

0 I I I I

I I I I I

I I I I 0

I I I 0 0

I I 0 0 0

I 0 0 0 0

0 0 0 0 0

O0

01 2 1

11 2 2

10 1 2 1

(c) E D ~ B 0 01 11 10

oo

0.1 ~X

11

10

oo lq
oi Lx
11 X

X X X~

x x xJ
X

X X X

01 11 10

1 1 X " ~

x ~ x)

X X

A

10~ X

11 10
1

X

A

X X

(d) E D ~ B o 01 11 10

oo o xxx
OlLX x x xJ
11 8 X 6 7

10 9 X X X

E D ~ B 0 01 11 10

o~-~ 2

01 X X

11 X X

1o_._~x x

3"2--
4 X

5 X

X X~y___
A

Figure 7.34 (a) 5-stage twisted ring counter (b) its counting sequence (c) K-map for determining the feedback
function (d) K-map for determining the decode logic (e) K-map for determining self-correction function

form of the feedback is fed to the K-input. If all the flip-flops are initially preset to the
same state, either 0 or 1, then the number of stages in the count sequence is equal to
twice the number of stages in the shift register. Hence, a decade counter can be
constructed from a 5-stage shift register, as shown in Figure 7.34(a). The counting
sequence of the circuit, assuming that initially all the flip-flops are cleared to zero, is
tabulated in Figure 7.34(b).

This is a 10-state sequence which could have been selected from the universal state
diagram of a 5-stage shift register. The feedback logic could have been developed by
first tabulating the required value of the feedback function in the column headed f in
the count sequence tabulation. The function is then plotted on the K-map shown in
Figure 7.34(c). Simplifying, the K-map plot gives f = JA = E.

For this circuit, decoding logic is required to obtain a decimal count. This logic is
obtained from a 5-variable K-map on which the decimal equivalent (corresponding to

194 Digital logic design

the clock pulse numbering in Figure 7.34(b)) for each of the states in the counting cycle
has been marked as shown in Figure 7.34(d). The simplifying adjacencies for (0)lO and
(1)lO have also been marked with X's on the map, and if the reader cares to continue
the process of simplification it can be seen that it is always possible to combine seven
unused states with each of the decimal entries. The resulting decimal decode logic, after
simplification, is tabulated below:

_ n

(0)l 0 = A E (5)10 = A E

(1)lo = AB (6)10 - AB

(2)1o = BC' (7)1 o - / ~ C

(3)10 = CD (8)10 - CD

(4)10 = DE (9)10 - DE

There are also three other undesired and independent count sequences for the Johnson
counter. They are:

1. $2-$5-S I I -$23-S 14-$29-$26-$20-$8-S ! 7-$2

2. S4-S9-S 19-S6-Sl 3-S27-S22-S 12-$25-S ! 8-S4

3. Sl0-S21-Sl0

If the counter should enter any one of these sequences due to faulty circuit operation or
when switching on, it will remain in that sequence unless arrangements are made to
return the counter to the required sequence.

The unwanted sequences are shown plotted on the K-map in Figure 7.34(e), cells
marked with a l being in unwanted sequence l, and so on. It will be observed that the
four adjacent states $2, $6, S~0 and S~4 are all in one of the three unwanted sequences.
If the Boolean function that represents these four states, f - ABE, is used to clear the
five stages of the counter, then within a maximum of ten clock pulses the counter will
enter the Johnson count sequence. The reader should note that there are alternative
combinations that will achieve the same effect.

The Johnson counter has an even-numbered cycle length of 2N where N is the
number of stages in the register. However, with a suitable modification of the feedback
it is possible to achieve an odd-numbered cycle length of (2N - 1). For example, if the
state 00000 is omitted, the counting cycle becomes that shown tabulated in Figure 7.35(a)

(a)

E E

0 0
o o

0 1
1 1
1 1
1 1
1 1
1 0

C B A f

0 0 1 1
0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 1

ED~B00 01

00 ('-X X

o~\x x

11 X

10 (1 X

11 10

x

x x~

(b)

CB
E ~ oo

oo (~
oi l~x
11 X

10 'f'X

01 11 10

1 1 x')
x ~ x)
X X

x x x]
A

Figure 7.35 (a) Counting sequence of an odd-numbered cycle length Johnson counter (b) Determination of the
feedback function for the Johnson counter of cycle length (2N-1)

Counters and reg&ters 195

and the values of the feedback function required to generate this sequence appear in the
last column of this table. Plotting this function in conjunction with the unused states on
the 5-variable K-map (see Figure 7.35(b)) and minimising, leads to the revised feedback
function f - D + E. It is left to the reader to show that if the state 11111 is omitted
rather than the 00000 state, the modified feedback function will be f - D E .

7.24 Series and parallel interconnection of Johnson counters

For a modulo-10 count, a 5-stage Johnson counter is required with its associated
decode logic. As the modulus increases, the number of stages required also increases,
and beyond modulo-12 the use of a single Johnson counter is no longer economic.
However, by means of a series or parallel interconnection it is possible to use two
Johnson counters of smaller moduli to generate a larger modulus.

In Figure 7.36, two mod-4 counters are connected in series to generate the tabulated
mod-16 count. The AND gate provides the clock pulses for the right-hand counter.
Each time the left-hand counter is in the state B A - 10, a clock pulse is generated for
the right-hand counter. If required, a 4-to-16 line decoder can be used to decode the
outputs.

A pair of parallel connected Johnson counters is shown in Figure 7.37, both of
them being clocked by the same signal. The two moduli chosen, mod-3 and mod-5,
are both prime numbers. Odd numbered counting sequences are obtained for both
counters by using the appropriate feedback signals. For the mod-3 counter B A = 11 is
removed from the count sequence, and for the mod-5 counter E D C - 000 is removed.
The feedback signal for the mod-3 counter is JA - B A and for the mod-5 counter it is

m

J c = D + E. The initial state of the tabulated count sequence is E D C B A - 10000 and
the counter re-enters this state after 15 clock pulses. Two parallel connected modified
Johnson counters have combined to form a mod-15 counter.

(a)

1

Ck

(b)

D C B A

0 0 0 0
0 0 0 1

0 0 1 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 0

JA A ;___.~_ JB B ' "
- ~> >

1
1

Y
--D

D C B A

1 0 0
1 0 1
1 1 1
1 1 0
0 0 0
0 0 1
0 1 1
0 1 0

. . . .

1

Figure 7.36 (a)A series-connected pair of mod-4 Johnson counters providing a mod-16 count and
(b) the count sequence

196 Digital logic design

(a)

' 1
Ck

Mod - 3

t , C I '

v E : :11 :21 ' '

Mod - 5

(b)

E D 6" B A
,

1 0 0 0 0

0 0 1 0 1

0 1 1 1 0

1 1 1 0 0

1 1 0 0 1

1 0 0 1 0

0 0 1 0 0

0 1 1 0 1

E D C B A
.

1 1 1 1 0

1 1 0 0 0

1 0 0 0 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 1

1 1 0 1 0

1 0 0 0 0

Figure 7.37 (a) A paralh, l-connected pair o f Johnson counters providing a mod- 15 count and (b) the count sequence

It is left to the reader to show that if two moduli which are not prime, such as 4 and
6, are selected, the two counters return to the initial state after twelve clock pulses.
A mod-12 counter has been obtained rather than a mod-24. The reader should
observe that the modulus obtained is the lowest common multiple (LCM) of the
individual moduli.

7.25 Shift registers with XOR feedback

The 4-stage shift register shown in Figure 7.38(a) has XOR feedback from stages
C and D such that the input to the first stage JA = C | D. To determine the sequence
of states for the register, it is assumed initially that the shift register is in the
state D = 0, C - - 0 , B - - 0 and A - 1, in which case JA = 0 @0, and on receipt of
the next clock pulse the register enters the state D = 0, C - 0, B = 1 and A = 0.
The complete sequence of states for the register is tabulated in Figure 7.38(b),
the value of the feedback function for each state appearing in the right-hand column
of the tabulation.

In all, there are 15 states, and this is the maximum number a 4-stage register having
XOR feedback can have. This sequence is termed the maximum length sequence (MLS).
So- -0000 is not included in the sequence since this is a lock-in state. If the register
enters this state JA -- 0 | 0 -- 0; it is unable to leave it when the next and subsequent
clock pulses arrive. In general, the maximum length sequence for such a circuit is given
by l = 2 s - 1 where N is the number of stages in the shift register.

Not all XOR connections result in a maximum length sequence. The table in
Figure 7.39 gives the feedback functions which will give the maximum length sequence
for values of N up to and including 18.

Counters and reg•ters 197

(a)

+$v

Pr
: ,

m

"IF

(b)

-s
SI
$2
$4
Ss
Ss
$6
St3
SIo
S n
Sll
$7
S~$
Sl4
S~z
Ss

o

0
0
0
I

0
0

I

I

0
I

0
I

I
I
I

C 8 A f

0 0 I 0
0 i 0 0

I 0 0 I
0 0 i t

0 i i 0
I I 0 I
I 0 I 0

0 I 0
I 0 I I
0 I I I
I I I I
I I I 0
I I 0 0
I 0 0 0

0 0 0 I

Figure 7.38 (a) Four-stage MLS shift register generator (b) MLS for four-stage shift register

No of stages,
N

Feedback
equation

A
A ~ B
B ~ C
C ~ D
C ~ E
E ~ F
F ~ G
D ~ E ~ F ~ H
E ~ I

No of stages,
N

10
11
12
13
14
15
16
17
18

Feedback
equation

G ~ J
I ~ K
F~ H6) K~ L
I ~ J ~ L ~ M
D ~ H ~ M ~ N
NSO
D ~ M ~ O ~ P
N ~ Q
K ~ R

F i g u r e 7.39 Feedback functions for maximum-length sequences

Other maximum length sequences are available with the same register length.
For example, if the inverse of the X O R function C | D is used as feedback, then an
alternative maximum length sequence is obtained and is tabulated in Figure 7.40.
Furthermore, an examination of the feedback eauations in Figure 7.39 shows that

198 Digital logic design

5" 0

S, 0

S~ 0

ST 0

S~ I

S,3 I
S. I

S. 0
S,~ I

St I
S l 0

S~ 0

S,o I

S4 0

S e I

S o 0

(a)

c e A &;,,,

0 0 1 I

0 I I s

I I I 0

I I 0 I

I 0 I I

0 1 I 0

I I 0 0

I 0 0 I

0 0 1 0
0 1 0 I

0 0 a 0

0 1 0 0

I 0 0 0
0 0 0 0

0 0 0 s
..

(b)

f -
S O C B - , 4 , , 4 e o

- - J ' 1

S, 0 0 0 I I

, $3 0 0 I I I

S? 0 I I I I

S0~ I I I I 0

Sit t I I 0 I
S,~ I I 0 I 0

Sm I 0 I 0 I

Ss 0 I 0 I t

S,, I 0 I I 0
S, 0 I i 0 0

Sol I I 0 0 I

So i 0 0 I 0

S 2 0 0 I 0 0
S, 0 I 0 0 0

S~ ~ 0 0 0 I

S

S,

$2
Ss

S.o
S,

S,

$3
S,

St3
S.

$7

S N

S~
S=

So

(c)

0 0 0 I 0

0 0 I 0 I

0 I 0 I 0

I 0 I 0 0

0 I 0 0 I

I 0 0 I i

0 0 I I 0

0 ~ I 0 I

I I 0 I I

I 0 I I I

0 I I i 0

, i I 0 0

I i 0 0 0

I 0 0 0 0

0 0 0 0 I

Figure 7.40 (a) The MLS for a.lour-stage sh~[t register with feedback C (.~ D (h) A ~ D and (c) A ~i) D

one of the digits in the equation is always the Nth digit in the register, and the other
digit (or digits) is obtained by looking back down the register. For example, for N -- 4
the Nth digit is D, and the other digit in the equation, C, is the (N - 1) t h digit.
Two alternative maximum length sequences for a 4-stage register can be obtained by
looking forward to the (N + l)th digit which, in this case, is A. Hence the other two
maximum length sequences are obtained by using the feedback A ~ D and A | D, and
these sequences are shown tabulated in Figure 7.40.

Clearly, the circuit shown in Figure 7.38(a) can be used as a binary sequence
generator, the output sequence being taken directly from the output of one of the
flip-flops in the register. In this case, the binary output sequence appearing at the
output of FFD is 000100110101111. This kind of generator is sometimes referred to as
a pseudo-random binary sequence generator because the digits in the sequence are in
apparently random order. However, the randomness repeats itself every 2 N - 1 clock
pulses. For a given clock frequency, the periodicity of the randomness increases very
rapidly with the number of stages in the register.

If N - 10, (2 u - 1) - 1 0 2 3

and if the clock frequency is 1 MHz the sequence repeats itself every 1.023 ms.

If N - 20 2 N - 1 - 1048575

and the period of the sequence is 1.05 s.

If N - 30 2 N - - 1 - 1073741823

and the period of the sequence is 1073.74 s.
The design of pseudo-random sequence generators is based on the theory of finite

fi'oldr cleve.lnne, cl hv the French mathematician Evariste Galois. The algebra associated

Counters and registers 199

s D C B ,4 f

S, 0 0 0 I 0
S= 0 0 I 0 I
Ss 0 I 0 I 0

SIo I 0 I 0 0
$4 0 I 0 0 0

Sa I 0 0 0 I

Figure 7.41

! S o c e A r

S 3 0 0 I I I

$7 0 I I I I

Sis I I I I 0

S,4 I I I 0 0
S~Z I I 0 0 I

S~ I 0 0 I I

S

SQ
S=s

Sll

0 I w 0 I

I I 0 I I

I 0 I I 0

Non-maximum length sequences generated by a four-stage shift register with feedback B �9 D

with finite field theory is frequently referred to as Galois field algebra. This type of
binary sequence generator has a number of applications. Typical of these is the
generation of repetitive noise for test circuits and also in the process of encrypting
serial transmissions to ensure message security.

Non-maximum length sequences can be generated with a 4-stage register if an
alternative XOR feedback is used. For example, if the feedback function is B @ D,
one of the sequences tabulated in Figure 7.41 will be generated. The form which the
sequence takes will depend on the initial state of the register.

The basic MLS generator shown in Figure 7.38 is not necessarily self-starting, since
on switching on the initial state of the generator may be 0000. As the circuit stands,
there is no way in which it can leave this state. With a slight modification to the
feedback circuit it is possible to make the generator self-starting. The required
modification is the logical addition of the term ABCD to the feedback equation so
that it becomes:

f = C@ D + ABCD

This function is plotted on the K-map shown in Figure 7.42(a) and, after simplification,
it reduces to"

f - C O D + A B D

The implementation of the self-starting generator is shown in Figure 7.42(b).
It is also possible to generate non-maximum length sequences by using a jump

technique. The method of approach is to start with an MLS generator using
XOR feedback and then reduce the length of the sequence by introducing additional
feedback. The method will be described for the 4-stage shift register generator shown
in Figure 7.43.

It will be assumed that initially the generator is in the state DCBA = 0011 ($3).
If, when in this state, the feedback is a 0, then the next state of the generator
will be DCBA = 0110 ($6). Examination of the state table for the 4-stage MLS
generator in Figure 7.38 shows that C | D = 0 when the generator is in state $3, and
the next state is $6. If the feedback is modified to a 1 then the next state of the
generator is $7.

The state diagram for the MLS generator having four stages is shown in
Figure 7.43(a), and it can be seen that by modifying the feedback, the states $6, S~3,

200 Digital logic design

(a)

(b)

o c \ O 0 0 I II I0

O0 ~ ,,

Ol : I I I I~
_J

l[aunm

Ck

C|

Figure 7.42 (a) K-map plot for a self-starting MLS generator (b) implementation of self-starting generator

S~0, $5 and S~ will be omitted from the sequence, thus reducing its length from 15 to 10
states.

The modified sequence for the generator is shown in the state table in Figure 7.43(b)
and the new value of the feedback function in state $3 is shown encircled. The feedback
function in conjunction with the unused states and the 'lock-in' state So are plotted on
a K-map and then simplified (see Figure 7.43(c)). This gives a modified feedback
function of

f - C | D + ABD + ABD

and the implementation of this self-starting non-maximum length sequence generator
is shown in Figure 7.43(d).

7.26 Multi-bit rate multipliers

It is, on occasions, desirable to have a counter that is capable of generating a variety
of count sequences under the control of a variable combination of inputs, termed
rate constant inputs. Consider, for example, the scale-of-eight counter shown in
Figure 7.44(a) having the normal count sequence shown in Figure 7.44(b) but in this
case under the control of the binary rate inputs W, X and Y.

If the binary rate inputs are W - 1, X - 0 and Y - 0 the output Z - WQACk, or
when expanded:

Z - W(QcQBQA + QcQBQA + QcQBQA + QcQnO__.A)Ck

Counters and registers 201

(a)

(b)

(d)

S, Sz $4 S9 S3 $6

o~~ - ~ ~ o , , o !

,_Lo., / / I n
l, oooj s. 71, / s,, i"oil

,, .. _,.l,o I
Sl2 S~4 S~ s $7 Sa~ S s S~o

S O C B A f

, S I

St
$4
S9
S=

S7

S=s
Sl4
S~t
S=

0 0 0 I 0

0 0 I 0 0
0 I 0 0 I
I 0 0 I I

0 0 I I 0
0 I I I I
I I I I 0
I I I 0 0

I I 0 0 0
I 0 0 0 I

(c)

BA X L,I,

DC~ O0 01 11 10

~176 N
oi bJ x bl x)
11 X

1o0 I x x)

Ok

Figure 7.43 (a) State diagram of the four-stage MLS generator with modified feedback showing the jump
(b) Modified MLS sequence (c) K-map plot of the feedback function f (d) Implementation of an
MLS generator employing the ~iump ' technique

And a sequence of four pulses appears at the output Z rather than the normal scale-
of-eight count._ For a binary rate input of W - 0, X - 1 and Y - 0 the output
Z = XQAQnCk, or when expanded"

Z - X(QcQnQA + QcQ~QA)Ck

In this case a sequence of two pulses appears at the output Z while the counter
cycles through the scale-8 count, and it is clear that if the rate inputs are W - O,

202 Digital logic design

(a)

Ck

En QA

,~>r
m

QA

Q8

m

Qs

En

- - ~ > r

B

Qc ,

m

Qc

w

W X Y

i'l J
W(~ACk X(~BQACk - Y~cQsCIACk ~"
4 pulses 2 pulses 1 pulse
output output output

Z

(b)
Oc OB

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 7.44 (a) Basic 3-bit binary rate multiplier (b) Scale-of-8 count sequence

X - 0 and Y - 1, the output Z will consist of a single pulse. Clearly, any combination
of the rate constant inputs can be chosen, and this will lead to a variety in the number
of pulses appearing at the output. A timing diagram for the rate multiplier is shown

in Figure 7.45.
Typical examples of rate multipliers in the type 74 series are the 7497, a 6-bit binary

rate multiplier, and the 74167 decade rate multiplier. The 7497 has a basic count cycle
of 64 clock pulses and the maximum number of pulses appearing at the output Z
during one complete count cycle is 63 when all the rate inputs are high. A circuit
diagram of the device is shown in Figure 7.46 along with the truth table. The 7497

Counters and registers 203

1
Ck

0

QA

Qe

1
Oc

0

1
m

WQACk
o

Figure 7.45 Timing diagram for 3-bit rate multiplier with W= 1

L__

ENABLE

INPUT' (1 1) ~ "~ ' ' l T~I I '1 I - ~ T P U T] , l r! .~I ~TT ~T ENABLE

I'~ I II '~ '~ I'~

RATE(3) TI RATE(2) T[[RATE(15)i l l RATE(14) TII I I RATE(l) Tllttl ~E(,) t l l l l l l ST.BE .NPUT~ .NP~~ .NP~6~ .aPUTa--~ 'NP~'~II . ~UT~

UNITY/CASCADEINPUT (1 ~ YOUTPt.R"
(a) ZOUTPUT

CLEAR
H
L
L
L
L
L
L
L
L
L
L

INPUTS

BINARY RATE

ENABLE STROBE F E D C B A
X H
L L
L L
L L
L L
L L
L L
L L
L L
L L H H H H H H
L L H L H L L L

NUMBER OF
CLOCK PULSES

X X X X X X~ X

L L L L L L
L L L L L H
L L L L H L
L L L H L L
L L H L L L
L H L L L L
H L L L L L
H H H H H H

64
64

UNITY/
CASCADE

H
H
H
H
H
H
H
H
H
L
H

OUTPUTS

LOGIC LEVEL OR
NUMBER OF PULSES

Y Z
L H
L H
1 1
2 2
4 4
8 8
16 16
32 32
63 63
H 63

40 40

ENABLE
H
1
1
1
1
1
1
1
1
1
1

Figure 7.46 (a) Type 7497 6-bit binary rate multiplier (b) truth table

204 Digital logic design

features buffered clock, clear and enable inputs to control the device operation.
The strobe input is used to enable or inhibit the rate inputs. To enable the multiplier,
the clear, strobe, and enable inputs are low and the output frequency is given by the
equation

foo t ~---
M x fin

64

where M = F x 25 + E x 2 4 + D x 2 3 -t- C x 2 2 + B x 21 + A x 2 ~ If, for example,
F = l a n d E = lwh i l eD , C,B, a n d A = 0

3 2 + 16 3
fout = 64 Xj]n = ~ •

The unity/cascade input allows the range of the binary rate multiplier to be extended to
12 bits or more.

Problems

7.1 Design a synchronous modulo-12 counter using N A N D gates and

(a) T flip-flops,
(b) SR flip-flops,
(c) JK flip-flops,
(d) D flip-flops.

Develop the decode logic for the counters.
7.2 Design a cyclic generator for the following sequence using JK flip-flops and

N A N D gates:

Clock pulse C B A

1 0 0 1
2 1 0 0
3 0 1 0
4 1 0 1
5 1 1 0
6 0 1 1

Examine the behaviour of this circuit in its unused states and show that one of the
unused states is a 'lock-in' state. Suggest a way of avoiding a 'lock-in'.

7.3 Convert the binary code in the tabulation shown below to its corresponding
Gray code, and design a counter using JK flip-flops and NAND gates to generate
this new counting sequence. Assume unused counts are 'don't care' states.

Counters and registers 205

D C B A

0 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
1 1 1 1

7.4 The operational characteristics of a PQ flip-flop are as follows:

PQ = O0 the next state of the flip-flop is 1, irrespective of its present state.
PQ = O1 the next state of the flip-flop is the complement of the present state,

irrespective of its present state.
PQ = 10 the next state of the flip-flop is the same as the present state, irrespective

of its present state.
PQ = 11 the next state of the flip-flop is O, irrespective of its present state.

Using the above information, obtain the steering table of the PQ flip-flop and develop
the input equations for a scale-of-eight binary counter which uses this flip-flop.

7.5 The circuit shown in figure P7.5 is to be
used to generate an output pulse Q

Start .Jd _ o having a time duration equal to 14 clock
i] periods. Draw a timing diagram showing

Counter Stop - K the principal circuit waveforms.
and 7.6 A five-stage tipple-counter uses flip-flops control I Ck
logic - having a delay time of 30 ns and a decode

l time of 50ns. Determine the maximum
frequency of operation of the counter. If the

Figure PT.S counter is operating at this frequency,
draw a timing diagram for each of the
flip-flops as the count advances from 01111
to 10000.

Assuming that the counter is operated now at a frequency of 8.33 MHz, draw
timing diagrams showing the behaviour of the flip-flops between the fifteenth and
sixteenth clock pulses.

7.7 Draw the timing diagrams for the following asynchronous counters:

(a) a 4-bit binary down-counter
(b) a 4-bit binary up-counter

assuming that the flip-flops used in the counting array trigger on the leading edge
of the pulse applied to the clock terminal.

206 Digital logic design

7.8 The contents of a serial-in/serial-out shift register are DCBA = 0101, where A is
the least significant digit of the register. A serial input 10011 is moved into the
shift register, from left to right, most significant bit first, by five successive clock
pulses. Draw time diagrams showing how the outputs of the four flip-flops vary
with time during the period of the five clock pulses.

7.9 Design a modulo-12 counter using a shift register and feedback logic. Develop
the decode logic required to give a decimal output.

7.10 Using a shift register and combinational logic, design a sequence generator
which will generate the binary sequence 0-1-0-0-1-0-1-1-1-0-1.

7.11 Develop the state diagrams for the following shift register generators which
employ exclusive-OR feedback:

(a) A four-stage shift register. Feedback function f = B @ C.
(b) A five-stage shift register. Feedback function f = D @ E.

7.12 A three-stage shift register is to be used to generate two sequences of length 7 and
5, respectively. When a control signal m -- 1, it generates a sequence of length 7,
and when the control signal m = 0 it generates a sequence of length 5. Design
a shift register generator using exclusive-OR feedback to implement the above
specification

7.13 A three-stage shift register ABC having exclusive-OR feedback B @ C, where A is
the least significant stage of the register, is to be used to produce a repeating
sequence of binary coded decimal digits for e (2.718282) on four output lines P,
Q, R and S.

Determine the sequence developed by the generator and develop the
combinational logic required tO generate the sequence for e.

7.14 Draw a timing diagram for a four-stage twisted ring counter for a period of eight
clock pulses. Display the outputs of each of the flip-flops on the timing diagram.

If the counting sequence is to be reduced from eight to seven by the omission
of the 1111 state, determine the modification of the feedback logic that is
required.

8 Clock-driven sequential circuits

8.1 Introduction

In this chapter a design procedure will be established for the design and implementation
of clock-driven sequential circuits. Such circuits have many applications in the digital
field and consist of both combinational and memory elements. For an SSI design,
members of one of the commonly used logic families would be employed in conjunction
with either JK or D flip-flops. In this field JK flip-flops would probably be selected
since their use normally leads to simpler circuit implementation. However, in recent
years, enormous advances in technology have led to the introduction of a variety of
large scale programmable devices (PLDs) and the flip-flops used as memory elements
on these devices are likely to be D flip-flops.

8.2 The basic synchronous sequential circuit

A block diagram of a basic synchronous sequential circuit is shown in Figure 8.1.
The circuit is controlled by the synchronising clock signal and the memory is realised

S l

Inputs

' 7

Combinational
logic

Sp [Clock

Next
state

Memory

Outputs
I =Zl
I =Zr.

I Present
. . . . state

Figure 8 . 1 Basic synchronous sequential circuit

with edge-triggered flip-flops, changes
taking place on either the leading or
trailing edge of a clock pulse. If there
are n flip-flops in the memory, for storing
the state of the circuit, there are 2 ~
possible states, not all of which need be
used in the design of the circuit. The state
of the circuit can only change on a
transition of the clock signal. Relation-
ships between the various quantities
specified in the diagram may be
expressed in the form of state tables or
state diagrams.

8.3 Analysis of a clocked sequential circuit

The logic diagram shown in Figure 8.2 is that of a clocked sequential circuit having
two inputs, X and clock, and one output Z. The memory elements used are two edge-
triggered D flip-flops which define the four possible internal states of the circuit,
A B - 00, 01, 10, and 11.

208 Digital logic design

(a)

(b)

X
i , ,

Cno~(J-L) I

Ck (_rL)

Logic box

1o. t -'--"~Z

B B
oe

,4

(c)
.

Present Nest state Output
state "

X ' O X ' I X'O X- I / i

,48 A8 A8 2' Z

So O0 Oi Oi
S0 Ol I0 I I

St I I O0 O0
Ss iO O0 O0

0 0
0 0

I I
0 0

(d)

(f)

,,18

So J- - ' -~ O0

,,1"1. S~ OI J't

, ~ r t ~ x r t

A 8 ,4a
I0 Io

(e)

c,.o,,~, _.fTq r4__
! !

I " ~
,,18 0 J

0 I

' m Z 0

" ~,_J *t

x o o J , : , l o . o i , i , , , 0 I
0

t~L
, . , o n ~ FI I-'L_

i
z . , d n o I 1 J 1

Figure 8.2 (a) Sequential circuit to be analysed (b) Block diagram for circuit (c) State table for circuit to be
analysed (d) State diagram of the circuit (e) Generation of output signals (f) Timing diagram for the circuit

An alternative way of representing this circuit is by means of the block diagram
shown in Figure 8.2(b). This diagram depicts a logic box which contains the combin-
ational logic as well as the two flip-flops, .4 and B, whose output combinations define
the four internal states of the circuit. The input equations for the flip-flops A and B can
be obtained directly from Figure 8.2(a).

DA = A B D~ = A B + X A

Clock-driven sequent ial circuits 209

In Chapter 6 it was shown that the next state output for an edge-triggered D flip-flop is
given by the equation:

Qt+6t _ D t

By substituting DA and Ds in this equation, the next state outputs of the two flip-flops
A and B are obtained"

A ,+6, = (~ B) '

and

B t+6t = (i l B + X.~) t

With the aid of these equations, it is now possible, for given present state values of
A and B, and for a given value of the input signal X, to determine the next state values
of A and B. For example, if A = 0, B = 0 and X = 0, then A t+at = 0 and B t+'~t 1.

It is now possible to determine the output Z of the circuit for all possible combin-
ations of X, A, and B. This requires a knowledge of the output equation which is
obtained directly from Figure 8.2(a):

Z = AB_n_

The interpretation of this equation is that the output Z = 1, when the present state of the
circuit is A = 1, B = 1, and i fX = 0 or 1 is received at the input in conjunction with a clock
signal. For all other combinations of A and B the output Z = 0, irrespective of the value of
X or the presence of the clock. Further, the equation indicates that the time duration of
Z = 1 at the output can never be greater than the time duration of the clock pulse.

It is now possible to construct a table showing the present state, the next state and the
output. This table, shown in Figure 8.2(c), may be regarded as the state table of the
circuit where the various states have been designated as So, S1, $2 and $3. With the aid
of this state table the internal state diagram can now be constructed and it is shown in
Figure 8.2(d), each of the four rectangles representing one of the four states.
A transition from one state to the next is represented by a straight line with an
arrowhead which indicates the direction of the transition. The transition signal is
placed at the side of the arrowhead. In order to make a transition from S~ to $3, the
circuit needs to receive X = 1 and clock (X_cL_). Since the flip-flops used are negative
edge-triggered D flip-flops, a transition between states will always take place on the
trailing edge of a clock pulse. It follows that the transition from S~ to $3 will take place
on the trailing edge of the clock pulse which forms part of the transition signal X_n_.

The output Z = 1 has been entered in the rectangle marked $3. This output allo-
cation should be interpreted as follows. Z = 1 if the circuit is in internal state A B = 11,

and a clock pulse is received. The generation of the output signal Z is illustrated in
Figure 8.2(e). The circuit enters state $3 when X = 1, and on the trailing edge of the
clock pulse marked 1. The circuit remains in state $3 until the trailing edge of the clock
pulse marked 2, which initiates the transition from $3 to So. The output Z = AB_n_

is formed by ANDing A B and the clock pulse marked 2. Both of these signals are logic 1
in the shaded region shown on the diagram, and in this region the output Z = 1.
It should be observed that Z = 1 during the time duration of the shaded region
irrespective of whether X = 0 or 1.

What can be deduced about the function of this circuit from the state diagram? An
initial observation indicates that there are two distinct paths through the state diagram

210 Digital logic design

starting with So. The first branch is via S 3 and back to So, and the second branch is
via $2 and then back to So. Secondly, it is clear that no matter which of these two paths
is taken from So, there are always three transitions before returning to So. This implies
that strings of three binary digits arriving on the X line are being examined by the circuit.

Certain combinations of three digits will result in an output for the duration of the
third clock pulse. This will only occur if the path taken through the state diagram is
via $3. Other combinations of the three digits result in the path via $2 being selected,
and in this case there is no output on the Z line during the third clock pulse.

The first transition in the sequence, from So to S~, is initiated by a clock pulse and
takes place irrespective of whether X = 0 or 1. In order for the transition from S~ to $3
to take place X = 1, and finally the transition from $3 back to S~ on the third
consecutive clock pulse will take place irrespective of whether X = 0 or 1. Clearly
there are four combinations of three binary digits that will generate an output of
Z = 1. They are 010, 011, 110 and 111. The remaining four combinations, 000, 001,
100 and 101 will be associated with the alternative path through the state diagram, and
for this path the output Z -- 0.

The timing diagram for three different strings of three binary digits, 011,001 and
110, is shown in Figure 8.2(f). The X signal is synchronised to the clock and it is
assumed that changes in this signal always take place between clock pulses. For the
combinations 011 and 110 there is an output Z = 1 which lasts for the duration of the
clock pulses marked 3, while for the combination 001 the output Z = 0.

The last waveform in the timing diagram is for Z = AB, the clock signal having been
removed from the output equation, and as a consequence the output becomes Z = 1
on the trailing edge of clock pulse 2 and terminates on the trailing edge of clock pulse 3.
It is interesting to note that in the case where Z = AB, the output goes high before the
third digit has arrived. This is satisfactory in this case since having once recognised
what the second digit is by entering the state $3, it is now irrelevant whether the third
digit is 0 or 1, and it does not have to be recognised. However, in the case where
Z = AB_rt_, the output does not go high until the leading edge of the third clock pulse.
The circuit has to recognise this clock pulse before an output can occur.

8.4 Design steps for synchronous sequential circuits

The analysis of the sequential circuit in section 8.3 has identified some of the processes
required for the design of small scale synchronous circuits having a limited number of
inputs. An orderly design process can be carried out using the following 10 steps:

Step 1
Step 2

Step 3

Step 4

Step 5

Receive the problem specification.
Draw up a block diagram for the proposed design which displays all the
inputs and the required outputs.
Make an attempt to construct a basic state diagram using information
obtained from steps 1 and 2.
Using the basic state diagram construct a state table and check for
redundant states.
Reconstruct the state diagram if redundancy has occurred, using the
information obtained in step 4.

Clock-driven sequential circuits 211

Step 6
Step 7

Step 8
Step 9

Make a state assignment.
Draw up a new state table, excluding any redundancies, and using the state
assignment of step 6.
Select the flip-flops, D, T or JK, to be used as memory elements.
Using the reduced state table derive the logic equations for the next state
inputs to the selected flip-flops.

Step 10 Develop the output logic with the aid of the reduced state diagram.

Step 1: Problem specification

For relatively simple sequential circuits the specification will usually consist of a verbal
statement of the problem and, in particular, details of the inputs available and the
outputs required. The specification of the problem in completely unambiguous terms is
not always straightforward and may require several discussions between designer and
user. If the ambiguities are not resolved at this stage, a circuit implementation will be
reached that does not satisfy the user's requirements and the design process will have
to be repeated.

Step 2: Problem block diagram and timing th'agram

Having studied the problem specification, construct a block diagram showing the
sources of all the inputs and the required outputs. Additionally, draw up a timing
diagram displaying the outputs specified by the problem.

Step 3: The internal state th'agram

In this step the verbal statement of the problem should be expressed in terms of the
internal states of the circuit in the form of a state diagram. There are no rules for
constructing state diagrams, and the ability to draw them can only be acquired by
experience. For example, the inexperienced designer will almost certainly not, in the
first instance, produce the state diagram shown in Figure 8.2(d) for the circuit analysed
in Section 8.3. To construct the state diagram for that problem, the designer might
have been given the following verbal statement of the problem.

'A logic circuit is to receive binary data serially on an input line, which is synchro-
nised with an external clock signal. Non-overlapping strings of three successive bits of
the input data are to be examined by the logic circuit, and if the combinations 010, 011,
110 and 111 are detected, a 1 will appear at the output. The output must occur when
the third bit of the string is present and the third clock pulse is high.'

In practice, the inexperienced designer may well develop the tree-like structure of
states shown in Figure 8.3. The method of approach used to arrive at this diagram
would be to commence in the arbitrarily selected state So. This internal state of the
circuit can be left by two separate transition paths, one associated with the transition

m

signal X leading to SI, and the other associated with the transition signal X leading to
$2, where X represents logic high level at the input. Each of the states S~ and $2 can be
left by a pair of transition paths, one associated with the transition signal X, and the
other with the transition signal X. These four paths lead to the four states $3, $4, $5
and $6. For each of these four states there are two exit paths, but the next transition

212 Digital logic design

So

Figure 8.3

X.,r'1, ~ ~ ~ . XJ'I.

SI

x.n.

, ' Y s.,
$4 Se

Internal state diagram for a combination detector

is the third one and consequently all eight exit paths must lead back to the starting
state.

The combinations 111 and 110 take the path S0 ~ S~ ~ $3 ~ So through the state
diagram, and the output Z = 1 in state S3. Similarly, the combinations 011 and 010
take the path So ~ S2 --* S5 ~ So through the state diagram and the output Z = 1 in
state $5. The other two paths through the state diagram deal with those combinations
that do not have to be detected.

In developing this diagram, no short-cuts have been taken. Each combination of
three bits of input data appear explicitly on the diagram. However, this version of
the state diagram requires eight states compared to the four states in Figure 8.2(d).
In terms of hardware, this means that a circuit implementation developed from
Figure 8.3 would require three JK or D flip-flops and an additional amount of
combinational logic.

Developing the state diagram from the problem specification is the most interesting
and rewarding part of any digital design. Beginners are likely to experience difficulties
at this stage. Their aim should be to produce a state diagram that contains no
redundant states. A beginner, for example, might well have produced the state diagram
shown in Figure 8.3 from the given problem specification. Clearly this diagram con-
tains redundant states and after drawing up a state table, methods of state reduction
(see Step 5) should be applied to generate the state diagram shown in Figure 8.2.

Step 4: State table

The state table corresponding to the state diagram shown in Figure 8.3 appears in
Figure 8.4(a). The table has a row for every state of the circuit and a column for every
combination of the input signals. In this case there is only one input signal and this
only requires two columns, one for X - 1, and one for X = 0. In each of the cells
formed by the intersection of the rows and columns the next state of the circuit is
entered along with the output Z. If, for example, X = 0 when in the state So, the next
state is $2. Alternatively, if X = 1 when in state So, the next state is S~.

Step 5: State reduction

The more states there are in the state diagram, the more hardware is required for the
circuit implementation. For this reason, it is in the interests of the designer to reduce

Clock-driven sequential circuits 213

(a)

~ 0

So

S=

Ss

$4

Ss

S,

$2
Z=O

$4
Z=O

S,
Z=O

So
Z = I

So
Z=O

So
Z=l

,

So
Z=O

I

S,
Z=O

$3
Z=O

S=
Z=O

So
Z = I

So
Z , O

So
Z , l

So
Z=O

(hi

So

S,

St

S3s

S ~

0

S=
Z=O

S46
Z=O

S,,
Z=O

SO So
Z=I

So So
Z=O

, .

I

S,
Z=O

Z=O
,

Z= 0

Z= l

Z=O

(c)

~ X .0..

S -S,=
o , Z=O

S
S,= 4* 2, = 0

"So
S=s Z = ,I

So
$4, Z = 0

SI2
Z=O

Sss
Z=O

So
Z = I

So
Z=O

Figure 8.4 Combination detector (a) State table (b) Reduced state table (c) Minimal state table

the number of states if possible. The process of state reduction in sequential circuit
design corresponds to the process of minimisation in combinational circuit design.

State reduction can be done systematically with the aid of the state table and by
using Caldwell's merging procedure which depends upon proving that two states are
equivalent. Equivalence is defined by the following statement:

Two states a and b are equivalent i f (1) both have identical next states and (2) both
have identical outputs.

For the table shown in Figure 8.4(a) the rows headed S 4 and S 6 satisfy this definition
as do the rows headed $3 and $5. After states $4 and $6 have been merged, the state
formed is designated S46 and wherever $4 and $6 appear in the state table they are

replaced by 546. Similarly, $3 and $5, when merged,
So

_I �9 _

~ ' I l A B
I jl ~

o, [. . ~ j s , z J't

IO II

Figure 8.5 State diagram for the combi-
nation detector

form an equivalent state 535 which replaces S 3 and
$5 wherever they appear in the state table.

Using Caldwell's merging procedure, the state
table of Figure 8.4(a) can be reduced to that shown
in Figure 8.4(b) which also has two rows, S1 and
$2, that are equivalent and can be merged to form
the equivalent state S12. The table of Figure 8.4(b)
can now be replaced by the state table shown in
Figure 8.4(c) and no further reduction is now
possible. The reduced state diagram that can now
be constructed from the reduced state table is
identical to that shown in Figure 8.2(d) and is
repeated here in Figure 8.5.

The best situation in practice is one in which the number of states n is a power of
two. There is little point in reducing the number of states below 2 ~ unless it is to a lower
power of two since this would lead to a number of unused states. For example, if N is
the number of states after reduction so that 2 ~-l < N < 2 n, then the number of unused

214 Digital logic design

states is 2 n - N. Unused states create additional difficulties for the digital designer.
An unused state can be entered at 'power on' or, alternatively, due to faulty circuit
operation. It is the responsibility of the designer to specify the behaviour of the circuit
if it should, by chance, enter an unused state, otherwise a 'lock-in' may occur. If a 'lock-
in' occurs it means there is no exit from the unused state and the circuit will remain in
that state for an indefinite period. It should also be stressed that unused states are not
'can't happen' states, and for this reason they should not be used for simplification of
the circuit equations.

Step 6: State assignment

Having obtained the minimum state table, the next step the designer must take is to
allocate secondary variables to the various states. The number of secondary variables
required to define a state is governed by the total number of states in the diagram. In
this case there are four states in Figure 8.5 and two secondary variables are required to
define each state uniquely.

For this problem a state assignment has been selected which conforms to the state
assignment in Figure 8.2(c). Clearly there are other possible allocations of these variables
and consequently there are a number of different circuit solutions to this problem,
some of which may lead to more economical circuitry. However, it is rarely worthwhile
to search for a minimal solution since this can be a very time consuming process.

The number of secondary variables needed to define a state is equal to the number of
flip-flops required to implement the design. In the state diagram of Figure 8.5 there are
four states and two secondary variables A and B define these states; consequently two
flip-flops will be required for the circuit implementation.

Step 7: The revised state table

The reduced state table of Figure 8.4(c) is now tabulated in terms of the secondary
variables as shown in Figure 8.6(a). This table gives every possible transition of these
variables for both X = 0 and X = 1.

(a) (b)

Present
state

Next
state

Flip-flop
inputs

X= 0 X= 1 X= 0 X= 1

AB AB AB DA Da DA DB

01 01
10 11
O0 O0
O0 O0

O0
01
11
10

0 I
I 0
0 0
0 0

0 I
I I
0 0
0 0

Output
Z

x•Bo0 01 11

o N
, U

DA=~B

10

x~Bo0 01 11 10

Figure 8.6 (a) State table and flip-flop input tabulation for the combination detector (b) K-map plots for the
flip-flop inputs

Clock-driven sequential circuits 215

Step 8: Flip-flop selection

To complete this design D flip-flops have been selected to implement the next state
equations.

Step 9: The next state equations

The technique used for determining the next state equations consists of tabulating the
D-inputs for every transition on the state table. The D-inputs for the various tran-
sitions are then mapped on a K-map and are simplified where that is possible.

For a D flip-flop it will be recalled that Qt+6t _ D t, i.e. the next state of the flip-flop
is given by the present state of the D-input. It follows that the DA and Ds columns are
identical to the next state entries for A and B. For example, if X - 0, the four next state
entries for A are 0, 1, 0 and 0 and consequently the corresponding entries in the DA
column for X -- 0 will be 0, 1, 0 and 0.

Maps can now be plotted for DA and Ds. These are shown in Figure 8.6(b) and the
next state equations derived from these maps are"

DA = AB and Ds = AB + XA

As might be expected, these equations are identical to the flip-flop inputequations for
the circuit shown in Figure 8.1 (a).

Step 10: The output

A single column is tabulated in the state table shown in Figure 8.6(a) for the output Z.
The output Z = AB occurs when the circuit is in the state AB = 11, and Z - 1 is
entered in the output columns opposite this state. If the entry in the state had been
clock (_rL_) then the output would have been Z - AB..n_.

8.5 The design of a sequence detector

Step 1: Problem definition

Serial binary data is received on the X-input line of a logic circuit, each bit being
synchronised with the clock signal. An output signal is generated at the output Z each
time the sequence 101 is detected. Overlapping sequences are permitted. A block
diagram for the proposed circuit is shown in Figure 8.7(a) in conjunction with a stream
of input data X and the output Z.

Step 2: The internal state diagram

A suitable state diagram, consisting of three states, for detecting the sequence 101 is
shown in Figure 8.7(b). The reader should note that if X = 0 is received when the circuit
is in state So, it will remain in that state and will continue to do so until the signal X = 1
arrives. Similarly if, after making a transition from So ~ S1 on the signal X = 1,
a succession of l 's is received the circuit will remain in S1 until such time as X = 0
arrives at the input, when a transition will be made to $2. To define three states, two
secondary variables A and B are required. Since there are four combinations of these
variables there is one unused state $3. If, due to faulty operation of the circuit, it should

216 Digital logic design

(a) x _[

X I01101 I100010101- . , , . --I Logic

(c)

__.z

Present
state

Next
state

Flip-flop
inputs Output

X= 0 X= 1 X= 0 X= 1 X= 0 X= 1

AB AB AB DA DB DA De Z Z

O0
01
11
10

0 0
1 1
0 0
0 0

0 1
0 1
0 1
0 0

O0 01
11 01
O0 01
O0 O0

0 0
0 0
0 1
0 0

(e)

om

(b)

(d)

. = ,

xJ'1.

x ' ~ % Ol 11 lO

~ A
, o i:,J ,~

v

Om = XA + XB+ AB

-I -

(f)
' n F1 .1"1. 0 .. FI__

x ~ j " l [o j , L

I
" " o 1 L _ . _

' 0 2 ' , A B X J - L 0

I �9 �9 ABX 0 , , , , � 9 , , , , i i
Figure 8.7 The sequence detector (a) Block diagram (b) Internal state diagram (c) State table and flip-flop
inputs tabulation (d) K-map plot for DB (e) Circuit implementation (f) Timing diagrams

enter this state, it might be desirable to return to the main sequence of states as soon as
possible. This can be achieved by returning $3 to So via a transition which is initiated by
the first clock pulse that occurs after the entry into $3.

Step 3: State reduction

An examination of the state table in Figure 8.7(c) shows that state reduction is not
possible since there are no rows having the same next state entries and outputs in
corresponding columns of the table.

Clock-driven sequential circuits 217

Step 4: Development of the next state equations

Since there are only four states in the state diagram, which have been arbitrarily
assigned, just two D flip-flops are required to implement the detector. The flip-flop
inputs, DA and Ds, and the output Z for each entry on the state table are tabulated
alongside those entries. The D flip-flop input entries in the state table are simply a
repeat of the next state entries. As there is only one 1 entry in the two columns for DA,
the equation for the D-input of FFA may be taken directly from the state table and is:

DA = X A B

A K-map plot of the D-input for FFB is shown in Figure 8.7(d), and after simplifica-
tion

Ds = X A + XB + AB

The output Z is read directly from the state table and is:

Z = ABX_rt_

The circuit implementation for the detector is shown in Figure 8.7(e) and the timing
diagrams for a 101 sequence of bits is shown in Figure 8.7(f). Postponed output DFFs
are used in this design, so the circuit enters state AB = 11 on the trailing edge of clock
pulse 2 and leaves on the trailing edge of clock pulse 3. If the outp~[is defined as
Z = A B X then it will go high when the circuit recognises the leading etige of the input
bit associated with the clock pulse numbered 3. If, on the other hand, the output is
defined as Z = ABX_n_ it does not go high until the leading edge of clock pulse number 3
is recognised. By using Z = ABX_rt_ the possibility of contact bounce on the signal X
being propagated to the output Z is avoided, whereas using Z = A B X gives a longer
detection pulse if contact bounce is known not to be present on X.

8.6 The Moore and Mealy state machines

There are two types of synchronous sequential machines. The first of these machines
has an output that depends only on its present state and is referred to as the
Moore machine. The behaviour of the machine is defined by the equations:

Next State = f (Presen t State, Inputs)

Output = g(Present State)

The configuration of the machine is shown in Figure 8.8(a).
In the second type of machine the output depends on both its present state and also

its inputs. This type of machine is referred to as the Mealy machine and its behaviour is
defined by the following equations:

Next State = f (Presen t State, Inputs)

Output = g(Present State, Inputs)

The general structure of the Mealy machine is shown in Figure 8.8(b).
The circuit developed in Figure 8.7(e) is an example of a Mealy circuit, since the output

Z = ABX.rt . depends not only on the state of the circuit but also on the input X, whilst its
time duration is limited by the width of the clock pulse. A slight modification to the state

218 Digital logic design

Inputs

X . :

Present
state

Next
state
logic

Next
state I
input.]

l State
memory

T clock

(a)

Present [
state _

i - :J Output
logic

Outputs. Z1

= Zm

Xl :
X . :

Present
state

Next
state
logic

Next
state I
input.]

-I

(b)

State
memory

T clock

]

q

Output
logic

Outputs. Z1

: =Zrn

F i g u r e 8 . 8 Block diagrams for (a) the Moore machine and (b) the Mealy machine

diagram shown in Figure 8.7(b) will convert the Mealy circuit to a Moore circuit.
This modification is illustrated in Figure 8.9(a). An additional state, $3, has been intro-
duced and this is now used as the output state of the circuit so that Z = AB. The timing
diagrams corresponding to an input sequence X = 10100 are shown in Figure 8.9(b).

The state table and the tabulation of the flip-flop inputs for the Moore circuit
are shown in Figure 8.9(c) and the K-map plots for the D flip-flops are shown in
Figure 8.9(d).

After simplification, the equations for the D inputs are found to be

DA = X A B + X A B + XAB

and

DB = X A + f i B + A B

These equations are sometimes referred to as the excitation equations. Using the above
equations and the output equation Z = AB, the Moore implementation of the sequence
detector is shown in Figure 8.9(e). It is left to the reader to show that if the states had
been allocated such that $2 = A B - 10 and $3 = AB = 11 much simpler excitation
equations would have been obtained leading to a much simpler circuit implementation.

As a further example of the Mealy and Moore representations, consider the
following problem. 'A logic circuit receives binary information on the input line X.
Non-overlapping strings of three successive digits are to be examined by the circuit.
If the last two digits in the group are both l 's the output Z will be 1'.

Clock-driven sequential circuits 219

(a)

S~

I0

X/ I

X / I

XFL

so L
A 8
O0

S l , .

Ol

sz

o

xJ't
(b)

-~_~_ ~ ~ ~ 1 ~ ~ ~ l I;1_

~J ,' o1_~ , 1 o o

~ , i [

A8 ~ , I l l I " L

(c)

(e)

(d)

Present

state
, ,

AB
i

O0
01
11
10

Next
state

x-o X - i
AB AB

O0 01
11 01
O0 10
11 01

Flip-flop
inputs

X= 0 X= 1
o~ o. 6A ,'Ou, '

0 0 0 1
1 1 0 I
0 0 1 0
1 1 0 1

A , ~ :

x • B o 0 01 11 10

o @ |
, @

D A - X A B + X A B + XAB

X N % 01 11 10

o n
U

Oa . XA + AB + AB

Cl~k I-n-

Figure 8.9 The sequence detector (a) Moore representation state diagram (b) Timing diagrams (c) State table
and flip-flop inputs tabulation (d) K-map plots for DA and DB (e) Circuit implementation

The block diagram for the problem is shown in Figure 8.10(a) and a possible state
diagram is shown in Figure 8.10(b). For this problem the entry in states $3 and $5 is
Z = XJ-L. This indicates that an output will occur in those two branches when the last
digit is 1. The state table is shown in Figure 8.10(c) and it is apparent on inspection that
states S 3 and $5 are equivalent and can be merged to form one state S35. Furthermore,
$4 and $6 are also equivalent and can be merged to form the state 546. After merging,
the reduced state table is tabulated in Figure 8.10(d). From an inspection of this table it
is evident that a further reduction is possible since SI and $2 are equivalent and can be
merged to form the one state S12. The final state table is shown in Figure 8.10(e), no
further reduction being possible.

The reduced state diagram shown in Figure 8.10(f) has been obtained from the
information tabulated in Figure 8.10(e). This state diagram will lead to a Mealy-type

220 Digital logic design

(o;
K

(b)

s: x r l . / ~ ~J'L

0 1

sa '%Z.O S'z.o

s~ S,z. o S=z. o
s= S=z. o Ssz. o

s, Soz. o Soz. ~
, ,

s, %.0 %.0
s, Soz. o Soz. ~

s, SOz. o SOz. ~

(d)

\ 0 1 "~
s, %z.o S'z.o s,
s s,, s~

z . o .Z- o sn
%Su S~

z . o Z-O
sx SOz. o SOz. ~ s,,,

s,, S~ o S~ o

(e)
0 1

S~= Slz
z . o g - 0

Z-O Z-Q
%.oi%-,

i

% . o N . o

(fl

" s~ 1,, '

t ~176
J't. S I 2 ~ !

S~ 6 l ~ ! I ~ I S 3 S

/'L

(o)

I - - ~ 3 5

XJ'L

F i g u r e 8.10 (a) Block diagram (b) Basic state diagram (c) State table (d) Reduced state table (e) Further reduced
state table for the word scanner (f) State diagram for the Mealy type representation (g) State diagram for the
Moore diagram representation

circuit since the output Z = ABX_n_ depends upon the present state and the input
signal X. To convert the state diagram to one which will lead to a Moore-type circuit
the state So is split into two states, SoA and SoB, as shown in Figure 8.10(g). The output
Z now appears in state S0A and is dependent only on the state so that Z = ABC. If it is
required that the output should be time limited by the clock, the output would be
written Z = ABC_n_. The conversion to a Moore state diagram increases the number
of states from four to five. Since one of the states has to be set aside for the output it is
clear that Moore-type circuits will require more states than Mealy-type circuits.

Clock-driven sequential circuits 221

In the case of the Moore circuit there are three unused states, and it is desirable
that the behaviour of the circuit is predictable if a fault condition arises in the
circuit such that it enters one of the unused states. The best solution is to ensure
that the circuit returns to the initial state S0s. Additionally, it may be desirable to
raise an alarm and disable the circuit by, for example, stopping the clock. The
precautions taken by the designer will depend on the requirements of the design
specification.

8.7 Analysis of a sequential circuit implemented with JK flip-flops

JK flip-flops are also used for implementing sequential circuits. They have the
disadvantage of having two separate inputs compared to the single input of the
D flip-flop. However, there are four 'don't care' terms available in the JK steering
table and this will normally result in simpler next state equations.

The logic diagram of a JK sequential circuit is shown in Figure 8.1 l(a). The circuit
has a single input signal m and a synchronizing clock signal. Since there are two JKFFs
the circuit has four internal states. The next state equations for the A and B flip-flops
are:

J A - B m J B - A

K A = I K n - - A + m

The characteristic equation of a JK flip-flop developed in chapter 6 is:

Qt+6t _ (JQ_. + K Q) t

By substituting JA, KA and Jn, Ks in this equation, the next state functions of the two
flip-flops are obtained. They are:

At+6t _ (A B m) t

and

B t+6t -- (A B + ~lBm) t

With the aid of these equations it is now possible, for given present state values of
A and B, and for a given value of the input signal m, to determine the next state values
of A and B. For example, if A - 0 , B - 0 and m = 1, then A t+6t - - 1 and B t+St= O.

Similarly, next state values can be obtained for the other seven combinations of A, B
and m.

The output equation taken directly from the logic circuit is:
m

Z -- AB_vu

and is independent of the input signal m, so this is an example of a Moore-type
circuit.

With the aid of the output equation and the next state functions it is now
possible to develop the state table for this circuit [see Figure 8.11(b)]. For example,
if the present state is A B - - 0 1 and the input signal m - 0, on the trailing edge of
the next clock pulse the circuit will enter the state A B - 00. The transition details

222 Digital logic design

(a)

. . . .l~, A

CI

A B

. . =

A

(b)

(d)

Present
state

AB

O0
01
10
11

Next
state

m=O m=l
AB AB

O0 10
O0 01
01 01
O0 O0

Output
Z

m

(c) re_n_

AB AB
11 01

m

0

z
Figure 8.11 (a) Sequential circuit to be analysed (b) State table (c) State diagram (d) Timing diagrams

provided by the state table have been used to develop the state diagram in Figure
8.1 l(c).

The function of this sequential circuit can be deduced from the state diagram and is
illustrated in the timing diagrams shown in Figure 8.11 (d). When in the initial state So,
with m = 0, the circuit will remain in that state. If the input signal m changes from
0 -+ l, then on the trailing edge of the next clock pulse, a transition will be made to
state $2. On the receipt of the next clock pulse the output Z is generated and on the
trailing edge of that clock pulse the circuit makes a transition to state S1. The output, it
will be noted, is a single clock pulse. The circuit now remains in state S~ until the input
signal returns to m - 0 and on the trailing edge of the next clock pulse after this event
has occurred the circuit returns to the initial state So. State $3 is an unused state and if
the circuit should at some instant enter that state it will return to the initial state So on
the trailing edge of the next clock pulse. This circuit is called a 'one-shot' and has
practical application where it is required to slow down high speed operations to
manual speeds.

Clock-driven sequential circuits 223

8.8 Sequential circuit design using JK flip-flops

S tep 1: Prob lem definit ion

Serial NBCD codes arrive on line X, most significant bit first, each bit of the 4-bit code
being synchronised with a clock pulse. Develop a circuit that will give an output when
an invalid NBCD code is received.

S tep 2: The internal State Diagram

In this example, a logical approach has been adopted to develop the state diagram
shown in Figure 8.12(a). For example, the path So---* $1---* $2---* $3 is associated
with the first eight combinations of the code, 0000---, 0111 inclusive, all of which
can be identified by the most significant digit 0. These are all valid code combin-
ations. A second path, So --* $4 ---* $7 ---* $3, is associated with the remaining two valid

(a) So I (b) I

s,I I I I s4
J-L ~ , ~ _ r _ L ~ x_r-L

S2[] Iss

S31 S6

I . I

J-L

Present Next state
state X= 0 X= 1

So
$1
$2
$3
$4
Ss
$6
S7

Sl $4
S2 $2
S3 $3
So So
S7 Ss
S6 $6
So So
S3 $6

(c)
Q Qt+~t j K

0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

(d)
Next Flip-flop inputs Present state

state
X=O X= I X=O X=I X=O X = l X=O X= I

CBA CBA CBA Jc Kc Jc Kc JB KB JB KB JA KA JA KA

So 000 001 100 0 X 1 X 0 X 0 X 1 X 0 X
$1 001 011 011 0 X 0 X 1 X 1 X X 0 X 0
$2 011 010 010 0 X 0 X X 0 X 0 X 1 X 1
$3 010 000 000 0 X 0 X X 1 X 1 0 X 0 X
$4 100 110 101 X 0 X 0 1 X 0 X 0 X 1 X
S5 101 111 111 X 0 X 0 1 X 1 X X 0 X 0
S6 111 000 000 X 1 X 1 X 1 X 1 X 1 X 1
S7 110 010 111 X 1 X 0 X 0 X 0 0 X 1 X

Figure 8.12 The invalid code detector (a) The state diagram (b) The state table (c) JK flip-flop steering table
(d) Tabulation of flip-flop inputs (e) K-maps for flip-flop inputs (f) Circuit implementation

224 Digital logic design

(e)

x c • A o 0 01 11 10

O0

01 X X X X

1 1 ~ X 1 0 X X

Jc = XB,~

xc~Ao0 01 11 10

ooN x �89

11 X j

KB= CA + G'r'A

xc•Ao0 01 11 10

o o x x " ~ - ~

01 .1,..1_____.1_).

11 1

10 X X ,~X X

Kc = XB + BA

xc•Ao0
O0

01 [I

11

10

xc~A o0 01 11 10 X C ~ A

oo C ~ x 00!

01 X X 01

11 (I X X I) 11

I0 X X I0

JA = x c + YdCB

01 11 10

~- - -~ x

x x 1

1 X X

&_.~x x

JB = XC + A

O0 01 11 10

x ~

X 1 •

X 1 •

x ~

KA = B

(f)

X
d c - 1

B

A Kc- I
X

B
Clock (J-L) _/

X

C C j B . . q l B

C

c A K. 7 -
C
;4

8 ~ z
A

X

Figure 8.12 (Continued)

combinations 1000 and 1001. The invalid code combinations 1100 ---, 1111 inclusive
are covered by path So ~ $4 ~ $5 ---* $6, and the invalid combinations 1010 and 1011
take the path So ---, $4 ---, $7 ---* $6. The output for invalid code combinations Z = _n_ is
entered in the state $6. There are eight states in all, and these can be defined by three
secondary variables A, B and C. Each state has been arbitrarily allocated one of the
eight combinations of these variables.

Step 3: State reduction

The state table, showing present and next states, is tabulated from the information
provided by the state diagram, and is shown in Figure 8.12(b). Examination of this
table shows that rows $3 and $6 have identical next state entries; however, they cannot
be merged since the only output entry appears in present state 6 and consequently these
two states are not equivalent.

Step 4: Development of the next state equations

It is at this point where design with JK flip-flops differs from a design using D flip-
flops. For a JK flip-flop there are two inputs, J and K, which have to be determined

Clock-driven sequential circuits 225

from every transition recorded in the state table, and this is achieved with the help
of the JK flip-flop steering table developed in Chapter 6 and presented again for
convenience in Figure 8.12(c).

Since three secondary variables are required to uniquely define each of the eight
states, three JK flip-flops will be required for the circuit implementation. In Figure 8.12(d)
the state table has been redrawn, each state now being represented by the combination
of three secondary variables allocated to it on the state diagram. Alongside the state
table are twelve columns in which the flip-flop input signals Jc, Kc, JB, KB, JA, and KA
are tabulated. The entries in these columns are obtained from the steering table.
For example, if the present state is CBA =000 and X = 1, the next state
C B A = 100; hence, C t = 0 and C t+rt = 1. Thus, from the steering table, the entry for
a 0 ~ 1 transition is Jc = 1 and Kc = X. For both B and A the transitions recorded
are 0 ~ 0 and from the steering table the entries for the B and A inputs are
JB = JA = 0 and KB = KA = X.

K-maps for each of the input signals are now plotted. These are shown in Figure 8.12(e)
and the next state equations, derived from these maps after simplification, are

m m

Jc -- X B A

J B = X C + A

JA = X C + X C B

m

Kc = X B + BA

KB - CA + C A

KA = B

The output equation is taken directly from the state diagram and is"

Z = ABC_ra_

The implementation of the invalid code detector is shown in Figure 8.12(f).

8.9 State reduction

There are three methods available for determining equivalent states in a completely
specified state table. They are:

1. Inspection
2. Partitioning
3. The implication table

A method of state reduction by inspection has already been introduced in Section
8.4. In practice, all methods of state reduction depend upon the principle of equivalence
defined earlier in Section 8.4. However, two states Sp and Sq may also be deemed to be
equivalent if, and only if, every possible input sequence produces identical output
sequences, irrespective of whether Sp or Sq is the initial state. One method of determining
state equivalence would therefore be to apply all possible input sequences and tabulate
the corresponding output sequences of the circuit, assuming each of the states of the
circuit to be in turn the initial state of the circuit. This would clearly be a tedious
process for a circuit having a number of input signals and a number of states.
Fortunately there are two other simple and non-tedious techniques available for state
reduction. They are (1) partitioning and (2) by implication table. The method of
partition will be discussed next.

226 Digital logic design

Partitioning

It will be assumed that the state table shown in Figure 8.13(a) has been obtained from
a state diagram relating to a problem in which there is a single input X and a single
output Z. A first partition is made by placing all those present states in the same
section of the partition if the outputs generated are identical for all possible inputs.
For example, if the present state is So, the two possible inputs are X - 0 and X - 1
for which the outputs are Z = 0 and Z = 1. Similarly, if the present states are either
$3 or $5 then for X = 0 and X = 1 the outputs are Z = 0 and Z = 1. The three states
So, $3 and $5 are said to be 1-equivalent. From a further inspection of the table it
is clear that S, and $4 are 1-equivalent and that $2 and $6 are also 1-equivalent.
Hence, the first partition is

PI -- (So, 83, S5)(Sl, S4)(S2, 56)

The partition has been obtained by the application to the circuit of an input sequence
of length one.

The second partition, P2, is obtained using the following procedure. In the first
section of P~, for X = 0 the next states for So, $3 and $5 are all in the same section of P~.
However, for X = 1 the next states for So, $3 and $5 are $4, $6 and $4 respectively, and
the next state of $3 lies in a different section of the partition. The first section of the
partition P~ is now split into two sections, the first one containing So and $5, and
the second containing $3 only. The procedure is now repeated for the second section of
the first partition. With X = 0, Sl and $4 have next state entries both in the same
section of the first partition, whilst with X = 1 the next state entries are both $2, which
is also in the same section of the first partition, and hence no split of this section is
required. An examination of the third section of the original partition shows that no
splitting of this section is required.

Hence:

P2 - (SoS5)(S3)(Sl S4)(S256)

Present
state

(e)
. . . .

Next state

x=o- x;i
So $4

So Z-O Z - I
S4 S=

S, Z , I Z=O
So S3

St Z= l Z = l

S= Ss Ss
Z-O Z= I

$4 S, S=
Z=l Z=O

Ss Ss S4
Z=O Z=I

S, So Ss
Z ' I Z = l

Present
state

(b)

Next state
, , , ,

X = O X= I
_=

Sos S=4
Sos Z= 0 Z= I

S,4 S=s
S,4 Z � 9 I Z= 0

S= s So~ S=
Z=l Z= l

S3 Sos S=s
Z=O Z=l

.

Figure 8.13 (a) State table for the partitioning example (b) Reduced state table after partitioning

Clock-driven sequential circuits 227

This partition has been obtained by the application of an input sequence of length
two. The procedure described above is used again to determine P3, but in this case
no further partitioning is possible and P3 = P2. It follows that the individual sections
of P2 contain the equivalent states of the circuit and the reduced state table is shown in
Figure 8.13(b).

The implication table

The final method of state reduction available to the designer employs the implication
table. A state table for a synchronous sequential circuit is shown in Figure 8.14(a).
An implication table can be constructed by listing all the states vertically except the first
one, and all the states horizontally except the last one, as illustrated in Figure 8.14(b).
The implication table displays all possible combinations of state pairs, and the individual
cells in the table represent the testing ground for the equivalence of a state pair.
For example, the top left-hand cell at the intersection of So and S~ is where these
two states are tested for equivalence.

One of the conditions for equivalence is that the next state outputs of a pair of states
must be identical if the two states are equivalent. On the implication table, all the cells
that cannot possibly be equivalent are marked with a cross. For example, So and S~
cannot be equivalent states since the next state outputs are 0,0 and 1,0 respectively, and
the cell situated at the intersection of So and S~ is marked with a cross. Similarly, all the
other cells for non-equivalent state pairs are marked with a cross in Figure 8.14 (c).

The next step is to place in the empty cells the implications required to make the pair
of states associated with a particular cell equivalent, by having identical next states.
For example, the cell at the intersection of So and $2 contains the implication that both
So and $2 must be equivalent to $5 in order that they will be equivalent. The remaining
equivalent implications are entered in the empty cells in Figure 8.14(d).

If the pairs implied in any of the cells in Figure 8.14(d) contain only those states
defined by the cell, or, alternatively, if the next states of the two states defining the
cell are the same state for a given input, then the two states defining the cell are
equivalent and are marked with a tick. The first part of this rule applies to two cells in
Figure 8.14(d), the first at the intersection of So and $7, and the second at the
intersection of $2 and $5. These two cells have been marked by a tick.

An examination of the state table indicates that $2 and $5 are a pair of 'lock-in
states'. $5 can be entered from $2 on the receipt of a clock pulse and vice versa, but
there is no other exit from these two states. Clearly, these two states can be merged,
and on the receipt of a clock pulse the circuit will stay in the merged state. To leave this
'lock-in' state, a reset signal is required. A similar argument can also be applied to
states So and $7.

The next step is to examine the implication table row by row, beginning with the
bottom right-hand cell. A cross can be entered into any cell containing implied pairs if
either of the implied pairs have previously been crossed out. The first cell qualifying for
a cross is at the intersection of $4 and $6 since the cell associated with the implied
pair $6 and $7 has already been crossed out. This procedure is repeated until no further
cells can be crossed out and leads to the final form of the implication table shown in
Figure 8.14 (e).

The states are now listed in reverse order, as shown in Figure 8.14(f) and the
implication table is examined, column by column, from right to left, to determine

228 Digital logic design

(a)

P r e s e n t
state

So

S,

Sz

S3

S,

S~

S,

St

Next state

X ' O X , I
, , ,

So St
Z,O Z',O
ss So
Z z l Z = O

Ss Ss

Z ' O Z - O

S , S,

Z = I Z , O , ,
S , Ss
Z = I Z - O

S t St
Z=O Z , O
SI S t
Z = I Z = O

ST St
Z ' O Z , O

. ..

(b)

S o Se St Sm S,

I

(c)

Sl

St

s, X
s, x
s, X
s. x
ST

So S,

(d)

S8

s, V ~-L,:

X i~'s*; X sr , s,, ~ 8, 4,

(e) S,

5 2

s,

s. X ~ X ~
,. , , , X , ~ , ~ x • ,, ~ , . X - - ~ X X

'" §215 ~. > < N X N N > <]
,. , - ,x ,. ~.I.X'"",~,>(X , .-,N

So S, St Ss S, $s Se So S, 5a 5s 54 Ss Ss

(g)

Present Next state
state X - O X - I

�9)tsr $otsv
Sots r �9 �9 0 �9 �9 0

.

Ss SotsT
S, Z=l � 9 ,,

S4 St $s
�9 ,1 � 9
s, s,

$4 � 9 Z - O

S, So",
5e Z - I Z�9

X
X

X
X ~

St Ss S, Ss S,

511 - -

5e (5s.ST)
5, (Ss. ST)
Ss (St.ST)
St (St. S,. S,)
S, (St. Ss. S,)

So (SO. St .Ss. S,)

Figure 8.14 (a) State table to be reduced by the implication table (b) Implication table (c) Elimination of non-
identical outputs (d) Insertion of implied pairs (e) Completed implication table (f) The partition listing (g) The
reduced state table

whether there are any cells that have not been crossed out, since such cells define pairs
of equivalent states. In the first column the single cell is crossed out, and there is no
entry opposite $6 in the partition listing. In the second column the pair $5 and $7
have not been crossed out; it follows that they are equivalent states and are entered
opposite $5 in the listing. There are no uncrossed entries in columns 3 and 4 and the

Clock-driven sequential circuits 229

(5587) entry is repeated against 54 and S 3 in the listing. In the fifth column there are two
uncrossed cells which define two equivalent state pairs, ($2S7) and ($2S5). Now the
transitivity law states:

(SpSq) (SpSr) ~ (SpSqSr)

and using this rule the entry opposite $2 becomes (525557). Remaining entries in the
listing are found using the same procedure and the final partition of states is found to be

P - (50525557)(51)(53)(54)(56)

The reduced state table resulting from this partition is shown in Figure 8.14(g).

8.10 State assignment

In all the design problems dealt with in this chapter, a perfectly arbitrary state assign-
ment has been adopted. For example, in the 101 sequence detector, designed in Section
8.5, the state assignment selected was So - 00, S1 - 01, $2 - 11, $3 - 10. It is clear that
other state assignments could have been selected and they would have led to different
circuit solutions.

The number of different ways of choosing N states out of a possible 2 ~ states is given by:

2~!
N!(2n - N)!

and there are N]. ways to assign each different choice of N states; hence the number of
possible state assignments NsA is given by:

2"!
NsA = N!(2" - N)! x N!

Number of
states to be

assigned
N

Number of
flip-flops

n

Number of
state

assignments
NSA

1
2
24
24
6720
20160
40320
40320

Figure 8.15 Number of state assignments

where n is the number of state variables.
If N = 5 then the number of state variables
required is n = 3 and the number of possible
state assignments is 6720.

The number of state assignments for
a given number of states are tabulated in
Figure 8.15 and it is clear that the number
of assignments increases very rapidly with
the number of states. For the designer, the
criterion for a well-chosen state assignment
is that it should lead to a simple circuit
implementation.

Simpler circuits will mean that fewer
gates are required, and this in turn means
that a smaller number of chips are required.
If the designed circuit is to be manufactured

in large numbers there may be a significant reduction in manufacturing costs. A simpler
circuit realisation will also result in a reduced number of interconnections, and finally
there may also be a significant saving of space.

230 Digital logic design

More recently, advances in technology have resulted in the development of program-
mable logic sequencers. The essential features of these devices are on-chip AND and
OR arrays and also a number of single-bit memory elements. When a state machine, either
synchronous or asynchronous, is implemented by programming a logic sequencer,
the need for an efficient state assignment is no longer of the same importance.

The need for a well-chosen assignment when designing with MSI and SSI circuits
will be demonstrated by randomly selecting three different assignments for the invalid
code detector designed in Section 8.8. The three assignments chosen are tabulated
in Figure 8.16(a). Using the state diagram shown in Figure 8.12(a) the next state
equations for each of the flip-flops A, B and C and the output equations for each of
the state assignments are found to be:

Ass ignment 1

J c - X B A

K c - X B + B A

JR - X C + C'A + X C A

KB -- X C + CA + CA

Z - CBA_n_

Ja -- X C + X C B

KA -- C[~ + C B

Ass ignmen t 2

J c - X BA

Kc - ,~B + BA

J o = A + X C

Kn - CA + C A

Z - CBA_Jq_

JA -- X C + C B + C;B

KA - X - k - C q - O

Ass ignment 3

J c - X B A JB - A + X C JA -- X C + X C B

K c - X B + BA KB -- CA + CA KA -- B

Z - CBA_J-L_

A comparison of the number of gates required to implement the design for each of the
three assignments is shown in Figure 8.16(b). Inspection of this table reveals that
assignment 3 requires the least hardware. However, rather than use a random process,
it is possible with the aid of two simple rules to choose a state assignment which will
with some certainty lead to a simpler circuit implementation.

The state table for the invalid code detector is shown in Figure 8.16(c) and the rules
for obtaining a good assignment follow:

Rule 1" Present states which lead to identical states for a given input should be
given state assignments that differ in one digit place only, i.e. the present states should
be logically adjacent, and separated by a Hamming distance of 1.

Referring to Figure 8.16(c), for input X - 0, present states $3 and $6 have the same
next state So and present states $2 and $7 have the same next state $3. In each case these
state pairs should be given logically adjacent state assignments. For X - 1, present
states $5 and $7 have the same next state $6 and on applying rule 1 should have
logically adjacent state assignments.

Rule 2: States which are the next states of the same present state should be given
logically adjacent assignments.

Clock-driven sequential circuits 231

(a)

(d)

(e)

L ,

Ass. I Ass. 2 Ass. 3
State

CB,4 CBJ C8,4

So 0 0 0 0 0 0 0 0 0
S~ 001 001 OOI
St OI I O lD O i l
Ss 0 1 0 O i l 0 1 0
S, I IO I 0 0 I 0 0
Ss I I I I01 I01
Se I01 I i0 I I I
S? I 00 I I I I10

(b)

Gates
NAND

. .

Chips
Dual 4 input
Triple 3 input
Quad 2 input

L

Total chips

Gate inputs

Ass. I Ass.2 Ass. 3

22 17 16

I I I
2 I I
4 4 4

51 41 36

B/I
C ~ ~ Ot I I .lO

0 Ss S= St S7
. . . .

J[S, S, So S,

Present
state

CBA

Next Flip-flop input signals
state

X= 0 X= 1 X= 0 X= 1 X= 0 X= 1 X= 0
CBA CBA Jc Kc Jc Kc Je Ka JB Ke JA KA

(c)

Present Next state
stahe X , 0 X - I

So S, S,
S0 Se St
S= Ss Ss
Ss So So
S, $7 Ss
Ss Se S,
Se So So
$7 Ss S,

X= 1
JA KA

So 111 100 101 X 0 X 0 X 1 X 1 X 1
$1 100 011 011 X 1 X 1 1 X 1 X 1 X
S2 011 000 000 0 X 0 X X 1 X 1 X 1
S3 000 111 111 1 X 1 X 1 X 1 X 1 X
S. 101 010 110 X 1 X 0 1 X 1 X X 1
Ss 110 001 001 X 1 X 1 X 1 X 1 1 X
S6 001 111 111 1 X 1 X 1 X 1 X X 0
S7 010 000 001 0 X 0 X X 1 X 1 0 X

(f) * BA xc~A xc~A C ~ 0 0 01 11 10 00 01 11 10 00 01 11 10

oo q - - - ? oo rx TM x~ x ~ oo q - -Y x
x x x x J x x

11 x x x x 11 1 1 11~1 x x 1Z

~o ~,L.__~I ~o__Lx x x x E - l O , : x~ x 1~

jc= B Kc=,~ + XIJ JA= X+ C+ B
(g)

c~AO0 01 11 10

o o x

KA= XB + CB + CB

Figure 8.16 (a) Three possible state assignments for the invalid code detector (b) Gate and chip comparison for the
three randomly selected state assignments (c) State table for the invalid code detector (d) State assignment map
(e) State table for the state assignment obtained using rules 1 and 2 (f) K-maps for the invalid code detector
(g) Implementation of the invalid code detector

There is a corollary to this rule which states that the assignments to the next states
should be given logically adjacent assignments corresponding to the branching variable(s).
An example of the application of the corollary to Rule 2 is shown in Figure 8.17.
The assignment obtained is referred to as the reduced input dependency assignment.

232 Digital logic design

000 I

Figure 8.17 An example
of reduced state
dependency

Summarizing, the sets of adjacent states determined by using
rules 1 and 2 are tabulated below:

Rule 1: (53, 56) (52, 57) (55, 57)
Rule 2: (S1, 54) (55, 57) (53, 56)

A suitable state assignment is shown plotted in Figure
8.16(d), in which the above adjacencies are satisfied. If it is not
possible to satisfy all the adjacencies obtained using these rules
without conflict, then the adjacencies obtained from the first
rule should have priority.

The state table for the state assignment shown in Figure 8.16(d)
is tabulated in Figure 8.16(e), together with the flip-flop inputs. K-maps for sim-
plifying the flip-flop input signals are shown in Figure 8.16(f). Note that it is not
necessary to plot JB and KB since all the entries in their tabulations are either 1 or X.
Hence J~ = KB -- I.

The next state inputs obtained from the maps are:

J c = B J8 - 1 JA -- X + C + B

K c = A + X B KB -- 1 KA - X B + C B + C B

Z - CBA_J-t_

The implementation of the invalid code detector is shown in Figure 8.16(g).
Ten NAND gates and three JK flip-flops are required for the circuit implementation.
The gates needed are:

Dual 4-input 1
Triple 3-input 1
Quad 2-input 2
Total chips 4
Gate inputs 24

It is clear that this state assignment requires less hardware than any of the other
three randomly selected assignments shown in Figure 8.16(a).

An additional provision must also be made by the circuit designer to ensure that the
invalid code detector is switched to the state So on power-up ready to receive the first
bit of an NBCD code. Otherwise the circuit will be out of synchronism with the data.

A number of state assignment procedures have been developed for determining an
optimal or near optimal state assignment. An optimal assignment for one type of flip-
flop may not necessarily be optimal for another type of flip-flop. For example, the
JKFF has a number of 'don't care' terms in the JK steering table and for this reason is
more likely to provide an optimal assignment than D or T flip-flops.

8.11 Algorithmic state machine charts

An alternative method of designing sequential circuits utilises the algorithmic state
machine (ASM) chart rather than a state diagram. When this technique is used the
state diagram is constructed in the form of a flowchart. The chart describes a sequence
of events which are designed to initiate a set of state transitions and outputs from a set
of data inputs. The basic elements of the ASM chart are illustrated in Figure 8.18.

Clock-driven sequential circuits 233

Q
State
name

(a) State
entry path

"i~'i~ State
, .

code.

.

J tate exit
path

(b) Entry
path

True (T)1 False (F)O

l 1
Exit Exit
path Condition path

(Boolean expression)

(c) [Entry path

I from decision
box (')
Exit path

Conditional
output list

Figure 8.18 ASM chart components (a) State box (b) Decision box (c) Conditional output box

State Box: A machine remains in a state box for a period of one state time which
may be for one clock period or for an integral number of clock periods in a clock-
driven machine. The state is identified by a code which is a unique combination of the
state (secondary) variables and is defined when state assignment takes place. A state
output is active while the machine remains in the state, and is present for the period of
the state time unless its time duration is constrained by the clock signal. States are
frequently identified by a number or a mnemonic. There is one entry path and one exit
path for each state and the exit path may lead directly to another state box or,
alternatively, to one or more decision boxes.

