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Preface to the fourth edition 

In this newly revised edition of Digital Logic Design, we have taken the opportunity to 
undertake extensive revisions of much material contained in the third edition, whilst 
retaining its comprehensive coverage of the subject. Like the previous editions, the 
current edition is intended to cover all the material that is needed in a typical 
undergraduate or Master's course on Digital Logic Systems, and also to act as a 
reference text for graduates working in this field. To this end, we have retained all 
elementary material assuming little or no background, but the advanced chapters have 
accordingly been revised to take account of recent trends in hardware availability. 
A number of additional problems have been set at the end of some of the chapters, 
sometimes without answers, in order to allow the reader to exercise his/her design 
capabilities without the luxury of being able to refer to worked solutions. 

The chapter on instrumentation and interfacing is almost entirely new, and the 
chapters on programmable logic devices, and on fault diagnosis and testing, have been 
considerably enlarged as a result, on the one hand, of significant advances in the 
technology and the range of devices now available to the designer, and on the other 
hand to emphasise that logical fault-finding methods, far from being esoteric, 
impossible to apply in practice, trivial, or demeaning for a professional engineer to 
use, are actually worthy of serious study and application. 

Material enclosed in boxes in this manner is usually not needed later in this text, 
and is not as important as the main narrative, or sometimes summarises work in the 
main text. This material may be rather more demanding than the main text, or be 
unusual or obscure in some other manner; generally speaking, proofs of results in 
these sections and subsections are not given in detail, and are left as more of a 
challenge for the interested reader to work out in full. The first-time reader, or a 
reader not aiming for complete coverage of all the material in this text, may safely 
ignore these sections and subsections. 

Throughout the main part of this edition, we have used the 'old' IEEE logic symbols 
rather than the 'new' BS3939 symbols; this is a result of a perceived shift in attitudes in 
the engineering profession, and the IEEE symbols are now recommended alongside 
the BS symbols. Modern CAD systems are capable of printing the 'old' symbols with 
ease, eliminating the major initial advantage of the 'new' symbols when first 
introduced. However, as an understanding of the 'new' symbols is also a useful 
accomplishment, a summary of the 'new' system is included as an Appendix. 
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1 Number systems and codes 

1.1 Introduction 

A digital logic system may well have a numerical computation capability as well as its 
inherent logical capability and consequently it must be able to implement the four 
basic arithmetic processes of addition, subtraction, multiplication and division. 
Human beings normally perform arithmetic operations using the decimal number 
system, but, by comparison, a digital machine is inherently binary in nature and its 
numerical calculations are executed using a binary number system, 

Since the decimal system has ten digits, a ten-state device is required to represent the 
decimal digits, one state being allocated to each of the decimal digits. Ten-state devices 
are not readily available in the electrical world, however two-state devices such as 
a transistor operating in a switching mode are, and it is for this reason that the binary 
number system is of great importance to the digital engineer. In addition to the binary 
system, a number of other systems such as the hexadecimal system are used in 
conjunction with programmable logic devices, consequently the digital engineer must 
be familiar with a variety of different number systems. 

It is also true that arithmetic processes executed by a digital machine are not 
necessarily identical to the pencil and paper methods which are normally employed 
by humans. For example the process of subtraction is carried out as an addition and 
this involves the use of complement arithmetic. 

Again, a frequent requirement is that the output of a digital machine should be a decimal 
display, for obvious reasons. Since the machine normally computes in pure binary, a way 
has to be found to represent decimal numbers in terms of binary digits and this requires 
a binary coded decimal system. Methods have to be devised so that any numerical 
computations carried out in pure binary can be converted into binary coded decimal so 
that at the interface with the outside world a decimal display or readout is available. 

Coding of information is a basic consideration in the use of a digital system. Codes 
are required for decimal numbers, the letters of the alphabet and a variety of other well 
used symbols such as =, ?, etc. We previously referred to binary coded decimal as 
a coded representation for decimal numbers. This is an example of a weighted code of 
which there are a number of examples. In addition to weighted codes there are a variety 
of other codes available, for example the XS3 code, and the choice of a suitable code is 
not arbitrary. Its properties have to be considered before selection for use. In practice 
the most widely used code is the 8-4-2-1 weighted code which is referred to as naturally 
binary coded decimal. 

The aim of this chapter is to describe the various number systems in common usage and 
to develop methods for implementing the four fundamental arithmetic operations on a 
machine. Additionally, a brief survey of some of the more common codes will be presented. 



2 Digital logic design 

1.2 Number systems 

The number system most familiar to man is the decimal system. A decimal number 
such as (473.85)1o may be expressed in the following form: 

(N)I o = 4 x 10 2 + 7 x 101 + 3 x 10 ~ + 8 x 10 -1 + 5 • 10 -2 

The number (N)lo consists of a series of decimal digits multiplied by the number 
(10)lo raised to some power that depends upon the position of the decimal digit in the 
number. The number (10)lO is termed the base or radix of the number system and is 
equal to the number of distinguishable digits in the system. For example, in the decimal 
system there are ten digits, 0 to 9 inclusive. However, the binary number system has 
a base of 2 and has only two digits 0 and 1. 

The decimal magnitude (N)lo of a number in any system can be expressed by the 
equation: 

b n -  1 (N)lo - an-l + an-2b ~-2 + . . .  aob ~ + a_lb -l  .. + a_mb -m 

where n is the number of integral digits and m the number of fractional digits. The base 
of the system is b and a is a digit in the number system whose base is b. Using this 
equation the binary number (101.11)2 is evaluated as follows: 

( N ) I  0 - 1 x 2 2 + 0 x 21 + 1 x 2 0 + 1 x 2 -l + 1 x 2 -2 

= 4.0 + 0.0 + 1.0 + 0.5 + 0.25 

= (5.75)10 

Two other number systems of some importance are the octal, or base 8 system, and 
the hexadecimal, or base 16 system. The octal system has eight digits, 0 to 7 inclusive. 
A typical octal number is (27.2)8 and its decimal value is given by 

(N)10 = 2 • 81 + 7 • 80 + 2 x 8 -l 

= 16.0 + 7.0 + 0.25 

= (23.25)10 

In the hexadecimal system there are 16 digits and since there are only ten digits 
available some additional ones have to be invented. The additional six digits are by 
convention represented by the first six letters of the alphabet, A to F inclusive, whose 
corresponding decimal values are 

(A)I 6 - (10)10 

(D)I 6 -- (13)10 

(B)I  6 - (11)10  

( E ) I  6 - (14)10  

( C ) l  6 - (12)10 
( F ) l  6 - -  (15)10 

A typical hexadecimal number (A2.C)16 has a decimal value which is given by: 

(N)I 0 = A x  1 6 1 + 2 •  16 ~ 2 1 5  16 -1 

= 160.0 + 2.0 + 0.75 

= (162.75)10 
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1.3 Conversion between number systems 

A number in any base can be divided into two parts, (a) the integral part to the 
left of the radix point, and (b) the fractional part to the right of the radix point. 
The process of conversion to another base is different for the two parts of the 
number. 

The decimal value of the integral part (Nl)lO of a base b number is given by: 

b "-1 . . .  b 1 (NI)10 -- an-1 + an-2 bn-2 -k- al + aob ~ 

Dividing both sides of the equation by the base b gives" 

[Ndlo bn_ 2 bn_ 3 .. bO ao -- an-1 a t- an-2b n-3 k- an-3 + .  al + - ~  

The result of dividing by the base is to leave the least significant digit of the number 
ao as the remainder after the first division. Subsequent repeated divisions will produce 
remainders of al, a2. . .  a,-1. As an example of the process of repeated division by the 
required base the decimal number (100)lO is converted below to its binary, octal and 
hexadecimal equivalents: 

21100  0 

2 [ 5 0 0  

2 125 1 

2 1 1 2 0  

2 [ 6 0  

2 131 
2 I 1 1 

0 

8lloo 4 
8 1 1 2 4  

8 [ _ ! 1  
0 

16 I1oo 4 T 
16 [6  6 

(100)1 o -- (1100100)2 = (144)8 = (64)16 

The decimal value of the fractional part (NF)IO of a base b number is given by: 

(Nv)lo -- a - lb  -1 + a-2 b-2 + . . .  a-m b-m 

and if both sides are multiplied by the base, then 

b ( N F ) l O -  a-1 + a-2b -1 + . . . a - m b  -(m-l)  

and, the first multiplication reveals the coefficient a-1. Subsequent multiplications will 
reveal the coefficients a - z ,  a - 3 ,  . . .  a-re. As an example of this process (0.265)1o is 
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converted to its corresponding binary, octal and hexadecimal forms below: 

.265 x 2 .265 x 8 .265 x 16 

0.530 x 2 

1.060 x 2 

0.120 x 2 

0.240 x 2 

2.120 x 8 

0.960 x 8 

7.680 x 8 

5.440 x 8 

4.240 x 16 

3.840 x 16 

D.440 x 16 

7.040 x 16 

0.480 3.520 0.640 

(0. 265)10 = (0.0100)2 (0.20753) 8 (0.43D70)16 

and the number (0.265)10 is expressed to five binary, octal and hexadecimal places 
respectively. 

Octal Binary 

0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

(a) 

Figure 1.1 

HD Binary HD Binary 

0 000 8 1000 
1 001 9 1001 
2 010 A 1010 
3 011 B 1011 
4 100 C 1100 
5 101 D 1101 
6 110 E 1110 
7 111 F 1111 

(b) 

(a) Octal/binary conversion table 
(b) Hexadecimal/binary conversion table 

(110 001 011 100) 2 

=(6  1 3 4)8 

Besides these conversions from decimal to 
binary, octal and hexadecimal, it is also 
possible to convert from both octal and 
hexadecimal to binary and vice versa. 

The octal digits from 0 to 7 inclusive can 
each be represented by three binary digits 
as shown in Figure 1.1 (a). To find the octal 
representation of a string of binary digits it 
is divided into groups of three, beginning 
from the least significant digit. The octal 
equivalent for each group of three digits 
is then written down with the aid of the 
conversion table as shown below: 

If the binary number has a fractional part then, to find the octal fractional part, divide 
the binary fractional number into groups of three beginning at the binary point and 
moving to the right. The corresponding octal equivalents for each group of three are 
then found in the conversion table. For example: 

(100 001 010 100 .010) 

=(4 1 2 4 .2) 

Octal numbers can also be converted to binary by replacing each octal digit with the 
corresponding three binary digits from the conversion table. For example: 

(4 3 2 .7) 8 

=(100 011 010 .111)2 
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Similarly, each of the sixteen hexadecimal digits can be represented by four binary 
digits as shown in Figure 1.1(b). To convert a binary number into hexadecimal, 
divide the integral digits into groups of four, beginning at the binary point and 
moving left; and divide the fractional digits into groups of four beginning at the 
binary point and moving right. Each group of four binary digits is then replaced by 
its hexadecimal equivalent from the conversion table as illustrated in the following 
example: 

(1011 1010 0011 .0010)2 

= ( B  A 3 .2)16 

For the reverse conversion, each hexadecimal digit can be replaced by the appropriate 
four binary digits from the conversion table. For example" 

(4 F �9 C 2)16 

- (0100 1111  1100 0010) 2 

1.4 Binary addition and subtraction 

Addition 

The rules for the addition of two single-bit numbers are defined by the table shown 
in Figure 1.2 and the addition of two positive 4-bit numbers using these rules is 
demonstrated in the following example" 

Augend Addend Sum Carry 

0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

Figure 1.2 Rules for the addition of two 
binary digits 

2 3 22 21 20 

Augend 1 0 1 1 

Addend 0 1 1 1 

Sum 1 0 0 1 0 

Carries 1 1 1 1 

11 

+7 

18 

where the weighting of the individual digits is shown above each pair of digits. 
It will be observed that the carry ripples through the addition from the 2 0 column to 
the 2 3 column. Carry ripple is a significant problem that has to be taken into account in 
the design of addition circuits. 

When two n-bit numbers, whose most significant digits are 1, are added to- 
gether they will generate an (n + 1)-bit sum. The additional bit generated is termed 
arithmetic overflow. In pencil and paper calculations the extra digit does not create 
a problem. However in a digital machine, prior to the addition, the augend and addend 
may be stored in separate registers and after it has been performed the sum may well be 
returned to one of these two registers. In this case an extra bit must be provided in the 
register containing the sum to store the overflow. 
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Subtraction 

The rules for subtraction are summarised in Figure 1.3 and the subtraction of two 4-bit 
positive numbers, where the subtrahend is less than the minuend, is illustrated in the 
following example: 

2 3 2 2 21 2 0 

Minuend 1 1 0 0 12 

Subtrahend 0 0 1 1 -3 

Difference 1 0 0 1 +9 
. 1 , " / "  

Borrows 1 1 

Minuend Subtrahend 

0 0 
0 1 
1 0 
1 1 

Difference Borrow 

0 0 
1 1 
1 0 
0 0 

Figure 1.3 Rules for the subtraction of two binary 
digits 

2 3 2 2 21 2 0 

If the subtrahend is greater than the 
minuend an arithmetic underflow occurs 
which results in a borrow-out at the most 
significant bit and the difference is negative 
in this case. The borrow-out can be used in 
a digital machine to set a 1-bit register and 
in doing so will indicate that the difference 
is negative. Arithmetic underflow is illus- 
trated by the following example: 

Minuend 0 0 1 1 

Subtrahend 1 1 0 0 -12 

Difference 0 1 1 1 
. , , / i , , ,  

Borrows 1 1 

-9 

Subtraction is commonly used in a digital machine that performs numerical computa- 
tions, for comparing the magnitude of two binary numbers. If arithmetic underflow 
occurs the borrow out indicates that the subtrahend is greater than the minuend. 
Otherwise the two numbers are either equal or the minuend is greater than the subtrahend. 

1.5 Signed arithmetic 

The previous section has dealt with positive numbers and only in the case where the 
subtrahend is greater than the minuend is the answer negative. It is important that 
there should be a distinction made between positive and negative numbers in 
a machine. A sign digit can be used to provide this distinction. A negative number is 
identified by a 1 that appears in the most significant bit (MSB) position whilst 
a positive number is identified by a 0 in that position, so that: 

(-23)10 = (1,0010111)2 

(-0)~0 = (1,0000000)2 

(+23)10 = (0, O010111)2 

(+O)lo = (0, 0000000)2 
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. . . .  

This is termed signed magnitude representation. The range of numbers available 
with an 8-bit signed integer is from -127  to + 127 with two possible representations 
for zero. 

Because the design of a logic circuit capable of numerical computation in signed 
magnitude representation is somewhat complex it is rarely used. In practice, numerical 
computation in a machine is performed using complement arithmetic. 

1.6 Complement arithmetic 

This is a powerful yet simple technique which minimises the hardware implemen- 
tation of signed arithmetic operations in a digital machine. In practice, when using 
complement arithmetic, the process of subtraction becomes one of addition. 

In any number system two complements are available. In the binary system they are 
(a) the 2's complement or radix complement, and (b) 1 's complement or diminished radix 
complement. For the decimal system they are: (a) the 1O's complement or radix com- 
plement and (b) the 9's complement or diminished radix complement. It is worth noting 
that the use of the l 's complement in the binary system raises certain hardware 
implementation difficulties so that signed arithmetic processes are invariably per- 
formed using 2's complement notation. 

1.7 Complement representation for binary numbers 

The 2's complement of a binary number X is defined by the equation 

IX ]2 -" 2" - X 

where [X]2 is the 2's complement representation and n is the number of binary digits 
contained in X. For X = 1010 and n = 4 the 2's complement is given by: 

IX]2 -~ 2 4 -  1010 

= 10000-  1010 

--0110 

Two other methods are available for determining the 2's complement of X. In the 
first method, all the digits are inverted and a 1 is added in the least significant place. 
For the second method, the lowest order 1 in X is sensed, and all succeeding higher 
digits are inverted. Examples of these two methods follow: 

Method 1 Method 2 

X =  1010 X = 1010 

0101 Invert / 
Invert Sense 

1 Add 

[X]2 = 0 1 1 0  [X]2 = O110 
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In the 2's complement representation a number is positive if its MSB is 0. 
Alternatively, it is negative if its MSB is 1. Examples of two 8,bit numbers in 2's 
complement form are given below" 

+(19)10 = 0,0010011 -(19)10 = 1,1101101 

S.D. Magnitude X S.D. 2's comp [X]2 

An n-bit 2's complement number can be changed into an m-bit one, where m > n, by 
adding copies of the sign digit to the left of the MSB of the n-bit number. This process 
called sign extension is illustrated in the following examples: 

n = 4  m = 8  

+7 = 0,111 = 0,0000111 

- 3  = 1,101 = 1,1111101 

The table shown in Figure 1.4 gives some of the 8-bit numbers available in 2's 
complement form with their corresponding decimal values. The range of these numbers 
is from -128 to + 127 and it will be noticed that it is not symmetrical since there is no 
2's complement number corresponding to -128. It will also be observed that zero in 
this system is regarded as positive since its sign bit is 0. 

The diminished radix complement, as in all number systems, is one less than the 
radix complement. In the binary system the l 's complement [X] l is one less than the 2's 
complement and is found by inverting all the digits in the binary number, as shown in 
the following example" 

X = 1010 

[X] l - 0101 Invert 

W e i g h t i n g ,  -27 

Value -128 
= 

0 
0 

0 
0 

' 1 
1 

1 

2 e 2 s 24 

64 32 16 
= = 

1 1 1 
1 1 1 

1 0 0 

0 0 0 
0 0 0 
1 1 1 
1 1 1 

0 0 0 
= = 

23 

8 

1 
1 

0 

~ 

o 
0 
1 
1 

0 

22 . 21 . 20 I Decimal 

4 2 1 i value 
= �9 

1 1 1 +127 
1 1 0 +128 

i 

0 0 0 +64 
i 

J = 

0 0 1 +1 
0 0 0 +0 
1 1 1 -1 
1 1 0 -2  

0 0 0 - 1 2 8  
, , �9 

Figure 1.4 Tabular representation of 8-bit 2's complement numbers 
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Weighting 2 7 2 8 2 5 2 4 2 3 2 2 2 ~ 

0 1 1 1 1 1 1 
0 1 1 1 1 1 1 

0 1 0 0 0 0 0 

2 o 

1 
0 

Dec. value 

+127 
+126 

0 +64 

0 0 0 0 0 0 0 1 +1 
0 0 0 0 0 0 0 0 +0 
1 1 1 1 1 1 1 1 -0  
1 1 1 1 1 1 1 0 -1 
1 1 1 1 1 1 0 1 -2  

1 0 0 0 0 0 0 0 -127 
, ,  

Figure 1.5 Tabular representation of 8-bit l's complement numbers 

A sign digit is added in the most significant place to distinguish between positive and 
negative numbers, 0 for a positive number and 1 for a negative number. The com- 
plement is only taken in the case of negative numbers. Examples of 8-bit numbers in 
the l's complement representation follow: 

- 7 2  - 1,0110111 +25 - 0, 0011001 

Although complementation is easily achieved in hardware, the system has the dis- 
advantage that there are both positive and negative representations of zero and in the 
cases of some numerical computations an end-about carry is generated which has to be 
added in at the least significant place. For these reasons the 2's complement represen- 
tation is generally preferred for numerical computations in a digital machine. 

The table in Figure 1.5 gives a list of some of the 8-bit numbers available in l 's 
complement form with their corresponding decimal values. The range of values is from 
- 127 to + 127. 

1.8 The validity of l ' s  and 2's complement arithmetic 

By definition [ X ] 2  - -  2 n - -  X and the subtraction Y - X where Y and X are both binary 
integers may be written as the addition of Y and the 2's complement of X. 

Hence Y - X =  Y +  [X]2 - 2 n 

where n is the number of binary digits contained in X. 
The l 's complement [X]I is always one less than the 2's complement so that 

[ X ] 2 - - [ X ] I - ~ -  1. 
To establish that [X]l is the logical inversion of X it is only necessary to show that 

X - X = O - X + X +  1 - - 2  n 

o r  

X + X +  1 --2 n 
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_ w 

Assuming X - 1010 and X - 0101 then the sum of X, X and 1 is 

1010 X 

0101 X 

1 
10000 

and the underlined digit in this sum has the significance of 2" and it has been shown 
that X + X + 1 - 2 n as required. 

1.9 Offset  binary representation 

This representation is useful in some applications, for example analogue-to-digital 
conversion and floating point arithmetic. Here the natural binary code is offset 

Decimal 
number 

+7 
+6 
+5 
+4 
+3 
+2 
+1 
0 

Offset 
binary 

1,111 
1,110 
1,101 
1,100 
1,011 
1,010 
1,001 
1,000 

Decimal 
number 

-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 

Offset 
binary 

0,111 
0,110 
0,101 
0,100 
0,011 
0,010 
0,001 
o,ooo 

Figure 1.6 Tabular representation of 4-bit offset 
binary numbers 

by shifting its origin to the most negative 
number in the range so that (0)~o occurs near 
the mid-point of the range. For positive 
numbers the sign bit is 1 and for negative 
numbers it is 0. Hence" 

(+6)10 = (1, 110)2 (-6)10 = (0, 010)2 

A tabulation for excess binary in the range 
(-8)10 to (+7)10 is given in Figure 1.6. 

In the four representations described, 
with the exception of offset binary, positive 
numbers remain unchanged when signed. 

1.10 Addit ion and subtraction of  2's complement  numbers 

Addition and subtraction in the 2's complement system are both carried out as 
additions. Subtrahends are regarded as negative numbers and are converted to their 
2's complement form. They are then added to the positive minuend. When adding 
two negative numbers they are both converted to their 2's complement form before 
addition takes place. Six possible cases are considered for the addition and subtraction 
of two 8-bit numbers where the MSB represents the sign digit and is given a negative 
weighting of 27 . 

Case 1 
< +127 
m 

Addition of two 8-bit numbers both of which are positive and whose sum is 

_27 26 

0, 0 
0, 0 

0, 1 

2 5 2 4 2 3 22 21 20 

1 0 1 1 0 0 
1 1 0 1 0 0 

1 0 0 0 0 0 

+44 
+52 

+96 

Correct positive answer 
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Case 2 
> +127. 

_27 

0, 
+ 0, 

1, 

Addition of two 8-bit numbers both of which are positive and whose sum is 

26 25 24 23 22 21 20 

1 1 0 0 0 0 1 
0 1 1 0 0 0 0 

0 0 1 0 0 0 1 

+97 
+48 

145 

This gives a negative answer which is clearly wrong, since both numbers are positive. 
The incorrect answer is obtained because the sum, 145, cannot be represented by seven 
binary digits and arithmetic overflow has occurred from the magnitude section into the 
position occupied by the sign digit. 

Case 3 Subtraction of two 8-bit numbers when the subtrahend is < the minuend. 
Subtrahend in 2's complement form. Difference found by addition. 

_27 26 25 24 23 22 21 20 

0, 1 1 0 0 0 1 1 +99 
+ 1, 1 0 1 1 1 1 1 -33  

Discard (1) 0, 1 0 0 0 0 1 0 66 

Correct positive answer, but there is a carry out from the sign bit which has to 
be discarded. If the working registers happen to be 8-bits wide the carry out is auto- 
matically lost. 

It will be observed that the numerical value of the subtrahend (-33) can be obtained 
directly from its 2's complement representation by including the negative weighting of 
the sign digit in the numerical evaluation. 

Case 4 Subtraction of two 8-bit numbers with subtrahend > minuend. Subtrahend 
in 2's complement form. Difference found by addition. 

_27 26 2 s 24 23 22 21 20 

0, 0 1 0 0 0 0 1 
+ 1, 0 0 1 1 1 0 1 

1, 0 1 1 1 1 1 0 

+33 
-99  

- 6 6  

Answer is negative and is in 2's complement form. True magnitude is found by taking 
the 2's complement of the sum as shown below. 

_27 26 25 24 23 22 21 2 o 

1, 0 1 1 1 1 1 0 
0, 1 0 0 0 0 0 1 

1 
O, 1 0 0 0 0 1 0 

Invert 
Add 

=66  

Case 5 Addition of two negative numbers where the sum > -127. Both numbers are 
expressed in 2's complement form. 

_27 

1, 
+ 1, 

Discard (1) 1, 

26 25 24 23 22 21 2 o 

1 1 0 0 0 1 1 
1 1 0 0 0 0 0 

1 0 0 0 0 1 1 

-29  
-32  

-61 
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The answer is negative. A carry is generated out of the sign bit position which has to 
be discarded. As in the previous case the magnitude is found by taking the 2's 
complement of the sum. 

Case 6 Addition of two negative numbers where the sum is < -  127. Both numbers 
are expressed in 2's complement form. 

_27 26 25 24 23 22 21 2 o 

1, 1 0 1 0 1 1 1 -41 
+ 1, 0 1 0 0 0 0 1 -95  

Discard (1) 0, 1 1 1 1 0 0 0 - 136 

The answer is positive which is clearly incorrect. The correct answer -136  cannot be 
represented by seven binary digits. Figure 1.4 shows that the maximum negative 
number that can be represented by eight binary digits is -128.  

1.11 Graphical interpretation of 2's complement representation 

The 2's complement number system can be represented by sixteen equally spaced points 
on the periphery of a circle, as shown in Figure 1.7(a). It will be observed that a decimal 
discontinuity occurs in the 2's complement scale between the points marked 0111 and 
1000 where the corresponding decimal numbers are +7 and -8 .  For the addition of two 
numbers whose sum is < 7, such as (2 + 3), the point 0010 corresponding to 2 is first fixed 
on the 2's complement scale and a clockwise rotation of three points round the periphery 
of the circle is made to the point marked 0101 corresponding to the correct sum of 5. 

It is clear that if the sum is > +7, for example (2 + 9), a clockwise rotation through 
nine points on the periphery of the circle starting at 0010 crosses the decimal discon- 
tinuity into the negative region of the scale and an incorrect answer is obtained. 

For subtraction, where the subtrahend < the minuend, for example ( 5 -  3), the 
point 0101 is fixed on the 2's complement scale and an anticlockwise rotation of three 
points gives the correct difference of 0010 corresponding to decimal 2 as illustrated in 
Figure 1.7(b). An alternative way of obtaining the same result is to make a clockwise 
rotation of (2 ~ -  X) points from the fixed position 0101 where X = 3. The final 
position reached will be 0010 on the 2's complement scale corresponding to +2. It will 
be recalled that (2  n - -  X )  has previously been defined as the 2's complement of X and it 

d d 4 4  

11C 

0000 

110( I00 

0000 . . . .  1 1 ~ 0 0 1 .  
111/2 �9 . ~ 0 0 1 0  

11 1101 i -3 , ~ . ~ 1 ) " ' ' ' - "  ])~1011 
0100 1100 -4 ,[5+116-X11 

1011~ '5 '" . ,' ~.101 
--6 " " - ' " "  6 

,,, 1001 1000 u 1000 0111 
(a) (b) 

101 01 

I U U  I 

Figure 1.7 Graphical interpretation of 2's complement arithmetic (a) Addition (b) Subtraction 
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follows that a correct answer is obtained by adding the 2's complement of the 
subtrahend to the minuend. 

1.12 Addit ion and subtract ion o f  l ' s  c o m p l e m e n t  numbers  

A difference occurs in the addition and subtraction of l 's complement numbers 
when compared with 2's complement arithmetic in two cases only, namely Case 3 
and Case 5. 

Case 3 Subtraction of two 8-bit numbers with the subtrahend < the minuend. 
Subtrahend in l 's complement form. Difference found by addition. 

_ 2  7 2 6 2 5 2 4 2 3 22 21 20 

0, 1 1 0 0 0 1 1 +99 

+ 1, 1 0 1 1 1 1 0 -33 

1 0, 1 0 0 0 0 0 1 

EAC I �9 1 

0, 1 0 0 0 0 1 0 +66 

An end-about carry (EAC) added in at the least significant place gives the correct 
answer. 

Case 5 Addition of two negative numbers whose sum > - 1 2 7 .  Both numbers 
expressed in l 's complement form. 

EAC 

_ 2  7 2 6 2 5 2 4 2 3 22 21 20 

1, 1 1 0 0 0 1 0 -29 

+ 1, 1 0 1 1 1 1 1 -32 

1 1, 1 0 0 0 0 0 1 

I " 1 

1, 1 0 0 0 0 1 0 -61 

An end-about carry is again generated and the magnitude is found by taking the l 's 
complement of the sum 1,1000010. 

Multiplicand Multiplier 

Figure 1.8 Rules for binary multiplication 

Product 1.13 Mul t ip l i ca t ion  o f  unsigned 
binary numbers  

The rules for binary multiplication are 
given in tabular form in Figure 1.8 and 
an example of the pencil and paper 
method of multiplication follows: 
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Multiplicand 1011 11 

Multiplier 1101 13 

1011 

0000 Partial 
1 0 1 1  Products 

1011 

Product 10001111 143 

It will be observed in this example that if two 4-bit unsigned numbers are multiplied 
together an 8-bit answer is generated. If an m-bit unsigned number and an n-bit 
unsigned number are multiplied together it is a general rule that the product will 
contain a maximum of (m + n) bits. 

A set of rules for the process of multiplication can be stated as follows: 

1. If the least significant bit (LSB) of the multiplier is 1 write down the multiplicand 
and shift one place left. 

2. If the LSB of the multiplier is 0 write down a number of 0s equal to the number of 
bits in the multiplicand and shift one place left. 

3. For each bit of the multiplier repeat either (1) or (2). 
4. Add all the partial products to form the final product. 

Such a set of rules is called an algorithm which the digital designer can, if required, 
implement in hardware. 

In practice, the hardware implementation of the multiplication of unsigned numbers 
differs from the pencil and paper method in one important aspect. The partial products 
are accumulated as they are generated rather than all being added together at the end. 
An example of the shift and add technique is given below: 

Multiplicand (MD) 
Multiplier (MR) 

1st Partial Product (PPI) 
MR bit M = 1, add MD 

PP2 
Shift PP2 one place right 
M = 0, MD not added. PP3 
Shift PP3 one place fight 
M = 1. Add MD 

PP4 
Shift PP4 one place right 
M = 1. Add MD 

1011 
1101 

0000 
1011 

1011 
01011 
01011 
001011 
1011 

110111 
0110111 
1011 

11 
13 

10001111 143 

1.14 Multiplication of signed binary numbers 

Multiplication in a computer must be implemented with signed arithmetic. Providing the 
multiplicand and the multiplier are both positive, the shift and add process is valid. 
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However, assuming that the multiplier or the multiplicand, or both, are negative, 
2's complement arithmetic must be employed. The introduction of the sign digits and 
the use of the 2's complement form for negative numbers introduces a number of 
complications. Correction factors are required for certain cases and the required correc- 
tion methods lead to complicated logic correction circuits. An alternative and more elegant 
method is due to A D Booth. With this scheme the procedure is the same regardless of 
signs. The method is beyond the scope of this introductory treatment of number systems 
and the reader is recommended to consult Lewin (see bibliography). 

1 . 1 5  B i n a r y  d iv i s ion  

The division process to be described here is based on a well known technique used in 
digital machines for comparing the magnitudes of two numbers relative to one 
another. The technique consists of subtracting the two numbers to be compared and 
if the minuend > the subtrahend, a carry is generated and the sign of the result is 
positive. Alternatively, if the minuend < the subtrahend, no carry is generated and the 
sign of the result is negative. Complement arithmetic is used so that the subtraction 
operation becomes an addition. This is illustrated in the following two examples which 
cover the two conditions described previously. 

Case 1 Case 2 

Minuend > Subtrahend Minuend < Subtrahend 

+6  0,110 +4  0,100 

- 4 1,100 - 6 1,010 

+ 2 10,010 - 2 1,110 

carry positive no carry negative 
generated result generated result 

The rules for division of two single bit numbers are summarised in the table shown in 
Figure 1.9. 

The division process can be regarded as one of repeated subtraction of the divisor X 
from the dividend Y. The number of times the divisor can be subtracted is the quotient 
Q and the residue after the last subtraction is the remainder R where R < X. 
The division equation may be written as: 

Y = Q X + R  

where 

R < X .  

When the divisor is to be subtracted from the dividend or a partial remainder, there are 
only two possibilities. Either it will subtract and a positive result is obtained or it will 
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Dividend 

0 
0 
1 
1 

. . . .  

Divisor Quotient 

0 Indeterminate 
1 0 
0 o= 
1 1 

. . . .  

Figure 1.9 Rules for binary division 

Remainder 

Indeterminate 
1 

Indeterminate 
0 

not subtract and a negative result is obtained. This leads to the restoring division 
process illustrated in the following example: 

Divisor = +6 = 0, 110. 2's complement of divisor = 1,010. Dividend - +39 - 
0, 100111 
Carry out Co 

0,100111 
1~010 

0 1,110111 
0,100111 
1,0011 lx 
1~010 

1 0,0111Ix 
0,1111xx 
1~010 

1 0,001 lxx 
0,011 xxx 
1~010 

0 1,101xxx 
0,011 xxx 

Subtract divisor 

- v e  answer, Co - 0, Q = 0 
Restore Dividend 
Shift left 
Subtract divisor 

+ve answer, C o -  1, Q -  1 
Shift left 
Subtract divisor 

+ve answer, C o -  1, Q -  1 
Shift left 
Subtract divisor 

- v e  answer, Co - 0, Q - 0 
2's complement o f - v e  remainder 

Q - 0,0110 R -  0,011 

The algorithm used to perform the division process can be summarised as follows: 

1. Align the most significant bits of the divisor and dividend. 
2. Add the 2's complement of the divisor to the dividend. 
3. If the most significant digit is 1 and C o -  0 the answer is negative. Restore the 

dividend, shift it left and record the quotient bit Q -- Co --0.  
4. If the most significant digit is 0 and Co - 1, the answer is positive, the subtraction is 

valid. Shift the dividend left and record the quotient bit Q = Co = 1. 
5. Repeat (2), (3), and (4) until the least significant digits of  the dividend and divisor 

are aligned. 

1.16 Floating point arithmetic 

There are two possible methods that can be used for representing binary numbers in 
a computer.  They are the fixed point and floating point systems. In practice, in a fixed 
point system, binary numbers are expressed as fractions with the radix point positioned 
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immediately right of the sign digit. For example, in a machine using 8-bit registers 
1110.0 would be represented as 

0 . 1 1 1 0 0 0 0  - 1 1 1 0  x 2 -4  

by moving the radix point four places to the left. 
Unfortunately there are problems associated with fixed point arithmetic. It has been 

shown in the section on 2's complement arithmetic that if the sum of two 8-bit numbers 
is > 127 or < - 1 2 7  an additional bit is generated and an incorrect answer is obtained. 
Assuming 8-bit registers are being used in the machine, the range of the registers has 
been exceeded. The same problem exists for the multiplication and division operations. 
If two 8-bit numbers are multiplied, one by the other, then in many cases a double- 
length product will be formed and this would require a 16-bit register. Similarly, for the 
division operations, a fractional quotient can only be formed if the divisor is greater 
than the dividend. 

To overcome the range problems experienced with fixed point representation 
a floating point system can be used. Numbers in this system are expressed in the 
following form: 

n = m •  e 

where m, the mantissa, is the fractional representation of n and e is the exponent. 
When performing a computation, a normalised form of the mantissa is used. 

Normalisation is achieved by adjusting the exponent so that the mantissa has a 1 in 
its most significant digit position. When this condition is satisfied: 

0.5 < Iml < 1 

The exponent part of the number may be represented by a number which is the 
sum of the exponent and a constant bias. The principle of a biased exponent is 
perhaps more easily understood using the decimal system. Consider the following 
two decimal numbers: 

+1492 .9187-  +.14929187 x 10 +4 

-.00034123 - -.34123000 • 10 -3 

which have been normalised. An alternative way of expressing these numbers would be 

+. 14929187 • 10 +4 - +. 14929187e + 4 

-.34123000 x 10 -3 = -.34123000e - 3 

Assuming that the bias constant to be added to the exponent is 16 and that the 
exponent part of the numbers is positioned to the left of the fractional part, the two 
numbers would have the following form" 

+. 14929187 x 10 + 4  - -  +20, 14929187 

-.34123000 x 10 -3 - - 13, 34123000 

The addition of the constant 16 to the exponent expresses in two decimal digits any 
exponent between 10 +15 and 10 -16 and consequently increases the range of numbers 
the machine can handle. 
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1 . 1 7  B i n a r y  c o d e s  for  d e c i m a l  d ig i t s  

Frequently there is a need for a decimal output even though digital machines operate 
in pure binary. As a result at the interface between a digital device and the outside 
world facilities must be provided to convert pure binary to a decimal representation. 
In practice, for example, calculators have been designed to work entirely in a decimal 
mode. In such cases decimal digits are represented by a string of binary digits referred 
to as a code. Four bits are required to represent the ten decimal digits, and since there 
are 24 combinations of four binary digits, six combinations are not used and the code is 
said to contain redundancy. 

The four binary digits can be allocated to ten decimal digits in a purely arbitrary 
manner and it is possible to generate 2.9 • 101~ four-bit codes, only a few of which 
have any practical application. The most common group of codes for representing 
decimal numbers are weighted and there are 17 of these codes. For this group of codes 
the sum of the weights must be > 9 < 15 and examples of four of them are given in the 
tabulation shown in Figure 1.10. 

Of this group the most commonly used weighted code is naturally binary coded 
decimal (NBCD) which uses the first ten combinations of the 4-bit binary count from 
0000 to 1001 inclusive. The code weighting for NBCD is 8, 4, 2, 1 and this can be used 
to find the corresponding decimal value of a given code. For example" 

1001 = 8 x 1 + 4 x 0 + 2 x 0 + 1 x 1 = (9)10 

Weighted codes having some negative weights are also available. Such a code 
is the 8, 4, - 2 , - 1  which, like the 2, 4, 2, 1 code, has the useful property of 
self-complementation. By complementing each of the bits of a given codeword, 
a new codeword is formed which represents the 9's complement of the decimal 
digit represented by the original codeword. For example, in the 8, 4, - 2 ,  - 1  code 
01 l0 represents (2)10 and, after self-complementation, 1001 represents (7)10 which 
is the 9's complement of (7)~0. Another example of a self-complementing code is 
the XS3 code. This is not a weighted code but contains combinations of natural 
binary in the range (3)10 to (12)10. The decimal value allocated to each binary 
code is defined to be 3 less than its actual value. For example, (1)10 is represented 
by 0100. 

Decimal 
digit 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

NBCD 
8,4,2,1 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 

BCD 
7,4,2,1 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
1000 
1001 
1010 

BCD BCD 
2,4,2,1 8,4,-2,-1 

0000 
0001 
0010 
0011 
0100 
1011 
1100 
1101 
1110 
1111 

0000 
0111 
0110 
0101 
0100 
1011 
1010 
1001 
1000 
1111 

Figure 1.10 Binary codes for the decimal digits 

Excess 3 
XS3 

0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
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Decimal 
digit 

Biquinary 
2-out-of 5 5043210 

0 00011 0100001 
1 00101 0100010 
2 00110 0100100 
3 01001 0101000 
4 01010 0110000 
5 011 O0 1000001 
6 10001 1000010 
7 1 O010 10001 O0 
8 101 O0 1 O01000 
9 11000 1010000 

Figure 1.11 Codes for the decimal 
digits using more than four bits 

There are some codes that use more than 4 bits to 
represent a decimal digit. Two examples of these are 
the 2-out-of-5 code and the biquinary code both of which 
are tabulated in Figure 1.11. It will be observed that each 
codeword in the 2-out-of-5 tabulation contains two l 's 
and a single error that complements one of the bits will 
generate an invalid code. The biquinary code is 
a weighted code where seven binary digits represent 
each of the decimal digits. The two most significant bits 
in each codeword, 01 and 10 indicate whether the digit 
represented is in the range (0)10 to (4)10 or (5)10 to (9)10 
respectively. Each code combination contains only two 
l's and the complementation of a single bit in a code- 
word will generate an invalid code. 

1.18 n-cubes and distance 

An n-bit string of binary digits can be visualised as being positioned at the vertex of 
what is termed an n-cube. Examples of 1, 2, and 3-cubes are illustrated in Figure 1.12. 
It will be observed from these diagrams that there is a single bit difference between the 
binary strings positioned at adjacent vertices. As the length of the string increases the 
number of vertices, 2", also increases and it becomes increasingly difficult to construct 
an n-cube for values of n > 4. 

The distance between any two vertices on an n-cube is defined as the number of 
bit positions in which the two binary strings differ. Alternatively this is called the 
Hamming distance. A pair of adjacent vertices labelled 000 and 100 are a distance of 
1 apart while the two binary strings 00101010 and 10111010 are a distance 2 apart. 
A more formal approach to the concept of distance follows: 

The modulo-2 sum of two binary digits is given in the four following equations: 

0 |  1 G 0 = I  

0 |  1 @ 1 - 0  

The mod-2 sum is zero if the 2 bits are identical and is 1 if the 2 bits are different. 
The weight of a codeword g is defined as the number of l 's contained in the word. 

For a combination of all the O's g(0) = 0, and for the corresponding combinations of 
all the l 's g(1) = k, where k is the number of bits in codeword g. 

0 I O0 01 

10 11 
(a) (b) 

100 101 

O0 

111 

010 011 
(c) 

Figure 1.12 n-Cubes for n = 1, 2, 3 (a) 1-cube (b) 2-cube (c) 3-cube 
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The distance between two codewords W 1 and WE is defined as the number of 
disagreements between them so that 

d(Wl, W2)- ~ Wig (~ W2i 

= g(Wl • W2) 

where Wli and W2i are the ith bits of the two codewords. 
For the distance between W1 and Wo where Wo is the code combination consisting 

of all the O's 

d( W~, Wo) - g( W~ ) 

and for the distance between W~ and W. where W~ is the code combination consisting 
of all the l 's 

d(W~, Wu)- k -  g(W~). 

The minimum distance of a code dm~,, is the minimum value of d(Wi, Wj) and for 
a complete code dmi,, = 1 when Wi and Wj are adjacent codewords. 

1.19 Error detection and correction 

An error occurs in a digital system because of the corruption of the data by some 
external influence such as noise. To improve the reliability of the system, methods are 
used to indicate the occurrence of an error and in some systems arrangements are made 
for both the detection and correction of errors. A single-bit error occurs when a 0 is 
converted to a 1 or vice versa. Multiple errors may also occur, but it is normally 
assumed that these are less likely to occur than single-bit errors. 

The practical way of reducing error probability in a digital system is to introduce 
a controlled amount of redundancy. The 2-out-of-5 code is a typical example of such 
a code. In all, there are 2 5 combinations of five bits of which only ten are used, the 
remaining twenty two combinations being redundant. The ten combinations used, are 
the only combinations which contain two l's and are tabulated in Figure 1.11. Any odd 
number of errors in a specified codeword will result in the received word having an 
odd number of l's. Double or quadruple errors will also be detected unless a 1 is com- 
pensated by an error in a 0, thus ensuring the received codeword still contains two l's. 

The concept of distance is crucial in the design and understanding of error detecting 
codes. All single-bit errors will be detected if there is a minimum distance of 2 between 
all possible pairs of codewords. A minimum distance of 2 can be achieved by adding 
an extra bit to the transmitted word. This additional bit is called a parity bit. 
Two different parity systems are currently in use. In an even parity system the parity 
bit to be added to the codeword is chosen so that the number of l 's in the modified 
word is even, whilst in the odd parity system the added bit is chosen so that the number 
of l 's in the modified word is odd. 

A 3-bit code is tabulated in Figure 1.13 alongside the modified codewords to 
which the even and odd parity bits have been added. It will be observed from this 
tabulation that a minimum distance of 2 is maintained between all adjacent pairs of 
modified codewords. 
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Modified Code 
Original 

Code Even Odd 
parity parity 

000 0000 0001 
001 0011 0010 
010 0101 0100 
011 0110 0111 
1 O0 1 O01 1000 
101 1010 1011 
110 1100 1101 
111 1111 1110 

Figure 1.13 Modification of  3-bit 
code by even and odd parity bits 

A 2-dimensional form of parity checking that will 
detect and correct single-bit errors is available for dealing 
with an array of words, for example, stored in memory. 
The technique is termed iterativeparity checking. An array 
formed from 4-bit words is shown in Figure 1.14(a). 
Parity bits providing even parity are attached to each 
row and column. After attachment of the parity bits, the 
array shown in Figure 1.14(b) is obtained. 

A single-bit error in this array can be both detected 
and corrected. The method allows the position in the 
array where the error has occurred to be identified and 
correction can then take place. For example, a single-bit 

xl x2 x3 x4 
0 0 1 0 

1 0 1 0 

1 0 1 1 

1 1 0 0 

(a) 
vertical check Pv 
bits 

Xl X2 X3 X4 
0 0 1 0 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

(b) 

Ph horizontal c h e c k  
bits 

1 

0 

1 

0 

0 4- check of the 
parity bits 

1 0 1 0 

1 0 1 0 

1 0 1 1 

1 1 0 0 

(~) 1 1 1 

(e) 

| 
0 

1 

0 

(9 

Figure 1.14 (a) 2-dimensional code array (b) with horizontal and vertical check bits and (c) detection of  the 
position of  a single bit error 

error occurring in the most significant bit of the first 4-bit word in the array is 
identified as an error by using boldface, then re-computing the parity checks gives 
the array shown in Figure 1.14(c). 

The error detection and correction procedure for the array consists, first, of checking 
the row parities and that reveals that there is an error in the top row of the array. 
At this point in the procedure it is not possible to determine which bit in the row is in 
error. However if a bit-by-bit XOR is taken of all the words in the array excepting the 
row in error but including the column check row the column in error is identified and 
the error corrected. 

1.20 The Hamming code 

This code provides a minimum distance of three between codewords, a necessary 
condition that must be provided in order to achieve single-bit error detection and 
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correction. For  any value of r, where r represents the number  of check bits, 2 ~ -  1 
codeword bits can be formed consisting of r check bits and k message bits where 
k = 2 ~ - 1 - r. For  r -  3, k <_ 4 so that four message bits are the maximum number 
that can be checked for r -  3. 

The bit positions in the codeword are numbered from 1 to 2 r - 1 and any position in 
the codeword whose number is a power of 2 contains a parity bit. For  a 7-bit codeword 
the parity bits occupy positions 1, 2 and 4 so that the format of the transmitted 
codeword is" 

bit position 7, 6, 5, 4, 3, 2, 1 

C -- k4k3k2r3k l r2 r l  

The bit positions occupied by the parity bits 4, 2 and 1 when converted to binary are 
100, 010 and 001. Each of these conversions contains a single 1 and are grouped with 
message bits k4k3kEkl whose numbers contain a 1 in the same bit position. For example, 
rl in bit position 001 is grouped with message bits that occupy the bit positions 011 (3), 
l01 (5) and 111(7). It is then arranged that for a given combination of message bits the 
parity bit is allocated so that even parity is achieved. 

The value of parity bit rl is given by XORing the message bits in bit positions 7, 5 
and 3. Hence: 

rl = k 4 ~ k 2 ~ k l  

The value of parity bit r2 is obtained by XORing the message bits in positions 7, 6 and 
3 so that 

r2 = k4 �9 k3 ~)kl 

Finally r 3 is obtained by XORing the message bits in bit positions 7, 6 and 5 

r3 = k 2 0 k 3 0 k 4  

Consider, as an example of the use of the Hamming code, the message bits 
k4kakEkl  - 1101. For  this message the parity check bits to be transmitted with the 
message bits are: 

rls = 1 G 0 @  1 = 0  

r 2 s = l ~ l ~ l = l  

r 3 s -  1 G 1 G 0 = 0  

and the transmitted codeword is 

k4k3k2r3kl  r2rl - 11 O0110 

Assuming that the message bit k~ is in error when the codeword is received, then at the 
receiving end 

k4k3k2r3kl  r2rl -- 1100010 
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Re-computing the parity at the receiving end gives 

r l r - -  1 @ 0 @ 0 =  1 

r2r-- 1 @ 1 @ 0 - 0  

r3r = 1 @ 1 @ 0 -  0 

The position of the error can be obtained by XORing the transmitted and received 
parity bits: 

rls �9 r l r  - -  0 ~) 1 -- 1 ) 

r2s �9 r2r - -  1 @ 0 - 1 / syndrome indicating error 

r3r O r3r -- 0 0 0 -- 0 

The syndrome S = 011 and indicates there is an error in the third bit position. 

1.21 Gray code 

A Gray code is one in which only one digit changes as a transition is made from one 
code combination to the next in the sequence. In terms of distance, a Gray code is a 
unit distance code. One particular form of Gray code is called ref lected binary, which 
can be constructed using the following technique. The two binary digits 0 and 1 are 
reflected about a horizontal line and the digits above the line are prefixed by 0 and 
below the line by 1 as shown below: 

0 0 
0 1 

i 

1 1 
1 0 

It will be observed that in this tabulation of four 2-bit codes adjacent combinations 
differ in one digit place only. This process can now be extended by reflecting the four 

2-bit combinations placed below the combination 10 and 

Reflected 
binary 

000 
001 
011 
010 
110 
111 
101 
100 

Natural 
binary 

000 
001 
010 
011 
100 
101 
110 
111 

Figure 1.15 Tabulation of 
3-bit natural binary and 3-bit 
reflected binary 

then proceeding as described previously. The eight 3-bit 
combinations generated are tabulated in Figure 1.15 along- 
side the eight 3-bit combinations of the binary number 
system. An alternative method of translating from the binary 
number system to the Gray code tabulated in Figure 1.15 
is to use the expression: 

gi --  bi G bi+l 

where the ith Gray code digit is found by taking the mod-2 sum 
of the ith and (i + 1)th digit of the binary number. Thus the Gray 
code corresponding to 110 in binary is generated as follows: 

g o = b o G b l  = 0 0 1  = 1 

g l = b l @ b 2 = l @ l = O  

g2 - -  b2 E ) b 3  - b2 = 1 

b3 assumed to be 0 
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Figure 1.16 (a) Natural binary coded disc (b) Gray coded disc 

When a transition is being made from 001 to 010 in natural binary, two digits should 
change simultaneously. If the two changes do not coincide, then transient states of 011 or 
000 may occur. This generation of transient states is of significance in the design of angular 
digital encoders which are used to measure the angular position of a rotating shaft. 

The encoder disc shown in Figure 1.16(a) has an arrangement of metallic areas 
placed on a non-conducting base. All the metallic areas are electrically interconnected 
and are supplied through a fixed brush in contact with a continuous metallic ring which 
rotates with the shaft. Three other brushes are positioned radially in fixed positions 
relative to the axis of the rotating shaft. As the disc rotates, the brushes are connected to 
the supply voltage whenever they are in contact with the metallic part of the disc. 

Mechanical assembly is not perfect, and the two right-hand brushes, because of this 
imperfection, may simultaneously be in contact with metallic regions as the transition 
from 001 to 010 is made, thus generating the transient output 011. The solution to this 
problem is to employ Gray code encoding on the disc, as illustrated in Figure 1.16(b), 
so that at any boundary on the disc, contact with one brush only is changing. 

A single disc with 10 tracks employing a 10-bit Gray code will give a resolution of 1 in 
1024. One disadvantage of this type of mechanical encoding is associated with brush wear 
and mechanical vibration which can break contact between the brush and rotating disc. 

1.22 The A S C I I  code 

Codes are not only used to represent numerical data but can also represent non- 
numeric data such as the alphabet. The most common alphanumeric code in present 
use is the American Standard Code for Information Interchange (ASCII). This code has 
been adopted by the computing fraternity as the basis for a standard alphanumeric 
code. It is a 7-bit code which provides 128 different characters, including upper-case 
alphabet, lower-case alphabet, decimal digits, punctuation symbols, and control characters. 
An eighth parity bit can also be used with the code to provide protection against 
errors. Information other than data is carried by the control characters. For example 
STX (start of text) and ETX (end of text) are used to define the limits of a block of data 
and EOT defines the end of transmission. The code is tabulated in Figure 1.17(a) where 
the more compact form of the hexadecimal code has been used. Control characters are 
listed in Figure 1.17(b). 
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Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII 

00 NUL 10 DLE 20 SP 30 0 40 @ 50 P 60 " 70 p 
01 SOH 11 DC 1 21 t 31 1 41 A 51 Q 61 a 71 q 

02 STX 12 DC 2 22 " 32 2 42 B 52 R 62 b 72 r 

03 ETX 13 DC 3 23 s 33 3 43 C 53 S 63 c 73 s 

04 EOT 14 DC 4 24 $ 34 4 44 D 54 T 64 d 74 t 
05 ENQ 15 NAK 25 % 35 5 45 E 55 U 65 �9 75 u 

06 ACK 16 SYN 26 & 36 6 46 F 56 V 66 f 76 v 

07 BEL 17 ETB 27 " 37 7 47 G 57 W 67 g 77 w 

08 BS 18 CAN 28 ( 38 8 48 H 58 X 68 h 78 x 

09 HT 19 EM 29 ) 39 9 49 I 59 Y 69 i 79 y 
0A LF 1A SUB 2A * 3A �9 4A J 5A Z 6A j 7A z 

0B VT 1B ESC 2B + 3B ; 4B K 5B [ 6B k 7B { 

0C FF 1C FS 2C , 3C < 4C L 5C \ 6C I 7C I 

0D  CR 1D GS 2D - 3D = 4D M 5D ] 6D m 7D } 

0E SO 1E RS 2E 3E > 4E N 5E ^ 6E n 7E - 

OF SI 1F US 2F / 3F ? 4F O 5F _ 6F o 7F DEL 

(a) 

Code 
HD Symbol Function 

. . . . . .  

O0 NUL All the O's 

01 SOH Indicates start of header field 
02 STX Indicates start of text 

03 ETX Indicates end of text 
04 EOT Termination of transmission 

05 ENQ Enquire if terminal is on 
06 ACK Informs Tx of receipt of error free data 

10 DLE Data link escape 
15 NACK Informs Tx of receipt of data containing errors 

16 SYN Establishes bit and character synchronism 

17 ETB Indicates the end of block of data 
. . . .  

(b) 

Figure 1.17 (a) The ASCII code (b) ASCII characters for control of communication 

Hex O0 01 10 11 

Bits 1 O0 01 10 11 O0 01 10 11 O0 01 10 11 O0 01 10 11 
4567 Jr 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0000 0 NUL DLE SP & 
0001 1 SOH SBA 
0010 2 STX EUA SYN 
0011 3 ETX I C 
0100 4 
0101 5 PT NL 
0110 6 ETB 
0111 7 ESC EOT 
1000 8 
1001 9 EM 
1010 A �9 ! = ' 
1011 B - $ . # 
1100 C DUP RA < % @ 
1 1 0 1 D  SF ENQ NAK ( i - �9 
1110 E FM + �9 > = 
1111 F ITB SUB I ? " 

0 . 

/ a A J 
b s B K S 2 
c I t C L T 3 
d m u D M U 4 
�9 n v E N V 5 
f o w F 0 W 6 

p x G P X 7 
q y H Q Y 8 

i r z I R Z 9 

Figure 1.18 The EBCDIC code 

One of the most important alternatives to ASCII coding is the Extended Binary 
Coded Decimal Interchange Code (EBCDIC) which was used by IBM and ICL main- 
frames amongst others. As in the case of ASCII the decimal digits 0 to 9, the lower- 
and upper-case alphabet, special symbols and control codes are all assigned unique 
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binary values although in the case of EBCDIC these values are all 8 bits in length. 
Consequently by comparison with ASCII the code contains a considerable amount 
of redundancy. The code, tabulated in Figure 1.18, is based upon an NBCD coding 
where the four least significant bits (nybble) do not take on a value greater than (9)~0. 
Because of this feature the coding of the alphabet is not contiguous. 

P r o b l e m s  

1.1 Convert the following binary numbers to base 10: 

(a) 10101101 (b) 110110.1 

1.2 Convert the following octal numbers to base 10" 

(a) 273 (b) 1021 

1.3 Convert the following hexadecimal numbers to base 10: 

(a) 145 (b) A2C1 

1.4 Convert the following decimal numbers to base 2: 

1.5 

1.6 

1.7 

1.8 

1.9 

1.10 

1.11 

(c) 1.00101 

(c) 16.432 

(c) 1A.B2 

(a) 122 (b) 98 (c) 48.45 

Convert the following decimal numbers to octal: 

(a) 522 (b) 1119 (c) 129.25 

Convert the following decimal numbers to hexadecimal: 

(a) 1145 (b) 2421 (c) 192.86 

The following arithmetic operations are correct for at least one number system. 
Determine possible radices for the given operations. 

(a) 3142 + 2413 = 5555 (b) ~-~ 1 3 

(c) 2 3 + 4 4 + 1 4 + 3 2 = 2 2 3  ( d ) ~ = 6  

Determine the base b in each of the following cases: 

(a) (361)10 =(551)b (b) (859)10 =(5B7)b (c) (982)10 =(1726)b 

Perform the following binary arithmetic operations showing all carries and 
borrows 

(a) 101011 + 10111 

(b) 1101 + 1110 + 1001 

(r 11101 - 10110 

(d) 1100.010 - 1000.111 

Write the 8-bit signed magnitude, 2's complement and l's complement form of 
the following decimal numbers: 

(a) + 119 (b) - 7 7  (c) - 3  

Perform the following arithmetic operations using 2's complement arithmetic and 
assuming a word length of 8 bits: 

79 64 87 
-42  +37 -99 
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1.12 

1.13 

1.14 

1.15 

1.16 

1.17 

1.18 

Form the radix complement and diminished radix complement for each of the 
following numbers: 

(a) (01011)2 (b) (5291)10 (c) (4723)8 

(d) (ABC1)16 

Perform the multiplication of the following unsigned binary numbers: 

(a) 1110 • 1101 (b) 10101 • 1110 (c) 11001 • 10101 

Perform the following multiplications using signed binary numbers: 

(a) +7 x - 9  (b) +12 x +9 (c) -13  x - 8  

Perform the following divisions using the restoring division process: 

(a) 101010 + 0101 (b) 1100110 + 1001 

Perform the following arithmetic operations using the NBCD code to represent 
the decimal numbers: 

(a) 79 + 101 (b) 87 + 179 (c) 98 - 43 

Perform the following arithmetic operations using signed NBCD arithmetic: 

(a) 85 + 67 (b) 43 - 92 

Write out the following decimal weighted codes: 

(a) 7, 4, 2, 1 (c) 2, 4, 2, 1 

(d) 5, 2, 1, 1 (d) 8, 4 , - 2 , -  1 



2 Boolean algebra 

2.1 Introduction 

In a digital system the electrical signals that are used have two voltage levels which 
may, for example, be 5 and 0 volts. The electrical devices used in these systems can 
generally exist indefinitely in one of these two possible voltage states, providing the 
power supply is maintained. For example, a bipolar transistor that is non-conducting 
in a 5 volt system will have approximately 5 volts between collector and emitter. 
However, when the transistor is turned on and is conducting, it can be arranged, with 
a suitable choice of load, that the voltage between collector and emitter is 
approximately zero. The two voltage levels employed in a digital circuit can be 
arbitrarily assigned values of 0 and 1. The two states defined in this way can have 
logical significance in that they can indicate the presence of a particular condition or, 
alternatively, its absence. 

An algebra developed in the nineteenth century by George Boole (1815-1864), an 
English mathematician, is well suited for representing the situation above. This branch 
of mathematics, called Boolean algebra, is a discrete algebra in which the variables can 
have one of two values, either 0 or 1. Associated with the algebra is a number of 
theorems which allow the manipulation and simplification of Boolean equations. 

Shannon, who was the first to develop information theory, became aware that 
Boolean algebra was useful in the design of switching networks. Initially, the algebra 
was used in the design of relay networks. More recently switching circuits were 
implemented using discrete components but rapid technological advances have seen 
the introduction of MSI, LSI and VLSI devices and because of the sophisticated and 
versatile nature of these components there have been significant changes in the design 
techniques used by engineers. In spite of these changes it is still essential for engineers 
to have a good working knowledge of traditional switching theory. 

2.2 Boolean algebra 

Any mathematical system has a minimal set of basic definitions which are assumed to 
be true and from which all information about the system may be determined. In the 
case of Boolean Algebra the three basic definitions are: 

NOT. The NOT of a variable is 1 if, and only if, the variable itself is 0 and vice versa. 
NOT A is written as A. Thus if A = 0, then A = 1 and if A = 1 then A = 0. Since A has 
only two possible values it follows that A = A. 

To refer to both A and A which define the opposite values of the same variable, the 
term literal is used, where a literal is defined as a variable with or without a 
complement bar. 
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AND. The AND of two variables is 1 if, and only if, both the variables are 1. AND is 
written as A AND B or as A.B or alternatively as AB. Thus AB = 1 only when 
A = B = I .  

OR. The OR of two variables is 1 if either (or both) of the variables is 1. OR is 
written a s A O R B o r a s A + B .  T h u s A + B = l i f A = l  o r B - 1  o r A - B - 1 .  

In addition to the above basic operations, one other function, the Exclusive-OR, is 
required for arithmetic-related operations. 

XOR. The Exclusive-OR of two variables is 1 if either of them but not both is 1. The 
XOR operation is written as A XOR B or as A @ B. Thus A @ B = 1 if A = 1 and 
B = 0 or i fA = 0 and B = 1. 

2.3 Derived Boolean operations 

The following Boolean operations are derived from the three basic operations by 
complementing or inverting those operations: 

NAND. N O T -  AND = NOT of (A AND B) or AB 

NOR. N O T -  OR = NOT of (A OR B) or A + B 

XNOR. Exclusive NOR = NOT of (A XOR B) or A @ B, which is sometimes referred 
to as the coincidence function and is written A | B. 

2.4 Boolean functions 

A Boolean function consists of a number of Boolean variables joined by the Boolean 
connectives AND and OR. For example 

f (A, B, C, D) = ABC + CD + B 

o r  

g(a, B, C, D) = (a + B + C)(C + D)(A + B) 

The dual of a function is obtained by changing the AND operations to OR operations 
and vice versa, and simultaneously changing any l 's to O's and vice versa. Thus the 
dual of the function f = (ABC + CD + B) is given by 

fd(A, B, C, D) = (A + S + C)(C + D)B 

Two functions are equivalent providing they have the same value (1 or 0) for each of 
the possible combinations of the variables. 

�9 Two functions are complementary if one function equals 1 when the other function 
equals 0 and vice versa. The complement of a function can be found by complementing 
each literal in the dual of that function. Thus the complement of f (A,  B, C,D)= 
ABC + CD + B is 

f (A, B, C, D) = (A + B + C)(C + D)B 

In evaluating Boolean equations AND operations are performed before OR 
operations unless the OR operation is enclosed within brackets. 
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2.5 Truth tables 

A truth table provides the basic method of describing a Boolean function. It contains 
a row for every combination of the variables and prescribes the value of the function 
(0 or 1) for each of these combinations. For the 3-variable function f (A ,  B, C) whose 
truth table appears in Figure 2.1, there are  2 3 combinations and the value of the 
function for each of these combinations is listed in the right hand column. The 
Boolean function described by the truth table is provided by the logical sum of those 
combinations for which the function has a value o f f  = 1. Hence 

Minterms A B C 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 0 

mo 
ml 
irk 
ma 
m4 
ms 
me 
rnr 

Figure 2.1 Truth table for f = ~ ml,m2,m3,m5 

f (A, B, C) = ABC + ABC + ABC + ABC 

Each combination of the variables is called a 
u 

minterm. For example, ml = ABC and the 
function tabulated in Figure 2.1 can be 
described as a sum of minterms so that 

E ml m2m3m5 f 

Alternatively, a minterm can be identified by 
its subscript and the function can be defined 
by the following equation 

f = ~-'~ 1,2, 3, 5 

A Boolean function expressed as a sum of minterms is termed the canonical sum- 
of-products form of the function. 

The inverse function f is obtained by taking the logical sum of those combinations 
for which f = 0. From Figure 2.1 

f -  ABC + ABC + ABC + ABC 

and by inversion using the principle of duality 

f -  (A + B+ C)(A + B+ C)(A + B +  C)(A + B+ C) 

Each term in this equation is called a maxterm and the Boolean function is expressed 
as a product of maxterms. The resulting expression is called the canonical product- 
of-sums form of the function and it may be written as 

f -- 1-[ M o M 4 M 6 M 7  

and in terms of the maxterm subscripts the function may be written 

f - ] - I0 ,4 ,  6, 7 

The truth table representation of a Boolean function has strict limitations. The 
number of rows in the table for an n-variable function is 2 n and if n > 5 the 
construction of the table is tedious, time consuming and prone to error. For this 
reason this method of representation is of little practical use to the circuit designer. 

2.6 The logic of a switch 

Consider the circuit shown in Figure 2.2(a) consisting of a voltage source having an 
internal resistance Ri connected in series with a switch X and a resistance R. 
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With the switch closed 

I ___ 

Vo -- I R  -- 

V 

R i + R  
VR  

R i + R  

Assuming Ri << R then Vo "~ V and the voltage across the switch is zero. If the switch 
is open I = 0 and the source voltage appears across the switch terminals so that 

Vo - 0. The two states of the output  voltage can be 
A 

/ 
_ _ 

Ri -x- 1 
Vo 

(a) 

A f 

O 0  

1 1  

(b) 

Figure 2.2 (a) An on~off switch circuit 
(b) the truth table for the switch circuit 

defined in terms of a Boolean variable f. When 
Vo = 0, f = 0 and when Vo-~ V, f = 1. These two 
states correspond to the two possible states of the 
switch, open and closed, which can also be 
described in terms of a Boolean variable A. When 
X is open A - 0 and when X is closed A - 1. These 
results are tabulated in the truth table shown in 
Figure 2.2(b) and from an inspection of the table it 
is clear that f - A. 

2.7 The switch implementation of the AND function 

Two switches X and Y are connected in series with a voltage source V and resistance 
R. The two possible states of the switches X and Y are defined by the Boolean 
variables A and B. When the two switches are open, A - B -  0, and when they are 
closed A = B = 1. The output  voltage can also be expressed in terms of a Boolean 
variable f whose value depends upon the absence or presence of the voltage Vo across 
the resistance R. 

There are four possible combinations of the variables A and B, and these are 
tabulated in the truth table shown in Figure 2.3(a). For  example, if X is open and Y is 
open, then A = B = 0 and Vo = 0, hence f = 0. If, however, X and Y are both closed, 
then A = B = 1, Vo -~ V, and it follows that f = 1. 

The truth table shown in Figure 2.3(b) is that of the A N D  function, sometimes 
referred to as the Boolean multiplication funct ion.  The rules of Boolean multiplication 
are identical to those of binary multiplication and they are summarised in Figure 
2.3(c). 

A B 
I I 

I . . . .  [ 
X Y A B f  

o o o  

R i 0 1 0  
V 1 0 0  

T 1 1 1  
(a) (b) 

0.0=0 
0.1=0 
1.0:0 
1.1=1 

(c) 

Figure 2.3 (a) Switch implementation of the AND function (b) Truth table for the AND function (c) Rules of 
binary and Boo&an multiplication 
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f=AB 

D ,  
Figure 2.4 Conventional 
symbol for the AND gate 

In practice, the A N D  function is implemented by a high 
speed electronic gate which is capable of operating in a few 
nanoseconds. One of the generally accepted symbols for the 
gate is shown in Figure 2.4. The output  of the gate is 1 only if 
both inputs A and B are 1. For  any other combination of the 
input variables the output is 0. 

2.8 The switch implementation of the OR function 

A parallel connection of two switches X and Y with a voltage source V and a resistor 
R is shown in Figure 2.5(a). The two possible states of the switches are defined by the 
Boolean variables A and B. When both switches are open A = B = 0 and when they 
are both closed A = B = 1. The corresponding states of the output voltage, 0 and Vo, 
are expressed in terms of the Boolean var iab lefwhose  value depends upon the absence 
or presence of the output voltage. If both switches are open A - B --- 0 and it is then 
clear that the current in the circuit I = 0 and the output  voltage Vo = 0. For this 
condition f = 0. If switch X is closed and switch Y is open then A = 1 and B = 0, a 
conducting path is available through closed switch X, so Vo -~ V and for this condition 
f = l .  

A 
/ 

x -  1 
B I 

i / 

~" R Vo 

l 
(a) 

A B f 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

0 + 0 = 0  0 + 0 = 0  
0 + 1 = 1  0 + 1 = 1  
1 + 0 = 1  1 + 0 = 1  
1 + 1 = 1 1 + 1 = 0 Carry 1 

Boolean Binary 
addition addition 

(b) (c) 

Figure 2.5 (a) Switch implementation of the OR function (b) Truth table for the OR function (c) rules of binary 
and Boolean addition 

The truth table of the OR function, sometimes referred to as the Boolean addition 
function, is shown in Figure 2.5(b). There are four possible combinations of A and B which 
correspond to the four possible open and closed conditions of the two switches X and Y. 
Examination of the truth table shows that the Boolean variable representing the output 
voltage f = 1 if X is closed or Y is closed or if both X and Y are closed simultaneously. 
For the Exclusive-OR function if A -  B -  1, f -  0, so strictly speaking, the OR 
function should be referred to as the Inclusive-OR function since f = 1 when A = B = 1. 

The rules of Boolean addition are tabulated alongside the rules of binary addition in 
Figure 2.5(c) and it will be noted that they differ in one respect. For  binary addition 

1 + 1 = (10)2 where 0 is the sum digit and 1 is the carry to 
AB ~ f = A + 

Figure 2.6 Conventional sym- 
bol for the OR gate 

the next stage of the addition, whereas in the case of 
Boolean addition 1 + 1 = 1. 

The OR function is normally implemented by an 
electronic gate which can be represented by the symbol 
shown in Figure 2.6. The output  of this 2-input gate will 
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be 1 if input A - 1 or input B - 1 or if both inputs A and B are simultaneously 1. For 
the remaining combination A - B = 0 the output will be 0. 

2.9 The gating function of the A N D  and OR gates 

Control of the transmission of a string of digital data can be achieved by either of the 
two basic gates when they are operated in a gating mode. The B input in Figure 2.7 
can be used as a control or mode input, while the data stream is applied at input A. If 

A 0 , 1 ~  01 A 0 , 1 ~  0 0  

trol) trol) 
Transmission Inhibition 

(a) (b) 

Figure 2.7 The gating function of  an AND gate 

B = 1 the gate is open and the data stream is 
transmitted, as shown in Figure 2.7(a). If 
B = 0 the gate is closed and data transmis- 
sion is inhibited, as shown in Figure 2.7(b). 
The 2-input OR gate shown in Figure 2.8 
will perform the same gating function if the 
B input is used as a control input. 

, , ,  

IB (control) [B (control) 
Transmission Inhibition 

(a) (b) 

Figure 2.8 The gating function of  an OR gate 

, A  

UT T 
(a) 

A A- f 

0 1 1 
1 0 1 

(b) 

Figure 2.9 (a) Switch circuit and (b) the truth 
table for f = A + 

A 
I I 

m I '~ 
oi-  - I 

v i 
(a) 

A /[ 

o I 
I o 

(b) 

-~ 2.10 The inversion function 

Consider the switching arrangement shown 
in Figure 2.9(a) connected in series with the 
voltage source V and resistance R. The 
switch has a pair of ganged contacts, one of 
which is normally open, whilst the other is 
normally closed. For the upper contact 
A -  0 when it is open and for the lower 
closed contact A -  1. The variable A is the 
inverse of A and the inversion operation is 
defined by the bar over the Boolean variable 
A. The output voltage Vo, as in the case of 
the OR and AND functions, is represented 
by the Boolean variable f. 

The truth table for the circuit is shown in 
Figure 2.9(b) and it is clear that the output 
voltage Vo-~ V irrespective of the state of 
the switch. Hence the equation of this 
circuit may be written as: 

A + A - 1  

which is an algebraic statement of the 
complementation theorem. The dual of this 
equation is obtained by replacing the + with 
a �9 and by changing 1 to 0. Hence: 

Figure 2.10 (a) Switch circuit and (b) the truth 
table for f = A. fI A . A  - -  0 

The switch contacts for this circuit and the corresponding truth table are shown in 
Figure 2.10. 
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A ~~>o f=,~ 

Figure 2.11 Conventional representation 
of an inverter 

Figure 2.12 The theorem of double 
inversion 

In practice, the inversion operation is imple- 
mented by an electronic gate which is represented 
symbolically in Figure 2.11. The inversion circle 
at the output of the gate is widely used in logic 
circuits to indicate the inversion of a Boolean 
variable. When two inverters are connected in 
series, as shown in Figure 2.12, a double 
inversion takes place and the output of the 
second inverter is the same as the input A to the 
first inverter. 

2.11 Gate or switch implementation of a Boolean function 

The implementation of the Boolean funct ionf  = A(B + C) + BD using either switches 
or, alternatively, gates is illustrated in Figure 2.13. In the switch contact, circuit a + in 
the equation is interpreted as a pair of parallel branches whilst a �9 is interpreted as a 
series connection. Normally closed switch contacts are identified by a bar over the 
switch variable. 

2.12 The Boolean theorems 

In the field of Logic Design it is the function of the designer to develop a Boolean 
expression which describes the required circuit performance. Algebraic manipulation 
of this expression with the aid of the Boolean Theorems can produce a simpler 
implementation of the circuit. There are a number of these theorems which can be 
used for simplifying a Boolean expression, and some of those in general use can be 
verified directly by using the method of perfect induction. The method involves 
inserting the two possible values 0 and 1 into a statement of the selected theorem in 
order to confirm the validity of the theorem in both cases. For example, the 
Idempotency theorem states that 

A + A - A  

For A -  1, 1 + 1 -  1, and for A -  0, 0 + 0 -  0 and these results verify that the 
theorem is true. Boolean theorems exist in pairs and the second form of Idempotency 
is obtained by taking the dual of A + A = A and may be written as 

A.A - A  

I B  
A �9 = 

m I I ; o  
P; I m l l  

I 

B 

D 

(a) (b) 

Figure 2.13 f = A(B + C) + BD implemented (a) with switches and (b) with gates 
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Theorem Function Dual 

Idempotency A+ A= A A. A = A 

Union& f A+0=A A . I = A  

Intersection l A+1=1 A.0=0 

Complementation A+,~ = 1 A.,~= 0 
n 

Inversion (~)=A 

Figure 2.14 The single variable theorems 

There are a number of Boolean theorems, including 
Idempotency, which involve a single variable. These 
are listed in Figure 2.14, and it is left to the reader 
to verify them using the method of perfect 
induction. 

Commutation, Association and Distribution are 
three of a group of theorems involved with more 
than one variable. Each of these theorems occurs as 
a pair, the original accompanied by its dual. The 
first two of these theorems are identical to the laws 

of commutation and association for addition and multiplication of integers. 
Commutation states 

A + B = B + A  and A B = B A  

which follows directly from the truth tables that define the AND and OR functions. 
Association states that 

A + ( B + C ) = ( A + B ) + C  and A ( B C ) = ( A B ) C  

and clearly the parentheses are unnecessary since the order in which two or more 
variables are ANDed or ORed is irrelevant. 

Factorisation of Boolean functions can be achieved by the application of the 
distribution theorem whose two forms are 

A + BC = (A + B)(A + C) and A(B + C) = AB  + A C 

A B C BC A + B C  A + B  A + C  ( A + B ) ( A + C )  

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 

0 1 1 1 1 1 1 1 

1 0 0 0 1 1 1 1 

1 0 1 0 1 1 1 1 

1 1 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 

The second form of distribution is 
identical to the same process in ordinary 
algebra, and a proof of the first form of 
the theorem by truth table is shown in 
Figure 2.15. 

The Absorption or Redundancy the- 
orem is a further example of a Boolean 
theorem which involves more than a 
single variable. The theorem states: 

A + A B = A  

Figure 2.15 Proof of the D&tribution theorem by truth 
table 

A + A B -  A.1 + AB 

= A(B + B) + AB 

= AB  + AB + AB 

= AB + AB 

= A ( B +  B) 

- A Complementation 

and it may be proved by the application 
of a number of the single variable 
theorems as follows: 

Intersection 

Complementation 

Distribution 

Idempotency 

Distribution 

The equation f = A. 1 + AB is expressed in the sum-of-products (S-of-P) form, where 
each of the terms in the equation are called product terms. It follows that in any Boolean 
equation that is expressed in S-of-P form, a product term that contains all the factors of 
another product term is redundant. For example, in the equat ionf  - AD + ABD § A CD 
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I 
= P ~ - - 4  ,---.O 

A 

Figure 2.16 Switch contact circuits illustrating the absorption theorem A = A + A B  

the product terms ABD and A CD can be eliminated because each contains all the factors 
present in the product term AD, and the expression can be reduced to f = AD. 

The switch contact circuit for the equation f - A + AB  is illustrated in Figure 2.16. 
This diagram clearly shows that if switch contact A is made, then a connection exists 
between points P and Q irrespective of whether switch contact B is open or closed and 
consequently switch contact B is redundant. 

Yet another example of a Boolean theorem which involves more than one variable is 
the Consensus theorem. Consider the function f -  A C + BC which contains the 
variable C in one of the terms and its complement C in the other. An optional product 
or consensus term can be formed by taking the product of the remaining two variables, 
in this case A and B. Furthermore, the optional product can be added to the original 
f unc t ion f to  give a new funct ionf '  - A C + B6" + AB  whose value is identical to the 
original function for all values of the variables A, B and C. This can be proved 
algebraically as follows: 

f '  - A C  + B6" + A B -  A C  + BC + AB(C + C') 

= A C + BC + A B C  + A B C  

= AC(1 + B ) +  BC'(1 + A) 

b u t ( l + A ) - ( l + B ) -  1, h e n c e f ' - f - A C + B C .  
The consensus term can be defined as one whose presence in a Boolean function 

does not alter the value of the function, and in the example given the optional product 
A B  is redundant. However, consensus terms have their uses, since when they are 
formed and introduced into a Boolean equation they may eliminate other terms and 
simplify the original equation. For example: 

f - C + A B C  

The consensus term A B  is added to the original equation to give 

m 

f -  C + A B C  + AB  

f - C + A B  Absorption theorem 

It should be noted that after the elimination of the original term ABC,  A B  is no longer 
optional, it is now essential. 

The technique of forming consensus terms and adding them to a function without 
altering its value is a useful one. It will be seen in a later chapter that the technique can 
be used to eliminate static hazards in combinational circuits. 
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A B ,~ B A"B,~+B 

0 0  1 1 1 1 
0 1 1  0 1 1 
1 0 0  1 1 1 

1 1 0  0 0 0 

Figure 2.17 Proof of  
De Morgan's theorem for 
two variables 

The last theorem involving more than one variable is 
De Morgan's theorem, named after a mathematician Augustus 
De Morgan, a contemporary of Boole. The truth table in 
Figure 2.17 demonstrates the validity of one form of this theorem 

A B - A + B  

whilst the second form of the theorem is obtained by applying 
the principle of duality to the above equation so that 

m 

A + B = A B  

These theorems express the complements of the AND and OR functions in terms of 
the complements of the variables A and B, and are probably the most useful of all the 
Boolean theorems. 

De Morgan's theorem can be applied to any number of variables, and the truth 
table of Figure 2.17 only verifies the law for two variables. For an arbitrary number 
of variables the theorem requires a proof by finite induction. First, the theorem is 
proved for n = 2 using the method of perfect induction. An assumption is then made 
that the theorem is true for n = h, and if this is true it can be shown that it is also 
true for n = h + 1. 

A summary of the Boolean theorems involved with more than a single variable is 
tabulated in Figure 2.18. 

Commutation 

Association 

Distribution 

Absorption 

De Morgan 

Consensus 

Function 

A+B=B+A 

A+(B+ G~=(A+ B)+ C 

A+ BC=(A+ B)(A+ C~ 

A+AB=A 

ATB=~.B 

AC+ B~= 

AB+AC+B~ 

Dual 

AB+ BA 

A( BC~ = (AB)C 

A(B+ G'~= AB+ AC 

A(A+ B)=A 

A-B=l]+ B 

(A+G-~(B+C~= 

(A+ B)(A+ G'~(B+ C~ 

Figure 2.18 Boolean theorems involving more than one variable 

The generalised statement of De Morgan's theorem along with Shannon's 
Expansion theorem are tabulated in Figure 2.19. The proof of Shannon's theorem 
by induction for the variable A~ requires the substitution of the two possible values of 
A~, 0 and 1, into either of the two forms of the theorem appearing in the tabulation. 
For A 1  - 1 in the first form of the theorem 

f (1 ,Az,  A3,. . .An) - l f (1 ,Az,  A3,. . .An) + Of(O, A2, A3,. ..An) 

=f(1,A2,  A3, . . .an)  

and for A1 - 0  

f(O, A2, A3,. . .An) = 0"f(1, A2, A3,. . .An) + l 'f(0, A2, A3,. . .An) 

=f(O, A2, A3,. . .An) 
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De Morgan's [ 
theorem 

Expansion [ 
theorem 

A1 + A2 + A3 . . . An= A,1"/]2"/]3... J]n 

A,'A2"A3"'" An = '~, +/]2 + ~3"'" '~n 

f(A1, A2, A3""An)=Alf(1,  A 2, A3, ' "An)+ ~lf(O, A2, A3, '"An) 

f(A 1, A 2, A3... An) = [A 1 + f(0, A 2, A3,... An)][~ 1 + f(1, A 2, A3,... An) ] 

Figure 2.19 Boolean theorems involving n variables 

Similarly, the theorem can be verified for any of the n -  1 remaining variables using 
this method. 

2.13 Complete sets 

Any Boolean function can be implemented using only AND and INVERT gates since 
the OR function can be generated by a combination of these two gates, as shown in 
Figure 2.20(a). It follows that these two gates can implement any arbitrary Boolean 
function and they are said to form a complete set. Similarly, the OR and INVERT 
gates also form a complete set since the AND function can be implemented by a 
combination of these two gates, as shown in Figure 2.20(b). 

i~ + A B i~ ~ r ~ o  A + B 
L /  

B B 

(a) (b) 

Figure 2.20 Complete sets (a) OR~INVERT (b) AND~INVERT 

The derived gates NAND and NOR are in themselves a complete set since, for 
example, a series combination of two NAND gates will generate the AND function 
[Figure 2.21(a)]. In this connection the second NAND gate has all its inputs 
commoned and acts as an inverter. Similarly, the OR function can be generated by two 
NOR gates in series (Figure 2.21(b)), where the second NOR gate is implementing the 
inversion function. It follows that any arbitrary Boolean function can be implemented 
by either of these gates. 

A A 

l 
NAND Inverter NOR Inverter 

Figure 2.21 Complete sets formed by (a) series combination of two NAND gates and (b) series combination of two 
NOR gates 

2.14 The exclusive-OR (XOR) function 

The XOR or Mod-2 addition operation is defined by the equation 
D 

A ~ B = A B  + AB  
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An alternative way of expressing this relationship is 

A @ B = (A + B)(A + B) 

The laws of Association, Commutation and Distribution are also valid for the XOR 
operation. They are 

A @(B@ C) - (A @ B)@ C 
A @ B = B G A  
A(B @ C) = AB @ A C 

Association 
Commutation 
Distribution 

If Boolean algebraic equations are written in terms of the XOR function, the following 
identities may prove useful: 

A @ A - O  A @ A - 1  
A @ I = A  A @ 0 = A  
A + B = A ~ B ~ 3 A B  
A + B = A @B if A B - O  

I fA  @ B = C then A = B@ C, B -  A @ C and A @ B@ C -  0 
A1 @ A2 @. . .  @ A, = 0 for an even number of variables of value 1, and 1 for an odd 
number of variables of value 1. 

2.15 The Reed-Muller equation 

A canonical equation can also be defined in terms of the AND and XOR functions, 
and for a single variable may be written as 

I 

f ( A )  = foA + f lA  

and since A and A are mutually exclusive, the expression may be written as 
D 

f ( A )  - foA @AA 
=~(1 @ A) @ f l A  

=J; �9 (j~ @fl)A 
= co @ClA 

For two Boolean variables, the canonical sum-of-products equation may be written 

f(A2,A1) = foA2A1 + flA2A1 + f2A2A1 + f3A2A1 

where fo, fl ,  fz and f3 take on the value of 0 or 1 depending upon whether their 
associated minterms are present. For example if fo = 1 and fl = f2  - f 3  - 0  then 

f(A2,A1) = A2A1 

Since mjmk -- 0 for j -r k the logical addition symbol + can be replaced by @ and the 
canonical sum-of-products may now be written as 

f(A2,A1) = foA2A1 @ flA2A1 @ f2A2A1 @ f3A2A1 

The inverted variables A2 and AI can be replaced by (A2 @ 1) and (A1 @ 1) respectively. 
Hence 

f(A2, A1) - fo (A2  | 1)(A1 �9 1)| @ 1)A1 Gf2A2(A1 �9 1)Of3A2A1 
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Multiplying out and collecting terms produces the following equation 

f(A2A1) =fo  @ (fo Gf2)A2 G (fo Ofl)A1 �9 (fo @fl @f2 @f3)AzA1 

This is the canonical XOR sum for two Boolean variables and is called the 
Reed-Muller canonical equation. If co=fo ,  c l=fo@f2 ,  c2=fo@f l ,  and 
c3 = fo |  @f2 @ f3, the equation may be written 

f ( A z ,  AI )  = co G clA2 E3 czA1 G c3AzA1 

and it will be observed that the equation contains only the AND and XOR functions 
which, like the AND and INVERT functions, form a complete set. 

2.16 Set theory and the Venn diagram 

Set theory is concerned with the combination of sets and the theorems associated with the 
theory are identical to the theorems of Boolean algebra. In spite of their identical structures 
the algebra of sets looks somewhat different since the connectives used, U and N, replace + 
and.  in Boolean algebra. 

Consider the two sets of decimal digits A = {0, 5, 6, 9} and 
B = {0, 1,7, 9}. The union of these two sets, written A U B, is 
defined as the set that contains all the digits in A or B or both. 
Hence A U B = {0, 1,5, 6, 7, 9} and it is clear that union is 
analogous to the OR function. Intersection of the two sets, 

2, 3, 4, 8 written A n B is defined as that set which contains all those 
digits that are common to the two sets A and B. Hence 

Figure 2.22 Visual repre- A n B = {0, 9} and this function is analogous to the AND 
sentation of Set theory function. If it happens that there are no common digits in these 

two sets, A n B is referred to as the null set which is represented 
A B symbolically by 4~. Finally, the set which contains all the 

decimal digits is referred to as the universal set and can be 
represented diagramatically by a rectangle. 

These results can be represented on the Venn diagram 
shown in Figure 2.22 where the rectangle represents the 

Figure 2.23 Venn diagram universal set containing all the decimal digits, while the 
illustrating the four minterms intersecting circles represent the sets A and B. Venn diagrams 
of two Boo&an variables are also able to demonstrate graphically the meaning of 
Boolean functions. For example, all the minterms of two Boolean variables are 
displayed in Figure 2.23 whilst the three Venn diagrams in Figure 2.24 illustrate with 
shading some typical Boolean expressions. In Chapter 3 it will be shown how the 

Figure 2.24 Venn diagrams for three Boolean expressions 

A~I+,~B AB+ AC AC+~C+ A~ 
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structure of the Venn diagram can be modified to form a Karnaugh map which is widely 
used for the simplification of Boolean functions. 

Problems 

2.1 Using the theorems of Boolean algebra simplify the following expressions: 

fl (a, B, C, D) - B + BCD + BCD + AB + fiB + BC 

f2(A, B, C, D) - (AB + C + D)(C + D)(C. + D)(C + D + .E) 

f3(A, B, C) - BC(C + A C) + (2 + C)(AB + A C) 

2.2 Simplify each of the following expressions using the method of optional 
products" 

fl (a, B, C, D) - a C + BCD + ABC + a CD 

f2(A, B, C, D) = B + AB + A CD + A C 

f3(A, B, C, D) = W + ABD + ABC + ABD + A CD 

2.3 Prove that (A + B)(A + C) - AC + AB without using perfect induction. 
2.4 Construct a truth table for the following functions and from the truth table obtain 

an expression for the inverse functions" 

f l (A,  B, C) = A + ~ c  

U2(A, S, C) = A C + S C  + A S  

f3(A, B, C) = (A + B)(A + B + C) 

f4(a, B, C, D) = BD + a C + BD 

2.5 Find the inverse of the following expressions and do not simplify your result 

f l (A,  B, 63 = A + SC 

f2(A, B, C, D) = A(B + C) + BD(A + C) 

f3(A, B, C, D, E) = [AB + C(.A + DE)][/~ + A C(E +/~/))] 

2.6 Expand and simplify the following expressions using De Morgan's theorem. 

A (A, B, C) = (A + B)(ABC)(2C) 

fz(a,  B, C) = (AB + BC) + (BC + AB) 

f3(a, B, C) = (AB + BC)(AC + A C) 

2.7 Prove the following identities 

(1) AB + AB = (A + B)(A + B) 

(2) (AB + C)B = ABC + ABC + ABC 

(3) BC + AD = (e + A)(B + A)(B + D)(A + C)(C + D) 

2.8 For the following two 4-variable functions 

f~ = A + B + C + D  

f2 = A  + C + B D  
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Figure P2.9 

2.11 

2.12 

2.13 

2.14 

how many of the input minterms are included in each of these functions and 
how many are not? What are the minterm expressions for the two functions? 
Simplify both functions using the theorems of Boolean algebra. 

2.9 Given the timing diagram shown 

I ! ! 
I I I 

I I 
I i I 

2.10 

f , (A ,  B, c ) =  A + B(O + D) 
f2fA, B, C) = (A + B)(B + C) + (AB + C) 

in Figure P2.9 find the displayed 
function expressed as a sum of 
minterms and also find the func- 
tion as a product of maxterms. 
Simplify the minterm expression, 
using the Boolean theorems, and 
find the inverse of the simplified 
expression. 
Draw (i) the switch contact 
circuits and (ii) the AND/OR 
implementations for the follow- 
ing Boolean functions. 

f3(A, B, C, D) = (A + B + C)(A + D) + BC + A(B + D)((; + D) 

The main stairway in a block of fiats has three switches for controlling the lights. 
Switch A is located at the top of the stairs, switch B is located halfway up the 
stairs and switch C is positioned at the bottom of the stairs. Design a logic 
network to control the lights on the staircase. 
Sketch the following functions on a Venn diagram: 

f l (A, B) = AB + AB 

f2(A, B, C) = ABC + ABC + ABC + ABC + ABC + ABC 

f3(A, B, C) = A C + A C + BC + AB 
_ _ 

f4(A, s ,  c)  = AB + A C 
Prove 

A @ B - A @ B  
A e B - A ~ B  
AB + AB - AB + AB 

A lift door control is to operate in the following manner. When the lift stops 
at a floor the door will open and a signal is generated that remains on until all 
the passengers are on or off the lift. An additional signal is also generated to 
ensure that the doors do not close on a passenger in the doorway. Doors will 
close if a call button has been pressed on another floor or if a lift passenger 
has pressed a button for another floor. Set up a truth table for the design of 
the lift control and derive the corresponding switching equation. 



3 Karnaugh maps and function 
simplification 

3.1 Introduction 

One of the objectives of the digital designer when using discrete gates is to keep 
the number of gates to a minimum when implementing a Boolean function. 
The smaller the number of gates used, the lower the cost of the circuit. Simpli- 
fication could be achieved by a purely algebraic process, but this can be tedious, and 
the designer is not always sure that the simplest solution has been produced at the end 
of the process. 

A much easier method of simplification is to plot the function on a Karnaugh 
map (or 'K-map') and with the help of a number of simple rules to reduce the 
Boolean function to its minimal form. This particular method is very straightforward 
up to and including six variables. Above six variables it is better to use a tabulation 
method such as that due to Quine and McCluskey which, after programming, can be 
run on a computer. 

3.2 Minterms and maxterms 

As explained in section 2.5, a minterm (sometimes called a 'product term' or 'P-term') 
of n variables is the logical AND of all n variables where any of the n variables may be 
represented by the variable itself or its complement. In the case of two variables A and 
B there are four possible combinations of the variables, and these are tabulated in 
Figure 3.1. Corresponding to these four combinations of the variables there are four 
possible minterms which can be obtained as follows. In the first row of the table A - 0 
and B -  0, hence A B -  1. The minterm is formed using the values of the variables 
which make the value of the minterm equal to 1, hence m o -  AB. The other three 
minterms are obtained in the same way. 

As also explained in section 2.5, a maxterm 
A B Minterms Maxterms (sometimes called a 'sum term' or 'S-term') of n 

variables is the logical OR of all n variables 
0 0 mo=AB Mo=A+B 
0 1 m~ = ,4B M~ = A + B where any one of the variables may be rep- 
1 0 rna=AO M a = , ~ +  B resented by its true or complemented form. 
1 1 m a= A B  M 3 = , 4 +  B The maxterms are formed using the values 

Figure 3.1 The minterms and maxterms o f  two of  the variables which make the value of the 
variables maxterm equal to 0. 
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Now, for A - 0 and B - 0 we have that 

mo - A B -  1, and r~o - A B -  O, 

giving 

r~0 - M0 - A + B, 

i.e. the maxterm is the logical complement of its corresponding minterm. The other 
three maxterms can be obtained by the same method. 

For  three variables A, B, and C there are eight possible combinations of the 
variables and consequently there are eight minterms and eight maxterms. If there are 
n variables there are 2 ~ possible combinations of those variables and this leads to 2 ~ 
minterms and 2 ~ maxterms. It is clear that the number of minterms and maxterms rises 
exponentially with n. 

One important  property of minterms is that the logical OR of all 2" minterms is 
equal to logical 1, i.e. 

2 n -  1 

Zmi - 1 
i=0 

The dual of this equation is 

2 n - -  1 

I I  M, 
i=0 

= 0  

where 1-I signifies the Boolean product  (AND), so that the logical product of all the 
maxterms is equal to logical zero. For  example, in the case of two variables the logical 
sum (OR) of all the minterms is given by the expression 

Sum = A B  + A B  + A B  + A B  

= A(B + B) + A(B + B) 

= A + A  

= 1  

Taking the dual of the expression for the sum gives 

(A + B)(A + B)(A + B)(A + B) = 0 

and this represents the logical product  of all the maxterms of two variables. 

3.3 Canonical forms 

Also mentioned in section 2.5 is the concept of the canonical form, a term used to 
describe a Boolean function that is written either as a sum of minterms, or as 
a product  of maxterms. For  example, using three variables A, B, and C, the equation 

n m 

f (A, B, C) = A(B ~ C) + A B C  
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is not written explicitly as a sum of minterms (or a product of maxterms) and so is not 
in canonical form. Simple Boolean algebraic manipulation produces the same function 
in canonical form written as the logical sum of three minterms: 

f (A, B, C) - ABC + ABC + ABC 

while the following equation is written as the product of three maxterms and so is also 
in canonical form: 

f (A, B, C) - (A + B + C)(A + B + C)(A + B + C) 

3.4 Boolean functions of two variables 

There are a specific number of Boolean functions of two variables. Each Boolean 
function in its canonical form will consist of a certain number of minterms; for 
example, f (A ,  B ) -  AB + AB is a Boolean function of two variables and contains 
two of the four available minterms. The total number of Boolean functions of two 
variables can be obtained in the following manner. 

Figure 3.2 shows a table in which the presence of a minterm in a two-variable function 
is indicated by a 1, and its absence by a 0. For example, if the minterm AB is included 
in the expression, its presence will be represented by a 1 in the position of that minterm 
in the table. If not included, its absence will be indicated by a 0. In the case where all 
four minterms are absent, this will be indicated by a column of four 0s, as shown in the 
table, and it follows that the corresponding Boolean function will be f0 - 0. 

Minterms fo fl f2 f3 f4 fs fe f~ fe f9 flo fll f12 fla f14 f15 

mo = .~B 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
m~ = /~B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
mi  = AB 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
rns = AB 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Figure 3.2 Table for determining all the Boolean functions of two variables 

fo=0 
f l=AB 
f2=AB 
fa=A 
f4=~B 
fs=B 
fe=,~B+AB 
h=A+B 
fs=,~B==,T+"B 
fg=,~k-AB 
flo=B 
fll=A+B 
f12=,~ 
fla=~'+B 
fl 4=,~+ B==A-'B 
f15=1 

False 
AND 
AND (not El) 
Identity 
AND (not A) 
Identity 
Exclusive OR 
OR 
NOR 
Equality 
NOT 
OR (not B) 
NOT 
OR (not A) 
NAND 
True 

Figure 3.3 The 16 Boolean 
functions of two variables 

There are two ways in which the entry in the first row 
can be allocated: it can be either 0 or 1. There are also two 
ways in which the entry in the second row can be allocated. 
When combined with the first row allocation this leads 
to four ways in which the first two rows can be allocated 
with 0s and Is. For four rows, it follows that there are 
2 4 =  16 ways in which the 0s and l s can be allocated. 
These allocations are shown in Figure 3.2 and the 16 
Boolean functions of two variables can be written down 
immediately from this table and are tabulated in Figure 3.3. 

As the number of variables increases, the number of 
Boolean functions that can be formed increases rapidly. 
For three Boolean variables there are 28 = 256 possible 
Boolean functions, for four variables there are 216= 
65 536 possible Boolean functions and for n variables 
there are 2 (2") possible Boolean functions. 
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3.5 The Karnaugh map 

For two variables there are four minterms and these can be conveniently placed on 
a 'map'  as shown in Figure 3.4. The map consists of a square divided into four cells, 

one for each of the minterms. The possible values of the 
A ~  0 1 variable A are written down the left hand side of the map, 

labelling the corresponding rows of the map, while the 
~,'~'~ . ~  possible values of the variable B are written along the top 

0 6" 6 ~" of the map, labelling the corresponding columns of the 
map. Hence, the top left-hand cell represents the minterm 
where A - 0 and B - O, i.e. the minterm AB. The bottom 

1 /,'~ ,,/~ right-hand cell represents the minterm A B  where A -  1 
6 ~ ~ and B -  1. This kind of map is called a Karnaugh map 

or K-map. 

Figure 3.4 The map for two Karnaugh maps can be labelled and marked in a 
Boolean variables variety of ways. For example, each cell can be numbered 

with the decimal subscript of the minterm that occupies 
the cell. In this case, the bottom right-hand cell would be numbered with 3, as shown 
in Figure 3.5(a). The cell numbering shown in Figure 3.5(a) assumes that A is the 
most significant bit in the binary to decimal conversion, and B the least significant bit. 
Since A has weighting 2 and B has weighting 1, this is sometimes indicated in 
abbreviated form as A, B = 2, 1 (which is not a conventional equation, but merely 
indicates the respective weights of A and B). Alternatively, the cells can be marked with 
the binary representation of their corresponding subscript, as shown in Figure 3.5(b). 
A further possibility for the axis labels is to use A, A, B,/~ instead of 0 and 1, as shown 
in Figure 3.5(c). 