Decision Box: This box contains a Boolean expression that can be regarded as
a condition expression which involves the machine inputs. If the logical value of the
condition is 1 the true exit path is taken, while if it is 0 the false exit path is taken.

,<

t Entw path

O0

I

Cz.c uT~

1
Exit paths

Figure 8.19 An ASM block

These two paths can be identified by the letters
T and F. Exit paths may lead to state boxes, con-
ditional output boxes, or to other decision boxes.

Conditional output box: The input path to
a conditional output box always comes from a
decision box and it specifies the condition required
to generate an active output. A conditional output
depends upon the state of the machine as well as one
or more of the machine inputs; consequently, it is
a Mealy type output. For a Mealy machine all the
outputs appear in conditional output boxes, while
for a Moore machine they appear in the state boxes.

Each state in the ASM chart is associated with
an ASM block which may contain the other two
basic elements. The ASM block illustrated in
Figure 8.19 has one input path and three exit

234 Digital logic design

I I
~oIo ~i~�9 ,ooo ~Io~.~l,~

T
s, I ~P.sv I ooi s61oP.sv] 11o

! T
~I o .~I o,o ~io~.~l,o~

T

I T
(a)

I I

(c)

s, lO!Svi'
s21o!svi ~

!

11 s3To~svl
J

(b)

0 11

BA $3
O0

10

(d)

Figure 8.20 ASM charts (a) Scale-of-8 counter (b) Counter controlled by signal G having scale-of-3 or scale-of-4 count
(c) JK master/slave flip-flop (d) 101 sequence detector

paths which will link it to other state boxes which in turn are associated with their own
ASM blocks.

Some examples of ASM charts are shown in Figure 8.20. The first example in
Figure 8.20(a) is the ASM chart for a scale-of-8 counter. It consists of state boxes
and is almost identical to the state diagram for a scale-of-8 counter shown in
Figure 7.3(d). The outputs OP.SV appear in each of the state boxes and are the state
variables; for example, when in state $3 the output is CBA = 011. Figure 8.20 shows
the ASM chart for a counter which can operate as either a scale-of-3 or scale-of-4
counter, depending on the value of the condition variable G. A more complex ASM
chart is that for the master/slave JK flip-flop shown in Figure 8.20 (c). When the flip-
flop is in state So, i.e. Q = 0, it is linked to the decision box containing the condition

Clock-driven sequential circuits 235

expression J._n_. If J._rt_ = 0 the flip-flop remains in So, but if J . _n_ - 1 it makes
a transition to S1 where Q = 0. This state is linked to a second decision box containing
the condition variable _n_. If the clock line is high, the flip-flop remains in SI but at the
trailing edge of the clock signal it makes a transition to $2 where Q = 1 and the
flip-flop has been set. The right-hand half of the chart covers the reset process which
can be described in a similar manner to the set process. The last of these examples
shown in Figure 8.20(d) is for the Mealy representation of the 101 detector designed
earlier in this chapter.

8.12 Conversion of an A S M chart into hardware

A typical example of an ASM chart is shown in Figure 8.21(a). The machine rep-
resented by the chart is a word scanner which provides an output Z2 when the last two
bits in consecutive 3-bit words are ones, and a second output Z1 which identifies the
start of each 3-bit word. Each of the state boxes has been coded with the state variables
B and A and has been assigned identifying letters P, Q, R and S. The output ZI is in
state box P and depends on the state only, while the second output Z2 has its own
conditional output box, associated with state box S, indicating that it is a Mealy-type
output which is dependent on the input signal d. Since there are four states, two
flip-flops are required, and DFFs have been selected for the implementation.

The state table in Figure 8.21(b) details all the state transitions and because
D flip-flops have been selected for the implementation, the flip-flop input tabulation
is a repeat of the next state tabulation. In this simple example the next state equations
for the two flip-flops can be read directly from the tabulation, and they are:

Ds = BA

DA = BA + dBA

Simplifying the equation for DA using the consensus theorem gives:

DA = BA + dB

The two outputs Z1 and Z2 are taken directly from the ASM chart. They are:

Z l = B A Z2 = d B A

In the case of Z2 it is worth noting that the equation has been derived using the
principle that a decision box is a part of the preceding state box.

If it is required to limit the outputs to the time duration of the clock, these equations
would be written"

Z l - - BA_n_ Z2 - dBA_n_

The implementation of the scanner is shown in Figure 8.21 (c).
Alternatively, the next state equations can be implemented using 4-to-1 multiplexers.

Selecting the flip-flop outputs B and A as the control variables, the next state equations
may be written:

DB = BA(O) + BA(d + d) + BA(O) + BA(O)

And the multiplexer inputs are:

Do = 0 D1 - 1 D2 - 0 D3 -- 0

236 Digital logic design

0

(a)

-I-- BA
O0

01

o[1

I ' @ - 1 ~ lO

!

Present Next Flip-flop
state state inputs

eA ~, o 'eA o,," 'o~
O0 x 01 0 1
01 0 lO 1 0
Ol 1 11 1 1
10 x oo 0 0
11 X O0 0 0

(b)

!

o.
;

=z,

(c)

.J'L

+sv

i" i
J
!

B A

A i =

I 1 1
Dj d-'-'T"--'~ ~ Zz

oz

oo
I I
B A

(d)

Figure 8.21 The 3-bit word scanner (a) The ASM chart (b) The state table (c) Gate and flip-flop implementation
(d) Multiplexer and flip-flop implementation

Also

DA = SA(a + d) + SA(d) + SA(0) + SA(0)

And the inputs to the second multiplexer are:

D o = l D l = d D 2 = 0 D 3 = 0

The multiplexer implementation of the word scanner is shown in Figure 8.21 (d).

Clock-driven sequential circuits 237

8.13 The 'one-hot' state assignment

Sequential circuits described by ASM charts may be implemented using a 'one-hot'
state assignment with the intention of reducing design time. The number of states
required by the machine is defined by the ASM chart. In this type of assignment only
one flip-flop will be high at any given instant of time. If the chart has n states then n
flip-flops are required, one for every state. For an 8-state machine eight flip-flops are
required, whilst using the state assignment technique described earlier in this chapter
only three flip-flops are needed.

The technique provides an alternative method of implementation which in the
following example employs one DFF per state. When using the technique, encoding
of states is not needed and the problems associated with state assignment do not arise.
However, a slightly different method of tabulation will be used.

The ASM chart for a 4-state machine is shown in Figure 8.22 along with the
tabulation of the present and next states. For each of the state transitions,
the corresponding transition signal is tabulated. For example, if the present state of
the machine is S: and the transition (input) signal is X Y = 1 then the machine will make

I J l , , , ,,

(a)

Present Next
state state

So -, s~
So -* Sl

So - ' S3

S~ - , So

Sl -* S2

S2 -* So

s3 - , So

$3 -~ $2

(b)

Transition
signal

m XZ
XZ

X
X Y = X + Y'

XY

1

XZ
m . .

X Z = X + Z

__So s3 _ o0

$1

X 1 1 '] "~S1

/
(C) ~ I L I

Figure 8.22 'One-hot' implementation technique (a) ASM chart (b) Transition table (c) Machine implementation

238 Digital logic design

the transition from S1 to S 2. The remaining two terms in the equation for So are
obtained in a similar manner. The next-state equations are:

So = (X + Y)S~ + S2 Jr XZS3

Sl = XZSo

S2 -- X Y S 1 + (X q- Z)S3 -+- X Z S o

$3 = XSo

Implementation of the machine is shown in Figure 8.22.

8 . 1 4 C l o c k s k e w

When designing a synchronous circuit, all the flip-flops should normally be synchron-
ised by the same clock signal. The flip-flops used in the design should all be of the
same type, either leading-edge or trailing-edge triggered. Furthermore, the clock signal
must be routed by the shortest possible path on the circuit board to avoid delays
caused by the finite speed of electrical signals along the connecting wires and which
lead to the problem of clock skew.

Input
.

data

c,oc.

Ck Ck+ td LFFI/

delay

ckllo
!

I
I

1 ,,
Ck + to __,j

0 ',
I
I

Input 1 ~
data 0 [

I

1 1 ,,

0 ,
i

~,'tr

o

Figure 8.23 Faulty circuit operation due to
clock skew

As an example of faulty circuit operation due
to clock skew consider the first two stages of
the serial-in shift register shown in Figure 8.23.
The two edge-triggered DFFs are both fed
from the same clock source, but the arrival of
Ck + td at the clock input of FF2 is delayed by
an amount td relative to the clock input Ck at
the clock input of FF1. The input data I to
FF1 is transferred to its output Q~ at a time tf
after the rising edge of Ck. Q~ is also the data
input to FF2, and if td > tf it follows that the
input data is transferred to the output of FF2
at a time tf after the rising edge of Ck + td. The
input data has been transmitted through two
stages of the shift register on the receipt of a
single clock pulse. Since there is no combina-
tional logic in between each stage of a shift
register it is clear that the problem of clock
skew is of particular importance in shift regis-
ter design and operation.

There are a number of reasons why unac-
ceptable clock skew may occur in a large
digital system implemented with edge-triggered
flip-flops:

1. Proper attention has not been paid to the layout of the circuit board, and consequently
the clock connection to some of the devices on the board may take inordinately
long paths. Two possible methods of path routing are shown in Figure 8.24.
Path delay increases as the clock connection is taken to each flip-flop in turn in
Figure 8.24(a). In practice, a more realistic clock routing is shown in Figure 8.24(b)

Ck

FFI< Ck _ FF1

FF2

FF3

FF6

FF5

FF4

FF2<

FF3< >FF4

FF6

t FF5

Clock-driven sequential circuits 239

(a) (b)

Figure 8.24 (a) Clock routing leading to clock skew (b) Clock routing designed to minimise possibility of skew

where a tree-like structure is used for the clock connection to the array of six
flip-flops.

, C k 2

~ , Ck3_

Figure 8.25 Clock Buffering

2. A single clock output may not be capable of driving all the
flip-flops in the system and it is then necessary to provide
a number of identical clock signals from the same source.
This can be achieved by buffering the clock (see Figure
8.25), but the buffers selected should have approximately
the same propagation delay.

3. In the case of multiple clock signals generated by a single
source, one clock may be be more heavily loaded than
the others and this can lead to significant clock skew.
Equalisation of clock loading should be the aim of the
logic designer.

8.15 Clock timing constraints

Most users wish to run the clock at the maximum possible frequency; moreover,
a common second requirement is that a precise clock frequency should be generated.
In order to satisfy this stringent requirement a crystal controlled oscillator is used.

The maximum allowable clock frequency is constrained by a number of circuit
parameters. A typical situation is illustrated in Figure 8.26. The output of FFA
changes at some time tff after the leading edge of Ck. This change is transmitted
via the combinational logic to the input of FFB with a time delay tcomb. The timing
diagram showing these various circuit transitions are shown in Figure 8.26.

For satisfactory operation of the circuit, any change occurring at the input of FFB should
do so at a time > t~u before the arrival of the leading edge of the next clock pulse, where t~u is
the flip-flop set-up time. Hence, the maximum allowable clock period Tck is given by:

Tck -- tsu + tff + tcomb

240 Digital logic design

1
Ck
0

1
DA
0

1
OA

0

Ck

I

FA
Other

Inputs

Combinational
Logic
Delay
tcomb

I I

I '
I

I

I I
I I
I
L .

I
I
I ,, I I

t~mb

Tc,

t,u

f ~

I

1

08
0

Figure 8.26 Clock timing constraints

And the maximum allowable clock frequency f c , is

fCk = llTck = l/(t~, + tff + tcomb)

If the leading edge of the clock pulse at FFB is skewed, then the maximum allowable
frequency is:

fck = ll(tsu + try + tcomb + tskew)

8.16 Asynchronous inputs

There are many digital systems that receive asynchronous inputs from external sources
and it is essential that these asynchronous signals should be synchronised with the
system clock. There may also be cases where the incoming signal has a short time

1
Ck
0

Asynchronous 0 Input -~ tp ~l~

Figure 8.27 The asynchronous signal that was never
sampled

duration by comparison with the sampling
period of the system clock. A typical example
of such an occurrence is shown in Figure 8.27
and it is clear that the asynchronous input
misses the sampling edge of the clock, in this
case its trailing edge.

The problem can be overcome by the use
of a catcher cell which is in effect an SR
latch whose set signal is the asynchronous

Clock-driven sequential circuits 241

A

!
Ck (a)

1
Ck

0

(b)
, , ,

Figure 8.28 Catching an asynchronous signal
(a) the circuit (b) the timing diagrams

input with the reset signal coming from the
complementary output of FF1. The catcher cell
consists of the gates connected to the system flip-
flop FF1, as shown in Figure 8.28. If it is
assumed that Q = 0, D = 0 and A = 1, the logic
levels for this condition are indicated at appro-
priate points of the circuit. On the arrival of the
asynchronous signal, A makes a 1 ~ 0 transition
and D makes a 0 ~ 1 transition. The outputs of
the SR latch are now 1 and 0 respectively. The
catcher cell input A makes a return transition
from 0 ~ 1 before the trailing edge of the clock
pulse. FF1 is now set on the trailing edge of the
clock pulse and the complementary output Q is
fed back to the lower input of the SR latch,
resetting the catcher cell to its original condition
before the arrival of the next asynchronous input.
The catcher cell has been used to synchronise
the asynchronous signal to the system clock.

Rather than using the simple catching cell
shown in Figure 8.28, an edge-triggered D F F
can be used as the synchroniser as shown in
Figure 8.29. Each individual asynchronous input
signal requires its own synchroniser and if the
asynchronous input has to be routed to a number

of different points of the system, the synchronisation should take place at one point
only and any delays must be matched carefully. Furthermore, it is always advisable to
precede any combinational logic with the synchronisation process because of differing
combinational delays.

Asynchronous=
input A Q

O

Ck I

Synchronous
input

(a)

Ck

1
A

0

Synchronous
sequential

system

1
Q

0

(b)

Figure 8.29 Basic synchroniser circuit (a) logic diagram (b) timing diagram

242 Digital logic design

Synchronisation failure may occur intermittently and upset the operation of the
system. Such failures occur because the asynchronous signal arrives at the input of the
synchroniser at any instant of time and may breach its set-up and hold requirements.
This leads to the possibility that the synchroniser may enter the metastable state, and
the time it occupies that state cannot be defined precisely.

8.17 The handshake

Data frequently has to be transferred, for example, from some external system to
a processor. This has led to the widely used handshaking transaction which involves
the acknowledgement of the receipt of the data and simultaneously defines the time
at which the transfer was complete. Conceptually, the handshake mode is analogous
to the despatch of an invitation with the letters RSVP attached. The person sending
the invitation does not know that it has been received until the acknowledgement
in response to the letter's RSVP has been returned.

A state diagram describing a transfer in the handshake mode is given in Figure 8.30.
When in the quiescent state (QS) the sender indicates that data is available by sending
a data available signal (DAV) signal to the processor, thus initiating a transition to
state S~. While in this state, the sender waits for the processor to acknowledge the DAV
signal, which it does by returning the data acknowledge (DAA) signal to the sender.
The DAA signal initiates a transfer to $2, and in this state the data transfer takes place;
DAV is set low by the sender. On completion of the transfer, the processor sets
DAA = 0, and a return to So, the quiescent state, occurs.

Handshaking transactions similar to this are the basis of the 'bus systems' used for
transferring information between different interface cards inside a computer, or
between computers and various peripheral equipment such as printers, scanners, and
so on. Many different specifications for bus systems have been drawn up alongside
the recent rapid development of computers, but most may be classified as either
(1) internal bus systems, for use only inside and within a self-contained computer or
processor unit, or (2) external bus systems, for use in transferring information between
two or more self-contained pieces of equipment.

Examples of internal systems include the old S-100 computer 'backplane' bus, and
the various bus systems developed and specified for use inside IBM-compatible com-
puters. Generally speaking, internal bus systems transfer data in parallel, i.e. several

i [o,vl Oatava,iO So QS
t2 Ill S'

I DAV
DAA 0

D 1 DAA
0

Tr~ntfer S2

(a)

I I

(b)

Figure 8.30 (a) State diagram for the handshake mode of operation (b) Timing diagram for the handshake

Clock-driven sequential circuits 243

bits at a t i m e - typically 8 or 16 bits in old bus systems like S-100 or ISA, and up to
32 bits or more simultaneously for newer bus systems such as PCI. They also include
provision for specifying memory addresses.

Well-known examples of external bus systems include RS-232C, a system where data
is transferred serially, one bit at a time, and IEEE-488 where data is transferred in
parallel, 8 bits at a time.

RS-232C is most often encountered where relatively slow data transfer can be
tolerated, for example from a mouse or other pointing device to a computer, as its
serial data transfer imposes serious speed limitations compared to fast parallel
bus systems. IEEE-488 was originally developed as a system allowing a computer to
act as a controller and data collector for peripheral devices such as measurement
instruments, and it is still widely used in such experimental applications.

The RS-232C bus system (also known as EIA-232 or V24) utilises special multi-way
plugs and sockets known as 'D connectors', since they are roughly shaped like an
elongated 'D', and uses voltage levels that are slightly different from the usual TTL
levels. Logic 1 is indicated by a voltage greater than +3 V (typically between +5 V
and + lSV) and logic 0 is indicated by a voltage less than - 3 V (typically the
same magnitude as the voltage indicating logic 1). One reason for this voltage choice
is that since 0 V cannot normally occur on a correctly operating line, it is easy for
interface circuits to detect an unconnected line.

If no data is being transmitted by a connected line, i.e. the 'quiescent' or 'idle' state,
then the line remains at logic level 1. To transmit an ASCII character, the 7-bit ASCII
code is preceded by one or more 'Start bits' that are always 0. The seven ASCII bits are
then transmitted, followed by one parity bit, corresponding either to even or odd
parity, and one or more 'Stop bits' that are always 1. Therefore, each ASCII character
is typically represented by a total of 10 (or more) bits. The total number of bits
per second transmitted by RS-232C is usually referred to as the 'baud rate', and rates
of up to 9600 baud are widely encountered. This rate therefore corresponds to 960, or
slightly fewer, ASCII characters per second. The maximum rate allowable in RS-232C
is normally 19200 baud.

In the RS-232C system, after the start bit is sent, the rest of the bits, data and parity
until the next stop bit, are sent one after the other at exactly the predefined and agreed
baud rate, so that the receiver must examine the received bit stream at precisely
the same baud rate to avoid errors. The full specification of RS-232C defines a total
of 25 connection lines between the two pieces of equipment to be connected, but in
practice very rarely are all of these lines used and it is normal to use a subset of the
complete bus system. For example, commonly a mouse is connected to a computer
using a special cut-down 9-line version of RS-232C. The minimum configuration for
bidirectional data transfer uses just three connections, two plus earth, with no hand-
shaking; for more reliable communications, handshaking is used. In the RS-232C bus
the 'Request to send' or RTS line has a function similar to the DAV signal, and the
'Clear to send' or CTS line has a function similar to the DAA signal.

Special ICs known as UARTs (universal asynchronous receiver/transmitters), or
alternatively ACIAs (asynchronous communications interface adaptors) or ACEs
(asynchronous communications elements), are available that convert parallel data to
and from the format needed to operate the RS-232C bus directly with the correct
handshaking. More recent versions of the serial interface specification include RS-422
and RS-423, which allow greater connecting cable lengths to be used and greater baud

244 Digital logic design

rates to be transmitted and received, but for serial communications RS-232C remains
the most common wire connection specification. For faster communications, parallel
bus systems may represent a suitable alternative.

The IEEE-488 (also known as GP-IB or HP-IB) standards specify a total of 24 lines
used for 8-bit parallel data transfer between the 'Controller', usually a computer, and
a maximum of 14 other peripheral devices. Each device is connected in the same way to
all the bus lines using special 'stackable' 24-way connectors. At any one time, one of the
devices connected to the bus will be 'talking' (placing data onto the bus) and the others
will be 'listening' (receiving data from the bus). The 'talker' will specify for which
'listener' the data is intended; this is done by a control on each IEEE-488 device that
sets it to a unique code number or 'primary address' that is usually not changed unless
there is a conflict with another device connected to the same bus having the same
address number.

Here, 'data' can mean either actual measurement or output data, or commands in
a format that a 'listener' can interpret. Therefore, some instruments are capable of being
both 'listeners', acting on commands or storing measurements, and 'talkers', transmit-
ting measurements or issuing commands, at different times. In the IEEE-488 bus the
DAV line is active-low and the function of the DAA signal is similar to the active-low
NDAC (No Data Accepted) line. Data transfers are always undertaken using hand-
shakes, and eight bits at a time are transferred on eight separate data lines plus ground.
There are also five lines specified by IEEE-488 that control the operation of the bus; for
example, IFC, Interface clear, for resetting the bus to an initialised state, and others.

Problems

8.1 For the sequential circuit shown in Figure P8.1 find

(a) the state table,
(b) the internal state diagram, and
(c) the function of the circuit.

B JA - '

1 KA

Ck

Figure P8.1

A
= A

X

.n.(Ck)
Logic
network

Z

Figure P8.2

- " 1

Ks -~
B

8.2 Serial binary data X, synchronised with the clock,
is fed to the logic network shown in Figure P8.2.
An output 1 will occur on the Z line of the
network whenever the string of digits 1101 is
received (an output 1 will occur for overlapping
strings). Develop a synchronous sequential cir-
cuit using D-type flip-flops and N A N D gates to
implement the above specification.

Clock-driven sequential circuits 245

x 8.3 XS3 information is received serially, most signi-
Invalid Z ficant bit first, and in synchronism with the clock,

. r 'L (Ck) code = detector by the logic network shown in Figure P8.3.
The function of the network is to generate an

Figure PS.3 output signal Z = 1 when an invalid code
combination has been received. Using JK flip-

flops and NAND gates, develop a synchronous sequential logic circuit that will
perform this function.

8.4 A clock signal X is to be gated on and off by a signal m. The gating signal must be
arranged so that the circuit produces complete clock pulses only. A timing
diagram for the network is shown in Figure P8.4. Develop a synchronous
sequential circuit for implementing the above specification.

X,o_n n n n n n n n FL

' I I m 0

' FI FI r-1 [1 Z o

Figure P8.4

8.5 A circuit is to be designed in which a single clock pulse Z is to be selected by a push
button control S. The push button is pushed at random intervals and the time
duration for which the push button contact is on is long in comparison with the
periodic time of the clock. A typical timing diagram is shown in Figure P8.5.
Construct an ASM chart and determine an implementation that will satisfy the
given specification using D-type flip-flops.

o , o ~

' I I l S o

0

Figure P8.5

8.6

8.7

A sequential network has two inputs, X and clock, and one output Z. Incoming
data are examined in consecutive groups of four digits and the output Z = 1 if any
of the three input sequences 1010, 0110 or 0010 should occur. Develop a state
diagram and implement the circuit using JK flip-flops and NOR gates.
A sequential logic network is to be used for determining the parity of a continuous
string of binary digits. If an even number of l's has been received the output of the
network Z = 1, provided two consecutive O's have never been received. If two
consecutive O's are received the circuit should return to its initial state and
recommence the parity determination. Draw an ASM chart and hence design
a circuit to satisfy the specification. Implement the design with D-type flip-flops
and NAND gates.

246 Digital logic design

A Zl 8.8 Four-bit binary numbers, A3A2A1Ao and
B3B2B~Bo, are fed to a sequential comparator B Sequential Za

comparator , circuit most significant bit first as shown in
Clock network 7--3 Figure P8.8. Design the synchronous sequential

circuit whose outputs are Z ~ - 1 if A > B,
Figure P8.8 Z2 = 1 if A = B, and Z3 = 1 if A < B.

8.9 A synchronous counter is controlled by two
signals, A and B. If A - 0 and B - 0 , the

counter is non-operative, if A = 0 and B = 1 the counter operates as a scale-of-four
counter, and if A -- 1 and B = 0 the counter operates as a scale-of-eight counter.
Draw an ASM chart and hence design a circuit to satisfy the specification.
Implement the design with JK flip-flops and N A N D gates.

8.10 Find a minimal state table for the synchronous sequential machines whose state
tables are given below, by

(a) Caldwell's merging rules:
(b) partitioning; and
(c) the implication table.

Present
state

Next Present Next Present Next
state state state state state

X = O X = I X = O X = I X = O X = I

So Sl S2 So Sl S8 S8 S9 S12
Z = 0 Z = 0 Z = 0 Z = 0 Z = 0 Z = 0

Sl $3 $4 Sl $2 $5 $9 S=o Sll
Z = 0 Z = 0 Z = 0 Z = 0 Z = 0 Z = 0

$2 $5 $6 $2 $3 $4 S~o So So
Z = 0 Z = 0 Z = 0 Z = 0 Z = 0 Z = 0

$3 So So $3 So So s~ So So
Z = I Z = 0 Z = 0 Z = 0 Z = 0 Z = 0

S4 So So S4 So So S12 S13 S14
Z = 0 Z = 0 Z = 0 Z = I Z = 0 Z = 0

S5 So So S5 S6 S7 S13 So So
Z = 0 Z = 0 Z = 0 Z = 0 Z = 0 Z = 0

$6 So So $6 So So s~4 So So
Z = 0 Z = I Z = 0 Z = 0 Z = 0 Z - - 1

$7 SO SO
Z = 0 Z = I

8.11 The 2-4-2-1 self-complementing code is received serially, most significant bit first, and
in synchronism with the clock. An output signal Z - 1 is generated when an invalid
code combination is received. Draw an ASM chart and design a circuit that will
detect an invalid code. Implement the design with D-type flip-flops and multiplexers.

8.12 A sequential circuit has a single input x and a single output z. The input signal x
can occur in groups of 1, 2 and 3 pulses.

If x = 1 for one clock period, the output z will be 1 for three clock periods
before returning to the starting state.

Clock-driven sequential circuits 247

If x = 1 for two clock periods, the output z will be 1 for two clock periods
before returning to the starting state.

If x = 1 for three clock periods, the output z will be 1 for a single clock period
before returning to the starting state.

Construct a state diagram and implement your design with DFFs. The circuit
when designed acts as a pulse width adjuster.

8.13 A sequential circuit has two inputs, x and s, and a single output z. The input x is
a train of high frequency pulses. It is required to output every fourth input pulse
when s = 0, and every third input pulse when s = 1.

Draw a state diagram and develop a state table. Implement your design with
trailing edge triggered master/slave JK flip-flops.

8.14 A sequential circuit has two inputs, x and s. Input x is a train of high frequency
pulses and the control signal s selects whether the x train of pulses will appear on
one of the two output lines zl and z2. If s = 0 the output Zl is activated and when
Sl = 1 output z2 is activated. Design the circuit. The circuit is operating as a
pulse train switch.

8.15 A sequential circuit waveform generator has four possible input waveforms
selected by the control signals Xl and x2.

The waveform selected by Xl = x2 = 0 has a period of three clock cycles.
The waveform selected by Xl = 0 and Xl = 1 has a period of four clock cycles.
The waveform selected by xl = x2 - 1 has a period of four clock cycles.
The waveform selected by xl = 1 and x2 = 0 has a period of two clock cycles.
Develop an ASM chart and construct a state table for the generator and

implement your design with D-type flip-flops.
8.16 A sequential circuit has an input x which consists of a chain of intermittently

occurring pulses. The x pulses, when they appear, do so midway between a pair
of successive clock pulses. The output z will occur for the period of the time
interval between a pair of successive clock pulses providing an x pulse occurred
in the preceding interval between clock pulses. Develop an ASM chart and
implement your design with D-type flip-flops.

9 Event driven circuits

9.1 Introduction

Some sequential circuits are driven by events rather than by a train of clock pulses.
For example, a digital alarm will be activated by the event that raised the alarm. In this
example it is the event that drives the logic, and since the events are frequently irregular
occurrences, such a circuit is referred to as an asynchronous sequential circuit or,
perhaps more meaningfully, as an event driven circuit.

Asynchronous circuits are also called fundamental mode circuits. The main character-
istic of this type of circuit is that only one input is allowed to change at any given instant.
Simultaneous changes are forbidden as, indeed, are changes that may take place before
the circuit reaches a stable condition after the preceding change. This is clearly different
from the behaviour of a synchronous sequential circuit, where inputs changing at
arbitrary times are allowed and state changes are activated by the repetitive clock signal.

There are two conditions in which an asynchronous circuit may exist, namely stable
and unstable. The total state of the circuit at a given time is defined by the logical
values of the inputs and the present state of the circuit. If the next state is the same as
the present one the circuit is in a stable condition. If, however, an input changes, the
circuit may move to an unstable condition and at some later time the state variables
will have taken on their new values such that the next state has become the present
state, and stability has been restored.

When designing asynchronous circuits, the designer has to eliminate the possibility of the
occurrence of static hazards, dynamic hazards, essential hazards and races, in order to avoid
circuit malfunction. These problems, with the exception of static hazards, do not exist in
synchronous circuits since they are always designed to reach a steady-state condition before
the next clock pulse arrives. Beating in mind the design difficulties, perhaps the main
advantage of asynchronous circuits is that they can work at their own speed and are not
constrained to work within the time limits imposed on them by a repetitive clock signal.

9.2 Design procedure for asynchronous sequential circuits

The design procedure for asynchronous sequential circuits is similar in many respects
to that developed for synchronous circuits in Chapter 8. The aim of the design is to
produce hazard-free next state equations and output functions. The steps in the design
procedure are summarised below:

1. Problem definition: An unambiguous statement is required by the designer.
2. Basic state table and internal state diagram: A basic state table should be con-

structed from the information given in step 1 above. In many cases the designer

Event driven circuits 249

~

0

e

may find it helpful to produce a state diagram first, and then develop the basic state
table from the information provided on the state diagram.
Reduction of the basic state table: If possible by using Caldwell's merging rules or
a merging diagram, reduce the number of rows in the table, thus reducing the
number of states. In some cases it may be necessary to use an implication chart to
reduce the number of states.
State assignment: Secondary variables are assigned to the states, care being taken to
avoid races.
Equations for the state variables: The equations for the variables assigned to the
states can be obtained using a sequential equation, such as Qt+6t = (S Jr-~Q)t, as
developed in Chapter 6. This will lead to a gate implementation of the equations
and steps should be taken to ensure that they are hazard-free. Alternatively, the
equations can be implemented using latches and the next state equations for their
inputs may be determined from the reduced state table.

9.3 Stable and unstable states

The equation of the SR latch developed in Chapter 6 can be written as follows:

at+6t (s + Rq)t

where Ot+6t is the next state while qt is its present state. The gate circuit for the latch
is shown in Figure 9.1(a), and if the feedback path is removed it can be regarded as
a purely combinational circuit in which the condition S - R - 1 is not allowed. A K-map
for those combinations of the variables that are allowed is plotted in Figure 9.1 (b).

For the condition SRq = 000, q = Q = 0, and if the feedback path is reconnected,
the state of the latch will remain unchanged. This is a stable state which is indicated by
ringing the entry on the K-map.

For the condition SRq - 011, q = 1 and Q - 0. In this case, if the feedback path is
reconnected, there will be a change of state to SRq = 010, q = 0 being the next present
state. SRq = 011 is an unstable state and is not ringed on the K-map.

On the K-map in Figure 9.1(b) all the stable states have been ringed leaving the
remaining unstable states not ringed. In Figure 9.1(c) the states have been defined
numerically and the unstable states are given the same number as the adjacent stable
state having the same values of S and R. If the latch is in state 2 and R makes the

(b)

(a) $•O•qo0 01 11 10

el| 16i
(c)

Figure 9.1 (a) SR latch gate circuit (b) next state map for Q (c) stable and unstable states

250 Digital logic design

transition 0 ~ 1 it enters the unstable state 3 before finally settling in stable state 3.
These changes can be summarised as follows:

SRq 001 ~ 011 ~ 010
Stable ~ Unstable ~ Stable
2 ~ 3 ~ 3

9.4 Design of a lamp switching circuit

Step 1: Problem definition

An asynchronous sequential circuit is to be designed to ensure that a correct manual
switching procedure is carried out by the operator for part of an electrical key
operating mechanism. If switch X is made, followed by switch Y, then a red lamp LR
is to be turned on, indicating that the incorrect switching procedure has been followed.
If switch Y is made followed by switch X, then a green lamp Lc is to be illuminated,
indicating that the correct switching procedure has been adopted.

A block diagram for the problem is shown in Figure 9.2(a). The two inputs X and Y
generated when the switches are made are referred to as the primary or input variables.
The circuit has two outputs, one of which drives the red lamp and the other, the green lamp.

Step 2: Internal state diagram and basic state table

The internal state diagram for the problem is shown in Figure 9.2(b). So may be
regarded as the quiescent state in that it represents the condition that both switches
are off. The path taken through the state diagram for the correct switching procedure
is So ~ $3 ~ $4, and for the incorrect procedure the path is So ~ SI ~ $2. A number
of options are available for the switching procedure in the reverse direction. The ones
available for this design are:

(a) From green light on, either 54 --* S3 ~ S0 or
(b) From red light on, either 52 --* Sl --* S0 or

54 --~ Sl --, So

S 2 ---r S 3 ~ S 0

A basic state table can now be drawn up from the information appearing on the state
diagram (see Figure 9.2(b)). The table has five rows, one for each possible present state,
and four columns, one for each of the possible combinations of the input variables.

The entry in the top left-hand cell is Q and is ringed, indicating a stable state. The entry
in the top right-hand cell is Sl, indicating an unstable state. This implies that if, in the
quiescent state So where X Y = 00, X changes from 0 to 1, then a new unstable state S1 is
defined by the total state SoXY before the circuit settles into a new stable state defined by
S1XY. This condition defines the fourth cell on the second row where the entry is |

It will be noted that there is only one stable state per row, and that each unstable
state is preceded and succeeded by a stable state. A further examination of the basic
state table shows that some cells do not have an entry at all. For example, in the first
row where the present state is So, there is no entry in the cell corresponding to the
input combination X Y = 11. The basic state table shows that the state So is entered
from either S1 or $3 with an input signal X Y - 00, and to enter the cell on the first
row where X Y = 11 would now require a simultaneous change of the input variables.
Such a change is not allowable for a circuit operating in the fundamental mode.
Cells with no entries in them are marked with a '- ' .

Event driven circuits 251

t

..I_

(e)

01 11 10

s, xY s7
. . , - - .

I
So

S, ~, S,

(b)

s,
to.00 t . . 0 - t . . 0 ~

L a .. 0 L o -

So S, ~ .
S, L n . 0 - L n -

L~'O t ~ - o t o - ~

S2 _ L M - L n -- _

s~ s*t.. o Ln~. S, 0 . L n - O -
0 L a - O La L G - . -

S4 - L n . O 0 L M - O
- La - - La La "

3 states
m e r g e
to f o r m / s~

(c) O0 01 11 10

m e r g e L a ,, 0 L a - L a ~. 0

i,o,or~ so, so,
S ~ S.~ - 1 LR " 0 Ltl L• - 0

Lo -O LG , O LO Lo =, O

(c) (d)

A - O Y A - 1

t,. l r f - T " ~ t,: ,,ILo, o,
(e)

1

(f)

Figure 9.2 (a) Block diagram for lamp switching circuit (b) the internal state diagram (c) primitive state table
(d) reduced state table (e) reduced state diagram (f) circuit implementation

State tables which contain cells marked with a ' - ' are referred to as incompletely
specified tables. In the table shown in Figure 9.2(c) the cells marked with a ' - ' corres-
pond to forbidden input combinations. These cells can be regarded as 'can't happen'
conditions, and may enable a simplification of the table which did not at first sight
seem possible. The justification of the allocation of a 'can't happen' condition in
the state table is the same as for 'can't happen' conditions in combinational logic
problems. If an event cannot happen, the designer 'doesn't care' what the circuit would
do in response to it.

252 Digital logic design

Entries are made in each cell of the table for the outputs, and two possible situations
can arise:

1. The output entries are identical in the states immediately preceding and succeeding
an unstable state. For this situation, the output entries in an unstable state should
be identical to those in the immediately preceding and succeeding states.

2. The output entries in the immediately preceding and succeeding states are different.
For this situation, the entries in the intervening unstable state can be ' - ' , indicating
a 'don't care' entry which can be used in the simplification of the output function.

Step 3: Reduction of the basic state table

When simplifying an incompletely specified table, it is possible to assign a next state
and output to a cell containing a ' - ' in such a way as to make the row in which the '- '
occurs identical to a second row. The states at the head of these two rows are then
identical, since all the next state entries and outputs in corresponding cells on the two
rows are the same, and the rows can be merged.

An examination of the table in Figure 9.2(c) shows that the rows headed So, S~ and
$2, and those headed $3 and $4 are identical and can be merged using Caldwell's
merging rules. So, SI and $2 are merged to form a new state S01E and states $3 and $4
are merged to form a new state S34. The reduced state table is shown in Figure 9.2(d)
and the reduced state diagram in Figure 9.2(e) is constructed from the information in
the reduced state table.

Step 4: State assignment

Since there are only two states in the reduced state diagram, just one state variable A is
required to define them. For the state S012, ,4 - 0, and for the state S34 , ,4 - - 1. A S there
is only one state variable in this case, the problem of races does not arise.

Step 5: Equations for the state variable and the outputs

The equation for the state variable can now be obtained with the aid of the NAND
sequential equation Qt+6t = (S +/~Q)t, where S is defined as the turn-on condition for Q
and R is defined as the turn-off condition for Q. The turn-on and the turn-off conditions
for the secondary variable A can be obtained directly from the reduced state diagram:

Turn-on condition for A = X Y
Turn-off condition for A = Y
Hence A t+6t - (X Y + YA) t

And the outputs may be written

L G - A X Y and L R = A X Y

The implementation of the circuit is shown in Figure 9.2(f).

9.5 Races

When the state variables were allocated to the internal states of a clock-driven
sequential circuit, the criterion for the allocation was that it should lead to a minimum

Event driven circuits 253

hardware implementation. It was pointed out in the previous chapter that there is no
known method for the allocation of the state variables that will lead to minimum
hardware implementation, although guidelines were presented which, when used, lead
to a simple, if not the simplest, circuit. The criterion for the allocation of state variables
in event-driven circuits is somewhat different, and in this section those factors which
govern this allocation will be examined.

An alternative state diagram for the light-switching problem is shown in Figure 9.3(a).
An extra state $5 has been introduced to allow an extra return path from the 'light-on'
states $2 and $4 to the quiescent state So. Using the techniques described in section 9.4,
the reduced state table and state diagram have been obtained. Four combinations of
two state variables A and B have been arbitrarily allocated, one to each of the four
states, and it will be noticed that when a transition is made from $5 to So on the signal
XY, both of the state variables have to change. There are three possible cases
to consider:

1. A and B change simultaneously: a direct transition is made from $5 to So.
2. A changes before B: the circuit makes a transition to So via the route

55 ~ 534 ----+ S0.
3. B changes before A: the circuit makes2 a transition to So via the route

55 --~ S12 --+ So.

S, .. x~7 $7 \ ? O0 01 ! ! 10

_ _ L~ = - L~ = 0

s, (~ o So XY Ss $I LR = 0 L~ =

~ "~.Y _ _ ~ L G 0 L <; = O L G ==. O

s1 $1

- : o ~7 ,1 L~ ~ ~ ~ - ~ * _ . . L _ _ _ ~ s, L, . -
z - - D - - s,- _ t , o o

(a) S~ L ~ = -

i LG = I LG : I L,=O L G -
s~ ~ ss '

S, - LR=O L 01L,=0
L a = - = L G = -

LG La �9 0

(b)
B changes mw

/ before A XY Y
/01 11 10 ~ -- C ~

~1 ! ~ I.L~= 01~
s,, - s,, Aat ~ L ~ = I IA=

~176 ~ ~ Tr i ~ s, ~ ~:~ x~"

L~ : 1 S,=i/.=r = 11 _ " X i - - - - I ss

(~ (~ (~ 10 (, " (,,.~ 11
X X + Y

(c) (d)

A and 8
change \

simultaneously AB'~

} I # R

s,, 10:A
A changes $,

~efo,e a ~ i -,!

Ss 11 " , ' S o

2 states
m e r g e
to form
S~2

2 states
m e r g e
to form
s~

Figure 9.3 (a) Modi f ied light switching state diagram (b) primitive state table (c) reduced state table
(d) reduced state diagram exhibiting a non-critical race

10

Sl S0

x
Sa

Figure 9.4

S
So

X

S2

$2

0

$1

S3

254 Digital logic design

|

(a) (b)

A and B
1 change

. $1 "it simultaneously

;/
.. , t , , Bchan es ~ l . r ; , g

}/,' } beforeA
"

(D
A changes
before B

(a) State diagram for a circuit exhibiting critical races (b) State table illustrating a critical race

In all three cases the circuit enters a stable state So and remains there until a further
change of input variables occurs. The various transitions between states for the three
conditions described above are illustrated in the reduced state table shown in Figure 9.3(c).

From the foregoing remarks it may be concluded that whenever two state variables
change in response to a change in an input variable, a race condition exists. The con-
dition has its origin in the different delays when the A and B signals are generated.
In the case described above the races identified are both non-critical races since,
irrespective of the transition made, the circuit always ends up in the same stable state.

However, there are races that can occur in event-driven circuits in which the final
state reached depends upon the order in which the state variables change. Such races
are termed critical races. For example, the internal state diagram of a state machine
and its corresponding state table are shown in Figure 9.4. It will be assumed that the
machine is in the state defined by AB = 00, and X = 0. If the input X is now changed
to 1, the machine will make a direct transition to the stable state defined by X - 1 and
AB = 11 (Sl) providing A and B change simultaneously. Alternatively, if A changes
before B, the machine will make a transition to the state defined by X = 1 and
AB = 10. Since this is a stable state, the circuit will remain there, and in fact
a quick glance at the state diagram shows that the circuit remains locked in that state
indefinitely because of the absence of an output path from the state. However, B may
change before A and then the circuit will make a transition to the state defined by
X = 1 and AB = 01. This state is unstable and the circuit makes a further transition to
the state defined by X = 1 and AB = 11. The transitions described can clearly lead to
faulty circuit operation. Critical races occur in this circuit because it is possible to end
up in one of two stable states, depending on the order in which the state variables
change. The various transitions which can take place in this circuit are indicated on the
state table shown in Figure 9.4(b).

9.6 Race free assignments

If critical races are to be avoided, it is necessary to provide a race-free assignment of
the state variables on the state diagram. In effect, this means that when a transition is
made from one state to the next, only one state variable should be allowed to change.

Event driven circuits 255

So $1

I x I

1 X

1

$2

So Sl

AB
O0

I
I

01

10 11

I x I

Sd S2

(a) (b)

X

Figure 9.5 (a) State machine requiring race-free secondary assignment (b) Inclusion of a dummy state to give
race-free assignment

In some cases it is not possible to satisfy this requirement without making modifica-
tions to the state diagram. For example, the three-state diagram shown in Figure 9.5(a)
requires two state variables to define the three states. An arbitrary state assignment has
been made on the diagram, but inspection reveals that on making a transition from $2
to So both secondary variables must change. Unfortunately, it is impossible to find a
race-free assignment for a three-state diagram if transitions are required between each
pair of states.

Furthermore, two state variables can define four states, which implies that for the
three-state diagram of Figure 9.5(a) there is one unused state which has been omitted
from the diagram. If there is no exit from the unused state it can become a 'lock-in'
state as described in section 9.5.

These two problems are overcome by incorporating the unused state A B = 10 (Sd) in
the modified state diagram shown in Figure 9.5(b). This modification allows the circuit
to return unconditionally from this dummy state to state So.

The four-state diagram in Figure 9.6 is structured in such a way that there are no
race problems providing adjacent states are allocated state variables that differ in one
variable only. If, however, the state diagram for the machine includes transitions

$3

So $1

I x 1

O0

10 111
$2

Figure 9.6 State diagram for a four-
state machine with transitions between
adjacent states

between two states that are not adjacent, for example
$3 ~ S1 in the state diagram shown in Figure 9.7(a),
then a race-free assignment is not possible with two
state variables. The state diagram reveals that with the
same state assignment as the one shown in Figure 9.6
there is a double change in state variables when the
transition $3 ---, S~ is made. No matter how the state
variables are allocated, there will always be at least one
transition which will result in a double change of the
state variables, and this implies that a race-free assign-
ment can only be achieved by using three state vari-
ables.

A race-free assignment can most easily be obtained
from a K-map of the three state variables, as shown

in Figure 9.7(b). It is a property of the K-map that adjacent cells differ in one digit
position only, and consequently two states allocated to adjacent cells will have state
assignments that differ in one digit place.

256 Digital logic design

$3

So Sl

I x
IA8

u," 110 _ 11

m
X

$2

A'~Co0 01 11

0 S~2 ~--~3~- 1S~1

1 So -~$1-*$2

10

(a) (b)

So $1
X
D

ABC

t l~176
I

X

! , I I I
I I !

S3 Sdl S2

(c)

Figure 9.7 (a) State diagram for a four-state machine with one diagonal transition (b) K-map for determ&ing
a race-free assignment (c) Race-free state diagram jbr a four-state machine having a diagonal transition

Four of the states have been allocated to cells such that So is adjacent to Sl, S l to $2,
and Sl to $3. However, for a race-free assignment, $2 should be adjacent to $3, and so
should So. The K-map shows that with three state variables such adjacencies are
impossible, and the transitions $2 -~ $3 and $3 ~ So have been made via the dummy
states Sol and SO2 respectively. The modified state diagram consists of six states, two of
which are dummies, as shown in Figure 9.7(c). Each transition on this diagram has
only one change of state variable, and hence the assignment is race-free. An event
driven circuit will now be designed which requires the inclusion of a dummy state.

9.7 The pump problem

Step 1: Problem definition

Water is pumped into a water tank by two pumps, p] and P2. Both pumps are to turn
on when the water goes below level 1 and they are to remain on until the water reaches
level 2, when pump p] turns off and remains off until the water is below level 1 again.
Pump P2 remains on until level 3 is reached when it also turns off and remains off until

Event driven circuits 257

the water falls below level 1 again. Level sensors are used to provide level detection
signals as follows:

Signal a - 1 when the water is at or above level 1, otherwise a - 0
Signal b = 1 when the water is at or above level 2, otherwise b = 0
Signal c - 1 when the water is at or above level 3, otherwise c - 0

The aim is to develop an event driven circuit to control pumps p~ and P2 according
to the specification given above.

A schematic diagram of the water tower is shown in Figure 9.8(a), and a block
diagram of the proposed circuit is shown in Figure 9.8(b).

(,)

inlet ! ~ inlet
level 3 ~ c

level 2 ~ b

level I IK4,f,4,cJ~K,,~,4~ a

(b)

o - l,,,~.a pl
b ~ Lo~c
r c i rcu i t

W ~

So S~

p,,;01 6
*,'01 So

_

So (e) St

t,,-ol

t ~176 , . -~ A B A B

s, Sz

~ D c 0 0 0

(d)

tO0 llO Ill
, . ,

I ~ ' 1 P t " O P t " O P t ' O

. . . . | | s,
I:)t = I p! " I p| = 0
I>~" I Pz t I Pt" I

I:)v " I Pv " 0 = ,
PI =I a t ' l . I ~ ' I _I~'0

.

A
B A

b

B

a 1

a 7

Figure 9.8 (a) Diagram of the water pump problem (b) Block diagram of pump controller (c) Basic internal state
diagram for the pump problem (d) State table (e) Modified state diagram (f) Circuit implementation of the pump
controller

258 Digital logic design

Step 2: The state diagram

A suitable state diagram is shown in Figure 9.8(c), in which the state So is related to the
condition when the water is above level 3 and both pumps are off. As the tank empties,
the water level falls until it is below level 1 and a transition is then made to S~, since

= 1. In state S~, both pumps are on. If the water continues to rise and reaches level 2,
a transition is made to $2 and pump p~ is then turned off. In state $2, two options are
available. If the water level falls below level 1 again a transition will be made back to S~
on the signal ~ - 1. Alternatively, if the water continues to rise, when level 3 is reached
a transition is made to So and both pumps are turned off.

Step 3: The state table

The state table for the pump problem is shown in Figure 9.8(d). It should be observed
that input conditions abc - 001, 010, 011 and 101 are missing from the table since
these combinations can only exist under fault conditions.

Two state variables A and B are required to define three states. Because there are
transitions between each pair of states, a race-free assignment of the state variables is
not possible. To overcome this problem an additional dummy state Sd is added to the
state diagram. The modified state diagram is shown in Figure 9.8(e).

Step 4: Development of the circuit equations

Turn-on condition for A = bB

Turn-off condition for A - / 1 + B~ - / ~ +

Turn-on condition for B = aA

Turn-off condition for B = cA

Hence At+~t = [bB+(B+a)A] t

= [bB+aAB]'
and B t+~t - [a /] + (b A) B] t

= + (a

Also P l = AB
_

and P2 - A B + AB = B

Step 5: Circuit implementation

The circuit implementation of the pump controller is shown in Figure 9.8(f).

9.8 Design of a sequence detector

In this section a further example of the design of an event driven circuit will be studied
to emphasise some of the problems faced by the designer when developing this type
of circuit. The opportunity will also be taken to look at various methods of imp-
lementation and the construction of an ASM chart for this problem. The design to be
studied concerns a sequence detector which has two inputs X~ and X2, and one output
Z, as shown in Figure 9.9(a), and which is required to give an output Z -- 1 when the
sequence of input signals X1X2 = 00, 10, 11 has occurred.

Event driven circuits 259

(a) (b) (c)
, , , . . , . .

S e q u e n c e So - - S, S o ~ S,
~ d e t e c t o r

.... ~ ~ .~~:T I ~~~,~, ~

(d)

So S=

(g)

- ~ ,
So S,z

,~ x,_+x,_x,+ t ~, x,. = x,+x=
Z = I S 3

I _ . 7 " - - - , - - . 4 _ . / ' - x=
O

- ,4

A

D

(e) (f)

J

" • ' l r l oo Ol I i io

~ , ~. ~~-} Z, 'O ~ ,0 , '0 0

S, 0 Z,O' "-- ' Z , O

St Z - O Z " I 0

'- ~. ~. S~. -- . Z - O t 0

Sot

;-:o ~ '~o ,o ~.o
.

9o" " ~o St= Z , O I Z - o �9

St So (~ So
Z-O: Z , I Z,O

(h)

"I lS
J Aa x,x= oo

~~ ~ x, x~
I I OI

~ - ' x A

E)

Figure 9.9 (a) Block diagram of a sequence detector (b) Basic elements of the internal state diagram
(c) Internal state diagram for the sequence detector (d) Complete internal state diagram including slings
(e) State table (f) Reduced state table (g) Reduced state diagram (h) State diagram including dummy state
and secondary assignment (i) Implementation of the sequence detector

260 Digital logic design

One method of approach open to the designer is to develop the state diagram. In this
type of problem a good beginning to the state diagram is to insert the required
sequence, as shown in Figure 9.9(b). This requires four states, connected via three
transitions, initiated by the transition signals XIX2, XIX2 and X~X2 respectively.

To complete the state diagram it is now necessary to insert the additional transition
paths that may originate at each of the states. For example, the machine enters state S~
on the transition signal Xl X2. Since the machine to be designed will be operating in the
fundamental mode, there cannot be a simultaneous change in the input variables when
state S~ is entered and the state can only be left on the transition signals Xl X2 or X1X2.
The transition signal Xl)(2 represents the second combination of the input signals in
the required sequence, and initiates the transition from S~ to $2. Alternatively, a change
in)(2 from 0 ~ 1 results in an input signal X1 X2 and the machine should be designed
to return to the state So to await the arrival of the first signal in the sequence, X1X2.
The completed state diagram is shown in Figure 9.9(c). In this diagram, the output Z - 1
appears in state $3 at the completion of the required sequence. If, when in this state, the
input signals Xi X2 or Xl X2 are received, the machine will return to So, where it will await
the next occurrence of the signal Xl ~'2, the first combination of the required sequence.

Some designers insert slings (arrows indicating a "transition" to the same state) on the
state diagram, and an example of the use of slings has already appeared in Figure 9.3(d).
In this problem, if the machine enters state S~ on the signal ~'l ~'2, it will stay there as
long as this signal still exists, and this can be indicated by a sling originating from and
terminating on SI, as shown in Figure 9.9(d). This diagram includes all possible slings,
and it will be observed that when in So the sling signal is ,~'l X2 + XI,e~2 -4- XIX2. This
means that if the machine entered So on either of the signals XI X2 or Xl,~2 it would be
possible to get a change of input signal from either -~'l X2 to X~X2 or, alternatively, from
X~ X2 to X~ X2. If such a sequence of events occurs, the machine will remain in state So
and will only leave the state if the input signals X~ and)(2 change in either of the
following two sequences:

1. 11 ---, 01 4 0 0

2. 11 ~ 1 0 4 0 0

The state table is constructed from the information given on the state diagram, and
is shown in Figure 9.9(e). Examination of the table shows that rows S~ and $2 are
mergeable and the table can be reduced to three rows. At first sight this may appear to
be a disadvantage for the following two reasons. First, it leads to the presence of an
unused state, and second, since the state diagram will now only consist of three states,
a race-free assignment is not possible. However, the unused state can be reintroduced
as a dummy state having an unconditional transition to the next state. The presence
on the state diagram of an unconditional transition will lead to simpler turn-on and
turn-off conditions and a simpler logic implementation.

The reduced state table is shown in Figure 9.9(f) and it will be noticed that there is
one unoccupied cell on this diagram on the row headed $3. This is effectively a 'can't
happen' condition. If the present state is $3, then a transition signal X1 X2 is forbidden.
Since this signal cannot occur when the machine is in state $3 it may be used as an
optional term added into the Boolean equation for the $3 ~ So transition, as shown
in the reduced state diagram of Figure 9.9(g). In this case the optional term leads to
a simplification of the transition signal.

Event driven circuits 261

The state diagram, including the dummy state and with a suitable state assignment,
is shown in Figure 9.9(h). The turn-on and turn-off equations are taken directly from
this diagram:

m

Turn-on condition for .4 - BX1X2 + B(X1 + X2)
m

Turn-off condition for A - BXI X:

A t + 6 t - [B X 1 X 2 -}- O()~'l -}- -~'2)-}-(BXI.~2)A] t
= [B X 1 X 2 + B(21 -~- 22) -+- (B -Jr- X 1 -]- X 2) A] t

Turn-on condition for B - AX1X2

Turn-off condition for B - A

B t + 6 t - (~zlX'lX2 q- ~tB) t

The output Z is given by Z - S3 - AB, and the machine implementation is shown in
Figure 9.10(i).

The simplest form of the equations for the next state of the state variables A t+6t and
B t+6t can be obtained directly from a pair of K-map plots. The state table compiled
from the information given in the state diagram of Figure 9.9(h) is shown in Figure
9.10(a) and in this diagram, assignment of A t and B t has been placed alongside the
states. However, it is more convenient to rearrange the rows of this table so that the
secondary variables appear in normal K-map order. At the same time the state entries
in the cells in Figure 9.10(a) are replaced by the state variables that define them, as
shown in Figure 9.10(b). This table can be regarded as a plot of the next states of
the state variables, A t+6t and B t+6t, for every possible combination of the total present
state (XIX2 A B) t.

The K-maps for A t+6t and B t+6t have been separated out in Figure 9.10(c). Using the
normal simplification techniques gives the following equations"

A t+6t -- (XIX2 q- B22 if- A X I) t

B t+e'- (dx~x2 + dB) t

and

Z - 83 - A B

The implementation of these three functions is shown in Figure 9.10(d).
An ASM chart for the sequence detector is given in Figure 9.10(e). The chart has

been constructed from the information extracted from the state table in Figure 9.10(a).
For example, the decision box immediately below the state box So contains the
Boolean term X1X2. If XIX2 - 0 the machine remains in So, but if XI X2 - 1 a tran-
sition is made to the state S~2. The condition for the machine to remain in state S~2
is 21)?2 + X1J{2- X 2 - 1, i.e. X 2 - 0. On leaving state box S12 the first decision
box contains the variable X2, and if X 2 - 0 the path from this decision box returns
the machine to state S12. If, however, X1 - 0 and X2 - 1 the machine takes the path
back to So while if X 1 - 1 and X 2 - 1 the path on the chart leads to state box
$3. The remainder of the chart is constructed using the information obtained from
the last two rows of the state table.

An alternative method of implementing the design of the sequence detector would be
to use SR latches and combinational logic. This requires the development of the next
state equations for the two latches, A and B. The tabulation of the next state functions,

262 Digital logic design

A B ~ O0 OI ~ ~ IO

I0 So Z-O

So S~
O0 S,t, Z=O Z-0

S~ S, .~.' S,
OI S~; Z , O Z - O , c - , Z - O

So So s~ So
II S , Z , O Z , O Z - O Z=O

, , ,

ArBrX 00,, 01 11 10

O0 O0 10 01 O0

01 11 11 01 11

11 10 10 10 10
~ , ~ ,

10 O0 10 10 10

At . 6t Bt * 6t

(b)

(a)

~x,%,
A t B t \ O0 01 11 10

oo '~,

o, ~-1~ ,

"_9 , F N
,o L , J

At ,6t

~x,%,
A t B r ~ O0 01 11 10

. .

oo A
o, 0 ' t ' j ~)
11

10
_

B t , 6t

(c)

i !'" ~ 0

o

I

1 (e)

A ~"

(d)

Figure 9.10 (a) State table for sequence detector (b) Tabulation of next state functions A t+~1 and B t+~1
(c) K-maps for the next state functions (d) Alternative implementation of sequence detector (e) The A S M chart

for the sequence detector

repeated again for convenience in Figure 9.11(a), may be regarded as the next state
map for the two latches which, in conjunction with the steering table for the
SR latch shown in Figure 9.11(b), enables the designer to obtain the K-maps for the
S and R inputs to both latches. For example, when the present total state of the
machine is ABX1X2 = 0001 and the input combination XI X2 -- 01 is received, the next
total state is ABX]X2 = 1001. Latch A has made a 0 ~ 1 transition which requires
SA = 1 and RA - - 0 , while latch B has made a 0 ~ 0 transition which requires S~ = 0
and R8 = X.

Event driven circuits 263

A t 00 01 11 10

00 00 10 01 00

01 11 11 01 11

11 10 10 10 10

10 00 10 10 10

d !d§ S

0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

A t+6t ~+6t

(a) (b)

~ X2

AB 00 01 11 10

_

O0 1

U
,_,yx
10 X~ X X

SA= Xl X2 + BX2

~ X2

AB 00 01

00

01 X X

11

10

11 10

S8 = ~Xl X2

(c)
1

Xl

(d)

~ X2

AB 01 11 10
i i

00 [~J X X

01 X

11

IO (T']

R~ = t~Xl X~

~ X2

AB 00 01 11 10

00 X X X

01

10 X x

~=A

B] RB

>%_z
Figure 9.11 (a) Latch excitation table (b) Steering tab&for an SR Latch (c) K-maps for the latch input signals
(d) Implementation of sequence detector using SR latches

The K-maps for the latch input signals are shown in Figure 9.11(c) and, after
simplification, the following equations are obtained for the set and reset signals:

SA -- X1X2 + BX2 SB -- AX1X2

RA -- B X 1) (2 R ~ -- A

The output is given by Z - $ 3 - A B and the machine implementation is shown in
Figure 9.11 (d).

264 Digital logic design

9.9 State reduction for incomple te ly specified machines

In a completely specified machine there is an entry for the next state and output in
every cell of the state table. For incompletely specified machines the outputs and the
next states may not be specified for some combinations of the present states and
inputs. Unspecified next states and outputs can be regarded as 'can't happen' con-
ditions and can be specified in any way the designer may choose. Because of this
freedom of choice it is possible to have more than one state reduction for an incom-
pletely specified machine. A state table for an incompletely specified machine and two
possible state reductions for the machine are shown in Figure 9.12.

So
$1
S2
S3
S,
S5

Next state

X - 0 X - 1
Ss,O S~,-

, , , ,

S s , - s , , i

S s , 0 ,
, , ,

Ss,1 e

s3,o s~,-
So,-S, ,1

So~2
s~
s,
ss

Next state

X = 0 X = I
s~ ',' 6' so,~ , 1
"s,, 1 ~. . . -~
s,, o So,~,-

So,,,-I s,,

(a) (b)

So~
S~3
s,
s5

Next state

X=o ,~=~
s~,0 s , , '
Ss,1 S13, i
s,~, o So~',-
So,,-' s,,1 ~-

(c)

Figure 9.12 (a) State tableJbr an incompletely specified machine (b) and (c) Two possible state reductions

9.10 Compatibility

In the previous chapter, when dealing with completely specified state tables, state
reduction was achieved by combining equivalent states to form a single state. Equiva-
lent states were defined as those states where next-state entries and outputs
were identical for each input condition. When dealing with incompletely specified
tables such as the one shown in Figure 9.12, state reduction is achieved by finding
compatible states.

As an example of compatibility, consider the two states $2 and $3 tabulated below
which appear in the state table of an incompletely specified machine:

PS NS

82

$3

X - 0 X - 1
$5,0 p

, $4,1

The unspecified next state and outputs are regarded as 'can't happen' conditions, and
entries in the tabulation can be made where t h e - ' s occur which will enable the two
states to be combined to form a new state $23 where:

PS NS
X - 0 X - 1

523 55, 0 54, 1

Event driven circuits 265

The two states have formed a compatible pair. If the output conditions for S 2 and S 3

had been conflicting for either of the two input conditions they would then have been
incompatible. Alternatively, if the next state entries for either of the two input con-
ditions had been different, the two states would have been incompatible.

As a further example of compatibility, the two rows tabulated below have been
taken from an incompletely specified table:

PS NS
X = O X = l

So S1,0 83, -
S1 S 1 , - $6,1

The two rows can be made output consistent by inserting a 1 in place of the ' - ' on the
first row, and a 0 in place of the ' - ' on the second. However, after these two insertions,
So and S1 can only form a compatible pair providing $3 and $6 are also compatible.

Additionally, the compatibility relationship is not transitive. It is possible for Si to
be compatible with Sj and Sj may also be compatible with Sk, but it does not follow that
Si will be compatible with Sk. This point is demonstrated by the following example:

PS NS
X = 0 X = I

Sl - , 0 86,0
82 85, 0 ,
83 , 84, 1

Clearly SI and $2 form a compatible pair. Similarly, S 2 and $3 are compatible.
However, S1 and $3 are incompatible since they are not output consistent.

Summarising, the conditions for the compatibility of two states Si and Sj are:

1. The outputs on the rows headed by Si and Sj. must be identical for each possible
input condition.

2. The next-state entries of Si and Sj must be compatible when both are specified for
each possible input.

A set of output consistent states in which every pair within the set is compatible is
called a compatibility class while a maximal compatibility class is defined as a set of
compatible states which are output consistent but are not a subset of any other class.
For example, if (S1, $5) is a compatibility class, it is not a maximal compatibility class if
it is a subset of a maximal compatibility class (S~, $4, $5, $7).

9.11 Determination of compatible pairs

To determine the compatible pairs for the incompletely specified machine whose state
table is shown in Figure 9.13(a), the implication chart described in the previous chapter
is used. For an incompletely specified machine, each cell in the chart represents the
testing ground for the compatibility of a state pair. The top left-hand cell of the chart is
the testing ground for the compatibility of states A and B. In order that the two states
should be output consistent, all the output ' - 's in the two rows must be replaced by l's.
To satisfy the second condition, states A and C must be compatible, and this implica-
tion is entered in the cell.

266 Digital logic design

Present
state

Next state

X=0 X=I

A A,- B, -
B C, 1 B , -
C D, 0
D B',I
E A',0 C,-

AD

, /

A

, /

B

(a) (b)

, /

C D

O m

C (CE)(CD)
B (CE) (CD)(BD)

A (CE) (CD)(BD)(AD)(AC)(AB)

Compatible Pairs

D (DE)
C (DE)
B (DE)(BE) (BC)

A (DE) (BE) (BC)(AE)

Incompatible Pairs

(c)

A A

E B B

C

Maximal compatibles Incompatibles

(ABD) (ACD)(CE) (DE) (BE)(BC)(AE)

(d) (e)

Maximal
compatibles

ABD
ACD
CE

Sets of next states

X=0

AC
AD
AD

X=I

Present
state

Next state

X=0 X=l

P Q,1 P,1
Q Q,0 P,1
R Q,0 R,-

(f) (g)

Figure 9.13 (a) State table for incompletely specified machine (b) implication table (c) compatible and
incompatible pairs (d) and (e) merger diagrams (f) closure table (g) reduced state table

It is clear from an examination of the state table that states B and C cannot be
compatible since they are not output consistent and the cell at the intersection of these
two states is marked with an X. On the other hand, states A and D can be made output
consistent by replacing the output '- 's , on the rows headed by A and D, with l's.
The second condition is satisfied if the next state ' - ' for X = 0 in the row headed D
is replaced by A. The two states are then compatible, and the cell that identifies
them is marked with a x/-" Every cell on the chart is examined in this way, and the

Event driven circuits 267

appropriate entry is made in each cell, as shown in Figure 9.13(b). Finally, the chart
must be examined systematically to see if any of the implications involve a pair of
states that have already been found to be incompatible. For example, the entry BC in
the cell at the intersection of D and E is an incompatibility, and this cell must be
marked with an X. Similarly, the entry BC at the intersection of A and E is an
incompatibility and must also be marked with an X. The states are now listed in
reverse order as shown in Figure 9. i 3(c), and the implication table is examined column
by column from right to left to determine first the compatible and then the incompa-
tible pairs. The compatible pairs are:

(CE)(CD)(BD)(AD)(AC)(AB)

and the incompatible pairs are:

(AE) (B E) (B C)(D E)

9.12 The merger diagram

The next step in the state reduction process is to find the maximal compatibles, and
this process can be assisted by the construction of a merger diagram. In this diagram
the original states of the machine can be represented by dots equally spaced round a
circle as shown in Figure 9.13(d). A line is then used to connect each of the compatible
pairs. The maximal sets of compatible states can be obtained from the merger diagram
by noting those sets of states in which every state is connected to every other state by a
line. A typical example of a maximal compatible in Figure 9.13(d) is (ACD) and it will
be observed that it is impossible to add any other state to this triangular grouping.
The remaining maximal compatibles on the merger diagram are (ABD) and (CE). The
maximal incompatibles can also be found on the incompatible merger diagram shown
in Figure 9.13(e). They are (AE), (BC), (BE) and (DE).

9.13 The state reduction procedure

The maximal compatibles are now selected to provide a reduced state table which will
represent the behaviour of the incompletely specified machine. When making the
selection, three conditions must be satisfied:

1. Completeness: The chosen set of maximal compatibles must contain all the states in
the original machine.

2. Consistency: The set of chosen maximal compatibles must be closed. This condition
is satisfied if the implied next states of each selected maximal compatibility
is contained by another maximal compatibility within the selected set.

3. Minimality: The smallest number of maximal compatibles required for a minimal
realisation.

The process of selecting a set of maximal compatibles to represent the machine, whose
incompletely specified state table is shown in Figure 9.13(a), is one of trial and error.
In this problem, all three maximal compatibles will be selected in order to satisfy
completeness and consistency. Hence the reduced state table will consist of three states,
P = ABD, Q -- ACD and R = CE. The reduced state table is shown in Figure 9.13(g).

268 Digital logic design

9.14 Circuit hazards

One cause of malfunction in combinational and sequential circuits can be traced to the
presence of race hazards. The designer should have a clear understanding of the
mechanism that produces such hazards and should also be aware of their effects on
circuit performance.

There are four types of hazard which can occur in digital systems:

1. Static hazards
2. Dynamic hazards
3. Function hazards
4. Essential hazards

Static hazards are due to a momentary change in output caused by an input change
that does not affect the steady-state output. They may be present in both combinational
circuits and gate-implemented asynchronous circuits. Dynamic hazards occur when, due
to a single output change, the output changes several times before reaching its steady state
value. Function hazards occur when more than one input variable change takes place at
the same time, while essential hazards are peculiar to fundamental mode sequential
circuits and they cannot be eliminated without controlling the delays in the circuit.

9.15 Gate delays

If a two-input N A N D gate is used as an inverter in a combinational network, as
illustrated in Figure 9.14, there will be a finite time delay tg before any change at the
input to the gate produces the required change at the output. This delay is demon-
strated in the timing diagrams, where the change in A from 0 to 1 is followed by
a change in A from 1 to 0,_tg seconds later. Similarly, when A changes from 1 to 0, the
corresponding change in A from 0 to 1 also occurs later (see Chapter 4).

+SV / ' I
I '

.;__J ",
----..4 t 9 ~ - - - ~ 0"~,~

I I

1 I l
/

I ! !
t . - -q t

Figure 9.14 The effect of gate delays when inverting a signal A

9.16 The generation of spikes

If the signal A and its complement A, generated by the NAND gate shown in Figure 9.14,
are both fed to the inputs of a two-input AND gate as shown in Figure 9.15, then
according to the laws of Boolean algebra the output of the gate should be A �9 A - 0 at
all times. However, it will be observed from an examination of the timing diagrams that
in the time periods that have been shaded, A and A are simultaneously equal to 1, so that

Event driven circuits 269

A . , ~ A 1
= O_

,~ 1_

0

1

A.;4 0__
I

I

I I I I I

=t

= t

=t

Figure 9.15 Generation of spikes by an AND gate

. , J ~ , I i ~ L

,, L
... I ' - ~ - -

A+A
0 t--

Figure 9.16 Generation of spikes by an OR gate

m

during these periods the gate output is A �9 A = 1. The output of the gate, AA, consists of a
series of positive going spikes which are initiated when A is changing from 0 to 1, each of
time duration tg, the gate delay of the inverter shown in Figure 9.14. The circuit used to
generate the signal A. A is said to exhibit a static O-hazard because the output signal,
which should be permanently 0, goes to 1 for a short transient period.

Alternatively, if the signals A and A are applied to the inputs of a two-input OR gate
as shown in Figure 9.16 then the output of the gate is A + A, which, according to the
laws of Boolean algebra, should be 1 at all instants of time. The waveforms of A and A
(see Figure 9.16) show that during the shaded time periods, they are both simultaneously
equal to 0. In these shaded time periods, which are of short time duration, the output
goes to 0. The circuit is said to exhibit a static 1-hazard because its output, which is
normally 1, goes to 0 for short time periods. It will be observed that for the OR gate, the
negative-going spikes are initiated at the instant when A is changing from 1 to 0.

The generation of spikes by N A N D and NOR gates is illustrated in Figure 9.17.
Negative-going spikes are generated by a N A N D gate at the instant when A is

I, I -I I I
| -

~ol 1 [_.__A

"-7 'oq_I U-"

l___

U

7"

F
7"

t

t

Figure 9.17 Generation of spikes by NAND and NOR gates

270 Digital logic design

changing from 0 to 1. The circuit exhibits a static 1-hazard. In the NOR circuit,
positive-going spikes are generated at the instant when A is changing from 1 to 0.
This circuit exhibits a static 0-hazard.

9.17 The generation of static hazards in combinational networks

When an input to a combinational network is changing, spikes may be generated at
the output of the circuit. The spikes, when they occur, are due to different path
lengths in the network which introduce different time delays. For example, the
Boolean function

f - A B + A C

may be implemented by NAND gates, as shown in Figure 9.18. There are two paths
through the circuit, the first via g~, g2 and g3 and the second via g4 and g3. If it is
assumed that all gates have exactly the same time delay, then it is apparent that the
delay through the first path is greater than the delay through the second path.

The changes taking place in the circuit are illustrated in Figure 9.18 for the circuit
condition B = 1, C - 1 and A, changing from 1 to 0. For this change in A, the output
of g4 changes from 0 to 1 and produces a change in the output of g3 from 1 to 0. For
the other path through the circuit, the output of gl first changes from 0 to 1, followed
by the output of g2 changing from 1 to 0, thus producing a change in the output of g3
from 0 to 1. Because the g4, g3 path has the shorter time delay, it is clear that the
change in output propagated along this path occurs earlier in time than the change
propagated along the alternative path.

Since it has been assumed that B - C - 1 , the network equation reduces to
f - A + A. When a circuit equation, under certain specified input conditions, reduces
to this form, a static 1-hazard will be generated. In the example chosen here, the timing
diagrams shown in Figure 9.18 reveal that due to the inverter delay, for a short period
of time both A and A are equal to 0, and A + A = 0. Providing the condition
B - C - 1 is maintained and the input signal consists of a train of positive-going
pulses, a series of negative-going spikes will be generated. The presence of the negative-
going spikes confirms the earlier deduction, made by following the signal changes
through the circuit diagram, that the output changes are 1 ~ 0 ~ 1.

The dual function o f f - AB + AC is:
m

- (A + B)(A + C)

B 1
0---1 A 1

_ ,--o c o I I I- A

0 t_ . . .

0 t----~

Figure 9.18 The production o f a static 1-hazard in a combinational network

Event driven circuits 271

BO
A 0-.--1 ~ ' ~ 1---0

o o_.

~ ~ = (A+B)(,~+Q
- " 1 - ' 0 :-

I I 0

A
Figure 9.19 The production o f a static O-hazard in a combinational network

t

r
t----~

t

The implementation of this function using NOR gates is shown in Figure 9.19.
When B - C - 0 the circuit equation reduces to f d - A. A. Under the conditions
specified a static 0-hazard will be generated when A is changing from 0 to 1.
The production of the static 0-hazard is illustrated in Figure 9.19. Immediately after
A changes from 0 to 1 both A and A are simultaneously 1, hence A �9 A - 1. The output
remains at this value until A falls to 0 when A. A resumes its value of 0 again.

Signal changes are also illustrated in Figure 9.19, where it has been assumed that
B - C - 0 and that A consists of a stream of positive-going pulses. If all the gates have
the same time delay, then path g4, g3 has the shortest time delay and the change in
output due to A changing from 0 to 1 will propagate along this path faster than along path
gl, g2, g3. This results in the output changing from 0 to 1. When the corresponding change
arrives at the output along the alternative path, the output changes back to zero again.

A similar analysis can be carried out for both the A N D / O R and OR/AND con-
figurations, and this will show that the A N D / O R circuit implementing the function
f - A B + A C will generate a static 1-hazard. Similarly, for the OR/AND circuit
implementing the function fd -- (A + B)(A + C), it can be shown that a static 0-hazard
will be generated.

9.18 The elimination of static hazards

i

The equation of the NAND circuit shown in Figure 9.18 is f - A B + AC. The con-
sensus product for this equation is BC, and this can be added to the original equation
without altering its value. Thus:

f - A B + A C + BC

and for the condition B - C - 1 the equation reduces to f - A + A + 1, and even
if A and A are, for a short period of time, simultaneously equal to 0, the value of the
function f remains at 1.

The effect of adding the consensus product can be studied by examining the K-map
plot of the function before and after the addition of the consensus product. The original
function is shown plotted in Figure 9.20(a) and the plot of the function, after
the inclusion of the consensus product, is shown in Figure 9.20(b). Comparison of
the two plots shows that before the addition of the consensus product, there are two l's
in adjacent cells not covered by the same prime implicant. On covering these two
adjacent l 's by the same prime implicant, as in Figure 9.20(b), the hazard is removed
from the circuit.

272 Digital logic design

(a)

~r o l i I Io

,'GD

(b)

O0 OI II I0

.C3

(c)

Figure 9.20 (a) Plot o f f = AB + AC (b) Plot o f f = AB + AC + BC (c) Implementation of the hazard-free
function f = AB + ,4C + BC

It follows that static 1-hazards can be detected by looking for adjacent l 's on
a K-map plot of the function that are not covered by the same prime implicant.
They can then be removed at the design stage by including additional prime implicants
which cover adjacent l 's not otherwise covered by the same prime implicant.

The hazard-free circuit for the Boolean function f = AB + A C is shown in
Figure 9.20(c), and it will be observed that an additional N A N D gate has been
introduced for generating the required consensus product BC.

For the NOR circuit of Figure 9.19, fd -- (,4 + B)(A + C). The consensus term for
this equation is (B + C), and this can be included in the above equation without
altering its value, so that:

fd -- (A + B)(/] + C)(B + C)

If B - C = 0 then:

A - A . A . o

a ,i = : ~ "]

g f r

%:
Figure 9.21 Implementation of the
hazard-free function
fd = (A + B)(]I + C)(B + C)

With the inclusion of the consensus sum, the value
of the function is always 0, irrespective of whether
A and .4 are simultaneously equal to 1.

The static 0-hazard is eliminated by the inclusion
of the consensus term (B + C), and the resulting
hazard-free circuit is shown in Figure 9.21.
Elimination of the hazard requires the inclusion
of an additional gate which generates the inverse
of the consensus sum.

When looking for a static 0-hazard, a K-map plot
of the function which identifies those combinations

of the variables that cause the function value to be 0 is required. To obtain a plot of the
0-terms, the inverse of the function fd must be plotted. The equation of the circuit is:

fd - (A + B)(A + C)

Event driven circuits 273

(a)

BC
A ~ O0 01 11 10

(b)

BC
A~ O0 01 11 10

Figure 9.22 (a) Plot o f f = fiB + AC (b) Plot o f f including consensus term for removing the hazard

Inverting:

f d - A B + A C

The inverse function is shown plotted in Figure 9.22(a) and it will be noticed that the
two O's in the adjacent cells 000 and 100 are not covered by the same prime implicant.
The function containing the additional prime implicant BC becomes:

f d = A B + A C + BC

Inverting, fd = (A + B)(A + C)(B + C) which is the hazard-free function obtained
previously by introducing the consensus term to the function equation.

The algorithm for finding static 0-hazards follows:

Step 1: Plot the inverse function.
Step 2: Look for adjacent O's not covered by the same prime implicant.
Step 3: Insert additional prime implicants to cover all adjacent O's that are not covered

by the same prime implicant.
Step 4: Modify the inverse equation by including the additional prime implicants.
Step 5: Re-invert the equation to obtain the hazard-free form of the function.

9.19 Design of hazard-free combinational networks

In this section the function represented by the equation

f = ~-'~ 2, 5, 6, 7, 10, 13, 15

will be implemented in hazard-free form using (a) NAND gates, and (b) NOR gates.
A fan-in limitation of three will be imposed.

For the NAND implementation, the circuit has to be free of static 1-hazards.
The first step in the design is to plot the K-map of the function and simplify in the
normal way (see Figure 9.23). The plot is now examined to see if there are any l's in
adjacent cells not covered by the same prime implicant. In this case a pair of such cells
are 0111 and 0110, and an additional prime implicant is added to the plot to eliminate
the uncovered adjacency. The l's that constitute the added prime implicant are
enclosed by dotted lines on the K-map plot.

Reading from the map, the hazard-free function is:

f - BD + A CD + BCD + A B C

To meet the fan-in restriction, the equation can be factorised and then:

f -- CD(A + B) + BD + A B C

274 Digital logic design

(a)

AS~'~ 0 O0 OI ,I

00, I
o,

" , .2__2)
I0 _

3
. , . , . , . ,

N

A

(b)

8

C

o c

8

Figure 9.23 (a) Plot o f f = E 2, 5, 6, 7, 10, 13, 15 (b) NAND hazard-free implementation

The factorisation of an equation in this way does not reintroduce hazards. In this
problem the hazard would have occurred when A - 0, B - 1 and C - 1, with D
changing from 1 to 0. Insertion of these conditions in the factorised equation gives:

f - D (I + 0) + O + l

= / } + D + I

which is the required condition for the removal of the hazard. The NAND implemen-
tation of the hazard-free function is shown in Figure 9.23(b).

To obtain the hazard-free NOR realisation, the inverse function is plotted and
simplified. The inverse plot is derived from Figure 9.23(a) by marking the vacant cells
on the map with O's, as shown in Figure 9.24. The presence of O's in adjacent cells not
covered by the same prime implicant indicates that the simplified function will produce
a static 0-hazard under certain prescribed conditions. In this case there are two such
pairs of adjacent cells, (a) 0000 and 0001, and (b) 1000 and 1001. The introduction of
an additional prime implicant BC, enclosed by dotted lines on the map, covers the
uncovered adjacencies and eliminates the static 0-hazard. Reading the inverse function
from the map"

f - CD + BD + BC + ABD

and factorising to satisfy the fan-in restriction gives:

f - CD + B(C + D) + ABD

(a) (b)

,o

o o

, oC-
U

'

,B

Figure 9 . 2 4 (a) The O-plot o f f = E 2, 5, 6, 7, 10, 13, 15 (b) NOR hazard-free implementation

Event driven circuits 275

and re-inverting:

f = (C + D)(B + CD)(A + B + D)

The implementation of this hazard-free function with NOR gates is shown in
Figure 9.24(b).