For three variables, the map contains eight cells, one for each of the possible minterms as 
shown in Figure 3.6(a), drawn for the weighting A , B ,  C =_ 4,2, 1. The variable A is 

A'~O B 0 1 ~ B B 
0 1  ~ ~  ~" 00 01 

1 2 3 A 10 11 

(a) (b) (c) 

Figure 3.5 Alternative methods for marking 
a Karnaugh map 

allocated to the two rows of the map, while 
the variables B and C are allocated to the 
four columns. There are four combinations 
of these two variables, and each combin- 
ation is allocated to a column of the map. 

The columns and rows are allocated in 
the way shown so that two adjacent 
columns are always associated with the 
true value of a variable or, alternatively, 

its complement. An examination of Figure 3.6(a) shows that the first two columns are 
associated with B, the second and third columns are associated with C, and the third 
and fourth columns are associated with B. The reason for allocating the variables to 
the columns in this way will be clearer when the procedure for minimisation of 
a Boolean function is discussed later in this chapter. Note, however, that the column 
labels along the top of the K-map are the same as the Gray code order for two binary 
variables (see section 1.21). The reason for this is that the underlying principle of the 
K-map is that in moving from one cell to an adjacent cell either vertically or horizon- 
tally, the value of one (and only one) Boolean variable may change, and of course 
similarly Gray codes must change by just one digit only at each step. An alternative 
method of labelling the axes of a 3-variable K-map is shown in Figure 3.6(b), which 
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' ~ C  O0 01 11 10 
I I 

000 001 011 010 

A 100 101 111 110 

I I 
C 

(a) (b) 

Figure 3.6 Karnaugh maps for three variables 

makes clear that two adjacent columns are always associated with either the true value 
or the complement of a variable. 

The 4-variable K-map is shown in two forms, differing only in the axis labelling 
method, in Figure 3.7. Since there are 16 minterms for four variables, the map contains 
16 cells and each cell has been marked with the decimal subscript of its respective 
minterm, using the weighting A,B, C,D = 8, 4,2, 1. Note that in Figure 3.7(a), both 
axes are labelled in Gray code order. 

In the case of five variables, it is convenient to use two 16-cell maps rather than one 
32-cell map, as shown in Figure 3.8(a). The right-hand map is allocated to the true 
value of E, while the left-hand map is associated with the complement of variable E. 

, oo 
O0 0 

OI 4 

II 12 

I0  8 

OI II I0 

I 3 2 
, , , 

5 7 6 
,, 

13 15 14 

9 I I  I0 

(a) 

Figure 3.7 Karnaugh maps for four variables 

I I 

0 1 3 2 

4 5 7 6 

12 13 15 14 

8 9 11 10 

I I 
D 
(b) 

I B 

oo 

oo o 

OI 8 

I I 2 4  

I 0  16  

C 
OI  I I  I 0  ,4 O 0  OI  I I I 0  I I 

10, 14 12 9 11 15 1 3 -  9 / 1 1 / /  1 3 / l  A- 2~284 2~260 15/~14 2~2~ ] [  .q l /  B 
26 30 28 25 27 :51 29 , ~ 0  

I I 

~" (0) E(1) D 

Key to diagonal splits: I ~  

(a) (b) 

Figure 3.8 Karnaugh maps for five variables, using the weighting A, B, C, D, E = 16, 8, 4, 2,1 
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An alternative is to start with a single 4-variable K-map, and to subdivide each original 
square cell diagonally, as shown in Figure 3.8(b) to produce a single 32-cell map, so that 
the cells now become triangles; E is associated with the upper-left triangles, and E with 
the lower-right triangles. 

For six variables, there are 64 minterms, and so 64 cells are required; the possibilities 
are to use four 16-cell maps, or two 32-cell maps, or a single 64-cell map produced 
by taking a 32-cell map and subdividing each original square cell diagonally again 
to produce four triangular cells in the space of each original square cell, as shown 
in Figure 3.9. In each case, all possible combinations of E and F are accom- 
modated uniquely. 

,, oo 
O0 0 

_ 

OI 16 
_ 

I I 4 8  

I0 32 

A~ O0 

O0 2 

OI 18 22 30 26 

II 50 54 62 58 

I0 34 

01 II 10 , d o \  00 01 II 10 

4 12 8 O~ I 5 13 g 

20 28 24 C 17 

52 60 56 I 49 

36 44 40 I 33 37 45 

(00) ~ ~" (00 
O= I~ ~0 48  X O0 O= == 

= ,  

6 14 10 O0 3 7 15 

OI 19 23 31 

II 51 

38 46 42 tO 35 39 47 

21 29 25 

53 61 57 

41 

I0 

II 

27 

55 63 59 

43 

s i~o) E'Fl l l )  
(a) 

A 

c 
i ! 

32 \ \ 
I I 

D 
rN ,-,- /1 

Key to d iagonal  splits: [E~F[ 
V =t-  "N 

(b) 

Figure 3.9 Karnaugh maps for six variables, using the weighting A, B, C, D, E, F =_ 32,16, 8, 4, 2,1 
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3.6 Plotting Boolean functions on a Karnaugh map 

For two variables, the K-map consists of four cells, one for each of the minterms. 
The function f - AB is shown plotted in Figure 3.10(a). It occupies the top right-hand 

'4x'•, 0 I '4~0# 0 I 
0 I 

I I I I 

(a) (b) 

Figure  3.10 (a) f = f iB  (b) f = A B  + A B  = A 

cell of the map, this being indicated by 
marking the cell with a 1. 

Consider now the function f = A 
which does not depend upon the 
second variable, B; it is, of course, not 
in canonical form, as the minterms must 
involve both variables or their com- 
plements. Using the complementation 
theorem this may be expanded to give 
the canonical form 

f - A(B + B) - AB + AB 

This function is plotted in Figure 3.10(b) and occupies the two cells on the bottom row 
of the map. Hence, this single-variable function occupies two adjacent cells when 
plotted on a 2-variable K-map. 

Since for three variables there are eight minterms, a 3-variable function f (A,  B, C) 
requires an eight-cell K-map, as shown in Figure 3.11(a). The function 
f -  ABC + ABC is shown plotted on this map. The marked cells in this case are not 
adjacent and this is an indication that the two terms which make up this function 
cannot be combined to form a simpler function. 

The 2-variable term BC plotted on a 3-variable map occupies two adjacent cells, as 
shown in Figure 3.1 l(b). This is because BC is the logical sum of the two minterms 
ABC and ABC, since 

f -  ABC + ABC 

= (A + A)BC 

-- BC. 

A one-variable term plotted on a 3-variable map occupies four adjacent cells. 
For example, the term f - C is shown plotted on Figure 3.11 (c). An inspection of this 
map seems to indicate that the four cells are not adjacent. However, it is a fundamental 

A~'~C O0 Ol II I0 ~ C  
1 

0 I , 0 

I ! I 

Co0 

0 I 

I I 

Ol I I I0 

(c) 

I 

O0 Ol II I0 

(b) 

Figure  3.11 ( a ) f  = A B C  + A B C  (b) f = B C  (c) f = C; 

' b 
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(a) f = ABCD (b) f = ACD (c) f = Bs (d) f = B 

I 

principle applying to K-maps for three and more variables that the map may "wrap 
around" in such a way that the right and left ends may be rolled over to form a cylinder 
with a vertical axis. Alternatively, it may be imagined that the map has been drawn 
upon a cylindrical tin. If this is done, it is clear that the left-hand and right-hand 
columns are now adjacent. Alternatively, it will be observed that in the top left-hand 
cell, the binary representation (000) of the minterm ABC differs by one digit only 
from 010, the binary representation of the minterm (ABC) in the top right-hand cell. 
It is a general rule that two minterms that differ in only one variable correspond 
to adjacent cells on the K-map, as also must binary representations that differ in 
only one digit. Clearly this also applies to the bottom left-hand and bottom right-hand 
cells. 

As in the cases of the 2-variable and 3-variable maps, on a 4-variable map a minterm 
occupies one cell, as shown in Figure 3.12(a). Similarly, product terms of three, two 
and one variables, when plotted on a four-variable map, will occupy two, four and 
eight adjacent cells, respectively, as shown in Figures 3.12(b, c, d). Inspection of Figure 
3.12(d) shows that the top and bottom rows of the K-map may be regarded as 
adjacent, and, as in the case of the 3-variable map, the first and last columns of the 
map may also be regarded as adjacent. 

3.7 Maxterms on the Karnaugh map 

As we have seen, minterms occupy just one cell on any K-map. For example, the 
minterm ABC of three variables is plotted on a 3-variable K-map in Figure 3.13(a). 



Karnaugh maps and function simplification 51 

A~%0 01 11 10 A~_ c /11 10 

1 ,  , + A b w  
# 

(a) (b) 

Figure 3.13 K-map plot of  (a) minterm ABC (b) maxterm A + B + 

The name 'minterm' derives from the fact that it is represented by the smallest possible 
distinguishable area on the map. 

A maxterm, such as A + B + C, from section 3.2 is the complement of the 
corresponding minterm ABC. Plotting a maxterm on a Karnaugh map requires further 
consideration. It has been seen earlier that each individual term (A,B, andC) 
corresponds to four adjacent cells on the map. As explained in section 2.16, the 
Boolean OR function corresponds closely to the 'set union' operation (U) performed 
on areas indicating sets in a Venn diagram, and so the required map area for the 
maxterm is the combined area formed by the union of the three areas, one for 
each individual term. The three individual areas are shown in Figure 3.13(b), and the 
combined area is that area whose cells are filled with 1. It is clear from Figure 3.13(b) 
that the resultant combined area for this maxterm is indeed the logical complement 
of the plot of the corresponding minterm, as shown in Figure 3.13(a). Wherever one 
of these maps has 1 marked in a certain cell, the other has 0, and wherever it has 0, 
the other has 1. The name 'maxterm' is obviously derived from the fact that the 
maxterm occupies all but one cell on any size of K-map; it represents the 'maximum 
distinguishable area' on the map. 

3.8 Simplification of Boolean functions 

The process of simplifying a Boolean function with the aid of a K-map is simply 
a process of finding adjacencies on the function plot. This is best explained with the aid 
of a very simple example. Suppose that it is required to simplify the Boolean function 

m _ m 

f - AB  + AB + AB. Using Boolean algebra alone, it can be readily found that 

f -  B(A + A) + A B - -  AB + B 

and at first sight it may be difficult to see any further simplification. However, suppose that 
f i s  plotted on a 2-variable K-map, as in Figure 3.14. The functionfis specified in canonical 

sum-of-minterms form, so all that is necessary is to place 1 in each 
B 

J 

A(1 13 
J 

Figure 3.14 Karnaugh 
map for the function 
f = 71B + AB + AB 

cell corresponding to the minterms in the given expression. 
The next stage of the simplification process is to group together 

adjacent cells containing Is. (In this context, note carefully that 
'adjacent' means 'horizontally or vertically', not 'diagonally'.) 
Therefore, the bottom two cells, corresponding to A alone, may 
be grouped together. Similarly, the two left-hand cells, corres- 
ponding to B alone, may also be grouped together, as indicated 
in Figure 3.14. 
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The final stage is to write down the final simplified expression for the function 
obtained from the groupings thus identified. In this case, therefore, f = A + B. This is 
certainly simpler than the previous 'simplest' expression f = AB + B obtained using 
Boolean algebra, but it still may not be obvious that these two expressions are actually 
representations of the same function. This can be shown immediately by expanding the 
expression obtained from the K-map as 

f = A + B  

= A(B + B) + B(A + A) 

= AB + AB + BA + BA 

= 2 B  + AB + AB 

and so the original expression for f has been proven equal to the simpler expression 
obtained from the K-map. 

Of course, this is a trivial example, and serves only to illustrate the procedure and 
its validity. Its power may be demonstrated by examining a more complex example, 
such as 

f - Z 0 ,  1,2, 3,4, 6, 7, 8, 12, 13. 

Here, the function f has been specified using the 'numerical minterm' canonical form 
introduced in section 2.5, where f is specified as a sum of the minterms indicated 
in decimal form. The first stage in the minimisation is to plot f on a Karnaugh map. 
In doing so, it is necessary to specify the relative weightings of the map variables, and 
here the weighting A, B, C, D = 8, 4, 2, 1 is used. 

The K-map form with numerical labels (e.g., Figure 3.7(a)) and the K-map form 
with direct symbolic axis labels (e.g., Figure 3.7(b)) are alternatives that correspond to 
the numerical and algebraic methods of expressing Boolean functions. Of course, the 
final simplified function is always independent of the mechanics used in finding it. 
Here, as the function is specified in numerical form, the numerical labelling of the map 
is used. Each numerical minterm corresponds to one cell on the map. The plot of the 
function is shown in Figure 3.15, in which it is clear that there are four separate 
encircled adjacencies or 'groups'; three of these are 4-cell adjacencies and one is a two- 
cell adjacency. The four cells on the top row of the map can be represented by the term 
AB, the four cells in the first column of the map by CD, the top right-hand four cells by 
A C, and the 2-cell adjacency by ABC. Hence the simplified function may be written 

f = A B +  CD + A C + ABC 
CO 

A O0 OI II I0 The enclosed adjacencies are termed the prime 
O O ~ 1 ~  I #1 I~ j  implicantsof the function. 

If a prime implicant is needed to ensure full coverage 
I I I of the plotted function it is termed an essentialprime 

OI I k_.._ ...'.,fl implicant. In the preceding example ABC is essential, 
~1 -~' since it is the only prime implicant selected that 

I I I~ covers the cell containing the minterm ABCD (1101). 
IM~ The other three prime implicants are also essential 

I0 since they too are covering cells not covered by any 
other prime implicant. For example, CD is the only 

Figure 3.15 f = A B  + CD + A C  + A B C  prime implicant covering cell 0100. 
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It is now clear why the four variables were allocated to the columns and rows in the 
manner shown. The allocation used ensures that cells associated with the variables 
C, C,/5 and D always lie in two adjacent columns while the cells associated with the 
variables A, A,/~ and B always lie in two adjacent rows. If the allocation had been 
made in strict numerical order, i.e. 00, 01, 10, 11, then the cells associated with D, 
for example, would not have been in adjacent columns and simplification would no 
longer have been a process of looking for adjacencies. 

Simplification of 5-variable functions is a little more complicated. As an example, 
consider the function 

f =  ~--'~ 0, 1,2, 3, 4, 5, 10, 11, 13, 14, 15, 16, 20, 21,24, 25, 26, 29, 30, 31 

which is shown plotted in Figure 3.16. The simplification procedure can be carried out 
as follows: 

1. First find the simplified functions for each of the two maps f~ and fe  in the way 
previously described: 

m 

f~  = B D E  + B D E  + A C D E  + A B C E  

and 

fE = C D E  + B C E  + A B D E  + A C D E  + A B C E  
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Figure 3.16 f = B D E  + BDF. + C D E  + B C E  + A B C  + A C D  + A C D E  + A B D E  

2. The second step is to look for possible combinations between prime implicants identi- 
fied on the two maps that will result in an overall simplification of the logical sum of the 
two functions, f g  + f e .  For example, A B C E  is a prime implicant offg and A B C E  is 
a prime implicant of fe. These two will combine to form one 3-variable term ABC.  
It is also possible to add a non-essential prime implicant to the equation for fg, namely 
A CDE.  The cells corresponding to A CDF, on the fg map have already been covered 
by prime implicants A B C E  and BDE. The non-essential prime implicant A C D E  
will combine with the essential prime implicant A CDE on the fe  map to form one 
3-variable term A CD. Hence, the equations for f~ and f e  may be written as follows: 

f p~ -- B D E  + B D E  + A C D E  + A B C E  + A C D E  

f E -- C D E  + B C E  + A B D E  + A B C E  + A C D E  

forms forms 
A B C  A C D  
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and the simplified function is 

f = BDE + BDE + CDE + BCE + A B C  + A CD + A CDE + A B D E  

3.9 The inverse function 

In some cases it is more economical to implement the inverse of the function rather 
than implement the given function. For example, suppose the given function is 

f ( A , B , C , D ) =  ~ 2 ,  6, 7,8, 12, 13 

This is plotted in Figure 3.17(a) and the simplified function obtained from this map is 

f = A B C  + A B C  + A CD + A CD 

O0 OI 
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i 
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II 0 0 

(d} 

IO (:o o_v 
Figure 3.17 (a) Plot o f f  = ABC" + flBC + ftCL) + ACD and (b) its implementation (c) Plot of the inverse 
function f = AC + AC + BD and (d) the implementation of f from the inverse function 

To implement this function, four 3-input AND gates and one 4-input OR gate 
are required as shown in Figure 3.17(b). Besides these gates, the inverses of A, C, 
and D must be produced, needing three logic inverters, and there are 17 logic signal 
interconnections in the circuit. 



Karnaugh maps and function simplification 55 

The inverse function is represented by 0s plotted in the unmarked cells of 
Figure 3.17(a). These cells represent those combinations of the variables for which 
f = 0. For clarity, a separate map in Figure 3.17(c) shows the plot of the inverse 
function. From this map the simplified form of the inverse function is obtained and is 
given by the equation 

f = AC  + AC + BD. 

This implementation o f f  is shown in Figure 3.17(d). In order to generate f, the inverse 
m 

function f is inverted using an inverter. This implementation requires three 2-input 
AND gates, one 3-input OR gate, and four inverters including the three needed to 
produce A, B and C. The number of logic signal interconnections is 11. Because of the 
particular form o f f  in this case, th!s is a much simpler circuit than the original circuit 
generating f directly in Figure 3.17(b), although generation of the complement of 
a function may not always be advantageous; selection of the best implementation 
is discussed further in section 3.24. 

3 . 1 0  ' D o n ' t  c a r e '  t e r m s  

In some logic problems certain combinations of the variables may never occur. 
For example, the NBCD code tabulated in Figure 3.18(a) is frequently used to 
represent the decimal digits. This 4-bit code has 16 possible combinations, only ten 
of which are used. The remaining six combinations, namely 1010, 1011, 1100, 1101, 
1110 and 1111, cannot occur in practice unless fault conditions exist, and as 
a consequence can be used for simplification purposes. Such terms are usually referred 
to as 'don't care' or 'can't happen' terms. 

Dec imal  
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Figure 3 . 1 8  (a) The NBCD code (b) Block schematic for the NBCD to decimal converter (c) Karnaugh map for 
determining the decimal decode logic 
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If the NBCD code is to be converted to give a decimal output, as indicated by the 
block diagram in Figure 3.18(b), decode logic has to be used. Ten individual decode 
circuits will be required, one for each decimal digit. 

The K-map used for determining the individual functions is shown in Figure 3.18(c). 
On this map the 'can't happen' or 'don't  care' terms are marked X which indicates that 
the entry in the cell can be 0 or 1, whichever suits the designer. The remaining 10 cells 
are marked with the decimal digit corresponding to the cell code. For example, the cell 
defined by A B C D -  0000 is marked with the decimal digit 0. This cell cannot be 
combined with any of the cells marked X, so that the output indicating the decimal 
digit 0 is given by the minterm A B C D .  Similarly, the cell corresponding to decimal 
digit 1 cannot be combined with any adjacent cell marked X, so that the output 
indicating the decimal digit 1 is given by the minterm A B C D .  However, the cell 
corresponding to decimal digit 2 is adjacent to one of the 'don't care' cells marked 
X as shown on the K-map, so that the output indicating the decimal digit 2 is given by 
the expression B C D  which is simpler than a minterm. 

The equations for the remaining decimal digits can be found in the same way, and 
are given by the following Boolean expressions. 

3 -  B C D  4 -  B C D  5 = B C D  6 -  BCE) 

7 = B C D  8 = A D  9 = A D  

With the exception of the results for decimal digits 0 and 1, all of these expressions 
are simpler than the corresponding minterms. A significant simplification has 
been achieved by exploiting the 'don't  care' states in this K-map. This would be 
reflected in a corresponding simplification of the logic circuits used for performing 
this decoding. 

This particular example is somewhat unusual in the sense that all of the 'don't care' 
states have been included in the final answer. However, since the whole point of 'don't 
care' states is that it is irrelevant whether or not they are included in the final simplified 
expressions, it is quite possible that in other problems some 'don't cares' will not be 
included. The logic designer has complete freedom to choose whether or not any 
particular 'don't care' is included, according to the best way of simplifying the final 
result, as long as it is absolutely certain that these states will never occur. 

Summary of rules for simplifying functions using Karnaugh maps 

1. All Is and no 0s must be included in groups of cells (unless the inverse function is 
being implemented, in which case all 0s and no Is must be included). 

2. Group adjacent (horizontal or vertical) cells only. 
3. The allowable group sizes are 1, 2, 4, or 8 (or higher powers of 2) only. 
4. To obtain the simplest form, use the largest size groups possible. Use the fewest 

groups possible. 
5. Use overlaps freely to achieve the goals of point 4 above. 
6. The 3-variable map can 'wrap around' horizontally, and the 4-variable map can 

'wrap around' both vertically and horizontally. 
7. Include 'don't cares' within groups as needed to achieve the goals of point 

4 above. 'Don' t  cares' should not  be included if by so doing the groups are not 
made larger or fewer. 
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3.11 Simplification of products of maxterms 

As explained in section 2.5, Boolean expressions can be expressed as products of 
maxterms, sometimes referred to as the 'product of sums', 'P-of-S' or 'POS' form. 
Except in the simplest cases, these types of expressions are not easy to plot directly on 
a K-map. However, the inverse function will be directly expressed as a sum of 
minterms ('sum of products', 'S-of-P' or 'SOP' form) which can then be plotted 
immediately. The complement of this map (i.e., the cells corresponding to 0s) then 
represents the complement of the inverse function which is, of course, the original 
function. For example, suppose 

f = A + B  

and by De Morgan's theorem 

f =  AB. 

, 4 ' •  0 I ~ 0 
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Figure 3.19 ( a ) f  = AB (b) f = :1 + k 
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Figure 3.20 Plot o f  the inverse function 
f = CD + 71BD + ABC, using the 
weighting A, B, C, D - 8, 4, 2, 1 

This function can be plotted directly on a K-map but 
in this case the cell containing the term AB is marked 
with a 0 as shown in Figure 3.19(a). In this simple 
case the cells representing the original function 
f - A + B are marked with 1 s and have been plotted 
directly on the map shown in Figure 3.19(b). It will 
be observed that the marked cells in this diagram are 
the unmarked cells in Figure 3.19(a). 

If a Boolean function is expressed as a sum of 
minterms, perhaps with a number of 'don't care' 
minterms, and the simplest equivalent product of 
sums is required, then the way to proceed is to plot 
as 0s the minterms missing from the sum of minterms. 
For example, the zeros of the function f = ~ 0, 2, 
4, 6, 7, 8, 11, 14, 15, together with 'don't care' 
minterms 1, 9, 10, 13, are plotted in Figure 3.20; the 
zeros correspond to the three missing minterms 3, 5, 
and 12. 

The inverse function is shown plotted in Figure 3.20. 
Simplifying, using the techniques previously described, 
gives the minimal inverse function" 

f = CD + ABD + ABC. 

Note that in this case, the 'don't care' minterm (10)10 is not included in the 
minimised groupings, whereas the other three 'don't cares' are included. Taking the 
complement of this expression (see section 2.4) gives the required simplest (minimal) 
product of sums: 

f = (C + D)(A + B + D)(A + B + C). 
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3.12 The Quine-McCluskey tabular simplification method 

When a function of more than six variables has to be simplified, mapping techniques 
become increasingly difficult to employ and alternative methods have to be con- 
sidered. A commonly used alternative is the Quine-McCluskey tabular method. 
This technique is tedious, time consuming, and subject to error when performed by 
hand. However, these difficulties can be overcome by writing a program which allows 
the simplification process to be run on a computer. The method is based on the 
complementation theorem which can be applied to the simplification process system- 
atically. This theorem is illustrated by the simple case 

f = ABC + ABC 

which can be expressed as 

f = AB(C + C) 

and hence the function can be simplified immediately as 

f = A B .  

When the two terms ABC and ABC are plotted on a K-map (Figure 3.21(a)) it will be 
observed that since they are occupying adjacent cells they are combinable and will 
form one 2-variable term. 

An alternative way of identifying Boolean terms that will combine is to examine 
their binary equivalents. For example, the binary equivalents of the two terms in the 
given equation are ABC = 111 and ABC = 110, and it will be noted that they differ in 
one digit place only. It is a general rule that if the binary equivalents of two Boolean 
terms differ in one digit place only, they are combinable. An examination of the K-map 
in Figure 3.21(a)confirms the rule, since it can be seen that any pair of adjacent 
cells on this map have a single digit difference between their corresponding binary 
representations. 

If the given equation had been 

f = ABC + ABC 

then the binary equivalents of the two minterms are ABC = 001 and A/~C"- 100. 
Since the binary equivalents of the two terms differ in two digit places they are not 

AN•Co0 01 11 10 A~ O0 01 10 11 
\8C 

0 0 I 

I 1 1 1 1 

Figure 3.21 

f =AB f :ABC *ABC 
(a) (b) 

(a) Plot o f f  = A B C  + ABC,  two combinable terms (b) Plot o f  two non-combinable terms 
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combinable. Furthermore, when plotted on the K-map (see Figure 3.21(b)) it will be 
observed that they do not occupy adjacent cells. 

The first step in the Quine-McCluskey method is to tabulate the function to 
be simplified in sectionalised form such that section 1 lists the single minterm, if 
present in the function, containing no 1 s. Then, section 2 lists any minterms containing 
one 1, and so on, until section n lists the minterms containing (n - 1) 1 s. As an example, 
the 4-variable function 

f(A,B,C,D)-- ~ 0 ,1 ,2 ,5 ,6 ,7 ,9 ,10 ,11 ,14  

is shown tabulated in Figure 3.22(a) with corresponding binary and decimal equivalents 
of the minterms in adjacent columns. 

The next step is to form all possible combinations between the terms in sections 
1 and 2. For example, the term 0000 combines with the term 0001 to form 000-, 
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Figure 3.22 Simplification using Quine-McCluskey tabulation method (a) Tabulation (b) Prime implicant table 
(c) Reduced prime implicant table (d) Plot of function 
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a dash being placed in the position where the combination has occurred. This term 
appears at the top of the second column of the tabulation and the decimal equivalents 
0 and 1 of the combining terms are placed by it. At the same time, terms 0 and 1 are 
checked off in the first column of the tabulation. When all combinations between 
sections 1 and 2 have been generated, then all possible combinations between sections 
2 and 3 are formed. These combinations are tabulated in the next section of the 
second column. 

When the second column is complete, a third column is formed by combining 
terms in adjacent sections of the second column. A combination of two terms is only 
possible if the dash in both terms occupies the same position and only one bit differs. 
Terms in the second column used to form terms in the third column are checked 
off and the decimal equivalents of the combining terms are placed at the side of the 
generated term. 

After the tabulation is completed, all those terms that are not checked off are prime 
implicants of the function. The Boolean form of the prime implicants can be obtained 
from their binary representations. For example, the first term in the second column of 
the tabulation is 000-  = ABC, the dash indicating that variable D is missing from 
this prime implicant. The decimal numbers to the right of the prime implicant indicate 
the cells it covers on the K-map. 

The extracted prime implicants are now used to form the prime implicant table 
shown in Figure 3.22(b). In this table each column represents a minterm of the 
function and the column is headed by its decimal equivalent. Additionally, a row is 
placed in the table for each of the prime implicants with their Boolean form appearing 
at the left-hand end of the rows and the cells that they cover at the right-hand end of 
the rows. Crosses are entered where a cell column and a prime implicant row intersect 
provided the cell allocated to the column is covered by the prime implicant allocated to 
the row. 

If a column has only one X in it then the prime implicant corresponding to that X 
is 'essential'. In Figure 3.22(b) the column headed '14' contains only one X which 
appears at the intersection with the row allocated to prime implicant CD and it 
follows that C/) is essential. To indicate this, it is marked with an * in the table. 
There are four Xs in the CD row and the columns associated with them may now be 
removed from the table since the cells allocated to these columns are covered by this 
prime implieant. 

The table is now redrawn in Figure 3.22(c) with columns 2, 6, 10 and 14 removed, as 
well as the row for the essential prime implicant CD. If ABD is selected as one of the 
required prime implicants then cells 9 and 11 are covered, and rows ABD and ABC can 
be removed from the table as well as the columns headed 9 and 11. To cover cells 5 and 
7 prime implicant ABD is selected. Rows ABC and ABD and also the columns headed 
5 and 7 can now be removed from the table. The remaining two cells, 0 and 1, are 
covered by prime implicant ABC thus eliminating the prime implicants ABD, A CD 
and BCD from the solution. 

The selected prime implicants are C{),ABD, JlBD and ABC and the simplified 
function is 

f = CD + ABD + ABD + ABC. 

The solution is shown plotted in Figure 3.22(d). 
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3.13 Properties of prime implicant tables 

There are two features of prime implicant tables that can be utilised during the 
function simplification process" 

1. Dominating rows: an example of a dominating row is shown in Figure 3.23(a). 
Row P contains all of the minterms contained in row Q, and so row P is said to 
dominate row Q. (The columns associated with row Q are a subset of the columns 
associated with row P.) If row P were selected then the minterms associated with 
prime implicant Q would be covered, so that therefore row Q can be removed from 
the table. 

2. Dominating columns: an example of a dominating column is illustrated in Figure 3.23(b). 
Minterm S is covered by all of the prime implicants which cover minterm R, so that 
coverage of cell S is guaranteed by selecting a row that covers minterm R. (The rows 
covering column R are a subset of the rows covering column S.) Therefore, the 
dominating column, S, may be removed from the table. 

R S 

Dominating 
row 

Dominated 
row 

Dominated 
column 

I 

I 
Dominating 

column 

(a) (b) 

Figure 3.23 (a) An example of a dominating row (b) An example of a dominating column 

3.14 Cyclic prime implicant tables 

A prime implicant table is said to be cyclic if 

1. It does not have any essential prime implicants, which implies that there are two Xs 
in every column. 

2. There are no dominance relations among the rows and columns. 

A typical example of a function which generates a cyclic prime implicant table is 
shown in Figure 3.24(a). The equation of the function is 

f - ~-~ 0, 1, 3, 4, 7, 12, 14, 15. 
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implicant associated with row a is selected as one of the required prime implicants. 
Since it covers cells 0 and 1, the corresponding two columns headed 0 and 1 can be 
deleted from the table. After their removal, row c dominates row b, so that row b may 
be also deleted. The reduced prime implicants table after these deletions is given in 
Figure 3.24(c). 

Column 3 in the reduced table contains only one X, hence the prime implicant 
associated with row c will form one of the terms of the simplified function and columns 
3 and 7 can now be removed from the reduced table. A further reduced prime implicant 
table is shown in Figure 3.24(d). 

Column 15 in this table contains only one X, consequently the prime implicant 
associated with row e will be a term in the simplified function and columns 14 and 15 
may now be removed from this table. After removal, row h dominates both rows g and 
i and they can be deleted too, leaving the prime implicant associated with row h as the 
last term required for a minimal sum which is given by 

f l  = a + c + e + h  

= A B C  + A CD + A B C  + B C D  

The simplified function is shown plotted in Figure 3.24(e). 
If the prime implicant associated with row i had been selected initially then the 

following alternative minimal function would have been obtained: 

f2 = A CD + A B D  + B C D  + A B D  

and is shown plotted in Figure 3.24(f). 

3.15 Semi-cyclic prime implicant tables 

A semi-cyclic prime implicant table differs from a cyclic prime implicant table in one 
respect only. In the cyclic table, the number of cells covered by each prime implicant is 
identical. For the semi-cyclic table, the prime implicants do not necessarily cover the 
same number of cells. 

An example of the K-map plot of a 5-variable function which generates a semi-cyclic 
table is shown in Figure 3.25(a), and the corresponding prime implicant table appears 
in Figure 3.25(b). Examination of the prime implicant table reveals that rows a, b, c 
and deach contain four Xs, which means that the corresponding prime implicants 
consist of three Boolean variables. The remaining rows in the table all contain two Xs 
and the corresponding prime implicants consist of four Boolean variables. Since each 
column contains two Xs, a prime implicant has to be selected to start the simplification 
process. The correct procedure is to select a row containing four Xs. Such a selection 
may lead to a reduced chip count and certainly would reduce the number of inter- 
connections. Examination of the prime implicant table shows that if prime implicants 
c and d are selected then in order to ensure that all of the cells 0, 2, 8, 9, 10, 11, 16, 17, 
18 and 19 are covered, it is only necessary to select one of the prime implicants a and b. 
When the columns for these cells are removed from the table simplification continues 
by making one of the following two selections: 

1. Select h, then i can be removed from the table and the solution is 

f = (a or b) + c + d +  (e or g) + h  + (j or k) 
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Figure 3.25 (a) Plot of S-variable function that generates a semi-cyclic prime implicant table (b) Semi-cyclic prime 
implicant table 

2. Select g, then row e can be removed from the table and the solution is 

f = (a or b) + c + d + g + h  + (j or k) 

3.16 Quine-McCluskey simplification of functions containing 
'don't care' terms 

When the initial tabulation is drawn up, the 'don't care' or 'can't happen' terms should 
be included, since such terms may be covered by the prime implicants of the function. 
However, when the prime implicant table is constructed, columns do not have to 
be included for the 'can't happen' terms. These terms do not necessarily have to 
be covered, although they may be, for the reason given above. All other terms 
require columns in the prime implicant table since, of necessity, they must be covered. 
An example of handling 'don't care' terms is given below in the next section, 
section 3.17. 
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3.17 Decimal approach to Quine-McCluskey simplification 
of Boolean functions 

The decimal approach to the Quine-McCluskey simplification of Boolean functions 
provides a simpler tabulation; also, since decimal representation of Boolean terms 
is employed, errors are less likely to occur, and when they do they are easier to spot. 
However, the rules for the implementation of this approach are somewhat different. 
For example, if the decimal difference between a pair of numbers in adjacent sections 
of the tabulation is a power of 2 and the one in the upper section is less than the one in 
the lower section, then the terms will combine. An example of the application of this 
rule follows: 

No. of ls Decimal Binary 

0 0 0000 
1 1 0001 

Difference = 1 - 20 000-  

Upper section 
Lower section 

This alternative approach will be demonstrated by simplifying the function 

f ( A , B , C , D ) -  ~ 0 ,  3, 5, 6, 7, 8, 12, 15 

together with 'don't  care' (or 'can't  happen') minterms 2, 9, 11, 13, and using the 
weighting A, B, C, D = 8, 4, 2, 1. The first step is to tabulate in decimal form all the 
minterms specified, including the 'don' t  cares', sectionalised according to the number 
of ls in each minterm, as shown in Figure 3.26(a). 

In the second column of the table all those terms that differ by a power of 2 are 
combined and tabulated, providing the number in the upper section of the first column 
tabulation is less than the number in the adjacent lower section. The numbers in 
parentheses by the side of each term in this column represent the power of 2 by which 
the two combining terms differ. As the terms in the first column are used to form 
a combination in the second column, they are checked off. 

The numbers in parentheses in the second column also indicate which digit has 
disappeared in the process of combination. To obtain the combined term, the decimal 
values of the weightings for each binary variable must be used. For example, the first 
entry in the second column of the tabulation is 0, 2(2), where the (2) indicates that the 
Boolean variable that is weighted 2 has been eliminated from these two minterms in 
this combination. The weighting key A, B, C, D = 8, 4, 2, 1 shows that it is variable C 
that has been eliminated. The two original terms in the combination are 0 = ABCD 
and 2 - ABCD, so that after the removal of C the result is ABD. 

When preparing the third column in the table the conditions for combination are: 

1. The number in parentheses for the term in the upper section shall be the same as 
for the term in the adjacent lower section. For example, the two terms 2, 3(1) 
(Figure 3.26(a), column 2, section 2) and 6, 7(1) (Figure 3.26(a), column 2, section 3) 
are candidates for combination as the (1) in both terms indicates that the same digit 
is missing in each. 

2. The difference between the first two digits and the second two digits in the two 
terms to be combined shall be the same power of 2. For example, for the terms 
2, 3(1) and 6, 7(1), the difference between each pair of digits is 4 -  22. 
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The second number included in parentheses in the third column indicates the 
position of the second variable that has been removed by the combination. In the 
example given, the combined term is 2, 3, 6, 7(1, 4). 

The Boolean expression corresponding to minterm 2 is A B C D  and the eliminated 
digits (1, 4), together with the weighting key A, B, C, D _= 8, 4, 2, 1, indicate that B and 
D are to be eliminated, and hence the reduced term formed by the combination is A C. 

Terms in the second column are checked off as they are used to form further reduced 
terms in the third column. When the third column is complete, no further tabulation in 
a fourth column is possible since there are no terms in the third columns in adjacent 
sections that have the same numbers in parentheses. 

The unchecked terms represent the prime implicants of the function. The prime 
implicant table shown in Figure 3.26(b) is now constructed and it will be noted that 
there are no columns for 'can't  happen' terms. This table is reduced in the manner 
previously described and provides two equally simple solutions. The essential prime 
implicants are 

2, 3, 6, 7(1,4) - AC 

8,9, 12, 13(1,4) - AC 

5, 7, 13, 15(2, 8) -- BD 

and either 0, 2(2) - ABD or 0, 8(8) - BCD. 

There are two equally simple solutions and they are 

f l  - -  A C  + A C  + BD + ABD 

f2 = A C  + A C  + BD + BCD 

A K-map of the function is plotted in Figure 3.26(c) and the map simplification 
confirms the two solutions given above. 

3.18 Multiple output circuits 

Suppose that it is required to produce a circuit with two outputs, one equal to 
the function f l -  AB  + BC and the other equal to the function f 2 -  A C + BC. 
The K-maps for these two functions are shown in Figures 3.27(a) and (b) respectively, 
and as no further simplification is possible the simplest circuits are shown in 
Figures 3.27(c) and (d) respectively. Assuming such an independent implementation, 
a total of six gates, two inverters, and 14 interconnections are required. 

However, independent implementation has overlooked the possibility of finding 
a joint optimal implementation requiring a smaller number of gates and inter- 
connections. 

Examination of the two K-maps shows that the minterm A B C  is common to both 
maps and is therefore common to both functions. Bearing this commonality in mind, 
the two functions can be rewritten as 

- + 

and 
m 

f2 = B c  + A B C  
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Figure 3.27 (a) and (b) Karnaugh maps for the functions fl = fib + BC and f2 = AC + BC respectively; 
(c) and (d) independent implementations of:[] and f2 respectively 

w 

A 
B 

rv  

B 

These modified functions can now be imple- 
mented using a common gate to produce 

n 

the minterm ABC, as shown in Figure 3.28. 
This optimum implementation requires 

~ only five gates, two inverters, and 13 inter- 
D - connections. 

In general, to minimise several multiple 
output functions simultaneously in this way, 

D ~2 the K-maps for all possible Boolean output 
I products (ANDs of outputs) must be plotted 

and examined in addition to the K-maps for 
each individual function. In the example 
considered above, this means that the K-maps 
for the two functions in Figures 3.27(a) and 
(b) must be supplemented by the K-map 
of the product function fl" f2 as shown in 
Figure 3.29. 

The K-map of the product function results in the multiple 
output prime implicant ABC that is common to both functions, 
and since this cell has only to be covered once it does not have 
to be covered again when considering the maps of the individ- 
ual functions. In fact, if the multiple output prime implicant is 
definitely to be covered, the corresponding cells can be treated 
as 'don't cares' on the individual function maps. On the individ- 
ual function maps (Figures 3.27(a) and (b)) the cells that are 
shaded are both covered by just one of the prime implicants of 
the single-output functions. It follows that an essential prime 
implicant for a particular single-output function must contain 
a minimum of one cell distinguished in this way. 

Figure 3.28 Multiple output circuit showing the 
optimum implementation of the two functions 
fl and f2 

Br 
ANN O0 01 

0 

, (9 

11 10 

Figure 3.29 Karnaugh 
map for the product 
function fl �9 f2 

To minimise multiple output functions with three output lines, fl, f2 and f3, then 
there are four possible product terms that must be considered, i.e. f l"  f2, f l"  f3, 
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Figure 3.30 Function and product maps for determining multiple output circuit 

and f2" ~ ,  and the three-term product Ji "f2" f3, as well as the three individual func- 
tion K-maps. A typical problem is illustrated in Figure 3.30, where the prime impli- 
cants are shown as loops on each K-map. 

The prime implicant of the fl �9 j~ �9 j~ map is ABCD and this term must appear in 
each of the three function equations. The selection of this prime implicant implies 
that it has been covered on all seven maps. Since this is the only term entered on the 
f2" f3 and f l"  f3 maps no further consideration of these two maps is required. 
However, on the f l"  f2 map, cells 8 and 9 remain to be covered so that the term 
ABC' corresponding to these two cells must appear in the function equations for 
fl and f2. 

The same procedure for selecting prime implicants can be adopted for the three 
function maps, and the tabulation below gives the prime implicants that have been 
selected in this particular solution of the problem: 

fi,  .~, f3 ABCD 

A,f2 ABC 
BCD 

f2 ABD 

fl  ACD, ABCD 
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The selected prime implicants are marked with asterisks in Figure 3.30, and combining 
terms from the above tabulation leads to the following three function equations: 

f l = A B C D  + A B C  + A CD + A B C D  

f2 - A B C D  + A B C  + A B D  

f3 = A B C D  + BCD 

The implementation of the three functions appears in Figure 3.31. Nine gates and 29 
inputs are required for this implementation. If the functions had been individually 
implemented, 12 gates and 37 inputs would have been required. 

It will be seen later, in Chapter 11, that in practice the use of programmable devices such 
as logic arrays offers an efficient approach to implementing multiple output circuits, but the 
same design principles are still valid because the most efficient use of a programmable device 
is obtained by collectively optimising the multiple outputs as explained in this section. 

Number of K-maps needed to find minimal implementation of n output functions 

To design a minimal implementation for n output functions, clearly a K-map is needed 
for all the possible product terms involving any pair of functions, and any three 
functions, and so on up to and including the final K-map for all the functions ANDed 
together, as well as for all the individual functions concerned. Imagine that each of 
these K-maps is labelled with an n-bit binary integer, the bits numbered from 1 to n 
inclusive, corresponding to functions fl to f~ respectively. This label is determined by 
writing a binary 1 in all bits corresponding to the output function(s) contained in the 
product or function plotted in that K-map, and binary 0 is written in all the other bits. 
For example, in the case where there are five output functions, the K-map for f3 is 
labelled 00100, the map for f2" f4 is labelled 01010, and the map for fl �9 f2" f3 �9 f4" f5 
is labelled 1 l ll 1. There is, of course, no K-map labelled 00000. The total number of 
K-maps is therefore the total number of distinct arrangements of 0 and 1 in n places, 
excluding the case of all 0s, and therefore corresponding to all possible integers from 
(1)2 up to and including the largest value label which corresponds to the K-map for the 
product of all the functions. Adding the number (1)2 to the largest label gives the 
binary integer represented by 1 followed by n 0s. This binary integer has a value 2 ", so 
that the number of distinct n-bit labels, including the disallowed value of all 0s, is 
therefore 2 ". Hence the total number of allowed K-maps is 2 n - 1. It follows that the 
number of extra K-maps needed to consider the product terms is given by 2 ~ - n - 1. 

For four output functions, 15 K-maps in total must be considered and for five output 
functions, 31 K-maps in total must be considered. Clearly this is a very unwieldy process 
and for greater than four output functions the minimisation procedure described in this 
section using K-maps is impractical. In this case, a tabulation method based upon the 
Quine-McCluskey method should be used. 

3.19 Tabular methods for multiple output functions 

As a simple example of using tabular methods for large numbers of simultaneous 
output functions, the same multiple-output problem solved above in section 3.18 using 
map techniques will be reworked using decimal representation for the minterms. 
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Figure 3.31 Multiple output implementation for functions defined in Figure 3.30 

As in Figure 3.30, the three required output functions are: 

fl = y ~ 0 , 6 , 8 , 9 ,  11, 15 

f2 - y ~  0, 8,9, 12, 14 

f3 = Y~0,2,  10 

For each decimal minterm, there is a binary tag that identifies the output functions 
which include that minterm. For a total of n output functions, the tag is an n-bit binary 
integer where the bits are numbered from 1 to n inclusive, corresponding to functions 
fl to f ,  respectively. The tag is determined by writing a binary 1 in all bits corres- 
ponding to the output function(s) containing that minterm, and writing binary 0 in all 
the other bits. For example, in the present problem, decimal minterm 14 is included 
only in function f2, so its tag is 010. 

The method proceeds as shown in Figure 3.32. The first column in Figure 3.32(a) 
contains all the minterms in the three output functions expressed in decimal form and 
sectionalised according to the number of ls in each term. Beside each minterm are the 
tag columns for fl,  f2, and f3. 

In the second column all those terms in adjacent sections differing by a power 
of 2 are combined, provided the number in the upper section is less than the 
number in the adjacent lower section and that they have 1 entries in corresponding 
positions in the tag columns. The terms in the first column used to form a combination 
tabulated in the second column can then be checked off, providing the combination 
formed in the second column has ls in the same position in the tag columns as the 
terms from which it is formed. The number in parentheses by the side of each term in 
the second column is the power of 2 by which the two combining terms differ. 
Additionally, this number also indicates the digit that disappeared from the binary 
representation of the minterms when combination took place. 
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Figure 3.32 Simplification of multiple output functions (a) Tabulation (b) Prime implicant table 
(c) Reduced prime implicant table 
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To form a third column, the number in parentheses for a term in the upper section 
must be identical to that of a term in an adjacent lower section. Examination of the 
second column in Figure 3.32(a) shows that this condition is never satisfied and a third 
column cannot be formed. The unchecked terms, marked with an asterisk, are the 
prime implicants of the three output functions. 

The prime implicant table shown in Figure 3.32(b) has been divided into three 
vertical sections, one for each of the output functions. The individual sections contain 
a vertical line for each of the minterms associated with that function. A row is provided 
for each of the prime implicants and they have also been sectionalised so that the first 
horizontal section consists of the prime implicants which are associated with fl  only, 
and lower down the table sections have been allocated to those prime implicants which 
are associated with more than one of the output functions. Xs have been inserted in 
the table in accordance with the rules described in section 3.12 earlier in this chapter. 

Prime implicants a and c can be removed from the table since they are essential for 
the output function fl  but for neither of the other two functions. Since cells 6, 11 and 
15 are covered by these prime implicants the columns headed by these numbers in the 
first vertical section of the table can also be removed. Prime implicant d is essential for 
J~ only, and can be removed from the table. This leads to the removal of the columns 
headed 12 and 14 in the second vertical section of the table. Similarly, prime implicantf  
is essential for f3 only, and can be removed from the table, allowing the columns 
headed 2 and 10 in the third vertical section to be removed. 

A reduced prime implicant table is shown in Figure 3.32(c). Prime implicant h is 
essential to cover cell 9 inf2. h is common to bothfl  and f2 and will appear in those two 
output functions. Only cell 0 remains to be covered, and since the corresponding 
minterm is common to all three functions, the prime implicant j will appear in each 
of the output equations. 

Hence in terms of the prime implicants" 

fl = a + c + h + j  

f2 = d + h + j  

f3 = f + j  

These equations, when written in terms of the Boolean variables A, B, C and D, can be 
shown to be identical to those obtained in the previous section. Implementation of 
these functions is illustrated in Figure 3.31. 

3.20 Reduced dimension maps 

K-maps are only useful up to and including functions with six variables, but in the case of 
a function having a larger number of variables and providing the function does not 
contain too many terms it can be useful to plot it on a reduced dimension map (RDM). 
Such a map is one in which the individual cells can now contain variables, so that a map 
for n variables can be used to represent functions having n + 1 or even n + 2  variables. 

Consider the four-variable map shown in Figure 3.33(a). The two-cell loops on 
this map occupy those cells where the combinations of the variables A, B, and C 
are constant. For example, in the top left-hand corner of the map the two cells 
looped correspond to A = 0, B = 0, and C = 0. In effect, this K-map consists of 
eight sub-maps, each sub-map being used to plot the single variable D. However, the 
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Figure 3.33 (a) 4-variable map showing 2-cell loopings (b) Reduced dimension map for function plotted in (a) 

same information may also be displayed in a map of eight cells by indicating the value of 
the function in each sub-map by a map-entered variable (MEV) written in one cell. So, to 
reduce the dimensionality of the map by the single variable D, all the MEVs must be one 
of the four possibilities D , / ) ,  0, or 1 as determined by the following conversion table 
applied to each sub-map in turn and using the sub-map's values of A, B, and C. 

Value of  function f o r . . .  

D - O  Dffil MEV 

0 0 0 
0 1 D 
1 0 D 
1 1 1 

The resultant map is known as a reduced dimension map or RDM, and for the function 
shown in Figure 3.33(a) the RDM is shown in Figure 3.33(b). Each cell of the RDM 
corresponds to the appropriate two adjacent looped cells in the full map shown in Figure 
3.33(a). By using this nomenclature, the same function has now been plotted on 
a 3-variable K-map whereas before, it was plotted on a 4-variable K-map. 

It is also possible to start with a map that already contains MEVs and reduce its 
dimensions further. For example, the RDM shown in Figure 3.34(a) contains the MEV 
E and it is required to reduce the map dimension from four to three. Looping cells, 
four separate terms can be identified, and they are: 

I m m 

Term p - ( A B C ) D E  

Term q - ( A B C ) D E  + (ABC)D 

= (ABC)(D + E) 

Term r -  ( A B C ) D E  

Term s - (ABC)D + ( A B C ) D E  

= (ABC)(D + E) 
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Figure 3.34 (a) Five-variable function plotted on a 3-variable map (b) Further dimension reduction of  function 
plotted in (a) 

This 5-variable function plotted on a 3-variable RDM is shown in Figure 3.34(b). 
In this case the axes of the K-map have been labelled in the same way as previous 
3-variable K-maps (e.g., Figure 3.6) which disguises the one-to-one correspondence 
between cells in the RDM and pairs of cells in the previous 4-variable map. 

3.21 Plotting RDMs from truth tables 

A 3-variable function is defined by the truth table shown in Figure 3.35. It is 
required to plot this function on a 2-variable map with the third variable C being 

A B C f  
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0 0 1  1 
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Figure 3.35 Development of  an 
RDM from a truth table 
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designated as the MEV. The table is first divided hor- 
izontally and vertically by the dotted lines to give the 
four possible combinations of the variables A and B. 
Entries are then made in the appropriate cell of the 
RDM for each of these four combinations. For exam- 
ple, with A -  0 and B -  l, the table shows that f -  1 
when C = l, and that f = 0, when C = 0, so C is entered 
in the appropriate cell of the RDM. The other entries 
are obtained in the same way. For both minterms ABC 
and ABC, f is listed as a 'don't  care' and so this 

is the entry on the RDM. Using the same 
method, a more complex example (that of plot- 
ting a 4-variable function on a 2-variable 
RDM) is shown in Figure 3.36. Firstly, each 
cell on the K-map is identified with a 4-line 
section of the truth table, where variables A 
and B are constant. Next, the entry in the 
RDM is calculated as shown. 'Don' t  cares' 
are indicated by writing X after the variables 
giving the 'don't  care' state. For the cell identi- 

CDX fled by A - 0, B = 1 (the top right-hand cell), 
the original function is indicated by the 
entry CD+CDX.  A simple 2-variable 
K-map of variables C and D shows that 
this may be simplified to D although this 
loses some information (i.e., the 'don't  care' 
minterm ABCD) about the original function f. 

Figure 3.36 Plotting a 4-variable function on a 
2-variable R D M  
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Therefore, in this case, either entry can be used depending on the degree of sophistica- 
tion required. 

/ 

A~ 0 1 A~ 3.22 Reading RDM functions 
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/ 

/ 

/ 
BC 

(a) (b) 

Figure 3.37 Reading an RDM 
(a) The original plot (b) Looping the 
Cs to form the terms A C and BC 

f = AB(C + C) + ABC + ABC 

= AB(C + C + C + C) + ABC + ABC 

= 2B(C + c) + 2c(k + B) + kC(2 + A) 
= A B + A C + B C  

and the final result can also be written down directly from Figures 3.37(a) and (b) 
by inspection. 

A three-variable function has been plotted on a 
2-variable RDM in Figure 3.37(a) with C being the 
MEV. The entry 1 on the map can be replaced by 
C + C and adjacent identical MEVs can be looped 
as shown in Figure 3.37(b). The loops thus formed 
represent the terms A C and BC, so that the function 
can be written as 

3.23 Looping rules for RDMs 

To develop the principles presented in elementary form in the previous section 
(section 3.22), this section lists the rules for reading and simplifying a function 
presented on an RDM. Figure 3.38 shows some typical examples. 

1. Cells containing identical entries may be looped together according to the usual 
K-map rules (see section 3.10) and the entry (common to all the looped cells) 

O0 01 11 10 O0 01 

o o 
, , ,  

, @ , 

(a) Encircled term read as ABCQ 

11 10 

(b) Encircled term read as ;~BQ 

0 

01 11 10 BA~C O0 01 11 

1-" 

(c) Encircled term read as ABQ 

Figure 3.38 Looping rules for RDMs 

10 

(d) Encircled term read as ;~CQ 
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(a) Typical 3-variable RDM for a 4-variable function (b) RDM after minimisation 

is ANDed with the usual result from the looping. Thus, in Figures 3.38 (a) and (b) 
the contributions to the function are ABCQ and ABQ respectively. 

2. A cell entry of Q adjacent to a cell containing 1 may be looped together to give Q 
ANDed with the OR of the two cells, together with the usual result from the cell 
containing 1. This is the situation treated in section 3.22, and further illustrated in 
Figure 3.38(c) where the contribution to the function is Q(ABC + ABC) + ABC = 
ABQ + ABC. Similar results apply to larger groups of cells with identical entries, 
if they are adjacent to cells containing 1 that may be used to obtain an allowable 
group size. 

3. A cell entry of Q adjacent to a cell containing a 'don't care' or X may be looped 
together to give Q ANDed with the OR of the two cells. This is illustrated 
in Figure 3.38(d) where the contribution to the function is A CQ. Larger groups 
of cells with either entries of Q or entries of X give the usual looping result ANDed 
with Q. 

To illustrate these rules further, Figure 3.39 shows an RDM for a 4-variable 
function. Term A/) is obtained by looping the entire top row; term BCD is obtained 
by looping the two right-hand cells, and the term ABC is not needed as essentially it 
has been included in the two previous loops in the form ABC(D + D). Finally, the term 
ABC cannot be combined with any other cells in a way that simplifies the result. 
Therefore, the final result is f = AD + BCD + ABC. 

3.24 Criteria for minimisation 

During the infancy of Digital Logic design, Boolean functions were typically imple- 
mented by using individual logic gates, perhaps made using discrete components. 
The use of K-maps and Quine-McCluskey minimisation techniques were of direct 
importance in developing all but the most trivial of designs, to economise on the 
number of components used. As the technology developed from those early days, 
firstly integrated circuit gates of various types were produced, and then successively 
larger scale integration has been used in developing integrated circuits containing 
greater numbers of logic gates, and capable of progressively more sophisticated logic 
functions. 'SSI' (small scale integration) chips contained just a handful of individual 
gates on one chip; 'MSI' (medium scale integration) chips contained a number of 
more complex functions, such as flip-flops; 'LSI' (large scale integration) and 'ELSI' 
(extra-large scale integration) chips contained the equivalent of several thousand 
conventional gates, typically arranged to function as a specialised logic unit, such as 
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a basic calculator, and 'VLSI' (very large scale integration) chips contain much greater 
numbers of logic gates, as exemplified by current microprocessor chips and similar 
components containing the equivalent of millions of logic gates. 

Amongst VLSI chips are the so-called programmable logic devices or PLDs which 
can be used to implement custom Boolean logic functions, and for all but the smallest 
logic designs these chips are currently the method of choice for implementing a new 
logic design. These chips are of enormous importance and are covered in detail in 
Chapter 11. However, a logic designer still needs to be familiar with the basics of 
function minimisation in order to understand the fundamental processes involved in 
programming a PLD, and also if the designer becomes involved in the gate-level design 
of a new custom VLSI chip. In addition, for smaller designs which, in principle, can use 
any type of logic gate and that are impractical or uneconomic to implement using 
PLDs, optimisation using Karnaugh maps or Quine-McCluskey minimisation in order 
to obtain the simplest possible circuit is one of several principles that might be used in 
the design. However, other design criteria include: 

1. minimal cos t -  it may be cheaper to use certain components as opposed to others, 
2. minimised number of gates - one interpretation of the 'simplest' solution, 
3. smallest s i z e -  depending upon whether chips are available that can directly 

implement parts of the functions required, 
4. minimised chip count - depending upon which chips are available and how their 

internal gate structure can be used, 
5. minimised number of chip-to-chip interconnections, which are a source of 

unreliability, 
6. the use of only one type of gate (e.g. only NAND gates) in order to reduce the 

number of standard parts that must be stored in case of malfunction (see also 
Chapter 4), and 

7. minimal propagation delay (see chapter 4 ) -  in cases where the very fastest circuit 
operation is required. 

Which of these design principles is used in practice depends largely upon the 
function of the circuit being designed, its intended use, and its intended market. 
In some cases, it may be necessary to experiment with several equivalent circuit designs 
in order to choose the one that best meets the chosen criteria. 

Problems 

3.1 Expand the following Boolean functions into their canonical form: 

(a) jfi (A, B, C) = AB + C 

(b) A (A, B, C) = AB + 2 C  + AkC 

(c) f3 = B + CD + ABD + ABCD 

3.2 Simplify the following three-variable Boolean functions algebraically: 

(a) fl = ~ 1, 2, 5, 6 

(b) f2 = ~ 0 ,  1, 2, 3, 7 

(c) fl = ~ 3, 5, 6, 7 
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3.3 (a) Express the three-variable function f = y~ 0, 1 as a product of maxterms. 

(b) Express the three-variable functionf = l-I o, 1, 2, 5, 6, 7 as a sum of minterms. 

(c) Determine the inverse function o f f  = ~ 3, 5, 6, 7 and express it as a product 
of maxterms. 

3.4 Find the minimised sum-of-products expression equal to: 

(a) fl(A, B, C ) =  y~ O, 1, 3, 4, 6, 7 
(b) fz(A, B, C, D ) =  y~ 0, 1, 2, 3, 7, 8, 9, 11, 12, 15 
(c) f3(A, B, C, D ) =  II  0, 4, 5, 6, 7, 8, 9, 10 
(d) ~(A, B, C, D, E ) =  ~ 0, 1, 3, 5, 6, 7, 8, 9, 10, 15, 16, 20, 21, 

22, 23, 24, 25, 28, 29, 30, 31. 

3.5 Minimise the following functions using the 'don't care' terms for simplification 
wherever possible: 

(a) f(A, B, C ) =  ~ 3, 5 with 'don't care' terms 0, 7 
(b) f(A, B, C, D ) =  ~ 1, 2, 3, 5, 6, 7, 10, 11 with 'don't care' terms 9, 12, 15 
(c) f(A, B, C, D ) =  II  o, 4, 7, 11, 14 but terms 6, 8, 9, 13 are 'don't cares' 
(d) f(A, B, C, D, E) = ~ 4, 5, 6, 7, 12, 14, 16, 20, 21, 24, 26, 27, 31 with 

'don't care' terms 0, 11, 19, 22, 30 

3.6 Find the minimised product-of-sums expression equal to: 

(a) f (A, B, C)= Y~ O, 1, 2, 5, 7 
(b) f(A, B, C, D ) =  ~ 0, 1, 9, 10, 11 
(c) f(A, B, C, D, E ) =  ~ 1, 2, 5, 6, 10, 11, 14, 15, 16, 17, 20, 21 
(d) f(A, B, C, D ) =  Y~ 5, 7, 9, 10, 11 with 'don't care' terms 2, 13, 15 

3.7 Find the minimised sum-of-products expression for the logical product F = F1F2 
of the following pairs of functions: 

(a) F~(A, B, C, D)= ~ 1, 3, 5, 7 
Fz(A, B, C, D)= ~ 2, 3, 6, 7 

(b) F~(A, B, C, D ) =  ~ 1, 3, 5, 6, 8, 10, 11, 12, 13 
F2(A, B, C, D ) =  ~ 0, 3, 5, 8, 9, 11, 13, 15 

(c) FI(A, B, C)= II o, 3, 6, 7 
Fz(A, B, C)= I-I 1 ,3 ,7  

3.8 The XS3 code is used to represent the ten decimal digits. Develop the decode logic 
for converting from XS3 to decimal. 

3.9 Minimise the following functions using the Quine-McCluskey tabular method: 

(a) f(A, B, C, D ) =  ~ 0 ,  1, 3, 6, 9, 10, 11, 12, 14, 15 
(b) f(A, B, C, D, e ) =  y~ o, 1, 5, 8, 11, 12, 14, 16, 20, 21, 25, 27, 28, 30, 31 

with 'don't care' terms 2, 7, 13, 22, 23 
(c) f(A, B, C, D ) =  1-I 0, 3, 4, 5, 11, 12, 13, 15 but terms 2, 6, 8 'can't happen'. 
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3.10 Minimise the following functions using the Quine-McCluskey decimal tabulation 
method" 

(a) f(A, B, C, D)= ~ 2, 3, 4, 7, 8, 11, 13, 14 with 'can't happen' terms 1, 5, 10 
(b) f(A, B, C, D, E) = ~ 0, 1, 2, 3, 5, 11, 12, 13, 17, 19, 20, 22, 23, 25, 27, 28, 

29, 31 with 'can't happen' terms 7, 15, 21 
(c) f(A, B, C, D ) =  II  2, 4, 6, 7, 8, l l, 12, 13, 15 

3.11 Plot the following 4-variable function on a 3-variable RDM. 

f(A, B, C, D ) =  Y]~ l, 3, 7, 8, 10, 11, 13, 14 

3.12 Plot the following 4-variable function on a 2-variable RDM. 

f(A, B, C, D ) =  Y] 0, 2, 5, 7, 9, 10 
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Figure P3.13 

3.13 Reduce the 4-variable RDM shown in Figure P3.13 to 
a three-variable RDM. 

3.14 Construct a truth table for the functionf(A, B, C, D) = 
0, 1,5, 6, 1 l, 12, 14, 15 with 'don't care' terms 3, 7, 9 

and develop a 2-variable RDM with the aid of the truth 
table. 

3.15 Determine the Boolean function represented by the 
following RDM maps. 
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4 Combinational logic 
design principles 

4.1 Introduction 

The gates dealt with in the two preceding chapters have been the AND, OR and NOT 
gates. These gates are the easiest to handle using the formal methods of Karnaugh maps 
and Quine-McCluskey minimisation, but in practice, logic circuits are often actually 
implemented using NAND and NOR gates. Historically this was because these gates 
were the easiest to fabricate using readily available logic technologies, and in the case of 
certain technologies currently at the research stage these types of limitations are still 
present. Although AND and OR gates are also available using most types of SSI 
technologies, there is a smaller selection of them, they may be more expensive, and they 
may have slightly poorer performance (e.g. longer propagation delay, the short delay 
time introduced by a logic gate). Simple combinations of gates are also available in the 
mature SSI technologies, such as the AND-OR-INVERT (AOI) function and the 
expandable AND-OR (AO) function. Other derived logic functions are also commonly 
available now, such as Exclusive-OR (XOR) gates and Exclusive-NOR (XNOR) gates. 
The purpose of this chapter is to describe design techniques used for implementing 
actual logic designs, building upon the theoretical approaches of Chapter 3. 

4.2 The NAND function 

The NAND function is defined by the equation 

f = (A . B) 

A B f  
0 0 1 
0 1 1 "~  ~" "i" 

! 

I 1 1 0 
t 

(a) 

AB ~ f=AB 

(b) 

f -B f=_B 

(c) (d) 

Figure 4.1 (a) Truth table for the NAND 
function (b) Conventional circuit symbol for 
a NAND gate (c) and (d) The NAND gate 
used as an inverter 

and the truth table for the function is given in 
Figure 4.1 (a). This table shows that the output of 
the gate is 1 if either or both inputs are 0 and that 
the output is 0 only if both inputs are 1. Using 
de Morgan's theorem (section 2.12) it is clear that 
an alternative equation for the NAND function is 

f - ( A . B ) = A + B .  

The usual symbol for a two-input NAND gate is 
shown in Figure 4.1(b). 

If the A input of the gate is permanently 
connected to logic 1 level, then clearly the output 
is given by 

f = (A . B) - (1 .  B) = B 
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so that the N A N D  gate is now acting as an inverter. This can also be observed 
directly from the truth table. The only relevant rows in the truth table are those 
enclosed by the dotted lines in Figure 4.1 (a). An examination of these rows shows that 
if B = 0 then f = 1, and if B - 1 then f = 0. Another way of achieving logic inversion 
using a N A N D  gate is by connecting both inputs to the same logic level, whence if 
A = B then 

f = (A. B) = (B. B) = B. 

These two connections are illustrated in Figures 4.1(c) and (d). There are two 
important provisos that must be emphasised at this point: 

1. All inputs to real logic gates must be connected to a well-defined logic level, either 
0 or 1, at all times. If a logic gate input is left unconnected, the gate will either operate 
erratically or may even be destroyed through excessive power dissipation caused by 
transient input voltage levels outside the gate's design limits. Any unused inputs to 
a NAND gate should be connected to logic 1 level, and this is often achieved by 
connecting all the appropriate inputs to the positive supply rail through resistors 
whose exact value is unimportant but is usually around 10kft. In principle, gate 
inputs may be connected directly to the supply rail without using a resistor, but this is 
not usually recommended as the resistor affords a measure of protection to the 
delicate gate input against large voltage surges and spikes on the power supply rails. 
Alternatively, an unused input may be connected to one of the used inputs, but with 
some risk of reduced performance, as explained in point 2 below. 

2. In some logic families, there is a small speed penalty, usually measured in 
nanoseconds, but significant in certain circumstances if logic inputs are commoned 
(i.e., using the inversion circuit of Figure 4. l(d)). The technical reason for this is the 
increased effective capacitance of two gate inputs, compared with that of a single 
gate input, that must be driven by the preceding gate, and which therefore takes 
slightly longer to charge to the correct logic level. It is therefore preferable to use 
only the inversion circuit of Figure 4.1(c) if operating speed is likely to be an 
important issue in the design. 

4.3 NAND logic implementation of AND and OR functions 

~ f~AB 
Figure 4.2 NAND logic implementation of 
the AND function 

_ ~B=A+B 

Figure 4.3 NAND logic implementation of 
the OR function 

Implementation of the AND function using 
N A N D  gates alone is achieved by connecting 
two NAND gates in cascade, as shown in 
Figure 4.2. The second NAND gate acts as an 
inverter, and converts the circuit's function from 
N A N D  to AND. 

If f = (A. B) = A + B, then the OR function 
can be implemented by performing the NAND 
operation on the inverted variables. The same 
deduction can also be made from a Karnaugh 
map of the OR function. The implementation of 
the OR function using NAND gates is illustrated 
in Figure 4.3. 



Combinational logic design principles 83 

4.4 N A N D  logic implementation of, sums-of-products  

Figure 4.4(a) shows a straightforward implementation of the functionf = AB + CD using 
AND/OR logic. The diagram shows that there are two levels of logic in this circuit, the first 
level consisting of the OR gate and the second of the two AND gates; therefore, this 
function and similar functions are referred to as two-level-sum-of-products expressions. 

This circuit can be translated into a N A N D  circuit by using the transformations 
developed in section 4.3 above. The translation is shown in Figure 4.4(b), where the 
first block enclosed by dotted lines represents the two A N D  gates, and the second 
block constitutes the OR gates. It can be seen that in both branches of the circuit there 
are two single input N A N D  gates in cascade and these will simply produce a double 
inversion of the signals AB and CD. As a consequence, the four gates shown crossed 
through are redundant, and the circuit reduces to that shown in Figure 4.4(c). 
This diagram shows that there is a one-to-one translation from the A N D / O R  con- 
figuration to the corresponding N A N D  configuration. 

An even more complicated function such as 
_ w 

f -- (A + BD)C + (C + D)(A + C)B 

can be regarded as a two-level sum-of-products since it can be expressed in the 
following form: 

f -  PQ + RST 

where 

P - A + B D ,  Q - C  

, Level 2 
A , 

~ ~ 
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e Level 1 
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Figure 4.4 (a) The function f = A B  + CD implemented with AND~OR logic (b) Transformation of the AND~OR 
circuit to a N A N D  circuit (c) The simplest N A N D  implementation o f f  = A B  + CD 
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P A + B D ~  

R C + D  

(a) 

(b) 

c < - >  i 

(c) 

Figure 4.5 (a) Basic circuits for the implementation o f f  = (A + BD)C + (C + s + C)B (b) The NAND logic 
implementation of C + D (c) The NAND logic implementation o f f  = (A + BD)C + (C + D)(A + C)B 

and 

R = C + / ) ,  S = A + C ,  T - B .  

Hence, the implementation must be of the form shown in Figure 4.5(a). 
In order to generate a term such as R = C +/5  using a NAND gate, the required 

expression is rewritten (using De Morgan's theorem) as R = ( C +  D ) = ( C - D ) .  

That is, to the inputs of a NAND gate are connected the inverses of the variables that 
must be summed by the NAND gate, as shown in Figure 4.5(b). The complete circuit 
for the implementation of the given function is shown in Figure 4.5(c). 

The technique described above for the implementation of a Boolean function using 
NAND gates alone does not necessarily lead to the minimal NAND implementation. 
However, sometimes by using a factorisation process it is a simple matter to produce 
a NAND implementation which leads to a circuit that requires a smaller number of 
gates. For example, consider the function 

f = A C + A B + C D .  

Direct implementation of this function as a two-level sum-of-products circuit leads 
to the circuit shown in Figure 4.6(a) which requires one 3-input NAN D " gate, three 
two-input NAND gates and two NAND gates connected as inverters. 

However, the expression can also be written in the form 

f = A ( B +  C) + CD 

and this function can be implemented using five NAND gates, as shown in Figure 4.6(b). 
Alternatively, the expression may be written in the form 

f = C(A + D) + AB 
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(a) 

c•c)• B+ 

Er-) " 

(b) 

A ~ C 

le) 

Figure 4.6 (a), (b) and (c) Three ways of  implementing f = AC" + AB + CD 

and this can be implemented in the form shown in Figure 4.6(c), which requires eight 
NAND gates. 

In this example the implementation shown in Figure 4.6(b) uses the smallest number 
of NAND gates; it requires three levels of logic, as does the circuit in Figure 4.6(a). 
Factorisation of a Boolean function will lead to an increase in the number of logic 
levels required, and consequently this will increase the propagation delay through the 
circuit. The shortest delay time is always obtained with the two-level sum-of-products 
implementation. If complemented variables are available then the circuit of Figure 4.6(a) 
would provide minimum propagation delay since only two levels of logic would 
be required. 

4.5 The N O R  function 

A B f 

"6 G'-f  I 

tO  1 0 
" ~ " 0 " 6  

1 1 0 

(a) 

,~ A + B 

(b) 

t_-g t=ff 
B 

(c) (d) 

Figure 4.7 (a) Truth table for the NOR function 
(b) Conventional circuit symbol for a NOR gate 
(c) and (d) The NOR gate used as an inverter 

The NOR function is defined by the equation 

f - A + B  

which, by using De Morgan's theorem, can 
be alternatively expressed as 

f - A . B .  

The truth table is shown in Figure 4.7(a) 
and the conventional symbol used to rep- 
resent the gate is shown in Figure 4.7(b). 
An examination of the truth table shows that 
if any one, or both, of the inputs are 1 the 
gate output is 0, while the output is only 1 
provided both inputs are 0. 
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If the input A of the gate is permanently connected to logic 0 level then clearly the 
output is given by 

f = (A + B) = (0 + B) = B 

so that the NOR gate is now acting as an inverter. This can also be observed directly 
from the truth table. The only relevant rows in the truth table are those enclosed by 
the dotted lines in Figure 4.7(a). An examination of these rows shows that if B = 0 
then f = 1, and if B = 1 then f = 0. Another way of achieving logic inversion using 
a NOR gate is by connecting both inputs to the same logic level, whence if A = B 
then 

f = (A + B) = ( B +  B) = B 

These two connections are illustrated in Figures 4.7(c) and (d). 
As noted above in section 4.2, unused inputs to any gate must never be left 'floating' or 

unconnected. Unused NOR gate inputs are often connected to logic 0 level, usually 
achieved in practice simply by connecting the input directly to the ground (0V) of the 
digital logic circuit. Alternatively, unused inputs in a NOR gate can be connected to one 
of the used inputs, but again with the risk of reduced performance, as explained above in 
section 4.2. 

4.6 NOR logic implementation of AND and OR functions 

The implementation of the OR function using NOR gates is achieved by connecting 
two NOR gates in cascade, as shown in Figure 4.8(a). In this arrangement the first 
NOR gate performs the NOR operation on the two input variables A and B while the 
second gate acts as an inverter, as described in the previous section. 

AB D A+B~f'A+B 
A 

- AB 

(a) (b) 

Figure 4.8 Implementation of (a) the OR function and (b) the AND function using NOR gates 

The circuit for generating the AND function can be developed as follows. 
Since NOR gates are being used for the implementation of the function, the output 
gate will be a NOR gate whose output is f = AB, as shown in Figure 4.8(b). 
In order to obtain this output, the inputs to the gate should be A and B, since 
(by De Morgan's theorem) (A + B) = A . B -  AB. Therefore, the output NOR gate is 
preceded by two further NOR gates, both used as inverters, one for each variable. 

4.7 NOR logic implementation of products-of-sums 

A function such as f - ( A  + B)(C + D) is called a two-level product-of-sums 
expression. A possible implementation of this function using OR/AND logic is 
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f = ( A + B ) (  C+D)  

, ,,, . . . . . . . . . . . . . . .  
f = ( A + B ) ( C + D )  , ," 
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(A+e)(C+O) 
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o i 

(c) 

Figure 4.9 (a) f = (A + B)(C + D) implemented with OR~AND logic (b) Transformation of  the OR~AND circuit 
to a NOR circuit (c) The NOR implementation o f f  = (A + B)(C + D) 

shown in Figure 4.9(a). This circuit can be converted to a circuit using NOR gates 
only by using the transformations developed in the previous section, as shown in 
Figure 4.9(b). An examination of this circuit shows that two pairs of the NOR gates in 
this implementation are redundant since they are merely producing a pair of double 
inversions, and therefore they have been crossed through in Figure 4.9(b). 

The simplest form of the circuit using NOR gates is shown in Figure 4.9(c), and it 
can be seen that there is a one-to-one transformation from the OR/AND circuit to the 
corresponding NOR circuit. 

4.8 NOR logic implementation of sums-of-products 

It frequently happens that a Boolean function is expressed as a sum of product 
terms (sometimes, but not necessarily, minterms) and if this function is to be 
implemented using NOR gates then it must first be converted to the product-of-sums 
form. For example, suppose that it is required to implement, using only NOR gates, 
the function 

f = ~ 0, 1, 3, 4, 5, 8, 12, 13, 15. 
1 

The absent minterms in this summation represent the inverse function, f ,  and are 
plotted as 0s on the K-map shown in Figure 4.10(a). Simplifying, 

f = CD + A B C  + ABD. 

Hence, by De Morgan's theorem, 

f = (C + D)(A + B + C)(A + B + D) 

This is the minimal product-of-sums form of the original Boolean function and it is 
shown implemented using NOR gates in Figure 4.10(b). 
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(b) 

Figure 4.10 NOR implementation of a 

sum-of-products expression (a) Plot of the 
inverse function (b) Implementation of 
minimised product-of-sums expression 

4.9 Boolean algebraic analysis of 
NAND and NOR networks 

Analysis of NAND and NOR networks 
is often much more time-consuming than 
the analysis of comparable AND/OR 
networks because of the inversions that take 
place at the outputs of each NAND or NOR 
gate. For example, consider the NAND 
network implemented in Figure 4.5(c) and 
redrawn for convenience without the inverters 
in Figure 4.11. The outputs of the various 
NAND gates in the network are labelled 
p, q, r, s, t, u and f 

There are two main approaches to ana- 
lysing this circuit using Boolean Algebra. In 
the method shown below, complementation 
bars (generated by the inversion at the output 
of each gate) are removed using De Morgan's 
theorem, as the analysis proceeds. Firstly, 
expressions are derived for the intermediate 
circuit outputs: 

p =  B D =  B + D  

q = Ap = A ( B +  D) = A + ( B +  D) = A + BD 

r = Cq = C(A + BD) = C + (A + BD) = C + A .  (BD) = C + A ( B +  D) 

s = C D = C + D  
m 

u = A C = A + C  

t = sBu = (C + D)B(A + C) - (C + D) + B + (A + C) = CD + B + A C. 

, ......................... _ ; Then, the expression for the circuit output 

, B can be constructed: 
',o 

' : -  

A , [C + A(B + D)] + [CD + B + A C] 
- -  o I1 o - -  

- - -  ~ 

,..'-rr. . . . . . . . . . .  .~ = C(A + BD) + (C + D)B(A + C). 

Figure 4.11 Circuit to illustrate the analysis of 
a N A N D  gate network In an alternative approach, the comple- 

mentation bars may be retained until the 
final expression for the output has been obtained. By repeated application of 
De Morgan's theorem, the expression for the output can then be reduced to that 
obtained using the first method. The steps in this method will not be shown in detail as 
the final result must be the same as that deduced above, but if this method is used 
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particular care is needed to ensure that the complementation bars are applied to the 
correct parts of their corresponding expressions. 

For both of these methods it will be seen that a considerable amount of algebraic 
manipulation is needed; however, the same basic approaches are applicable to NOR 
networks as well as to NAND networks. 

4.10 Symbolic circuit analysis for N A N D  and NOR networks 

This alternative method of analysing a logic network depends upon the fact that the 
NAND function can be implemented by an AND gate in cascade with a NOT gate 
(see Figure 4.12(a)) or, alternatively, it can be implemented by an OR gate whose 
inputs are inverted, as shown in Figure 4.12(b). 

The lower section of Figure 4.11, enclosed by the dotted lines (see Figure 4.13(a)), 
can now be represented by the network shown in Figure 4.13(b). Double inversions 
appear on two of the input lines to the OR gate and can be eliminated, while the inversion 
on the B input line can be represented by an inversion circle (or 'inversion bubble') at the 
OR gate input. This modified form of the circuit is shown in Figure 4.13(c) and the 
output t of this section of the original network can immediately be written down as 
t = CD + B + A C, which agrees with the e~pression obtained for t using Boolean 
algebra in the preceding section. 

A .~ 

(a) 

A 

(b) 

Figure 4.12 Alternative implementations of a NAND gate 

! 

D 

1 B t,_ ! 

I 
I 
I 
I 

I j 

(a) 

m 
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A 

C 
D s 

= B t 

(c) 

(b) 

Figure 4.13 Transformation from NAND/NAND to AND~OR configuration 

t 
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gD 

Figure 4.14 The NAND network of Figure 
4.11 transformed into a more readily analysable 
network 

Using the same transformations, the upper 
part of the network shown in Figure 4.11 can 
also be modified and the whole network can 
be redrawn in a form which is easier to 
analyse, as shown in Figure 4.14. 

Similar transformations are available for 
NOR gates, as shown in Figures 4.15(a) and (b), 
and the method of analysis for a NOR 
network is then analogous to that used in 
the NAND network. 

(a) (b) 

Figure 4.15 Alternative implementations of a NOR gate 

4.11 Alternative function representations 

The alternative representations for the NAND and NOR functions developed 
in section 4.10 can be shown in a more compact form using inversion circles. 
For example, using De Morgan's theorem, the NAND function may be expressed as 

f = ( A . B ) = A + B ,  

and an alternative representation for the NAND function consists of an OR gate with 
inversion circles at its inputs, as shown in Figure 4.16(a). The NOR function, again 
using De Morgan's theorem, is given by 

f = A + B = A . B ,  

and an alternative representation of this function requires an AND gate with inversion 
circles at its inputs (see Figure 4.16(b)). 

For the AND and OR functions, alternative representations are obtained by 
inverting the defining equations for the NAND and NOR functions. Hence 

o 

AB = AB = A + B 

(a) 

~ . ~ ~ f =  A ~ f=~,~ A+ B= B , 

Ibl 

I 

(c) (d) 

Figure 4.16 Alternative representations for (a) the NAND function, (b) the NOR function, (c) the AND function, 
(d) the OR function 
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and 
Q D 

A + B = A + B - A . B  

For the AND function, the alternative representation consists of an OR gate with 
inversion circles at each of its inputs and also at its output (see Figure 4.16(c)), while 
the OR function requires an AND gate with inversion circles at each of its inputs and 
also at its output (see Figure 4.16(d)). 

One way to remember De Morgan's theorem is that in an AND, NAND, OR, or 
NOR combination of Boolean variables or inverses, an inversion bar across all the 
variables may be split or joined at will, provided the operator combining them is 
changed simultaneously (i.e. '+ '  is changed to '.', or '.' is changed to '+'). This rule 
corresponds precisely with using alternative representations based upon De Morgan's 
theorem in circuit diagrams. An AND gate symbol may be swapped for an OR gate 
symbol, and vice-versa, provided that simultaneously the inversion circles are swapped 
either from the output to all the inputs, or from all the inputs to the single output. 
This procedure will often make the circuit diagram easier to understand but will not 
affect the Boolean operation of the circuit. 

4.12 Gate signal conventions 

In a practical gate network it is always assumed that the AND and OR functions are 
implemented within the confines of their distinctive shape symbols. The absence of 
inversion circles drawn at the input(s) to a gate circuit symbol indicates that the 
corresponding gate input is active high, i.e. the usual case, where logic 0 and 1 are 
passed unchanged to the gate itself. However, the presence of inversion circle(s) drawn 
at the input(s) to a gate circuit symbol indicates that the corresponding gate input is 
active low, and logic levels are inverted before being presented to the basic gate symbol. 
(In practice, the inversion(s) and the gate function are often undertaken by an 
integrated circuit whose operations cannot be physically separated in this manner, but 
the method of analysis and the nomenclature are still often used.) Similarly, at a gate 
output, an inversion circle indicates an active low output, i.e. when the gate is activated 
(the basic gate alone has output 1) the final output is 0. Finally, the absence of the 
inversion circle indicates an active high output, i.e. an output of 1 when the gate is 
activated. Sometimes, the use of active low logic lines is described in terms of the 
negative logic convention, where logic 1 is represented by 0V and logic 0 is represented 
by (for example) +5 V, but this approach will not be developed further here. The usual 
voltage representations (logic 0 = 0V, logic 1 - + 5 V ) ,  used throughout this book, 
are referred to as the positive logic convention. 

4.13 Gate expansion 

Suppose that a NAND gate is required with more inputs than are available from one 
device. The number of inputs can be increased by the use of AND circuits 
synthesised from NAND gates, as shown in Figure 4.17(a) or, if they are available, 
AND gates can be used to achieve the same effect. However, an alternative method 
of obtaining the logical AND of many signals is shown in Chapter 13. A similar 
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- ~  f - X Y  where X.. A B CD j , - - , .  
and Y=EFGH 

(a) 

B+C+D 

(b) 

Figure 4.17 (a) Expansion of NAND gate inputs by means of AND circuits synthesised fiom NAND gates 
(b) Expansion of NOR gate inputs by means of OR circuits synthesised from NOR gates 

technique may be used to increase the number of inputs to a NOR gate, as illustrated 
in Figure 4.17(b). 

The extent to which the number of inputs to a gate may be expanded depends upon 
the 'fan-in', defined as the number of inputs available on each gate, and the type of 
gates available in a particular logic family. For example, in the type 74TTL families, 
NAND gates with up to eight inputs are available; hence, using a two-level expansion, 
a NAND equivalent with up to 64 inputs could be obtained using 17 NAND gates 
(or eight AND gates plus one NAND gate). 

4.14 Miscellaneous gate networks 

A gate network performing the AND-OR-NOT (or AND-OR-INVERT) operation is 
illustrated in Figure 4.18(a), and this network is sometimes available as a circuit 

+CD 

o 

la) 

A 

B 

(b) 

m . .  

B) ( C+ D) f,. A? 

(c) (d) 

Figure 4.18 (a) The AND-OR-NOT module (b) connected as a NOR gate (c) generating a 2-level 
product-of-sums and (d) connected as an AND gate 
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element in its own right (for example, as the type number 74XX51 in the 74TTL logic 
families where XX indicates the particular type of technology used, such as Low Power 
Schottky (LS or ALS)). It forms the complement of a two-level sum-of-products, as 
shown in Figure 4.18(a). The network can also be used as a NOR gate either by 
commoning the inputs to each AND gate, as shown in Figure 4.18(b) or, better, by 
connecting one of each AND gate's inputs to logic 1 level. Alternatively, if inverted 
variables are connected to the AND gate inputs, then the network will form a two-level 
product-of-sums, as shown in Figure 4.18(c) since, using De Morgan's theorem: 

f = (A. B) + (C. D) = (A. B). (C. D) = (A + B). (C + D). 

If the network is used as a NOR gate but inverted variables are connected to the input 
of each AND gate, the network generates the AND function (see Figure 4.18(d)), since 

n m 

f = A + B = A B .  

The AND-OR configuration, without a final inversion, is also sometimes available as 
a unit (for example, type number 74XX52 in the 74TTL logic families). This network 
is illustrated in Figure 4.19(a), and its basic use is to form a two-level sum-of-products. 

A l '  

a! 
+CD 

C . 

(a) 

A 

B 

A+a+C+O 

f ,A'Oco 

(c) 

(b) 

Figure 4.19 (a) The AND-OR network (b) The A N D - O R  network used as an OR gate (c) The A N D - O R  network 
used as a N A N D  gate 
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The network generates the OR function either by commoning the inputs to each AND 
gate (Figure 4.19(b)) or, better, by connecting one of each AND gate's inputs to logic 
1 level. For single inverted inputs this connection generates the N A N D  function as 
shown in Figure 4.19(c). 

Some of the networks described are capable of expansion. Expander chips are 
available which generate the AND function for a specified number of input variables. 
For example, type 74XX61 in the 74TTL family consists of three AND gates, each of 
which generates a functionf = ABC. This output can then be used as an additional input 
to the OR gate in an expandable AND-OR network or, alternatively, as an additional 
input to the NOR gate in an expandable AND-OR-NOT network such as the 74XX53. 

Other gates available include gates provided with a strobe input which can be 
regarded as an input that either enables or disables the gate. For example, the 74XX25 
consists of twin four-input NOR gates with a strobe input. The output of each gate on 
this chip is given by f = G(A + B + C + D), where G is the strobe input. If G = 0 then 
the gate is disabled (giving an output f = 1) and conversely if G = 1 then the gate is 
enabled to give f = (A + B + C + D). 

4.15 Exclusive-OR and exclusive-NOR 

The Exclusive-OR (XOR) function was defined in section 2.14 by the Boolean 
equation 

- -  n 

f = A B + A B = A ~ B  

where the symbol ~ is used to indicate the XOR operation. The truth table for this 
operation is given in Figure 4.20(a) and the conventional symbol for the practical logic 
gate that implements the XOR operation is shown in Figure 4.20(b). 

The XOR operation is identical to the conventional Boolean OR operation using 
variables A and B except that it excludes the case f = 1 when A = B = 1, hence the 
name Exclusive-OR. When the XOR operation is performed on all possible 
combinations of two binary digits (see Figure 4.20(c)) the modulo-2 sum is obtained, 
where the modulo-2 sum is defined as the conventional numerical sum of the two 
digits but ignoring the carry-out bit. For example, the modulo-2 sum of 1 + 1 = 0. 

Since the XOR function generates the modulo-2 sum of two binary digits it is 
apparent that it has a direct application in the design of arithmetic circuits. It also has 
applications in fault-detection systems (see section 13.13) and in error detection and 
correction circuits found in data-transmission systems. Here, the modulo-2 sum of 
a number of binary digits is obtained and generates the parity function which is 
commonly used as an error-control function. 

A B  f O �9 0 , 0  
0 0 0 A ~ - ' - ~  f = A O B  0 @ I �9 ! 
0 1 1 B t | 0 �9 ! 
1 0 1 
1 1 0 1 �9 ! �9 0 

(a) (b) (c) 

Figure 4.20 (a) Truth table for XOR function (b) Conventional symbol for XOR gate (c) The modulo-2 sum of 
two binary digits 
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A ( A~  =,~ + AB 

= AE)B 

B (,~B)= B+ AB 

(c) 

I ~ A+B 
f= AeB 

A 

(d) 

Figure 4.21 Basic gate implementations of the )(OR function." (a) using AND~OR gates (b) using NAND gates 
only (c) minimal NAND implementation and (d) NOR implementation 

There are a number of ways of implementing the XOR function and these include 
implementation with AND, OR and NOT gates, as illustrated in Figure 4.21(a). 
The minimised implementation is obtained by algebraic manipulation of the 
XOR function f = AB + AB. Adding AA and BB to the right-hand side of the 
equation gives 

f = a . B  
= A B +  B B +  A B +  AA 

= B(A + B) + A(A + B). 

This can be implemented with just four NAND gates (see Figure 4.21(c)). 
From Figure 4.21 (c), it is clear that the output of the circuit is given by: 

f -- (A + AB)(B + AB) 

= A B + A B  

= A @ B  

= A @ B .  

Alternatively, rewriting B(A + B) + A(A + B) = (A + B)(A + B) gives a two-level 
product-of-sums that can be implemented using five NOR gates (see Figure 4.21(d)). 
The output of this circuit is 

f =  (A + B) + (A + B) 

= (A + B)(A + B) 

= AB + AB 

= A @ B .  
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A 

D 
(a) 

OD 

(b) 

Figure 4.22 (a) Serial cascade of Exclusive-OR gates (not recommended) (b) Parallel cascade of Exclusive-OR 
gates (preferred) 

Although the XOR operation can be implemented in a number of ways by a 
combination of discrete gates as shown in Figure 4.21, it is available directly on SSI 
chips in the 74TTL family; for example, the 74XX86 chip provides four two-input 
XOR gates. In many cases, the easiest way to handle the XOR operation in Boolean 
expressions is to substitute the defining Boolean equation (A ~ B = AB + AB) and 
then to use the usual rules of Boolean Algebra, but section 2.14 includes some 
additional useful results that may shorten such analysis. 

If the XOR is indeed of a greater number of variables than can be accommodated 
by one XOR gate, it is necessary to cascade XOR gates. Two possible approaches are 
illustrated in Figure 4.22. In the first method (Figure 4.22(a)) the XOR gates are 
connected serially to produce the XOR of four variables, and in the second method 
two XOR gates operate 'in tandem' to feed the third. Both methods use exactly the 
same number of gates but the method of Figure 4.22(a) requires three levels of logic, 
whereas the method of Figure 4.22(b) requires only two levels of logic. If the time 
delay introduced by each gate is important then the total propagation time delay 
through the second configuration (Figure 4.22(b)) will clearly be less than the time 
delay for the first circuit (Figure 4.22(a)), and so generally the parallel configuration of 
Figure 4.22(b) is preferred. If the XOR of eight variables is required, then for the serial 
method seven levels of logic are needed, whereas the parallel connection requires only 
three levels. 

The XOR gate can also be used as a controlled inverter. This is illustrated in Figure 4.23 
where one input to the 2-input gate is for binary data, while the second input is 
supplied with a control signal M which may be either 0 or 1. If M = 0 the gate transmits 
the input data unchanged to its output, but for M -  1 the gate inverts the input data. 

DataO,1 )~~1.=. DataO,1F~~ 1~1,0 -- 
F'M-O 

Transmission Inversion 
(a) (b) 

Figure 4.23 The XOR gate as a controlled inverter 
(a) Transmission (b) Inversion 

This particular connection can be used in 
conjunction with an adder circuit, and 
the combination of adder and controlled 
inverter can then be used as an adder/sub- 
tractor (see later). The controlled inverter 
also has applications in data processing 
circuits where it is required to complement 
data under external control. 
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A B f 
0 0 1 
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1 0 0 
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(d) 

8 ! 

A+(A~) 
=,~(A+B) 
-~B 

B + ( ~  
=~A+B)  
=AB 

(e) 

f=,~B+AB 
=A~B 

Figure 4.24 K-maps for (a) the Exclusive-OR function, and (b) the Exclusive-NOR function (c) Circuit symbol 
of the Exclusive-NOR function (d) Truth table for the coincidence (XNOR) operation (e) Minimal NOR gate 
implementation of the XNOR operation 

K-maps for the XOR function and its complement are shown in Figures 4.24(a) and (b). 
Selecting those combinations of the variables which make the value of the complement 
function equal to 1 leads to the Boolean equation 

f = A G B -  A B + A B -  A @ B -  A O B  

where A @ B indicates the EXCLUSIVE-NOR (XNOR) function, sometimes written 
as A |  The XNOR function has the v a l u e f  = 1 when A = B = 0 or A = B = 1 
(i.e., when A -  B), and hence is sometimes alternatively termed the 'coincidence' 
function. The conventional circuit symbol for the X N O R  gate is simply an XOR gate 
followed by an inversion circle, as shown in Figure 4.24(c), and the truth table for the 
function is shown in Figure 4.24(d). 

The XNOR operation is, like the XOR operation, also Commutative and 
Associative. This is clear from its close relation to the XOR operation. In addition, 
since it is clear that 

(AeB) e c  
= ( A e B ) e C  
= A e ( B e C )  

= A e ( B e C )  

= A e ( B e C )  
=Ae(BeC) ,  

(using the Boolean relation for the X N O R  operation), 

(using the Associative property of the XOR operation), 

(using the Boolean relation for the X N O R  operation), 

(using the Boolean relation for the X N O R  operation), 

it has therefore been proved that the X N O R  of three variables is equal to the XOR of 
the same three variables: 

(A @ B)~3 C -  A @ B@ C. 
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XNOR gates are available in the mature logic technologies but may also be 
implemented using other gates. Apart from simply inverting the output of an XOR 
gate, the XNOR may be implemented using only four NOR gates, as shown in Figure 
4.24(e). The XNOR operation gives an output of logic 1 whenever the two input 
binary digits are equal, and consequently it has an application in those circuits that 
are designed to compare the magnitudes of two equal length strings of binary digits. 
This theme will be developed further in Chapter 5. 

4.16 Noise margins 

In Chapter 2 it was established that logic 0 and logic 1 can be represented by two 
voltages, usually 0 V and 5 V. The required power supply voltage (Vcc) is tightly 
specified for the common 74TTL transistor-transistor logic family of discrete gates, 
the original versions of which used bipolar transistor technology. However, in practice 
manufacturers design their logic gates to accept and operate correctly with logic 
voltage values considerably different from these ideal values. 

Acceptable values for the low level (logic 0) and for the high level (logic l) are as 
defined in Figure 4.25 for the 74LS series of logic gates. The symbol VOL(max) denotes 

the maximum output voltage that any gate 
Voltage will produce when it is in logic state 0, and 
(v) 1" VOH(min ) is the minimum gate output voltage 

2.7 VoH(min) that any gate will produce when it is in logic 
2.0 r (,,~n) state 1. Both VOL(max ) and VOH(min ) a re  defined 

Indeterminate for worst-case loading conditions. The symbol 
region ViL(max ) denotes the maximum gate input 

voltage guaranteed to be recognised as 
0.8 VIL (max) 
0.5 VoL(max) logic 0, and ViH(min ) is the minimum gate 

input voltage guaranteed to be recognised 
Figure 4.25 74LS(TTL)  series logic levels as logic 1. 

The region between these two voltage levels 
(either at input or output) is indeterminate. If a voltage in this range is presented to 
a logic gate input then its operation is not guaranteed to be sensible as neither a correct 
logic 0 nor a correct logic 1 is being applied. In practice it often happens that the gate 
output will oscillate at high frequency in this case, or perhaps will stay at a constant 
value that is itself within the indeterminate region, thus presenting further problems to 
the next gate in the logic system. 

Since the voltages specifying logic state 1 are minimum values, in practice any voltage 
between the specified minimum and the supply voltage Vcc may be produced and will 
be recognised correctly as denoting logic state 1. Also, since the voltages specifying logic 
state 0 are maximum values, in practice any voltage between the specified maximum and 
0 V may be produced and will be recognised correctly as denoting logic state 0. 

Suppose a 74LS series gate gives a logic 0 output of +0.5 V (just within the specification); 
then, a corrupting noise voltage of more than +0.3 V superimposed on this value will result 
in the input to the next gate being in the indeterminate region where it will not be 
recognised as logic 0. Therefore, the logic 0 noise margin (or noise immunity) is defined as 

N L  = VIL(max) -- VOL( max ). 
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Similarly, the logic 1 noise margin is defined as 

NH = ~OH(min ) - -  ~IH( m i n  )- 

Many digital logic devices intemally use field-effect transistors which are made using a 
metal-oxide-semiconductor (MOS) structure. The most important MOS logic technology 
employs complementary metal oxide semiconductor (CMOS) transistors. In practice, 
the noise margins for the CMOS family can be much greater than those for the 
74TTL family. The noise margins for typical members of the two families are tabulated 
for comparison: 

Parameter 74LS (TTL) CMOS (4000 series) 

VOH(min ) 2.7 V 4.95 V 
ViH(min ) 2.0 V 3.50 V 
VIL(max ) 0.8 V 0.05 V 
VOL(max) 0.5 V 1.45 V 

NH 0.7 V 1.25 V 
NL 0.3 V 1.20 V 

4.17 Propagation time 

Suppose that a rectangular voltage pulse is applied to the input of a logic inverter, as 
shown in Figure 4.26. For any practical logic gate there will be a time delay or 
propagation time between the change in the input voltage to the corresponding change 
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F i g u r e  4 . 2 6  (a) Rectangular voltage pulse applied at the input of an inverter (b) Idealised timing diagrams 
(c) Practical timing diagrams 
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in the output voltage, and this delay is denoted by /PHL when the output voltage 
changes from a high to a low level. When the output voltage changes from a low to 
a high level, the propagation delay time is denoted by tpL H. These two propagation 
delays may, in principle, have different values. Although described here only in terms of 
a simple logic inverter, all logic components show propagation time effects to varying 
degrees, and in the case of complex components there may be differing values of tpHL 
and taL H according to which inputs and which outputs are being considered. 

The timing diagrams of Figure 4.26(b) are somewhat idealised since they imply that 
all the voltage transitions take place instantaneously. In practice, the input and output 
voltages will not change instantaneously, and the propagation times /PHL and /PLH 
are therefore usually defined as the time delays between the voltages halfway between 
the steady voltage levels achieved, sometimes called the '50% points', as shown in 
Figure 4.26(c). 

The propagation delays specified by manufacturers usually fall into three categories: 
minimum, typical and maximum. This is because there is a manufacturing spread for 
these parameters. In effect, the manufacturer is stating that the maximum delay will 
never be exceeded, and the wise logic designer will ensure that the design operates 
correctly if the gates used only meet the maximum quoted values (i.e. 'worst case design'). 

For the 74TTL logic family, typical values of propagation delay lie in the range 2 to 
33 ns depending upon the particular type of technology being employed (the most 
common of which are currently LS or ALS, and high-speed CMOS gates (HCT) that 
are designed to be compatible and interchangeable with TTL gates). Reduction in the 
propagation delay using bipolar technology can be achieved by employing emitter 
coupled logic (ECL) where propagation delays as low as 1 ns can be achieved. 
However, CMOS circuits are widely used in a great number of present system designs. 
They have the advantages of cheapness, low power consumption per gate and 
considerably higher packing densities (the number of gates manufactured per chip). 

Electronic engineers are also interested in the rise and fall  times of the voltage 
waveforms. The rise time is defined as the time taken for the voltage to change from 
10% to 90% of its final value, while the fall  time is defined as the time taken to change 
from 90% to 10% of its initial value. This parameter is also frequently referred to as 
the transition time. 

4.18 Speed-power products 

The propagation time per gate (i.e. the delay time introduced into the signal path 
by using a logic gate) multiplied by the electrical power dissipated in each gate 
(fed from the power supply) is approximately equal to the energy stored within the 
gate as a result of maintaining either a 0 or 1 logic level at the output. This is not an 
absolute or accurate measure, for the obvious reasons that the power dissipation 
depends to a greater or lesser extent upon the logic state at the gate output, and also 
because some power is lost in the gate circuitry not directly associated with the bit 
storage within the gate. However, this product is a useful 'figure of merit' for a family 
of logic gates. 

The goal of many technologists designing logic gate families is to make this speed- 
power product or 'energy per gate' as small as possible in order to produce large logic 
systems with minimised power consumption. The speed-power product also indicates 
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how successful the particular technology has been in reducing the stored energy in 
each gate. Assuming that using a certain technology the speed-power product has been 
reduced as far as is commercially practical, then fast operation of a logic circuit 
(i.e. small gate delay) requires a correspondingly large power dissipation per gate, and 
if the number of logic gates is increased as well then the total power consumption on 
the chip may increase so drastically that special cooling measures must be taken, 
including the use of heat-sinking and forced cooling. One very visible manifestation of 
the problems of using large numbers of logic gates is the fact that certain versions of 
the Intel 'Pentium' processor now require a small electrically driven fan mounted on 
top of the actual processor chip. Larger computing systems sometimes require the use 
of liquid coolant. 

Experimental, and usually very simple, logic systems in research laboratories are 
currently able to establish logic levels based upon the storage of individual electrons, 
which at current gate size limits corresponds to a speed-power product of around 
2 • 10 -21 J. Using current technology, this represents the ultimate limitation on the 
energy stored per gate. Some values of the speed-power product for some 
representative commercial logic families are tabulated below. In this table, the 
standard, S, LS and ALS types refer to the original 74(TTL) series of conventional 
silicon ICs. The HCT logic family uses silicon CMOS technology but is compatible 
with TTL gates as its logic voltage levels are similar. The 4000 series is an older CMOS 
logic family; and GaAs logic devices are at the experimental, research, or low-volume 
development stages at the time of writing. The values given are typical only, as the 
precise values frequently depend upon the output state of the gate concerned, the 
logic function in question, and also the power supply voltages (e.g., in the case of 
CMOS gates). 

Gate type Typical gate Typical power Typical maximum 
delay/ns per gate/~tW clock speed/MHz 

Typical speed-power 
product/10 -15 J 

Standard 10 10000 35 100000 
S 3 19000 125 57000 
LS 5 2000 60 10000 
ALS 5 1300 60 6500 
HCT 7 2.5 50 17.5 
4000 60 6 5 360 
ECL 2 25000 200 50000 
GaAs 0.08 1000 4000 80 

4.19 Fan-out 

The number of gate inputs that can be connected to a single driving gate output 
without overloading the driving gate is termed the fan-out. The limitation is usually 
that of the available current drive from the gate output compared to the current 
required to drive the gate inputs. Information on current capabilities and require- 
ments, supplied on the manufacturers' data sheets, allows the designer to calculate 
fan-out values. 
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For example, in the 74LS(TTL) series, the maximum low state current required by 
a gate input, IlL(max), is 0.4 mA whilst a 74LS series gate output is capable of sinking 
a current of at least IOL(min)= 8 mA. Hence, the ratio of currents in the low state is 
given by 

IOL(min) 8 mA 
= = 20 

/IL(max) 0.4 mA 

In the logic high state, the maximum current required at the input of a 74LS series gate 
is IIH(max) -- 20 laA while a 74LS series gate output is capable of sourcing a current of 
at least IOH(min) --400 IrA. Hence 

IOH(min) _ _ 400 p A - - 20 
IIH(max) 20 ~tA 

The fan-out is defined as the worst-case (i.e., the least value) obtained from these 
calculations, so that in this case the fan-out is 20; up to 20 gate inputs can be connected 
to one gate output in the 74LS series. Similar calculations can be made for other 
variants in the type 74 families. By coincidence, in the 74LS series the possible fan-out 
in both states is identical; in some logic families the calculations analogous to those 
above yield different results for the two states, in which case the lower value must 
be quoted as the fan-out. In certain CMOS technologies at low frequencies the 
gate input current is essentially zero since the gates have an extremely high input 
impedance, and so the fan-out is infinite (as many gate inputs as desired may be 
connected to one output). However, at high frequencies, the gate input capacitance 
becomes an important consideration (current must be supplied to charge the effec- 
tive input capacitance of the gates sufficiently quickly) and the fan-out is reduced to 
a finite value. 

Sometimes the term 'fan-out' is used in a more informal sense to indicate 
the number of gate inputs actually connected to a given output. For example, if 
a single gate output is connected to three gate inputs then the fan-out may be said to 
be three, irrespective of the maximum number of inputs that could be connected to 
one output. 

Problems 

4.1 Implement the following functions using only N A N D  gates: 

(a) A - AB + (B + C)A 

(b) f2 = (AB + C)(B + D) + A(B + C)(D + E). 

4.2 Minimise the following functions and implement the minimised function using 
only N A N D  gates: 

(a) f ( A , B , C ) -  y']0, 1,2, 3,4, 5, 6 

(b) f (A, B, C, D) - ~-]~0,2, 8,9, 10, 12, 13, 14 

(c) f (A ,B ,  C,D,E) - y~ 8, 9, 10, 11, 15, 16, 17, 18, 19,20,21,22,23,24,25,26,27,31 
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4.3 Implement the following Boolean functions using only NOR gates: 
(a) fl - A(A + B)(B + CD) 

(b) f2 = A(B + C + DE)(B + CO + AE) 

4.4 Find the minimum product-of-sums form for each of the following functions and 
implement the functions using NOR gates only: 
(a) f ( A ,  B, C) = ~ O, 2, 4, 6, 7 
(b) f ( A , B ,  C,D) = y~'~ 0, 1,2,3,4,9, 10, 13, 14 
(c) f (A, B, C, D, E) - Y'~0, 1,2, 3,4,6, 10, 11, 12, 13, 14, 15, 16,29,31 

4.5 Using a simple factoring technique, implement each of the following functions in 
as many ways as possible using only NAND gates: 

(a) fl = BCD + BCD + A 

(b) f2 = A C + BC + AD 

(c) f3 = ABD + ABC + CD 

4.6 Implement the following functions using only NAND gates having a maximum 
fan-in of three: 

(a) f l  = ABC + AD + BCD + A CD 

(b) f2 = AB + AD + BD + CD + A C 

(c) f3 = ABCD + ABCD + ABD + CD 

4.7 Analyse the circuits shown in Figures P4.7(a), (b) and (c), to produce Boolean 
algebraic expressions for the circuit outputs: 
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Figure P4.7 
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4.8 Analyse the circuits shown in Figures P4.7(a), (b) and (c) by removing as many 
inversion circles as possible. 

4.9 Implement the following functions using only NOR gates having a maximum 
fan-in of three: 

(a) f~ = (A + B)(C + D)(B + C)(A + D)(A + C) 

(b) f2 = (AC + BC)(A + C) 

(c) f3 = AS + BCD + AnD 

4.10 Express the following equations in their minimal sum-of-products form: 

(a) f l  = A(A �9 B �9 C) 

(b) f2 = A ' [ ( A e B ) ~ C ]  

(c) f3 = A + (A ~ B 6} C) 

(d) f4 = A + (A �9 s )  �9 c 

4.11 Prove the following identities: 

(a) (A r B r C") = A r (B r C) 

(b) (A ~ B ~ AB)(A ~ C ~ A C) - A + BC 



5 Combinational logic design with 
MSI circuits 

5.1 Introduction 

Since the introduction of MSI and LSI circuits, the traditional methods of logic 
design have largely been superseded. Traditionally, the design engineer has developed 
a Boolean equation as the solution to a particular problem. This function has then 
been minimised and implemented using SSI circuits. 

In practice, many combinational circuits may have a large number of inputs and 
outputs, and consequently the use of truth tables in the design of such circuits is 
impractical. Furthermore, it is not economical to provide sufficient pins on an IC 
package to allow access to each of the gates that can be provided on a single chip. 
Many functions such as counting, adding and parity checking are common in a large 
number of designs, and a useful library of digital circuits for implementing these 
functions has been developed. As fabrication techniques improved it became possible 
to implement these functions on a single chip. 

The development of MSI circuits has led to the technique of splitting a complex 
design into a number of sub-systems. This leaves the designer the task of inter- 
connecting available MSI functions in a manner which satisfies the initial design 
specification. 

5.2 Multiplexers and data selection 

A multiplexer (MUX) selects 1-out-of-n lines where n is usually 2, 4, 8 or 16. A block 
diagram of a multiplexer having four input data lines do, dl, d2 and d3 and com- 
plementary outputs f and f is shown in Figure 5.1(a). The device has two control or 
selection lines A and B and an enable line E. Gate implementation of a 4-to-1 multi- 
plexer is shown in Figure 5.1(b). In essence, the circuit is an AOI module having 
complementary outputs. The characteristic equation of the multiplexer is 

f = ABdo + ABdl + ABd2 + ABd3 

Individual data lines are selected by the application of the appropriate binary signal to 
control lines A and B. When A/~ = 1 the output of the MUX is do, and when ,4B = 1 
the output is dl, etc. When the input enable is E = 1 the four A N D  gates are enabled. 
With E = 0 multiplexer operation is inhibited. 
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(a) Block diagram of a 4-input multiplexer and (b) its gate implementation 

5.3 Available MSI multiplexers 

The sizes of multiplexer available in the TTL family are limited by pin availability on 
standard MSI chips. With 16-pin chips, multiplexers having 2, 4, and 8 data lines are 
available and with 24-pin chips it is possible to provide a multiplexer with 16 data lines. 

The 74157, a 16-pin chip, provides quadruple 2-to-1 multiplexers, where each multi- 
plexer consists of a 2-wide, 3-input AO gate, with one input for data, one for selection, 
and the third which is the strobe or enable line. A logic diagram, the truth table and 
a traditional block diagram are shown in Figure 5.2. The numbers in parentheses on 
the input and output lines are the pin numbers. 

The 16-pin 74353 is a dual 4-to-1 data selector/multiplexer. Each multiplexer consists 
of a 4-input 4-wide AOI gate with tri-state control (see Chapter 10) on the NOR output 
gates. The output control lines also act as separate enable inputs for the two devices, 
both of which are controlled by the common select lines. A logic diagram for the 74353, 
its function table and block diagram are shown in Figure 5.3. 

At the upper end of the scale, the 74251 is an 8-to-1 multiplexer having comple- 
mentary tri-state outputs. It consists of a 4-input 8-wide AOI gate with an enable 
strobe. There is also the 24-pin 74150, a 16-to-1 multiplexer/data selector which 
consists of a 5-input 16-wide AOI gate. The number of pins available on this chip 
limits the device to a single-output line. 

5.4 Interconnecting multiplexers 

Data within a digital system is normally processed in parallel form in order to increase 
the speed of operation. If the output of the system has to be transmitted over 
a relatively long distance then a parallel-to-serial conversion will take place so that 
the data can be transmitted serially over a single transmission line. This eliminates the 
requirement of individual transmission lines, one for each bit. The arrangement of 
Figure 5.4 can be regarded as an example of parallel-to-serial conversion. An 8-bit 
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Figure 5.2 The 74157 quadruple 2-to-1 multiplexer (a) Logic diagram (b) Truth table (c) Traditional logic 
symbol 

word is presented in parallel at the data inputs of the two multiplexers and is clocked 
from the the output in serial form. The MUX not enabled will give an output of logic 
0. In the absence of the binary counter this arrangement can be used for the selection of 
1-out-of-8 data lines. Selection of the required data line is made by the selection inputs 
A, B and E. 

The principle of data selection can be extended to allow the selection of 1-out-of-64 
lines. This can be achievedusing nine 8-to-1 multiplexers (see Figure 5.5) arranged in 
two levels of multiplexing. 

If ABC = 001 Multiplexer M 1 is enabled and input D 1 is selected on multiplexer M8 
If DEF = 111 Data X15 is selected and is output on line .gO 1 
Then ABCDEF = 001111 selects X15 and outputs it at Z on M8. 

5.5 The multiplexer as a Boolean function generator 

For a 4-to-1 MUX the characteristic equation is 

f -  ABdo + ABdl + ABd2 + ABd3 
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Figure 5.3 The 74353 dual 4-to-I multiplexer (a) Logic diagram (b) Function table (c) Traditional logic diagram 

where A and B are Boolean variables, applied at the select inputs, which can be factored 
out ofany Boolean function ofn variables, as shown below. The remaining n - 2  variables, 
referred to as the residue variables, can be formed into residue functions which can then be 
applied at the data inputs. In practice, the residue functions can be implemented by 
discrete logic gates or, alternatively, by other multiplexers. If, for example, a 3-variable 
function f(A, B, C) is to be generated and the variables A and B are applied at the select 
inputs, the residue functions expressed in terms of the variable C can be applied, one at 
each of the data inputs. The four available residue functions are C, C, 1 and 0. In all, 
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Figure 5.4 (a) Combination of two MUXs providing a 1-out-of-8 Data 

there are 44 = 256 possible combinations of the four residue functions and a multiplexer 
with four data inputs can generate any of the 256 possible Boolean functions of 
3 variables. 

For a 4-to-1 line MUX there are three possible choices for the Boolean variables to be 
applied at the selection inputs. They are AB, A C and BC. These combinations can be 
associated with individual data lines, as shown in Figure 5.6. Assuming that A and B 
are chosen as selection inputs, then for the condition AB = 00 the top two left-hand cells 
on the K-map in Figure 5.6(a) are associated with the data line do. Similarly, for the 
condition AB = 01 the top two right-hand cells on the K-map are specified and are 
associated with data line dl. In effect, the 3-variable map has been divided into four 
1-variable maps each of which are associated with one of the four data input lines and 
also with the residue variable C. Association of selection inputs AC and BC is shown in 
Figures 5.6(b) and (c). 

As an example, the 3-variable function 

f ( A , B , C ) =  ~ 0 ,  1, 3,4,7 

will be implemented using a 4-to-1 MUX. The function is first plotted on the K-map in 
Figure 5.7, and an arbitrary choice of selection variables is made, in this case A and B. 
Simplification takes place on each of the 1-variable maps and the resulting residue 
functions are: 

d o = l  d ~ = C  d 2 = C  d 3 = C  
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Figure 5.5 Interconnection of Multiplexers for the selection of 1-out-of-64 lines 

If the complement of the variable C is available, implementation of this function can be 
achieved with a single M U X  such as the 74353 dual 4-to-1 MUX. If C is not available 
an inverter is required, as shown in Figure 5.7. 

If the choice of selection variables had been A and C then the inputs to the data lines 
m 

would be do = B, d l =  1, d2 = B and d3 = B. For selection variables B and C the input 
to the data lines would be do = 1, dl - A, d2 = 0 and d3 - 1. 
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Figure 5.7 (a) K-map plot o f f  = ~ O, 1, 3, 4, 7 (b) implementation of the function by 4-to-1 MUX 

Alternatively, the residue functions can be found directly from the truth table of the 
Boolean function to be implemented. For the function 

f (A ,B ,  C,D) = y ~  0, 1,3,4,5,9,  10, 11, 14, 15 

the truth table is listed in Figure 5.8. The selection variables A, B and C are sectionalised 
and isolated from the residue variable D. For the combination of these variables 
ABC = 000, f = 1 for both D = 0 and D = 1 and the residue function is do = 1. 
The method used here is analogous to plotting an RDM map from a truth table 
(see Chapter 3). Similarly, for ABC = 100, f = 1 for D = 1 and residue function d4 = D. 
Implementation of the function using an 8-to-1 multiplexer is shown in Figure 5.8. 
Other implementations can be found using an alternative choice of the selection variables. 

5.6 Multi-level multiplexing 

The implementation of Boolean functions may be achieved more economically and 
with fewer interconnections by using more than one level of multiplexing. Using the 
method described in the previous example for the function 

f (A ,  B, C, D) - y ~  0, 1,2, 5, 7, 9, 15, can't happen terms 4, 11, 13 

the residue functions are found to be 

d o - d 2  = 1, d5 = d 6 - - 0 ,  d 3 - d 4 = d 7 - D ,  dl - D 
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Figure 5.11 (a) Truth table for f=  ~ O, 1, 3, 4, 5, 9, 10, 11, 14, 15 and (b) function implementation 

assuming A, B and C have been chosen as the selection variables. The implementation 
of the function using an 8-to-1 MUX is shown in Figure 5.9. A typical 8-to-I MUX 
that could be used in this design is the 74251. This is a 16 pin device having 8 data 
inputs, 3 selection inputs, true and complemented outputs and a strobe line not shown 
in Figure 5.9 which would be held at logic 0 level. 

To implement the same function using two levels of multiplexing, a 4-to-I multi- 
plexer M5 is used to generate the function output. The function and the 'can't happen' 
terms are listed in the left-hand column of Figure 5.9(c). The selection variables for the 
output MUX are C and D and the variables A and B form the residue functions 
required at the four inputs. 

The first level of multiplexing will consist of four 2-to-1 multiplexers, each of them 
having B as the select variable. Their inputs can be determined by examining the 
listings in each of the four right-hand columns in Figure 5.9(c). For the column headed 
CD there are two terms, AB and the 'can't happen' term AB. When the selection 
variable B = 0, the required input is A and when the selection variable B = 1, the 
required input is 0 since AB is a 'can't happen' term. The first level inputs obtained 
from the three remaining columns of Figure 5.9(c) are marked on the function 
implementation diagram shown in Figure 5.9(d). It is immediately apparent from an 
inspection of this diagram that multiplexers M2, M3 and M4 are redundant. 
The number of interconnections required is ten and an inverter for the variable A 
may be required. Two multiplexer packages are needed, neither of them being fully 
utilised; this may or may not be a disadvantage as far as space requirements are 
concerned. 

It is also possible to implement the function using three levels of multiplexing. 
For this arrangement the conventional architecture requires four 2-to-1 multiplexers 
at the first level, two at the second level and one at the output level although some of 
these multiplexers may be found to be redundant prior to implementation. The tech- 
nique used to find the MUX inputs at the first level is identical to that used for two level 
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Figure 5.9 Example of multi-level implementation of a 4 variable function (a) and (b) single-level 
(c) and (d) 2-level and (e) 3-level 
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multiplexing. It consists of first finding the residue functions at the inputs to the output 
and second level multiplexers and finally determining the input residue functions at 
the first level from the second level listings. Implementation of the function using 
three levels of multiplexing is shown in Figure 5.9(e). The residue functions at each 
level of multiplexing are marked on the diagram and it will be observed that M2, M3, 
M4 and M5 are redundant. The implementation requires a single quad 2-to-1 MUX 
and an inverter if the complement of variable A is not available. The number of pin 
connections used for this implementation is ten, but only one multiplexer package is 
needed. In general the possibility of redundancy in a multi-variable function is highest 
when the smallest multiplexer elements are used. 

5.7 Demultiplexers 

As the name infers, a demultiplexer performs the opposite function to that of 
a multiplexer. A single data line can be connected to any one of the output lines 
provided by the choice of an appropriate select signal. If there are s select inputs then 
the number of output lines to which the data can be routed is n = 2 ~. The structure of 
a demultiplexer is identical to that of a decoder. A basic 2-to-4 line decoder and its 
associated enable line is shown in Figure 5.10. If the enable line is now used as a data 
input the data can be routed to any one of the outputs. If, for example, A = B = 0 and 
the data input = 1 then output Y0 = 1 and the remaining three outputs are 0. 
Any decoder having an enable line can function as a demultiplexer and for this reason 
they are listed as decoder/demultiplexers in manufacturers' catalogues. 

A typical example of a 3-to-8 line decoder/demultiplexer, the 74138, is shown 
in Figure 5.11. The 74138 with three enable inputs has a flexible enabling system. 
If the package is to be used as a demultiplexer then input lines G2A and G2B can 
be grounded and G1 can be used as the input line for data. When the input G1 = 1 
the eight output NAND gates are enabled. If the select signal is now A B C  = 000, 
the output Y0 = 0 While all other results remain at 1. 

Data / Enable 

A D 

Figure 5.10 Basic demultiplexer 
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Figure 5.11 The 74138 3-to-8 line decoder/demultiplexer 
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5.8 Multiplexer/demultiplexer data transmission system 

A simple data transmission system can be implemented using a multiplexer and 
a demultiplexer in conjunction with an interconnecting single line link. Such a system 
used over a relatively short distance such as 500 metres can result in a significant 
reduction in the number of lines required to transmit the data. A block diagram of the 
system is shown in Figure 5.12 where the 74251 8-to-1 multiplexer is linked to the 
74138 3-to-8 line decoder, operating as a demultiplexer, by a single cable. The data 
presented in parallel at the MUX inputs is converted into a serial format for transmis- 
sion, while at the receiving end the demultiplexer routes the serial data, in the correct 
sequence, to one of the eight output lines. The transmitted data is said to have been 
time division multiplexed since the eight input bits are appearing on the interconnecting 
link at different times. 

For satisfactory communication, the select signals a t  the two ends of the link must 
be identical at any given instant. The common select signals generated by a Mod-8 
counter at the transmitting end also have to be transmitted to the receiving end. The use 
of TDM has reduced the total number of lines required for the interconnection from 
eight to four .  
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Figure 5.12 A TDM transmission link 

A typical example where a short range transmission link might be employed is 
a security system where access to a building is monitored at a number of sensitive 
points. Signals from the outstations are time division multiplexed and transmitted to 
the demultiplexer at a central security office where a visual display will reveal any 
breach of security at the points of access. 

5.9 Decoders 

The basic function of an MSI decoder having n inputs is to select l-out-of-2" output 
lines. For example, if there are three inputs, the decoder will select l-out-of-8 lines. 
In this case there is one output line for every input combination and the device is called 
a complete decoder. The selected output is identified either by a 1, when all other 
outputs are 0, or by a 0 when all other outputs are 1. In the first case the output is said 
to be active high while in the second case it is said to be active low. 

The structure of a 2-to-4 line decoder is illustrated in Figure 5.13. It consists of an 
array of four N A N D  gates, one of which is selected for each combination of the input 
signals A and B. When AB = 00 the gate marked 00 is selected, and provided the chip 
has been enabled, the output of the gate marked 00 will be 0 while the outputs of the 
other three gates in the array are 1. A function table and a block diagram are also 
shown in Figure 5.13. Symbol X/Y on the block diagram indicates that the device 
converts from code X to code Y. Inputs A and B are allocated weights such that the 
weighting of B is 21 while that of A is 2 ~ Hence the range of the sum of the weights is 
0 to 3 and this is indicated on the block diagram by the notation 0. 

It will be seen that the logic diagram of the basic decoder is identical to that of the 
basic demultiplexer (see Figure 5.10) provided the data line is used to enable the 
decoder. The decoder may also be regarded as a minterm generator. Each output 
generates one minterm. An alternative way of looking at the decoder circuit is to regard 
A and B as address signals. Each combination of A and B defines a unique address 
which can access a location having that address. An example of this application occurs 
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Figure 5 . 1 3  (a) Basic structure of  a 2-to-4 line decoder (b) Function table (c) Block diagram 

in computer memories where an address decoder is used to access data stored in an 
address location identified by an address signal. 

The basic decoder has only one level of logic. One n-input NAND or AND gate is 
required for each of the 2 ~ output lines. As n becomes large, the fan-in of the gates used 
also becomes large. For example, a 1Kbyte memory has 1024 memory locations, and using 
the simple structure in Figure 5.13 the address decoder would require 1024 ten-input 
AND or, alternatively, NAND gates. To alleviate the fan-in problem tree and coincident 

architectures are employed (see section 5.10). 
A typical example of a decoder available in the TTL family is the 74138 3-to-8 line 

decoder. The gate level circuit, along with the function table, is shown in Figure 5.11. 
More flexible enabling arrangements are provided on this chip in that there are three 
independent enable pins. The Boolean function for enabling the chip is 

En = G1 .  G'2 -A . G-2-i~ G1 + G 2 A + G 2 B 

To enable the gates in the array G1 = 1 and G2A = G2B = 0. The selected output then 
depends upon the input combination of A, B and C. For C = 0 and B = A = 1 output 
Y3 = 0 and all the other outputs are 1. 

Another commonly used decoding module in the TTL family is the 74154 4,to-16 
line decoder. The logic circuit of the decoder and its function table a re  shown in 
Figure 5.14. A decoder can be used for converting any 4-bit code which is used 
to represent the decimal digits to give a decimal output. The Gray code tabulated in 
Figure 5.15 can be converted to decimal by selecting the appropriate outputs .  
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F i g u r e  5 .14  The 74154 4-to-16 line decoder (a) Logic circuit and (b) Function table 
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Figure 5.15 Gray code to decimal conversion with 74154 4-to-16 line coder (a) Code tabulation 
(b) Implementation 
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Figure 5.16 K-map for NBCD/ 
decimal conversion 

There are two types of NBCD/decimal decoders 
available. First, the decoder that implements the 
minterm corresponding to decimal digit five, so that 
(5)1o = ABCD. For the second type, the digit (5)~0 is 
simplified by combining the minterm ABCD with the 
adjacent 'can't happen' term ABCD so that (5)10 = 
BCD, as illustrated on the K-map in Figure 5.16. 
A typical example of a 4-to-10 line NBCD/decimal 
decoder in the TTL family is the 7442 which rejects all 
false data since it is implemented without minimisation. 
For the decimal decoder that employs simplification 
techniques the appearance at the input terminals of the 
minterm ABCD will be recognised as (5)10 or (9)1o 
depending upon the simplification. 

5.10 Decoder networks 

When a large decoding network is required it cannot be implemented in a single MSI 
package because of the large number of pins needed. For example, a 6-to-64 line 
decoder requires seventy pins for input and output in addition to those for enabling 
the package and the voltage supply. The decoding range can be extended by 
interconnecting decoder chips. Two possible schemes are available, (a) tree decoding 
and (b) coincident or 2-dimensional decoding. 

A block diagram of a 4-to- 16 line tree decoder is shown in Figure 5.17. It consists of 
the interconnection of five 2-to-4 line decoders. This requires three dual 2-to-4 line 
chips with four interconnections between the two levels of decoding where the select 
lines in the second level of decoding are commoned. An extension of the scheme would 
require extra levels of decoding and a 6-to-64 line decoder is obtained by the addition 
of one extra level of decoding consisting of a bank of sixteen 2-to-4 line decoders. 
The alternative approach of coincident decoding is also illustrated in Figure 5.17. 
Here the 4-to-16 line decoder consists of two 2-to-4 line decoders, available on a single 



120 Digital logic design 

1/2 74139 

1/2 74139 

1Y1 
Selec C 0 lY2 

o F T ~  

>..~ XO 
>'-~ XI 

>'-"  X3 

1/2 74139 

'Sel 2Y~ 
c o :v2  
D F 2  ~'I Enable, 1G 2/4 1Y0 ] ~ ,  (S A) ' '  0 1Y2 

(e) 

1/2 74139 

1/2 74139 

S e l ~  2G 2/4 2Y0 >-,., Xl_..~ 
2YI >-..,-. X13 

L F :v~  , - - -  m--~ 

1/274139 

0 21,'2 

(b) 

Select 
Enable 

I II 
2G A B 

n 

CO 

CO 

CD 

CO 

1/2 74139 

X12 

X13 

)(15 

Figure 5.17 (a) 4-to-16 line tree decoder (b) 4-to-16 line coincident decoder 

chip, and, in addition, sixteen NOR gates. Assuming that four 2-input NOR gates are 
available on a single chip, a total of five chips are needed for the implementation of this 
scheme. The coincidence scheme clearly requires more chips and more interconnec- 
tions than the corresponding tree decoder and as the number of inputs increases, the 
superiority of the tree decoder becomes more marked. 

In spite of this disadvantage, coincident decoders are widely used in conjunction 
with memory arrays because the NOR gates can be incorporated in the array. The choice 
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of a coincident decoder in this application leads to a significant reduction in the 
number of lines to be taken to the memory array. In this example (see Figure 5.17) 
the tree decoder requires 16 lines, while for the coincident arrangement only 8 lines 
are needed and the gap widens significantly as the number of decoder inputs increases. 
For 10 inputs, the tree decoder needs 1024 lines compared with 64 for the coincident 
decoder. 

5.11 T h e  decoder as a minterm generator 

The 16 outputs of a 4-to-16 line decoder such as the 74154 each correspond to  the 
inverse of one of the sixteen minterms of four Boolean variables. If A = B = C = 
D = 0 the output 0 of the decoder is active low while all other outputs are 1, and 
c a n  be identified as m0. The decoder can generate the inverse of the 16 minterms 
and can be used in conjunction with one N A N D  gate to implement a Boolean 
function of four variables. As an example of this application the four variable 
function 

f (A,B,  C,D) = ~ 0, 1, 5, 8, 10, 12, 13, 15 

is implemented in Figure 5.18. 
The Boolean function can also be expressed in the following alternative minterm 

forms: 

f = mo + ml + m5 + m8 + mlo + m12 -t- m13 -t- m15 

f = m 2  + m 3  + m 4  + m 6  + m 7  q- m 9  q- m l l  + m l 4  

f = if/2 �9 if/3 �9 if/4 �9 if/6 �9 if/7 �9 if/9 �9 f f / l l  �9 if/14 

The first two forms of these equations require a decoder whose output is active high 
while the third form needs an active low decoder. The gates required at the decoder 
outputs in these three cases are OR, NOR and AND respectively, and their con- 
figuration will depend entirely on the available gate fan-in. If, for example, the 
maximum available fan-in for OR gates is four, then an interconnection of three gates 
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would be needed and such a complication may well be regarded as uneconomic and 
an alternative implementation of the function would then have to be sought. 

5.12 Display decoding 

Many devices in everyday use such as calculators, digital watches, car radios and a wide 
range of measuring instruments have an illuminated decimal display. Light emitting 
diode (LED)  or liquid crystal display (LCD)  segments provide the illuminated display 
output. A single display element consists of seven segments arranged in the configura- 
tion shown in Figure 5.19. In the same diagram the numerical allocations and resultant 
displays for each of the 10 decimal combinations of four binary digits, after decoding, 
are also shown. 

LEDs emit light energy when the anode of the device is positive with respect to 
its cathode. There are two possible connections, common anode and common cathode. 
For the common anode connection illustrated in Figure 5.20 the seven anodes are 
connected to a common voltage supply while the cathodes are controlled individually. 
To illuminate a segment an active low signal is required at the cathode. For the 
common cathode connection (see Figure 5.20) an active high signal on the individually 
controlled anodes is required in order to activate the LEDs. 

There are two types of LCD in use. Reflective LCDs use ambient light such as 
sunlight or normal room light to activate the device. Back-lit LCDs use the light 
generated by part of the display. These devices have gained in popularity because 
of their low power consumption and are eminently suitable for battery powered 
displays. However it should be pointed out that LEDs always provide a much 
brighter display. 

A typical example of a display decoder is the 7449 BCD/seven-segment decoder 
(see Figure 5.21) which consists of an array of seven AOI gates, one for each segment. 
The AOI gate is an AND/OR circuit followed by an inverter. For this reason the 
inverse function for each segment appears at the outputs and can be obtained by 
plotting the O's tabulated in the truth table. For segment a the O's in the column headed 
a are plotted on a K-map and simplified, This then gives the inverse Boolean function 
for the a segment: 

a = BD + A C + ABCD 

The inverse functions for the remaining six segments can be determined using the same 
method. When the blanking input is held at 1 the four NAND gates are enabled. 
If this input is held at 0 the NAND gates are disabled and the segment outputs are 
inhibited. 

' i:_ I 
0 1 2 3 4 5 6 7 8 9 

Figure 5.19 Segment identification and resultant numerical displays 
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Figure 5.20 LED segment connections (a) common anode (b) common cathode 

5.13 Encoder circuit principles 

An encoder performs the inverse operation to that of a decoder. For an encoder having 
2 n inputs there will be n outputs. Hence, for n = 2 there are four input lines and two 
output lines. 

A typical example of the use of an encoding circuit is illustrated in Figure 5.22 where 
a number of peripherals P0, P l, P2 and P3 are serviced by a central processing unit. 
Each peripheral can generate a flag when it wishes to be serviced by the CPU. The flags 
from all the peripherals are ORed to generate a master flag. This signal requests the CPU 
to interrupt its current activity and jump to the service routine of the interrupting peripheral. 
It is then the function of the encoder to identify the peripheral whose flag has been raised. 
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Figure 5.21 (a) The 7449 BCD/seven segment decoder (b) Truth table and (c) K-map for segments 

The encoder truth table (see Figure 5.22) allocates one of the four combinations of 
the address variables A and B to each of the peripherals. The equations for the address 
variables and the master flag are 

A = A + J ;  
B=/, +f3 

M F  = fo + fl  +./'2 + f3 
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Figure 5.22 (a) Block diagram for a 4-input encoding system (b) Truth table (c) Implementation 

The implementation of these equations is shown in Figure 5.22. 
In this arrangement the encoder is designed to identify one, and only one, of the 

peripherals at any given instant. However, in practice, there is nothing to prevent two 
or more peripherals requesting service at the same time. To deal with this situation 
a system of priorities can be attached to the peripheral flags. When more than one flag 
is raised, the CPU services the peripheral whose flag has the highest priority. When it 
has been serviced, the flag is turned to the off condition and the peripheral having the 
next highest priority is serviced. 

A truth table for a priority encoder and the circuit implementation are shown in 
Figure 5.23. The truth table assumes that the higher the subscript of the interrupting 
flag, the higher its priority. The following equations are obtained from the truth table: 

A =f3 +f3f2 =f3 +f2 
S =f3 +f3f2A =f3 +AA 

MF =fo + f l  +f2 +f3 

5.14 Available MSI encoders 

Two MSI encoder packages are available in the '74 series'. The 74147 has nine active 
low inputs, one for each of the decimal digits (1)10 to (9)10 inclusive, and encodes them 
to four active low outputs D, C, B and A. A block diagram and truth table for the 
package are shown in Figure 5.24. It should be observed that the digit (0)10 is available 
when all the inputs are high and one immediate practical application of the device is 
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Figure 5.24 The 74147 decimal/NBCD priority encoder (a) Block diagram (b) Truth table 

the conversion of the ten decimal digits to the inverted form of the NBCD code. 
A second practical application is when the device is used in conjunction with a 
keyboard where the individual decimally identified keypads would generate an 
inverted NBCD output corresponding to each decimal digit. If two keys are pressed 
simultaneously the one having the higher decimal digit takes precedence. 

Another practical example of an encoding circuit is the 74148 8-to-3 line priority 
encoder. A logic circuit diagram and the corresponding truth table are shown in 
Figure 5.25. The circuit consists of an array of four AOI gates with chip-enabling 
facilities provided by an active low enable input signal El .  A group select signal G S  and 
an enable output signal E O  are also provided when the encoder is to be operated in 
conjunction with other encoders. This situation will arise when the number of signals 
to be encoded is greater than eight. An active low signal at the E I  input ensures that all 
the AND gates in the AOI array are enabled. The enable output equation is 

E O  = E I . O .  1 �9 2 . 3 . 4 . 5 . 6 . 7  

and this signal is active low, provided all the requesting signals are high and the chip 
has been enabled. The group select equation is 

G S  = E l  + O .  1 �9 2 . 3 . 4 . 5 . 6 . 7 .  E I  
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Figure 5.25 The 74148 8-to-3 line priority encoder (a) Logic diagram (b) Function table 

and this signal is active low provided the chip is enabled and at least one of the 
requesting signals is active low. 

5.15 Encoding networks 

Figure 5.26 illustrates the interconnection of nine 8-to-3 line encoders, four 8-input 
NAND gates and 3 NOT gates, to form a 64-to-6 line encoder network. Since the 
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F i g u r e  5 . 2 6  A 64-to-6 line encoder network 

Z 0  

enable inputs EI7 and EI8 of encoders 7 and 8 are connected to ground, these chips 
are permanently enabled. Assuming that X60 = 0, then E07 = 1 and encoder 6 and all 
subsequent encoders at the first level of  encoding are disabled. In general, the encoding 
chips at this level are enabled until a chip is reached in the chain where at least one of 
the requesting signals X~ = 0, then all subsequent encoders are disabled. 

Assume that for encoder 7, X60 = 0 so that the input pin labelled 4 is active low and 
consequently ,427 = 0 and ,417 = ,407 = 1. Since all other first level encoders are 
disabled, their .40, .41 and ,42 outputs are all 1. The A27 input to g3 = 0 while all 
other inputs to that gate are 1, hence Z2 = 1; for gates g2 and g l all inputs are 1, hence 
Z1 = Z 0 = 0 .  
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The group select signal GS7 = 0 since encoder 7 is enabled and X60 = 0. All other 
group select signals on the first level encoders are 1. The input pin labelled 7 on 
encoder 8 is active low, hence A28 = A 18 = A08 and after inversion of these signals 
Z5 = Z4 = Z3 = 1. It follows that if X60 = 0 the encoder network output is 
111100 = (60 )10 .  

Since one of the input signals to encoder 8 is active low, its group select signal GS8 is 
low, having made a transition from 1 to 0. This group select signal will therefore give 
an indication that at least one of the 64 requesting signals is active low. 

If there are no active low requesting signals the 3-line outputs of all the eight first-level 
encoders are high; consequently all the inputs to g l, g2 and g3 are high so that 
Z0 = Z1 = Z2 = 0. Additionally, all first-level group select signals are high so that 
after inversion Z3 = Z4 = Z5 = 0 and the network output is 000000. 

5.16 Parity generation and checking 

When data is transmitted from one location to another it is desirable to know at 
the receiving end whether the received data is free of error. A simple form of 
error detection can be achieved by adding an extra bit to the transmitted word. 
This additional bit is called the parity bit. 

The two different systems currently in use are the even and odd parity systems. In the 
even parity system the parity bit added to the word to be transmitted is chosen so that 
the number of l 's in the modified word are even. This is illustrated in the following 
example where the 7-bit A s c I I  code for the decimal digit (9)10 is 0111001. An add- 
itional 0 in the most significant place is required to give even parity in the modified 
word which is now written 

(9)!0 = 00111001 

L-~added parity bit 

Alternatively, in an odd parity system, the added parity bit ensures that the modified 
code word contains an odd number of l's. For the ASCII code for (9)~o the modified 
codeword which will be transmitted is 

(9)10 = 10111001 

L--~parity bit 

The truth table for a 3-bit even/odd parity generator is shown in Figure 5.27 where 
D2, Dl and Do represent the data to be transmitted, and po and Pe represent the odd 
and even parity bits to be generated by the parity generation circuit. The Boolean 
equation for Pe extracted from the truth table is 

Pe = D2D1Do + D2DIDo + D2D1Do + D2D1Do 

and this equation can be manipulated algebraically to give 

Pe = D2 @D1 @D0 
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Figure 5.27 (a) Truth table for parity generator (b) Implementation of parity generator 

From an examination of the truth table it can be seen that po is the inverse ofpe so that 

Po = D2 �9 D I ~ Do 

The implementation of these equations is shown in Figure 5.27. The addition of extra 
data bits simply adds extra XOR terms to the above equations. 

When the transmitted data arrives at the receiving end, a logic circuit is used to 
check the modified data. In even and odd parity checking the output is 1 when an error 
has been detected. A truth table for the two types of parity checking functions and the 
implementation of these functions is shown in Figure 5.28. The parity checking 
functions extracted from the truth table for the even and odd parity systems are: 

Fe = D2 ~ DI ~ Do ~ pe 

and 

Fo - D2 ~ D i ~ Do ~ Po 

As a general rule in a digital system where the transmission link is relatively short, it 
may be assumed that the probability of a single-bit error is small and that of a 2-bit 
error and higher order errors is extremely small. The parity checking system just 
described will detect any odd number of errors, but it cannot detect an even number 
of errors because such errors will not destroy the parity of the transmitted group of bits. 

A practical example of a 9-bit parity generator/checker is the 74180 MSI gate circuit 
shown in Figure 5.29 with its associated truth table. A tree structure of XOR and 
XNOR gates is used on this package and it is left to the reader to show that the output 
of the last XNOR gate in the tree is the complement of the XORing of the eight inputs 
A to H. The pair of AOI gates at the output provides the facility of an additional extra 
bit input which can be utilised in either the parity generation or checking modes. 
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(a) Truth table for parity-checking circuit (b) Implementation of parity checking function 

The 74280 (see Figure 5.30) is a more recent 9 bit parity generator/checker which 
utilises AOI gates rather than XOR or XNOR gates for implementing the parity 
function and has a shorter propagation time than the 74180. For the tree structure 
of the 74180 the number of logic levels required for implementation is greater than the 
number required for the 74280, giving a significant difference in the propagation times 
of the two devices. 

Parity generation and checking for longer word lengths may also be achieved by 
cascading chips. For example, the two 74280s shown in cascade in Figure 5.31 will 
provide parity generation for a 17-bit word while ten 9-bit 74280s arranged in two 
levels can be used for parity generator/checkers for word lengths of up to 81 bits. 

5.17 Digital comparators 

The basic comparison element is the XNOR coincidence gate. The output of the gate is 
high, provided both inputs are either low or, alternatively, high. This is indicated in 
Figure 5.32 where f = 0 if A = B = 0 or, alternatively, if A - B  = 1. In practice, 
comparators may be required to indicate more than equality. There are three possible 
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The 74180 9-bit odd/even parity generator/checker (a) Gate circuit (b) Function table (c) Logic symbol 

conditions at the output  of a comparator  circuit, one for A > B, a second for A = B 
and a third for A < B. A suitable N A N D  implementation for a single bit comparator  
which gives an output  for all the three specified conditions is illustrated in Figure 5.33. 

The usual problem for a comparator  is the comparison of two multi-digit words 
such as A = A3A2AI and B = B3BzBI. To compare two such words it is necessary to 
develop an algorithm which can be used as the basis of a hardware implementation. 
Such an algorithm is: 

1. Examine the most significant pair of digits. If A3 > B3 then A > B; if A3 < B3 then 
A < B; if A3 = B3 no decision can be made about the relative magnitude of the two 
words and the next pair of digits must be examined. 

2. If A2 > B2 and A3- -B3  then A > B; if A2 < B2 and A3- -B3  then A < B; if 
A3- -B3  and A2 = B2 no conclusion can yet be drawn regarding the relative 
magnitudes of the two words and the last pair of digits must be examined. 

3. If AI > BI,A2 = B2 and A3 - B 3  then A > B; if A] < B~,A2 = B2 and A3 = B3 
then A < B; if A3 - B3, A2 = B3 and A1 = B] then A = B. 

If the most significant pair of digits are equal, then 
_ m 

E3 -- A 3B3 -+- A 3B3 
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Figure 5 . 3 0  The 74280 9-bit odd/even parity generator/checker 
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Figure 5.32 The coincidence gate 

If the next most significant pair and the least 
significant pair are equal, then 

E2 -- AEB2 q- AEB2 a n d  E1 = A1BI q- AIB1 

If A = B then 

E -  EIE2E3 - 1 

The equation for determining whether A > B is 

A > B -  A3B3 + E3A2B2 + E3E2A1BI 

The first term in this equation A3B3 = 1 if A > B, 
and if that is the case, then A > B. The second 
term E3A2B2 = 1 if A 3 -  B3 and A2 > B2 and if 
those two conditions exist then A > B. Finally, 
the third term E3 E2A 1 B1 - -  1 if A3 - B3, A2 - B2 
and A1 - -  B1. If those three conditions are satis- 
fied then A > B. 

The equation for determining whether A < B is 

A < B -  A3B3 + E3A2B2 + E3E2A1B1 

This equation has the same form as the equation 
for A > B and can be developed using the same 
line of reasoning. Alternatively 

A < B - E + A > B  

= E . A > B  

The implementation of a 3-bit comparator  based 
on the single bit comparator  of Figure 5.33 and 
using the equations developed above is shown in 
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Figure 5.34 The 3-bit comparator 

Figure 5.34. If an Identity Comparator is all that is required then the tree structure 
illustrated in Figure 5.35 will suffice. 

There are a number of comparators available in the TTL family. The 7485 is 
a 16-pin 4-bit magnitude comparator providing three outputs, A = B, A > B and 
A < B. Facilities are provided for cascading comparator chips so that words of greater 
length can be compared. The gate level circuit for the 7485 is shown in Figure 5.36 
along with its function table. The logic of this circuit is based on the equations 
developed for the 3-bit comparator. 

For each pair of input variables an XNOR gate generates the individual equality 
functions. The four equality functions and any input equality signal are ANDed 
to provide the A = B output. The A > B and A < B functions are generated by two 
6-wide AOI gates. 
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Figure 5.35 4-bit identity comparator 

A number of different 8-bit comparators 
are available in the 74 TTL family. Some, 
such as the 74688, are identity comparators 
and generate an active low P = Q output 
when comparing the magnitudes of two 
8-bit words. Others, such as the 74682, 
produce active low outputs for P = Q and 
P > Q. The third output P < Q is obtained 
by applying the P -  Q and P > Q outputs 
to the inputs of a N A N D  gate, as illustrated 
in Figure 5.37. The small triangle pointing in 
the direction of signal flow denotes that the 
74682 package has amplification, that is, its 
output has a higher output current available 
than is usual in the MSI TTL series. 
The hysteresis symbol at the inputs denotes 
a package whose input characteristics 
exhibit hysteresis as would be the case with 
Schmitt Trigger circuits. Open-collector and 

totem-pole outputs are also available in the comparator group and some chips such as 
the 74886 have either one or two enable pins. 

5.18 lterative circuits 

An iterative network consists of a number of identical cells interconnected in a regular 
manner as shown in Figure 5.38. X1, X2, . . . . . . . . .  Xn are termed the primary input signals 
while Z1, Z2, . . . . . . . . .  Z~ are termed the primary output signals, al, a2, . . . . . . . . .  a~+l are 
termed the secondary inputs or outputs depending on whether these signals are entering or 
leaving a cell. The structure of an iterative circuit may be defined as one which receives 
the incoming primary data in parallel form where each cell processes the incoming 
primary and secondary data and generates a secondary output signal which is transmitted 
to the next cell. Secondary data is transmitted along the chain of cells and the time taken 
to reach steady state is determined by the delay times of the individual cells and their 
interconnections. The disadvantage of this design method is the amount of hardware 
required and the space it occupies. However, with the introduction of MSI and LSI 
circuits, the length of the interconnections has been reduced quite dramatically. 

Magnitude comparison is a possible choice for an iterative design. It will be assumed 
that the two words to be compared, A and B, are to be scanned from the most 
significant end to the least significant end of the words. A block diagram for the ith 
cell is shown in Figure 5.39. There are two secondary signals, xi and yi, at the cell input 
and X~+l and yi+l at its output. Two secondary signals are required since there are three 
possible pieces of information to be transmitted along the chain which are defined by 
the following combinations of those signals: 

1. xiy  i = O0 
2. x iy  i --- 01 
3. x iy  i - - -  10 

A = B up to cell i 
A > B up to cell i 
A < B up to cell i 



136 Digital logic design 

A3 (15) 

B3 
(1) 

~ 2 ~ 2  
......._...................---. 

B ~ , . . ~  jr~3B 3 

A'B 

B2 

A>B 

A 2  ~ ' ~".~/ 

B 2 _ . _  
(14) 

A<B (2) 
A=B ~ 
A>B 

A=B 

A1 
B1 

A<B 

A0 ~,v.. 

130 --. 
(9) 

(a) 

Cascading Comparing 
Inputs Inputs 

A3 ,83  A3, B3 A3.83 A0.80 A > B A < B A , I  
A 3 > ~  x x x x x 
A3<8~  x x x x x 
A 3 - 8 ~  A 2 > B 2  x x x x 
A3=8~  A 2 < 0 2  x x x x 
A3=B~ A 2 = 8 2  A 1 > 8 1  x x x 
A 3 - B :  A 2 - B 2  A I < B 1  x x x 
A3 B~ ,8,2 B2 A I - B 1  A 0 > B 0  x x 
A 3 - 8 ~  A2 , ,B2  A 1 - 8 1  A 0 < 8 0  x x 
A3-11~ A 2 - B 2  A I - B 1  ,8,0-80 1 0 
A3 , ,B3  A 2 - B 2  A1 , ,81  A 0 - 8 0  0 1 
A 3 - 8 3  A 2 - B 2  A 1 - 8 1  A0 , ,B0  0 0 

(b) 

O m p u =  

A > B  A < B  A . B  
x 1 
x 0 
x 1 
x 0 
x 1 
x 0 
x 1 
x 0 
0 1 
0 0 
1 0 

0 0 
I 0 
0 0 
I 0 
0 0 
I 0 
0 0 
I 0 
0 0 
I 0 
0 I 

(1) 

(14) 
(12) 

(11) 

(10) 

(9) 
(4) 

(3) 
(2) 

7485 

A3 

B3 
~ A , ? .  

B2 
A1 A > B  

B1 A=~ 
A0 A < 
B0 

A > B  

A = B  

A < B  

(c) 

(5) _ 

(e) _ 

(7) _ 
v 

F i g u r e  5 .36  The 7485 4-bit magnitude comparator (a) Gate level circuit (b) Function table (c) Logic symbol 

The K-map plotted in Figure 5.39 summarises the logical behaviour of the ith cell 
for all possible combinations of the primary and secondary input signals. For example, 
if xiyi = 00 and A i  = 0 and B i -  1 then the secondary output signal combination 
Xi+lyi+l -- 10 which will indicate to the (i + 1)th cell that A < B. 

Two separate maps for X~+l and yi+l are plotted and after simplification the 
following equations are obtained: 

Xi+l : Xi + y i A i B i  

Yi+l --  Yi 't- x i A i B i  
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Figure 5.37 The 74682 8-bit comparator 
connected to give the three outputs P= Q, 
P > Q and e < Q 

The first cell can be designed by assuming 
that the two digits preceding the most signi- 
ficant digits A and B are both O's, hence 
Xlyl = 00 and 

x2 - -  h l B 1  

Y2 = A1B2 

In order to give magnitude comparison, an out- 
put circuit is required. The implementation of 
the ith cell and the magnitude output circuit are 
shown in Figure 5.39. 

The gate count for the 7485 MSI 4-bit 
comparator and the iterative magnitude compara- 
tors is identical. However, the number of logic 
levels needed for the iterative comparator  
is more than twice the number needed 
for the 7485 and consequently there would 
be a significant difference in the propagation 

*'-1-1 
lz, 

I x= 

Cell 
2 

lz. 

l 

Figure 5.38 Structure of  an iterative circuit 

an+l 

times for the two circuits due to the ripple effect in the iterative circuit. For 
this reason in practical situations the iterative comparator  design is less likely to 
be used. 

It is also possible to use the same technique to design an iterative adder. A typical 
cell has the two digits to be added as the primary inputs and the sum would 
appear at the primary outputs. The carry may have to travel the whole length of 
the chain of single-bit adder cells and a long delay occurs before steady state 
is reached. To eliminate the delay 4-bit adders are now provided with carry look- 
ahead circuits. 

Iteration can, however, be used in a wider sense of the word. If, for example, it is 
required to compare the magnitude of two 16-bit words, then four 4-bit 7485 com- 
parators have to be connected in cascade. A cumulative delay due to the delays of the 
individual 4-bit packages will appear at the output of the last package in the cascade. 
Similarly, 16-bit addition requires four 4-bit 74283s connected in cascade thus forming 
an iterative array where the delay at the output is the sum of the individual delays of 
each 4-bit package. 
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Figure 5.39 Iterative Word Comparator (a) ith cell (b) joint map for secondary signal output (c) K-map plots for 
xi+ t and Yi+ ! (d) cell implementation (e) magnitude outputs 

Problems 

5.1 Implement the following 3-variable Boolean functions using 4-input multiplexers: 

(a) f = ~ 0, 2, 3, 5, 7, control variables A and B 

(b) f = ~ 1, 3, 4, 6, 7, control variables B and C 

(c) f = ~ 0, 2, 4, 5, 6, 7, control variables A and C 

5.2 Implement the following 4-variable Boolean functions using 4-input multiplexers 
and N A N D  gates: 

(a) f = ~ 0, 1, 3, 5, 6, 8, 9, 11, 12, 13, control variables A and B 

(b) f = ~ 0, 7, 8, 9, 10, 11, 15, control variables B and C 
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(c) f = ~ 0, 1, 3, 5, 9, 10, 11, 13, 14, 15, control variables C and D 

(d) f = ~ 1, 8, 9, 12, 13, 14, 15, control variables A and D 

5.3 Implement the following 5-variable Boolean functions using 4-input multi- 
plexers: 

(a) f = ~ 0, 1, 2, 3, 4, 8, 9, 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 29, 30, 31 

(b) f = ~ 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 30, 31 

5.4 Implement the following 6-variable Boolean function using 

(a) four-input multiplexers and NAND gates, and 

(b) eight-input multiplexers and 4-input multiplexers. 

f = )-'~ 0, 1, 3, 5, 7, 12, 14, 16, 18, 20, 22, 26, 28, 30, 32, 34, 37, 39, 41, 43, 45, 

50, 51, 53, 60, 61, 62, 63. 

5.5 Design a circuit for converting from the 8421 code to the 5421 code and implement 
the design with 4-to-1 multiplexers. 

5.6 Design an NBCD to seven-segment decoder which is able to accept decimal 
information expressed in NBCD and generates outputs which select segments 
in the seven-segment indicator for displaying the appropriate decimal digit. 
The arrangement of the seven segments is shown in Figure P5.6(a) and the 
segmental representation of each decimal digit is shown in Figure P5.6(b). 
Implement the design using (a) NAND gates, (b) NOR gates and (c) 8-to-1 
multiplexers. 

(a) 
a 

o/ /c 
d 

(b) 

I - I I I - - I I  I / '  I 
I I  .... i 

IF-/// 
I I I /  

Figure P5.6 (a) Arrangement of segments (b) Segmental representation of decimal digits 

5.7 A combinational circuit is defined by the equations 

f l = .4B + , 4 B C  

f 2 = A + B + C  

f3 = a B  + a B  

Design a circuit which will implement these three equations using a decoder and 
NAND gates external to the decoder. 

5.8 The tabulation below gives details of four frequently used codes. Using 4-to-10 line 
decoders and external logic, design three code converters for converting from 8421 
to each of the other three codes. 
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o 

Binary number 8421 2421 XS3 XS3 Gray 

0000 0 0 
0001 1 1 
0010 2 2 0 
0011 3 3 0 
0100 4 4 1 4 
0101 5 2 3 
0110 6 3 1 
0111 7 4 2 
1000 8 5 
1001 9 6 
1010 7 9 
1011 5 8 
1100 6 9 5 
1101 7 6 
1110 8 8 
1111 9 7 

5.9 A combinational circuit is defined by the equations 

f l  = A B C  + ,4BC 

f 2 = A + B + C + D  

f3 = A + B +  CD + AD 

f4 = ,4 CD + ,4 CD + BCD + BCD 

Design a circuit which will implement these four equations using a decoder with 
NAND gates external to the decoder. 

5.10 Design a 5-to-32 line decoder. The decoders available are: 

(1) 2-to-4 line decoder, active low outputs and a single active low enable. 

(2) 3-to-8 line decoder, active low outputs with two active low and one active 
high enable. 

5.11 Implement the following 4-variable functions using a decoder having active low 
outputs and NAND gates: 

fl = )-~ 0, 1, 3,9, 12, 14 

f2 = ~~ 5, 9, 10, 12, 13, 15 

j~ = I-I0, 3, 8,11,12,15 

f4 = I-[ 1,2, 7, 8,11,12,14 

5.12 Develop a 3-to-8 line decoder using NOR gates only, and draw its logic diagram. 

5.13 Develop a circuit that resolves priority among eight active low flag inputs f0 to f7 
where~ has highest priority. The address outputs of the encoder should be active 
high. 
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5.14 Draw the logic diagram for an 8-to-3 line encoder using just three 4-input N A N D  
gates. 

5.15 Develop a set of equations which can be used for implementing a circuit that 
compares two 4-bit words A and B and gives an active high output for each of the 
three possible conditions, A > B, A = B and A < B. 

5.16 Design an iterative circuit with the aid of a space state diagram that will give an 
output Z = 1 when three consecutive O's have occurred in a string of binary 
digits. 

5.17 Design an iterative circuit that will give an output Z = 1 when the sequence 010 
occurs in a string of 10 binary digits that appear in parallel form. 



6 Latches and flip-flops 

6.1 Introduction 

A digital logic circuit or system is usually made up of combinational elements such as 
N A N D  and NOR gates and memory elements which may, for example, be discrete 
flip-flops or latches. Alternatively, an interconnection of these devices may be found in 
a shift register, a counter, or in a variety of MSI and LSI packages. 

With the introduction of memory elements as components in digital systems, an 
additional variable, time, has been introduced and must be taken into account when 
designing digital systems. In effect, logic operations can be performed sequentially, 
information being stored in a memory element and released at some specified instant 
later so that it can take part in a controlled combinational operation. Systems operat- 
ing in this way are called sequentially operated systems. 

There has always been considerable confusion over the use of the terms latch andflip- 
flop. It will be assumed in this book that a flip-flop is a device which changes its state at 
times when a change is taking place in the clock signal. The flip-flop is said to be either 
leading edge or trailing edge triggered, the edges referred to being those of the clock 
signal. On the other hand an asynchronous latch, without a control line, is continuously 
monitoring the input signals and changes its state at times when an input signal is 
changing. A synchronous latch is also continuously monitoring the input signals but in 
this case a change of state at the output can only occur when the control signal is active. 
In both cases the latch is driven by events, but for the synchronous latch the control 
signal has to be high before the input can be translated into a change at the output. 

6.2 The bistable element 

By cross coupling a pair of N A N D  gates which are both connected as inverters, 
a bistable element is formed. There are two possible states for the element: (a) Q = 0, 
Q = 1 and (b) Q = 1, Q = 0 (see Figure 6.1). Initially, when the circuit is switched on, 

(a) (b) 
1 

i ~ 
I, 

1 
�9 0 - 1  

0 --,,, 

0 1 0 

Figure 6.1 (a) and (b) The two states of a pair of  cross-coupled NAND gates 
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the bistable element will take up one of these two states 
and without external intervention will remain in that 
state indefinitely, or until the power has been removed. 
Figure 6.2 shows the ideal voltage transfer characteristic 
A of a logic gate and it will be seen that there is a sudden 
change from 0 to 1 midway between logic 0 and logic 1. 
In practice, the gate characteristic will be similar to that 
shown in B. 

The bistable element shown in Figure 6.1 is made up of 
two such gates whose characteristics are assumed to be 
identical. The two characteristics can be plotted on the 

same axes such that the Vgl(out) and Vg2(in ) 
axes are coincident. Similarly, the Vs,(in ) 
and the Vg2(out) axes are also coincident 
(see Figure 6.3). The two characteristic curves 
intersect at three points. Two of the points of 
intersection are the stable states referred to 
previously and are defined by Vgl(~) = Vg2(outs) 

Voaom) and Vg2(ins)= Vgl(outs). 
The third point of intersection defines a 

metastable state which lies between the logic 
0 and the logic 1 voltages. If the circuit should 
enter this state it can easily be shown that a 
small interfering noise voltage will immedi- 
ately drive the circuit back to one of its two 

Vo, , 

Figure 6.3 The stable and metastable points 
of  a pair of  cross-coupled NAND gates 

stable states. The state to which it will return depends upon the direction of the noise 
voltage relative to the metastable voltage. If, on the other hand, a small noise voltage 
occurs when the circuit is in either of its two stable states, then it will return to its 
original state. 

6.3 The SR latch 

The SR latch is shown symbolically in Figure 6.4(a), the set and reset inputs being 
labelled S and R respectively, and the complementary outputs Q and Q respectively. 
The state table for the latch is shown in Figure 6.4(b). In the first three columns of the 
table all combinations of the present states of S, R, and Q are tabulated, i.e. their states 
at time t. The fourth column is a tabulation of the next state of the latch, Q at time 
t+6 t .  

Examination of the table shows that a change of the state of the latch occurs in rows 
4 and 5 only. In row 4 the latch is being reset or turned off, i.e. its state is changing 
from 1 to 0 as a consequence of the application of a reset input R = 1. In row 5 the 
latch is being set or turned on, i.e. its state is changing from 0 to 1 as a result of the 
application of a set input S = 1. For rows 1 and 2, S = R = 0, and there is no change of 
state. On row 3, R = 1 and this signal in normal circumstances would turn the latch off 
but Q = 0 and the signal R = 1 leaves the state unchanged. On row 6, S = 1 and this 
signal would normally turn the latch on, but Q = 1 and the latch is already turned on, 
and consequently there will be no further change of state. Finally, if S = R = 1 both 
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Flpre 6.4 The SR latch (a) Symbolic representation (b) State table (c) External state diagram (d) K-map plot 

outputs Q and Q are 1, and in general this is regarded as invalid circuit operation. For 
this reason the condition S = R = 1 is a forbidden input condition, this restriction 
being expressed algebraically by requiring S R  = O. 

From the state table the turn-on condition is given by 

Turn-on = S R Q  

and the turn-off condition is given by 

Turn-off = S R Q  

With the aid of these two equations the external state diagram can be constructed and 
is shown in Figure 6.4(c). The transition from Q = 0 to Q = 1 is made when S R  = 1 
and the reverse transition occurs when S R  = 1. 

Any change appearing at the output of the latch does so immediately after a change 
has taken place at the input and is delayed only by the propagation time of the gates 
that make up the latch. The characteristic equation of the latch is obtained by plotting 
those combinations for which Qt+6, = 1 in conjunction with the 'can't happen' terms 
on the K-map shown in Figure 6.4(d). After simplification: 

Qt+6t = (S + ~Q)t 

The implementation of this equation using NAND gates is shown in Figure 6.5(a) and 
appears in more conventional form in Figure 6.5(b). 

It should be observed that the characteristic equation is a Boolean equation but with 
a difference from the combinational equations that have been seen hitherto. Time has 
been introduced into the equation and the value of Q on the fight-hand side of the 
equation may well be different from the value of Q on the left-hand side simply because 
these two values of Q are being observed at different times. 

Simplifying the O's and 'can't happen' terms in Figure 6.4(d) gives the simplest form 
of the complementary function. From the map: 

Q'+e' = (,.qQ + R)' 
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Figure 6.5 (a) NAND implementation of the SR latch (b) the conventional representation 

and inverting this function 

Qt+6t = (~Q + R)t 

at+~t = [(s + Q)R] t 

This is the second form of the characteristic equation expressed as a product of sums 
and is implemented with N O R  gates in Figure 6.6(a), The more conventional repre- 
sentation is shown in Figure 6.6(b). 

(a) 

I 

S 
m , Q  

R = Q  

(b) 

S t R t 

0 0 
0 1 
1 0 
1 1 

Qt~t 

No Change 
0 
1 

Forbidden 
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Figure 6.6 (a) NOR gate representation of the SR latch (b) the conventional representation (c) state table 

Qt Qt.~t S R 

0 0 0 X 
o I ' 1 o 
I 0 0 I 
I I X 0 

Figure 6.7 The steering 
table for the SR latch 

The behaviour of the SR latch can be described in a slightly 
different way by means of the steering table shown in Figure 6.7. 
This table shows every possible output transition which can 
occur in the first two columns, including 0 ~ 0 and 1 ~ 1 both 
of which are regarded as transitions, while the last two columns 
give the values o f  S and R which will produce these transitions. 
For example, in the first row the 0 ~ 0 transition will occur 
providing S = 0 and R = 0 or 1. Since R can be either 0 or 1 

this is indicated in the R column by the symbol X. For the second row the 0 ~ 1 
transition is generated if S = 1. Since S and R cannot  simultaneously be 1, it 
follows that R = 0. The entries for the other two rows can be determined in a similar 
fashion. 
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Figure 6.8 SR latch timing diagram 

An ideal timing diagram for the SR latch is shown in 
Figure 6.8 where it is assumed that the changes in S, R 
and Q are instantaneous. Propagation delays are 
shown on the diagram and also arrows indicating those 
output transitions caused by a specified input tran- 
sition. For S = R = 1 both Q and Q take the same 

logic level but when one of the inputs is returned to 0 the latch returns to its normal 
complementary behaviour. 

If gates gl and g2 are removed from the gate circuit shown in Figure 6.5(b) the SR 
latch is modified and becomes an SR latch. The stable condition for this latch is 
S = R = 1, and the forbidden state is S = R = 0. If, in the modified circuit, Q = 0, 

then S must make a transition from 1 to 0 to set the latch. 

sb 
$ 0 

R 0 

Figure 6.9 SR latch with AND 
function for the set inputs 

Conversely, if Q = 1, R must make a 1 to 0 transition in 
order to reset the latch. 

Latches such as the 74279 are also available with more 
inputs. A typical example is shown in Figure 6.9 where 
there is a choice of two set inputs. The set function is equal 
to the AND of the two inputs S~ and Sb. 

6.4 The controlled SR latch 

By means of the simple modification shown in Figure 6.10(a), the transparency of the 
latch can be controlled by the signal G. If G = 0, the outputs of gates gl and g2 will 
always be 1, irrespective of the present values of S and R, or of any changes which may 
occur in either of these two signals. When G makes a transition from 0 ~ 1, gl and g2 
are enabled and the latch becomes active. The state of the signals S and R at this time, 
or any subsequent 0 ~ 1 transitions of these signals during the active period, have 
an immediate effect on the output of the latch. A timing diagram illustrating this 
controlled transparency is shown in Figure 6.10(b). The inputs affected by control 
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Figure 6.10 (a) The controlled SR latch and (b) its timing diagram 
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signal G are termed synchronous inputs and a latch operated with this type of control is 
termed a gated latch. 

6.5 The controlled D latch 

If an inverter is connected from the S input line to the R input of a controlled SR latch 
as shown in Figure 6.11 (a), the circuit becomes a controlled D latch, and the symbolic 
representation of this modified latch is shown in Figure 6.1 l(b). Making this con- 
nection results in a modification of the SR state diagram. Since S and R can never 
be simultaneously 1 or 0, the first two rows and the last two rows of the SR state table 
can be deleted. As there is no independent R signal, the R column can also be deleted 
and the S column becomes the D column. The modified state table is shown in 
Figure 6.11 (c) and the characteristic equation may be written as: 

Qt+~t = (DO_. + DQ) t= D t 

When the latch is enabled by the control signal G, it takes up the present state of the 
input signal D, delayed only by the propagation time of the latch. The external state 
diagram is shown in Figure 6.1 l(d) and a timing diagram for the latch appears in 
Figure 6.11 (e). Latching points are shown at X, Y and Z. At these points the present 
state of Q is latched and cannot change until G makes a 0 ~ 1 transition again. 

The controlled D latch has the advantage that it only requires one data input and 
there is no input condition that has to be avoided. It is also possible to have D latches 
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(a) (b) 

Dt 0 t Qt+~ 

o o o 

o 1 
1 1 1 

(c) 

DG 

o . o F  L 

(d) 

I ,,F--!. I " ! 
i 

1 i Oo ! l_J] i,,l__J ii! I i i i !  �9 ! 

' i '  n Oo I _Ix .~ VI: ' IZ 

(e) 

Figure 6.11 (a) The controlled D latch (b) Symbolic representation (c) State table (d) External state diagram 
(e) Timing diagram 
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Figure 6.12 Controlled D Latch (a) full state diagram (b) K-map plot 

with more inputs and the most common type is the dual port latch which has two D 
inputs and two control signals G~ and G2. Clearly the two control signals cannot 
simultaneously be 1. 

The state table developed in Figure 6.1 l(c) does not take into account the action 
of the control signal G. A revised form of this table is shown in Figure 6.12(a) and 
a K-map plot of Qt+6t appears  in Figure 6.12(b). This leads to the following modified 
characteristic equation: 

Qt+~t = (GQ + OG)' 

Since there are two l's in adjacent cells on the K-map, a static hazard is present in this 
K-map (see Chapter 9). To eliminate the hazard a third term DQ is added to cover the 
adjacent l's, and the hazard-free characteristic equation of the controlled D latch 
follows below: 

Qt+6t = (GQ + DG + DQ) t 

6.6 Latch timing parameters 

There are three important timing parameters to be considered when designing circuits 
containing controlled latches: 

Set-up time, t~,. The time interval preceding the deactivating transition of the 
control signal G during which the signal input must be maintained to ensure that it 
will be latched correctly, 

Hold time, th. The time interval following the deactivating transition of the control 
signal G for which the input has to be maintained to ensure its latching. 

Control pulse width, tp. The time interval during which the control signal G is active. 
The above timing parameters are illustrated in Figure 6.13. Other delays to be 

considered by the designer are the propagation delays defined earlier in Chapter 4. 
Satisfying the hold and set-up times ensures that a latch input change provides 

a stable output state before the next input change occurs. This is of significant 
importance since latches are used in circuits that operate in the fundamental mode. 
This mode of operation requires that further input changes will not take place until 
a stable state has been reached. 
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Figure 6.13 Set-up time and hold time 

6.7 The JK flip-flop 

The latch circuits previously described are not suitable for operation in synchronous 
sequential circuits because of their transparency. For synchronous circuits a clock 
signal is provided which governs the time at which the outputs of the memory elements 
are allowed to change state. In a synchronous circuit, flip-flops are used as the basic 
memory element, a typical example being the JKFF. Unlike latches, they only respond 
to a transition on a clock input or to a change in an asynchronous input such as Clear. 

The symbolic representation of the JKFF is shown in Figure 6.14(a) and the state 
table describing its logical operation is in Figure 6.14(b). The logical operation of this 
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Figure 6.14 The JK flip-flop (a) symbolic representation (b) state table (c) representation of JK flip-flop by an 
SR latch and two AND gates (d) K-map plot of Q,+6t (e) state diagram (f) steering table 
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flip-flop differs in one respect from that of the SR latch in that it is allowable for J and K 
to be simultaneously equal to 1. When J = K = 1, the flip-flop toggles, i.e. in row 7 
the flip-flop changes state from 0 to 1, while in row 8 the converse action takes place. 
In rows 4 and 5 normal reset and set operations take place, as described for the SR 
latch in section 6.3. 

An examination of the state table shows that the flip-flop is turned on in rows 5 and 7, 
while it is turned off in rows 4 and 8. The turn on condition for Q is 

S = J K Q  + JKQ 

= J Q  

The turn off condition for Q is 

R = J KQ + JKQ 

= KQ 

These two equations indicate that a JK flip-flop may be regarded as an SR latch 
preceded by two AND gates which implement the turn-on and turn-off functions 
respectively, as illustrated in Figure 6.14(c). 

The characteristic equation of the JK flip-flop is obtained by plotting the present 
state conditions on the K-map shown in Figure 6.14(d). After simplification, the 
characteristic equation can be written as 

Qt+~t = (JO_. + KQ)  

The state diagram describing the terminal behaviour of the flip-flop is shown in 
Figure 6.14(e). Assuming that the flip-flop is clocked and is presently in the state 
Q = 0 with J = 1 and Ck changing from 0 to 1, it makes a transition to the state Q = 1. 
Similarly, in the state Q = 1 with K = 1 and Ck changing from 0 to 1 it makes 
a transition to Q = 0. 

A steering table for the JK flip-flop derived from the state stable is shown in 
Figure 6.14(f). Comparing the steering table of the SR latch and the JK flip-flop in 
Figures 6.7 and 6.14(f), it will be noticed that the JK flip-flop has more 'X' or 'don't  
care' input conditions. In practice, the increased number of 'don't  care' terms leads to 
simpler combinational logic when designing a sequential logic circuit. 

A JK flip-flop can be implemented by connecting the output of two AND gates in 
Figure 6.14(c) to the S and R inputs of the controlled latch shown in Figure 6.10(a). 
The Q and Q outputs of this latch and its clock connections are fed to the inputs of the 
two AND gates in conjunction with the J and K inputs, as shown in Figure 6.15(a). 
Notice that the AND gates are formed from two pairs of NAND gates in cascade, 
namely g5 and g7, and g6 and g8. Clearly, gates g7 and gl, and gates g8 and g2, give 
a double inversion and are redundant, thus reducing the JKFF  to an array of four 
gates only, as shown in Figure 6.15(b). 

As in the case of the controlled latches described earlier in this chapter, the flip-flop is 
disabled when Ck = 0 and is active when Ck = 1. Unfortunately, the connection 
shown in Figure 6.15(b) exhibits instability when J = K = 1 and Ck = 1 due to the 
feedback of the complementary output signals to the input. The state diagram indi- 
cates that under these conditions the Q output is oscillatory and will remain so until 
such time as the Ck makes a 1 ~ 0 transition when the clock is disabled. 
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(a) 

ck 11 " . 11 " . ~ ~ , , .  ~ 

(b )  

Ck - [ 

J- 
Figure 6.15 (a) NAND implementation of JK flipflop and (b) its reduced form 

6.8 The  master / s lave  J K  fl ip-flop 

In order to overcome the difficulties described in the previous section, a master/slave 
JKFF can be used. It consists of two SR latches, the master and the slave, connected in 
cascade, as shown in Figure 6.16(a). The master is clocked in the normal way, while the 
clock signal to the slave is inverted. Assuming that changes in the J and K signals are 
only allowed to occur when the clock is low, the master then being disabled, changes in 
its output will take place on the rising edge of the clock pulse and these changes are 
transmitted to the input of the slave. However, no change can occur at the output of  
the slave until the rising edge of the inverted clock pulse, which is the trailing edge of the 
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Figure 6.16 (a) The master~slave JK flip-flop (b) The timing diagram (c) The external state diagram 
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clock pulse. Consequently changes in Q and Q which are fed back to the input of the 
master do not take place until the trailing edge of the clock pulse arrives. In terms of 
the state diagram shown in Figure 6.16(c), when J K = 1, the transition of Q from 
0 ---} 1 is made on the trailing edge of the clock pulse. The flip-flop will remain in that 
state until the trailing edge of the next clock pulse when the reverse transition will take 
place. The flip-flop is then said to be operating in a toggling mode which is analogous 
to the unstable oscillatory condition described earlier. However, the toggling of Q is 
now controlled while the condition J = K = 1 is maintained, and the flip-flop will 
toggle on the trailing edge of each successive clock pulse. Timing diagrams for the 
master/slave JKFF  are given in Figure 6.16(b). 

6.9 Asynchronous controls (direct preset and clear) 

As well as the J, K and Ck inputs a master/slave JKFF may have one or two additional 
controls which allow both the master and the slave to assume one of their two states 
irrespective of whether Ck - 0  or 1. These asynchronous controls are usually called 
preset and clear. Most commercially available flip-flops are provided with a clear 
control whereas the preset control is not quite as common. The operation of these 
controls is described in the table shown in Figure 6.17(a) and a circuit including these 
controls appears in Figure 6.17(b). 

With both controls at 0 they are inactive, and the flip-flop is under the control of J, 
K and Ck. If Cl = 1 and Pr = 0 both master and slave are cleared so that Qm = Q = o. 
If Cl = 0 and Pr = 1 the flip-flop is preset and Qm - Q = 1. Active high signals on the 
Pr and CI lines will override signals on the J and K lines. These signals are normally only 
used during the asynchronous periods when the clock is low. Typically, the clear 
control might be used to clear all the flip-flops in an array when the power is first 
switched on. 

cI Pr O 

Forbidden 1 1 
Clear 1 0 0 

Preset 0 1 1 
Enable 0 0 X 

Pr 

Ck 

C/ 

(a) 

r 

(b) 

Figure 6.1-7 (a) Pr and CI control tabulation (b) Master~Slave JK flip-flop with Pr and CI controls �9 
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6.10 l's and O's catching 

Although the uncontrolled toggling has been eliminated by the master/slave con- 
nection, unfortunately the master/slave JK flip-flop exhibits another difficulty which 
may lead to faulty circuit operation in the presence of noise spikes. This phenomenon 
is termed 1 's or O's catching. 

In practice the JKFF may be in the hold condition with J = K = 0 and the outputs 
of the master and the slave Qm = Qs = 0; then, when the clock goes high, the master is 
enabled. If now a positive going noise spike appears at the J input, Qm makes 
a transition from 0 ~ 1 and on the trailing edge of the same clock pulse Q~ also makes 
a 0 --, 1 transition. This spurious transition is referred to as l's catching. An example 
of l's catching is illustrated in Figure 6.16. Similarly a 1 --, 0 transition will be made by 
Qs if initially J = K = 0 and a positive going spike appears at the K input when the 
clock is high. Such a transition is referred to as O's catching, and is also illustrated in 
Figure 6.18. 
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Figure 6.18 Example of 1 's and O's catching caused by noise spikes on the J and K lines 

6.11 The master/slave SR flip-flop 

Figure 6.19 Master~slave SR flip-flop 

It is also possible to construct a master/slave SR 
flip-flop from two SR latches connected in cascade 
as shown in Figure 6.19. In practice there is very 
little application for this device and it has been 
largely superseded in the manufacturers' catalogues 
by the master/slave JK flip-flop. 

The master/slave SRFF, unlike the SR latch and 
the controlled SR latch, is no longer transparent. 
Any change at the output of the slave cannot take 
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place until the trailing edge of a clock pulse. However, like the JKFF, faulty operation 
may occur due to l's and O's catching, 

6.12  The  edge- tr iggered D fl ip-fl0p 

A negative-edge triggered D type master/slave flip-flop consists of a pair of D-latches 
connected, as shown in Figure 6.20(a). The master follows the D input while the clock is 
high, and latches the value of the input at the output of the master on the trailing edge 
of the clock pulse. The master is now disabled and will remain so until the clock goes 
high again. When the clock goes low the inverted clock signal at the clock input of the 
slave enables it, and the output of the master is transferred to the output of the slave. 
When the clock next goes high the slave is disabled and will remain so until the clock 
goes low again. Edge-triggering is indicated on the symbolic diagram in Figure 6.20(b) 
by the triangle at the clock input. This triangle is termed a dynamic input indicator. 
Timing diagrams describing the behaviour are shown in Figure 6.20(c). 
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Figure 6.20 Master/slave D-type flip-flip (a) Negative-edge triggered (b) Symblic representation 
(c) Timing diagram (d) Positive-edge triggered (e) Symbolic diagram 
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The circuit of Figure of 6.20(a) can be modified to provide leading-edge triggering 
by including a second inverter in the clock line [see Figure 6.20(d)]. The corresponding 
symbolic diagram is shown in Figure 6.20(e). 

The problem of l 's and O's catching does not arise with this type of flip-flop. 
Assuming a negative-edge triggered device and that the leading edge of a positive 
going noise spike occurs when Qm = 0 and the master clock Ck = 1, then the master 
latch will be set to 1. However, on the trailing edge of the spike, the master clock still 
being high, the master latch will be reset to 0 before the slave latch is enabled by the 
inverted clock signal. 

An alternative configuration of a D F F  that can operate in noisy conditions because 
of data lockout at the input has a wide range of applications. The flip-flop, which is 
leading-edge triggered, consists of three pairs of cross-coupled N A N D  gates, each pair 
constituting a basic Sf( latch, of the type shown in Figure 6.21(a). The latch is in a 
stable state when S = k = 1, Q 0 and Q = 1. To change the state of the flip-flop 
must make a 1 ~ 0 transition and this action will set the flip-flop to Q = 1 as shown in 
the diagram. 

The three latches are interconnected as shown in Figure 6.21(b), with gl and g2 com- 
prising one latch while g3 and g4 comprise a second latch. The output latch is formed by 

m o 

gates g5 and g6. In order to maintain the output latch in a stable state, both S and R 
must be held at 1 and this is achieved when the clock Ck = 0 since the outputs of g2 
and g3 are then 1. If additionally D = 0, then the remaining signals at different parts of 
the circuit can easily be determined, and they have been inserted in Figure 6.21 (b). 

When the data D is changed from 0 ---+ 1 during the asynchronous period then the 
output of g4 changes from 1 ~ 0 which initiates a 0 ~ 1 transition at the output of gl 
and that change is transferred to the input of g2 as shown in Figure 6.21 (b). The time 
delay before this change occurs is equal to the sum of the gate delays g4 and g~ and is 
the set-up time for the flip-flop. The inference is that there should be no change in Ck 
until after the elapse of the set-up time. 

After the set-up time, the clock is allowed to go high, and as a consequence the 
output of g2, S, makes a 1 ~ 0 transition. The change in S initiates a change of state in 
the output latch and Q makes a 0 ~ 1 transition followed by a 1 ~ 0 transition in Q. 
It should be noticed that there is no change in /~ as a consequence of the clock 
going high. This is because the lower input of g3 made a 1 --+ 0 transition during the 

m 

set-up time. The time taken for S to change 1 ---+ 0 is the hold time and is equal to the 
gate delay of g2. It is essential that there should be no change in D during this period. 
The changes taking place in the circuit after the clock transition from 0 ~ 1 are 
recorded in Figure 6.21 (c). 

If a change in D from 1 ~ 0 takes place after the hold time has elapsed and while 
the clock is still high, there will be no further change in the flip-flop output. The con- 
sequence of such a transition is that the output of g4 makes a 0 ~ 1 transition which 
is transferred to one of the inputs of both gl and g3 withoutaffecting their outputs. 
Hence S and /~  remain unchanged, as do the outputs Q and Q of the flip-flop. 

The set-up and hold times represent important timing constraints which have some 
influence on the maximum clock frequency at which the device can be operated. 
Additionally, if these two factors are not taken into consideration during the circuit 
design stage, data may be missed, and required transitions may not take place. It is also 
possible" to have transient outputs, referred to as partial sets and resets. When these 
occur, a change of state has been initiated, but before it has been completed 
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Figure 6.21 (a) The basic SR flip-flop (b) Edge triggered flip-flop. The diagram shows the effect of a 0 --, 1 
transition on the D line (c) Effect of a 0 ---, 1 transition on the clock line 

the flip-flop returns to its original state. Alternatively, the flip-flop may enter the 
metastable state and stay there for a time which cannot be precisely defined. 

In general edge-triggered DFFs take up less space on a silicon chip than the edge- 
triggered JKFF and for this reason are the most widely used of the various flip-flops 
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described in this chapter. Furthermore, the DFF having a single data input is easier to 
program. 

6.13 The edge-triggered JK flip-flop 

The edge-triggered DFF  described in the previous section can be modified to 
provide an edge-triggered JKFF which eliminates the problem of l 's and O's catch- 
ing. The modified circuit is shown in Figure 6.22. In this circuit the outputs of the 
D F F  are fed back to the AND/OR gates preceding the flip-flop, in conjunction with 
the J and K inputs. If J =  K =  1 and the complementary output of the flip,flop 

= 1 then the input to the DFF  is D = 1 and the Q output becomes 1. If, on the 
other hand, J = K = 1 and the complementary output Q = 0 then the input D = 0 
and the output becomes Q = 0. Clearly for the condition J = K = 1, the flip-flop 
toggles. It is left to the reader to show that the flip-flop is turned on when J = 1, 
K = 0 and Q = 0 and that turn-off occurs when J = 0, K = 1 and Q = 1. Additionally, 
i f J  = K = 0 no change will occur at the output. Combining the above results leads to the 
steering table for the JKFF developed earlier in this chapter. 

m ~  ~ 
I 

Figure  6.22 The edge-triggered JK flip-flop 

6.14 The T flip-flop 

This flip-flop is symbolically represented by the diagram shown in Figure 6.23(a) and 
its behaviour is described by means of the state table shown in Figure 6.23(b). It will be 
noted that if T t --- 1 and Q t  = 0 a transition is made such that Qt+6t = 1, and if T t = 1 
and Qt __ 1 a transition is made such that Qt+6t = 0. The circuit is said to toggle, and 

' 1 T Qt Qt+6t 
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(a) (b) (c) (d) 

Figure  6.23 The T flip-flop (a) Symbolic representation (b) State table (c) JK master/slave flip-flop connected as 
a T flip-flop (<t) Timing diagram 



158 Digital logic design 

indeed, the TFF is frequently called a toggle circuit. The equation describing the 
behaviour of the flip-flop can be extracted from the state table. The equation is 
obtained by writing down the present state conditions which give a value of 
Qt+6t = 1. H e n c e :  

Qt+6t = (f,Q + TO_.)t 

= (T ~ Q)t 

Rather than implementing the above equation, it is a simple matter to develop a T flip- 
flop from a master/slave JK flip-flop. All that is required is that the J and K inputs should 
be permanently connected to 1, as illustrated in Figure 6.23(c), and that the toggle signal T 
should be connected to the clock input. On the rising edge of every T input pulse, the flip- 
flop will change state, as shown in Figure 6.23(d). The flip-flop is now behaving in 
a toggling mode in the sense that the Q output is alternately taking up the 0 and 1 states. 
This circuit is the basis of all counting circuits. It is, in fact, a scale-of-two counter. 
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Figure 6.24 (a) D flip-flop connected as a T flip-flop 
( b ) Timing diagram 
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Figure 6.25 T flip-flop with enable~disable facility 

Additionally, an examination of the tim- 
ing diagram shows that the frequency of 
the output waveform Q is half the fre- 
quency of the T input and for this reason 
it is also called a divide-by-two circuit. 

The D flip-flop can, like the JKFF, 
be converted to a TFF by connecting 
the Q output to the D-input and the 
toggling signal T to the clock input. 
The connections for this modification 
and a timing diagram are shown in 
Figure 6.24. An alternative connection, 
shown in Figure 6.25, uses an XOR gate 
to provide an enable/disable signal and 
the behaviour of the circuit is described 
in the accompanying table. Similar enable/ 
disable arrangements can be provided 
with the converted JKFF. 

6.15 Mechanical switch debouncing 

Because of contact bounce it is almost impossible to obtain a clean transition from 
5 to 0 V when the switch is moved from position 1 to position 2 in Figure 6.26(a). 
The voltage bounces between 0 and 5 V for a few milli-seconds before it settles to its 
steady value of 0 V. A typical voltage waveform is shown in the diagram and the 
voltage variations occurring are unacceptable in many circuits. 

The effects of contact bounce can be eliminated at the output by using an SR latch 
as shown in Figure 6.26(b). Assuming that the switch is presently in position 1, then S is 
low and the Q output is high. When the switch is moved to position 2, S goes high, 
R goes low and Q goes low a few nanoseconds afterwards. If the connection 
at position 2 is now broken due to contact bounce, both S and R are now high and 
no further voltage change takes place at the Q output. The converse action takes place 
if the switch is now moved back to position 1. 
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Figure 6.26 (a) Effect of  contact bounce (b) debouncing using an SR latch 

6.16 Registers 

Registers are very important elements in a digital system and the structure of these 
devices highlights the difference between the behaviour of latches and flip-flops. 
The basic requirements of a register are that it should be able to store data and that it 
should also provide the facility for moving data either to the fight or left. For example, 
the 4-bit register storing the data 1011 may be required to shift this data to the right until 
the contents of the register are 0000. This process should be carried out in an orderly 
fashion, one bit at a time, so that after the receipt of the first shift pulse the contents of the 
register should be 0101. After the receipt of the second shift pulse the contents should be 
0010, and after the receipt of four shift pulses the contents should be 0000. 

An array of D latches is able to store the data 1011, as shown in Figure 6.27(a). On 
the application of a load signal at the control inputs of the latches, because of the 
transparency of the latches, the data appears almost immediately at the output of the 
latches. If the stored data is to be shifted to the right, the array of latches would be 

I i _ 
(a) 

I i[ ~ 
Shift 1 0 Da D4 

i I 
(b) 

Figure 6.27 (a) Four D latches store data and (b) the failure to shift data with D latches 
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Flpre  6.28 A D flip-flop shift register 

connected, as shown in Figure 6.27(b). Unfortunately on the rising edge of the first shift 
pulse and because of the transparency of the latches the contents of the register would 
almost immediately become 0000, delayed only by the propagation times of the indi- 
vidual latches. Clearly, in order for the above scheme to allow a shift of one bit for 
each shift pulse, some delay must be inserted in the connection between each latch. 

In practice, this delay can be provided by the edge-triggered D flip-flops shown in 
Figure 6.28. On the rising edge of the first shift pulse the data is held at the output of 
the master latches which are directly connected to the inputs of the slave latches; the 
slave latches are activated and the latch inputs are transferred to their outputs, which 
are of course the flip-flop outputs. The data has shifted one place to the right under the 
control of the first shift pulse. After the arrival of three more shift pulses the contents 
of the register will be 0000. The use of a flip-flop as a storage element in the register 
allows the orderly shift of data. 

A more detailed account of the structure and operation of registers appears in the 
next chapter. 
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Figure P6.1 

6.1 An SR latch constructed from NAND gates is shown in Figure P6.1(a). 
Determine the logic levels at points a, b and c under the following conditions: 

(a) S = 0 ,  R = 0 a n d Q = 0  
(b) As in (a), but S changes from 0 ~ 1 
(c) S = 0, R = 0 and Q = 1, and R changes from 0 ~ 1. 

I 

Figure P6.2 

ol 

o! 
Waveforms for S and R are shown in Figure P6.1 (b). Draw the 
corresponding waveform for Q assuming that the initial value 
of Q = 0 .  

6.2 A positive edge triggered D-type flip-flop combines two D latches, 
as shown in Figure P6.2. With the aid of a timing diagram show 
that the flip-flop senses the input data present at the rising edge 
of the clock and produces a corresponding output. 
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6.3 A master/slave JK flip-flop is shown in Figure P6.3. Assuming that the initial 
condition of the flip-flop is J = K = Qm -- Qs = o, trace the logic levels through 
the diagram for the following changes. (N.B.: changes in J and K take place in the 
time intervals between clock pulses.) 

(i) J = 0 4 1 ,  K = 0 4 0 ,  Clock pulse 1 applied 
(ii) J = 1 ~ 1, K = 0 ~ 1, Clock pulse 2 applied 
(iii) J = 1 ~ 0, K = 1 ~ 0, Clock pulse 3 applied 
(iv) J = 0 ~ 1, K = 0 ~ 0, Clock pulse 4 applied 

Gk 

o. 

Figure P6.3 

Draw a timing diagram displaying the J, K, Qm and Q~ waveforms for the period 
of four clock pulses. 

Assuming the same initial conditions, determine the final value of Q~ as the 
inputs are changed in the following order: 

(v) C k = O 4 1 , J = O 4 1 ,  C k =  l---,O 
(vi) J = 0 4 1 ,  C k = 0 4 1 , K = 0 4 1 , J = 1 4 0 ,  C k = 1 4 0  

6.4 With the aid of external logic, show that a D-type flip-flop can be converted to a 
JK flip-flop. Construct a timing diagram for the JK flip-flop and show that the 
circuit produces an output which depends only on the input data present at the 
instant of the rising edge of the clock pulse. 

6.5 A JK flip-flop is modified, as shown in Figure P6.5, to form 

I 
K "IK  ̂ I 

I 
Figure P6.5 
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v 

a J 'K flip-flop. Draw the state table for this flip-flop and 
derive its characteristic equation. 

6.6 Draw the external state diagram for the flip-flop whose 
characteristic equations are 

(a) Qt+~t = ( x  @ Y ~3 Q)t 
(b) at+~t = ( x  | Y | Q)t 

6.7 The waveforms shown in Figure P6.7(a) are to be applied to the circuit shown in 
Figure P6.7(b); assuming the initial value of Q = 0, determine the Q output. 

6.8 Given the S and R waveforms for an SR latch shown in Figure P6.8 and assuming 
the initial value of Q = 0 plot the time variations of the Q output of the latch. 
How does the Q output vary if the latch is controlled by the G waveform? 

6.9 Using timing diagrams analyse the behaviour of the clocked SR flip-flop shown in 
Figure P6.9. 
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7 Counters and registers 

7.1 Introduction 

A counting circuit composed of memory elements, such as flip-flops and electronic 
gates, is the simplest form of sequential circuit available. All sequential circuits are of 
two types, (1) synchronous (clock driven) and (2) asynchronous (event driven). 
In synchronous circuits, changes in the circuit state are synchronised to the normally 
periodic clock pulses, whereas in event driven circuits state changes are governed by 
events such as, for example, the occurrence of a system fault. 

Counting circuits can be in either of the two categories described above. All counter 
circuits count clock pulses and store the number received in an array of memory 
elements. In the case of synchronous counters the flip-flops are all clocked at precisely 
the same instant in time, whereas in an asynchronous circuit only the least significant 
stage is clocked, and succeeding flip-flops are clocked at later times which depend on 
the flip-flop propagation times. Design of synchronous counters is generally more 
complex than that of asynchronous counters. 

Counters are fundamental and important components of a digital system and can be 
used for timing, control or sequencing operations. Alternatively, they can be used for 
frequency division and in some cases there may be a non-binary count, for example 
a Gray code counter or a BCD counter. In practice it would be most unusual for the 
logic designer to design a counter circuit since there are a large number available on 
MSI chips. Nevertheless, it is important that the reader should be aware of the basic 
design techniques employed. 

7.2 The clock signal 

An essential feature of a synchronous system is that flip-flops which are part of the 
system should all change at the same instant in time. This is achieved by the use of 
a synchronising signal which is formally known as the clock. The clock signal is 
normally periodic, and there must always be a sufficient time period between adjacent 
clock pulses to ensure that the combinational logic has reached its steady state con- 
dition before the next clock pulse in the sequence arrives. 

In general, as shown in Figure 7.1, an idealised form of clock signal will approximate 
to a square wave, and the period in the cycle when the clock is high is termed the active 
period. Flip-flop transitions, initiated by the synchronising clock, are arranged to take 
place on either the leading edge or, alternatively, the trailing edge of a clock pulse, and 
these two types of flip-flop operation should not be used in the same circuit. The active 
clock edge will initiate a change of state in a synchronous circuit providing there is no 
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Figure 7.1 The clock pulse 
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other external input to the circuit. It should be recognised that transitions in clock 
values from low to high and vice versa are never instantaneous, but providing the 
flip-flop changes take place during the course of the transition, the conditions for 
synchronous operation are satisfied. 

7.3 Basic counter design 

The simplest possible counter is the scale-of-two counter which has only two states, 
0 and 1. Since the output of the flip-flop can only exist in one of these states at any time 
the counter can be implemented with a single flip-flop. 

One design technique is to draw up a state table in which the first column represents 
the present state of the counter while the second column gives the next state of the 
counter after the arrival of a clock pulse, as shown in Figure 7.2(a). The table identifies 

Present 
state 
A t 

Next 
state 
A t+~t 

JA KA 

1 
o x 

Qt Qt~t j K 

0 0 0 X 
0 1 1 X 
1 0 X 1 
1 1 X 0 

(a) (b) 

A=O Ck 
JA 

Ck J'L l J'-L. A 1 I 

ii o 
A=I 

(c) (d) (e) 

I I / 

Figure 7.2 Scale-of-two counter (a) State table (b) Steering table of JKflip-flop (c) Implementation 
(d) State diagram (e) Timing diagram 
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the transitions that have to be made as the counter moves from its present state to the 
next state. Assuming that the circuit is to be implemented with a JK flip-flop, the 
inputs required to produce the transitions tabulated in the state table can be obtained 
from the JK flip-flop steering table shown in Figure 7.2(b). Since the entries in the 
J and K columns of the state table are all either 'don't  cares' or 1 it follows that 
JA =KA = 1. 

The counter is implemented in Figure 7.2 along with the state diagram and a timing 
diagram. The state diagram is both the internal and external state diagram since A = 0 
and A = 1 represent the internal state of the circuit as well as being the externally 
displayed count. Examination of the timing diagram shows the flip-flop toggling 
continously from 0 to 1 and 1 to 0 but it should be recognised that the timing diagram 
is idealised since flip-flop delays and rise and tall times of the clock have not been taken 
into account. 

A scale-of-four up counter has four states and requires two flip-flops. The design 
method used for the scale-of-two counter can be extended to cover the scale-of-four 
counter and the required flip-flop inputs are JA = KA = 1 and JB = Ks = A. 

For a scale-of-eight counter, the state table is tabulated in Figure 7.3. The design of 
the A and B stages employs the techniques used for the design of the scale-of-two 
counter and adding a further stage to the counter in no way alters the design of the 

(a) (b) 

(c) 

(e) 

d B t At Ct .~t  Bt~t At*~t Jc Kc 

0 0 0 0 0 1 0 X 
0 0 1 0 1 0 0 X 
0 1 0 0 1 1 0 X 
0 1 1 1 0 0 1 X 
1 0 0 1 0 1 X 0 
1 0 1 1 1 0 X 0 
1 1 0 1 1 1 X 0 
1 1 1 0 0 0 X 1 

o N 
I I  

1 X X LXJ X 
v 

Jc = AB 

c • A . .  10 
0 X X ~ "~ X 

Kc= AB 

(d) 

CBA 
000 

Ck 

20 

A I _ .i > 

C 22 

A@ I'--I I"' 1 i--q I L 

r i g , ,  1 1 . ! " L 

. . . . . . .  I L_ 

Figure 7.3 Scale-of-eight counter (a) State table (b) State diagram (c) K-maps (d) Implementation 
(e) Timing diagram 
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earlier stages. Hence JA = KA = 1 and J s  = K s  = A .  K-maps for J c  = K c  are plotted 
in Figure 7.3 and, after simplification, the input signals for the C flip-flop are found to 
be J c  = K c  = A B .  Implementation of the counter and the state diagram are also 
shown in Figure 7.3. 