9.20 Detection of hazards in an existing network

The network shown in Figure 9.25 is to be analysed to see if it has any static 0- or static
1-hazards. The equation of the network is �9

f - A B C + (A + B)(A + D)

which may be expanded into the following form:

f - A B C + AA + AD + AB + BD

This expression contains the term AA which, under normal circumstances, would be
removed since, by the laws of Boolean algebra, its value is 0. Since the variables A and
A, in combinational networks can be simultaneously 1, they are treated as independent

A
(a) B

C

A =E>
~E> I I)
B

E>

AXDo0
O0

01

11

10

(b)

01

(dl 1)
'JI

11 10

f~

I

(c)
AB~Do0 01 11 10

0 0 (0 0 0 O)

01

11

10

A•DO0
O0

01 ~1]

,

10 lJ

(d)
01 11

I

10

t,

oo (o

01

11

10

(e)

~0 0j

F ~

10

0)

Figure 9.25 (a) Circuit for the function f = ABC + (A + B)(A + D) (b) K-map plot of the function (c) Plot of the
inverse function (d) The resimplification of the function (e) Hazard-free plot of the inverse function

276 Digital logic design

variables in this equation which may be regarded as the equation which holds for
transient conditions.

When deriving the transient equation of a circuit, some of the theorems of Boolean
algebra may not be used. Those which make use of the identities AA = 0 and

n

A + A = 1 may not be used to manipulate the equation into its transient form.
m

For example, the expression A + A B = (A + A)(A + B) = (A + B) cannot be used as
the reduction depends upon the identity (A + A) = 1. Earlier in this chapter, it was
shown that A and ,4 may be simultaneously equal to zero, and in that case A + ,4 ~ 1,
hence the above reduction is not valid for all instants of time.

The hazards can be detected by examining the expanded equation to see whether
it reduces to either of the forms X X or X + X under defined input conditions, where X
and X may represent any one of the four variables in the equation. For example,
if B = 0 and D - 1, the equation reduces to f = AA. Hence for these input conditions,
a static 0-hazard occurs when A is changing from 0 to 1. Additionally, if B = 1, C = 0
and D = 1, the transient equation reduces to f = A + AA + A and a static 1-hazard
occurs when A is changing from 1 to 0. It should be noted that since A is changing from
1 to 0, AA - 0 since it can only have a value 1 when A is changing from 0 to 1. If,
however, B = I, C = 0 and D - 0, the transient equation reduces to f = A + A/I +
A + A + 1. In this case, irrespective of the instantaneous values of A and A, f = 1, and
hence there is no static hazard.

Alternatively, the static l-hazard can be detected by plotting those values of the
variables that make the value of the function f = 1, as shown in Figure 9.25(b).
Examination of this K-map shows that the two l's in the adjacent cells 1101 and
0101 are not covered by the same prime implicant. The introduction of the prime
implicant BC will ensure the coverage of these two cells by the same prime implicant
and will remove the static 1-hazard.

To detect the possibility of a static 0-hazard, the circuit function has first to be
inverted, and then plotted on a K-map. The inverse of the circuit function f = A B C +
(A + B)(A +/3) is:

f = .~B + ABD + A CD + AAD

Note that the fourth term (the transient term) cannot be represented on the map.
It is clear from an examination of the K-map (Figure 9.25(c)) that the 0s in cells

1001 and I 011 are adjacent to the 0s in the cells 0001 and 0011 and are not covered by
the same prime implicant, and a static 0-hazard is present in the circuit shown in Figure
9.24(a). By introducing the prime implicant/~D to cover these four cells, the static
0-hazard can be removed.

Poorly designed circuits may generate both kinds of static hazard. In practice, it
would be a more satisfactory solution to redesign the circuit, shown in Figure 9.25(a),
using the K-map plot of Figure 9.25(b) which, for convenience, is repeated in
Figure 9.25(d). On this map the function has been simplified in such a way that the
function is free of static 1-hazards. The hazard-free function is:

f = A B + BD + AD + BC

If an AND-OR-INVERT configuration is to be used, all that has to be done is to
examine the plot of the inverse function for static 0-hazards. The inverted function is:

f = A B + BD + A CD

Event driven circuits 277

(a)

>

>
(b)

Present Next
state state

G' d d d*"
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

(c)

D•%0 01 11 10

~ N

Figure 9.26 (a) The controlled D-latch (b) state table (c) K-map plot

and is shown plotted in Figure 9.25(e). Since there are no adjacent O's not under the
same prime implicant there are no static 0-hazards present.

A practical example of the possibility of a static hazard in a controlled D latch was
referred to in section 6.5 of Chapter 6. For convenience, the circuit configuration is
shown again in Figure 9.26 along with the state table and the K-map plot of the
characteristic equation.

The characteristic equation read from the map is:

Qt+6t = (OQ + DG)'

It will be observed that there are two l's in adjacent cells not covered by the same
prime implicant, and consequently a static 1-hazard is present. To eliminate the
hazard, an extra prime implicant, DQ, enclosed by dotted lines on the map, is added
in Figure 9.26(c), and the modified characteristic equation is:

Ot+6t = (OQ + DG + D Q) t

It is left to the reader to show that the implementation of the latch shown in Figure
9.26(a) does, in fact, correspond to this hazard-free equation.

9.21 Hazard-free asynchronous circuit design

A gate-implemented asynchronous circuit with feedback is, in essence, a group of one
or more combinational circuits which, under certain conditions, may generate static
hazards. In practice, the designer should examime the design for hazards and then
eliminate them using the techniques described earlier in this chapter. To demonstrate
the occurrence of hazards in asynchronous circuits, the design of a hazard-free T-type
flip-flop will be undertaken.

278 Digital logic design

(a)

'.J]_J]_.I]JL Ck lTI 0

|

o o_I- -I I - L

(c)
Ck t

A t 8 o 1

I O0 t o o l 0 1 ,
I A _

"
I 01 O , t
t ..,,. ,.., d ' " "

I ,, t@ ~o
I , , o . . ' ! ,q2 '

At * 6 t B t ' 6 t
(e)

i I I I i I I I '
, I ' I I I ,,, , I m

0 '1' '
, , ,I I II ' I *

"U U *C

(b)

J,8
O0

SO

I _c.

10 Cu

$3

(d)

AtB t 0

O0

o, N
"UI
,o ~

A t ' 6 r

$1

ot
...._
Ck

[a,

$2

Atst C k t o N ~ ~

O0

01

Bt'6t

s

8

Figure 9.27 (a) Timing diagram for T-type flip-flop (b) Internal state diagram (c) State table
(d) Individual simplified state tables for A '+~t and B '+~' including hazard-removing prime implicant
(e) Timing diagram for the Ck signal (f) Implementation of hazard-free flip-flop

The timing diagram of a trailing edge triggered TFF is shown in Figure 9.27(a), the
output toggling on the trailing edge of successive clock pulses. The state diagram is
shown in Figure 9.27(b) and it reveals that the circuit completes a cycle of operation
after four changes of the clock signal. It should be noted that in this example the
clock transitions can be regarded as events which are able to initiate state transitions.

Since there are four states, two state variables A and B are required, and since this is
an asynchronous design, a race-free state assignment has been used. The state table
corresponding to the state diagram is shown in Figure 9.27(c), and the path traversed
through the state table as one cycle of operation of the flip-flop takes place is
illustrated by the dotted line.

In Figure 9.27(d), the state table has been separated into two distinct maps, one for
A t+6t and one for B t+6t. After simplification of these two functions it is clear that in
both cases two l's in adjacent cells are not covered by the same prime implicant, and
there is a real possibility that a static hazard may be generated in both the A and B
circuits. Arrows have been inserted on both maps indicating the direction of the state
transitions between the relevant cells.

Event driven circuits 279

The equation for A t+6t is:

a t+6t : (B . C k + A . Ck) t

If A = B - 1, the equation reduces to:

A t+6t : (Ck + Ck) t

and this condition indicates the possibility of the generation of a static 1-hazard.
However, an examination of the timing diagrams for Ck, Ck and (Ck + Ck) in
Figure 9.27(e) shows that a static 1-hazard will only occur if Ck is making a 1 -~ 0
transition. The arrow-head on the A t+~t map reveals that the transition concerned is
from total state ABCk - 110 to ABCk - 111; that is, the clock signal is changing from
0 -~ l, and it follows that a static 1-hazard can never be generated in the .4 circuit.

The equation for B t+6t is:

B t+6t : (A . C k + B . Ck) t

If A = B - 1 this equation reduces to:
B t+6t -- (Ck + C k) t

In this case, the arrow-head on the B t+6t map shows that the B circuit makes
a transition from total state ABCk = 011 to ABCk = 010; that is, Ck is making
a 1 ~ 0 transition, and consequently a static 1-hazard will be generated in the B
circuit. To eliminate the hazard, the additional prime implicant AB is added to the
equation for B t+6t which now reads:

B t+6t -- (f t . Ck + B. Ck + A . B) t

Also from the state diagram"

Q - $3 + S2

= A B + A B - A

The N A N D implementation of the hazard-free T flip-flop is shown in Figure 9.27(f).

9.22 Dynamic hazards

A second type of hazard that can occur in gate networks is referred to as a dynamic
hazard. The output changes normally expected by the circuit designer are either 0 ~ 1

or alternatively 1 ~ 0. If, in practice, the output transi-
1 ~ _ ~ 1 ~ - - tions are 1 ~ 0 - , 1 ~ 0 then a dynamic hazard has

occurred. Similarly, if an output designed to change from
0 0 0 - , 1 has the change pattern 0 ~ 1 ~ 0 ~ 1, then
Figure 9.28 Dynamic hazards a dynamic hazard is present. In either case there is a

minimum of three changes appearing at the ou tpu t as
illustrated in Figure 9.28.

This type of hazard occurs as a result of the factorisation of a Boolean function,
necessary, because of fan-in restrictions, which leads to different path lengths
through a circuit. Alternatively, the gates in the circuit configuration may have
different time delays, and it is also possible to have differing time delays in the
interconnecting leads.

280 Digital logic design

(a)
= , , ,

,4C

o~-o,.~ _

C 0-,,-I ~ l

Cl--O

(b)

g~ out

g4 out [

i~-to3--I
ga out]

gs out = ga + g4

g2 out = gl'g5 [--[__J Dynamic hazard

Figure 9.29 (a) Network with a dynamic hazard (b) Occurrence of a dynamic hazard in the network

Consider the function:

f - (A C + B C)(A + C)

implemented with AND and OR gates as shown in Figure 9.29(a). There are three
different paths through this network for the variable C and consequently there is
a possibility that a dynamic hazard exists in the network. The three paths through
the network are

1. via gates g: and g2
2. via gates g3, g5 and g2, and
3. via gates g4, g5 and g2.

There are eight possible starting combinations of the variables A, B, and C. Since, in
this circuit, the dynamic hazard is caused by multiple paths taken by the signal repre-
senting variable C, in each case only the next change in C need be examined. For the four
combinations starting with A =0, the output of OR gate gl remains at 1 irrespective of
C, and the output of AND gate g3 remains at 0. Hence, for these combinations, changes
in C take the path g4-gs-g2 only and so no dynamic hazards are present.

However, in the case A - l, B - l, and C - T, the upper input of gate g2 changes
from 0 to 1. The other input to g2 is A C -t- BC - - C Jr- C in this case, and if tg4 < tg3 then
there will be a static 1-hazard present at the output of gate gs. Then, if this static hazard
itself occurs after the change at the output of gl, i.e. if tgl < tg4 < tg3, there will be a
dynamic hazard present at the output of gate g2 as illustrated in Figure 9.29(b).

A similar analysis shows that if tgl > tg4 > tg3, then there is a dynamic hazard
produced in the case A - 1 , B - - 1 , and C = l . In the two remaining cases,

Event driven circuits 281

A = 1, B = 0, and C = X, there are no further dynamic hazards as signal C takes
only two paths through the network. Using the terminology to be introduced in
Chapter 13, all three possible paths for C are sensitised only when A = 1 and B = 1.

It is worth noting that providing A N D / O R sum-of-products circuits or if O R / A N D
product-of-sum circuits have been designed such that there are no static hazards
present, then these circuits will have no dynamic hazards.

9 .23 Func t ion hazards

oo o o

01 1 1

11 1 1

10 1 0
, . .

11 10 ,o o!
1 1

0 1
, ,

o 1

Figure 9.30 K-map plot used
for illustrating function hazards

This type of hazard, which can be either a static 1- or static
0-hazard, occurs when it is specified that two circuit input
variables change at the same time. In practice, it is extremely
unlikely that two variables will change at precisely the same
time but if this should happen to occur it can lead to the
presence of a hazard during a transition.

Consider the K-map plot of a 4-variable function shown
in Figure 9.30. If the initial condition of the input variables
is ABCD = 1000 and circuit operation specifies that the
variables B and D change simultaneously, one of three
possibilities may occur:

1. B and D change simultaneously:

ABCD = 1000 ~ 1101

f = l --,1
2. B changes before D:

ABCD = 1000 --o 1100 ~ 1101

f = l - o l ~ 1
3. D changes before B:

ABCD = 1000--o 1001 ~ 1101

f = l --o0 --ol

If D changes before B a function static 1-hazard is present. Alternatively, if the
initial condition of the input variables is ABCD = 0000 and a simultaneous change in the
variables A and D should occur, one of the following three possibilities may arise:

1. A and D change simultaneoUsly
ABCD = 0000 ~ 1001

f = 0 4 0
2. A changes before D

ABCD = 0000 ~ 1000 ~ 1001
f = 0 ~ 1 ~ 0

3. D changes before A

ABCD = 0000 --, 0001 --o 1001
f = 0 - o 0 --o0

If A changes before D a function static 0-hazard occurs.
A situation may also arise where it is specified that three variables should change at

the same time, and in that case there is the possibility that a function dynamic hazard

282 Digital logic design

(a) (b)

c , ~ " 0 1 1

1 1 0

Q

Figure 9.31 (a) Controlled D-type latch (b) K-map plot for output of gate gl

may occur. In practice, function hazards can be avoided at the design stage by ensuring
that only one variable can change at any one time.

A function hazard can occur at the input NAND gate of a synchronising latch. It will
be assumed that the input D is asynchronous data and that Ck is the synchronising
signal, as described in Chapter 8. In this situation there is no way of ensuring that the
asynchronous input changes at the same time as the synchronising signal. The K-map
for a 2-input NAND gate is shown in Figure 9.31. If the initial condition is D C k - lO
and both signals happen to change simultaneously, then the steady-state output of the
gate will remain at I. In practice, they are unlikely to change simultaneously and
a spurious output can occur, which in the case of a synchroniser circuit, is referred to as
a runt pulse. This pulse may not be sufficient to cause the synchroniser to switch from
one stable state to another and the latch may enter the metastable state where it will
stay for a period which cannot be precisely defined.

9.24 Essential hazards

This type of hazard is peculiar to asynchronous circuits and is caused by a race between
an input signal and a state variable. The state diagram for an asynchronous circuit
having a race-free state assignment is shown in Figure 9.32. Assuming that the circuit is
in state So and a change in the value of X from 0 to 1 occurs, a transition from So to S~
should take place and, on arriving in Sl, the circuit should remain in that state.

So

A 8
O0

1 I0

l ' I
Sa

II

_ 1

SI

I

, 1
oI

X

s2

Figure 9.32 State diagram
for a machine which can have
an essential hazard

However, correct operation of the circuit as described above
will depend upon the relative values of the inversion time ti for
the input signal X and and the turn-on time tt for the state
variable B. If the circuit arrives in the state SI before the value
of X has changed from 1 to 0, a further transition to $2 will be
made. Since X - 1 when the circuit arrives in state $2, it
follows that a further transition will take place to state $3,
where the circuit will now remain, provided the change in X
has now occurred. Hence, if ti ~ tt, incorrect circuit operation
will occur as a consequence of the race between the inversion
of the input signal X and the turn-on of the state variable B.

An examination of the equation for the state variable A
reveals more clearly the origin of the hazard. The turn-on
condition for A - BX , the turn-off condition for A - BX,
and

Event driven circuits 283

A t+6t = (B X + (B 2) A) t

= (B X + (B + X) A) t

The first term of this equation provides the turn-on signal for A when the circuit is in
state S1. If B changes to 1 before X changes to 0, the value of B X = 1 and the state
variable A is turned on.

The method of dealing with this type of hazard is to insert a delay in the output line
of the circuit generating the state variable B. This will ensure that the change in B does
not arrive at the input to the circuit generating the state variable A until the value of
X has changed.

Problems

9.1 A double-sequence detector has two inputs, X 1 and X2, and one output Z. For an
input sequence X1X2 = 00, 10, 11 the output Z becomes 1, and when the reverse
sequence is received the output Z returns to 0. A typical timing diagram for the
detector is shown in Figure P9.1. Develop:

(1) A state diagram

(2) An ASM chart

for the detector and obtain a state table. If possible, reduce the state table and
implement the design with N A N D gates.

I , , , , , ,

i 1 _ I 1 1 !_
I

o - - J - - - q 1 l I
I

Figure P9.1

9.2 Develop an event-driven circuit to implement a trailing-edge triggered JK flip-flop
and draw a timing diagram for the flip-flop.

9.3 X1 and X2 are the two inputs to an asynchronous circuit which has two outputs, Z1
and Z2. When X1 X2 = 00 the output Z1 Z2 = 00. If a 0 ~ 1 change in X1 precedes
a 0 ~ 1 change in X2, then the output of the circuit is Z1 Z2 = 01. Alternatively, if
a 0 ~ 1 change in X2 precedes a 0 ~ 1 change in X~, then the output of the circuit
is Z ~ Z 2 - 10. In both cases the outputs remain at 01 and 10, respectively, until
X1X2 = 00 again. Draw the state diagram for this system.

9.4 Develop an asynchronous circuit that will give an output clock pulse (Z) after
every second data pulse arrives on the X input line. The arrival of the data pulses is
purely random and it is to be assumed that the minimum time for a pair of

284 Digital logic design

consecutive data pulses is greater than the periodic time of the clock. A typical
timing diagram is shown in Figure P9.4.

I

o.n n n n FLn r-L_rl n
X

I

o_!-I q FI ,F!
Z

!

o n , , q
Figure P9.4

9.5 A logic circuit has two asynchronous inputs, Xl and X2, and also a synchronous
clock signal. The circuit is to be designed so that the first complete clock pulse that
occurs after Xl and X2 have become l, in that order, is output on the line marked

X:~ ~_ Logic

Ck (.It) ci rcui t

- ~ , , ,

Z

Figure P9.5

Z in Figure P9.5. After the output of the clock
pulse the circuit must return to its quiescent
state when Xl X2 = 00.

Design a circuit that satisfies this specifica-
tion and implement the design using NAND
gates.

9.6 Analyse the fundamental mode circuit shown
in Figure P9.6:

(a) Determine the state table.
(b) Determine the state diagram.
(c) Use the state table to determine the output response to the input sequence

X IX 2 -- 00, 01, l l , 10, l l , 01, 00, 10, 00, 01. Initial conditions
X 1 = X 2 - - h - - 0 .

Figure 139.6

Xi

xa

D
Z

Event driven circuits 285

9.7 Analyse the circuit shown in Figure P9.7"

(a) Determine the state table.
(b) Determine the state diagram.
(c) Use the state table to determine the output response to the input sequence

X1X2 = 00, 01, 11, 10, 00, 01, 11, 01, 11, 10, 00. Assume the initial conditions
are X1 = X2 = 0 and A = B = 0.

x2 R.

" 2

ol . . [. ~ j , , . _ _ . _ . , e
x2 x2

Figure P9.7

9.8 The internal state diagram for a four-state digital machine is shown in
Figure P9.8. Construct a state table for the machine and identify all races that

So $3
As["1 xLx2 I AS

l, oo

s - " J ' x,-x2 I]
AB AB
Ol I0

Figure P9.8

will occur if the machine is implemented
from the given state diagram, stating
whether they are critical or non-critical.
For each race, give all the state transitions
which may occur.

9.9 Plot the K-map of the functions

(a) f (A ,B , C,D) = ~ 0,2,4, 5,6, 8, 9, 11,
12, 14, 15, and

(b) U(A, B, C, D) = ~ 3, 4, 5, 6, 11, 12, 13,
14,15

and determine hazard-flee implementations
in both cases, using N A N D gates.

9.10 Find all the static hazards in the two networks shown in Figures P9.10(a) and (b).
Specify the input conditions that must exist for the hazards to occur and draw the
logic diagram for modified networks that are hazard-free.

9.11 Design a hazard-free, D-type flip-flop using asynchronous circuit design techni-
ques. It may be assumed that the output will take on the value of the input on the
trailing edge of a clock pulse.

9.12 An incompletely specified table is shown in Figure P9.12. With the aid of an
implication chart, find the compatible state pairs. Using a merger diagram obtain
the maximal compatibles and construct a reduced state table.

9.13 An electrical system is protected by a fault detector. If a fault occurs within the
system a fault signal activates an alarm buzzer. The green light that indicates fault

286 Digital logic design

(a) A
B
c

8_

(b)

A ,

Figure P9.10

x•,x2 free is switched off the fault and red operation by signal a
O0 01 11 10

,% -,- S=,l s,,1 s=,l light is switched on. When the fault is acknowledged by
s~ s,,- , , 0 the system controller the alarm buzzer is turned off. After
s~ s ~ - ss,1 , , the fault has been cleared the green light is switched on
s3 . , s~, l - , - and the red light is turned off. A test signal is to be
s, -,- s~,0 s~0 s=,i provided to check the operation of the fault detector.
S s $2,0 - , - SvO S=.1 Develop an appropriate state diagram and implement

your design with the aid of the NAND characteristic
Figure P9.12 equation.

9.14 An asynchronous circuit is to be used to control the gates
and a red flashing light at a railway level crossing.

The gates are to be closed and the red flashing light is to be turned on when
a train enters a defined section of track from either direction. When the train is in
a further defined section of track which straddles the crossing the gates must
remain closed and the red light must remain flashing. After a train has passed
through the crossing the gates are opened and the flashing red light is turned off.

Develop an ASM chart, convert it to a state diagram and implement your
design using the NAND sequential equation.

9.15 Design an asynchronous lock operated by five input buttons labelled A, B, C, D
and R (the reset button). The unlocking operation can only take place if only one
button is activated at a time and in the order B, D, A, C. Draw a state diagram
and develop a gate-implemented circuit.

9.16 Using asynchronous circuit design techniques, design a hazard free D-type flip-
flop whose output takes up the value of the input on the trailing edge of a clock
pulse.

10 Instrumentation and interfacing

10.1 Introduction

Very many systems designed today use digital logic components alongside sub-systems
based upon analogue electronics, and also sub-systems based upon mechanical
components. This allows designers the flexibility to use several design tech-
niques in order to produce the most useful systems as a whole. From one point of
view it is true that a digital system is merely a special case or subset of a general
(analogue) electronic system where the signals involved always happen to fall
into two well-defined voltage or current levels rather than being unconditionally
variable between upper and lower limits. Hence, many basic considerations of
design, such as response time, current requirements, and so on, are similar in
both analogue and digital design. However, as observed elsewhere in this text, the
consequences of the basic differences between analogue and digital design are
far-reaching as far as the design methodology adopted is concerned, and so it is
usual to regard the two systems as separate. Therefore, there are usually com-
ponents or sub-systems of various types employed at the interface between the
two types of systems.

10.2 Schmitt trigger circuits

The 'Schmitt trigger' circuit is one of the simplest of interfaces between the analogue
world and the digital world. A full analysis of Schmitt-type trigger circuits is beyond
the scope of this text and is covered in texts on analogue electronics, but the important
results are summarised in this section.

In a Schmitt trigger circuit, positive feedback is applied to an analogue differential
amplifier from its output to its non-inverting input to give a circuit having the
following characteristics:

1. only two output voltages are possible, almost equal to the two supply rail voltages,
and with suitable choice of supply voltages these correspond to the two digital logic
levels 0 and 1; and

2. the trigger circuit switches between its two possible output voltage levels according
to the voltage applied to the single input of the trigger circuit.

288 Digital logic design

in ~ v V _ Op'amp . supply -- out

supply

I
R2 R1

(typically ground, 0 V)

Figure 10.1 Simple [brm o[Schmitt
trigger circuit

The Schmitt trigger circuit in its simplest form
(see Figure 10.1) consists of an operational amplifier
with a resistor R~ connected from its output to its
non-inverting input, and a resistor R2 connected
from the non-inverting input to a voltage V0.
An operational amplifier is an analogue amplifier
which produces an output voltage proportional to
the difference voltage between its two inputs, and
approaches an ideal of having infinite differential

gain, infinite input impedance at both inputs, and zero output impedance at its
single output. An ideal operational amplifier also has negligible limitations
regarding its input offset, bandwidth, slew-rate, latch-up, and noise, although in
practice, these aspects must often be considered. Typically V0 is ground, 0V, or
another constant voltage between the positive supply rail V+ and the lower supply rail
V_ to the amplifier. The inverting input of the amplifier is the input of the trigger
circuit as a whole, and so the trigger circuit has a high (ideally infinite) input
impedance.

Disregarding the unlikely possibility that the input voltage is precisely equal to
the voltage applied by the resistor chain R~ and R2 to the non-inverting input, there
will always be some voltage difference between the two amplifier differential inputs.
Therefore, the high amplifier gain would imply a large voltage at the output, but in
practice, the amplifier output stage will saturate, and simply give an output voltage
almost equal to either its positive supply or its negative supply, dependent upon the
polarity of the difference voltage at the inputs. Note that the applied positive
feedback in this circuit is the opposite of that required to give well-controlled linear
operation, which needs negative feedback. In the Schmitt trigger circuit, whatever
the value of input voltage, the amplifier will always be overdriven, so that its output
voltage can only be at either one or the other supply rail value. In the context of
Digital Systems, of course, the two possible output voltages are arranged to be
equal to two voltage levels recognised by the digital IC technology used in the
subsequent parts of the circuit, usually 0 V and 5 V. Since the trigger circuit has two
possible output voltages, controlled by the single input, it follows that at a certain
trigger voltage applied to the input, the circuit output changes its state from one of
the possible output voltages to the other possible output voltage.

In fact in a Schmitt trigger the analogous transition in the reverse direction takes
place at a slightly different input voltage, so that the circuit shows 'hysteresis' by
having an 'overlap' region of input voltages within which the output voltage
depends upon the direction from which the input voltage entered the 'overlap'
region between the two threshold voltages. To quantify this, when a low voltage is
applied to the circuit input, the amplifier will be overdriven such that its output will
be at the voltage of the high supply rail, V+. Therefore, the voltage applied to the
non-inverting input will be Vo + (V+ - Vo)R2 / (R1 -k- R2) and the input voltage must
be greater than this in order to change the state of the output voltage. Once this
occurs, however, the amplifier will be overdriven in the opposite direction, so the
output voltage will be the same as that of the other supply rail, V_. So, now the
voltage applied to the non-inverting input will be Vo + (V _ - V o) R z / (R 1 - k - R 2) .

Therefore, to change the output voltage back to its first value, the input voltage

Instrumentation and interfacing 289

must be reduced below this new threshold value. Since V_ is less than V+, the new
threshold voltage is less than the first by the difference of (V+ - V_)R2/(R1 + R2),
which is the hysteresis of the circuit.

10.3 Schmitt input gates

The internal circuitry of a 'Schmitt input gate' is based upon the well-known 'Schmitt
trigger' circuit described in section 10.2 above. A 'Schmitt inverter gate' may be regarded
as a Schmitt trigger circuit giving outputs at the correct voltage levels to drive subsequent
digital logic gates correctly. A 'Schmitt input buffer gate' is similar but has an extra stage
of logic inversion prior to the output. In each case, varying analogue voltages, not
necessarily corresponding to the logic level specifications for the logic family concerned,
may be applied to the Schmitt input. The output will take the appropriate logic level
(0 or 1) according to whether the input is above or below the relevant threshold voltage
fixed by the manufacturer. Other types of Schmitt input gates, with more complex logic
functions, are also available. The threshold voltage is usually fixed between the normal
logic level voltages, so that a Schmitt input gate will operate correctly if it is driven by
a conventional logic gate rather than an analogue voltage source.

On circuit diagrams, a Schmitt input gate is indicated by the gate symbol for the
corresponding conventional logic gate, but with the addition of the special symbol _y-
drawn adjacent to an input or centrally inside the gate symbol as appropriate.
This special symbol has a stylised derivation from the letter 'S' and from a diagram
indicating hysteresis between input and output voltages. Examples of circuit symbols
for typical Schmitt input gates are shown in Figures 10.2(a) and (b).

One typical use of such a Schmitt input gate is shown in Figure 10.2(c). In this
circuit, an RC network is used to convert an input logic waveform into a waveform
with slow edges, that is, a signal where the rising and falling edges are governed by the
usual exponential law with time constant ~-- RC. It is bad practice to apply such
a waveform to a conventional logic gate because these slow edges can potentially
cause severe problems such as oscillations at the output or out-of-specification output
voltages with gates not specifically designed to handle slow edges. However, Schmitt
input gates are expressly designed and intended to be able to handle slow edges, and so
the output state changes after a delay time determined by the precise value of the
threshold voltage and the time constant ~- - RC.

The Schmitt delay circuit can be developed into a simple oscillator circuit for
producing a repetitive waveform, as shown in Figure 10.3(a). In this circuit, a logic
transition at the output of the inverter is fed back to the input of the inverter, but the
RC network connected to the Schmitt input causes a delay before the complementary
transition occurs at the output. Because of the non-zero hysteresis at the gate input,
the gate input voltage varies exponentially between the two threshold voltages, and
the output oscillates between logic low and high levels indefinitely, as shown in
Figure 10.3(b). The frequency of the waveform produced depends upon the values of
R and C determining the delay time. However, a serious disadvantage of this circuit is
that the exact oscillation frequency also depends upon the precise input threshold
voltages and the difference between them, which are usually not precisely known.

in [~ out

(a) (b)

290 Digital logic design

Schmitt buffer gate

I I

out

input _ _ ~
I I
I I
! i
I I

waveform
with s low
edges ' i

I
I
I

output , ~
with delayed
edges

/

I I
I I
i i
I I

I I

I i
! !

I !

I !

(c)

Figure 10.2 (a) Circuit symbol for a Schmitt inverter (e.g. as in IC type 74LS19) (b) Circuit symbol for a
Schmitt N,4ND gate (e.g. as in IC type 74LS18) (c) Simple digital signal delay generator using a Schmitt input gate

A simple oscillator circuit that overcomes this difficulty to some extent is shown in
Figure 10.3(c). Gate G1 must be a Schmitt input gate; G2 need not have a Schmitt
input, although in practice it will usually be part of the same IC package as gate G1
and so will also have a Schmitt input. The voltage waveforms in this circuit are shown

R

[~ ~ out
-u-t_P

output
(a)

v c l l l I I 1
i I I l I I l

Threshold { i
vo l tages " ~---'~-'~--':-- I I I ~ " . I I ~ ' ~ . I I ~" ,~ I

G a t e input , , , , , , ,
voltage (b)

G1 G2

R

, II R1 A C

(c)

<3
D

I

out

I n s t r u m e n t a t i o n a n d in ter fac ing 291

Point A

G1 input

G2 output

G 1 output

VT+ VOH --

VoH--

Vm m

0 V -

VT-- VOH

VT+ VOH - -

VOH--

V T ~

OV--

VT-- VOH --

k
. . . .

Output from
D-type flip-flop

(d)

1
gate

R

II
N1

- - ' l J - - ~ only when gate input high
otherwise low output

(e)

&

, , IBI Crystal

(f)

Figure 10.3 (a) Simple low-precision RC oscillator circuit using a single Schmitt inverter (b) Voltage waveforms in
the single-inverter oscillator circuit (c) Simple oscillator circuit using two Schmitt inverters (d) Voltage waveforms
in the double-inverter oscillator circuit (e) Gated oscillator circuit (jr) Precision oscillator using a resonant
quartz crystal

292 Digital logic design

in Figure 10.3(d). Suppose that the output voltage of gate G2 is currently at logic high
level, VOH; because of the inversion in gate G2, this requires that the output of gate G1
is at logic low level. Therefore, the voltage at point A will fall, according to the usual
exponential decay law, until the input voltage to gate G1 falls below the threshold
value. For simplicity it will be assumed here that gate G 1 has a high input impedance
(much greater than R~) so that it draws no current from the RC network. It follows
that the voltage at its input is the same as the voltage at point A, and the precise value
of resistor R~ is unimportant. It will also be assumed here for simplicity that the
Schmitt threshold voltages, VT, for rising and falling edges, are exactly half of the logic
high voltage level, with zero hysteresis, and also that the logic low voltage level
Voe = 0V. At the instant where the input of gate G1 falls below its threshold voltage,
the voltage across the capacitor will be half of the logic high voltage, or ~VoH.
Then the output of gate G1 goes high and so the output of gate G2 goes low. At this
point, the voltage at point A is now negative, with value --~VoH, and it starts rising
towards the logic high value with time constant RC. When the voltage at the input to
gate G1 rises above its threshold value VT = ~VoH, then the output of gate G1
changes to logic low, the output of gate G2 changes to logic high, and the voltage at
point A is immediately + VOH + VT = 3 VOH/2 (i.e., the output of gate G2 plus the
capacitor voltage of ~VoH). The whole cycle can now repeat indefinitely. It is
straightforward to calculate the time taken for the first half of the cycle, during which
the voltage at point A rises from - ~ VOH to the threshold value + ~VoH with an
aiming voltage of + VOH and time constant RC; the result is to = RC In(3). The time
taken for the other half-cycle of the operation is the same, so that the oscillation
frequency is given by f = I/[2RCIn(3)]. The oscillation frequency is now relatively
insensitive to the actual threshold voltage values. However, the precise mark-to-space
ratio of the signal at the output of gate G2 depends upon the exact threshold voltage
values, and so if it is important to have a 1:1 mark-to-space ratio then the output
of gate G2 can be taken through a divide-by-2 circuit as shown in Figure 10.3(c).

In practice, a Schmitt input NAND gate might be used in place of one of the
inverters, as shown in Figure 10.3(e), to produce a 'gated oscillator'. This only
produces a repetitive waveform when the additional input to the first NAND gate is
held at logic high level. When the gating input is held low, the oscillator output is held
low. Since the precise oscillation frequency still depends to some extent upon the voltage
threshold values, this type of RC oscillator is only suitable for applications where the
utmost frequency stability and accuracy is not required. A similar circuit, as shown in
Figure 10.3(f), using a quartz crystal which resonates at a frequency precisely specified
by its manufacturer, will usually be employed in cases where excellent frequency
stability or precision is of paramount importance.

10.4 Digital-to-analogue conversion

Digital-to-analogue conversion (abbreviated to D/A, D-A, or D-to-A conversion)
is frequently required in a digital system used to control some external analogue
circuitry. The D/A converter (or DAC) gives a controlled analogue output voltage
or, in certain specialist applications, a controlled analogue output current or another
circuit parameter such as resistance, whose value corresponds to an input digital word.
Here it will be assumed that the digital input is a conventional positive base 2 integer.

I n s t r u m e n t a t i o n a n d in ter fac ing 293

If the digital input is in some other numerical format, it can be converted to base 2 as
described elsewhere in this text. If the output is required to be bipolar, that is, the
numerical input may have either positive or negative polarity to produce either positive
or negative output voltages or currents, then this may be most easily handled by two
separate converters, one for each of the output polarities and only one of which is
allowed to be active at any one time. Alternatively, there are some bipolar D/A
converters available commercially.

Most D/A converters are based upon a precision resistor network containing
a network of standard resistor values each of which can be switched into or out of
circuit according to which bits are set in the input binary word. In the popular
'binary weighted' resistor network shown in outline in Figure 10.4, the resistors have
values of R, 2R, 4R, 8R, and so on, in multiples of powers of 2, and each resistor is
switched into circuit as its own associated bit is set equal to 1. When the input bit
associated with any resistor is equal to 0, that resistor is not switched into the circuit
but instead is replaced by a short circuit of zero resistance. To produce an analogue
output voltage, all that is then necessary is to drive a certain standard but constant
current through the variable resistor network, and the voltage dropped across the
entire resistor network is then the analogue output voltage required.

Constant
Current I

8R

4R

2R D

I
0 1

0 1

0 1

0 1

MSB

LSB

Analogue voltage

+~Analogue output

op-amp
buffer

Figure 10.4 Simple binary weighted resistor network used as a D/A converter

294 Digital logic design

LSB

MSB

0V +V
01 ---}--

01

01

-5"-
01

-5"-

I I
8R

1 I
4R

I I
2R

l I

R
--4

Analogue output
voltage

Figure 10.5 Alternative design of simple binary weighted resistor network used as a D/A converter

The output voltage may be scaled, or multiplied by a constant factor so that
its greatest and least values are within the limits required for the particular application
intended by adjusting the value of the constant current used. In practice, this output
voltage is usually subsequently buffered, using an analogue 'voltage follower' circuit
which may include a small amount of extra gain for further scaling purposes, so
that the circuit is more tolerant of whatever circuitry is connected to the output of
the D/A converter.

Alternatively, the resistors may be connected, as shown in Figure 10.5, together with
a stabilised voltage source + V. Here the network produces an analogue output current
lo~t equal to the sum of binary-weighted contributions, and an operational amplifier
buffer circuit is used to give an analogue voltage output.

The resolution or precision of such a D/A converter is defined as the smallest output
increment possible, divided by the difference between the maximum and minimum
output values. The accuracy or linearity of the converter is defined as the difference
between the actual output and the expected output value, measured with any specified
digital input value. Typical values of accuracy for commercial A/D converters are
of the same order as the output corresponding to the least significant bit.

This binary weighted resistor network suffers from the disadvantage that the resistor
with the largest weighting in the network must be manufactured to a precision such
that the likely error in its value is comfortably less than the significance of the resistor
with the smallest weighting in the network, if the conversion is to be accurate around
the values where the most significant resistor is being switched in and out. For example,
suppose an 8-bit D/A converter is to be designed using a resistor chain with a smallest
resistor value of 10ft. The other resistors in the chain will take values of 20f~, 4092, 80f~,
160f~, 320ft, 640f~, and 12809t. Further, suppose that the 10Ft resistor is manufactured
to a tolerance of +10% or -I-lft. To match this precision, all the other resistors must
also be manufactured to a precision of + 1 f~ as otherwise there is little point in making
the 10f~ resistor this precise. The most stringent requirement is therefore placed upon
the 1280f~ resistor which must be manufactured to a precision of +(1/1280) • 100%
-t-0.08%. Such precision is extremely expensive to achieve. Other designs of resistor
networks can be used to circumvent this difficulty in precision D/A converters.

The conversion rate of such converters is limited only by the bandwidth of the
analogue parts of the circuit and the response time of the digital parts of the circuit,
and so in principle may be very fast. Although Figures 10.4 and 10.5 show

Instrumentation and interfacing 295

mechanical switches for simplicity, normally solid-state analogue switches would
be used, as these operate much faster and are more reliable than mechanical reed
switches. In practice, D/A converters with limited resolution that convert only small
numbers of digital input bits are available with conversion rates up to 1GSa/s or even
faster (where Sa/s stands for 'Samples per second', indicating the D/A conversion
rate). A D/A converter with a conversion rate of 1GSa/s must produce an analogue
output voltage that can change from one value to another within approximately l ns.
This time, akin to the 'rise time' of a pulse circuit, is known as the 'settling time' of
the D/A converter. D/A converters with precisions of up to 20 bits or even greater
are available at lower conversion rates, corresponding to output changes within
around 20 ~ts.

10.5 Analogue-to-digital conversion

The Schmitt input gate (section 10.3) may be regarded as a special case of the reverse
conversion, that is, analogue-to-digital conversion, producing only a single bit output
(0 or 1) in response to an analogue varying voltage at its input. A more sophisticated
analogue-to-digital converter (or ADC, also called an A/D, A-D, or A-to-D converter)
extends this principle to produce a binary integer, typically of 8, 16 or another number
of bits in parallel form at its output in response to an analogue voltage at its analogue
input. In many ways, an A/D converter resembles a rudimentary digital voltmeter,
although its input impedance is not likely to be especially high, there will often only be
one voltage conversion range or, at best, external components must be used to change
the range of allowable input voltages, and there is no display, apart from what may be
added externally. The manufacturer of the A/D converter specifies the maximum and
minimum analogue voltages that may be applied to the analogue input for correct
conversion to occur. Usually the maximum input voltage will correspond to, and will
be converted to, the largest binary integer that can be expressed with the number of
bits available at the converter output. The minimum voltage will usually be either 0 V,
or a negative voltage of the same magnitude as the maximum allowable input voltage,
and the corresponding digital outputs will therefore usually be either binary 0 or a 2s
complement integer indicating negative values.

A number of techniques has been developed for designing A/D converters in
practice, each of which has advantages and disadvantages. A detailed examination of
all the various techniques is outside the scope of this text, but the three main types are
described in the following sections. Many of these techniques use analogue comparators
(see Figure 10.6) which have some characteristics in common with both Schmitt
triggers and with conventional operational amplifiers. The usual type is an analogue
voltage comparator with one output and two inputs, ideally having high input impe-
dance like those of an operational amplifier. Within the limits specified by the man-

ufacturer, any analogue voltages may be applied to

non-inverting
input

inverting
input

Digital output

Figure 10.6 Simple analogue comparator

the two inputs. The comparator gives a logic 1
output if its non-inverting input is at a greater
voltage than that at its inverting input, and
gives a logic 0 output if its inverting input is at
a greater voltage than that at its non-inverting
input. The comparator differs significantly from

296 Digital logic design

an operational amplifier because it is only able to output voltages at the two
logic-compatible levels, usually 0V and 5V. Sometimes, the voltage at the com-
parator 's inverting input is referred to as the 'threshold voltage', and the output
is logic 0 or 1 depending upon whether the non-inverting input is at a voltage less
than or greater than the threshold voltage. Usually, comparators are designed to have
very low hysteresis values measured at their inputs. In many instances, one of the two
inputs is kept at a constant or maybe a slowly varying voltage, and the comparator 's
job is then to indicate when the other input voltage rises above or falls below
this 'reference'.

10.6 Flash converters
These types of A/D converters are conceptually the simplest of all. An A/D converter
is required to produce one of a number of possible binary outputs, depending upon
the input voltage; therefore, there is a certain input voltage range over which it will
produce each unique possible output, and threshold voltages at which the output
changes from one value to the next. A "flash converter' consists of a number of ana-
logue comparators, each set to trigger at a different one of these thresholds. An input
voltage V will therefore trigger all the comparators that have threshold voltages less
than V, and will not trigger the rest of the comparators that have thresholds
greater than V. It follows that the outputs from the comparators indicate the value
of the input voltage in a manner that can be interpreted by a logic system, but
unfortunately not in a form that is particularly easy to use in subsequent circuitry;
some further logic is needed to derive a conventional base 2 integer from all the
trigger circuit outputs.

The basic principle is illustrated in Figure 10.7 and in the following table, showing
a 2-bit conversion needing 3 comparators:

Comparator outputs

Input voltage/V C2 Cl Co Output (base 2)

> 2.5 1 1 1 11
between 1.5 and 2.5 0 1 1 10
between 0.5 and 1.5 0 0 1 O1
< 0.5 0 0 0 O0

In this very simple example, Co is the output of the comparator set to the lowest
threshold (0.5V), C1 corresponds to a threshold of 1.5V, and C2 corresponds to the
highest threshold (2.5V). Clearly the MSB of the output word is equal to C1 and, using
the 4 unlisted 'don't care' terms in Co, C1 and C2, a 3-variable K-map shows that the
LSB of the output word is equal to C2 § Cl Co. The conversion logic required is similar
to that used in a priority encoder (see section 5.13).

A flash converter having an n-bit binary integer output requires a total of 2 ~ - 1
separate comparators as well as appropriate conversion logic, and a logic buffer for
each output bit. Clearly, precision applications, for large values of n, require extremely
large numbers of comparators, and so the flash conversion principle is only
practical for modest numbers of bits output (typically up to n - 10, requiring 1023

Instrumentation and interfacing 297

Analogue
input

I

~ 2R

R

+3V

C2=

+• C1

t
Analogue

comparators

Digital
~" outputs

Figure 10.7 Basic principle of a flash A/D converter, using three comparators

comparators). However, flash converters operate considerably faster (hence their
name) than any other type of A/D converter because of their simplicity, since all their
components operate simultaneously, and also as there is no fundamental limitation
upon the speed of their separate components.

General minimised logic for a flash converter

A flash converter producing an n-bit output requires logic to convert 2 ~ - 1
comparator outputs to a conventional binary integer. Each of the binary output
bits is set equal to 1 within a certain number of sub-ranges of the input voltage
(and is cleared to 0 otherwise). Therefore, the minimised Boolean expression
for each output bit consists of the Boolean OR of the conditions specifying each
sub-range relevant to that particular output bit. The condition specifying most of
the individual sub-ranges is of the form S i j - Cl, i , j .Ch+l,i , j , for sub-range number
i relevant to output bit number j, where Cl, i, j is the output of the lowest
comparator (corresponding to the smallest analogue voltage value) within that
sub-range, and Ch+l,i, j is the output of the comparator that is one step higher
than the top of that sub-range. The exception to this rule is that since the highest
sub-range always includes the output binary integer with all bits set, there is
therefore no next higher comparator; hence, the condition specifying the top
sub-range for bit number j is simply Stop,j- Cl, top,j. Therefore, the general
minimised logic for output bit bj in a flash converter is of the form bj - Ct, top,j-[-

Cl, i,j.Ch+l,i, j. For the special case of the MSB of the binary output, there is
i:fitop
only a single sub-range (i.e. the upper half of the table) and this formula simplifies to
bMSB -- Ct, 1,MSB. The output expressions for the simple case of a 2-bit/3-comparator
flash converter shown in Figure 10.7 conform to these general rules.

298 Digital logic design

10.7 Integrating A/D converter types

In this type of A/D converter, an operational amplifier is used as an integrator to
integrate the input voltage over a specified time interval. In one well-known arrange-
ment, known as the 'dual-slope integrating converter' and developed by Schlumberger,
the input voltage is integrated for one period, T, of the AC mains supply. In Europe
and other areas which have a 50 Hz supply, T = (l/50)s = 20ms; in North America
and other areas which have a 60 Hz supply, T = (l/60)s = 16.666ms. The principle is
illustrated in Figure 10.8. For clarity, a mechanical switch S is shown, but in practice,
a mechanical switch would not operate fast enough and an active solid-state switch
would be used instead. The input voltage is assumed for the moment to be constant.
The integrator output starts from zero, and so after a time T its output has reached
a voltage VT proportional to the input voltage. The advantage of integrating over one
mains time period is that any mains interference impressed upon the input voltage
should, in principle, have no effect whatsoever upon the final output voltage. In effect,
the input voltage is averaged over precisely one mains cycle.

Reference voltage

input
voltage
to be
measured

2

1 S

Y

Analogue integrator

f

S in position 1 S in position 2
A, x

v f ~ f

I T T+A

k J
Y

Analogue comparator

Counter starts
at T, stops
at T+A

A

Counter
output
proportional
to input
voltage

Constant frequency

Figure 10.8 The pr&ciple of the dual-slope A/D converter

Any superimposed interference synchronous with the mains supply frequency may
be regarded as a sine wave of a certain amplitude and phase shifted relative to the
mains supply. This may be represented as a sum of sine and cosine voltage terms, of
amplitudes V~ and Vc respectively, and having frequencies identical to the mains
supply frequency, which will be integrated over one time period as follows"

0 l / f) [Vc c o s (27rft) + Vssin(27rft)]dt

= (1/27rf)[Vc sin (27rft) - V~ cos (27rft)]l~ ~/I)
= (1/27rf)[Vc sin (270 - V~ cos (270 - Vc sin (0) + Vs cos (0)]

= (1/27rf)[Vc.O- Vs .1 - Vc.O+ Vs.1]
= 0,

Instrumentation and interfacing 299

giving no effect on the final output voltage, and interference at synchronous
harmonics of the mains supply will similarly give zero contribution to the
integrated output. The results of Fourier analysis may be used to show that any
arbitrary interference waveform, provided it is mains-derived and therefore
repetitive (but not necessarily sinusoidal) at the mains supply frequency, will give
zero contribution to this integration.

At the end of this time period, typically timed with a crystal-controlled digital
counter for accuracy and repeatability, a precise reference voltage of opposite polarity
is immediately applied to the integrator without resetting it, and the time taken for the
integrator output to return to zero is measured using the same digital counter.
This time, A, is a measure of the input voltage required to be measured, and is
transferred to the digital output. The standard reference voltage applied during the
second integration will usually be equivalent to the maximum allowable analogue
input voltage that can be applied during the first integration period, so that the second
integration period is less than or equal to one mains time period T. Therefore, the
complete conversion takes a maximum of 2T (i.e. 40ms or 33.333 ms for 50 Hz or
60 Hz supplies respectively) and the maximum number of A/D conversions per second
is half the mains supply frequency (i.e. 25Sa/s or 30Sa/s respectively). This type of A/D
converter has a number of great advantages. It has high immunity to mains-borne
interference; also, its accuracy depends only upon the stability of the timer and counter
circuits, the accuracy of the standard voltage, and the stability of the integrator
components over each measurement cycle. A highly stable timer is easy to achieve
using a resonant crystal oscillator. Therefore, the dual-slope integrator is widely used
in both general-purpose and high-precision digital voltmeters. Its disadvantage is that
it is relatively slow, since the maximum number of conversions per second is seriously
limited, and for faster conversions other types must be used. Sometimes a slow
converter, such as an integrating type, is to be used even though it may be required
that the A/D conversion is carried out at a precise time rather than by an integration
over a substantial period, and in this case the converter must be preceded by a 'sample
and hold' circuit that samples the incoming analogue voltage at a definite time and
feeds this sampled analogue voltage to the converter.

10.8 A/D converter types using an embedded D/A converter

Another class of A/D converter is built around a D/A converter which undertakes the
opposite conversion to that actually required (see Figure 10.9). Every time an A/D
conversion is needed, a conventional binary counter is cleared and starts counting up
from the starting value of (0)2. The digital outputs of the binary counter are directly
connected to the embedded D/A converter, so the output from this converter is an
analogue voltage that rises steadily (in 'staircase' fashion) from 0V. An analogue
comparator continuously compares the output voltage from the embedded D/A
converter with the analogue input voltage; at the exact instant that the output voltage
from the embedded D/A converter has risen above the analogue input voltage, the
counter's digital output value is stored in a set of D-type flip-flops. This D-type register
must therefore now contain the digital equivalent output of the analogue input.

300 Digital logic design

Outputs

CTR

/k

Parallel
D-type latch

I I
I I
I I
I I
I I
I I
I I

D/A
Converter

C-

Input
voltage
to be
measured

-•Analogue S

comparator

Convert

Figure 10.9 The principle of the A/D converter using an embedded D/A converter

This type of converter is quite slow as each conversion takes at least the time required
for the counter to count from (0)2 to the binary equivalent of the input analogue
voltage (and potentially to the maximum binary output). However, the complexity of
the flash converter is avoided. This type of A/D converter may operate faster than an
integrating type, since the conversion period is not tied to the mains supply cycle, but
does not have the advantage of rejecting mains-synchronous interference. In principle,
the integrating type of A/D converter can also operate faster than is necessary to
suppress mains-borne interference, but this would discard the great advantage of this
type of converter.

There are two important variations of this type with an embedded D/A converter.
In the first variation, the counter is not reset to (0)2 at each conversion request, but
instead the comparator is used to indicate whether the analogue input voltage is
greater or less than the output from the embedded D/A converter retained from the
previous conversion, and the counter then counts up or down, as appropriate, from the
previous count value. If the input voltage has not changed very greatly from the time of
the previous conversion, i.e. the input voltage is slowly varying and/or A/D conversions
are required on a regular basis, then this modification offers the advantage of reduced
conversion time. However, if the input voltage cannot be assumed to be slowly
varying, or if conversions are only required on an irregular basis, then in principle
the time taken for a new A/D conversion will still be equal to the time taken for the
counter to count from (0)2 to the maximum binary count value, i.e. the worst case
conversion time. This disadvantage may be alleviated by arranging for internal conver-
sions to be made continuously, but when an external conversion request is received, the
conversion cycle restarts immediately with the counter starting from its current value.

In the second variation of the basic A/D converter with an embedded D/A con-
verter, a binary counter is not used but instead is replaced by an n-bit digital storage
register in which each of the n bits may be independently set or cleared under control of
some extra logic. The basic principle is illustrated in the block circuit diagram shown in
Figure 10.10, and a typical voltage waveform at the output of the embedded D/A

Instrumentation and interfacing 301

I

Control logic I
sets and adjusts ...
each bit in turn 1-"
MSB first, LSB last I

n-bit ~ D/A
register Converter

Comparison result

Analogue
input

Figure 10.10 The principle of the "successive approximations' A/D converter

Voltage

Maximum
output
from D/A
converter

input .._ t Middle bit set I
voltage "- Middle bit

cleared and
MSB set LSB set

Output if all bits cleared

Start of conversion Time

Figure 10.11 Typical waveform produced by the embedded D/A converter in a 'successive approximations'
A/D converter

converter is shown in Figure 10.11 in the case of a simple 3-bit converter. In this simple
example, the 3-bit D/A converter has 23 = 8 possible output voltages ranging from 0
up to 7 times its basic output unit. Rather than having a counter starting to count from
(0)2 towards the final base 2 digital equivalent of the analogue input, the control logic
first clears to 0 all the bits of the storage register except the MSB which is set to 1.
Therefore, the output of the embedded D/A converter will be close to half its maxi-
mum value. The output is not exactly half because, as an example for the case of a 3-bit
register, the maximum output from the embedded D/A converter is (111)2 = (7)10,
whereas just setting the MSB to 1 as set up by the control logic gives the output
(100)2 = (4)10. Then, the comparator is used to determine whether the embedded D/A
converter is giving an output greater or less than the analogue input; if the embedded
D/A converter is giving an output greater than the analogue input then the MSB is
cleared to 0, but if not, the MSB is left at the value 1. At this stage, therefore, the
control logic has adjusted the MSB to the correct value, and so moves on to the next
most significant bit. The control logic sets this bit to 1 and again uses the comparator
to determine whether the embedded D/A converter is now giving an output greater or

302 Digital logic design

less than the analogue input. If the embedded D/A converter output is greater than
the analogue input, this bit is cleared to 0; if less than the analogue input, then
this bit is left at 1. The control logic then moves on to the other bits in turn in order
of their numerical significance, i.e. their position in the binary integer. This type of
A/D converter is called a 'successive approximations' converter, as the converter
is successively making better and better approximations to the final value of the
digital output.

The advantage of the successive approximations A/D converter over the type using
a counter is that it implements a binary search for the digital equivalent value of the
analogue input, rather than a sequential search starting either from (0)2 or from the
previous output value. A binary search is a much more efficient method of finding
an unknown value than a sequential search, and so in general the conversion times
using a successive approximations converter will be much less than those achieved
with a counter-type converter. This may be understood by examining the number
of voltage comparisons needed for each A/D conversion. For an n-bit output,
a successive approximations converter needs to undertake n comparisons per
conversion, one for each bit. By contrast, the number of comparisons per
conversion required by the counter type will range from 1 at minimum up to
a maximum of 2 ~ - 1. Since the number of required comparisons varies widely in
the case of the counter type, occasionally the counter type will be faster than the
successive approximations type. However, if any allowable value of the analogue
input voltage is equally likely, and if the counter is reset for each conversion, then
on average the number of comparisons required by the counter type is (2~)/2 = 2 ~-I ,
which will always be greater than the n comparisons required by a successive
approximations converter, assuming that A/D conversions of more than n - 2 bits
are needed.

The counter type where the counter is not reset for each conversion may operate
much faster under favourable conditions, i.e. if conversions are required so
frequently that the required output changes by no more than (1)~0 or (2)10 or so at
each conversion. However, if the input is varying so rapidly that there is no
similarity between successive input voltages at the sampling times, or if any value of
the analogue input voltage within the allowable conversion range is equally likely,
then the average number of comparisons required per conversion will be
approximately (2~)/4- 2 ~-2, the same as for a counter type where the counter is
reset to a value midway between minimum and maximum counts prior to either up
or down counting under control of the comparator.

Note that in the case of the successive approximations A/D converter (unlike the
type with a counter driving an embedded D/A converter), there is no advantage to be
gained in not clearing the register before each conversion; each conversion still requires
each of the n bits to be examined in turn. The equal conversion times from a successive
approximations converter is a major advantage in certain applications where the
variable conversion times from the counter types (and potentially very long conversion
times when the counter must count over all or nearly all of its range)cannot be
tolerated.

Instrumentation and interfacing 303

The familiar Compact Disc (CD) digital audio format stores analogue audio signals
in the form of an optically-readable stream of digital values sampled regularly at
44.1kSa/s. It requires 16-bit conversions, A/D in recorders or D/A in CD players.
However, professional-quality digital recorders will record at 20 or 24 bits
(or greater resolution) and at greater conversion rates, partly so as to be compatible
with improved digital formats, but mainly so that, on copying the master studio
recording to the final CD, the recording level (i.e. the amplitude of the final
analogue signal) may be increased to some extent if necessary while still
maintaining at least 16-bits resolution in the digital information recorded on CD.
The design of such high-resolution converters and their associated circuitry is not
straightforward, because of the need for the analogue parts of the system to operate
to the same precision or better. Although the standard CD format provides only
16-bit sampling precision, some CD players use various advanced techniques to
increase the effective number of bits available for converting to the analogue signal,
by reconstructing extra digital information according to some assumptions made
about the nature of the audio signal, and the use of other digital signal-processing
techniques. These players undertake D/A conversion at higher rates (known as
oversampling), in attempts to increase the accuracy of the reconstructed audio
signal. Similar principles are used in the design of digital audio tape (DAT)
recorders and players. The required conversion rate prevents the use of integrating
types of A/D converter in recorders, and the precision necessary prevents the use of
flash converters. On the other hand, for digital video discs and tapes the bandwidth
required is much greater (5.5MHz bandwidth for a typical conventional video
signal, requiring a minimum sampling rate of 11MSa/s) but the necessary precision
is poorer (8 bits per sample is usually ample for video information, because of the
greater noise tolerance of the eye than the ear). Therefore, for digital video, if no
data compression techniques are used, it would be necessary to record and
reproduce of the order of 88 Mbit/s plus the bit rate needed for the accompanying
audio and control signals, compared to the 1.4Mbit/s for 2-channel 16-bit audio at
44.1kSa/s. For this reason, the technical requirements for digital video are
considerably more exacting than for digital audio, and commercial digital video
systems have only been available since the mid-1990s. Even so, current digital video
systems use some data compression techniques to reduce the necessary bit rate,
whereas domestic digital audio has been a practical reality since the early 1980s.
At the highest conversion rates, self-contained IC A/D converters capable of
operating at 1GSa/s with 6- or 8-bit resolution are now readily available.

10.9 Shaft encoders and linear encoders

A shaft encoder is a sensor device that can be attached mechanically to a rotating
shaft, and electrically connected to a logic system in order to feed information to the
logic system regarding the rotation of the shaft. A linear encoder is a similar device
that senses the linear motion of a slider, relative to a fixed body of the sensor.
Shaft encoders are increasingly being used to sense the rotation of the manual
controls in consumer items such as audio and video equipment, following their

304 Digital logic design

widespread employment in laboratory instruments for many years. The design
concept is that the user turns the control knob fixed to a shaft encoder which sends
signals to a microcomputer controlling the instrument, rather than the user actually
turning the shaft of a variable resistor, capacitor, or other variable component.
By this means, one control knob may be used to adjust several equipment functions.
Linear encoders are widely used in the control of robots, x-y plotters, and other
situations where linear motion must be sensed accurately for computer control.
There are two main types of each encoder, 'absolute encoders' and 'incremental
encoders'. The digital logic aspects of both shaft and linear encoders are similar,
and these types only differ substantially in the mechanical arrangements used.
The 'absolute' and 'incremental' types are, however, fundamentally different in their
philosophy and in their digital logic aspects.

10.10 Sensing of motion

The precise manner of sensing the rotation or linear motion is of interest here
insofar as there are various ways of achieving the same end. Usually the motion,
rotating or sliding, is sensed by using an optical arrangement consisting of a light
source, two or more optical detectors such as photodiodes or phototransistors, and
an intervening 'screen' or 'reticle' with alternating opaque and transparent areas.
When the opaque areas are aligned between source and detector, the detectors detect
no light, and when the slider shifts or the shaft rotates slightly then a transparent
area is substituted and the appropriate detector detects light transmission through
the reticle. The basic arrangement for a linear incremental encoder, for example, is
shown in Figure 10.12. In practice, a more sophisticated optical arrangement invol-
ving correct focusing of the optical beams would be used to optimise the optical
performance of the unit. However, even when using precise optical imaging techni-
ques, because of optical limitations the smallest distance between two points on the
reticle that can be distinguished easily is of the order of one wavelength of the
optical radiation employed, so the shortest wavelength radiation possible is usually
used. The fabrication of the reticle, upon which the accuracy and resolution of

lamp (LED?)

S) ooooo Optical graduated /
scale over entire /
length of strip / / / / - - ///

I IIII!1111111- ,' / ", ,' I" ,,xooo,as,,cs,r,o I _ : _ _ ~.~ _ _ /

slider photodiode
wires to
circuit

Figure 10.12 Sketch of the basic mechanical arrangements for a linear incremental encoder

Instrumentation and interfacing 305

T +V

[~ lk.Q
Schmitt inverter, e.g. 74'14

-- out

Photodiode

Figure 10.13 Simple circuit for interfacing a photodiode to a logic system

the encoder rests, may be undertaken using processes such as silk-screen printing for
low-precision applications, or by high-precision manufacturing techniques such as
microphotolithography.

Electrical interfacing between the optical detectors and the digital system is
straightforward, remembering that optical detectors may not provide output voltages
equal to the standard logic levels, so that Schmitt input gates are necessary. A typical
circuit is shown in Figure 10.13, though the exact details will depend crucially upon
the actual optoelectronic and optical components used; it may be necessary to include
extra analogue amplification between the photodiode and logic gate, for example.
Often in linear encoders the reticle is stationary and the optical source and detectors
move with the slider, as shown in Figure 10.12; in shaft encoders the optical com-
ponents are generally stationary and the reticle rotates with the shaft so that
continuous shaft rotation by an unlimited number of revolutions is usually possible
with such a system.

Other methods have also been used to detect the motion in encoders, such as
primitive mechanical arrangements using toothed wheels operating mechanical
switches, and more sophisticated magnetic encoders. The magnetic type is widely
employed in electronic ignition systems in automotive engines where a magnetic
toothed wheel is fixed to the camshaft adjacent to a stationary sensing coil. As the
toothed wheel rotates, its magnetic field induces a varying voltage in the sensing coil.
The shapes of the wheel and coil are such that the induced voltage changes rapidly at
the instant when the camshaft rotates through the correct ignition point. This rapid
voltage change is detected by the electronic ignition system and is used to trigger the
ignition spark, These encoders are similar to motional feedback sensors, commonly
attached to electric motors such as those used in washing machines, that produce an
AC signal of frequency directly proportional to the motor speed. This signal is then fed
to the motor speed controller. Magnetic encoders are often preferred over optical
sensors in oily or dusty environments such as engines and motors where optical sensors
would rapidly cease to function correctly as their optical paths become obstructed.
Magnetic encoders have also been built using Hall effect sensors which sense magnetic
fields directly, using the Hall effect in a semiconductor. In all these cases, the method
of interfacing to the digital logic system is dependent upon the electrical characteristics
of the technology used.

306 Digital logic design

10.11 Absolute encoders

An absolute encoder is an encoder giving a digital output of a binary word indicating
the current position of the shaft or slider. Usually there are as many optical detectors
as there are bits in the final word required at the output, and the reticle contains
opaque and transparent sections corresponding to the Gray code (see section 1.21)
equivalent of the integer indicating the current position.

In this kind of encoder, even if power is temporarily removed from the digital system
producing the output, the slider or shaft may be moved, and on restoring power the
system will still give the correct indication of the current position because the reticle
will have been moved mechanically and will still indicate the correct Gray code integer.
This represents a major advantage of this kind of encoder over the 'incremental' type,
but at the expense of requiring many more optical detectors.

Gray code must be used, rather than ordinary base 2, so that only one bit changes at a
time as the motion continues. Otherwise, inaccurate readings could be obtained if ordinary
base 2 were used. Consider the design of an encoder where the position of a shaft or slider
is to be transmitted in binary form to a digital system. If conventional binary coding were
used, then at certain positions of the moving shaft or slider several binary bits would have
to change simultaneously. The problem in using conventional binary coding in an
absolute position encoder is illustrated in the following table for a simple 3-bit system.

Step Base 2 code

b2 bt bo

(0)lo 0 0 0

(1)lo 0 0 1

(2)1o 0 1 0

(3)10 0 1 1

(4)10 1 0 0

(5)10 1 0 1

(6)10 1 1 0

(7)10 1 1 1

(O)lo 0 0 0

bl and b0 change, possible spurious readings 000 or 011

all bits change, several possible spurious readings

bl and b0 change, possible spurious readings 100 or 111

all bits change, several possible spurious readings

In this 3-bit system there are 2 3 = (8)10 possible encoded positions. Between the adjacent
positions (1)10 and (2)10 two bits change. They must change exactly simultaneously, as
otherwise two spurious readings shown may be given. The rest of the table is self-
explanatory. For a shaft encoder, though not for a linear position encoder, all three bits
also change as the shaft completes each full revolution between positions (7)10 and (0)10.

This required simultaneous changing of several bits is a serious problem because in
practice the encoder cannot be made so precisely that all of the bits intended to change at
each step do so absolutely simultaneously. Therefore, the bits required to change will do so
over a small but non-zero range of position. The order that the bits change will appear to be

Instrumentation and interfacing 307

random and in practice will be determined by the mechanical inaccuracies and continuing
wear of the encoding system. Hence, motion between genuine positions may have a
completely spurious reading(s) interposed between them, depending on the order in which
the bits change. Note that these spurious readings are genuine inaccuracies because the
encoder has not physically moved to the corresponding positions. Rather, these readings
have come about because of shortcomings in the coding and mechanical systems used.

The solution to this problem is the adoption of Gray code rather than conventional
base 2 coding in such applications. Gray code is a special binary coding where only
one bit changes at each step of the count (see also section 1.21). Superficially, Gray code
resembles conventional base 2 binary coding except that the ordering of the codes for
successive steps is changed from the conventional base 2 order. Gray code is an
unweighted code, because each bit position does not have an associated numerical
value in the same manner as does base 2 binary coding. If values of a successful
Gray code are plotted on a K-map, then the successive cells must trace out a locus
on the K-map that moves only to adjacent cells (defined in the same manner as in
section 3.8, i.e. for minimising Boolean functions) at each step, because then and only
then can only one K-map variable change at a time. In addition, for a Gray code to be
used for rotation encoder applications, the path must be re-entrant; that is, the cell for
the final value must be adjacent on the K-map to the cell for the first value.

One of the most useful types of Gray code is formed by taking the Exclusive-OR of
adjacent binary bits of the corresponding base 2 equivalent at each step. If the
equivalent base 2 for any step of the code is composed of individual bits denoted bk,
where k = 0 corresponds to the least significant bit (LSB), and the Gray code is
composed of individual bits denoted gk, where k = 0 corresponds to the right hand
bit, then the conversion from base 2 bits to Gray code bits is given by the equation

gk : bk+l | bk.

For an n-bit conversion, the binary bits are denoted b0 (LSB) to bn-1 (the most
significant bit, or MSB), and the value of b, (one place more significant than the
MSB) is taken as 0 (when required in the evaluation of gn-1)- The conversion table for
a 3-bit Gray code, obtained by direct application of the above defining equation, is
shown in the following table.

Base 2 code Gray code

Step b2 bl bo g2 gl go

(0)10 0 0 0 0 0 0
(1)10 0 0 1 0 0 1
(2)10 0 1 0 0 1 1
(3)10 0 1 1 0 1 0
(4)10 1 0 0 1 1 0
(5)10 1 0 1 1 1 1
(6)10 1 1 0 1 0 1
(7)10 1 1 1 1 0 0

Note that a characteristic of this particular Gray code is that the base 2 and Gray codes
for (0)10 and (1)10 are identical, but that the base 2 and Gray codes corresponding to

308 Dig i ta l logic design

gl~

O0

01

11

10

3

0000

0111

1000

1111

01 11 10

0001 O010 O011

0110 0101 0100

1001 1010 1011

1110 1101 1100

Figure 10.14 Values of a 4-hit Gray code de/ined by gk = bk+l �9 hk plotted on a K-map

greater base 10 integers differ. Also, at each step of this particular Gray code, the next
Gray code is formed by complementing the most right-hand bit possible that gives
a code no t used previously. So, for example, Gray code 000 is followed by 001, after
complementing the most right-hand bit. Complementing the most right-hand bit again
gives code 000 which is not the next Gray code as it has appeared previously in the
sequence, but complementing the middle bit gives the correct next Gray code 011.
In fact, there are many forms of Gray code, which can be seen easily from the table
because a perfectly valid Gray code conversion would be obtained by a cyclic per-
mutation of the given Gray code values, although the convenient bitwise conversion
equation above would then not correspond to this new Gray code.

It is instructive to plot the Gray code values derived from the bitwise conversion
equation on a K-map, as shown (for the 4-bit Gray code defined by the same bitwise
defining equation gk = bk+l | bk) in Figure 10.14. The locus of cells is regular and
covers the entire map. The locus moves only to adjacent cells at every step, and also is
re-entrant (so that this code is suitable for rotational applications).

Proof of validity of the bitwise defining equation for Gray code

To prove that the bitwisc defining equation g~ = b~+l | bk will always give a coding
with the properties of Gray code, it is noted firstly that by inspection of the
conversion table and Figure 10.14 the equation gives a successful Gray code in the
cases of 2-, 3-, and 4-bit conversions (and n = 1 is a trivial case where the code
given by the equation is a Gray code that is identical to the base 2 code).

Now, take an existing n-bit code, defined by g/~ = b/~+] | b~, which it is a s s u m e d

for the moment has the properties of a Gray code at each of its 2" steps. To lengthen
the code to give extra precision, a further additional bit gn may be inserted to
the left of the existing code, to form a new (n + 1)-bit code having 2 n+l steps
(not proven to be a Gray code yet). The values of the bits in the new code will still
be produced using the same rule g~ = b/~+] | bk from the corresponding (n + 1)-bit
base 2 code.

Instrumentation and interfacing 309

Imagine all the base 2 and the corresponding new codes written out in a table in
numerical order of the base 2 codes, as in the 3-bit table in the text above. All the
new code values calculated for every step having b . - 0, i.e., the top half of the
conversion table, are the same as those for the existing n-bit code but prefixed by
g. = 0 corresponding to the prefix b. - 0 for all the base 2 codes, because the left-
most bit of the new code is given by g~ - bn+l | bn - 0 | bn - b~ - 0. Note that
b.+l - 0 for an (n + 1)-bit base 2 code, and the defining equation leaves the other
bits unchanged. Therefore, the new (n + 1)-bit codes in the top half of the
conversion table form a valid Gray code, provided the existing n-bit code was
indeed itself a valid Gray code.

Next, all the new code bit values gk corresponding to b. - 1 (i.e. for the bottom
half of the conversion table) have the new left-most bit g. - 1, because g. - b.+l |
bn- 0 ~) 1 - 1. The next new bit on the right is given by g n - 1 - b, | bn-1-
1 | b n - 1 - bn-1, and so is the logical complement of bit bn-1 for the step in
the conversion table written (2 n + l) / 2 - - 2" steps previously, i.e. in the top half of the
conversion table, for b , - 0. The other bits gk, for k < (n - 1), are given by the
usual formula gk -- bk+l @ bk and so are unchanged from those of the step written
2" steps previously in the conversion table. Hence, the new (n + 1)-bit codes in the
bottom half of the conversion table also form a valid Gray code, provided the
existing n-bit code was indeed itself a valid Gray code.

It is also necessary to establish that only one bit changes at the join between the
top and bot tom halves of the (n + 1)-bit conversion table, and also in 'rolling over'
from the last code back to the first code. In moving one step from the top to the
bot tom half of the table, the base 2 code changes from 0 followed by a total of n
binary Is, to 1 followed by n binary 0s. Therefore, the left-most new bit g, changes
from 0 to 1, the next new bit to the right is g._ 1 - - b. | b._ 1 - - (1 | 0 or 0 | 1) - 1
and so is unchanged, and all the other bits of the new code are g k - bk+l | b k -
(1 ~3 1 or 0 | 0) -- 0 and so are also unchanged, and so this satisfies the Gray code
condition (only one bit changes).

In 'rolling over' from the last code back to the first code, the (n + 1)-bit base 2 code
changes from all binary l s (a total of (n + 1)), to all binary 0s (a total of (n + 1)).
Therefore, the left-most new bit g. changes from 1 to 0, and all the other bits of the
new code are gk -- bk+l �9 bk - - (1 | 1 or 0 | 0) = 0 and so are unchanged, and so this
also satisfies the Gray code condition (only one bit changes).

Finally, since it has been proven that if an n-bit code defined by gk -- bk+l | bk
has the properties of a Gray code, then an (n + 1)-bit code defined by
g k - bk+l (~ bk will also have the properties of a Gray code, and also that the
same defining equation correctly gives a Gray code in the case of n - 1. Therefore it
has been established by the method o f induction that gk --bk+l �9 bk gives a Gray
code correctly for all positive integer values of n.

10.12 Conversion from Gray code to base 2

The defining equation g k - bk+l �9 bk is useful for generating a new code that is
guaranteed to have the properties of a Gray code, but usually in designing encoders

310 Digital logic design

the raw output from the encoder head will consist of Gray code which, being an
unweighted code, is unsuited for any numerical display, or other digital processing.
Therefore, the designer must usually arrange that the first task of the associated digital
system is to convert the raw Gray code provided by the encoder head to the corresponding
base 2 code. This reverse conversion can be obtained from the truth-table of the defining
equation for Gray code, gk - bk+l G bk, as shown in the table:

bt,+l bk gk

0 0 0
0 1 1
1 0 1
1 1 0

Re-ordering the columns of this truth-table gives the following table:

gk b,+l b,

0 0 0
1 0 l
l 1 0
0 1 1

It is clear that the required reverse conversion is given by

bk = gk �9 bk+ !

(and see also section 2.14) so that, to convert a Gray code defined by g, = bk+l | bk
back to the equivalent base 2 code, all that is necessary is to take each Gray code bit gk
and form the Exclusive-OR with the base 2 bit bk+l (which is the base 2 bit that is one
place more significant than bit bk).

Of course, since the object of this exercise is to f ind the corresponding base 2 code
in its entirety, this means that the conversion from Gray code to base 2 can only be
performed for base 2 bit b, after the bit bk+l (the bit to its immediate left) has
been found. This means, in turn, that the conversion must be performed in order
from MSB to LSB. Therefore, the MSB (b,-l) is found using b,-i =g , -1 |
b, = g,_~ | 0 = g,_~. This means that the base 2 MSB is always identical to the
left-most bit of the Gray code. Having found the base 2 MSB, the equation
bk =gk | bk+l is used to find the next base 2 bit to the right, and then the next
bit to the right of that, and so on, until the base 2 LSB has been reached.
This conversion process cannot proceed from LSB to MSB, simply because using
the equation bk = gk | bk+l to find the LSB (i.e., bo) requires knowledge of bl which
would be unknown at that time. Based upon this process, designing a circuit to
perform the conversion from Gray code to base 2 is straightforward (see Figure
10.15). For an n-bit conversion, a total of (n - 1) Exclusive-OR gates are required.
For a large value of n and in a complex system controlled by a microcomputer, it may be
more cost-effective to perform the conversion using appropriate microcomputer software.

Instrumentation and interfacing 311

10.13 Petherick code

Petherick code is a binary coded decimal equivalent of Gray code, and is normally
used for encoding step values in the range 0 to 9 inclusive. Again, as in the case of
Gray code, only one bit changes at each step, including the 'roll-over' step between
maximum value (9) and minimum value (0), because the 'cycle length' is (10)10.
The conversion table is shown below:

g3 g2 ~ go

b~ b~ bl bo

Figure 10.15 Circuit diagram for conversion of Gray code to base 2

Decimal Base 2 code Petherick code

b3 b2 bl bo P3 P2 P1 Po

0 0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 1 1 1 0
6 0 1 1 0 1 0 1 0
7 0 1 1 1 1 0 1 1
8 1 0 0 0 1 0 0 1
9 1 0 0 1 1 1 0 1

The characteristics of this code are that, as in the case o f a 4-bit Gray code defined
by gk - bk+l | bk, the code for (1)10 is (0001)Petherick. Unlike Gray code, however,
some ls and some 0s are always present in Petherick code. This is a useful feature
if an AC-coupled signal-recovery amplifier is used in conjunction with serial trans-
mission of the code, as otherwise the DC levels of the l s and 0s would be lost
irretrievably. Using four K-maps, and treating the codes not defined in the Petherick
code conversion table above as 'can't happen' terms, shows immediately that the
conversion from the Petherick code defined above to four bits of NBCD is:

bo = (Po �9 el) O (P2 0 P3)
bl = P1.P2

b2 = PI.(P2 + P3)

b3 - P1.P3.

312 Digital logic design

Note that if more than one NBCD digit is required to be encoded, the use of several
cascaded sets of Petherick code does not give a code where only one bit changes at each
step, because whenever the least significant NBCD digit changes from 9 to 0 (or vice versa)
then at least one of the more significant NBCD digits must also simultaneously change
by 1, so that at least two bits in the entire cascaded sets would change simultaneously.
In such circumstances, a better solution may be to use a genuine Gray code, convert
that to base 2, and then to convert this to NBCD.

10.14 Incremental encoders

By contrast with absolute encoders, an incremental encoder of itself only indicates
relative movement of the shaft or slider, and then only when the associated electronic
system is powered. Other means must be used to find the absolute position; the encoder
manufacturer may provide additional outputs such as extra data bits indicating when
'index' marks are passed, or the system designer may include external switches to
indicate the end of the allowable travel. In some applications, for example a shaft
encoder used to control the operation of an instrument, the lack of knowledge of the
absolute position may be irrelevant in any case.

In a typical incremental encoder, two detectors, using optical or another technology,
are used to provide digital signals X and Y from the reticle. Both these signals indicate
the motion of the shaft or slider by toggling their logic state at regular intervals of shaft
rotation or slider distance. However, the logic state changes in the signal X are shifted
compared to those in signal Y. In terms of the phase of the underlying oscillatory
signals that would be produced by constant velocity motion, the two are in quadrature,
i.e. there is a phase difference between them of 90 ~ The key to the operation of this
system is that when the motion of the slider or shaft changes direction, the 90 ~ phase
difference between X and Y reverses automatically as a result of the mechanical
reversal. This phase reversal may be interpreted by a logic circuit such as that shown
in Figure 10.16(a).

In Figure 10.16(a), the counter is such that rising edges applied to one input cause
the output integer to count down, whereas pulses applied to the other input cause it to
count up. Counting pulses are produced by the AND gate connected to X and Y, and
the J-K flip-flop 'steers' these pulses to one or other of the counter clocking inputs,
depending upon the direction of motion. This is shown in detail in the waveform
diagrams of Figure 10.16(b). Note that it is essential in this circuit that the OR gate has
a propagation delay greater than the data set-up time for the flip-flop, and that the
shortest possible period of the X and Y waveforms is longer than this propagation
delay. It follows that there is a maximum permissible mechanical speed that can be
tracked by this circuit without error. Fortunately, most logic gates are so fast in
operation that this is not usually a severe limitation.

Two signals, X and Y, are needed in this kind of encoder, in order to be able to detect
the direction of the motion. In some applications, sensing of the direction of motion is
not needed. For example, the motion direction is irrelevant when logging the total
bearing wear in a rotating machine, and the motion direction may already be known
in washing machine motors or in automotive electronic ignition systems. In this case
a single output feeding a simpler subsequent circuit, such as a counter indicating 'total
motion', may be used; such devices are often called 'tacho generators' or 'tachometers'.

Instrumentation and &terfacing 313

(a)

(b)

- j

CLK

~=x I I I

count

up 8 bit
up/down
counter

>count
down

},. time

I I I

data
out

L

c,_K= x + Y--i__+ l_J +

T h i s ~
that the initial
state is unknown Q~

~ c l o c k i n g edge
for the flip-flop

x~ I] I I UI U I ~

countup=QXY I+ I+

count down = ~ I ~ L ~

forward motion reverse motion
y

Figure 10.16 (a) Circuit diagram of a simple incremental encoder interface (b) Typical waveforms when
interpreting motion

In the circuit shown in Figure 10.16, one count pulse is fed to the counter for
every period of either the X or the Y waveforms, dependent upon the direction of
motion. In fact there are four logic transitions within each of these periods, two
from each of X and Y in quadrature, and so to obtain the greatest resolution from
the encoder, by detecting and counting each and every logic transition, a much more
complicated circuit is needed. Figure 10.17 shows a circuit designed to interpret
all of the logic transitions at the encoder's output in this manner. In this circuit,
RC networks, together with Schmitt inverters, are used to introduce well-defined
signal delays of the order of 7-= RC = 100~2 x 2nF = 200ns = 0.2ITS, and the
associated XNOR gates produce logic high spikes lasting for this period. The full
details of the operation of this circuit are left as an exercise. This circuit can be used
with a typical commercial linear encoder of lm length, and with 5~tm resolution
between each logic transition giving a complete encoder period of 20 t.tm and a total
possible count of +2 x 105 depending upon the zero starting position. To cope with
this resolution, the binary counter chip would need to be expanded to 20 bits. A
typical computer interface card would also give facilities for zeroing the counter

314 Digital logic design

2nF
100~

.out

inputs
2nF

Up/down
counter, e.g.

74'193

-x-

2nF

Figure 10.17 Circuit diagram of an interface circuit interpreting all the logic transitions.from an incremental
encoder

and for switching the counting direction that corresponds to forward motion. It may also
be possible to synchronise with other similar cards the instant at which the counters are
read. This can be important for a multi-axis systemwhere it is required to know the (x,y)
position of a driven component at certain instants specified by the computer.

10.15 Open collector and tri-state gates

'Open collector' and 'tri-state' gates are specialist types of digital logic gates that are
frequently used in situations where a digital system must interface successfully to other
components or systems that are generally regarded as operating in an analogue
manner. To understand fully the operation of open collector and tri-state gates and
how they can be connected together, it is necessary to examine the internal circuitry of
the gates concerned. The important aspect to consider is the configuration of the
output stage of the gates and the way the output terminal is connected to the internal
circuitry. Most logic gates fabricated for use in TTL or CMOS technology contain two
transistors connected in series across the supply rails, with their common connection
taken as the gate output, as shown in Figure 10.18. This is often called a 'totem-pole'
output stage, and it is reminiscent of an analogue power-amplifier 'Class B' output
stage. These transistors act as switches, and can be either switched 'on', capable of
passing current, or 'off ' , incapable of passing current. At any one time only one of
these transistors can be 'on', and the other must be 'off'. If the upper transistor is 'on',
the output voltage is at logic high level, and if the lower transistor is 'on' then the
output is at logic low level. At no time, of course, may both transistors in the 'totem-pole'
within any one gate be switched 'on', for this would result in rapid destruction of the
gate by massive current flow through both transistors.

Instrumentation and interfacing 315

20 kf l

12

8 k~

+5V

120

--4< ~4k
- Out

1.5~[ak

- - ~ - OV __k__

Figure 10.18 Internal circuit o f a typical integrated-circuit logic gate (similar to one gate in types 74LS00, 74LS04,
74LS10, and 74LS20) with a 'totem-pole' output stage

Any output line connected to a logic gate will have some stray capacitance, and the
charge needed to raise the voltage of this stray capacitance suddenly, from ground to
the positive supply voltage, causes a large current to flow for a short time in the upper
transistor. This can momentarily cause the supply voltage for the entire system to fall
below acceptable levels unless precautions are taken. For this reason, logic IC manu-
facturers often advise connecting smoothing or 'decoupling' capacitors, usually of
ceramic dielectric material and having a typical value 0.1~tF, between the positive
supply line and ground for every five (or another number) IC packages.

In a tri-state gate, there is an additional
+5v input, denoted the 'ENABLE' or 'CHIP

SELECT' input, that must be connected by
the user. Under control of this input it is

4 k~ 1.6 k~

2 o OUT

o

inputs o
o

I k~

1

F i g u r e 1 0 . 1 9 Internal circuit o f a typical integrated-
circuit logic gate with an 'open-collector' output stage

possible for the output to be in an additional
state, the high-impedance or 'Z state', where
both transistors are switched 'off'. This may
be thought of as equivalent to isolating the
output terminal from the rest of the internal
gate circuit. Gates with standard or 'two
state' outputs do not have the extra input
and cannot enter the Z state.

In an 'Open collector' gate, the internal
circuitry of the gate, particularly the output
stage, is rather different, as shown in Figure
10.19. Instead of a complete 'totem-pole', only

the lower npn transistor switch is included, and its collector is connected directly to the
output terminal of the gate. Such a gate can only be used with an external load resistor,
often called a 'pull-up resistor', connected between the output terminal and the positive

316 Digital logic design

voltage supply rail. The transistor switch may be either 'on', when the output is at logic
low level, or 'off', when the load resistor ensures that the output will be at logic high in
the absence of any further current sinking. In circuit diagrams, an 'open collector'
output stage is indicated by an asterisk (*) or the special symbol 0 adjacent to the gate
output concerned.

Logic gates intended for use with logic technologies other than TTL or CMOS may
have different internal construction for which the terms 'open collector' or 'tri-state'
may not have any meaning.

10.16 Use of open collector gates

Use of an occasional isolated open collector gate within a system otherwise composed
entirely of conventional gates is often not wise design. This is because at transitions
from low to high logic level at the output of the open collector gate, the single output
transistor is turned 'off' and current is supplied through the load resistor only.
The inevitable stray capacitance associated with any logic output line means that these
transitions are relatively slow, with a decaying exponential rise of voltage towards the
maximum value governed by the time-constant 7-= RLC~ (where Re is the load
resistance value and C~ is the stray capacitance value). Even a small value of C~ and
a moderate value of Re can lead to substantial slowing of the rising edges in practice,
compared to the performance expected from conventional gates. The use of two output
transistors in the 'totem pole' circuit, where the upper transistor can supply a large
current when in the high logic level, allows them to achieve faster rising edges.
However, by connecting together several open collector gate outputs together with
a load to the positive supply, the output voltage will be at logic low level when any
of their output transistors is switched 'on', and will only be at high logic level when all
the transistors are switched 'off'. Therefore, the output voltage level corresponds to
the Boolean AND of the individual gate outputs. This arrangement is often called
'wired AND' or 'collector dotting' and enables the AND of many signals to be
obtained easily provided fast operation is not needed. Serious reservations remain
concerning the operating speed of the open collector gates unless Cs can be reduced
to a negligible value.

For example, in Figure 10.20(a) the outputs of a pair of two-input open collector
NAND gates are connected to the same external pull-up resistor Re. If the output
of one of the NAND gates is low, the final circuit output will be pulled low, irrespect-
ive of the other NAND gate. The AND function is performed by a 'gate' that has no
physical reality apart from the connection between the gates and as a consequence is
called a phantom A N D gate. The output of the network is

Z - P Q - A B . C D

If inverted variables had been applied instead at the inputs, then the output would
have been

Z - PQ - A B . CD - (A + B) . (C + D)

Similarly, if two open collector NOR gates are connected, as shown in Figure 10.20(b),
the output Y will be the AND of the output of two NOR gates. Hence, the output is
given by

Instrumentat ion and interfacing 317

RL RL

A] -,~ A'B=P ,- ,Z=AB. CD A ~ , A + B = R [- , Y--ABeD

B ' J " '-- l-- iha~g~t e B l - - l - " " -

D-- - - - - -~ - - - - J . D ~ . . .~ .

(a) (b)

Figure 10.20 Combination of (a) two open collector NAND gates and (b) two open collector NOR gates. Since the
phantom AND gate is not a real component, its symbol is often omitted from circuit diagrams

Y - R S - (A + B) . (C + D) - A + B + C + D

and if inverted variables had been applied instead at the input then

Y -- A + B + C + D - A B C D .

The logic designer has the responsibility of determining a suitable value for the pull-up
resistor RE. Since the values of RE and the stray capacitance Cs determine the rise-time
of the logic transition from low to high voltage, the designer must decide what
maximum transition time is required, and estimate the stray capacitance Cs in the
circuit layout to be used, in order to determine RE. Clearly, for the fastest performance,
the smallest possible value of RE should be used, but in practice this leads to large
currents flowing through the open collector gates when switched on. This in turn leads
to large power dissipation in RE itself, leading to problems with overall power con-
sumption and, in extreme cases, the power handling capacity of RE might be exceeded.
Thus, the designer must take account of the maximum current allowable through the
gates and pull-up resistor.

As an example, suppose that a logic system uses a 5V supply (Vs) and a time
constant less than 5 ns is required on rising edges, with a stray capacitance of 18 pF.
Therefore, the required value of pull-up resistor is given by

7- 5 x 10-9s
= = 278 f~.

RE < Cs 18 x 10-]2F

In practice, the nearest preferred value resistor, 270 f~, would probably be used. Then,
the maximum current through the load resistor when in logic 0 state will be

I = Vs__ 5V --18.5mA
RE 270f~

and the gates must be capable of passing this current without damage. Hence, the peak
power dissipated in RE is given by

P = V2 = (5 V) 2 = 92.6 mW.
RE 270f~

318 Digital logic design

The actual average power dissipated in RL will be a proportion of this value, depending
on the proportion of time the gates spend in the low logic state, but in any case it is
good practice to assume a worst-case power dissipation of 92.6 mW in order to cater
for possible fault conditions. In practice, component tolerances will cause some further
variations in these calculated figures, but whether this power dissipation is too great
either for the overall consumption of the circuit or for the resistor RL to handle
depends upon other details of the design.

Another use of open collector gates is in driving logic lines to other equipment where
in principle there may be more than one device capable of placing data on the lines or
logic 'bus'. Usually, for correct operation, only one gate should be in command of each
logic line at a time, as otherwise the operation of the bus would become immensely
confused, but sometimes during testing, or due to a fault, it happens that more than
one gate is indeed placed in charge of a logic line. No harm will come to open collector
drivers used in this way.

A third very common use of open collector gates is to drive external components
that are not specifically designed for direct connection to conventional logic gates in
the same way that other logic gates of the same family may be inter-connected to build
up a complex logic system. As an example, it may be required to connect
a Light Emitting Diode (LED) to a logic system in order to indicate the logic state
of one of the gates. This is a common requirement in logic systems that show
information to the user on alpha-numeric LED displays which will need to be driven
electrically from the logic system. LEDs are pn junction diodes that are especially
designed to emit light when they are forward biased. Although they will also withstand
reverse bias of a few volts without damage, and without emitting light, they are not
usually intended to be reverse biased in normal operation. Electrically they behave in a
similar manner to ordinary small-signal rectifying diodes except that they are usually
fabricated from a III-V semiconductor (such as GaAIAs or a related material such as
InP) rather than Si. As a result, the voltage drop at moderate currents is rather higher,
usually around 1.6 V at typically 10 or 20 mA for a small LED intended for use as an
indicator on small equipment, rather than around 0.6 V for a typical Si diode.

Conventional logic gates with totem-pole output stages are not primarily intended as
current sources or sinks, and so it is not usual to drive LEDs from totem-pole output

gates. The solution generally adopted is to place the LED
+5v in series with a current-limiting (or 'dropper') resistor

.~ between the output connection of an open collector gate
LED and the positive supply rail, as shown in Figure 10.21.

The respective manufacturers' data sheets must be con-
R suited to ascertain, firstly, the current requirements of

* the LED at the required brightness and the voltage drop
"~ at this current value, and secondly, the current sinking

capability of the open collector output transistor in the
Figure 10.21 Connection o f an logic gate to be used. Assuming that its current sinking
L E D to an open collector gate capability is adequate for the intended application, the

value of the series resistor may be found after calculating
the voltage drop across the resistor, equal to the supply voltage less the voltage drop
across the LED. This assumes that the voltage drop in the output transistor when
switched 'on' is of the order of 0.1 V and may be neglected. As an example, consider
driving a typical LED requiring 15 mA at 1.6V drop using an open-collector gate

Instrumentation and interfacing 319

connected to a 5 V supply. Assuming that the gate is able to supply 15 mA without
damage, the value of the series resistor needed is equal to

5.0 V - 1.6 V 3.4 V
= ~ = 227 f~

15 mA 15 mA

and the nearest preferred value used might be 220 ft.
A similar application is the use of an open collector output gate to drive a small

electromechanical relay, in order to control a component requiring substantially more
current than can be supplied by the output transistor itself. In certain cases a small
relay may have a sufficiently small current driving requirement that it can be driven
directly from an open collector gate, in a manner similar to an LED. Sometimes the
relay is connected between the open collector terminal and a positive supply voltage

Flywheel
diode

)

I

[

+ Vcc

Relay coil or
other inductive
component

Open - collector gate

Figure 10.22 The 'Flywheel diode' connected
across an inductive component and necessary
to protect the driving gate

rather greater than the normal logic circuit
supply. A very small relay will typically require
5 V or 12 V or more, at a current of 10 or 20 mA,
to operate correctly, and a series dropper
resistor is not needed with typical relays (but see
Figure 10.22). Note that the open collector
output stage allows the use of a component,
the relay, that requires a larger driving voltage
than the normal logic system supply rails can
provide. This is a direct result of the collector of
the output transistor being connected only to
the external relay, and not to any other internal
components within the logic gate. Open col-
lector output gates are available that are able

to switch typically up to 40mA at up to around 30V. If a relay is to be used that
needs a greater driving voltage or current, then further external active components
must be added to provide the increased driving capacity.

Use of relays and other inductive components

When the transistor driving a relay (or another component with a large self-
inductance) is turned 'off ' , the rate of change of current can be very large
because the time taken for the current to reduce from its normal 'on' value to
zero can be very short. Therefore, the self-induced back-EMF, V = -L Id I /d t), is
potentially very large if the product of L and (dI/dt) is large. In some cases this
back-EMF can be so large that the driving transistor within the logic gate, if
direct drive from an open collector gate is being used, is in danger of being
damaged by the repeated application of excessive voltages. Fortunately, the
remedy is simple, since by Lenz's law the back-EMF spikes have the opposite
polarity to the driving voltage, and all that is needed is to insert a diode in
parallel with the relay or inductance, with polarity such that it is reverse biased
by the driving voltage in normal operation. Therefore, this 'flywheel diode' has
no effect upon the driving current to the relay since a reverse-biased diode draws
no current away from the relay, but it prevents large back-EMF spikes reaching
the driving transistor. When forward biased, the 'flywheel diode' must be capable
of carrying the normal 'on' driving current of the relay, because at the instant of

320 Digital logic design

turning the driving transistor 'off ' the relay will attempt to maintain the energy
stored in its magnetic field by inducing the same magnitude of current through the
'flywheel diode' for an instant, before the relay and diode currents collapse.

10.17 Use of tri-state buffers and gates

A tri-state buffer is a logic inverter or a non-inverting buffer with a tri-state output
stage. The four possible configurations are shown in Figure 10.23 and the truth table
for the type in Figure 10.23(a) is also shown.

The input denoted E can be regarded as an enable line, which may require either an
active low or active high input signal, and when activated it will allow the gate to
output either the true or inverted data. When the enable line is not activated the buffer
output stage has a high output impedance (i.e., the Z state, as described above in
section 10.15) and transmission of data is prevented. An active high enable input is also
sometimes referred to as the Chip-Select input, or CS (mainly in the case of VLSI chips
having this input). In the case of gates or chips where the Enable input is active low,
it is sometimes referred to as an Inhibit input, I, as, when taken high, it inhibits the
gate operation.

The main use of tri-state gates is in driving logic lines or the connectors in a data bus
(a contraction of the older term "bus-bar' meaning a conductor providing a voltage or
current, often from a power source, to many other devices). For example, in the
connection of a microprocessor to RAM chips, it is necessary at some time that the
microprocessor sends binary data to the RAM; and at other times, the microprocessor
must read that data back from storage in the RAM chips. It is conventional to use the
same connecting pins for routing this data to and from the microprocessor, which is
hence known as a hi-directional bus. It is therefore necessary that in the first instance,
the microprocessor must be in control of the logic state of the bus lines in placing the
data to be stored upon the bus, and in the second case control is allowed to a RAM
chip which then places its data upon the bus. This is not possible using conventional
two-state outputs, which if used in both the microprocessor and RAM would soon
lead to the destruction of both whenever there was bus contention, i.e. one component's
output stage driving a bus line high, while at the same time the other component's

(a)
E (enable)

A

E (enable) Output
, , ,

0 High Z
0 High Z
1 1
1 0

(b) (c) (d)
E E E

. . . .

Figure 10.23 Tri-state buffers (a) Inverting, active high enable with truth table (b) Non-inverting, active high
enable (c) Inverting, active low enable (d) Non-inverting, active low enable

Instrumentation and interfacing 321

+V

o .

- ~ O F F

Device A attempts to
drive bus line high

Large current flow unimpeded /

bus line
>

T §

-~OFF
~) Device B attempts to

ON drive bus line low

Figure 10.24 Bus contention when using 2-state drivers (or tri-state drivers both enabled in error)

output drives it low, leading to a large and destructive current flow through both of
the 'on' transistors as well as along the bus line, as shown in Figure 10.24. The solution
to this problem is to use tri-state outputs on both microprocessor and RAM, and to
arrange some control circuitry such that at any one time only one of these components
can have its outputs enabled, i.e. placed in either the 1 or 0 conventional output states.
At this time all the other component outputs connected to the same bus lines must be
disabled by being placed in the Z state. Reliable operation of this control circuitry
is essential if destruction of the components is to be avoided. The 'bus' may therefore
be regarded as a highway for data, and the high impedance property of the tri-state
gate allows the data lines leaving a particular device to be effectively isolated at will
from the bus system.

Figure 10.25 shows a diagram illustrating the use of tri-state buffers. Data from
Device A can only be transferred to the system interconnecting bus when an active low
signal is applied to the tri-state buffers via EA and can be transferred from the bus to

I Device A

7

LDevice C_I

Address E,., r~ 'f ~ f. 7 Ec Decoder inputs

U

System -]
interc~ I ~i l
bus EB rE"

-I-I-I
J DeviceB] I OeviceD J

Eo

Figure 10.25 Device connection to system data bus via tri-state buffers

322 Digital logic design

Data out
/

To and from
device [

~ 2

Data in

System bus line

l
1

Figure 10.26 Bi-directional tri-state connection o f a device to a sys tem bus

Device B when an active low signal is applied via E~. To ensure that none of the other
devices connected to the bus system is simultaneously transferring data to the bus,
their enable signals must not be activated. This could be achieved by connecting all of
the enable lines controlling the output devices A, C, and D in Figure 10.25 to successive
active low outputs of a decoder chip (see Chapter 5) only one of whose outputs may be
low at any instant. Nevertheless, if (due to a fault) there is more than one enabled gate
connected to any one logic line then it is likely that all the gates so enabled in error will
be damaged. Use of open collector drivers avoids this problem at the expense of slower
bus operation. This theme is developed in more detail in the discussion of ROM
devices in Chapter 11.

In some cases, data has to be transmitted both from the device to the bus as well
as from the bus to the same device. This will require a bi-directional capability,
as illustrated in Figure 10.26. The transmission and the receipt of data is controlled
by the two enable signals E~ and E2. When E2 = 0 and E2 = 1, data is transmitted from
the device to the system bus; when El = 1 and E2 --0, data can be received by the
device from the system bus. Clearly E l - - E 2 = 0 is not allowed in this circuit.
If E~ = E2 = 1, both the device buffer and the bus buffer are in the Z state and data
cannot pass in either direction. In certain applications, this last case may not be
required, in which case the data transmission direction can be controlled by a single
line E~, and E2 is connected to E~ through a logic inverter.

I0.18 Other interfacing components

The variety of other interfacing components that may also be used between digital
systems and non-digital systems is almost inexhaustible. They include the following:

1. Electromagnetic actuators of many designs, which may be regarded here as
inductive coils that may be driven in a manner similar to electromechanical relays.

2. Limit switches that sense the position of mechanical components, often operating
at the allowable extremes of motion, either for signalling an absolute reference
position to an incremental encoder, or for emergency signalling to a digital system
of an undesirable mechanical condition which is about to occur.

3. Stepper motors, which are used for driving mechanical components under digital
control. The most common types have a shaft that rotates a small angle (often
1/200 or 1/400 part of one revolution) on receipt of one set of driving pulses,
although linear steppers are also available. Mostly these are magnetically driven,

Instrumentation and interfacing 323

but the piezoelectric effect has also been used in precision stepper motors.
The design of driving systems for stepper motors is a specialist topic, and a non-
specialist will normally use one of the proprietary systems available.

4. Electro-rheological components, employing a special fluid whose mechanical
properties change, e.g. reversibly from a liquid to a solid, under the application of
an electric field typically of the order of 5 kV mm -1. These components often have
special driving requirements (several kV, in order to generate the required electric
fields). These are usually catered for by custom-designed systems.

5. Displays of various kinds, including cathode ray tubes (CRTs), alpha-numeric
LED displays, LCD panels of varying sizes and performance (colour or mono-
chrome), and plasma display panels. Mostly the systems involved in driving these
displays will include D/A converters for controlling the individual beam bright-
nesses in CRTs, and open collector drivers for the other types of displays.

6. Magnetic disc drives and CD-ROM/RAM drives, for data storage in computing
equipment. Mostly these will be controlled by dedicated IC driver systems,
incorporating several specialised sub-systems. These include mechanical actuators
interfaced as electromechanical relays, and stepper motors for positioning the read/
write heads. For rotating the disc, conventional motors are used, also interfaced in
a manner similar to electromechanical relays. Signal recovery amplifiers are inter-
faced to the digital system using Schmitt input gates. Sub-systems for data recording
usually require TTL-compatible voltage level inputs from conventional gates.

Specialist knowledge of the characteristics and intended use of all these components
is needed for the design of the digital systems which need to use them.

Problems

10.1 In Figure P10.1, one input of the NAND gate is taken to logic level 1 and
a slow square wave logic signal is connected to the other input. Sketch the
waveforms at points A and B. The frequency of the square wave is then increased
gradually. Explain, with sketches, what you expect to happen to the waveforms at
points A and B. What happens if one input of the N A N D gate is now taken to low
logic level and the other is taken to the same square wave as before?

2 7 0 ~ A

, , l
1000 pF

•
Figure PIO.I

10.2 A certain video monitor can display video signals with a maximum frequency
(i.e. its video bandwidth) of 5 MHz and it operates at 25 frames (i.e. complete
pictures) per second. Suppose that one frame is stored in binary form by
measuring the displayed brightness twice per cycle of the maximum displayable
video frequency (i.e. 10 x 10 6 times per second), and each of these measurements

324 Digital logic design

is converted into a one-byte binary integer. How many bytes of storage
(approximately) would be needed to store one frame?

10.3 A standard CD plays for a maximum of 74 minutes, and the two-channel
audio signal is sampled at 44.1 kHz with 16 bit precision. Estimate the
maximum storage capacity of a CD, assuming that no data compression is
used. (This crude estimate will not account for any space taken up by the file
directory structure.)

10.4 A digital audio tape system stores all samples to 20 bit precision. Estimate the
signal-to-no~se ratio of replayed sounds, assuming that all the noise generated in
the system is 'quantisation noise', originating from the approximation of
the required analogue signal as a series of voltage levels, equally-spaced by
a difference corresponding to the significance of the least significant bit.

10.5 In general, ifn bits are needed to represent a particular range of values in binary,
what is the minimum number of bits needed to represent the same range in Gray
code':

10.6 Using the conversion equation g~.--hk+l @hk (where h~. is bit number k
(numbering from right to left, i.e. LSB to MSB) of the binary code, and gk is bit
number k of the Gray code), design a sequentkd circuit which will convert any
3-bit binary code to Gray code, using only one XOR gate, one shift register, and
some other logic. The input binary code is to be held initially in the shift register,
to be replaced eventually by the final Gray code. (Assume that a suitable clock line
is availablc.)

10.7 The following table shows a conversion from binary DCBA to a different coding
D'C't fA' (actually a modified form of Petherick Code). Assuming that unlisted
states are "don't care' states, use four Karnaugh maps to find expressions for
D', C', B', and A' in terms of A, B, C, D.

D C B A D' C' B' A'

0 0 0 0 0 0 1 0
0 0 0 I 0 1 1 0
0 0 1 0 0 1 1 1
0 0 1 1 0 1 0 1
0 1 0 0 0 1 0 0
0 1 0 1 1 1 0 0
0 1 1 0 1 1 0 1
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 0

10.8 The circuit diagram of an incremental shaft encoder is shown in Figure P10.8,
together with the two waveforms X and Y (in quadrature) produced as the
shaft rotates. If the rotation changes direction, the phase difference between X
and Y reverses. For X and Y waveforms as shown, draw the waveforms at CLK
and Q, and explain how the circuit operates. What is the function of the RC
network?

10.9 For the circuit in Figure P 10.9, find the Boolean Algebra function for the output f
and write down the truth table.

Instrumentation and interfacing 325

10.10 The 'totem-pole' TTL output in Figure P10.10 is at a high logic level. Deduce
whether Q3 and Q4 are ON or OFF.

10.11 Logic gates made using a certain process have the following characteristics:

M i n i m u m M a x i m u m

Current available at logic low from gate output:
Current available at logic high from gate output:

4 mA 10 mA
- 15 m A - 3 0 mA

It is required to use one of these gates to drive an LED indicating the logic state
of the gate. The LED requires 10 mA and drops 1.4 V. The supply lines, and the
logic levels, are at 0 V and +5 V. Show how you would connect the LED and
the gate, using other passive components but no other active components.

10.12 A CMOS logic gate drives a long transmission line which has a stray capacitance of
150 pF between the signal conductor and ground. The signal to be transmitted is a
logic signal of average frequency 20 MHz, and the logic voltages are 0 V and 5 V
respectively. The current drawn by the logic gate is dominated by that needed to
drive the transmission line. Estimate the average current drawn from the supply.

Figure P10.8

Figure P10.9
Figure P10.10

�9

�9

�9
 .

.
~

~
r~

'=

--
-.

~

~

2
-

"*

N
"

O

=o
 ~

=

~

~

..
"

~
-
-

m

~

o
o

=
-.

~
.~

~

~
-~

_
=

~
1

7
6

B

"I

~
~

~-
-

~
~'
~

~-
-

~
r,

--
.

~

_
.-

-.

~

=
~

-

�9

::
::
~
~

~
~,
,~

I:
::
:

~
--
.

K
~

o
-

'
=

-

~"

-9
.

o
-

=
*

-
.~

~
-

~,

r
-
~
-
~
4

~
-

~
.

~

_
=

~
~,

F,
,"
 ~
-

2 ~
"

~
~

~
~

=
r

~
~

~
~

-"

t~

~-
-~

,

�9

N

"I

O

�9

<

Programmable logic devices 327

Input addrest[Address
~n ldec~ - n_to_2 n

lines

Line0
Line 1 2

Line 2 n--1 !

Register0
Register 1

Register 2n-1

Iou, ut,ri-state u.ersl :

+o' utput data lines

Fignre 11.1 The internal block structure o f a R O M

w

CS
OE

shown in Figure 11.1. The ROM has n address lines and, since there are 2 ~ possible
combinations of n binary digits, the chip will house 2 ~ registers. Each register is
identified or addressed by one of the 2" output lines of the internal address decoder
contained within the ROM chip.

In the ROM shown in Figure 11.1, each register contains p bits, and so the total
storage capacity of the ROM is p x 2 ~ bits. For a typical word length p - 8 and
a typical number of address lines n - 12, the total storage capacity is 8 x 212=
32768 bits. A group of eight binary digits is often referred to as a byte, so that
the storage capacity of this particular ROM is 212 --4096 bytes, or 4Kbyte,
where K means 1024 and is pronounced 'kilo' by analogy with the usual measurement
unit prefix. This memory chip may also be described as a 4K x 8 ROM, or as a 4K
byte-organised ROM.

When a ROM is incorporated into a digital system where communication between
devices is via an interconnecting bus system, two control signals are normally required.
In many applications, for example a microprocessor system, where a number of ROMs
may be used to store a program, only one ROM must be connected to the bus system
at any given instant. The ROM to be connected to the bus will be identified by
activating its chip select (CS) signal. Additionally, the ROMs may be connected to
the bus system via tri-state gates which are in the high impedance state until they
are enabled by an output enable (OE) signal. Once enabled, the data at the input to the
tri-state buffers will be transferred to the bus.

Computer systems also use large numbers of random access memory (RAM) chips to
store temporary results of computations and processing. There are two main types
of RAM: static RAM, in which each bit of data is stored on the equivalent of a single
D-type flip-flop, and dynamic RAM, in which each bit of data is stored as an electrical
charge on the gate capacitor of a MOSFET. Since the capacitors are not perfect and
the charge leaks away after l ms or so, the charge must be 'refreshed' regularly.
The advantage of static RAM is that refreshing is not needed, whereas the advantage
of dynamic RAM is that the 'packing density' (number of stored bits per chip) of
available devices is much greater than on available static RAM devices. RAM chips
have an internal structure similar to ROM chips except that data can be stored an
unlimited number of times in any or all of the memory locations. This data is generally
lost when power is removed from the RAM chip, that is, the data is, said to be 'volatile',
although special 'non-volatile' RAM chips are also available. Therefore, a RAM needs

328 Digital logic design

a third control signal, the write (WR) or read(RD) signal. If WR is activated simultan-
eously with CS, data is transferred from the RAM data lines to the internal data
register selected. However, if WR is not activated then the RAM behaves similarly to a
ROM chip. Apart from this extra signal, RAM circuitry is in principle similar to ROM
circuitry, except that to be useful RAM must first have data stored in it and this limits
its use almost exclusively to computer and microprocessor systems which are outside
the scope of this text.

ROMs are, by definition, non-volatile memories because the program written into
the memory, when it is initially programmed, remains stored when the power is
removed. Because of its non-volatility, ROM is typically used for basic program
storage and also for the storage of unchanging data patterns.

There are several main categories of ROMs currently available:

1. Mask programmed by manufacturer. The data stored in the ROM, the 'contents', are
programmed by the manufacturer during fabrication according to a specification
supplied by the customer. This type of ROM is only suitable when the designer's
required data or program has been extensively tested and verified to avoid errors, as
it is not possible to change the stored data after fabrication and packaging.
Programming these devices during manufacture requires expensive equipment and
is economic only for very high volume applications and, in addition, there may be
some delays before the final devices are produced.

2. PROMs (Programmable ROMs). The PROM contents are written into the PROM
by the user with the aid of a piece of equipment known as a 'PROM programmer'.
Programming this type of ROM is essentially an irreversible process, so this type is
sometimes referred to as 'One-time programmable' (OTP). Since PROMs are
relatively cheap, they are often used in the early stages of product development
when considerable changes may have to be made to the stored program, as
the changes can be made by simply programming another PROM by the user.
When the design has been finalised, the data may be sent to a ROM manufacturer
for mass production of a high-volume mask-programmed ROM dedicated to
the proven design. Alternatively, low-volume applications can continue to use
individually programmed PROMs.

3. EPROMs (Erasable PROMs). The contents are programmed electrically by the user
but can be subsequently erased, followed by loading new programming informa-
tion. This is achieved by shining Ultra-Violet (UV) light, from a special UV source
designed for EPROM erasure, for a period of 10 to 20 minutes through a trans-
parent window on top of the ROM package. This type of ROM may therefore be
recognised by the presence of this window, usually around 10 mm • 10 mm, through
which the actual ROM chip may be seen. Like PROMs, EPROMs can be used for
system development as well as for low-volume production, in which case it is
normal to cover the window with opaque tape to prevent inadvertent erasure of
the EPROM contents. Often the manufacturers state a limit of perhaps 100 UV
erasures that can be undertaken with any one EPROM before the erasure and
storage become unreliable.

4. EEPROMs (Electrically Erasable Programmable ROMs). This type of user-program-
mable ROM can have its program completely erased electrically. However, there is
a limit to the number of times that the stored data can be erased and the device
reliably reprogrammed, so EEPROMs are not a substitute for genuine RAM.

Programmable logic devices 329

A typical example of an EPROM is the TMS27128 containing 131072 bits
(16Kbyte). Before programming, the chip is erased by UV radiation (so that all
bits are set to 1), and after erasure, 0s are programmed in those locations specified
by the designer. The TMS27128 EPROM is packaged as a 28-pin IC; further
increase in storage capacity (with the same control facilities) requires an IC having
more than 28 pins. The TMS47256 ROM has a storage capacity of 262144 bits
(32Kbyte) but with simpler control facilities fabricated as a 28-pin IC.
The Appendix on Functional Logic Symbols describes in detail the symbols for
these devices.

11.3 ROM timing

The time between the arrival of a valid address at the address pins and the appearance
of valid data at the data output pins is termed the memory access time. For typical
EPROMs, the chip select and output enable lines also determine the time taken to read
data from the chip.

To specify this more precisely, manufacturers publish timing diagrams showing
diagrammatically the typical logic waveforms to be expected at the various pins of

the ROM while it is undertaking
I I 1 I

-" ta '*" "-'ta~"" certain tasks. The usual conventions
1 \ i ' ' \ j used on timing diagrams relevant to

A Val~addross A the read timing cycle are shown in
0 Figure 11.2. Transitions between 0 and 1

--~ tb ~- are shown as sloping lines; this indicates
1

High Z "////////', that logic transitions take a non-zero time.
. . . . i\\\\\\\~ For example, the transition time for a

0 , , change of address is &. The ROM data
' ' output lines will often start in the high

Figure 11.2 Timing diagram conventions impedance Z state (indicated schemat-
ically by a level halfway between 0 and 1)

before changing to the correct data (either a 1 or 0 output, indicated by two levels
simultaneously on the diagram as either value could be selected) during a time less
than tb.

For example, the read cycle of the TMS2764 (an 8 Kbyte EPROM), which uses these
conventions, is illustrated in Figure 11.3, and the following timing parameters are
specified on that diagram:

1. ta(A): memory access t ime- the maximum time taken from the arrival of the address
at the address pins to the appearance of valid data at the output pins.

2. ta(E): chip select access t i m e - the maximum time taken from E (= CS) becoming
active (low logic state) to the appearance of valid data at the output pins.

3. ten(G): output enable t i m e - the maximum time taken from the enable signal
G (= OE) becoming active (low logic state) to the appearance of valid data at the
output pins.

4. tdis(G): output disable t ime- the maximum time taken to disable the tri-state gates at
the output and return them to the high-impedance state.

330 Digital logic design

1
i
I

Address

0

1 I
I

Chip enable E '

0

Stable address

t a (A)

- - - t a (E)

!

I
I

-..--~I I

1

Output enable

0

1

Data High Z

0

i
I
I
I

I
I

!

I
i

/
I ' I
i i I
I ,~ , - - ~ t~is(G) r

' l I High
,' Valid data ,,
I ~ ',

I I !
I i

Figure 11.3 ROM read cycle timing./or TMS2764

11.4 Internal R O M structure

Both bipolar and MOS technology are used in the fabrication of ROMs. The signi-
ficant differences between the two technologies are speed and packing density.
Bipolar ROMs generally have shorter access times while MOS ROMs have a higher
packing density. This means that they can accommodate a larger number of memory
cells in a given space.

The array of registers shown in Figure 11.1 is frequently called the memory matrix.
A simple ROM matrix is shown in more detail in Figure 11.4, and consists of two sets
of intersecting and orthogonal bus-bars. The vertical lines, connected to the output
of the address decoder, are called the word lines, and in this simple model there is

Address lines

I I
Address Decoder

O0 01 10 11

I

. r .v
R lin~'(+v +v

" ~ + V

m

RD

Output
lines

Word lines

Figure 11.4 A 4 x 4-bit bipolar R O M addressed in one dimension only

Programmable logic devices 331

a separate word line corresponding to each addressed ROM register. The horizontal
lines, called the bit lines, are connected to the inputs of the tri-state buffers whose
outputs are the data outputs of the ROM. Figure 11.4 shows a trivial ROM with
capacity 4 • 4 bits.

In the case of a ROM manufactured using bipolar transistor technology, words
are programmed into the ROM at each register address by making a connection to
a bipolar npn transistor at each bit location required to be at logic 1. (This is shown
in Figure 11.4 for the top three bits of location (00)2, for example; the full ROM
contents in Figure 11.4, given in hexadecimal for ascending addresses, are E, 7, D, and 9).
The output on a bit line depends on whether it is electrically connected to the
addressed word line via an npn transistor. If the connection exists when a word line
is addressed, the bit line is raised to 1; if not, it remains at 0. In this way the
programmed word at the selected address is transferred to the inputs of the tri-state
buffers. The tri-state gates are enabled when the chip select signal CS is low and the
read signal RD is high. When this condition is satisfied, the selected word is transferred
to the data lines.

PROMs fabricated using bipolar transistors have an overall internal structure
almost identical to that of the ROM shown in Figure 11.4. However, a 'fusible link'

is connected in series with the emitter of a transistor at every
R I Bit position of the array (see Figure 11.5). A fusible link is a tiny

- - ~ ; I } line fuse that can be either shorted as manufactured or open,
- - Word ' '

line ~ following vaporisation by sending a large current through it.
As all the fusible links are originally shorted, all the corres-

+ v
ponding data bits are initially set to 1; the PROM programming

l~igure ll.5 Fusible treks equipment changes the bits required to be 0 by vaporising the
used in a bipolar P R O M

corresponding fusible links so that they are open. Once program-
med, bits already changed to 0 clearly cannot be changed back

to 1, although if necessary it is usually possible to change to 0 a bit that is still equal to
1, thus giving a very limited amount of reprogrammability. If the word line associated
with the transistor is selected, it is turned on by the potential applied to the base so that
the voltage between collector and emitter is approximately zero and the voltage V is
transferred to the bit line.

EPROMs and EEPROMs also use the same basic structure but have specially
developed technology using floating gate MOSFETs (i.e. with no electrical connection
to the gate) as a basic charge storage element, rather than fusible links. This is similar
to the technology of dynamic RAMs but in this case the charge does not leak away
significantly over a long period of time. The charge stored on the floating gate can be
released, thus erasing thedata, by UV radiation in the case of EPROMs, or electrically
in the case of EEPROMs.

11.5 Implementation of Boolean functions using ROMs

A schematic way of representing a programmed 64-bit ROM is shown in Figure 11.6.
Each word line corresponds to one of the eight minterms possible from three address
input lines ABC. Eight different Boolean output functions are shown as examples,
each one corresponding to one of the available eight bit lines. The intersections of the

332 Digi ta l logic design

(a)

Address

A B C

0 0 0
0 0 I
0 I 0
0 I I
I 0 0
I 0 I
1 I 0
1 I I

Output functions

z~ z2 Z3 Z4 Zs z6 Z7 Z8

I I 0 1 I 0 0 1
0 0 0 I 0 0 0 0
I 0 I 0 I 0 1 0
I 0 I 0 I 0 0 0
I 0 I 0 I 0 0 0
0 0 0 I 0 I I I
0 0 I 0 0 0 0 0
0 1 I I I 0 0 1

(b)

mo= ;4BC

ml =,I~BC

m2 = ,~BC

rm= ABC ~,
C

m4 = A B C .=_
r

ms = A B C

m6 = A B C

rm= A B C

f

)

)

)

(

()(

(

/

Word lines

,~,),,)(

) ')()(

,,,, Za = mo + m5 + m7

Z 7 = m2 +m5

Z6=ms

)(Z5 =mo+m2+rn3+m4+m7

)(7-4 =mo+ml+m5+m7

, , Z3 = m2+rn3+m4+m6+m7

) (Z2 = mo+rn7

Zl = mo+m2+rn3+m,

mo m~ m2 m3 m4 m5 rn6 fro

Figure 11.6 Implementation o f eight BooleanJimctions using a 64-bit R O M (a) Truth table (b) Connection matrix

bit lines and word lines marked with a cross are those bits in the ROM that are set at
logic 1; the unmarked intersections are those set at logic 0. Any particular bit line
takes on the Boolean value of the bit stored at its intersection with the currently
selected word line. Therefore, a cross indicates that its corresponding minterm is one
of the terms in a Boolean canonical sum-of-products expression for its corresponding
output function; in other words, each output function is the Boolean OR of the
minterms marked with a cross on that bit line. When implementing Boolean functions
with a ROM, simplification of the functions is neither necessary nor relevant, as
they are implemented directly as a sum of minterms. For example, the output Z8 in
Figure 11.6 is given by

Z8 -- mo + m5 + m7.

Many of the functions available on MSI chips, such as those described in Chapter 5,
can be readily implemented by a ROM. For example, a BCD to 7-segment decoder can
be implemented with a 16-byte (128 bit) ROM as shown in Figure 11.7. Since there are
only seven segments, one column in the truth table, corresponding to the eighth output

Programmable logic devices 333

a

' l g l b

d

N B C D Seven-segment
inputs outputs

P Q R S X a b c d e f g

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 1 1 1 1 1 1 0
0 0 1 1 0 0 0 0
0 1 1 0 1 1 0 1
0 1 1 1 1 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1
0 0 0 1 1 1 1 1
0 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1
0 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0000

0001
0010
0011
0100
0101
0110
0111
1000

1001
1010

1011
1100
1101
1110
1111

t ~ J

i

"()

",()

)

) (

I N

I N

mm
mlm
mu
mm
mm
mm
ml
mmm
mmm
~ n

\

i

() (,

,L,

(,'

/ x /
x / x

X a b c d e f g

(a) (b)

F i g u r e 11.7 (a) Truth tab&for an NBCD to 7-segment decoder (b) Decoder implementation using a 128-bit R O M

line on the memory matrix, can be regarded as a 'don't care' column whose entries can
be either 1 s or 0s at will. In this example 0s have been selected for all the entries in the
column labelled X. Similarly, for those addresses selecting the invalid codes, the
entries in the truth table are 0. Alternative designs might either use output X to indicate
out-of-range input values, or else decode the full range of input minterms to give the
appropriate hexadecimal displays required of a 4-bit binary to 7-segment decoder.
The completed truth table can now be used as programming instructions for the ROM
to be used as a decoder.

Static 1-hazards, similar to those generated in combinational circuits implemen-
ted with conventional gates, can also be generated in ROM implementations of
Boolean functions for exactly the same r e a s o n - i.e., because of the time delay that
exists between a true and complemented variable when the complemented variable
has been generated by inverting the true variable. In fact they are more likely in the
ROM-based version, precisely because there is no possibility of using redundant
groupings in the ROM to eliminate them. For example, suppose a 4-variable
function f implemented by a ROM contains the two minterms ABCD and
ftBCD. When either of the two combinations of the variables A, B, C and D
representing these minterms appears at the input terminals of the address decoder
the function has the value f - 1. If, initially, the input is ABCD and it then
changes to /IBCD, the output of the ROM internal decoder for word line 6 will
change from 1 to 0 when C changes from 1 to 0, and the ROM internal decoder
for word line 4 will change from 0 to 1 when C changes from 0 to 1. Since C is
generated internally by inverting input C, the change in level of word line 4 occurs
a short time after the change in level of word line 6. For this reason, f will fall to 0
for a very short period of time before returning to the value f - 1, thus generating
a static-1 hazard.

334 Digital logic design

11.6 Internal addressing techniques in ROMs

The connection matrix shown in Figure l l.8(a) is for a ROM addressed in
one dimension only. The total capacity of this ROM is 2 x 8 = 16 bits, and the
Boolean functions generated by it are

Z I = m2 + m s + m7

and

Z 2 = mo + m4 + m s + m7.

For this method of addressing, a total of ten connections to the ROM matrix is
required, made up of eight word lines and two bit lines.

BC

"11
12
13
14

z, Z2

u I
A ~

Zl z2

AB

01
10
11

D•00 01 10 111
Four-input I
multiplexer J Iz

(a)

Figure I 1.8
one four-variabh, Boolean function using a two-dimensional addressing scheme

ABCD - 8421

(b) (c)

(a) A 2 x 8 bit word ROM addressed in one dimension, and (b) in two dimensions (c) Generation of

An alternative, two-dimensional, method of addressing a ROM is illustrated in
Figure 11.8(b). Examination of the connection matrix shows that the same Boolean
functions are generated as in the previous example. In effect, each bit line has
now been split into two sections, and selection of the appropriate section is done
by a 24o-1 multiplexer which is controlled by the Boolean variable C. Using this
two-dimensional addressing technique, there is a reduction in the number of
connections to the ROM matrix. Now, a total of only eight connections to the ROM
matrix is required, made up of four word lines and four bit lines, a reduction of two
when compared with the one-dimensional addressing technique.

The larger the number of input variables, the more significant this reduction in
matrix connections becomes. For example, the same ROM matrix in conjunction
with a 4-to-1 multiplexer can be used to generate the 4-variable function
Z = ~ 0 , 5, 13, 15 as illustrated in Figure 11.8(c). Again, a total of just eight
matrix connections is required in this implementation. However, if the same
function had been generated by a ROM addressed in one dimension, 17 matrix
connections would have been required, consisting of 16 word lines and one bit line.

There are significant advantages in addressing large-capacity ROMs internally in
two dimensions. For example, a 1024 x 8-bit ROM, using one-dimensional
addressing, would require a 10-to-1024 line internal address decoder and eight
bit lines, giving a total of 1032 connections to the ROM matrix. By comparison, the

Programmable logic devices 335

two-dimensional addressing scheme shown in Figure 11.9 uses six of the input
variables, A, B, C, D, E and F, to drive a 6-to-64 line address decoder, while the
other four variables, G, H, I and J, are used to provide the control signals to eight
16-to-1 multiplexers. For this scheme, a total of only 192 connections needs to be
made to the ROM matrix, consisting of 64 input (word) lines and 8 • 16 = 128
output (bit) lines. Since connections take up valuable space on the ROM chip, this
represents a considerable saving when compared with the one-dimensional
addressing scheme.

6 - t o - 6 4 6 4 x 128 bit
O _! line
E -J decoder I I orroy

8 x 1 6 - i n p u t ' '

I I I I I I 1 1
z) z2 z3 z4 zs z~ z7 zs

Figure 11.9 Structure o f a 2K-byte R O M addressed in two dimensions

11.7 Memory addressing

One typical application for memory chips is to provide storage for programs and data
in a microprocessor system. It is common practice for a number of memory chips to
provide this function, each of them having their output lines connected to the
system data bus via tri-state gates. At any given instant only one address location
can be accessed, so that only one memory chip can be connected to the system data
bus at that time. Consequently a common task facing the system designer is to
arrange the selection of one out of a number of memory chips by the microprocessor.

For example, consider the microprocessor system shown in Figure 11.10. The micro-
processor itself has 8 data lines and a total of 20 address lines (i.e., a possible total
addressing capacity of 8 • 22o = 1Mbyte). The total storage capacity required by this
system, however, is only 128Kbyte which is provided by eight 16Kbyte memory chips.
Address lines A1 to A14 inclusive are required to address the 16384 locations on
each memory chip. A 3-to-8 line decoder is used to select a single memory, chip
(actually almost always providing active-low CE signals, one for each memory chip).
Selection of one of the eight chips is provided by the three address lines A 15, A 16 and
A17 which are used as the input select signals to the decoder.

The remaining three address line outputs from the microprocessor could be left
unconnected. However, in this case, to ensure that a particular location in the memory
can only be accessed by a unique address, a system of absolute decoding is employed.
Address lines A 18, A 19 and A20 are connected to an OR gate whose output is connected
to the active low enable inputs of the decoder. The decoder is enabled only when

System data bus
~ / / / / / / / / / / / / _ / / / / / / 7 7 ~ _ Z x T / Z Z / - ~ _ / J 7 7 7 7

: - - ./ ~ / , , /

Dr Do-D7 Do -197 Do -Dr

0 IC 2 IC 4

rt
,...- CE CE

Do - D7 A1 A1.~_4 A1 - A14 A1 - A14

RD

, , . , ,4 A~ ,us

A15AlsA17 A18A19A2Q

,

Address3
decoder4
,% 5

~S2 6

Sl 7

AI

I1

OE

CE
Oc

IC 6 / /

OE / /
CE /
A1 - A14 ~,,

I / r

I A,,, A,, A, : A,, i

i l: 5 1.37 //

I , OE OE "~
f

, , CE CE /

I D -Dr D , - D 7

I !, / /
I , I /., t /

i I f, / /

~ / / / / / / / / / / / / / / / / / / j / f / / i c / / T 7 ~ , ' / / / M
(a)

Figure ll.lO (a) Memory address decoding for eight 16Kbyte memory chips in a microprocessor system (b) Address ranges

Address
b i t s Address

range
A17 A1sAls
0 0 0 O0000-03FFF
0 0 1 04000-07FFF
0 1 0 08000-OBFFF
0 1 10CO00-OFFFF
1 0 0 10000-13FFF
1 0 1 14000-17FFF
1 1 0 118000- 1BFFF
1 1 1 1C000-1FFFF

(b)

IC 0
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7

Programmable logic devices 337

A 18 = A 19 - - A20 = 0. Any other combination of these three address signals will disable
the decoder. If this were not done, and the address decoder were always enabled, then
each memory location could be accessed at any of eight possible addresses sent out by
the microprocessor, i.e. at its base address plus an integer multiple (up to 7 times) of
217. Sometimes this can be advantageous to the programmer, and is termed 'memory
fold-back'. The various combinations of the decoder select signals A~5, A~6, and A17
are tabulated in Figure l l.10(b) with the corresponding address range for each
memory chip using the assumption that A~8 = A19 - - A20 - - 0.

A common output enable (OE) signal is supplied to each of the eight memory chips.
This signal, in conjunction with the individual chip enable signals, enables the output
tri-state gates of the selected memory chip.

11.8 Design of sequential circuits using ROMs

ROMs can also be used for the implementation of clock-driven sequential circuits
and, as an example, the NBCD invalid code detector, designed in Chapter 8, using
JK flip-flops and N A N D gates will be implemented here using a ROM.

In this problem, serial NBCD data arrives on line X, with the most significant digit
first. Each data bit is synchronised with a clock pulse. It is required to design a circuit
using a ROM that generates a fault signal Z = 1 each time an invalid code is received.

The block diagram and the internal state diagram are shown in Figures 11.11 (a) and
(b). The state table (Figure 11.1 l(c)) is shown in a suitable form for programming
a ROM. For example, in the first row of the table, the current input to the ROM is
A = 0 , B = 0 , C = 0 , a n d X - - 0 , and the ROM output word is A = 1, B = 0 , C = 0
and Z = 0. Using this state table, the ROM design can be developed, as illustrated in
Figure l l . l l (d) . This implementation (using two-dimensional addressing) requires
an 8 • 8 = 64-bit ROM.

Besides the ROM, additional logic is required to produce the output signal
Z = ABC_n_, and also three D-type flip-flops are required, one in each address line to
buffer the ROM outputs from the inputs and to synchronise the operation of the circuit to
the clock. These additional components with their connections to the ROM are shown in
the circuit diagram in Figure 11.11 (e). The outputs from the ROM on the lines A, B and C
are transferred back to the input of the ROM on the trailing edge of the clock pulse.

11.9 Programmable logic devices (PLDs)

Clearly, each additional address line or input variable doubles the size of ROM
required. A ROM having 12 address inputs requires 2 1 2 = 4096 internal word lines
and the storage capacity is 4096 • 8 - 32768 bits. In a ROM of this size, all of the 4096
possible minterms are represented internally, and any eight of the 2 4 0 9 6 possible
Boolean functions of 12 variables can be generated. In practice, the designer may
require to use only a small percentage of these and this would mean uneconomic use
of the ROM. Because of this disadvantage, programmable logic devices (PLDs)
have been developed that provide the advantages of ROM-based design, tailored
to typical system requirements, and which can provide a more economic implemen-
tation of Boolean functions in those situations where a ROM would not be economic.

Clock "1 Logic

X ,I I circuit
Serial
NBCD (a)
input

ABC
000

r_~ lo

-L

iP

Z

J-L

Present state

B C X

0 0 0
0 0 1
0 0 0
0 0 1
1 0 0
1 0 1
1 0 0
1 0 1
0 1 0
0 1 1
1 1 0
1 1 1
0 1 0
0 1 1
1 1 0
1 1 1

Output word

B C Z

0 0 0
0 1 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 0
0 0 0
1 1 0
0 1 0
1 0 0
1 1 0
1 1 0
1 1 0
0 0 1
0 0 1

ABC

010
011
100 ,','
101 ;~'
110
111

, J, 1"

~, B

(d)

X ~ Z = A B C J - L =
A- A A
B 64-bit ROM~B c [

(b) (c) (e)

D

B

m

Figure 11.11 The invalid code detector (a) Overall system diagram (b) Internal state diagram (c) State table (d) Connection matrix (e) Circuit diagram for ROM implementation

Programmable logic devices 339

Several main categories of programmable logic devices are available. The Program-
mable Gate Array (PGA), the first PLD to be developed, provides a single level of logic
such as an array of multi-input AND gates. Developed from these was the Program-
mable Logic Array (PLA), which, in essence, actually consists of two logic arrays,
a programmable AND array and a programmable OR array. A PLA is capable
of implementing any logic function in two level sum-of-products form. A special case
of the PLA, and one of the most widely used programmable logic devices, is the
Programmable Array Logic (PAL) device, consisting of a programmable AND array
with a fixed OR array and bi-directional input/output pins. The Programmable Logic
Sequencer (PLS) provides two levels of logic, usually an AND/OR array together with
a number of on-chip single-bit memory elements, some of whose outputs are fed back
to the inputs of the programmable array while others function as output latches.

Uncommitted Logic Arrays (ULAs) are to PGAs and PLAs what mask program-
med ROMs are to PROMs: i.e., the logic designer must send to the ULA manufacturer
a complete and tested gate design to be implemented using that manufacturer's own
general-purpose chip consisting of basic logic 'cells' that can be connected during
manufacture in various different ways to produce different logic gates and therefore
ultimately a semi-custom logic chip, economic only for complex systems in large quantities.
For very complex systems in very large quantities, or if the system required has some
feature(s) that cannot easily be implemented on a general-purpose programmable
device, it may be worthwhile using fully-custom logic design, where a dedicated IC is
designed from scratch, specifically for the logic system required.

The prototyping tool most often used now for medium-sized logic circuit develop-
ment is the Field Programmable Gate Array (FPGA). These currently represent the
most complex form of development of PLDs. The distinctions between the various
types of PLDs, PGAs, PALs, and FPGAs are largely ones of scale and the complexity
and sophistication of the tools, both hardware and software, available from the
manufacturers to aid design and prototyping. A PAL implies a design approach
positioned, roughly speaking, halfway between that of a PGA and a FPGA.

11.10 P rog rammab le gate a r rays (PGAs)

As in the case of a PROM, programming of these devices is carried out by blowing
fusible links at points in the logic array

X V

R

X.X=O

(a) (b)

Figure 11.12 Fusible link arrangements for a PGA
(a) The programmable AND array (b) The output
)(OR gates

specified by the designer. A typical
arrangement is shown in Figure 11.12(a)
where the input X and its complement X
are both connected to the next gate in the
array via separate fusible links. X and X
are produced internally by buffer circuits
having properties similar to open collector
gates, and the vertical connecting line
behaves as a pull-up resistor except that,
as a result of special circuitry included
in the PLD, there is no cross-interaction
(via the vertical connecting line) from any
variable to any other variable. Therefore,

340 Digital logic design

Xo

X.

_1

AND array ~ Controlled
inverters

(a)

A

B

C

D

l
~) ~ fa= BD

f2 = ,~iBCD = A+ B+ C+ D

(b)
Figure 11.13 (a) Block diagram of a PGA (b) Implementation of basic logic functions using a PGA

the wired AND of all the connected variables is produced. In the context of PLDs, this
is usually indicated by drawing a single input into an AND gate symbol, and as many
variables or their complements as required can be connected to the input of the AND
gate symbol. When neither of these links has been blown, the gate output is X . . ~ = 0;
by blowing one or other of the two fusible links, either X or X are left connected to the
gate input, and this will be ANDed with any other variables or complements also left
connected to the same line. Alternatively, if both fusible links are blown, the variable X
is disconnected and does not appear in the expression for the output from this AND
gate symbol. These devices are 'one-time programmable' (OTP).

A PGA may also have XOR gates on each of its output lines, connected as
controlled inverters (see section 4.15). Typical connections to the XOR gate are shown in

Programmable logic devices 341

Figure l l.12(b). When the fusible link is intact, the lower input to the XOR gate is
grounded and it operates in transmission mode. If the fusible link is blown, that input
rises to logic level 1, courtesy of the pull-up resistor, and the gate inverts the signal present
at its other input.

A block diagram of a typical PGA is shown in Figure l l.13(a). It consists of
a number of input lines, one for each Boolean variable. Within the device, the
complement of each of these variables is generated. The input variables and their
complements are then fed to a programmable array of AND gates whose outputs are
fed to the inputs of an array of XOR gates, operating as controlled inverters.

A circuit diagram for a 4-input, 4-output PGA is shown in Figure 11.13(b). The main
part of the AND array consists of intersecting vertical and horizontal lines. A cross at
an intersection indicates the presence of an intact fusible link (i.e. a fusible link that the
designer has not blown), and means that the variable identified by the intersecting
horizontal line is one of the inputs to the wired AND gate identified by the intersecting
vertical line. Since PGAs provide the designer with only a single level of logic, they
have only very limited application.

11.11 Programmable logic arrays (PLAs)

A PLA consists of a programmable AND array, similar to that in a PGA, and which
can be regarded as a Boolean product generator, together with a programmable OR
array similar to the AND array except that each single-input OR gate symbol produces
the OR of all the connected variables. The PLA can be regarded as a logical sum
generator. Usually there are also programmable XOR gates, acting as controlled
inverters, on each of the output lines. Some PLAs have tri-state buffers, having
a common enable line, between the programmable XOR gates and the chip outputs.
The connection matrices are again conventionally drawn as a group of intersecting
lines, as shown in Figure 11.14, and the presence of a fusible link connection in the
AND and OR gates is indicated by crosses at those intersections specified by the
logic designer. Both mask and field programmable logic arrays are available; mask
programmable devices (like mask programmed ROMs) are programmed by the
manufacturer acting on the instructions of the customer, while field programmable
devices (FPLAs) are programmed locally by the purchaser. A typical FPLA has 16
inputs, 48 x 32-input AND gate equivalents, 8 x 48-input OR gate equivalents, and 8
XOR output gates, or, alternatively, 8 tri-state output gates. Clearly, implementation
on this FPLA is limited to functions that have no more than 48 product terms.

A typical application for a PLA arises in code conversion. For example, the conversion
from XS3 code to NBCD is shown in Figure 11.15(a). From this table the K-maps for
the NBCD output signals P, Q, R and S are plotted and minimized in Figure 11.15(b).
Some codes cannot occur in the XS3 code, giving rise to some 'don't care' cells (marked 'X')
which aid the minimisation (see section 3.10). The equations of the output signals are:

P - A B + ACD

Q = BC + BD + BCD

R = C D + C D - C O D

S = D

and the implementation of these functions on a PLA is illustrated in Figure 11.15(c).

342 Digital logic design

X~

X=

X.

f

AND
arra~

,1,,
I I

' ' O R
I !

, , a r r a y
I !

m u

X,X: X,X~

D
x,~)x2

Op = x ,(B x2

~ x,(Bx2

D
"4

) • o2 = x ,e xe

o,

Figure 1 1 . 1 4 Simplified diagram of a programmable logic array (PLA). Using the connections shown, this PLA
produces the XOR and XNOR of two of the input variables

It often happens that when an FPLA has been programmed, the AND gates may
not all have been utilised. However, the programmer need not blow the corresponding
fusible links since when they are intact the output of an unused AND gate is
A - A . B. B N . N = 0 and so it will not affect the output of the OR array to
which it is connected. Leaving unused fusible links intact will also provide a limited
amount of flexibility to the programmer who, at some later stage, may wish to
introduce an additional product term or, alternatively, modify one or more of the
functions already programmed.

PLAs can also be used for implementing more complex Boolean functions, such as
(for example) the following four 6-variable functions:

1 2 3 4
f l = A CL)EP + A E F + A CO + BD

5 3 4 6
f2 = A B E F + A CD + BD + EF

7 8 9 10
f3 = A C D E F + A B C D + A CD + A B D

11 2 4 12 6
f4 = A C D E + A E F + BD + CD + E F

There are 12 separate product terms in these four equations, each of them numbered,
and none of them minterms. Since there are 12 product terms, the PLA must have 12

P r o g r a m m a b l e logic devices 343

XS3 NBCD

A B C D P Q R S

0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1

(a)

A~~~oo o,
00 X X

11 10

01

, 1 G x ~
1 !

lO

P = AB + ACD

�9

~ C D
A B ~ O0 01 11 10

oo~x~ I~1 I~
~ i1'11 I1'1
"1 IJxllx llxll
'~ IUI, [UI

R= CD+ OD
(b)

~\C~oo Ol
ool~y
01

11 X

,o~-~

11 10

, j
Q = BC + BD + BCD

AB'~ ~
00

00 X

01 1

11 1

01 11 10

x "F

I1', X X •

i,
m

S = D

iE>

)(";")(

, , , r

)()',

(c)

Figure 11.15 (a) The XS3 and NBCD codes (b) K-maps for the XS3 to NBCD conversion (c) Implementation of
XS3 to NBCD code converter using a PLA

344 Digital logic design

3 4 5

E>

E>

1 2

,")(

6 7 8 9 10 11 12

,(),

)c)(

[~)r ~()(

i " / ~1 l v ~

Figure 11.16 Boolean function implementation using a PLA

AND gate equivalents for generating these terms. The AND gate outputs are fed to an
OR array which needs the equivalent of four gates. There is a total of (12 x 12)+
(4 • 12)+ 4 - 196 locations for fusible links (each of which must be programmed
as 0 or 1) on the PLA in the design shown in Figure 11.16. To implement the same
four functions using a ROM would require a storage capacity of 2 6 bits for each
function, or a total of 2 6 • 4 - 256 bits (i.e., 256 fusible links), and the functions would
need to be expressed in canonical form. However, programming PLAs is often more
complex than programming ROMs because PLAs are frequently used to implement
Boolean functions with a larger number of variables.

It will be recalled that the Boolean function f - AB + A C generates a static
1-hazard (if implemented as a minimised sum of products) when B = C - 1. In this
case the equation reduces to f - A -t- A = 1, but because of the propagation delay in
the inverter producing A, f - 0 is generated for a short period after A has changed
from 1 to 0, giving a typical static 1-hazard. In general, this hazard is eliminated
by adding the consensus term BC to the original expression which then becomes
f = AB+ A C + BC. For the condition B = C = 1, the equation now reduces to

Programmable logic devices 345

i ,

I" I"
p

I" L i ~f

Figure 11.17 Hazard elimination when
implementing Boolean functions with a PLA

D

f = A + A + 1 and (irrespective of the timing of
the changes in A and A) the output remains at
f = 1 throughout, and the hazard is eliminated.
In a discrete gate (SSI) design this requires an extra
gate; when using a PLA implementation, elimina-
tion of the hazard requires programming the addi-
tional product term BC, as illustrated in Figure
11.17.

When implementing several Boolean functions
on a PLA, minimisation of these functions does
not necessarily offer the optimum implementation.
For example, the two 4-variable functions

1,2,3,5,6,7,10,11,12,13

J~ = ~ 2 , 4 , 6 , 9 , 12, 13

have been plotted in Figure 11.18 and minimised in the normal way. The minimal
equations are

1 2 3 4 5
f l = A D + A C + BC + A B C + BCD

6 7 4 8
and f2 = A CD + B C B + A B C + A CD

Each of the prime implicants has been numbered; eight product terms cover both
functions. Therefore, for their implementation on a PLA, eight AND gates are needed
to generate the eight product terms.

AB CO0__D 01 11 10 AB\oo~CD 01 11 10

oo IP ,l~J oo 0
o, ~,t,J ,J o, r

_

, , , C 2 , , N E I
,o F - ~ ,o 1U

Figure 11.18 K-map plots for two functions to be implemented on a PLA

AB\C o0~D 01 11 10
oo ~-E~ N
o, ~ ~ U
11 1C 1 ~

'~ F - ~
rl

Figure 11.19 Modified
loopings for f l
giving optimum PLA
implementation

An economy of space on the PLA can, however, be achieved
by covering the function fl with the alternative set of loopings
shown in Figure 11.19. The function fl, now in non-minimal
form, may be written

f l = A D + BC + A C D + A B C + B C D
m

The prime implicant A C no longer appears in this equation and has
been replaced by the product term A CD which is now common to
the equations for fl and f2. Because of the modification of the map
loopings, the number of product terms to be implemented has
been reduced from eight to seven, thus providing a more economic

346 Digital logic design

utilisation of space on the PLA. This theme has already been developed in more detail in
sections 3.18 and 3.19.

11.12 Programmable array logic (PAL)

The versatility of a PLA stems from the fact that the output of any of the program-
mable AND gates can be shared among a number of OR gates. There are many
applications where this provision is not required, and so PALs have been developed
in which gates in a programmable AND array are dedicated to a particular output OR
gate, making the OR matrix fixed instead of programmable. The number of AND
gates associated with each OR gate is typically 2, 4, 8 or 16. This gives a programmable
device that is, in principle, less flexible than a PLA but which is often easier to use.
PALs often also include a 'security fuse' which is maintained intact while program-
ming, then after programming the fuse is blown and as a result the PAL is protected
from copying or further programming. This can be a useful feature for a designer
wishing to prevent unauthorised reading and decoding of the PAL matrix contents,
known as 'reverse engineering' of the design.

When implementing Boolean functions with a PAL, the logic equations must be
simplified as for a PLA, and since the AND gates are dedicated to a particular OR
gate, term sharing is not possible. This means that there is little advantage in searching
for optimum solutions as there would be for PLA implementations.

A simple PAL structure is illustrated in Figure 11.20(a). This device has two input
lines, two AND gate equivalents, each having programmable input connections
to four vertical lines, and one non-programmable (fixed circuit) 2-input OR gate.
With the fusible links intact, the output of both AND gates is A. A. B. /~ - 0 and
so the OR gate output is f - 0. In Figure 11.20(b) this elementary PAL has been
programmed by selectively blowing the fusible links so that the XOR function
f - AB + AB is realised.

Additional flexibility can be provided if the manufacturer places tri-state buffers
between the outputs of the OR gates and the external connecting pins. In the elementary
PAL structure shown in Figure 11.21, a programmable AND gate provides the enable
signal X for the tri-state output buffer. There is also a buffer with its input connected to

A B

m

7

A B

I ,~B

TII
(a) (b)

Figure 11.20 A simple PAL (a) before programming, (b) after programming

Programmable logic devices 347

A ~ B B C ~' Z Z

X
"

, , ,

T I q<l
Z (I/0 pin)

Figure 11.21 Programmable I /0 connection pin in a simple unprogrammed PAL

n

Z, sending Z and Z signals to the AND array. This arrangement is reminiscent of the
bi-directional tri-state connection of a device to a system bus, and gives bi-directional
capability to the connection pins of the PAL. The external connection pin Z can now
be used in four different operating modes, depending upon the programming of the
enable signal X:

1. Dedicated input pin: the AND gate generating X is programmed so that X = 0
always, and the tri-state buffer is permanently disabled (i.e. is always in the high
impedance state). Pin Z is now always used as an input pin and has direct access to
the programmable AND array, and in this case another pin(s) would need to be
used for output.

2. Dedicated output pin: the AND gate generating X is programmed so that X = 1
always, and the tri-state buffer is permanently enabled. Pin Z is now always used as
an output pin.

3. Controlled output pin: the AND gate generating X is programmed so that X
can be either 0 or 1 depending upon the present state of its input signals.
Pin Z can now be either an output pin (X - 1) or is a disabled (or input)
pin (X = 0).

4. Output pin with feedback: pin Z provides controlled feedback to the AND array.
When the output of the controlling AND gate is X 0, the tri-state gate is disabled
and there is no feedback; when X = 1, the tri-state gate is enabled and signal Z is
fed back to the AND array.

Unlike PLAs, PALs have manufacturers' type numbers that indicate directly the
basic PAL internal structure. For a PAL having type number pXq, p is the number of
inputs to the AND matrix, q is the number of outputs, and X indicates whether the
outputs are active high (X replaced by H), active low (X replaced by L), programmable
(X replaced by P), or other possibilities. The other important information required by
the designer is the number of inputs per OR gate, which must be obtained from the
manufacturer's catalogue; many PALs are manufactured having two inputs per OR gate.

As an example of the use of a PAL, a circuit for converting from NBCD to the 5421
code will be designed. The truth table for the conversion is shown in Figure 11.22(a)
and the K-maps for the 5421 code outputs, P, Q, R, and S are plotted in Figure 11.22(b).

348 Digital logic design

(a)

NBCD 5421
A B C D P Q R S
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0

(b)
CD CD

A s \ oo ol 11 lo A s \ oo ol 11 lo

O0 O0

o, f, Fq ' o ,~ ,,fxLx~xjx: ,, ~)x
~o LI ~ x x ~o x

P=A+ BD+ BC Q= BCD+ AD
CD CD

A B ~ O0 01 11 10 A B ~ O0 01 11 10

oo Z y oo c ~
01 1 01 1~

/

,o ,_9 s N ,o ,_9 •
R= CD+ AD+ BC S = A D + ;4BD+ BCD

A~ B B O C D D X ~ Y Y'ZZ

)

r

",)

, r

c
� 9

r

,j

ii il
BI

!!
II
Bi

II
II

II
II

II

c

w s

,a � 9 ~
� 9 1 4 9

t | ;

c

r 1 6 2

' ~# '%

~ P

~ Q

~E> -* R

-," S

~> -~ X

~> -. y

~ Z

(c)

Figure 11.22 NBCD to 5421 code converter (a) Truth table (b) K-map plots (c) Implementation using a type
lOH8 PAL

(The 'don't care' terms in the NBCD code have been used to simplify the final
equations.) Each of the outputs has been simplified and their minimal functions are
written under the relevant K-map plot.

The designer must now choose a suitable PAL for implementing the four output
functions. Since there are only four input signals to the code converter, a PAL having
the smallest number of available inputs would be selected. For example, PAL type
10H8 has 10 inputs and 8 outputs. A further examination of the manufacturer's data
sheet might reveal that the selected PAL only provides two inputs per OR gate,
whereas the output signals P, R, and S are each obtained from a sum of three terms.

Programmable logic devices 349

This problem can be overcome by splitting the equations for P, R, and S into two
sections. For example,

P - A + (BD + BC) - - A + X

where X = BD + BC. X can be generated at the output of one of the eight 2-input
OR gates and may be fed back to one of the six unused input pins of the PAL. It can
then be combined with A to form the term A + X at the output of one of the remaining
unused 2-input OR gates. Similarly, the functions R and S can also be sectionalised
so that

u

R - CD + (AD + BC) - CD + Y

S - A D + (A B D + B C D) - A D + Z

where clearly Y - A D + B C and Z - A B D + B C D . Signals Y and Z are fed back to
m

the input of the PAL and combined with CD and A D respectively to form terms R and S
at the output.

Implementation of the encoder is shown in Figure 11.22(c). Because of the feedback
of X, Y, and Z, seven out of the ten input pins are utilised. Also, because of the
sectionalisation of the output signals P, R, and S, seven out of the eight output pins are
used. However, in this implementation, the signals P, R, and S are generated after two
passes through the PAL giving increased propagation delay in these signals.

11.13 Programmable logic sequencers (PLSs)

The essential features of a PLS are illustrated in the block diagram shown in Figure 11.23.
In addition to the programmable AND and OR arrays provided on a PLA, the PLS

Inputs

J

AND array

t t

OR array

r

t t
[Output latches J,

t t ck

PR CL

_ - . , _ _

t Flip-
i flops

Figure 11.23 Block diagram of a programmable logic sequencer

350 Digital logic design

has a number of on-chip single-bit memory elements which may be SR, JK or D-type
flip-flops. In some cases, control of the flip-flops is available so that JK flip-flops
can be converted to D-type flip-flops. Additionally, facilities are provided for latching
the outputs.

PLSs are primarily intended for implementing synchronous sequential state
machines of either the Mealy or the Moore type (see chapter 8). The flip-flop outputs
represent the state variables of the state machine. Some of the flip-flop outputs are fed
back to the programmable AND/OR arrays where they can be combined with the
machine inputs to generate the flip-flop input signals. Other flip-flop outputs can be
combined with machine inputs to generate the machine outputs. A clock signal is
provided by an external source, and asynchronous preset and clear facilities for the
flip-flops may also be available.

As an example of the use of a PLS, a hexadecimal counter will be designed. It will be
assumed that the on-chip single-bit memory elements on the selected PLS are D-type
flip-flops and the output of the counter will be decoded ready for directly driving
a conventional 7-segment display.

The state table for the hexadecimal counter is shown in Figure 11.24(a). The inputs
to the four flip-flops required for each state change are shown on the right of the state
table, and have been obtained with the aid of the steering table for the D-type flip-flop
shown in Figure 11.24(b). K-maps have been plotted and simplified for each flip-flop
input in Figure 11.24(c), and the minimum form of the input equations obtained
from them are

Do = C.D + BD + A D + A B C {) Do = A B + A B

Dc = A B C + A C + B C DA -- A.

The segment allocation for the seven-segment display is defined in Figure 11.25(a), as
well as the segmental representation of each of the 16 hexadecimal digits. A truth table
for the seven-segment decoder is shown in Figure 11.25(b), and the implementation of
counter and display decode logic is shown in Figure 11.25(c).

Sixteen product lines are required for decoding the hexadecimal digits. As an
example, the hexadecimal digit A (corresponding to the binary code 1010) requires
that segments P, Q, R, T, U and V should be illuminated. Hence, for this binary
combination, the signal for driving each of these segments must be set to 1, and the
signal for segment S must be set to 0. The functions for all of the segments are easily
read from the truth table. For example, the function for segment P is

P -- Z 0, 2, 3, 5, 6, 7, 8, 9, A, C, E, F

and the corresponding expressions for the other segments are obtained similarly.
As a further example of implementing a synchronous sequential machine using

a PLS, consider the design of an invalid code detector for XS3 codes using a PLS with
on-chip D-type flip-flops. Four-bit XS3 codes are fed to the detector, most significant
digit first, and the machine is to be designed to give an active high output when an
invalid code is received.

The ASM chart for the detector is shown in Figure 11.26(a). Since there are eleven
states on the chart, four flip-flops (2 4-- 16,23= 8) are required to implement
the machine. The column headed 'next state' in the state table (see Figure 11.26(b))
is a tabulation of the flip-flop input functions. These functions are relatively sparse

Programmable logic devices 351

(a) '
P r e s e n t
s t a t e

D C B
.

0 0 0
0 0 0
0 0 I

0 0 I
0 I 0

0 I 0
0 I I

0 I I

I 0 0

I 0 0

I 0 I
I 0 I

I I 0

I I 0

I I I
I I I

F
,4

0
I

0
I
0
I
0
I

0
I

0
I

0
I

0
I

i

D

0 0
0 0
0 0
0 I
0 I

I

0, , I
O ' I

I 0

I 0

I 0

I 0
I I

I I

I I

I I
0

N e x t
s t a t e

i i

C B 1 A

" "- i

0 I
I

I I

0
0

I
I

0 0

0
I 0

I
0 0

0
I 0

I
0 ~ 0 0

Flip-flop
inputs

_ l

" l o, oc on ~o,

0 0
0 0 0

0 0
0 ~0 I
I ' 0 I

0 0 I

I 0 i I

I ' 0

I I 0

I 0

I I
I

I I

I

I I
0

0
I

I

0
0
I
I

0
0
I

0 I
I 0

I ~ 0
i i i
I I

0 0

I

0
I

0
I

O ,
I

0
I

0
I
0
I

0
I
0

_

(b)
. , ~

ot ~/t+St

0 0

0 I
I 0

I I

o t

0

I

0

I
J

O C ~ 00~8'4__ OI II l0 D~"~ 0 0 " 8 ' 4 01 II 10 DC4'400 OI

oo I oo U ' ,x 'T'
o, | F , ,

r r F ,, L . ,,
,olt,j , J , L 0 ,o fq ,,
oo.~o+So+~o+Aoc5 o== Ao~+~c +ic
B,d , ,~~. o. ,..,,:-'~

O0 i ~ ~

Oi: i , I

I l l I I
i

10i , ~ 1 i ,
o D,=A

(c)

I0

I

I I

'~ ',5
- - o

O n �9 Aa§

Figure 11.24 (a) State table for the hexadecimal counter (b) Steering table for the D-type flip-flop (c) K-maps for
the hexadecimal counter

(few ls and 'don't care' terms compared to the total number of minterms), so they have
been plotted on the reduced dimension maps (see sections 3.20 to 3.23) shown in
Figure 11.27(a). After simplification, minimised excitation functions have been read
directly from these maps and are written below the maps.

The output function Z has been plotted on a 5-variable K-map in Figure 11.27(b),
and the following equations are obtained from the X - 0 and X - 1 maps respectively:

Z x = o - X P S + X P R + X Q R S

Z x = l - X P S + X Q R + X Q R S

352 Digital logic design

I FI --_/////--/
/ _ _

P

(a) U/v'-~"70
- . = .= , .

,/_._/,,
S

/ l__/ l_---] [l / I - - / / - - / - -
I /_J I/ i L I L L--I IZ I--

(b)

D

0

S t a t e of
counter

C �9 ,4

0 0 0 0

0 0 0 I
0 0 I 0
0 0 I I

0 m 0 0

0 I 0 I

0 I I 0
I I I

I 0 0 0

I 0 0 I
I 0 ~ 0

i 0 I t

I I 0 0
: 0 I

I 0

I I

Segment inputs for O seven-
seqment d e c o d e r

P 0 R

. _m

I I I

0 I I

I I 0

I I I

0 I I

I 0 I

I Ol I

I I I

I I I

I I I

I I I

0 0 I

I 0 0

0 I I

i o o

I 0 0

S T u J v
1

I I I 0

0 0 0 0
I I 0 I

I 0 0 I

0 0 I I

I 0 I I

I I I I

0 0 0 0

I I I I

0 0 ~ I
0 I I

I i I I

I I l 0

I I 0 I

I I I I

0 I I I

(c)

B
7, , ,

C " , C ,,~
)()(,.,C

~ X X .,%'(),"

,.., ,..() (),"

0 1 2 3 4 5 6 7 8 9 A B C D E F

v~ J~ ~r~ v~ v~ vk ~ J

,,% -,- ..)" X , ' ;~C)(; C ,,,'"
l

ammmmmmmmm
m m m m m,. am,. ~m,.

Ni l N ," % / % /
i % i �9 J% /%

i I / I I I i

.., ; , ; , ;,,

,.,. ;" ;C ,,,"

s,, / x ~ v

)- >(; ()(;~ ,." ,,, ; (

),, ' (

L

. . . . ,) ,,', ,'(>()()~', P
o

. . . . '," , ' %" ' () () ' S a~
"% E

,", ,, ' ; " , ("(, , U it.

. ~ V 19.

F i g u r e 11 .25 (a) Seven-segment display representation of hexadecimal digits (b) Truth table for seven-segment
decoder (c) Implementation of the hexadecimal counter using a PLS

Programmable logic devices 353

(a)

(b)

. . . ,

-I I-

_ 1

 rOl, :, i-lOll,
(~ 1 0 0 0 1 ~ . , 0 1 0 t (~ 0101

i ~ , , \ 1 l ' - - ' - ~ v \ l I i

lOlO . L (B) lool I 0 , 0111 ~ r ~ (~) 0111
! I _ 1 / , , oX,,..9_J z = , I |] Z '= 1 L ~ v ~ _ _ o - ! I

1] - V i] (~) 1 0 0 1 1 I i - , C / i !