Results for the three flip-flops are tabulated below: 

JA - -  KA = 1 JB = KB = A J c  = K c  = A B  = J B B  

and, by observation of these equations, it is clear that" 

c 8 ~ E B 2  

0 0 0 0 I I I 
I 0 0 I I I 0 
2 0 I 0 I 0 I 
3 0 I I I 0 0 
4 I 0 0 0 I I 
5 I 0 I 0 I 0 
6 I I 0 0 0 I 
7 I I I 0 0 0 

Figure 7.4 Using the com- 
plementary outputs o f  a chain 
o f  flip-flops to count down 

J o  - -  K D  - -  A B C -  J c C  a n d  

JN = KN = A B C . . . ( N -  1 ) -  J ( u - I ) ( N -  1) 

Synchronous down-counters can also be designed using 
the techniques employed for upcounters, and the following 
flip-flop equations are obtained: 

Ja = Ka = 1  J s =  K s =  A J c =  K c  = A B = J s B  

JN = A B C  . . . ( N  - 1) = J ( N - I ) ( N  - 1) 

It is also possible, in the case of binary counters, to use an 
up-counter to count down by utilizing the complementary 
flip-flop outputs. This is illustrated for a scale-of-eight 
counter in the tabulation shown in Figure 7.4. 

7.4 Series and parallel connection of counters 

There are two ways of connecting the inputs to successive flip-flops and these 
are illustrated in Figure 7.5. In the first method, the gates providing the J and K 
inputs to adjacent flip-flops in the counter are all fed in parallel. As the number 
of stages increases, the fan-in to the AND gates also increases. However, the gate 
delay at the input to each flip-flop is identical and equal to tg, the time delay of a single 
AND gate. 

In the second method, the fan-in for each of the AND gates is always two, but the 
gate delay at the inputs to the flip-flops increases with the number of stages in the 

A ~C = AB A ~ K c =  AB 

B B 

! 
E 

A ~ J D = K D = A B C  I ~ ' ' = " - 

C C i 
, ,  

o D 

(a) (b) 

Figure 7.5 Flip-flop input gates for  (a) parallel connection and (b) series connection 
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counter. Examination of Figure 7.5(b) shows that the gate delay at the Jc input is tg, at 
the Jn input is 2tg, and so on. Since longer gate delays are experienced at each 
successive flip-flop input in the chain if this method of connection is used, it is clear 
that the upper frequency limit of a counter using this method is lower than one using 
the parallel connection. 

If the switching time of individual flip-flops is tf, then, for the parallel connection, 
the upper frequency limit is given by 

1 
f u - ~  tg + tl 

While for the series connection 

1 
f~ = ( N -  2)tg + tf 

where N is the number of stages in the counter. 
For the parallel connection, the first two flip-flops are required to drive N - 2  

gates, the third flip-flop N - 3  gates and so on, whereas, for the serial connection, 
all the flip-flops in the counting chain, except the last one, are required to drive one 
gate only. 

7.5 Scale-of-five up-counter 

Often a counter with a scale that is not a power of 2 is required. For example, a scale- 
of-five counter has five states and requires three flip-flops. This will leave three unused 
states on the state diagram, as shown in Figure 7.6(a). The state table [Figure 7.6(b)] 
has been developed using the JK steering table, as illustrated in the case of the scale-of-2 
counter (see Figure 7.2(b)). The unused states have been plotted as 'can't happen' 
terms on the K-maps for the flip-flop input signals Jc, Js, JA, Ks. All the entries in the 
KA and Kc columns are either 1 or X. Hence KA = Kc = 1. 

If, for some reason, the counter enters one of the unused states, for example when 
the power is switched on, or due to faulty circuit operation, it is interesting to note its 
subsequent behaviour. This can be determined by examining the flip-flop input signals. 
For example: 

(CBA) t=  101. J c - A B = O ;  K c =  1; 

J s = K s = A = I ;  

J A = C = O ;  K A : I ;  

FFC resets 

FFB toggles 

FFA resets 

On the receipt of the next clock pulse, CBA - 010. 
The next states for the unused states 110 and 111 are 010 and 000 respectively. If the 

counter should enter any one of the unused states it will return to the correct counting 
sequence after one clock pulse. The transitions that would occur under these circum- 
stances are shown dotted on the state diagram in Figure 7.6(a). The implementation of 
the counter is shown in Figure 7.6(d). 
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CBA ~--~ . . . .  I Unused 1000 ~ - -  t 1111 state 

10o, i I;ool 

010 " 011 01 
I , , 
I I 
| 

10 I 

I 
Unused 
states 

(a) 

d B t A' ~ '  B t~' A'~' Jc 

0 0 0 0 0 1 0 
0 0 1 0 1 0 0 
0 1 0 0 1 1 0 
0 1 1 1 0 0 1 
1 0 0 0 0 0 X 

Kc J8 KB JA KA 

X 0 X 1 X 
X 1 X X 1 
X X 0 1 X 
X X 1 X 1 
1 0 X 0 X 

(b) 

c•Ao0 01 11 10 

o N 
1 X  X ~ l X  

Jc= AB 

c~0A~I 01 11 10 
x x 1~ 

1 X X X 

JA=C 
(c) 

c•Ao0 01 11 10 

1 

JB=A 
BA 

C~O0 01 11 10 

KB= A 

1 

Ck 

2 o 2 ~ 

[ KA A i l K" 

(d) 

z~ 

Figure 7.6 Scale-of-5 counter (a) State diagram (b) State table (c) K-maps for flip-flop input signals (d) Circuit 
implementation 

In practice, it would be more logical to return all the unused states directly to the 
initial state CBA = 000 as shown in Figure 7.7(a). The state table for the modified 
counter is also shown in Figure 7.7 along with the K-maps for determining the flip-flop 
input signals. Implementation of the modified counter is shown in Figure 7.7(d) and it 
will be noted that a Clear signal has been provided for resetting the flip-flops to the 
starting state. 
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s, 1111 r olo I = 1o11 
82 
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I S3 

~p~.e C~ Bt A t C t+6t B t+6t A Jc Kc JB KB JA KA t+6t 
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Sa 0 1 1 1 0 0 1 X X 1 X 1 
$4 1 0 0 0 0 0 X 1 0 X 0 X 
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Se 1 1 0 0 0 0 X 1 X 1 0 X 
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C T 0 0  01 11 10 C'~ A00 01 11 10 
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1 X  X ~ )  X 1 X X 
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l~xLx 1JO ~ x x 
Ks=A+ C, JA= C 

Kc= KA= I 
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22 20 

Clear 
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Figure 7.7 Modified scale-of-5 counter 
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7.6 The design steps for a synchronous counter 

The scale-of-eight and the scale-of-five counters have been designed from basic prin- 
ciples in sections 7.3 and 7.5, and it is convenient at this point to summarise the design 
steps in the form of the following algorithm. 

1. Define the count sequence. 
2. Construct a state table for the counter where the left hand column is a tabulation of 

the present state, and the right hand column is a tabulation of the corresponding 
next states. 

3. Any unused states should be tabulated in the present state column of the state table 
and should have, as their next state, the initial state in the count sequence, usually 000. 

4. Select the type (D, JK, or RS) and number of flip-flops to be used, bearing in mind 
that 2 ~ > p where n is the number of flip-flop outputs and p is the magnitude of the 
count sequence. 

5. Tabulate the flip-flop inputs for each change of the state of the counter as specified 
by the state table. 

6. Plot the tabulated FF input signals on K-maps. 
7. Simplify the FF input signals wherever possible. 
8. Implement the counter, including the Clock and Clear signals. 

Although DFFs can be used for the design of synchronous counters, the designer 
must recognise that the flip-flop transitions are taken directly from the next state 
entries and consequently there are no 'don't cares' available for simplification of the 
flip-flop input functions, and this leads to more complex logic. 

Using the steps set out in the algorithm, a decade-up counter has been designed. 
The state diagram, state table, the tabulation of the JK input signals and their corres- 
ponding K-maps, and the implementation of the counter are all shown in Figure 7.8. 
It is suggested that as an exercise in logic design, the reader should check the validity of 
this design. 

The BCD count frequently has to be displayed in decimal form. The simplest 
possible decimal representation is obtained by using a 4-to-10 line decoder. The ten 
outputs of the decoder may be active low or active high, depending on the MSI 
decoder selected. However, this method only gives an indication that a particular 
decimal digit has been received. More frequently, a BCD/seven segment decoder would 
be employed, as described in Chapter 5. In this case, the decimal digit received will be 
displayed as a decimal digit by the seven segments. 

7.7 Gray code counters 

Consider the transition from state 0001 to 0010 in the decade binary up-counter 
and assume that FFB changes faster than FFA. The sequence of changes that take 
place is: 

D C B A  
0 0 0 1 
0 0 1 1 (transient state) 
0 0 1 0 
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I = '  - - 

t 
1001 

I I " O h  I + ~ Io ' i j [ L I  

(a) 

Present 
State 

Next 
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0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

(b) 

Flip- Flop inputs 
. . . .  

J o K o J c  Kc Ja KB JA KA 

0 X 0 X 0 X 1 X 
0 X 0 X 1 X X 1 
0 X 0 X X 0 1 X 
0 X 1 X X 1 X 1 
0 X X 0 0 X 1 X 
0 X X 0 1 X X 1 
0 X X 0 X 0 1 X 
1 X X 1 X 1 X 1 
X 0 0 X 0 X 1 X 
X 1 0 X 0 X X 1 
X 1 0 X X 1 0 X 
X 1 0 X X 1 X 1 
X 1 X 1 0 X 0 X 
X 1 X 1 0 X X 1 
X 1 X 1 X 1 0 X 
X 1 X 1 X 1 X 1 
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Figure 7 . 8  Scale-of-lO up counter (a) State diagram (b) State table (c) K-maps (d) Implementation 

If a 4-to-10 line decoder is being used to convert the binary output of the counter to 
a decimal representation, a spike will occur on the (3)10 output, and this is clearly 
incorrect circuit operation. This can occur at any point in the counting sequence where 
more than one flip-flop is required to change state during a transition. Faulty operation 
of this kind can be eliminated by using a Gray code counter in which only one flip-flop 
changes state at each transition. 
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Figure 7.9 (a) and (b) Alternative Gray code 
paths through K-maps 

There are a number of Gray codes suitable 
for decade counting and they can be developed 
by plotting a closed path on a K-map that con- 
sists of ten adjacent cells. Two such examples are 
shown in Figure 7.9. Both of them are reflected 
binary codes, the first, in Figure 7.9(a), being 
reflected about 110, the first combination in 
this sequence being 0000; while the second, in 
Figure 7.9(b) is reflected about 100, the first 
combination in the sequence being 0100. 

7.8 Design of decade Gray code up-counter 

The counter is to be designed using the Gray code established in Figure 7.9(a). All the 
unused states are to be returned to the initial count combination (KI~. This will ensure 
that if the counter enters one of the unused states due to faulty operation it will return to 
the correct count sequence after the receipt of a single clock pulse. The state table gives 
the transitions for each of the JKFFs as the counter progresses from one state to the 
next, and with the aid of the JK steering table (see Figure 7.2) the flip-flop input signals 
J and K can be obtained for each transition. These signals are tabulated on the fight-hand 
side of the state table. Eight K-maps are needed, one for each of the flip-flop input signals, 
and the J and K inputs are obtained after map simplification. The state diagram, state 
table, K-maps and counter implementation are all shown in Figure 7.10. 

7.9 Scale-of-16 up/down counter 

In many applications a counter must be able to count both up and down. For a scale-of-16 
up-counter the equations are: 

YAu = KA~ = 1; Ynu = KBu = A; Yeu = Keu = AB; and JDu = KDu = A B C  

and for a scale-of-16 down counter the equations are: 

J a a = K a a = l ;  Jmd = KBd = A; Jed = Kcd = AB; and Jod = KDd = A B C  

Normally, a control signal Z is available for controlling the direction of the count. 
Counting up takes place when Z = 1 and counting down when Z = 0. The modified 
equations for up/down counting are: 

J A = K A ~ I  

JB = ZJBu + ZJBa = Z A  + Z A  

KB = ZKB~ + ZKBa = Z A  + Z A  

Similarly 

Jc  = K c  = Z A B  + Z A B  

and 

JD = KD = Z A B C  + Z A B C  

The implementation of the counter is shown in Figure 7.11. 
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Figure 7 . 1 0  Scale-of-lO Gray code up-counter (a) State diagram (b) State table (c) K-maps (d) Implementation 

7.10 Asynchronous binary counters 

The simplest type of counter available is the 'tipple through' or asynchronous counter. 
For this type of counter the individual FFs are not controlled by a synchronous clock 
pulse. Withdrawal of clock synchronisation reduces the amount of circuitry required 
for implementation of the counter. For counts that are powers o f  2, the counter 
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Figure 7.12 (a)Implementation of, and (b) timing diagrams for a three-stage ripple-through counter (c) The 
ripple-through effect in the counter 

consists of a cascade of TFFs (JKFFs with J = K = 1) as shown in Figure 7.12(a). 
The output of each flip-flop provides the clock signal for the next one in the chain and 
the input signal pulses are connected to the clock of the first stage. The time diagrams 
for a scale-of-eight up-counter are shown in Figure 7.12(b), where all changes of 
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state take place on the trailing edge of the pulses applied to the clock terminals of the 
three flip-flops A, B and C. Examination of the time diagrams shows that FFA 
changes state on each trailing edge of the input pulses X. 

The output of FFA is used as the clock pulse for FFB, and a change of state of this 
flip-flop occurs on the trailing edge of the A pulses. Similarly, the output of FFB 
provides the clock pulse for FFC and this flip-flop changes state on the trailing edge of 
the B pulses. The various states of the counter, and the binary digits associated with 
each, state are marked on the time diagrams. 

A scale-of-eight counter is also a frequency division circuit. An inspection of the time 
diagrams shows that the output of FFC produces one pulse for every eight input pulses 
X. It follows that if the frequency of the input pulses is f then the frequency at the 
output of FFC is f/8. Similarly, the output of FFB is f /4 and the output of FFA is f/2. 
Every stage of this counter divides the frequency of the succeeding stage by two. 

The idealised behaviour of the counter is shown in Figure 7.12. On the trailing edge 
of the eighth input pulse, the outputs of the three flip-flops are all shown changing 
simultaneously from 1 to 0. In practice, these changes ripple through the counter and 
FFA does not change to 0 until time tf, the propagation delay of FFA, after the trailing 
edge of the eighth X pulse. Similarly, FFB and FFC change at times 2tf and 3tf, 
respectively, after the trailing edge of the eighth pulse being counted. 

If a tipple-through counter has n stages, then the maximum ripple-through delay of 
the counter is ntf. Assuming that the period of the input pulses X is T, then 

T > ntf 

and the upper frequency limit of the counter is given by 

1 1 
A <- nt I 

m 

After modifying the up-counter, shown in Figure 7.12, so that signals A and B are used 
as the clock signals for FFB and FFC respectively, the circuit will operate as a scale-of-8 
down counter. For up/down counting, a further modification is required. XOR gates 
are used for transmitting the true or inverted signals from the outputs of FFA and 
FFB to the succeeding stages of the counter, as shown in Figure 7.13. If the mode 
control M is set to 0, A and B are transmitted to the clock inputs of FFB and FFC 
respectively, giving an up-count. For M = 1, A and B are both inverted before 
transmission to the succeeding stages and this initiates a down-counting mode. 
Initialisation of the counter is provided by the active-low CI inputs. 

, ~ I I & A JB B Jc C 

x l 
"l J" 

Figure 7.13 3-stage scale-of-8 asynchronous up~down counter 

2 a 
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7.11 Decoding of asynchronous counters 

Decoding problems can occur with asynchronous counters due to the different delay 
times occurring at the outputs of each of the FFs in the counting chain. Consider, for 
example, the transition from CBA = 001 to CBA = 010 in the scale-of-8 up-counter. 
The sequence of changes that take place is 

CBA 
0 0 1  
0 0 0 transient state 
0 1 0  

The least significant flip-flop A makes the transition from 1 to 0 before the next most 
significant flip-flop B changes from 0 to 1. During the transient period a spike or glitch 
will appear at the output of the gate that decodes (0),0. The generation of the glitch is 
shown in Figure 7.14. 

At some stages of the count, more than one transient state may occur. Consider the 
possible sequence of changes that may take place when CBA changes from 011 to 100: 

CBA 
0 1 1  
0 1 0 transient states 
0 0 0  
1 0 0  

In this case the transient states will generate spikes at the outputs of the gates that 
decode (0)lo and (2),0. 

If the circuits are to be used to give a visual display, the generation of spikes of 
a very short time duration will not show on the display and arc of no consequence. 
However, if the counter is used to control some other digital circuit, the spikes may 
initiate false circuit operation and the designer should take steps to eliminate their 
effect. The problem can be overcome by generating a strobe pulse which disables 
all the decoding gates when the clock goes high. At time 3tf, when the three FFs 
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Figure 7.14 Generation of a decoding spike by an asynchronous counter 
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Figure 7.15 Elimination of decoding spikes 
using a strobe 

have all reached their final state, the strobe 
pulse goes high and enables all the decoding 
gates. The strobe remains high until the 
leading edge of the next clock pulse arrives. 
This sequence of events is illustrated in 
Figure 7.15. 

7.12 Asynchronous resettable counters 

An asynchronous resettable counter can be used when scales that are not a power 
of 2 are required. A scale-of-N counter of this type is allowed to count up to the 
number N, and a logic signal testing for this number is used to clear all the flip-flops 
in the counter. The state diagram for a resettable scale-of-5 counter is shown in 
Figure 7.16(a). The counter remains in each of the first  five states for one clock 
period, but on entering $5, the sixth state (101), a reset signal r = A B C  is generated 
by a N A N D  gate. Circuit implementation and the timing diagrams are shown in 
Figures 7.16(b) and (c). 

The reset times for the individual flip-flops in the counter may well be different. 
For example, in the circuit described, FFA may reset faster than FFC. The negative- 
going reset signal will cease to exist when FFA is cleared and is simply not wide 
enough to reset FFC. This problem can be overcome by latching the reset signal until 
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Figure 7.16 Resettable scale-of-five counter (a) State diagram (b) Implementation (c) Timing diagrams (d) State 
diagram for the latching circuit (e) Implementation of the latching circuit 
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the leading edge of the sixth clock pulse arrives, as indicated by the dotted lines on 
the timing diagrams. A suitable state diagram for the latching circuit is shown in 
Figure 7.16(d). 

The turn-on condition for Q is S = A B C  

The turn-off condition for Q is R = X 

This yields 

Qt+6, = ( A B C  + .~Q)t 

This 2-level sum-of-products is shown implemented in Figure 7.16(e). It is, in fact, the 
0 

implementation of an S R  latch and the output of the gate marked 4 is the com- 
plementary output of the latch. In this circuit, the output Q of gate 3 becomes 1 when 

_ m 

the counter enters $5. It then follows that Q becomes 0. Hence Q = r is used to clear 
the flip-flops in the counter. The latching circuit remains in this condition until the 
sixth X pulse arrives. This resets the flip-flop and Q = r becomes 1 again. The cycle 
of operation of the latching circuit is completed when A B C  is detected again. 

7.13 Integrated circuit counters 

In practice, synchronous and asynchronous counters can be designed using discrete 
JK, D and T flip-flops; however, in the type 74 series, counters already packaged on IC 
chips are readily available. For their use in a digital system, the designer needs to study 
the manufacturer's data sheet carefully in order to understand the various modes of 
operation of the circuit. 

A typical example of a synchronous presettable counter is the 74ALS560. The logic 
diagram for the counter is shown, along with its function table, in Figure 7.17. 
It consists of four DFFs which operate on the leading edge of the clock signal. 
The flip-flops are provided with tri-state outputs which can be put into the high 
impedance state when G = 1. 

The function table shows that when asynchronous clear A C L R  is low, it overrides all 
other control inputs and unconditionally clears the four flip-flops. Alternatively, when 
synchronous clear S C L R  goes low, the FFs are cleared on the leading edge of the next 
clock pulse. Data can be loaded into the counter at terminals A, B, C and D when 
asynchronous load A L O A D  is low, otherwise if synchronous load S L O A D  goes low, 
then on the leading edge of the next clock pulse the data will be loaded into the four 
DFFs. The count enable signals E N P  and E N T  are set high for counting. E N T  also 
provides the additional function of enabling the ripple carry output (RCO) gate. 
An alternative carry output is provided by the clocked carry output (CCO) gate, 
which, unlike RCO,  is free of glitches. Cascading of counters is achieved by connecting 
either R C O  or CCO to the E N T  terminal of the next counter in the chain. 

The 74176 is an example of a presettable asynchronous counter. A logic diagram for 
this device, along with a function table, is shown in Figure 7.18. It consists of four 
trailing edge triggered flip-flops, two of them being TFFs and the other two being 
JKFFs. The logic for clearing, loading and counting is identical for each of the four 
flip-flops and is 

Pr = R . D . C IL .  R = D + CIL + R 
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Asynchronous clear 
Asynchronous load 
Synchronous clear 
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Count 
Inhibit counting 
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Figure 7.17 The 74ALS560 synchronous 4-bit counter with tri-state outputs (a) logic diagram (b) function table 
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Figure 7.18 (a) The 74176 operation as a decade counter (b) function table (c) mode 2 count sequence 

and the equation for clearing the individual flip-flops is: 

CI = (CIL + R) . (D + CIL + R) 

which, after manipulation, reduces to: 

CI = R(CIL + D) 

In order to clear all the FFs in the counter, R E S E T  must be low, and for counting 
R E S E T  and C O U N T / L O A D  both must be high. 

Assuming all the FFs are cleared, the count follows the normal binary sequence up 
to, and including, the count of nine. On the trailing edge of the tenth input pulse X, 
FFA makes a transition from 1 ---, 0, which would normally induce a transition in 
FFB, changing its state from 0 ---, 1. However, at this instant, JB = KB = D = 0 and 
consequently FFB remains in the reset condition. At the same instant it is also 
necessary to clear FFD. Now Jo = BC = 0 and K D -  D = 1, hence when A makes 
a 1 ---, 0 transition at the trailing edge of the tenth input pulse X, FFD is reset. All the 
FFs are now reset to 0 and are awaiting the arrival of the next input pulse. 

The 74176 has three modes of operation: 

1. To operate as a decade counter, an external interconnection has to be made from 
A to the clock input of FFB, the incoming count being connected to the clock pin 
of FFA. 
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2. For the count tabulated in Figure 7.18(c), the output D is externally connected to 
the clock pin of FFA and the input count is applied at the clock pin of FFB. 

3. To operate as a scale-of-2 and scale-of-5 counter, no external connections are 
required. FFA provides the scale-of-2 count with the input count applied at its 
clock pin. FFs B, C, and D are used as the scale-of-5 counter, the input count being 
fed to the clock pin of FFB. 

A second asynchronous counter, the 74290, is available as an IC package. It consists 
of two parts: a single flip-flop acting as a scale-of-2 counter, and three other flip-flops 
acting as a scale-of-5 counter. In order to use the package effectively, it is not essential 
to have a detailed knowledge of the circuit. However, the digital designer must be 
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Figure 7.19 (a) Chip connections for the 74290 (b) Truth table for the reset inputs (c) The 74290 connected as 
a scale-of-six counter (d) The 74290 scale-of-six counter timing diagrams (e) Elimination of spikes with the enable 
signal, E 
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familiar with the package connections and in order to use it intelligently, must under- 
stand the basic principles of counting. For the 74290, the important chip connections 
are shown in Figure 7.18(a). They are: 

1. Four outputs, D, C, B and A, where D is the most significant digit 
2. Input terminal Ain where the input count is connected 
3. Input terminal Bin which is connected to output A when the counter is operating in 

the decade mode. Otherwise the input count can be connected to Bin when in the 
scale-of-5 mode. 

4. R0(1) and R0(2), which are direct clear terminals. Both must be held at 1 to clear all 
the FFs. 

5. R9(1) and R9(2), which set a count of nine in the counter if they are both held at 1. 

One other operating rule must be observed, and that is, for normal counting, at least 
one of the R0 terminals and one of the R9 terminals must be held at 0. A function table 
defining the operation of the reset terminals is given in Figure 7.19(b). 

Having become familiar with the chip connections, it is now possible to make use of 
the package. If a scale-of-6 counter is required, the package is connected as shown in 
Figure 7.19(c). In this configuration the chip is acting as a resettable ripple counter. 
When the output combination B = C -- 1 and A = 0 is reached, terminals R0(I) and 
R0(2) make a transition to 1 and all the flip-flops are cleared. 

xi. 
> Ain 

74293 

R0(1) 

R0(2) 

! 

Figure 7.20 The 74293 used as a 

scale-of- 13 ripple counter 

The timing diagrams for this connection are shown 
in Figure 7.19(d) and it will be seen that after a count 
of five the output of FFB becomes 1 for a very short 
period of time, leading to a spike output on the 
B line. If the output data is to be decoded, it is 
desirable that this should be done during clearly 
defined time intervals in order that the spikes of this 
type can be eliminated. This can be achieved by 
means of a strobe which only enables the output 
gates at appropriate times. The method is illustrated 
in Figure 7.19(e). 

The closely related 74293 package consists of 
a scale-of-2 counter along with a scale-of-8 counter. 
An example of this chip connected as a scale-of-13 
resettable counter is illustrated in Figure 7.20. 

7.14 Cascading of IC counter chips 

If two counter chips, such as the 74290 and the 74293, are cascaded and a frequency 
of 320 kHz is applied at the input terminal of the 74290, as shown in Figure 7.21, 
the frequency of the signal appearing at the output of the 74293 will be 2 kHz. 

, ,_! 74290 1 3 2 k . .  I 74293 
-I - . 0  1 - l ' - "  I - 

Figure 7.21 Two IC counters connected in cascade and dividing the frequency input by 160 
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Figure 7.22 Two 74290 chips in cascade forming a scale-of-92 counter 

When frequency division by a large number is required, the only practical way of 
achieving this is to use a cascade of counter chips. 

Another example of the cascading of counter chips is shown in Figure 7.22. 
If a scale-of-92 counter is required, this can be achieved by cascading two 74290s. 
The most significant digit output Do of the first chip is connected to terminal Alin of 
the second chip and acts as the clock signal for it. For every ten X pulses there is one Do 
pulse, and on the tenth X pulse the chip labelled 10 ~ makes a transition from 1001 to 
0000 and the chip labelled 101 makes a transition from 0000 to 0001. The counter is 
allowed to count up to 92 when the signal representing this number is fed back via the 
latch circuit to the clear inputs of the two chips. The latching circuit eliminates 
problems that may be caused by the flip-flops having different resetting times. 

7.15 Shift registers 

A shiftregister is a sequential logic device which consists of a cascade of FFs contained 
in a single IC package. The output of each FF in the cascade is connected to the input 
of the  succeeding FF, and data can be shifted from left to right or vice versa by the 
clock which is frequently referred to as the shift pulse. A basic 4-stage register is shown 
in Figure 7.23 along with a series of timing diagrams. The register consists of four 
trailing edge triggered master/slave JKFFs which, alternatively, could be either master/ 
slave SR or D flip-flops. The timing diagrams illustrate the serial movement of 1 bit o f  
data from the input of the register to its output. This operation requires four clock 
pulses, the data moving from one FF in the cascade to the succeeding one on the 
receipt of the next clock pulse. 

Shift registers can be classified into four distinct groups. 

1. Serial-in~serial-out (SISO), in which data can be moved serially in and out of the 
register, one bit at a time. 

2. Serial-in/parallehout (SIPO), in which the register is loaded serially, one bit at 
a time, and when an output is required the data stored in the register can be read in 
parallel form. 
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Figure 7.23 Basic 4-bit shift register with timing diagrams 

3. Parallel-in~serial-out (PISO), in which all the flip-flops are loaded simultaneously 
and when an output is required, the data stored is removed serially from the register 
one bit at a time under clock control. 

4. Parallel-in/parallel-out (PIPO), in which all the flip-flops in the register are loaded 
simultaneously, and when an output is required the flip-flops are read simul- 
taneously. 

Additional to the input and output terminals, a shift register will have an asynchronous 
clear terminal which is used to drive all the FFs in the register to logic O. For those shift 
registers having parallel data inputs, an asynchronous preset or load is required for 
entering the data pattern into the register. A clock input is also required for shifting 
data through the register. 

It is also possible to classify shift registers according to their input arrangements" 

1. Double-rail input. For this type of register there are two input terminals for either 
the J and K inputs or, alternatively, the S and R inputs. 

2. Single-rail input, as illustrated in Figure 7.23. Here the first flip-flop in the 
cascade has been converted into a DFF by placing an inverter between the J and K 
input lines. 

There can also be double-rail output, where the true and complementary outputs of 
the last flip-flop in the register are brought out to separate pins, or, alternatively, there 
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can be a single-rail output where only the true output of the last flip-flop is made 
available at a pin. 

Data can be transferred by shift registers in either serial or parallel form. Serial transfer 
between two 4-bit registers will require four clock pulses and one interconnection, 
while parallel transfer between two registers needs four interconnections. The type of 
transfer to be used depends upon the distance between the sending and receiving 
registers. For registers which are near to one another, parallel transfer will be faster, 
even if more interconnections are needed, but for registers some distance apart, the 
large number of interconnections required would prove to be uneconomic both in 
terms of cost and space. 

7.16 The 4-bit 7494 shift register 

This register, shown in Figure 7.24, can be operated in the serial-in/serial-out 
mode or, alternatively, as a dual source parallel-in/serial-out register. The register 
consists of four SR master/slave flip-flops, four AOI gates and four inverter 
drivers. In order to prepare the register for operation, the FFs are set to logic 0 by 
applying logic 1 at the CLEAR input. Data can now be loaded asynchronously 
into each stage of the register by setting the corresponding preset enable inputs, 
PE1 or PE2, high. For serial operation, the true and inverted data are set up at the 
R and S inputs of the first flip-flop in the register. On the trailing edge of the 
clock pulse the data is entered into the master and appears at the slave input. 
When the leading edge of the clock pulse arrives, the data is transferred to the 
output of the slave. 

I PE1 0 

Serial input - - ~ 4  Ck ~>o_ jlRAcI ~ l ~B 

CLEAR [~  

f lPr .... ~oPrcl Output 

cj 

Figure 7.24 The 7494 shift register with serial and parallel loading 
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7.17 The 4-bit 7495 universal shift register 

A typical example of a versatile shift register is the 7495 and its logic diagram 
is shown in Figure 7.25. It has facilities for parallel loading and parallel output, 
serial loading and serial output, and, additionally, it has shift-left and shift-right 
facilities. This is, in effect, a universal shift register which can operate in all 
the four modes previously described, besides having the facility of bi-directional 
shifting. 

The mode control (MC) signal controls whether data inputs are serial or parallel. 
With MC = 0, the AND gates marked 1 are enabled. In this mode data is serially 
entered under the control of Ckl. Alternatively, with MC = 1, the AND gates marked 2 
are enabled. In this case the input data is entered in parallel and appears at the 
data outputs after the 1 ~ 0 transition of Ck2. Shift right takes place on the 1 ~ 0 
transition of Ckl and the shift left operation takes place on the 1 ~ 0 transition of 
Ck2 when MC = 1 by connecting the output of each flip-flop to the parallel input of 
the previous flip-flop, as shown in Figure 7.25. 
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Figure 7.25 (a) The 7495 universal shift register (b) The 7495 connections for bi-directional shifting 
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7.18 The 74165 parallel loading 8-bit shift register 

An example of an 8-bit shift register is the 74165 (see Figure 7.26) which can be operated 
as a SISO or a SIPO. It consists of eight SRFFs with parallel access which is enabled 
when the Shift/Load signal is low. The data is loaded asynchronously into the eight flip- 
flops on a 1 ~ 0 transition of the Shift/Load signal. When loading, the two gates 
associated with Clock and Clock Inhibit are disabled, and shifting cannot take place. 
Serial transmission of data is also inhibited when Clock Inhibit and Shift/Load are high, 
but on returning Clock Inhibit to logic 0, shifting from left to fight can take place. 

PAIIAILI[ 
INFUT| 

. . . .  

t A �9 c o e F o . ~  

Figure 7.26 The 74165 parallel load 8-bit shift register 

7.19 The use of shift registers as counters and sequence generators 

An alternative method of designing digital counters or sequence generators is to use 
a shift register chip. A typical shift register counter configuration is shown in 
Figure 7.27. The individual flip-flops form part of an N-stage shift register and the 
connections between individual flip-flops are internal to the chip. The output of each 
stage and its complement are both available, and they may be used to drive combin- 
ational feedback logic which provides the J and K inputs to the least significant stage 
of the register. Such a circuit can be used to generate specified binary sequences or, 
alternatively, it can operate as a scale-of-M counter, where M < 2 N. 

The input-output relationships for each stage of the counter, shown in Figure 7.27, 
are defined by the following set of equations: 

A t+6t = f ( A ,  ft ,  B ,B ,  . . .  , N , N )  

B t + f t  - -  A t, C t+et = B t, etc. 

] - - F e e d b a c k  l o g i c  = flA. ~ B, B, .... N,~I) 
L . . . . . .  - - " e 

JA A 

..... I > - 
- 

~ ,  . . . . .  , . . . . . . . . .  - 

Figure 7.27 Basic configuration of a feedback shift register 
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The feedback circuit produces either a 1 or a 0 which is fed to the input of FFA where 
it determines the next state of A on receipt of the next clock pulse. For example, 
assuming that the N-stage shift register is in the state N.. .CBA = 0...001, the next 
state of the shift register will be either 0...010 or 0...011, depending on whether the 
feedback logic provides a 0 or a 1 at the J-input of FFA. 

7.20 The universal state diagram for shift registers 

The transition table for a two-stage left-shift register is shown in Figure 7.28(a). If the 
shift register is initially in the state 00 there are two possible next states. These are 00, if 
the J-input to the least significant stage of the register is a 0, or 01, if the J-input is a 1. 
Similarly, if the initial state of the shift register is 01 then the two possible next states 
are either 10 or 11. 

The transition table can be translated into the universal state diagram shown in 
Figure 7.28(b), which is also called the De Bruijn diagram. It will be noted that the shift 
register is permanently 'locked' in the state 00 if the feedback signal is a 0 and similarly 
it is 'locked' in the state 11 if a 1 is provided by the feedback logic. 

A similar transition table can be developed for a 3-stage shift register, and this can 
be translated into a universal state diagram, as shown in Figure 7.29. The universal 
state diagram for a 4-stage register shown in Figure 7.30 has been developed in the 
same way, and clearly as the number of stages in the register increases the complexity 
of this type of diagram increases rapidly. 
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Figure 7.28 Two-stage shift register (a) Transition table (b) Universal state diagram 
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Figure 7.29 Three-stage shift register (a) Transition table, (b) Universal state diagram 
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Figure 7.30 Universal state diagram for a four-stage shift register 

The universal state diagram is a departure from the kind of state diagram that 
defines a single count sequence. All possible internal states of the register and all 
possible transitions between states are shown on the universal state diagram. The logic 
designer may choose a suitable sequence of states on the diagram and design the 
feedback logic that will allow the register to cycle through the chosen sequence. 

7.21 The design of a decade counter 

The first step in the design is to choose a ten-state sequence on the universal state 
diagram for a 4-stage register. One possible sequence is" 

So-S 1 -S2-S5-S 11 -S6-S 13-S 10-S4-S8-S0 

It should be noted that this is not the only ten state sequence available on the universal 
state diagram. 

The second step in the design is to draw up the state table, as shown in Figure 7.31 (a) 
in order to determine the logical value of the feedback function for each change of 
state. For example, in going from So to S1, the output of FFA must change from 0 to 1, 
and hence the required input to this flip-flop, JA -- 1. This is the logical value of the 
feedback function required for this change of state, and it is entered in the right hand 
column of the state table. 

The feedback function and the unused states are plotted on a 4-variable K-map 
(see Figure 7.3 l(b)). It should be noted that S15 is an unused state and it appears that 
the S]5 cell on the K-map should have been marked with an X. However, a general rule 
that should be followed when designing this type of counter is that the entry in the S15 
cell should always be a 0, and that in the So cell should always be a 1, irrespective of 
whether these two states are in the counting sequence. This ensures that the counter 
will never be locked in either the 0000 or 1111 states. 

Minimising, the feedback function is found to be 

f -  JA - BD + A CD + A CD 

If the counter enters an unused state due to faulty circuit operation, it will return to the 
correct sequence after a maximum of five clock pulses. The return to the correct 
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Figure 7.31 (a) State table for shift register counter (b) K-map for the feedback function f =  JA 
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sequence when faulty operation occurs is illustrated in the full state diagram shown in 
Figure 7.31(c), and implementation of the counter is shown in Figure 7.31(d). 
If a decimal display is required, then the counter, in conjunction with the appropriate 
combinational logic, can be used to drive a seven segment indicator. Alternatively, 
the flip-flop outputs can be fed to the input terminals of a 4-to-16 line decoder 
(see Figure 7.31 (e)), whose outputs will be either active low or active high depending 
on the MSI package selected. If, for example, DCBA = 1101 the corresponding 
decimal output is (6)~0 and will appear at the decoder output terminal marked YI3- 

It will be observed that if the decoder outputs are active high they will produce 
a continuously circulating ring of ten pulses which could be used to initiate operations 
in other sequential logic circuits. 

7.22 The ring counter 

The simplest type of shift register counter is the ring counter, where feedback from the 
last stage of the register feeds the input of the first stage, as shown in Figure 7.32(a). 
The register has ten stages and it can be used as a decimal counter since the number 
of stages is equal to the number of states. The data contained in each stage is 
shifted to the next stage on the receipt of a clock pulse, and the counter circulates a 
1 which is initially preset in the least significant stage of the register, all other stages 
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Figure 7.32 (a) The ring counter and (b) the counting sequence for a lO-stage ring counter 
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Figure 7.33 The self-starting self-correcting ring counter 

being simultaneously cleared. The count sequence of the register is tabulated in 
Figure 7.32(b). 

The ten outputs of the ring counter can be used directly as decimal outputs without 
the need for a decoding network. Alternatively, the circulating 1 can be used to enable 
a group of logic circuits sequentially. The number of stages required in this case will be 
equal to the number of circuits to be enabled. 

An obvious advantage of the ring counter is its simplicity. Additionally, it has 
spike-free outputs since decoding logic is not required. However, it has the disadvantage 
of not having a binary readout and its counting sequence is radically changed if, 
through faulty circuit operation, it enters one of the many unused states. 

A binary counter, synchronous or asynchronous, having ten stages will have 
2~~ = 1024 counting states and can count up to 1023, whereas the decimal ring counter 
only has 10 counting states and it follows that there are 2 l~ - 10 = 1014 unused states. 
If the counter, for some reason, enters one of these states it enters a forbidden counting 
sequence, of which there are many, and it will never again re-enter the correct counting 
sequence unless forced to do so. 

The circuit of Figure 7.32(a) can be modified so that it becomes both self-starting 
and self-correcting. The required modification is shown in Figure 7.33. The input to 
FFA is: 

JA = A B C D E F G H I  

and this can only b e l p r o v i d e d A = B = C = D = E = F = G - - H - - I = 0 .  
Clearly, if any section of the counter, except the last one, contains a 1, JA - 0 and 

the counter will now enter the required sequence within a maximum of 9 clock pulses. 
If, for some reason, the counter enters a false state, the counter is also self-correcting 
and will return to the correct sequence after, at most, 9 clock pulses. 

7.23 The twisted ring or Johnson counter 

As the name implies, the difference between the twisted ring counter and the ordinary 
ring counter is that the feedback is taken from the complementary output of the last 
stage in the register and is connected to the J-input of the first stage, while the inverted 
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Figure 7.34 (a) 5-stage twisted ring counter (b) its counting sequence (c) K-map for determining the feedback 
function (d) K-map for determining the decode logic (e) K-map for determining self-correction function 

form of the feedback is fed to the K-input. If all the flip-flops are initially preset to the 
same state, either 0 or 1, then the number of stages in the count sequence is equal to 
twice the number of stages in the shift register. Hence, a decade counter can be 
constructed from a 5-stage shift register, as shown in Figure 7.34(a). The counting 
sequence of the circuit, assuming that initially all the flip-flops are cleared to zero, is 
tabulated in Figure 7.34(b). 

This is a 10-state sequence which could have been selected from the universal state 
diagram of a 5-stage shift register. The feedback logic could have been developed by 
first tabulating the required value of the feedback function in the column headed f in 
the count sequence tabulation. The function is then plotted on the K-map shown in 
Figure 7.34(c). Simplifying, the K-map plot gives f = JA = E. 

For this circuit, decoding logic is required to obtain a decimal count. This logic is 
obtained from a 5-variable K-map on which the decimal equivalent (corresponding to 
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the clock pulse numbering in Figure 7.34(b)) for each of the states in the counting cycle 
has been marked as shown in Figure 7.34(d). The simplifying adjacencies for (0)lO and 
(1)lO have also been marked with X's on the map, and if the reader cares to continue 
the process of simplification it can be seen that it is always possible to combine seven 
unused states with each of the decimal entries. The resulting decimal decode logic, after 
simplification, is tabulated below: 

_ n 

(0)l 0 = A E  (5)10 = A E  

(1)lo = AB (6)10 - AB 

(2)1o = BC' (7)1 o - / ~ C  

(3)10 = CD (8)10 - CD 

(4)10 = DE (9)10 - DE 

There are also three other undesired and independent count sequences for the Johnson 
counter. They are: 

1. $2-$5-S I I -$23-S 14-$29-$26-$20-$8-S ! 7-$2 

2. S4-S9-S 19-S6-Sl 3-S27-S22-S 12-$25-S ! 8-S4 

3. Sl0-S21-Sl0 

If the counter should enter any one of these sequences due to faulty circuit operation or 
when switching on, it will remain in that sequence unless arrangements are made to 
return the counter to the required sequence. 

The unwanted sequences are shown plotted on the K-map in Figure 7.34(e), cells 
marked with a l being in unwanted sequence l, and so on. It will be observed that the 
four adjacent states $2, $6, S~0 and S~4 are all in one of the three unwanted sequences. 
If the Boolean function that represents these four states, f - ABE, is used to clear the 
five stages of the counter, then within a maximum of ten clock pulses the counter will 
enter the Johnson count sequence. The reader should note that there are alternative 
combinations that will achieve the same effect. 

The Johnson counter has an even-numbered cycle length of 2N where N is the 
number of stages in the register. However, with a suitable modification of the feedback 
it is possible to achieve an odd-numbered cycle length of (2N - 1). For  example, if the 
state 00000 is omitted, the counting cycle becomes that shown tabulated in Figure 7.35(a) 
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Figure 7.35 (a) Counting sequence of an odd-numbered cycle length Johnson counter (b) Determination of the 
feedback function for the Johnson counter of cycle length (2N-1) 
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and the values of the feedback function required to generate this sequence appear in the 
last column of this table. Plotting this function in conjunction with the unused states on 
the 5-variable K-map (see Figure 7.35(b)) and minimising, leads to the revised feedback 
function f - D + E. It is left to the reader to show that if the state 11111 is omitted 
rather than the 00000 state, the modified feedback function will be f - D E .  

7.24 Series and parallel interconnection of Johnson counters 

For a modulo-10 count, a 5-stage Johnson counter is required with its associated 
decode logic. As the modulus increases, the number of stages required also increases, 
and beyond modulo-12 the use of a single Johnson counter is no longer economic. 
However, by means of a series or parallel interconnection it is possible to use two 
Johnson counters of smaller moduli to generate a larger modulus. 

In Figure 7.36, two mod-4 counters are connected in series to generate the tabulated 
mod-16 count. The AND gate provides the clock pulses for the right-hand counter. 
Each time the left-hand counter is in the state B A  - 10, a clock pulse is generated for 
the right-hand counter. If required, a 4-to-16 line decoder can be used to decode the 
outputs. 

A pair of parallel connected Johnson counters is shown in Figure 7.37, both of 
them being clocked by the same signal. The two moduli chosen, mod-3 and mod-5, 
are both prime numbers. Odd numbered counting sequences are obtained for both 
counters by using the appropriate feedback signals. For the mod-3 counter B A  = 11 is 
removed from the count sequence, and for the mod-5 counter E D C  - 000 is removed. 
The feedback signal for the mod-3 counter is JA - B A  and for the mod-5 counter it is 

m 

J c  = D + E.  The initial state of the tabulated count sequence is E D C B A  - 10000 and 
the counter re-enters this state after 15 clock pulses. Two parallel connected modified 
Johnson counters have combined to form a mod-15 counter. 
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Figure 7.36 (a)A series-connected pair of  mod-4 Johnson counters providing a mod-16 count and 
(b) the count sequence 
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Figure 7.37 (a ) A paralh, l-connected pair o f  Johnson counters providing a mod- 15 count and ( b ) the count sequence 

It is left to the reader to show that if two moduli which are not prime, such as 4 and 
6, are selected, the two counters return to the initial state after twelve clock pulses. 
A mod-12 counter has been obtained rather than a mod-24. The reader should 
observe that the modulus obtained is the lowest common multiple (LCM) of the 
individual moduli. 

7.25 Shift registers with XOR feedback 

The 4-stage shift register shown in Figure 7.38(a) has XOR feedback from stages 
C and D such that the input to the first stage JA = C | D. To determine the sequence 
of states for the register, it is assumed initially that the shift register is in the 
state D = 0, C - - 0 ,  B - - 0  and A -  1, in which case JA = 0 @0, and on receipt of 
the next clock pulse the register enters the state D = 0, C -  0, B = 1 and A = 0. 
The complete sequence of states for the register is tabulated in Figure 7.38(b), 
the value of the feedback function for each state appearing in the right-hand column 
of the tabulation. 

In all, there are 15 states, and this is the maximum number a 4-stage register having 
XOR feedback can have. This sequence is termed the maximum length sequence (MLS). 
So- -0000 is not included in the sequence since this is a lock-in state. If the register 
enters this state JA -- 0 | 0 -- 0; it is unable to leave it when the next and subsequent 
clock pulses arrive. In general, the maximum length sequence for such a circuit is given 
by l = 2 s - 1 where N is the number of stages in the shift register. 

Not all XOR connections result in a maximum length sequence. The table in 
Figure 7.39 gives the feedback functions which will give the maximum length sequence 
for values of N up to and including 18. 
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Figure 7.38 (a) Four-stage MLS shift register generator (b) MLS for four-stage shift register 

No of stages, 
N 

Feedback 
equation 

A 
A ~ B  
B ~ C  
C ~ D  
C ~ E  
E ~ F  
F ~ G  
D ~ E ~ F ~ H  
E ~ I  

No of stages, 
N 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Feedback 
equation 

G ~ J  
I ~ K  
F~ H6) K~ L 
I ~ J ~ L ~ M  
D ~ H ~ M ~ N  
NSO 
D ~ M ~ O ~ P  
N ~ Q  
K ~ R  

F i g u r e  7.39 Feedback functions for maximum-length sequences 

Other maximum length sequences are available with the same register length. 
For  example, if the inverse of the X O R  function C | D is used as feedback, then an 
alternative maximum length sequence is obtained and is tabulated in Figure 7.40. 
Furthermore,  an examination of the feedback eauations in Figure 7.39 shows that  
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Figure 7.40 (a) The MLS  for a.lour-stage sh~[t register with feedback C (.~ D (h) A ~ D and (c) A ~i) D 

one of the digits in the equation is always the Nth digit in the register, and the other 
digit (or digits) is obtained by looking back down the register. For example, for N -- 4 
the Nth digit is D, and the other digit in the equation, C, is the ( N - 1 ) t h  digit. 
Two alternative maximum length sequences for a 4-stage register can be obtained by 
looking forward to the (N + l)th digit which, in this case, is A. Hence the other two 
maximum length sequences are obtained by using the feedback A ~ D and A | D, and 
these sequences are shown tabulated in Figure 7.40. 

Clearly, the circuit shown in Figure 7.38(a) can be used as a binary sequence 
generator, the output sequence being taken directly from the output of one of the 
flip-flops in the register. In this case, the binary output sequence appearing at the 
output of FFD is 000100110101111. This kind of generator is sometimes referred to as 
a pseudo-random binary sequence generator because the digits in the sequence are in 
apparently random order. However, the randomness repeats itself every 2 N - 1 clock 
pulses. For a given clock frequency, the periodicity of the randomness increases very 
rapidly with the number of stages in the register. 

If N -  10, (2 u - 1 ) - 1 0 2 3  

and if the clock frequency is 1 MHz the sequence repeats itself every 1.023 ms. 

If N -  20 2 N -  1 -  1048575 

and the period of the sequence is 1.05 s. 

If N -  30 2 N - -  1 - 1073741823 

and the period of the sequence is 1073.74 s. 
The design of pseudo-random sequence generators is based on the theory of finite 

fi'oldr cleve.lnne, cl hv the French mathematician Evariste Galois. The algebra associated 
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Non-maximum length sequences generated by a four-stage shift register with feedback B �9 D 

with finite field theory is frequently referred to as Galois field algebra. This type of 
binary sequence generator has a number of applications. Typical of these is the 
generation of repetitive noise for test circuits and also in the process of encrypting 
serial transmissions to ensure message security. 

Non-maximum length sequences can be generated with a 4-stage register if an 
alternative XOR feedback is used. For example, if the feedback function is B @ D, 
one of the sequences tabulated in Figure 7.41 will be generated. The form which the 
sequence takes will depend on the initial state of the register. 

The basic MLS generator shown in Figure 7.38 is not necessarily self-starting, since 
on switching on the initial state of the generator may be 0000. As the circuit stands, 
there is no way in which it can leave this state. With a slight modification to the 
feedback circuit it is possible to make the generator self-starting. The required 
modification is the logical addition of the term ABCD to the feedback equation so 
that it becomes: 

f = C@ D + ABCD 

This function is plotted on the K-map shown in Figure 7.42(a) and, after simplification, 
it reduces to" 

f - C O D + A B D  

The implementation of the self-starting generator is shown in Figure 7.42(b). 
It is also possible to generate non-maximum length sequences by using a jump 

technique. The method of approach is to start with an MLS generator using 
XOR feedback and then reduce the length of the sequence by introducing additional 
feedback. The method will be described for the 4-stage shift register generator shown 
in Figure 7.43. 

It will be assumed that initially the generator is in the state DCBA = 0011 ($3). 
If, when in this state, the feedback is a 0, then the next state of the generator 
will be DCBA = 0110 ($6). Examination of the state table for the 4-stage MLS 
generator in Figure 7.38 shows that C | D = 0 when the generator is in state $3, and 
the next state is $6. If the feedback is modified to a 1 then the next state of the 
generator is $7. 

The state diagram for the MLS generator having four stages is shown in 
Figure 7.43(a), and it can be seen that by modifying the feedback, the states $6, S~3, 
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Figure 7.42 (a) K-map plot for a self-starting MLS generator (b) implementation of self-starting generator 

S~0, $5 and S~ will be omitted from the sequence, thus reducing its length from 15 to 10 
states. 

The modified sequence for the generator is shown in the state table in Figure 7.43(b) 
and the new value of the feedback function in state $3 is shown encircled. The feedback 
function in conjunction with the unused states and the 'lock-in' state So are plotted on 
a K-map and then simplified (see Figure 7.43(c)). This gives a modified feedback 
function of 

f -  C | D + ABD + ABD 

and the implementation of this self-starting non-maximum length sequence generator 
is shown in Figure 7.43(d). 

7.26 Multi-bit rate multipliers 

It is, on occasions, desirable to have a counter that is capable of generating a variety 
of count sequences under the control of a variable combination of inputs, termed 
rate constant inputs. Consider, for example, the scale-of-eight counter shown in 
Figure 7.44(a) having the normal count sequence shown in Figure 7.44(b) but in this 
case under the control of the binary rate inputs W, X and Y. 

If the binary rate inputs are W - 1, X - 0 and Y - 0 the output Z - WQACk, or 
when expanded: 

Z - W(QcQBQA + QcQBQA + QcQBQA + QcQnO__.A)Ck 
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Figure 7.43 (a) State diagram of the four-stage MLS generator with modified feedback showing the jump 
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And a sequence of four pulses appears at the output Z rather than the normal scale- 
of-eight count._ For  a binary rate input of W -  0, X -  1 and Y -  0 the output  
Z = XQAQnCk, or when expanded" 

Z -  X(QcQnQA + QcQ~QA)Ck 

In this case a sequence of two pulses appears at the output  Z while the counter 
cycles through the scale-8 count, and it is clear that if the rate inputs are W -  O, 
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Figure 7.44 (a) Basic 3-bit binary rate multiplier (b) Scale-of-8 count sequence 

X - 0 and Y - 1, the output Z will consist of a single pulse. Clearly, any combination 
of the rate constant inputs can be chosen, and this will lead to a variety in the number 
of pulses appearing at the output. A timing diagram for the rate multiplier is shown 

in Figure 7.45. 
Typical examples of rate multipliers in the type 74 series are the 7497, a 6-bit binary 

rate multiplier, and the 74167 decade rate multiplier. The 7497 has a basic count cycle 
of 64 clock pulses and the maximum number of pulses appearing at the output Z 
during one complete count cycle is 63 when all the rate inputs are high. A circuit 
diagram of the device is shown in Figure 7.46 along with the truth table. The 7497 
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features buffered clock, clear and enable inputs to control the device operation. 
The strobe input is used to enable or inhibit the rate inputs. To enable the multiplier, 
the clear, strobe, and enable inputs are low and the output frequency is given by the 
equation 

foo t  ~--- 
M x fin 

64 

where M = F x 25 + E x 2 4 + D x 2 3 -t- C x 2 2 + B x 21 + A x 2 ~ If, for example, 
F = l a n d E =  lwh i l eD ,  C,B,  a n d A = 0  

3 2 +  16 3 
fout = 64 Xj]n = ~ • 

The unity/cascade input allows the range of the binary rate multiplier to be extended to 
12 bits or more. 

Problems 

7.1 Design a synchronous modulo-12 counter using N A N D  gates and 

(a) T flip-flops, 
(b) SR flip-flops, 
(c) JK flip-flops, 
(d) D flip-flops. 

Develop the decode logic for the counters. 
7.2 Design a cyclic generator for the following sequence using JK flip-flops and 

N A N D  gates: 

Clock pulse C B A 

1 0 0 1 
2 1 0 0 
3 0 1 0 
4 1 0 1 
5 1 1 0 
6 0 1 1 

Examine the behaviour of this circuit in its unused states and show that one of the 
unused states is a 'lock-in' state. Suggest a way of avoiding a 'lock-in'. 

7.3 Convert the binary code in the tabulation shown below to its corresponding 
Gray code, and design a counter using JK flip-flops and NAND gates to generate 
this new counting sequence. Assume unused counts are 'don't care' states. 
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D C B A 

0 0 0 0 
0 1 1 1 
0 1 1 0 
0 1 0 1 
0 1 0 0 
1 0 1 1 
1 0 1 0 
1 0 0 1 
1 0 0 0 
1 1 1 1 

7.4 The operational characteristics of a PQ flip-flop are as follows: 

PQ = O0 the next state of the flip-flop is 1, irrespective of its present state. 
PQ = O1 the next state of the flip-flop is the complement of the present state, 

irrespective of its present state. 
PQ = 10 the next state of the flip-flop is the same as the present state, irrespective 

of its present state. 
PQ = 11 the next state of the flip-flop is O, irrespective of its present state. 

Using the above information, obtain the steering table of the PQ flip-flop and develop 
the input equations for a scale-of-eight binary counter which uses this flip-flop. 

7.5 The circuit shown in figure P7.5 is to be 
used to generate an output pulse Q 

Start .Jd _ o having a time duration equal to 14 clock 
i] periods. Draw a timing diagram showing 

Counter Stop - K  the principal circuit waveforms. 
and 7.6 A five-stage tipple-counter uses flip-flops control I Ck 
logic - having a delay time of 30 ns and a decode 

l time of 50ns. Determine the maximum 
frequency of operation of the counter. If the 

Figure PT.S counter is operating at this frequency, 
draw a timing diagram for each of the 
flip-flops as the count advances from 01111 
to 10000. 

Assuming that the counter is operated now at a frequency of 8.33 MHz, draw 
timing diagrams showing the behaviour of the flip-flops between the fifteenth and 
sixteenth clock pulses. 

7.7 Draw the timing diagrams for the following asynchronous counters: 

(a) a 4-bit binary down-counter 
(b) a 4-bit binary up-counter 

assuming that the flip-flops used in the counting array trigger on the leading edge 
of the pulse applied to the clock terminal. 
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7.8 The contents of a serial-in/serial-out shift register are DCBA = 0101, where A is 
the least significant digit of the register. A serial input 10011 is moved into the 
shift register, from left to right, most significant bit first, by five successive clock 
pulses. Draw time diagrams showing how the outputs of the four flip-flops vary 
with time during the period of the five clock pulses. 

7.9 Design a modulo-12 counter using a shift register and feedback logic. Develop 
the decode logic required to give a decimal output. 

7.10 Using a shift register and combinational logic, design a sequence generator 
which will generate the binary sequence 0-1-0-0-1-0-1-1-1-0-1. 

7.11 Develop the state diagrams for the following shift register generators which 
employ exclusive-OR feedback: 

(a) A four-stage shift register. Feedback function f = B @ C. 
(b) A five-stage shift register. Feedback function f = D @ E. 

7.12 A three-stage shift register is to be used to generate two sequences of length 7 and 
5, respectively. When a control signal m -- 1, it generates a sequence of length 7, 
and when the control signal m = 0 it generates a sequence of length 5. Design 
a shift register generator using exclusive-OR feedback to implement the above 
specification 

7.13 A three-stage shift register ABC having exclusive-OR feedback B @ C, where A is 
the least significant stage of the register, is to be used to produce a repeating 
sequence of binary coded decimal digits for e (2.718282) on four output lines P, 
Q, R and S. 

Determine the sequence developed by the generator and develop the 
combinational logic required tO generate the sequence for e. 

7.14 Draw a timing diagram for a four-stage twisted ring counter for a period of eight 
clock pulses. Display the outputs of each of the flip-flops on the timing diagram. 

If the counting sequence is to be reduced from eight to seven by the omission 
of the 1111 state, determine the modification of the feedback logic that is 
required. 



8 Clock-driven sequential circuits 

8.1 Introduction 

In this chapter a design procedure will be established for the design and implementation 
of clock-driven sequential circuits. Such circuits have many applications in the digital 
field and consist of both combinational and memory elements. For an SSI design, 
members of one of the commonly used logic families would be employed in conjunction 
with either JK or D flip-flops. In this field JK flip-flops would probably be selected 
since their use normally leads to simpler circuit implementation. However, in recent 
years, enormous advances in technology have led to the introduction of a variety of 
large scale programmable devices (PLDs) and the flip-flops used as memory elements 
on these devices are likely to be D flip-flops. 

8.2 The basic synchronous sequential circuit 

A block diagram of a basic synchronous sequential circuit is shown in Figure 8.1. 
The circuit is controlled by the synchronising clock signal and the memory is realised 

S l  

Inputs 

' 7  

Combinational 
logic 

Sp [ Clock 

Next 
state 

Memory 

Outputs 
I =Zl 
I =Zr. 

I Present 
. . . .  state 

Figure 8 . 1  Basic synchronous sequential circuit 

with edge-triggered flip-flops, changes 
taking place on either the leading or 
trailing edge of a clock pulse. If there 
are n flip-flops in the memory, for storing 
the state of the circuit, there are 2 ~ 
possible states, not all of which need be 
used in the design of the circuit. The state 
of the circuit can only change on a 
transition of the clock signal. Relation- 
ships between the various quantities 
specified in the diagram may be 
expressed in the form of state tables or 
state diagrams. 

8.3 Analysis of a clocked sequential circuit 

The logic diagram shown in Figure 8.2 is that of a clocked sequential circuit having 
two inputs, X and clock, and one output Z. The memory elements used are two edge- 
triggered D flip-flops which define the four possible internal states of the circuit, 
A B  - 00, 01, 10, and 11. 
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Figure 8.2 (a) Sequential circuit to be analysed (b) Block diagram for circuit (c) State table for circuit to be 
analysed (d) State diagram of the circuit (e) Generation of output signals (f) Timing diagram for the circuit 

An alternative way of representing this circuit is by means of the block diagram 
shown in Figure 8.2(b). This diagram depicts a logic box which contains the combin- 
ational logic as well as the two flip-flops, .4 and B, whose output combinations define 
the four internal states of the circuit. The input equations for the flip-flops A and B can 
be obtained directly from Figure 8.2(a). 

DA = A B  D~ = A B  + X A  
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In Chapter 6 it was shown that the next state output for an edge-triggered D flip-flop is 
given by the equation: 

Qt+6t _ D t 

By substituting DA and Ds in this equation, the next state outputs of the two flip-flops 
A and B are obtained" 

A ,+6, = ( ~ B ) '  

and 

B t+6t = ( i l B  + X.~)  t 

With the aid of these equations, it is now possible, for given present state values of 
A and B, and for a given value of the input signal X, to determine the next state values 
of A and B. For  example, if A = 0, B = 0 and X = 0, then A t+at = 0 and B t+'~t 1. 

It is now possible to determine the output Z of the circuit for all possible combin- 
ations of X, A, and B. This requires a knowledge of the output equation which is 
obtained directly from Figure 8.2(a): 

Z = AB_n_ 

The interpretation of this equation is that the output Z = 1, when the present state of the 
circuit is A = 1, B = 1, and i fX = 0 or 1 is received at the input in conjunction with a clock 
signal. For all other combinations of A and B the output Z = 0, irrespective of the value of 
X or the presence of the clock. Further, the equation indicates that the time duration of 
Z = 1 at the output can never be greater than the time duration of the clock pulse. 

It is now possible to construct a table showing the present state, the next state and the 
output. This table, shown in Figure 8.2(c), may be regarded as the state table of the 
circuit where the various states have been designated as So, S1, $2 and $3. With the aid 
of this state table the internal state diagram can now be constructed and it is shown in 
Figure 8.2(d), each of the four rectangles representing one of the four states. 
A transition from one state to the next is represented by a straight line with an 
arrowhead which indicates the direction of the transition. The transition signal is 
placed at the side of the arrowhead. In order to make a transition from S~ to $3, the 
circuit needs to receive X = 1 and clock (X_cL_). Since the flip-flops used are negative 
edge-triggered D flip-flops, a transition between states will always take place on the 
trailing edge of a clock pulse. It follows that the transition from S~ to $3 will take place 
on the trailing edge of the clock pulse which forms part of the transition signal X_n_. 

The output Z = 1 has been entered in the rectangle marked $3. This output allo- 
cation should be interpreted as follows. Z = 1 if the circuit is in internal state A B  = 11, 

and a clock pulse is received. The generation of the output signal Z is illustrated in 
Figure 8.2(e). The circuit enters state $3 when X = 1, and on the trailing edge of the 
clock pulse marked 1. The circuit remains in state $3 until the trailing edge of the clock 
pulse marked 2, which initiates the transition from $3 to So. The output Z = AB_n_ 

is formed by ANDing A B  and the clock pulse marked 2. Both of these signals are logic 1 
in the shaded region shown on the diagram, and in this region the output Z = 1. 
It should be observed that Z = 1 during the time duration of the shaded region 
irrespective of whether X = 0 or 1. 

What can be deduced about the function of this circuit from the state diagram? An 
initial observation indicates that there are two distinct paths through the state diagram 
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starting with So. The first branch is via S 3 and back to So, and the second branch is 
via $2 and then back to So. Secondly, it is clear that no matter which of these two paths 
is taken from So, there are always three transitions before returning to So. This implies 
that strings of three binary digits arriving on the X line are being examined by the circuit. 

Certain combinations of three digits will result in an output for the duration of the 
third clock pulse. This will only occur if the path taken through the state diagram is 
via $3. Other combinations of the three digits result in the path via $2 being selected, 
and in this case there is no output on the Z line during the third clock pulse. 

The first transition in the sequence, from So to S~, is initiated by a clock pulse and 
takes place irrespective of whether X = 0 or 1. In order for the transition from S~ to $3 
to take place X = 1, and finally the transition from $3 back to S~ on the third 
consecutive clock pulse will take place irrespective of whether X = 0 or 1. Clearly 
there are four combinations of three binary digits that will generate an output of 
Z = 1. They are 010, 011, 110 and 111. The remaining four combinations, 000, 001, 
100 and 101 will be associated with the alternative path through the state diagram, and 
for this path the output Z -- 0. 

The timing diagram for three different strings of three binary digits, 011,001 and 
110, is shown in Figure 8.2(f). The X signal is synchronised to the clock and it is 
assumed that changes in this signal always take place between clock pulses. For the 
combinations 011 and 110 there is an output Z = 1 which lasts for the duration of the 
clock pulses marked 3, while for the combination 001 the output Z = 0. 

The last waveform in the timing diagram is for Z = AB, the clock signal having been 
removed from the output equation, and as a consequence the output becomes Z = 1 
on the trailing edge of clock pulse 2 and terminates on the trailing edge of clock pulse 3. 
It is interesting to note that in the case where Z = AB, the output goes high before the 
third digit has arrived. This is satisfactory in this case since having once recognised 
what the second digit is by entering the state $3, it is now irrelevant whether the third 
digit is 0 or 1, and it does not have to be recognised. However, in the case where 
Z = AB_rt_, the output does not go high until the leading edge of the third clock pulse. 
The circuit has to recognise this clock pulse before an output can occur. 

8.4 Design steps for synchronous sequential circuits 

The analysis of the sequential circuit in section 8.3 has identified some of the processes 
required for the design of small scale synchronous circuits having a limited number of 
inputs. An orderly design process can be carried out using the following 10 steps: 

Step 1 
Step 2 

Step 3 

Step 4 

Step 5 

Receive the problem specification. 
Draw up a block diagram for the proposed design which displays all the 
inputs and the required outputs. 
Make an attempt to construct a basic state diagram using information 
obtained from steps 1 and 2. 
Using the basic state diagram construct a state table and check for 
redundant states. 
Reconstruct the state diagram if redundancy has occurred, using the 
information obtained in step 4. 
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Step 6 
Step 7 

Step 8 
Step 9 

Make a state assignment. 
Draw up a new state table, excluding any redundancies, and using the state 
assignment of step 6. 
Select the flip-flops, D, T or JK, to be used as memory elements. 
Using the reduced state table derive the logic equations for the next state 
inputs to the selected flip-flops. 

Step 10 Develop the output logic with the aid of the reduced state diagram. 

Step 1: Problem specification 

For relatively simple sequential circuits the specification will usually consist of a verbal 
statement of the problem and, in particular, details of the inputs available and the 
outputs required. The specification of the problem in completely unambiguous terms is 
not always straightforward and may require several discussions between designer and 
user. If the ambiguities are not resolved at this stage, a circuit implementation will be 
reached that does not satisfy the user's requirements and the design process will have 
to be repeated. 

Step 2: Problem block diagram and timing th'agram 

Having studied the problem specification, construct a block diagram showing the 
sources of all the inputs and the required outputs. Additionally, draw up a timing 
diagram displaying the outputs specified by the problem. 

Step 3: The internal state th'agram 

In this step the verbal statement of the problem should be expressed in terms of the 
internal states of the circuit in the form of a state diagram. There are no rules for 
constructing state diagrams, and the ability to draw them can only be acquired by 
experience. For example, the inexperienced designer will almost certainly not, in the 
first instance, produce the state diagram shown in Figure 8.2(d) for the circuit analysed 
in Section 8.3. To construct the state diagram for that problem, the designer might 
have been given the following verbal statement of the problem. 

'A logic circuit is to receive binary data serially on an input line, which is synchro- 
nised with an external clock signal. Non-overlapping strings of three successive bits of 
the input data are to be examined by the logic circuit, and if the combinations 010, 011, 
110 and 111 are detected, a 1 will appear at the output. The output must occur when 
the third bit of the string is present and the third clock pulse is high.' 

In practice, the inexperienced designer may well develop the tree-like structure of 
states shown in Figure 8.3. The method of approach used to arrive at this diagram 
would be to commence in the arbitrarily selected state So. This internal state of the 
circuit can be left by two separate transition paths, one associated with the transition 

m 

signal X leading to SI, and the other associated with the transition signal X leading to 
$2, where X represents logic high level at the input. Each of the states S~ and $2 can be 
left by a pair of transition paths, one associated with the transition signal X, and the 
other with the transition signal X. These four paths lead to the four states $3, $4, $5 
and $6. For each of these four states there are two exit paths, but the next transition 
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Internal state diagram for a combination detector 

is the third one and consequently all eight exit paths must lead back to the starting 
state. 

The combinations 111 and 110 take the path S0 ~ S~ ~ $3 ~ So through the state 
diagram, and the output Z = 1 in state S3. Similarly, the combinations 011 and 010 
take the path So ~ S2 --* S5 ~ So through the state diagram and the output Z = 1 in 
state $5. The other two paths through the state diagram deal with those combinations 
that do not have to be detected. 

In developing this diagram, no short-cuts have been taken. Each combination of 
three bits of input data appear explicitly on the diagram. However, this version of 
the state diagram requires eight states compared to the four states in Figure 8.2(d). 
In terms of hardware, this means that a circuit implementation developed from 
Figure 8.3 would require three JK or D flip-flops and an additional amount of 
combinational logic. 

Developing the state diagram from the problem specification is the most interesting 
and rewarding part of any digital design. Beginners are likely to experience difficulties 
at this stage. Their aim should be to produce a state diagram that contains no 
redundant states. A beginner, for example, might well have produced the state diagram 
shown in Figure 8.3 from the given problem specification. Clearly this diagram con- 
tains redundant states and after drawing up a state table, methods of state reduction 
(see Step 5) should be applied to generate the state diagram shown in Figure 8.2. 

Step 4: State table 

The state table corresponding to the state diagram shown in Figure 8.3 appears in 
Figure 8.4(a). The table has a row for every state of the circuit and a column for every 
combination of the input signals. In this case there is only one input signal and this 
only requires two columns, one for X - 1, and one for X = 0. In each of the cells 
formed by the intersection of the rows and columns the next state of the circuit is 
entered along with the output Z. If, for example, X = 0 when in the state So, the next 
state is $2. Alternatively, if X = 1 when in state So, the next state is S~. 

Step 5: State reduction 

The more states there are in the state diagram, the more hardware is required for the 
circuit implementation. For this reason, it is in the interests of the designer to reduce 
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Figure 8.4 Combination detector (a) State table (b) Reduced state table (c) Minimal state table 

the number of states if possible. The process of state reduction in sequential circuit 
design corresponds to the process of minimisation in combinational circuit design. 

State reduction can be done systematically with the aid of the state table and by 
using Caldwell's merging procedure which depends upon proving that two states are 
equivalent. Equivalence is defined by the following statement: 

Two states a and b are equivalent i f  (1) both have identical next states and (2) both 
have identical outputs. 

For the table shown in Figure 8.4(a) the rows headed S 4 and S 6 satisfy this definition 
as do the rows headed $3 and $5. After states $4 and $6 have been merged, the state 
formed is designated S46 and wherever $4 and $6 appear in the state table they are 

replaced by 546. Similarly, $3 and $5, when merged, 
So 
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~ '  I l A B  
I jl ~ 

o, [ . . ~ j s ,  z J't 

IO II 

Figure 8.5 State diagram for the combi- 
nation detector 

form an equivalent state 535 which replaces S 3 and 
$5 wherever they appear in the state table. 

Using Caldwell's merging procedure, the state 
table of Figure 8.4(a) can be reduced to that shown 
in Figure 8.4(b) which also has two rows, S1 and 
$2, that are equivalent and can be merged to form 
the equivalent state S12. The table of Figure 8.4(b) 
can now be replaced by the state table shown in 
Figure 8.4(c) and no further reduction is now 
possible. The reduced state diagram that can now 
be constructed from the reduced state table is 
identical to that shown in Figure 8.2(d) and is 
repeated here in Figure 8.5. 

The best situation in practice is one in which the number of states n is a power of 
two. There is little point in reducing the number of states below 2 ~ unless it is to a lower 
power of two since this would lead to a number of unused states. For example, if N is 
the number of states after reduction so that 2 ~-l < N < 2 n, then the number of unused 
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states is 2 n -  N. Unused states create additional difficulties for the digital designer. 
An unused state can be entered at 'power on' or, alternatively, due to faulty circuit 
operation. It is the responsibility of the designer to specify the behaviour of the circuit 
if it should, by chance, enter an unused state, otherwise a 'lock-in' may occur. If a 'lock- 
in' occurs it means there is no exit from the unused state and the circuit will remain in 
that state for an indefinite period. It should also be stressed that unused states are not 
'can't happen' states, and for this reason they should not be used for simplification of 
the circuit equations. 

Step 6: State assignment 

Having obtained the minimum state table, the next step the designer must take is to 
allocate secondary variables to the various states. The number of secondary variables 
required to define a state is governed by the total number of states in the diagram. In 
this case there are four states in Figure 8.5 and two secondary variables are required to 
define each state uniquely. 

For this problem a state assignment has been selected which conforms to the state 
assignment in Figure 8.2(c). Clearly there are other possible allocations of these variables 
and consequently there are a number of different circuit solutions to this problem, 
some of which may lead to more economical circuitry. However, it is rarely worthwhile 
to search for a minimal solution since this can be a very time consuming process. 

The number of secondary variables needed to define a state is equal to the number of 
flip-flops required to implement the design. In the state diagram of Figure 8.5 there are 
four states and two secondary variables A and B define these states; consequently two 
flip-flops will be required for the circuit implementation. 

Step 7: The revised state table 

The reduced state table of Figure 8.4(c) is now tabulated in terms of the secondary 
variables as shown in Figure 8.6(a). This table gives every possible transition of these 
variables for both X = 0 and X = 1. 
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Z 
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, U 

DA=~B 

10 

x~Bo0  01 11 10 

Figure 8.6 (a) State table and flip-flop input tabulation for the combination detector (b) K-map plots for the 
flip-flop inputs 
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Step 8: Flip-flop selection 

To complete this design D flip-flops have been selected to implement the next state 
equations. 

Step 9: The next state equations 

The technique used for determining the next state equations consists of tabulating the 
D-inputs for every transition on the state table. The D-inputs for the various tran- 
sitions are then mapped on a K-map and are simplified where that is possible. 

For a D flip-flop it will be recalled that Qt+6t _ D t, i.e. the next state of the flip-flop 
is given by the present state of the D-input. It follows that the DA and Ds columns are 
identical to the next state entries for A and B. For example, if X - 0, the four next state 
entries for A are 0, 1, 0 and 0 and consequently the corresponding entries in the DA 
column for X -- 0 will be 0, 1, 0 and 0. 

Maps can now be plotted for DA and Ds. These are shown in Figure 8.6(b) and the 
next state equations derived from these maps are" 

DA = AB and Ds = AB + XA 

As might be expected, these equations are identical to the flip-flop inputequations for 
the circuit shown in Figure 8.1 (a). 

Step 10: The output 

A single column is tabulated in the state table shown in Figure 8.6(a) for the output Z. 
The output Z = AB occurs when the circuit is in the state AB = 11, and Z -  1 is 
entered in the output columns opposite this state. If the entry in the state had been 
clock (_rL_) then the output would have been Z - AB..n_. 

8.5 The design of a sequence detector 

Step 1: Problem definition 

Serial binary data is received on the X-input line of a logic circuit, each bit being 
synchronised with the clock signal. An output signal is generated at the output Z each 
time the sequence 101 is detected. Overlapping sequences are permitted. A block 
diagram for the proposed circuit is shown in Figure 8.7(a) in conjunction with a stream 
of input data X and the output Z. 

Step 2: The internal state diagram 

A suitable state diagram, consisting of three states, for detecting the sequence 101 is 
shown in Figure 8.7(b). The reader should note that if X = 0 is received when the circuit 
is in state So, it will remain in that state and will continue to do so until the signal X = 1 
arrives. Similarly if, after making a transition from So ~ S1 on the signal X = 1, 
a succession of l 's is received the circuit will remain in S1 until such time as X = 0 
arrives at the input, when a transition will be made to $2. To define three states, two 
secondary variables A and B are required. Since there are four combinations of these 
variables there is one unused state $3. If, due to faulty operation of the circuit, it should 
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enter this state, it might be desirable to return to the main sequence of states as soon as 
possible. This can be achieved by returning $3 to So via a transition which is initiated by 
the first clock pulse that occurs after the entry into $3. 

Step 3: State reduction 

An examination of the state table in Figure 8.7(c) shows that state reduction is not 
possible since there are no rows having the same next state entries and outputs in 
corresponding columns of the table. 
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Step 4: Development of the next state equations 

Since there are only four states in the state diagram, which have been arbitrarily 
assigned, just two D flip-flops are required to implement the detector. The flip-flop 
inputs, DA and Ds, and the output Z for each entry on the state table are tabulated 
alongside those entries. The D flip-flop input entries in the state table are simply a 
repeat of the next state entries. As there is only one 1 entry in the two columns for DA, 
the equation for the D-input of FFA may be taken directly from the state table and is: 

DA = X A B  

A K-map plot of the D-input for FFB is shown in Figure 8.7(d), and after simplifica- 
tion 

Ds = X A  + XB  + AB  

The output Z is read directly from the state table and is: 

Z = ABX_rt_ 

The circuit implementation for the detector is shown in Figure 8.7(e) and the timing 
diagrams for a 101 sequence of bits is shown in Figure 8.7(f). Postponed output DFFs 
are used in this design, so the circuit enters state AB = 11 on the trailing edge of clock 
pulse 2 and leaves on the trailing edge of clock pulse 3. If the outp~[ is defined as 
Z = A B X  then it will go high when the circuit recognises the leading etige of the input 
bit associated with the clock pulse numbered 3. If, on the other hand, the output is 
defined as Z = ABX_n_ it does not go high until the leading edge of clock pulse number 3 
is recognised. By using Z = ABX_rt_ the possibility of contact bounce on the signal X 
being propagated to the output Z is avoided, whereas using Z = A B X  gives a longer 
detection pulse if contact bounce is known not to be present on X. 

8.6 The Moore and Mealy state machines 

There are two types of synchronous sequential machines. The first of these machines 
has an output that depends only on its present state and is referred to as the 
Moore machine. The behaviour of the machine is defined by the equations: 

Next  State = f (Presen t  State, Inputs) 

Output = g(Present State) 

The configuration of the machine is shown in Figure 8.8(a). 
In the second type of machine the output depends on both its present state and also 

its inputs. This type of machine is referred to as the Mealy machine and its behaviour is 
defined by the following equations: 

Next  State = f (Presen t  State, Inputs) 

Output = g(Present State, Inputs) 

The general structure of the Mealy machine is shown in Figure 8.8(b). 
The circuit developed in Figure 8.7(e) is an example of a Mealy circuit, since the output 

Z = ABX.rt .  depends not only on the state of the circuit but also on the input X, whilst its 
time duration is limited by the width of the clock pulse. A slight modification to the state 
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diagram shown in Figure 8.7(b) will convert the Mealy circuit to a Moore circuit. 
This modification is illustrated in Figure 8.9(a). An additional state, $3, has been intro- 
duced and this is now used as the output state of the circuit so that Z = AB. The timing 
diagrams corresponding to an input sequence X = 10100 are shown in Figure 8.9(b). 

The state table and the tabulation of the flip-flop inputs for the Moore circuit 
are shown in Figure 8.9(c) and the K-map plots for the D flip-flops are shown in 
Figure 8.9(d). 

After simplification, the equations for the D inputs are found to be 

DA = X A B  + X A B  + XAB 

and 

DB = X A  + f i B  + A B  

These equations are sometimes referred to as the excitation equations. Using the above 
equations and the output equation Z = AB, the Moore implementation of the sequence 
detector is shown in Figure 8.9(e). It is left to the reader to show that if the states had 
been allocated such that $2 = A B -  10 and $3 = AB = 11 much simpler excitation 
equations would have been obtained leading to a much simpler circuit implementation. 

As a further example of the Mealy and Moore representations, consider the 
following problem. 'A logic circuit receives binary information on the input line X. 
Non-overlapping strings of three successive digits are to be examined by the circuit. 
If the last two digits in the group are both l 's the output Z will be 1'. 
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The block diagram for the problem is shown in Figure 8.10(a) and a possible state 
diagram is shown in Figure 8.10(b). For this problem the entry in states $3 and $5 is 
Z = XJ-L. This indicates that an output will occur in those two branches when the last 
digit is 1. The state table is shown in Figure 8.10(c) and it is apparent on inspection that 
states S 3 and $5 are equivalent and can be merged to form one state S35. Furthermore,  
$4 and $6 are also equivalent and can be merged to form the state 546. After merging, 
the reduced state table is tabulated in Figure 8.10(d). From an inspection of this table it 
is evident that a further reduction is possible since SI and $2 are equivalent and can be 
merged to form the one state S12. The final state table is shown in Figure 8.10(e), no 
further reduction being possible. 

The reduced state diagram shown in Figure 8.10(f) has been obtained from the 
information tabulated in Figure 8.10(e). This state diagram will lead to a Mealy-type 
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circuit since the output Z = ABX_n_ depends upon the present state and the input 
signal X. To convert the state diagram to one which will lead to a Moore-type circuit 
the state So is split into two states, SoA and SoB, as shown in Figure 8.10(g). The output 
Z now appears in state S0A and is dependent only on the state so that Z = ABC. If it is 
required that the output should be time limited by the clock, the output would be 
written Z = ABC_n_. The conversion to a Moore state diagram increases the number 
of states from four to five. Since one of the states has to be set aside for the output it is 
clear that Moore-type circuits will require more states than Mealy-type circuits. 
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In the case of the Moore circuit there are three unused states, and it is desirable 
that the behaviour of the circuit is predictable if a fault condition arises in the 
circuit such that it enters one of the unused states. The best solution is to ensure 
that the circuit returns to the initial state S0s. Additionally, it may be desirable to 
raise an alarm and disable the circuit by, for example, stopping the clock. The 
precautions taken by the designer will depend on the requirements of the design 
specification. 

8.7 Analysis of a sequential circuit implemented with JK flip-flops 

JK flip-flops are also used for implementing sequential circuits. They have the 
disadvantage of having two separate inputs compared to the single input of the 
D flip-flop. However, there are four 'don't  care' terms available in the JK steering 
table and this will normally result in simpler next state equations. 

The logic diagram of a JK sequential circuit is shown in Figure 8.1 l(a). The circuit 
has a single input signal m and a synchronizing clock signal. Since there are two JKFFs  
the circuit has four internal states. The next state equations for the A and B flip-flops 
are: 

J A - B m  J B - A  

K A = I  K n - - A + m  

The characteristic equation of a JK flip-flop developed in chapter 6 is: 

Qt+6t _ (JQ_. + K Q )  t 

By substituting JA, KA and Jn, Ks in this equation, the next state functions of the two 
flip-flops are obtained. They are: 

At+6t _ ( A B m )  t 

and 

B t+6t -- ( A B  + ~lBm) t 

With the aid of these equations it is now possible, for given present state values of 
A and B, and for a given value of the input signal m, to determine the next state values 
of A and B. For example, if A -  0 , B -  0 and m = 1, then A t+6t - -  1 and B t+St= O. 

Similarly, next state values can be obtained for the other seven combinations of A, B 
and m. 

The output equation taken directly from the logic circuit is: 
m 

Z -- AB_vu 

and is independent of the input signal m, so this is an example of a Moore-type 
circuit. 

With the aid of the output equation and the next state functions it is now 
possible to develop the state table for this circuit [see Figure 8.11(b)]. For example, 
if the present state is A B - - 0 1  and the input signal m -  0, on the trailing edge of 
the next clock pulse the circuit will enter the state A B -  00. The transition details 
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provided by the state table have been used to develop the state diagram in Figure 
8.1 l(c). 

The function of this sequential circuit can be deduced from the state diagram and is 
illustrated in the timing diagrams shown in Figure 8.11 (d). When in the initial state So, 
with m = 0, the circuit will remain in that state. If the input signal m changes from 
0 -+ l, then on the trailing edge of the next clock pulse, a transition will be made to 
state $2. On the receipt of the next clock pulse the output Z is generated and on the 
trailing edge of that clock pulse the circuit makes a transition to state S1. The output, it 
will be noted, is a single clock pulse. The circuit now remains in state S~ until the input 
signal returns to m - 0 and on the trailing edge of the next clock pulse after this event 
has occurred the circuit returns to the initial state So. State $3 is an unused state and if 
the circuit should at some instant enter that state it will return to the initial state So on 
the trailing edge of the next clock pulse. This circuit is called a 'one-shot' and has 
practical application where it is required to slow down high speed operations to 
manual speeds. 
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8.8 Sequential circuit design using JK flip-flops 

S tep  1: Prob lem definit ion 

Serial NBCD codes arrive on line X, most significant bit first, each bit of the 4-bit code 
being synchronised with a clock pulse. Develop a circuit that will give an output when 
an invalid NBCD code is received. 

S tep  2: The internal  State Diagram 

In this example, a logical approach has been adopted to develop the state diagram 
shown in Figure 8.12(a). For example, the path So---* $1---* $2---* $3 is associated 
with the first eight combinations of the code, 0000---, 0111 inclusive, all of which 
can be identified by the most significant digit 0. These are all valid code combin- 
ations. A second path, So --* $4 ---* $7 ---* $3, is associated with the remaining two valid 
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Figure 8.12 The invalid code detector (a) The state diagram (b) The state table (c) JK flip-flop steering table 
(d) Tabulation of flip-flop inputs (e) K-maps for flip-flop inputs (f) Circuit implementation 
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combinations 1000 and 1001. The invalid code combinations 1100 ---, 1111 inclusive 
are covered by path So ~ $4 ~ $5 ---* $6, and the invalid combinations 1010 and 1011 
take the path So ---, $4 ---, $7 ---* $6. The output for invalid code combinations Z = _n_ is 
entered in the state $6. There are eight states in all, and these can be defined by three 
secondary variables A, B and C. Each state has been arbitrarily allocated one of the 
eight combinations of these variables. 

Step 3: State reduction 

The state table, showing present and next states, is tabulated from the information 
provided by the state diagram, and is shown in Figure 8.12(b). Examination of this 
table shows that rows $3 and $6 have identical next state entries; however, they cannot 
be merged since the only output entry appears in present state 6 and consequently these 
two states are not equivalent. 

Step 4: Development of  the next state equations 

It is at this point where design with JK flip-flops differs from a design using D flip- 
flops. For a JK flip-flop there are two inputs, J and K, which have to be determined 
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from every transition recorded in the state table, and this is achieved with the help 
of the JK flip-flop steering table developed in Chapter 6 and presented again for 
convenience in Figure 8.12(c). 

Since three secondary variables are required to uniquely define each of the eight 
states, three JK flip-flops will be required for the circuit implementation. In Figure 8.12(d) 
the state table has been redrawn, each state now being represented by the combination 
of three secondary variables allocated to it on the state diagram. Alongside the state 
table are twelve columns in which the flip-flop input signals Jc,  Kc,  JB, KB, JA, and KA 
are tabulated. The entries in these columns are obtained from the steering table. 
For example, if the present state is CBA =000  and X =  1, the next state 
C B A  = 100; hence, C t = 0 and C t+rt = 1. Thus, from the steering table, the entry for 
a 0 ~ 1 transition is Jc  = 1 and Kc  = X. For both B and A the transitions recorded 
are 0 ~ 0 and from the steering table the entries for the B and A inputs are 
JB = JA = 0 and KB = KA = X.  

K-maps for each of the input signals are now plotted. These are shown in Figure 8.12(e) 
and the next state equations, derived from these maps after simplification, are 

m m 

Jc  -- X B A  

J B = X C + A  

JA = X C  + X C B  

m 

Kc = X B  + BA 

KB - CA + C A  

KA = B 

The output equation is taken directly from the state diagram and is" 

Z = ABC_ra_ 

The implementation of the invalid code detector is shown in Figure 8.12(f). 

8.9 State reduction 

There are three methods available for determining equivalent states in a completely 
specified state table. They are: 

1. Inspection 
2. Partitioning 
3. The implication table 

A method of state reduction by inspection has already been introduced in Section 
8.4. In practice, all methods of state reduction depend upon the principle of equivalence 
defined earlier in Section 8.4. However, two states Sp and Sq may also be deemed to be 
equivalent if, and only if, every possible input sequence produces identical output 
sequences, irrespective of whether Sp or Sq is the initial state. One method of determining 
state equivalence would therefore be to apply all possible input sequences and tabulate 
the corresponding output sequences of the circuit, assuming each of the states of the 
circuit to be in turn the initial state of the circuit. This would clearly be a tedious 
process for a circuit having a number of input signals and a number of states. 
Fortunately there are two other simple and non-tedious techniques available for state 
reduction. They are (1) partitioning and (2) by implication table. The method of 
partition will be discussed next. 
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Partitioning 

It will be assumed that the state table shown in Figure 8.13(a) has been obtained from 
a state diagram relating to a problem in which there is a single input X and a single 
output Z. A first partition is made by placing all those present states in the same 
section of the partition if the outputs generated are identical for all possible inputs. 
For example, if the present state is So, the two possible inputs are X - 0 and X - 1 
for which the outputs are Z = 0 and Z = 1. Similarly, if the present states are either 
$3 or $5 then for X = 0 and X = 1 the outputs are Z = 0 and Z = 1. The three states 
So, $3 and $5 are said to be 1-equivalent. From a further inspection of the table it 
is clear that S, and $4 are 1-equivalent and that $2 and $6 are also 1-equivalent. 
Hence, the first partition is 

PI -- (So, 83, S5)(Sl, S4)(S2, 56) 

The partition has been obtained by the application to the circuit of an input sequence 
of length one. 

The second partition, P2, is obtained using the following procedure. In the first 
section of P~, for X = 0 the next states for So, $3 and $5 are all in the same section of P~. 
However, for X = 1 the next states for So, $3 and $5 are $4, $6 and $4 respectively, and 
the next state of $3 lies in a different section of the partition. The first section of the 
partition P~ is now split into two sections, the first one containing So and $5, and 
the second containing $3 only. The procedure is now repeated for the second section of 
the first partition. With X = 0, Sl and $4 have next state entries both in the same 
section of the first partition, whilst with X = 1 the next state entries are both $2, which 
is also in the same section of the first partition, and hence no split of this section is 
required. An examination of the third section of the original partition shows that no 
splitting of this section is required. 

Hence: 

P2 - (SoS5)(S3)(Sl S4)(S256) 
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Figure 8.13 (a) State table for the partitioning example (b) Reduced state table after partitioning 
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This partition has been obtained by the application of an input sequence of length 
two. The procedure described above is used again to determine P3, but in this case 
no further partitioning is possible and P3 = P2. It follows that the individual sections 
of P2 contain the equivalent states of the circuit and the reduced state table is shown in 
Figure 8.13(b). 

The implication table 

The final method of state reduction available to the designer employs the implication 
table. A state table for a synchronous sequential circuit is shown in Figure 8.14(a). 
An implication table can be constructed by listing all the states vertically except the first 
one, and all the states horizontally except the last one, as illustrated in Figure 8.14(b). 
The implication table displays all possible combinations of state pairs, and the individual 
cells in the table represent the testing ground for the equivalence of a state pair. 
For example, the top left-hand cell at the intersection of So and S~ is where these 
two states are tested for equivalence. 

One of the conditions for equivalence is that the next state outputs of a pair of states 
must be identical if the two states are equivalent. On the implication table, all the cells 
that cannot possibly be equivalent are marked with a cross. For example, So and S~ 
cannot be equivalent states since the next state outputs are 0,0 and 1,0 respectively, and 
the cell situated at the intersection of So and S~ is marked with a cross. Similarly, all the 
other cells for non-equivalent state pairs are marked with a cross in Figure 8.14 (c). 

The next step is to place in the empty cells the implications required to make the pair 
of states associated with a particular cell equivalent, by having identical next states. 
For example, the cell at the intersection of So and $2 contains the implication that both 
So and $2 must be equivalent to $5 in order that they will be equivalent. The remaining 
equivalent implications are entered in the empty cells in Figure 8.14(d). 

If the pairs implied in any of the cells in Figure 8.14(d) contain only those states 
defined by the cell, or, alternatively, if the next states of the two states defining the 
cell are the same state for a given input, then the two states defining the cell are 
equivalent and are marked with a tick. The first part of this rule applies to two cells in 
Figure 8.14(d), the first at the intersection of So and $7, and the second at the 
intersection of $2 and $5. These two cells have been marked by a tick. 

An examination of the state table indicates that $2 and $5 are a pair of 'lock-in 
states'. $5 can be entered from $2 on the receipt of a clock pulse and vice versa, but 
there is no other exit from these two states. Clearly, these two states can be merged, 
and on the receipt of a clock pulse the circuit will stay in the merged state. To leave this 
'lock-in' state, a reset signal is required. A similar argument can also be applied to 
states So and $7. 

The next step is to examine the implication table row by row, beginning with the 
bottom right-hand cell. A cross can be entered into any cell containing implied pairs if 
either of the implied pairs have previously been crossed out. The first cell qualifying for 
a cross is at the intersection of $4 and $6 since the cell associated with the implied 
pair $6 and $7 has already been crossed out. This procedure is repeated until no further 
cells can be crossed out and leads to the final form of the implication table shown in 
Figure 8.14 (e). 

The states are now listed in reverse order, as shown in Figure 8.14(f) and the 
implication table is examined, column by column, from right to left, to determine 
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Figure 8.14 (a) State table to be reduced by the implication table (b) Implication table (c) Elimination of non- 
identical outputs (d) Insertion of implied pairs (e) Completed implication table (f) The partition listing (g) The 
reduced state table 

whether there are any cells that have not been crossed out, since such cells define pairs 
of equivalent states. In the first column the single cell is crossed out, and there is no 
entry opposite $6 in the partition listing. In the second column the pair $5 and $7 
have not been crossed out; it follows that they are equivalent states and are entered 
opposite $5 in the listing. There are no uncrossed entries in columns 3 and 4 and the 
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(5587) entry is repeated against 54 and S 3 in the listing. In the fifth column there are two 
uncrossed cells which define two equivalent state pairs, ($2S7) and ($2S5). Now the 
transitivity law states: 

(SpSq) (SpSr)  ~ (SpSqSr) 

and using this rule the entry opposite $2 becomes (525557). Remaining entries in the 
listing are found using the same procedure and the final partition of states is found to be 

P -  (50525557)(51)(53)(54)(56) 

The reduced state table resulting from this partition is shown in Figure 8.14(g). 

8.10 State assignment 

In all the design problems dealt with in this chapter, a perfectly arbitrary state assign- 
ment has been adopted. For example, in the 101 sequence detector, designed in Section 
8.5, the state assignment selected was So - 00, S1 - 01, $2 - 11, $3 - 10. It is clear that 
other state assignments could have been selected and they would have led to different 
circuit solutions. 

The number of different ways of choosing N states out of a possible 2 ~ states is given by: 

2~! 
N!(2n - N)! 

and there are N]. ways to assign each different choice of N states; hence the number of 
possible state assignments NsA is given by: 

2"! 
NsA = N!(2" - N)! x N! 

Number of 
states to be 

assigned 
N 

Number of 
flip-flops 

n 

Number of 
state 

assignments 
NSA 

1 
2 
24 
24 
6720 
20160 
40320 
40320 

Figure 8.15 Number of state assignments 

where n is the number of state variables. 
If N = 5 then the number of state variables 
required is n = 3 and the number of possible 
state assignments is 6720. 

The number of state assignments for 
a given number of states are tabulated in 
Figure 8.15 and it is clear that the number 
of assignments increases very rapidly with 
the number of states. For the designer, the 
criterion for a well-chosen state assignment 
is that it should lead to a simple circuit 
implementation. 

Simpler circuits will mean that fewer 
gates are required, and this in turn means 
that a smaller number of chips are required. 
If the designed circuit is to be manufactured 

in large numbers there may be a significant reduction in manufacturing costs. A simpler 
circuit realisation will also result in a reduced number of interconnections, and finally 
there may also be a significant saving of space. 
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More recently, advances in technology have resulted in the development of program- 
mable logic sequencers. The essential features of these devices are on-chip AND and 
OR arrays and also a number of single-bit memory elements. When a state machine, either 
synchronous or asynchronous, is implemented by programming a logic sequencer, 
the need for an efficient state assignment is no longer of the same importance. 

The need for a well-chosen assignment when designing with MSI and SSI circuits 
will be demonstrated by randomly selecting three different assignments for the invalid 
code detector designed in Section 8.8. The three assignments chosen are tabulated 
in Figure 8.16(a). Using the state diagram shown in Figure 8.12(a) the next state 
equations for each of the flip-flops A, B and C and the output equations for each of 
the state assignments are found to be: 

Ass ignment  1 

J c -  X B A  

K c -  X B + B A  

JR - X C + C'A + X C A  

KB -- X C  + CA + CA 

Z -  CBA_n_ 

Ja -- X C  + X C B  

KA -- C[~ + C B  

Ass ignmen t  2 

J c  - X BA 

Kc  - ,~B + BA 

J o = A + X C  

Kn - CA  + C A  

Z -  CBA_Jq_ 

JA -- X C  + C B  + C;B 

KA - X - k - C q - O  

Ass ignment  3 

J c  - X B A  JB - A + X C  JA -- X C  + X C B  

K c -  X B  + BA KB -- CA + CA  KA -- B 

Z - CBA_J-L_ 

A comparison of the number of gates required to implement the design for each of the 
three assignments is shown in Figure 8.16(b). Inspection of this table reveals that 
assignment 3 requires the least hardware. However, rather than use a random process, 
it is possible with the aid of two simple rules to choose a state assignment which will 
with some certainty lead to a simpler circuit implementation. 

The state table for the invalid code detector is shown in Figure 8.16(c) and the rules 
for obtaining a good assignment follow: 

Rule  1" Present states which lead to identical states for a given input should be 
given state assignments that differ in one digit place only, i.e. the present states should 
be logically adjacent, and separated by a Hamming distance of 1. 

Referring to Figure 8.16(c), for input X - 0, present states $3 and $6 have the same 
next state So and present states $2 and $7 have the same next state $3. In each case these 
state pairs should be given logically adjacent state assignments. For X -  1, present 
states $5 and $7 have the same next state $6 and on applying rule 1 should have 
logically adjacent state assignments. 

Rule  2: States which are the next states of the same present state should be given 
logically adjacent assignments. 
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Figure 8.16 (a) Three possible state assignments for the invalid code detector (b) Gate and chip comparison for the 
three randomly selected state assignments (c) State table for the invalid code detector (d) State assignment map 
(e) State table for the state assignment obtained using rules 1 and 2 (f) K-maps for the invalid code detector 
(g) Implementation of the invalid code detector 

There is a corollary to this rule which states that the assignments to the next states 
should be given logically adjacent assignments corresponding to the branching variable(s). 
An example of the application of the corollary to Rule 2 is shown in Figure 8.17. 
The assignment obtained is referred to as the reduced input dependency assignment. 



232 Digital  logic design 

000 I 

Figure 8.17 An example 
of reduced state 
dependency 

Summarizing, the sets of adjacent states determined by using 
rules 1 and 2 are tabulated below: 

Rule  1: (53, 56) (52, 57) (55, 57) 
Rule  2: (S1, 54) (55, 57) (53, 56) 

A suitable state assignment is shown plotted in Figure 
8.16(d), in which the above adjacencies are satisfied. If it is not 
possible to satisfy all the adjacencies obtained using these rules 
without conflict, then the adjacencies obtained from the first 
rule should have priority. 

The state table for the state assignment shown in Figure 8.16(d) 
is tabulated in Figure 8.16(e), together with the flip-flop inputs. K-maps for sim- 
plifying the flip-flop input signals are shown in Figure 8.16(f). Note that it is not 
necessary to plot JB and KB since all the entries in their tabulations are either 1 or X. 
Hence J~ = KB -- I. 

The next state inputs obtained from the maps are: 

J c  = B J8 - 1 JA -- X + C + B 

K c  = A + X B  KB -- 1 KA - X B  + C B  + C B  

Z -  CBA_J-t_ 

The implementation of the invalid code detector is shown in Figure 8.16(g). 
Ten NAND gates and three JK flip-flops are required for the circuit implementation. 
The gates needed are: 

Dual 4-input 1 
Triple 3-input 1 
Quad 2-input 2 
Total chips 4 
Gate inputs 24 

It is clear that this state assignment requires less hardware than any of the other 
three randomly selected assignments shown in Figure 8.16(a). 

An additional provision must also be made by the circuit designer to ensure that the 
invalid code detector is switched to the state So on power-up ready to receive the first 
bit of an NBCD code. Otherwise the circuit will be out of synchronism with the data. 

A number of state assignment procedures have been developed for determining an 
optimal or near optimal state assignment. An optimal assignment for one type of flip- 
flop may not necessarily be optimal for another type of flip-flop. For example, the 
JKFF  has a number of 'don't  care' terms in the JK steering table and for this reason is 
more likely to provide an optimal assignment than D or T flip-flops. 

8.11 Algorithmic state machine charts 

An alternative method of designing sequential circuits utilises the algorithmic state 
machine (ASM) chart rather than a state diagram. When this technique is used the 
state diagram is constructed in the form of a flowchart. The chart describes a sequence 
of events which are designed to initiate a set of state transitions and outputs from a set 
of data inputs. The basic elements of the ASM chart are illustrated in Figure 8.18. 
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Figure 8.18 ASM chart components (a) State box (b) Decision box (c) Conditional output box 

State Box: A machine remains in a state box for a period of one state time which 
may be for one clock period or for an integral number of clock periods in a clock- 
driven machine. The state is identified by a code which is a unique combination of the 
state (secondary) variables and is defined when state assignment takes place. A state 
output is active while the machine remains in the state, and is present for the period of 
the state time unless its time duration is constrained by the clock signal. States are 
frequently identified by a number or a mnemonic. There is one entry path and one exit 
path for each state and the exit path may lead directly to another state box or, 
alternatively, to one or more decision boxes. 

Decision Box: This box contains a Boolean expression that can be regarded as 
a condition expression which involves the machine inputs. If the logical value of the 
condition is 1 the true exit path is taken, while if it is 0 the false exit path is taken. 

,< 

t Entw path 

O0 

I 

Cz.c uT~ 

1 
Exit paths 

Figure 8.19 An ASM block 

These two paths can be identified by the letters 
T and F. Exit paths may lead to state boxes, con- 
ditional output boxes, or to other decision boxes. 

Conditional output box: The input path to 
a conditional output box always comes from a 
decision box and it specifies the condition required 
to generate an active output. A conditional output 
depends upon the state of the machine as well as one 
or more of the machine inputs; consequently, it is 
a Mealy type output. For a Mealy machine all the 
outputs appear in conditional output boxes, while 
for a Moore machine they appear in the state boxes. 

Each state in the ASM chart is associated with 
an ASM block which may contain the other two 
basic elements. The ASM block illustrated in 
Figure 8.19 has one input path and three exit 
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Figure 8.20 ASM charts (a) Scale-of-8 counter (b) Counter controlled by signal G having scale-of-3 or scale-of-4 count 
(c) JK master/slave flip-flop (d) 101 sequence detector 

paths which will link it to other state boxes which in turn are associated with their own 
ASM blocks. 

Some examples of ASM charts are shown in Figure 8.20. The first example in 
Figure 8.20(a) is the ASM chart for a scale-of-8 counter. It consists of state boxes 
and is almost identical to the state diagram for a scale-of-8 counter shown in 
Figure 7.3(d). The outputs OP.SV appear in each of the state boxes and are the state 
variables; for example, when in state $3 the output is CBA = 011. Figure 8.20 shows 
the ASM chart for a counter which can operate as either a scale-of-3 or scale-of-4 
counter, depending on the value of the condition variable G. A more complex ASM 
chart is that for the master/slave JK flip-flop shown in Figure 8.20 (c). When the flip- 
flop is in state So, i.e. Q = 0, it is linked to the decision box containing the condition 
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expression J._n_. If J._rt_ = 0 the flip-flop remains in So, but if J . _n_ -  1 it makes 
a transition to S1 where Q = 0. This state is linked to a second decision box containing 
the condition variable _n_. If the clock line is high, the flip-flop remains in SI but at the 
trailing edge of the clock signal it makes a transition to $2 where Q = 1 and the 
flip-flop has been set. The right-hand half of the chart covers the reset process which 
can be described in a similar manner to the set process. The last of these examples 
shown in Figure 8.20(d) is for the Mealy representation of the 101 detector designed 
earlier in this chapter. 

8.12 Conversion of an A S M  chart into hardware 

A typical example of an ASM chart  is shown in Figure 8.21(a). The machine rep- 
resented by the chart is a word scanner which provides an output Z2 when the last two 
bits in consecutive 3-bit words are ones, and a second output Z1 which identifies the 
start of each 3-bit word. Each of the state boxes has been coded with the state variables 
B and A and has been assigned identifying letters P, Q, R and S. The output ZI is in 
state box P and depends on the state only, while the second output Z2 has its own 
conditional output box, associated with state box S, indicating that it is a Mealy-type 
output which is dependent on the input signal d. Since there are four states, two 
flip-flops are required, and DFFs  have been selected for the implementation. 

The state table in Figure 8.21(b) details all the state transitions and because 
D flip-flops have been selected for the implementation, the flip-flop input tabulation 
is a repeat of the next state tabulation. In this simple example the next state equations 
for the two flip-flops can be read directly from the tabulation, and they are: 

Ds = BA 

DA = BA + dBA 

Simplifying the equation for DA using the consensus theorem gives: 

DA = BA + dB 

The two outputs Z1 and Z2 are taken directly from the ASM chart. They are: 

Z l  = B A  Z2 = d B A  

In the case of Z2 it is worth noting that the equation has been derived using the 
principle that a decision box is a part of the preceding state box. 

If it is required to limit the outputs to the time duration of the clock, these equations 
would be written" 

Z l  - -  BA_n_ Z2 - dBA_n_ 

The implementation of the scanner is shown in Figure 8.21 (c). 
Alternatively, the next state equations can be implemented using 4-to-1 multiplexers. 

Selecting the flip-flop outputs B and A as the control variables, the next state equations 
may be written: 

DB = BA(O) + BA(d  + d) + BA(O) + BA(O) 

And the multiplexer inputs are: 

Do = 0 D1 - 1 D2 - 0 D3 -- 0 
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Figure 8.21 The 3-bit word scanner (a) The ASM chart (b) The state table (c) Gate and flip-flop implementation 
(d) Multiplexer and flip-flop implementation 

Also 

DA = SA(a + d) + SA(d) + SA(0) + SA(0) 

And the inputs to the second multiplexer are: 

D o = l  D l = d  D 2 = 0  D 3 = 0  

The multiplexer implementation of the word scanner is shown in Figure 8.21 (d). 



Clock-driven sequential circuits 237 

8.13 The 'one-hot' state assignment 

Sequential circuits described by ASM charts may be implemented using a 'one-hot' 
state assignment with the intention of reducing design time. The number of states 
required by the machine is defined by the ASM chart. In this type of assignment only 
one flip-flop will be high at any given instant of time. If the chart has n states then n 
flip-flops are required, one for every state. For an 8-state machine eight flip-flops are 
required, whilst using the state assignment technique described earlier in this chapter 
only three flip-flops are needed. 

The technique provides an alternative method of implementation which in the 
following example employs one DFF per state. When using the technique, encoding 
of states is not needed and the problems associated with state assignment do not arise. 
However, a slightly different method of tabulation will be used. 

The ASM chart for a 4-state machine is shown in Figure 8.22 along with the 
tabulation of the present and next states. For each of the state transitions, 
the corresponding transition signal is tabulated. For example, if the present state of 
the machine is S: and the transition (input) signal is X Y  = 1 then the machine will make 
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Figure 8.22 'One-hot' implementation technique (a) ASM chart (b) Transition table (c) Machine implementation 
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the transition from S1 to S 2. The remaining two terms in the equation for So are 
obtained in a similar manner. The next-state equations are: 

So = (X + Y)S~ + S2 Jr XZS3 

Sl = XZSo 

S2 -- X Y S 1  + ( X  q- Z)S3  -+- X Z S o  

$3 = XSo 

Implementation of the machine is shown in Figure 8.22. 

8 . 1 4  C l o c k  s k e w  

When designing a synchronous circuit, all the flip-flops should normally be synchron- 
ised by the same clock signal. The flip-flops used in the design should all be of the 
same type, either leading-edge or trailing-edge triggered. Furthermore, the clock signal 
must be routed by the shortest possible path on the circuit board to avoid delays 
caused by the finite speed of electrical signals along the connecting wires and which 
lead to the problem of clock skew. 
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Figure 8.23 Faulty circuit operation due to 
clock skew 

As an example of faulty circuit operation due 
to clock skew consider the first two stages of 
the serial-in shift register shown in Figure 8.23. 
The two edge-triggered DFFs are both fed 
from the same clock source, but the arrival of 
Ck + td at the clock input of FF2 is delayed by 
an amount td relative to the clock input Ck at 
the clock input of FF1. The input data I to 
FF1 is transferred to its output Q~ at a time tf 
after the rising edge of Ck. Q~ is also the data 
input to FF2, and if td > tf it follows that the 
input data is transferred to the output of FF2 
at a time tf after the rising edge of Ck + td. The 
input data has been transmitted through two 
stages of the shift register on the receipt of a 
single clock pulse. Since there is no combina- 
tional logic in between each stage of a shift 
register it is clear that the problem of clock 
skew is of particular importance in shift regis- 
ter design and operation. 

There are a number of reasons why unac- 
ceptable clock skew may occur in a large 
digital system implemented with edge-triggered 
flip-flops: 

1. Proper attention has not been paid to the layout of the circuit board, and consequently 
the clock connection to some of the devices on the board may take inordinately 
long paths. Two possible methods of path routing are shown in Figure 8.24. 
Path delay increases as the clock connection is taken to each flip-flop in turn in 
Figure 8.24(a). In practice, a more realistic clock routing is shown in Figure 8.24(b) 
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(a) (b) 

Figure 8.24 (a) Clock routing leading to clock skew (b) Clock routing designed to minimise possibility of  skew 

where a tree-like structure is used for the clock connection to the array of six 
flip-flops. 

, C k 2  
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Figure 8.25 Clock Buffering 

2. A single clock output may not be capable of driving all the 
flip-flops in the system and it is then necessary to provide 
a number of identical clock signals from the same source. 
This can be achieved by buffering the clock (see Figure 
8.25), but the buffers selected should have approximately 
the same propagation delay. 

3. In the case of multiple clock signals generated by a single 
source, one clock may be be more heavily loaded than 
the others and this can lead to significant clock skew. 
Equalisation of clock loading should be the aim of the 
logic designer. 

8.15 Clock timing constraints 

Most users wish to run the clock at the maximum possible frequency; moreover, 
a common second requirement is that a precise clock frequency should be generated. 
In order to satisfy this stringent requirement a crystal controlled oscillator is used. 

The maximum allowable clock frequency is constrained by a number of circuit 
parameters. A typical situation is illustrated in Figure 8.26. The output of FFA 
changes at some time tff after the leading edge of Ck. This change is transmitted 
via the combinational logic to the input of FFB with a time delay tcomb. The timing 
diagram showing these various circuit transitions are shown in Figure 8.26. 

For satisfactory operation of the circuit, any change occurring at the input of FFB should 
do so at a time > t~u before the arrival of the leading edge of the next clock pulse, where t~u is 
the flip-flop set-up time. Hence, the maximum allowable clock period Tck is given by: 

Tck  --  tsu + tff + tcomb 
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Figure 8.26 Clock timing constraints 

And the maximum allowable clock frequency f c ,  is 

fCk = llTck = l/(t~, + tff + tcomb) 

If the leading edge of the clock pulse at FFB is skewed, then the maximum allowable 
frequency is: 

fck  = ll(tsu + try + tcomb + tskew) 

8.16 Asynchronous inputs 

There are many digital systems that receive asynchronous inputs from external sources 
and it is essential that these asynchronous signals should be synchronised with the 
system clock. There may also be cases where the incoming signal has a short time 

1 
Ck 
0 

Asynchronous 0 Input -~ tp ~l~ 

Figure 8.27 The asynchronous signal that was never 
sampled 

duration by comparison with the sampling 
period of the system clock. A typical example 
of such an occurrence is shown in Figure 8.27 
and it is clear that the asynchronous input 
misses the sampling edge of the clock, in this 
case its trailing edge. 

The problem can be overcome by the use 
of a catcher cell which is in effect an SR 
latch whose set signal is the asynchronous 
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Figure 8.28 Catching an asynchronous signal 
(a) the circuit (b) the timing diagrams 

input with the reset signal coming from the 
complementary output of FF1. The catcher cell 
consists of the gates connected to the system flip- 
flop FF1, as shown in Figure 8.28. If it is 
assumed that Q = 0, D = 0 and A = 1, the logic 
levels for this condition are indicated at appro- 
priate points of the circuit. On the arrival of the 
asynchronous signal, A makes a 1 ~ 0 transition 
and D makes a 0 ~ 1 transition. The outputs of 
the SR latch are now 1 and 0 respectively. The 
catcher cell input A makes a return transition 
from 0 ~ 1 before the trailing edge of the clock 
pulse. FF1 is now set on the trailing edge of the 
clock pulse and the complementary output Q is 
fed back to the lower input of the SR latch, 
resetting the catcher cell to its original condition 
before the arrival of the next asynchronous input. 
The catcher cell has been used to synchronise 
the asynchronous signal to the system clock. 

Rather than using the simple catching cell 
shown in Figure 8.28, an edge-triggered D F F  
can be used as the synchroniser as shown in 
Figure 8.29. Each individual asynchronous input 
signal requires its own synchroniser and if the 
asynchronous input has to be routed to a number 

of different points of the system, the synchronisation should take place at one point 
only and any delays must be matched carefully. Furthermore, it is always advisable to 
precede any combinational logic with the synchronisation process because of differing 
combinational delays. 
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Ck I 

Synchronous 
input 
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sequential 
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Figure 8.29 Basic synchroniser circuit (a) logic diagram (b) timing diagram 
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Synchronisation failure may occur intermittently and upset the operation of the 
system. Such failures occur because the asynchronous signal arrives at the input of the 
synchroniser at any instant of time and may breach its set-up and hold requirements. 
This leads to the possibility that the synchroniser may enter the metastable state, and 
the time it occupies that state cannot be defined precisely. 

8.17 The handshake 

Data frequently has to be transferred, for example, from some external system to 
a processor. This has led to the widely used handshaking transaction which involves 
the acknowledgement of the receipt of the data and simultaneously defines the time 
at which the transfer was complete. Conceptually, the handshake mode is analogous 
to the despatch of an invitation with the letters RSVP attached. The person sending 
the invitation does not know that it has been received until the acknowledgement 
in response to the letter's RSVP has been returned. 

A state diagram describing a transfer in the handshake mode is given in Figure 8.30. 
When in the quiescent state (QS) the sender indicates that data is available by sending 
a data available signal (DAV) signal to the processor, thus initiating a transition to 
state S~. While in this state, the sender waits for the processor to acknowledge the DAV 
signal, which it does by returning the data acknowledge (DAA) signal to the sender. 
The DAA signal initiates a transfer to $2, and in this state the data transfer takes place; 
DAV is set low by the sender. On completion of the transfer, the processor sets 
DAA = 0, and a return to So, the quiescent state, occurs. 

Handshaking transactions similar to this are the basis of the 'bus systems' used for 
transferring information between different interface cards inside a computer, or 
between computers and various peripheral equipment such as printers, scanners, and 
so on. Many different specifications for bus systems have been drawn up alongside 
the recent rapid development of computers, but most may be classified as either 
(1) internal bus systems, for use only inside and within a self-contained computer or 
processor unit, or (2) external bus systems, for use in transferring information between 
two or more self-contained pieces of equipment. 

Examples of internal systems include the old S-100 computer 'backplane' bus, and 
the various bus systems developed and specified for use inside IBM-compatible com- 
puters. Generally speaking, internal bus systems transfer data in parallel, i.e. several 
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Figure 8.30 (a) State diagram for the handshake mode of operation (b) Timing diagram for the handshake 



Clock-driven sequential circuits 243 

bits at a t i m e -  typically 8 or 16 bits in old bus systems like S-100 or ISA, and up to 
32 bits or more simultaneously for newer bus systems such as PCI. They also include 
provision for specifying memory addresses. 

Well-known examples of external bus systems include RS-232C, a system where data 
is transferred serially, one bit at a time, and IEEE-488 where data is transferred in 
parallel, 8 bits at a time. 

RS-232C is most often encountered where relatively slow data transfer can be 
tolerated, for example from a mouse or other pointing device to a computer, as its 
serial data transfer imposes serious speed limitations compared to fast parallel 
bus systems. IEEE-488 was originally developed as a system allowing a computer to 
act as a controller and data collector for peripheral devices such as measurement 
instruments, and it is still widely used in such experimental applications. 

The RS-232C bus system (also known as EIA-232 or V24) utilises special multi-way 
plugs and sockets known as 'D connectors', since they are roughly shaped like an 
elongated 'D', and uses voltage levels that are slightly different from the usual TTL 
levels. Logic 1 is indicated by a voltage greater than +3 V (typically between +5 V 
and + lSV)  and logic 0 is indicated by a voltage less than - 3  V (typically the 
same magnitude as the voltage indicating logic 1). One reason for this voltage choice 
is that since 0 V cannot normally occur on a correctly operating line, it is easy for 
interface circuits to detect an unconnected line. 

If no data is being transmitted by a connected line, i.e. the 'quiescent' or 'idle' state, 
then the line remains at logic level 1. To transmit an ASCII character, the 7-bit ASCII 
code is preceded by one or more 'Start bits' that are always 0. The seven ASCII bits are 
then transmitted, followed by one parity bit, corresponding either to even or odd 
parity, and one or more 'Stop bits' that are always 1. Therefore, each ASCII character 
is typically represented by a total of 10 (or more) bits. The total number of bits 
per second transmitted by RS-232C is usually referred to as the 'baud rate', and rates 
of up to 9600 baud are widely encountered. This rate therefore corresponds to 960, or 
slightly fewer, ASCII characters per second. The maximum rate allowable in RS-232C 
is normally 19200 baud. 

In the RS-232C system, after the start bit is sent, the rest of the bits, data and parity 
until the next stop bit, are sent one after the other at exactly the predefined and agreed 
baud rate, so that the receiver must examine the received bit stream at precisely 
the same baud rate to avoid errors. The full specification of RS-232C defines a total 
of 25 connection lines between the two pieces of equipment to be connected, but in 
practice very rarely are all of these lines used and it is normal to use a subset of the 
complete bus system. For example, commonly a mouse is connected to a computer 
using a special cut-down 9-line version of RS-232C. The minimum configuration for 
bidirectional data transfer uses just three connections, two plus earth, with no hand- 
shaking; for more reliable communications, handshaking is used. In the RS-232C bus 
the 'Request to send' or RTS line has a function similar to the DAV signal, and the 
'Clear to send' or CTS line has a function similar to the DAA signal. 

Special ICs known as UARTs (universal asynchronous receiver/transmitters), or 
alternatively ACIAs (asynchronous communications interface adaptors) or ACEs 
(asynchronous communications elements), are available that convert parallel data to 
and from the format needed to operate the RS-232C bus directly with the correct 
handshaking. More recent versions of the serial interface specification include RS-422 
and RS-423, which allow greater connecting cable lengths to be used and greater baud 
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rates to be transmitted and received, but for serial communications RS-232C remains 
the most common wire connection specification. For faster communications, parallel 
bus systems may represent a suitable alternative. 

The IEEE-488 (also known as GP-IB or HP-IB) standards specify a total of 24 lines 
used for 8-bit parallel data transfer between the 'Controller', usually a computer, and 
a maximum of 14 other peripheral devices. Each device is connected in the same way to 
all the bus lines using special 'stackable' 24-way connectors. At any one time, one of the 
devices connected to the bus will be 'talking' (placing data onto the bus) and the others 
will be 'listening' (receiving data from the bus). The 'talker' will specify for which 
'listener' the data is intended; this is done by a control on each IEEE-488 device that 
sets it to a unique code number or 'primary address' that is usually not changed unless 
there is a conflict with another device connected to the same bus having the same 
address number. 

Here, 'data' can mean either actual measurement or output data, or commands in 
a format that a 'listener' can interpret. Therefore, some instruments are capable of being 
both 'listeners', acting on commands or storing measurements, and 'talkers', transmit- 
ting measurements or issuing commands, at different times. In the IEEE-488 bus the 
DAV line is active-low and the function of the DAA signal is similar to the active-low 
NDAC (No Data Accepted) line. Data transfers are always undertaken using hand- 
shakes, and eight bits at a time are transferred on eight separate data lines plus ground. 
There are also five lines specified by IEEE-488 that control the operation of the bus; for 
example, IFC, Interface clear, for resetting the bus to an initialised state, and others. 

Problems 

8.1 For the sequential circuit shown in Figure P8.1 find 

(a) the state table, 
(b) the internal state diagram, and 
(c) the function of the circuit. 
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8.2 Serial binary data X, synchronised with the clock, 
is fed to the logic network shown in Figure P8.2. 
An output 1 will occur on the Z line of the 
network whenever the string of digits 1101 is 
received (an output 1 will occur for overlapping 
strings). Develop a synchronous sequential cir- 
cuit using D-type flip-flops and N A N D  gates to 
implement the above specification. 
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x 8.3 XS3 information is received serially, most signi- 
Invalid Z ficant bit first, and in synchronism with the clock, 

. r 'L (Ck)  code = detector by the logic network shown in Figure P8.3. 
The function of the network is to generate an 

Figure PS.3 output signal Z = 1 when an invalid code 
combination has been received. Using JK flip- 

flops and NAND gates, develop a synchronous sequential logic circuit that will 
perform this function. 

8.4 A clock signal X is to be gated on and off by a signal m. The gating signal must be 
arranged so that the circuit produces complete clock pulses only. A timing 
diagram for the network is shown in Figure P8.4. Develop a synchronous 
sequential circuit for implementing the above specification. 

X,o_n n n n n n n n FL 

' I I m 0 

' FI FI r-1 [1 Z o 

Figure P8.4 

8.5 A circuit is to be designed in which a single clock pulse Z is to be selected by a push 
button control S. The push button is pushed at random intervals and the time 
duration for which the push button contact is on is long in comparison with the 
periodic time of the clock. A typical timing diagram is shown in Figure P8.5. 
Construct an ASM chart and determine an implementation that will satisfy the 
given specification using D-type flip-flops. 
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0 

Figure P8.5 

8.6 

8.7 

A sequential network has two inputs, X and clock, and one output Z. Incoming 
data are examined in consecutive groups of four digits and the output Z = 1 if any 
of the three input sequences 1010, 0110 or 0010 should occur. Develop a state 
diagram and implement the circuit using JK flip-flops and NOR gates. 
A sequential logic network is to be used for determining the parity of a continuous 
string of binary digits. If an even number of l's has been received the output of the 
network Z = 1, provided two consecutive O's have never been received. If two 
consecutive O's are received the circuit should return to its initial state and 
recommence the parity determination. Draw an ASM chart and hence design 
a circuit to satisfy the specification. Implement the design with D-type flip-flops 
and NAND gates. 
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A Zl 8.8 Four-bit  binary numbers, A3A2A1Ao and 
B3B2B~Bo, are fed to a sequential comparator  B Sequential Za 

comparator , circuit most significant bit first as shown in 
Clock network 7--3 Figure P8.8. Design the synchronous sequential 

circuit whose outputs are Z ~ -  1 if A > B, 
Figure P8.8 Z2 = 1 if A = B, and Z3 = 1 if A < B. 

8.9 A synchronous counter is controlled by two 
signals, A and B. If A - 0  and B - 0 ,  the 

counter is non-operative, if A = 0 and B = 1 the counter operates as a scale-of-four 
counter, and if A -- 1 and B = 0 the counter operates as a scale-of-eight counter. 
Draw an ASM chart and hence design a circuit to satisfy the specification. 
Implement the design with JK flip-flops and N A N D  gates. 

8.10 Find a minimal state table for the synchronous sequential machines whose state 
tables are given below, by 

(a) Caldwell's merging rules: 
(b) partitioning; and 
(c) the implication table. 

Present 
state 

Next  Present Next Present Next  
state state state state state 

X = O  X = I  X = O  X = I  X = O  X = I  

So Sl S2 So Sl S8 S8 S9 S12 
Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  

Sl $3 $4 Sl $2 $5 $9 S=o Sll 
Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  

$2 $5 $6 $2 $3 $4 S~o So So 
Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  

$3 So So $3 So So s~ So So 
Z = I  Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  

S4 So So S4 So So S12 S13 S14 
Z = 0  Z = 0  Z = 0  Z = I  Z = 0  Z = 0  

S5 So So S5 S6 S7 S13 So So 
Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  Z = 0  

$6 So So $6 So So s~4 So So 
Z = 0  Z = I  Z = 0  Z = 0  Z = 0  Z - - 1  

$7 SO SO 
Z = 0  Z = I  

8.11 The 2-4-2-1 self-complementing code is received serially, most significant bit first, and 
in synchronism with the clock. An output signal Z - 1 is generated when an invalid 
code combination is received. Draw an ASM chart and design a circuit that will 
detect an invalid code. Implement the design with D-type flip-flops and multiplexers. 

8.12 A sequential circuit has a single input x and a single output  z. The input signal x 
can occur in groups of 1, 2 and 3 pulses. 

If x = 1 for one clock period, the output z will be 1 for three clock periods 
before returning to the starting state. 
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If x = 1 for two clock periods, the output  z will be 1 for two clock periods 
before returning to the starting state. 

If x = 1 for three clock periods, the output  z will be 1 for a single clock period 
before returning to the starting state. 

Construct  a state diagram and implement your design with DFFs.  The circuit 
when designed acts as a pulse width adjuster. 

8.13 A sequential circuit has two inputs, x and s, and a single output  z. The input x is 
a train of high frequency pulses. It is required to output  every fourth input pulse 
when s = 0, and every third input pulse when s = 1. 

Draw a state diagram and develop a state table. Implement your design with 
trailing edge triggered master/slave JK flip-flops. 

8.14 A sequential circuit has two inputs, x and s. Input  x is a train of high frequency 
pulses and the control signal s selects whether the x train of pulses will appear on 
one of the two output lines zl and z2. If s = 0 the output  Zl is activated and when 
Sl = 1 output  z2 is activated. Design the circuit. The circuit is operating as a 
pulse train switch. 

8.15 A sequential circuit waveform generator has four possible input waveforms 
selected by the control signals Xl and x2. 

The waveform selected by Xl = x2 = 0 has a period of three clock cycles. 
The waveform selected by Xl = 0 and Xl = 1 has a period of four clock cycles. 
The waveform selected by xl = x2 - 1 has a period of four clock cycles. 
The waveform selected by xl = 1 and x2 = 0 has a period of two clock cycles. 
Develop an ASM chart and construct a state table for the generator and 

implement your design with D-type flip-flops. 
8.16 A sequential circuit has an input x which consists of a chain of intermittently 

occurring pulses. The x pulses, when they appear, do so midway between a pair 
of successive clock pulses. The output  z will occur for the period of the time 
interval between a pair of successive clock pulses providing an x pulse occurred 
in the preceding interval between clock pulses. Develop an ASM chart and 
implement your design with D-type flip-flops. 



9 Event driven circuits 

9.1 Introduction 

Some sequential circuits are driven by events rather than by a train of clock pulses. 
For example, a digital alarm will be activated by the event that raised the alarm. In this 
example it is the event that drives the logic, and since the events are frequently irregular 
occurrences, such a circuit is referred to as an asynchronous sequential circuit or, 
perhaps more meaningfully, as an event driven circuit. 

Asynchronous circuits are also called fundamental mode circuits. The main character- 
istic of this type of circuit is that only one input is allowed to change at any given instant. 
Simultaneous changes are forbidden as, indeed, are changes that may take place before 
the circuit reaches a stable condition after the preceding change. This is clearly different 
from the behaviour of a synchronous sequential circuit, where inputs changing at 
arbitrary times are allowed and state changes are activated by the repetitive clock signal. 

There are two conditions in which an asynchronous circuit may exist, namely stable 
and unstable. The total state of the circuit at a given time is defined by the logical 
values of the inputs and the present state of the circuit. If the next state is the same as 
the present one the circuit is in a stable condition. If, however, an input changes, the 
circuit may move to an unstable condition and at some later time the state variables 
will have taken on their new values such that the next state has become the present 
state, and stability has been restored. 

When designing asynchronous circuits, the designer has to eliminate the possibility of the 
occurrence of static hazards, dynamic hazards, essential hazards and races, in order to avoid 
circuit malfunction. These problems, with the exception of static hazards, do not exist in 
synchronous circuits since they are always designed to reach a steady-state condition before 
the next clock pulse arrives. Beating in mind the design difficulties, perhaps the main 
advantage of asynchronous circuits is that they can work at their own speed and are not 
constrained to work within the time limits imposed on them by a repetitive clock signal. 

9.2 Design procedure for asynchronous sequential circuits 

The design procedure for asynchronous sequential circuits is similar in many respects 
to that developed for synchronous circuits in Chapter 8. The aim of the design is to 
produce hazard-free next state equations and output functions. The steps in the design 
procedure are summarised below: 

1. Problem definition: An unambiguous statement is required by the designer. 
2. Basic state table and internal state diagram: A basic state table should be con- 

structed from the information given in step 1 above. In many cases the designer 



Event driven circuits 249 

~ 

0 

e 

may find it helpful to produce a state diagram first, and then develop the basic state 
table from the information provided on the state diagram. 
Reduction of the basic state table: If possible by using Caldwell's merging rules or 
a merging diagram, reduce the number of rows in the table, thus reducing the 
number of states. In some cases it may be necessary to use an implication chart to 
reduce the number of states. 
State assignment: Secondary variables are assigned to the states, care being taken to 
avoid races. 
Equations for the state variables: The equations for the variables assigned to the 
states can be obtained using a sequential equation, such as  Qt+6t = (S Jr-~Q)t, as 
developed in Chapter 6. This will lead to a gate implementation of the equations 
and steps should be taken to ensure that they are hazard-free. Alternatively, the 
equations can be implemented using latches and the next state equations for their 
inputs may be determined from the reduced state table. 

9.3 Stable and unstable states 

The equation of the SR latch developed in Chapter 6 can be written as follows: 

at+6t ( s  + Rq)t  

where Ot+6t is the next state while qt is its present state. The gate circuit for the latch 
is shown in Figure 9.1(a), and if the feedback path is removed it can be regarded as 
a purely combinational circuit in which the condition S - R - 1 is not allowed. A K-map 
for those combinations of the variables that are allowed is plotted in Figure 9.1 (b). 

For the condition SRq = 000, q = Q = 0, and if the feedback path is reconnected, 
the state of the latch will remain unchanged. This is a stable state which is indicated by 
ringing the entry on the K-map. 

For the condition SRq - 011, q = 1 and Q - 0. In this case, if the feedback path is 
reconnected, there will be a change of state to SRq = 010, q = 0 being the next present 
state. SRq = 011 is an unstable state and is not ringed on the K-map. 

On the K-map in Figure 9.1(b) all the stable states have been ringed leaving the 
remaining unstable states not ringed. In Figure 9.1(c) the states have been defined 
numerically and the unstable states are given the same number as the adjacent stable 
state having the same values of S and R. If the latch is in state 2 and R makes the 

(b) 

(a) $•O•qo0 01 11 10 

el| 16i 
(c) 

Figure 9.1 (a) SR latch gate circuit (b) next state map for Q (c) stable and unstable states 
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transition 0 ~ 1 it enters the unstable state 3 before finally settling in stable state 3. 
These changes can be summarised as follows: 

SRq 001 ~ 011 ~ 010 
Stable ~ Unstable ~ Stable 
2 ~ 3 ~ 3 

9.4 Design of a lamp switching circuit 

Step 1: Problem definition 

An asynchronous sequential circuit is to be designed to ensure that a correct manual 
switching procedure is carried out by the operator for part of an electrical key 
operating mechanism. If switch X is made, followed by switch Y, then a red lamp LR 
is to be turned on, indicating that the incorrect switching procedure has been followed. 
If switch Y is made followed by switch X, then a green lamp Lc is to be illuminated, 
indicating that the correct switching procedure has been adopted. 

A block diagram for the problem is shown in Figure 9.2(a). The two inputs X and Y 
generated when the switches are made are referred to as the primary or input variables. 
The circuit has two outputs, one of which drives the red lamp and the other, the green lamp. 

Step 2: Internal state diagram and basic state table 

The internal state diagram for the problem is shown in Figure 9.2(b). So may be 
regarded as the quiescent state in that it represents the condition that both switches 
are off. The path taken through the state diagram for the correct switching procedure 
is So ~ $3 ~ $4, and for the incorrect procedure the path is So ~ SI ~ $2. A number 
of options are available for the switching procedure in the reverse direction. The ones 
available for this design are: 

(a) From green light on, either 54 --* S3 ~ S0 or 
(b) From red light on, either 52 --* Sl --* S0 or 

54 --~ Sl --, So 

S 2 ---r S 3 ~ S 0 

A basic state table can now be drawn up from the information appearing on the state 
diagram (see Figure 9.2(b)). The table has five rows, one for each possible present state, 
and four columns, one for each of the possible combinations of the input variables. 

The entry in the top left-hand cell is Q and is ringed, indicating a stable state. The entry 
in the top right-hand cell is Sl, indicating an unstable state. This implies that if, in the 
quiescent state So where X Y  = 00, X changes from 0 to 1, then a new unstable state S1 is 
defined by the total state SoXY before the circuit settles into a new stable state defined by 
S1XY. This condition defines the fourth cell on the second row where the entry is |  

It will be noted that there is only one stable state per row, and that each unstable 
state is preceded and succeeded by a stable state. A further examination of the basic 
state table shows that some cells do not have an entry at all. For example, in the first 
row where the present state is So, there is no entry in the cell corresponding to the 
input combination X Y  = 11. The basic state table shows that the state So is entered 
from either S1 or $3 with an input signal X Y -  00, and to enter the cell on the first 
row where X Y  = 11 would now require a simultaneous change of the input variables. 
Such a change is not allowable for a circuit operating in the fundamental mode. 
Cells with no entries in them are marked with a '- ' .  
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Figure 9.2 (a) Block diagram for lamp switching circuit (b) the internal state diagram (c) primitive state table 
(d) reduced state table (e) reduced state diagram (f) circuit implementation 

State tables which contain cells marked with a ' - '  are referred to as incompletely 
specified tables. In the table shown in Figure 9.2(c) the cells marked with a ' - '  corres- 
pond to forbidden input combinations. These cells can be regarded as 'can't happen' 
conditions, and may enable a simplification of the table which did not at first sight 
seem possible. The justification of the allocation of a 'can't happen' condition in 
the state table is the same as for 'can't happen' conditions in combinational logic 
problems. If an event cannot happen, the designer 'doesn't care' what the circuit would 
do in response to it. 
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Entries are made in each cell of the table for the outputs, and two possible situations 
can arise: 

1. The output entries are identical in the states immediately preceding and succeeding 
an unstable state. For this situation, the output entries in an unstable state should 
be identical to those in the immediately preceding and succeeding states. 

2. The output entries in the immediately preceding and succeeding states are different. 
For this situation, the entries in the intervening unstable state can be ' - ' ,  indicating 
a 'don't  care' entry which can be used in the simplification of the output function. 

Step 3: Reduction of the basic state table 

When simplifying an incompletely specified table, it is possible to assign a next state 
and output to a cell containing a ' - '  in such a way as to make the row in which the '- '  
occurs identical to a second row. The states at the head of these two rows are then 
identical, since all the next state entries and outputs in corresponding cells on the two 
rows are the same, and the rows can be merged. 

An examination of the table in Figure 9.2(c) shows that the rows headed So, S~ and 
$2, and those headed $3 and $4 are identical and can be merged using Caldwell's 
merging rules. So, SI and $2 are merged to form a new state S01E and states $3 and $4 
are merged to form a new state S34. The reduced state table is shown in Figure 9.2(d) 
and the reduced state diagram in Figure 9.2(e) is constructed from the information in 
the reduced state table. 

Step 4: State assignment 

Since there are only two states in the reduced state diagram, just one state variable A is 
required to define them. For the state S012, ,4 - 0, and for the state S34 , ,4 - -  1. A S  there 
is only one state variable in this case, the problem of races does not arise. 

Step 5: Equations for the state variable and the outputs 

The equation for the state variable can now be obtained with the aid of the NAND 
sequential equation Qt+6t = (S +/~Q)t, where S is defined as the turn-on condition for Q 
and R is defined as the turn-off condition for Q. The turn-on and the turn-off conditions 
for the secondary variable A can be obtained directly from the reduced state diagram: 

Turn-on condition for A = X Y 
Turn-off condition for A = Y 
Hence A t+6t - (X  Y + YA) t 

And the outputs may be written 

L G - A X Y  and L R = A X Y  

The implementation of the circuit is shown in Figure 9.2(f). 

9.5 Races 

When the state variables were allocated to the internal states of a clock-driven 
sequential circuit, the criterion for the allocation was that it should lead to a minimum 
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hardware implementation. It was pointed out in the previous chapter that there is no 
known method for the allocation of the state variables that will lead to minimum 
hardware implementation, although guidelines were presented which, when used, lead 
to a simple, if not the simplest, circuit. The criterion for the allocation of state variables 
in event-driven circuits is somewhat different, and in this section those factors which 
govern this allocation will be examined. 

An alternative state diagram for the light-switching problem is shown in Figure 9.3(a). 
An extra state $5 has been introduced to allow an extra return path from the 'light-on' 
states $2 and $4 to the quiescent state So. Using the techniques described in section 9.4, 
the reduced state table and state diagram have been obtained. Four combinations of 
two state variables A and B have been arbitrarily allocated, one to each of the four 
states, and it will be noticed that when a transition is made from $5 to So on the signal 
XY, both of the state variables have to change. There are three possible cases 
to consider: 

1. A and B change simultaneously: a direct transition is made from $5 to So. 
2. A changes before B: the circuit makes a transition to So via the route 

55 ~ 534 ----+ S0. 
3. B changes before A: the circuit makes2 a transition to So via the route 

55 --~ S12 --+ So. 
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Figure 9.3 (a) Modi f ied light switching state diagram (b) primitive state table (c) reduced state table 
(d) reduced state diagram exhibiting a non-critical race 
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(a) State diagram for a circuit exhibiting critical races (b) State table illustrating a critical race 

In all three cases the circuit enters a stable state So and remains there until a further 
change of input variables occurs. The various transitions between states for the three 
conditions described above are illustrated in the reduced state table shown in Figure 9.3(c). 

From the foregoing remarks it may be concluded that whenever two state variables 
change in response to a change in an input variable, a race condition exists. The con- 
dition has its origin in the different delays when the A and B signals are generated. 
In the case described above the races identified are both non-critical races since, 
irrespective of the transition made, the circuit always ends up in the same stable state. 

However, there are races that can occur in event-driven circuits in which the final 
state reached depends upon the order in which the state variables change. Such races 
are termed critical races. For  example, the internal state diagram of a state machine 
and its corresponding state table are shown in Figure 9.4. It will be assumed that the 
machine is in the state defined by AB = 00, and X = 0. If the input X is now changed 
to 1, the machine will make a direct transition to the stable state defined by X - 1 and 
AB = 11 (Sl) providing A and B change simultaneously. Alternatively, if A changes 
before B, the machine will make a transition to the state defined by X = 1 and 
AB = 10. Since this is a stable state, the circuit will remain there, and in fact 
a quick glance at the state diagram shows that the circuit remains locked in that state 
indefinitely because of the absence of an output  path from the state. However, B may 
change before A and then the circuit will make a transition to the state defined by 
X = 1 and AB = 01. This state is unstable and the circuit makes a further transition to 
the state defined by X = 1 and AB = 11. The transitions described can clearly lead to 
faulty circuit operation. Critical races occur in this circuit because it is possible to end 
up in one of two stable states, depending on the order in which the state variables 
change. The various transitions which can take place in this circuit are indicated on the 
state table shown in Figure 9.4(b). 

9.6 Race free assignments 

If critical races are to be avoided, it is necessary to provide a race-free assignment of 
the state variables on the state diagram. In effect, this means that when a transition is 
made from one state to the next, only one state variable should be allowed to change. 
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Figure 9.5 (a) State machine requiring race-free secondary assignment (b) Inclusion of a dummy state to give 
race-free assignment 

In some cases it is not possible to satisfy this requirement without making modifica- 
tions to the state diagram. For example, the three-state diagram shown in Figure 9.5(a) 
requires two state variables to define the three states. An arbitrary state assignment has 
been made on the diagram, but inspection reveals that on making a transition from $2 
to So both secondary variables must change. Unfortunately, it is impossible to find a 
race-free assignment for a three-state diagram if transitions are required between each 
pair of states. 

Furthermore, two state variables can define four states, which implies that for the 
three-state diagram of Figure 9.5(a) there is one unused state which has been omitted 
from the diagram. If there is no exit from the unused state it can become a 'lock-in' 
state as described in section 9.5. 

These two problems are overcome by incorporating the unused state A B  = 10 (Sd) in 
the modified state diagram shown in Figure 9.5(b). This modification allows the circuit 
to return unconditionally from this dummy state to state So. 

The four-state diagram in Figure 9.6 is structured in such a way that there are no 
race problems providing adjacent states are allocated state variables that differ in one 
variable only. If, however, the state diagram for the machine includes transitions 

$3 

So $1 

I x 1 

O0 

10 111 
$2 

Figure 9.6 State diagram for a four- 
state machine with transitions between 
adjacent states 

between two states that are not adjacent, for example 
$3 ~ S1 in the state diagram shown in Figure 9.7(a), 
then a race-free assignment is not possible with two 
state variables. The state diagram reveals that with the 
same state assignment as the one shown in Figure 9.6 
there is a double change in state variables when the 
transition $3 ---, S~ is made. No matter how the state 
variables are allocated, there will always be at least one 
transition which will result in a double change of the 
state variables, and this implies that a race-free assign- 
ment can only be achieved by using three state vari- 
ables. 

A race-free assignment can most easily be obtained 
from a K-map of the three state variables, as shown 

in Figure 9.7(b). It is a property of the K-map that adjacent cells differ in one digit 
position only, and consequently two states allocated to adjacent cells will have state 
assignments that differ in one digit place. 
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a race-free assignment (c) Race-free state diagram jbr a four-state machine having a diagonal transition 

Four of the states have been allocated to cells such that So is adjacent to Sl, S l to $2, 
and Sl to $3. However, for a race-free assignment, $2 should be adjacent to $3, and so 
should So. The K-map shows that with three state variables such adjacencies are 
impossible, and the transitions $2 -~ $3 and $3 ~ So have been made via the dummy 
states Sol and SO2 respectively. The modified state diagram consists of six states, two of 
which are dummies, as shown in Figure 9.7(c). Each transition on this diagram has 
only one change of state variable, and hence the assignment is race-free. An event 
driven circuit will now be designed which requires the inclusion of a dummy state. 

9.7 The pump problem 

Step 1: Problem definition 

Water is pumped into a water tank by two pumps, p] and P2. Both pumps are to turn 
on when the water goes below level 1 and they are to remain on until the water reaches 
level 2, when pump p] turns off and remains off until the water is below level 1 again. 
Pump P2 remains on until level 3 is reached when it also turns off and remains off until 
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the water falls below level 1 again. Level sensors are used to provide level detection 
signals as follows: 

Signal a -  1 when the water is at or above level 1, otherwise a -  0 
Signal b = 1 when the water is at or above level 2, otherwise b = 0 
Signal c -  1 when the water is at or above level 3, otherwise c -  0 

The aim is to develop an event driven circuit to control pumps p~ and P2 according 
to the specification given above. 

A schematic diagram of the water tower is shown in Figure 9.8(a), and a block 
diagram of the proposed circuit is shown in Figure 9.8(b). 
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Figure 9.8 (a) Diagram of the water pump problem (b) Block diagram of pump controller (c) Basic internal state 
diagram for the pump problem (d) State table (e) Modified state diagram (f) Circuit implementation of the pump 
controller 
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Step 2: The state diagram 

A suitable state diagram is shown in Figure 9.8(c), in which the state So is related to the 
condition when the water is above level 3 and both pumps are off. As the tank empties, 
the water level falls until it is below level 1 and a transition is then made to S~, since 

= 1. In state S~, both pumps are on. If the water continues to rise and reaches level 2, 
a transition is made to $2 and pump p~ is then turned off. In state $2, two options are 
available. If the water level falls below level 1 again a transition will be made back to S~ 
on the signal ~ - 1. Alternatively, if the water continues to rise, when level 3 is reached 
a transition is made to So and both pumps are turned off. 

Step 3: The state table 

The state table for the pump problem is shown in Figure 9.8(d). It should be observed 
that input conditions abc - 001, 010, 011 and 101 are missing from the table since 
these combinations can only exist under fault conditions. 

Two state variables A and B are required to define three states. Because there are 
transitions between each pair of states, a race-free assignment of the state variables is 
not possible. To overcome this problem an additional dummy state Sd is added to the 
state diagram. The modified state diagram is shown in Figure 9.8(e). 

Step 4: Development of the circuit equations 

Turn-on condition for A = bB 

Turn-off condition for A - / 1  + B~ - / ~  + 

Turn-on condition for B = aA 

Turn-off condition for B = cA 

Hence At+~t = [bB+(B+a)A]  t 

= [bB+aAB]'  
and B t+~t - [ a / ] + ( b A ) B ]  t 

= + (a 

Also P l = AB 
_ 

and P2 - A B + AB = B 

Step 5: Circuit implementation 

The circuit implementation of the pump controller is shown in Figure 9.8(f). 

9.8 Design of a sequence detector 

In this section a further example of the design of an event driven circuit will be studied 
to emphasise some of the problems faced by the designer when developing this type 
of circuit. The opportunity will also be taken to look at various methods of imp- 
lementation and the construction of an ASM chart for this problem. The design to be 
studied concerns a sequence detector which has two inputs X~ and X2, and one output 
Z, as shown in Figure 9.9(a), and which is required to give an output Z -- 1 when the 
sequence of input signals X1X2 = 00, 10, 11 has occurred. 
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One method of approach open to the designer is to develop the state diagram. In this 
type of problem a good beginning to the state diagram is to insert the required 
sequence, as shown in Figure 9.9(b). This requires four states, connected via three 
transitions, initiated by the transition signals XIX2, XIX2 and X~X2 respectively. 

To complete the state diagram it is now necessary to insert the additional transition 
paths that may originate at each of the states. For example, the machine enters state S~ 
on the transition signal Xl X2. Since the machine to be designed will be operating in the 
fundamental mode, there cannot be a simultaneous change in the input variables when 
state S~ is entered and the state can only be left on the transition signals Xl X2 or X1X2. 
The transition signal Xl)(2 represents the second combination of the input signals in 
the required sequence, and initiates the transition from S~ to $2. Alternatively, a change 
in )(2 from 0 ~ 1 results in an input signal X1 X2 and the machine should be designed 
to return to the state So to await the arrival of the first signal in the sequence, X1X2. 
The completed state diagram is shown in Figure 9.9(c). In this diagram, the output Z - 1 
appears in state $3 at the completion of the required sequence. If, when in this state, the 
input signals Xi X2 or Xl X2 are received, the machine will return to So, where it will await 
the next occurrence of the signal Xl ~'2, the first combination of the required sequence. 

Some designers insert slings (arrows indicating a "transition" to the same state) on the 
state diagram, and an example of the use of slings has already appeared in Figure 9.3(d). 
In this problem, if the machine enters state S~ on the signal ~'l ~'2, it will stay there as 
long as this signal still exists, and this can be indicated by a sling originating from and 
terminating on SI, as shown in Figure 9.9(d). This diagram includes all possible slings, 
and it will be observed that when in So the sling signal is ,~'l X2 + XI,e~2 -4- XIX2. This 
means that if the machine entered So on either of the signals XI X2 or Xl,~2 it would be 
possible to get a change of input signal from either -~'l X2 to X~X2 or, alternatively, from 
X~ X2 to X~ X2. If such a sequence of events occurs, the machine will remain in state So 
and will only leave the state if the input signals X~ and )(2 change in either of the 
following two sequences: 

1. 11 ---, 01 4 0 0  

2. 11 ~ 1 0 4 0 0  

The state table is constructed from the information given on the state diagram, and 
is shown in Figure 9.9(e). Examination of the table shows that rows S~ and $2 are 
mergeable and the table can be reduced to three rows. At first sight this may appear to 
be a disadvantage for the following two reasons. First, it leads to the presence of an 
unused state, and second, since the state diagram will now only consist of three states, 
a race-free assignment is not possible. However, the unused state can be reintroduced 
as a dummy state having an unconditional transition to the next state. The presence 
on the state diagram of an unconditional transition will lead to simpler turn-on and 
turn-off conditions and a simpler logic implementation. 

The reduced state table is shown in Figure 9.9(f) and it will be noticed that there is 
one unoccupied cell on this diagram on the row headed $3. This is effectively a 'can't 
happen' condition. If the present state is $3, then a transition signal X1 X2 is forbidden. 
Since this signal cannot occur when the machine is in state $3 it may be used as an 
optional term added into the Boolean equation for the $3 ~ So transition, as shown 
in the reduced state diagram of Figure 9.9(g). In this case the optional term leads to 
a simplification of the transition signal. 
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The state diagram, including the dummy state and with a suitable state assignment, 
is shown in Figure 9.9(h). The turn-on and turn-off equations are taken directly from 
this diagram: 

m 

Turn-on condition for .4 - BX1X2 + B(X1 + X2) 
m 

Turn-off condition for A - BXI  X:  

A t + 6 t -  [ B X 1 X 2  -}- O()~'l -}- -~'2)-}-(BXI.~2)A] t 
= [ B X  1 X  2 + B(21 -~- 22) -+- ( B  -Jr- X 1 -]- X 2 ) A ]  t 

Turn-on condition for B -  AX1X2  

Turn-off condition for B -  A 

B t + 6 t -  (~zlX'lX2 q- ~tB)  t 

The output Z is given by Z -  S3 - AB,  and the machine implementation is shown in 
Figure 9.10(i). 

The simplest form of the equations for the next state of the state variables A t+6t and 
B t+6t can be obtained directly from a pair of K-map plots. The state table compiled 
from the information given in the state diagram of Figure 9.9(h) is shown in Figure 
9.10(a) and in this diagram, assignment of A t and B t has been placed alongside the 
states. However, it is more convenient to rearrange the rows of this table so that the 
secondary variables appear in normal K-map order. At the same time the state entries 
in the cells in Figure 9.10(a) are replaced by the state variables that define them, as 
shown in Figure 9.10(b). This table can be regarded as a plot of the next states of 
the state variables, A t+6t and B t+6t, for every possible combination of the total present 
state (XIX2 A B )  t. 

The K-maps for A t+6t and B t+6t have been separated out in Figure 9.10(c). Using the 
normal simplification techniques gives the following equations" 

A t+6t --  (XIX2 q- B22 if- A X I )  t 

B t+e'-  (dx~x2 + dB) t 

and 

Z -  83 - A B  

The implementation of these three functions is shown in Figure 9.10(d). 
An ASM chart for the sequence detector is given in Figure 9.10(e). The chart has 

been constructed from the information extracted from the state table in Figure 9.10(a). 
For example, the decision box immediately below the state box So contains the 
Boolean term X1X2. If XIX2 - 0  the machine remains in So, but if XI X2 - 1 a tran- 
sition is made to the state S~2. The condition for the machine to remain in state S~2 
is 21)?2 + X1J{2- X 2 -  1, i.e. X 2 -  0. On leaving state box S12 the first decision 
box contains the variable X2, and if X 2 -  0 the path from this decision box returns 
the machine to state S12. If, however, X1 - 0  and X2 - 1 the machine takes the path 
back to So while if X 1 -  1 and X 2 -  1 the path on the chart leads to state box 
$3. The remainder of the chart is constructed using the information obtained from 
the last two rows of the state table. 

An alternative method of implementing the design of the sequence detector would be 
to use SR latches and combinational logic. This requires the development of the next 
state equations for the two latches, A and B. The tabulation of the next state functions, 
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Figure 9.10 (a) State table for sequence detector (b) Tabulation of  next state functions A t+~1 and B t+~1 
(c) K-maps for the next state functions (d) Alternative implementation of  sequence detector (e) The A S M  chart 

for the sequence detector 

repeated again for convenience in Figure 9.11(a), may be regarded as the next state 
map for the two latches which, in conjunction with the steering table for the 
SR latch shown in Figure 9.11(b), enables the designer to obtain the K-maps for the 
S and R inputs to both latches. For  example, when the present total state of the 
machine is ABX1X2 = 0001 and the input combination XI X2 -- 01 is received, the next 
total state is ABX]X2 = 1001. Latch A has made a 0 ~ 1 transition which requires 
SA = 1 and RA - -  0 ,  while latch B has made a 0 ~ 0 transition which requires S~ = 0 
and R8 = X. 



Event driven circuits 263 

A t 00 01 11 10 

00 00 10 01 00 

01 11 11 01 11 

11 10 10 10 10 

10 00 10 10 10 

d !d§ S 

0 0 0 X 
0 1 1 0 
1 0 0 1 
1 1 X 0 

A t+6t ~+6t 

(a) (b) 

~ X2 

AB 00 01 11 10 

_ 

O0 1 

U 
,_,yx 
10 X~ X X 

SA= Xl X2 + BX2 

~ X2 

AB 00 01 

00 

01 X X 

11 

10 

11 10 

S8 = ~Xl X2 

(c) 
1 

Xl  

(d) 

~ X2 

AB 01 11 10 
i i 

00 [~J  X X 

01 X 

11 

IO (T'] 

R~ = t~Xl X~ 

~ X2 

AB 00 01 11 10 

00 X X X 

01 

10 X x 

~=A 

B ] RB 

>%_z 
Figure 9.11 (a) Latch excitation table (b) Steering tab&for an SR Latch (c) K-maps for the latch input signals 
(d) Implementation of sequence detector using SR latches 

The K-maps for the latch input signals are shown in Figure 9.11(c) and, after 
simplification, the following equations are obtained for the set and reset signals: 

SA -- X1X2 + BX2 SB -- AX1X2  

RA -- B X 1 ) ( 2  R ~  --  A 

The output is given by Z -  $ 3 -  A B  and the machine implementation is shown in 
Figure 9.11 (d). 
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9.9 State reduction for incomple te ly  specified machines 

In a completely specified machine there is an entry for the next state and output in 
every cell of the state table. For incompletely specified machines the outputs and the 
next states may not be specified for some combinations of the present states and 
inputs. Unspecified next states and outputs can be regarded as 'can't  happen' con- 
ditions and can be specified in any way the designer may choose. Because of this 
freedom of choice it is possible to have more than one state reduction for an incom- 
pletely specified machine. A state table for an incompletely specified machine and two 
possible state reductions for the machine are shown in Figure 9.12. 

So 
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Figure 9.12 (a) State tableJbr an incompletely specified machine (b) and (c) Two possible state reductions 

9.10 Compatibility 

In the previous chapter, when dealing with completely specified state tables, state 
reduction was achieved by combining equivalent states to form a single state. Equiva- 
lent states were defined as those states where next-state entries and outputs 
were identical for each input condition. When dealing with incompletely specified 
tables such as the one shown in Figure 9.12, state reduction is achieved by finding 
compatible states. 

As an example of compatibility, consider the two states $2 and $3 tabulated below 
which appear in the state table of an incompletely specified machine: 

PS NS 

82 

$3 

X - 0  X - 1  
$5,0 p 

, $4,1 

The unspecified next state and outputs are regarded as 'can't happen' conditions, and 
entries in the tabulation can be made where t h e - ' s  occur which will enable the two 
states to be combined to form a new state $23 where: 

PS NS 
X - 0  X - 1  

523 55, 0 54, 1 
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The two states have formed a compatible pair. If the output conditions for S 2 and S 3 

had been conflicting for either of the two input conditions they would then have been 
incompatible. Alternatively, if the next state entries for either of the two input con- 
ditions had been different, the two states would have been incompatible. 

As a further example of compatibility, the two rows tabulated below have been 
taken from an incompletely specified table: 

PS NS 
X = O  X = l  

So S1,0 83, - 
S1 S 1 , -  $6,1 

The two rows can be made output consistent by inserting a 1 in place of the ' - '  on the 
first row, and a 0 in place of the ' - '  on the second. However, after these two insertions, 
So and S1 can only form a compatible pair providing $3 and $6 are also compatible. 

Additionally, the compatibility relationship is not transitive. It is possible for Si to 
be compatible with Sj and Sj may also be compatible with Sk, but it does not follow that 
Si will be compatible with Sk. This point is demonstrated by the following example: 

PS NS 
X = 0  X = I  

Sl - , 0  86,0 
82 85, 0 , 
83 , 84, 1 

Clearly SI and $2 form a compatible pair. Similarly, S 2 and $3 are compatible. 
However, S1 and $3 are incompatible since they are not output consistent. 

Summarising, the conditions for the compatibility of two states Si and Sj are: 

1. The outputs on the rows headed by Si and Sj. must be identical for each possible 
input condition. 

2. The next-state entries of Si and Sj must be compatible when both are specified for 
each possible input. 

A set of output consistent states in which every pair within the set is compatible is 
called a compatibility class while a maximal compatibility class is defined as a set of 
compatible states which are output consistent but are not a subset of any other class. 
For example, if (S1, $5) is a compatibility class, it is not a maximal compatibility class if 
it is a subset of a maximal compatibility class (S~, $4, $5, $7). 

9.11 Determination of compatible pairs 

To determine the compatible pairs for the incompletely specified machine whose state 
table is shown in Figure 9.13(a), the implication chart described in the previous chapter 
is used. For an incompletely specified machine, each cell in the chart represents the 
testing ground for the compatibility of a state pair. The top left-hand cell of the chart is 
the testing ground for the compatibility of states A and B. In order that the two states 
should be output consistent, all the output ' - 's  in the two rows must be replaced by l's. 
To satisfy the second condition, states A and C must be compatible, and this implica- 
tion is entered in the cell. 
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Present 
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Figure 9.13 (a) State table for incompletely specified machine (b) implication table (c) compatible and 
incompatible pairs (d) and (e) merger diagrams (f) closure table (g) reduced state table 

It is clear from an examination of the state table that states B and C cannot be 
compatible since they are not output  consistent and the cell at the intersection of these 
two states is marked with an X. On the other hand, states A and D can be made output 
consistent by replacing the output  '- 's ,  on the rows headed by A and D, with l's. 
The second condition is satisfied if the next state ' - '  for X = 0 in the row headed D 
is replaced by A. The two states are then compatible, and the cell that identifies 
them is marked with a x/-" Every cell on the chart is examined in this way, and the 
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appropriate entry is made in each cell, as shown in Figure 9.13(b). Finally, the chart 
must be examined systematically to see if any of the implications involve a pair of 
states that have already been found to be incompatible. For example, the entry BC in 
the cell at the intersection of D and E is an incompatibility, and this cell must be 
marked with an X. Similarly, the entry BC at the intersection of A and E is an 
incompatibility and must also be marked with an X. The states are now listed in 
reverse order as shown in Figure 9. i 3(c), and the implication table is examined column 
by column from right to left to determine first the compatible and then the incompa- 
tible pairs. The compatible pairs are: 

(CE)(CD)(BD)(AD)(AC)(AB) 

and the incompatible pairs are: 

(AE) (B E) (B C)(D E) 

9.12 The merger diagram 

The next step in the state reduction process is to find the maximal compatibles, and 
this process can be assisted by the construction of a merger diagram. In this diagram 
the original states of the machine can be represented by dots equally spaced round a 
circle as shown in Figure 9.13(d). A line is then used to connect each of the compatible 
pairs. The maximal sets of compatible states can be obtained from the merger diagram 
by noting those sets of states in which every state is connected to every other state by a 
line. A typical example of a maximal compatible in Figure 9.13(d) is (ACD) and it will 
be observed that it is impossible to add any other state to this triangular grouping. 
The remaining maximal compatibles on the merger diagram are (ABD) and (CE). The 
maximal incompatibles can also be found on the incompatible merger diagram shown 
in Figure 9.13(e). They are (AE), (BC), (BE) and (DE). 

9.13 The state reduction procedure 

The maximal compatibles are now selected to provide a reduced state table which will 
represent the behaviour of the incompletely specified machine. When making the 
selection, three conditions must be satisfied: 

1. Completeness: The chosen set of maximal compatibles must contain all the states in 
the original machine. 

2. Consistency: The set of chosen maximal compatibles must be closed. This condition 
is satisfied if the implied next states of each selected maximal compatibility 
is contained by another maximal compatibility within the selected set. 

3. Minimality: The smallest number of maximal compatibles required for a minimal 
realisation. 

The process of selecting a set of maximal compatibles to represent the machine, whose 
incompletely specified state table is shown in Figure 9.13(a), is one of trial and error. 
In this problem, all three maximal compatibles will be selected in order to satisfy 
completeness and consistency. Hence the reduced state table will consist of three states, 
P = ABD, Q -- ACD and R = CE. The reduced state table is shown in Figure 9.13(g). 



268 Digital logic design 

9.14 Circuit hazards 

One cause of malfunction in combinational and sequential circuits can be traced to the 
presence of race hazards. The designer should have a clear understanding of the 
mechanism that produces such hazards and should also be aware of their effects on 
circuit performance. 

There are four types of hazard which can occur in digital systems: 

1. Static hazards 
2. Dynamic hazards 
3. Function hazards 
4. Essential hazards 

Static hazards are due to a momentary change in output caused by an input change 
that does not affect the steady-state output. They may be present in both combinational 
circuits and gate-implemented asynchronous circuits. Dynamic hazards occur when, due 
to a single output change, the output changes several times before reaching its steady state 
value. Function hazards occur when more than one input variable change takes place at 
the same time, while essential hazards are peculiar to fundamental mode sequential 
circuits and they cannot be eliminated without controlling the delays in the circuit. 

9.15 Gate delays 

If a two-input N A N D  gate is used as an inverter in a combinational network, as 
illustrated in Figure 9.14, there will be a finite time delay tg before any change at the 
input to the gate produces the required change at the output. This delay is demon- 
strated in the timing diagrams, where the change in A from 0 to 1 is followed by 
a change in A from 1 to 0,_tg seconds later. Similarly, when A changes from 1 to 0, the 
corresponding change in A from 0 to 1 also occurs later (see Chapter 4). 

+SV / '  I 
I ' 

.;__J ", 
----..4 t 9 ~ - - -  ~ 0"~,~ 

I I 

1 I l 
/ 

I ! ! 
t . - -q  t 

Figure 9.14 The effect of gate delays when inverting a signal A 

9.16 The generation of spikes 

If the signal A and its complement A, generated by the NAND gate shown in Figure 9.14, 
are both fed to the inputs of a two-input AND gate as shown in Figure 9.15, then 
according to the laws of Boolean algebra the output of the gate should be A �9 A - 0 at 
all times. However, it will be observed from an examination of the timing diagrams that 
in the time periods that have been shaded, A and A are simultaneously equal to 1, so that 
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Figure 9.15 Generation of spikes by an AND gate 
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Figure 9.16 Generation of spikes by an OR gate 

m 

during these periods the gate output is A �9 A = 1. The output of the gate, AA, consists of a 
series of positive going spikes which are initiated when A is changing from 0 to 1, each of 
time duration tg, the gate delay of the inverter shown in Figure 9.14. The circuit used to 
generate the signal A. A is said to exhibit a static O-hazard because the output signal, 
which should be permanently 0, goes to 1 for a short transient period. 

Alternatively, if the signals A and A are applied to the inputs of a two-input OR gate 
as shown in Figure 9.16 then the output of the gate is A + A, which, according to the 
laws of Boolean algebra, should be 1 at all instants of time. The waveforms of A and A 
(see Figure 9.16) show that during the shaded time periods, they are both simultaneously 
equal to 0. In these shaded time periods, which are of short time duration, the output 
goes to 0. The circuit is said to exhibit a static 1-hazard because its output, which is 
normally 1, goes to 0 for short time periods. It will be observed that for the OR gate, the 
negative-going spikes are initiated at the instant when A is changing from 1 to 0. 

The generation of spikes by N A N D  and NOR gates is illustrated in Figure 9.17. 
Negative-going spikes are generated by a N A N D  gate at the instant when A is 
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Figure 9.17 Generation of spikes by NAND and NOR gates 
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changing from 0 to 1. The circuit exhibits a static 1-hazard. In the NOR circuit, 
positive-going spikes are generated at the instant when A is changing from 1 to 0. 
This circuit exhibits a static 0-hazard. 

9.17 The generation of static hazards in combinational networks 

When an input to a combinational network is changing, spikes may be generated at 
the output of the circuit. The spikes, when they occur, are due to different path 
lengths in the network which introduce different time delays. For example, the 
Boolean function 

f - A B + A C  

may be implemented by NAND gates, as shown in Figure 9.18. There are two paths 
through the circuit, the first via g~, g2 and g3 and the second via g4 and g3. If it is 
assumed that all gates have exactly the same time delay, then it is apparent that the 
delay through the first path is greater than the delay through the second path. 

The changes taking place in the circuit are illustrated in Figure 9.18 for the circuit 
condition B = 1, C - 1 and A, changing from 1 to 0. For this change in A, the output 
of g4 changes from 0 to 1 and produces a change in the output of g3 from 1 to 0. For 
the other path through the circuit, the output of gl first changes from 0 to 1, followed 
by the output of g2 changing from 1 to 0, thus producing a change in the output of g3 
from 0 to 1. Because the g4, g3 path has the shorter time delay, it is clear that the 
change in output propagated along this path occurs earlier in time than the change 
propagated along the alternative path. 

Since it has been assumed that B - C - 1 ,  the network equation reduces to 
f -  A + A. When a circuit equation, under certain specified input conditions, reduces 
to this form, a static 1-hazard will be generated. In the example chosen here, the timing 
diagrams shown in Figure 9.18 reveal that due to the inverter delay, for a short period 
of time both A and A are equal to 0, and A + A  = 0. Providing the condition 
B -  C -  1 is maintained and the input signal consists of a train of positive-going 
pulses, a series of negative-going spikes will be generated. The presence of the negative- 
going spikes confirms the earlier deduction, made by following the signal changes 
through the circuit diagram, that the output changes are 1 ~ 0 ~ 1. 

The dual function o f f  - AB + AC is: 
m 

- (A + B)(A + C) 

B 1 
0---1 A 1 

_ ,--o c o I I I- A 

0 t_ . . .  

0 t----~ 

Figure 9.18 The production o f  a static 1-hazard in a combinational network 
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The implementation of this function using NOR gates is shown in Figure 9.19. 
When B -  C -  0 the circuit equation reduces to f d -  A.  A. Under the conditions 
specified a static 0-hazard will be generated when A is changing from 0 to 1. 
The production of the static 0-hazard is illustrated in Figure 9.19. Immediately after 
A changes from 0 to 1 both A and A are simultaneously 1, hence A �9 A - 1. The output 
remains at this value until A falls to 0 when A. A resumes its value of 0 again. 

Signal changes are also illustrated in Figure 9.19, where it has been assumed that 
B - C - 0 and that A consists of a stream of positive-going pulses. If all the gates have 
the same time delay, then path g4, g3 has the shortest time delay and the change in 
output due to A changing from 0 to 1 will propagate along this path faster than along path 
gl, g2, g3. This results in the output changing from 0 to 1. When the corresponding change 
arrives at the output along the alternative path, the output changes back to zero again. 

A similar analysis can be carried out for both the A N D / O R  and OR/AND con- 
figurations, and this will show that the A N D / O R  circuit implementing the function 
f -  A B  + A C will generate a static 1-hazard. Similarly, for the OR/AND circuit 
implementing the function fd -- (A + B)(A + C), it can be shown that a static 0-hazard 
will be generated. 

9.18 The elimination of static hazards 

i 

The equation of the NAND circuit shown in Figure 9.18 is f - A B  + AC. The con- 
sensus product for this equation is BC, and this can be added to the original equation 
without altering its value. Thus: 

f -  A B  + A C + BC 

and for the condition B -  C -  1 the equation reduces to f -  A + A + 1, and even 
if A and A are, for a short period of time, simultaneously equal to 0, the value of the 
function f remains at 1. 

The effect of adding the consensus product can be studied by examining the K-map 
plot of the function before and after the addition of the consensus product. The original 
function is shown plotted in Figure 9.20(a) and the plot of the function, after 
the inclusion of the consensus product, is shown in Figure 9.20(b). Comparison of 
the two plots shows that before the addition of the consensus product, there are two l's 
in adjacent cells not covered by the same prime implicant. On covering these two 
adjacent l 's by the same prime implicant, as in Figure 9.20(b), the hazard is removed 
from the circuit. 
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Figure 9.20 (a) Plot o f f  = AB + AC (b) Plot o f f  = AB + AC + BC (c) Implementation of the hazard-free 
function f = AB + ,4C + BC 

It follows that static 1-hazards can be detected by looking for adjacent l 's on 
a K-map plot of the function that are not covered by the same prime implicant. 
They can then be removed at the design stage by including additional prime implicants 
which cover adjacent l 's not otherwise covered by the same prime implicant. 

The hazard-free circuit for the Boolean function f = AB + A C is shown in 
Figure 9.20(c), and it will be observed that an additional N A N D  gate has been 
introduced for generating the required consensus product BC. 

For the NOR circuit of Figure 9.19, fd -- (,4 + B)(A + C). The consensus term for 
this equation is (B + C), and this can be included in the above equation without 
altering its value, so that: 

fd -- (A + B)(/] + C)(B + C) 

If B -  C = 0 then: 

A - A . A . o  

a ,i = : ~ " ]  

g f r  

%: 
Figure 9.21 Implementation of the 
hazard-free function 
fd = (A + B)(]I + C)(B + C) 

With the inclusion of the consensus sum, the value 
of the function is always 0, irrespective of whether 
A and .4 are simultaneously equal to 1. 

The static 0-hazard is eliminated by the inclusion 
of the consensus term (B + C), and the resulting 
hazard-free circuit is shown in Figure 9.21. 
Elimination of the hazard requires the inclusion 
of an additional gate which generates the inverse 
of the consensus sum. 

When looking for a static 0-hazard, a K-map plot 
of the function which identifies those combinations 

of the variables that cause the function value to be 0 is required. To obtain a plot of the 
0-terms, the inverse of the function fd must be plotted. The equation of the circuit is: 

fd - (A + B)(A + C) 
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Figure 9.22 (a) Plot o f f  = fiB + AC (b) Plot o f f  including consensus term for removing the hazard 

Inverting: 

f d - A B + A C  

The inverse function is shown plotted in Figure 9.22(a) and it will be noticed that the 
two O's in the adjacent cells 000 and 100 are not covered by the same prime implicant. 
The function containing the additional prime implicant BC becomes: 

f d  = A B  + A C + BC 

Inverting, fd = (A + B)(A + C)(B + C) which is the hazard-free function obtained 
previously by introducing the consensus term to the function equation. 

The algorithm for finding static 0-hazards follows: 

Step 1: Plot the inverse function. 
Step 2: Look for adjacent O's not covered by the same prime implicant. 
Step 3: Insert additional prime implicants to cover all adjacent O's that are not covered 

by the same prime implicant. 
Step 4: Modify the inverse equation by including the additional prime implicants. 
Step 5: Re-invert the equation to obtain the hazard-free form of the function. 

9.19 Design of hazard-free combinational networks 

In this section the function represented by the equation 

f = ~-'~ 2, 5, 6, 7, 10, 13, 15 

will be implemented in hazard-free form using (a) NAND gates, and (b) NOR gates. 
A fan-in limitation of three will be imposed. 

For the NAND implementation, the circuit has to be free of static 1-hazards. 
The first step in the design is to plot the K-map of the function and simplify in the 
normal way (see Figure 9.23). The plot is now examined to see if there are any l's in 
adjacent cells not covered by the same prime implicant. In this case a pair of such cells 
are 0111 and 0110, and an additional prime implicant is added to the plot to eliminate 
the uncovered adjacency. The l's that constitute the added prime implicant are 
enclosed by dotted lines on the K-map plot. 

Reading from the map, the hazard-free function is: 

f - BD + A CD + BCD + A B C  

To meet the fan-in restriction, the equation can be factorised and then: 

f -- CD(A + B) + BD + A B C  
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Figure 9.23 (a) Plot o f f =  E 2, 5, 6, 7, 10, 13, 15 (b) NAND hazard-free implementation 

The factorisation of an equation in this way does not reintroduce hazards. In this 
problem the hazard would have occurred when A -  0, B - 1  and C -  1, with D 
changing from 1 to 0. Insertion of these conditions in the factorised equation gives: 

f - D ( I  + 0 ) + O + l  

= / } + D + I  

which is the required condition for the removal of the hazard. The NAND implemen- 
tation of the hazard-free function is shown in Figure 9.23(b). 

To obtain the hazard-free NOR realisation, the inverse function is plotted and 
simplified. The inverse plot is derived from Figure 9.23(a) by marking the vacant cells 
on the map with O's, as shown in Figure 9.24. The presence of O's in adjacent cells not 
covered by the same prime implicant indicates that the simplified function will produce 
a static 0-hazard under certain prescribed conditions. In this case there are two such 
pairs of adjacent cells, (a) 0000 and 0001, and (b) 1000 and 1001. The introduction of 
an additional prime implicant BC, enclosed by dotted lines on the map, covers the 
uncovered adjacencies and eliminates the static 0-hazard. Reading the inverse function 
from the map" 

f -  CD + BD + BC + ABD 

and factorising to satisfy the fan-in restriction gives: 

f -  CD + B(C + D) + ABD 

(a) (b) 

,o 

o o 

, oC- 
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,B 

Figure 9 . 2 4  (a) The O-plot o f f  = E 2, 5, 6, 7, 10, 13, 15 (b) NOR hazard-free implementation 
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and re-inverting: 

f = (C + D)(B + CD)(A + B + D) 

The implementation of this hazard-free function with NOR  gates is shown in 
Figure 9.24(b). 

9.20 Detection of hazards in an existing network 

The network shown in Figure 9.25 is to be analysed to see if it has any static 0- or static 
1-hazards. The equation of the network is �9 

f - A B C  + (A + B)(A + D) 

which may be expanded into the following form: 

f -  A B C  + AA + AD + AB + BD 

This expression contains the term AA which, under normal circumstances, would be 
removed since, by the laws of Boolean algebra, its value is 0. Since the variables A and 
A, in combinational networks can be simultaneously 1, they are treated as independent 
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Figure 9.25 (a) Circuit for the function f = ABC + (A + B)(A + D) (b) K-map plot of the function (c) Plot of the 
inverse function (d) The resimplification of the function (e) Hazard-free plot of the inverse function 
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variables in this equation which may be regarded as the equation which holds for 
transient conditions. 

When deriving the transient equation of a circuit, some of the theorems of Boolean 
algebra may not be used. Those which make use of the identities AA = 0 and 

n 

A + A = 1 may not be used to manipulate the equation into its transient form. 
m 

For example, the expression A + A B  = (A + A)(A + B) = (A + B) cannot be used as 
the reduction depends upon the identity (A + A ) =  1. Earlier in this chapter, it was 
shown that A and ,4 may be simultaneously equal to zero, and in that case A + ,4 ~ 1, 
hence the above reduction is not valid for all instants of time. 

The hazards can be detected by examining the expanded equation to see whether 
it reduces to either of the forms X X  or X + X under defined input conditions, where X 
and X may represent any one of the four variables in the equation. For example, 
if B = 0 and D - 1, the equation reduces to f = AA. Hence for these input conditions, 
a static 0-hazard occurs when A is changing from 0 to 1. Additionally, if B = 1, C = 0 
and D = 1, the transient equation reduces to f = A + AA + A and a static 1-hazard 
occurs when A is changing from 1 to 0. It should be noted that since A is changing from 
1 to 0, AA - 0  since it can only have a value 1 when A is changing from 0 to 1. If, 
however, B = I, C = 0 and D -  0, the transient equation reduces to f = A + A/I + 
A + A + 1. In this case, irrespective of the instantaneous values of A and A, f = 1, and 
hence there is no static hazard. 

Alternatively, the static l-hazard can be detected by plotting those values of the 
variables that make the value of the function f = 1, as shown in Figure 9.25(b). 
Examination of this K-map shows that the two l's in the adjacent cells 1101 and 
0101 are not covered by the same prime implicant. The introduction of the prime 
implicant BC will ensure the coverage of these two cells by the same prime implicant 
and will remove the static 1-hazard. 

To detect the possibility of a static 0-hazard, the circuit function has first to be 
inverted, and then plotted on a K-map. The inverse of the circuit function f = A B C  + 
(A + B)(A +/3)  is: 

f = .~B + ABD + A CD + AAD 

Note that the fourth term (the transient term) cannot be represented on the map. 
It is clear from an examination of the K-map (Figure 9.25(c)) that the 0s in cells 

1001 and I 011 are adjacent to the 0s in the cells 0001 and 0011 and are not covered by 
the same prime implicant, and a static 0-hazard is present in the circuit shown in Figure 
9.24(a). By introducing the prime implicant/~D to cover these four cells, the static 
0-hazard can be removed. 

Poorly designed circuits may generate both kinds of static hazard. In practice, it 
would be a more satisfactory solution to redesign the circuit, shown in Figure 9.25(a), 
using the K-map plot of Figure 9.25(b) which, for convenience, is repeated in 
Figure 9.25(d). On this map the function has been simplified in such a way that the 
function is free of static 1-hazards. The hazard-free function is: 

f = A B +  BD + AD + BC 

If an AND-OR-INVERT configuration is to be used, all that has to be done is to 
examine the plot of the inverse function for static 0-hazards. The inverted function is: 

f = A B + BD + A CD 



Event driven circuits 277 

(a) 

> 

> 
(b) 

Present Next 
state state 

G' d d d*" 
0 0 0  0 
0 0 1  1 
0 1 0  0 
0 1 1 1 
1 0 0  0 
1 0 1  0 
1 1 0 1 
1 1 1 1 

(c) 

D•%0 01 11 10 

~ N 

Figure 9.26 (a) The controlled D-latch (b) state table (c) K-map plot 

and is shown plotted in Figure 9.25(e). Since there are no adjacent O's not under the 
same prime implicant there are no static 0-hazards present. 

A practical example of the possibility of a static hazard in a controlled D latch was 
referred to in section 6.5 of Chapter 6. For convenience, the circuit configuration is 
shown again in Figure 9.26 along with the state table and the K-map plot of the 
characteristic equation. 

The characteristic equation read from the map is: 

Qt+6t = (OQ + DG)' 

It will be observed that there are two l's in adjacent cells not covered by the same 
prime implicant, and consequently a static 1-hazard is present. To eliminate the 
hazard, an extra prime implicant, DQ, enclosed by dotted lines on the map, is added 
in Figure 9.26(c), and the modified characteristic equation is: 

Ot+6t = (OQ + DG + D Q )  t 

It is left to the reader to show that the implementation of the latch shown in Figure 
9.26(a) does, in fact, correspond to this hazard-free equation. 

9.21 Hazard-free asynchronous circuit design 

A gate-implemented asynchronous circuit with feedback is, in essence, a group of one 
or more combinational circuits which, under certain conditions, may generate static 
hazards. In practice, the designer should examime the design for hazards and then 
eliminate them using the techniques described earlier in this chapter. To demonstrate 
the occurrence of hazards in asynchronous circuits, the design of a hazard-free T-type 
flip-flop will be undertaken. 
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Figure 9.27 (a) Timing diagram for T-type flip-flop (b) Internal state diagram (c) State table 
(d) Individual simplified state tables for A '+~t and B '+~' including hazard-removing prime implicant 
(e) Timing diagram for the Ck signal (f) Implementation of hazard-free flip-flop 

The timing diagram of a trailing edge triggered TFF is shown in Figure 9.27(a), the 
output toggling on the trailing edge of successive clock pulses. The state diagram is 
shown in Figure 9.27(b) and it reveals that the circuit completes a cycle of operation 
after four changes of the clock signal. It should be noted that in this example the 
clock transitions can be regarded as events which are able to initiate state transitions. 

Since there are four states, two state variables A and B are required, and since this is 
an asynchronous design, a race-free state assignment has been used. The state table 
corresponding to the state diagram is shown in Figure 9.27(c), and the path traversed 
through the state table as one cycle of operation of the flip-flop takes place is 
illustrated by the dotted line. 

In Figure 9.27(d), the state table has been separated into two distinct maps, one for 
A t+6t and one for B t+6t. After simplification of these two functions it is clear that in 
both cases two l's in adjacent cells are not covered by the same prime implicant, and 
there is a real possibility that a static hazard may be generated in both the A and B 
circuits. Arrows have been inserted on both maps indicating the direction of the state 
transitions between the relevant cells. 



Event driven circuits 279 

The equation for A t+6t is: 

a t+6t : ( B .  C k  + A .  Ck)  t 

If A = B -  1, the equation reduces to: 

A t+6t : (Ck + Ck)  t 

and this condition indicates the possibility of the generation of a static 1-hazard. 
However, an examination of the timing diagrams for Ck, Ck and (Ck + Ck) in 
Figure 9.27(e) shows that a static 1-hazard will only occur if Ck is making a 1 -~ 0 
transition. The arrow-head on the A t+~t map reveals that the transition concerned is 
from total state ABCk - 110 to ABCk - 111; that is, the clock signal is changing from 
0 -~ l, and it follows that a static 1-hazard can never be generated in the .4 circuit. 

The equation for B t+6t is: 

B t+6t : ( A .  C k  + B .  Ck)  t 

If A = B -  1 this equation reduces to: 
B t+6t -- (Ck + C k )  t 

In this case, the arrow-head on the B t+6t map shows that the B circuit makes 
a transition from total state ABCk = 011 to ABCk = 010; that is, Ck is making 
a 1 ~ 0 transition, and consequently a static 1-hazard will be generated in the B 
circuit. To eliminate the hazard, the additional prime implicant AB is added to the 
equation for B t+6t which now reads: 

B t+6t --  ( f t .  Ck + B.  Ck + A .  B) t 

Also from the state diagram" 

Q -  $3 + S2 

= A B  + A B  - A 

The N A N D  implementation of the hazard-free T flip-flop is shown in Figure 9.27(f). 

9.22 Dynamic hazards 

A second type of hazard that can occur in gate networks is referred to as a dynamic 
hazard. The output changes normally expected by the circuit designer are either 0 ~ 1 

or alternatively 1 ~ 0. If, in practice, the output transi- 
1 ~ _ ~  1 ~ - -  tions are 1 ~ 0 - , 1 ~ 0  then a dynamic hazard has 

occurred. Similarly, if an output designed to change from 
0 0 0 - ,  1 has the change pattern 0 ~  1 ~ 0 ~  1, then 
Figure 9.28 Dynamic hazards a dynamic hazard is present. In either case there is a 

minimum of three changes appearing at the ou tpu t  as 
illustrated in Figure 9.28. 

This type of hazard occurs as a result of the factorisation of a Boolean function, 
necessary, because of fan-in restrictions, which leads to different path lengths 
through a circuit. Alternatively, the gates in the circuit configuration may have 
different time delays, and it is also possible to have differing time delays in the 
interconnecting leads. 
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Figure 9.29 (a) Network with a dynamic hazard (b) Occurrence of a dynamic hazard in the network 

Consider the function: 

f - (A C + B C)(A + C) 

implemented with AND and OR gates as shown in Figure 9.29(a). There are three 
different paths through this network for the variable C and consequently there is 
a possibility that a dynamic hazard exists in the network. The three paths through 
the network are 

1. via gates g: and g2 
2. via gates g3, g5 and g2, and 
3. via gates g4, g5 and g2. 

There are eight possible starting combinations of the variables A, B, and C. Since, in 
this circuit, the dynamic hazard is caused by multiple paths taken by the signal repre- 
senting variable C, in each case only the next change in C need be examined. For the four 
combinations starting with A =0,  the output of OR gate gl remains at 1 irrespective of 
C, and the output of AND gate g3 remains at 0. Hence, for these combinations, changes 
in C take the path g4-gs-g2 only and so no dynamic hazards are present. 

However, in the case A - l, B - l, and C - T, the upper input of gate g2 changes 
from 0 to 1. The other input to g2 is A C -t- BC - -  C Jr- C in this case, and if tg4 < tg3 then 
there will be a static 1-hazard present at the output of gate gs. Then, if this static hazard 
itself occurs after the change at the output of gl, i.e. if tgl < tg4 < tg3, there will be a 
dynamic hazard present at the output of gate g2 as illustrated in Figure 9.29(b). 

A similar analysis shows that if tgl > tg4 > tg3, then there is a dynamic hazard 
produced in the case A - 1 ,  B - - 1 ,  and C = l .  In the two remaining cases, 
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A = 1, B = 0, and C = X, there are no further dynamic hazards as signal C takes 
only two paths through the network. Using the terminology to be introduced in 
Chapter 13, all three possible paths for C are sensitised only when A = 1 and B = 1. 

It is worth noting that providing A N D / O R  sum-of-products circuits or if O R / A N D  
product-of-sum circuits have been designed such that there are no static hazards 
present, then these circuits will have no dynamic hazards. 

9 .23  Func t ion  hazards  

oo o o 

01 1 1 

11 1 1 

10 1 0 
, . .  

11 10 ,o o! 
1 1 

0 1 
, , 

o 1 

Figure 9.30 K-map plot used 
for illustrating function hazards 

This type of hazard, which can be either a static 1- or static 
0-hazard, occurs when it is specified that two circuit input 
variables change at the same time. In practice, it is extremely 
unlikely that two variables will change at precisely the same 
time but if this should happen to occur it can lead to the 
presence of a hazard during a transition. 

Consider the K-map plot of a 4-variable function shown 
in Figure 9.30. If the initial condition of the input variables 
is ABCD = 1000 and circuit operation specifies that the 
variables B and D change simultaneously, one of three 
possibilities may occur: 

1. B and D change simultaneously: 

ABCD = 1000 ~ 1101 

f = l  --,1 
2. B changes before D: 

ABCD = 1000 --o 1100 ~ 1101 

f = l  - o l  ~ 1  
3. D changes before B: 

ABCD = 1000--o 1001 ~ 1101 

f = l  --o0 --ol 

If D changes before B a function static 1-hazard is present. Alternatively, if the 
initial condition of the input variables is ABCD = 0000 and a simultaneous change in the 
variables A and D should occur, one of the following three possibilities may arise: 

1. A and D change simultaneoUsly 
ABCD = 0000 ~ 1001 

f = 0  4 0  
2. A changes before D 

ABCD = 0000 ~ 1000 ~ 1001 
f = 0  ~ 1  ~ 0  

3. D changes before A 

ABCD = 0000 --, 0001 --o 1001 
f = 0  - o 0  --o0 

If A changes before D a function static 0-hazard occurs. 
A situation may also arise where it is specified that three variables should change at 

the same time, and in that case there is the possibility that a function dynamic hazard 
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Figure 9.31 (a) Controlled D-type latch (b) K-map plot for output of  gate gl 

may occur. In practice, function hazards can be avoided at the design stage by ensuring 
that only one variable can change at any one time. 

A function hazard can occur at the input NAND gate of a synchronising latch. It will 
be assumed that the input D is asynchronous data and that Ck is the synchronising 
signal, as described in Chapter 8. In this situation there is no way of ensuring that the 
asynchronous input changes at the same time as the synchronising signal. The K-map 
for a 2-input NAND gate is shown in Figure 9.31. If the initial condition is D C k  - lO 
and both signals happen to change simultaneously, then the steady-state output of the 
gate will remain at I. In practice, they are unlikely to change simultaneously and 
a spurious output can occur, which in the case of a synchroniser circuit, is referred to as 
a runt pulse. This pulse may not be sufficient to cause the synchroniser to switch from 
one stable state to another and the latch may enter the metastable state where it will 
stay for a period which cannot be precisely defined. 

9.24 Essential hazards 

This type of hazard is peculiar to asynchronous circuits and is caused by a race between 
an input signal and a state variable. The state diagram for an asynchronous circuit 
having a race-free state assignment is shown in Figure 9.32. Assuming that the circuit is 
in state So and a change in the value of X from 0 to 1 occurs, a transition from So to S~ 
should take place and, on arriving in Sl, the circuit should remain in that state. 

So 

A 8  
O0 

1 I0 

l ' I  
Sa 

II 

_ 1 

SI 

I 

, 1 
oI 

X 

s2 

Figure 9.32 State diagram 
for a machine which can have 
an essential hazard 

However, correct operation of the circuit as described above 
will depend upon the relative values of the inversion time ti for 
the input signal X and and the turn-on time tt for the state 
variable B. If the circuit arrives in the state SI before the value 
of X has changed from 1 to 0, a further transition to $2 will be 
made. Since X -  1 when the circuit arrives in state $2, it 
follows that a further transition will take place to state $3, 
where the circuit will now remain, provided the change in X 
has now occurred. Hence, if ti ~ tt, incorrect circuit operation 
will occur as a consequence of the race between the inversion 
of the input signal X and the turn-on of the state variable B. 

An examination of the equation for the state variable A 
reveals more clearly the origin of the hazard. The turn-on 
condition for A -  BX ,  the turn-off condition for A -  BX,  
and 
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A t+6t = ( B X  + ( B 2 ) A )  t 

= ( B X  + (B + X ) A )  t 

The first term of this equation provides the turn-on signal for A when the circuit is in 
state S1. If B changes to 1 before X changes to 0, the value of B X  = 1 and the state 
variable A is turned on. 

The method of dealing with this type of hazard is to insert a delay in the output line 
of the circuit generating the state variable B. This will ensure that the change in B does 
not arrive at the input to the circuit generating the state variable A until the value of 
X has changed. 

Problems 

9.1 A double-sequence detector has two inputs, X 1 and X2, and one output Z. For an 
input sequence X1X2 = 00, 10, 11 the output Z becomes 1, and when the reverse 
sequence is received the output Z returns to 0. A typical timing diagram for the 
detector is shown in Figure P9.1. Develop: 

(1) A state diagram 

(2) An ASM chart 

for the detector and obtain a state table. If possible, reduce the state table and 
implement the design with N A N D  gates. 

I , , ,  , ,  , 

i 1 _ I 1  1 !_ 
I 

o - - J - - - q  1 l I 
I 

Figure P9.1 

9.2 Develop an event-driven circuit to implement a trailing-edge triggered JK flip-flop 
and draw a timing diagram for the flip-flop. 

9.3 X1 and X2 are the two inputs to an asynchronous circuit which has two outputs, Z1 
and Z2. When X1 X2 = 00 the output Z1 Z2 = 00. If a 0 ~ 1 change in X1 precedes 
a 0 ~ 1 change in X2, then the output of the circuit is Z1 Z2 = 01. Alternatively, if 
a 0 ~ 1 change in X2 precedes a 0 ~ 1 change in X~, then the output of the circuit 
is Z ~ Z 2 -  10. In both cases the outputs remain at 01 and 10, respectively, until 
X1X2 = 00 again. Draw the state diagram for this system. 

9.4 Develop an asynchronous circuit that will give an output clock pulse (Z) after 
every second data pulse arrives on the X input line. The arrival of the data pulses is 
purely random and it is to be assumed that the minimum time for a pair of 
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consecutive data pulses is greater than the periodic time of the clock. A typical 
timing diagram is shown in Figure P9.4. 

I 

o.n n n n FLn  r-L_rl n 
X 
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Z 
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o . . . . .  n , ,  q 
Figure P9.4 

9.5 A logic circuit has two asynchronous inputs, Xl and X2, and also a synchronous 
clock signal. The circuit is to be designed so that the first complete clock pulse that 
occurs after Xl and X2 have become l, in that order, is output on the line marked 

X:~ ~_ Logic  

Ck (.It) ci rcui t  

- ~  , ,  , 

Z 

Figure P9.5 

Z in Figure P9.5. After the output of the clock 
pulse the circuit must return to its quiescent 
state when Xl X2 = 00. 

Design a circuit that satisfies this specifica- 
tion and implement the design using NAND 
gates. 

9.6 Analyse the fundamental mode circuit shown 
in Figure P9.6: 

(a) Determine the state table. 
(b) Determine the state diagram. 
(c) Use the state table to determine the output response to the input sequence 

X IX 2 -- 00, 01, l l ,  10, l l ,  01, 00, 10, 00, 01. Initial conditions 
X 1 = X 2 - -  h - - 0 .  

Figure 139.6 

Xi 

xa 

D 
Z 
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9.7 Analyse the circuit shown in Figure P9.7" 

(a) Determine the state table. 
(b) Determine the state diagram. 
(c) Use the state table to determine the output response to the input sequence 

X1X2 = 00, 01, 11, 10, 00, 01, 11, 01, 11, 10, 00. Assume the initial conditions 
are X1 = X2 = 0 and A = B = 0. 

x2 R. 

" 2  

ol . . [ . ~ j , , . _ _ . _ . ,  e 
x2 x2 

Figure P9.7 

9.8 The internal state diagram for a four-state digital machine is shown in 
Figure P9.8. Construct a state table for the machine and identify all races that 

So $3 
As[ "1 xLx2 I AS 

l, oo 

s - " J  ' x,-x2 I ] 
AB AB 
Ol I0 

Figure P9.8 

will occur if the machine is implemented 
from the given state diagram, stating 
whether they are critical or non-critical. 
For each race, give all the state transitions 
which may occur. 

9.9 Plot the K-map of the functions 

(a) f (A ,B ,  C,D) = ~ 0,2,4, 5,6, 8, 9, 11, 
12, 14, 15, and 

(b) U(A, B, C, D) = ~ 3, 4, 5, 6, 11, 12, 13, 
14,15 

and determine hazard-flee implementations 
in both cases, using N A N D  gates. 

9.10 Find all the static hazards in the two networks shown in Figures P9.10(a) and (b). 
Specify the input conditions that must exist for the hazards to occur and draw the 
logic diagram for modified networks that are hazard-free. 

9.11 Design a hazard-free, D-type flip-flop using asynchronous circuit design techni- 
ques. It may be assumed that the output will take on the value of the input on the 
trailing edge of a clock pulse. 

9.12 An incompletely specified table is shown in Figure P9.12. With the aid of an 
implication chart, find the compatible state pairs. Using a merger diagram obtain 
the maximal compatibles and construct a reduced state table. 

9.13 An electrical system is protected by a fault detector. If a fault occurs within the 
system a fault signal activates an alarm buzzer. The green light that indicates fault 
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Figure P9.10 

x•,x2 free is switched off the fault and red operation by signal a 
O0 01 11 10 

,% -,- S=,l s,,1 s=,l light is switched on. When the fault is acknowledged by 
s~ s,,- , , 0 the system controller the alarm buzzer is turned off. After 
s~ s ~ -  ss,1 , , the fault has been cleared the green light is switched on 
s3 . , s~, l  - , -  and the red light is turned off. A test signal is to be 
s, -,- s~,0 s~0 s=,i provided to check the operation of the fault detector. 
S s $2,0 - , -  SvO S=.1 Develop an appropriate state diagram and implement 

your design with the aid of the NAND characteristic 
Figure P9.12 equation. 

9.14 An asynchronous circuit is to be used to control the gates 
and a red flashing light at a railway level crossing. 

The gates are to be closed and the red flashing light is to be turned on when 
a train enters a defined section of track from either direction. When the train is in 
a further defined section of track which straddles the crossing the gates must 
remain closed and the red light must remain flashing. After a train has passed 
through the crossing the gates are opened and the flashing red light is turned off. 

Develop an ASM chart, convert it to a state diagram and implement your 
design using the NAND sequential equation. 

9.15 Design an asynchronous lock operated by five input buttons labelled A, B, C, D 
and R (the reset button). The unlocking operation can only take place if only one 
button is activated at a time and in the order B, D, A, C. Draw a state diagram 
and develop a gate-implemented circuit. 

9.16 Using asynchronous circuit design techniques, design a hazard free D-type flip- 
flop whose output takes up the value of the input on the trailing edge of a clock 
pulse. 



10 Instrumentation and interfacing 

10.1 Introduction 

Very many systems designed today use digital logic components alongside sub-systems 
based upon analogue electronics, and also sub-systems based upon mechanical 
components. This allows designers the flexibility to use several design tech- 
niques in order to produce the most useful systems as a whole. From one point of 
view it is true that a digital system is merely a special case or subset of a general 
(analogue) electronic system where the signals involved always happen to fall 
into two well-defined voltage or current levels rather than being unconditionally 
variable between upper and lower limits. Hence, many basic considerations of 
design, such as response time, current requirements, and so on, are similar in 
both analogue and digital design. However, as observed elsewhere in this text, the 
consequences of the basic differences between analogue and digital design are 
far-reaching as far as the design methodology adopted is concerned, and so it is 
usual to regard the two systems as separate. Therefore, there are usually com- 
ponents or sub-systems of various types employed at the interface between the 
two types of systems. 

10.2 Schmitt trigger circuits 

The 'Schmitt trigger' circuit is one of the simplest of interfaces between the analogue 
world and the digital world. A full analysis of Schmitt-type trigger circuits is beyond 
the scope of this text and is covered in texts on analogue electronics, but the important 
results are summarised in this section. 