State Present Next state
Input symbol, state . Flip-flop inputs.
X P Q IR S Dp Do DR Ds

. . ._ ~

0 (~ 0 0] 0 0 0 0 0 1
I

i 0 (~ I0 0 ' ,0 1 1 0 0 0
0 (~ 0 0] 1 0 0 0 1 1
0 C) 0 011 1 , 0 0 0 0

- I

0 C) 0 1 0 0 0 0 1 0 ~
0 (~ 0 1 0 1 0 1 1 0
0 (~) 0 1 1 0 0 0 0 0
0 (~) 0 1 1 1 0 0 0 0

. /

0 (j~) 1 0 0 0 1 0 0 1

0 (j2) 1 0 0 1 0 0 0 0
0 (~) 1 0 1 0 0 0 0 0
0 - 1 0 1 1 , X X X X i

r 0 - 1 1 O 0 X X X X I
! 0 - 1 1 0 1 X X X X ' I

0 - 1 1 1 0 X X X X
0 - 1 1 1 1 X X X X

, , , , ,

1 (~) 0 0 0 0 0 1 0 0
1 ~ O 0 0 1 0 0 1 0
I | o o : I o o o 1 1

L Q o o 1 1 o o o o

1 ~ 0 1 O 0 0 1 0 1
1 (~) 0 1 0 1 0 1 1 1

i 1 ~ 1 0 1 1 0 0 0 0 0
1 . Q 0 1 . j 1 1 0 0 0 0

. ~ - 6 -o- 1 (~ 0 1 0 1 0
1 (j~) 1 0 0 1 0 0 0 0
1 (~) 1 0 1 0 0 0 0 0
1 - 1 0 1 1 X X X X

- I

1 - 1 1
1 - 1 1
1 - 1 1
1 - 1 1

O 0 X X X X
0 1 X X X X
1 0 X X X X ,
1 1 X X X X

Figure 11.26 Design of an XS3 invalid code detector (a) A S M chart (b) State table

3 5 4 Digital logic design

(a) X ~ O O0 01 11 1 0

RSX+

RS_~§
RSX

Dp- XPQRS + PRS

11 1
.

0 ~ RSX

RSX
1 - +#s~ (x +RS~

DR = XQR + XPRS + XPRS + PQRS

x • Q O0 01 11 10 F--"
0 X RSX

DQ-- XPRS + QRS

11 1
, - ~

0 X +RSX

1

Ds = XQR + PQRS + XQRS

(b) ~RS
PO'~O0 01 11 10

O0

Ol 117"
,, x rx I~ x-1
,o , L ~ _ j

X=O

~ R S
p Q ~ O 0 01 11 10

O0

Ol 5 - , -q
,, x S ~ x _ J
lO ~

X - 1

(c)

Ck

X

ID"
P

Q

L~>~_;~ ~ ,,,

R

LC>._,
~ J

S

-!SDs 1(1(1(
I)

~RDR
>

ODo
>

PDp
~ >

',.. ;,,

S~

l
=

V

%

,, ,,

%

v
s~

,)'

V ~P
s% f

"[~,'

, ,"(] (�9

,) (,',,(

v ~,, ,, ,,,

I

x x

x

i .

X '

!

i i

Figure 11.27 (a) Reduced-dimension K-maps for flip-flop input functions (b) Five-variable K-map for output
function Z (c) PLS implementation

Programmable logic devices 355

AND
matrix

[1
T,T

Figure 11.28

<l

OE

Ck

[~ Output
pin

Output connections on a PAL-based P L S

Combining these two equations gives

Z - PS + X P R + X Q R + QRS.

(Alternatively, the same result is obtainable from the equivalent reduced-dimension
map for the output function, although with greater difficulty, because of the complex
functions involved.) The PLS implementation of the invalid code detector is shown in
Figure 11.27(c).

Manufacturers have also modified PALs to behave as PLSs by incorporating
D-type flip-flops on the PAL chip. A typical example is the type 16R6 which provides
16 AND gate inputs and six rising edge-triggered D-type flip-flops, having a common
external clock connection. The flip-flop outputs are taken to the external pins
via tri-state inverting buffers having a common output enable signal (OE). When this
device is used in the design of a synchronous sequential machine, the flip-flops
(providing feedback to the AND matrix) can change state when the tri-state output
buffers are disabled, as shown in Figure 11.28.

I 1.14 Field programmable gate arrays (FPGAs)

FPGAs are types of VLSI chip that have most of the superficial characteristics of
PALs, i.e. many types of complex circuits can be designed using one general-purpose
IC as the basis. However, the design is initially produced using specially-designed
CAD software. The necessary software is specifically intended for, and dedicated to,
the particular brand of FPGA used, as there are several very different and mutually
exclusive FPGA 'architectures', or organisations of the FPGA chip, available com-
mercially. When the design in the CAD system is complete, the information relating
to the design may then be sent electrically to the FPGA device which is capable of
being configured internally in order to produce a single IC solution to the design.
Thus, the design philosophy is moving away from the designer having to understand
the detailed internal workings of the PAL chip in order to make best use of the
resources available, and instead the designer now specifies the final result required
and expects the dedicated software to be able to make these decisions for the FPGA
to be used.

Usually also, custom FPGA software is able to implement multi-level or hierarchical
logic designs, where a sub-circuit consisting of basic logic gates may be defined and
used as a single block, perhaps many times in the design. Further combinations of
several blocks may be defined as a further block which may itself be used many times,

356 Digital logic design

with usually little or ideally no limitations on the internal size of the blocks or how
many block definitions may be 'nested' in this manner. The latest versions of the design
software from the leading companies in this field may incorporate the possibility of
using option packages to help designers working in particular specialist fields, such as
digital audio. Such sophistication of design is beyond the capability of simple PAL
architectures which are designed to implement only Boolean canonical forms and
relatively simple Boolean expressions.

The FPGA solution for logic circuits is now commonly used for medium-sized logic
designs where the complexity is too great for a cost-effective solution using individual
component ICs and where the final circuit must be produced on only a single IC.
For the large-scale manufacture of a design where very large numbers of identical logic
circuits are required, typically one or more for each system unit manufactured, the most
cost-effective route remains an uncommitted logic array (ULA) or a fully-custom- or
semi-custom-designed IC. An FPGA is necessarily more complex than would be
a custom-designed IC or a mask-programmed ULA.

The detailed design of custom and semi-custom ICs is complex and depends funda-
mentally upon the particular methods of, and IC architecture provided by, the man-
ufacturer, and are necessarily beyond the scope of this general text. However, various
types of FPGAs are now available and their characteristics may be summarised as
follows. Some are programmable only once (OTP) whilst others are programmable
several times, depending upon the particular technology used to store the user's logic
circuit design on-chip.

Clearly, the most flexible approach is to store the design information on-chip in
a section of the IC that bears many resemblances to conventional RAM which, in
principle, is capable of being written to, and read from, an unlimited number of times.
However, just as with conventional RAM, the programming information stored
on-chip is completely and immediately lost when power is removed, i.e. the RAM is
'volatile'. These types of FPGAs are usually used with external 'non-volatile' memory,
for long-term storage of the chip configuration patterns, together with a hardwired sub-
system for automatically loading the FPGA with its intended programming informa-
tion. This approach usually gives the slowest logic and the greatest propagation times in
practice. This type of FPGA is particularly suited for 'proof of concept' prototyping,
where the problems associated with the volatile configuration memory are minimal.

Other approaches include the use of field-programmable fusible links or 'anti-fuses'
of varying types, which operate faster than RAM and are useful where increased speed
is required. These types are 'non-volatile' and retain their programmed information
after the removal of power, thus eliminating the need for outboard storage of the
programming information. However, just as with fusible link PROMs, once a fusible
link is open-circuited, or an 'anti-fuse' is short-circuited, the process cannot be
reversed, so that apart from minor changes where an extra fuse is opened or an
additional 'anti-fuse' is shorted the programming information cannot be revised once
it has been committed to the chip. This means that, as with programming information
stored in mask-programmed ROM, the logic design must be essentially complete at
the time of programming the chip, with little or no practical possibility of modifying
the circuit corresponding to this stored information, other than by starting again with
a new and unprogrammed chip. These characteristics mean that these types of FPGA
may be considered suitable for small-volume manufacturing runs once the design has
been finalised.

Programmable logic devices 357

A typical FPGA chip is organised around a large two-dimensional array of prog-
rammable logic block elements together with a number of input/output blocks at the chip
periphery. These handle the interfacing from the internal chip architecture to the circuitry
external to the chip, including the logic signals to and from the programmable logic
blocks as well as the signals required for programming, or setting up, the appropriate
logic configurations inside the programmable logic blocks. There will also be internal
wiring between the input/output blocks and the array of programmable logic blocks, and
interconnection switches for connection of the logic blocks to the input/output blocks.

The differences between the various available brands of FPGAs arise mainly from
differences in the types and complexities of the different manufacturers' programmable
logic blocks, the details of the programming signals required, and the overall size and
complexity of the chips that are manufactured. Unfortunately, at the time of writing,
there is no 'industry-standard' FPGA chip architecture, in contrast to, for example, the
standard 74TTL series of basic logic gates that are produced to substantially the same
specifications by many companies world-wide. This means that FPGA chips from one
manufacturer are usually incompatible with those from others, and without a complete
system redesign are often not replaceable by another manufacturer's FPGA. However,
just as SSI and MSI logic chip pinout design eventually converged upon one common
industry-standard (i.e., the 74TTL series of chips, now extended to CMOS tech-
nologies), in the future it may be that FPGA design will also converge upon one type
of industry-standard architecture or at least, perhaps, evolve in such a way that the
available software packages may program a variety of differing FPGA chips without
the user needing to know which particular FPGA will be used. There are already signs
of a certain amount of convergence from some companies which offer devices pre-
programmed according to the output from other companies' dedicated FPGA CAD
systems. However, at the time of writing, it is not clear what that standard will be as
the technology is too immature. In all cases, intending users must refer to the full data
available from the respective manufacturers, as only a broad outline of the principles
involved can be given here.

The 'Xilinx' family of FPGAs has been chosen here as the most typical exemplar of
this class of device, and a brief outline of the principal features of some other types is
also given.

11.15 Xilinx field programmable gate arrays

The Xilinx family of FPGAs is amongst the most popular types of FPGA, and is
frequently encountered in prototyping contexts. This type of FPGA is configured by
on-chip CMOS static RAM. Each programmable element or 'configurable logic
block', CLB, is controlled by a corresponding memory cell, in which binary values
are stored during programming in order to define the function and connectivity of that
programmable element (see Figure 11.29). Multiplexers (MUXs) figure prominently in
the organisation and operation of this type of FPGA, as they offer a flexible approach
to designing reprogrammable logic (see Figure 11.30). Amongst the logic functions
implemented in the Xilinx repertoire are:

1. Multiplexers taking previous signals as data inputs and whose address lines are
connected to binary values downloaded, i.e. set up, by the controlling software or

358 Digital logic design

i ii :il
CLB CLB

l i t I t

~I t ~

CLB

| t

OSC

1

CLB CLB CLB CLB

l i t i l t - l t l / l t
Routing Channels

~ | t "'~

CLB

I t ~ /

CLB

I t

CLB CLB CLB CLB

| t I t I t 1 t

VersaRing Routing Channel

,,]
START
-UP

Rev 2.0

Figure 11.29 Basic block diagram of Xilinx 'Spartan' FPGAs

configuration program. So, for example, a 2-to-I multiplexer may be used
to determine which one of any two possible signals should be used to clock
a flip-flop. This would be chosen at the time of programming the FPGA, and then
during its normal operation would not be changed unless an error were found in the
logic design. This simple programmable component is intended to be used as
a means of introducing flexibility into the logic circuit, without the necessity of
making and breaking physical connections to route the correct clocking signal to
the flip-flop.

2. 'Look-up tables' (LUTs), which are analogous to logic functions implemented using a
2"-to - 1 multiplexer. They may be regarded as multiplexers having n address lines, and
the 2" data input lines are connected to binary values (0 or 1) downloaded by the
controlling software. Thus, in a simple example using a 4-to-1 multiplexer controlled
by address inputs A and B (and numbering the data inputs respectively as (00)2, (01)2,
(10)2, (1 1)2), downloading the binary values {0, 0,0, 1} respectively would lead to the
logic function A AND B, which could easily be changed to A XOR B by downloading
the binary values {0, 1, 1,0}. Clearly, as there is one data input on the multiplexer
corresponding to each possible minterm, any Boolean function of several binary
variables may be programmed in this manner, and may be reprogrammed to any
other Boolean function simply by downloading a different set of binary values.

Programmable logic devices 359

..-i i h
"" I I ;;

_ _ , , ,

~~ . Multiplexer Controlled
by Configuration Program

DIN

H1

SR

EC

Figure 11.30 Signal interface circuit between external
signals and configurable logic blocks (CLBs) in Xilinx
'Spartan' FPGAs. The externally applied signals are C1,
C2, C3, and C4, and the CLBs are controlled by the
signals DIN, H1, SR, and EC

3. Programmable elements (CLBs) also
contain 'general purpose' logic com-
ponents sometimes known collo-
quially as 'glue logic', since they are
needed to 'glue' the various other
logic components together electric-
ally and to perform other mundane
logic functions that may be required.
These may include D-type flip-flops
with direct Set and Reset inputs con-
nected to programmable MUXs and
LUTs in a manner that hopefully
offers the user most flexibility in
programming required logic circuits
(see Figure 11.31).

4. There are also programmable input/
output blocks (IOBs) around the
periphery of the chip for inter-
facing the external signals of various
types to the internal chip workings
(see Figure 11.32). These incorporate
clocked flip-flops, so that (as well as
PLAs and PALs) the functions of
PLSs may be implemented by
these devices.

Also included in the Xilinx architecture are signal routing arrangements for
directing signals to and from the various programmable CLBs. There are direct
horizontal and vertical interconnects between adjacent CLBs giving the minimum
signal delay, and fast interconnection lines running vertically and horizontally
across the entire chip. These are intended primarily for use by critical global
signals such as clocking signals that must be synchronised as accurately as possible
over the entire design. There are also general-purpose interconnects running verti-
cally and horizontally, together with programmable routing switches that can route
horizontal signals to a vertical interconnect and vice-versa, and that route non-
critical signals between CLBs whose delays depend upon the details of the chip
positions of the sending and receiving CLBs (see Figure 11.33). The details of
the structure of the CLBs and the interconnects will often be irrelevant to
a typical user who employs the dedicated software to lay out the required design,
as the software will attempt to ensure that the available CLBs are utilised in the
optimal manner.

Obviously, the performance of a system designed using these chips depends critically
upon the exact programming implementation used for any particular circuit, and so
the design software will typically undertake an analysis and simulation to predict the
various timing delays in the final circuit. One typical member of the Xilinx FPGA
family, the XC3090, contains 144 IOBs and 320 CLBs, claimed to be the equivalent of
9000 conventional two-input logic gates.

360 Dig i ta l logic design

(a)

G-LUT

G4 !G4

Logic
G3 G3 Function

of
G2 G2 G1-G4

G1 G1

SR

H1

DIN

F4 F4

F3 F3 Logic
Function

of
F2 F2 F1-F4

F1 " F1

F-LUT

K

EC

T Ir-~,- i

!i ,.,u, G Logic
Function

H1 of H

I i~ I F,G,H1

TL l _ j A

~] _ Multiplexer controlled [by configuration program L

I
Tll D

I
SR

D

CK

EC

I
SR

D

CK

EC

Q YQ

Q - - XQ

(b) SR

r T
1

I GND

I
I GSR
I

DI

CK

Ecl~
I

I,

I

V

SD
Q

RD

I
L..

~ Multiplexer Controlled
by Configuration Program

- - -1

I
I
I
I

i --Jo
I
I
I
I
I

Rev 1 . 1 1

Figure 11.31 (a) Simplified logic diagram of a configurable logic block (CLB) in Xilinx 'Spartan' FPGAs
(b) The enhanced functionality of the basic flip-flops used in this family of FPGAs, showing how their operation
is controlled by the configuration program

Programmable logic devices 361

Figure 11.32 Simplified block diagram of an input~output block & Xilinx 'Spartan' FPGAs

11.16 Actel programmable gate arrays

The Actel Programmable Gate Array architecture uses a unique 'anti-fuse' technology,
where small semiconductor regions defined in the chip structure initially have a high
resistance when manufactured, but the application of a high current will modify the
semiconductor material so that it has a low resistance. This action is similar to the well-
known and unwanted failure mechanism often observed in poor designs using discrete
semiconductor devices! Clearly, by arranging for the members of a large array of such
'anti-fuses' to be individually addressable externally by a suitable current source, it is
possible to store programming information that can be later used to route internal
logic signals to appropriate destinations, thus giving significant flexibility in designing
specific logic circuits starting from an original general-purpose uncommitted array.
The 'anti-fuses' have a chip area much smaller than more conventional fusible links or
the individual RAM cells in FPGAs, using onboard RAM to store programming
information, so that relatively complex general-purpose arrays may be fabricated using
this technology.

Actel gate arrays use input/output modules for communicating with the external
circuitry, logic modules consisting basically of multiplexers with programmable
inputs, inter-module interconnections, special programming logic for managing the
'anti-fuses', and logic for testing purposes. The logic modules are arranged in
rows separated by interconnects, which run the width of the chip but can also be
subdivided to make several adjacent interconnects. There are also some additional
interconnects running perpendicular to the rows of logic modules. 'Anti-fuses' are
placed at the intersection of horizontal and vertical interconnects, so that logic
signals may be routed along rectilinear paths between modules and may change
direction from horizontal to vertical and vice-versa several times between modules.

362 Digital logic design

Figure 11.33 (a) CLB routing channels and &terface block diagram for Xilinx 'Spartan' FPGAs. Blocks
labelled 'PSM' are programmable switch matrices (b) Programmable switch matrix in Xilinx 'Spartan' FPGAs.
This circuit allows logic signals on the horizontally-running bus to be selectively routed to and from logic signals on
the vertically-running bus

Additionally, sufficient 'blank' interconnections are provided so that most signal
connections can, in practice, be implemented using at most four 'anti-fuse' crossings.
There is a speed penalty introduced by each 'anti-fuse' traversed by a logic signal,
because the electrical resistance R associated with an 'anti-fuse' is not zero, as it would
be if its performance were ideal, and so in conjunction with the stray capacitance C
of the relatively long interconnect lines there is a time delay of the order of RC per
'anti-fuse' crossed. However, the most critical signals, such as clocks, must be delayed
least and can usually be routed using just two 'anti-fuses'. The less critical signals can
be accommodated by using a greater number of 'anti-fuse' crossings.

Programmable logic devices 363

The basic Actel logic module consists of three 2-to-1 multiplexers with separate
programmable single-bit address lines, one having its address line driven from a 2-input
OR gate. With this structure, it is possible to construct a wide variety of basic logic
elements, such as look-up tables of Boolean functions, in a manner similar to that used
in Xilinx FPGAs. Circuits behaving as simple latches and flip-flops may be constructed
by connecting a logic module output to one of its own inputs, giving the requisite logic
signal feedback needed.

The first generation of the Actel FPGAs contained up to 2000 logic gates.
The manufacturer claimed a flexibility in practice equivalent to around three times
as many gates in a more conventional FPGA, because so much of the programming is
done using 'anti-fuses' instead of RAM cells, and also because the chip architecture
used is particularly versatile. More recent devices, such as the eX256, contain up to
12000 logic gates including 256 registers and 512 logic cells, have 130 input/output
lines, and the internal clock operates at up to 350 MHz with propagation delays as low
as 4.1ns. This type of technology, because of its advantage of non-volatility, gives
particular advantages in high-volume production.

Other companies, such as Integrated Logic Systems, make broadly similar program-
mable gate arrays using a technology called 'Metal Bridge Architecture' which involves
customising a metal layer at manufacture. Their devices can currently accommodate
designs using 40000 gate equivalents, 40 kbits of RAM, and provide 324 pins for
connecting to external circuitry.

11.17 Altera erasable programmable logic devices

Early types of PLDs available from Altera were based upon UV EPROM technology.
Using this technology in conjunction with PLD technology on the same chip produces
EPLDs (UV Erasable Programmable Logic Devices). Clearly, such devices have the
advantage of re-usability in case incorrect programming is discovered later, or if
revised programming becomes necessary, and so are best suited to prototyping or
low-volume production runs.

More recent devices are based around EEPROMs. These devices have two advan-
tages over EPLDs. Firstly, less expensive packages can be used since a UV window is
not needed, and secondly, if a small amount of reprogramming becomes necessary
then it is possible to reprogram a small part of the design without erasing the entire
contents of the device and starting again. Whether this is feasible in any particular
situation depends upon the extent of the reprogramming necessary, of course.

As in the case of the other FPGAs discussed in previous sections, the basis of the
logic functions implementable using Altera PLDs is a general-purpose logic block,
here called a 'macrocell' or 'logic array block' (LAB). Macrocells and LABs can be
configured in a variety of ways to perform a number of different elementary logic
functions as flexibly as possible.

Altera macrocells contain an AND/OR lattice for producing a Boolean function in the
form of a sum-of-products of the logic signals input to that macrocell, an XOR gate to
invert the sum-of-products according to whether a further 'invert control' input is high or
low, a D-type flip-flop for 'sample-and-hold' under control of a clock signal, some
programmable logic for taking the output signal back to the AND/OR lattice to produce
logic functions with feedback, and a tri-state buffer for driving the extemal pins of the

364 Digital logic design

chip. The main programmability in these devices arises from the AND/OR lattice that is
programmed in a manner broadly similar to those in PALs except that when the device is
UV-erased then all the possible lattice 'connections' are made, and those not wanted must
be 'destroyed' by changing the respective bits in the associated onboard EPROM con-
trolling the chip's programming. Multiplexers within the macroceU allow feedback, clock,
and output sections to be programmed independently. The clock section can be pro-
grammed to be under the control of global clock signals (synchronous mode) or a clock
signal generated within the same macrocell from the AND/OR lattice (asynchronous
mode). JK flip-flops and SR latches are not directly provided, but can easily be con-
structed by the programmer using the basic D-type flip-flop available, together with some
appropriate extra logic implemented using the AND/OR lattice.

LABs, as used on the later Altera FLEX devices, consist of a number, typically
eight or 16, of individual macrocells or Logic Elements (LEs) containing basic logic
functions such as a four-input look-up-table (LUT), a programmable register, and
a capability for producing additional Boolean products. The main benefit of this
organisation is that Boolean product terms needed in several parts of the logic design
may be shared between macrocells, without any need to repeat their generation within
each macrocell. This can increase the flexibility of the chips in producing large designs
that require some product terms to be used in several places within the design.
The FLEX chips also include a smaller number of 'Embedded Array Blocks' (EABs)
that are intended for use as memories of various types. Each EAB provides the
equivalent of up to 4kbits of fast-access memory. A more recent family of Altera
devices, the 'APEX' series, contain 'Embedded System Blocks' (ESBs) to implement
products of Boolean variables, LUTs, RAM, ROM and other memory types includ-
ing Content Addressable Memory or CAM. CAM is designed so that a complete
data record may be retrieved from memory by specifying a part only of the record
required, rather than by specifying its address within the memory. All these features
once again are intended to maximise the flexibility of using these devices in practical
circuits, since the manufacturer has no idea of the details of the design that will
eventually be implemented using one of these PLDs but assumes that most PLDs will
be used to implement one of the more widely-used approaches to logic design.

The early EP300 series chips contained eight independently programmable macro-
cells, and the later EP 1800 series contains 48 independently programmable macrocells,
roughly equivalent to around 100 to 1000 conventional gates depending upon their
usage within the circuit design. The even more recent MAX7000 series chips contain
the equivalent of up to 10000 usable gates structured as up to 512 macrocells, with
propagation delays of 3.5 ns. The MAX9000 series uses slightly different technology
and is slightly slower (10 ns propagation delays) but contains the equivalent of up to
12000 gates in up to 560 macrocells. This series of chips may be programmed after they
are connected to the final system, eliminating faults due to accumulated static charges
arising from manual handling, and making upgrading particularly easy as the chip
does not have to be removed from the circuit to perform a system upgrade. This is
achieved using an industry-standard 4-pin ISP (In-System Programmability) interface
as specified by JTAG (the Joint Test Action Group). The Altera FLEX series contains
up to 250000 gate equivalents and the APEX series up to 1 million gates, running
at clock speeds as fast as 622 MHz. Special measures, such as the use of phase-
locked-loop techniques borrowed from communications engineering, must be used to
minimise 'clock skew', or phase differences in the clock signals applied to different

Programmable logic devices 365

parts of the chip caused by transmission delay over the relatively long distances
involved in such large chips. Once again, the complexity of such large chips requires
dedicated design software in order to ease the burden of taking full advantage of the
chip structure available.

This market is now becoming so mature that other companies, such as Clear Logic,
offer to manufacture devices that are pin-compatible, by working from the designer's
Altera CAD programming output file. As far as the external circuit is concerned, these
devices operate in an identical manner to, and are functionally indistinguishable from,
an Altera MAX device.

Problems

11.1 A scale-of-10 counter is controlled by a signal X. When X = 1 the circuit counts
in the normal binary sequence. When X - 0 it counts in a Gray code sequence.
Select a suitable Gray code sequence, construct an ASM chart, and hence
determine the state table. Implement the design with

(a) a ROM and JK flip-flops, and
(b) a PLA having on-chip D-type flip-flops.

11.2 Four 4-variable functions are defined by the following equations:

fl(A,B, C,D) = y~ 2, 3, 6, 7, 11, 15

f2(A,B, C,D) =)-'] 0, 4, 8, 9, 11, 15

f3(A,B,C,D)= ~ 1,3,5,7,10,11

f4(A,B,C,D)= E 0, 2, 4, 6, 8, 9, 11, 12, 13, 15

Show how these functions can be implemented on a PLA having an 8 • 8 AND
array and a 4 • 8 OR array.

11.3 The 2-out-of-5 code for decimal digits given below is to be converted to the seven-
segment code which is then used to give a decimal display. Implement the code
converter using a ROM having a capacity of 256 bits. The eighth output line
should give a logic high output when an invalid code is received (and a low output
otherwise).

Decimal 2-out-of-5
digit code (EDCBA)

0 00011
1 00101
2 00110
3 01001
4 01010
5 01100
6 10001
7 10010
8 10100
9 11000

366 Digital logic design

11.4 The 6-variable function

f (A , B , C ,D,E ,F) - y~'~ 0, 3, 4, 7, 11, 16, 18, 19,20,31,36,41,42,50,51,52,55,57,63

is to be implemented by cascading two ROMs, as shown in Figure P ll.4.
Construct the connection matrix for ROM 1 and ROM2.

ROM 1
1

] 64bits I
] capacity I
7 I B

,4

Figure PI 1.4

_1
] ROM 2
] 32 bits
~ c~paci~

7

=f

11.5 Implement the ASM chart shown in Figure P11.5 with a PLA having on-chip JK
flip-flops.

11.6 Five 1 Kbyte ROMs are to be used to provide a system with 5 Kbyte of ROM.
The system has 16 address lines and 8 data lines. Each ROM has an active low
chip enable pin (CE) and an active low output enable pin (OE). A 3-to-8 line
decoder having two active low and one active high chip enable pins as well as
a selection of SSI gates are available. Using an absolute addressing scheme design
a circuit diagram for the system. Also give the address ranges for each of the five
ROMs using hexadecimal notation.

|

1

7|

7|

0

7|

Figure P11.5

12 Arithmetic circuits

12.1 Introduction

One important aspect of digital design with MSI circuits not dealt with in earlier
chapters is the design and implementation of arithmetic circuits. Originally, the basic
arithmetic circuits were designed using discrete components, but this method has long
been superseded by the introduction of MSI circuits. Multi-bit adders, arithmetic logic
units and other circuits are now readily available as medium scale integrated circuits.

In some cases, a required arithmetic function is not available in a standard MSI
package and modifying logic may be required. A typical example of this is the
implementation of a binary adder/subtractor or a circuit used for the implementation
of BCD arithmetic. The modifying logic can be provided by discrete gates or
by another MSI circuit, so that some arithmetic circuits may be implemented by
a combination of MSI and SSI chips.

Progammable logic devices may also be used in arithmetic applications. For example,
ROMs programmed as look-up tables can implement the multiplication process, while
a combination of multi-bit adders and ROMs, in some cases, can extend the range of
multiplication that can be provided.

12.2 The half adder

A half adder is used for adding together the two least significant digits in a binary sum
such as the one shown in Figure 12.1 (a). The four possible combinations of two binary
digits A and B are shown in Figure 12.1 (b). The sum of the two digits is given for each
of these combinations, and it will be noticed for the case A = 1 and B = 1 that the sum is
(10)2 where the 1 generated is the carry to the next stage of the addition. In the sum
shown in Figure 12.1 (a), a carry is generated in the least significant column and is then
added in at the second stage where a further carry is generated. The carry has rippled
through two stages of the addition. Carry ripple, through many stages, in adder circuits
generates unacceptable delays, and methods are now available to eliminate this problem.

The additions shown in Figure 12.1 (b) are tabulated in the truth table (see Figure 12.1 (c)).
The columns headed A and B display every combination of the two binary digits to be
added, while the third and fourth columns are the corresponding tabulations of the
sum S and carry C, respectively. The Boolean equations for the sum and carry read
directly from the truth table are:

S = A B + A B - A G B

C - A B

368 Digital logic design

(a)
(--.

3 0 0 1 ,1:
+9 + 1 0 0 ' ' I ,~! I

12 1 1 0 0

(b)
A 0 0 1
B +0 +1 +0

0 1 1

1
+1

o (carry 1)

(c)

(e)

A B $ C

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

(d)

A

B S

; c

B

!

I)

i)s

Figure 12.1 (a) Binary addition. The half adder is used for adding together the two least significant bits (dotted)
(b) The addition of the four possible combinations of two binary digits A and B (with a carry to the next most
significant stage of addition) (c) Truth table for the half adder (d) NAND implementation of the half adder
(e) NOR implementation of the half adder

The implementation of the sum and carry functions using NAND and NOR logic is
illustrated in Figure 12.1 (d) and 12.1 (e).

12.3 The full adder

When adding any pair of digits other than the least two significant digits a full adder is
required. The full adder circuit has three inputs and two outputs which are shown in
the block diagram (see Figure 12.2(a)). These are the two binary digits A and B and the
input carry C~n from the stage on the immediate right, the sum output S and the
carry-out to the next most significant stage of the addition, Cout.

The truth table for the full adder is shown in Figure 12.2(b) and the Boolean
equations for the sum and carry-out read from the truth table are:

S - ABCin + ABCin + ABCin + ABCin

Cout = ABCin + ABCin + ABCin + ABCin

The equation for the sum may be rewritten as:

S - A(BCin + BCin) + A(BCin + BCin)

= A (B �9 Cin) -~- A (B E]~ Cin)

= A O B G Cin

Arithmetic circuits 369

(a)

(c)

(d)

(e)

(f)

A _l I
B] Full
G i n] adder [

~ % o ol ,, lo
o o~_~ @ oC

S

Gout

(b)

A

B D D qn

qn
B

D -

qn
A

~ ~Cout

Dio

qn

qn
B

qn
A

)

I)

Gout

A'~qno0
0

1 (9

~ut

[~ C~u,

01 11 10

(!)

C ~

Figure 12.2 The full adder (a) Block diagram (b) Truth table (c) K-map plot for Coat (d) Implementation of full
adder (e) NOR implementation of Cout (f) Alternative implementation of full adder with K-map showing presence of
static hazards

The carry-out equation is plotted on the K-map shown in Figure 12.2(c). After simpli-
fication, the carry-out equation may be written as:

Coat -- A f in if- B Cin + A B

An implementation of the full adder is shown in Figure 12.2(d).
Simplifying the O's plotted on the K-map gives the minimum inverse function:

Coat - A B + A Cin + B Cin

and inverting:

Coat -- (A + B) (A -Jr- Cin)(n -[- f in)

370 Digital logic design

This is the minimum P-of-S form of the equation for Cout which can be implemented
by the 2-level NOR circuit shown in Figure 12.2(e).

An alternative implementation of the full adder can be obtained by factorising the
Cout equation taken directly from the truth table:

Cout -- (An + An) f in + An(f in + f in)

= (A ~ B)Cin + AB

Implementation of this equation, along with the equation for the sum, is shown in
Figure 12.2(f). Although the implementation of Cout requires less hardware, the time
delay for the carry-out has been significantly increased.

There is also an additional difficulty with the implementation of this form of the Cout
equation. Expanding the above equation for Cout gives

Cout = (,4B + h/~)Cin + AB

= ABCin + ABCin + AB

A K-map of this function is also shown in Figure 12.2(f) and it can be seen that there
are l's in adjacent cells not covered by the same prime implicant and this indicates the
presence of static 1 hazards. To eliminate the static hazards, two extra gates would be
required. The lesson for the designer is that the simplest function implementation does
not necessarily provide a hazard-free solution.

12.4 Binary subtraction

The binary subtraction of the four possible combinations of two binary digits, X - Y,
is shown below:

X 0 0 1 1
- Y - 0 -1 - 0 -1

A 0 1 1 0

The only result that requires an explanation here is the second from the left, in which
the difference 0 - 1 has to be found. In order to perform this subtraction a digit has to
be borrowed from the next highest column of the subtraction and the operation then
becomes (10)2 -- (1)2 -- (1)2. Having borrowed a digit Bin from the next most significant
stage it is clear that the borrow has to be replaced.

It is now possible, using the above rule, to develop the truth table for the full subtractor
as shown in Figure 12.3(a). The columns headed Bin and Bout represent the borrow
needed to enable the subtraction to take place and the replacement borrow respectively.
The equations for the difference A and the borrow in Bin can be read from the truth table,
and after algebraic manipulation the following two equations are obtained:

A -- X G Y @ Bin

Bout -- XBin + X Y + YBin

In practice it is simpler to invert the subtrahend, using a controlled XOR gate, and
perform an addition, using a full adder, after connecting Bin to the fin input
(see Figure 12.3(b)). The inverse of the borrow-out will appear at the Cout terminal.
The full adder has been converted to a full subtractor using the method of 2's
complement arithmetic.

(a) (b)

Y

X Y E~n A Bout

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

~out

Arithmetic circuits 371

FA

A

I
X

~n "" ~n

Figure 12.3 (a) Truth table for a full subtractor (b) A single bit binary subtractor

12.5 The 4-bit binary full adder

It is now a simple matter to build a 4-bit adder from four single-bit adders. The block
schematic for such an adder is shown in Figure 12.4. For the least significant full adder, the
carry-in input Cin is grounded and consequently this stage operates as a half-adder.

This type of circuit is referred to as a ripple-through adder because a carry from one
stage of the adder may ripple through a number of the succeeding stages. In the worst
case it is possible for a carry generated in FA0 to ripple through the carry circuits of all
the four full adders before it appears as the carry-out from the final stage of addition.
For example, if the following addition has to be performed

1111 15
+ 1001 +09
11000 +24
1111
1111 Carries

a carry is generated in the least significant stage of the addition and it ripples through
each successive stage of the addition until it appears at the carry-output terminal of the
most significant stage, where it becomes the sum digit for what is, in effect, the fifth bit
of the sum. Under these circumstances C3 ripples through four 2-level logic circuits and
the sum is finally completed after eight gate delays. For this kind of adder the
maximum delay is directly proportional to the number of stages, n.

Carry
out (2 4)

A3 ~ A2 ~ A1

3 FA1
cl

11

iS2 (2 2)

B1

]

I Sl (21)
Figure 12.4 A four-bit parallel adder

I l
•

I So(2)

372 Digital logic design

The four full adders shown in Figure 12.4 can all be implemented on a single 16-pin
chip to provide a 4-bit MSI adder. Eight inputs are required for the operands, four for
the sum outputs, one each for the carry-in and carry-out, and two pins for the supply
voltage. A typical example of a 4-bit adder in the TTL family is the 74283 and the new
functional logic symbol for this chip is shown in Figure A.24 (see appendix).

12.6 Carry look-ahead addition

The performance of the 4-bit parallel adder described in the previous section can be
improved by increasing the speed of operation. This can be achieved by using gates
having a reduced propagation delay or by designing a circuit that minimises the
delay generated by the carry circuit. In practice such a circuit requires more hardware
and the improvement gained is a trade-off between cost and increased speed.
Several methods have been developed for reducing the addition time and one of these,
the carry look-ahead technique, will be described here.

The carry-output equation for a full adder may be written:

Cout -- (A ~ B) f i n -t- A B

or as :

Cout = PCin + G

where P = A ~ B is referred to as the propagation term, and G = AB is called the
generation term. If G = 1, then A = B = 1, and a carry is generated in the stage defined
by the Cout equation. Additionally, if the carry into the stage Cin = 1, and either A or B
is 1, then the input carry will be propagated to the next stage. For a 4-bit adder the
generation and propagation terms for each stage are:

Go = AoBo Po = Ao @ Bo

Gi = A iBl PI = A I ~ Bl

G2 = A 2 B2 P2 = A2 @ B2

G3 = A3B3 P3 = A3 @ B3

while the carries for the various stages are:

Co= PoCin +Go

Cl =PIC0+GI
C2 = P2CI + G2

C3 = P3C2 + G3

Substituting for Co in the Cl equation and similarly in successive equations, leads to the
following equation for the carry out C3 from the most significant stage of a 4-bit adder:

C3 = P3P2P1PoCin + P3P2PIGo + P3P2GI + P3G2 + G3

This carry-out equation can be implemented by the 2-level AND/OR circuit, shown in
Figure 12.5, but fan-in problems will occur as the number of bits to be added is greater
than four. Only two levels of logic are required to generate the carry-out in the 4-bit
CLA scheme, compared with eight levels of logic needed for the 4-bit ripple-through
adder. However, the number of gates required by the CLA scheme is significantly

Arithmetic circuits 373

&

~
A1

A2

t~

A3
_T

t~

Figure 12.5

r) D "

T) D
o,,

4-bit carry look-ahead logic

co,t

greater than the gate requirement for the ripple-through adder. This is an example of
the trade-off between speed and cost.

The carry-out equation may be written in the following form:

C3 = PCin + G

where G = P3P2P1Go + P3P2GI + P3G2 + G3

and P = P3P2P1Po

The 74181 Arithmetic/Logic Unit provides 4-bit addition without the carry look-
ahead facility. To overcome this difficulty, the arithmetic section of the package can
be operated in conjunction with the 74182, a carry look-ahead generator. Connecting
four 74181s in cascade will provide 16-bit addition, and the four carry look-ahead
units in the 74182 will provide carry look-ahead for each of the 4-bit adders.
An arrangement for 16-bit addition with carry look-ahead facilities is shown in
Figure 12.6.

12.7 The 74283 4-bit carry look-ahead adder

The 74283 performs the addition of two 4-bit words and full internal carry look-ahead
facilities are provided in the package. The sum bits and the carry-out from the
fourth stage are available at the output pins. Typically, the carry-out delay is of the
order of 10ns.

The carry-out equation of the full adder developed earlier may be written in
the following form:

Coat -- (A -1- B) f in -F A B

374 Digital logic design

A12- A~s &a" B~s

I H _ ~ 74181 (3)

,48" All Be" Bll A4" A;, B4- B-: Ao- Ao

ILLI LLLL ri_LI LU _ ILU
74181(2) 74181(1) 74181(0)

Be-B3 k lJ]
74182

Carry look-ahead generator

mR

Figure 12.6 16-bit addition using carry look-ahead generator. Each 74181 also produces four sum output bits.

where for this circuit design, the propagation term is defined as P = A + B, while
the generation term retains its previous definition G = AB. The implication of this
definition of the propagation term is that it contains a generated carry.

A further modification can be made to the carry-out equation since:

PG = (A + B)AB = AB = G

Hence the equation for the carry-out may be written"

Cout = P(G + f in)

With the aid of this equation, the carries for the four stages of the 74283 can be
developed as shown below:

Co = e0(G0 + Cin)

and CI = PI(GI + Co)

and substituting in this equation for Co gives:

CI = el GI + Pl PoGo + Pl PoCin

Making two further substitutions leads to the following equation for the carry out
C3 of the adder:

C3 -" P3G3 + P3P2G2 + P3P2PIG1 + P3P2P1PoGo + P3P2P1PoCin

This expression is in the sum-of-products form and it is left to the reader to show that
the product-of-sums form is

C3 = P3(G3 + P2)(G3 + G2 + P1)(G3 + G2 + G1 + Po)(G3 + G2 + G1 + Go + Gin)

Arithmetic circuits 375

&(

B2(15)

B1(2)

I I I

Bo(6)

Cin(7.~) [~

CY

(9)Ca

(10) Sa

(13) $2

(1)S~

Figure 12.7 The 74283 4-bit carry look-ahead adder

The logic diagram is shown in Figure 12.7 and it is left to the reader to verify that the
output carry of the circuit is given by either of the above two equations.

An inspection of the logic diagram shows that gates gl and g2 produce the inverse
of the generation and propagation terms respectively, and that the output of gate g3
is GoPo. The equation for So is:

SO = Go Po (~ Cin

= (AoBo)(Ao + Bo) G Cdn

= (Ao + Bo)(Ao + Bo) @ Cin

So - Ao (~ Bo (~ Cin

376 Digital logic design

Cou,

B12-B15 A12-A15 Be-B11 As-All B4-Br A4-A7 Bo-B3 Ao-A3

++ ++ ++ ++
74283

C11

"ipee_ple
74283

I_ Cr
- Ripple

74283
l_ C3

I - Ripple

74283

S12" S15 S8" Sll S4" S7 So" S3

~ln

Figure 1 2 . 8 16-bit addition

A 16-bit adder can be formed from a cascade of four 74283s, as illustrated in Figure 12.8.
The cascade of adders provides full carry look-ahead for each adder module with carry
ripple from module to module. The carry out delay time for each of the modules is
of the order of 10 ns and the total carry propagation delay for the 16-bit adder will
be of the order of 40 ns.

12.8 Addition/subtraction circuits using complement arithmetic

Addition is carried out in all cases, irrespective of whether the operands are positive
or negative. The sign bits are included in the addition, and any carry-out from the sign bit
position is ignored. If the resulting answer is positive the sign bit is 0 and the numerical
part of the answer is expressed in magnitude form. If the resulting answer is negative, the
sign bit is 1, and the numerical part of the answer is expressed in 2's complement form.

An adder/subtractor using 2's complement arithmetic is illustrated in Figure 12.9.
The number A2A~Ao is the augend in the addition mode and the minuend in the
subtraction mode, while the number B2B~Bo is the addend in the addition mode and
the subtrahend in the subtraction mode. The sign bits for the two numbers are A3 and
B3 respectively. The circuit can be implemented with a 74283 4-bit adder and the most
significant bits on the chip are used as sign digits. A 7486 quad XOR package is used as
a controlled inverter, and inverts the B digits in the subtraction mode. The mode signal
is used to select the addition and subtraction modes. When M = 0 and Cin = 0, the
least significant stage of the adder acts as a half adder and the 74283 is in the addition
mode. When M = 1 and f i n = 1 the adder is in the subtraction mode. In this mode the
7486 is acting as an inverter and additionally a 1 is added in at the least significant
stage of the 74283 to form the 2's complement of the subtrahend.

An additional complication arises if l 's complement arithmetic is used and this is
illustrated in the two examples shown below:

+4 0,100 -4 1,011
- 3 1,100 -3 1,100
+1 10,000 - 7 10,111

I --1 EAC I =1

0,001 1,000
EAC

Arithmetic circuits 377

A3 A2 A1 Ao

4- bit adder
Gout 74283

B3B2 B1Bo

1111
Controlled
inverter
7486

1111

On I
Ji l l
SaS2S~So

M=0 add
= 1 subtract

Figure 12.9 An adder/subtractor using 2's complement arithmetic

E,o t

Figure 12.10

A3 A2 A1 Ao B3B2 B1Bo

llJl
Controlled L
inverter
7486 F

1111
4- bit adder

Gout 74283 C~.

I l i
S3 S2 $1 So

1 's complement adder/subtractor

Mode
control

This carry, called the end-about carry EAC, is returned to the least significant place of
the adder where it is added in. This requires a modification to the 2's complement
adder shown in Figure 12.9. The Cout terminal is now connected directly to the Cin
terminal, as shown in Figure 12.10.

12.9 Overflow

In certain circumstances, when an adder/subtractor circuit is employing signed
arithmetic, there is arithmetic overflow from the most significant magnitude bit into
the sign bit. This will occur for example, if a 4-bit arithmetic result is required when
two 3-bit numbers are added together and where the fourth bit in the circuit has been
assigned the task of indicating the sign of the answer. The consequences of overflow
when it occurs are:

1. The addition of two positive numbers gives a negative answer
2. The addition of two negative numbers gives a positive answer

378 Digital logic design

An example of four possible situations that may arise is given below for a 4-bit word
(n - 4) and for each case the carries from the (n - 1)th and nth stages have been
displayed.

C, = 0, C,_I = 0 C, = 0, Cn-1 = 1
+1 0,001 +5 0,101
+3 0,011 +6 0,110
+4 0,100 +11 1,011

C, = 1, C,_l = 1 C, = 1, C,_l = 0
+5 0,101 - 5 1,011
- 3 1,101 - 6 1,010
+2 0,010 -11 0,101

interpreted as - 5

interpreted as +5

The reader will observe that when either a positive or negative sum of (11)10 is
required, the magnitude of this number, either in its positive or negative form, cannot
be expressed in terms of three binary digits, and the resulting answer is both incorrect
and has the wrong sign.

(a) (b)

C,,-1 C,, 0 Cn-1

0 0 0
0 1 1
1 0 1
1 1 0

C~

Figure 12.11 (a) Truth table for the overflow
function (b) Implementation of overflow function

A truth table for Cn-I and C, is shown in
Figure 12.11 and it is clear from this table that
the overflow function is the XOR of (7, and
C~-l. Hence the equation for the overflow
flag is:

When using an MSI package such as 74283,
C~_l is not available as an output, and
overflow has to be expressed differently.
It is left to the reader to confirm that an

alternative Boolean expression that can be used is"

0 -- A 3 B 3 S -k- A 3 B 3 S

where S is the sign of the result and A3 and B3 are the sign digits of the two 4-bit
numbers.

12.10 Serial addition and subtraction

For parallel addition a full adder is required for each stage of the addition and
carry ripple can be eliminated if carry look-ahead facilities are available. An
alternative approach is to use a serial addition technique which requires a single
full adder circuit and a small amount of additional logic for saving the carry.
Serial addition takes longer, but a smaller quantity of hardware is required and the
selection of serial or parallel addition depends upon the trade-off between speed
and cost.

A serial adder uses a sequential technique and may be regarded as a very simple
finite state machine. The basic element of the circuit is a full adder which is

Arithmetic circuits 379

Parallel load !
, , , ,_.__.J~ - _ ~

A S

FA

c, co

Parallel load

J

Ck2

Ckl

Mode

Figure 12.12 A serial addition circuit

operated in conjunction with a D F F and a pair of shift registers which have parallel
loading and shift right facilities controlled by Ckl and Ck2. The selection of either
of the two clock pulses is a function of the mode control M (see Figure 12.12). With
M = O, Ck2 is enabled, the flip-flop is cleared, and the registers are loaded with the
two numbers to be added so that the two least significant bits are available at
terminals A and B. The corresponding sum and carry-out appear at the output
terminals of the full adder. With M - 1, Ck2 is disabled and Ckl is enabled. Ckl is
now used to shift right the digits in registers R~ and R2, thus presenting the next
most significant pair of digits at terminals A and B. Additionally Co is clocked to
the output of the flip-flop and becomes the next Cin, while the sum of the two least
significant digits is clocked into the left-hand end of R1. This process is repeated on
receipt of each clock pulse (Ckl) until the two numbers stored initially in R1 and R2
have been added and the resulting sum has been clocked back into the register R~. If
a t the termination of the addition Co -- 1, this will represent the most significant
digit of the sum.

The serial adder can also be used in the subtraction mode, as shown in Figure 12.13.
The B digits are inverted when the mode signal M = 1 but an initialisation pulse I of
short time duration is required at the input of gl at the same time that the least
significant pair of digits appear at the full adder inputs. The initialisation pulse is used
to preset the DFF to 1, thus forming the 2's complement o f the number entering
sequentially at the B input. A similar arrangement is made when the adder is in the
addition mode. The mode signal M - -0 and a short initialisation pulse is needed at
the input of g2 to clear the D F F so that f i n --" 0.

380 Digital logic design

FA

B

i C o n
S

Co

J-L

,r i

(I D

-4e5

Figure 12.13 Serial adder/subtractor

!!
/

M= 1 "subtract
=0" add

. - - - - - e

T

12.11 Accumulating adder

A list of numbers can be summed by operating a group of single-bit adders in parallel.
The numbers to be added are stored in memory and can be accessed by a counter.
Memory having eight address lines and four outputs can store 256 four bit numbers.
The maximum numerical value of a 4-bit number is (1111)2 -(15)10, and the max-
imum total that can be achieved by the multi-bit adder is 256 x 1 5 - (3840)10 -
(111100000000)2. Three single-bit full adders and eight half adders are required along
with a 12-bit register for holding the total. The numbers are fetched from memory and
are presented to the multi-bit adder along with the previous sum held in the 12-bit
register. A block diagram of the multi-bit accumulating adder is shown in Figure 12.14.

Clock

Counter
Memory

256 x 4 bit
numbers

+4
Gout 11 single-bit

adders

11 11

I Iolololoi IoI 111o111

Figure 12.14 Multi-bit accumulating adder

Arithmetic circuits 381

12.12 Decimal arithmetic with MSI adders

It is sometimes desirable to perform arithmetic operations using binary coded
decimal numbers. Such a requirement occurs where the result of the operation
is to be displayed directly in decimal form using seven-segment indicators.
Decimal numbers are commonly represented by the 4-bit NBCD code tabulated in
Figure 12.15.

When two unsigned NBCD numbers are added together, incorrect answers are
obtained in some cases. There are three cases to consider:

Case l. 0 < S < 9 4 0100
+5 +0101

9 1001

In this range the sum is correct and no correction is required.

Case 2. 9 < S < 15 7 0111
+6 +0110
13 1101

0110 Add 2's complement of (10)10
1,0011

Addition generates an invalid code. Correction is made by subtracting (10)~0, that
is, by adding (6)10, the 2's complement of (10)10. This process also generates the
required carry.

Case 3. 1 5 < S < 19 9 1001
+8 + 1000
17 1,0001

0110 Add (6)10
1,0111

Addition generates a valid but incorrect code and a carry-out. Correction is made by
adding (6)10.

Summarising the algorithm for adding two decimal digits represented by the NBCD
code"

1. If 0 <_ S _< 9 no correction is required on addition
2. If 9 < S <_ 19 the required correction is to add (6)10.

When 9 < S <_ 15, a carry is required for the next most significant stage of the
addition and a logic function must be developed which will detect the six invalid codes:
1010, 1011, 1100, 1101, 1110 and 1111 The invalid combinations are shown plotted
on the K-map in Figure 12.15. After simplification, the carry function for the
given range is:

f ~ - A B + A C

For the range 15 < S _< 19 a carry Cout is generated when the two decimal digits are
added, and the equation for the carry-out C' o which becomes the carry in of the next
stage of addition is given by:

C' o - Cout + A B + A C

382 Digital logic design

(a)

Dec. NBCD
digit 8 4 2 1

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

(b)

AB•D o0 01

O0

01

11 (1 i

10

11 10

f l I~

c;

Carry t~o next
higher stage

Figure 12.15
NBCD adder

(c)

Bs B4 B2 B1

Ill
AsA4A2 A,

lJ [
Cout 74283(P)

A B C D
A

,%

Ctn

' i
RS

74283(Q) Gin

il
S4~S,

l

(a) The NBCD code (b) The forbidden code combinations plotted on a K-map (c) A single-stage

The implementation of a single stage NBCD adder is shown in Figure 12.15. It requires
two 74283 4-bit adders, three N A N D gates and one inverter. The adder marked
P is used for the addition of two 4-bit NBCD codes A8A4A2AI and B8BaB2B~.
Outputs from this adder, in conjunction with its carry-out, are fed to a NAND gate
circuit which generates C'. They are also fed to the adder Q whose only function is to
add in (0110)2 to the total when the sum of two decimal digits is in the range
9 < S < 19. When this condition exists, a carry to the next stage C' o is generated and
is also fed to the inputs marked R and S on adder Q, thus generating an input of
(0110)2 at its four right-hand terminals. For S < 9, C~, - 0 and the input to the four
right-hand terminals is (0000)2.

Arithmetic circuits 383

In the case of an adder which operates with a word length of eight bits, two NBCD
digits can be allocated to one word. The decimal number range is then 0 to 99 inclusive.
An example of the addition of a pair of two decimal digit NBCD numbers is shown below:

49 0100 1001 Augend
33 0011 0011 Addend

0111 1100
0000 0110
0111 / 0 0 1 0 NBCDco~ection

.11
1 ' 0 Carry

82 1000 0010 Sum

The reader should observe that an NBCD correction in the least significant nybble
(LSN) may itself produce a requirement for an NBCD correction in the next most
significant nybble (MSN).

12.13 Adder/subtractor for decimal arithmetic

In order to transform the NBCD adder shown in Figure 12.15 to an adder/subtractor,
additional logic circuitry is required. When subtracting binary numbers 2's complement,
arithmetic is used, but when dealing with NBCD, subtraction is carried out using either
10's or 9's complement arithmetic. As 10 is the radix in the decimal system, the 10's
complement is defined as:

[X] I 0 = 10 n - - .X"

where n is the number of decimal digits contained in the decimal number X and [X]10
represents its 10's complement. For X - 823, and n -- 3"

[X]l 0 - 103 - 823 - 177

Subtraction can now be carried out as an addition, using the 1 O's complement form for
negative numbers. Two cases are considered:

Case 1" Addition of positive and negative numbers where the positive number has the
greatest magnitude. The subtraction 62-55 can be performed by taking the 10's
complement of 55 and adding it to 62:

62 0110 0010
10'scomplementof55= 45 0100 0101

Discard(l) ~ 07 1010 0111
0110 0000

Discard(l) 0000 011i
NBCD correction

10's complement of 62 =

than the minuend.

55
38
93

0101 0101
0011 1000
1000 ll01 0000,/0110

1'
1001 0011

NBCD correction

Carry

Case 2: The subtraction to be carried out is 55-62, that is the subtrahend is greater

384 Digital logic design

Bs B4 B2 B1

74283 (P)

A8 A4 A2 A1

I
9's complementer

I auade-to-1 ~ _
MUX F

r

Figure 12.16 Conversion o[" NBCD adder to adder/subtractor

Mode control
M = 1 subtract
M = 0 add

Since the answer is negative it is expressed in 10's complement form. To find the
magnitude, the 10's complement of 93 is taken, which gives the required magnitude 07.

When the difference is positive as in Case 1, a carry is generated in the most
significant place. The generation of the carry in a 10's complement adder/subtractor
circuit can be used to distinguish between positive and negative results.

The diminished radix in the decimal system is 9 and the 9's complement is defined as:

[X]9 = l0 n - (X + 1)

For X = 823, [X]9 has a value of 176.
Additional logic circuitry is needed for the 1 O's complement adder/subtractor. These

extra requirements are shown in Figure 12.16. The 9's complement of the NBCD code
and the code itself are both connected to a 2-to-1 MUX. Selection of one out of these
two forms of the code is provided by the mode control M. If M = 1 the 9's comple-
ment of the code is fed to adder P and the 10's complement is formed by adding M = 1
at the carry input terminal of adder P. If M = 0 the NBCD code is selected, Cin = 0
and addition takes place. If the answer is negative, the output of the adder/subtractor
will be in 10's complement form, and a further controlled 10's complementer is
required at the output of each stage if the answer is required in magnitude form.

The input 9's complementer circuit is designed using the normal combinational
logic techniques. The four left-hand columns of the truth table shown in Figure 12.17
give a listing of the NBCD code A8A4AzA~ while the four right-hand columns give the
corresponding 9's complement of each code A~8 A'4~211 At Atl " The K-maps for A'8~,14~21~ At At dtl are
given in Figure 12.17, and the Boolean equations obtained from these maps are

A~ - AsA4A2 A~ - A2

At4 - A4 0 A2 Atl - A1

Implementation of the 9's complementer is shown in Figure 12.17.

Arithmetic circuits 385

(a)

Ae

NBCD

A4 A2 A1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0

1 1 1
0 0 0

1 0 0 1

9's complement

A~ A~, A~ A~

1 0 0 1
1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

(c)
AsA4A2

AI

A~ A~ A~ A~

\ 7

A s A 4 ~ 1 00 01

oo,C
01

11 10

11 X X X X

10 X X

oo I
01 I~'

11

10

01 11

rx
(b) A~ = ~'~,~2 A~, = A4,~2 + ,Z[',,,A2

10

1j

X

A2A1
AsA~ O0

O0

01 11 10 01 11

1 1

01 1 1

11 X X X X

10 X X

A2A1
A ~ ~ O0

ool,

o,I ,I

10

X X

X

A~=A2 A; =,~1

10

I!, L

Figure 12.17 Design of 9's complementer (a) Truth table (b) K-maps (c) Implementation

A 10's complementer could have been designed using the same techniques, but the
Boolean equations obtained are more complicated and require a greater amount of
hardware for their implementation. In this case it is much simpler to add M = 1 at the
carry-in of adder P to form the 10's complement. An adder/subtractor for decimal
arithmetic which uses the XS3 code provides a much simpler design, and the reader is
referred to the design example at the end of the chapter.

12.14 The 7487 true/complement unit

A number of different arithmetic operations can be performed by controlling one set of
inputs to a 4-bit adder. This control can be achieved by inserting the true/complement

386 Digital logic design

(2)
A1

(5)
A2

(10)
A3

(13)
A4

(8)
B

C (1)

(a)

I > '

I D

,,)D

D

(3)

(6)

(9)

(12)

Y2

Y3

Y4

(b)

Select
Signals

B C

0 0
0 1
1 0
1 1

Output Word

A, A3 A2 A1
1 1 1 1
0 0 0 0

Figure 12.18 The 7487 True~Complement Unit (a) Logic diagram (b) Truth table

unit between one set of input lines and the adder. Such a unit is the 7487 which, besides
the true/complement facility, also provides all O's or all l's. The logic diagram and the
truth table for this device are shown in Figure 12.18.

A 4-bit adder such as the 74283 operating in conjunction with the 7487 is shown in
Figure 12.19. The functional behaviour depends upon the logical value of the two
select signals So and Sl and the presence, or absence, of the carry input Cin. There are
eight possible combinations of the three signals, and the behaviour for the first two
of these combinations is illustrated in the block diagrams shown in Figure 12.19.
The functional outputs of the controlled adder for each of the eight combinations
are also tabulated in the function table shown in Figure 12.19.

12.15 Arithmetic/logic unit design

A block diagram for an n-bit ALU is shown in Figure 12.20. The output function
f = (f , -] . . . f 0) is generated by performing a logic or alternatively an arithmetic

Arithmetic circuits 387

~ut

A
/t

B
Jk~

_ _ 74283
4-bit adder

- y

Sum
(a)

So

S~

Gin

Coo l

B

1
4-bit
adder

I
c,. = ooo I

S=A+B

i_ c,.=o Co.t I

(b)

B A

I I
4-bit
adder

So Sl Ci. = O01

S = A + B + I = B - A

l_ C~.=0

I-

S0 Sl Gin Sum(s)

0 0 0 B+A
0 0 1 B - A
0 1 0 B+A
0 1 1 B + A + Gin
1 0 0 B-1
1 0 1 B
1 1 0 B
1 1 1 B + I

Function

B+ l 's complement of A
Subtract
Add
Add with carry
Decrement B

Transmit B

Increment B

(c)

Figure 12.19 (a) Block diagram of controlled adder (b) Function implementation of controlled adder
(c) Function table

operation on the two n-bit inputs A = (An-1... Ao) and B = (Bn-1... Bo) to be deter-
mined by S = (Sk-1... So) selection bits.

The functions to be generated are tabulated in Figure 12.21. Since there are eight
functions in the table, a total of three selection variables $2, S~ and So is required.

The design will be based on 4-bit modules such as the 74283 4-bit adder, and when it
is completed it will consist of an interconnection of a number of MSI packages.
The desired range of numbers to be operated on by the ALU will determine the number

388 Digital logic design

I kt 5
A L U -

Figure 12.20 Block diagram of
n-hit A I.I./

S2 Sl So

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ALU Function

A + B Subtract
A + B Add
B - 1 Decrement
B+ 1 Increment
A.B AND

A+B OR
,~ NOT

A ~ B XOR

Figure 12.21 ALU./unction tahh,

of bits n. Because of the availability of 4-bit packages it
would be desirable that n should be a multiple of 4 so
that the ALU will consist of a cascade of 4-bit slices,
as shown in Figure 12.22.

The block diagram representing the basic 4-bit slice
of the n-bit ALU is shown in Figure 12.23. It consists
of a logic unit LU and an arithmetic unit AU working
in conjunction with a quadruple 2-to-1 MUX.
The output of the MUX can be either a logic or an
arithmetic function. If the selection variable $2 = 0
the arithmetic unit is selected, and for $2 - 1 the logic
unit is selected.

First, consider the design of the least significant 4-bit
arithmetic unit. The block diagram for this section of
the 4-bit slice of the ALU is shown in Figure 12.24(a)
along with the truth table of the adder functions in
Figure 12.24(b). It consists of the 7487 True/Comple-
ment Unit interposed between the A input lines and the
A' inputs to the 74283 carry look-ahead 4-bit adder.

In order to decrement a number such as
B3BzBIBo = 1001 it is only necessary to add the num-
ber 1111, as illustrated in the example shown below:

B3B2BIBo- 1001
1111

1000

and hence in order to decrement the B input, the selection signals Si So - 10 and the
output of the True/Complement Unit in Figure 12.24(a) is then A'3A2A'IAo' ' - 1111.
The logic equation for the carry-in can be read directly from the truth table shown in
Figure 12.24(b) and is:

Gn -- S, S0 + S~So
= S i |

en-l-Bn-4 An-l-An~ BT-B4 A~,-A4 B3-Bo A3-Ao

4-bit ! 4-bit 4-bit
ALU ~ ALU -- ALU --

. ~ . . ~ .

C ~

tT-t,

C~

t3 '--tO So

Figure 12.22 Structure of an n-bit ALU made up from 4-bit slices

A r i t h m e t i c c i r cu i t s 389

4-bit
logic
unit

~ut

Quad 2- to-1 I_
MUX 1-

Figure 12.23 Basic 4-bit slice interconnections

~4

7487
True/

Complement
Unit

A~4

74283
4-bit adder

~ 4

f (a)

4-bit I
arithmetic

unit

S2

So

Gin

S~
So

Sl So fAu

0 0 B - A Subtract
0 1 A + B Add
1 0 B- 1 Decrement
1 1 B+ 1 Increment

(b)

Figure 12.24 (a) 4-bit ALU Arithmetic section (b) Arithmetic section truth table

390 Digital logic design

(a)

Sl So f,u

0 0 AB
0 1 A + B
1 0 A
1 1 A~)B

NAND
NOR
NOT
XNOR

(b)

I J--[
Sl So

4-to-1 Multiplexer

[tw

m

Figure 12.25 (a) Function table.for logic slice of ALU (h) lmph, mentation./or one pair of input bits./br the slice

The function table for designing the 4-bit logic slice of the ALU is shown in Figure 12.25.
A simple approach to the design is to use the basic logic gates in conjunction with a
pair of dual 4-to-I MUXs such as the 74353, as shown in Figure 12.25 for a single bit
pair only. An alternative approach can be developed with the aid of the truth table
shown in Figure 12.26 for the pair of single bits A0 and B0. The logic function fLU is
plotted on the K-map and simplified. The hazard free function read from the map is:

fLU -- A0/~0 + SoA0 + BoSz So + AoBoSI So

and its implementation is shown along with the K-map in Figure 12.26.

12.16 Available MSI arithmetic/logic units

Two examples of ALUs available in the TTL family are the 74381 and the 74382.
These two 4-bit devices perform eight arithmetic/logic operations defined by the func-
tion table shown in Figure 12.27 and selected by the three function select lines, $2, S1
and SO. The difference between these two devices is that the 74381 has two outputs, one
a carry generation output G and the other a carry propagation output P, allowing a
group of ALUs to be cascaded. A group carry look-ahead facility can then be provided
as illustrated earlier in this chapter in Figure 12.6 by the 74182 carry look-ahead
generator. The 74382, on the other hand, provides a ripple carry output C,+4 to the
succeeding ALU input and a 2's complement overflow output O VR. Traditional logic
symbols for the two ALUs are also shown in Figure 12.27.

Arithmetic circuits 391

(a)

Sl So Ao /3o fLu Function

0 0 0 0 1
0 0 0 1 1 NAND
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0 NOR
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1 NOT
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1

1 1 0 1 0 XNOR
1 1 1 0 0
1 1 1 1 1

AoBo
SlSo\ oo

00 r l ")
m

01 1

11 1

(b)

01

'1

11

|

10

Sl So Ao Bo

L_>

(c)

flu

Figure 12.26 Alternative design for 4-bit logic slice of ALU (a) truth table (b) K-map and (c) implementation
of design

The 74181, a 4-bit ALU/Function generator, is also available in the Type 74 family.
This MSI circuit provides a much more comprehensive range of arithmetic and logic
functions than the 74381/382. It can be operated with either active high or active
low input data and the arithmetic functions generated depend upon the absence or
presence of a carry-in. Like the 74381, a cascade of 74181s can be operated in
conjunction with the 74182 carry look-ahead generator to provide group carry
look-ahead. The function table for active low input data, assuming Cin = 0, is shown
in Figure 12.28 along with the traditional logic symbol.

392 Digital logic design

(a) (b) (c)

Selection, Arithmetic/logic
S2 $1 SO function
0 0 0 Clear
0 0 1 Bminus A
0 1 0 A minus B
0 1 1 A plus B
1 0 0 A ~ B
1 0 1 A + B
1 1 0 AB
1 1 1 Preset

74381

G
P

F0
F1
F2
F3

p-

p-

74382
SO
Sl Cn+4
S 2 0 V R
c,,
AO
A1
A2
A3 FO
BO F1
B1 F2
B2 F3
t33

Figure 12.27 (a) Function table.lbr 74381/382 ALUs (b) Logic symbol for 74381 and (c) logic symbol for 74382

(a) (b)

Selection

$3 $2 $1 SO

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

M = I
Logic

functions

F = ~
F = , ~
F= I~+B
F = I
F = ~
F = B
F = ~
F = A + B
F= ,~B
F = A ~ B
F = B
F = A + B
F = 0
F= AB
F= AB
F = A

Active low data
M= 0 Arithmetic operations

C~n=O
(no carry)

F = A minus 1
F = AB minus 1
F = AB minus 1
F = minus 1 (2's Complement)
F = A plus (A + ~)
F = AB plus (A + ~)
F = A minus B minus 1
F = A + ~
F = A plus (A + B)
F = A_plus B
F = AB plus (A + B)
F = A + B
F = A plus A*
F = AB plus A
F = AB plus A
F = A

* Each bit is shifted to the next most
significant position

74181
SO G
$1 P
$2
S3
M A = B
4.
AO FO
A1 F1
A2 F2
A3 F3
BO
B1
B2
B3 ~u,

Figure 12.28 (a) Function table and (b) logic symbol for the 74181 4-bit ALU

12.17 Multiplication

Multiplication of binary numbers can be achieved either combinationally or sequen-
tially. The simplest form of binary multiplication is multiplication by the base 2.
When multiplying by the base 10 in the decimal number system a shift to the left of
one place occurs; for example, 9 • 10 = 90 and the 9 has moved one place to the left.
Similarly, if a binary number such as 1101 is multiplied by the base 2 it becomes 11010,
and if the number had been stored in a register this would have represented a shift left
of one place in the register. In this example (1101)2 = (13)1 o and (11010)2 = (26)10.

Arithmetic circuits 393

12.18 Combinational multipliers

The 2 x 2 multiplier is a simple example of a combinational multiplication circuit
which multiplies two binary numbers A2A~ and B2B~. The truth table for the
multiplication is shown in Figure 12.29 and the most significant term of the product
is represented by the single minterm P3 = A2A~B2Bl. The remaining three product
terms can be obtained by plotting and simplifying their respective K-maps. For
example, the K-map for P2 is shown in Figure 12.29 and the simplified function
obtained from this map is:

P2 - A2A1B2 -+- A2B2BI

It is left to the reader to determine the Boolean equations for the remaining two
product outputs.

One of the simplest and fastest methods of multiplying employs a combinational
logic circuit which is composed of AND gates and full adders. The method depends
upon the fact that the rules of Boolean multiplication are based upon those of binary
multiplication and consequently a series of AND gates can be used for forming the
products that occur in the multiplication process.

If the 4-bit binary number A3A2A1Ao is to be multiplied by B3B2BIBo, the 'pencil
and paper' method that would normally be employed is illustrated in Figure 12.30.

(a) (b)

A2 AI /32 /31 P3 /:'2 PI Po

0 0 0
I 0 0
0 0 0
1 0 0
0 0 0
I 0 0
0 0 0
I 0 0
0 0 0
I 0 0
0 0 I
I 0 I
0 0 0
I 0 0
0 0 I
I I 0

0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1
1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 1 0
1 1 1
1 1 1

0 0
0 0
0 0
0 0
0 0
0 1
1 0
1 1
0 0
1 0
0 0
1 0
0 0
1 1
1 0
0 1

~B2B1

A2A1

00

01

00 01 11 10

Figure 12.29 2 x 2 multiplier (a) Truth table (b) K-map for P2

A3 A2 A1 Ao

/33 /32 /31 /3o

A3Bo A2Bo AIBo AoBo

A3B1 A2B1 A1B1 AoB1

A3B2 A2B2 AIB2 AoB2
A3B3 AaB3 A1B3 AoB3

multiplicand
multiplier

/:'7 P6 P5 P4 P3 P2 P1 Po double length product

Figure 12.30 "Pencil and paper" multiplication

394 Digital logic design

3_

A3B1 0

11
F~L

I
A2B2

I

Ai ~ 1'
F~L r

A3B3

L FA I-

l
P6

A3B2

tFA] F A

T A2B3

I
I FA

t
Ps

A2B1 A3Bo

1
IF~I~ I

A1B2

I L

1
I

A1B1 A2Bo

FA C
I-

AoB2

I L
I F~r

AoB1 A1Bo

t 1
I

&Bo

!

!

l
Po

Figure 12.31 Array multiplier

For the first row of the multiplication, the least significant bit of the multiplier
multiplies each bit of the multiplicand in turn, forming four partial product terms,
A3Bo, AzBo, AIBo and AoBo. The second row of the multiplication is obtained by
shifting one place to the left and multiplying each term in the multiplicand by the B~
term in the multiplier to form four more partial products. This procedure is continued
to obtain the last two rows of partial products. The columns of partial products now
have to be added, and it is clear that from the second column onwards, carries can be
generated which have to be carried forward to the next column of partial products and
added into the sum for that column.

This multiplication process can be represented by the array multiplier shown in
Figure 12.31 which consists of a number of AND gates and full adders. The overall
delay of this array is given by the largest value of:

tAND d-6tc; 1AND d- tEA -k- 5tc; 1AND + 2IFA d-4tc; or 1AND d- 3IFA

where tAND is the propagation delay of the 2-input AND gates, tr is the carry delay of a
full adder, and tFA is the sum output delay of a full adder, where it is assumed that each
of the AND gates, and each of the full adders, have identical time delays.

For this kind of parallel multiplier the amount of combinational logic required
increases with the number of bits in the multiplier and multiplicand, and a register is
also needed to store the double length product. Before the advent of LSI chips the
amount of combinational logic required was a deterrent to using this technique, but
now that LSI circuits are readily available, fast multiplier chips using this method of
multiplication are available.

12.19 ROM implemented multiplier

Binary multiplication can be achieved by using a ROM as a 'look-up' table.
For example, multiplication of two 4-bit numbers requires a ROM having eight

Arithmetic circuits 395

address lines, four of them, X4XaX2X1, being allocated to the multiplier, and the
remaining four, Y4Y3 Y2 Y1 to the multiplicand. Since the multiplication of two 4-bit
numbers can result in a double-length product, the ROM should have eight output
lines, and a ROM with a capacity of 256 bytes is required. A block diagram of the
multiplier is shown in Figure 12.32.

The stored product method described above clearly has its limitations. If, for example,
the product of two 8-bit numbers is to be stored, then 216 -- 65536 memory locations
and 16 output lines for the double-length product are needed. This requires a ROM
capacity of 65536 • 16 ~ 10 6 bits or 128 Kbytes. For 16 bit multiplication the ROM
capacity required is quite formidable. The number of address lines is 32 and the number
of output lines is 32, so that the ROM capacity required is 232• 2 5 --237 bits =
234 bytes - 224 Kbytes - 214 Mbytes - 16 Gbytes.

In the case of the 8-bit multiplier, it is possible to partition the problem by splitting
both the multiplier and the multiplicand into two 4-bit words. For example, the 8-bit
multiplier N1 : 10010010 can be regarded as two separate 4-bit words, H1 -- 1001 and
L1 -- 0010. Then:

N1 : (24H1 -k- L1)

where H1 is shifted four places t o t h e left relative to L1 by the shift operator 24.
Similarly, the multiplicand N2 - 01111001 can also be regarded as two separate 4-bit
words, HE -- 0111 and L2 -- 1001. Then"

N2 -- (24H2 -k- L2)

Mul t ip ly ing ou t N1N2 - (24H1 + L1)(24H2 + L2)

-- 28H1H2 + 24H1L2 + 24H2L1 -k- L I L 2

The four products in the above equation, L1L2, H2L1, H1L2 and H1H2 can each be
generated by a 256-byte ROM as described previously in Figure 12.32. The individual
8-bit products generated in this way then have to be summed, with proper regard being
paid to their position in the final double-length 16-bit product.

Multiplier X.-Xl 0
4

Multiplicand Y4-Y~ 0
4

8-bi t
address
decoder

Address 0 =t 0
Address 1 = 0

Address 254
Address 255

!

I

1 1
1 1

0 0 0
0 0 0

ROM
matrix

,,
!
I t

! t
t !

! !

1 0

Output buffers

Figure 12.32 Binary multiplication of two 4-bit words using a ROM

I

I

1
0

!

I

0
1

0 x 0 = 0
0 x l = 0

15x14=210
15x15=225

396 Digital logic design

~4 ~4 ~4

MSN
c

256 byte
ROM

>4 <
LSN
>4

M

I ~

256 byte
ROM

IO I I0
~4

P~s-P12

1
4-bit I adder Cin

4

4-bit I adder t~.--

+4
0~1-08

LSN

4;

256 byte
ROM

.~+4 ~

Io 4- ,t Ont adder

4

1
[4-~" t Co adder ~"

+4
~-O~

Figure 12.33 Binary multiplication scheme for two 8-bit words

MSN
c

~4 ~4
256 byte
ROM

>4
LSN

< > 4

Pr-~

If the final product is represented by bits P0 to P~5, the ROM generating LIL2
provides bits P0 to P3 of the final product and a component of bits P4 to P7. The two
ROMs generating the 8-bit products H2L~ and HIL2 have their outputs shifted four
places to the left by the shift operator 2 4 and each provide 8-bit components of the
product bits P4 to P~. Finally, the ROM generating the 8-bit product HIH2 has its
output shifted eight places to the left by the shift operator 28. This ROM contributes
bits PiE to PI5 of the final product and a component of bits P8 to P~. The various
components of P4 to P7 and P8 to PII are summed in a number of 4-bit adders, as
illustrated in Figure 12.33.

12.20 The shift and add multiplier

The 'pencil and paper' method for multiplying together two binary integers is again
illustrated in the example shown below:

Multiplicand 1110 14
Multiplier • 1010 • 10
Partial Product 1 0000
Partial Product 2 1110
Partial Product 3 0000
Partial Product 4 1110
Result 10001100 140

Arithmetic circuits 397

There are three main features to the process:

1. If the multiplier bit is 1, then a partial product is formed by writing down the
multiplicand. Alternatively, if the multiplier bit is 0, then the partial product is
formed by writing down a row of O's.

2. Four partial products are formed, one for each bit of the multiplier, and they are all
added together to form the final product.

3. As the multiplication progresses from the least to the most significant bit of the
multiplier, each succeeding partial product is shifted one place to the left.

To implement binary multiplication using a digital machine, two processes
introduced earlier have to be performed, namely addition and shifting. Addition can
be carried out using a 4-bit adder. The result of the addition is loaded into the product
register when the adder output is enabled by AE, the adder enable signal, while
the shifting process is achieved by generating a shift pulse for the product register.
A multiplier designed on the basis of these two processes is called a shift and add
multiplier.

There would, in practice, be one change to the 'paper and pencil' method in the
machine implementation. The above example shows that all the partial products are
formed before the addition takes place to generate the product of the two numbers.
In a machine this would require four registers, one for each partial product, and clearly
this would increase as the number of multiplier bits increases. From the hardware
point of view this would be extremely uneconomic, and in practice, addition takes
place each time the multiplicand appears as a partial product, that is, every time the
multiplier bit is 1.

An examination of the multiplication of two 4-bit numbers indicates the following
preliminary list of hardware requirements:

1. A 4-bit register for the multiplicand,
2. A 4-bit register for the multiplier,
3. A double-length 8-bit register for the product,
4. A 4-bit adder,
5. Control logic for controlling the add and shift operations.

In practice, this preliminary list is more than is required. It is clear that initially, the
double-length register for the product contains no data at all, and it would seem
reasonable to use a portion of this register for holding the multiplier on a temporary
basis. As the multiplication progresses and successive bits of the multiplier are used,
they are moved out of the product register one bit at a time, thus leaving space
available for the accumulation of the partial products. This portion of the product
register is referred to as the accumulator.

A basic diagram for the machine is shown in Figure 12.34(a). It consists of the 4-bit
multiplicand register, a 4-bit adder, an 8-bit product register which consists of accu-
mulator and multiplier sections, and a box labelled 'control logic'. The control logic box
has three functions. It must examine the multiplier bit to determine whether it is 0 or l,
and it must generate the shift and adder enable signals. The control logic is also supplied
with clock and 'start' signals for synchronising and starting the multiplier operation.
A scale-of-4 counter is used to count the number of shift and add operations.

If the multiplier bit is 1, an adder enable signal A E is generated by the control logic.
The contents of the multiplicand register and the least four significant bits of the

398 Digital logic design

(a)

(b)

ACC

4 i!lo il
4-bit
Adder

4

4

Multiplicand

Product

Multiplier

AE-: Add

+4
I~

LSB

ol

Shift
(s)

LOAD
ACC ~ 0
M*-- - Multiplier
M D * - - - Multiplicand

Scale-of-4
Counter

~CTo

Control
Logic

Ck

Clear

Start (St)

0

SHIFT I
SR ACC & M I
CT~--- CT + lJ

ADD
ACC~ ACC+M

I

Figure 12.34 (a) Block diagram of Shift and Add Multiplier (b) ASM Chart (c) State diagram
(d) implementation of control logic using a PLS (e) idealised timing diagram for 1011 x 1010

Arithmetic circuits 399

$7 So $1

J-L I~r'= MAJ L I MXJ-L

~ PQR
~11 / \ o o o ooi

110

B

M_I-L MX_I-I. J-l_

$6 $2

J-L

010

,~_J-L ~ / ,~_J-L I M_I-L

101 \ / . ^ ^ 011

S=J-L
M ~ I S = M J L I J-L

Ss $4 Sa

(c)

1 2 3 4 5 6 7 8 9 lO 11 12 13 14 15 16 17
P

%

:: a m m u m ,, ;, , o

" / i l l / <~
'~ mmmmmmmm ~: R

/ / / I m :~ ::<:~J =
m , , m . , m

)C)C)C ;C):,

, m , q Y ~ H ~ " l � 9

Y ~ J

X

<.y
_F-L

- . . . j

L - . - . . . - - - . J

< (< < I ~
L - - - . - . - - . J

. ~

(d)

Figure 12.34 (Continued)

400 Digital logic design

_n. (~

,% ,% ,%

XJ

AE I

M I

S4 ,% ,%

Figure 12.34 (Continued)

I I l - t I"1

!-I

I I
I !

(e)

accumulator, having been connected to the inputs of the 4-bit adder where addition
takes place, are now returned to the accumulator. A shift pulse is generated, and the
data stored in the product register is shifted one place to the right, thus moving the
least significant bit of the multiplier out of the product register and replacing it with the
next most significant bit. In the event of the multiplier bit being zero, a shift pulse S
is generated, and no addition takes place. Comparing the machine operation with the
'paper and pencil' multiplication it will be noticed that, on paper, the multiplicand
shifts left and the multiplier remains in a fixed position relative to the multiplicand,
which remains in a fixed position.

An ASM chart for the multiplier is shown in Figure 12.34(b) and it consists of four
states, WAIT, LOAD, ADD and SHIFT:

WAIT:
LOAD:

ADD:

The multiplier is in the quiescent state waiting for the START signal.
The accumulator is cleared and the multiplier and multiplicand registers
are loaded.
The multiplier enters this state if the L S B - 1. The mutiplicand is added to
the contents of the accumulator. This state will be bypassed if LSB = 0 and
the multiplier will go directly to the SHIFT state.

SHIFT: The accumulator will shift one place right moving the least significant bit
of the multiplier out of the multiplier register. The count will advance by 1. If
the counter output CT0 is 0 the machine will return to the LSB decision box.
If the counter output is 1, the end of the count cycle has been reached and the
machine returns to the WAIT state.

A suitable state diagram for the machine is shown in Figure 12.34(c). Once start
signal X is received, an adder enable or shift pulse is generated in state So, depending
upon the value of the multiplier bit M. Assuming that M = 1, an adder enable pulse is
generated on the trailing edge of the next clock pulse to be received, and a transition
will be made to S~, the sum having been returned to the accumulator. Alternatively, if
M = 0 a shift pulse is generated, and a transition is made to $2 on the trailing edge of
the next clock pulse. The outer square will be traversed if all four multiplier bits are l's.

Arithmetic circuits 401

Alternatively, if all four multiplier bits are O's then a transition path will be traced
round the inner diamond of the state diagram.

Since the control logic state diagram has eight states, three flip-flops, P, Q and R are
required for its implementation. A programmable logic sequencer (PLS) which has
on-board D type flip-flops can be used for the implementation. The input equations
for the DFFs are derived using the methods described in Chapter 8. It is left to the
reader to construct a state table, plot the flip-flop input equations and the shift and
adder enable functions on 5-variable K-maps and then simplify them. The following
results with the state allocation given on the state diagram should be obtained:

De = PQ + M P Q + P a R + M P R

DO. = QR + M a R + M P Q + M X P Q

DR = M X R + M P R + M Q R

A E = M X R + M P R + M Q R

S = R + M Q + M P X

The implementation of the control logic is shown in Figure 12.34(d) and an idealised
timing diagram, assuming leading-edge triggered DFFs, is shown in 12.34(e).

12.21 Available multiplier packages

The 74284 and the 74285 in the Type 74 series can be used in combination to provide
4-bit-by-4-bit parallel multiplication. When the two chips are connected as shown in
Figure 12.35 an 8-bit product is generated. The individual chips have a pair of enable pins
GA and GB and open collector outputs which should be connected to a pull-up resistor.

In practice, it is now unlikely that these two chips would be used for multi-
plication. They were originally manufactured in the early days of the Type 74 series
when pin limitation was a crucial design factor. More recently, single chips have
been designed which are capable of much higher orders of multiplication. However,
higher orders of multiplication can be achieved by an array of these two multiplier
packages. For example, 8 • 8 multiplication can be achieved using an array of four
pairs of these two chips using the following equation which was developed in
section 12.19:

P - 28H1H2 + 24HIL2 q- 24H2LI d- LIL2

The outputs of the multipliers are summed using an array of 74283 4-bit adders, beating
in mind that proper regard must be paid to the shift operators in ~ the above equation.
Implementation of the multiplier is identical to the ROM/Adder array in Figure t2.33,
the ROMs being replaced by 4 • 4 multipliers. It is left to the reader to calculate the
worst case delay of the multiplier array from input to output.

12.22 Signed arithmetic

Consider the multiplication of two 4-bit numbers where the multiplicand is negative
and the multiplier is positive. As an example, the product of the two numbers
is calculated in 4-bit 2's complement arithmetic and must not be more negative

402 Digital logic design

Binary inputs
Word 2

23 22 21

l

Word 1

2 o 23 22 21 2 o

GA
74284

c~

GA

G6
74285

P7 P6 ~ ~ ~ ~ P~ Po

Output product

Figure 12.35 4-bit-by-4-bit Parallel Multiplier

than (-15)10, the lowest number allowed when a 5-bit register is used to hold
the product.

Multiplicand (-7)10 1001 2's complement of (7)!o
Multiplier (+2)10 0010

0000
1001

0000
0000
0010010

The four least significant bits of this multiplication are the 2's complement of the
required answer, (-14)10. It will be observed that all that was required to complete the
multiplication was a single left shift of the multiplicand. It follows that if the multiplier
consists of a series of O's followed by a single 1, reading from the LSB towards
the MSB, the multiplication process would only require a series of left shifts of the
multiplicand. For example, in the case of the 8-bit multiplier (00010000)e, four left
shifts of the multiplicand are required as shown in the example below:

Multiplicand (-7)10 11111001 2's complement of (7)1o
Multiplier (+ 16)10 00010000
Product (-112)10 10010000 4 left shifts of the multiplicand

The product obtained in this case is the 2's complement of (112)10.

Arithmetic circuits 403

Consider now the multiplication of the multiplicand P by n l's. This may be
written as:

P(2 n - 1) = P x 2 n - P

The first term in this equation represents a left shift of the multiplicand P by n places,
while the second term represents the addition of the 2's complement of the multiplicand
to the result of the left shift. The calculation of the product (-5)10 • (15)10 = (-75)10
using the above equation is shown below:

Multiplicand (-5)10
Multiplier (+ 15)10
Product (-75)10

11111011
00001111
10110000
00000101
10110101

2's complement of (5)1o

4 left shifts
Subtract (--5)10, i.e. add (5)10
2's complement of (+75)10

12.23 Booth's algorithm

It is clear from the examples in the previous section that arithmetic operations arising
from the multiplication process only take place when the multiplier bits change from
0 to 1 or from 1 to 0. Based on these observations, A D Booth developed the following
multiplication algorithm:

1. If two adjacent multiplier bits are the same (00 or 11) do nothing, and shift the
partial product left one place

2. If a bit of the multiplier is 1 and the next least significant bit is 0, subtract
the multiplicand from the accumulated partial product and shift left one place

3. If a bit of the multiplier is 0 and the next least significant bit is 1, add the
multiplicand to the accumulated partial product and shift left one place.

Two examples of the application of Booth's algorithm follow, firstly for a pair of
positive numbers and secondly for a positive multiplicand and a negative multiplier.
The multiplier is defined by the equation M = M7M6MsM4M3MzM1Mo and in
order to start the multiplication process a digit M-1 = 0 is placed behind the LSB of
the multiplier.

Multiplicand (+7)10
Multiplier (+9)10

00000111
00001001(0)
11111001

00000111
00000000

11111001
00000111

(63)10 100100111111

MoM-1 = 10 Subtract 7 and shift left
Mt Mo = 01 Add 7 and shift left
M2M1 = 00 Shift left
M3M2 = 10 Subtract 7 and shift left
M4M3 = 01 Add 7 and shift left

Product

The eight least significant digits represent the product (63)10. In practice, the
multiplier would accumulate the partial products as the calculation proceeds whereas
in this example the individual partial products have been summed after they have all
been formed.

404 Digital logic design

For the second example the multiplier is negative and is expressed in 2's complement form:

Multiplicand (+7)10 00000111
Multiplier (-9)10 11110111 (0)

11111001
00000000

00000000
00000111

11111001
Product (-63)10 000011000001

The least significant eight bits are the 2's complement of (63)~o.

M o M - I = 10 Subtract 7 and shift left
m l Mo = 11 Shift left
M2ml = 11 Shift left
M3M2 - 0 1 Add 7 and shift left
M4M3 - 10 Subtract 7 and shift left

12.24 Implementation of Booth's algorithm

The basic building blocks for a multiplier utilising Booth's algorithm are shown in
Figure 12.36. It consists of an 8-bit register which holds the multiplicand. The output

Mn-1

Multiplicand I
+8

I ,

. ,

8

D

2's complementer]

, f
Eight 2-to-1 Multiplexers

Eight 2-input AND gates

c~7

~176
A

[Ck

Coat

~ 8

8-bit adder

16-bit accumulator

!

Figure 12.36 Block diagram for a Booth's multiplier

I

Shift

Arithmetic circuits 405

of the register is fed directly to one of the inputs of each one of an array of 2-to-1
MUXs, while the output of the 2's complementer is fed to the second input of each
of the MUXs. If the multiplier bit M, = 1 the output of the MUXs is the 2's comple-
ment of the multiplicand. Alternatively, if M, = 0, the output of the MUXs is the
multiplicand. Each output of the MUXs is fed to one of the inputs of a bank of eight
2-input A N D gates. The A N D gates are enabled/disabled by the output of an XOR
gate whose inputs are M, and Mn-l. Assuming that each of these multiplier bits are
either 00 or 11 the AND gates are disabled. For the other two possible XOR inputs, i.e.
01 or 10, the XOR output is 1 and the A N D gates are enabled. The outputs of these
gates are fed to an 8-bit adder in conjunction with the seven least significant bits of an
accumulator. For each bit of the multiplier arrangements should be made to shift the
partial product in the accumulator. It is left to the reader to design a complete
hardware implementation using Booth's algorithm.

The 74384 8-bit by 1-bit 2's complement multiplier package is shown in Figure 12.37
along with the function table. This package employs Booth's algorithm to implement
the multiplication of a pair of numbers, both expressed in 2's complement form.
The 8-bit multiplicand is stored in an array of eight latches which are controlled by
the clear input CLR. When the CLR input is low all the latches are cleared and they
are now able to receive an 8-bit multiplicand. When the clear input is high any further
input to the array of latches is inhibited.

The multiplier is fed to the package via the Y input in a serial bit stream, least
significant bit first, and the product is clocked out of the chip on the line labelled
PROD. Multiplication of an x-bit multiplicand by a y-bit multiplier generates
,, product of length of (x + y) bits and the clock must provide (x + y) shift pulses to
produce the 2's complement product. Facilities are also available for extending the
range of multiplication. This can be achieved by connecting the PROD output to the
K input of the next multiplier in the array.

(a)

(is) _ p ~ _

X7 XS X6 X4 X3 I(2 X 1 X0

/ ! A7 ' A6 AS A4 A3 A2 At A0

Y-1 CK
ADOER/SUOTRACTER AND REGISTERS

K

MOOE IS)

(b)

I N P U T S

CLK
L X

x i Y
D a t a X

H t X L

H t X L H

H t X H L

H t X H H

F U N C T I O N T A B L E

I N T E R N A L O U T P U T F U N C T I O N
Y - 1 P R O D

L L Load new mul t ip l icand and clear internal sum and carry registers

L Shi f t sum register O u t p u t

per

Booth 's

a lgor i thm

A d d mul t ip l icand to sum register and shift , ,,
Subtract mul t ip l i cand f rom sum register and shift

Shi f t sum register

H " high-level, L " low-level, X = i r revelant, t ,, low-to-high-level transit ion

Figure 12.37 (a) The 74384 block diagram of the 2's complement Booth multiplier (b) the function table

406 Digital logic design

Prob lems

12.1 Develop a combinational logic circuit that will convert 4-bit binary numbers into
their corresponding 2's complement form.

12.2 Develop a combinational logic circuit that will generate the 10's complement of
the decimal digits where these digits are expressed in the NBCD code.

12.3 The code tabulated below is the XS3 code representation for the decimal
digits.

Develop a set of rules for adding together two decimal digits expressed in XS3
form, and hence perform the operation (34)1 O- (19)! 0 using 9's complement
arithmetic.

dd XS3 code dd XS3 code

0 0011 5 1000
1 0100 6 1001
2 0101 7 1010
3 0110 8 1011
4 0111 9 1100

12.4 The decimal digits 0 to 9 are represented by an 8421 NBCD code (normal binary
coded decimal). A logic circuit is required which will convert the decimal numbers
expressed in 8421 NBCD code into the decimal numbers expressed in the
corresponding XS3 code. Design such a code converter using (two-input) NAND
gates only.

12.5 Develop the circuit for a 3-decade, XS3 decimal adder/subtractor using 7483 4-bit
adders and any additional discrete logic that may be required. 9's complement
arithmetic is to be used for the subtraction process.

12.6 Develop an algorithm for the addition of two positive binary coded duodecimal
(base 12) numbers.

With the aid of the algorithm, design one stage of an n-stage binary coded
duodecimal adder/subtractor circuit which uses l l's complement arithmetic.
A 4-bit binary adder is to be used as the basic building block in conjunction with
any other logic gates required.

12.7 The decimal digits are to be represented by the 2421 self-complementing code.
Develop an algorithm for adding together any two decimal digits using this code.
With the aid of this algorithm, design a single stage 2421 adder/subtractor circuit.
A 4-bit binary adder is to be used as the basic building block in conjunction with
any other necessary logic gates and/or MS1 chips.

12.8 An arithmetic circuit has two selection signals, So and Sl. The circuit is required
to perform the operations listed below.

F = A + B F - A + B + I

F = A F = A + I

F = A + B F = A + B + I

F = B F = B + I

Arithmetic circuits 407

12.9

12.10

Using a 4-bit adder as the basic building block, design the circuit that will
implement the above operations.
Design a binary multiplier that multiplies a 4-bit number, B3B2B1Bo, by a 3-bit
number A = A2A1Ao. The circuit is to be implemented using AND gates and full
adders.
A parallel binary multiplier for 4-bit positive numbers, using the shift and add
technique, is illustrated in Figure P12.10. The multiplier is controlled from the
box labelled 'Control logic' in the diagram. The inputs to the controller are
(a) the clock signal X, (b) the start signal N, and (c) the multiplier bit M.
The outputs from the controller are (a) the shift pulse S, (b) the add pulse
A, and (c) the reset pulse r.

The control logic is to be designed such that if the multiplier bit, M, is 1 at
a given clock time, addition takes place. The multiplier bit should then be reset
to 0 and at the next clock time a shift takes place.

Using synchronous sequential design techniques, develop the control logic
for the multiplier.

--t

Product register

r (reset)

I I I ! []] [M (Multiplier bit)
i l l [i l l 'Multiplier'

TTT
I I I

Y

Multiplicand

Adder
L X (Clock)

A (Add) Control
logic [iN(Start)

I-

Figure P12.10

12.11 Design a serial binary multiplier using Booth's method.
12.12 Calculate the product (-910) • (-13)10 using Booth's algorithm.

13 Fault diagnosis and testing

13.1 Introduction

Successful and efficient fault-finding is an art as well as a science, for experienced
practitioners learn which faults are likely to occur and which are not, and use tests that
isolate typical faults most quickly. It is also technically extremely exacting, as it
requires an understanding not only of how the circuit is designed to operate, but also
of how the circuit will behave under a multitude of fault conditions.

In fact, broadly similar approaches are needed to establish why a new design does
not operate as expected, or why a newly constructed circuit made to a known good
design does not operate the first time it is tested, or why a circuit that previously
operated correctly has suddenly started showing fault symptoms. For some commercial
designs, component-level fault finding in the field is discouraged and faulty modules
must be replaced as a whole, but in many of these cases fault-finding is thereby merely
transferred to a central depot having the necessary specialist facilities. In any
case, design engineers still need the skills that will enable them to find faults in
prototype designs.

Before undertaking any electrical tests, it is always a good idea to carry out a physical
inspection of the circuit, as many faults are caused by mechanical problems, such as
smashed components or faulty soldering, that are clearly visible. Only when a faulty
circuit has no obvious visual defects are electrical fault-finding methods then needed.
At this point it is highly desirable to have available the technical details of the design.
If these details are not immediately to hand, finding an elusive fault is made very much
more difficult and may well be uneconomic. It is usually an early task, therefore, to try
to obtain these technical details.

A simple way of detecting faults in a combinational logic circuit is to apply every
possible input combination and compare the circuit response with the known truth
table of the circuit, or with the response of a known faultless version of the circuit.
There are clearly limitations to this method because, as the number of inputs (n)
increases, the number of tests required increases exponentially and is equal to 2 ~
in the case of a combinational circuit. Potentially a much greater number of tests
than this would be needed for a sequential circuit where the order of the applied inputs
is significant.

In a limited number of situations, an examination of the circuit in conjunction with
a tabulation of the expected circuit response can reveal the nature of the fault.
For example, the circuit of Figure 13.1 (a) gives the column headed f i n the truth table
of Figure 13.1(b) when operating correctly, while the columns headed fl and f2 are
given if there is a fault present in the circuit. Response fl is obtained when input line q
is held permanently and erroneously at l, and the output of g~ is then 1 whenever

Fault diagnosis and testing 409

(a)

C
A

C

D

(b)

Inputs Fault free Faulty
response response

A B C f

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 I o , , 0

Figure 13.1 An informal approach to fault diagnosis (a) Circuit implementation o f f = ABC + ABC
(b) Circuit response for fault-free (f) and faulty (f t and f2) conditions

A = C = 0. Response f2 is obtained when any one or more of the input lines p, q or r is
(are) erroneously held at 0.

The fault fl is revealed by applying A = 0, B = 1, C = 0, and examining the output,
while the fault f2 is revealed by the test A = B = C = 0. The first fault is distinguish-
able from all other possible faults, while the second test reveals seven indistinguishable
faults, three corresponding to one input line being erroneously low, three where any
two of these three input lines are erroneously low, and one where all three input lines
are erroneously low.

This limited and informal fault analysis of the circuit shown in Figure 13.1(a) has
been carried out by inspection. However, it is desirable that more formal techniques
for testing should be developed and it is the purpose of this chapter to examine fault
analysis and methods for generating an adequate test set for a specified circuit.
This process is frequently termed test pattern generation (TPG).

13.2 Fault detection and location

Inexperienced engineers, faced with a circuit containing a fault or faults unknown,
often resort to removing semiconductor components at random and attempting to test
them or to replace them with new components without testing the old. This is
a completely incorrect approach, for the following reasons:

1. In a typical system with many components, it is unlikely that the faulty component
will be chosen at random for removal.

2. Often, either perfectly good components, or the circuit board, or both, will be
damaged by inexpert removal and replacement.

3. In many systems, the most common faults are mechanical failure of switches and
similar components, followed by connection (soldering) faults, open circuit
resistors, and open circuit capacitors. Failure of ICs and other semiconductor
devices, although possible, is relatively unlikely.

4. Sometimes a fault will cause an associated semiconductor device to fail. If this
associated device is replaced at random, the replacement will be destroyed as well
with no further progress to show as a result.

410 Digital logic design

In all cases, a good working rule is that no component (or sub-system, or minimal
replaceable part) shouM be removed or replaced until it has been proven faulty
(beyond any doubt) and it has also been established that there is no associated fault that
will cause the replacement to fail. To prove that a component in the circuit is faulty
requires that voltage and perhaps other electrical checks should be performed upon the
circuit while it is powered, and the component should be subjected to typical signals
whilst the output is examined for the correct output signals.

In order to locate a fault in a typical system consisting of a chain of n components
connected in sequence, often signal tracing will be employed in situations where the
intermediate signals are accessible at each point in the chain. Using this technique, the
signals at the outputs of components are examined and compared with what would be
expected, assuming no fault were present. If correct signals are observed at the input to
a certain component but not at its output, then it is fairly clear that the fault must be
associated closely with that component. This still does not mean that this particular
component is faulty, for it is also possible that the power supply to this component has
failed or that the function of this component has been affected by some other fault.
Therefore, exhaustive voltage checks centred upon this component must still be under-
taken to investigate these other possibilities before condemning this component.

How can this faulty component be located? Suppose that the fault is equally likely to
occur in any of the n links of the chain. The correct procedure is not to trace the signal
in turn through each component in the signal chain, for this method requires, on
average, n/2 tests before the faulty stage is located (of course, one could be lucky
and locate the fault immediately with one or two tests, but equally one may be unlucky
and need as many as n tests to locate the fault). Much more efficient is the procedure of
binary division where firstly the presence or absence of the correct signal is established
halfway through the chain of n stages. Depending upon the result of this single test,
either the entire first half or the entire last half of the circuit can therefore be eliminated
from further attention, and subsequent tests confined to the faulty half. The same
principle can then be applied to this half of the circuit, and so on, by successive binary
divisions the fault is isolated to one single stage. With a large number of stages, this
procedure requires only log 2 (n) tests to locate the faulty stage, considerably less than
the average of n/2 tests required for tracing the signal in turn through each stage.
For example, for n = 16, sequential signal tracing requires 8 tests on average, whereas
binary division signal tracing requires 4 tests.

There are two types of test which can be carried out on digital circuits:

1. Fault detection tests, which are used to reveal faults, and
2. Fault location tests, which are designed to reveal, locate and identify faults.

The testing method used for the circuit of Figure 13.1 (a) in section 13.1 above was
exhaustive, in that all possible tests were applied. In practice, it is possible to devise
shorter test procedures which will detect and locate faults. However, before developing
realistic test methods, a number of simplifying assumptions will be made relating to the
circuits to be tested and the types of faults occurring in those circuits:

1. The procedures to be dealt with in this chapter are concerned with the detection,
location, and diagnosis of single faults. This is not to exclude the possibility of the
occurrence of multiple unrelated faults, but the probability of such faults occurring
is small in comparison with the probability of a single fault occurring. In a complex

Fault diagnosis and testing 411

system where multiple faults exist, it is likely that each fault will affect a different
part of the system, so that in practice the system may be divided into sub-systems in
each of which there is, at most, only one fault. Of course, it is also possible that one
fault may cause failure of a closely related component, so that when a faulty
component is located, the question must always be asked whether that component
failed as a direct consequence of another failure. If so, replacing the first
component will merely cause the replacement to fail again.

2. It will be assumed that the faults being detected are permanent rather than
intermittent. Intermittent faults are, in general, extremely difficult to locate, as, after
replacing a suspect component, it is impossible to say without doubt whether
subsequent correct operation is a result of replacing the faulty component or
is a result of inadvertently disturbing a different actual faulty component so that it
is now (temporarily) operating correctly. It is a truism that it is impossible to find a
fault in a system that is, even if temporarily, operating according to its
specification. In many cases, when faced with an intermittent fault whose location
is not obvious, the best course of action is either to replace the entire faulty system
or sub-system, or else to wait until the intermittent fault becomes permanent.
Replacement may be the best option if this system or sub-system has a critical
function, whereas waiting may be a cheaper option if the system or sub-system does
not have a critical function as intermittent faults usually become permanent
eventually. After waiting, the fault diagnosis will be made much easier by having a
permanent fault to locate. Some intermittent faults are thermally activated,
produced by a faulty connection that is good at certain temperatures but at other
temperatures the differing thermal expansion coefficients of the various materials
involved in the connection cause electrical contact to be lost. In this case, it may be
worthwhile using an aerosol freezing spray to cool isolated parts of the circuit,
hopefully inducing the fault to be present for longer periods, in order to locate
the fault.

To start with, it will be assumed that all faults are such that a certain logic line
is either stuck-at-O (s-a-O) or stuck-at-1 (s-a-1), i.e., the line is permanently at logic level
0 or 1 respectively, regardless of what logic level is actually supposed to be present on
that line. This widely used fault model does not cover all possible faults, but its use
is justified on the grounds that most circuit failures exhibit symptoms corresponding
to this model. For example, a short circuit of any line to ground can be represented by
a s-a-O fault, while an open circuit on an input line to a TTL gate will cause that input
to 'float' at a voltage corresponding to an unreliable and noisy logic 1, causing an s-a-1
fault. Other common types of fault occur when one of the transistors in the usual
'totem-pole' output stage of a gate becomes short circuited and the other becomes
open circuited, which can again be represented by an s-a-O or an s-a-1 fault as approp-
riate. Equivalent faults can also occur in 'open collector' gate output stages.

Later (section 13.8), bridging faults will be examined, where two logic lines are
inadvertently connected together. However, other faults are also possible in practice.
For example, an open circuit on an input line to a CMOS gate results in that input
being connected neither to logic 0 nor to logic 1, and, assuming the usual 'totem-pole'
gate output configuration, it is then possible that neither output transistor is turned
fully off. Therefore, the gate output stage will draw substantially more current than
it is designed to carry, which can lead to serious overheating of that gate, as well

412 Digital logic design

as excessive current consumption. Overheating can lead to gate failure which will itself
usually be well represented by the s-a-O or s-a-1 fault models, but the excessive current
consumption can also lead tO reduced power supply voltage or even power supply
failure, causing erratic operation elsewhere in the circuit. This type of fault is best
located by careful voltage checks on the IC pins. Note that in this case, merely
replacing the overheating IC will clearly not solve the problem, unless the cause of
the fault is an internal open circuit between the IC connection pin and the actual gate
input transistor.

Another possibility with CMOS gates is that if a gate input is a poorly connected
though not quite open circuit, there may be a large effective resistance R~ in series with
the gate. In conjunction with the effective capacitance C~fr of the gate input this can
give correct logic operation after a significant delay governed by the time constant
r = RsCefr which in some cases can be as much as several seconds. This is an example
of a delay fault, characterised by excessive propagation time through a particular part
of the circuit. In the case of a slow logic system, the presence of such a fault may not
matter or may not even be detectable, but in the case of a fast system where such a delay
is significant such symptoms can be baffling to the inexperienced engineer, causing
unexpected racing hazards for example.

A further type of fault worthy of mention here, encountered mainly, though not
necessarily exclusively, with VLSI chips such as memories, is the pattern-sensitive fault,
where a repeatable and demonstrable logic error occurs whenever some particular logic
pattern is set up elsewhere in the circuit. As an example of this kind of fault, it is
possible that if one particular data word is output by a memory chip, then and only
then is incorrect data read from the data bus. This can be caused by poor supply line
decoupling, so that a data word that happens to require a large current drive to the
memory output data buffers momentarily takes the supply line below its specified
voltage, thus affecting the memory or data bus operation. This type of fault can
be extremely difficult to find as for most of the time the circuit operates correctly,
without any 'stuck-at' or bridging-type behaviour at all. It is distinguishable from an
intermittent fault only in that the fault is electrically repeatable, if only the correct
conditions for repeating it can be found, and also it usually does not change in severity
over time.

13.3 Gate sensitivity

One concept that is central to the testing of all circuits is the provision of a sensitive
path between input and output so that any signal transitions appearing at the input
will be transmitted to the output. At the gate level this concept depends upon the
transmission properties of each gate. For example, consider the 2-input AND gate
shown in Figure 13.2(a)"

1. If B = 1, signal transmission through the gate is enabled; Z = 0 for A = 0, and
Z = 1 for A = 1. Any logic transitions appearing at input A are directly transmitted
to the gate output, Z.

2. If B = 0, signal transmission through the gate is disabled; Z = 0 irrespective of the
value of A. Logic transitions appearing at input A are not transmitted to the gate
output Z.

Fault diagnosis and testing 413

•1•
A 0,1._...= Z1,0 A0,1 A0,1 Z

AO,1zo,, .~I ~:C z .o~ZO,,= ~ .O~,, B B B

Transmission Transmission Transmission Transmission

A 0 ' I F ~ Z0,0 A0,1 Z1,1 A0,1 Z l 1 A 0 ' ! " ~ ZOO

Gate disabled Gate disabled Gate disabled Gate disabled
(a) (b) (c) (d)

Figure 13.2 The transmission characteristics of (a) AND, (b) NAND, (c) OR, and (d) NOR gates

Similarly, a 2-input N A N D gate is enabled when one of its inputs is held at 1, while
2-input OR and N O R gates are enabled when one of their inputs is held at 0.
The transmission properties of these gates are also illustrated in Figure 13.2.

AO.' O, e,,

Transmission Inversion

Figure 13.3 The transmission character-
istics of the XNOR gate

It is interesting to note that the XOR and X N O R
gates do not exhibit the same gate sensitivity as the
other four gates, as neither of them can be disabled.
The behaviour of the X N O R gate is illustrated in
Figure 13.3 and, like the X O R gate, it behaves as
a controlled inverter. Both of these gate types are
therefore permanently enabled.

13.4 A fault test for a 2-input AND gate

The A N D gate shown in Figure 13.4(a) has two input lines, labelled p and q
respectively, and one output line labelled r. In all, there are six possible single faults
for which tests can be made. They are: any one of p, q, and r s-a-1 or, alternatively, any
one of p, q and r s-a-O.

Suppose that line p has a s-a-O fault; it is required to determine the test that will
detect this fault. Circuit input B must be maintained at logic 1 level to enable the gate,
otherwise the gate's output will be permanently held at 0, while the other circuit input (A)
must be held at the complement of the 'stuck-at ' fault value of p - i.e., in this case, 1.
Hence, the required test is A - B - 1, and the results of this test are summarised in
Figure 13.4(a). It is also clear that the same test conditions will also detect line q s-a-O

and line r s-a-O.
To determine the test for line p s-a-1, the input B must be maintained at logic 1 level

to enable the gate, while input A is he ld at 0 (the inverse of the s-a-1 value of p).
Hence, the required test is A -- 0 and B - 1, and the results of this test are summarised
in Figure 13.4(b). This same test will also detect whether r is s-a-1.

Finally, to test for q s-a-l, input A - 1 is the gate enabling signal, while the
complement of the 'stuck-at ' fault value must be applied at input B, giving B - 0.
Therefore, the required test is A - 1 and B - 0, and the possible test results are shown
in Figure 13.4(c).

414 Digital logic design

(a)

p s-a-0

q

(b)

p s-a-1

q

Test 3 normal output

output if fault
Po present

Test I normal output

output if fault
pl present

(c)

P

q s-a-1

Test 2 normal output

output if fault
ql present

Figure 13.4 Fault test for a 2-input AND gate (a) Test for p s-a-O (b) Test jbr p s-a-I (c) Test./br q s-a-I

The results deduced above can be tabulated as follows, using the shorthand notation
that p~ signifies p s-a-1 and other faults are indicated similarly:

Test number A B f Faults detected by test

0 0 0 - [Not required]
1 0 1 1 Pl, rl
2 1 0 1 ql
3 1 1 0 Po, qo, ro

The table shows that a test using A = B = 0 is not needed, and that the remaining
three tests will detect all possible faults. Hence, the minimal test set for an A N D gate is
T = { 1,2, 3 }, and therefore this analysis has shown that there is a 25 % reduction in the
tests needed, compared to the test set using all entries in the truth table.

13.5 Path sensit isation

The determination of a test set for a single gate, where there is direct access to the input and
the output, is achieved by enabling or sensitising the gate. However, it often happens that

P

C 0 [~ E

Figure 13.5 Path sensitisation for
testing for a s-a-O fault on line p

when testing a combinational circuit such as the one shown
in Figure 13.5, the outputs D and E of gates gl and g2,
respectively, are not directly accessible so that a fault at p,
for example, must be detected at the output F. For example,
points D and Emay be within an IC which must be tested by
applying input signals whilst examining the output signals.
This requires the sensitisation of two gates, g l and g3, which
then provide a sensitised path from input A to output F.

Fault diagnosis and testing 415

P

B v. W 1
q

1
r

Figure 13.6 Circuit to be tested by path sensitisation method

To determine whether line p shows an s-a-O fault, gate gl is sensitised by setting B = 0.
In order to sensitise gate g3, point E must be set to 1 which requires input C = 0.
The path through gl and g2 is now sensitised, and to test for P0 then A = 1, the inverse of
the fault for which a test is required. Hence the test for P0 is (A,B,C) = (1,0,0).

As an example of path sensitisation, a test set covering all the possible faults will be
obtained for the N A N D gate combinational network shown in Figure 13.6. There are
three possible paths through this circuit: pst, qst and rt. On the diagram, as an example,
path pst has been marked in bold. The analysis proceeds by sensitising each path in
turn, and the tests for the various s-a-O and s-a-1 faults associated with each path
determined. The results are summarised in the following table:

Path (Figure 13.6)--+

Gate sensitisation input signals:

Assumed fault:
Test (complement of assumed fault):
Full test conditions (A,B,C):

Normal output f."
Faulty output (inverse of normal f) :
Other faults detected by this test:

pst

B = C = I

P0 P~
A = I A = 0
(1,1,1) (0,1,1)

1 0
0 1

S1 & to So dk tl

qst

A = C = I

qo
B = I
(1,1,1)

1
0
SI 1~ to

ql
B = O
(1,O,l)

0
1

S o & tl

rt

(A,B) = (0,0) or
(0,1) or (1,0)

ro
C = I
(0,0,1),
(0,1,1),

or

(1,0,1)
0
1
tl

rl

C = 0
(o,o,o),
(0,1,0),

or

(l,o,o)
1
0
to

In these tests, for paths pst and qst the sensitising signals sensitise the selected path in
the forward transmission direction and the sensitising process is referred to as the
forward trace step. However, for path rt the sensitising signal for g2 is s = 1, and values
therefore have to be assigned to A and B which will set up this sensitising signal. This is
referred to as the backward trace step, and for the circuit of Figure 13.6 there are three
possible combinations of the input signals A and B that will set up the required
sensitising signal, as shown in the table.

Additionally, it should be noted that when a path has been sensitised, 'stuck-at' faults can
be detected at each point along the sensitised path. The faults that are automatically detected
in this way correspond to the logical complement of the normal logic level expected.

A similar table summarising the results for other circuits can be prepared by
adopting the following procedure:

1. Select the fault for which a test or tests are to be determined, and identify a path
from the site of the fault to the circuit output.

2. Sensitise the path using the forward trace step.
3. Establish the network inputs, if necessary, by the backward trace step.

416 Digital logic design

c I)
D

~ _ / r _

Figure 13.7
fan-out of l

Circuit with independent inputs and gate

The path-sensitising technique is always
satisfactory for circuits in which all the
inputs are independent of each other and
where the fan-out of each gate in the circuit
is unity. In such cases, this method will
generate tests for all possible faults in the
circuit because consistent input combin-
ations always exist, irrespective of which
path is sensitised, and consequently all
paths in the circuit can be sensitised.
Another example of such a circuit is shown
in Figure 13.7, where the tests for the faults
P0, qo and r0 are the input combinations

(A,B,C,D,E)=(I,I,O,X,1) or (I,I,X,0,1), where X indicates a 'don't care'.
The remaining four sensitisable paths can be used to determine tests for all other
possible faults in this circuit.

13.6 P a t h sens i t i sa t ion in n e t w o r k s with fan-out

A circuit incorporating fan-out is illustrated in Figure 13.8(a). The signal path
for input variable B branches into the two lines s and t, one branch being
connected to the lower input of g~ and the second branch being connected to
the upper input of g2. After passing through gates g~ and g2, these two paths
reconverge at g3. This is an example of reconvergent fan-out. Further inspection of
this circuit shows that there are two single paths that can be sensitised indepen-
dently, i.e. qsuw (Figure 13.8(a)) and qtvw (Figure 13.8(b)). Additionally, there is
a multiple path (Figure 13.8(c)) consisting of these same two paths together, which
can also be sensitised. The following table shows the tests possible for detecting
the fault qo:

Path (Figure 13.8) qsuw qtvw qsuw & q t v w

Gate sensitisation input signals:

Assumed fault:
Test (complement of assumed fault):
Full test conditions (A,B,C):
Normal output f:
Faulty output (inverse of normal f):
Other faults detected by this test:

A = I C = I A = C = I
v = l , ~ C = 0 u = l , ~ A = 0
q0 q0 q0
B = I B = I B = I
(1,1,O) (O,l,1) (1,1,1)
1 1 l
0 0 0
So, to, u~, & Wo So, to, v~, & Wo So, to, & Wo

In this example, the fault q0 can be transmitted along either of the two independently
sensitised paths and can be detected at the output. For the case of dual path sensitisation,
if the input at B changes from 1 ---, 0 the outputs of gl and g2 both change from 0 ~ 1;
the fault is transmitted along both paths simultaneously. This is an example of positive
reconvergence.

Fault diagnosis and testing 417

(a)

P

..F ~
I-'iZ > ! r v

f

C

(b)
P

C r [ga_.~ v

(c)

A
P

..F "1 ,

I
C r [g a j / - v

Figure 13.8 Path sensitising in a network with
fan-out (a) Single-path qsuw (b) Single-path
qtvw (c) Dual-path qsuw and qtvw sensitised
simultaneously

(a)

A P

q
B .':-

C �9

(b)

A P

D ~
: F

B " ~ v
C r "

N,

(c)

A P u

B .':'-

V

C

Figure 13.9 Path sensitisation for circuit
having unequal inversion parity along its
reconvergent branches (a) Dual-path sensiti-
sation test fails (b) and (c) Single-path
sensitisation tests succeed

It is tempting at this point to conclude that dual path sensitisation will always
prove satisfactory in circuits with reconvergent fan-out. However, this is not so, as
shown in the following example. A second circuit incorporating reconvergent fan-out
is shown in Figure 13.9(a). The signal path for the B input again branches into the
two lines s and t, one path going via gl and g3, the second path going via g2 and g3.
Assuming that q is s-a-O, the sensitising signals for gates gl and g2 (thus sensitising
both possible paths) are A = 1 and C = 0. To test for q0, input B is set to l, the
logical complement of this fault. The outputs of gl and g2 are then expected to be
1 and 0 respectively, and the circuit output f at g3 is 1. However, if the fault q0 is
present, the outputs of gl and g2 will be 0 and 1 respectively, giving an unchanged
circuit output f = 1. Clearly, for the circuit in Figure 13.9(a), (A,B,C)= (1,1,0) is
not a valid test for q0.

Why has the path sensitisation method failed in this case? The fault is transmitted
along the two sensitised paths qsuw and qtvw, but the changes generated by the fault
along the two paths are 0 - . 1 and 1 - . 0, respectively. Thus, fault q0 leads to a change
of the signals at the input of g3 from (0,1) to (1,0). Such a change at the inputs of
an OR gate does not generate a change at its output, and consequently the effect of
the fault is not transmitted through g3. The failure of the path sensitisation test in
this example is due to the unequal inversion parity of the two paths. In contrast with
the positive reconvergence illustrated in Figure 13.8(c), this is an example of negative
reconvergence.

418 Digital logic design

Although dual sensitisation does not generate a test for q0, independent sensitisation
of path qsuw (Figure 13.9(b)) or of path qtvw (Figure 13.9(c)) will do so, as shown in
the following table:

Path (Figure 13.9) qsuw qtvw

Gate sensitisation input signals:

Assumed fault:
Test (complement of assumed fault):
Full test conditions (A,B,C):
Normal output J~
Faulty output (inverse of normal f) :
Other faults detected by this test:

A = I C = 0
v = 0 , = ~ C - 0 u = 0 , = ~ A = 0

qo qo
B = I B - I
(l,l,1) (0,1,0)
1 0
0 1
So, to, Uo, So, to, v l,
& Wo & w0

This last example has shown that multiple path sensitisation does not necessarily
produce a valid test for a given fault. At this point it may appear that multiple path
sensitisation should be avoided and that, in general, it would be better to concentrate
on single path sensitisation. Unfortunately, this conclusion is also not sustainable since
the following example shows that single path sensitisation may itself fail to produce
a valid test in certain circumstances.

In the circuit shown in Figure 13.10, it will be assumed that fault p~ is present, and
the path selected for sensitisation is via gates g2, g5 and g8. Gate g8 is sensitised by
holding all its inputs at 1 with the exception of the sensitised input, and gate g5 is
sensitised by holding its upper input at logic level 1. To ensure that the output of gate
g6 is 1, irrespective of whether fault p~ is present, its lower input must be held at 0,
hence input D = 0. With D = 0, the lower input of g3 is also held at 0, the output of g3
is 1 and so the upper input of g7 is 1. To ensure that the output of g7 is held at 1, its
lower input must be held at 0, hence C = 0. Since C = 0, the lower input of g~ is held at
0 and the output of gate gl is therefore 1. This output is connected to the lower input of
gate g4 and so to ensure that the output of gate g4 is 1, its upper input must be held at 0,

i ! . s'o" !

0 ~

Figure 13.10 Failure of single-path sensit&ation

Fault diagnosis and testing 419

hence input B = 0. For the chosen sensitised path, B - C = 0, but these inputs are
inconsistent with the path sensitisation procedure where, if fault Pl is present, the
output of gate g2 should be equal to the complement of the fault, i.e. 0. (To achieve this
condition it would be necessary to have B = C = 1.) Hence, in this example, single
path sensitisation fails to produce a valid test for fault Pl. It can be shown that, in this
case, if the two paths gz-gs-g8 and gz-g6-g8 are simultaneously sensitised, a valid test for
fault Pl can be found.

It will be clear from all the preceding examples that it is not possible to specify one
prescribed series of steps which will be successful for all circuits when using the path
sensitisation technique. In some cases, the desirability of providing a simple method of
testing may provide additional design philosophy in determining the best implement-
ation of a given logic circuit specification. However, the following general guidelines
can be applied to all circuits when trying to set up a fault detection strategy:

1. Attempt to derive fault tests using single paths only. In circuits without fan-out,
single path sensitisation is the only possibility.

2. Assign logical value(s) at the input(s) which will produce the logical complement of
the fault value at the point of the fault.

3. Sensitise all the gates along thepath .
4. Use the backward trace technique where necessary. Provided that a self-consistent

input combination can be found, then a valid test exists.
5. If, for a selected path, a valid fault test does not exist, repeat the procedure

specified in rules (1) to (4) for other single paths in the circuit which may be sensitised.
6. In the event of failure of single path sensitisation, attempt to derive a valid test by

sensitising two or more paths using the procedure described above. If necessary, try
every possible combination of the single paths in the circuit.

13.7 Undetectable faults

The fault-free response of the combinational circuit shown in Figure 13.1 l(a) is
tabulated in the column headed f in Figure 13.11 (b). If fault P0 is present, the output
of gate g2 is held permanently at logic 0 and for this condition the response of the
circuit appears in Figure 13.11 (b) under the heading fl. Comparison of the two columns
shows that the responses are identical, and consequently the fault P0 is undetectable.

The reason for this is explained by examining the Boolean equation of the circuit,
which is:

f = C + 7tBC + AB

= C(1 + AB) + AB

= C + A B

and so the circuit is not the minimal implementation off. Gate g2 generating the term
ABC is redundant and could be omitted, using a two-input OR gate for g3 instead,
without any effect on the circuit output. The K-map for this function is shown in
Figure 13.11 (c). Therefore, in this example, the output of the redundant gate g2 can be
s-a-O without affecting the circuit operation.

(a) (b) (c)

A

C C

,hOurs Outputs il
O0 01

A B C f fl
0 0 0 0 0 1
0 0 1 1 1

0 1 0 0 0 1 I ()
0 1 1 1 1 1 1
1 0 0 1 1 r" '
1 0 1 1 1 /
1 1 0 0 0 AI~
1 1 1 1 1

~BC
11 10

!
C

Figure 13.11 (a) Implementation of a function, f = ABC + A[~ + C, containing redundan O" (b) Fault-free response f, and response f i with fault Po present (c) K-map of function f

Fault diagnosis and testing 421

In practice, there may be similar undetectable faults in any circuit containing
redundancy. Sometimes, redundancy is deliberately introduced into a combinational
network in order to ensure that it is hazard-free (see Chapter 9). The result of including
such redundancy does not show clearly in a static truth table analysis. Nevertheless, if
there is a fault associated with the redundancy and a redundant gate is effectively
disabled, then the hazard-free property of the design will not be fulfilled and hazards
may be produced by the circuit. As an example, an undetectable, but nevertheless
important, fault may arise in the hazard-free implementation of the function
f - A B + A C. The K-map of this function is shown in Figure 13.12(a), and the
function generates a static 1-hazard when B - C - 1 and A makes a 1 ~ 0 transition.
Elimination of the hazard is achieved by adding the consensus term BC to the
original equation which then becomes f - AB + A C + BC. The minimal N A N D
implementation of this hazard-free function is shown in Figure 13.12(b) and a test
for fault p~ is sought according to the following table:

Path (Figure 13.12(b)) pu

Gate sensitisation input signals:

Assumed fault:
Test (complement of assumed fault):

q = 1, ~ C = O o r A = 1
r = 1, = ~ A = O o r B = O
Pl
p = O , = ~ B = C = I

Since the test requires B - C = 1, the input signals for the correct path sensitisation
must be A - 1 (giving q - 1) and simultaneously A - 0 (giving r - 1). This is clearly
impossible, and so fault p~ is undetectable using the path sensitisation technique if the

(a)
,~C A

B
AN~ 01 11 10 1 ~ ~ i redundant

0 ~ J prime
~ implicant BC

1 C

AB B

C

(b)

s

t

(p

(c)

B

Z ~ [~ q
C

s

C t

Figure 13.12 (a) K-map of the function f = AB + AC (b) Hazard-free circuit with undetectable fault
(c) Circuit with additional test input

422 Digital logic design

redundant gate g3 is included in the circuit. Therefore, the circuit is not completely
testable using this technique. Alternatively, if the redundant gate g3 is omitted, thus
using a two-input NAND gate for g4 instead, the hazard will be generated. Faced with
this dilemma, the designer may prefer to make output g3 directly available to the tester
at a test point (thus bypassing gate g4), whereupon applying inputs B = C = 1 will
establish the presence or absence of fault p~. However, another possibility is to add
an additional test input (Z) to gate g2, which will now need three inputs, as shown in
Figure 13.12(c). In normal operation Z is permanently held at 1, while Z is taken to 0
specifically for testing the circuit. If this is done, the test developed in the following
table is now possible:

Path (Figure 13.12(c)) pu

Gate sensitisation input signals:

Assumed fault:
Test (complement of assumed fault):
Full test conditions (A,B,C,Z):
Normal output.[i
Faulty output (inverse of normal/'):
Other faults detected by this test:

q = l , ~ Z = 0
r = 1, ~ A = 0 o r B = 0

Pl
p : O , ~ B = C = I
(0,1,1,0)
1
0
So, 1o, & Uo

Alternatively and equivalently, a similar test input could be added to gate g~. A further
alternative (without the test input Z) is to attempt to test for the presence of the static
hazard directly in the circuit of Figure 13.12(b) by applying the test conditions
(A,B,C) = (l , l , l) , where I indicates the hazard-producing falling edge 1 ~ 0 on input
A. Presence of the hazard at the output implies the failure of the redundant part of the
circuit. Of course, this requires the use of a high-speed oscilloscope (and may also require
repeated application of the falling edge), and so may not be practical or economic.

13.8 Bridging faults

Another possible fault which may occur in a combinational circuit is a bridge or
a short between two lines, as shown in Figure 13.13(a) and (b). This type of fault
often occurs through careless soldering that leaves a solder bridge between two
adjacent lines that are supposed not to be connected. If inputs B and C happen to
have equal logic values (i.e., both either 0 or 1), the interconnection pq causes no

A r

Bridge

D s

(a) (b)

Figure 13.13 Tests for bridging faults (a) Using sensitised path qst (b) Using sensitised path prt

Fault diagnosis and testing 423

detectable fault since both gate inputs are held at their correct values. If, however,
the inputs are driven to complementary logic levels so that (B,C) - (0,1) or (1,0), then
several possibilities may occur:

1. whichever input signal is supposed to be set at 1 may be pulled down to 0, which
often happens in practice with TTL gates, or

2. whichever input signal is supposed to be set at 0 may be pulled up to 1, which often
happens in practice with ECL gates, or

3. both inputs B and C may be pulled to an indeterminate voltage which cannot be
interpreted reliably as either logic 1 or logic 0, or

4. either or both of the driving gates may fail, possibly causing an additional 'stuck-at' fault.

Notwithstanding possibility no. 4 above, note that a bridging fault is fundamentally
different from a 'stuck-at' fault, as the faulty lines may take on either logic value
according to how they are driven. Another complication is that a bridging fault might
occur between two logic lines in such a way as to form an effective feedback path
around some combinational logic, so that a purely combinational circuit can be
transformed into a faulty circuit having some of the characteristics of a flip-flop,
i.e. a sequential circuit, which is considerably more difficult to analyse. The circuit
outputs will then depend upon the previous outputs of the circuit.

However, in practice, it is usually unnecessary to develop tests for bridging between all
possible pairs of lines, as it would seem highly unlikely that any other than physically
adjacent lines would suffer bridging faults. Which lines are affected therefore depends
upon the physical layout of the circuit. The practical tests for revealing the presence of
the bridge pq for the two cases, (B,C) = (0,1) and (B,C) = (1,0), depend upon which of
the four possibilities listed above actually occurs in practice. In the following develop-
ment of the tests, it is assumed that whichever input signal is supposed to be set at 1 will
always be pulled down to 0 (possibility number 1):

Path (Figure 13.13) qst prt

Gate sensitisation input signals:

Assumed fault:
Test (complement of assumed fault):
Full test conditions (A,B,C,D):
Normal output f."
Faulty output (inverse of normal f) :
Other faults detected by this test:

D = 0 A = I
r = 0 , : : ~ B = 0 s = 0 , = ~ D = 1
pq bridge pq bridge
(W,C) = (0,1) (B,C) = (1,0)
(X,0,1,0) (1,1,0,1)
0 1
1 0
q0, s l, & t l P0, r0, & to

In this table, a valid test using path qst is obtained regardless of the value of input A,
which is therefore a 'don't care'.

13.9 The fault detection table

Clearly, it is desirable to determine a minimal set of tests that can be applied to
a given circuit, which can be guaranteed to find all possible faults. The 'fault table'
(or 'fault matrix') method can be used to achieve this. The method will be explained by
working through a typical example. The circuit shown in Figure 13.14(a) has seven

4 2 4 Dig i ta l logic design

P
B ^ g X

s F
C • u

r
(a)

Fault �9

Test A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ro to
/90 so Uo Vo Pl ql rl Sl
fi q ~ v~

fo fl f2 f3 f4 fs f6 f7 f8 f9

0 0 0 0 1
1 1 1 0 1
0 0 0 0 1
1 1 1 0 1
0 0 0 0 1
0 0 1 0 1
1 0 0 1 1
1 0 1 1 1

0 0 0 1 0
0 1 0 1 1
0 0 1 1 0
0 1 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 1 1 1
0 1 1 1 1

(b)

ToSt

t

6 1 1
7 1

v"

1

W

1
1

1
..,,"~
. , ~ / V ~

1

(c)

1
1

r

1

1
J'kl~ J'kA

Figure 13.14 (a) NAND logic implementation o f f = AB + AC (b) Fault-free (fj) and faulty (.['1 to fg) responses
for the circuit in (a) (c) Fault detection table

lines, i.e. p, q, r, s, t, u and v. The function implemented by this circuit i s f - A B + A C .
However, if there is a s-a-O or a s-a-1 fault on any one of these seven lines, the function
implemented by the circuit will be modified to be one of 14 possible faulty responses.
(The presence of other faults, such as bridging faults, or multiple faults, would produce
further possible faulty responses which could additionally be considered if desired.)
If the symbol fx, denotes the faulty response when the single 'stuck-at' fault xi is
present, then the possible faulty responses are:

'Stuck-at-O' 'Stuck-at-l'

Ao-AC; L,-A+C;
fqo - c ; fq, - B;
fro -- AB; f i , - A + B;
fso - AB; fs, - A B + C;

fro - 1; i t , - A C ;

Lo -- 1; fu~ - A B ;

L o - O ; f v , - 1.

Since f p 0 - ~]C and f t , - A C are identical functions, the circuit response will
be identical for these two faults, and they are indist inguishable. In fact, there are

Fault diagnosis and testing 425

nine distinguishable functions contained in the total of 14 faulty functions, as
follows:

A -fpo -A, - A C
f2-- fqo - - C
f3 --fro - - f s o - - f u , - - A B

f 4 - f t o = fuo -- fv, - 1
f5 --fvo -- 0
f 6 - f p , - A + c

f7 = fq, - - B

f 8 = f r , - - A + B
fg - L , - + C

The table in Figure 13.14(b) lists all the possible input combinations to the circuit,
and the column headed f0 lists the fault-free response. Each input combination repre-
sents a distinct test, and the test number allocated to each row is the decimal equivalent
of the binary representation of the input combinations for that row. The remaining
columns in the table list the circuit response for each of the distinguishable fault
conditions.

Examination of the table shows that if test 0 is applied to the circuit, the response to that
combination of input variables when the circuit is fault-free differs from the response
when, for example, r is s-a-1, as indicated in the column headed f8. Clearly, (A,B,C) -
(0,0,0) is a test for r s-a-1. A further examination of this column reveals that the
combination (A,B,C) - (0 ,1 ,0) is also a test for the same fault, rl. For both combin-
ations, the fault-free response is 0, and the response with fault rl present is 1.

Formalising this result, input combination (X I , X 2 , X 3 , . . . , Xn) will only be a test for
the fault fm provided that

J~(Xl, elk"Z, X3, . . . , Xn) E]~ f m (X l ,)(2,)(3, . . . , Xn) - 1.

That is, to determine all the tests that will detect fm, it is only necessary to take the
XOR (i.e., the modulo 2 sum) of those columns in Figure 13.14(b) headed f0 and fm.
The valid tests are indicated by those rows where the result of this operation is 1.
It follows that if

f o e f m - o

for every input combination, the fault(s) corresponding to fm is (are) undetectable,
usually a result of the circuit containing redundancy. Also, if

f o e f m - f o e f t

for every possible input combination (X1, Xz,)(3, ., X~), then fault number m and
fault number I are indistinguishable. If, however,

f o e f m C f o e f t

for some or all of the input tests (X~, X2, X 3 , . . . , Xn), then fault number m and fault
number I are distinguishable.

A fault detection table can now be constructed from the information tabulated in
Figure 13.14(b). In the table, shown in Figure 13.14(c), there is a column for the XOR
of the fault-free response (f0) with each of the fault conditionsfl to f9. The result of this
XOR operation is shown as either a 1 or a blank (indicating 0).

426 Digital logic design

Finding a minimum set of tests from this table is identical to the method used for
reducing prime implicant tables. Any line containing all l s and no blank entries
corresponds to a valid test for all possible faults; there is, however, no such line in
this example. Any column having a single 1 entry identifies an essential test, for this
test is the only test that can detect this fault. An examination of Figure 13.14(c) shows
that test 5 is the only one that will detect the fault associated with f9, i.e. s~, and
consequently it is an essential test (and has been marked with asterisks). The same test
detects the faults associated with f2, f4 and f6, and so the columns corresponding to
f2, f4, f6 and f9 have been ticked (r to indicate that these faults have been covered by
choosing test 5. Test 5 dominates test 4 (i.e., the line for test 5 includes all the l s in
the line for test 4), so test 4 has been deleted from the table. Test 1 dominates test 3
(i.e., the line for test 1 includes all the l s in the line for test 3), so test 3 has been deleted
from the table and test 1 chosen. The selection of test 1 allows the detection of faults
associated withf3,f5 andf7. There remain two ls in the column corresponding tofl, and
two ls in the column corresponding to fs. The faults associated with f~ can be detected
by either tests 6 or 7, and the fault associated with fs can be detected by either tests 0 or
2. Hence, a minimal test set required for detecting all possible faults is

T = {[0 or 2], 1,5,[6 or 7]}.

Which of the four possible alternative test sets implied here is actually chosen makes
little difference, but as test 2 dominates test 0, and test 6 dominates test 7, one possible
choice (to minimise ambiguity if a fault were actually detected) is

T = {0, 1,5,7}.

It is now a simple matter to devise a practical fault detection scheme to test the circuit
of Figure 13.14(a). The order of the tests is largely immaterial, but to make the scheme
as rapid as possible the tests detecting the largest number of faults might be applied
first. Therefore, a suitable test routine would be:

Apply test 5: I f f
I f f

Apply test 1: I f f
I f f

Apply test 0: I f f
I f f

Apply test 7: If f
I f f

= l a fault exists; terminate experiment
= 0 proceed to next test r162
- 0 a fault exists; terminate experiment
= 1 proceed to next test r162
= 1 a fault exists; terminate experiment
- 0 proceed to next test r162
- - 0 a fault exists; end of experiment
-- 1 circuit is fault free.

Once a fault has been detected using this test scheme, then the fault detection table in
Figure 13.14(c) can be used to indicate the nature of the fault. For example, if tests 5, 1,
and 0 give the correct fault-free output f, but then finally applying test 7 gives the
output f = 0, this indicates in principle either faulty response fl or faulty response f5.
However, response f5 has already been eliminated by test 1 conducted previously
(which gave a fault-free output), so the circuit must therefore have a fault corres-
ponding to response f~. The possible faults, therefore, are P0 in which case the fault
must either reside in gate gl or in the circuitry providing input B, or t~ in which case the
fault must reside in gates gl or g3 or their interconnection. These faults are indistin-
guishable, unless further tests can be made at the connections of the gates concerned.

Fault diagnosis and testing 427

It is possible with the data provided by the fault detection table to derive a fault
location table or a fault dictionary which will identify the fault responsible for any given
circuit responses to any set of tests. However, for a circuit with n inputs and x circuit
nodes, there are at least 2x possible faults, counting the two possible 'stuck-at' faults
but ignoring bridging and other faults, and there are 2 ~ possible tests that can be
applied at the inputs. If all the faults are distinguishable, there will be 2x columns in the
fault detection table, and even if some of these faults are indistinguishable the number
of columns will still be of the order of 2x, so the total number of entries in the table will
be of the order of x 2 n+l . As the complexity of the circuit increases rapidly with the
number of interconnections and variables, the construction and reduction of the fault
location table, either manually or with a computer, is extremely time consuming and is
therefore impractical. Even the development of the fault detection table for any but the
simplest combinational circuit is also impractical.

To extend the fault table method to address the problem of general fault detection
and identification, the concept of 'adaptive testing' can be used. This method is used to
determine whether a fault exists, and if so what it is. In this method, after a test has been
conducted, the result of this test determines which further tests are to be carried out.
In the example of Figure 13.14, the same series of tests as determined previously
(test 5, then test 1, then test 0, then test 7) can be used to determine the absence of
faults, but if faulty responses are given at any stage then a different series of tests can
be used to identify precisely which fault is present.

As an example, suppose that for a certain circuit there are four distinguishable
output responses. One method of identifying the particular fault present is illustrated
in Figure 13.15(a). The tester starts at the top of the 'tree' and applies a certain test
which results in either one of the possible faulty responses (F) or a correct response (C).
In the case of a faulty response, no further tests are necessary as the fault has been
identified, but in the case of a correct response further tests must be undertaken to
isolate the fault. Each subsequent test then produces either one faulty response or
a further correct response. However, an alternative method is illustrated in Figure 13.15(b).
In this case, a different initial test is applied, which produces either two faulty responses
(F) or a correct response. The next test to be applied depends upon whether a faulty or
a correct response was obtained; in either case, the test applied distinguishes between
the two alternatives possible at that point. The diagram of Figure 13.15(b) is known as
a 'binary tree' because each test divides the possible faulty responses into two sets, as

(a) } I~1
(b)

~ l_ ol __1

Figure 13.15 (a) Adaptive tree identifying one fault only at each test node (b) Binary adaptive tree dividing the
faults equally at each test node

428 Digital logic design

equal as possible in size. Clearly, for a total of y distinguishable faulty output
responses, performing a total of y non-adaptive separate tests will allow complete
identification of the distinguishable faults. However, by arranging the tests in a 'binary
tree' the number of required tests may, in principle, be reduced to a minimum value of
log 2 (y + 1). In this expression the value 1 is added to y because at least one test is
required for determining whether a fault exists at all. In practice, perfect division of the
responses into equal sized sets is usually impossible, so that log 2 (y + 1) is the lower
bound and y the upper bound on the number of tests necessary.

Unfortunately, there is no known formal method that can be used for minimising
the size of this tree, and so it is usually produced on the basis of trial and error using
the designer's experience. Again, except for the simplest of circuits, designing such an
adaptive tree for all possible faults is likely to represent a considerable investment of
time and effort, and computing help must be sought.

13.10 Two-level circuit fault detection in A N D / O R circuits

This section describes some specific techniques for finding the minimal test set that can
be used to test the common AND/OR circuit architecture implementing functions
expressed as Boolean sums of product terms. The methods described in this section are
applicable in principle to fault-finding in PLAs and PALs (see sections 11.12 and 11.13)
which are based upon the same fundamental AND/OR structure. These methods will
be explained by examining a simple example.

The function generated by the two-level AND/OR circuit shown in Figure 13.16(a)
is

f = AC + BD + ACD

T T T

Pl P2 P3

This function is plotted on the K-map shown in Figure 13.16(b). Each term in this
equation is a prime implicant of the function, and is plotted as an enclosed group on
the map. Because the function contains no redundancy, each prime implicant encloses
at least one unique cell not covered by any other group. For example, the cell unique to
prime implicant ftCD is cell ftBCD.

(a) (b)

A p,

C
q

B• D ,
D

Oa

O0 01 11 10

O0 ~ .

, o

--P3

--Pa

- P l

Figure 13.16 Determination of s-a-O test for a two-level AND~OR circuit (a) Circuit implementation (b) K-map for
f = AC + BD + .~CD

Fault diagnosis and testing 429

If one of the input lines q of g2 is s-a-O (Figure 13.16(a)), the output of g2 is 0 and
the group BD = P2 no longer appears on the K-map of the function. To test
for the absence or presence of group P2, it is necessary to check for the absence
or presence of one of the unique cells associated with it. Inspection of the map
shows that cell ABC'D is one of the two cells unique to group P2. Hence, a test for
the presence or absence of P2 is (A , B , C , D) - (0,1,0,1). An alternative test would be
(A,B, C,D) = (1,1,1,1), corresponding to the other unique cell associated with P2. If one
of these combinations of variables is applied to the circuit inputs, then an output of
f = 0 indicates that term P2 is missing and there is a s-a-O fault associated with gate g2.
However, i f f -- 1, then it is clear that there is no s-a-O fault associated with gate g2 in
this circuit.

A complete s-a-O test for this circuit will therefore consist of three tests, one for each
of the prime implicants Pl, P2 and P3. Since Pl has three unique cells associated with it
(numbers 8, 9 and 12), and any one of these cells can be used as a test for a s-a-O fault
associated with g~, the complete test set is

To = {3, [5 or 15], [8 or 9 or 12]}.

C - ' D

B / ~ \
C " ~ /--redundant gate

Figure 13.17 Two-level AND~OR
circuit for function f = AC+AB + BC
having redundancy

The effects of redundancy on circuit testing using
the technique described above are shown in the
circuit of Figure 13.17 which implements the
function

n

f - AB + AC + BC.

This is the same Boolean function as that
implemented using NAND gates in Figure 13.12
and studied earlier in section 13.7. As discussed in
that section, the prime implicant BC is

redundant, since the cells associated with this prime implicant are already covered
by the prime implicants AB and A C. Consequently, there are no unique cells
associated with term BC, and so (in the A N D / O R implementation) a test of the
circuit output value f cannot detect an s-a-O fault associated with term BC.

Having found a test for all possible s-a-O faults for the circuit in Figure 13.16(a),
a method will now be developed for finding a series of tests that will detect all possible
s-a-1 faults in the same circuit. If the input line of g2, labelled q in the diagram, is
assumed to be s-a-1, then the output of g2 is

D - 1

= D (B + B)

= BD + BD.

The first term in this expression is the required prime implicant (BD), while the second
term (/~D) represents an unwanted product term generated by the fault. The unwanted
term /~D differs from the wanted prime implicant BD by one variable only.
Two product terms differing in one digit place only are adjacent product terms on
a K-map. The adjacent product terms for each of the prime implicants generated in

430 Digital logic design

the circuit of Figure 13.16(a) are tabulated below and plotted in Figures 13.18(a), (b)
and (c).

Prime implicants Adjacent product terms

pl - A C AC, A C
P2 = BD BD, BD
P3 -- A C D A C D , A C D , A C D

If a s-a-1 fault exists at one of the circuit inputs, one of the adjacent product terms
will be present at the output, so to test for s-a-1 faults it is necessary to test for the
presence of any of the seven adjacent product terms tabulated previously. However,
in selecting the valid tests for the adjacent product terms, cells must be selected on the
K-map that are not included in the original function f = A C + BD + A CD.
Therefore, the ls defining this original function (omitting the prime implicant group-
ings for clarity) are plotted again in Figure 13.18(d), along with the adjacent product
terms. To test for the presence of an adjacent product term, a cell must be selected that
is enclosed by that adjacent product term but which does not contain a 1. In this
example, the number of tests is minimised by selecting cells that are common to as many
adjacent product terms as possible. (Alternatively, cells could be selected that are
enclosed by only one or as f ew adjacent product terms as possible, in which case the
number of tests would not be minimised, but instead the tests would indicate the
precise fault(s) present more clearly.) Suitable cells have been marked on the map by

(a) (b)

(c)

AB\Do0\C 01 11 10

oo'i'- - ' i
I

01
.

11 I" i
I |

,o �89 i
'---t-i '

Pl AC

-~IC

A B ' ~ D o 0

O0

01

10

(d)

oi 11/1~
~ : ~ - - , ~ c D ' I I '

' U '
, 1 I

i !

i
I ~ ACD

I~OD

AB"~DO0"~ i 01 11' 10
i

;

oo i
~ , # /

0~ " ~ (3 - - - T ' ~ i :
/ |
/

11 1 ~ 1
,, B D

. ; _ _ - - - J '~.._T - -
. . - - - , - - - - . .

10 ~ '
', t

oo

01

11

10

D ooioi 11 1o

i I ~'~ ~':" ~ , ' - - - t ' 1 '
I I

{ : i,---i
,11 I } r

, l ,f 1 I 1
_ _ _ s ,

�9 " t : ; , ? 111
, ,

I ,

! i

',
I

. . . . /

Figure 13.18 Selection of minimal tests for a s-a-1 fault in the function f = AC + BD + ACD (a), (b) and (c)
Plots of the adjacent product terms corresponding to the terms Pl, P2, and P3 in this function (d) Ticked (r cells
specify tests for s-a-1 faults

Fault diagnosis and testing 431

a tick (r and the adjacent product terms tested by each of the ticked cells are
tabulated below in decimal minterm form:

Test Terms tested

(1)1o AC, ACD, BD
(6)10 BD, A C D
(11)10 AC, ACD, BD

Note that each adjacent product term must enclose at least one ticked (r cell.
(If any adjacent product term contains only ls with no space for a tick (r this
indicates that the original function has not been minimised correctly.) Hence a suitable
s-a-1 test for the circuit in Figure 13.16(a) is:

T 1 - {1,6,11}

and the presence of an s-a-1 fault is indicated if the faulty output f = 1 is obtained
when any one of these input combinations is applied to the circuit. The table above
indicates the nature of the fault, as nearly as can be determined using this particular
test set. If the ou tpu t f = 1 is obtained from all three of these applied tests, then either
there are three (or more) separate s-a-1 faults or else there is an s-a-1 fault at one (or
more) of the AND gate outputs, the interconnections between the OR and AND gates,
or directly associated with the OR gate. The full test of this circuit consists of the six
input combinations contained in To and T~.

In some circuits having multiple outputs, the optimal implementation is achieved
by sharing terms between functions (as described in sections 3.18, 3.19, and
11.12). For example, in the optimal implementation of the two functions

f l = AB + BC and f2 - AC + BC shown in Figure 13.19(a) (in fact, the same
as the circuit of Figure 3.28 that was designed in section 3.18), the common term
is the product function fl "f2 as shown in Figure 13.19(b). In a PLA
implementation, by sharing terms, the number of lines of the AND array used
in a PLA may be reduced even though the Boolean expressions are not
completely minimised. The consequence of this optimisation, as far as testing is
concerned, is that the adjacent product terms corresponding to the common
term(s) rather than to the expected minimal terms must be used, and the
proposed tests need to be examined carefully. Since the optimal circuit is not
minimised, it is possible for the optimal circuit to have s-a-1 faults where adjacent
product terms coincide with one or more of the output functions. So, in the
example of Figure 13.19(a), the common term is A B C which gives adjacent
product terms ABC, ABC, and ABC. The adjacent product term A B C coincides
entirely with prime implicant AB of f~ and so a s-a-1 fault on input line A is
untestable through output fl, although this fault is testable through f2. Similarly,
the adjacent product term A B C coincides entirely with prime implicant BC off2
and so a s-a-1 fault on input line B is untestable through output f2, although this

432 Digital logic design

fault is testable through f~. If this situation occurs, the designer must make
a decision on whether to use the optimal implementation and to accept its
reduced testability, or whether to prefer the minimised but more complicated yet
more testable circuit.

D

(a)

I
,D

! I D

(b)

BC BC

~176 ~ ' " ' oo o , , N

, U , C N

10

m m

f~ = AB + BC f2" AC + BC

Figure 13.19 (a) Optimal implementation of the two functions fi = f tB + BC and f2 = AC + BC
(b) K-map plots of the functions f t and fe

13.11 Two-level circuit fault detection in OR/AND circuits

The OR gate shown in Figure 13.20(a) implements the function f = A + B + C, which
has been plotted on the K-map in Figure 13.20(b). The 0 inserted in only one cell
indicates that if the inputs (A,B,C) = (0,0,0) are applied to the gate, its output f = 0.
If, however, one or more inputs to the gate have s-a-1 faults, then the output of the
gate will be f = 1. Clearly, if (A,B,C) = (0,0,0) is used as a test input, then the output
f = 1 indicates the presence of one or more s-a-1 faults associated with this gate.

In general, valid tests for s-a-1 faults in an O R / A N D circuit correspond to cells that
should give a fault-free output of 0. To find these cells, the function can be inverted,
and the 0 s of the original function are the same as the ls of the inverted function.

(a) (b)

f = A + B + C

BC
A ~ O0 01 11 10

0 0

Figure 13.20 (a) Implementation of function f = A + B + C (b) K-map plot of the function f

Fault diagnosis and testing 433

As an example, consider the OR/AND circuit shown in Figure 13.21(a). The function
implemented by this circuit is

f = (A + C)(B + D)(A + B + C),

and the Boolean complement of this function is:

f = A C + BD + ABC

T T T
pl p2 p3

using De Morgan's theorem. The zeros off, derived directly from the prime implicants
o f f , are shown plotted on a K-map in Figure 13.21 (b). The cells marked with O's on
this map define those combinations of the variables for which f - 0.

Each term in the equation for f is a prime implicant of the inverse function and
appears as an enclosed group on the K-map. In this example, each of the three prime

(a)

A l oo
01

= 11

AB'~Do0 01

11 "" "

lO I 1
I I
x _ _ A s

i | C

,~c
11 10
. 1, _ ,,,,

1 ',
I
, I

(c)
~D

~ /
O0 01 11 10

' l O 0 ,,

o, - i

1 0 , ,
! I
| |

(d)

AB'~Oo0" 01 11 10

i , " - - I , O0 0 ,0 I ; ',
"~ ' - - - - '1" - - "" I ---. i,;;-~.-,~

01 O~ 0 , v'~
I '~ ~ ,"

, - - J~ ' - - ' ~ I

11 ' O, 0 t O
. , . " , - - .

1 0 " " - - ' - ' ' " , , ' (r ;,
I , , I

(b)

Pl

01 11 10

�89
Lo o->

f =/~C + BD + ABC

P3

AB'~Do0 01

O0

01

10

11 10

, ,'---,~BC �9 . , , ,

T _ _ ~ .

, / s - - . , x
! I
x i �9 ". "I

ABC ABC

Figure 13 .21 Development of s-a-1 and s-a-O tests for a two-level OR~AND circuit (a) Circuit implementation of
f = (A + C)(B + D)(A + B + C) (b) K-map of the zeros of function f, obtained from f (c) Adjacent product terms
of the inverse function (d) Cells marked with ticks (, /) identify the tests for s-a-O faults in the original circuit

434 Digital logic design

implicants encloses at least one unique cell, indicating that the function has no
redundancy. For example, the cell unique to P3 is defined by (A ,B ,C,D) - (1,1,1,0).

If one of the input lines of g3 is s - a - 1 , the output of g3 will be 1 and P3 will be missing
from the map of O's of the function f. To test for the absence or presence of P3, it is
necessary to check for the absence or presence of 0 in the unique cell associated with it.
A cell common or overlapping with another prime implicant cannot be used as the
other prime implicant may still be present. Hence, a valid test for the presence of p3 is
(A ,B ,C,D) - (1,1,1,0). If this combination of the variables is applied to the circuit and
it is found that the circuit output i s f - l, an s-a-1 fault exists associated with gate g3. On
the other hand, if the output is f - 0, then P3 is present and there is no s-a-1 fault
associated with g3.

Hence, the complete s-a-l test for the circuit will consist of three tests, one for each
of the three prime implicants, and so is:

TI = {[0 or 1 or 4], [7 or 13], 14}

as there are three possible testable cells for p~ and two alternatives for P2.
The s-a-O test for the OR/AND circuit of Figure 13.21(a) is found by analogy with

the method that was used to find the s-a-1 test in the AND/OR circuit. However, for
the OR/AND circuit the adjacent product terms of the inverse plot are used to define
the set of tests for s-a-O faults.

The output of g~ is (A + C), and if there is an s-a-O fault on line A, this expression
becomes

0 + C
= A A + C

= AA + C(I + A +,4)
= (,4 + C)(A + c) ,

where (A + C) is the sum term required from gl, while (A + C) is an unwanted sum
term generated by the fault. The complement of this expression is ,4 C' + A C', where A C'
is the additional product term generated by the s-a-O fault on line A. As before, this
additional product term is adjacent to the complement's prime implicant Pl = A C;
similarly, a s-a-O fault on line C will produce the different adjacent product term ,)C.
The product terms adjacent to all the prime implicants of the inverse function are
tabulated below:

Prime implicants Adjacent product terms

Pl - - A C AC, A C
P2 - BD BD, BD
P3 - A B C ABC, A B C , A B C

and are plotted on the three K-maps shown in Figure 13.21(c).
If an s-a-O fault exists at the circuit inputs, then one of the adjacent product

terms must be present; it follows that the test for s-a-O faults is to test for the presence
of one of the seven possible adjacent product terms using cells not included in the
prime implicants. In order to choose the correct cells, the zeros of the function
f - (A + C)(/~ +/))(.4 +/~ + C') have been replotted in Figure 13.21(d). Again, as

Fault diagnosis and testing 435

before, the lines enclosing the three prime implicant groups have been omitted, but the
seven adjacent product terms tabulated above are shown enclosed by dashed lines on
the map. Therefore if, for example, there is an s-a-O fault present at one or both of the
inputs of gate g~, then adjacent product term A C or adjacent product term A C, or
both, are present. To test for the presence of A C, one of the input combinations
(A,B,C,D) = (1,0,0,0) or (1,0,0,1) or (1,1,0,0) can be applied to the circuit. All these
cells are included in term A C, and a fault-free circuit will give an output f - 1 in each
case; with an s-a-O fault present on line A, then the output f - 0. Any of these input
combinations will suffice to test for term AC but to keep testing to a minimum, cells
are selected that are common to as many as possible adjacent product terms.
(An alternative testing philosophy might be to choose tests that enable the quickest
determination of which fault is present, in which case, as far as possible, cells not
common to any other adjacent product terms should be chosen.) The chosen cells have
been ticked (r in Figure 13.21 (d), and the terms tested by each of the selected cells are
tabulated below in decimal minterm form"

Test Terms tested

(6)~o A C, ABC, BD
(11)~o BD, ABC
(12)1o BD, AC, ABC

Hence, the complete s-a-O test for the circuit of Figure 13.21 (a) is

To - {6, 11, 12}

and when the input combinations specified by test set To are applied to the circuit in
turn, output f = 0 indicates that an s-a-O fault exists. The table above indicates the
nature of the fault, as nearly as can be determined using this particular test set. If the
o u t p u t f = 0 is obtained from all three of these applied tests, then either there are three
(or more) separate s-a-O faults or else there is an s-a-O fault at one (or more) of the OR
gate outputs, the interconnections between the AND and OR gates, or directly
associated with the AND gate. The full test of this circuit consists of the six input
combinations contained in To and Tl.

13.12 Boolean difference

This section examines the method of Boolean differences. This is an algebraic pro-
cedure for determining test sequences for combinational circuits using the Boolean
equation which represents the circuit to be tested.

The Boo&an difference is the Boolean analogy of the partial differential or derivative
of a function of continuous variables. For a function f(x, y) of continuous variables
x and y, by definition

0-----U-- ~Xx-~0) Ax ~x-~0) y constant / "

436 Digital logic design

If the Boolean function of the logic circuit to be tested is f (X l ,)(2, . . . , X,), then by
analogy with the partial derivative of a function of continuous variables

Of (x~, x2, . . . , x ,)

0X~

,~f
AX~ all other variables

constant

change in value o f f

change in value of Xi all other variables
constant

However, X~ can only change from 1 to 0, and hence AXi in this equation can
only take a value of I. Also, in the Boolean context it is usual to take the
modulus of the corresponding change in the value of .f, and so Af in this
equation only takes the values of either 0 or I. Noting that the Boolean XOR
function produces the modulus of the numerical difference between its two argu-
ments, the Boolean di[.'ference of function ./' with respect to the variable X~ is
therefore deigned as

0x, --.]'(Xi , Xi-I, 1, Xi+i X,,) ~D. [' (X i , . . . , X i _ l , 0 , Xi+ I , Xn)

=./~(l) ~.s

where

.f}(x) = .f (Xi , . . . , X~_ ~, x, X~+l, . . . , X ,)

is the modified function obtained by putting X~ = x (itself taking the value 0 or 1 only)
in the original function expression. In other words, the Boolean difference with respect
to variable X~ is defined as the XOR of the function .flx~=l and the function fix;=0; like
Af, it can only take the values 0 or 1.

Since./i{ 1) and f,{0) differ only in a change of the binary value of X; from 1 to 0, there
are four possibilities for the numerical values off,.(x). These are tabulated below:

)~(1) = value o f f
when Xi = 1

J~(O) = value o f f
when Xi = 0 d_L =J~(l) ~Bfi(O) dxi

0 0 0
0 1 1
1 0 1
1 1 0

This table shows that if there is no change in the value of f as a consequence of the
change of X; between 0 and l, then Of/OXi - 0 (i.e., the value of f is independent of the

Fault diagnosis and testing 437

value of Xi). However, if there is a change in f as a consequence of the change in X~
between 0 and 1, then OflOXi = 1 (i.e., the value o f f is dependent on the value of X~).
Thus, the Boolean difference can be regarded as a flag indicating dependence or
not of a function upon a specified Boolean variable. Note that dependence on, or
independence of, a variable X; may itself depend upon the values of the other variables
~. defining f

Given a function F(X, Y), to find the Boolean difference OF(X, Y)/OX it is often
easiest to calculate the value of F(1, Y)@ F(0, Y) directly. However, as with
differentiation of functions of a continuous variable, it is sometimes useful to have
available a 'library' of standard analytical results for the Boolean difference.
The following results (where X and Y are independent logic inputs, and F and G are
Boolean functions of X and Y) may be confirmed by examining the relevant truth
tables of the variables and the values of their derivatives. As in conventional
differentiation, here 'd' is used instead of '0' where only one variable is involved:

d (X) _ _ d (X) _ _] O(X @ Y)

dX dX OX
O (X q) F) _ (O F)

o x -fly o x
O(XY) O(X + Y)

=Y
OX OX

= 1

O(F �9 G) OF OG
OX OX

- - y ,

If E(F) is a Boolean function of the previous output F, then the definition of OE/OX
gives

OE(F) dE OF
~ - o I

OX dF OX

aFaG a__F
a x a x ax

A

aF 0 u 1 0 Gax

0 0 0

o

~ ~

OG ~ OG
a-X F~--~

-o3G aF
Fb-x on--~

o o~ tG

o?__G OF aG
ax axax

0 0

0 0

-aF
Gb-- 2

(a) (b)

Figure 13.22 (a) K-map for evaluating O(FG)IOX; (b) K-map.for evaluating O(F + G)IOX.

438 Digital logic design

K-maps for the Boolean difference of the AND and OR functions of F and G are
shown in Figure 13.22, constructed by inspection; the results may be expressed as:

OX

Finally, using the fundamental definition of Boolean difference (Of/OX~-
.h(l) ~f.(0)), and also the fact that the XOR operation is both Associative and
Commutative, it is easy to show that

OzF(X, Y)
OXOY
OF OF

OY x=l x:0

-- F(I, 1)~ F(I ,0) ~ F(0, 1)O F(0, 0)

= [F(I, 1) (B F(0, 1)] �9 [F(I, 0) �9 F(0, 0)]

02F(X, Y)
OYOX

or, in other words, the order of taking the Boolean difference with respect to two
independent input variables is immaterial, just as the order of differentiation with
respect to two continuous independent variables is immaterial.

Using these standard results in appropriate combinations, the Boolean difference
of other functions may be calculated directly without the necessity of evaluating the
function f for the two possible values of X. Sometimes, however, this is an error-
prone procedure, simply because of its complexity.

To find tests for either a s-a-O or a s-a-1 fault on the X; line, the first objective is to find
those combinations of the input variables for which OflOX~ - 1, w h e r e f is an acces-
sible circuit output. Then, in order to test for a s-a-O fault on the X; line, the procedure
is to apply the inverse of the fault at the X; input, i.e. Xi - 1. Hence, the valid test(s)

oi that will detect a s-a-O fault on the X~ line are the solution(s) to the equation ~ - 1
while X ~ - 1 simultaneously, i.e.

of

Similarly, to test for an s-a-1 fault on line X~, the required input to the line is X; - 0, so
o/ the valid test(s) that will detect this fault are the solution(s) to the equation ~ - 1

while Xi = 1 simultaneously, i.e.

- o f
X i - ~ i - l .

As an example of the application of Boolean difference, consider the function

f - (x x2 + x3). (x3 § Xa).