In a Schmitt trigger circuit, positive feedback is applied to an analogue differential 
amplifier from its output to its non-inverting input to give a circuit having the 
following characteristics: 

1. only two output voltages are possible, almost equal to the two supply rail voltages, 
and with suitable choice of supply voltages these correspond to the two digital logic 
levels 0 and 1; and 

2. the trigger circuit switches between its two possible output voltage levels according 
to the voltage applied to the single input of the trigger circuit. 
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The Schmitt trigger circuit in its simplest form 
(see Figure 10.1) consists of an operational amplifier 
with a resistor R~ connected from its output to its 
non-inverting input, and a resistor R2 connected 
from the non-inverting input to a voltage V0. 
An operational amplifier is an analogue amplifier 
which produces an output voltage proportional to 
the difference voltage between its two inputs, and 
approaches an ideal of having infinite differential 

gain, infinite input impedance at both inputs, and zero output impedance at its 
single output. An ideal operational amplifier also has negligible limitations 
regarding its input offset, bandwidth, slew-rate, latch-up, and noise, although in 
practice, these aspects must often be considered. Typically V0 is ground, 0V, or 
another constant voltage between the positive supply rail V+ and the lower supply rail 
V_ to the amplifier. The inverting input of the amplifier is the input of the trigger 
circuit as a whole, and so the trigger circuit has a high (ideally infinite) input 
impedance. 

Disregarding the unlikely possibility that the input voltage is precisely equal to 
the voltage applied by the resistor chain R~ and R2 to the non-inverting input, there 
will always be some voltage difference between the two amplifier differential inputs. 
Therefore, the high amplifier gain would imply a large voltage at the output, but in 
practice, the amplifier output stage will saturate, and simply give an output voltage 
almost equal to either its positive supply or its negative supply, dependent upon the 
polarity of the difference voltage at the inputs. Note that the applied positive 
feedback in this circuit is the opposite of that required to give well-controlled linear 
operation, which needs negative feedback. In the Schmitt trigger circuit, whatever 
the value of input voltage, the amplifier will always be overdriven, so that its output 
voltage can only be at either one or the other supply rail value. In the context of 
Digital Systems, of course, the two possible output voltages are arranged to be 
equal to two voltage levels recognised by the digital IC technology used in the 
subsequent parts of the circuit, usually 0 V and 5 V. Since the trigger circuit has two 
possible output voltages, controlled by the single input, it follows that at a certain 
trigger voltage applied to the input, the circuit output changes its state from one of 
the possible output voltages to the other possible output voltage. 

In fact in a Schmitt trigger the analogous transition in the reverse direction takes 
place at a slightly different input voltage, so that the circuit shows 'hysteresis' by 
having an 'overlap' region of input voltages within which the output voltage 
depends upon the direction from which the input voltage entered the 'overlap' 
region between the two threshold voltages. To quantify this, when a low voltage is 
applied to the circuit input, the amplifier will be overdriven such that its output will 
be at the voltage of the high supply rail, V+. Therefore, the voltage applied to the 
non-inverting input will be Vo + (V+ - Vo )R2 / (R1  -k- R2) and the input voltage must 
be greater than this in order to change the state of the output voltage. Once this 
occurs, however, the amplifier will be overdriven in the opposite direction, so the 
output voltage will be the same as that of the other supply rail, V_. So, now the 
voltage applied to the non-inverting input will be Vo + ( V _ -  V o ) R z / ( R 1 - k - R 2 ) .  

Therefore, to change the output voltage back to its first value, the input voltage 



Instrumentation and interfacing 289 

must be reduced below this new threshold value. Since V_ is less than V+, the new 
threshold voltage is less than the first by the difference of (V+ - V_)R2/(R1 + R2), 
which is the hysteresis of the circuit. 

10.3 Schmitt input gates 

The internal circuitry of a 'Schmitt input gate' is based upon the well-known 'Schmitt 
trigger' circuit described in section 10.2 above. A 'Schmitt inverter gate' may be regarded 
as a Schmitt trigger circuit giving outputs at the correct voltage levels to drive subsequent 
digital logic gates correctly. A 'Schmitt input buffer gate' is similar but has an extra stage 
of logic inversion prior to the output. In each case, varying analogue voltages, not 
necessarily corresponding to the logic level specifications for the logic family concerned, 
may be applied to the Schmitt input. The output will take the appropriate logic level 
(0 or 1) according to whether the input is above or below the relevant threshold voltage 
fixed by the manufacturer. Other types of Schmitt input gates, with more complex logic 
functions, are also available. The threshold voltage is usually fixed between the normal 
logic level voltages, so that a Schmitt input gate will operate correctly if it is driven by 
a conventional logic gate rather than an analogue voltage source. 

On circuit diagrams, a Schmitt input gate is indicated by the gate symbol for the 
corresponding conventional logic gate, but with the addition of the special symbol _y- 
drawn adjacent to an input or centrally inside the gate symbol as appropriate. 
This special symbol has a stylised derivation from the letter 'S'  and from a diagram 
indicating hysteresis between input and output voltages. Examples of circuit symbols 
for typical Schmitt input gates are shown in Figures 10.2(a) and (b). 

One typical use of such a Schmitt input gate is shown in Figure 10.2(c). In this 
circuit, an RC network is used to convert an input logic waveform into a waveform 
with slow edges, that is, a signal where the rising and falling edges are governed by the 
usual exponential law with time constant ~--  RC. It is bad practice to apply such 
a waveform to a conventional logic gate because these slow edges can potentially 
cause severe problems such as oscillations at the output or out-of-specification output 
voltages with gates not specifically designed to handle slow edges. However, Schmitt 
input gates are expressly designed and intended to be able to handle slow edges, and so 
the output state changes after a delay time determined by the precise value of the 
threshold voltage and the time constant ~- - RC. 

The Schmitt delay circuit can be developed into a simple oscillator circuit for 
producing a repetitive waveform, as shown in Figure 10.3(a). In this circuit, a logic 
transition at the output of the inverter is fed back to the input of the inverter, but the 
RC network connected to the Schmitt input causes a delay before the complementary 
transition occurs at the output. Because of the non-zero hysteresis at the gate input, 
the gate input voltage varies exponentially between the two threshold voltages, and 
the output oscillates between logic low and high levels indefinitely, as shown in 
Figure 10.3(b). The frequency of the waveform produced depends upon the values of 
R and C determining the delay time. However, a serious disadvantage of this circuit is 
that the exact oscillation frequency also depends upon the precise input threshold 
voltages and the difference between them, which are usually not precisely known. 
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Figure 10.2 (a) Circuit symbol for a Schmitt inverter (e.g. as in IC type 74LS19) (b) Circuit symbol for a 
Schmitt N,4ND gate (e.g. as in IC type 74LS18) (c) Simple digital signal delay generator using a Schmitt input gate 

A simple oscillator circuit that overcomes this difficulty to some extent is shown in 
Figure 10.3(c). Gate G1 must be a Schmitt input gate; G2 need not have a Schmitt 
input, although in practice it will usually be part of the same IC package as gate G1 
and so will also have a Schmitt input. The voltage waveforms in this circuit are shown 
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Figure 10.3 (a) Simple low-precision RC oscillator circuit using a single Schmitt inverter (b) Voltage waveforms in 
the single-inverter oscillator circuit (c) Simple oscillator circuit using two Schmitt inverters (d) Voltage waveforms 
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quartz crystal 
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in Figure 10.3(d). Suppose that the output voltage of gate G2 is currently at logic high 
level, VOH; because of the inversion in gate G2, this requires that the output of gate G1 
is at logic low level. Therefore, the voltage at point A will fall, according to the usual 
exponential decay law, until the input voltage to gate G1 falls below the threshold 
value. For simplicity it will be assumed here that gate G 1 has a high input impedance 
(much greater than R~) so that it draws no current from the RC network. It follows 
that the voltage at its input is the same as the voltage at point A, and the precise value 
of resistor R~ is unimportant. It will also be assumed here for simplicity that the 
Schmitt threshold voltages, VT, for rising and falling edges, are exactly half of the logic 
high voltage level, with zero hysteresis, and also that the logic low voltage level 
Voe = 0V. At the instant where the input of gate G1 falls below its threshold voltage, 
the voltage across the capacitor will be half of the logic high voltage, or ~VoH. 
Then the output of gate G1 goes high and so the output of gate G2 goes low. At this 
point, the voltage at point A is now negative, with value --~VoH, and it starts rising 
towards the logic high value with time constant RC. When the voltage at the input to 
gate G1 rises above its threshold value VT = ~VoH, then the output of gate G1 
changes to logic low, the output of gate G2 changes to logic high, and the voltage at 
point A is immediately + VOH + VT = 3 VOH/2 (i.e., the output of gate G2 plus the 
capacitor voltage of ~VoH). The whole cycle can now repeat indefinitely. It is 
straightforward to calculate the time taken for the first half of the cycle, during which 
the voltage at point A rises from - ~  VOH to the threshold value + ~VoH with an 
aiming voltage of + VOH and time constant RC; the result is to = RC In(3). The time 
taken for the other half-cycle of the operation is the same, so that the oscillation 
frequency is given by f =  I/[2RCIn(3)]. The oscillation frequency is now relatively 
insensitive to the actual threshold voltage values. However, the precise mark-to-space 
ratio of the signal at the output of gate G2 depends upon the exact threshold voltage 
values, and so if it is important to have a 1:1 mark-to-space ratio then the output 
of gate G2 can be taken through a divide-by-2 circuit as shown in Figure 10.3(c). 

In practice, a Schmitt input NAND gate might be used in place of one of the 
inverters, as shown in Figure 10.3(e), to produce a 'gated oscillator'. This only 
produces a repetitive waveform when the additional input to the first NAND gate is 
held at logic high level. When the gating input is held low, the oscillator output is held 
low. Since the precise oscillation frequency still depends to some extent upon the voltage 
threshold values, this type of RC oscillator is only suitable for applications where the 
utmost frequency stability and accuracy is not required. A similar circuit, as shown in 
Figure 10.3(f), using a quartz crystal which resonates at a frequency precisely specified 
by its manufacturer, will usually be employed in cases where excellent frequency 
stability or precision is of paramount importance. 

10.4 Digital-to-analogue conversion 

Digital-to-analogue conversion (abbreviated to D/A, D-A, or D-to-A conversion) 
is frequently required in a digital system used to control some external analogue 
circuitry. The D/A converter (or DAC) gives a controlled analogue output voltage 
or, in certain specialist applications, a controlled analogue output current or another 
circuit parameter such as resistance, whose value corresponds to an input digital word. 
Here it will be assumed that the digital input is a conventional positive base 2 integer. 
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If the digital input is in some other numerical format, it can be converted to base 2 as 
described elsewhere in this text. If the output is required to be bipolar, that is, the 
numerical input may have either positive or negative polarity to produce either positive 
or negative output voltages or currents, then this may be most easily handled by two 
separate converters, one for each of the output polarities and only one of which is 
allowed to be active at any one time. Alternatively, there are some bipolar D/A 
converters available commercially. 

Most D/A converters are based upon a precision resistor network containing 
a network of standard resistor values each of which can be switched into or out of 
circuit according to which bits are set in the input binary word. In the popular 
'binary weighted' resistor network shown in outline in Figure 10.4, the resistors have 
values of R, 2R, 4R, 8R, and so on, in multiples of powers of 2, and each resistor is 
switched into circuit as its own associated bit is set equal to 1. When the input bit 
associated with any resistor is equal to 0, that resistor is not switched into the circuit 
but instead is replaced by a short circuit of zero resistance. To produce an analogue 
output voltage, all that is then necessary is to drive a certain standard but constant 
current through the variable resistor network, and the voltage dropped across the 
entire resistor network is then the analogue output voltage required. 
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Figure 10.4 Simple binary weighted resistor network used as a D/A converter 
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Figure 10.5 Alternative design of simple binary weighted resistor network used as a D/A converter 

The output voltage may be scaled, or multiplied by a constant factor so that 
its greatest and least values are within the limits required for the particular application 
intended by adjusting the value of the constant current used. In practice, this output 
voltage is usually subsequently buffered, using an analogue 'voltage follower' circuit 
which may include a small amount of extra gain for further scaling purposes, so 
that the circuit is more tolerant of whatever circuitry is connected to the output of 
the D/A converter. 

Alternatively, the resistors may be connected, as shown in Figure 10.5, together with 
a stabilised voltage source + V. Here the network produces an analogue output current 
lo~t equal to the sum of binary-weighted contributions, and an operational amplifier 
buffer circuit is used to give an analogue voltage output. 

The resolution or precision of such a D/A converter is defined as the smallest output 
increment possible, divided by the difference between the maximum and minimum 
output values. The accuracy or linearity of the converter is defined as the difference 
between the actual output and the expected output value, measured with any specified 
digital input value. Typical values of accuracy for commercial A/D converters are 
of the same order as the output corresponding to the least significant bit. 

This binary weighted resistor network suffers from the disadvantage that the resistor 
with the largest weighting in the network must be manufactured to a precision such 
that the likely error in its value is comfortably less than the significance of the resistor 
with the smallest weighting in the network, if the conversion is to be accurate around 
the values where the most significant resistor is being switched in and out. For example, 
suppose an 8-bit D/A converter is to be designed using a resistor chain with a smallest 
resistor value of 10ft. The other resistors in the chain will take values of 20f~, 4092, 80f~, 
160f~, 320ft, 640f~, and 12809t. Further, suppose that the 10Ft resistor is manufactured 
to a tolerance of +10% or -I-lft. To match this precision, all the other resistors must 
also be manufactured to a precision of + 1 f~ as otherwise there is little point in making 
the 10f~ resistor this precise. The most stringent requirement is therefore placed upon 
the 1280f~ resistor which must be manufactured to a precision of +(1/1280) • 100% 
-t-0.08%. Such precision is extremely expensive to achieve. Other designs of resistor 
networks can be used to circumvent this difficulty in precision D/A converters. 

The conversion rate of such converters is limited only by the bandwidth of the 
analogue parts of the circuit and the response time of the digital parts of the circuit, 
and so in principle may be very fast. Although Figures 10.4 and 10.5 show 
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mechanical switches for simplicity, normally solid-state analogue switches would 
be used, as these operate much faster and are more reliable than mechanical reed 
switches. In practice, D/A converters with limited resolution that convert only small 
numbers of digital input bits are available with conversion rates up to 1GSa/s or even 
faster (where Sa/s stands for 'Samples per second', indicating the D/A conversion 
rate). A D/A converter with a conversion rate of 1GSa/s must produce an analogue 
output voltage that can change from one value to another within approximately l ns. 
This time, akin to the 'rise time' of a pulse circuit, is known as the 'settling time' of 
the D/A converter. D/A converters with precisions of up to 20 bits or even greater 
are available at lower conversion rates, corresponding to output changes within 
around 20 ~ts. 

10.5 Analogue-to-digital conversion 

The Schmitt input gate (section 10.3) may be regarded as a special case of the reverse 
conversion, that is, analogue-to-digital conversion, producing only a single bit output 
(0 or 1) in response to an analogue varying voltage at its input. A more sophisticated 
analogue-to-digital converter (or ADC, also called an A/D, A-D, or A-to-D converter) 
extends this principle to produce a binary integer, typically of 8, 16 or another number 
of bits in parallel form at its output in response to an analogue voltage at its analogue 
input. In many ways, an A/D converter resembles a rudimentary digital voltmeter, 
although its input impedance is not likely to be especially high, there will often only be 
one voltage conversion range or, at best, external components must be used to change 
the range of allowable input voltages, and there is no display, apart from what may be 
added externally. The manufacturer of the A/D converter specifies the maximum and 
minimum analogue voltages that may be applied to the analogue input for correct 
conversion to occur. Usually the maximum input voltage will correspond to, and will 
be converted to, the largest binary integer that can be expressed with the number of 
bits available at the converter output. The minimum voltage will usually be either 0 V, 
or a negative voltage of the same magnitude as the maximum allowable input voltage, 
and the corresponding digital outputs will therefore usually be either binary 0 or a 2s 
complement integer indicating negative values. 

A number of techniques has been developed for designing A/D converters in 
practice, each of which has advantages and disadvantages. A detailed examination of 
all the various techniques is outside the scope of this text, but the three main types are 
described in the following sections. Many of these techniques use analogue comparators 
(see Figure 10.6) which have some characteristics in common with both Schmitt 
triggers and with conventional operational amplifiers. The usual type is an analogue 
voltage comparator with one output and two inputs, ideally having high input impe- 
dance like those of an operational amplifier. Within the limits specified by the man- 

ufacturer, any analogue voltages may be applied to 

non-inverting 
input 

inverting 
input 

Digital output 

Figure 10.6 Simple analogue comparator 

the two inputs. The comparator gives a logic 1 
output if its non-inverting input is at a greater 
voltage than that at its inverting input, and 
gives a logic 0 output if its inverting input is at 
a greater voltage than that at its non-inverting 
input. The comparator differs significantly from 
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an operational amplifier because it is only able to output voltages at the two 
logic-compatible levels, usually 0V and 5V. Sometimes, the voltage at the com- 
parator 's inverting input is referred to as the 'threshold voltage', and the output 
is logic 0 or 1 depending upon whether the non-inverting input is at a voltage less 
than or greater than the threshold voltage. Usually, comparators are designed to have 
very low hysteresis values measured at their inputs. In many instances, one of the two 
inputs is kept at a constant or maybe a slowly varying voltage, and the comparator 's 
job is then to indicate when the other input voltage rises above or falls below 
this 'reference'. 

10.6 Flash converters 
These types of A/D converters are conceptually the simplest of all. An A/D converter 
is required to produce one of a number of possible binary outputs, depending upon 
the input voltage; therefore, there is a certain input voltage range over which it will 
produce each unique possible output, and threshold voltages at which the output 
changes from one value to the next. A "flash converter' consists of a number of ana- 
logue comparators, each set to trigger at a different one of these thresholds. An input 
voltage V will therefore trigger all the comparators that have threshold voltages less 
than V, and will not trigger the rest of the comparators that have thresholds 
greater than V. It follows that the outputs from the comparators indicate the value 
of the input voltage in a manner that can be interpreted by a logic system, but 
unfortunately not in a form that is particularly easy to use in subsequent circuitry; 
some further logic is needed to derive a conventional base 2 integer from all the 
trigger circuit outputs. 

The basic principle is illustrated in Figure 10.7 and in the following table, showing 
a 2-bit conversion needing 3 comparators: 

Comparator outputs 

Input voltage/V C2 Cl Co Output (base 2) 

> 2.5 1 1 1 11 
between 1.5 and 2.5 0 1 1 10 
between 0.5 and 1.5 0 0 1 O1 
< 0.5 0 0 0 O0 

In this very simple example, Co is the output of the comparator set to the lowest 
threshold (0.5V), C1 corresponds to a threshold of 1.5V, and C2 corresponds to the 
highest threshold (2.5V). Clearly the MSB of the output word is equal to C1 and, using 
the 4 unlisted 'don't  care' terms in Co, C1 and C2, a 3-variable K-map shows that the 
LSB of the output word is equal to C2 § Cl Co. The conversion logic required is similar 
to that used in a priority encoder (see section 5.13). 

A flash converter having an n-bit binary integer output requires a total of 2 ~ -  1 
separate comparators as well as appropriate conversion logic, and a logic buffer for 
each output bit. Clearly, precision applications, for large values of n, require extremely 
large numbers of comparators, and so the flash conversion principle is only 
practical for modest numbers of bits output (typically up to n -  10, requiring 1023 



Instrumentation and interfacing 297 

Analogue 
input 

I 

~ 2R 

R 

+3V 

C2= 

+• C1 

t 
Analogue 

comparators 

Digital 
~" outputs 

Figure 10.7 Basic principle of a flash A/D converter, using three comparators 

comparators). However, flash converters operate considerably faster (hence their 
name) than any other type of A/D converter because of their simplicity, since all their 
components operate simultaneously, and also as there is no fundamental limitation 
upon the speed of their separate components. 

General minimised logic for a flash converter 

A flash converter producing an n-bit output requires logic to convert 2 ~ -  1 
comparator outputs to a conventional binary integer. Each of the binary output 
bits is set equal to 1 within a certain number of sub-ranges of the input voltage 
(and is cleared to 0 otherwise). Therefore, the minimised Boolean expression 
for each output bit consists of the Boolean OR of the conditions specifying each 
sub-range relevant to that particular output bit. The condition specifying most of 
the individual sub-ranges is of the form S i j  - Cl, i , j .Ch+l,i , j ,  for sub-range number 
i relevant to output bit number j, where Cl, i, j is the output of the lowest 
comparator (corresponding to the smallest analogue voltage value) within that 
sub-range, and Ch+l,i, j is the output of the comparator that is one step higher 
than the top of that sub-range. The exception to this rule is that since the highest 
sub-range always includes the output binary integer with all bits set, there is 
therefore no next higher comparator; hence, the condition specifying the top 
sub-range for bit number j is simply Stop,j- Cl, top,j. Therefore, the general 
minimised logic for output bit bj in a flash converter is of the form bj - Ct, top,j-[- 

Cl, i,j.Ch+l,i, j. For the special case of the MSB of the binary output, there is 
i:fitop 
only a single sub-range (i.e. the upper half of the table) and this formula simplifies to 
bMSB -- Ct, 1,MSB. The output expressions for the simple case of a 2-bit/3-comparator 
flash converter shown in Figure 10.7 conform to these general rules. 
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10.7 Integrating A/D converter types 

In this type of A/D converter, an operational amplifier is used as an integrator to 
integrate the input voltage over a specified time interval. In one well-known arrange- 
ment, known as the 'dual-slope integrating converter' and developed by Schlumberger, 
the input voltage is integrated for one period, T, of the AC mains supply. In Europe 
and other areas which have a 50 Hz supply, T = (l/50)s = 20ms; in North America 
and other areas which have a 60 Hz supply, T = (l/60)s = 16.666ms. The principle is 
illustrated in Figure 10.8. For clarity, a mechanical switch S is shown, but in practice, 
a mechanical switch would not operate fast enough and an active solid-state switch 
would be used instead. The input voltage is assumed for the moment to be constant. 
The integrator output starts from zero, and so after a time T its output has reached 
a voltage VT proportional to the input voltage. The advantage of integrating over one 
mains time period is that any mains interference impressed upon the input voltage 
should, in principle, have no effect whatsoever upon the final output voltage. In effect, 
the input voltage is averaged over precisely one mains cycle. 
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Figure 10.8 The pr&ciple of the dual-slope A/D converter 

Any superimposed interference synchronous with the mains supply frequency may 
be regarded as a sine wave of a certain amplitude and phase shifted relative to the 
mains supply. This may be represented as a sum of sine and cosine voltage terms, of 
amplitudes V~ and Vc respectively, and having frequencies identical to the mains 
supply frequency, which will be integrated over one time period as follows" 

0 l / f )  [Vc c o s  (27rft) + Vssin(27rft)]dt 

= (1/27rf)[Vc sin (27rft) - V~ cos (27rft)]l~ ~/I) 
= (1/27rf)[Vc sin (270 - V~ cos (270 - Vc sin (0) + Vs cos (0)] 

= (1/27rf)[Vc.O- Vs .1 -  Vc.O+ Vs.1] 
= 0,  
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giving no effect on the final output voltage, and interference at synchronous 
harmonics of the mains supply will similarly give zero contribution to the 
integrated output. The results of Fourier analysis may be used to show that any 
arbitrary interference waveform, provided it is mains-derived and therefore 
repetitive (but not necessarily sinusoidal) at the mains supply frequency, will give 
zero contribution to this integration. 

At the end of this time period, typically timed with a crystal-controlled digital 
counter for accuracy and repeatability, a precise reference voltage of opposite polarity 
is immediately applied to the integrator without resetting it, and the time taken for the 
integrator output to return to zero is measured using the same digital counter. 
This time, A, is a measure of the input voltage required to be measured, and is 
transferred to the digital output. The standard reference voltage applied during the 
second integration will usually be equivalent to the maximum allowable analogue 
input voltage that can be applied during the first integration period, so that the second 
integration period is less than or equal to one mains time period T. Therefore, the 
complete conversion takes a maximum of 2T (i.e. 40ms or 33.333 ms for 50 Hz or 
60 Hz supplies respectively) and the maximum number of A/D conversions per second 
is half the mains supply frequency (i.e. 25Sa/s or 30Sa/s respectively). This type of A/D 
converter has a number of great advantages. It has high immunity to mains-borne 
interference; also, its accuracy depends only upon the stability of the timer and counter 
circuits, the accuracy of the standard voltage, and the stability of the integrator 
components over each measurement cycle. A highly stable timer is easy to achieve 
using a resonant crystal oscillator. Therefore, the dual-slope integrator is widely used 
in both general-purpose and high-precision digital voltmeters. Its disadvantage is that 
it is relatively slow, since the maximum number of conversions per second is seriously 
limited, and for faster conversions other types must be used. Sometimes a slow 
converter, such as an integrating type, is to be used even though it may be required 
that the A/D conversion is carried out at a precise time rather than by an integration 
over a substantial period, and in this case the converter must be preceded by a 'sample 
and hold' circuit that samples the incoming analogue voltage at a definite time and 
feeds this sampled analogue voltage to the converter. 

10.8 A/D converter types using an embedded D/A converter 

Another class of A/D converter is built around a D/A converter which undertakes the 
opposite conversion to that actually required (see Figure 10.9). Every time an A/D 
conversion is needed, a conventional binary counter is cleared and starts counting up 
from the starting value of (0)2. The digital outputs of the binary counter are directly 
connected to the embedded D/A converter, so the output from this converter is an 
analogue voltage that rises steadily (in 'staircase' fashion) from 0V. An analogue 
comparator continuously compares the output voltage from the embedded D/A 
converter with the analogue input voltage; at the exact instant that the output voltage 
from the embedded D/A converter has risen above the analogue input voltage, the 
counter's digital output value is stored in a set of D-type flip-flops. This D-type register 
must therefore now contain the digital equivalent output of the analogue input. 
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Figure 10.9 The principle of the A/D converter using an embedded D/A converter 

This type of converter is quite slow as each conversion takes at least the time required 
for the counter to count from (0)2 to the binary equivalent of the input analogue 
voltage (and potentially to the maximum binary output). However, the complexity of 
the flash converter is avoided. This type of A/D converter may operate faster than an 
integrating type, since the conversion period is not tied to the mains supply cycle, but 
does not have the advantage of rejecting mains-synchronous interference. In principle, 
the integrating type of A/D converter can also operate faster than is necessary to 
suppress mains-borne interference, but this would discard the great advantage of this 
type of converter. 

There are two important variations of this type with an embedded D/A converter. 
In the first variation, the counter is not reset to (0)2 at each conversion request, but 
instead the comparator is used to indicate whether the analogue input voltage is 
greater or less than the output from the embedded D/A converter retained from the 
previous conversion, and the counter then counts up or down, as appropriate, from the 
previous count value. If the input voltage has not changed very greatly from the time of 
the previous conversion, i.e. the input voltage is slowly varying and/or A/D conversions 
are required on a regular basis, then this modification offers the advantage of reduced 
conversion time. However, if the input voltage cannot be assumed to be slowly 
varying, or if conversions are only required on an irregular basis, then in principle 
the time taken for a new A/D conversion will still be equal to the time taken for the 
counter to count from (0)2 to the maximum binary count value, i.e. the worst case 
conversion time. This disadvantage may be alleviated by arranging for internal conver- 
sions to be made continuously, but when an external conversion request is received, the 
conversion cycle restarts immediately with the counter starting from its current value. 

In the second variation of the basic A/D converter with an embedded D/A con- 
verter, a binary counter is not used but instead is replaced by an n-bit digital storage 
register in which each of the n bits may be independently set or cleared under control of 
some extra logic. The basic principle is illustrated in the block circuit diagram shown in 
Figure 10.10, and a typical voltage waveform at the output of the embedded D/A 
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Figure 10.11 Typical waveform produced by the embedded D/A converter in a 'successive approximations' 
A/D converter 

converter is shown in Figure 10.11 in the case of a simple 3-bit converter. In this simple 
example, the 3-bit D/A converter has 23 = 8 possible output voltages ranging from 0 
up to 7 times its basic output unit. Rather than having a counter starting to count from 
(0)2 towards the final base 2 digital equivalent of the analogue input, the control logic 
first clears to 0 all the bits of the storage register except the MSB which is set to 1. 
Therefore, the output of the embedded D/A converter will be close to half its maxi- 
mum value. The output is not exactly half because, as an example for the case of a 3-bit 
register, the maximum output from the embedded D/A converter is (111)2 = (7)10, 
whereas just setting the MSB to 1 as set up by the control logic gives the output 
(100)2 = (4)10. Then, the comparator  is used to determine whether the embedded D/A 
converter is giving an output greater or less than the analogue input; if the embedded 
D/A converter is giving an output greater than the analogue input then the MSB is 
cleared to 0, but if not, the MSB is left at the value 1. At this stage, therefore, the 
control logic has adjusted the MSB to the correct value, and so moves on to the next 
most significant bit. The control logic sets this bit to 1 and again uses the comparator  
to determine whether the embedded D/A converter is now giving an output greater or 
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less than the analogue input. If the embedded D/A converter output is greater than 
the analogue input, this bit is cleared to 0; if less than the analogue input, then 
this bit is left at 1. The control logic then moves on to the other bits in turn in order 
of their numerical significance, i.e. their position in the binary integer. This type of 
A/D converter is called a 'successive approximations' converter, as the converter 
is successively making better and better approximations to the final value of the 
digital output. 

The advantage of the successive approximations A/D converter over the type using 
a counter is that it implements a binary search for the digital equivalent value of the 
analogue input, rather than a sequential search starting either from (0)2 or from the 
previous output value. A binary search is a much more efficient method of finding 
an unknown value than a sequential search, and so in general the conversion times 
using a successive approximations converter will be much less than those achieved 
with a counter-type converter. This may be understood by examining the number 
of voltage comparisons needed for each A/D conversion. For an n-bit output, 
a successive approximations converter needs to undertake n comparisons per 
conversion, one for each bit. By contrast, the number of comparisons per 
conversion required by the counter type will range from 1 at minimum up to 
a maximum of 2 ~ -  1. Since the number of required comparisons varies widely in 
the case of the counter type, occasionally the counter type will be faster than the 
successive approximations type. However, if any allowable value of the analogue 
input voltage is equally likely, and if the counter is reset for each conversion, then 
on average the number of comparisons required by the counter type is (2~)/2 = 2 ~-I , 
which will always be greater than the n comparisons required by a successive 
approximations converter, assuming that A/D conversions of more than n - 2 bits 
are needed. 

The counter type where the counter is not reset for each conversion may operate 
much faster under favourable conditions, i.e. if conversions are required so 
frequently that the required output changes by no more than (1)~0 or (2)10 or so at 
each conversion. However, if the input is varying so rapidly that there is no 
similarity between successive input voltages at the sampling times, or if any value of 
the analogue input voltage within the allowable conversion range is equally likely, 
then the average number of comparisons required per conversion will be 
approximately (2~)/4-  2 ~-2, the same as for a counter type where the counter is 
reset to a value midway between minimum and maximum counts prior to either up 
or down counting under control of the comparator. 

Note that in the case of the successive approximations A/D converter (unlike the 
type with a counter driving an embedded D/A converter), there is no advantage to be 
gained in not clearing the register before each conversion; each conversion still requires 
each of the n bits to be examined in turn. The equal conversion times from a successive 
approximations converter is a major advantage in certain applications where the 
variable conversion times from the counter types (and potentially very long conversion 
times when the counter must count over all or nearly all of its range)cannot  be 
tolerated. 
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The familiar Compact Disc (CD) digital audio format stores analogue audio signals 
in the form of an optically-readable stream of digital values sampled regularly at 
44.1kSa/s. It requires 16-bit conversions, A/D in recorders or D/A in CD players. 
However, professional-quality digital recorders will record at 20 or 24 bits 
(or greater resolution) and at greater conversion rates, partly so as to be compatible 
with improved digital formats, but mainly so that, on copying the master studio 
recording to the final CD, the recording level (i.e. the amplitude of the final 
analogue signal) may be increased to some extent if necessary while still 
maintaining at least 16-bits resolution in the digital information recorded on CD. 
The design of such high-resolution converters and their associated circuitry is not 
straightforward, because of the need for the analogue parts of the system to operate 
to the same precision or better. Although the standard CD format provides only 
16-bit sampling precision, some CD players use various advanced techniques to 
increase the effective number of bits available for converting to the analogue signal, 
by reconstructing extra digital information according to some assumptions made 
about the nature of the audio signal, and the use of other digital signal-processing 
techniques. These players undertake D/A conversion at higher rates (known as 
oversampling), in attempts to increase the accuracy of the reconstructed audio 
signal. Similar principles are used in the design of digital audio tape (DAT) 
recorders and players. The required conversion rate prevents the use of integrating 
types of A/D converter in recorders, and the precision necessary prevents the use of 
flash converters. On the other hand, for digital video discs and tapes the bandwidth 
required is much greater (5.5MHz bandwidth for a typical conventional video 
signal, requiring a minimum sampling rate of 11MSa/s) but the necessary precision 
is poorer (8 bits per sample is usually ample for video information, because of the 
greater noise tolerance of the eye than the ear). Therefore, for digital video, if no 
data compression techniques are used, it would be necessary to record and 
reproduce of the order of 88 Mbit/s plus the bit rate needed for the accompanying 
audio and control signals, compared to the 1.4Mbit/s for 2-channel 16-bit audio at 
44.1kSa/s. For this reason, the technical requirements for digital video are 
considerably more exacting than for digital audio, and commercial digital video 
systems have only been available since the mid-1990s. Even so, current digital video 
systems use some data compression techniques to reduce the necessary bit rate, 
whereas domestic digital audio has been a practical reality since the early 1980s. 
At the highest conversion rates, self-contained IC A/D converters capable of 
operating at 1GSa/s with 6- or 8-bit resolution are now readily available. 

10.9 Shaft encoders and linear encoders 

A shaft encoder is a sensor device that can be attached mechanically to a rotating 
shaft, and electrically connected to a logic system in order to feed information to the 
logic system regarding the rotation of the shaft. A linear encoder is a similar device 
that senses the linear motion of a slider, relative to a fixed body of the sensor. 
Shaft encoders are increasingly being used to sense the rotation of the manual 
controls in consumer items such as audio and video equipment, following their 
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widespread employment in laboratory instruments for many years. The design 
concept is that the user turns the control knob fixed to a shaft encoder which sends 
signals to a microcomputer controlling the instrument, rather than the user actually 
turning the shaft of a variable resistor, capacitor, or other variable component. 
By this means, one control knob may be used to adjust several equipment functions. 
Linear encoders are widely used in the control of robots, x-y plotters, and other 
situations where linear motion must be sensed accurately for computer control. 
There are two main types of each encoder, 'absolute encoders' and 'incremental 
encoders'. The digital logic aspects of both shaft and linear encoders are similar, 
and these types only differ substantially in the mechanical arrangements used. 
The 'absolute' and 'incremental' types are, however, fundamentally different in their 
philosophy and in their digital logic aspects. 

10.10 Sensing of motion 

The precise manner of sensing the rotation or linear motion is of interest here 
insofar as there are various ways of achieving the same end. Usually the motion, 
rotating or sliding, is sensed by using an optical arrangement consisting of a light 
source, two or more optical detectors such as photodiodes or phototransistors, and 
an intervening 'screen' or 'reticle' with alternating opaque and transparent areas. 
When the opaque areas are aligned between source and detector, the detectors detect 
no light, and when the slider shifts or the shaft rotates slightly then a transparent 
area is substituted and the appropriate detector detects light transmission through 
the reticle. The basic arrangement for a linear incremental encoder, for example, is 
shown in Figure 10.12. In practice, a more sophisticated optical arrangement invol- 
ving correct focusing of the optical beams would be used to optimise the optical 
performance of the unit. However, even when using precise optical imaging techni- 
ques, because of optical limitations the smallest distance between two points on the 
reticle that can be distinguished easily is of the order of one wavelength of the 
optical radiation employed, so the shortest wavelength radiation possible is usually 
used. The fabrication of the reticle, upon which the accuracy and resolution of 
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Figure 10.12 Sketch of the basic mechanical arrangements for a linear incremental encoder 
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the encoder rests, may be undertaken using processes such as silk-screen printing for 
low-precision applications, or by high-precision manufacturing techniques such as 
microphotolithography. 

Electrical interfacing between the optical detectors and the digital system is 
straightforward, remembering that optical detectors may not provide output voltages 
equal to the standard logic levels, so that Schmitt input gates are necessary. A typical 
circuit is shown in Figure 10.13, though the exact details will depend crucially upon 
the actual optoelectronic and optical components used; it may be necessary to include 
extra analogue amplification between the photodiode and logic gate, for example. 
Often in linear encoders the reticle is stationary and the optical source and detectors 
move with the slider, as shown in Figure 10.12; in shaft encoders the optical com- 
ponents are generally stationary and the reticle rotates with the shaft so that 
continuous shaft rotation by an unlimited number of revolutions is usually possible 
with such a system. 

Other methods have also been used to detect the motion in encoders, such as 
primitive mechanical arrangements using toothed wheels operating mechanical 
switches, and more sophisticated magnetic encoders. The magnetic type is widely 
employed in electronic ignition systems in automotive engines where a magnetic 
toothed wheel is fixed to the camshaft adjacent to a stationary sensing coil. As the 
toothed wheel rotates, its magnetic field induces a varying voltage in the sensing coil. 
The shapes of the wheel and coil are such that the induced voltage changes rapidly at 
the instant when the camshaft rotates through the correct ignition point. This rapid 
voltage change is detected by the electronic ignition system and is used to trigger the 
ignition spark, These encoders are similar to motional feedback sensors, commonly 
attached to electric motors such as those used in washing machines, that produce an 
AC signal of frequency directly proportional to the motor speed. This signal is then fed 
to the motor speed controller. Magnetic encoders are often preferred over optical 
sensors in oily or dusty environments such as engines and motors where optical sensors 
would rapidly cease to function correctly as their optical paths become obstructed. 
Magnetic encoders have also been built using Hall effect sensors which sense magnetic 
fields directly, using the Hall effect in a semiconductor. In all these cases, the method 
of interfacing to the digital logic system is dependent upon the electrical characteristics 
of the technology used. 
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10.11 Absolute encoders 

An absolute encoder is an encoder giving a digital output of a binary word indicating 
the current position of the shaft or slider. Usually there are as many optical detectors 
as there are bits in the final word required at the output, and the reticle contains 
opaque and transparent sections corresponding to the Gray code (see section 1.21) 
equivalent of the integer indicating the current position. 

In this kind of encoder, even if power is temporarily removed from the digital system 
producing the output, the slider or shaft may be moved, and on restoring power the 
system will still give the correct indication of the current position because the reticle 
will have been moved mechanically and will still indicate the correct Gray code integer. 
This represents a major advantage of this kind of encoder over the 'incremental' type, 
but at the expense of requiring many more optical detectors. 

Gray code must be used, rather than ordinary base 2, so that only one bit changes at a 
time as the motion continues. Otherwise, inaccurate readings could be obtained if ordinary 
base 2 were used. Consider the design of an encoder where the position of a shaft or slider 
is to be transmitted in binary form to a digital system. If conventional binary coding were 
used, then at certain positions of the moving shaft or slider several binary bits would have 
to change simultaneously. The problem in using conventional binary coding in an 
absolute position encoder is illustrated in the following table for a simple 3-bit system. 

Step Base 2 code 

b2 bt bo 

(0)lo 0 0 0 

(1)lo 0 0 1 

(2)1o 0 1 0 

(3)10 0 1 1 

(4)10 1 0 0 

(5)10 1 0 1 

(6)10 1 1 0 

(7)10 1 1 1 

(O)lo 0 0 0 

bl and b0 change, possible spurious readings 000 or 011 

all bits change, several possible spurious readings 

bl and b0 change, possible spurious readings 100 or 111 

all bits change, several possible spurious readings 

In this 3-bit system there are  2 3 = (8)10 possible encoded positions. Between the adjacent 
positions (1)10 and (2)10 two bits change. They must change exactly simultaneously, as 
otherwise two spurious readings shown may be given. The rest of the table is self- 
explanatory. For a shaft encoder, though not for a linear position encoder, all three bits 
also change as the shaft completes each full revolution between positions (7)10 and (0)10. 

This required simultaneous changing of several bits is a serious problem because in 
practice the encoder cannot be made so precisely that all of the bits intended to change at 
each step do so absolutely simultaneously. Therefore, the bits required to change will do so 
over a small but non-zero range of position. The order that the bits change will appear to be 
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random and in practice will be determined by the mechanical inaccuracies and continuing 
wear of the encoding system. Hence, motion between genuine positions may have a 
completely spurious reading(s) interposed between them, depending on the order in which 
the bits change. Note that these spurious readings are genuine inaccuracies because the 
encoder has not physically moved to the corresponding positions. Rather, these readings 
have come about because of shortcomings in the coding and mechanical systems used. 

The solution to this problem is the adoption of Gray code rather than conventional 
base 2 coding in such applications. Gray code is a special binary coding where only 
one bit changes at each step of the count (see also section 1.21). Superficially, Gray code 
resembles conventional base 2 binary coding except that the ordering of the codes for 
successive steps is changed from the conventional base 2 order. Gray code is an 
unweighted code, because each bit position does not have an associated numerical 
value in the same manner as does base 2 binary coding. If values of a successful 
Gray code are plotted on a K-map, then the successive cells must trace out a locus 
on the K-map that moves only to adjacent cells (defined in the same manner as in 
section 3.8, i.e. for minimising Boolean functions) at each step, because then and only 
then can only one K-map variable change at a time. In addition, for a Gray code to be 
used for rotation encoder applications, the path must be re-entrant; that is, the cell for 
the final value must be adjacent on the K-map to the cell for the first value. 

One of the most useful types of Gray code is formed by taking the Exclusive-OR of 
adjacent binary bits of the corresponding base 2 equivalent at each step. If the 
equivalent base 2 for any step of the code is composed of individual bits denoted bk, 
where k = 0 corresponds to the least significant bit (LSB), and the Gray code is 
composed of individual bits denoted gk, where k = 0 corresponds to the right hand 
bit, then the conversion from base 2 bits to Gray code bits is given by the equation 

gk : bk+l | bk. 

For an n-bit conversion, the binary bits are denoted b0 (LSB) to bn-1 (the most 
significant bit, or MSB), and the value of b, (one place more significant than the 
MSB) is taken as 0 (when required in the evaluation of gn-1)- The conversion table for 
a 3-bit Gray code, obtained by direct application of the above defining equation, is 
shown in the following table. 

Base 2 code Gray code 

Step b2 bl bo g2 gl go 

(0)10 0 0 0 0 0 0 
(1)10 0 0 1 0 0 1 
(2)10 0 1 0 0 1 1 
(3)10 0 1 1 0 1 0 
(4)10 1 0 0 1 1 0 
(5)10 1 0 1 1 1 1 
(6)10 1 1 0 1 0 1 
(7)10 1 1 1 1 0 0 

Note that a characteristic of this particular Gray code is that the base 2 and Gray codes 
for (0)10 and (1)10 are identical, but that the base 2 and Gray codes corresponding to 
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Figure 10.14 Values of a 4-hit Gray code de/ined by gk = bk+l �9 hk plotted on a K-map 

greater base 10 integers differ. Also, at each step of this particular Gray code, the next 
Gray code is formed by complementing the most right-hand bit possible that gives 
a code no t  used previously. So, for example, Gray code 000 is followed by 001, after 
complementing the most right-hand bit. Complementing the most right-hand bit again 
gives code 000 which is not the next Gray code as it has appeared previously in the 
sequence, but complementing the middle bit gives the correct next Gray code 011. 
In fact, there are many forms of Gray code, which can be seen easily from the table 
because a perfectly valid Gray code conversion would be obtained by a cyclic per- 
mutation of the given Gray code values, although the convenient bitwise conversion 
equation above would then not correspond to this new Gray code. 

It is instructive to plot the Gray code values derived from the bitwise conversion 
equation on a K-map, as shown (for the 4-bit Gray code defined by the same bitwise 
defining equation gk = bk+l | bk) in Figure 10.14. The locus of cells is regular and 
covers the entire map. The locus moves only to adjacent cells at every step, and also is 
re-entrant (so that this code is suitable for rotational applications). 

Proof of validity of the bitwise defining equation for Gray code 

To prove that the bitwisc defining equation g~ = b~+l | bk will always give a coding 
with the properties of Gray code, it is noted firstly that by inspection of the 
conversion table and Figure 10.14 the equation gives a successful Gray code in the 
cases of 2-, 3-, and 4-bit conversions (and n = 1 is a trivial case where the code 
given by the equation is a Gray code that is identical to the base 2 code). 

Now, take an existing n-bit code, defined by g/~ = b/~+] | b~, which it is a s s u m e d  

for the moment has the properties of a Gray code at each of its 2" steps. To lengthen 
the code to give extra precision, a further additional bit gn may be inserted to 
the left of the existing code, to form a new (n + 1)-bit code having 2 n+l steps 
(not proven to be a Gray code yet). The values of the bits in the new code will still 
be produced using the same rule g~ = b/~+] | bk from the corresponding (n + 1)-bit 
base 2 code. 
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Imagine all the base 2 and the corresponding new codes written out in a table in 
numerical order of the base 2 codes, as in the 3-bit table in the text above. All the 
new code values calculated for every step having b . -  0, i.e., the top half of the 
conversion table, are the same as those for the existing n-bit code but prefixed by 
g. = 0 corresponding to the prefix b. - 0 for all the base 2 codes, because the left- 
most bit of the new code is given by g~ - bn+l | bn - 0 | bn - b~ - 0. Note that 
b.+l - 0  for an (n + 1)-bit base 2 code, and the defining equation leaves the other 
bits unchanged. Therefore, the new (n + 1)-bit codes in the top half of the 
conversion table form a valid Gray code, provided the existing n-bit code was 
indeed itself a valid Gray code. 

Next, all the new code bit values gk corresponding to b. - 1 (i.e. for the bottom 
half of the conversion table) have the new left-most bit g. - 1, because g. - b.+l | 
bn- 0 ~ ) 1 -  1. The next new bit on the right is given by g n - 1 -  b, | bn-1- 
1 | b n - 1 -  bn-1, and so is the logical complement of bit bn-1 for the step in 
the conversion table written ( 2  n + l ) / 2  - -  2" steps previously, i.e. in the top half of the 
conversion table, for b , -  0. The other bits gk, for k < ( n -  1), are given by the 
usual formula gk -- bk+l @ bk and so are unchanged from those of the step written 
2" steps previously in the conversion table. Hence, the new (n + 1)-bit codes in the 
bottom half of the conversion table also form a valid Gray code, provided the 
existing n-bit code was indeed itself a valid Gray code. 

It is also necessary to establish that only one bit changes at the join between the 
top and bot tom halves of the (n + 1)-bit conversion table, and also in 'rolling over' 
from the last code back to the first code. In moving one step from the top to the 
bot tom half of the table, the base 2 code changes from 0 followed by a total of n 
binary Is, to 1 followed by n binary 0s. Therefore, the left-most new bit g,  changes 
from 0 to 1, the next new bit to the right is g._ 1 - -  b. | b._ 1 - -  ( 1  | 0 or 0 | 1) - 1 
and so is unchanged, and all the other bits of the new code are g k -  bk+l | b k -  
(1 ~3 1 or 0 | 0) -- 0 and so are also unchanged, and so this satisfies the Gray code 
condition (only one bit changes). 

In 'rolling over' from the last code back to the first code, the (n + 1)-bit base 2 code 
changes from all binary l s (a total of (n + 1)), to all binary 0s (a total of (n + 1)). 
Therefore, the left-most new bit g. changes from 1 to 0, and all the other bits of the 
new code are gk -- bk+l �9 bk - -  (1 | 1 or 0 | 0) = 0 and so are unchanged, and so this 
also satisfies the Gray code condition (only one bit changes). 

Finally, since it has been proven that if an n-bit code defined by gk -- bk+l | bk 
has the properties of a Gray code, then an ( n +  1)-bit code defined by 
g k -  bk+l (~ bk will also have the properties of a Gray code, and also that the 
same defining equation correctly gives a Gray code in the case of n - 1. Therefore it 
has been established by the method o f  induction that gk --bk+l �9 bk gives a Gray 
code correctly for all positive integer values of n. 

10.12 Conversion from Gray code to base 2 

The defining equation g k -  bk+l �9 bk is useful for generating a new code that is 
guaranteed to have the properties of a Gray code, but usually in designing encoders 
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the raw output from the encoder head will consist of Gray code which, being an 
unweighted code, is unsuited for any numerical display, or other digital processing. 
Therefore, the designer must usually arrange that the first task of the associated digital 
system is to convert the raw Gray code provided by the encoder head to the corresponding 
base 2 code. This reverse conversion can be obtained from the truth-table of the defining 
equation for Gray code, gk - bk+l  G bk, as shown in the table: 

bt,+l bk gk 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Re-ordering the columns of this truth-table gives the following table: 

gk b,+l b, 

0 0 0 
1 0 l 
l 1 0 
0 1 1 

It is clear that the required reverse conversion is given by 

bk = gk �9 bk+ ! 

(and see also section 2.14) so that, to convert a Gray code defined by g, = bk+l | bk 
back to the equivalent base 2 code, all that is necessary is to take each Gray code bit gk 
and form the Exclusive-OR with the base 2 bit bk+l (which is the base 2 bit that is one 
place more significant than bit bk). 

Of course, since the object of this exercise is to f ind the corresponding base 2 code 
in its entirety, this means that the conversion from Gray code to base 2 can only be 
performed for base 2 bit b, after the bit bk+l (the bit to its immediate left) has 
been found. This means, in turn, that the conversion must be performed in order 
from MSB to LSB. Therefore, the MSB (b,-l) is found using b,-i =g , -1  | 
b, = g,_~ | 0 = g,_~. This means that the base 2 MSB is always identical to the 
left-most bit of the Gray code. Having found the base 2 MSB, the equation 
bk =gk  | bk+l is used to find the next base 2 bit to the right, and then the next 
bit to the right of that, and so on, until the base 2 LSB has been reached. 
This conversion process cannot proceed from LSB to MSB, simply because using 
the equation bk = gk | bk+l to find the LSB (i.e., bo) requires knowledge of bl which 
would be unknown at that time. Based upon this process, designing a circuit to 
perform the conversion from Gray code to base 2 is straightforward (see Figure 
10.15). For an n-bit conversion, a total of ( n -  1) Exclusive-OR gates are required. 
For a large value of n and in a complex system controlled by a microcomputer, it may be 
more cost-effective to perform the conversion using appropriate microcomputer software. 
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10.13 Petherick code 

Petherick code is a binary coded decimal equivalent of Gray code, and is normally 
used for encoding step values in the range 0 to 9 inclusive. Again, as in the case of 
Gray code, only one bit changes at each step, including the 'roll-over' step between 
maximum value (9) and minimum value (0), because the 'cycle length' is (10)10. 
The conversion table is shown below: 

g3 g2 ~ go 

b~ b~ bl bo 

Figure 10.15 Circuit diagram for conversion of Gray code to base 2 

Decimal Base 2 code Petherick code 

b3 b2 bl bo P3 P2 P1 Po 

0 0 0 0 0 0 1 0 1 
1 0 0 0 1 0 0 0 1 
2 0 0 1 0 0 0 1 1 
3 0 0 1 1 0 0 1 0 
4 0 1 0 0 0 1 1 0 
5 0 1 0 1 1 1 1 0 
6 0 1 1 0 1 0 1 0 
7 0 1 1 1 1 0 1 1 
8 1 0 0 0 1 0 0 1 
9 1 0 0 1 1 1 0 1 

The characteristics of this code are that, as in the case o f a  4-bit Gray code defined 
by gk - bk+l | bk, the code for (1)10 is (0001)Petherick. Unlike Gray code, however, 
some ls and some 0s are always present in Petherick code. This is a useful feature 
if an AC-coupled signal-recovery amplifier is used in conjunction with serial trans- 
mission of the code, as otherwise the DC levels of the l s and 0s would be lost 
irretrievably. Using four K-maps, and treating the codes not defined in the Petherick 
code conversion table above as 'can't happen' terms, shows immediately that the 
conversion from the Petherick code defined above to four bits of NBCD is: 

bo = (Po �9 el) O (P2 0 P3) 
bl = P1.P2 

b2 = PI.(P2 + P3) 

b3 - P1.P3.  
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Note that if more than one NBCD digit is required to be encoded, the use of several 
cascaded sets of Petherick code does not give a code where only one bit changes at each 
step, because whenever the least significant NBCD digit changes from 9 to 0 (or vice versa) 
then at least one of the more significant NBCD digits must also simultaneously change 
by 1, so that at least two bits in the entire cascaded sets would change simultaneously. 
In such circumstances, a better solution may be to use a genuine Gray code, convert 
that to base 2, and then to convert this to NBCD. 

10.14 Incremental encoders 

By contrast with absolute encoders, an incremental encoder of itself only indicates 
relative movement of the shaft or slider, and then only when the associated electronic 
system is powered. Other means must be used to find the absolute position; the encoder 
manufacturer may provide additional outputs such as extra data bits indicating when 
'index' marks are passed, or the system designer may include external switches to 
indicate the end of the allowable travel. In some applications, for example a shaft 
encoder used to control the operation of an instrument, the lack of knowledge of the 
absolute position may be irrelevant in any case. 

In a typical incremental encoder, two detectors, using optical or another technology, 
are used to provide digital signals X and Y from the reticle. Both these signals indicate 
the motion of the shaft or slider by toggling their logic state at regular intervals of shaft 
rotation or slider distance. However, the logic state changes in the signal X are shifted 
compared to those in signal Y. In terms of the phase of the underlying oscillatory 
signals that would be produced by constant velocity motion, the two are in quadrature, 
i.e. there is a phase difference between them of 90 ~ The key to the operation of this 
system is that when the motion of the slider or shaft changes direction, the 90 ~ phase 
difference between X and Y reverses automatically as a result of the mechanical 
reversal. This phase reversal may be interpreted by a logic circuit such as that shown 
in Figure 10.16(a). 

In Figure 10.16(a), the counter is such that rising edges applied to one input cause 
the output integer to count down, whereas pulses applied to the other input cause it to 
count up. Counting pulses are produced by the AND gate connected to X and Y, and 
the J-K flip-flop 'steers' these pulses to one or other of the counter clocking inputs, 
depending upon the direction of motion. This is shown in detail in the waveform 
diagrams of Figure 10.16(b). Note that it is essential in this circuit that the OR gate has 
a propagation delay greater than the data set-up time for the flip-flop, and that the 
shortest possible period of the X and Y waveforms is longer than this propagation 
delay. It follows that there is a maximum permissible mechanical speed that can be 
tracked by this circuit without error. Fortunately, most logic gates are so fast in 
operation that this is not usually a severe limitation. 

Two signals, X and Y, are needed in this kind of encoder, in order to be able to detect 
the direction of the motion. In some applications, sensing of the direction of motion is 
not needed. For example, the motion direction is irrelevant when logging the total 
bearing wear in a rotating machine, and the motion direction may already be known 
in washing machine motors or in automotive electronic ignition systems. In this case 
a single output feeding a simpler subsequent circuit, such as a counter indicating 'total 
motion', may be used; such devices are often called 'tacho generators' or 'tachometers'. 
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Figure 10.16 (a) Circuit diagram of a simple incremental encoder interface (b) Typical waveforms when 
interpreting motion 

In the circuit shown in Figure 10.16, one count pulse is fed to the counter for 
every period of either the X or the Y waveforms, dependent upon the direction of 
motion. In fact there are four logic transitions within each of these periods, two 
from each of X and Y in quadrature, and so to obtain the greatest resolution from 
the encoder, by detecting and counting each and every logic transition, a much more 
complicated circuit is needed. Figure 10.17 shows a circuit designed to interpret 
all of the logic transitions at the encoder's output in this manner. In this circuit, 
RC networks, together with Schmitt inverters, are used to introduce well-defined 
signal delays of the order of 7-= RC = 100~2 x 2nF  = 200ns = 0.2ITS, and the 
associated XNOR gates produce logic high spikes lasting for this period. The full 
details of the operation of this circuit are left as an exercise. This circuit can be used 
with a typical commercial linear encoder of lm length, and with 5~tm resolution 
between each logic transition giving a complete encoder period of 20 t.tm and a total 
possible count of +2 x 105 depending upon the zero starting position. To cope with 
this resolution, the binary counter chip would need to be expanded to 20 bits. A 
typical computer interface card would also give facilities for zeroing the counter 
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Figure 10.17 Circuit diagram of an interface circuit interpreting all the logic transitions.from an incremental 
encoder 

and for switching the counting direction that corresponds to forward motion. It may also 
be possible to synchronise with other similar cards the instant at which the counters are 
read. This can be important for a multi-axis systemwhere it is required to know the (x,y) 
position of a driven component at certain instants specified by the computer. 

10.15 Open collector and tri-state gates 

'Open collector' and 'tri-state' gates are specialist types of digital logic gates that are 
frequently used in situations where a digital system must interface successfully to other 
components or systems that are generally regarded as operating in an analogue 
manner. To understand fully the operation of open collector and tri-state gates and 
how they can be connected together, it is necessary to examine the internal circuitry of 
the gates concerned. The important aspect to consider is the configuration of the 
output stage of the gates and the way the output terminal is connected to the internal 
circuitry. Most logic gates fabricated for use in TTL or CMOS technology contain two 
transistors connected in series across the supply rails, with their common connection 
taken as the gate output, as shown in Figure 10.18. This is often called a 'totem-pole' 
output stage, and it is reminiscent of an analogue power-amplifier 'Class B' output 
stage. These transistors act as switches, and can be either switched 'on', capable of 
passing current, or 'off ' ,  incapable of passing current. At any one time only one of 
these transistors can be 'on', and the other must be 'off'. If the upper transistor is 'on', 
the output voltage is at logic high level, and if the lower transistor is 'on' then the 
output is at logic low level. At no time, of course, may both transistors in the 'totem-pole' 
within any one gate be switched 'on', for this would result in rapid destruction of the 
gate by massive current flow through both transistors. 
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Figure 10.18 Internal circuit o f  a typical integrated-circuit logic gate (similar to one gate in types 74LS00, 74LS04, 
74LS10, and 74LS20) with a 'totem-pole' output stage 

Any output line connected to a logic gate will have some stray capacitance, and the 
charge needed to raise the voltage of this stray capacitance suddenly, from ground to 
the positive supply voltage, causes a large current to flow for a short time in the upper 
transistor. This can momentarily cause the supply voltage for the entire system to fall 
below acceptable levels unless precautions are taken. For this reason, logic IC manu- 
facturers often advise connecting smoothing or 'decoupling' capacitors, usually of 
ceramic dielectric material and having a typical value 0.1~tF, between the positive 
supply line and ground for every five (or another number) IC packages. 

In a tri-state gate, there is an additional 
+5v input, denoted the 'ENABLE'  or 'CHIP 

SELECT' input, that must be connected by 
the user. Under control of this input it is 

4 k~  1.6 k~  

2 o OUT 

o 

inputs o 
o 

I k~  

1 

F i g u r e  1 0 . 1 9  Internal circuit o f  a typical integrated- 
circuit logic gate with an 'open-collector' output stage 

possible for the output to be in an additional 
state, the high-impedance or 'Z state', where 
both transistors are switched 'off'. This may 
be thought of as equivalent to isolating the 
output terminal from the rest of the internal 
gate circuit. Gates with standard or 'two 
state' outputs do not have the extra input 
and cannot enter the Z state. 

In an 'Open collector' gate, the internal 
circuitry of the gate, particularly the output 
stage, is rather different, as shown in Figure 
10.19. Instead of a complete 'totem-pole', only 

the lower npn transistor switch is included, and its collector is connected directly to the 
output terminal of the gate. Such a gate can only be used with an external load resistor, 
often called a 'pull-up resistor', connected between the output terminal and the positive 
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voltage supply rail. The transistor switch may be either 'on', when the output is at logic 
low level, or 'off', when the load resistor ensures that the output will be at logic high in 
the absence of any further current sinking. In circuit diagrams, an 'open collector' 
output stage is indicated by an asterisk (*) or the special symbol 0 adjacent to the gate 
output concerned. 

Logic gates intended for use with logic technologies other than TTL or CMOS may 
have different internal construction for which the terms 'open collector' or 'tri-state' 
may not have any meaning. 

10.16 Use of open collector gates 

Use of an occasional isolated open collector gate within a system otherwise composed 
entirely of conventional gates is often not wise design. This is because at transitions 
from low to high logic level at the output of the open collector gate, the single output 
transistor is turned 'off' and current is supplied through the load resistor only. 
The inevitable stray capacitance associated with any logic output line means that these 
transitions are relatively slow, with a decaying exponential rise of voltage towards the 
maximum value governed by the time-constant 7-= RLC~ (where Re is the load 
resistance value and C~ is the stray capacitance value). Even a small value of C~ and 
a moderate value of Re can lead to substantial slowing of the rising edges in practice, 
compared to the performance expected from conventional gates. The use of two output 
transistors in the 'totem pole' circuit, where the upper transistor can supply a large 
current when in the high logic level, allows them to achieve faster rising edges. 
However, by connecting together several open collector gate outputs together with 
a load to the positive supply, the output voltage will be at logic low level when any 
of their output transistors is switched 'on', and will only be at high logic level when all 
the transistors are switched 'off'. Therefore, the output voltage level corresponds to 
the Boolean AND of the individual gate outputs. This arrangement is often called 
'wired AND' or 'collector dotting' and enables the AND of many signals to be 
obtained easily provided fast operation is not needed. Serious reservations remain 
concerning the operating speed of the open collector gates unless Cs can be reduced 
to a negligible value. 

For example, in Figure 10.20(a) the outputs of a pair of two-input open collector 
NAND gates are connected to the same external pull-up resistor Re. If the output 
of one of the NAND gates is low, the final circuit output will be pulled low, irrespect- 
ive of the other NAND gate. The AND function is performed by a 'gate' that has no 
physical reality apart from the connection between the gates and as a consequence is 
called a phantom A N D  gate. The output of the network is 

Z -  P Q -  A B . C D  

If inverted variables had been applied instead at the inputs, then the output would 
have been 

Z -  PQ - A B .  CD - (A + B) . (C + D) 

Similarly, if two open collector NOR gates are connected, as shown in Figure 10.20(b), 
the output Y will be the AND of the output of two NOR gates. Hence, the output is 
given by 
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Figure  10.20 Combination of (a) two open collector NAND gates and (b) two open collector NOR gates. Since the 
phantom AND gate is not a real component, its symbol is often omitted from circuit diagrams 

Y - R S  - (A + B ) . ( C  + D)  - A + B +  C + D 

and if inverted variables had been applied instead at the input then 

Y -- A + B +  C + D - A B C D .  

The logic designer has the responsibility of determining a suitable value for the pull-up 
resistor RE. Since the values of RE and the stray capacitance Cs determine the rise-time 
of the logic transition from low to high voltage, the designer must decide what 
maximum transition time is required, and estimate the stray capacitance Cs in the 
circuit layout to be used, in order to determine RE. Clearly, for the fastest performance, 
the smallest possible value of RE should be used, but in practice this leads to large 
currents flowing through the open collector gates when switched on. This in turn leads 
to large power dissipation in RE itself, leading to problems with overall power con- 
sumption and, in extreme cases, the power handling capacity of RE might be exceeded. 
Thus, the designer must take account of the maximum current allowable through the 
gates and pull-up resistor. 

As an example, suppose that a logic system uses a 5V supply (Vs) and a time 
constant less than 5 ns is required on rising edges, with a stray capacitance of 18 pF. 
Therefore, the required value of pull-up resistor is given by 

7- 5 x 10-9s 
= = 278 f~. 

RE < Cs 18 x 10-]2F 

In practice, the nearest preferred value resistor, 270 f~, would probably be used. Then, 
the maximum current through the load resistor when in logic 0 state will be 

I =  Vs__ 5V --18.5mA 
RE 270f~ 

and the gates must be capable of passing this current without damage. Hence, the peak 
power dissipated in RE is given by 

P = V2 = ( 5 V ) 2  = 92.6 mW. 
RE 270f~ 
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The actual average power dissipated in RL will be a proportion of this value, depending 
on the proportion of time the gates spend in the low logic state, but in any case it is 
good practice to assume a worst-case power dissipation of 92.6 mW in order to cater 
for possible fault conditions. In practice, component tolerances will cause some further 
variations in these calculated figures, but whether this power dissipation is too great 
either for the overall consumption of the circuit or for the resistor RL to handle 
depends upon other details of the design. 

Another use of open collector gates is in driving logic lines to other equipment where 
in principle there may be more than one device capable of placing data on the lines or 
logic 'bus'. Usually, for correct operation, only one gate should be in command of each 
logic line at a time, as otherwise the operation of the bus would become immensely 
confused, but sometimes during testing, or due to a fault, it happens that more than 
one gate is indeed placed in charge of a logic line. No harm will come to open collector 
drivers used in this way. 

A third very common use of open collector gates is to drive external components 
that are not specifically designed for direct connection to conventional logic gates in 
the same way that other logic gates of the same family may be inter-connected to build 
up a complex logic system. As an example, it may be required to connect 
a Light Emitting Diode (LED) to a logic system in order to indicate the logic state 
of one of the gates. This is a common requirement in logic systems that show 
information to the user on alpha-numeric LED displays which will need to be driven 
electrically from the logic system. LEDs are pn junction diodes that are especially 
designed to emit light when they are forward biased. Although they will also withstand 
reverse bias of a few volts without damage, and without emitting light, they are not 
usually intended to be reverse biased in normal operation. Electrically they behave in a 
similar manner to ordinary small-signal rectifying diodes except that they are usually 
fabricated from a III-V semiconductor (such as GaAIAs or a related material such as 
InP) rather than Si. As a result, the voltage drop at moderate currents is rather higher, 
usually around 1.6 V at typically 10 or 20 mA for a small LED intended for use as an 
indicator on small equipment, rather than around 0.6 V for a typical Si diode. 

Conventional logic gates with totem-pole output stages are not primarily intended as 
current sources or sinks, and so it is not usual to drive LEDs from totem-pole output 

gates. The solution generally adopted is to place the LED 
+5v in series with a current-limiting (or 'dropper') resistor 

.~  between the output connection of an open collector gate 
LED and the positive supply rail, as shown in Figure 10.21. 

The respective manufacturers' data sheets must be con- 
R suited to ascertain, firstly, the current requirements of 

* the LED at the required brightness and the voltage drop 
"~ at this current value, and secondly, the current sinking 

capability of the open collector output transistor in the 
Figure 10.21 Connection o f  an logic gate to be used. Assuming that its current sinking 
L E D  to an open collector gate capability is adequate for the intended application, the 

value of the series resistor may be found after calculating 
the voltage drop across the resistor, equal to the supply voltage less the voltage drop 
across the LED. This assumes that the voltage drop in the output transistor when 
switched 'on' is of the order of 0.1 V and may be neglected. As an example, consider 
driving a typical LED requiring 15 mA at 1.6V drop using an open-collector gate 
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connected to a 5 V supply. Assuming that the gate is able to supply 15 mA without 
damage, the value of the series resistor needed is equal to 

5.0 V - 1.6 V 3.4 V 
= ~ = 227 f~ 

15 mA 15 mA 

and the nearest preferred value used might be 220 ft. 
A similar application is the use of an open collector output gate to drive a small 

electromechanical relay, in order to control a component requiring substantially more 
current than can be supplied by the output transistor itself. In certain cases a small 
relay may have a sufficiently small current driving requirement that it can be driven 
directly from an open collector gate, in a manner similar to an LED. Sometimes the 
relay is connected between the open collector terminal and a positive supply voltage 

Flywheel 
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Open - collector gate 

Figure 10.22 The 'Flywheel diode' connected 
across an inductive component and necessary 
to protect the driving gate 

rather greater than the normal logic circuit 
supply. A very small relay will typically require 
5 V or 12 V or more, at a current of 10 or 20 mA, 
to operate correctly, and a series dropper 
resistor is not needed with typical relays (but see 
Figure 10.22). Note that the open collector 
output stage allows the use of a component, 
the relay, that requires a larger driving voltage 
than the normal logic system supply rails can 
provide. This is a direct result of the collector of 
the output transistor being connected only to 
the external relay, and not to any other internal 
components within the logic gate. Open col- 
lector output gates are available that are able 

to switch typically up to 40mA at up to around 30V. If a relay is to be used that 
needs a greater driving voltage or current, then further external active components 
must be added to provide the increased driving capacity. 

Use of relays and other inductive components 

When the transistor driving a relay (or another component with a large self- 
inductance) is turned 'off ' ,  the rate of change of current can be very large 
because the time taken for the current to reduce from its normal 'on' value to 
zero can be very short. Therefore, the self-induced back-EMF, V = -L Id I /d t  ), is 
potentially very large if the product of L and (dI/dt) is large. In some cases this 
back-EMF can be so large that the driving transistor within the logic gate, if 
direct drive from an open collector gate is being used, is in danger of being 
damaged by the repeated application of excessive voltages. Fortunately, the 
remedy is simple, since by Lenz's law the back-EMF spikes have the opposite 
polarity to the driving voltage, and all that is needed is to insert a diode in 
parallel with the relay or inductance, with polarity such that it is reverse biased 
by the driving voltage in normal operation. Therefore, this 'flywheel diode' has 
no effect upon the driving current to the relay since a reverse-biased diode draws 
no current away from the relay, but it prevents large back-EMF spikes reaching 
the driving transistor. When forward biased, the 'flywheel diode' must be capable 
of carrying the normal 'on' driving current of the relay, because at the instant of 
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turning the driving transistor 'off '  the relay will attempt to maintain the energy 
stored in its magnetic field by inducing the same magnitude of current through the 
'flywheel diode' for an instant, before the relay and diode currents collapse. 

10.17 Use of tri-state buffers and gates 

A tri-state buffer is a logic inverter or a non-inverting buffer with a tri-state output 
stage. The four possible configurations are shown in Figure 10.23 and the truth table 
for the type in Figure 10.23(a) is also shown. 

The input denoted E can be regarded as an enable line, which may require either an 
active low or active high input signal, and when activated it will allow the gate to 
output either the true or inverted data. When the enable line is not activated the buffer 
output stage has a high output impedance (i.e., the Z state, as described above in 
section 10.15) and transmission of data is prevented. An active high enable input is also 
sometimes referred to as the Chip-Select input, or CS (mainly in the case of VLSI chips 
having this input). In the case of gates or chips where the Enable input is active low, 
it is sometimes referred to as an Inhibit input, I, as, when taken high, it inhibits the 
gate operation. 

The main use of tri-state gates is in driving logic lines or the connectors in a data bus 
(a contraction of the older term "bus-bar' meaning a conductor providing a voltage or 
current, often from a power source, to many other devices). For example, in the 
connection of a microprocessor to RAM chips, it is necessary at some time that the 
microprocessor sends binary data to the RAM; and at other times, the microprocessor 
must read that data back from storage in the RAM chips. It is conventional to use the 
same connecting pins for routing this data to and from the microprocessor, which is 
hence known as a hi-directional bus. It is therefore necessary that in the first instance, 
the microprocessor must be in control of the logic state of the bus lines in placing the 
data to be stored upon the bus, and in the second case control is allowed to a RAM 
chip which then places its data upon the bus. This is not possible using conventional 
two-state outputs, which if used in both the microprocessor and RAM would soon 
lead to the destruction of both whenever there was bus contention, i.e. one component's 
output stage driving a bus line high, while at the same time the other component's 

(a) 
E (enable) 

A 

E (enable) Output 
, , ,  

0 High Z 
0 High Z 
1 1 
1 0 

(b) (c) (d) 
E E E 

. . . .  

Figure 10.23 Tri-state buffers (a) Inverting, active high enable with truth table (b) Non-inverting, active high 
enable (c) Inverting, active low enable (d) Non-inverting, active low enable 
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Figure 10.24 Bus contention when using 2-state drivers (or tri-state drivers both enabled in error) 

output drives it low, leading to a large and destructive current flow through both of 
the 'on' transistors as well as along the bus line, as shown in Figure 10.24. The solution 
to this problem is to use tri-state outputs on both microprocessor and RAM, and to 
arrange some control circuitry such that at any one time only one of these components 
can have its outputs enabled, i.e. placed in either the 1 or 0 conventional output states. 
At this time all the other component outputs connected to the same bus lines must be 
disabled by being placed in the Z state. Reliable operation of this control circuitry 
is essential if destruction of the components is to be avoided. The 'bus' may therefore 
be regarded as a highway for data, and the high impedance property of the tri-state 
gate allows the data lines leaving a particular device to be effectively isolated at will 
from the bus system. 

Figure 10.25 shows a diagram illustrating the use of tri-state buffers. Data from 
Device A can only be transferred to the system interconnecting bus when an active low 
signal is applied to the tri-state buffers via EA and can be transferred from the bus to 
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Figure 10.25 Device connection to system data bus via tri-state buffers 
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Figure 10.26 Bi-directional tri-state connection o f  a device to a sys tem bus 

Device B when an active low signal is applied via E~. To ensure that none of the other 
devices connected to the bus system is simultaneously transferring data to the bus, 
their enable signals must not be activated. This could be achieved by connecting all of 
the enable lines controlling the output devices A, C, and D in Figure 10.25 to successive 
active low outputs of a decoder chip (see Chapter 5) only one of whose outputs may be 
low at any instant. Nevertheless, if (due to a fault) there is more than one enabled gate 
connected to any one logic line then it is likely that all the gates so enabled in error will 
be damaged. Use of open collector drivers avoids this problem at the expense of slower 
bus operation. This theme is developed in more detail in the discussion of ROM 
devices in Chapter 11. 

In some cases, data has to be transmitted both from the device to the bus as well 
as from the bus to the same device. This will require a bi-directional capability, 
as illustrated in Figure 10.26. The transmission and the receipt of data is controlled 
by the two enable signals E~ and E2. When E2 = 0 and E2 = 1, data is transmitted from 
the device to the system bus; when El = 1 and E2 --0,  data can be received by the 
device from the system bus. Clearly E l - - E 2  = 0 is not allowed in this circuit. 
If E~ = E2 = 1, both the device buffer and the bus buffer are in the Z state and data 
cannot pass in either direction. In certain applications, this last case may not be 
required, in which case the data transmission direction can be controlled by a single 
line E~, and E2 is connected to E~ through a logic inverter. 

I0.18 Other interfacing components 

The variety of other interfacing components that may also be used between digital 
systems and non-digital systems is almost inexhaustible. They include the following: 

1. Electromagnetic actuators of many designs, which may be regarded here as 
inductive coils that may be driven in a manner similar to electromechanical relays. 

2. Limit switches that sense the position of mechanical components, often operating 
at the allowable extremes of motion, either for signalling an absolute reference 
position to an incremental encoder, or for emergency signalling to a digital system 
of an undesirable mechanical condition which is about to occur. 

3. Stepper motors, which are used for driving mechanical components under digital 
control. The most common types have a shaft that rotates a small angle (often 
1/200 or 1/400 part of one revolution) on receipt of one set of driving pulses, 
although linear steppers are also available. Mostly these are magnetically driven, 
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but the piezoelectric effect has also been used in precision stepper motors. 
The design of driving systems for stepper motors is a specialist topic, and a non- 
specialist will normally use one of the proprietary systems available. 

4. Electro-rheological components, employing a special fluid whose mechanical 
properties change, e.g. reversibly from a liquid to a solid, under the application of 
an electric field typically of the order of 5 kV mm -1. These components often have 
special driving requirements (several kV, in order to generate the required electric 
fields). These are usually catered for by custom-designed systems. 

5. Displays of various kinds, including cathode ray tubes (CRTs), alpha-numeric 
LED displays, LCD panels of varying sizes and performance (colour or mono- 
chrome), and plasma display panels. Mostly the systems involved in driving these 
displays will include D/A converters for controlling the individual beam bright- 
nesses in CRTs, and open collector drivers for the other types of displays. 

6. Magnetic disc drives and CD-ROM/RAM drives, for data storage in computing 
equipment. Mostly these will be controlled by dedicated IC driver systems, 
incorporating several specialised sub-systems. These include mechanical actuators 
interfaced as electromechanical relays, and stepper motors for positioning the read/ 
write heads. For rotating the disc, conventional motors are used, also interfaced in 
a manner similar to electromechanical relays. Signal recovery amplifiers are inter- 
faced to the digital system using Schmitt input gates. Sub-systems for data recording 
usually require TTL-compatible voltage level inputs from conventional gates. 

Specialist knowledge of the characteristics and intended use of all these components 
is needed for the design of the digital systems which need to use them. 

Problems 

10.1 In Figure P10.1, one input of the NAND gate is taken to logic level 1 and 
a slow square wave logic signal is connected to the other input. Sketch the 
waveforms at points A and B. The frequency of the square wave is then increased 
gradually. Explain, with sketches, what you expect to happen to the waveforms at 
points A and B. What happens if one input of the N A N D  gate is now taken to low 
logic level and the other is taken to the same square wave as before? 

2 7 0 ~  A 

, , l 
1000 pF 

• 
Figure PIO.I 

10.2 A certain video monitor can display video signals with a maximum frequency 
(i.e. its video bandwidth) of 5 MHz and it operates at 25 frames (i.e. complete 
pictures) per second. Suppose that one frame is stored in binary form by 
measuring the displayed brightness twice per cycle of the maximum displayable 
video frequency (i.e. 10 x 10 6 times per second), and each of these measurements 
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is converted into a one-byte binary integer. How many bytes of storage 
(approximately) would be needed to store one frame? 

10.3 A standard CD plays for a maximum of 74 minutes, and the two-channel 
audio signal is sampled at 44.1 kHz with 16 bit precision. Estimate the 
maximum storage capacity of a CD, assuming that no data compression is 
used. (This crude estimate will not account for any space taken up by the file 
directory structure.) 

10.4 A digital audio tape system stores all samples to 20 bit precision. Estimate the 
signal-to-no~se ratio of replayed sounds, assuming that all the noise generated in 
the system is 'quantisation noise', originating from the approximation of 
the required analogue signal as a series of voltage levels, equally-spaced by 
a difference corresponding to the significance of the least significant bit. 

10.5 In general, ifn bits are needed to represent a particular range of values in binary, 
what is the minimum number of bits needed to represent the same range in Gray 
code': 

10.6 Using the conversion equation g~.--hk+l @hk (where h~. is bit number k 
(numbering from right to left, i.e. LSB to MSB) of the binary code, and gk is bit 
number k of the Gray code), design a sequentkd circuit which will convert any 
3-bit binary code to Gray code, using only one XOR gate, one shift register, and 
some other logic. The input binary code is to be held initially in the shift register, 
to be replaced eventually by the final Gray code. (Assume that a suitable clock line 
is availablc.) 

10.7 The following table shows a conversion from binary DCBA to a different coding 
D'C't fA'  (actually a modified form of Petherick Code). Assuming that unlisted 
states are "don't care' states, use four Karnaugh maps to find expressions for 
D', C', B', and A' in terms of A, B, C, D. 

D C B A D' C' B' A' 

0 0 0 0 0 0 1 0 
0 0 0 I 0 1 1 0 
0 0 1 0 0 1 1 1 
0 0 1 1 0 1 0 1 
0 1 0 0 0 1 0 0 
0 1 0 1 1 1 0 0 
0 1 1 0 1 1 0 1 
0 1 1 1 1 1 1 1 
1 0 0 0 1 1 1 0 
1 0 0 1 1 0 1 0 

10.8 The circuit diagram of an incremental shaft encoder is shown in Figure P10.8, 
together with the two waveforms X and Y (in quadrature) produced as the 
shaft rotates. If the rotation changes direction, the phase difference between X 
and Y reverses. For X and Y waveforms as shown, draw the waveforms at CLK 
and Q, and explain how the circuit operates. What  is the function of the RC 
network? 

10.9 For the circuit in Figure P 10.9, find the Boolean Algebra function for the output f 
and write down the truth table. 
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10.10 The 'totem-pole' TTL output in Figure P10.10 is at a high logic level. Deduce 
whether Q3 and Q4 are ON or OFF. 

10.11 Logic gates made using a certain process have the following characteristics: 

M i n i m u m  M a x i m u m  

Current available at logic low from gate output: 
Current available at logic high from gate output: 

4 mA 10 mA 
- 15 m A  - 3 0  mA 

It is required to use one of these gates to drive an LED indicating the logic state 
of the gate. The LED requires 10 mA and drops 1.4 V. The supply lines, and the 
logic levels, are at 0 V and +5 V. Show how you would connect the LED and 
the gate, using other passive components but no other active components. 

10.12 A CMOS logic gate drives a long transmission line which has a stray capacitance of 
150 pF between the signal conductor and ground. The signal to be transmitted is a 
logic signal of average frequency 20 MHz, and the logic voltages are 0 V and 5 V 
respectively. The current drawn by the logic gate is dominated by that needed to 
drive the transmission line. Estimate the average current drawn from the supply. 

Figure P10.8 

Figure P10.9 
Figure P10.10 



�9
 

�9
 

�9
 .

. 
~ 

~
r~

'=
 

--
-.

~
 

~ 

2 
- 

"*
 

N
" 

O
 

=o
 ~

 
=

~
 

~ 

..
" 

~ 
-
-
 
m
 

~
 

o 
o 

= 
-.

 

~
.~

 
~ 

~
-~

 

_ 
=

~
1

7
6

 

B
 

"I
 

~ 
~ 

~-
- 

~ 
~'
~ 

~-
- 

~ 
r,

 
--
. 

~ 

_
.-

 
-.

 
~

=
~

-
 

�9
 

::
::
~ 
~ 

~ 
~,
,~
 
I:
::
: 

~ 
--
. 

K
~

o
- 

' 
=

-
 

~"
 

-9
. 

o 
- 

=
*

 

- 
.~
 

~ 
- 

~,
 

r
-
~
-
~
4
 

~
-

~
.

 
~ 

_ 
= 

~ 
~,
 

F,
,"
 ~
-
 

2 ~
" 

~ 
~ 

~ 
~ 

=
r 

~ 
~ 

~ 
~ 

-"
 

t~
 

~-
-~

 
, 

�9
 

N
 

"I
 

O
 

�9
 

< 



Programmable logic devices 327 

Input addrest[ Address 
~n ldec~ - n_to_2 n 

lines 

Line0 
Line 1 2 

Line 2 n--1 ! 

Register0 
Register 1 

Register 2n-1 

Iou, ut,ri-state  u.ersl : 

+o' utput data lines 

Fignre 11.1 The internal block structure o f  a R O M  

w 

CS 
OE 

shown in Figure 11.1. The ROM has n address lines and, since there are 2 ~ possible 
combinations of n binary digits, the chip will house 2 ~ registers. Each register is 
identified or addressed by one of the 2" output lines of the internal address decoder 
contained within the ROM chip. 

In the ROM shown in Figure 11.1, each register contains p bits, and so the total 
storage capacity of the ROM is p x 2 ~ bits. For a typical word length p -  8 and 
a typical number of address lines n -  12, the total storage capacity is 8 x 212= 
32768 bits. A group of eight binary digits is often referred to as a byte, so that 
the storage capacity of this particular ROM is 212 --4096 bytes, or 4Kbyte, 
where K means 1024 and is pronounced 'kilo' by analogy with the usual measurement 
unit prefix. This memory chip may also be described as a 4K x 8 ROM, or as a 4K 
byte-organised ROM. 

When a ROM is incorporated into a digital system where communication between 
devices is via an interconnecting bus system, two control signals are normally required. 
In many applications, for example a microprocessor system, where a number of ROMs 
may be used to store a program, only one ROM must be connected to the bus system 
at any given instant. The ROM to be connected to the bus will be identified by 
activating its chip select (CS) signal. Additionally, the ROMs may be connected to 
the bus system via tri-state gates which are in the high impedance state until they 
are enabled by an output enable (OE) signal. Once enabled, the data at the input to the 
tri-state buffers will be transferred to the bus. 

Computer systems also use large numbers of random access memory (RAM) chips to 
store temporary results of computations and processing. There are two main types 
of RAM: static RAM, in which each bit of data is stored on the equivalent of a single 
D-type flip-flop, and dynamic RAM, in which each bit of data is stored as an electrical 
charge on the gate capacitor of a MOSFET.  Since the capacitors are not perfect and 
the charge leaks away after l ms or so, the charge must be 'refreshed' regularly. 
The advantage of static RAM is that refreshing is not needed, whereas the advantage 
of dynamic RAM is that the 'packing density' (number of stored bits per chip) of 
available devices is much greater than on available static RAM devices. RAM chips 
have an internal structure similar to ROM chips except that data can be stored an 
unlimited number of times in any or all of the memory locations. This data is generally 
lost when power is removed from the RAM chip, that is, the data is, said to be 'volatile', 
although special 'non-volatile' RAM chips are also available. Therefore, a RAM needs 
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a third control signal, the write (WR) or read(RD) signal. If WR is activated simultan- 
eously with CS, data is transferred from the RAM data lines to the internal data 
register selected. However, if WR is not activated then the RAM behaves similarly to a 
ROM chip. Apart from this extra signal, RAM circuitry is in principle similar to ROM 
circuitry, except that to be useful RAM must first have data stored in it and this limits 
its use almost exclusively to computer and microprocessor systems which are outside 
the scope of this text. 

ROMs are, by definition, non-volatile memories because the program written into 
the memory, when it is initially programmed, remains stored when the power is 
removed. Because of its non-volatility, ROM is typically used for basic program 
storage and also for the storage of unchanging data patterns. 

There are several main categories of ROMs currently available: 

1. Mask programmed by manufacturer. The data stored in the ROM, the 'contents', are 
programmed by the manufacturer during fabrication according to a specification 
supplied by the customer. This type of ROM is only suitable when the designer's 
required data or program has been extensively tested and verified to avoid errors, as 
it is not possible to change the stored data after fabrication and packaging. 
Programming these devices during manufacture requires expensive equipment and 
is economic only for very high volume applications and, in addition, there may be 
some delays before the final devices are produced. 

2. PROMs (Programmable ROMs). The PROM contents are written into the PROM 
by the user with the aid of a piece of equipment known as a 'PROM programmer'. 
Programming this type of ROM is essentially an irreversible process, so this type is 
sometimes referred to as 'One-time programmable'  (OTP). Since PROMs are 
relatively cheap, they are often used in the early stages of product development 
when considerable changes may have to be made to the stored program, as 
the changes can be made by simply programming another PROM by the user. 
When the design has been finalised, the data may be sent to a ROM manufacturer 
for mass production of a high-volume mask-programmed ROM dedicated to 
the proven design. Alternatively, low-volume applications can continue to use 
individually programmed PROMs. 

3. EPROMs (Erasable PROMs). The contents are programmed electrically by the user 
but can be subsequently erased, followed by loading new programming informa- 
tion. This is achieved by shining Ultra-Violet (UV) light, from a special UV source 
designed for EPROM erasure, for a period of 10 to 20 minutes through a trans- 
parent window on top of the ROM package. This type of ROM may therefore be 
recognised by the presence of this window, usually around 10 mm • 10 mm, through 
which the actual ROM chip may be seen. Like PROMs, EPROMs can be used for 
system development as well as for low-volume production, in which case it is 
normal to cover the window with opaque tape to prevent inadvertent erasure of 
the EPROM contents. Often the manufacturers state a limit of perhaps 100 UV 
erasures that can be undertaken with any one EPROM before the erasure and 
storage become unreliable. 

4. EEPROMs (Electrically Erasable Programmable ROMs). This type of user-program- 
mable ROM can have its program completely erased electrically. However, there is 
a limit to the number of times that the stored data can be erased and the device 
reliably reprogrammed, so EEPROMs are not a substitute for genuine RAM. 
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A typical example of an EPROM is the TMS27128 containing 131072 bits 
(16Kbyte). Before programming, the chip is erased by UV radiation (so that all 
bits are set to 1), and after erasure, 0s are programmed in those locations specified 
by the designer. The TMS27128 EPROM is packaged as a 28-pin IC; further 
increase in storage capacity (with the same control facilities) requires an IC having 
more than 28 pins. The TMS47256 ROM has a storage capacity of 262144 bits 
(32Kbyte) but with simpler control facilities fabricated as a 28-pin IC. 
The Appendix on Functional Logic Symbols describes in detail the symbols for 
these devices. 

11.3 ROM timing 

The time between the arrival of a valid address at the address pins and the appearance 
of valid data at the data output pins is termed the memory access time. For typical 
EPROMs, the chip select and output enable lines also determine the time taken to read 
data from the chip. 

To specify this more precisely, manufacturers publish timing diagrams showing 
diagrammatically the typical logic waveforms to be expected at the various pins of 

the ROM while it is undertaking 
I I 1 I 

-" ta '*"  "-'ta~"" certain tasks. The usual conventions 
1 \ i  ' '  \ j  used on timing diagrams relevant to 

A Val~addross A the read timing cycle are shown in 
0 . . . . . .  Figure 11.2. Transitions between 0 and 1 

--~ tb ~- are shown as sloping lines; this indicates 
1 

High Z "////////', that logic transitions take a non-zero time. 
. . . .  i\\\\\\\~ For example, the transition time for a 

0 , , change of address is &. The ROM data 
' ' output lines will often start in the high 

Figure 11.2 Timing diagram conventions impedance Z state (indicated schemat- 
ically by a level halfway between 0 and 1) 

before changing to the correct data (either a 1 or 0 output, indicated by two levels 
simultaneously on the diagram as either value could be selected) during a time less 
than tb. 

For example, the read cycle of the TMS2764 (an 8 Kbyte EPROM), which uses these 
conventions, is illustrated in Figure 11.3, and the following timing parameters are 
specified on that diagram: 

1. ta(A): memory access t ime-  the maximum time taken from the arrival of the address 
at the address pins to the appearance of valid data at the output pins. 

2. ta(E): chip select access t i m e -  the maximum time taken from E (= CS) becoming 
active (low logic state) to the appearance of valid data at the output pins. 

3. ten(G): output enable t i m e -  the maximum time taken from the enable signal 
G (= OE) becoming active (low logic state) to the appearance of valid data at the 
output pins. 

4. tdis(G): output disable t ime-  the maximum time taken to disable the tri-state gates at 
the output and return them to the high-impedance state. 
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Figure 11.3 ROM read cycle timing./or TMS2764 

11.4 Internal  R O M  structure 

Both bipolar and MOS technology are used in the fabrication of ROMs. The signi- 
ficant differences between the two technologies are speed and packing density. 
Bipolar ROMs generally have shorter access times while MOS ROMs have a higher 
packing density. This means that they can accommodate a larger number of memory 
cells in a given space. 

The array of registers shown in Figure 11.1 is frequently called the memory matrix. 
A simple ROM matrix is shown in more detail in Figure 11.4, and consists of  two sets 
of intersecting and orthogonal bus-bars. The vertical lines, connected to the output 
of the address decoder, are called the word lines, and in this simple model there is 

Address lines 

I I 
Address Decoder 

O0 01 10 11 

I 

. r .v 
R lin~'( +v +v 

" ~ + V  

m 

RD 

Output 
lines 

Word lines 

Figure 11.4 A 4 x 4-bit bipolar R O M  addressed in one dimension only 
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a separate word line corresponding to each addressed ROM register. The horizontal 
lines, called the bit lines, are connected to the inputs of the tri-state buffers whose 
outputs are the data outputs of the ROM. Figure 11.4 shows a trivial ROM with 
capacity 4 • 4 bits. 

In the case of a ROM manufactured using bipolar transistor technology, words 
are programmed into the ROM at each register address by making a connection to 
a bipolar npn transistor at each bit location required to be at logic 1. (This is shown 
in Figure 11.4 for the top three bits of location (00)2, for example; the full ROM 
contents in Figure 11.4, given in hexadecimal for ascending addresses, are E, 7, D, and 9). 
The output on a bit line depends on whether it is electrically connected to the 
addressed word line via an npn transistor. If the connection exists when a word line 
is addressed, the bit line is raised to 1; if not, it remains at 0. In this way the 
programmed word at the selected address is transferred to the inputs of the tri-state 
buffers. The tri-state gates are enabled when the chip select signal CS is low and the 
read signal RD is high. When this condition is satisfied, the selected word is transferred 
to the data lines. 

PROMs fabricated using bipolar transistors have an overall internal structure 
almost identical to that of the ROM shown in Figure 11.4. However, a 'fusible link' 

is connected in series with the emitter of a transistor at every 
R I Bit position of the array (see Figure 11.5). A fusible link is a tiny 

- - ~  ; I } line fuse that can be either shorted as manufactured or open, 
- -  Word ' ' 

line ~ following vaporisation by sending a large current through it. 
As all the fusible links are originally shorted, all the corres- 

+ v  
ponding data bits are initially set to 1; the PROM programming 

l~igure ll.5 Fusible treks equipment changes the bits required to be 0 by vaporising the 
used in a bipolar P R O M  

corresponding fusible links so that they are open. Once program- 
med, bits already changed to 0 clearly cannot be changed back 

to 1, although if necessary it is usually possible to change to 0 a bit that is still equal to 
1, thus giving a very limited amount of reprogrammability. If the word line associated 
with the transistor is selected, it is turned on by the potential applied to the base so that 
the voltage between collector and emitter is approximately zero and the voltage V is 
transferred to the bit line. 

EPROMs and EEPROMs also use the same basic structure but have specially 
developed technology using floating gate MOSFETs (i.e. with no electrical connection 
to the gate) as a basic charge storage element, rather than fusible links. This is similar 
to the technology of dynamic RAMs but in this case the charge does not leak away 
significantly over a long period of time. The charge stored on the floating gate can be 
released, thus erasing thedata,  by UV radiation in the case of EPROMs, or electrically 
in the case of EEPROMs. 

11.5 Implementation of Boolean functions using ROMs 

A schematic way of representing a programmed 64-bit ROM is shown in Figure 11.6. 
Each word line corresponds to one of the eight minterms possible from three address 
input lines ABC. Eight different Boolean output functions are shown as examples, 
each one corresponding to one of the available eight bit lines. The intersections of the 
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(a) 

Address 

A B C 

0 0 0 
0 0 I 
0 I 0 
0 I I 
I 0 0 
I 0 I 
1 I 0 
1 I I 

Output functions 

z~ z2 Z3 Z4 Zs z6 Z7 Z8 

I I 0 1 I 0 0 1 
0 0 0 I 0 0 0 0 
I 0 I 0 I 0 1 0 
I 0 I 0 I 0 0 0 
I 0 I 0 I 0 0 0 
0 0 0 I 0 I I I 
0 0 I 0 0 0 0 0 
0 1 I I I 0 0 1 

(b) 

mo= ;4BC 

ml =,I~BC 

m2 = ,~BC 

rm= ABC ~, 
C 

m4 = A B C  .=_ 
r 

ms = A B C  

m6 = A B C  

rm= A B C  

f 

) 

) 

) 

( 

( )( 

( 

/ 

Word lines 

,~, ),, )( 

) '  )( )( 

,,,, Za = mo + m5 + m7 

Z 7 = m2 +m5 

Z6=ms 

)( Z5 =mo+m2+rn3+m4+m7 

)( 7-4 =mo+ml+m5+m7 

, ,  Z3 = m2+rn3+m4+m6+m7 

) (  Z2 = mo+rn7 

Zl = mo+m2+rn3+m, 

mo m~ m2 m3 m4 m5 rn6 fro 

Figure 11.6 Implementation o f  eight BooleanJimctions using a 64-bit R O M  (a) Truth table (b) Connection matrix 

bit lines and word lines marked with a cross are those bits in the ROM that are set at 
logic 1; the unmarked intersections are those set at logic 0. Any particular bit line 
takes on the Boolean value of the bit stored at its intersection with the currently 
selected word line. Therefore, a cross indicates that its corresponding minterm is one 
of the terms in a Boolean canonical sum-of-products expression for its corresponding 
output function; in other words, each output function is the Boolean OR of the 
minterms marked with a cross on that bit line. When implementing Boolean functions 
with a ROM, simplification of the functions is neither necessary nor relevant, as 
they are implemented directly as a sum of minterms. For example, the output Z8 in 
Figure 11.6 is given by 

Z8 -- mo + m5 + m7. 

Many of the functions available on MSI chips, such as those described in Chapter 5, 
can be readily implemented by a ROM. For example, a BCD to 7-segment decoder can 
be implemented with a 16-byte (128 bit) ROM as shown in Figure 11.7. Since there are 
only seven segments, one column in the truth table, corresponding to the eighth output 



Programmable logic devices 333 

a 

' l g l  b 

d 

N B C D  Seven-segment 
inputs outputs 

P Q R S  X a  b c d e  f g 

0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  

0 1 1 1 1 1 1 0  
0 0 1 1 0 0 0 0  
0 1 1 0 1 1 0 1  
0 1 1 1 1 0 0 1  
0 0 1 1 0 0 1 1  
0 1 0 1 1 0 1 1  
0 0 0 1  1 1 1 1 
0 1 1 1 0 0 0 0  
0 1 1 1 1 1 1 1  
0 1 1 1 0 0 1 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

0000 

0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 

1001 
1010 

1011 
1100 
1101 
1110 
1111 

t ~  J 

i 

"( ) 

",( ) 

) 

) (  

I N 

I N 

mm 
mlm 
mu 
mm 
mm 
mm 
ml 
mmm 
mmm 
~ n  

\ 

i 

( ) (  , 

,L, 

( ,' 

/ x /  
x / x  

X a b c d e f g 

(a) (b) 

F i g u r e  11.7  (a) Truth tab&for an NBCD to 7-segment decoder (b) Decoder implementation using a 128-bit R O M  

line on the memory matrix, can be regarded as a 'don't  care' column whose entries can 
be either 1 s or 0s at will. In this example 0s have been selected for all the entries in the 
column labelled X. Similarly, for those addresses selecting the invalid codes, the 
entries in the truth table are 0. Alternative designs might either use output X to indicate 
out-of-range input values, or else decode the full range of input minterms to give the 
appropriate hexadecimal displays required of a 4-bit binary to 7-segment decoder. 
The completed truth table can now be used as programming instructions for the ROM 
to be used as a decoder. 

Static 1-hazards, similar to those generated in combinational circuits implemen- 
ted with conventional gates, can also be generated in ROM implementations of 
Boolean functions for exactly the same r e a s o n -  i.e., because of the time delay that 
exists between a true and complemented variable when the complemented variable 
has been generated by inverting the true variable. In fact they are more likely in the 
ROM-based version, precisely because there is no possibility of using redundant 
groupings in the ROM to eliminate them. For example, suppose a 4-variable 
function f implemented by a ROM contains the two minterms ABCD and 
ftBCD. When either of the two combinations of the variables A, B, C and D 
representing these minterms appears at the input terminals of the address decoder 
the function has the value f -  1. If, initially, the input is ABCD and it then 
changes to /IBCD, the output of the ROM internal decoder for word line 6 will 
change from 1 to 0 when C changes from 1 to 0, and the ROM internal decoder 
for word line 4 will change from 0 to 1 when C changes from 0 to 1. Since C is 
generated internally by inverting input C, the change in level of word line 4 occurs 
a short time after the change in level of word line 6. For this reason, f will fall to 0 
for a very short period of time before returning to the value f -  1, thus generating 
a static-1 hazard. 
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11.6 Internal addressing techniques in ROMs 

The connection matrix shown in Figure l l.8(a) is for a ROM addressed in 
one dimension only. The total capacity of this ROM is 2 x 8 = 16 bits, and the 
Boolean functions generated by it are 

Z I  = m2  + m s  + m7 

and 

Z 2  = mo  + m4  + m s  + m7.  

For this method of addressing, a total of ten connections to the ROM matrix is 
required, made up of eight word lines and two bit lines. 

BC 

"11 
12 
13 
14 

z, Z2 

u I  
A ~  

Zl z2 

AB 

01 
10 
11 

D•00 01 10 111 
Four-input I 
multiplexer J Iz 

(a) 

Figure I 1.8 
one four-variabh, Boolean function using a two-dimensional addressing scheme 

ABCD - 8421 

(b) (c) 

(a) A 2 x 8 bit word ROM addressed in one dimension, and (b) in two dimensions (c) Generation of  

An alternative, two-dimensional, method of addressing a ROM is illustrated in 
Figure 11.8(b). Examination of the connection matrix shows that the same Boolean 
functions are generated as in the previous example. In effect, each bit line has 
now been split into two sections, and selection of the appropriate section is done 
by a 24o-1 multiplexer which is controlled by the Boolean variable C. Using this 
two-dimensional addressing technique, there is a reduction in the number of 
connections to the ROM matrix. Now, a total of only eight connections to the ROM 
matrix is required, made up of four word lines and four bit lines, a reduction of two 
when compared with the one-dimensional addressing technique. 

The larger the number of input variables, the more significant this reduction in 
matrix connections becomes. For example, the same ROM matrix in conjunction 
with a 4-to-1 multiplexer can be used to generate the 4-variable function 
Z = ~ 0 ,  5, 13, 15 as illustrated in Figure 11.8(c). Again, a total of just eight 
matrix connections is required in this implementation. However, if the same 
function had been generated by a ROM addressed in one dimension, 17 matrix 
connections would have been required, consisting of 16 word lines and one bit line. 

There are significant advantages in addressing large-capacity ROMs internally in 
two dimensions. For example, a 1024 x 8-bit ROM, using one-dimensional 
addressing, would require a 10-to-1024 line internal address decoder and eight 
bit lines, giving a total of 1032 connections to the ROM matrix. By comparison, the 
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two-dimensional addressing scheme shown in Figure 11.9 uses six of the input 
variables, A, B, C, D, E and F, to drive a 6-to-64 line address decoder, while the 
other four variables, G, H, I and J, are used to provide the control signals to eight 
16-to-1 multiplexers. For this scheme, a total of only 192 connections needs to be 
made to the ROM matrix, consisting of 64 input (word) lines and 8 • 16 = 128 
output (bit) lines. Since connections take up valuable space on the ROM chip, this 
represents a considerable saving when compared with the one-dimensional 
addressing scheme. 

6 - t o - 6 4  6 4  x 128 bit 
O _! line 
E -J decoder  I I orroy 

8 x 1 6 - i n p u t  ' ' 

I I I I I I 1 1  
z) z2 z3 z4 zs z~ z7 zs 

Figure 11.9 Structure o f  a 2K-byte R O M  addressed in two dimensions 

11.7 Memory addressing 

One typical application for memory chips is to provide storage for programs and data 
in a microprocessor system. It is common practice for a number of memory chips to 
provide this function, each of them having their output lines connected to the 
system data bus via tri-state gates. At any given instant only one address location 
can be accessed, so that only one memory chip can be connected to the system data 
bus at that time. Consequently a common task facing the system designer is to 
arrange the selection of one out of a number of memory chips by the microprocessor. 

For example, consider the microprocessor system shown in Figure 11.10. The micro- 
processor itself has 8 data lines and a total of 20 address lines (i.e., a possible total 
addressing capacity of 8 • 22o = 1Mbyte). The total storage capacity required by this 
system, however, is only 128Kbyte which is provided by eight 16Kbyte memory chips. 
Address lines A1 to A14 inclusive are required to address the 16384 locations on 
each memory chip. A 3-to-8 line decoder is used to select a single memory, chip 
(actually almost always providing active-low CE signals, one for each memory chip). 
Selection of one of the eight chips is provided by the three address lines A 15, A 16 and 
A17 which are used as the input select signals to the decoder. 

The remaining three address line outputs from the microprocessor could be left 
unconnected. However, in this case, to ensure that a particular location in the memory 
can only be accessed by a unique address, a system of absolute decoding is employed. 
Address lines A 18, A 19 and A20 are connected to an OR gate whose output is connected 
to the active low enable inputs of the decoder. The decoder is enabled only when 
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0 0 0 O0000-03FFF 
0 0 1 04000-07FFF 
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0 1 10CO00-OFFFF 
1 0 0 10000-13FFF 
1 0 1 14000-17FFF 
1 1 0 118000- 1BFFF 
1 1 1 1C000-1FFFF 
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IC 4 
IC 5 
IC 6 
IC 7 
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A 18 = A 19 - -  A20 = 0. Any other combination of these three address signals will disable 
the decoder. If this were not done, and the address decoder were always enabled, then 
each memory location could be accessed at any of eight possible addresses sent out by 
the microprocessor, i.e. at its base address plus an integer multiple (up to 7 times) of 
217. Sometimes this can be advantageous to the programmer, and is termed 'memory 
fold-back'. The various combinations of the decoder select signals A~5, A~6, and A17 
are tabulated in Figure l l.10(b) with the corresponding address range for each 
memory chip using the assumption that A~8 = A19 - -  A20 - -  0. 

A common output enable (OE) signal is supplied to each of the eight memory chips. 
This signal, in conjunction with the individual chip enable signals, enables the output 
tri-state gates of the selected memory chip. 

11.8 Design of sequential circuits using ROMs 

ROMs can also be used for the implementation of clock-driven sequential circuits 
and, as an example, the NBCD invalid code detector, designed in Chapter 8, using 
JK flip-flops and N A N D  gates will be implemented here using a ROM. 

In this problem, serial NBCD data arrives on line X, with the most significant digit 
first. Each data bit is synchronised with a clock pulse. It is required to design a circuit 
using a ROM that generates a fault signal Z = 1 each time an invalid code is received. 

The block diagram and the internal state diagram are shown in Figures 11.11 (a) and 
(b). The state table (Figure 11.1 l(c)) is shown in a suitable form for programming 
a ROM. For example, in the first row of the table, the current input to the ROM is 
A = 0 ,  B = 0 ,  C = 0 ,  a n d X - - 0 ,  and the ROM output word is A = 1, B = 0 ,  C = 0  
and Z = 0. Using this state table, the ROM design can be developed, as illustrated in 
Figure l l . l l (d) .  This implementation (using two-dimensional addressing) requires 
an 8 • 8 = 64-bit ROM. 

Besides the ROM, additional logic is required to produce the output signal 
Z = ABC_n_, and also three D-type flip-flops are required, one in each address line to 
buffer the ROM outputs from the inputs and to synchronise the operation of the circuit to 
the clock. These additional components with their connections to the ROM are shown in 
the circuit diagram in Figure 11.11 (e). The outputs from the ROM on the lines A, B and C 
are transferred back to the input of the ROM on the trailing edge of the clock pulse. 

11.9 Programmable logic devices (PLDs) 

Clearly, each additional address line or input variable doubles the size of ROM 
required. A ROM having 12 address inputs requires 2 1 2 =  4096 internal word lines 
and the storage capacity is 4096 • 8 - 32768 bits. In a ROM of this size, all of the 4096 
possible minterms are represented internally, and any eight of the 2 4 0 9 6  possible 
Boolean functions of 12 variables can be generated. In practice, the designer may 
require to use only a small percentage of these and this would mean uneconomic use 
of the ROM. Because of this disadvantage, programmable logic devices (PLDs) 
have been developed that provide the advantages of ROM-based design, tailored 
to typical system requirements, and which can provide a more economic implemen- 
tation of Boolean functions in those situations where a ROM would not be economic. 
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Several main categories of programmable logic devices are available. The Program- 
mable Gate Array (PGA), the first PLD to be developed, provides a single level of logic 
such as an array of multi-input AND gates. Developed from these was the Program- 
mable Logic Array (PLA), which, in essence, actually consists of two logic arrays, 
a programmable AND array and a programmable OR array. A PLA is capable 
of implementing any logic function in two level sum-of-products form. A special case 
of the PLA, and one of the most widely used programmable logic devices, is the 
Programmable Array Logic (PAL) device, consisting of a programmable AND array 
with a fixed OR array and bi-directional input/output pins. The Programmable Logic 
Sequencer (PLS) provides two levels of logic, usually an AND/OR array together with 
a number of on-chip single-bit memory elements, some of whose outputs are fed back 
to the inputs of the programmable array while others function as output latches. 

Uncommitted Logic Arrays (ULAs) are to PGAs and PLAs what mask program- 
med ROMs are to PROMs: i.e., the logic designer must send to the ULA manufacturer 
a complete and tested gate design to be implemented using that manufacturer's own 
general-purpose chip consisting of basic logic 'cells' that can be connected during 
manufacture in various different ways to produce different logic gates and therefore 
ultimately a semi-custom logic chip, economic only for complex systems in large quantities. 
For very complex systems in very large quantities, or if the system required has some 
feature(s) that cannot easily be implemented on a general-purpose programmable 
device, it may be worthwhile using fully-custom logic design, where a dedicated IC is 
designed from scratch, specifically for the logic system required. 

The prototyping tool most often used now for medium-sized logic circuit develop- 
ment is the Field Programmable Gate Array (FPGA). These currently represent the 
most complex form of development of PLDs. The distinctions between the various 
types of PLDs, PGAs, PALs, and FPGAs are largely ones of scale and the complexity 
and sophistication of the tools, both hardware and software, available from the 
manufacturers to aid design and prototyping. A PAL implies a design approach 
positioned, roughly speaking, halfway between that of a PGA and a FPGA. 

11.10 P rog rammab le  gate a r rays  (PGAs)  

As in the case of a PROM, programming of these devices is carried out by blowing 
fusible links at points in the logic array 

X V 

R 

X.X=O 

(a) (b) 

Figure 11.12 Fusible link arrangements for a PGA 
(a) The programmable AND array (b) The output 
)(OR gates 

specified by the designer. A typical 
arrangement is shown in Figure 11.12(a) 
where the input X and its complement X 
are both connected to the next gate in the 
array via separate fusible links. X and X 
are produced internally by buffer circuits 
having properties similar to open collector 
gates, and the vertical connecting line 
behaves as a pull-up resistor except that, 
as a result of special circuitry included 
in the PLD, there is no cross-interaction 
(via the vertical connecting line) from any 
variable to any other variable. Therefore, 
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Figure 11.13 (a) Block diagram of a PGA (b) Implementation of basic logic functions using a PGA 

the wired AND of all the connected variables is produced. In the context of PLDs, this 
is usually indicated by drawing a single input into an AND gate symbol, and as many 
variables or their complements as required can be connected to the input of the AND 
gate symbol. When neither of these links has been blown, the gate output is X . . ~  = 0; 
by blowing one or other of the two fusible links, either X or X are left connected to the 
gate input, and this will be ANDed with any other variables or complements also left 
connected to the same line. Alternatively, if both fusible links are blown, the variable X 
is disconnected and does not appear in the expression for the output from this AND 
gate symbol. These devices are 'one-time programmable' (OTP). 

A PGA may also have XOR gates on each of its output lines, connected as 
controlled inverters (see section 4.15). Typical connections to the XOR gate are shown in 
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Figure l l.12(b). When the fusible link is intact, the lower input to the XOR gate is 
grounded and it operates in transmission mode. If the fusible link is blown, that input 
rises to logic level 1, courtesy of the pull-up resistor, and the gate inverts the signal present 
at its other input. 

A block diagram of a typical PGA is shown in Figure l l.13(a). It consists of 
a number of input lines, one for each Boolean variable. Within the device, the 
complement of each of these variables is generated. The input variables and their 
complements are then fed to a programmable array of AND gates whose outputs are 
fed to the inputs of an array of XOR gates, operating as controlled inverters. 

A circuit diagram for a 4-input, 4-output PGA is shown in Figure 11.13(b). The main 
part of the AND array consists of intersecting vertical and horizontal lines. A cross at 
an intersection indicates the presence of an intact fusible link (i.e. a fusible link that the 
designer has not blown), and means that the variable identified by the intersecting 
horizontal line is one of the inputs to the wired AND gate identified by the intersecting 
vertical line. Since PGAs provide the designer with only a single level of logic, they 
have only very limited application. 

11.11 Programmable logic arrays (PLAs) 

A PLA consists of a programmable AND array, similar to that in a PGA, and which 
can be regarded as a Boolean product generator, together with a programmable OR 
array similar to the AND array except that each single-input OR gate symbol produces 
the OR of all the connected variables. The PLA can be regarded as a logical sum 
generator. Usually there are also programmable XOR gates, acting as controlled 
inverters, on each of the output lines. Some PLAs have tri-state buffers, having 
a common enable line, between the programmable XOR gates and the chip outputs. 
The connection matrices are again conventionally drawn as a group of intersecting 
lines, as shown in Figure 11.14, and the presence of a fusible link connection in the 
AND and OR gates is indicated by crosses at those intersections specified by the 
logic designer. Both mask and field programmable logic arrays are available; mask 
programmable devices (like mask programmed ROMs) are programmed by the 
manufacturer acting on the instructions of the customer, while field programmable 
devices (FPLAs) are programmed locally by the purchaser. A typical FPLA has 16 
inputs, 48 x 32-input AND gate equivalents, 8 x 48-input OR gate equivalents, and 8 
XOR output gates, or, alternatively, 8 tri-state output gates. Clearly, implementation 
on this FPLA is limited to functions that have no more than 48 product terms. 

A typical application for a PLA arises in code conversion. For example, the conversion 
from XS3 code to NBCD is shown in Figure 11.15(a). From this table the K-maps for 
the NBCD output signals P, Q, R and S are plotted and minimized in Figure 11.15(b). 
Some codes cannot occur in the XS3 code, giving rise to some 'don't care' cells (marked 'X') 
which aid the minimisation (see section 3.10). The equations of the output signals are: 

P -  A B +  ACD 

Q = BC + BD + BCD 

R = C D  + C D  - C O D  

S = D  

and the implementation of these functions on a PLA is illustrated in Figure 11.15(c). 
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Figure 1 1 . 1 4  Simplified diagram of a programmable logic array (PLA). Using the connections shown, this PLA 
produces the XOR and XNOR of two of the input variables 

It often happens that when an FPLA has been programmed, the AND gates may 
not all have been utilised. However, the programmer need not blow the corresponding 
fusible links since when they are intact the output of an unused AND gate is 
A - A .  B. B . . . . .  N .  N = 0 and so it will not affect the output of the OR array to 
which it is connected. Leaving unused fusible links intact will also provide a limited 
amount of flexibility to the programmer who, at some later stage, may wish to 
introduce an additional product term or, alternatively, modify one or more of the 
functions already programmed. 

PLAs can also be used for implementing more complex Boolean functions, such as 
(for example) the following four 6-variable functions: 

1 2 3 4 
f l = A CL)EP + A E F  + A CO + BD 

5 3 4 6 
f2 = A B E F  + A CD + BD + EF 

7 8 9 10 
f3 = A C D E F  + A B C D  + A CD + A B D  

11 2 4 12 6 
f4 = A C D E  + A E F  + BD + CD + E F  

There are 12 separate product terms in these four equations, each of them numbered, 
and none of them minterms. Since there are 12 product terms, the PLA must have 12 
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Figure 11.16 Boolean function implementation using a PLA 

AND gate equivalents for generating these terms. The AND gate outputs are fed to an 
OR array which needs the equivalent of four gates. There is a total of (12 x 12)+ 
(4 • 12)+ 4 -  196 locations for fusible links (each of which must be programmed 
as 0 or 1) on the PLA in the design shown in Figure 11.16. To implement the same 
four functions using a ROM would require a storage capacity of 2 6 bits for each 
function, or a total of 2 6 • 4 - 256 bits (i.e., 256 fusible links), and the functions would 
need to be expressed in canonical form. However, programming PLAs is often more 
complex than programming ROMs because PLAs are frequently used to implement 
Boolean functions with a larger number of variables. 

It will be recalled that the Boolean function f -  AB + A C generates a static 
1-hazard (if implemented as a minimised sum of products) when B = C -  1. In this 
case the equation reduces to f - A -t- A = 1, but because of the propagation delay in 
the inverter producing A, f -  0 is generated for a short period after A has changed 
from 1 to 0, giving a typical static 1-hazard. In general, this hazard is eliminated 
by adding the consensus term BC to the original expression which then becomes 
f = AB+ A C + BC. For the condition B = C = 1, the equation now reduces to 
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f = A + A + 1 and (irrespective of the timing of 
the changes in A and A) the output remains at 
f = 1 throughout, and the hazard is eliminated. 
In a discrete gate (SSI) design this requires an extra 
gate; when using a PLA implementation, elimina- 
tion of the hazard requires programming the addi- 
tional product term BC, as illustrated in Figure 
11.17. 

When implementing several Boolean functions 
on a PLA, minimisation of these functions does 
not necessarily offer the optimum implementation. 
For example, the two 4-variable functions 

1,2,3,5,6,7,10,11,12,13 

J~ = ~ 2 , 4 , 6 , 9 ,  12, 13 

have been plotted in Figure 11.18 and minimised in the normal way. The minimal 
equations are 

1 2 3 4 5 
f l  = A D  + A C + BC + A B C  + BCD 

6 7 4 8 
and f2 = A CD + B C B  + A B C  + A CD 

Each of the prime implicants has been numbered; eight product terms cover both 
functions. Therefore, for their implementation on a PLA, eight AND gates are needed 
to generate the eight product terms. 
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Figure 11.18 K-map plots for two functions to be implemented on a PLA 
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Figure 11.19 Modified 
loopings for f l 
giving optimum PLA 
implementation 

An economy of space on the PLA can, however, be achieved 
by covering the function fl  with the alternative set of loopings 
shown in Figure 11.19. The function fl, now in non-minimal 
form, may be written 

f l = A D  + BC + A C D  + A B C  + B C D  
m 

The prime implicant A C no longer appears in this equation and has 
been replaced by the product term A CD which is now common to 
the equations for fl and f2. Because of the modification of the map 
loopings, the number of product terms to be implemented has 
been reduced from eight to seven, thus providing a more economic 
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utilisation of space on the PLA. This theme has already been developed in more detail in 
sections 3.18 and 3.19. 

11.12 Programmable array logic (PAL) 

The versatility of a PLA stems from the fact that the output of any of the program- 
mable AND gates can be shared among a number of OR gates. There are many 
applications where this provision is not required, and so PALs have been developed 
in which gates in a programmable AND array are dedicated to a particular output OR 
gate, making the OR matrix fixed instead of programmable. The number of AND 
gates associated with each OR gate is typically 2, 4, 8 or 16. This gives a programmable 
device that is, in principle, less flexible than a PLA but which is often easier to use. 
PALs often also include a 'security fuse' which is maintained intact while program- 
ming, then after programming the fuse is blown and as a result the PAL is protected 
from copying or further programming. This can be a useful feature for a designer 
wishing to prevent unauthorised reading and decoding of the PAL matrix contents, 
known as 'reverse engineering' of the design. 

When implementing Boolean functions with a PAL, the logic equations must be 
simplified as for a PLA, and since the AND gates are dedicated to a particular OR 
gate, term sharing is not possible. This means that there is little advantage in searching 
for optimum solutions as there would be for PLA implementations. 

A simple PAL structure is illustrated in Figure 11.20(a). This device has two input 
lines, two AND gate equivalents, each having programmable input connections 
to four vertical lines, and one non-programmable (fixed circuit) 2-input OR gate. 
With the fusible links intact, the output of both AND gates is A. A.  B. /~ - 0 and 
so the OR gate output is f -  0. In Figure 11.20(b) this elementary PAL has been 
programmed by selectively blowing the fusible links so that the XOR function 
f - AB + AB is realised. 

Additional flexibility can be provided if the manufacturer places tri-state buffers 
between the outputs of the OR gates and the external connecting pins. In the elementary 
PAL structure shown in Figure 11.21, a programmable AND gate provides the enable 
signal X for the tri-state output buffer. There is also a buffer with its input connected to 
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Figure 11.20 A simple PAL (a) before programming, (b) after programming 
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Z, sending Z and Z signals to the AND array. This arrangement is reminiscent of the 
bi-directional tri-state connection of a device to a system bus, and gives bi-directional 
capability to the connection pins of the PAL. The external connection pin Z can now 
be used in four different operating modes, depending upon the programming of the 
enable signal X: 

1. Dedicated input pin: the AND gate generating X is programmed so that X = 0 
always, and the tri-state buffer is permanently disabled (i.e. is always in the high 
impedance state). Pin Z is now always used as an input pin and has direct access to 
the programmable AND array, and in this case another pin(s) would need to be 
used for output. 

2. Dedicated output pin: the AND gate generating X is programmed so that X = 1 
always, and the tri-state buffer is permanently enabled. Pin Z is now always used as 
an output pin. 

3. Controlled output pin: the AND gate generating X is programmed so that X 
can be either 0 or 1 depending upon the present state of its input signals. 
Pin Z can now be either an output pin ( X -  1) or is a disabled (or input) 
pin (X = 0). 

4. Output pin with feedback: pin Z provides controlled feedback to the AND array. 
When the output of the controlling AND gate is X 0, the tri-state gate is disabled 
and there is no feedback; when X = 1, the tri-state gate is enabled and signal Z is 
fed back to the AND array. 

Unlike PLAs, PALs have manufacturers' type numbers that indicate directly the 
basic PAL internal structure. For a PAL having type number pXq, p is the number of 
inputs to the AND matrix, q is the number of outputs, and X indicates whether the 
outputs are active high (X replaced by H), active low (X replaced by L), programmable 
(X replaced by P), or other possibilities. The other important information required by 
the designer is the number of inputs per OR gate, which must be obtained from the 
manufacturer's catalogue; many PALs are manufactured having two inputs per OR gate. 

As an example of the use of a PAL, a circuit for converting from NBCD to the 5421 
code will be designed. The truth table for the conversion is shown in Figure 11.22(a) 
and the K-maps for the 5421 code outputs, P, Q, R, and S are plotted in Figure 11.22(b). 
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Figure 11.22 NBCD to 5421 code converter (a) Truth table (b) K-map plots (c) Implementation using a type 
lOH8 PAL  

(The 'don't care' terms in the NBCD code have been used to simplify the final 
equations.) Each of the outputs has been simplified and their minimal functions are 
written under the relevant K-map plot. 

The designer must now choose a suitable PAL for implementing the four output 
functions. Since there are only four input signals to the code converter, a PAL having 
the smallest number of available inputs would be selected. For example, PAL type 
10H8 has 10 inputs and 8 outputs. A further examination of the manufacturer's data 
sheet might reveal that the selected PAL only provides two inputs per OR gate, 
whereas the output signals P, R, and S are each obtained from a sum of three terms. 
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This problem can be overcome by splitting the equations for P, R, and S into two 
sections. For example, 

P -  A + (BD + BC)  - -  A + X 

where X = BD + BC.  X can be generated at the output of one of the eight 2-input 
OR gates and may be fed back to one of the six unused input pins of the PAL. It can 
then be combined with A to form the term A + X at the output of one of the remaining 
unused 2-input OR gates. Similarly, the functions R and S can also be sectionalised 
so that 

u 

R - CD + (AD + BC)  - CD + Y 

S - A D  + ( A B D  + B C D )  - A D  + Z 

where clearly Y - A D  + B C  and Z - A B D  + B C D .  Signals Y and Z are fed back to 
m 

the input of the PAL and combined with CD and A D  respectively to form terms R and S 
at the output. 

Implementation of the encoder is shown in Figure 11.22(c). Because of the feedback 
of X, Y, and Z, seven out of the ten input pins are utilised. Also, because of the 
sectionalisation of the output signals P, R, and S, seven out of the eight output pins are 
used. However, in this implementation, the signals P, R, and S are generated after two 
passes through the PAL giving increased propagation delay in these signals. 

11.13 Programmable logic sequencers (PLSs)  

The essential features of a PLS are illustrated in the block diagram shown in Figure 11.23. 
In addition to the programmable  AND and OR arrays provided on a PLA, the PLS 
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AND array 

t . . . . . . . . . . . . .  t 
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t . . . . . . . . . . . . .  t 
[ Output latches J, 
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Figure 11.23 Block diagram of a programmable logic sequencer 
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has a number of on-chip single-bit memory elements which may be SR, JK or D-type 
flip-flops. In some cases, control of the flip-flops is available so that JK flip-flops 
can be converted to D-type flip-flops. Additionally, facilities are provided for latching 
the outputs. 

PLSs are primarily intended for implementing synchronous sequential state 
machines of either the Mealy or the Moore type (see chapter 8). The flip-flop outputs 
represent the state variables of the state machine. Some of the flip-flop outputs are fed 
back to the programmable AND/OR arrays where they can be combined with the 
machine inputs to generate the flip-flop input signals. Other flip-flop outputs can be 
combined with machine inputs to generate the machine outputs. A clock signal is 
provided by an external source, and asynchronous preset and clear facilities for the 
flip-flops may also be available. 

As an example of the use of a PLS, a hexadecimal counter will be designed. It will be 
assumed that the on-chip single-bit memory elements on the selected PLS are D-type 
flip-flops and the output of the counter will be decoded ready for directly driving 
a conventional 7-segment display. 

The state table for the hexadecimal counter is shown in Figure 11.24(a). The inputs 
to the four flip-flops required for each state change are shown on the right of the state 
table, and have been obtained with the aid of the steering table for the D-type flip-flop 
shown in Figure 11.24(b). K-maps have been plotted and simplified for each flip-flop 
input in Figure 11.24(c), and the minimum form of the input equations obtained 
from them are 

Do = C.D + BD + A D  + A B C { )  Do = A B  + A B  

Dc  = A B C  + A C +  B C  DA -- A. 

The segment allocation for the seven-segment display is defined in Figure 11.25(a), as 
well as the segmental representation of each of the 16 hexadecimal digits. A truth table 
for the seven-segment decoder is shown in Figure 11.25(b), and the implementation of 
counter and display decode logic is shown in Figure 11.25(c). 

Sixteen product lines are required for decoding the hexadecimal digits. As an 
example, the hexadecimal digit A (corresponding to the binary code 1010) requires 
that segments P, Q, R, T, U and V should be illuminated. Hence, for this binary 
combination, the signal for driving each of these segments must be set to 1, and the 
signal for segment S must be set to 0. The functions for all of the segments are easily 
read from the truth table. For example, the function for segment P is 

P -- Z 0, 2, 3, 5, 6, 7, 8, 9, A, C, E, F 

and the corresponding expressions for the other segments are obtained similarly. 
As a further example of implementing a synchronous sequential machine using 

a PLS, consider the design of an invalid code detector for XS3 codes using a PLS with 
on-chip D-type flip-flops. Four-bit XS3 codes are fed to the detector, most significant 
digit first, and the machine is to be designed to give an active high output when an 
invalid code is received. 

The ASM chart for the detector is shown in Figure 11.26(a). Since there are eleven 
states on the chart, four flip-flops (2 4-- 16,23= 8) are required to implement 
the machine. The column headed 'next state' in the state table (see Figure 11.26(b)) 
is a tabulation of the flip-flop input functions. These functions are relatively sparse 
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Figure 11.24 (a) State table for the hexadecimal counter (b) Steering table for the D-type flip-flop (c) K-maps for 
the hexadecimal counter 

(few ls and 'don't  care' terms compared to the total number of minterms), so they have 
been plotted on the reduced dimension maps (see sections 3.20 to 3.23) shown in 
Figure 11.27(a). After simplification, minimised excitation functions have been read 
directly from these maps and are written below the maps. 

The output function Z has been plotted on a 5-variable K-map in Figure 11.27(b), 
and the following equations are obtained from the X - 0 and X - 1 maps respectively: 

Z x = o  - X P S  + X P R  + X Q R S  

Z x = l  - X P S  + X Q R  + X Q R S  
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Combining these two equations gives 

Z - PS  + X P R  + X Q R  + QRS.  

(Alternatively, the same result is obtainable from the equivalent reduced-dimension 
map for the output function, although with greater difficulty, because of the complex 
functions involved.) The PLS implementation of the invalid code detector is shown in 
Figure 11.27(c). 

Manufacturers have also modified PALs to behave as PLSs by incorporating 
D-type flip-flops on the PAL chip. A typical example is the type 16R6 which provides 
16 AND gate inputs and six rising edge-triggered D-type flip-flops, having a common 
external clock connection. The flip-flop outputs are taken to the external pins 
via tri-state inverting buffers having a common output enable signal (OE). When this 
device is used in the design of a synchronous sequential machine, the flip-flops 
(providing feedback to the AND matrix) can change state when the tri-state output 
buffers are disabled, as shown in Figure 11.28. 

I 1.14 Field programmable gate arrays (FPGAs) 

FPGAs are types of VLSI chip that have most of the superficial characteristics of 
PALs, i.e. many types of complex circuits can be designed using one general-purpose 
IC as the basis. However, the design is initially produced using specially-designed 
CAD software. The necessary software is specifically intended for, and dedicated to, 
the particular brand of FPGA used, as there are several very different and mutually 
exclusive FPGA 'architectures', or organisations of the FPGA chip, available com- 
mercially. When the design in the CAD system is complete, the information relating 
to the design may then be sent electrically to the FPGA device which is capable of 
being configured internally in order to produce a single IC solution to the design. 
Thus, the design philosophy is moving away from the designer having to understand 
the detailed internal workings of the PAL chip in order to make best use of the 
resources available, and instead the designer now specifies the final result required 
and expects the dedicated software to be able to make these decisions for the FPGA 
to be used. 

Usually also, custom FPGA software is able to implement multi-level or hierarchical 
logic designs, where a sub-circuit consisting of basic logic gates may be defined and 
used as a single block, perhaps many times in the design. Further combinations of 
several blocks may be defined as a further block which may itself be used many times, 
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with usually little or ideally no limitations on the internal size of the blocks or how 
many block definitions may be 'nested' in this manner. The latest versions of the design 
software from the leading companies in this field may incorporate the possibility of 
using option packages to help designers working in particular specialist fields, such as 
digital audio. Such sophistication of design is beyond the capability of simple PAL 
architectures which are designed to implement only Boolean canonical forms and 
relatively simple Boolean expressions. 

The FPGA solution for logic circuits is now commonly used for medium-sized logic 
designs where the complexity is too great for a cost-effective solution using individual 
component ICs and where the final circuit must be produced on only a single IC. 
For the large-scale manufacture of a design where very large numbers of identical logic 
circuits are required, typically one or more for each system unit manufactured, the most 
cost-effective route remains an uncommitted logic array (ULA) or a fully-custom- or 
semi-custom-designed IC. An FPGA is necessarily more complex than would be 
a custom-designed IC or a mask-programmed ULA. 

The detailed design of custom and semi-custom ICs is complex and depends funda- 
mentally upon the particular methods of, and IC architecture provided by, the man- 
ufacturer, and are necessarily beyond the scope of this general text. However, various 
types of FPGAs are now available and their characteristics may be summarised as 
follows. Some are programmable only once (OTP) whilst others are programmable 
several times, depending upon the particular technology used to store the user's logic 
circuit design on-chip. 

Clearly, the most flexible approach is to store the design information on-chip in 
a section of the IC that bears many resemblances to conventional RAM which, in 
principle, is capable of being written to, and read from, an unlimited number of times. 
However, just as with conventional RAM, the programming information stored 
on-chip is completely and immediately lost when power is removed, i.e. the RAM is 
'volatile'. These types of FPGAs are usually used with external 'non-volatile' memory, 
for long-term storage of the chip configuration patterns, together with a hardwired sub- 
system for automatically loading the FPGA with its intended programming informa- 
tion. This approach usually gives the slowest logic and the greatest propagation times in 
practice. This type of FPGA is particularly suited for 'proof of concept' prototyping, 
where the problems associated with the volatile configuration memory are minimal. 

Other approaches include the use of field-programmable fusible links or 'anti-fuses' 
of varying types, which operate faster than RAM and are useful where increased speed 
is required. These types are 'non-volatile' and retain their programmed information 
after the removal of power, thus eliminating the need for outboard storage of the 
programming information. However, just as with fusible link PROMs, once a fusible 
link is open-circuited, or an 'anti-fuse' is short-circuited, the process cannot be 
reversed, so that apart from minor changes where an extra fuse is opened or an 
additional 'anti-fuse' is shorted the programming information cannot be revised once 
it has been committed to the chip. This means that, as with programming information 
stored in mask-programmed ROM, the logic design must be essentially complete at 
the time of programming the chip, with little or no practical possibility of modifying 
the circuit corresponding to this stored information, other than by starting again with 
a new and unprogrammed chip. These characteristics mean that these types of FPGA 
may be considered suitable for small-volume manufacturing runs once the design has 
been finalised. 
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A typical FPGA chip is organised around a large two-dimensional array of prog- 
rammable logic block elements together with a number of input/output blocks at the chip 
periphery. These handle the interfacing from the internal chip architecture to the circuitry 
external to the chip, including the logic signals to and from the programmable logic 
blocks as well as the signals required for programming, or setting up, the appropriate 
logic configurations inside the programmable logic blocks. There will also be internal 
wiring between the input/output blocks and the array of programmable logic blocks, and 
interconnection switches for connection of the logic blocks to the input/output blocks. 

The differences between the various available brands of FPGAs arise mainly from 
differences in the types and complexities of the different manufacturers' programmable 
logic blocks, the details of the programming signals required, and the overall size and 
complexity of the chips that are manufactured. Unfortunately, at the time of writing, 
there is no 'industry-standard' FPGA chip architecture, in contrast to, for example, the 
standard 74TTL series of basic logic gates that are produced to substantially the same 
specifications by many companies world-wide. This means that FPGA chips from one 
manufacturer are usually incompatible with those from others, and without a complete 
system redesign are often not replaceable by another manufacturer's FPGA. However, 
just as SSI and MSI logic chip pinout design eventually converged upon one common 
industry-standard (i.e., the 74TTL series of chips, now extended to CMOS tech- 
nologies), in the future it may be that FPGA design will also converge upon one type 
of industry-standard architecture or at least, perhaps, evolve in such a way that the 
available software packages may program a variety of differing FPGA chips without 
the user needing to know which particular FPGA will be used. There are already signs 
of a certain amount of convergence from some companies which offer devices pre- 
programmed according to the output from other companies' dedicated FPGA CAD 
systems. However, at the time of writing, it is not clear what that standard will be as 
the technology is too immature. In all cases, intending users must refer to the full data 
available from the respective manufacturers, as only a broad outline of the principles 
involved can be given here. 

The 'Xilinx' family of FPGAs has been chosen here as the most typical exemplar of 
this class of device, and a brief outline of the principal features of some other types is 
also given. 

11.15 Xilinx field programmable gate arrays 

The Xilinx family of FPGAs is amongst the most popular types of FPGA, and is 
frequently encountered in prototyping contexts. This type of FPGA is configured by 
on-chip CMOS static RAM. Each programmable element or 'configurable logic 
block', CLB, is controlled by a corresponding memory cell, in which binary values 
are stored during programming in order to define the function and connectivity of that 
programmable element (see Figure 11.29). Multiplexers (MUXs) figure prominently in 
the organisation and operation of this type of FPGA, as they offer a flexible approach 
to designing reprogrammable logic (see Figure 11.30). Amongst the logic functions 
implemented in the Xilinx repertoire are: 

1. Multiplexers taking previous signals as data inputs and whose address lines are 
connected to binary values downloaded, i.e. set up, by the controlling software or 
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Figure 11.29 Basic block diagram of Xilinx 'Spartan' FPGAs 

configuration program. So, for example, a 2-to-I multiplexer may be used 
to determine which one of any two possible signals should be used to clock 
a flip-flop. This would be chosen at the time of programming the FPGA, and then 
during its normal operation would not be changed unless an error were found in the 
logic design. This simple programmable component is intended to be used as 
a means of introducing flexibility into the logic circuit, without the necessity of 
making and breaking physical connections to route the correct clocking signal to 
the flip-flop. 

2. 'Look-up tables' (LUTs), which are analogous to logic functions implemented using a 
2"-to - 1 multiplexer. They may be regarded as multiplexers having n address lines, and 
the 2" data input lines are connected to binary values (0 or 1) downloaded by the 
controlling software. Thus, in a simple example using a 4-to-1 multiplexer controlled 
by address inputs A and B (and numbering the data inputs respectively as (00)2, (01)2, 
(10)2, (1 1)2), downloading the binary values {0, 0,0, 1} respectively would lead to the 
logic function A AND B, which could easily be changed to A XOR B by downloading 
the binary values {0, 1, 1,0}. Clearly, as there is one data input on the multiplexer 
corresponding to each possible minterm, any Boolean function of several binary 
variables may be programmed in this manner, and may be reprogrammed to any 
other Boolean function simply by downloading a different set of binary values. 
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Figure 11.30 Signal interface circuit between external 
signals and configurable logic blocks (CLBs) in Xilinx 
'Spartan' FPGAs. The externally applied signals are C1, 
C2, C3, and C4, and the CLBs are controlled by the 
signals DIN, H1, SR, and EC 

3. Programmable elements (CLBs) also 
contain 'general purpose' logic com- 
ponents sometimes known collo- 
quially as 'glue logic', since they are 
needed to 'glue' the various other 
logic components together electric- 
ally and to perform other mundane 
logic functions that may be required. 
These may include D-type flip-flops 
with direct Set and Reset inputs con- 
nected to programmable MUXs and 
LUTs in a manner that hopefully 
offers the user most flexibility in 
programming required logic circuits 
(see Figure 11.31). 

4. There are also programmable input/ 
output blocks (IOBs) around the 
periphery of the chip for inter- 
facing the external signals of various 
types to the internal chip workings 
(see Figure 11.32). These incorporate 
clocked flip-flops, so that (as well as 
PLAs and PALs) the functions of 
PLSs may be implemented by 
these devices. 

Also included in the Xilinx architecture are signal routing arrangements for 
directing signals to and from the various programmable CLBs. There are direct 
horizontal and vertical interconnects between adjacent CLBs giving the minimum 
signal delay, and fast interconnection lines running vertically and horizontally 
across the entire chip. These are intended primarily for use by critical global 
signals such as clocking signals that must be synchronised as accurately as possible 
over the entire design. There are also general-purpose interconnects running verti- 
cally and horizontally, together with programmable routing switches that can route 
horizontal signals to a vertical interconnect and vice-versa, and that route non- 
critical signals between CLBs whose delays depend upon the details of the chip 
positions of the sending and receiving CLBs (see Figure 11.33). The details of 
the structure of the CLBs and the interconnects will often be irrelevant to 
a typical user who employs the dedicated software to lay out the required design, 
as the software will attempt to ensure that the available CLBs are utilised in the 
optimal manner. 

Obviously, the performance of a system designed using these chips depends critically 
upon the exact programming implementation used for any particular circuit, and so 
the design software will typically undertake an analysis and simulation to predict the 
various timing delays in the final circuit. One typical member of the Xilinx FPGA 
family, the XC3090, contains 144 IOBs and 320 CLBs, claimed to be the equivalent of 
9000 conventional two-input logic gates. 
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Figure 11.31 (a) Simplified logic diagram of a configurable logic block (CLB) in Xilinx 'Spartan' FPGAs 
(b) The enhanced functionality of the basic flip-flops used in this family of FPGAs, showing how their operation 
is controlled by the configuration program 
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Figure 11.32 Simplified block diagram of an input~output block & Xilinx 'Spartan' FPGAs 

11.16 Actel programmable gate arrays 

The Actel Programmable Gate Array architecture uses a unique 'anti-fuse' technology, 
where small semiconductor regions defined in the chip structure initially have a high 
resistance when manufactured, but the application of a high current will modify the 
semiconductor material so that it has a low resistance. This action is similar to the well- 
known and unwanted failure mechanism often observed in poor designs using discrete 
semiconductor devices! Clearly, by arranging for the members of a large array of such 
'anti-fuses' to be individually addressable externally by a suitable current source, it is 
possible to store programming information that can be later used to route internal 
logic signals to appropriate destinations, thus giving significant flexibility in designing 
specific logic circuits starting from an original general-purpose uncommitted array. 
The 'anti-fuses' have a chip area much smaller than more conventional fusible links or 
the individual RAM cells in FPGAs, using onboard RAM to store programming 
information, so that relatively complex general-purpose arrays may be fabricated using 
this technology. 

Actel gate arrays use input/output modules for communicating with the external 
circuitry, logic modules consisting basically of multiplexers with programmable 
inputs, inter-module interconnections, special programming logic for managing the 
'anti-fuses', and logic for testing purposes. The logic modules are arranged in 
rows separated by interconnects, which run the width of the chip but can also be 
subdivided to make several adjacent interconnects. There are also some additional 
interconnects running perpendicular to the rows of logic modules. 'Anti-fuses' are 
placed at the intersection of horizontal and vertical interconnects, so that logic 
signals may be routed along rectilinear paths between modules and may change 
direction from horizontal to vertical and vice-versa several times between modules. 
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Figure 11.33 (a) CLB routing channels and &terface block diagram for Xilinx 'Spartan' FPGAs. Blocks 
labelled 'PSM' are programmable switch matrices (b) Programmable switch matrix in Xilinx 'Spartan' FPGAs. 
This circuit allows logic signals on the horizontally-running bus to be selectively routed to and from logic signals on 
the vertically-running bus 

Additionally, sufficient 'blank' interconnections are provided so that most signal 
connections can, in practice, be implemented using at most four 'anti-fuse' crossings. 
There is a speed penalty introduced by each 'anti-fuse' traversed by a logic signal, 
because the electrical resistance R associated with an 'anti-fuse' is not zero, as it would 
be if its performance were ideal, and so in conjunction with the stray capacitance C 
of the relatively long interconnect lines there is a time delay of the order of RC per 
'anti-fuse' crossed. However, the most critical signals, such as clocks, must be delayed 
least and can usually be routed using just two 'anti-fuses'. The less critical signals can 
be accommodated by using a greater number of 'anti-fuse' crossings. 
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The basic Actel logic module consists of three 2-to-1 multiplexers with separate 
programmable single-bit address lines, one having its address line driven from a 2-input 
OR gate. With this structure, it is possible to construct a wide variety of basic logic 
elements, such as look-up tables of Boolean functions, in a manner similar to that used 
in Xilinx FPGAs. Circuits behaving as simple latches and flip-flops may be constructed 
by connecting a logic module output to one of its own inputs, giving the requisite logic 
signal feedback needed. 

The first generation of the Actel FPGAs contained up to 2000 logic gates. 
The manufacturer claimed a flexibility in practice equivalent to around three times 
as many gates in a more conventional FPGA, because so much of the programming is 
done using 'anti-fuses' instead of RAM cells, and also because the chip architecture 
used is particularly versatile. More recent devices, such as the eX256, contain up to 
12000 logic gates including 256 registers and 512 logic cells, have 130 input/output 
lines, and the internal clock operates at up to 350 MHz with propagation delays as low 
as 4.1ns. This type of technology, because of its advantage of non-volatility, gives 
particular advantages in high-volume production. 

Other companies, such as Integrated Logic Systems, make broadly similar program- 
mable gate arrays using a technology called 'Metal Bridge Architecture' which involves 
customising a metal layer at manufacture. Their devices can currently accommodate 
designs using 40000 gate equivalents, 40 kbits of RAM, and provide 324 pins for 
connecting to external circuitry. 

11.17 Altera erasable programmable logic devices 

Early types of PLDs available from Altera were based upon UV EPROM technology. 
Using this technology in conjunction with PLD technology on the same chip produces 
EPLDs (UV Erasable Programmable Logic Devices). Clearly, such devices have the 
advantage of re-usability in case incorrect programming is discovered later, or if 
revised programming becomes necessary, and so are best suited to prototyping or 
low-volume production runs. 

More recent devices are based around EEPROMs. These devices have two advan- 
tages over EPLDs. Firstly, less expensive packages can be used since a UV window is 
not needed, and secondly, if a small amount of reprogramming becomes necessary 
then it is possible to reprogram a small part of the design without erasing the entire 
contents of the device and starting again. Whether this is feasible in any particular 
situation depends upon the extent of the reprogramming necessary, of course. 

As in the case of the other FPGAs discussed in previous sections, the basis of the 
logic functions implementable using Altera PLDs is a general-purpose logic block, 
here called a 'macrocell' or 'logic array block' (LAB). Macrocells and LABs can be 
configured in a variety of ways to perform a number of different elementary logic 
functions as flexibly as possible. 

Altera macrocells contain an AND/OR lattice for producing a Boolean function in the 
form of a sum-of-products of the logic signals input to that macrocell, an XOR gate to 
invert the sum-of-products according to whether a further 'invert control' input is high or 
low, a D-type flip-flop for 'sample-and-hold' under control of a clock signal, some 
programmable logic for taking the output signal back to the AND/OR lattice to produce 
logic functions with feedback, and a tri-state buffer for driving the extemal pins of the 
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chip. The main programmability in these devices arises from the AND/OR lattice that is 
programmed in a manner broadly similar to those in PALs except that when the device is 
UV-erased then all the possible lattice 'connections' are made, and those not wanted must 
be 'destroyed' by changing the respective bits in the associated onboard EPROM con- 
trolling the chip's programming. Multiplexers within the macroceU allow feedback, clock, 
and output sections to be programmed independently. The clock section can be pro- 
grammed to be under the control of global clock signals (synchronous mode) or a clock 
signal generated within the same macrocell from the AND/OR lattice (asynchronous 
mode). JK flip-flops and SR latches are not directly provided, but can easily be con- 
structed by the programmer using the basic D-type flip-flop available, together with some 
appropriate extra logic implemented using the AND/OR lattice. 

LABs, as used on the later Altera FLEX devices, consist of a number, typically 
eight or 16, of individual macrocells or Logic Elements (LEs) containing basic logic 
functions such as a four-input look-up-table (LUT), a programmable register, and 
a capability for producing additional Boolean products. The main benefit of this 
organisation is that Boolean product terms needed in several parts of the logic design 
may be shared between macrocells, without any need to repeat their generation within 
each macrocell. This can increase the flexibility of the chips in producing large designs 
that require some product terms to be used in several places within the design. 
The FLEX chips also include a smaller number of 'Embedded Array Blocks' (EABs) 
that are intended for use as memories of various types. Each EAB provides the 
equivalent of up to 4kbits of fast-access memory. A more recent family of Altera 
devices, the 'APEX' series, contain 'Embedded System Blocks' (ESBs) to implement 
products of Boolean variables, LUTs, RAM, ROM and other memory types includ- 
ing Content Addressable Memory or CAM. CAM is designed so that a complete 
data record may be retrieved from memory by specifying a part only of the record 
required, rather than by specifying its address within the memory. All these features 
once again are intended to maximise the flexibility of using these devices in practical 
circuits, since the manufacturer has no idea of the details of the design that will 
eventually be implemented using one of these PLDs but assumes that most PLDs will 
be used to implement one of the more widely-used approaches to logic design. 

The early EP300 series chips contained eight independently programmable macro- 
cells, and the later EP 1800 series contains 48 independently programmable macrocells, 
roughly equivalent to around 100 to 1000 conventional gates depending upon their 
usage within the circuit design. The even more recent MAX7000 series chips contain 
the equivalent of up to 10000 usable gates structured as up to 512 macrocells, with 
propagation delays of 3.5 ns. The MAX9000 series uses slightly different technology 
and is slightly slower (10 ns propagation delays) but contains the equivalent of up to 
12000 gates in up to 560 macrocells. This series of chips may be programmed after they 
are connected to the final system, eliminating faults due to accumulated static charges 
arising from manual handling, and making upgrading particularly easy as the chip 
does not have to be removed from the circuit to perform a system upgrade. This is 
achieved using an industry-standard 4-pin ISP (In-System Programmability) interface 
as specified by JTAG (the Joint Test Action Group). The Altera FLEX series contains 
up to 250000 gate equivalents and the APEX series up to 1 million gates, running 
at clock speeds as fast as 622 MHz. Special measures, such as the use of phase- 
locked-loop techniques borrowed from communications engineering, must be used to 
minimise 'clock skew', or phase differences in the clock signals applied to different 
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parts of the chip caused by transmission delay over the relatively long distances 
involved in such large chips. Once again, the complexity of such large chips requires 
dedicated design software in order to ease the burden of taking full advantage of the 
chip structure available. 

This market is now becoming so mature that other companies, such as Clear Logic, 
offer to manufacture devices that are pin-compatible, by working from the designer's 
Altera CAD programming output file. As far as the external circuit is concerned, these 
devices operate in an identical manner to, and are functionally indistinguishable from, 
an Altera MAX device. 

Problems 

11.1 A scale-of-10 counter is controlled by a signal X. When X = 1 the circuit counts 
in the normal binary sequence. When X - 0 it counts in a Gray code sequence. 
Select a suitable Gray code sequence, construct an ASM chart, and hence 
determine the state table. Implement the design with 

(a) a ROM and JK flip-flops, and 
(b) a PLA having on-chip D-type flip-flops. 

11.2 Four 4-variable functions are defined by the following equations: 

fl(A,B, C,D) = y~ 2, 3, 6, 7, 11, 15 

f2(A,B, C,D) = )-'] 0, 4, 8, 9, 11, 15 

f3(A,B,C,D)= ~ 1,3,5,7,10,11 

f4(A,B,C,D)= E 0, 2, 4, 6, 8, 9, 11, 12, 13, 15 

Show how these functions can be implemented on a PLA having an 8 • 8 AND 
array and a 4 • 8 OR array. 

11.3 The 2-out-of-5 code for decimal digits given below is to be converted to the seven- 
segment code which is then used to give a decimal display. Implement the code 
converter using a ROM having a capacity of 256 bits. The eighth output line 
should give a logic high output when an invalid code is received (and a low output 
otherwise). 

Decimal 2-out-of-5 
digit code (EDCBA) 

0 00011 
1 00101 
2 00110 
3 01001 
4 01010 
5 01100 
6 10001 
7 10010 
8 10100 
9 11000 
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11.4 The 6-variable function 

f ( A , B ,  C ,D,E ,F)  - y~'~ 0, 3, 4, 7, 11, 16, 18, 19,20,31,36,41,42,50,51,52,55,57,63 

is to be implemented by cascading two ROMs, as shown in Figure P ll.4. 
Construct the connection matrix for ROM 1 and ROM2. 

ROM 1 
1 

] 64bits I 
] capacity I 
7 I B 

,4 

Figure PI 1.4 

_1 
] ROM 2 
] 32 bits 
~ c~paci~ 

7 

=f 

11.5 Implement the ASM chart shown in Figure P11.5 with a PLA having on-chip JK 
flip-flops. 

11.6 Five 1 Kbyte ROMs are to be used to provide a system with 5 Kbyte of ROM. 
The system has 16 address lines and 8 data lines. Each ROM has an active low 
chip enable pin (CE) and an active low output enable pin (OE). A 3-to-8 line 
decoder having two active low and one active high chip enable pins as well as 
a selection of SSI gates are available. Using an absolute addressing scheme design 
a circuit diagram for the system. Also give the address ranges for each of the five 
ROMs using hexadecimal notation. 

| 

1 

7| 

7| 

0 

7| 

Figure P11.5 



12 Arithmetic circuits 

12.1 Introduction 

One important aspect of digital design with MSI circuits not dealt with in earlier 
chapters is the design and implementation of arithmetic circuits. Originally, the basic 
arithmetic circuits were designed using discrete components, but this method has long 
been superseded by the introduction of MSI circuits. Multi-bit adders, arithmetic logic 
units and other circuits are now readily available as medium scale integrated circuits. 

In some cases, a required arithmetic function is not available in a standard MSI 
package and modifying logic may be required. A typical example of this is the 
implementation of a binary adder/subtractor or a circuit used for the implementation 
of BCD arithmetic. The modifying logic can be provided by discrete gates or 
by another MSI circuit, so that some arithmetic circuits may be implemented by 
a combination of MSI and SSI chips. 

Progammable logic devices may also be used in arithmetic applications. For example, 
ROMs programmed as look-up tables can implement the multiplication process, while 
a combination of multi-bit adders and ROMs, in some cases, can extend the range of 
multiplication that can be provided. 

12.2 The half adder 

A half adder is used for adding together the two least significant digits in a binary sum 
such as the one shown in Figure 12.1 (a). The four possible combinations of two binary 
digits A and B are shown in Figure 12.1 (b). The sum of the two digits is given for each 
of these combinations, and it will be noticed for the case A = 1 and B = 1 that the sum is 
(10)2 where the 1 generated is the carry to the next stage of the addition. In the sum 
shown in Figure 12.1 (a), a carry is generated in the least significant column and is then 
added in at the second stage where a further carry is generated. The carry has rippled 
through two stages of the addition. Carry ripple, through many stages, in adder circuits 
generates unacceptable delays, and methods are now available to eliminate this problem. 

The additions shown in Figure 12.1 (b) are tabulated in the truth table (see Figure 12.1 (c)). 
The columns headed A and B display every combination of the two binary digits to be 
added, while the third and fourth columns are the corresponding tabulations of the 
sum S and carry C, respectively. The Boolean equations for the sum and carry read 
directly from the truth table are: 

S = A B +  A B -  A G B 

C -  A B  
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Figure 12.1 (a) Binary addition. The half adder is used for adding together the two least significant bits (dotted) 
(b) The addition of the four possible combinations of two binary digits A and B (with a carry to the next most 
significant stage of addition) (c) Truth table for the half adder (d) NAND implementation of the half adder 
(e) NOR implementation of the half adder 

The implementation of the sum and carry functions using NAND and NOR logic is 
illustrated in Figure 12.1 (d) and 12.1 (e). 

12.3 The full adder 

When adding any pair of digits other than the least two significant digits a full adder is 
required. The full adder circuit has three inputs and two outputs which are shown in 
the block diagram (see Figure 12.2(a)). These are the two binary digits A and B and the 
input carry C~n from the stage on the immediate right, the sum output S and the 
carry-out to the next most significant stage of the addition, Cout. 

The truth table for the full adder is shown in Figure 12.2(b) and the Boolean 
equations for the sum and carry-out read from the truth table are: 

S -  ABCin  + ABCin  + ABCin  + ABCin  

Cout = ABCin + ABCin + ABCin + ABCin 

The equation for the sum may be rewritten as: 

S - A(BCin  + BCin) + A(BCin  + BCin) 

= A ( B  �9 Cin) -~- A ( B  E]~ Cin) 

= A O B G Cin 



Arithmetic circuits 369 

(a) 

(c) 

(d) 

(e) 

(f) 

A _l I 
B ] Full 
G i n ]  adder [ 

~ % o  ol ,, lo 
o o~_~ @ oC 

S 

Gout 

(b) 

A 

B D  D qn 

qn 
B 

D -  

qn 
A 

~ ~Cout 

Dio 

qn 

qn 
B 

qn 
A 

) 

I )  

Gout 

A'~qno0 
0 

1 ( 9  

~ut 

[ ~  C~u, 

01 11 10 

(!) 

C ~  

Figure 12.2 The full adder (a) Block diagram (b) Truth table (c) K-map plot for Coat (d) Implementation of full 
adder (e) NOR implementation of Cout (f) Alternative implementation of full adder with K-map showing presence of 
static hazards 

The carry-out equation is plotted on the K-map shown in Figure 12.2(c). After simpli- 
fication, the carry-out equation may be written as: 

Coat -- A f in  if- B Cin + A B 

An implementation of the full adder is shown in Figure 12.2(d). 
Simplifying the O's plotted on the K-map gives the minimum inverse function: 

Coat - A B + A Cin + B Cin 

and inverting: 

Coat -- (A + B ) ( A  -Jr- Cin)(n -[- f in)  
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This is the minimum P-of-S form of the equation for Cout which can be implemented 
by the 2-level NOR circuit shown in Figure 12.2(e). 

An alternative implementation of the full adder can be obtained by factorising the 
Cout equation taken directly from the truth table: 

Cout -- (An + An) f in  + An( f in  + f in)  

= (A ~ B)Cin + AB 

Implementation of this equation, along with the equation for the sum, is shown in 
Figure 12.2(f). Although the implementation of Cout requires less hardware, the time 
delay for the carry-out has been significantly increased. 

There is also an additional difficulty with the implementation of this form of the Cout 
equation. Expanding the above equation for Cout gives 

Cout = (,4B + h/~)Cin + AB 

= ABCin + ABCin + AB 

A K-map of this function is also shown in Figure 12.2(f) and it can be seen that there 
are l's in adjacent cells not covered by the same prime implicant and this indicates the 
presence of static 1 hazards. To eliminate the static hazards, two extra gates would be 
required. The lesson for the designer is that the simplest function implementation does 
not necessarily provide a hazard-free solution. 

12.4 Binary subtraction 

The binary subtraction of the four possible combinations of two binary digits, X - Y, 
is shown below: 

X 0 0 1 1 
- Y  - 0  -1 - 0  -1 

A 0 1 1 0 

The only result that requires an explanation here is the second from the left, in which 
the difference 0 -  1 has to be found. In order to perform this subtraction a digit has to 
be borrowed from the next highest column of the subtraction and the operation then 
becomes (10)2 -- (1)2 -- (1)2. Having borrowed a digit Bin from the next most significant 
stage it is clear that the borrow has to be replaced. 

It is now possible, using the above rule, to develop the truth table for the full subtractor 
as shown in Figure 12.3(a). The columns headed Bin and Bout represent the borrow 
needed to enable the subtraction to take place and the replacement borrow respectively. 
The equations for the difference A and the borrow in Bin can be read from the truth table, 
and after algebraic manipulation the following two equations are obtained: 

A -- X G Y @ Bin 

Bout -- XBin + X Y + YBin 

In practice it is simpler to invert the subtrahend, using a controlled XOR gate, and 
perform an addition, using a full adder, after connecting Bin to the fin input 
(see Figure 12.3(b)). The inverse of the borrow-out will appear at the Cout terminal. 
The full adder has been converted to a full subtractor using the method of 2's 
complement arithmetic. 



(a) (b) 

Y 

X Y E~n A Bout 

0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

~out 
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Figure 12.3 (a) Truth table for a full subtractor (b) A single bit binary subtractor 

12.5 The 4-bit binary full adder 

It is now a simple matter to build a 4-bit adder from four single-bit adders. The block 
schematic for such an adder is shown in Figure 12.4. For the least significant full adder, the 
carry-in input Cin is grounded and consequently this stage operates as a half-adder. 

This type of circuit is referred to as a ripple-through adder because a carry from one 
stage of the adder may ripple through a number of the succeeding stages. In the worst 
case it is possible for a carry generated in FA0 to ripple through the carry circuits of all 
the four full adders before it appears as the carry-out from the final stage of addition. 
For example, if the following addition has to be performed 

1111 15 
+ 1001 +09 
11000 +24 
1111 
1111 Carries 

a carry is generated in the least significant stage of the addition and it ripples through 
each successive stage of the addition until it appears at the carry-output terminal of the 
most significant stage, where it becomes the sum digit for what is, in effect, the fifth bit 
of the sum. Under these circumstances C3 ripples through four 2-level logic circuits and 
the sum is finally completed after eight gate delays. For this kind of adder the 
maximum delay is directly proportional to the number of stages, n. 

Carry 
out (2 4 ) 

A3 ~ A2 ~ A1 

3 FA1 
cl 

11 

iS2 (2 2) 

B1 

] 

I Sl (21) 
Figure 12.4 A four-bit parallel adder 

I l 
• 

I So(2 ) 
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The four full adders shown in Figure 12.4 can all be implemented on a single 16-pin 
chip to provide a 4-bit MSI adder. Eight inputs are required for the operands, four for 
the sum outputs, one each for the carry-in and carry-out, and two pins for the supply 
voltage. A typical example of a 4-bit adder in the TTL family is the 74283 and the new 
functional logic symbol for this chip is shown in Figure A.24 (see appendix). 

12.6 Carry look-ahead addition 

The performance of the 4-bit parallel adder described in the previous section can be 
improved by increasing the speed of operation. This can be achieved by using gates 
having a reduced propagation delay or by designing a circuit that minimises the 
delay generated by the carry circuit. In practice such a circuit requires more hardware 
and the improvement gained is a trade-off between cost and increased speed. 
Several methods have been developed for reducing the addition time and one of these, 
the carry look-ahead technique, will be described here. 

The carry-output equation for a full adder may be written: 

Cout -- (A ~ B) f i n  -t- A B 

or  as :  

Cout = PCin + G 

where P = A ~ B is referred to as the propagation term, and G = AB is called the 
generation term. If G = 1, then A = B = 1, and a carry is generated in the stage defined 
by the Cout equation. Additionally, if the carry into the stage Cin = 1, and either A or B 
is 1, then the input carry will be propagated to the next stage. For a 4-bit adder the 
generation and propagation terms for each stage are: 

Go = AoBo Po = Ao @ Bo 

Gi = A iBl PI = A I ~ Bl 

G2 = A 2 B2 P2 = A2 @ B2 

G3 = A3B3 P3 = A3 @ B3 

while the carries for the various stages are: 

Co=  PoCin +Go 

Cl =PIC0+GI 
C2 = P2CI + G2 

C3 = P3C2 + G3 

Substituting for Co in the Cl equation and similarly in successive equations, leads to the 
following equation for the carry out C3 from the most significant stage of a 4-bit adder: 

C3 = P3P2P1PoCin + P3P2PIGo + P3P2GI + P3G2 + G3 

This carry-out equation can be implemented by the 2-level AND/OR circuit, shown in 
Figure 12.5, but fan-in problems will occur as the number of bits to be added is greater 
than four. Only two levels of logic are required to generate the carry-out in the 4-bit 
CLA scheme, compared with eight levels of logic needed for the 4-bit ripple-through 
adder. However, the number of gates required by the CLA scheme is significantly 
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greater than the gate requirement for the ripple-through adder. This is an example of 
the trade-off between speed and cost. 

The carry-out equation may be written in the following form: 

C3 = PCin + G 

where G = P3P2P1Go + P3P2GI + P3G2 + G3 

and P = P3P2P1Po 

The 74181 Arithmetic/Logic Unit provides 4-bit addition without the carry look- 
ahead facility. To overcome this difficulty, the arithmetic section of the package can 
be operated in conjunction with the 74182, a carry look-ahead generator. Connecting 
four 74181s in cascade will provide 16-bit addition, and the four carry look-ahead 
units in the 74182 will provide carry look-ahead for each of the 4-bit adders. 
An arrangement for 16-bit addition with carry look-ahead facilities is shown in 
Figure 12.6. 

12.7 The 74283 4-bit carry look-ahead adder 

The 74283 performs the addition of two 4-bit words and full internal carry look-ahead 
facilities are provided in the package. The sum bits and the carry-out from the 
fourth stage are available at the output pins. Typically, the carry-out delay is of the 
order of 10ns. 

The carry-out equation of the full adder developed earlier may be written in 
the following form: 

Coat -- (A -1- B) f in  -F A B  
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Figure 12.6 16-bit addition using carry look-ahead generator. Each 74181 also produces four sum output bits. 

where for this circuit design, the propagation term is defined as P = A + B, while 
the generation term retains its previous definition G = AB. The implication of this 
definition of the propagation term is that it contains a generated carry. 

A further modification can be made to the carry-out equation since: 

PG = (A + B)AB = AB = G 

Hence the equation for the carry-out may be written" 

Cout = P(G + f in)  

With the aid of this equation, the carries for the four stages of the 74283 can be 
developed as shown below: 

Co = e0(G0 + Cin) 

and CI = PI(GI + Co) 

and substituting in this equation for Co gives: 

CI = el GI + Pl PoGo + Pl PoCin 

Making two further substitutions leads to the following equation for the carry out 
C3 of the adder: 

C3 -" P3G3 + P3P2G2 + P3P2PIG1 + P3P2P1PoGo + P3P2P1PoCin 

This expression is in the sum-of-products form and it is left to the reader to show that 
the product-of-sums form is 

C3 = P3(G3 + P2)(G3 + G2 + P1)(G3 + G2 + G1 + Po)(G3 + G2 + G1 + Go + Gin) 
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Figure 12.7 The 74283 4-bit carry look-ahead adder 

The logic diagram is shown in Figure 12.7 and it is left to the reader to verify that the 
output carry of the circuit is given by either of the above two equations. 

An inspection of the logic diagram shows that gates gl and g2 produce the inverse 
of the generation and propagation terms respectively, and that the output of gate g3 
is GoPo. The equation for So is: 

SO = Go Po (~ Cin 

= (AoBo)(Ao + Bo) G Cdn 

= (Ao + Bo)(Ao + Bo) @ Cin 

So - Ao (~ Bo (~ Cin 
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Figure 1 2 . 8  16-bit addition 

A 16-bit adder can be formed from a cascade of four 74283s, as illustrated in Figure 12.8. 
The cascade of adders provides full carry look-ahead for each adder module with carry 
ripple from module to module. The carry out delay time for each of the modules is 
of the order of 10 ns and the total carry propagation delay for the 16-bit adder will 
be of the order of 40 ns. 

12.8 Addition/subtraction circuits using complement arithmetic 

Addition is carried out in all cases, irrespective of whether the operands are positive 
or negative. The sign bits are included in the addition, and any carry-out from the sign bit 
position is ignored. If the resulting answer is positive the sign bit is 0 and the numerical 
part of the answer is expressed in magnitude form. If the resulting answer is negative, the 
sign bit is 1, and the numerical part of the answer is expressed in 2's complement form. 

An adder/subtractor using 2's complement arithmetic is illustrated in Figure 12.9. 
The number A2A~Ao is the augend in the addition mode and the minuend in the 
subtraction mode, while the number B2B~Bo is the addend in the addition mode and 
the subtrahend in the subtraction mode. The sign bits for the two numbers are A3 and 
B3 respectively. The circuit can be implemented with a 74283 4-bit adder and the most 
significant bits on the chip are used as sign digits. A 7486 quad XOR package is used as 
a controlled inverter, and inverts the B digits in the subtraction mode. The mode signal 
is used to select the addition and subtraction modes. When M = 0 and Cin = 0, the 
least significant stage of the adder acts as a half adder and the 74283 is in the addition 
mode. When M = 1 and f i n  = 1 the adder is in the subtraction mode. In this mode the 
7486 is acting as an inverter and additionally a 1 is added in at the least significant 
stage of the 74283 to form the 2's complement of the subtrahend. 

An additional complication arises if l 's complement arithmetic is used and this is 
illustrated in the two examples shown below: 

+4 0,100 -4 1,011 
- 3  1,100 -3  1,100 
+1 10,000 - 7  10,111 

I --1 EAC I =1 

0,001 1,000 
EAC 
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Figure 12.9 An adder/subtractor using 2's complement arithmetic 
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This carry, called the end-about carry EAC, is returned to the least significant place of 
the adder where it is added in. This requires a modification to the 2's complement 
adder shown in Figure 12.9. The Cout terminal is now connected directly to the Cin 
terminal, as shown in Figure 12.10. 

12.9 Overflow 

In certain circumstances, when an adder/subtractor circuit is employing signed 
arithmetic, there is arithmetic overflow from the most significant magnitude bit into 
the sign bit. This will occur for example, if a 4-bit arithmetic result is required when 
two 3-bit numbers are added together and where the fourth bit in the circuit has been 
assigned the task of indicating the sign of the answer. The consequences of overflow 
when it occurs are: 

1. The addition of two positive numbers gives a negative answer 
2. The addition of two negative numbers gives a positive answer 
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An example of four possible situations that may arise is given below for a 4-bit word 
( n -  4) and for each case the carries from the ( n -  1)th and nth stages have been 
displayed. 

C, = 0, C,_I = 0  C, = 0, Cn-1 = 1 
+1 0,001 +5 0,101 
+3 0,011 +6 0,110 
+4 0,100 +11 1,011 

C, = 1, C,_l = 1 C, = 1, C,_l = 0  
+5 0,101 - 5  1,011 
- 3  1,101 - 6  1,010 
+2 0,010 -11 0,101 

interpreted as - 5  

interpreted as +5 

The reader will observe that when either a positive or negative sum of (11)10 is 
required, the magnitude of this number, either in its positive or negative form, cannot 
be expressed in terms of three binary digits, and the resulting answer is both incorrect 
and has the wrong sign. 

(a) (b) 

C,,-1 C,, 0 Cn-1 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

C~ 

Figure 12.11 (a) Truth table for the overflow 
function (b) Implementation of overflow function 

A truth table for Cn-I and C, is shown in 
Figure 12.11 and it is clear from this table that 
the overflow function is the XOR of (7, and 
C~-l. Hence the equation for the overflow 
flag is: 

When using an MSI package such as 74283, 
C~_l is not available as an output, and 
overflow has to be expressed differently. 
It is left to the reader to confirm that an 

alternative Boolean expression that can be used is" 

0 -- A 3 B 3 S  -k- A 3 B 3 S  

where S is the sign of the result and A3 and B3 are the sign digits of the two 4-bit 
numbers. 

12.10 Serial addition and subtraction 

For parallel addition a full adder is required for each stage of the addition and 
carry ripple can be eliminated if carry look-ahead facilities are available. An 
alternative approach is to use a serial addition technique which requires a single 
full adder circuit and a small amount  of additional logic for saving the carry. 
Serial addition takes longer, but a smaller quantity of hardware is required and the 
selection of serial or parallel addition depends upon the trade-off between speed 
and cost. 

A serial adder uses a sequential technique and may be regarded as a very simple 
finite state machine. The basic element of the circuit is a full adder which is 



Arithmetic circuits 379 

Parallel load ! 
, , , , . . . ._.__.J~ - _ ~  

A S 

FA 

c, co 

Parallel load 

J 

Ck2 

Ckl 

Mode 

Figure 12.12 A serial addition circuit 

operated in conjunction with a D F F  and a pair of shift registers which have parallel 
loading and shift right facilities controlled by Ckl  and Ck2. The selection of either 
of the two clock pulses is a function of the mode control M (see Figure 12.12). With 
M = O, Ck2 is enabled, the flip-flop is cleared, and the registers are loaded with the 
two numbers to be added so that the two least significant bits are available at 
terminals A and B. The corresponding sum and carry-out appear at the output 
terminals of the full adder. With M - 1, Ck2 is disabled and Ckl is enabled. Ckl  is 
now used to shift right the digits in registers R~ and R2, thus presenting the next 
most significant pair of digits at terminals A and B. Additionally Co is clocked to 
the output of the flip-flop and becomes the next Cin, while the sum of the two least 
significant digits is clocked into the left-hand end of R1. This process is repeated on 
receipt of each clock pulse (Ckl)  until the two numbers stored initially in R1 and R2 
have been added and the resulting sum has been clocked back into the register R~. If 
a t  the termination of the addition Co -- 1, this will represent the most significant 
digit of the sum. 

The serial adder can also be used in the subtraction mode, as shown in Figure 12.13. 
The B digits are inverted when the mode signal M = 1 but an initialisation pulse I of 
short time duration is required at the input of gl at the same time that the least 
significant pair of digits appear at the full adder inputs. The initialisation pulse is used 
to preset the DFF  to 1, thus forming the 2's complement o f  the number entering 
sequentially at the B input. A similar arrangement is made when the adder is in the 
addition mode. The mode signal M - -0  and a short initialisation pulse is needed at 
the input of g2 to clear the D F F  so that f i n  --" 0. 
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12.11 Accumulating adder 

A list of numbers can be summed by operating a group of single-bit adders in parallel. 
The numbers to be added are stored in memory and can be accessed by a counter. 
Memory having eight address lines and four outputs can store 256 four bit numbers. 
The maximum numerical value of a 4-bit number is (1111)2 -(15)10, and the max- 
imum total that can be achieved by the multi-bit adder is 256 x 1 5 -  (3840)10 - 
(111100000000)2. Three single-bit full adders and eight half adders are required along 
with a 12-bit register for holding the total. The numbers are fetched from memory and 
are presented to the multi-bit adder along with the previous sum held in the 12-bit 
register. A block diagram of the multi-bit accumulating adder is shown in Figure 12.14. 

Clock 

Counter 
Memory 

256 x 4 bit 
numbers 

+4 
Gout 11 single-bit 

adders 

11 11 

I Iolololoi IoI 111o111 

Figure 12.14 Multi-bit accumulating adder 
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12.12 Decimal arithmetic with MSI  adders 

It is sometimes desirable to perform arithmetic operations using binary coded 
decimal numbers. Such a requirement occurs where the result of the operation 
is to be displayed directly in decimal form using seven-segment indicators. 
Decimal numbers are commonly represented by the 4-bit NBCD code tabulated in 
Figure 12.15. 

When two unsigned NBCD numbers are added together, incorrect answers are 
obtained in some cases. There are three cases to consider: 

Case l. 0 < S < 9  4 0100 
+5 +0101 

9 1001 

In this range the sum is correct and no correction is required. 

Case 2. 9 < S <  15 7 0111 
+6 +0110 
13 1101 

0110 Add 2's complement of (10)10 
1,0011 

Addition generates an invalid code. Correction is made by subtracting (10)~0, that 
is, by adding (6)10, the 2's complement of (10)10. This process also generates the 
required carry. 

Case 3. 1 5 < S <  19 9 1001 
+8 + 1000 
17 1,0001 

0110 Add (6)10 
1,0111 

Addition generates a valid but incorrect code and a carry-out. Correction is made by 
adding (6)10. 

Summarising the algorithm for adding two decimal digits represented by the NBCD 
code" 

1. If 0 <_ S _< 9 no correction is required on addition 
2. If 9 < S <_ 19 the required correction is to add (6)10. 

When 9 < S <_ 15, a carry is required for the next most significant stage of the 
addition and a logic function must be developed which will detect the six invalid codes: 
1010, 1011, 1100, 1101, 1110 and 1111 The invalid combinations are shown plotted 
on the K-map in Figure 12.15. After simplification, the carry function for the 
given range is: 

f ~ - A B + A C  

For the range 15 < S _< 19 a carry Cout is generated when the two decimal digits are 
added, and the equation for the carry-out C' o which becomes the carry in of the next 
stage of addition is given by: 

C' o - Cout + A B + A C 
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(a) 

Dec. NBCD 
digit 8 4 2 1 

0 0 0 0 0  
1 0 0 0 1  
2 0 0 1 0  
3 0 0 1 1  
4 0 1 0 0  
5 0 1 0 1  
6 0 1 1 0  
7 0 1 1 1  
8 1 0 0 0  
9 1 0 0 1  

(b) 

AB•D o0 01 

O0 

01 

11 (1 i 

10 

11 10 

f l  I~ 

c; 

Carry t~o next 
higher stage 

Figure 12.15 
NBCD adder 

(c) 

Bs B4 B2 B1 

Ill 
AsA4A2 A, 

lJ [ 
Cout 74283(P) 

A B C D  
A 

,% 

Ctn  

' i 
RS 

74283(Q) Gin 

il 
S4~S, 

l 

(a) The NBCD code (b) The forbidden code combinations plotted on a K-map (c) A single-stage 

The implementation of a single stage NBCD adder is shown in Figure 12.15. It requires 
two 74283 4-bit adders, three N A N D  gates and one inverter. The adder marked 
P is used for the addition of two 4-bit NBCD codes A8A4A2AI and B8BaB2B~. 
Outputs from this adder, in conjunction with its carry-out, are fed to a NAND gate 
circuit which generates C'.  They are also fed to the adder Q whose only function is to 
add in (0110)2 to the total when the sum of two decimal digits is in the range 
9 < S < 19. When this condition exists, a carry to the next stage C' o is generated and 
is also fed to the inputs marked R and S on adder Q, thus generating an input of 
(0110)2 at its four right-hand terminals. For S < 9, C~, - 0  and the input to the four 
right-hand terminals is (0000)2. 
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In the case of an adder which operates with a word length of eight bits, two NBCD 
digits can be allocated to one word. The decimal number range is then 0 to 99 inclusive. 
An example of the addition of a pair of two decimal digit NBCD numbers is shown below: 

49 0100 1001 Augend 
33 0011 0011 Addend 

0111 1100 
0000 0110 
0111 / 0 0 1 0  NBCDco~ection 

.11 
1 ' 0 Carry 

82 1000 0010 Sum 

The reader should observe that an NBCD correction in the least significant nybble 
(LSN) may itself produce a requirement for an NBCD correction in the next most 
significant nybble (MSN). 

12.13 Adder/subtractor for decimal arithmetic 

In order to transform the NBCD adder shown in Figure 12.15 to an adder/subtractor, 
additional logic circuitry is required. When subtracting binary numbers 2's complement, 
arithmetic is used, but when dealing with NBCD, subtraction is carried out using either 
10's or 9's complement arithmetic. As 10 is the radix in the decimal system, the 10's 
complement is defined as: 

[ X ] I  0 = 10 n - -  .X" 

where n is the number of decimal digits contained in the decimal number X and [X]10 
represents its 10's complement. For X - 823, and n -- 3" 

[X]l 0 - 103 - 823 - 177 

Subtraction can now be carried out as an addition, using the 1 O's complement form for 
negative numbers. Two cases are considered: 

Case 1" Addition of positive and negative numbers where the positive number has the 
greatest magnitude. The subtraction 62-55 can be performed by taking the 10's 
complement of 55 and adding it to 62: 

62 0110 0010 
10'scomplementof55= 45 0100 0101 

Discard(l) ~ 07 1010 0111 
0110 0000 

Discard(l) 0000 011i 
NBCD correction 

10's complement of 62 = 

than the minuend. 

55 
38 
93 

0101 0101 
0011 1000 
1000 ll01 0000,/0110 

1' 
1001 0011 

NBCD correction 

Carry 

Case 2: The subtraction to be carried out is 55-62, that is the subtrahend is greater 
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Figure 12.16 Conversion o[" NBCD adder to adder/subtractor 

Mode control 
M = 1 subtract 
M = 0 add 

Since the answer is negative it is expressed in 10's complement form. To find the 
magnitude, the 10's complement of 93 is taken, which gives the required magnitude 07. 

When the difference is positive as in Case 1, a carry is generated in the most 
significant place. The generation of the carry in a 10's complement adder/subtractor 
circuit can be used to distinguish between positive and negative results. 

The diminished radix in the decimal system is 9 and the 9's complement is defined as: 

[X]9  = l0 n - (X + 1) 

For X = 823, [X]9 has a value of 176. 
Additional logic circuitry is needed for the 1 O's complement adder/subtractor. These 

extra requirements are shown in Figure 12.16. The 9's complement of the NBCD code 
and the code itself are both connected to a 2-to-1 MUX. Selection of one out of these 
two forms of the code is provided by the mode control M. If M = 1 the 9's comple- 
ment of the code is fed to adder P and the 10's complement is formed by adding M = 1 
at the carry input terminal of adder P. If M = 0 the NBCD code is selected, Cin = 0 
and addition takes place. If the answer is negative, the output of the adder/subtractor 
will be in 10's complement form, and a further controlled 10's complementer is 
required at the output of each stage if the answer is required in magnitude form. 

The input 9's complementer circuit is designed using the normal combinational 
logic techniques. The four left-hand columns of the truth table shown in Figure 12.17 
give a listing of the NBCD code A8A4AzA~ while the four right-hand columns give the 
corresponding 9's complement of each code A~8 A'4~211 At  Atl " The K-maps for A'8~,14~21~ At At  dtl  are 
given in Figure 12.17, and the Boolean equations obtained from these maps are 

A~ - AsA4A2 A~ - A2 

At4 - A4 0 A2 Atl - A1 

Implementation of the 9's complementer is shown in Figure 12.17. 
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Figure 12.17 Design of 9's complementer (a) Truth table (b) K-maps (c) Implementation 

A 10's complementer could have been designed using the same techniques, but the 
Boolean equations obtained are more complicated and require a greater amount of 
hardware for their implementation. In this case it is much simpler to add M = 1 at the 
carry-in of adder P to form the 10's complement. An adder/subtractor for decimal 
arithmetic which uses the XS3 code provides a much simpler design, and the reader is 
referred to the design example at the end of the chapter. 

12.14 The 7487 true/complement unit 

A number of different arithmetic operations can be performed by controlling one set of 
inputs to a 4-bit adder. This control can be achieved by inserting the true/complement 
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Figure 12.18 The 7487 True~Complement Unit (a) Logic diagram (b) Truth table 

unit between one set of input lines and the adder. Such a unit is the 7487 which, besides 
the true/complement facility, also provides all O's or all l's. The logic diagram and the 
truth table for this device are shown in Figure 12.18. 

A 4-bit adder such as the 74283 operating in conjunction with the 7487 is shown in 
Figure 12.19. The functional behaviour depends upon the logical value of the two 
select signals So and Sl and the presence, or absence, of the carry input Cin. There are 
eight possible combinations of the three signals, and the behaviour for the first two 
of these combinations is illustrated in the block diagrams shown in Figure 12.19. 
The functional outputs of the controlled adder for each of the eight combinations 
are also tabulated in the function table shown in Figure 12.19. 

12.15 Arithmetic/logic unit design 

A block diagram for an n-bit ALU is shown in Figure 12.20. The output function 
f = ( f , - ] . . . f 0 )  is generated by performing a logic or alternatively an arithmetic 
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B A 

I I 
4-bit 
adder 
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S = A + B + I = B - A  

l_ C~.=0 

I- 

S0 Sl Gin Sum(s) 

0 0 0 B+A 
0 0 1 B - A  
0 1 0 B+A 
0 1 1 B + A +  Gin 
1 0 0 B-1 
1 0 1 B 
1 1 0 B 
1 1 1 B + I  

Function 

B+ l 's complement of A 
Subtract 
Add 
Add with carry 
Decrement B 

Transmit B 

Increment B 

(c) 

Figure 12.19 (a) Block diagram of controlled adder (b) Function implementation of controlled adder 
(c) Function table 

operation on the two n-bit inputs A = (An-1... Ao) and B = (Bn-1... Bo) to be deter- 
mined by S = (Sk-1... So) selection bits. 

The functions to be generated are tabulated in Figure 12.21. Since there are eight 
functions in the table, a total of three selection variables $2, S~ and So is required. 

The design will be based on 4-bit modules such as the 74283 4-bit adder, and when it 
is completed it will consist of an interconnection of a number of MSI packages. 
The desired range of numbers to be operated on by the ALU will determine the number 
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ALU Function 

A + B  Subtract 
A + B Add 
B -  1 Decrement 
B+ 1 Increment 
A.B AND 

A+B OR 
,~ NOT 

A ~  B XOR 

Figure 12.21 ALU./unction tahh, 

of bits n. Because of the availability of 4-bit packages it 
would be desirable that n should be a multiple of 4 so 
that the ALU will consist of a cascade of 4-bit slices, 
as shown in Figure 12.22. 

The block diagram representing the basic 4-bit slice 
of the n-bit ALU is shown in Figure 12.23. It consists 
of a logic unit LU and an arithmetic unit AU working 
in conjunction with a quadruple 2-to-1 MUX. 
The output of the MUX can be either a logic or an 
arithmetic function. If the selection variable $2 = 0 
the arithmetic unit is selected, and for $2 - 1 the logic 
unit is selected. 

First, consider the design of the least significant 4-bit 
arithmetic unit. The block diagram for this section of 
the 4-bit slice of the ALU is shown in Figure 12.24(a) 
along with the truth table of the adder functions in 
Figure 12.24(b). It consists of the 7487 True/Comple- 
ment Unit interposed between the A input lines and the 
A' inputs to the 74283 carry look-ahead 4-bit adder. 

In order to decrement a number such as 
B3BzBIBo = 1001 it is only necessary to add the num- 
ber 1111, as illustrated in the example shown below: 

B3B2BIBo-  1001 
1111 

1000 

and hence in order to decrement the B input, the selection signals Si So - 10 and the 
output of the True/Complement Unit in Figure 12.24(a) is then A'3A2A'IAo' ' - 1111. 
The logic equation for the carry-in can be read directly from the truth table shown in 
Figure 12.24(b) and is: 

Gn -- S, S0 + S~So 
= S i  | 

en-l-Bn-4 An-l-An~ BT-B4 A~,-A4 B3-Bo A3-Ao 

4-bit ! 4-bit 4-bit 
ALU ~ ALU -- ALU -- 

. ~  . . ~  . 

C ~  

tT-t, 

C~ 

t3 '--tO So 

Figure 12.22 Structure of  an n-bit ALU made up from 4-bit slices 
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Figure 12.24 (a) 4-bit ALU Arithmetic section (b) Arithmetic section truth table 
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Figure 12.25 (a) Function table.for logic slice of ALU (h) lmph, mentation./or one pair of input bits./br the slice 

The function table for designing the 4-bit logic slice of the ALU is shown in Figure 12.25. 
A simple approach to the design is to use the basic logic gates in conjunction with a 
pair of dual 4-to-I MUXs such as the 74353, as shown in Figure 12.25 for a single bit 
pair only. An alternative approach can be developed with the aid of the truth table 
shown in Figure 12.26 for the pair of single bits A0 and B0. The logic function fLU is 
plotted on the K-map and simplified. The hazard free function read from the map is: 

fLU -- A0/~0 + SoA0 + BoSz So + AoBoSI So 

and its implementation is shown along with the K-map in Figure 12.26. 

12.16 Available MSI arithmetic/logic units 

Two examples of ALUs available in the TTL family are the 74381 and the 74382. 
These two 4-bit devices perform eight arithmetic/logic operations defined by the func- 
tion table shown in Figure 12.27 and selected by the three function select lines, $2, S1 
and SO. The difference between these two devices is that the 74381 has two outputs, one 
a carry generation output G and the other a carry propagation output P, allowing a 
group of ALUs to be cascaded. A group carry look-ahead facility can then be provided 
as illustrated earlier in this chapter in Figure 12.6 by the 74182 carry look-ahead 
generator. The 74382, on the other hand, provides a ripple carry output C,+4 to the 
succeeding ALU input and a 2's complement overflow output O VR. Traditional logic 
symbols for the two ALUs are also shown in Figure 12.27. 



Arithmetic circuits 391 
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Sl So Ao /3o fLu Function 

0 0 0 0 1 
0 0 0 1 1 NAND 
0 0 1 0 1 
0 0 1 1 0 
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1 1 1 1 1 
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SlSo\ oo 
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m 
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11 1 

(b) 

01 

'1 

11 

| 

10 

Sl So Ao Bo 

L_> 

(c) 

flu 

Figure 12.26 Alternative design for 4-bit logic slice of ALU (a) truth table (b) K-map and (c) implementation 
of design 

The 74181, a 4-bit ALU/Function generator, is also available in the Type 74 family. 
This MSI circuit provides a much more comprehensive range of arithmetic and logic 
functions than the 74381/382. It can be operated with either active high or active 
low input data and the arithmetic functions generated depend upon the absence or 
presence of a carry-in. Like the 74381, a cascade of 74181s can be operated in 
conjunction with the 74182 carry look-ahead generator to provide group carry 
look-ahead. The function table for active low input data, assuming Cin = 0, is shown 
in Figure 12.28 along with the traditional logic symbol. 
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Figure 12.28 (a) Function table and (b) logic symbol for the 74181 4-bit ALU 

12.17 Multiplication 

Multiplication of binary numbers can be achieved either combinationally or sequen- 
tially. The simplest form of binary multiplication is multiplication by the base 2. 
When multiplying by the base 10 in the decimal number system a shift to the left of 
one place occurs; for example, 9 • 10 = 90 and the 9 has moved one place to the left. 
Similarly, if a binary number such as 1101 is multiplied by the base 2 it becomes 11010, 
and if the number had been stored in a register this would have represented a shift left 
of one place in the register. In this example (1101)2 = (13)1 o and (11010)2 = (26)10. 
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12.18 Combinational multipliers 

The 2 x 2 multiplier is a simple example of a combinational multiplication circuit 
which multiplies two binary numbers A2A~ and B2B~. The truth table for the 
multiplication is shown in Figure 12.29 and the most significant term of the product 
is represented by the single minterm P3 = A2A~B2Bl. The remaining three product 
terms can be obtained by plotting and simplifying their respective K-maps. For 
example, the K-map for P2 is shown in Figure 12.29 and the simplified function 
obtained from this map is: 

P2 - A2A1B2 -+- A2B2BI 

It is left to the reader to determine the Boolean equations for the remaining two 
product outputs. 

One of the simplest and fastest methods of multiplying employs a combinational 
logic circuit which is composed of AND gates and full adders. The method depends 
upon the fact that the rules of Boolean multiplication are based upon those of binary 
multiplication and consequently a series of AND gates can be used for forming the 
products that occur in the multiplication process. 

If the 4-bit binary number A3A2A1Ao is to be multiplied by B3B2BIBo, the 'pencil 
and paper' method that would normally be employed is illustrated in Figure 12.30. 
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Figure 12.29 2 x 2 multiplier (a) Truth table (b) K-map for P2 
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multiplier 

/:'7 P6 P5 P4 P3 P2 P1 Po double length product 

Figure 12.30 "Pencil and paper" multiplication 
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Figure 12.31 Array multiplier 

For the first row of the multiplication, the least significant bit of the multiplier 
multiplies each bit of the multiplicand in turn, forming four partial product terms, 
A3Bo, AzBo, AIBo and AoBo. The second row of the multiplication is obtained by 
shifting one place to the left and multiplying each term in the multiplicand by the B~ 
term in the multiplier to form four more partial products. This procedure is continued 
to obtain the last two rows of partial products. The columns of partial products now 
have to be added, and it is clear that from the second column onwards, carries can be 
generated which have to be carried forward to the next column of partial products and 
added into the sum for that column. 

This multiplication process can be represented by the array multiplier shown in 
Figure 12.31 which consists of a number of AND gates and full adders. The overall 
delay of this array is given by the largest value of: 

tAND d-6tc; 1AND d- tEA -k- 5tc; 1AND + 2IFA d-4tc; or 1AND d- 3IFA 

where tAND is the propagation delay of the 2-input AND gates, tr is the carry delay of a 
full adder, and tFA is the sum output delay of a full adder, where it is assumed that each 
of the AND gates, and each of the full adders, have identical time delays. 

For this kind of parallel multiplier the amount of combinational logic required 
increases with the number of bits in the multiplier and multiplicand, and a register is 
also needed to store the double length product. Before the advent of LSI chips the 
amount of combinational logic required was a deterrent to using this technique, but 
now that LSI circuits are readily available, fast multiplier chips using this method of 
multiplication are available. 

12.19 ROM implemented multiplier 

Binary multiplication can be achieved by using a ROM as a 'look-up' table. 
For example, multiplication of two 4-bit numbers requires a ROM having eight 
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address lines, four of them, X4XaX2X1, being allocated to the multiplier, and the 
remaining four, Y4Y3 Y2 Y1 to the multiplicand. Since the multiplication of two 4-bit 
numbers can result in a double-length product, the ROM should have eight output 
lines, and a ROM with a capacity of 256 bytes is required. A block diagram of the 
multiplier is shown in Figure 12.32. 

The stored product method described above clearly has its limitations. If, for example, 
the product of two 8-bit numbers is to be stored, then 216 -- 65536 memory locations 
and 16 output lines for the double-length product are needed. This requires a ROM 
capacity of 65536 • 16 ~ 10 6 bits or 128 Kbytes. For 16 bit multiplication the ROM 
capacity required is quite formidable. The number of address lines is 32 and the number 
of output lines is 32, so that the ROM capacity required is 232•  2 5 --237 bits = 
234 bytes - 224 Kbytes - 214 Mbytes - 16 Gbytes. 

In the case of the 8-bit multiplier, it is possible to partition the problem by splitting 
both the multiplier and the multiplicand into two 4-bit words. For example, the 8-bit 
multiplier N1 : 10010010 can be regarded as two separate 4-bit words, H1 -- 1001 and 
L1 -- 0010. Then:  

N1 : (24H1 -k- L1) 

where H1 is shifted four places t o t h e  left relative to L1 by the shift operator 24. 
Similarly, the multiplicand N2 - 01111001 can also be regarded as two separate 4-bit 
words, HE -- 0111 and L2 -- 1001. Then" 

N2 -- (24H2 -k- L2) 

Mul t ip ly ing  ou t  N1N2 - (24H1 + L1)(24H2 + L2) 

-- 28H1H2 + 24H1L2 + 24H2L1 -k- L I L 2  

The four products in the above equation, L1L2, H2L1, H1L2 and H1H2 can each be 
generated by a 256-byte ROM as described previously in Figure 12.32. The individual 
8-bit products generated in this way then have to be summed, with proper regard being 
paid to their position in the final double-length 16-bit product. 

Multiplier X.-Xl 0 
4 
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4 
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Figure 12.32 Binary multiplication of two 4-bit words using a ROM 
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If the final product is represented by bits P0 to P~5, the ROM generating LIL2 
provides bits P0 to P3 of the final product and a component of bits P4 to P7. The two 
ROMs generating the 8-bit products H2L~ and HIL2 have their outputs shifted four 
places to the left by the shift operator 2 4 and each provide 8-bit components of the 
product bits P4 to P~. Finally, the ROM generating the 8-bit product HIH2 has its 
output shifted eight places to the left by the shift operator 28. This ROM contributes 
bits PiE to PI5 of the final product and a component of bits P8 to P~. The various 
components of P4 to P7 and P8 to PII are summed in a number of 4-bit adders, as 
illustrated in Figure 12.33. 

12.20 The shift and add multiplier 

The 'pencil and paper' method for multiplying together two binary integers is again 
illustrated in the example shown below: 

Multiplicand 1110 14 
Multiplier • 1010 • 10 
Partial Product 1 0000 
Partial Product 2 1110 
Partial Product 3 0000 
Partial Product 4 1110 
Result 10001100 140 
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There are three main features to the process: 

1. If the multiplier bit is 1, then a partial product is formed by writing down the 
multiplicand. Alternatively, if the multiplier bit is 0, then the partial product is 
formed by writing down a row of O's. 

2. Four partial products are formed, one for each bit of the multiplier, and they are all 
added together to form the final product. 

3. As the multiplication progresses from the least to the most significant bit of the 
multiplier, each succeeding partial product is shifted one place to the left. 

To implement binary multiplication using a digital machine, two processes 
introduced earlier have to be performed, namely addition and shifting. Addition can 
be carried out using a 4-bit adder. The result of the addition is loaded into the product 
register when the adder output is enabled by AE, the adder enable signal, while 
the shifting process is achieved by generating a shift pulse for the product register. 
A multiplier designed on the basis of these two processes is called a shift and add 
multiplier. 

There would, in practice, be one change to the 'paper and pencil' method in the 
machine implementation. The above example shows that all the partial products are 
formed before the addition takes place to generate the product of the two numbers. 
In a machine this would require four registers, one for each partial product, and clearly 
this would increase as the number of multiplier bits increases. From the hardware 
point of view this would be extremely uneconomic, and in practice, addition takes 
place each time the multiplicand appears as a partial product, that is, every time the 
multiplier bit is 1. 

An examination of the multiplication of two 4-bit numbers indicates the following 
preliminary list of hardware requirements: 

1. A 4-bit register for the multiplicand, 
2. A 4-bit register for the multiplier, 
3. A double-length 8-bit register for the product, 
4. A 4-bit adder, 
5. Control logic for controlling the add and shift operations. 

In practice, this preliminary list is more than is required. It is clear that initially, the 
double-length register for the product contains no data at all, and it would seem 
reasonable to use a portion of this register for holding the multiplier on a temporary 
basis. As the multiplication progresses and successive bits of the multiplier are used, 
they are moved out of the product register one bit at a time, thus leaving space 
available for the accumulation of the partial products. This portion of the product 
register is referred to as the accumulator. 

A basic diagram for the machine is shown in Figure 12.34(a). It consists of the 4-bit 
multiplicand register, a 4-bit adder, an 8-bit product register which consists of accu- 
mulator and multiplier sections, and a box labelled 'control logic'. The control logic box 
has three functions. It must examine the multiplier bit to determine whether it is 0 or l, 
and it must generate the shift and adder enable signals. The control logic is also supplied 
with clock and 'start' signals for synchronising and starting the multiplier operation. 
A scale-of-4 counter is used to count the number of shift and add operations. 

If the multiplier bit is 1, an adder enable signal A E  is generated by the control logic. 
The contents of the multiplicand register and the least four significant bits of the 
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accumulator, having been connected to the inputs of the 4-bit adder where addition 
takes place, are now returned to the accumulator. A shift pulse is generated, and the 
data stored in the product register is shifted one place to the right, thus moving the 
least significant bit of the multiplier out of the product register and replacing it with the 
next most significant bit. In the event of the multiplier bit being zero, a shift pulse S 
is generated, and no addition takes place. Comparing the machine operation with the 
'paper and pencil' multiplication it will be noticed that, on paper, the multiplicand 
shifts left and the multiplier remains in a fixed position relative to the multiplicand, 
which remains in a fixed position. 

An ASM chart for the multiplier is shown in Figure 12.34(b) and it consists of four 
states, WAIT, LOAD, ADD and SHIFT: 

WAIT: 
LOAD: 

ADD: 

The multiplier is in the quiescent state waiting for the START signal. 
The accumulator is cleared and the multiplier and multiplicand registers 
are loaded. 
The multiplier enters this state if the L S B -  1. The mutiplicand is added to 
the contents of the accumulator. This state will be bypassed if LSB = 0 and 
the multiplier will go directly to the SHIFT state. 

SHIFT: The accumulator will shift one place right moving the least significant bit 
of the multiplier out of the multiplier register. The count will advance by 1. If 
the counter output CT0 is 0 the machine will return to the LSB decision box. 
If the counter output is 1, the end of the count cycle has been reached and the 
machine returns to the WAIT state. 

A suitable state diagram for the machine is shown in Figure 12.34(c). Once start 
signal X is received, an adder enable or shift pulse is generated in state So, depending 
upon the value of the multiplier bit M. Assuming that M = 1, an adder enable pulse is 
generated on the trailing edge of the next clock pulse to be received, and a transition 
will be made to S~, the sum having been returned to the accumulator. Alternatively, if 
M = 0 a shift pulse is generated, and a transition is made to $2 on the trailing edge of 
the next clock pulse. The outer square will be traversed if all four multiplier bits are l's. 
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Alternatively, if all four multiplier bits are O's then a transition path will be traced 
round the inner diamond of the state diagram. 

Since the control logic state diagram has eight states, three flip-flops, P, Q and R are 
required for its implementation. A programmable logic sequencer (PLS) which has 
on-board D type flip-flops can be used for the implementation. The input equations 
for the DFFs are derived using the methods described in Chapter 8. It is left to the 
reader to construct a state table, plot the flip-flop input equations and the shift and 
adder enable functions on 5-variable K-maps and then simplify them. The following 
results with the state allocation given on the state diagram should be obtained: 

De = PQ + M P Q  + P a R  + M P R  

DO. = QR + M a R  + M P Q  + M X P Q  

DR = M X R  + M P R  + M Q R  

A E  = M X R  + M P R  + M Q R  

S = R + M Q  + M P X  

The implementation of the control logic is shown in Figure 12.34(d) and an idealised 
timing diagram, assuming leading-edge triggered DFFs, is shown in 12.34(e). 

12.21 Available multiplier packages 

The 74284 and the 74285 in the Type 74 series can be used in combination to provide 
4-bit-by-4-bit parallel multiplication. When the two chips are connected as shown in 
Figure 12.35 an 8-bit product is generated. The individual chips have a pair of enable pins 
GA and GB and open collector outputs which should be connected to a pull-up resistor. 

In practice, it is now unlikely that these two chips would be used for multi- 
plication. They were originally manufactured in the early days of the Type 74 series 
when pin limitation was a crucial design factor. More recently, single chips have 
been designed which are capable of much higher orders of multiplication. However, 
higher orders of multiplication can be achieved by an array of these two multiplier 
packages. For example, 8 • 8 multiplication can be achieved using an array of four 
pairs of these two chips using the following equation which was developed in 
section 12.19: 

P -  28H1H2 + 24HIL2 q- 24H2LI d- LIL2 

The outputs of the multipliers are summed using an array of 74283 4-bit adders, beating 
in mind that proper regard must be paid to the shift operators in ~ the above equation. 
Implementation of the multiplier is identical to the ROM/Adder array in Figure t2.33, 
the ROMs being replaced by 4 • 4 multipliers. It is left to the reader to calculate the 
worst case delay of the multiplier array from input to output. 

12.22 Signed arithmetic 

Consider the multiplication of two 4-bit numbers where the multiplicand is negative 
and the multiplier is positive. As an example, the product of the two numbers 
is calculated in 4-bit 2's complement arithmetic and must not be more negative 
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Binary inputs 
Word 2 

23 22 21 

l 

Word 1 

2 o 23 22 21 2 o 

GA 
74284 

c~ 

GA 

G6 
74285 

P7 P6 ~ ~ ~ ~ P~ Po 

Output product 

Figure 12.35 4-bit-by-4-bit Parallel Multiplier 

than (-15)10, the lowest number allowed when a 5-bit register is used to hold 
the product. 

Multiplicand (-7)10 1001 2's complement of (7)!o 
Multiplier (+2)10 0010 

0000 
1001 

0000 
0000 
0010010 

The four least significant bits of this multiplication are the 2's complement of the 
required answer, (-14)10. It will be observed that all that was required to complete the 
multiplication was a single left shift of the multiplicand. It follows that if the multiplier 
consists of a series of O's followed by a single 1, reading from the LSB towards 
the MSB, the multiplication process would only require a series of left shifts of the 
multiplicand. For example, in the case of the 8-bit multiplier (00010000)e, four left 
shifts of the multiplicand are required as shown in the example below: 

Multiplicand (-7)10 11111001 2's complement of (7)1o 
Multiplier (+ 16)10 00010000 
Product (-112)10 10010000 4 left shifts of the multiplicand 

The product obtained in this case is the 2's complement of (112)10. 
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Consider now the multiplication of the multiplicand P by n l's. This may be 
written as: 

P(2 n - 1 ) = P x 2 n - P  

The first term in this equation represents a left shift of the multiplicand P by n places, 
while the second term represents the addition of the 2's complement of the multiplicand 
to the result of the left shift. The calculation of the product (-5)10 • (15)10 = (-75)10 
using the above equation is shown below: 

Multiplicand (-5)10 
Multiplier (+ 15)10 
Product (-75)10 

11111011 
00001111 
10110000 
00000101 
10110101 

2's complement of (5)1o 

4 left shifts 
Subtract (--5)10, i.e. add (5)10 
2's complement of (+75)10 

12.23 Booth's algorithm 

It is clear from the examples in the previous section that arithmetic operations arising 
from the multiplication process only take place when the multiplier bits change from 
0 to 1 or from 1 to 0. Based on these observations, A D Booth developed the following 
multiplication algorithm: 

1. If two adjacent multiplier bits are the same (00 or 11) do nothing, and shift the 
partial product left one place 

2. If a bit of the multiplier is 1 and the next least significant bit is 0, subtract 
the multiplicand from the accumulated partial product and shift left one place 

3. If a bit of the multiplier is 0 and the next least significant bit is 1, add the 
multiplicand to the accumulated partial product and shift left one place. 

Two examples of the application of Booth's algorithm follow, firstly for a pair of 
positive numbers and secondly for a positive multiplicand and a negative multiplier. 
The multiplier is defined by the equation M = M7M6MsM4M3MzM1Mo and in 
order to start the multiplication process a digit M-1 = 0 is placed behind the LSB of 
the multiplier. 

Multiplicand (+7)10 
Multiplier (+9)10 

00000111 
00001001(0) 
11111001 

00000111 
00000000 

11111001 
00000111 

(63)10 100100111111 

MoM-1 = 10 Subtract 7 and shift left 
Mt Mo = 01 Add 7 and shift left 
M2M1 = 00 Shift left 
M3M2 = 10 Subtract 7 and shift left 
M4M3 = 01 Add 7 and shift left 

Product 

The eight least significant digits represent the product (63)10. In practice, the 
multiplier would accumulate the partial products as the calculation proceeds whereas 
in this example the individual partial products have been summed after they have all 
been formed. 
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For the second example the multiplier is negative and is expressed in 2's complement form: 

Multiplicand (+7)10 00000111 
Multiplier (-9)10 11110111 (0) 

11111001 
00000000 

00000000 
00000111 

11111001 
Product (-63)10 000011000001 

The least significant eight bits are the 2's complement of (63)~o. 

M o M - I  = 10 Subtract 7 and shift left 
m l  Mo = 11 Shift left 
M2ml  = 11 Shift left 
M3M2 - 0 1  Add 7 and shift left 
M4M3 - 10 Subtract 7 and shift left 

12.24 Implementation of Booth's algorithm 

The basic building blocks for a multiplier utilising Booth's algorithm are shown in 
Figure 12.36. It consists of an 8-bit register which holds the multiplicand. The output 

Mn-1 

Multiplicand I 
+8 

I , 

. ,  

8 

D 

2's complementer ] 

, f 
Eight 2-to-1 Multiplexers 

Eight 2-input AND gates 

c~7 

~176 
A 

[Ck 

Coat 

~ 8 

8-bit adder 

16-bit accumulator 

! 

Figure 12.36 Block diagram for a Booth's multiplier 
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Shift 
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of the register is fed directly to one of the inputs of each one of an array of 2-to-1 
MUXs, while the output of the 2's complementer is fed to the second input of each 
of the MUXs. If the multiplier bit M, = 1 the output of the MUXs is the 2's comple- 
ment of the multiplicand. Alternatively, if M, = 0, the output of the MUXs is the 
multiplicand. Each output of the MUXs is fed to one of the inputs of a bank of eight 
2-input A N D  gates. The A N D  gates are enabled/disabled by the output of an XOR 
gate whose inputs are M, and Mn-l.  Assuming that each of these multiplier bits are 
either 00 or 11 the AND gates are disabled. For the other two possible XOR inputs, i.e. 
01 or 10, the XOR output is 1 and the A N D  gates are enabled. The outputs of these 
gates are fed to an 8-bit adder in conjunction with the seven least significant bits of an 
accumulator. For each bit of the multiplier arrangements should be made to shift the 
partial product in the accumulator. It is left to the reader to design a complete 
hardware implementation using Booth's algorithm. 

The 74384 8-bit by 1-bit 2's complement multiplier package is shown in Figure 12.37 
along with the function table. This package employs Booth's algorithm to implement 
the multiplication of a pair of numbers, both expressed in 2's complement form. 
The 8-bit multiplicand is stored in an array of eight latches which are controlled by 
the clear input CLR. When the CLR input is low all the latches are cleared and they 
are now able to receive an 8-bit multiplicand. When the clear input is high any further 
input to the array of latches is inhibited. 

The multiplier is fed to the package via the Y input in a serial bit stream, least 
significant bit first, and the product is clocked out of the chip on the line labelled 
PROD. Multiplication of an x-bit multiplicand by a y-bit multiplier generates 
,, product of length of (x + y) bits and the clock must provide (x + y) shift pulses to 
produce the 2's complement product. Facilities are also available for extending the 
range of multiplication. This can be achieved by connecting the PROD output to the 
K input of the next multiplier in the array. 

(a)  

(is) _ p ~  _ 

X7 XS X6 X4 X3 I(2 X 1 X0 

/ ! A7 ' A6 AS A4 A3 A2 At A0 

Y-1 CK 
ADOER/SUOTRACTER AND REGISTERS 

K 

MOOE IS) 

(b)  

I N P U T S  

CLK 
L X 

x i Y 
D a t a  X 

H t X L 

H t X L H 

H t X H L 

H t X H H 

F U N C T I O N  T A B L E  

I N T E R N A L  O U T P U T  F U N C T I O N  
Y - 1  P R O D  ...... 

L L Load new mul t ip l icand  and clear internal  sum and carry  registers 

L Shi f t  sum register O u t p u t  

per 

Booth 's  

a lgor i thm 

A d d  mul t ip l icand to sum register and shift  , ,, 
Subtract  mul t ip l i cand  f rom sum register and shift  

Shi f t  sum register 

H " high-level,  L " low-level,  X = i r revelant,  t ,, low-to-high-level transit ion 

Figure 12.37 (a) The 74384 block diagram of the 2's complement Booth multiplier (b) the function table 
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Prob lems  

12.1 Develop a combinational logic circuit that will convert 4-bit binary numbers into 
their corresponding 2's complement form. 

12.2 Develop a combinational logic circuit that will generate the 10's complement of 
the decimal digits where these digits are expressed in the NBCD code. 

12.3 The code tabulated below is the XS3 code representation for the decimal 
digits. 

Develop a set of rules for adding together two decimal digits expressed in XS3 
form, and hence perform the operation (34)1 O- (19)! 0 using 9's complement 
arithmetic. 

dd XS3 code dd XS3 code 

0 0011 5 1000 
1 0100 6 1001 
2 0101 7 1010 
3 0110 8 1011 
4 0111 9 1100 

12.4 The decimal digits 0 to 9 are represented by an 8421 NBCD code (normal binary 
coded decimal). A logic circuit is required which will convert the decimal numbers 
expressed in 8421 NBCD code into the decimal numbers expressed in the 
corresponding XS3 code. Design such a code converter using (two-input) NAND 
gates only. 

12.5 Develop the circuit for a 3-decade, XS3 decimal adder/subtractor using 7483 4-bit 
adders and any additional discrete logic that may be required. 9's complement 
arithmetic is to be used for the subtraction process. 

12.6 Develop an algorithm for the addition of two positive binary coded duodecimal 
(base 12) numbers. 

With the aid of the algorithm, design one stage of an n-stage binary coded 
duodecimal adder/subtractor circuit which uses l l's complement arithmetic. 
A 4-bit binary adder is to be used as the basic building block in conjunction with 
any other logic gates required. 

12.7 The decimal digits are to be represented by the 2421 self-complementing code. 
Develop an algorithm for adding together any two decimal digits using this code. 
With the aid of this algorithm, design a single stage 2421 adder/subtractor circuit. 
A 4-bit binary adder is to be used as the basic building block in conjunction with 
any other necessary logic gates and/or MS1 chips. 

12.8 An arithmetic circuit has two selection signals, So and Sl. The circuit is required 
to perform the operations listed below. 

F = A + B  F - A + B + I  

F = A  F = A + I  

F = A + B  F = A + B + I  

F = B  F = B + I  
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12.9 

12.10 

Using a 4-bit adder as the basic building block, design the circuit that will 
implement the above operations. 
Design a binary multiplier that multiplies a 4-bit number, B3B2B1Bo, by a 3-bit 
number A = A2A1Ao. The circuit is to be implemented using AND gates and full 
adders. 
A parallel binary multiplier for 4-bit positive numbers, using the shift and add 
technique, is illustrated in Figure P12.10. The multiplier is controlled from the 
box labelled 'Control logic' in the diagram. The inputs to the controller are 
(a) the clock signal X, (b) the start signal N, and (c) the multiplier bit M. 
The outputs from the controller are (a) the shift pulse S, (b) the add pulse 
A, and (c) the reset pulse r. 

The control logic is to be designed such that if the multiplier bit, M, is 1 at 
a given clock time, addition takes place. The multiplier bit should then be reset 
to 0 and at the next clock time a shift takes place. 

Using synchronous sequential design techniques, develop the control logic 
for the multiplier. 

--t 

Product register 

r (reset) 

I I I !  [ ] ] [ M (Multiplier bit) 
i l l [ i l l  'Multiplier' 

TTT 
I I I  

Y 

Multiplicand 

Adder 
L X (Clock) 

A (Add) Control 
logic [iN(Start) 

I- 

Figure P12.10 

12.11 Design a serial binary multiplier using Booth's method. 
12.12 Calculate the product (-910) • (-13)10 using Booth's algorithm. 



13 Fault diagnosis and testing 

13.1 Introduction 

Successful and efficient fault-finding is an art as well as a science, for experienced 
practitioners learn which faults are likely to occur and which are not, and use tests that 
isolate typical faults most quickly. It is also technically extremely exacting, as it 
requires an understanding not only of how the circuit is designed to operate, but also 
of how the circuit will behave under a multitude of fault conditions. 

In fact, broadly similar approaches are needed to establish why a new design does 
not operate as expected, or why a newly constructed circuit made to a known good 
design does not operate the first time it is tested, or why a circuit that previously 
operated correctly has suddenly started showing fault symptoms. For some commercial 
designs, component-level fault finding in the field is discouraged and faulty modules 
must be replaced as a whole, but in many of these cases fault-finding is thereby merely 
transferred to a central depot having the necessary specialist facilities. In any 
case, design engineers still need the skills that will enable them to find faults in 
prototype designs. 

Before undertaking any electrical tests, it is always a good idea to carry out a physical 
inspection of the circuit, as many faults are caused by mechanical problems, such as 
smashed components or faulty soldering, that are clearly visible. Only when a faulty 
circuit has no obvious visual defects are electrical fault-finding methods then needed. 
At this point it is highly desirable to have available the technical details of the design. 
If these details are not immediately to hand, finding an elusive fault is made very much 
more difficult and may well be uneconomic. It is usually an early task, therefore, to try 
to obtain these technical details. 

A simple way of detecting faults in a combinational logic circuit is to apply every 
possible input combination and compare the circuit response with the known truth 
table of the circuit, or with the response of a known faultless version of the circuit. 
There are clearly limitations to this method because, as the number of inputs (n) 
increases, the number of tests required increases exponentially and is equal to 2 ~ 
in the case of a combinational circuit. Potentially a much greater number of tests 
than this would be needed for a sequential circuit where the order of the applied inputs 
is significant. 

In a limited number of situations, an examination of the circuit in conjunction with 
a tabulation of the expected circuit response can reveal the nature of the fault. 
For example, the circuit of Figure 13.1 (a) gives the column headed f i n  the truth table 
of Figure 13.1(b) when operating correctly, while the columns headed fl  and f2 are 
given if there is a fault present in the circuit. Response fl  is obtained when input line q 
is held permanently and erroneously at l, and the output of g~ is then 1 whenever 
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(a) 

C 
A 

C 

D 

(b) 

Inputs Fault free Faulty 
response response 

A B C f 

0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 I o ,  , 0 

Figure 13.1 An informal approach to fault diagnosis (a) Circuit implementation o f f  = ABC + ABC 
(b) Circuit response for fault-free (f) and faulty ( f  t and f2) conditions 

A = C = 0. Response f2 is obtained when any one or more of the input lines p, q or r is 
(are) erroneously held at 0. 

The fault fl  is revealed by applying A = 0, B = 1, C = 0, and examining the output, 
while the fault f2 is revealed by the test A = B = C = 0. The first fault is distinguish- 
able from all other possible faults, while the second test reveals seven indistinguishable 
faults, three corresponding to one input line being erroneously low, three where any 
two of these three input lines are erroneously low, and one where all three input lines 
are erroneously low. 

This limited and informal fault analysis of the circuit shown in Figure 13.1(a) has 
been carried out by inspection. However, it is desirable that more formal techniques 
for testing should be developed and it is the purpose of this chapter to examine fault 
analysis and methods for generating an adequate test set for a specified circuit. 
This process is frequently termed test pattern generation (TPG).  

13.2 Fault detection and location 

Inexperienced engineers, faced with a circuit containing a fault or faults unknown, 
often resort to removing semiconductor components at random and attempting to test 
them or to replace them with new components without testing the old. This is 
a completely incorrect approach, for the following reasons: 

1. In a typical system with many components, it is unlikely that the faulty component 
will be chosen at random for removal. 

2. Often, either perfectly good components, or the circuit board, or both, will be 
damaged by inexpert removal and replacement. 

3. In many systems, the most common faults are mechanical failure of switches and 
similar components, followed by connection (soldering) faults, open circuit 
resistors, and open circuit capacitors. Failure of ICs and other semiconductor 
devices, although possible, is relatively unlikely. 

4. Sometimes a fault will cause an associated semiconductor device to fail. If this 
associated device is replaced at random, the replacement will be destroyed as well 
with no further progress to show as a result. 
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In all cases, a good working rule is that no component (or sub-system, or minimal 
replaceable part) shouM be removed or replaced until it has been proven faulty 
(beyond any doubt) and it has also been established that there is no associated fault that 
will cause the replacement to fail. To prove that a component in the circuit is faulty 
requires that voltage and perhaps other electrical checks should be performed upon the 
circuit while it is powered, and the component should be subjected to typical signals 
whilst the output is examined for the correct output signals. 

In order to locate a fault in a typical system consisting of a chain of n components 
connected in sequence, often signal tracing will be employed in situations where the 
intermediate signals are accessible at each point in the chain. Using this technique, the 
signals at the outputs of components are examined and compared with what would be 
expected, assuming no fault were present. If correct signals are observed at the input to 
a certain component but not at its output, then it is fairly clear that the fault must be 
associated closely with that component. This still does not mean that this particular 
component is faulty, for it is also possible that the power supply to this component has 
failed or that the function of this component has been affected by some other fault. 
Therefore, exhaustive voltage checks centred upon this component must still be under- 
taken to investigate these other possibilities before condemning this component. 

How can this faulty component be located? Suppose that the fault is equally likely to 
occur in any of the n links of the chain. The correct procedure is not to trace the signal 
in turn through each component in the signal chain, for this method requires, on 
average, n/2 tests before the faulty stage is located (of course, one could be lucky 
and locate the fault immediately with one or two tests, but equally one may be unlucky 
and need as many as n tests to locate the fault). Much more efficient is the procedure of 
binary division where firstly the presence or absence of the correct signal is established 
halfway through the chain of n stages. Depending upon the result of this single test, 
either the entire first half or the entire last half of the circuit can therefore be eliminated 
from further attention, and subsequent tests confined to the faulty half. The same 
principle can then be applied to this half of the circuit, and so on, by successive binary 
divisions the fault is isolated to one single stage. With a large number of stages, this 
procedure requires only log 2 (n) tests to locate the faulty stage, considerably less than 
the average of n/2 tests required for tracing the signal in turn through each stage. 
For example, for n = 16, sequential signal tracing requires 8 tests on average, whereas 
binary division signal tracing requires 4 tests. 

There are two types of test which can be carried out on digital circuits: 

1. Fault detection tests, which are used to reveal faults, and 
2. Fault location tests, which are designed to reveal, locate and identify faults. 

The testing method used for the circuit of Figure 13.1 (a) in section 13.1 above was 
exhaustive, in that all possible tests were applied. In practice, it is possible to devise 
shorter test procedures which will detect and locate faults. However, before developing 
realistic test methods, a number of simplifying assumptions will be made relating to the 
circuits to be tested and the types of faults occurring in those circuits: 

1. The procedures to be dealt with in this chapter are concerned with the detection, 
location, and diagnosis of single faults. This is not to exclude the possibility of the 
occurrence of multiple unrelated faults, but the probability of such faults occurring 
is small in comparison with the probability of a single fault occurring. In a complex 
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system where multiple faults exist, it is likely that each fault will affect a different 
part of the system, so that in practice the system may be divided into sub-systems in 
each of which there is, at most, only one fault. Of course, it is also possible that one 
fault may cause failure of a closely related component, so that when a faulty 
component is located, the question must always be asked whether that component 
failed as a direct consequence of another failure. If so, replacing the first 
component will merely cause the replacement to fail again. 

2. It will be assumed that the faults being detected are permanent rather than 
intermittent. Intermittent faults are, in general, extremely difficult to locate, as, after 
replacing a suspect component, it is impossible to say without doubt whether 
subsequent correct operation is a result of replacing the faulty component or 
is a result of inadvertently disturbing a different actual faulty component so that it 
is now (temporarily) operating correctly. It is a truism that it is impossible to find a 
fault in a system that is, even if temporarily, operating according to its 
specification. In many cases, when faced with an intermittent fault whose location 
is not obvious, the best course of action is either to replace the entire faulty system 
or sub-system, or else to wait until the intermittent fault becomes permanent. 
Replacement may be the best option if this system or sub-system has a critical 
function, whereas waiting may be a cheaper option if the system or sub-system does 
not have a critical function as intermittent faults usually become permanent 
eventually. After waiting, the fault diagnosis will be made much easier by having a 
permanent fault to locate. Some intermittent faults are thermally activated, 
produced by a faulty connection that is good at certain temperatures but at other 
temperatures the differing thermal expansion coefficients of the various materials 
involved in the connection cause electrical contact to be lost. In this case, it may be 
worthwhile using an aerosol freezing spray to cool isolated parts of the circuit, 
hopefully inducing the fault to be present for longer periods, in order to locate 
the fault. 

To start with, it will be assumed that all faults are such that a certain logic line 
is either stuck-at-O (s-a-O) or stuck-at-1 (s-a-1), i.e., the line is permanently at logic level 
0 or 1 respectively, regardless of what logic level is actually supposed to be present on 
that line. This widely used fault model does not cover all possible faults, but its use 
is justified on the grounds that most circuit failures exhibit symptoms corresponding 
to this model. For example, a short circuit of any line to ground can be represented by 
a s-a-O fault, while an open circuit on an input line to a TTL gate will cause that input 
to 'float' at a voltage corresponding to an unreliable and noisy logic 1, causing an s-a-1 
fault. Other common types of fault occur when one of the transistors in the usual 
'totem-pole' output stage of a gate becomes short circuited and the other becomes 
open circuited, which can again be represented by an s-a-O or an s-a-1 fault as approp- 
riate. Equivalent faults can also occur in 'open collector' gate output stages. 

Later (section 13.8), bridging faults will be examined, where two logic lines are 
inadvertently connected together. However, other faults are also possible in practice. 
For example, an open circuit on an input line to a CMOS gate results in that input 
being connected neither to logic 0 nor to logic 1, and, assuming the usual 'totem-pole' 
gate output configuration, it is then possible that neither output transistor is turned 
fully off. Therefore, the gate output stage will draw substantially more current than 
it is designed to carry, which can lead to serious overheating of that gate, as well 
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as excessive current consumption. Overheating can lead to gate failure which will itself 
usually be well represented by the s-a-O or s-a-1 fault models, but the excessive current 
consumption can also lead tO reduced power supply voltage or even power supply 
failure, causing erratic operation elsewhere in the circuit. This type of fault is best 
located by careful voltage checks on the IC pins. Note that in this case, merely 
replacing the overheating IC will clearly not solve the problem, unless the cause of 
the fault is an internal open circuit between the IC connection pin and the actual gate 
input transistor. 

Another possibility with CMOS gates is that if a gate input is a poorly connected 
though not quite open circuit, there may be a large effective resistance R~ in series with 
the gate. In conjunction with the effective capacitance C~fr of the gate input this can 
give correct logic operation after a significant delay governed by the time constant 
r = RsCefr which in some cases can be as much as several seconds. This is an example 
of a delay fault, characterised by excessive propagation time through a particular part 
of the circuit. In the case of a slow logic system, the presence of such a fault may not 
matter or may not even be detectable, but in the case of a fast system where such a delay 
is significant such symptoms can be baffling to the inexperienced engineer, causing 
unexpected racing hazards for example. 

A further type of fault worthy of mention here, encountered mainly, though not 
necessarily exclusively, with VLSI chips such as memories, is the pattern-sensitive fault, 
where a repeatable and demonstrable logic error occurs whenever some particular logic 
pattern is set up elsewhere in the circuit. As an example of this kind of fault, it is 
possible that if one particular data word is output by a memory chip, then and only 
then is incorrect data read from the data bus. This can be caused by poor supply line 
decoupling, so that a data word that happens to require a large current drive to the 
memory output data buffers momentarily takes the supply line below its specified 
voltage, thus affecting the memory or data bus operation. This type of fault can 
be extremely difficult to find as for most of the time the circuit operates correctly, 
without any 'stuck-at' or bridging-type behaviour at all. It is distinguishable from an 
intermittent fault only in that the fault is electrically repeatable, if only the correct 
conditions for repeating it can be found, and also it usually does not change in severity 
over time. 

13.3 Gate sensitivity 

One concept that is central to the testing of all circuits is the provision of a sensitive 
path between input and output so that any signal transitions appearing at the input 
will be transmitted to the output. At the gate level this concept depends upon the 
transmission properties of each gate. For example, consider the 2-input AND gate 
shown in Figure 13.2(a)" 

1. If B = 1, signal transmission through the gate is enabled; Z = 0 for A = 0, and 
Z = 1 for A = 1. Any logic transitions appearing at input A are directly transmitted 
to the gate output, Z. 

2. If B = 0, signal transmission through the gate is disabled; Z = 0 irrespective of the 
value of A. Logic transitions appearing at input A are not transmitted to the gate 
output Z. 
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Figure 13.2 The transmission characteristics of (a) AND, (b) NAND, (c) OR, and (d) NOR gates 

Similarly, a 2-input N A N D  gate is enabled when one of its inputs is held at 1, while 
2-input OR and N O R  gates are enabled when one of their inputs is held at 0. 
The transmission properties of these gates are also illustrated in Figure 13.2. 

AO.' O, e,, 

Transmission Inversion 

Figure 13.3 The transmission character- 
istics of the XNOR gate 

It is interesting to note that the XOR and X N O R  
gates do not exhibit the same gate sensitivity as the 
other four gates, as neither of them can be disabled. 
The behaviour of the X N O R  gate is illustrated in 
Figure 13.3 and, like the X O R  gate, it behaves as 
a controlled inverter. Both of these gate types are 
therefore permanently enabled. 

13.4 A fault test for a 2-input AND gate 

The A N D  gate shown in Figure 13.4(a) has two input lines, labelled p and q 
respectively, and one output  line labelled r. In all, there are six possible single faults 
for which tests can be made. They are: any one of p, q, and r s-a-1 or, alternatively, any 
one of p, q and r s-a-O. 

Suppose that line p has a s-a-O fault; it is required to determine the test that will 
detect this fault. Circuit input B must be maintained at logic 1 level to enable the gate, 
otherwise the gate's output will be permanently held at 0, while the other circuit input (A) 
must be held at the complement of the 'stuck-at '  fault value of p -  i.e., in this case, 1. 
Hence, the required test is A - B -  1, and the results of this test are summarised in 
Figure 13.4(a). It is also clear that the same test conditions will also detect line q s-a-O 

and line r s-a-O. 
To determine the test for line p s-a-1, the input B must be maintained at logic 1 level 

to enable the gate, while input A is he ld  at 0 (the inverse of the s-a-1 value of p). 
Hence, the required test is A -- 0 and B - 1, and the results of this test are summarised 
in Figure 13.4(b). This same test will also detect whether r is s-a-1. 

Finally, to test for q s-a-l, input A -  1 is the gate enabling signal, while the 
complement of the 'stuck-at '  fault value must be applied at input B, giving B -  0. 
Therefore, the required test is A - 1 and B - 0, and the possible test results are shown 
in Figure 13.4(c). 
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Test 2 normal output 

output if fault 
ql present 

Figure 13.4 Fault test for a 2-input AND gate (a) Test for p s-a-O (b) Test jbr p s-a-I (c) Test./br q s-a-I 

The results deduced above can be tabulated as follows, using the shorthand notation 
that p~ signifies p s-a-1 and other faults are indicated similarly: 

Test number A B f Faults detected by test 

0 0 0 - [Not required] 
1 0 1 1 Pl, rl 
2 1 0 1 ql 
3 1 1 0 Po, qo, ro 

The table shows that a test using A = B = 0 is not needed, and that the remaining 
three tests will detect all possible faults. Hence, the minimal test set for an A N D  gate is 
T = { 1,2, 3 }, and therefore this analysis has shown that there is a 25 % reduction in the 
tests needed, compared to the test set using all entries in the truth table. 

13.5 Path  sensit isation 

The determination of a test set for a single gate, where there is direct access to the input and 
the output, is achieved by enabling or sensitising the gate. However, it often happens that 

P 

C 0 [ ~  E 

Figure 13.5 Path sensitisation for 
testing for a s-a-O fault on line p 

when testing a combinational circuit such as the one shown 
in Figure 13.5, the outputs D and E of gates gl and g2, 
respectively, are not directly accessible so that a fault at p, 
for example, must be detected at the output F. For example, 
points D and Emay  be within an IC which must be tested by 
applying input signals whilst examining the output signals. 
This requires the sensitisation of two gates, g l and g3, which 
then provide a sensitised path from input A to output F. 
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Figure 13.6 Circuit to be tested by path sensitisation method 

To determine whether line p shows an s-a-O fault, gate gl is sensitised by setting B = 0. 
In order to sensitise gate g3, point E must be set to 1 which requires input C = 0. 
The path through gl and g2 is now sensitised, and to test for P0 then A = 1, the inverse of 
the fault for which a test is required. Hence the test for P0 is (A,B,C) = (1,0,0). 

As an example of path sensitisation, a test set covering all the possible faults will be 
obtained for the N A N D  gate combinational network shown in Figure 13.6. There are 
three possible paths through this circuit: pst, qst and rt. On the diagram, as an example, 
path pst has been marked in bold. The analysis proceeds by sensitising each path in 
turn, and the tests for the various s-a-O and s-a-1 faults associated with each path 
determined. The results are summarised in the following table: 

Path (Figure 13.6)--+ 

Gate sensitisation input signals: 

Assumed fault: 
Test (complement of assumed fault): 
Full test conditions (A,B,C): 

Normal output f." 
Faulty output (inverse of normal f ) :  
Other faults detected by this test: 

pst 

B = C = I  

P0 P~ 
A = I  A = 0  
(1,1,1) (0,1,1) 

1 0 
0 1 

S1 & to So dk tl 

qst  

A = C = I  

qo 
B = I  
(1,1,1) 

1 
0 
SI 1~ to 

ql 
B = O  
(1,O,l) 

0 
1 

S o &  tl 

rt  

(A,B) = (0,0) or 
(0,1) or (1,0) 

ro 
C = I  
(0,0,1), 
(0,1,1), 

or  

(1,0,1) 
0 
1 
tl 

rl 

C = 0  
(o,o,o), 
(0,1,0), 

or  

(l,o,o) 
1 
0 
to 

In these tests, for paths pst and qst the sensitising signals sensitise the selected path in 
the forward transmission direction and the sensitising process is referred to as the 
forward trace step. However, for path rt the sensitising signal for g2 is s = 1, and values 
therefore have to be assigned to A and B which will set up this sensitising signal. This is 
referred to as the backward trace step, and for the circuit of Figure 13.6 there are three 
possible combinations of the input signals A and B that will set up the required 
sensitising signal, as shown in the table. 

Additionally, it should be noted that when a path has been sensitised, 'stuck-at' faults can 
be detected at each point along the sensitised path. The faults that are automatically detected 
in this way correspond to the logical complement of the normal logic level expected. 

A similar table summarising the results for other circuits can be prepared by 
adopting the following procedure: 

1. Select the fault for which a test or tests are to be determined, and identify a path 
from the site of the fault to the circuit output. 

2. Sensitise the path using the forward trace step. 
3. Establish the network inputs, if necessary, by the backward trace step. 
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fan-out of l 

Circuit with independent inputs and gate 

The path-sensitising technique is always 
satisfactory for circuits in which all the 
inputs are independent of each other and 
where the fan-out of each gate in the circuit 
is unity. In such cases, this method will 
generate tests for all possible faults in the 
circuit because consistent input combin- 
ations always exist, irrespective of which 
path is sensitised, and consequently all 
paths in the circuit can be sensitised. 
Another example of such a circuit is shown 
in Figure 13.7, where the tests for the faults 
P0, qo and r0 are the input combinations 

(A,B,C,D,E)=(I,I,O,X,1) or (I,I,X,0,1), where X indicates a 'don't  care'. 
The remaining four sensitisable paths can be used to determine tests for all other 
possible faults in this circuit. 

13.6  P a t h  sens i t i sa t ion  in n e t w o r k s  with fan-out  

A circuit incorporating fan-out is illustrated in Figure 13.8(a). The signal path 
for input variable B branches into the two lines s and t, one branch being 
connected to the lower input of g~ and the second branch being connected to 
the upper input of g2. After passing through gates g~ and g2, these two paths 
reconverge at g3. This is an example of reconvergent fan-out. Further inspection of 
this circuit shows that there are two single paths that can be sensitised indepen- 
dently, i.e. qsuw (Figure 13.8(a)) and qtvw (Figure 13.8(b)). Additionally, there is 
a multiple path (Figure 13.8(c)) consisting of these same two paths together, which 
can also be sensitised. The following table shows the tests possible for detecting 
the fault qo: 

Path (Figure 13.8) qsuw qtvw qsuw & q t v w  

Gate sensitisation input signals: 

Assumed fault: 
Test (complement of assumed fault): 
Full test conditions (A,B,C): 
Normal output f: 
Faulty output (inverse of normal f):  
Other faults detected by this test: 

A = I  C = I  A = C = I  
v = l ,  ~ C = 0  u = l ,  ~ A = 0  
q0 q0 q0 
B = I  B = I  B = I  
(1,1,O) (O,l,1) (1,1,1) 
1 1 l 
0 0 0 
So, to, u~, & Wo So, to, v~, & Wo So, to, & Wo 

In this example, the fault q0 can be transmitted along either of the two independently 
sensitised paths and can be detected at the output. For the case of dual path sensitisation, 
if the input at B changes from 1 ---, 0 the outputs of gl and g2 both change from 0 ~ 1; 
the fault is transmitted along both paths simultaneously. This is an example of positive 
reconvergence. 
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Figure 13.8 Path sensitising in a network with 
fan-out (a) Single-path qsuw (b) Single-path 
qtvw (c) Dual-path qsuw and qtvw sensitised 
simultaneously 
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Figure 13.9 Path sensitisation for circuit 
having unequal inversion parity along its 
reconvergent branches (a) Dual-path sensiti- 
sation test fails (b) and (c) Single-path 
sensitisation tests succeed 

It is tempting at this point to conclude that dual path sensitisation will always 
prove satisfactory in circuits with reconvergent fan-out. However, this is not so, as 
shown in the following example. A second circuit incorporating reconvergent fan-out 
is shown in Figure 13.9(a). The signal path for the B input again branches into the 
two lines s and t, one path going via gl and g3, the second path going via g2 and g3. 
Assuming that q is s-a-O, the sensitising signals for gates gl and g2 (thus sensitising 
both possible paths) are A = 1 and C = 0. To test for q0, input B is set to l, the 
logical complement of this fault. The outputs of gl and g2 are then expected to be 
1 and 0 respectively, and the circuit output f at g3 is 1. However, if the fault q0 is 
present, the outputs of gl and g2 will be 0 and 1 respectively, giving an unchanged 
circuit output f = 1. Clearly, for the circuit in Figure 13.9(a), (A,B,C)= (1,1,0) is 
not a valid test for q0. 

Why has the path sensitisation method failed in this case? The fault is transmitted 
along the two sensitised paths qsuw and qtvw, but the changes generated by the fault 
along the two paths are 0 - .  1 and 1 - .  0, respectively. Thus, fault q0 leads to a change 
of the signals at the input of g3 from (0,1) to (1,0). Such a change at the inputs of 
an OR gate does not generate a change at its output, and consequently the effect of 
the fault is not transmitted through g3. The failure of the path sensitisation test in 
this example is due to the unequal inversion parity of the two paths. In contrast with 
the positive reconvergence illustrated in Figure 13.8(c), this is an example of negative 
reconvergence. 
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Although dual sensitisation does not generate a test for q0, independent sensitisation 
of path qsuw (Figure 13.9(b)) or of path qtvw (Figure 13.9(c)) will do so, as shown in 
the following table: 

Path (Figure 13.9) qsuw qtvw 

Gate sensitisation input signals: 

Assumed fault: 
Test (complement of assumed fault): 
Full test conditions (A,B,C): 
Normal output J~ 
Faulty output (inverse of normal f) :  
Other faults detected by this test: 

A = I  C = 0  
v = 0 ,  = ~ C - 0  u = 0 ,  = ~ A = 0  

qo qo 
B = I  B - I  
(l,l,1) (0,1,0) 
1 0 
0 1 
So, to, Uo, So, to, v l, 
& Wo & w0 

This last example has shown that multiple path sensitisation does not necessarily 
produce a valid test for a given fault. At this point it may appear that multiple path 
sensitisation should be avoided and that, in general, it would be better to concentrate 
on single path sensitisation. Unfortunately, this conclusion is also not sustainable since 
the following example shows that single path sensitisation may itself fail to produce 
a valid test in certain circumstances. 

In the circuit shown in Figure 13.10, it will be assumed that fault p~ is present, and 
the path selected for sensitisation is via gates g2, g5 and g8. Gate g8 is sensitised by 
holding all its inputs at 1 with the exception of the sensitised input, and gate g5 is 
sensitised by holding its upper input at logic level 1. To ensure that the output of gate 
g6 is 1, irrespective of whether fault p~ is present, its lower input must be held at 0, 
hence input D = 0. With D = 0, the lower input of g3 is also held at 0, the output of g3 
is 1 and so the upper input of g7 is 1. To ensure that the output of g7 is held at 1, its 
lower input must be held at 0, hence C = 0. Since C = 0, the lower input of g~ is held at 
0 and the output of gate gl is therefore 1. This output is connected to the lower input of 
gate g4 and so to ensure that the output of gate g4 is 1, its upper input must be held at 0, 

i ! . s'o" ! 

0 . . . .  ~ 

Figure 13.10 Failure of single-path sensit&ation 
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hence input B = 0. For the chosen sensitised path, B -  C = 0, but these inputs are 
inconsistent with the path sensitisation procedure where, if fault Pl is present, the 
output of gate g2 should be equal to the complement of the fault, i.e. 0. (To achieve this 
condition it would be necessary to have B = C = 1.) Hence, in this example, single 
path sensitisation fails to produce a valid test for fault Pl. It can be shown that, in this 
case, if the two paths gz-gs-g8 and gz-g6-g8 are simultaneously sensitised, a valid test for 
fault Pl can be found. 

It will be clear from all the preceding examples that it is not possible to specify one 
prescribed series of steps which will be successful for all circuits when using the path 
sensitisation technique. In some cases, the desirability of providing a simple method of 
testing may provide additional design philosophy in determining the best implement- 
ation of a given logic circuit specification. However, the following general guidelines 
can be applied to all circuits when trying to set up a fault detection strategy: 

1. Attempt to derive fault tests using single paths only. In circuits without fan-out, 
single path sensitisation is the only possibility. 

2. Assign logical value(s) at the input(s) which will produce the logical complement of 
the fault value at the point of the fault. 

3. Sensitise all the gates along thepath .  
4. Use the backward trace technique where necessary. Provided that a self-consistent 

input combination can be found, then a valid test exists. 
5. If, for a selected path, a valid fault test does not exist, repeat the procedure 

specified in rules (1) to (4) for other single paths in the circuit which may be sensitised. 
6. In the event of failure of single path sensitisation, attempt to derive a valid test by 

sensitising two or more paths using the procedure described above. If necessary, try 
every possible combination of the single paths in the circuit. 

13.7 Undetectable faults 

The fault-free response of the combinational circuit shown in Figure 13.1 l(a) is 
tabulated in the column headed f in Figure 13.11 (b). If fault P0 is present, the output 
of gate g2 is held permanently at logic 0 and for this condition the response of the 
circuit appears in Figure 13.11 (b) under the heading fl. Comparison of the two columns 
shows that the responses are identical, and consequently the fault P0 is undetectable. 

The reason for this is explained by examining the Boolean equation of the circuit, 
which is: 

f = C + 7tBC + AB 

= C(1 + AB) + AB 

= C + A B  

and so the circuit is not the minimal implementation off.  Gate g2 generating the term 
ABC is redundant and could be omitted, using a two-input OR gate for g3 instead, 
without any effect on the circuit output. The K-map for this function is shown in 
Figure 13.11 (c). Therefore, in this example, the output of the redundant gate g2 can be 
s-a-O without affecting the circuit operation. 
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Figure 13.11 (a) Implementation of a function, f = ABC + A[~ + C, containing redundan O" (b) Fault-free response f, and response f i  with fault Po present (c) K-map of function f 
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In practice, there may be similar undetectable faults in any circuit containing 
redundancy. Sometimes, redundancy is deliberately introduced into a combinational 
network in order to ensure that it is hazard-free (see Chapter  9). The result of including 
such redundancy does not show clearly in a static truth table analysis. Nevertheless, if 
there is a fault associated with the redundancy and a redundant  gate is effectively 
disabled, then the hazard-free property of the design will not be fulfilled and hazards 
may be produced by the circuit. As an example, an undetectable, but nevertheless 
important,  fault may arise in the hazard-free implementation of the function 
f - A B  + A C. The K-map of this function is shown in Figure 13.12(a), and the 
function generates a static 1-hazard when B -  C - 1 and A makes a 1 ~ 0 transition. 
Elimination of the hazard is achieved by adding the consensus term BC to the 
original equation which then becomes f -  AB + A C + BC. The minimal N A N D  
implementation of this hazard-free function is shown in Figure 13.12(b) and a test 
for fault p~ is sought according to the following table: 

Path (Figure 13.12(b)) pu 

Gate sensitisation input signals: 

Assumed fault: 
Test (complement of assumed fault): 

q =  1, ~ C = O o r A =  1 
r =  1, = ~ A = O o r B = O  
Pl 
p = O ,  = ~ B = C = I  

Since the test requires B - C = 1, the input signals for the correct path sensitisation 
must be A - 1 (giving q - 1) and simultaneously A - 0 (giving r - 1). This is clearly 
impossible, and so fault p~ is undetectable using the path sensitisation technique if the 
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Figure 13.12 (a) K-map of the function f = AB + AC (b) Hazard-free circuit with undetectable fault 
(c) Circuit with additional test input 
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redundant gate g3 is included in the circuit. Therefore, the circuit is not completely 
testable using this technique. Alternatively, if the redundant gate g3 is omitted, thus 
using a two-input NAND gate for g4 instead, the hazard will be generated. Faced with 
this dilemma, the designer may prefer to make output g3 directly available to the tester 
at a test point (thus bypassing gate g4), whereupon applying inputs B = C = 1 will 
establish the presence or absence of fault p~. However, another possibility is to add 
an additional test input (Z) to gate g2, which will now need three inputs, as shown in 
Figure 13.12(c). In normal operation Z is permanently held at 1, while Z is taken to 0 
specifically for testing the circuit. If this is done, the test developed in the following 
table is now possible: 

Path (Figure 13.12(c)) pu 

Gate sensitisation input signals: 

Assumed fault: 
Test (complement of assumed fault): 
Full test conditions (A,B,C,Z): 
Normal output.[i 
Faulty output (inverse of normal/'): 
Other faults detected by this test: 

q = l , ~ Z = 0  
r =  1, ~ A  = 0 o r  B = 0  

Pl 
p : O ,  ~ B = C = I  
(0,1,1,0) 
1 
0 
So, 1o, & Uo 

Alternatively and equivalently, a similar test input could be added to gate g~. A further 
alternative (without the test input Z) is to attempt to test for the presence of the static 
hazard directly in the circuit of Figure 13.12(b) by applying the test conditions 
(A,B,C) = ( l , l , l ) ,  where I indicates the hazard-producing falling edge 1 ~ 0 on input 
A. Presence of the hazard at the output implies the failure of the redundant part of the 
circuit. Of course, this requires the use of a high-speed oscilloscope (and may also require 
repeated application of the falling edge), and so may not be practical or economic. 

13.8 Bridging faults 

Another possible fault which may occur in a combinational circuit is a bridge or 
a short between two lines, as shown in Figure 13.13(a) and (b). This type of fault 
often occurs through careless soldering that leaves a solder bridge between two 
adjacent lines that are supposed not to be connected. If inputs B and C happen to 
have equal logic values (i.e., both either 0 or 1), the interconnection pq causes no 

A r 

Bridge 

D s 

(a) (b) 

Figure 13.13 Tests for bridging faults (a) Using sensitised path qst (b) Using sensitised path prt 
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detectable fault since both gate inputs are held at their correct values. If, however, 
the inputs are driven to complementary logic levels so that (B,C) - (0,1) or (1,0), then 
several possibilities may occur: 

1. whichever input signal is supposed to be set at 1 may be pulled down to 0, which 
often happens in practice with TTL gates, or 

2. whichever input signal is supposed to be set at 0 may be pulled up to 1, which often 
happens in practice with ECL gates, or 

3. both inputs B and C may be pulled to an indeterminate voltage which cannot be 
interpreted reliably as either logic 1 or logic 0, or 

4. either or both of the driving gates may fail, possibly causing an additional 'stuck-at' fault. 

Notwithstanding possibility no. 4 above, note that a bridging fault is fundamentally 
different from a 'stuck-at' fault, as the faulty lines may take on either logic value 
according to how they are driven. Another complication is that a bridging fault might 
occur between two logic lines in such a way as to form an effective feedback path 
around some combinational logic, so that a purely combinational circuit can be 
transformed into a faulty circuit having some of the characteristics of a flip-flop, 
i.e. a sequential circuit, which is considerably more difficult to analyse. The circuit 
outputs will then depend upon the previous outputs of the circuit. 

However, in practice, it is usually unnecessary to develop tests for bridging between all 
possible pairs of lines, as it would seem highly unlikely that any other than physically 
adjacent lines would suffer bridging faults. Which lines are affected therefore depends 
upon the physical layout of the circuit. The practical tests for revealing the presence of 
the bridge pq for the two cases, (B,C) = (0,1) and (B,C) = (1,0), depend upon which of 
the four possibilities listed above actually occurs in practice. In the following develop- 
ment of the tests, it is assumed that whichever input signal is supposed to be set at 1 will 
always be pulled down to 0 (possibility number 1): 

Path (Figure 13.13) qst prt 

Gate sensitisation input signals: 

Assumed fault: 
Test (complement of assumed fault): 
Full test conditions (A,B,C,D): 
Normal output f." 
Faulty output (inverse of normal f ) :  
Other faults detected by this test: 

D = 0  A = I  
r = 0 ,  : : ~ B = 0  s = 0 ,  = ~ D =  1 
pq bridge pq bridge 
(W,C) = (0,1) (B,C) = (1,0) 
(X,0,1,0) (1,1,0,1) 
0 1 
1 0 
q0, s l, & t l P0, r0, & to 

In this table, a valid test using path qst is obtained regardless of the value of input A, 
which is therefore a 'don't  care'. 

13.9 The fault detection table 

Clearly, it is desirable to determine a minimal set of tests that can be applied to 
a given circuit, which can be guaranteed to find all possible faults. The 'fault table' 
(or 'fault matrix') method can be used to achieve this. The method will be explained by 
working through a typical example. The circuit shown in Figure 13.14(a) has seven 
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Figure 13.14 (a) NAND logic implementation o f f  = AB + AC (b) Fault-free (fj) and faulty (.['1 to fg) responses 
for the circuit in (a) (c) Fault detection table 

lines, i.e. p, q, r, s, t, u and v. The function implemented by this circuit i s f  - A B  + A C .  
However, if there is a s-a-O or a s-a-1 fault on any one of these seven lines, the function 
implemented by the circuit will be modified to be one of 14 possible faulty responses. 
(The presence of other faults, such as bridging faults, or multiple faults, would produce 
further possible faulty responses which could additionally be considered if desired.) 
If the symbol fx,  denotes the faulty response when the single 'stuck-at' fault xi is 
present, then the possible faulty responses are: 

'Stuck-at-O' 'Stuck-at-l' 

Ao-AC; L,-A+C; 
fqo - c ;  fq, - B; 
fro -- AB;  f i ,  - A + B; 
fso - AB;  fs, - A B  + C; 

fro - 1; i t ,  - A C ;  

Lo -- 1; fu~ - A B ;  

L o - O ;  f v , -  1. 

Since f p 0 -  ~]C and f t , -  A C are identical functions, the circuit response will 
be identical for these two faults, and they are indist inguishable.  In fact, there are 
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nine distinguishable functions contained in the total of 14 faulty functions, as 
follows: 

A -fpo -A, - A C  
f2-- fqo - - C  
f3 --fro - - f s o - - f u , - - A B  

f 4 - f t o  = fuo -- fv, - 1 
f5 --fvo -- 0 
f 6 - f p , - A + c  

f7 = fq, - - B  

f 8 = f r ,  - - A + B  
fg - L ,  - + C 

The table in Figure 13.14(b) lists all the possible input combinations to the circuit, 
and the column headed f0 lists the fault-free response. Each input combination repre- 
sents a distinct test, and the test number allocated to each row is the decimal equivalent 
of the binary representation of the input combinations for that row. The remaining 
columns in the table list the circuit response for each of the distinguishable fault 
conditions. 

Examination of the table shows that if test 0 is applied to the circuit, the response to that 
combination of input variables when the circuit is fault-free differs from the response 
when, for example, r is s-a-1, as indicated in the column headed f8. Clearly, (A,B,C) - 
(0,0,0) is a test for r s-a-1. A further examination of this column reveals that the 
combination (A,B,C) - (0 ,1 ,0 )  is also a test for the same fault, rl. For both combin- 
ations, the fault-free response is 0, and the response with fault rl present is 1. 

Formalising this result, input combination ( X I ,  X 2 ,  X 3 ,  . . . , Xn) will only be a test for 
the fault fm provided that 

J~(Xl,  elk"Z, X3, . . . ,  Xn) E]~ f m ( X l ,  )(2, )(3, . . . ,  Xn)  - 1. 

That is, to determine all the tests that will detect fm, it is only necessary to take the 
XOR (i.e., the modulo 2 sum) of those columns in Figure 13.14(b) headed f0 and fm. 
The valid tests are indicated by those rows where the result of this operation is 1. 
It follows that if 

f o e f m  - o 

for every input combination, the fault(s) corresponding to fm is (are) undetectable, 
usually a result of the circuit containing redundancy. Also, if 

f o e f m  - f o e f t  

for every possible input combination (X1, Xz, )(3, ., X~), then fault number m and 
fault number I are indistinguishable. If, however, 

f o e f m C f o e f t  

for some or all of the input tests (X~, X2, X 3 , . . . ,  Xn), then fault number m and fault 
number I are distinguishable. 

A fault detection table can now be constructed from the information tabulated in 
Figure 13.14(b). In the table, shown in Figure 13.14(c), there is a column for the XOR 
of the fault-free response (f0) with each of the fault conditionsfl to f9. The result of this 
XOR operation is shown as either a 1 or a blank (indicating 0). 
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Finding a minimum set of tests from this table is identical to the method used for 
reducing prime implicant tables. Any line containing all l s and no blank entries 
corresponds to a valid test for all possible faults; there is, however, no such line in 
this example. Any column having a single 1 entry identifies an essential test, for this 
test is the only test that can detect this fault. An examination of Figure 13.14(c) shows 
that test 5 is the only one that will detect the fault associated with f9, i.e. s~, and 
consequently it is an essential test (and has been marked with asterisks). The same test 
detects the faults associated with f2, f4 and f6, and so the columns corresponding to 
f2, f4, f6 and f9 have been ticked (r to indicate that these faults have been covered by 
choosing test 5. Test 5 dominates test 4 (i.e., the line for test 5 includes all the l s in 
the line for test 4), so test 4 has been deleted from the table. Test 1 dominates test 3 
(i.e., the line for test 1 includes all the l s in the line for test 3), so test 3 has been deleted 
from the table and test 1 chosen. The selection of test 1 allows the detection of faults 
associated withf3,f5 andf7. There remain two ls in the column corresponding tofl, and 
two ls in the column corresponding to fs. The faults associated with f~ can be detected 
by either tests 6 or 7, and the fault associated with fs can be detected by either tests 0 or 
2. Hence, a minimal test set required for detecting all possible faults is 

T = {[0 or 2], 1,5,[6 or 7]}. 

Which of the four possible alternative test sets implied here is actually chosen makes 
little difference, but as test 2 dominates test 0, and test 6 dominates test 7, one possible 
choice (to minimise ambiguity if a fault were actually detected) is 

T = {0, 1,5,7}. 

It is now a simple matter to devise a practical fault detection scheme to test the circuit 
of Figure 13.14(a). The order of the tests is largely immaterial, but to make the scheme 
as rapid as possible the tests detecting the largest number of faults might be applied 
first. Therefore, a suitable test routine would be: 

Apply test 5: I f f  
I f f  

Apply test 1: I f f  
I f f  

Apply test 0: I f f  
I f f  

Apply test 7: If f 
I f f  

= l a fault exists; terminate experiment 
= 0 proceed to next test r162 
- 0  a fault exists; terminate experiment 
= 1 proceed to next test r162 
= 1 a fault exists; terminate experiment 
- 0  proceed to next test r162 
- - 0  a fault exists; end of experiment 
-- 1 circuit is fault free. 

Once a fault has been detected using this test scheme, then the fault detection table in 
Figure 13.14(c) can be used to indicate the nature of the fault. For  example, if tests 5, 1, 
and 0 give the correct fault-free output f, but then finally applying test 7 gives the 
output f = 0, this indicates in principle either faulty response fl  or faulty response f5. 
However, response f5 has already been eliminated by test 1 conducted previously 
(which gave a fault-free output), so the circuit must therefore have a fault corres- 
ponding to response f~. The possible faults, therefore, are P0 in which case the fault 
must either reside in gate gl or in the circuitry providing input B, or t~ in which case the 
fault must reside in gates gl or g3 or their interconnection. These faults are indistin- 
guishable, unless further tests can be made at the connections of the gates concerned. 
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It is possible with the data provided by the fault detection table to derive a fault 
location table or a fault dictionary which will identify the fault responsible for any given 
circuit responses to any set of tests. However, for a circuit with n inputs and x circuit 
nodes, there are at least 2x possible faults, counting the two possible 'stuck-at' faults 
but ignoring bridging and other faults, and there are 2 ~ possible tests that can be 
applied at the inputs. If all the faults are distinguishable, there will be 2x columns in the 
fault detection table, and even if some of these faults are indistinguishable the number 
of columns will still be of the order of 2x, so the total number of entries in the table will 
be of the order of x 2  n+l  . As the complexity of the circuit increases rapidly with the 
number of interconnections and variables, the construction and reduction of the fault 
location table, either manually or with a computer, is extremely time consuming and is 
therefore impractical. Even the development of the fault detection table for any but the 
simplest combinational circuit is also impractical. 

To extend the fault table method to address the problem of general fault detection 
and identification, the concept of 'adaptive testing' can be used. This method is used to 
determine whether a fault exists, and if so what it is. In this method, after a test has been 
conducted, the result of this test determines which further tests are to be carried out. 
In the example of Figure 13.14, the same series of tests as determined previously 
(test 5, then test 1, then test 0, then test 7) can be used to determine the absence of 
faults, but if faulty responses are given at any stage then a different series of tests can 
be used to identify precisely which fault is present. 

As an example, suppose that for a certain circuit there are four distinguishable 
output responses. One method of identifying the particular fault present is illustrated 
in Figure 13.15(a). The tester starts at the top of the 'tree' and applies a certain test 
which results in either one of the possible faulty responses (F) or a correct response (C). 
In the case of a faulty response, no further tests are necessary as the fault has been 
identified, but in the case of a correct response further tests must be undertaken to 
isolate the fault. Each subsequent test then produces either one faulty response or 
a further correct response. However, an alternative method is illustrated in Figure 13.15(b). 
In this case, a different initial test is applied, which produces either two faulty responses 
(F) or a correct response. The next test to be applied depends upon whether a faulty or 
a correct response was obtained; in either case, the test applied distinguishes between 
the two alternatives possible at that point. The diagram of Figure 13.15(b) is known as 
a 'binary tree' because each test divides the possible faulty responses into two sets, as 

(a) } I~1 
(b) 

~ l_ ol __1  

Figure 13.15 (a) Adaptive tree identifying one fault only at each test node (b) Binary adaptive tree dividing the 
faults equally at each test node 
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equal as possible in size. Clearly, for a total of y distinguishable faulty output 
responses, performing a total of y non-adaptive separate tests will allow complete 
identification of the distinguishable faults. However, by arranging the tests in a 'binary 
tree' the number of required tests may, in principle, be reduced to a minimum value of 
log 2 (y + 1). In this expression the value 1 is added to y because at least one test is 
required for determining whether a fault exists at all. In practice, perfect division of the 
responses into equal sized sets is usually impossible, so that log 2 (y + 1) is the lower 
bound and y the upper bound on the number of tests necessary. 

Unfortunately, there is no known formal method that can be used for minimising 
the size of this tree, and so it is usually produced on the basis of trial and error using 
the designer's experience. Again, except for the simplest of circuits, designing such an 
adaptive tree for all possible faults is likely to represent a considerable investment of 
time and effort, and computing help must be sought. 

13.10 Two-level circuit fault detection in A N D / O R  circuits 

This section describes some specific techniques for finding the minimal test set that can 
be used to test the common AND/OR circuit architecture implementing functions 
expressed as Boolean sums of product terms. The methods described in this section are 
applicable in principle to fault-finding in PLAs and PALs (see sections 11.12 and 11.13) 
which are based upon the same fundamental AND/OR structure. These methods will 
be explained by examining a simple example. 

The function generated by the two-level AND/OR circuit shown in Figure 13.16(a) 
is 

f =  AC + BD + ACD 

T T T 

Pl P2 P3 

This function is plotted on the K-map shown in Figure 13.16(b). Each term in this 
equation is a prime implicant of the function, and is plotted as an enclosed group on 
the map. Because the function contains no redundancy, each prime implicant encloses 
at least one unique cell not covered by any other group. For example, the cell unique to 
prime implicant ftCD is cell ftBCD. 

(a) (b) 

A p, 

C 
q 

B• D ,  
D 

Oa 

O0 01 11 10 

O0 ~ . 

, o  

--P3 

--Pa 

- P l  

Figure 13.16 Determination of  s-a-O test for a two-level AND~OR circuit (a) Circuit implementation (b) K-map for 
f = AC + BD + .~CD 
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If one of the input lines q of g2 is s-a-O (Figure 13.16(a)), the output of g2 is 0 and 
the group BD = P2 no longer appears on the K-map of the function. To test 
for the absence or presence of group P2, it is necessary to check for the absence 
or presence of one of the unique cells associated with it. Inspection of the map 
shows that cell ABC'D is one of the two cells unique to group P2. Hence, a test for 
the presence or absence of P2 is ( A , B , C , D ) -  (0,1,0,1). An alternative test would be 
(A,B, C,D) = (1,1,1,1), corresponding to the other unique cell associated with P2. If one 
of these combinations of variables is applied to the circuit inputs, then an output of 
f = 0 indicates that term P2 is missing and there is a s-a-O fault associated with gate g2. 
However, i f f  -- 1, then it is clear that there is no s-a-O fault associated with gate g2 in 
this circuit. 

A complete s-a-O test for this circuit will therefore consist of three tests, one for each 
of the prime implicants Pl, P2 and P3. Since Pl has three unique cells associated with it 
(numbers 8, 9 and 12), and any one of these cells can be used as a test for a s-a-O fault 
associated with g~, the complete test set is 

To = {3, [5 or 15], [8 or 9 or 12]}. 

C - ' D  

B / ~ \  
C " ~  /--redundant gate 

Figure 13.17 Two-level AND~OR 
circuit for function f = AC+AB + BC 
having redundancy 

The effects of redundancy on circuit testing using 
the technique described above are shown in the 
circuit of Figure 13.17 which implements the 
function 

n 

f - AB + AC + BC. 

This is the same Boolean function as that 
implemented using NAND gates in Figure 13.12 
and studied earlier in section 13.7. As discussed in 
that section, the prime implicant BC is 

redundant, since the cells associated with this prime implicant are already covered 
by the prime implicants AB and A C. Consequently, there are no unique cells 
associated with term BC, and so (in the A N D / O R  implementation) a test of the 
circuit output value f cannot detect an s-a-O fault associated with term BC. 

Having found a test for all possible s-a-O faults for the circuit in Figure 13.16(a), 
a method will now be developed for finding a series of tests that will detect all possible 
s-a-1 faults in the same circuit. If the input line of g2, labelled q in the diagram, is 
assumed to be s-a-1, then the output of g2 is 

D - 1  

= D ( B + B )  

= BD + BD. 

The first term in this expression is the required prime implicant (BD), while the second 
term (/~D) represents an unwanted product term generated by the fault. The unwanted 
term /~D differs from the wanted prime implicant BD by one variable only. 
Two product terms differing in one digit place only are adjacent product terms on 
a K-map. The adjacent product terms for each of the prime implicants generated in 
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the circuit of Figure 13.16(a) are tabulated below and plotted in Figures 13.18(a), (b) 
and (c). 

Prime implicants  Adjacent  product terms 

pl - A C  AC,  A C  
P2 = BD BD, BD 
P3 --  A C D  A C D ,  A C D ,  A C D  

If a s-a-1 fault exists at one of the circuit inputs, one of the adjacent product terms 
will be present at the output, so to test for s-a-1 faults it is necessary to test for the 
presence of any of the seven adjacent product terms tabulated previously. However, 
in selecting the valid tests for the adjacent product terms, cells must be selected on the 
K-map that are not included in the original function f = A C + BD + A CD. 
Therefore, the ls defining this original function (omitting the prime implicant group- 
ings for clarity) are plotted again in Figure 13.18(d), along with the adjacent product 
terms. To test for the presence of an adjacent product term, a cell must be selected that 
is enclosed by that adjacent product term but which does not contain a 1. In this 
example, the number of tests is minimised by selecting cells that are common to as many 
adjacent product terms as possible. (Alternatively, cells could be selected that are 
enclosed by only one or as f ew  adjacent product terms as possible, in which case the 
number of tests would not be minimised, but instead the tests would indicate the 
precise fault(s) present more clearly.) Suitable cells have been marked on the map by 
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Figure 13.18 Selection of minimal tests for a s-a-1 fault in the function f = AC + BD + ACD (a), (b) and (c) 
Plots of  the adjacent product terms corresponding to the terms Pl, P2, and P3 in this function (d) Ticked (r cells 
specify tests for s-a-1 faults 
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a tick (r and the adjacent product terms tested by each of the ticked cells are 
tabulated below in decimal minterm form: 

Test Terms tested 

(1)1o AC, ACD,  BD 
(6)10 BD, A C D  
(11)10 AC, ACD, BD 

Note that each adjacent product term must enclose at least one ticked (r cell. 
(If any adjacent product term contains only ls with no space for a tick (r this 
indicates that the original function has not been minimised correctly.) Hence a suitable 
s-a-1 test for the circuit in Figure 13.16(a) is: 

T 1 -  {1,6,11} 

and the presence of an s-a-1 fault is indicated if the faulty output f = 1 is obtained 
when any one of these input combinations is applied to the circuit. The table above 
indicates the nature of the fault, as nearly as can be determined using this particular 
test set. If the ou tpu t f  = 1 is obtained from all three of these applied tests, then either 
there are three (or more) separate s-a-1 faults or else there is an s-a-1 fault at one (or 
more) of the AND gate outputs, the interconnections between the OR and AND gates, 
or directly associated with the OR gate. The full test of this circuit consists of the six 
input combinations contained in To and T~. 

In some circuits having multiple outputs, the optimal implementation is achieved 
by sharing terms between functions (as described in sections 3.18, 3.19, and 
11.12). For example, in the optimal implementation of the two functions 

f l  = AB + BC and f2 - AC  + BC shown in Figure 13.19(a) (in fact, the same 
as the circuit of Figure 3.28 that was designed in section 3.18), the common term 
is the product function fl "f2 as shown in Figure 13.19(b). In a PLA 
implementation, by sharing terms, the number of lines of the AND array used 
in a PLA may be reduced even though the Boolean expressions are not 
completely minimised. The consequence of this optimisation, as far as testing is 
concerned, is that the adjacent product terms corresponding to the common 
term(s) rather than to the expected minimal terms must be used, and the 
proposed tests need to be examined carefully. Since the optimal circuit is not 
minimised, it is possible for the optimal circuit to have s-a-1 faults where adjacent 
product terms coincide with one or more of the output functions. So, in the 
example of Figure 13.19(a), the common term is A B C  which gives adjacent 
product terms ABC, ABC, and ABC. The adjacent product term A B C  coincides 
entirely with prime implicant AB of f~ and so a s-a-1 fault on input line A is 
untestable through output fl,  although this fault is testable through f2. Similarly, 
the adjacent product term A B C  coincides entirely with prime implicant BC off2 
and so a s-a-1 fault on input line B is untestable through output f2, although this 
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fault is testable through f~. If this situation occurs, the designer must make 
a decision on whether to use the optimal implementation and to accept its 
reduced testability, or whether to prefer the minimised but more complicated yet 
more testable circuit. 

D 

(a) 

I 
,D 

! I D 

(b) 

BC BC 

~176  ~ ' " ' oo o , , N 

, U , C N  

10 

m m  

f~ = AB + BC f2"  AC + BC 

Figure 13.19 (a) Optimal implementation of the two functions fi = f tB  + BC and f2 = AC + BC 
(b) K-map plots of the functions f t  and fe 

13.11 Two-level circuit fault detection in OR/AND circuits 

The OR gate shown in Figure 13.20(a) implements the function f = A + B + C, which 
has been plotted on the K-map in Figure 13.20(b). The 0 inserted in only one cell 
indicates that if the inputs (A,B,C) = (0,0,0) are applied to the gate, its output f = 0. 
If, however, one or more inputs to the gate have s-a-1 faults, then the output of the 
gate will be f = 1. Clearly, if (A,B,C) = (0,0,0) is used as a test input, then the output 
f = 1 indicates the presence of one or more s-a-1 faults associated with this gate. 

In general, valid tests for s-a-1 faults in an O R / A N D  circuit correspond to cells that 
should give a fault-free output of 0. To find these cells, the function can be inverted, 
and the 0 s of the original function are the same as the ls of the inverted function. 

(a) (b) 

f = A + B + C  

BC 
A ~  O0 01 11 10 

0 0 

Figure 13.20 (a) Implementation of function f = A + B + C (b) K-map plot of the function f 
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As an example, consider the OR/AND circuit shown in Figure 13.21(a). The function 
implemented by this circuit is 

f = (A + C)(B + D)(A + B + C), 

and the Boolean complement of this function is: 

f =  A C + BD + ABC 

T T T 
pl p2 p3 

using De Morgan's theorem. The zeros off, derived directly from the prime implicants 
o f f ,  are shown plotted on a K-map in Figure 13.21 (b). The cells marked with O's on 
this map define those combinations of the variables for which f - 0. 

Each term in the equation for f is a prime implicant of the inverse function and 
appears as an enclosed group on the K-map. In this example, each of the three prime 
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Figure  13 .21  Development of s-a-1 and s-a-O tests for a two-level OR~AND circuit (a) Circuit implementation of 
f = (A + C)(B + D)(A + B + C) (b) K-map of the zeros of function f, obtained from f (c) Adjacent product terms 
of the inverse function (d) Cells marked with ticks ( , /)  identify the tests for s-a-O faults in the original circuit 
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implicants encloses at least one unique cell, indicating that the function has no 
redundancy. For example, the cell unique to P3 is defined by (A ,B ,C,D)  - (1,1,1,0). 

If one of the input lines of g3 is s - a - 1 ,  the output of g3 will be 1 and P3 will be missing 
from the map of O's of the function f. To test for the absence or presence of P3, it is 
necessary to check for the absence or presence of 0 in the unique cell associated with it. 
A cell common or overlapping with another prime implicant cannot be used as the 
other prime implicant may still be present. Hence, a valid test for the presence of p3 is 
(A ,B ,C,D)  - (1,1,1,0). If this combination of the variables is applied to the circuit and 
it is found that the circuit output i s f  - l, an s-a-1 fault exists associated with gate g3. On 
the other hand, if the output is f -  0, then P3 is present and there is no s-a-1 fault 
associated with g3. 

Hence, the complete s-a-l test for the circuit will consist of three tests, one for each 
of the three prime implicants, and so is: 

TI = {[0 or 1 or 4], [7 or 13], 14} 

as there are three possible testable cells for p~ and two alternatives for P2. 
The s-a-O test for the OR/AND circuit of Figure 13.21(a) is found by analogy with 

the method that was used to find the s-a-1 test in the AND/OR circuit. However, for 
the OR/AND circuit the adjacent product terms of the inverse plot are used to define 
the set of tests for s-a-O faults. 

The output of g~ is (A + C), and if there is an s-a-O fault on line A, this expression 
becomes 

0 + C  
= A A + C  

= AA + C(I + A +,4)  
= (,4 + C)(A + c) ,  

where (A + C) is the sum term required from gl, while (A + C) is an unwanted sum 
term generated by the fault. The complement of this expression is ,4 C' + A C', where A C' 
is the additional product term generated by the s-a-O fault on line A. As before, this 
additional product term is adjacent to the complement's prime implicant Pl = A C; 
similarly, a s-a-O fault on line C will produce the different adjacent product term ,)C. 
The product terms adjacent to all the prime implicants of the inverse function are 
tabulated below: 

Prime implicants Adjacent product terms 

Pl - -  A C  AC,  A C  
P2 - BD BD, BD 
P3 - A B C  ABC,  A B C ,  A B C  

and are plotted on the three K-maps shown in Figure 13.21(c). 
If an s-a-O fault exists at the circuit inputs, then one of the adjacent product 

terms must be present; it follows that the test for s-a-O faults is to test for the presence 
of one of the seven possible adjacent product terms using cells not included in the 
prime implicants. In order to choose the correct cells, the zeros of the function 
f - (A + C)(/~ +/))( .4 +/~ + C') have been replotted in Figure 13.21(d). Again, as 
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before, the lines enclosing the three prime implicant groups have been omitted, but the 
seven adjacent product terms tabulated above are shown enclosed by dashed lines on 
the map. Therefore if, for example, there is an s-a-O fault present at one or both of the 
inputs of gate g~, then adjacent product term A C or adjacent product term A C, or 
both, are present. To test for the presence of A C, one of the input combinations 
(A,B,C,D) = (1,0,0,0) or (1,0,0,1) or (1,1,0,0) can be applied to the circuit. All these 
cells are included in term A C, and a fault-free circuit will give an output f - 1 in each 
case; with an s-a-O fault present on line A, then the output f - 0. Any of these input 
combinations will suffice to test for term AC but to keep testing to a minimum, cells 
are selected that are common to as many as possible adjacent product terms. 
(An alternative testing philosophy might be to choose tests that enable the quickest 
determination of which fault is present, in which case, as far as possible, cells not 
common to any other adjacent product terms should be chosen.) The chosen cells have 
been ticked (r in Figure 13.21 (d), and the terms tested by each of the selected cells are 
tabulated below in decimal minterm form" 

Test Terms tested 

(6)~o A C, ABC, BD 
(11)~o BD, ABC 
(12)1o BD, AC, ABC 

Hence, the complete s-a-O test for the circuit of Figure 13.21 (a) is 

To - {6, 11, 12} 

and when the input combinations specified by test set To are applied to the circuit in 
turn, output f = 0 indicates that an s-a-O fault exists. The table above indicates the 
nature of the fault, as nearly as can be determined using this particular test set. If the 
o u t p u t f  = 0 is obtained from all three of these applied tests, then either there are three 
(or more) separate s-a-O faults or else there is an s-a-O fault at one (or more) of the OR 
gate outputs, the interconnections between the AND and OR gates, or directly 
associated with the AND gate. The full test of this circuit consists of the six input 
combinations contained in To and Tl. 

13.12 Boolean difference 

This section examines the method of Boolean differences. This is an algebraic pro- 
cedure for determining test sequences for combinational circuits using the Boolean 
equation which represents the circuit to be tested. 

The Boo&an difference is the Boolean analogy of the partial differential or derivative 
of a function of continuous variables. For a function f(x, y) of continuous variables 
x and y, by definition 

0-----U-- ~Xx-~0) Ax ~x-~0) y constant / " 
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If the Boolean function of the logic circuit to be tested is f (X l ,  )(2, . . . ,  X,), then by 
analogy with the partial derivative of a function of continuous variables 

Of (x~, x2, . . . , x , )  

0X~ 

,~f 
AX~ all other variables 

constant 

change in value o f f  

change in value of Xi all other variables 
constant 

However, X~ can only change from 1 to 0, and hence AXi in this equation can 
only take a value of I. Also, in the Boolean context it is usual to take the 
modulus of the corresponding change in the value of .f, and so Af  in this 
equation only takes the values of either 0 or I. Noting that the Boolean XOR 
function produces the modulus of the numerical difference between its two argu- 
ments, the Boolean di[.'ference of function ./' with respect to the variable X~ is 
therefore deigned as 

0x, --.]'(Xi . . . .  , Xi-I, 1, Xi+i . . . . .  X,,) ~D. [ ' (X i ,  . . . ,  X i _ l ,  0 ,  Xi+ I . . . .  , Xn)  

=./~(l) ~.s 

where 

.f}(x) = .f  (Xi ,  . . . ,  X~_ ~, x, X~+l, . . . ,  X , )  

is the modified function obtained by putting X~ = x (itself taking the value 0 or 1 only) 
in the original function expression. In other words, the Boolean difference with respect 
to variable X~ is defined as the XOR of the function .flx~=l and the function fix;=0; like 
Af, it can only take the values 0 or 1. 

Since./i{ 1 ) and f,{0) differ only in a change of the binary value of X; from 1 to 0, there 
are four possibilities for the numerical values off,.(x). These are tabulated below: 

)~(1) = value o f f  
when Xi = 1 

J~(O) = value o f f  
when Xi = 0  d_L =J~(l) ~Bfi(O) dxi 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

This table shows that if there is no change in the value of f as a consequence of the 
change of X; between 0 and l, then Of/OXi - 0 (i.e., the value of f is independent of the 
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value of Xi). However, if there is a change in f as a consequence of the change in X~ 
between 0 and 1, then OflOXi = 1 (i.e., the value o f f  is dependent on the value of X~). 
Thus, the Boolean difference can be regarded as a flag indicating dependence or 
not of a function upon a specified Boolean variable. Note that dependence on, or 
independence of, a variable X; may itself depend upon the values of the other variables 
~. defining f 

Given a function F(X, Y), to find the Boolean difference OF(X, Y)/OX it is often 
easiest to calculate the value of F(1, Y)@ F(0, Y) directly. However, as with 
differentiation of functions of a continuous variable, it is sometimes useful to have 
available a 'library' of standard analytical results for the Boolean difference. 
The following results (where X and Y are independent logic inputs, and F and G are 
Boolean functions of X and Y) may be confirmed by examining the relevant truth 
tables of the variables and the values of their derivatives. As in conventional 
differentiation, here 'd' is used instead of '0' where only one variable is involved: 

d ( X )  _ _ d ( X )  _ _ ] O(X @ Y) 

dX dX OX 
O ( X q ) F ) _ ( O F )  

o x  -fly o x  
O(XY) O(X + Y) 

=Y 
OX OX 

= 1  

O(F �9 G) OF OG 
OX OX 

- -  y ,  

If E(F) is a Boolean function of the previous output F, then the definition of OE/OX 
gives 

OE(F) dE OF 
~ -  o I 

OX dF OX 

aFaG a__F 
a x a x  ax 

A 

aF 0 u 1 0 Gax 

0 0 0 

o 

~ ~ 

OG ~ OG 
a-X F~--~ 

-o3G aF 
Fb-x on--~ 

o o~ tG 

o?__G OF aG 
ax axax 

0 0 

0 0 

-aF  
Gb-- 2 

(a) (b) 

Figure 13.22 (a) K-map for evaluating O(FG)IOX; (b) K-map.for evaluating O(F + G)IOX. 
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K-maps for the Boolean difference of the AND and OR functions of F and G are 
shown in Figure 13.22, constructed by inspection; the results may be expressed as: 

OX 

Finally, using the fundamental definition of Boolean difference (Of/OX~- 
.h(l) ~f.(0)), and also the fact that the XOR operation is both Associative and 
Commutative, it is easy to show that 

OzF(X, Y) 
OXOY 
OF OF 

OY x=l x:0 

-- F(I,  1 )~  F(I ,0)  ~ F(0, 1)O F(0, 0) 

= [F(I, 1) (B F(0, 1)] �9 [F(I, 0) �9 F(0, 0)] 

02F(X, Y) 
OYOX 

or, in other words, the order of taking the Boolean difference with respect to two 
independent input variables is immaterial, just as the order of differentiation with 
respect to two continuous independent variables is immaterial. 

Using these standard results in appropriate combinations, the Boolean difference 
of other functions may be calculated directly without the necessity of evaluating the 
function f for the two possible values of X. Sometimes, however, this is an error- 
prone procedure, simply because of its complexity. 

To find tests for either a s-a-O or a s-a-1 fault on the X; line, the first objective is to find 
those combinations of the input variables for which OflOX~ - 1, w h e r e f  is an acces- 
sible circuit output. Then, in order to test for a s-a-O fault on the X; line, the procedure 
is to apply the inverse of the fault at the X; input, i.e. Xi - 1. Hence, the valid test(s) 

oi that will detect a s-a-O fault on the X~ line are the solution(s) to the equation ~ -  1 
while X ~ -  1 simultaneously, i.e. 

of 

Similarly, to test for an s-a-1 fault on line X~, the required input to the line is X; - 0, so 
o/ the valid test(s) that will detect this fault are the solution(s) to the equation ~ -  1 

while Xi = 1 simultaneously, i.e. 

- o f  
X i - ~ i - l .  

As an example of the application of Boolean difference, consider the function 

f - (x x2 + x3).  (x3 § Xa). 

A direct gate implementation of this equation is shown in Figure 13.23. To find 
tests for faults on the X3 input, it is necessary to calculate Of/OX3. To do this, here 
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+ 
/ N  

X4 

f 

Figure 13.23 Implementation o f f  = (XlX2 + A73) �9 (X3 + X4) 

it is simplest to use the fundamental definition of Boolean difference. Firstly, 
calculate 

f3(1) - (X1X2 + 0).  (1 + X4) - X I X 2  

and 

f3(0) -- (Xl X2 -q- 1).  (0 -+- X4) - X4. 

Then, therefore 

of 
= f3(1) G f3(O) 

OX3 
= X1Xz e X4 

: X l  X2)(4 + (Xl)(2)X4 

: X l X 2 X  4 --~ X l X  4 2r- X 2 X  4. 

The condition for an s-a-O fault on the X3 line is 

of  
- 1 ,  

that is, 

1 - .,u165 + XI,u -+- .,~2X3.,~4 

-- XI  X2X3X4  -~- Xl(X2 + )(2))(3)(4 -{-(XI + XI )X2X3X4  

: X 1 X 2 X 3 X  4 -+- X I X 2 X 3 X  4 -+- X 1 X 2 X 3 X  4 + X I X 2 X 3 X 4  -+- X I X 2 X 3 X  4 

: X I X 2 X 3 X 4  + X I X 2 X 3 X 4  Jr- X 1 X 2 X 3 X 4  -~- X l X 2 X 3 X 4 .  

To satisfy this equation, any one of the terms in the last line can equal 1. Hence, any of the 
input combinations ( X 1 , X 2 , X 3 , X 4 ) -  (1,1,1,0) or (0,1,1,1) or (0,0,1,1) or (1,0,1,1) is a 
valid test for an s-a-O fault on the X3 line, and the fault is detected if the output is the 
complement of that given by the original equation f - (X1X2 + X3). (X3 + X4). 

For an s-a-1 fault on the X3 line, the condition to be satisfied is 

- o f  

that is, 

1 = X1X'2z~"3X 4 + X l ~ 3 X  4 --t- X'2)~3X4 

= .~1~2X3~4 + Xl (.,u + / 2 ) ~ 3 ) ~ 4  + (Xl --t- X1))L"2X3.,u 

= y l  ~2X3~4 + ~(l~2X3X4 + X1/2X3)(4  -~- XI ~"2X'3X4 + )(1/2~"3X4 

= Xl X2X'3~4 + X l ~ 2 X 3 X 4  n t-- .,u -t- XlX2.~3.,u 

To satisfy this equation, any one of the terms in the last line can equal 1. Hence, any of 
the input combinations (XI,Xz,X3,X4) - (1,1,0,0) or (0,1,0,1) or (0,0,0,1) or (1,0,0,1) is 
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a valid test for an s-a-1 fault on the X3 line, and the fault is detected if the output is the 
complement of that given by the original equation f - (XIX2 + X3)-(X3 + X4). 

This technique of finding valid tests is best suited to logic functions defined in 
algebraic terms that do not readily lend themselves to direct implementation in one 
of the standard OR/AND or AND/OR forms, for which the methods discussed in 
sections 13.10 and 13.11 are inapplicable. Note that these tests have been derived by 
a purely algebraic procedure, without reference to the circuit diagram. However, there 
is an alternative method of finding the Boolean difference by manipulation of the 
K-maps of the function concerned. Note firstly that from its definition, the Boolean 
difference may also be written as 

0[ 
- -  % ' ( X i )  ~%'(Xi) -- f | f,.(X~). 

OXi 

This is because X; may take only the values 0 or 1; so, regardless of which of these 
values X; actually takes, the XOR is evaluated of the function f (w i th  1 replacing X~) 
and of the function f (with 0 relacing Xi). Since the XOR operation is commutative, 
this gives the same result as the previous definition of the Boolean difference. 

To explain the K-map method of evaluating the Boolean difference, this method will 
be used to confirm the previous calculation of Boolean difference for the function 

. 1 -  (x~x2 + x3) .  (x3 + x4) - x~x2x3 + x~x2x4 + x3x4 

This function is plotted on the K-map shown in Figure 13.24(a). Next, the function 

f 3 ( f 3 )  -- (XIX2 q- X3)" (,,~3 -I- X4) - XlX2,~3 + X l S 2 X 4  d- X3X'4 

is plotted on the K-map shown in Figure 13.24(b). Therefore, to find the K-map of 
the Boolean difference, all that is needed is to find the XOR of these two K-maps. 
This is done by comparing cell by cell the two maps of Figure 13.24(a) and (b), and 
transferring to the corresponding cell of a new map, either the result 0 if both 
starting cells contain the same value, or the result 1 if the two starting cells contain 
different values. The result is shown in Figure 13.24(c), and agrees with the previous 
algebraic result 

of 
= XiX2f4  + f i X 4  + f2X4 �9 

OX3 

X3X, X3X4 X3X4 
oo o, , ,  ,o oo o, , ,  ,o oo 

00 1 00 1 00 

01 1 

11 1 1 1 

01 1 01 
= 

11 1 1 1 11 1 

01 11 10 

1 1 

1 1 

10 1 10 1 10 1 1 

(a) (b) (c) 

Figure 13.24 K-map determination of the Boolean difference (a) K-map o f f  = ( S i X  2 -I- ,~3)" (X3 + X4) 
(b) K-map off3()(3) (c) K-map of Of/OX3 
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13.13 Compact testing techniques 

In practice, the methods described earlier in this chapter for fault diagnosis and the 
generation of test sequences often have limited use. The fault table method can, in 
principle, always be used to generate a minimal test sequence, but as the number 
of variables increases, the computational time required increases significantly and 
computer assistance becomes necessary for large circuits. Similarly, although the 
method of Boolean differences is a useful and revealing technique for fault diagnosis 
and the generation of test sequences, its use is limited to small circuits. Because of the 
restrictions of these techniques, other methods of fault diagnosis have been developed. 

Clearly, fault-finding is simplified if test points are available and are distributed 
throughout the circuit and the signal to be expected at each test point under fault-free 
conditions is documented by the designer. In order to undertake such a test, it is usual 
to initialise the circuit in some prescribed manner, so that the circuit is starting from 
known conditions. A specified test sequence is then applied at the circuit input and the 
resulting sequence at the selected test point is checked against the fault-free sequence 
for that point which has previously been stored. A block diagram of a typical testing 
system employing this technique is shown in Figure 13.25. An XOR gate is shown 
symbolically as the logic comparator for the two data streams; it will give an output 0 
when the sequence to be checked agrees with the correct sequence, and it will give 
an output 1 in the case of any difference. Therefore, a fault is indicated by the 
appearance of a logic 1 at the output of the XOR comparator  gate. 

In choosing the test sequence applied at the input to the circuit under test, clearly it 
will be most useful if as many as possible of the circuit properties are tested system- 
atically, but in practice this may be difficult to arrange. However, the compact testing 
technique is particularly versatile because almost any input test sequence can represent 
a valid test, provided that it is repeatable and that the expected output can be deduced 
or recorded from a known fault-free circuit. One test sequence often used is the output 
from a pseudo-random binary sequence generator (see Section 7.25). 

Ideally, the test points will be approximately equally spaced throughout the circuit, 
and the sequence can be tested at test points chosen according to the 'binary division' 
method (Section 13.2). Using this procedure, a section of the circuit will be found 
where the fault first manifests itself by providing an incorrect sequence. More detailed 
checks applied to this section will then isolate the fault. The data streams to be 
compared may typically be thousands of bits long or even more for each defined test 

Test points 

Test C i r c u i t  ~ ,  
= under -- 

sequence test ' 
i One test point selected [ 

�9 ) ~  Detect 
Sequence to = I L o g i c  1 
be checked I 

I Fault I free I 
sequencej 

Figure 13.25 Block diagram for testing using known sequences 
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point. The problem with this technique is that the correct sequence for each test point 
has to be stored, and in the case of a large digital system (with a large number of 
test points as well as long test sequences) this may require an inordinately large 
amount of storage. 

Because of these difficulties, methods have been developed where the fault-free 
sequences have been stored in a compacted form. The output of a digital circuit is 
a bit stream of O's and l's. Instead of storing directly the fault-free output sequence 
generated by the input test pattern, data compaction can be achieved by either 
(1) detecting and counting the number of 0 ~ 1 or 1 ~ 0 transitions, or (2) detecting 
and counting the number of l 's or the number of 0's. In each of these cases, the amount 
of storage required to represent a long fault-free test sequence is considerably reduced 
(e.g., a sequence of 1000 bits may contain around 500 logic l's, the exact number of 
which may be represented by a 9-bit binary integer; or, it may contain around 250 logic 
0 ~ 1 transitions, the exact number of which may be represented by an 8-bit integer) 
so that considerable data compaction takes place and the storage requirements are 
greatly reduced. Unfortunately, there are inherent difficulties with both of these 
compaction techniques since a faulty output may well have the same number of 
transitions or the same number of logic l's or O's as the fault-free output. This problem 
has led to the development of signature analysis, a method where the probability of 
mistaking faults for correct operation is very low. 

13.14 Signature analysis 

The technique of signature analysis was developed by Hewlett Packard for testing large 
digital systems. Overall, the method is akin to a compact test; the bit sequence from 
a specified test point in the circuit under test is passed through another circuit, called 
the compacter or signature analyser, which generates at its output a shorter bit 
sequence than that applied to its input. The output of the compacter is termed the 
signature. As before, the generated signature is then checked against the fault-free 
signature obtained either from a known fault-free circuit or, alternatively, by simulation. 
As shown below, the signature always contains the same number of bits, regardless of 
the length of the test sequence, and this gives a considerable reduction in the amount of 
storage required for examining the results of tests. A block diagram illustrating the 
method is shown in Figure 13.26. 

Test points 

w 

Test Circuit ----4 
-- under ---, 

sequence test ---4 

One test point selected 

J Signature 
-I analyser 

Stored 
signature 

Test 
signature 

Signaturel Output 
checker i - 

Figure 13.26 Block diagram illustrating signature analysis 
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Figure 13.27 (a) Pseudo-random binary sequence generator (b) Pseudo-random binary sequence generator 
modified for serial signature analysis 

The basic compacter circuit for signature analysis is a pseudo-random binary sequence 
generator similar to that described in Section 7.25, and shown in Figure 13.27(a). 
This circuit is a standard FIFO shift register with the feedback from the last and 
penultimate stages taken through an XOR gate. For use in signature analysis, this 
circuit must be modified by adding a second XOR gate as shown in Figure 13.27(b). 
This circuit was originally called a cyclic code checker and is also known as a serial 
signature analyser. 

Conducting the signature analysis is similar to undertaking a compact test, except 
that as well as initialising the circuit under test the serial signature analyser must also 
be initialised simultaneously to a known state. In the example shown in Figure 13.27(b), 
initialising the serial signature analyser sets all its flip-flop outputs to logic 1 level. 
Following initialisation, as in compact testing, the test sequence is applied to the circuit 
under test. The sequence of states of the flip-flop outputs in the circuit of Figure 13.27(b) 
will depend upon the bit sequence generated by the circuit under test combined with 
the feedback signal; this combination is undertaken by the additional XOR gate at the 
input to the shift register. If the sequence being checked just happens to consist entirely 
of O's, then the shift register input is identical to the feedback signal. In this case, the 
compacter circuit behaves exactly as a pseudo-random binary sequence generator and 
after being initialised produces a repeatable sequence of pseudo-random numbers. 
If the sequence being checked is not entirely O's, then the feedback signal is modified 
and clearly the regular cycle of pseudo-random numbers is upset, but it is still 
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predictable and should be the same each time that same sequence is applied. 
The expectation is that if there is an error, caused by a fault, in the bit sequence 
applied, then the compacter output number sequence is changed, and at the end of the 
sequence the shift register holds an incorrect signature. 

It is nevertheless possible for a fault in the circuit under test to produce a correct 
signature by chance. Note that although the standard pseudo-random binary sequence 
generator of Figure 13.27(a) can never enter the state with all its flip-flop outputs at logic 
level 0, the feedback path in the compacter of Figure 13.27(b) is modified by the input bit 
sequence and so all possible output states may in principle be entered. Therefore, if n is 
the number of stages in the shift register, there are 2" different possible signatures. So, 
the probability of a fault producing the correct signature by chance is roughly 2-", 
assuming of course that the test sequence is not strongly correlated with the feedback 
signal, and so the different possible signatures are all approximately equally likely. 
As n increases, the probability of mistaking an error for the correct signature should 
be reduced exponentially to a very small value. A typical implementation uses a 16-stage 
shift register (i.e., n - 16), so that the probability of confusing a faulty sequence with the 
correct sequence is approximately 2 -16 ,~ 1.5 • 10 -5. 

In principle, there is no limit on the length of test sequences that can be used with 
signature analysis. The advantage of the method is that instead of storing the full 
length of the fault-free sequences, only the n bits of the correct signature at each test 
point need to be stored and compared, giving a massive reduction in required storage 
in the case oflong test sequences. However, a major disadvantage of the method is that 
if a faulty signature is detected, then there is little likelihood of being able to deduce the 
nature of the fault from the faulty signature value. As the faulty sequence is combined 
with a pseudo-random bit sequence in the compacter, it is difficult to work backwards 
from the faulty signature to find which bits in the test sequence were incorrect. As the 
number of possible faults is usually very large indeed, it is likely that several different 
faults could produce identical faulty signatures. In principle, the most common faulty 
signatures could be stored, and the faulty signature compared with those, but in 
practice it is likely that so many faults are possible that it would defeat the object of 
the compacter to store all the possible faulty signatures together with an indication of 
their corresponding fault location. 

13.15 The scan path testing technique 

This technique is used for designing a synchronous state machine that is more easily 
testable than the basic form of the machine described in Chapter 8. As an example, it 
will be assumed that D-type flip-flops have been used in the machine design. When 

constructing the state machine, a 2-to-1 multiplexer 

"G MUX 

F o] q 

Figure 13.28 D-type flip-flop with add- 
itional multiplexer, for scan path testing of 
state machine circuits 

is used at the input of each of the D-type flip-flops, 
as illustrated in Figure 13.28. (In some cases, flip- 
flops containing an internal multiplexer are avail- 
able to simplify the construction of such circuits.) 

A block diagram showing the necessary arrange- 
ments for scan path testing appears in Figure 13,29 
When the multiplexer selection signal G = 0, the 
state machine is in its normal operational mode; 
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Figure 13.29 Block diagram for a state machine with scan path testing facility 

the outputs of the combinational logic are selected and appear at the inputs to the 
D-type flip-flops. However, when G = 1, the combinational logic is disconnected and 
the machine flip-flops are now connected in cascade to form a shift register. The testing 
procedure for the synchronous state machine can therefore be carried out as follows: 

1. Set G = 1 and move a string of ls and 0s through the shift register using the SDI 
(serial data input) line. To verify the four possible transitions of each flip-flop 
(0 ~ 0, 0---, 1, 1 ~ 1, 1 ---, 0), the input string should take the form 00110011... 

2. If the flip-flops are functioning correctly and with G still held at 1, set the flip-flops 
in the machine to the state pattern required for starting the machine test, by moving 
the appropriate bit pattern through the flip-flops using the SDI line and with 
repeated clock pulses applied to the Ck line. 

3. Set the input values X~...  X, required for starting the machine test. 
4. Place the machine in the operational mode by setting G = 0, and after allowing the 

combinational logic to settle to its final condition, check the output values 
Y 1 . . .  Ym. 

5. Clock the machine once using the Ck line. 
6. Set G = 1 and examine the state of the machine by applying further clock pulses to 

the Ck line and examining the SDO (serial data out) line to confirm that the 
machine has entered the correct next state. 

7. Return to step (2) above to repeat for as many further state transitions as must be tested. 

The scan path testing technique allows all the internal states and transitions to be 
thoroughly examined. Any internal state of the machine can be set when operating in 
the shift register mode, either for testing or initialisation. However, scan path testing 
requires serial setting of the starting state for each test, and serial readout of the final 
state of each test, and so will be slower than parallel setting and reading of the flip- 
flops in the machine if this is feasible. 

IBM developed the level sensitive scan design (LSSD) method, a scan path technique 
which is designed to overcome such problems as hazards, races and sensitivity to 
timing constraints. It depends upon the use of a specially designed shift register latch 
(SRL) that effectively combines into a single device a storage facility and a selection 
process equivalent to multiplexing. The SRL is a master/slave latch circuit which has 
two separate input ports, one for the normal machine operating mode and the second 
for the shift register mode. 
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The gate connections for an SRL are shown in Figure 13.30. The main master 
latch L~ consists of gates g~, g2, g3, and g4, with data input line D and clock Ck. When 
Ck -- 0, L! is disabled, but after Ck has made a 0 ~ 1 transition the data is transferred 
to the output Q~ of the latch (normally made available as a test point). To ensure that 
the data has settled before the latch is enabled it is arranged that changes in D only 
take place while Ck = 0. (The nomenclature 'level sensitive' refers to the connection 
arrangement of the clock line to the input gates.) 

The outputs of L~ are the inputs to the slave latch L3 which consists of gates gs, g6, g7 
and g8. Latch L3 is enabled when its clock signal Y is at logic 1 level, and the data at 
Q~ now appears at output Q2. Output Q2 is taken directly to the combinational 
section of the machine so that the machine operates normally when L~ and L3 are 
clocked appropriately. 

The subsidiary master latch L2, consisting of gates g9, glo, g3, and g4, provides the 
second input port of the two-port master latch. The data input line of L2 is I and its 
clock line is X. Normally, X -  0 and L2 is disabled; when X -  1, L2 is enabled and 
data on line I (normally connected to the output Q2 of the preceding SRL) is trans- 
ferred to the output of L2. The slave latch L3 is again enabled when clock signal Y is at 
logic 1 level, and the data at the output of L2 now appears at output Q2 which is also 
connected to input I of the next SRL. In this mode, all the SRLs are now connected in 
cascade and form a shift register. 

It is important to ensure that no two of the clock signals X, Y, and Ck are ever 
simultaneously at logic high level. This is because the slave must be enabled only when 
both of the masters are disabled. This can be arranged by external logic where Y - X 
in shift register mode, and Y - Ck in the normal operating mode. 

A skeleton circuit diagram of a synchronous state machine designed using the 
double latch LSSD technique is shown in Figure 13.31. The connections for the normal 
operating mode of the state machine have been highlighted by the solid black lines, 
and the thinner lines represent the additional connections for shift register mode. 
SRL latches must be used instead of conventional flip-flops for every stage of 
the machine. 
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A level sensitive scan design using the sh(['t register latches shown in Figure 13.30 

13.16 Designing for testability 

It will have been obvious from the foregoing that testing a digital circuit is usually far 
from being trivial, except in the simplest of cases. The largest VLSI chips now 
manufactured cannot be fully tested, for the entire range of possible inputs is so vast 
that at the normal maximum operating speed of the chip it would take many years 
to cover all possible input combinations. Therefore, there is considerable interest 
in designing modern circuits and systems specifically with ease of testing in mind. 
Designing for testability (DFT) is an enormous subject and is becoming an issue of 
great importance, and in this section it is possible only to outline the steps that 
a prudent designer will take in order to increase the ease of testing a new design. 

Some methods of improving testability have already been mentioned. In circuits 
employing redundant gates, it is good practice to include accessible test points, or test 
inputs, in order to allow undetectable faults to be isolated and detected. Sometimes 
there are unused connection pins on a module connector, and these can usefully be 
employed as test inputs or test points. If there are no spare connections, then it is 
sometimes useful to employ 2-to-1 multiplexers to allow shared use of the pins that are 
available. In normal operation, all the multiplexers route the correct internal signals to 
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the next logic stages, but on receipt of a special test signal at their select inputs, all the 
multiplexers connect important internal gate inputs directly to accessible external 
connections or test points so that they may be driven by known signals. Multiplexers 
may also be used to route intermediate outputs to external connections when being 
tested. These techniques can considerably simplify the problems