A direct gate implementation of this equation is shown in Figure 13.23. To find
tests for faults on the X3 input, it is necessary to calculate Of/OX3. To do this, here

Fault diagnosis and testing 439

+
/ N

X4

f

Figure 13.23 Implementation o f f = (XlX2 + A73) �9 (X3 + X4)

it is simplest to use the fundamental definition of Boolean difference. Firstly,
calculate

f3(1) - (X1X2 + 0). (1 + X4) - X I X 2

and

f3(0) -- (Xl X2 -q- 1). (0 -+- X4) - X4.

Then, therefore

of
= f3(1) G f3(O)

OX3
= X1Xz e X4

: X l X2)(4 + (Xl)(2)X4

: X l X 2 X 4 --~ X l X 4 2r- X 2 X 4.

The condition for an s-a-O fault on the X3 line is

of
- 1 ,

that is,

1 - .,u165 + XI,u -+- .,~2X3.,~4

-- XI X2X3X4 -~- Xl(X2 +)(2))(3)(4 -{-(XI + XI)X2X3X4

: X 1 X 2 X 3 X 4 -+- X I X 2 X 3 X 4 -+- X 1 X 2 X 3 X 4 + X I X 2 X 3 X 4 -+- X I X 2 X 3 X 4

: X I X 2 X 3 X 4 + X I X 2 X 3 X 4 Jr- X 1 X 2 X 3 X 4 -~- X l X 2 X 3 X 4 .

To satisfy this equation, any one of the terms in the last line can equal 1. Hence, any of the
input combinations (X 1 , X 2 , X 3 , X 4) - (1,1,1,0) or (0,1,1,1) or (0,0,1,1) or (1,0,1,1) is a
valid test for an s-a-O fault on the X3 line, and the fault is detected if the output is the
complement of that given by the original equation f - (X1X2 + X3). (X3 + X4).

For an s-a-1 fault on the X3 line, the condition to be satisfied is

- o f

that is,

1 = X1X'2z~"3X 4 + X l ~ 3 X 4 --t- X'2)~3X4

= .~1~2X3~4 + Xl (.,u + / 2) ~ 3) ~ 4 + (Xl --t- X1))L"2X3.,u

= y l ~2X3~4 + ~(l~2X3X4 + X1/2X3)(4 -~- XI ~"2X'3X4 +)(1/2~"3X4

= Xl X2X'3~4 + X l ~ 2 X 3 X 4 n t-- .,u -t- XlX2.~3.,u

To satisfy this equation, any one of the terms in the last line can equal 1. Hence, any of
the input combinations (XI,Xz,X3,X4) - (1,1,0,0) or (0,1,0,1) or (0,0,0,1) or (1,0,0,1) is

440 Digital logic design

a valid test for an s-a-1 fault on the X3 line, and the fault is detected if the output is the
complement of that given by the original equation f - (XIX2 + X3)-(X3 + X4).

This technique of finding valid tests is best suited to logic functions defined in
algebraic terms that do not readily lend themselves to direct implementation in one
of the standard OR/AND or AND/OR forms, for which the methods discussed in
sections 13.10 and 13.11 are inapplicable. Note that these tests have been derived by
a purely algebraic procedure, without reference to the circuit diagram. However, there
is an alternative method of finding the Boolean difference by manipulation of the
K-maps of the function concerned. Note firstly that from its definition, the Boolean
difference may also be written as

0[
- - % ' (X i) ~%'(Xi) -- f | f,.(X~).

OXi

This is because X; may take only the values 0 or 1; so, regardless of which of these
values X; actually takes, the XOR is evaluated of the function f (w i th 1 replacing X~)
and of the function f (with 0 relacing Xi). Since the XOR operation is commutative,
this gives the same result as the previous definition of the Boolean difference.

To explain the K-map method of evaluating the Boolean difference, this method will
be used to confirm the previous calculation of Boolean difference for the function

. 1 - (x~x2 + x3) . (x3 + x4) - x~x2x3 + x~x2x4 + x3x4

This function is plotted on the K-map shown in Figure 13.24(a). Next, the function

f 3 (f 3) -- (XIX2 q- X3)" (,,~3 -I- X4) - XlX2,~3 + X l S 2 X 4 d- X3X'4

is plotted on the K-map shown in Figure 13.24(b). Therefore, to find the K-map of
the Boolean difference, all that is needed is to find the XOR of these two K-maps.
This is done by comparing cell by cell the two maps of Figure 13.24(a) and (b), and
transferring to the corresponding cell of a new map, either the result 0 if both
starting cells contain the same value, or the result 1 if the two starting cells contain
different values. The result is shown in Figure 13.24(c), and agrees with the previous
algebraic result

of
= XiX2f4 + f i X 4 + f2X4 �9

OX3

X3X, X3X4 X3X4
oo o, , , ,o oo o, , , ,o oo

00 1 00 1 00

01 1

11 1 1 1

01 1 01
=

11 1 1 1 11 1

01 11 10

1 1

1 1

10 1 10 1 10 1 1

(a) (b) (c)

Figure 13.24 K-map determination of the Boolean difference (a) K-map o f f = (S i X 2 -I- ,~3)" (X3 + X4)
(b) K-map off3()(3) (c) K-map of Of/OX3

Fault diagnosbs and test&g 441

13.13 Compact testing techniques

In practice, the methods described earlier in this chapter for fault diagnosis and the
generation of test sequences often have limited use. The fault table method can, in
principle, always be used to generate a minimal test sequence, but as the number
of variables increases, the computational time required increases significantly and
computer assistance becomes necessary for large circuits. Similarly, although the
method of Boolean differences is a useful and revealing technique for fault diagnosis
and the generation of test sequences, its use is limited to small circuits. Because of the
restrictions of these techniques, other methods of fault diagnosis have been developed.

Clearly, fault-finding is simplified if test points are available and are distributed
throughout the circuit and the signal to be expected at each test point under fault-free
conditions is documented by the designer. In order to undertake such a test, it is usual
to initialise the circuit in some prescribed manner, so that the circuit is starting from
known conditions. A specified test sequence is then applied at the circuit input and the
resulting sequence at the selected test point is checked against the fault-free sequence
for that point which has previously been stored. A block diagram of a typical testing
system employing this technique is shown in Figure 13.25. An XOR gate is shown
symbolically as the logic comparator for the two data streams; it will give an output 0
when the sequence to be checked agrees with the correct sequence, and it will give
an output 1 in the case of any difference. Therefore, a fault is indicated by the
appearance of a logic 1 at the output of the XOR comparator gate.

In choosing the test sequence applied at the input to the circuit under test, clearly it
will be most useful if as many as possible of the circuit properties are tested system-
atically, but in practice this may be difficult to arrange. However, the compact testing
technique is particularly versatile because almost any input test sequence can represent
a valid test, provided that it is repeatable and that the expected output can be deduced
or recorded from a known fault-free circuit. One test sequence often used is the output
from a pseudo-random binary sequence generator (see Section 7.25).

Ideally, the test points will be approximately equally spaced throughout the circuit,
and the sequence can be tested at test points chosen according to the 'binary division'
method (Section 13.2). Using this procedure, a section of the circuit will be found
where the fault first manifests itself by providing an incorrect sequence. More detailed
checks applied to this section will then isolate the fault. The data streams to be
compared may typically be thousands of bits long or even more for each defined test

Test points

Test C i r c u i t ~ ,
= under --

sequence test '
i One test point selected [

�9) ~ Detect
Sequence to = I L o g i c 1
be checked I

I Fault I free I
sequencej

Figure 13.25 Block diagram for testing using known sequences

Logic
Comparator

442 Digital logic design

point. The problem with this technique is that the correct sequence for each test point
has to be stored, and in the case of a large digital system (with a large number of
test points as well as long test sequences) this may require an inordinately large
amount of storage.

Because of these difficulties, methods have been developed where the fault-free
sequences have been stored in a compacted form. The output of a digital circuit is
a bit stream of O's and l's. Instead of storing directly the fault-free output sequence
generated by the input test pattern, data compaction can be achieved by either
(1) detecting and counting the number of 0 ~ 1 or 1 ~ 0 transitions, or (2) detecting
and counting the number of l 's or the number of 0's. In each of these cases, the amount
of storage required to represent a long fault-free test sequence is considerably reduced
(e.g., a sequence of 1000 bits may contain around 500 logic l's, the exact number of
which may be represented by a 9-bit binary integer; or, it may contain around 250 logic
0 ~ 1 transitions, the exact number of which may be represented by an 8-bit integer)
so that considerable data compaction takes place and the storage requirements are
greatly reduced. Unfortunately, there are inherent difficulties with both of these
compaction techniques since a faulty output may well have the same number of
transitions or the same number of logic l's or O's as the fault-free output. This problem
has led to the development of signature analysis, a method where the probability of
mistaking faults for correct operation is very low.

13.14 Signature analysis

The technique of signature analysis was developed by Hewlett Packard for testing large
digital systems. Overall, the method is akin to a compact test; the bit sequence from
a specified test point in the circuit under test is passed through another circuit, called
the compacter or signature analyser, which generates at its output a shorter bit
sequence than that applied to its input. The output of the compacter is termed the
signature. As before, the generated signature is then checked against the fault-free
signature obtained either from a known fault-free circuit or, alternatively, by simulation.
As shown below, the signature always contains the same number of bits, regardless of
the length of the test sequence, and this gives a considerable reduction in the amount of
storage required for examining the results of tests. A block diagram illustrating the
method is shown in Figure 13.26.

Test points

w

Test Circuit ----4
-- under ---,

sequence test ---4

One test point selected

J Signature
-I analyser

Stored
signature

Test
signature

Signaturel Output
checker i -

Figure 13.26 Block diagram illustrating signature analysis

Fault diagnosis and testing 443

Ck

(a)

c [

Sequence
to be checked

o, A

~>

Pr
Ck

a

DB B

c>

Pr
lp

Dc C DD D,

.----~ > < >

Pr Pr

Initialise -I_1-

(b)

Figure 13.27 (a) Pseudo-random binary sequence generator (b) Pseudo-random binary sequence generator
modified for serial signature analysis

The basic compacter circuit for signature analysis is a pseudo-random binary sequence
generator similar to that described in Section 7.25, and shown in Figure 13.27(a).
This circuit is a standard FIFO shift register with the feedback from the last and
penultimate stages taken through an XOR gate. For use in signature analysis, this
circuit must be modified by adding a second XOR gate as shown in Figure 13.27(b).
This circuit was originally called a cyclic code checker and is also known as a serial
signature analyser.

Conducting the signature analysis is similar to undertaking a compact test, except
that as well as initialising the circuit under test the serial signature analyser must also
be initialised simultaneously to a known state. In the example shown in Figure 13.27(b),
initialising the serial signature analyser sets all its flip-flop outputs to logic 1 level.
Following initialisation, as in compact testing, the test sequence is applied to the circuit
under test. The sequence of states of the flip-flop outputs in the circuit of Figure 13.27(b)
will depend upon the bit sequence generated by the circuit under test combined with
the feedback signal; this combination is undertaken by the additional XOR gate at the
input to the shift register. If the sequence being checked just happens to consist entirely
of O's, then the shift register input is identical to the feedback signal. In this case, the
compacter circuit behaves exactly as a pseudo-random binary sequence generator and
after being initialised produces a repeatable sequence of pseudo-random numbers.
If the sequence being checked is not entirely O's, then the feedback signal is modified
and clearly the regular cycle of pseudo-random numbers is upset, but it is still

444 Digital logic design

predictable and should be the same each time that same sequence is applied.
The expectation is that if there is an error, caused by a fault, in the bit sequence
applied, then the compacter output number sequence is changed, and at the end of the
sequence the shift register holds an incorrect signature.

It is nevertheless possible for a fault in the circuit under test to produce a correct
signature by chance. Note that although the standard pseudo-random binary sequence
generator of Figure 13.27(a) can never enter the state with all its flip-flop outputs at logic
level 0, the feedback path in the compacter of Figure 13.27(b) is modified by the input bit
sequence and so all possible output states may in principle be entered. Therefore, if n is
the number of stages in the shift register, there are 2" different possible signatures. So,
the probability of a fault producing the correct signature by chance is roughly 2-",
assuming of course that the test sequence is not strongly correlated with the feedback
signal, and so the different possible signatures are all approximately equally likely.
As n increases, the probability of mistaking an error for the correct signature should
be reduced exponentially to a very small value. A typical implementation uses a 16-stage
shift register (i.e., n - 16), so that the probability of confusing a faulty sequence with the
correct sequence is approximately 2 -16 ,~ 1.5 • 10 -5.

In principle, there is no limit on the length of test sequences that can be used with
signature analysis. The advantage of the method is that instead of storing the full
length of the fault-free sequences, only the n bits of the correct signature at each test
point need to be stored and compared, giving a massive reduction in required storage
in the case oflong test sequences. However, a major disadvantage of the method is that
if a faulty signature is detected, then there is little likelihood of being able to deduce the
nature of the fault from the faulty signature value. As the faulty sequence is combined
with a pseudo-random bit sequence in the compacter, it is difficult to work backwards
from the faulty signature to find which bits in the test sequence were incorrect. As the
number of possible faults is usually very large indeed, it is likely that several different
faults could produce identical faulty signatures. In principle, the most common faulty
signatures could be stored, and the faulty signature compared with those, but in
practice it is likely that so many faults are possible that it would defeat the object of
the compacter to store all the possible faulty signatures together with an indication of
their corresponding fault location.

13.15 The scan path testing technique

This technique is used for designing a synchronous state machine that is more easily
testable than the basic form of the machine described in Chapter 8. As an example, it
will be assumed that D-type flip-flops have been used in the machine design. When

constructing the state machine, a 2-to-1 multiplexer

"G MUX

F o] q

Figure 13.28 D-type flip-flop with add-
itional multiplexer, for scan path testing of
state machine circuits

is used at the input of each of the D-type flip-flops,
as illustrated in Figure 13.28. (In some cases, flip-
flops containing an internal multiplexer are avail-
able to simplify the construction of such circuits.)

A block diagram showing the necessary arrange-
ments for scan path testing appears in Figure 13,29
When the multiplexer selection signal G = 0, the
state machine is in its normal operational mode;

Fault diagnosis and testing 445

Inputs Combinational logic Outputs

0 D O = D O -~ 0 D O

~u~~ 1 - - ,> 1 ---,>
MUX MUX MUXi

G [G

Ck

Figure 13.29 Block diagram for a state machine with scan path testing facility

the outputs of the combinational logic are selected and appear at the inputs to the
D-type flip-flops. However, when G = 1, the combinational logic is disconnected and
the machine flip-flops are now connected in cascade to form a shift register. The testing
procedure for the synchronous state machine can therefore be carried out as follows:

1. Set G = 1 and move a string of ls and 0s through the shift register using the SDI
(serial data input) line. To verify the four possible transitions of each flip-flop
(0 ~ 0, 0---, 1, 1 ~ 1, 1 ---, 0), the input string should take the form 00110011...

2. If the flip-flops are functioning correctly and with G still held at 1, set the flip-flops
in the machine to the state pattern required for starting the machine test, by moving
the appropriate bit pattern through the flip-flops using the SDI line and with
repeated clock pulses applied to the Ck line.

3. Set the input values X~... X, required for starting the machine test.
4. Place the machine in the operational mode by setting G = 0, and after allowing the

combinational logic to settle to its final condition, check the output values
Y 1 . . . Ym.

5. Clock the machine once using the Ck line.
6. Set G = 1 and examine the state of the machine by applying further clock pulses to

the Ck line and examining the SDO (serial data out) line to confirm that the
machine has entered the correct next state.

7. Return to step (2) above to repeat for as many further state transitions as must be tested.

The scan path testing technique allows all the internal states and transitions to be
thoroughly examined. Any internal state of the machine can be set when operating in
the shift register mode, either for testing or initialisation. However, scan path testing
requires serial setting of the starting state for each test, and serial readout of the final
state of each test, and so will be slower than parallel setting and reading of the flip-
flops in the machine if this is feasible.

IBM developed the level sensitive scan design (LSSD) method, a scan path technique
which is designed to overcome such problems as hazards, races and sensitivity to
timing constraints. It depends upon the use of a specially designed shift register latch
(SRL) that effectively combines into a single device a storage facility and a selection
process equivalent to multiplexing. The SRL is a master/slave latch circuit which has
two separate input ports, one for the normal machine operating mode and the second
for the shift register mode.

446 Digital logic design

!

D !

!
Ck ,

I
I
, M a s t e r l a tch

' (2-po~) !

x ' , u

y !

%

Figure 1 3 . 3 0 The sh(]'t register latch

Q 1
v

r i

i i v
I !

I I
I
! a tc :
I I

I !

The gate connections for an SRL are shown in Figure 13.30. The main master
latch L~ consists of gates g~, g2, g3, and g4, with data input line D and clock Ck. When
Ck -- 0, L! is disabled, but after Ck has made a 0 ~ 1 transition the data is transferred
to the output Q~ of the latch (normally made available as a test point). To ensure that
the data has settled before the latch is enabled it is arranged that changes in D only
take place while Ck = 0. (The nomenclature 'level sensitive' refers to the connection
arrangement of the clock line to the input gates.)

The outputs of L~ are the inputs to the slave latch L3 which consists of gates gs, g6, g7
and g8. Latch L3 is enabled when its clock signal Y is at logic 1 level, and the data at
Q~ now appears at output Q2. Output Q2 is taken directly to the combinational
section of the machine so that the machine operates normally when L~ and L3 are
clocked appropriately.

The subsidiary master latch L2, consisting of gates g9, glo, g3, and g4, provides the
second input port of the two-port master latch. The data input line of L2 is I and its
clock line is X. Normally, X - 0 and L2 is disabled; when X - 1, L2 is enabled and
data on line I (normally connected to the output Q2 of the preceding SRL) is trans-
ferred to the output of L2. The slave latch L3 is again enabled when clock signal Y is at
logic 1 level, and the data at the output of L2 now appears at output Q2 which is also
connected to input I of the next SRL. In this mode, all the SRLs are now connected in
cascade and form a shift register.

It is important to ensure that no two of the clock signals X, Y, and Ck are ever
simultaneously at logic high level. This is because the slave must be enabled only when
both of the masters are disabled. This can be arranged by external logic where Y - X
in shift register mode, and Y - Ck in the normal operating mode.

A skeleton circuit diagram of a synchronous state machine designed using the
double latch LSSD technique is shown in Figure 13.31. The connections for the normal
operating mode of the state machine have been highlighted by the solid black lines,
and the thinner lines represent the additional connections for shift register mode.
SRL latches must be used instead of conventional flip-flops for every stage of
the machine.

Fault diagnosis and testing 447

|
Machine

inputs i

Figure 13.31

Machine
combinational

logic

j ~ 1 7 6 1 7 6 1 7 6 1 7 6

Machine
outputs

D

Ck

Y

l

m

T"

Machine
master
clock X Y

=0
Ck

= D

Ck

O1

SRL3

O2
I

Q1

SRL2

O2 !

Q1

SRL1

O 2
I

Scan
data in

III

i

A level sensitive scan design using the sh(['t register latches shown in Figure 13.30

13.16 Designing for testability

It will have been obvious from the foregoing that testing a digital circuit is usually far
from being trivial, except in the simplest of cases. The largest VLSI chips now
manufactured cannot be fully tested, for the entire range of possible inputs is so vast
that at the normal maximum operating speed of the chip it would take many years
to cover all possible input combinations. Therefore, there is considerable interest
in designing modern circuits and systems specifically with ease of testing in mind.
Designing for testability (DFT) is an enormous subject and is becoming an issue of
great importance, and in this section it is possible only to outline the steps that
a prudent designer will take in order to increase the ease of testing a new design.

Some methods of improving testability have already been mentioned. In circuits
employing redundant gates, it is good practice to include accessible test points, or test
inputs, in order to allow undetectable faults to be isolated and detected. Sometimes
there are unused connection pins on a module connector, and these can usefully be
employed as test inputs or test points. If there are no spare connections, then it is
sometimes useful to employ 2-to-1 multiplexers to allow shared use of the pins that are
available. In normal operation, all the multiplexers route the correct internal signals to

448 Digital logic design

the next logic stages, but on receipt of a special test signal at their select inputs, all the
multiplexers connect important internal gate inputs directly to accessible external
connections or test points so that they may be driven by known signals. Multiplexers
may also be used to route intermediate outputs to external connections when being
tested. These techniques can considerably simplify the problems of identifying a fault
buried deep inside a logic system and otherwise needing complicated path sensitisation
to unmask the fault, but it should be borne in mind that these multiplexers can
themselves be a source of faults, and they may also increase problems caused by
propagation delays.

In some cases a module of logic is so large that fault-finding access is improved by
subdividing the module, usually in such a way that both sub-modules are approxi-
mately the same size, and using the principle of binary division explained in Section
13.2. This can be done physically, or if this is not possible then the technique of
'degating' can be used, in which two extra gates are introduced into the signal path
of the logic circuit (see Figure 13.32). When (A,B) = (1,1), then the operation of the
circuit is normal; but if A = 0, then the value of/~ is fed into the second half-module,
which can then be directly tested with a known input. Again, added propagation delay
and additional possible faults are the penalties for using this technique.

Often, logic components such as gates and flip-flops will have unused inputs that
must be tied to high or low logic level for correct operation. For maximum testability,
these inputs should be tied to their respective logic levels through individual resistors,
one for each input, so that, should the need arise, they can be driven individually by an
external source. This would be impossible if these inputs were connected directly to a
supply rail.

Many logic systems, particularly sequential designs, must be initialised on first being
powered, and this power-on initialisation can also be used to drive all the flip-flops to a
known and predictable state. If this is done, then the initial state of the circuit is known
and the subsequent response of the circuit is well characterised, enabling fault condi-
tions to be recognised rapidly. When highly developed, such as in a computer, it is
possible for the system to undertake its own basic tests of the important sub-systems,
and to deduce, for example, the major parameters of the functional parts of the circuit.
These may then be reported to the user for further consideration and comparison with
the known fault-free parameters.

Other techniques for enhancing testability depend upon constructional methods.
It is still usual to mount the most complex chips using sockets, preferably of the
'zero insertion force' type which make removing and refitting the chip virtually
free of the risk of physical damage, despite the disadvantages associated with
possible contact resistance at each pin connection and slightly degraded high-
frequency performance. It is wise to ensure that physical access to test points
and component terminals on printed circuit boards is as easy as possible. Additionally, it
is frequent practice to provide one or more guided probes at selected points in

Sub-module
X

Figure 13.32 The principle of "degating'"

Sub-module
Y

Fault diagnosis and testing 449

the system which can be attached to each of the test points in a properly ordered
sequence according to a test routine devised according to the principles outlined in
this chapter.

Problems

13.1
13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

Determine a complete test set for the 3-input NAND gate shown in Figure P 13.1.
Using the path sensitisation technique, obtain a complete test set for the circuit
shown in Figure P13.2.
Using the path sensitisation technique, determine a test set for the circuit shown
in Figure P13.3.
Using the path sensitisation technique, determine the input test set for the fault
p= in the circuit shown in Figure P13.4, and check the answer using the Boolean
difference method.
The NAND implementation of an Exclusive-OR gate is shown in Figure P13.5.
Determine a complete fault detection test set for each of the following faults: P0;
ql; r0.
For each of the circuits shown in Figure P13.6 determine the minimal fault
detection test set.
For the circuit shown in Figure P13.7, develop the fault table and find a minimal
fault detection test set.
Determine the complete test set for all s-a-O and s-a-1 faults in the four 2-level
circuits shown in Figure P13.8.
Determine the Boolean difference OF/OX2 for the following functions:

(a) F - X, X2 + X, X3 + X2X3

(b) F - (X~ + X2)-(X~ + X3). (X2 + X3).

P

a ;. ii c J

P
A -- [~ ~ . . . ~
B q P A

C i ~ - ~ ' ~ ~ C r q

I o I >
v

1 u E w

Figure PI 3. I Figure PI 3.2 Figure PI 3.3

f

A

e , X
P D

L
1

F
X 1

X1 -~..
X2

X2

Figure PI 3.4 Figure PI 3.5

450 Digital logic design

C

Figure P13.6

-1 I - D

A D
B'

(a)

A

= E>

Cr_
�9 = " (c)

A
" D '

D
(b)

B

B

Figure P13.7

B
B

D

C A

[)

I) I
(a)

C> D C

C
D

A

C
A

B

B

D
D
D
D
(b)

I

C

D C

Figure P13.8

(c)

L ~

(d)

Appendix
Functional logic symbols

A.1 Introduction

Over a period of more than twenty-five years, during which time the technology of
digital systems has been developing at an unprecedented rate, methods of depicting
digital systems in circuit diagrams using standardised logic symbols have similarly been
developing. This has resulted in two completely separate sets of logic gate symbols that
can be used in drawing circuit diagrams, the 'old' or 'conventional' system and the
'new' or 'functional' logic symbols. In the UK the 'new' standards for drawing circuit
diagrams appear in BS 3939, Section 21, and in the USA they appear in IEEE Std.
91/ANSI Y32.14 and IEC publication 617-12. Perhaps the most significant advantage
of the standardized system is that it enables 'functional' circuit diagram symbols to be
defined, corresponding to most or all SSI and MSI components that describe the logic
function of the component in a consistent and logical manner. It is not practical
to indicate the detailed logic functions of all VLSI components but the symbolic
methodology can still be used to indicate the functions of major parts of these
components. This is an international standard so that circuit diagrams drawn using
the 'new' system will, in principle, be understood in many different countries.

One frequently voiced criticism of the functional symbol system is that it was
originally devised when CAD software was capable of drawing only rectangles, and
so all the various types of simple logic gates have functional symbols that are rect-
angular. The older 'conventional' symbols are completely different for the various
kinds of simple logic gates and so are much less prone to confusion. Furthermore,
a sizeable number of professional logic designers, having used the distinctive shape
symbols for many years, are reluctant to abandon the symbols and conventions with
which they are familiar and which are still in common use, and for these reasons the
older symbols are used elsewhere throughout this text. However, a professional
designer should at least be familiar with the new standards since they are now widely
used in many manufacturers' data sheets and published logic circuit diagrams.
This Appendix is intended to give sufficient information to allow interpretation of
the new symbols for typical devices described in this text, and to use them in simple
cases, but it is beyond the scope of this summary to give all the detailed rules of the
system to enable symbols for newly available devices to be derived.

A.2 Basic principles of the functional symbol system

In the functional symbol system, all logic gates and other fundamental logic units or
elements are indicated by basic rectangular outlines, each labelled with a general

452 Appendix

. t . npu, I i outpu,
lines lines

Figure A.I General . /ormat o./a./'unc-
tional s vmhoi./'or a logic element

qualify&g symbol defining its function. For example,
the symbol '&' signifies an AND gate. Additionally,
each element has both input and output lines with the
possibility of additional qualifying symbols relating
specifically to these inputs and outputs. The general
principle is shown in Figure A.I, where the dagger
('~f') indicates the position of the general qualifying
symbol and the asterisks ('*') indicate possible posi-
tions of qualifying symbols for the input or output

lines. The inversion circle, used at the inputs and outputs of conventional symbols and
introduced in Chapter 2, is a simple example of an input or output qualifying symbol
in the functional system.

The internal state means the logic state existing inside the rectangular symbol outline
at an input or output, and the external state means the logic state existing external to the
complete symbol, i.e. outside of any qualifying symbols applying to that input or output.

Although a logic element is usually described by a rectangular outline in this system,
the distinctive conventional shape symbols for gates as used elsewhere in this text are

;i z
,i ! V

(a)

(b)

still allowed. However, using the conventional
distinctive shape symbols loses one major
advantage of the functional system, which is
that symbols for complex components may be
built as combinations of simple gate outline
symbols. Three examples of abutting elements
are illustrated in Figure A.2. Symbols joined
in a vertical direction, and joined by a hori-
zontal boundary, are part of the same IC
package but, apart from power supply lines
are not electrically connected unless indicated
by other means such as a general qualifying
symbol. However, symbols joined in a hori-
zontal direction, and joined by a vertical
boundary, have a single internal connection,
usually from left to right. Multiple internal
connections can be indicated by the approp-
riate number of short perpendicular strokes
across the mutual boundary, and a single
stroke would confirm a single connection.
Therefore, in Figure A.2(a), there are no
connections between the adjacent elements,
while in Figure A.2(b) a vertical line sep-
arates the two elements and indicates that

there is a single internal connection between them.
In Figure A.2(c) there are three interconnections
between the abutting elements.

A common control block associated with a number
of logic elements is indicated by an element with
a special outline, as shown in Figure A.3. This is
the only special outline used in the functional system.

=

!

(c)

Figure A.2 Comhhuttion o./ logic elements
(a) No internal connection (h) A singh, htternal
connection (c) Multiph, internal connection

A 1' | A

h rJ

B C 1 I - -
I , I,,,

Figure A.3 Common control block
(top) ./br two logic elements

Appendix 453

A I-- - - - - -

B J-

D
A A

l

Figure A.4 Logic array with common output element (bottom)

&

>1
=1
2k+ 1

1
MUX
X/Y
DMUX or DX
CTR m
CTR DIV m
SRG m
EPROM, ROM
RAM
T.

P - Q

AND gate
OR gate (at least one input must be active to activate the output)
2-input XOR gate (one input only must be active to activate the output)
Multi-input XOR gate (an odd number of inputs must be active to
activate the output)
Buffer gate (the single input must be activated to activate the output)
Multiplexer
Decoder or code converter
Demultiplexer
Counter with m bits
Counter with cycle length m clock cycles
Shift register with m bits
[Erasable programmable] read only memory
Random access read/write memory
Adder
Subtractor

Figure A.5 Some general qual([ying symbols Some of the internal qual([ying s),mbols shown in.figure A.6 may also
be used as general qual(['ying symbols ([they apply to all inputs or outputs

In the example shown in Figure A.3 there are two logic elements, not connected to each
other but both controlled by input A.

When an array of abutting elements has a common output element, this is indicated
by drawing a double line at the boundary between the output element and the rest of
the array. In the example shown in Figure A.4 the common output element also has an
external input (C) connected to it.

Some of the possible general qualifying symbols are shown in Figure A.5, and some
of the possible qualifying symbols for inputs and outputs are shown in Figures A.6 and
A.7. The general qualifying symbols for simple OR and XOR gates and buffers
indicate the number of inputs that must be active in order to activate the output.
The functional system includes an alternative to the inversion circle, the polarity
indicator. In a positive logic circuit diagram this means the same as, and is completely
interchangeable with, the inversion circle, with the proviso that the direction of the
arrow indicates the direction of signal flow. None of these tables is intended to be
complete, however, and only those symbols necessary for understanding the com-
ponents described in this text are shown. The simplest Boolean logic gates have
functional symbols that are simply rectangles labelled with the appropriate general
qualifying symbol, as shown in Figure A.8.

454 Appendix

+ o}
Vmin

Vmax
V
J, K, R, S,T
D
- - i

CT =?
+

- - .)

1>
0

Rising-edge triggered control input

Group of inputs or outputs binary weighted from 1 to 2 r" (e.g. address
inputs or counter outputs)

Minimum and maximum values of weighted inputs interpreted internally

Tri-state output
Flip-flop inputs
Single-bit input to any storage element (e.g D-type flip-flop)
Postponed output (pulse-triggered element, e.g. master/slave flip-flop)
Contents of an internal register
Input causing count-up
Input causing data shift away from control block
Schmitt input gate
High output driving capability
Open collector output

Figure A.6 Some qmtli/.vin~ symbols for use insi~h' the element out~me ~vith logic inputs aml outputs

~[~i i i i Inversion circle (input)

ii i i~--- Inversion circle (output)

- -~ i i i i Polarity indicator (input)
....

.... _j Polarity indicator (output)

ii~ii Complemented internal connection

l--fill Analogue input

Figure A.7 Some quuli/.vinl,, svmhoL~" /m" use outsi~h" the element outline ~l'ith logic inputs and OUtlmtS

I>1 =1

(a) (b) (c) (d)

L
I

Figure A.8 Some e.vumph,s o././hnctional logic ,~'.vmhoL~" for .~'imple Boolean logic gates (u) AND gate (h) OR gate
(c) Inverting Im/li'r (d) 2-inlmt XNOR gate

A.3 Dependency notation

The systematic 'dependency notation' is a completely new feature of the functional
logic symbols, with no precise counterpart in the 'conventional' system, and which
forms the basis of an extremely flexible method of succinctly indicating the precise
logical functions of very many complex ICs. The dependency notation summarises the
relationships between inputs and outputs of complex logic elements, and is in addition
to the general qualifying symbols describing the overall element function. It thus
defines a consistent framework for labelling the various inputs and outputs of the
more complex logical elements.

The dependency notation is built around a number of distinct 'dependency types',
indicated by a capital letter. These include, amongst others:

EN:
G"

Enable dependency,
AND dependency,

Appendix 455

C:

S, R:
Z:
M:
A:
N:

Control dependency,
Set and Reset dependency,
Interconnection dependency (i.e., internal connections between elements),
Mode dependency (i.e., effects depend on the mode of operation),
Address dependency, and
Negate (XOR) dependency.

The general rules for the dependency notation are that each logic line affecting other
logic lines is labelled with the appropriate letter chosen from the list of possible
dependencies above, followed by a decimal integer or a Greek letter unique for the
particular part of the logic element concerned and obviously usually chosen to describe
the function of the element as clearly as possible. Furthermore, each logic line affected
by the affecting logic lines is labelled with the same integer. Logical inversion between
affecting and affected lines is indicated by placing a complementing bar over the label.
The OR of two or more logic lines can be indicated by labelling them with the same
letter and integer or Greek letter. If any line is affected by several affecting logic lines,
then the order in which the effects are applied is indicated by the left-to-right ordering
of the affecting labels.

As an example, an enable signal with EN dependency affects only the outputs of the
element to which it is connected, even if the logic symbol used contains a number of

elements, as shown in Figure A.9. When the internal

" - ' - - - - - ' - r EN

l

B

C

D

-~ E

F

Figure A.9 Control of outputs using
Enable (EN) dependency. Only outputs
A, B, C, and F are controlled by the
Enable input

enable signal is l, the outputs of that element are
enabled. When not enabled, the result depends upon
the type of outputs employed. For a tri-state output,
a disabling signal puts the outputs into the high
impedance Z state externally, though the internal state
is unaffected. Totem-pole outputs are taken to the
logic 0 state, and open collector outputs are taken to
the 'off ' state.

It should be noted that, because of the flexibility
of the system, any one device can often be described
by several possible functional symbols; the symbol
designer chooses the symbol that describes the
function of the device most clearly, and there are some
instances where the choice of the clearest symbol
depends upon the particular use being made of
the device.

A.4 Simple examples of G dependency in functional logic symbols

The rule for the G (AND) dependency is that when the affecting input is in logic state 1,
the affected input behaves as it would without the dependency symbol; and when the
affecting input is in the 0 state, the effect is as if the affected input were in the 0 state.
This is the essence of an 'AND' gate, of course. A typical example of a functional logic
symbol using the G dependency, for the 74251 8-to-1 line multiplexer, is shown
in Figure A.10. Pin numbers on the IC package are given in parentheses outside
the logic element outline. Polarity symbols indicate an active low Enable input G and

456 Appendix

_ ~ Mux
G EN

I,,, ,0}o A-(,o~ I
C 2
DO (4) 0

D1 (3) 1

D2 (2) 2

03 (~---,,,-L~) 3
D4 ~15) 4

D5 (14) 5

D6 {13) 6
(12)

D 7 - " " - - ' ~ 7

(51 y

Figure A. I0 Functional logic symbol
./i)r tilt, 74251 8-to-I /me multiplexer

A (141 ~)
8 12) 0

' h '

ICO (61

1C 1 (5)

lC2 (4)---L--~

lC3 (3)- - . ,L~

(10)
2C0
2C1
~ 2 I ~ i

EN

0

1

2

0
G T

MUX

j
,., [

(7)
1Y

(91
- 2Y

I
Figure A.I 1 Functional logic symbol for the
74153 dual 4-to-I line multiplexer

a complemented output W. Both the inverted and
non-inverted outputs are tri-state. Select signals A,
B, and C, having weights 2 ~ 2 ~, and 2 2 respectively,
provide a range of binary input values from (0)10 to

0 (7)10 inclusive. The internal qualifying symbol G~
indicates AND dependency between these select
inputs and the data inputs DO to D7 labelled with
internal qualifying symbols 0 to 7. This dependency
identifies the combination of select signals (C, B, A)
required to select individual data lines so that, for
example, the control signal combination CBA is
ANDed with data input D4. This is, of course, the
correct function of a logic multiplexer; if select signals
(C, B , A) - (1,0, 0) are applied, then data line D4 is
selected.

A more complex example is the functional logic
symbol for the 74153 dual 4-to-I line multiplexer,
shown in Figure A. 11. The following points refer to
this diagram.

1. The two main logic elements (specified by the
general qualifying symbol MUX) are sepa-
rated by a horizontal straight line, meaning
that they are not interconnected.

2. The two logic elements are identical, and so to
reduce clutter, only the first element is
described in full on the symbol.

3. Each logic element has its own Enable signal,
lff3 and 2(3, controlling outputs IY and 2Y
respectively. Polarity indicators are used at
these inputs to indicate that these are active
low inputs.

4. Control signals A and B, having weights
2 o and 2 ~ respectively and providing a range
of binary input values from (0)10 to (3)10
inclusive, are supplied to a common control
block. Since the control block is common to all

logic elements, both MUX elements are controlled by the same address inputs.
5. G (AND) dependency is specified by the internal qualifying symbol G o in the

common control block, corresponding to the internal qualifying symbols 0, 1, 2 and
3 labelling the data inputs of the top MUX element. This dependency identifies
the combination of control signals A and B required to select individual data lines.
For example, if (A, B) = (0, 0), then data lines 1C0 and 2C0 are selected; or if
(A, B) = (1, 1) then data lines 1C3 and 2C3 are selected.

The logic IC type 74139 can be used either as a dual 2-to-4 line decoder or as a 2-to-4
line demultiplexer. Because of its two somewhat different uses it has two alternative
functional logic symbols using two different general qualifying symbols, as shown
in Figure A.12. In principle, these two functional logic symbols are equivalent and

Appendix 457

1A t2 _.[1 x/v

,e -('' ---12

C ~ (4) 1Y0

1 : ~ ~ (5) 1y 1

2 ~ . ~ (6)_ 1Y2

3,~. - (71
' -1Y3

~,...~(12) 2y 0

,.~ (111
., 2Y1

(9) 2Y3 !

(2) l " DMUX ''

, , - t o l o o

, , , 3

2B 1131 !

~ - - ~ 1 YO

: ~ ~ J - - 1Y 1

~.~ (6) 1Y2

~.~ 17)
-- 1Y3

~ 2 Y O

. ~ ~ { 1 1) 2y 1

2Y2

~ . - ~ 2Y 3

F i g u r e A.12 Equivalent functional logic symbols for the 74139 dual 2-to-4 line decoders/demultiplexers

A 11)
1

B (2)

C (3)

GI (6) I &

G2A 14) ,.J
G2B

BIN/OCT
0

1

2

3

4

5

EN 6

7

, ,

(15) Y0

>_113) Y2

~ Y 3

(~--.~-~ ~) Y4

(9) Y6
(7)

~'~ Y7

(•--•o"] OMUX"'
A 0

(2) I I . c o

C -- / 2 j 2

3

G1 (S) [
4

~ZA 14) r-,J 5

~28 7

(15)__ Y0

(14)_ Y1

,.,._ (13) Y2

112}
- =-Y3

~ Y 4
~ Y S

(9)
-Y6

(7}
Y7

F i g u r e A.13 Equivalent functional logic symbols for the 74138 3-to-8 line decoder/demultiplexer

interchangeable. In practice, a wise designer will choose to use the one closer to the
actual function required of the IC in the circuit. Note that in both representations, all
the output lines are active low. Pin (1) functions as an Enable input in the decoder
symbol but, in the symbol for the same device used as a demultiplexer, pin (1) acts as
the data input and so the designation EN is not needed.

Two possible functional logic symbols for the 74138 3-to-8 line decoder/demultiplexer
are shown in Figure A.13. Note that instead of the general qualifying symbol for
a decoder (X/Y), the more specific symbol BIN/OCT is used. Also, there is an
'embedded AND' gate within the main outline of both symbols. The symbol EN to
the right of the gate embedded in the decoder symbol indicates that the implied
horizontal connection, between the embedded gate and the main part of the logic
element, takes the function of the Enable signal for the device. For the demultiplexer
symbol, this connection acts as the data input to the main part of the element and so
the designation EN is removed.

A.5 Control, Set, and Reset dependency

The rule for the C (Control) dependency is that when the affecting input is in logic state 1,
the affected input behaves as it would without the dependency symbol; and when the
affecting input is in the 0 state, the affected input is not permitted to control the
element. An example of C dependency is shown by the controlled SR latch shown in

458 Appendix

lS

Cl

1R

Q a & I Q

= ~ i
(a) (b)

Figure A.14 An example of the use o[control dependencw the controlled SR latch

Figure A.14(a). Control input b is the affecting input and a and c are the affected
inputs. Normal operation of the SR latch only occurs when the control input is in
the high state (logic level 1). The Control input is identified by the qualifying
label C I while the affected inputs are each given the qualifying label 1. Exactly the
same functionality is indicated in a different manner, using embedded elements, in
Figure A. 14(b). In this case, internal signal S = a . b and internal signal R = b.c, so
that inputs a and c take the roles S and R respectively only when b = 1.

When S = R = 1 the output of a normal SR latch is unspecified, and in practice this
is regarded as a forbidden input condition. However, S or R dependency can be used
in a functional symbol when the corresponding component has a well-defined output
f o r S = R = 1.

The rule for the S (Set) dependency is that when the qff'ecting input is in logic state 1,
the affected output behaves as it would with S = 1, R = 0; and when the af[ecting input
is in the 0 state, there is no effect. Therefore, S dependency overrides whatever logic
level is present on an R input. The S input is denoted by S l, indicating that it is now an
affecting input. The two complementary outputs are labelled by 1 to indicate that they
are both affected by input S I. For S = R = 1, the S input overrides the effect of R so
that Q = 1 and Q = 0. Since the latch is behaving as it would for the input conditions
S = 1, R = 0, this is also known as 'Set overrides Reset'. A functional logic symbol for
such a latch appears in Figure A. 15(a).

The rule for the R (Reset) dependency is that when the affecting input is in logic state 1,
the affected output behaves as it would with S - 0, R - 1; and when the affect&g input
is in the 0" state, there is no effect. Therefore, R dependency overrides whatever logic
level is present on an S input. The R input is denoted by R1, indicating that it is now an
affecting input. The two complementary outputs are labelled by 1 to indicate that they
are both affected by input R1. For S = R = 1, the R input overrides the effect of S so
that Q = 0 and Q = 1. Since the latch is behaving as it would for the input conditions
S = 0, R = 1, this is also known as 'Reset overrides Set'. A functional logic symbol for
such a latch appears in Figure A. 15(b).

Q S
Sl 1 =

Q R
R 1 =

Q
1

Q
R1 1 ;

(a) (b)

Figure A.15 (a) Set (S) dependency (b) Reset (R) dependency

Appendix 459

I 1

R

Figure A. 16
logic symbol

S
A

m

R

$1

, IR2

I O
1

O
2

(a) (b)

SR dependency of a NAND gate SR latch (a) Gate implementation of latch, and (b) its functional

I O
$1 2 -

Q
R2 1 =

(a) (b)

Figure A . 1 7 SR dependency of a NOR gate SR latch (a) Gate implementation of latch, and (b) its functional logic
symbol

In practice, a more common situation is that shown by the SR latch made using
N A N D gates, as shown in Figure A.16. For this circuit, Q - Q - 1 when S - R - 1
and both Set and Reset dependency are present in the circuit. Both S and R are
affecting inputs and the corresponding input pins are designated S 1 and R2. Output Q
is affected by input S1 and so is given label 1 to identify this dependency, while
output Q is affected by input R2 and so is given label 2 to identify its dependency on R2.
If inputs S1 and R2 are simultaneously held at high logic level, the notation
specifies that output Q - 1 (overriding input R2) and simultaneously output Q - 1
(overriding input S 1), describing the circuit action correctly. However, if both S 1 and R2
are simultaneously held at low logic level, then neither input is active and so either
Q - 0, Q - 1 or Q - 1, Q - 0 are possible, corresponding to the previous state of the
latch.

For the SR latch made from NOR gates (Figure A.17(a)), the outputs are
Q - Q - 0 when S - R - 1. Again, S and R are both affecting inputs and so, as
before, the corresponding input pins are designated S 1 and R2. Now, however, output Q
is affected by input S 1 and so is labelled 1, while output Q is affected by input R2 and
so is labelled 2. If input S 1 is in logic high state then output Q is 0 irrespective of input
R2. If input R2 is in logic high state then output Q is 0 irrespective of input S1.
This gives the functional symbol shown in Figure A.17(b).

A.6 Bistable logic elements and C dependency

The master/slave JK flip-flop is an example of a single-bit memory element that is
'pulse triggered' - that is, the data must be set up prior to the arrival of the first logic
edge of the clock pulse and must remain stable at least until the clock has returned to

460 Appendix

j its original state. The final output signal appears when the
1J "1 -- O clock signal returns to its original state and is said to be

Ck a 'postponed' output. This is indicated by the internal
6"1 qualifying symbol '~'. Figure A.18 shows the functional

logic symbol for a master/slave JK flip-flop, having
K 1K --1 - t~ Control dependency provided by the clock C1; 1J and 1K

are the affected inputs. (If there is a change in the logical
Figure A.18 Functional logic value of 1J or 1 K, or both, while the clock remains active,
symbol for master~slave then the resulting output state is not described correctly by
JK.[lip-)qop the functional logic symbol.)

The presence or absence of the qualifying symbol '-7'
combined with the presence or absence of the symbol for

an edge-triggered clock input gives the following four basic types of clocked flip-flops
and latches that can be represented using the conventions of the functional logic
symbols, as shown in Figure A. 19.

C1 C1 C1 --, C1 ---,

(a) (b) (c) (d)

Figure A.19 The distinguishing features of the four basic bistable elements (a) The transparent latch
(b) The edge-triggered flip-flop (c) The pulse-triggered flip-pop (d) The data-lockout flip-[lop

a. The transparent (controlled) latch. Control dependency label C1 means that data
input is only enabled when C1 - 1. For C I = 0, the data inputs have no effect.
Only changes of data input while C1 = 1 will result in a change of output state.

b. The edge-triggeredflip-flop. Edge triggering is indicated by the internal qualifying
symbol '> ' . This means that the control signal C1 only enables data input on
a rising edge (0 ~ 1) transition. As in the conventional symbol system, operation
designed to take place on a falling edge (1 ~ 0) transition may be indicated by
juxtaposing the internal qualifying symbol '> ' by an inversion circle, an external
qualifying symbol.

c. The pulse-triggeredflip-flop. As in Figure A. 18, this is identified by the presence of
the output indicator '~', and the absence of the edge-triggered input indicator '>' .

d. The data-lockoutflip-flop. This is similar to a pulse-triggered device except that the
control input C1 is considered dynamic, so that the functional logic symbol
includes both the edge-triggered symbol '> ' and the postponed output symbol '~'.
Shortly after C 1 has made a 0 ~ 1 transition, the data inputs are disabled and data
does not have to be maintained for the remainder of the clock pulse. However, the
output is postponed until C1 returns to its original state. Type 74110 is an example
of a flip-flop with data-lockout.

An example of a functional logic symbol for a single-bit memory element is shown in
Figure A.20. The device illustrated is the 7470 positive edge-triggered JK flip-flop with

Appendix 461

7470

p '~ ~ 1 2 S
J1 -- - -" 1 &
J 2 ~ 1J
s q

Q

Q

Figure A.20 Functional logic
symbol for the 7470 AND-gated
positive edge-triggered
JK flip-flop

additional AND gating. The AND gates at the J and
K inputs are incorporated within the logic symbol and
edge-triggered operation is indicated by '> ' at the clock
input. Logic polarity indicators are used to denote active
low inputs and an active low output. This device is unusual
because, as well as the usual edge-triggered JK action, the
complemented direct Clear and Preset inputs only operate
when the Clock input is at logic low level. Therefore, the
Clock and the inverted Clock are both regarded as control
signals and are designated C1 and C2, respectively.
The inputs 1J and 1K are affected by the dynamic Clock
signal C1, where the control dependency is indicated by the
numeral 1. The inverted Clock signal, control signal C2,
affects the complemented Preset and Clear inputs, and the
control dependency is therefore indicated by denoting

these signals as 2S and 2R respectively. External polarity indicators show that these
are actually complemented inputs.

A.7 Counters, Z and M dependency

The functional logic symbols for MSI counters are broadly similar to those
described in section A.4 for multiplexers and comparators. For example, the 7468
is a dual 4-bit non-synchronous counter which may also be used for frequency
division. The functional logic symbol for this MSI circuit, shown in Figure A.21(a),
is divided into three separate elements with no logical interconnection. Each element
is a separate counter and consequently has its own general qualifying symbol.
The upper counter (CTR DIV 2) is a scale-of-2 counter; the centre block
(CTR DIV 5) is a scale-of-5 counter; and the lower block (CTR DIV 10) is a
scale-of-10 counter. All of these elements may also be used for frequency division by
2, 5, or 10 respectively, and the general qualifying symbols show that all the
outputs have high current driving capability. In fact the detailed data for the
74LS68 show that its outputs each have approximately double the fan-out capability
of normal LS outputs.

The bit grouping symbols indicate the weightings of the binary outputs, so that the
potential binary range of the centre element is 0 to (7)10, and for the lower element (0)~0
to (15)~0. However, the qualifying symbols CTR DIV 5 and CTR DIV 10 indicate that
these counts are actually limited internally to (5)10 and (10)10 respectively.

The upper and centre counter elements have a common active low Clear input, while
a separate active low Clear input is provided for the remaining counter. The symbol
C T - - 0 by each of these inputs indicates that, when active, these inputs clear the
counter contents to zero. Separate edge-triggered clock inputs are provided for each
counter element, and all three elements are capable only of counting up.

In practice, 1QA can be externally connected to 1CLKB, thus amalgamating the
upper two counters into a single scale-of-10 counter. Together with the lowest element
there are then two decade counters, and this is the reason that this IC is described as
a dual counter. Frequency division by 100 can now be achieved by externally con-
necting 1QD to 2CLK.

462 Appendix

, , , ,

r ' ~ c r - , I . ~oA

~c~ ~4j crk~vs ol (2~ c,(' ' ~ 1O(;

! ci.o,v~o 2[1Qo

--c~1).~1[~ I> ~oi__.~D~o, ~
2CLK CT ~

3 ~ 2OC
__ 2 0 0

(a)

R0(1

R0(2

Rg(1'

R912

CKI

3CT=1

3CT,.4

OIVS

(4)
m m

(8)

Oe

(b)

~ol I tNr i7' l
ENP

CLK

i
-- CTRDtVIw -
CT-O

:1 1161
I G3 "7 3CT-15 -

A QA
I 0 8

RCO

(c)

F i g u r e A.21 Functional logic symbols.lor counters (a) The 7468 dual 4-bit asynchronous counter (h) The 74290
decade counter (c) The 74161 synchronous 4-bit counter

Another example is the 74290 non-synchronous decade counter, shown in
Figure A.21(b). This MSI circuit consists of two counters, one a scale-of-2 and the
other a scale-ofo5, serviced by a common control block. Both counters have indepen-
dent clock inputs and the potential range of the lower counter is (0)~o to (7)~0.
However, the qualifying symbol DIV 5 indicates that its count is actually limited to
5. If QA is connected externally to CKB, the operation of the two counters may be
combined to give a scale-of-10 counter.

The two counter elements have a common Clear signal which clears both counts to
zero when R0(1) AND R0(2) are high. Inputs R9(1) and R9(2) are used to set the
combined count to (9)~0. These are both active high inputs to an AND gate embedded
in the control block; this generates an output signal Z3 that controls both counters
using the Interconnection (Z) dependency. This is specified by prefixing the CT
symbols in both counter blocks with the same numeral. The rule for the Z dependency
is that when the affecting input is in logic state 1, the affected input behaves as if logic
state 1 has been imposed on it; and when the affecting input is in the 0 state, the
affected input behaves as if logic state 0 has been imposed on it. For the upper counter,
3CT = 1 indicates that Z3 active c a u s e s QA ---- 1; simultaneously, for the lower counter
3CT = 4 indicates that Z3 active causes this counter's outputs to be set to
(QD, Qc, QB) = (1,0, 0). Therefore, when R9(1) and R9(2) are simultaneously active,
the combined count is set to (QD, Qc, QB, QA) -- (1,0, 0, 1) = (9)10.

Appendix 463

Finally, the 74161 is a more complex MSI circuit having further control func-
tions described by the Mode dependency, M. Its functional logic symbol is shown in
Figure A.21 (c) and the general qualifying symbol specifies that this device is a scale-of- 16
counter. The rule for the M dependency is analogous to that for the C dependency:
when the affecting input is in logic state 1, the corresponding mode is selected; and
when the affecting input is in logic state 0, the corresponding mode is not selected.
The basic counting function is indicated by the symbol '2, 3, 4+' adjacent to pin (2) (CLK).
This denotes that the count will be incremented by unity when the clock makes a 0 ~ 1
transition provided inputs LOAD, ENP, and ENT, marked with dependencies M2,
G3, and G4 respectively, are high. The counter is directly cleared (CT = 0) by an active
low input on pin (1). The counter block is divided into four similar sections, one for
each bit of the counter, and the integers 1, 2, 4, and 8 indicate the weighting of each bit
of the count. Surrounding these integers with brackets [] indicates that these integers
are non-standard qualifying symbols, introduced purely for clarity.

The symbol 1,5D adjacent to pin (3) indicates that the counter is loaded with the
logic values on inputs A, B, C, and D, when the LOAD input is low (Mode dependency
M1) and pin (2) makes a 0 ~ 1 transition (Control dependency C5). Since pin (2) is
associated with two separate functions (load and count), both of them are specified
using the clock input line but separated by an oblique stroke (or forward slash, '/').

Each stage of the counter has its own individual postponed output, designated
QA, QB, Qc and QD. Finally, the ripple carry output RCO is described by qualifying
label '-~3CT = 15', indicating that it is a postponed output dependent upon the enable
signal ENT. RCO is active only when the counter contents CT -- 15 and the enable
signal at G3 is active.

A.8 Shift registers

A functional logic symbol for a basic 4-bit shift register with parallel outputs from each
bit is shown in Figure A.22(a). The upper section of the diagram is the control block

Ck

~> SRG 4
Cl/~

I 1_

'~ I
! ,

(a)

%
' Q !

Q~
_..|

i o3
I

L SRG 8 Ck ~___~,,_., O 7_
A 07

(b}

~R SRG 8 Ck Cl1~

CLR

& llD B

(c)

i

Q1

a,

Figure A.22 Functional logic symbols for shift registers (a) Four-bit SIPO (b) 7491 8-bit SISO
(c) 74164 8-bit SIPO

464 Appendix

and the lower section contains the four flip-flops that make up the four stages of the
shift register. Data input to the register is through line A. The qualifying symbol ' ~ '
indicates that the data shifts one stage further away from the control block every time
there is a rising logic edge at the clock input Ck. The enabling control of the flip-flops
by the clock is indicated by Control dependency C1 and the label 1D in the lower
section of the diagram.

A typical example of a serial-in, serial-out shift register is the 8-bit type 7491.
Its functional logic symbol is shown in Figure A.22(b); again the flip-flops are
controlled by the edge-triggered clock line Ck. Serial-out data is available in true or
complemented form from the last stage of the register. Independent outputs are not
available from the seven remaining flip-flops in this device. Serial data formed by the
result A AND B enters the first stage of the shift register through an implied horizontal
connection (labelled I D to the right of the embedded AND gate). In practice, one of
the inputs A and B can be used as the data input line while the other input is used as
a line to enable or inhibit data input.

Lastly, the functional logic symbol for the 74164 parallel-out 8-bit shift register is
shown in Figure A.22(c). Independent outputs are provided from each stage of
the register and an additional active low clear line (R dependency) is provided for
initialising the register contents to 0. Because the clear line resets all the flip-flops to 0,
it is connected to the control block of the symbol. Note once again the implied
horizontal connection out of the embedded AND gate in the top section of the register.

A.9 Programmable devices and A dependency

Programmable logic devices have the common feature (shared with certain other
devices) that one of an array of elements (usually binary words) is selected by the
use of a set of address or select inputs. This is indicated on a functional logic symbol by
the use of the Address (A) dependency. The rule for the Address dependency is that the
affecting inputs (the address lines) allow the element that is selected by the address to
function fully and to react to the affected inputs, while the corresponding functions of
all the other elements in the device are disallowed.

As an example, the functional logic symbol for the TMS27128 EPROM is shown in
Figure A.23(a). All outputs are tri-state, and this EPROM has two control lines:
an output enable G (an active low input) which gates data to the output lines, thus
eliminating bus contention, and an active low chip enable input E which, besides
selecting the chip, provides the additional facility of being able to put the EPROM
in a standby mode. When E - 1 (i.e., this signal is not asserted), the tri-state output
buffers are placed in their high-impedance (Z) state (see Chapter 10) and simul-
taneously the EPROM power consumption is reduced to less than 10% of its value
when fully operational. The address dependency indicates that valid addresses range
from 0 to 16383, and the eight affected data outputs show that this is a byte-organised
EPROM. Figure A.23(a) shows the function of the device as a ROM and so the active-
low input used to program the EPROM (pin 27, denoted PGM) is not shown.

A second example, the TMS47256 ROM, is shown in Figure A.23(b); there are two
possible symbols as pin (20) has a dual function. It can either be operated as a chip
enable/power down input (E or E) or, alternatively, as a secondary chip select pin
($2 or $2). Both of these functions can be programmed as either active low or active

Appendix 465

AO (101 I

,,,, ,,, I

A3 (7) |

Ae 14) l

A7 1 3) . ~ ~
All (2 6)
A9 (24)

1211
A10

(23)

A12 (2).,-~m

A13 (2 t) ~ , ~ 13

I W m l

14304 X II

- 01

O2
03

Q6

Q6

Q7

(a)

| ROM (10) J. 0"1 32.768X8 �9 o tsJ I /
"'!o, 1 /

A4;5 i l I A V (11
(12)

, e ~) I / - o , v ' , i ~
". C2,,] I " ~ " " A V ~ o,

1241 1 I A V Q5

,~om31 1 J , v - t l , i ~
" " i'2, .,l I , v - o .

A13A14 (27' 1 1 ~

i .:2~ l,t~;, ow.i

I _ I

I ROM
A0 (10) 0 " 32,768X8
A1 (9)

(8) J A2
(7) J A3
(6) l A4
(5) J A5

A6 (4) J
(3) J A7
125) J

A8
(24) l A9
(21) [

A10

(2) J A12 (2e)
A13 -
A14 (27) J 14J

1201

Sl 122) , EN

A ~
A V
A V

0 A V
), A 32,767

* V

A V
* V

A V

(b)

111)
Q1

(12) o2
. , (1.~.), o Q3

(161
Q4

(16._._..~) Q5
(17)

- Q6
(18)

,, 118

Figure A.23 Logic symbols for (a) TMS27128 16 Kbyte EPROM, and (b) the two modes of operation of the
TMS47256 32 Kbyte ROM

high during mask fabrication. The chip select input (pin (22), labelled Si or Si) can
also be programmed during mask fabrication to be either active high or active low.
The address dependency indicates that valid addresses range from 0 to 32767, and the
eight affected data outputs show that this is also a byte-organised ROM.

A.IO Arithmetic circuits and N dependency

A typical example of a 4-bit adder is type 74283, and its functional logic symbol
is shown in Figure A.24. The preferred designations for the operands in a device

466 Appendix

(5!
A1 (3)
Az (14}
A3 (~6~) A4
B1 (2)
92 (15)
B3
B4 (~1))
C0

Z o} {
p 0

3 Z

3 O}o
3 CO
CI

(4)
(1). Z1

(13) T_.,2
(10) T_..., 3

T_,4.

(9) C4

Figure A.2A Functional logic symbol
.for the 74283 4-bit adder

(8)
B

(1)
C

(2)
A1

(5)
A2

(10)
A3

(13)
A4

r'-~l G2 1

q F
2 1 3

....,. (3)
Y1

(6) Y2
(9)

Y3
(12)

Y4

Figure A.25 Functional logic symbol.[or the 7487
true/complement unit

performing a mathematical operation are P and Q.
Note that the binary weighting of the operand input
lines and the sum output lines are indicated by the
braces ('}'). In this diagram, the carry-in line is desig-
nated both by the acronym CI and as CO, i.e. the carry
from the bit one place less significant than bit 1, and
the carry-out line is designated both by the acronym
CO and as C4.

IC type 7487 is a ' true/complement unit' intended
for controlling one set of inputs to a 4-bit adder.

The functional logic symbol for the 7487 is
shown in Figure A.25. The functional logic
symbol indicates that the device has a com-
mon block having an input C and an active
low input B. The polarity indicator and the
qualifying symbol G2 (AND dependency) at
pin (8) denote that B is ANDed with the data
inputs A l, A2, A3, and A4 (all labelled 2)
inside each controlled element. The rule for
the Negate or XOR (N) dependency is that
when the affecting input is in logic state 1,
the affected input is complemented; and
when the affecting input is in the 0 state,
the affected input is not complemented.

This is the essence of 'controlled inversion' provided by an XOR gate, of course (see
Chapter 4). Input C has qualifying symbol N3, controlling the four outputs identified
by the label 3 that are then complemented. Thus, the result from the topmost con-
trolled element is

Y1 - c �9 (A1 �9 B) - c �9 (A l �9 B) .

If C - 1 then Y1 - A1 �9 B, whereas if C - 0 then Y1 = (A1 �9 B). In this case, all the
logic in the device is indicated by the dependency symbols G and N, so that each
controlled element is given the general qualifying symbol 1, denoting a logic buffer
with no further logic functions. Finally, as the controlled elements are all similar, it is
actually only necessary to label the topmost controlled element in the symbol.

~
m

L

~
~

m
L

~
~

m
L

~
~

m
L

~
~

m
L

~

~
m

L

o
o

t~

~D

c
~

~D

~
L

~

lu
m

L

~

v

~
L

~

m
L

~m

~D

01!
--

II

o
o

~
n

II

t~

II
II

§2
47

II
II

§

II
II § §

II § II

§
§

m
~

i.
 I

t~

t.
.i

O
0 I I

t.
.i

o
o

p

in

~l

~l
~

~
~ ~ 0

i~

o
~

0

o~

~1
~ o

~ ~

m

t.
m

b

tm
~

II

~1

~1
~

~-
 -

~

~
m

L

~ ~
~

m
L

0
"

II

o
o

Answers to problems 469

2.5 f~ = A (B + C) f z - (A + B C) (B + D + A C)
f3 - (,~ +/~)[C' + A(/5 + E)] + B[,~ + C + E(B + D)]

m

2.6 (a) f l - A B C (b) f2 - BC (c) f3 - A + C

2.8 f l ' 9 included, 7 not f 2 : 1 3 included, 3 not

fl - ms + m6 + m7 q- m9 q- ml0 if- mli -}- ml3 + m14 -f- m15

f2 - m2 -}- m3 + ms + m6 q- m7 q- ms -}- m9 if- ml0 -}- roll + m12 -k- ml3 + m14 -}- m15

f~ - BD + BC + A D + A C

f z - A + C + B D

m

2.9 f - A B + BC

2.10

The solutions to (b) and (c) are left to the reader.

2.11 A ~ 3 B @ C .

2.12

2.14 If D-passengers in doorway , P - passengers still moving, B bu t ton pressed,
then f - d o o r s c l o s e - D P B

--

--

~
~

~
~,

L~

:~

L~

i~

--

:I
"

m'

m

;
II

II

II

II

II

II

~
,
~
,

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

+
+

+
,o

"~

~
,

~
~

~
,

~
"

~
~

,~
,

~
~

,m
'~

,
~

~
~

~
~

~
'~

'
~

~
,

~
~

~

�9

~
~

,+
~

+

~
+

,,

~,

+
~

~

~
~

,+

~
+

~
,

+

~
+

+

~
~
m

m
~
,

~

R
~

~
+

+

~
,
~

+
~

~,
 C
~,

~
~,

~,

~
,
i
~
I
+
 ~

+
~
,
~
,

~
II

~
,

~'

 +

+
~,

~

~
~,

~,

+
~,

~,

~,
,~

+

~,

+
+

~,

~
'
~
C
~

+
~,

+

~'

~
'

~m
,

C~
,
~,

+

+
C~

+
+

+
~

,

~
+

+ +
~

,

+
+

+
:~

,+

~
,

:~

+
+

~

II

;~
,

+
~,

~

~
~

~
r~

+
~

~

~
+

+
+

+

~'
 r

~
:~

II
~

b~

.
-

+
+

+
:~

o

o
~

rb
,

+
~,

+

II

~,

L~
,

:~
,

+
+
+

-~
I

L/
I

~
L/
I

+
+
+

+
~r
" II

+

+

~
+

II

'm

:I

-
-

,~

+
'm

+ c~

0

Answers to problems 471

3.12

A• 0 1

0 D D

u

1 CD+CD

3.13
A'X~% 01 11 10

0 DE D+E

1 D DE DE'

3.14

A• 0 1

CD+ CD
0 C+ CDX

+ CDX

1 CD + CDX C+/~

3.15 (a) f l - - ABD + A CD + ABC

(b) f2 - CO + A B ~ + BCD

(c) f3 - A + BC + BC + CO

Chapter 4

4.1
(a) 8 I

B - D
c

,4

1

(b)

8 !

,~_________r
o

B

E"

1

472 Answers to problems

4.2

C

D

(a) (b)

4.3 (a)

4.4

(c)

(b)

,4

o �9 ~

o

A

E

(a)
,4

(b)

o

D

Answers to problems 473

4.5
D

(a) f l = A + D(BC + BC)

(b) f2 - C(A + B) + AD or f2 = A(C + D) + BC

(c) f3 = ABD + C(A + D)(B + D) or f3 = A B C + D(A + C)(B + C)

4.6
D

(a) f l - BC(A + D) + A(C + D)

(b) f2 - A(B + C) + D(A + B + C)

(c)]3 = CO + ABD + ABD

4.7 - 4 . 8 (a) f l = ABCD
(b) f2 - [AB + E F + (C + D)]GEF

(c) f3 = (:] + B)(C' + DE) + G[F + C(D + E)]

4.9
m m

(a) f~ = (A + BC)(D + A C)(B + C)

(b) f2 = (A + C + B + C)(A + C)

(c) f3 -- B(A + CD) + ABD

4.10 (a) A B C + ABC
o

(b) A B C + A B C

(c) A + BC + BC

(d) A + BC + BC

Chapter 5

5.1 (a) Do = C, Di = 1, D 2 - - C , D3 - - C

(b) D o = A , Dl = A , D 2 - A , D 3 = 1

(c) Do = 1, Dl = 0, D 2 - 1, D3 = 1

5.2 (a) Do = C + D, Dl -- CD + CD, D 2 - - C + D,

(b) D o = A + D , D I - A , D 2 = 0 , D 3 - D

(c) D o = A B , Dl = 1, D2 = A, D3 = A + B

(d) Do = O, Dl -- BC, D2 - 1, D3 - - B + C

D3 = C

5.3 (a) Level 1 4-to-1 M U X control signals D and E
Level 2 four 4-to-1 MUXs;
M U X I ' D E = 0 0 . D o - A , Dl = 1, 32 = A, D3 = A;
MUX2" DE = 01. Do = A, D~ = A, D2 = 1, D3 = 1;
M U X 3 " D E = 1 0 . D o = I , Dl = 0 , D 2 - A , D 3 - 1 ;
MUX4: D E - 11. D o - 1, Dl = O, D 2 = A , D3 - - A

474 Answers to problems

5.4

(b) Level 1 4-to-1 M U X contro l signals D and E
Level 2 four 4-to-1 M U X s ;
M U X I : D E - 00. Do = A, D1 = 0,D2 = 1, D3 -- 0;
M U X 2 : D E = 01. Do = A, D~ = A, D2 = 1, D3 = A;
M U X 3 : D E = 10. Do = A, DI - 1, D2 = 1,D3 = 1;
M U X 4 : D E = 11. Do = A, Dl = O, D2 = 1, D3 = 1

(a)

(b)

Inputs to M U X 1 , Do - A + B, Dl = A B , D2 - 0, D3 = A + B;

Inputs to M U X 2 , Do - A B , D~ = A + B, D2 - A B , D3 -- A;

Inputs to M U X 3 , Do - A + B, D! = ,4B, D2 = ,4B, D3 -- ,4 -+- B;

Inputs to M U X 4 , Do - A B + AB , Dl -- B, D2 - A B , D3 - A B

M U X 5 , E and F control signals; M U X s 1, 2, 3 and 4, B, C
and D control signals.
Inputs to M U X 1 , Do - 1, Di -- 0, D2 - 0, D3 -- A, D4 = A, D5 - A, D6 - 0,
D 7 - - 1;

_

Inputs to M U X 2 , Do - A, Dt - 1, D2 - A, D3 - A, D4 = 0, D5 - A, D6 - 0,
D7 - - A;
Inputs to M U X 3 , Do - A, Dl -- 0, D2 - 0, D3 - A, D4 - 1, D5 - ,4, D6 - A,
D7 - 1;

_

Inputs to M U X 4 , Do = A, Dl = 1, D2 - A, D3 - 0, D4 = A, D5 = 0, D6 - 0,
D 7 - A

5.5 Represent 8421 by A B C D and 5421 by P Q R S . M U X control signals A and B:

M U X I (P) D 0 - 0 , Dl = C + D , D 2 = C , D 3 - 0

M U X 2 (Q) Do - 0, Dl = CD, D2 - CD, D3 - 0

M U X 3 (R) Do - C, Dl = CD, D2 = CD, D3 - 0

M U X 4 (S) Do = D, Dl = CD, D2 = CD, D3 - - 0

5.6 The four N B C D digits are A, B, C and D, digit A the most significant. Segment
equations: a = A + C + B @ D;
b - B + C G D; c - BCf) ; d = e + B C D + BC; e - {) (B + C); f - A + t~/) + B/) +
BC; g - A + C D + (B O C).

. 7 .

3 - t o - 8
line
decoder

I T T
A B C

Po
Pt

P5
Pe
P7

P7

~3p4 ~ ~ ~
P5

Answers to problems 475

5.8

5.9

5.10

5.11

Requires one 4-to-10 line decoder generating the complement of the P terms, i.e.
Po, P1 etc. in each case. Then

(a) W = Ps"P6"PT"P8"P9, X -- P4"P6"P7"P8"P9,

Y - - P2"P3"P5"P8"P9, Z = PI.P3.P5.P7.P9,

where W is the left-most digit of the 2421 code.

(b) W - Ps'P6"PT'P8"P9, X -- PI'P2"P3"P4"P9,

Y -- Po'P3"P4"PT"P8, Z = Po'P2"P4"P6"P8,

where W is the left-most digit of the XS3 code.

(c) W = Ps"P6"PT"P8"P9, X =/30"/39,

Y - P3"P4"P5"P6, Z = P2"P3"P6"PT,

where W is the left-most digit of the XS3 Gray code.

Requires one 4-t0-16 line decoder, then f l - P2"P3"P14"P15, f2 - P12, f3 - Po'P2

andf4 = P5"P6"P8"P1]'P12"PI3"P]a'P]5.

DO

D1 ,,, . : - =
D2

~ 0

1

2
(" EN3 Z2 ~ =

3
Z3 ; =

4
Z 4 = --

5
A Z5 r =
B Z 6 ~ 6

~C Z7/.c 7 =

EN Z0 > EN0/7

/

r

8
= �9 ' EN1 Z0 ~ -"-

9
= �9 r EN2 Z l ;

10
= �9 , 0 EN3 Z2 ; - =

= 11 [Z3 ; =
! Z4 ~ 12=

A Z5 "r
B Z6 ; 14

C Z7 ; 15_

Z l ~ EN8115
D3 EN 16/23

A Z 2 ~
D4

B Z3

EN1

E.N3 , . , ~

i

[
�9 EN1 Z 0 ~ 1 _

r EN2 Z l ;- -
18

-" EN3 Z2 ; =
I Z3 ; 19=

Z 4 ; 20=
21

' A Z5 '~ - - -P -
[' 22

' B Z 6 r =
[C Z7 :: 23=

Zo !~ 24

'i EN~ z ~ 2~ EN2 Z2 ~:, 26=

E,,,:, z~ I= ~''"
z41, 2~

/ 29
A Z 5 ~ =

1 30=
e ze I~

fl - Po" P1 �9 P3 �9 P9" P12" el4

f3 = Po" P3" P8" Pll " P12" P]5

f2 -- Ps" P9" Plo" P12" P13" P]5

f4 -- P] �9 P2" P7" e8" Pll �9 P12" P14

476 Answers to problems

5.12

5.13

5.14

5.15

5.16

~ T
�9 I !

I

1

I

J [

I 1

!
I

~ P 3

Solution obtained with a Gray code allocation of the addresses:

A =/7 +~ +A +Y, B =U6U~C5 +j, +j3 +~)
c = fT[f6 +f5 +f3f4tA +A)]

C - fafsJ~f7 B = fzfafwr A = flf3fsf7

E4 - A 4 B 4 + A4B4; similarly E3, E2, and E!

Then E - E4E3EzEI
A > B = A4B4 + E4A3B3 + E4E3AzB2 + E4E3EzAIBI

A < B = A > B . E

x i~ "~ x§

x \ t~7

Answers to problems 477

5.17

X

(D x (D

oo

C h a p t e r 6

6.1

6.2

6.3

(i) a - l , b - 0 , c - 1
(iii) a - 1 ,b - 0, c - 0

(ii) a - 0 , b - 1 , c - 1

I

"o | LJ
I

I i
R'

0 I
I

']
O o

[1 1 1
!
!

[. ,

; - . .
I

I

!
, t

1
!

I

~ o |

~ o 1
!

~ o Fi !
I 0 . -0 .0 1-1 1
I

o, o

I . o
f

' ~ I n p u ~ doto of rising
~ ~ ~ ' 1 edge ~ cl~

1
I

I g

I
f

(i) Rising edge of clock pulse 1

(a) 1 ~ 0 , (b) 0 - - , 1, (c) 1-- , 1, (d) 0 - - , 0 , (e) 1 ~ 1, (f) 1--+0, (g) 0 ~ 1,
(h) 1-- , 1

Trailing edge of clock pulse 1

(a) 0 ~ 1, (b) l --+ 1, (c) l --, 0, (d)0 - - , 1, (e) l ~ 1, (f)0--~ 0, (g) l --, 1, (h) l ~ 0

(ii), (iii) and (iv) repeat as in (i) above.

478 Answers to problems

- o R R
- - - I ~*o U LI

I
J o__]

I

I

~ o , I 1
I O.o l

I

~ o_J I

R

U

..J

! " "

f - - -

f
~

/

I r .-...

6.4

Ck

D 0

0

6.5
6.6

6.7

Qt+6, _ (j 'Q + #;Q)'

For both cases

(2Y+xF)~

(X Y - I - X Y IJ"I.

1 "I
B ' i

o :
1 c]
o i

1 - -
S

0 - -
1

R
0

1
O

O--

, i
i
I !
i
i i

I
I

i

L
I
!
!

!

!
!

F
i
i
i
i

,,
!

I

i

!

i

F

Answers to prob lems 479

6.8

F

I

P
i

i

r

Q,

6.9 Each gate is a N A N D gate, so the analysis is as shown in Figure 6.10.

C h a p t e r 7

7.1

7.2

7.3

7.4

D is assumed to be the most significant bit of the counter.
TD -- A B C + A B D , T c - A B D , T8 - A , TA -- 1, SD -- A B C ,

RD -- A B D or A B C , S c - A B C D , R c - A B C , S B - A B , R 8 - A B , SA - A ,

R A - - A , J D - A B C , KD - A B , J c - A B {) , K c - A B , JB - A , K B - A , J A = 1,

KA -- 1, Dz) - B D + A D + A B C , D c - B C + A C + A B C D , DB -- A B + f i B , DA = f t .

J c - A + B, K c - A , J ~ - C, K 8 - C, JA -- B, KA -- B. Lock-in state C B A - 111.

P is the most significant bit of the counter.
J e - R S , K e - Q., JQ - [', KQ - P R S , JR -- P S , KR -- P S , ,Is -- P Q R + P R ,

K s - P R + PR.

Z t Z r+~t P Q C is assumed to be the most significant bit of the counter.
0 0 1 X P c - A + B , Q c - A B , P s - A , Q s - A , PA = O , Q A - 1.

0 1 0 X

1 0 X 1
1 1 X 0

7.5

J 2 3 4 5 6 7 e 9 I0 I I 12 13 14

S t a r t (~._._.J" [, , , , ,

o = ~ 1' L_
I

S t o p 0 , , , J' " L _

; L n _ j Ln_L L L L L L L n _
r = c o u n t e r reset

O s , o 0 o
o

480 Answers to problems

7.6 (a) f . = 5 MHz

7.7

7.8

7.9

7.10

7.11

(b) 15
_J'L (c)

B B

e l l ! c
o i l i l o

t

k" .----l~-:l~ne E"

15

.-J-I
12On|

I
L

i

16

1 - -

!

1 - -

A~_I ! F - -] I - - I I '1 ~ l _ t l f - - I f - - I i -

~ d~.._] " t. J ~ I - - - - I ~ J i,, r
c ~ j l I t V
o ~_j /.-bit down counter | r

i
Ck o__

i
o |

c j

o ~ 1 i

I

[

F-

i

C h o s e n s e q u e n c e : S o - S I - - 8 2 - 85 - S I i - 8 7 - 815 - 8 1 4 - 813 - 8 1 0 -
$4 - S~ - So.

Feedback funct ion assuming A is least significant flip-flop in register
f - B{) + A C {) + f t B C + A C D + A C D , O - A B C D , 1 - A C D , 2 = BCD,

3 - A B C {) , 4 - A C D , 5 - AB{) , 6 - A B C D , 7 - A B C , 8 - [~CD, 9 - A B C D ,

10 - A B C , 11 - A B D

Because of ambigui t ies in the shift register sequence deve loped f rom the
given b inary sequence it is necessary to design a m o d u l o - I l S R counter . The
m o d u l o - I I sequence chosen f rom the De Bruijn d i a g r a m is So - Si - $2 - $5 -

Sll -- $7 - Sl4 - SI3 - Slo - $4 - $8 - So. F e e d b a c k logic f - A C D + B C D +
A C D + A B C D where A is the least significant stage o f the shift register. O u t p u t
logic g - D + A C

(a) Se So

/ k -f7
S,l_ t - ~ ~ IS,,

n S7]S3

S~z

The so lu t ion to (b) is left to the reader.

Answers to problems 481

7.12

7.13

Feedback logic f - B ~3 C + A B + m B (A is the least significant stage of the
shift register)

P - A B C + A B C , Q - AC, R - A B + B C + A C + A B C , S - A B C + A C

7.14
I

6"k o

A ~__1 1
e ~ I i
c ~ 1 I.
o+ ! L__

Reduced sequence requires f - CD.

Chapter 8

8.1
'• $2

0 J

S~ S~
So Z :O Z : O

Sa $:~

S~ Z : O Z : O ! ISo ~ S ~

So S~
Sa Z :O Z : O XJ'L

Se So 53
S) Z:O Z : I

Examines 3-digit words to give an output Z = 1 if the last two bits of the word are l's.

8.2
A

B

B -I - -1 ---

Ck

8.3 Circuit solution depends upon state assignment.

�9 s o

, 1

482 Answers to prob lems

8.4

8.5

~A m m

KA -- ~

Z = A X

m I SA 7 A

A

D
X

- Z

AB 1oo
| L

I-

1

1 01

|
, 11

L
f

o~ ____

Q

10

Q

m

8.6

i

$2 S ~

$4 $3
~J'L. J'l.

E

B - Z
. l ' k

Answers to problems 483

8.7 Q

0 1

I --I |

0 0 1

iz=llO

o~ ,,

8.8

I _tcou. ,,r o x,.;ooll
P-OA~.Z'L PO.n..

h-oie~)po~

II [Z 3 : PO.rL

L

L_J
I0

POJ'L

484 Answers to problems

8.9

8.10

8.11

_1 o, ~| PQR
-1 000

li|
1

oe (~
010

o!1|

op|
111

oP (~
110

1
o, @
101

(a) P/ - ($435)(3o)(81)(32)(83)(36)
(b) P / - (8386810811SI3)(32S5812)(S437514)(S0)(31)(88)(89)

(

I|

o/ -i
(.

I|
/
0

10 !
(z=x)

1

,l
I I|

]-

Iz=,l|
I

, , , , , ,]-

! I|
I

o /
\)

1

1
I I| I|176

I-

1
I !|

I
I

I I|

Answers to problems 485

Chapter 9

9.1 The basic state diagram for the problem.

w m
)(1)(2 + X1X= = X2

Os,
00

xlx2 xlx2

S4

AB
01

(._)
XlX2

XlXz + XlX2 = X1

CD~,

~ Z =IIAB
lO

)(1)(2

x1x2 x1x2

ABIZ=111 !

(._)
XlX2

State diag ram

00 01 11 10

Sl 00 00 01 10 00

$4 01 O0 01 01 01

S3 11 11 11 10 11

$2 10 00 11 10 10

At+atBt+St

A t +6t = (AB + AXz + AXI+ BXIX2) t

B t.st = (X1X2 + ABX1 + ABX2) t

Z = A

A B
O0

T ,

Q
I o+1

1

-1
I I o A B Z = 1

11

486 Answers to problems

9.2 So

Io-ol
A B

O0
Ck

10

Io:11
$3

J-Ck
L

Sl

I~176
01

Ck

11

I l e 11
S2

D

Turn-on set of A = BCk

Turn-of f set of A = BCk

A t-at = [BCk + (B + Ck)A] t

Turn-on set of B = A J . C k

Turn-of f set of B = Ak ,Ck

B t ,at = [AJoCk + (A + K + Ck)B] t

9.3 x~.~2 x~x2 ,~x2

z,=o ~ _ _ : _ _ _ 4 z , ; o ~

Xl + X2 Xl + X~

Three secondary
variables are required
and to obtain a
race-free assignment
a dummy state is
also required.

9.4 so Sl - S2

m

Ck

ABC 001 011

000

lO0 101 111

_ ! I !
S5 S~ $3

9.5 ABC : 0 0 0 001 010

x,~'2 1 x2~ - i ~ : . - - , t x'- []

I01 I00 011

Basic state diagram.

9.6 Xt X2

A : O A : I

X2

O0 01 ~a IO

~o ~| ~, ~,o ~o
~, ~o ~ ~ ~

Z:O : : :

Answers to problems 487

9.7

Xl X2 00 01 11
State So So S~
Output Z - 0 Z - 1 Z - 0

X~ X2

iz', ~ ' ~ 2 ~ ~ " M z , : o I
i",:~ s'

s, ,: o x, x~ k,:x~l

Xj X2

10 11 01 00 10 00

Sl S1 $1 So So So
Z - 1 Z - 0 Z - 0 Z - 0 Z - 0 Z - 0

X~X2

0,3 Oi I~

So :

So
Z2:X2 Zl:X2

S, S, --,-"-'-,:-",~" z~.(~ ~ $2

S3 Z, : i2 Z2:~72 i

9.8

9.9

9.10

XIX2 00 01 l l 10 00 01 l l 01 l l l0 00
State So So $3 $2 SI So $3 $3 $3 $2 SI
O u t p u t Z i Z 2 10 01 00 01 00 01 00 00 00 01 00

Races (1) So ~ $3 on signal X I X 2 - critical
(2) Sl ~ $2 on signal X I X 2 - critical

$1
I I)(1)(2

ABC ~ - - / I 101

Sd2 [____~ / 1 1 0 L _ _ ~ Sd3 t ,~1X2 + Xl,e~ 2 ooo71-/
s,I I , , , , i s , 001 XlX2 I I ~- I

$dl 111

Turn-on condition for A - BC.~IX2 + B C

= CXI X2 § B C

Turn-of f condition for A - B C X I X 2

A t+~' - [C.~l.~'2 + B C + (B + C + -~1 § Xz)A]'
B t+et and C t+~t can be found in the same way.

(a) f - C D + A D + BE) + A B C + A B C + A CD + A B D + A B C

(b) f - A B + B C + B D + A CD + B C D

(a) Static 1-hazards A -- B - - C - 1 and A - 1 , B - - 1, C - 0;
Static 0-hazards B - C - 0, D - 1.

(b) Static 1-hazards A - 0, C - D -- 1 and B - - D - 0, C - 1;
Static 0-hazards A - B - C - 0.

488 Answers to problems

SO S l

A B 01 t _ O0
J t . .I-t.

10 11

- I z = l [

S3 S2

Hazard-free equations for
A t+st and B t+st

A t+st = B.~I_ + A(B + .rL)

B ~+St = A D . n . + B (A + D +_n.)

Z = A

9.12 (a) Compatible pairs
($4S5) (82S5) (SI54) ($2S3) (S!33) (3033) (3182) (3032) (SoSl)

(b) Maximal compatibles
(So51S2S3) (3285) (8134) (S4S5)

Minimum state table can be formed from Sol, $23 and $45.

Chapter lO

10.1 Assuming threshold voltage is ~ 0.5V~c"

,npu, ! I I !

NAND
Output

Point A

Point B

I I
II I I i

, I ', I
I i i I
i I I i

I I

I \ I I
i \ I I
i \ i i

--*I
I

x = 0.27gs

f
I

I

I

I

L f

I I I i I
I i I i I i I i I I I I I
t ; i t i : ~ . i i ,; ,. ,, ,, ,: ,; ,; ,,
I : I ; i : I : I ; I , I , I I
, : , ; , : , : ,I ,; , ,,
I " I " I " I " I " I " I I

il H H H U Lr

As f increases, waveform at point A
becomes more like this. Amplitude
decreases as it is governed by time avail-
able for RC charge/discharge cycle.

Waveform at B has mark/space ratio
no longer 50/50 because threshold
voltage is unlikely to be the average
voltage at point A. Eventually point B
becomes stuck at logic 0 or 1 level.

Finally, A - high, B - low.

Answers to problems 489

10.2

10.3

10.4

10.5

10.6

400 Kbyte.

783 Mbyte.

(220 - 1) -~ 120 dB.

n

;10 t
I

Shift register

~z bl bo . ~--~'-~,

' I I
)/L/

~ D Q
A

I

Final state of shift register
CIk after 4 clock pulses:

g2 91 go X

10.7

10.8

10.9

10.10

10.11

10.12

D I - D + A C + B C ; C I - C + B + A D + f t D ; B ~ - B C + A C + A B C ; A ' - B

CLK - high except for low spikes, ,,~ 0.4gs long, at each transition in X. Q - 0
for clockwise, Q - 1 for anticlockwise.

(AB). CD.

Q3 on, Q4 off.

Connect LED in series with R - 360fl between gate output and ground.

15mA.

490 Answers to problems

Chapter 11

11.1

QI

Q

T
Q I 1 ~ 0000

1, QI iooo1
1 0

L.

rl~176 G

I I ~176 ~ i (~ 1+o
Q I I olo1

!

1 Q I ! o''1

1 Q I I 'ooo

l
0 1 I 'oo1

i

,+o
X .

L 111~ I G

1
11111 I Q

L
1'~ I 0

l
11~176 1 0

!

Present state

X D C B A
0 0 0 0 0
1 0 0 0 0
0 0 0 0 1
1 0 0 0 1
0 0 0 1 0

1 0 0 1 0
0 0 0 1 1
1 0 0 1 1
0 0 1 0 0
1 0 1 0 0
0 0 1 0 1

1 0 1 0 1
0 0 1 1 0
1 0 1 1 0

Output word

D C B A
0 0 0 1
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0

0 0 1 1
0 0 1 0
0 1 0 0
0 0 0 0
0 1 0 1
0 1 1 0

0 1 1 0

1 1 1 0
0 1 1 1

Present state

X D C B A
0 0 1 1 1

1 0 1 1 1
0 1 0 0 0
1 1 0 0 0

0 1 0 0 1

1 1 0 0 1
0 1 1 0 0
1 1 1 0 0
0 1 1 0 1
1 1 1 0 1

0 1 1 1 0

1 1 1 1 0

0 1 1 1 1
1 1 1 1 1

Output word

D C B A
1 0 0 0
1 0 0 0
1 0 0 1
1 0 0 1

0 0 0 0

0 0 0 0
0 1 0 0
0 1 0 0
1 1 0 0
1 1 0 0
1 1 1 1

1 1 1 1

1 1 0 1
1 1 0 1

Answers to problems 491

DCBA
t l t J t l t l

0001
0010
0011
0100
0101
0110
0111 "
1000
1001
1010
1011
1100
1101
1110
1111 ,.

i
! T

==

1
i T

i
I I

t
D D

C 128-bit C
ROM.

B B

- - ~ I A A I - - - mi

m |

Ko

Jc 7 t - - - I "1-"

Kc

Js

Ka

Js 7 t - l -P1 -~

492 Answers to problems

D o - BD + A-CD + A C D + B C X + ABC, D c . CD + ABC + ~ ,BX + A C X + ABC'X, D B . AB + BC'X + ABD,

D A - B D + A D X + A D X + B C D X

A

B -

C - L>o_
D - t__>o_
X -

i l
i l

m

BOll

T I I I I I I I I I I I I I T

A N D
a r r a y

OR
a r r a y

D o " 7 -
. - > .

O c .-'1
~ - >

I

- - A

, B

"--C

: - D

D m -I

D A - I - - - - - - -

C~

11.2

r ~

r ~

f l = ACD + ACD + ACD
1 2 3

f2 = ACD + ABC + ACD
4 5 3

f3 = ACD + ACD + ABC
6 1 7

f4 = ACD + ACD + ABC + ABC + ACD
4 2 8 5 3

Answers to problems 493

11.3 2-out-of-5 code

E D C B A
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

EDCB
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

A

7-segment code

a b c d e f g
1 1 1 1 1 1 0
0 1 1 0 0 0 0
1 1 0 1 1 0 1
1 1 1 1 0 0 1
0 1 1 0 0 1 1
1 0 1 1 0 1 1
0 0 1 1 1 1 1
1 1 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 0 0 1 1

a b c d �9 f g fault

i i i

MUXs

a b c d �9 f g fault

11.4
0 0
3 010
4 O l0
7 040
11 0 0
16 0 1
18 0 1
19 011
20 0 1
31 0 1
36 1 0
41 1 0
43 1 0
50 1 1
51 1 1
52 1 1
55 1 1
57 1 1
63 1 1

cl o Ei F

o,,~176176176176176 lil!lilil I!1!1! 0 1 1 1 1

,,o,, lilit!lii li]!li o 1 0 0 0
0 1 0 1 0
O l 0 1 1

1 0
1 1
1 0
o 0
0 1
0 1
0 1
1 0
1 1
o 0
1 1

0 0 1 0 0 0 1
0 ~ 0 0 1 1
0 0 1 0 1
0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 1 1
0 1 1 0 0 1
0 1 1 1 0 1
1 0 0 1 0 1
1 0 0 1 1 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

CDEF
0000
0001

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

x= x3
ROM1

x,x=x3
000- , ~
001 -:
010 -:
011 -: -
100
101 - '
110
111

B ~ , ROM2 MI JX I

494 Answers to problems

11.5
Present Next State

State X=0 X= 1

A B C A B C A B C

0 0 0 0 0 0 0 0 1
0 0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1 1
1 1 1 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0

Flip-f lop excitation signals

X=0 X = l X=0 X = l X=0 X = l

J A K A J A K A J s K B J a K a J c K c J c K c

0 X 0 X 0 X 0 X 0 X 1 X
0 X 0 X 1 X 0 X X 0 X 1
0 X 0 X X 0 X 1 X 1 X 1
0 X 1 X X 1 X 0 0 X 0 X
X 1 X 0 X 1 X 0 0 X 1 X
X 0 X 1 X 1 X 1 X 0 X 1
X 0 X 1 0 X 0 X X 1 X 1
X 1 X 1 0 X 0 X 0 X 0 X

From the table
JA=XBC
KA = XB + XC + XC
Ja=R~C
Ka = AC + XC + RC
Jc = XAB + X , ~
Kc= X+ AB+,,~B

A

a J C ~r

, k

l n n l
l l n u
I I I I I I I

Ck

11.6 ROM0

r CE
--< OE

ROM1

c CE
�9 -.< OE

ROM2 ROM3
i

.---<CE
---< OE

F

r CE
.--r OE

,4[0--9
D[O--7]

Read
v

'll

3-to-8 line
decoder

A,, E2 O1
A,, E3 02

03
04

A,o So Os
sl 06 All $2

A12 07 Address ranges
ROM0 0000-03FF
ROM1 0400-07FF
ROM3 0800-0BFF
ROM4 0C00-0FFF
ROM5 1000-13FF

IROM4

OE

Answers to problems 495

Chapter 12

12.1

12.2

12.3

12.4

Binary n u m b e r - ABCD, 2's complement f o r m - PQRS,
P = A (D(B+ C + D) , Q - B (D(C + D) , R = C G D , S - D.

NBCD - ABCD, 10's complement form - PQRS,
P - A B C + ABD, Q - BC + BD + BCD, R - CD + CD, S - D.

(a) When a carry is not generated by the addition of two XS3 numbers,
correction is add 1101.

(b) When a carry is generated by the addition, correction is add 0011.

NBCD - ABCD, XS3 = PQRS, P - A + BD + BC,
Q - BD + BC + BCD, R - C Q D , S - L)

12.5

Co

i

4

4-bit
adder

1

+X4
True/ L
complement I-

qo I_

F
4

4-bit Gin
adder

4

Sum

Mode M = 0 Add

control M = 1 Subtract

+5V

_W Least significant
decade

12.6

12.7

Algorithm for duodecimal addition
0 < S <_ (11)l 0 no correction required
(11)10 < S _< (23)~ 0 add 0100

d 2421

0 0000

I 0001

2 0010

3 0011

4 0100

P
, . .

2421

1011

1100

1101

1110

1111

Q

496 Answers to problems

Algorithm
(a) 0 < S < 4 no correction required
(b) 4 < S < 8 both digits from section P, sum falls in section Q, add 0110
(c) 4 < S < 13 one digit from P and one from Q, no correction required
(d) 9 < S < 14 both digits from Q, sum falls in P, add 1010
(e) 14 < S < 18 both digits from Q, sum falls in Q, no correction required

12.8 One solution is
Yi -- SI Ai -k- SoSI Ai
Zi - So[~i + SoS1Bi

CO

A
,, , v S O

I Control 1 ~
I logic I $1
l forA p - -

4 - bit adder

IF

C01
Ic
fc

(

~B

SO r o l ~
c 1
B

~Z

C i L Oorl

r

12.9 ~ 18: I~
18'. 18' ~ I ~0

..... "i ' - " i '- ' i ' l

,
II

o
~
'
~

~
~

o
~

~
.
~

~
I
~
I

~

II

II

II

o
~

~
~

~

.
.

.
.

~

o
u

,o

o,
,

II
~

~
--

-
~"

,.

,.
~

.,

-~

0
~

,~

,.
.

~
�9

_

,t
.~

,.

~

0
~

r~

0
0

~ "
~

~
l=

l

--
II

"]

o

~
~

.-
.

c~

..
]~

~

o
:~

~

-
-
~
'
~

-

--
~

ll

oo

II

--

~-
"

o
~

II

0
~

0'
~

~
'

~
0

',~

ii
ii

@

--
.I

k
./

"'
1

i

-
~
~

o
~
~

0
~
-
-

0
"~

::~

o
-
~

o
~

~

-
o

~

'-
-~

~

-
-

0
"

0
--

-
-
o
~

II

~

~
o

O
0

~

'1

~
�9

I~

0
0

~
,

~
~

,-
~

o

1
,o

0

�9 t
i t

1
I

~
I

1
~

i~
l

-

Bibliography

Almaini, A.E., Electronic Logic Systems, Prentice-Hall, 1986
Clare, C.R., Designing Logic Systems Using State Machines, McGraw-Hill, 1973
Crowe, J. and Hayes-Gill, B., Introduction to Digital Electronics, Arnold, 1998
Daniels, J.D., Digital Design from Zero to One, Wiley, 1996
Ercegovac, M.D. and Lang, T., Digital Systems and Hardware/Firmware Algorithms,

Wiley, 1985
Fletcher, W.I., An Engineering Approach to Digital Design, Prentice-Hall, 1980
Floyd, T.L., Digital Fundamentals, 7th Ed., Prentice Hall, 2000
Garrod, S.A.R. and Borns, R.J., Digital Logic: Analysis, Application & Design,

Saunders, 1991
Green, D., Modern Logic Design, Addison-Wesley, 1986
Hill, F.J. and Petersen, G.R., Introduction to Switching Theory and Logical Design,

Wiley, 1974
Hill, F.J. and Petersen, G.R., Digital Logic and Microprocessors, Wiley, 1984
Hill, F.J. and Petersen, G.R., Hardware Organisation and Design, Wiley, 1987
Holdsworth, B., Microprocessor Engineering, Butterworth, 1987
Holdsworth, B. and Martin, G.R., Digital Systems Reference Book, Butterworth-

Heinemann, 1991
Kohavi, Z., Switching Theory and Finite Automata Theory, McGraw-Hill, 1978
Lee, S.C., Digital Circuits and Logic Design, Prentice-Hall, 1976
Lee, S.C., Modern Switching Theory and Digital Design, Prentice-Hall, 1978
Lewin, D., Design of Logic Systems, Van Nostrand Reinhold, 1986
McCluskey, E.J., Logic Design Principles, Prentice-Hall, 1986
Malvino, A.P. and Leach, D.P., Digital Principles and Applications, 4th Ed.,

McGraw-Hill, 1986
Mann, F.A., Using Functional Logic Symbols, Texas Instruments, 1987
Mano, M., Digital Principles and Applications, McGraw-Hill, 1979
Mano, M., Digital Design, Prentice-Hall, 1984
Millman, J., Microelectronics, McGraw-Hill, 1979
Monk, R., Digital Electronics." a Practical Approach, Newnes, 1998
Nelson, V.P., Nagle, H.T., Carroll, B.D. and Irwin, J.D., Digital Logic Circuit

Analysis and Design, Prentice-Hall, 1995
Peatman, J.B., Design of Digital Systems, McGraw-Hill, 1972
Peatman, J.B., Digital Hardware Design, McGraw-Hill, 1980
Roth, C.H., Fundamentals of Logic Design, 4th Ed., West, 1992
Taub, H., Digital Circuits and Microprocessors, McGraw-Hill, 1982
Tocci, R.J. and Widmer N.S., Digital Systems, Principles and Applications, 8th Ed.,

Prentice-Hall, 2001
Tokheim, R.L., Digital Principles, 3rd Ed., Schaum, 1994
Wakerly, J.F., Digital Design and Practices, Prentice-Hall, 1990

Bibliography 499

Warnes, L., Analogue and Digital Electronics, Macmillan, 1998
Wilkins, B.R., Testing Digital Circuits, Van Nostrand Reinhold, 1986
Wilkinson, B., The Essence of Digital Design, Prentice Hall, 1998
Woolvet, G.A., Transducers in Digital Systems, Peregrinus, 1977
Yarbrough, J.M., Digital Logic Applications and Design, West, 1997

Index

0s catching and Is catching, 153
10's complement, 7, 383-5
l-equivalent, 226
2421 code, 475
2-dimensional (coincident) decoding, 119-20
2-out-o~5 code, 19
2-state output, 314-16
3-state output see Tri-state buffers and gates
4-bit binary full (ripple-through) adder,

371-2
4000 series (CMOS gates), 99, 101
50% points, 100
5421 code, 139, 347-8
7 segment display, 350
74ALS see ALS
74 series, 125, 178, 202, 401
8421 code, 139
9's complement, 7, 18, 383-5, 406
74HCT, 100-2
74LS, 98, 99, 102
74LS00, 315
74LS04, 315
74LS10, 315
74LS18, 290
74LS19, 290, 325
74LS20, 315
7425, 106, 112, 115-16, 455-6
7442, 119
7449, 122, 124
7468, 135, 137, 461
7470, 460-1
7485, 134, 136-7
7486, 376-7
7487, 385-7, 389, 466
7491, 463-4
7494, 185
7495, 186
7497, 202-3
74110, 460
74138, 114-16
74139, 456-7
74147, 125-6
74148, 126-7

74150, 106
74153, 456
74154, 117-19, 121
74157, 106-7
74161, 462-3
74164, 63-4
74165, 187
74167, 202
74176, 178
74180, 130-2
74181, 373-4, 391-2
74182, 373-4, 390-1
74251, 106, 112, 115, 116, 455-6
74279, 146
74280, 131, 133
7 4 2 8 3 , 1 3 7 , 3 7 2 - 8 , 3 8 2 , 3 8 4 , 3 8 6 - 9 , 4 0 1 , 4 6 5 - 6

74284, 401-2
74285, 401-2
74290, 181-3, 462
74293, 182
74353, 106, 108, 110, 390
74381, 390-2
74382, 390, 392
74384, 405
74ALS560, 178-9
74682, 135, 137
74688, 135
74886, 135

A (address) dependency notation, 464-5
A/D converters, A-to-D converters, ADCs

see Analogue-to-digital (A/D)
converters/conversion

Absolute decoding, 335
Absolute encoders and Gray code, 306-9
Absorption/redundancy theorem,

Boolean algebra, 35, 36
Access time, 329
AC-coupled amplifier, 311
Accumulating adder, 380
Accuracy, 294
ACEs (asynchronous communications

elements), 243-4

I n d e x 501

ACIAs (asynchronous communications
interface adapters), 243-4

Actel programmable gate arrays, 361-3
Adaptive testing, 427
Adaptive tree, 427
Addends and augends, 5
Adder, accumulating, 380
Adders, 367-70
Addition and subtraction see Arithmetic

circuits and processes; Binary
addition; Binary subtraction;
Complement arithmetic

Address (A) dependency notation, 464-5
Address bus and Address pin, 329, 336
Address, base 337
Adjacencies and Adjacent cells, 49, 52, 307
Affected lines and Affecting lines, 455
Algorithm, 14
Algorithmic state machine charts

see ASM charts
Alpha-numeric displays, 318, 323
ALS, 93, 100-1
Altera erasable programmable logic

devices, 363-5
ALU/Function generators, 386-92
ALUs (arithmetic/logic units):

chips available, 390-2
design, 386-90

Analogue inputs, 295, 297, 299-302, 454
Analogue-to-digital (A/D)

converters/conversion:
analogue comparator, 295-6
basic principle, 295-6
Compact Disc (CD) audio format, 303
dual slope integrating converter, 298-9
flash converter, 296-7
integrating converters, 298-9
successive approximations, 300-2
with embedded D/A converter, 299-302

AND (G) dependency notation, 455-7
AND arrays, 339-42, 346-7, 349, 365, 431
AND gates/function:

AND-OR-INVERT, 92-3
AND-OR operation, 93-4
AND-OR-NOT operation, 92-3
basic gating function, 33
Boolean multiplication, 31-2
definition, 29
implementation using NAND, 82
implementation using NOR, 86
phantom, 316
wired AND, 316

AND/OR lattices, 363-4
ANSI, 451
Answers to problems, 467-97
Anti-fuses, 361-2
AO, 81, 106
AOI, 81, 105, 106, 122, 126, 130-1, 185
APEX devices, 364
Architectures, 355
Arithmetic circuits and processes:

arithmetic overflow, 5
arithmetic underflow, 6
arithmetic/logic unit (ALU) design, 386-90
arithmetic/logic units (ALUs)

available, 390-2
binary addition, 5, 367-8, 368-70
binary subtraction, 6, 370-1
carry look-ahead addition, 372-6
carry ripple, 5
decimal arithmetic with MSI adders, 381-5
full adders, 368-70
half adders, 367-8
overflow, 377-8
serial addition and subtraction, 378-80
signed arithmetic, 6-7, 401-3
true/complement unit, 385-6
see a lso Complement arithmetic; Division;

Floating point arithmetic;
Multiplication/multipliers

ASCII (American Standard Code for
Information Interchange), 24-6

ASM (algorithmic state machine) charts:
basic principles, 232-5
conditional output box, 233-4
hardware conversion from, 235-6
'one-hot' state assignment, 237-8

Associative law, Boolean algebra, 35, 39, 96
Asynchronous (event driven) circuits:

compatibility, concept, 264-5
compatibility pair determination, 265-7
design procedure, 248-9
hazard avoidance design, 277-9
lamp switching circuit design, 250-2
merger diagram, 267
pump problem, 256-8
race problems, 252-3
sequence detector design, 258-63
stable and unstable states, 248, 249-50
state assignment, 249, 252
state reduction, 264, 267
UARTs (universal asynchronous

receiver/transmitters), 243-4
see a lso Hazards; Counters

502 I n d e x

Asynchronous binary counters, 173-5
Asynchronous communications

elements, 243-4
Asynchronous communications

interface adapters, 243-4
Asynchronous controls (preset and clear), 152
Asynchronous inputs to clock-driven

circuits, 240-2
Asynchronous mode, 364
Asynchronous presettable counters, 178. 180
Asynchronous resettable counters, 177-8
Asynchronous sequential circuit, 248, 250
A ugends and addends, 5
Automotive engines, 305

Back-EM F, 319
Back-lit LCD, 122
Backplane bus, 242
Backward trace. 4 ! 5, 419
Bandwidth, 288. 294, 303, 323
Base, 2, 292-3, 296. 301,306,

307-12, 392
conversion from Gray code, 309-10
conversion to Gray code, 307-9

Base address, 337
Base systems, 2

base conversions, 3-5
Baud rate, 243
BCD counters, 170
BCD, 18, 122, 163, 170, 332, 367
BCD/seven segment decoders, 122, 124, 170
Bi-directional bus, 322
Binary adaptive tree, 427
Binary adder/subtractor, 97, 367, 376, 383-5
Binary addition:

accumulating adder, 380
basic principles, 5
carry look-ahead addition, 372-6
complement arithmetic addition, 376-7
full adders, 368-70
half adders, 367-8
overflow, 377-8
serial addition, 378-80

Binary coded decimal s e e NBCD
Binary counters s e e Counters
Binary division, 15-16
Binary multiplication s e e Multiplication
Binary number system, 2

binary codes for decimal digits, 18-19
decimal, octal and hexadecimal system

conversion, 3-5
Hamming distance, 19

multiplication of signed numbers, 14-15
multiplication of unsigned numbers, 13-14
NBCD (naturally binary coded

decimal), 18, 341,343, 381-5
offset binary, 10

Binary subtraction:
basic principles, 6
complement arithmetic subtraction, 376-7
full subtractor, 370-1
overflow, 377-8
serial subtraction, 378-80

Binary weighted resistor network, 293-4
Binary word, 293, 306, 326
Bipolar technology, 100
Biquinary code, 19
Bistable elements, 142-3
4-bit binary full (ripple-through) adder, 371-2
Bit line, 331
Bit slice, 388-9
Bitwise conversion. 308
Boole, George, 28
Boolean algebra, 28-42

absorption/redundancy theorem. 35. 36
AND (Boolean multiplication)

function, 31-2
associative law. 35, 39. 96
basic definitions, 28-9
Boolean difference method for

fault detection, 435-40
canonical form, 39-40, 44-5
canonical sum-of-products, 30
commutative law/commutation

theorem, 35, 39, 96
complementary functions, 29
complementation theorem, 33, 49
complete sets, 38
consensus theorem/term, 36
criteria for minimisation, 77-8
De Morgan's theorem, 37, 57, 91
derived operations, 29
distributive law, 35.39
dual of a function, 29
equivalent functions, 29
exclusive-NOR (XNOR) function, 97-8
exclusive-OR (XOR) function, 29,

38-9, 94-8
expansion theorem, Shannon, 37-8
factorisation, 35
finite induction, 37
function generators, MUXs, 107-11, 112
function simplification using K-map, 51-4
functions of two variables, 45

I n d e x 503

gate or switch implementation, 34
gating function of AND and OR gates, 33
idempotency theorem, 34-5
intersection theorem, 35
inversion function, 33-4
inversion theorem, 35
and Karnaugh maps, 49-50
literal expressions, 28
maxterms, 30
minterms, 30
NAND function, 81-5
NAND network analysis, 88-9
NOR function, 85-7
NOR network analysis, 88-9
OR (Boolean addition) function, 32-3
perfect induction verification method, 34
product terms, 35
redundancy/absorption theorem, 35, 36
Reed-Muller canonical equation, 39-40
ROM (read only memory) implementation,

331-3
set theory, 40-1
Shannon's expansion theorem, 37-8
switch-based logic, 30-1
switch implementation of AND

function, 31-2
switch implementation of OR

function, 32-3
theorems, 34-8 see also Theorems,

Boolean algebraic
truth tables, 30, 33
union theorem, 35
XNOR function, 97-8
XOR function, 29, 38-9, 94-8
see also K-map (Karnaugh map); Prime

implicants; Quine-McCluskey
function simplification

Boolean difference method for fault
detection, 435-40

Boolean operation, 91
Booth's algorithm:

basic principle, 403-4
implementation, 404-5

Borrow/borrow-in/borrow-out, 6, 370-1
Bridging faults, 422-3
BS, 451
Bus systems:

bus contention, 320-1
EIA-232, 243
GP-IB, 243-4
handshaking operations, 242-4
HP-IB, 243-4

IEEE-488, 243-4
ISA, 243
PCI bus, 243
RS-232C, 243-4
S-100, 243
V24, 243

Bus-bar, 320, 330
Byte, 327

C (control) dependency notation,
457-9, 459-61

CAD, 355, 357, 365, 451
Caldwell's merging procedure, 213
CAM, 364
Camshaft, 305
Can't happen terms, 55-6
Canonical forms, 39-40, 44-5
Canonical sum-of-products, 30
Capacitor, 292, 304, 315, 327
Carry look-ahead addition, 372-6
Carry ripple, 5
Cascade connection, 82, 86, 137, 151,

153, 183, 373, 445, 446
Cascading counters, 178, 182-3
Catcher cell, 240-1
Catching, 153
Cathode ray tube, 323
CD and CD player and CD-ROM, 323
Central processing unit CPU, 123, 125
Ceramic dielectric, 123, 125
Characteristic equation, 105, 107, 144-5
Checker, signature, 443-4
Chip count, 63, 78
Chip select access time, 329
Chip select, 315, 320, 327, 331,464
Chip-to-chip interconnection, 78
Circuit hazards see Hazards
Circuit under test, 441-4
CL, 349
CLA, 372
Class B, 314
CLB, 357, 359, 362
Clear Logic, 365
Clear to send, 243
Clear, asynchronous control of flip-flop, 152
Clk, 179, 313, 325
Clock pulse, 151-4, 163-4, 172-3
Clock signals, 163-4

clock buffering, 239
clock skew, 238-9, 365
timing constraints, 239-40
see also Sequential circuits

504 I n d e x

CMOS, 99-102, 314, 316, 357, 411-12
Code converter, 343, 348
Codes:

2-out-of-5 code, 19
ASCII, 24-6
biquinary code, 19
codeword weight, 19-20
EBCDIC, 25-6
Gray code, 23-4
Hamming code, 21-3
Petherick code, 311-12

Coincidence, 29, 97, 120, 133
Coincident decoders, 120-1
Collector dotting, 316
Collector, 314-19, 339, 401. 411,455
Collector, open see Open collector gates
Combinable term. 58
Combinational logic. 81-104

see also AND gates/functions;
Decoders; Encoders; I terative
circuits; Multiplexers (MUXs);
NAND gates/functions; NOR
gates/functions; OR
gates/functions;
Parity generation and
checking; XNOR
(exclusive-NOR); XOR
(exclusive-OR) function

Combinational multipliers, 393-4
Combinational networks:

hazard-free design, 273-5
static hazards, 270-1

Common anode and Common
cathode, 122-3

Common control blocks, 452-3
Commutative law/commutation theorem,

Boolean algebra, 35, 39, 96
Compact Disc (CD) audio and A/D

converters, 303
Compact testing techniques, 441-2
Compacter, 442-4
Comparators:

analogue, 295-6
digital, 131-5
identity comparator, 134-5

Compatibility, event driven circuits:
concept, 264
compatible class, 265
compatible state pairs determination, 265-7

Complement arithmetic, 7-13
l's (diminished radix) complement

arithmetic, 9-10, 13

l's (diminished radix) complement
representation, 7

2's (radix) complement arithmetic,
9-10, 10-12

2's (radix) complement representation,
7-9, 12-13

binary number representation, 7-9
circuits for addition/subtraction, 376-7
diminished radix complement, 8
end-about carry, 9
graphical interpretation, 12-13
self-complementation, 18
sign digits, 9
sign extension process, 8
subtraction of l's complement numbers, 13
true/complement unit, 385-6
validity considerations, 9-10

Complementary functions, 29
Complementary metal-oxide-semiconductor

see CMOS
Complementation theorem, Boolean

algebra, 33, 49
Complete decoder, I 16

ripple through counters, 173-5
Complete sets, 38
Completely specified machine and Completely

specified state table, 225, 264
Computer, 14, 16, 43, 58, I 17, 242, 243,

244, 314, 327, 328, 427, 441,448
Computer-aided design, 355, 357, 365, 451
Conditional output box, 233, 235
Configurable logic block, 357, 359-60
Configuration program, 358, 360
Connection matrix, 332, 334, 338, 366
Consensus theorem/term, Boolean algebra, 36
Contact resistance, 448
Content addressable memory, 364
Contents, 328
Continuous variable, 435-7
Control (C) dependency notation,

457-9, 459-61
Control input, 33, 159, 178, 363, 458, 460
Control line, 105-6, 142, 464
Control pulse width, 148
Controlled D latch, 147-8, 277
Controlled inverter, 96-7, 340-1,376-7, 413
Controlled latch, 148, 150, 460
Controlled SR latch, 146-7, 153, 457-8
Controller, 244
Conventional logic symbols:

AND gate, 32
D latch, 147

I n d e x 505

decoder, 117
inverter, 34
JK flip-flop, 149
MUX, 107, 108
NAND gate, 81
NOR gate, 85
OR gate, 32
parity generator/checker, 132
SR latch, 144
T flip-flop, 157
usage, 451
XNOR gate, 97
XOR gate, 94
see a l so Functional logic symbols

Conversion:
between Gray code and base 2, 307-10
between number systems, 3-5
see also Analogue-to-digital (A/D)

converters/conversion; Base systems;
Digital-to-analogue (D/A)
converters/conversion

Conversion rate, 294-5
Correlation, 444
Count sequence, 170, 172, 180, 189-90,

192-6, 200, 202
Count/load, 180
Counters:

and dependency notation, 461-3
asynchronous binary counters, 173-5
asynchronous presettable counters,

178, 180
asynchronous resettable counters, 177-8
basic design, 164-6
BCD counters, 170
cascading IC counters, 182-3
decade counter design (shift register type),

189-91
decoding asynchronous counters, 176-7
Gray code counters, 170-2, 173
integrated circuit counters, 178-82
interconnection of Johnson counters, 195-6
Johnson (twisted ring)counter, 192-6
ring counter (shift register type), 191-2
scale-of-eight, 165-6
scale-of-five up-counter, 167-9
scale-of-sixteen up/down counter, 172, 174
scale-of-two, 164-5
series/parallel connection in, 166-7
series/parallel interconnection of

Johnson counters, 195-6
shift registers as, 187-96
synchronous counter design, 170, 171

synchronous down-counters, 166
synchronous presettable counter,

178, 179
twisted ring (Johnson) counter, 192-6

CPU, 123, 125
Criteria for circuit minimisation, 77-8
Critical race, 254
CRT (Cathode ray tube), 323
Crystal oscillator, 299
CS, 320, 327-9
CTR s e e Counters
CTS (Clear to send), 243
Current-limiting resistor, 318
Cyclic code checkers, 443
Cyclic prime implicant tables, 61-3

D connector, 243
D latch, 147-8
D/A converters, D-to-A converters, DACs

s e e Digital-to-analogue (D/A)
converters/conversion

DAA, 242-4
DAT, 303
Data, 244, 327
Data acknowledge, 242
Data bus, 320-1,335-6, 412
Data hold time, 148-9, 155
Data recording, 323
Data selector, 106
Data setup time,
Data shift, 464
Data transmission, serial, using

MUX/DMUX, 115-16
Data valid, 242
Data-lockout flip-flop, 460
DAV, 242-4
DC, 311
De Bruijn diagram, 188-9
De Morgan's theorem, Boolean algebra,

37, 57, 91
Decade counters s e e Counters
Decimal adjust s e e NBCD correction
Decimal arithmetic with MSI

adders, 381-5
Decimal number system, l, 2

binary codes for decimal digits, 18-19
binary, octal and hexadecimal

system conversion, 3-5
decimal display, 1
naturally binary coded decimal

(NBCD), 18, 341,343, 381-5
self-complementation, 18

506 I n d e x

Decimal, Quine-McCluskey function
simplification, 65-7

Decimal/NBCD priority encoder, 18,
55, 119, 126

Decision box, 233-5, 261
Decoders:

as minterm generators, 121-2
basic functions, 11 6-19
coincident decoders, 120-1
coincident/2-dimensional decoding, 119-20
complete decoder, 116
decoder networks, 119-21
display decoding, 122-3
Gray code with, 117, 119
NBCD/decimal decoders, 119
tree decoding, 119-20

Decoding, absolute, 335
Decoupling capacitor, 315
Degating, 448
Delay faults, 412
Demultiplexers, 114-15

in serial data transmission, 115-16
Dependency notation:

Address (A) dependency, 464-5
AND (G) dependency, 455-7
basic concepts, 454-5
bistable elements, 459-61
Control (C) dependency, 457-9, 459-61
counters, 461-3
data-lockout flip-flop, 460
edge-triggered flip-flop, 460
Enable (EN) dependency, 456-7
Interconnection (Z) dependency, 462
JK flip-flop, 460-1
Mode (M) dependency, 463
Negate (N) dependency, 465-6
pulse-triggered flip-flop, 460
Set and Reset (SR) dependency, 457-9
transparent (controlled) latch, 460
XOR (N) dependency, 465-6
Z (Interconnection) dependency, 462
see also Functional logic symbols

Derivative, 435-6
Design:

ALUs (arithmetic/logic units), 386-90
asynchronous (event driven) circuits, 248-9
asynchronous circuits with hazard

avoidance, 277-9
clock-driven sequential circuits, 21 0-15
counters, 164-6
decade counters (shift register type), 189-91
hazard-free, 273-5

lamp switching circuit, 250-2
level sensitive scan method (LSSD), 445-6
sequence detector, 215-17, 258-63
sequential circuits, 21 0-15
sequential circuits using JK flip-flop, 221-5
synchronous counters, 165-72

Designing for testability, 447-9
DFF, 155-7, 170, 178, 184, 217, 235, 237-8,

241,379, 401
DFT, 447
Difference, 6, 11-13, 19, 58, 65, 131, 137,

144, 159, 192, 287-9, 294, 312, 330,
357, 364, 370, 384, 390, 426, 435-41

Difference voltage, 288
Differential amplifier, 287
Differential, 435
Differentiation, 436-7
Digital audio, 303, 356
Digital comparators, 131-5
Digital system, I, 20, 28, 106, 130,

142, 159, 163, 178, 238, 240,
268, 287, 288, 292, 305, 306,
310, 314, 322-3, 327, 442, 451

Digital video, 303
Digital-to-analogue (D/A)

converters/conversion, 292-5
embedded within A/D

converters, 299-302
for Compact Disc (CD) digital

audio, 303
Diminished radix (l's)complement:

addition and subtraction, 9-10, 13
representation, 7, 8

Diode, 122, 304, 305, 318-20
flywheel, 319-20

Direct clear input, 183, 185, 405, 461
Direct preset input, 461
Disable, 94, 122, 128, 150, 151, 154,

158, 176, 179, 187, 221,321,
329, 337, 347, 355, 379, 405,
412-13, 421,446, 460

Discrete component, 28, 77, 367
Display decoding, 122-3
Distance, 19
Distinguishable faults, 409, 428
Distributive law, Boolean algebra, 35, 39
DIV, 453, 461-2
Divide-by-2 circuit, 292
Dividend and Divisor, 16
Division, binary, 15-16
DMUXs see Demultiplexers
Dominating rows and columns, 61

I n d e x 507

Don't care terms:
in K-maps, 55-6
in Quine-McCluskey simplification, 64

Double latch, 446
Down-counter, 166, 205
Dropper resistor, 318
D-type edge triggered flip-flops, 154-7

in counters, 178-9
Dual of Boolean function, 29
Dual port latch, 148
Dual slope integrating converter, 298-9
Dummy state, 255-6, 258-61
Dynamic hazards, 268, 279-81
Dynamic input indicator, 154
Dynamic RAM, 327

EAB (Embedded array block), 364
EAC (End-about carry), 13, 376-7
EBCDIC (Extended Binary Coded Decimal

Interchange Code), 25-6
ECL, 100, 102, 423
Edge triggered flip-flops:

D type, 154-7
dependency notation, 460
JK type, 157

EEPROMs (Electrically Erasable
Programmable ROMs), 328

internal structure, 331
EIA-232 bus, 243
Electric motor, 305
Electromagnetic actuator, 322
Electromechanical relay, 319, 322-3
Electronic ignition system, 305
Electro-rheological components, 323
Element, 451-66
ELSI, 77
Embedded D/A converter in A/D

converter, 299-302
Emitter, 38, 100, 331
EN, 110, 454-7
Enable, 320, 454-7
Enable (EN) dependency notation, 456-7
Enable line, 105-6, 114, 320, 322,

329, 341
Enable/disable, 158
Encoder head, 310
Encoders:

absolute encoders and Gray
code, 306-9

basic principle, 303-4
circuit principles, 123-5
encoding networks, 127-9

incremental encoders, 312-14
motion sensing, 304-5
MSI encoders available, 125-7
Petherick code, 311-12
priority encoder, 125, 126
truth table for, 125, 126
use of Schmitt input gates, 314

End-about carry (EAC), 9, 13, 377
Engines, automotive, 305
EP300/EP 1800, 364
EPLD, 363
EPROMs (Erasable PROMs), 328, 329

internal structure, 331
Equality, 45, 131, 134
Equivalent functions, 29
Erasable programmable logic

device, 363
Error detection and correction:

basic principles, 20--1
error syndrome, 23
Hamming code, 21-3
iterative parity checking, 21
parity bits, 20-1
syndrome indicating error, 23

ESB (Embedded system block), 364
Essential hazards, 268, 282-3
Essential prime implicant, 52, 53
Essential test, 426
Even parity, 20-1, 129, 132-3
Event driven circuits s e e Asynchronous

(event driven) circuits
eX256, 363
Excess-3 code s e e XS3 code
Excitation equation, 218
Exclusive-NOR s e e XNOR, XOR
Exclusive-OR (XOR) function, 29,

38-9, 94-8
Expandable AND-OR, 81, 94
Expandable AND-OR-NOT, 92-4
Expansion theorem, Shannon,

Boolean algebra, 37-8
Exponent, 17
Extended Binary Coded Decimal Interchange

Code (EBCDIC), 25-6
External state, 144, 147, 151, 165, 452
External/Internal states in functional

symbols, 452
Extra-large scale integration, 77

Factorisation, Boolean algebra, 35
Fall time, 100, 165
False, 45, 119, 176, 192, 233

508 I n d e x

Fan-in:
expansion of, 91-2
maximum, 103

Fan-out, 101-2
Fault diagnosis and testing:

2-input AND gate fault test, 413-14
basic methods, 408-9
Boolean difference method, 435-40
bridging faults, 422-3
compact testing techniques, 441-2
delay faults, 412
designing for testability, 447-9
fault detection and location, 409-12
fault dictionaries, 427
fault table method, 423-8
gate sensitivity, 412-13
intermittent faults, 411
K-map assisted, 433-5
level sensitive scan design (LSSD)

method, 445-6
overheating, 412
path sensitisation, 41 4-19
pattern-sensitive faults, 412
redundancy problems, 429
scan path testing, 444-7
signal tracing, 410
signature analysis, 442-4
test pattern generation (TPG), 409
testability, designing for, 447-9
two-level detection in AND/OR

circuits, 428-32
two-level detection in OR/AND

circuits, 432-5
undetectable faults, 419-22
see also Hazards

Fault matrix, 423
Fault-free parameter, 448
Faulty signature, 444
Feedback, 150, 287-8, 347
FF, 170, 183
Field programmable gate arrays

(FPGAs), 355-7
Field-effect transistor, 99
FIFO see Shift registers
Figure of merit, 101
File directory structure, 324
Finite fields theory, Evariste Galois, 198-9
Finite induction, 37
Finite state machine, 378
Fixed point, 16-17
Flag, 123-5, 437
Flash (A/D) converters, 296-7

general minimised logic, 297
FLEX device, 364
Flip-flops:

with enable/disable, 158
l's and O's catching, 153
and registers, 159-60
asynchronous controls (preset and

clear), 152
basic principles, 142
bistable elements, 142-3
characteristic equation, 147-8, 150, 158
edge-triggered D flip-flop, 154-7
master/slave SR flip-flop, 153-4
pulse-triggered flip-flop dependency

notation, 460
T flip-flop, 157-8
toggle mode, 152, 157-8, 178-81
see also JK flip-flop; Latches

Floating gate MOSFET, 331
Floating point arithmetic, 16-17
Flywheel diode, 3 ! 9-20
Forward bias, 318-19
Forward trace, 415
Fourier analysis, 299
FPGAs (field programmable gate

arrays), 355-7
FPLA, 341-2
Fractional part, 3-4
Frequency division, 163, 175, 183, 461
Frequency, mains supply, 298-9
Full adders, 368-70
Full subtractors, 370-1
Fully-custom chip, 78, 339, 356
Function:

generators, MUXs, 107-1 l, 112
hazards, 268, 281-2

Function simplification using
K-map, 51-4

Functional logic symbols:
arithmetic circuits, 465-6
basic principles, 451-4
common control blocks, 452-3
example symbols, 454
general qualifying symbols, 451-2, 453
internal/external states, 452
inversion circles, 452
polarity indicators, 453
programmable devices, 464-5
qualifying symbols, 451-2, 453
shift registers, 463-4
see also Conventional logic symbols,

Dependency notation

I n d e x 509

Fundamental mode circuits see Asynchronous
(event driven) circuits

Fusible link, 331,356

G (AND) dependency notation, 455-7
GaA1As, 318
GaAs, 101-2
Galois, E., Galois algebra and finite

fields theory, 198-9
Gate delays, 268

see also Propagation times
Gate sensitivity, 412-13
Gate signal conventions, 91
Gated latch, 147
Gates see AND gates/functions; NAND

gates/functions; NOR gates/functions;
OR gates/functions; XNOR
(exclusive-NOR); XOR (exclusive-OR)
function

Gating function of AND and OR gates, 33
General qualifying symbols, 451-2, 453
Generation of spikes, 268-70
Glitch, 176, 178
Glue logic, 359
GP-IB, 243-4
Gray code, 23-4

and the Karnaugh map, 46-7, 308
conversion from base 2, 307-9
conversion to base 2, 309-10
Gray code counters, 170-2, 173
reflected binary form, 23
with decoders, 117, 119
with shaft and linear absolute

encoders, 306-9
Group of cells, 51-2, 56, 77
Group size, 56, 77
Guided probe, 448

Half adders, 367-8
Hall effect, 305
Hamming

code, 2 t-3
distance, 19

Handshaking, 242-4
Harmonic, 299
Hazards:

asynchronous circuit design, 277-9
in combinational networks,

270-1,273-5
detection of hazards, 275-7
dynamic hazards, 268, 279-81
essential hazards, 268, 282-3

function hazards, 268, 281-2
gate delays, 268
hazard-free design, 273-5
K-map examination, 276
spike generation, 268-70
static hazards, 268, 270-1,271-3
see also Fault diagnosis and testing

HCT, 100-2
Hewlett Packard, 442
Hexadecimal counter, 350-2
Hexadecimal number system, 2

binary, octal and decimal conversion, 3-5
Hierarchical logic design, 355
High impedance (Z) state, 178, 315, 321,

327, 329, 347, 455, 464
High-frequency performance, 448
Hold time, for latch, 148-9
HP-IB, 243-4
Hysteresis, in Schmitt trigger circuits, 287-9

I/O block, 357, 359, 361
I/O, 347
IBM, 25, 242, 445
IBM-compatible computer, 242
IC, 101, 105, 178, 181-3, 243, 288, 290,

303, 315, 323, 329, 339, 355, 356,
409, 412, 452, 454-7, 466

Idempotency theorem, Boolean algebra, 34-5
Identity comparator, 134-5
IEC, 451
IEEE Std., 451
IEEE-488 bus system, handshaking, 243-4
IFC, 244
Ignition system, 305
IIH(max), 102
III-V semiconductor, 318
IIL(max), 102
Implication table for sequential

circuits, 227-9
Incompletely specified

machine, 264-7
state table, 267

Incremental encoders, 312-14
Index mark, 312
Indistinguishable faults, 409
Induced voltage, 305
Induction, 34, 37, 309
Inductive load, 319-20
Inhibit, 320
Initialising, 443, 464
InP, 318
Input expansion of gates, 91-2

510 Index

Input variable, 32, 86, 94, 134, 250, 254, 260,
268, 281,334, 337, 341-2, 416, 425, 438

Input/output, 339
block, 357, 359, 361
module, 361

In-system programmability interface, 364
Integral part, 3
Integrated circuit, 77, 91,367

counter, 178
Integrated Logic Systems, 363
Integrating A/D converter, 298-9
Interconnection (Z) dependency notation, 462
Interconnection:

of Johnson counters, 195-6
of MUXs, 106-7, 109, 110

Interface, 18, 287, 313-14, 323, 364
card, 242-4, 313
clear, 244

Interfacing, use of Schmitt input gates. 305
Interference, 298-300

mains-borne, 298-9
Intermittent faults, 411
Internal state diagrams:

lamp switching circuit design, 250-2
sequential circuits, 211-12, 223-4

Internal/external states in functional
symbols, 452

Interrupt, 123
Intersection theorem, Boolean algebra, 35
Invalid code detector, 230-2
Inverse function, 54-5
Inversion:

bubbles/circles, 33, 452
function, 33-4
parity, 417
theorem, Boolean algebra, 35

Invert control, 363
Inverter, 34, 38, 55, 81
Inverting input, 288, 295-6, 333
lOB, 359
IOH(min) and IOL(min), 102
ISA bus, 243
ISP interface, 364
Iterative circuits, 135-8

iterative adders, 137
iterative parity checking, 21
K-map plots with, 136, 138
magnitude comparison, 135-6

JK flip-flop, 149-51
characteristic equation, 150
dependency notation, 460-1

edge-triggered, 157
in counters, 164-6, 166-7, 167-9, 177
master/slave, 151-2
sequential circuit design/analysis, 221-5

JKFF, 149-58, 232
Johnson (twisted ring)counter, 192-6
Joint test action group (JTAG), 364
Junction diode, 318

Kbyte. 117. 327. 329. 335, 366. 395.
465. 489

K-map (Karnaugh map):
2 variables, 46
3 variables, 46-7
4/5/6 variables, 47-8
and Gray codes. 46-7. 308
basic concept. 46-7
Boolean function simplification. 51--4
can't happen terms. 55-6
criteria for minimisation. 77-8
cyclic prime implicant tables. 61- 3
don't care terms. 55---6
essential prime implicants. 52, 53
for hazard investigation. 276
for iterative circuits, 136-8
full adders, 369-70
inverse function usage, 54-5
looping rules for RDMs, 76-7
maxterms on, 50-1
minterms on, 49-50
multiple output circuits, 67-70
multiple output function, tabular

methods, 70-3
never occur terms, 55-6
plotting Boolean functions on, 49-50
prime implicant table, 60, 61, 72-3
prime implicants, 52
product simplification with maxterms, 57
reduced dimension maps (RDMs), 73-7
rules summary for RDMs, 76-7
rules summary for simplification, 56
semi-cyclic prime implicant tables, 63-4
sequence detector design, 262-3
with fault detection, 433-5

KSa/s, 303

LAB (Logic array block), 363
Lamp switching circuit design, 250-2

internal state diagram, 250-2
race problems, 252-4
reduction of basic state table, 252

Large scale integration, 77-8

I n d e x 511

Latches:
and registers, 159-60
basic principles, 142
bistable elements, 142-3
characteristic equation, 144-5, 147-8,

150, 158
D latch, controlled, 147-8
for mechanical switch debouncing, 158-9
hold time, 148-9
representations for, 145
RS, 142
set-up time, 148-9
SR (set/reset) latch, 143-6, 146-7
static hazards with, 148
steering tables, 145
timing diagrams, 146
see a l so Flip-flops

LCDs (liquid crystal displays), decoders
for, 122-3

LCM (lowest common multiple), 196
Least significant bit, 14, 26, 46, 294, 307,

324, 368, 379, 394, 400, 402-3, 405
LEDs (light emitting diodes):

decoders for, 122-3
with open collector gates, 318-19

Lenz's law, 320
Level sensitive scan design (LSSD)

testing method, 445-6
Light emitting diodes see LEDs
Limit switches, 322
Line decoder, 11 4-19, 170-1, 191,

195, 335, 456-7
Linear encoders see Encoders
Linearity, 294
Liquid crystal displays 122-3
Literal expressions, 28
Load resistor, 314
Lock-in state, 196, 227
Locus, 307-8
Logic array block (LAB), 363
Logic bus, 318
Logic conventions, 91,453
Logic gate, 77-8, 81-2, 94, 98, 100-1,

108, 143, 289, 305, 312, 314, 316,
318-19, 325, 339, 355, 357, 359, 363,
390, 451,453-4

Logic of a switch, 30
Logic symbols see Functional logic symbols
Look-up table, 358, 363, 367
Looping rules for RDMs, 76-7
Lowest common multiple (LCM), 196
LS (Low power Schottky), 93

LSB (Least significant bit), 14, 26, 46, 294,
307, 379, 394, 400, 402, 403, 405

LSI (Large scale integration), 77-8
LSN (Least significant nybble), 383
LSSD (level sensitive scan design)

testing method, 445-6
LUT (look-up table), 358, 363, 367

M (mode) dependency notation, 463
Macrocell, 363-4
Magnetic disc drive, 323
Magnetic encoder, 305
Magnitude comparators, iterative, 135-6
Mains supply frequency, 298-9
Mains-borne interference, 298-9
Mantissa, 17
Map-entered variables (MEVs), 74
Mark/space ratio, 488
Mask programmed, 328, 341,356
Master flag, 123-4
Master/slave, 151-4
Master/slave JK flip-flop, 151-3,

158, 234, 459-60
MAX7000/MAX9000, 364
Maximal compatibility class, 265
Maximum length sequence (MLS),

196-200, 201
Maxterms, 30, 43-4, 50-1

simplification of products with, 57
Mcluskey, E.J. see Quine-McCluskey

function simplification
MD, 14, 398
Mealy and Moore synchronous sequential

machines, 217-21
Mechanical switch debouncing, 158-9
Medium scale integration, 77
Memory access time, 329
Memory chips see RAM, ROM
Memory fold-back, 337
Memory location, 117, 326-7, 337, 395
Memory matrix, 330, 333
Merger diagram, event driven circuits, 267
Metal bridge architecture, 363
Metal-oxide-semiconductor, 99
Metastable state, 143
Method of induction, 309
MEVs, 74
Microcomputer, 304, 310
Microphotolithography, 305
Microprocessor, 78, 320-1,327-8,

335-7
Minimal implementation, 70, 419

512 I n d e x

Minimisation, 46, 52, 70, 77-8, 81,
119, 213, 341,345

criteria for circuits, 77-8
Minterms, 30, 43-4, 45, 49-50

minterm generator decoders, 121-2
Minuends and subtrahends, 6
MLS (maximum length sequence),

196-200, 20 I
Mod-2, 19, 23, 38, 196
Mode (M) dependency notation, 463
Mode input, 33
Modulo-2 sum, 19, 94-5
Modulus, 195-6, 436
Moore and Mealy synchronous sequential

machines, 217 21
MOS and MOS technology, 99, 330
MOSFET, 327
MOST, 327
Most significant bit, 6, 16, 19, 21, 46, 223,

246, 301,307, 376, 397, 400
Most significant nybble see MSN
Motion sensing, 304-5
Motional feedback sensor, 305
Motor, 305, 312, 322-3
Motor speed, 305
MR, 14
MSB (Most significant bit), 6, 8, 10, 293~4,

296-7, 301,307, 310, 402
MSI (Medium scale integration), 77
MSN (Most significant nybble), 383
M ulti-axis, 314
Multi-bit adder, 367, 380
Multi-bit rate multipliers, 200-4
Multi-level logic design, 111, 113, 355
Multi-level multiplexing, 111--14
Multiple outputs:

circuits, 67-70
economy on PLAs, 345-6
tabular methods for functions, 70-3
using PLDs, 337-49

Multiple paths, 280
Multiplexers (MUXs):

as Boolean function generators, 107-11, 112
basic characteristics, 105-6
demultiplexers, 11 4-15
in serial data transmission, 115-16
interconnecting considerations, 106-7,

109, 110
MSI multiplexers available, 106, 107, 108
multi-level multiplexing, 111-14
residue variables and functions, 108-11
truth tables for, 111

Multiplicand, 14-15, 393-8, 400-6
Multiplication/multipliers:

basic principles, 392
Boolean multiplication, 31
Booth's algorithm, 403-5
combinational multipliers, 393-4
packages available, 401,402
ROM implemented multipliers, 394--6
shift and add multiplier, 396-401
signed arithmetic, 401--3
signed binary numbers, 14-15
unsigned binary numbers, 13-14

M UXs see M ultiplexers

N (negate)dependency notation, 465-6
n output functions, 70--1,331
NAND gates/function:

alternative representations, 90-1
basic principles, 81 2
Boolean algebraic analysis, 88-9
implementation of AND and OR, 82
input expansion, 91-2
sums-of-products implementation, 83-5
symbolic circuit analysis, 89-90

NAND logic, 82-5
NAND/NAND configuration, 83
NBCD (naturally binary coded

decimal), 18
arithmetic with MSI adders, 381--5
conversion from XS3 code with a PLA,

341,343
decoders, 119

NBCD correction, 383
NBCD invalid code detector, 337
n-cubes and distance, 19-20
NDAC, 244
Negate (N) dependency notation, 465-6
Negative feedback, 288
Negative logic, 91
Negative reconvergence, 417
Nested block definition, 356
Never occur terms, 55-6
Next state equations, 217, 224-5
No data accepted, 244
Noise immunity, 99
Noise margins, 98-9
Non-combinable term, 58
Non-critical race see Critical race
Non-essential prime implicant, 53
Non-inverting input, 287-8, 295-6
Non-maximum length sequence, 199-201
Non-volatile memory, 327

I n d e x 513

NOR gates/function:
alternative representations, 90-1
basic principles, 85-6
Boolean algebraic analysis, 88-9
implementation of AND and OR, 86
input expansion, 92
products-of-sums implementation, 86-7
sums-of-products implementation, 87-8
symbolic circuit analysis, 89-90

NOR inverter, 38
NOR logic, 86-7
Normalisation, 17
NOT, 28-9, 45, 81, 89, 92-5, 127, 388, 391
npn transistor, 315, 331
Number systems see Binary number system;

Decimal number system; Hexadecimal
number system; Octal number system

Number systems conversions, 3-5
Numerical label, 52
Numerical minterm, 52
Nybble, 26, 383

Octal number system, 2
binary, decimal and hexadecimal

conversions, 3-5
Odd parity, 20-1, 129-30, 243
OE (output enable), 327, 329-30, 337,

355, 366, 464
Offset binary representation, 10
Onboard EPROM and Onboard RAM, 364
One time programmable, 328, 340
One-dimensional addressing, 334-5
'One-hot' state assignment in ASM, 237-8
Op-amp and Operational amplifier, 288,

294-6, 298
Open collector gates:

as NOR gates, 316-17
basic principle, 31 4-16
collector dotting, 316
in totem pole circuits, 316
phantom AND gate, 316
relay driving, 319-20
wired AND, 316
with light Emitting Diodes (LEDs),

318-19
Optical scale, 304
Optical sensing, 305
OR array, 339, 341,342, 344, 349, 350
OR gates/function:

basic gating function, 33
Boolean addition, 32-3
definition, 29

implementation using NAND, 82
implementation using NOR, 86

OR/AND, 87, 271,281,432-4, 440
Oscillators, with Schmitt trigger

circuits, 290-2
OTP (One time programmable), 328, 340
2-out-of-5 code, 19
Output

consistent, 265-6
disable time, 329
enable, 327, 329, 337, 355, 464
enable time, 329
pin, 329, 339, 347, 349, 373
stage, 288, 31 4-20, 411

Overflow, addition and subtraction, 377-8
Overheating faults, 412
Overlap, 288
Oversampling, 303

P - Q, 453
Packing density, 327, 330
PAL (programmable array logic), 346-9
Parallel connection, 32, 97, 166-7
Parallel data, 184, 243-4

enable time, 329
Parallel/series connection in counters,

166-7
Parallel/series interconnection of Johnson

counters, 195-6
Parity generation and checking, 129-31,

132, 133
parity bits, 20-1, 129

Partial derivative/differential, 435-7
Partial product, 14, 394-7, 403, 405
Partitioning analysis in sequential

circuits, 226-7
Path sensitisation:

basic technique, 41 4-16
multiple path sensitisation, 418
networks with fan-out, 41 6-19

Pattern-sensitive faults, 412
PCI bus, 243
Perfect induction in Boolean algebra, 34
Peripheral, 123

device, 243-4
Petherick code, 311-12
PGAs (programmable gate arrays), 339-41
Phantom AND gate, 316
Phase, 298, 312
Phase difference, 312, 364
Phase-locked-loop, 364
Photodiode, 304-5

514 I n d e x

Phototransistor, 304
PIPO (parallel-in/parallel-out) registers, 184
PISO (parallel-in/serial-out) registers, 184
PLAs (programmable logic arrays), 341-6
Plasma display, 323
PLDs see Programmable logic devices
PLSs (programmable logic sequencers),

349-55
pn junction, 318
P-of-S and POS, 57
Polarity indicator, 453
Positive feedback, in Schmitt trigger, 287-9
Positive logic, 91,453
Positive reconvergence, 41 6-17
Postponed output, 217, 454, 460-3
Power amplifier, 314
Power dissipation, 82, 101,317-18
Power-on initialisation, 448
Power-speed products, 100-1
PP, 14
PR (Preset), 349
Precision oscillator, 291
Preset, asynchronous control of flip-flop, 152
Presettable counter, asynchronous, 178, 180
Primary address, 244
Primary

input, 135, 137
output, 135, 137
variable, 250

Prime implicant table, 59-73, 271-9, 345,
370, 426-34

Prime implicants, 52-3,
basic features, 52-3
cyclic prime implicant tables, 61-3
essential, 52, 53
prime implicant tables, 60-4, 72-3
semi-cyclic prime implicant tables, 63-4

Primitive state table, 251,253
Priority, 125-7, 232, 296
Priority encoder, 125, 126
Product line, 350
Product of maxterms, 30, 42, 44-5
Product of sums, 30, 57, 87-8, 92-3, 145, 374
Product terms in Boolean algebra, 35
Programmable input/output block, 346,

359, 361
Programmable logic block, 357
Programmable logic devices (PLDs):

Actel programmable gate arrays, 361-3
advantages and applications, 78, 337, 339
Altera erasable programmable logic

devices, 363-5

field programmable gate arrays (FPGAs),
355-7

programmable array logic (PAL), 346-9
programmable gate arrays (PGAs),

339-41
programmable logic arrays (PLAs),

341-6
programmable logic sequencers (PLSs),

349-55
programmable ROM see PROM
uncommitted logic arrays (ULAs), 339
Xilinx field programmable gate arrays,

357-61
Programmable register, 364
Programmable switch matrix, 362
PROM (Programmable ROM), 328

internal structure, 331
programmer, 328

Propagation times, 99--100
see a lso Gate delays

Pseudo-random binary sequence
generator, 198

for signature analysis, 443--4
PSM, 362
P-term, 43
Pull-up resistor, 314, 316
Pulse trigger and dependency notation, 460
Pump problem, 256-8

state diagram/state table, 258

Quadrature, 312-13
Qualifying symbols, 451-2, 453
Quartz crystal, 291
Quine-McCluskey function simplification:

criteria for minimisation, 77-8
decimal approach, 65-7
tabular method, 58-60
with "don't care" terms, 64

Quotient, 15-17

R (reset)dependency, 457-9
Race, critical and non-critical, 253-4,

285, 359
Race-free assignment, 254-60
Races:

avoidance using dummy state, 255-6
light switching problem, 252-4
race free assignments, 254-60

Racing hazards see Races; Hazards
Radices and Radix, 2

radix point, 3
see a lso base systems

I n d e x 515

Radix (2's) complement:
addition and subtraction, 9-10, 10-12
graphical interpretation, 12-13
representation, 7-9

RAM (random access memory), 327-8
refreshing, 327

Rate constant input, 200, 202
R C oscillator, 291-2
RD, 328, 331
RDMs (reduced dimension maps):

and map-entered variables (MEVs), 74
concept, 73-5
looping rules for, 76-7
plotting from truth tables, 75-6
reading RDM functions, 76

Read only memory see ROM
Read/write head, 323
Read/write memory 327-8
Reconvergent fan-out, 416-17
Reduced dimension maps see RDMs
Reduced input dependency asssignment,

231-2
Reduced state table, 211, 213, 214, 219, 220,

226-9, 249, 251-4, 259, 260, 266-7, 285
Redundancy in fault detection, 429
Redundancy/absorption theorem, Boolean

algebra, 35, 36
Redundant state, 210, 212
Reed switch, 295
Reed-Muller canonical equation, Boolean

algebra, 39-40
Re-entrant path, 307
Reflected binary, 23
Reflective LCD, 122
Refreshing, of RAM, 327-8
Registers see Shift registers
Relay driving, with open collector gates,

319-20
Remainder, 3, 15, 16, 261,460
Repetitive waveform, 289, 292
Request to send, 243
Reset (R) dependency, 457'9
Reset overrides set, 458
Resettable counter, 177-8, 182
Residue variables and functions, 108-11
Resistor:

dropper, 318
load, 314
network, binary weighted, 293-4
pull-up, 314, 316

Resolution, 24, 294-5, 303-4, 313
Restoring division process, 16

Reticle, 304-6, 312
Reverse bias, 318-19
Reverse engineering, 346
Revised state table, 214
Ring counters:

basic principle, 191-2
twisted ring/Johnson counter, 192-6

Ripple counter, 182, 205
Ripple-through adder, 371-2
Rise time, 100, 295, 317
Roll-over, 311
ROM (read only memory):

absolute decoding, 335-7
and RAM (random access memory), 327-8
basic applications and configurations,

326-8
Boolean function implementation, 331-3
clock-driven sequential circuit,

implementation, 337, 338
EEPROMs (Electrically Erasable

Programmable ROMs), 328, 331
EPROMs (Erasable PROMs), 328, 329, 331
internal addressing techniques, 334-5
internal structure, 330-1
mask programmed, 328
matrix, 330, 334-5
memory addressing, 335-7
PROMs (Programmable ROMs), 328, 331
ROM implemented multipliers, 394-6
sequential circuit, implementation,

337, 338
speed, 330
timing considerations, 329-30

Rotation sensing, 304
Routing channel, 362
RS latches, 143-6, 146-7
RS-232C bus system, handshaking, 243-4
RS-422, 243
RS-423, 243
RTS, 243
Rules:

for simplifying K-maps, 56
for simplifying RDMs, 76-7

S (set) dependency notation, 457-9
S- 100 bus, 243
s-a-fault, 411-15, 424-5, 429-49
Sa/s (Samples per second), 295
Sample-and-hold, 363
Sampling rate, 303
Scale-of- 16 up/down counter, 172, 174
Scale-of-2 counter, 164-5

516 I n d e x

Scale-of-5 up-counter, 167-9
Scale-of-8 counter, 165-6
Scan path testing technique, 444-7
Schlumberger, 298
Schmitt delay circuit, 289
Schmitt input gates, 289-92

hysteresis and positive feedback, 287-9
in encoder circuit, 314
in interface circuits, 305
in oscillators, 290-2
trigger circuits, 287-9

Schmitt inverter, 289-91,305, 313
Schmitt NAND, 290
Schottky, 93
Screen, 304
SDI, 445
SDO, 445
Secondary:

input, 135, 136
output, 135, 136
variable, 214-15. 224-5. 233. 252, 255, 261

Security fuse, 346
Selection line, 105
Self-complementation, 18
Self-correcting ring counter, 192
Self-starting:

generator, i 99
ring counter, 192

Semi-custom chip, 339
Semi-cyclic prime implicant tables, 63-4
Sensing coil, 305
Sensing of motion, 304-5
Sensitisation of paths:

basic technique, 41 4-16
dual path sensitisation. 417-18
networks with fan-out, 416-19

Sequence detector design, 258-63
K-maps, 262-3
state diagrams/state tables, 259-60

Sequence generators, shift registers as, 187-8
Sequential circuits:

algorithmic state machine (ASM)
charts, 232-8

analysis, 207-10
asynchronous inputs, 240-2
basic circuit, 207
design steps, 21 0-15
handshaking, 242-4
implication table method of

analysis, 227-9
internal state diagram, 211-12, 223-4
invalid code detection, 230-2

JK flip-flop implementations, 221-5
Mealy machine, 217-20
Moore machine, 217-21
next state equations, 217, 224-5
'one-hot' state assignment, 237-8
partitioning method of analysis, 226-7
programmable logic sequencers, 230
reduced input dependency

assignment, 231-2
ROM implementation, 337, 338
sequence detector design, 215-17
state assignment, 214, 229-32
state reduction, 212-14, 216, 224, 225-9
state tables, 212. 214
timing diagrams, 208, 210, 215-16
see also Clock signals

Serial addition and subtraction, 378-80
Serial data, !15, 243, 445, 464

input. 445
out, 445
transmission, using MUX/DMUX, 115-16

Serial signature analysers, 443
Serial subtraction,
Series, 166, 195
Series/parallel connection in counters, 166-7
Series/parallel interconnection of Johnson

counters, 195-6
Service routine, 123
Set and Reset (SR) dependency notation,

457-9
Set overrides reset, 458
Set theory and the Venn diagram, 40-1
Set union, 51
Set. 38, 40
Settling time, 295
Set-up time, for latch, 148-9
Seven-segment display, 350, 352
Shaft encoders see Encoders
Shannon's expansion theorem, Boolean

algebra, 37-8
Shift and add multiplier, 396--401
Shift pulse, 159, 160, 183, 397, 400, 405, 407
Shift register latch, 445-7
Shift registers:

4-bit 7494 shift register, 185
4-bit 7495 universal shift register, 186
8-bit 74165 parallel loading

shift register, 187
as counters and sequence

generators, 187-96
as sequence generators, 187-8
basic principles, 183-5

Index 517

De Bruijn diagram, 188-9
double/single-rail input, 184
for signature analysis, 443-4
functional logic symbols, 463-4
maximum length sequence (MLS),

196-200, 201
multi-bit rate multipliers, 200-4
parallel-in/parallel-out (PIPO), 184
parallel-in/serial-out (PISO), 184
pseudo-random binary sequence

generator, 198, 443-4
serial-in/parallel-out (SIPO), 183
serial-in/serial-out (SISO), 183
universal state diagram, 188-9
with D latches, 159-60
with XOR feedback, 196-200, 443-4

Si (Silicon), 101
Sign:

bit, 8, 10, 11, 12, 376, 377
digits, complement arithmetic, 9
extension process, 8

Signal:
conventions, 91
recovery amplifier, 311,323
tracing, 410

Signature analyser/analysis, 442-4
Signature checker, 443-4
Signed arithmetic:

basic principles, 6-7
multiplication, 401-3
sign digits, 6
sign magnitude representation, 7

Silk-screen printing, 305
Simplest form, 56, 87, 144, 163, 261,288, 392
Simplification of Boolean functions using

K-map, 51-4
Simplification, 28, 41, 51, 53, 55, 56, 58-61,

63, 65, 67, 72, 79, 109, 119, 136, 144, 150,
166, 170, 172, 194, 199, 214, 218, 225,
251-2, 260-3, 275, 278, 332, 351,381

Single-bit comparator, 134
SIPO (serial-in/parallel-out) registers, 183
SISO (serial-in/serial-out) registers, 183
Slave, in master/slave flip-flops, 151-4
Slider, 303-6, 312
Sling, 259, 260
Slow edge, 289
Small scale integration, 77
Smoothing capacitor, 315
Socket, 243, 448
S-of-P (Sum of products), 35
Software, 310, 339, 355-9, 365, 451

Solid-state switch, 298
SOP (Sum of products), 57
Spartan, 358, 359, 360, 361,362
Speed-power products, 100-1
Spike generation, 268-70
SR (set/reset) latches/flip-flops, 143-6, 146-7

SR master/slave flip-flop, 153-4
with event driven circuits, 249

SRG, 453
SRL, 445, 446
SR latch, 143-6, 146-7
SSI (Small scale integration), 77
Stabilised voltage source, 294
Stable and unstable states, 248, 249-50
Start bit, 243
State assignment:

in asynchronous circuits, 249, 252
in sequential circuits, 214, 229-32
'one-hot', in ASM, 237-8
race free, 254-6

State box, 233
State diagrams/state tables, 212, 214

and races, 253
De Bruijn diagram, 188-9
internal state diagrams, 211-12,

223-4, 250-2
lamp switching circuit, 250-2
pump problem, 257-8
sequence detector design, 259-60
shift registers, 188-9
universal, for shift registers, 188-9

State machine, 217, 230, 232, 254, 350,
378, 444-6

State reduction:
in asynchronous circuits, 264, 267
in sequential circuits, 212-14, 216,

224, 225-9
State tables see State diagrams
State, metastable, 143
Static charge, 364
Static hazards:

combinational networks, 271
controlled D latches, 148
detection, 275-7
elimination of, 271-3

Static RAM, 327, 357
Steering tables, SR latches, 145
Stepper motors, 322-3
S-term, 43
Stop bit, 243
Stored signature, 442
Stray capacitance, 315-17, 325, 362

518 I n d e x

Strobe line, 112
Stuck-at fault, 413, 415, 423, 427
Subset, 61,243, 265, 287
Subtraction and addition s e e Arithmetic

circuits and processes; Binary addition;
Binary subtraction; Complement
arithmetic

Subtractors, 370--1
Subtrahends and minuends, 6
Successive approximations A/D

converter, 300--2
Sum of

minterms, 3(71, 42, 44, 45, 51, 57,
79, 332

products, 30, 35, 39, 57, 79, 83, 85, 93,
178, 281,332, 339, 344, 363

Sum term, 43, 434
Summary of rulcs for simplifying functions:

using K-maps, 56
using RDMs, 76 7

Superimposed interference, 298
Supply rail, 82, 287, 288, 314, 316, 319, 448
Switch debouncing, 158 9
Switch implementation ot" Boolean

functions, 31-3
Symbolic axis label, 52
Symbolic circuit analysis, 89
Symbols see Conventional logic symbols,

Functional logic symbols
Synchroniser, 241 2
Synchronous:

counter design, 165 72
inputs, 147
interference, 300
mains interference, 298-9
mode, 364
presettable counter, 178, 179
sequential circuits s e e Sequential circuits

Syndrome indicating error, 23
System interconnecting bus, 321

T (toggle) flip-flop, 157-8
in counters, 178-81

Tabular method, 70
Tabular simplification, 58
Tacho generator, 312
Tachometer, 312
TDM (Time division multiplexing), 115
Test

input, 421,422, 432, 447
pattern generation (TPG), 409
point, 422, 441,442, 444, 446, 447, 448,449

routine, 426, 449
sequence, 435, 441-4

Testing, 177, 227, 265, 318, 36 l, 408-48
Testing/testability s e e Fault diagnosis and

testing
TFF and Toggle flip-flop s e e T flip-flop
Theorems, Boolean algebraic, 34-8

absorption/redundancy theorem, 35, 36
associative law, 35, 39, 96
commutative law/commutation theorern,

35, 39, 96
complementation theorem, 33, 49
consensus theorem/term, 36
De Morgan's theorem, 37, 57, 91
distributive law, 35, 39
expansion theorem, Shannon, 37--8
idempotency theorem, 34 5
intersection theorem, 35
inversion theorem, 35
redundancy/absorption theorem, 35, 36
Reed-Muller equation, 39 40
Shannon's expansion theorem, 37 8
union theorem, 35

Time delay, 96, 100, 155, 166, 239, 268,
270, 279, 333, 262, 370, 394

Time division multiplexing, ! 15
Timing constraints, clock, 239 40
Timing diagrams:

lbr sequential circuits, 208, 210, 215 16
tbr SR latch, 146

TMS27128, 329, 464, 465
TMS47256, 329, 464, 465
Toggle mode, flip-llops, 152, 157 8, 178---81
Toothed wheel, 305
Totem-pole output stages, 314-16
TPG (test pattern generation), 409
Traditional logic symbols see Conventional

logic symbols
Transistor switch, 315-16
Transistor transistor logic, 98
Transition time, 100, 317, 329
Transitivity law, 229
Transmission line, 106, 325
Transmission of serial data using

MUX/DMUX, 115-16
Transparent (controlled) latch, dependency

notation, 460
Tree decoding, 119-20
Trigger circuits, Schmitt, 287-9
Tri-state buffers and gates:

and bus contention, 320-1
applications, 320-2

I n d e x 519

basic principles, 31 4-16
giving bi-directional capability, 322
in RAM and ROM, 327
Z (high impedance) state, 321,327

Tri-state driver, 321
Tri-state output, 106, 178-9, 320, 321,346,

355, 454, 455, 464
True, 28, 34, 37, 43, 112, 175, 184, 185, 233,

320, 333, 385-9, 464, 466
True/complement unit, 385-6
Truth tables:

and Boolean algebra, 30, 33
and multiplexers, 111
and reduced dimension maps, 75-6
encoders, 125, 126

TTL (Transistor-transistor logic), 98
TTL-compatible, 323
Turn-off condition and Turn-off set, 144,

178, 252, 258, 260-1,282, 487
Turn-on condition and Turn-on set, 144,

178, 252, 258, 261,282, 487
Twisted ring (Johnson) counter, 192-6
Two-dimensional (coincident)

decoding, 119-20
Two-dimensional addressing, 334-5, 337
Two-level product-of-sums, 87, 93, 96
Two-level sum-of-products, 83-5, 93-4

UARTs (universal asynchronous
receiver/transmitters), 243-4

ULAs (uncommitted logic arrays), 339
Ultra-violet see UV EPROM

technology
Underflow, 6
Undetectable faults, 419-22
Union theorem, Boolean algebra, 35
Universal state diagram (shift registers),

188-9
Unstable states, 248, 249-50
Unused state, 167, 168, 170, 172, 189,

192, 194, 200, 204, 213, 214, 215,
221,222, 255, 260

Unweighted code, 307, 310
Up/down counter, 172
Up-counter, 166, 167, 170, 172-6, 205
UV EPROM technology, 363

V24 bus, 243
Valid data, 329, 330
Validity of Gray code, 309
Venn diagrams and set theory, 40-1

VersaRing routing channel, 358
Very large scale integration, 78
Video:

bandwidth, 323
digital, 303
signal, 303, 323

ViH(min) and ViL(max), 98-9
VLSI (Very large scale integration), 28,

78, 320, 355, 412, 447, 451
VOH(mi.) and VOL(max), 98-9
Volatile RAM, 327
Voltage:

drop, 293, 318
follower, 294
transfer characteristic, 143

Washing machine, 312
Weight, code, 19-20, 46
Weighted resistor network,

binary, 293-4
Wired AND, 316
Word, 19-21, 107, 129, 131, 137, 235, 292,

293, 296, 306, 326, 378, 383, 481
Word line, 330-5, 337
Worst case, 98, 102, 300, 318, 371,401
Worst case design, 100
WR, 328
Wrap around, 50, 56
Write, 328

X/Y, 116, 453, 457
XC3090, 359
Xilinx field programmable gate arrays,

357-61
XNOR (exclusive-NOR):

as digital comparator, 131-5
function, 94-8

XOR (exclusive-OR) gates/function, 29,
38-9, 94-8

XOR (N) dependency notation, 465-6
XOR feedback, shift registers with,

196-200, 443-4
XS3 code:

conversion to NBCD code, 341,343
invalid code detector, 350-1,353

Z (high impedance) state, 321,327
Z (interconnection) dependency

notation, 462
ZIF (Zero insertion force)

sockets, 449

	Front cover

	Table of contents

	01.pdf
	02.pdf
	03.pdf
	04.pdf
	05.pdf
	06.pdf
	07.pdf
	08.pdf
	09.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf

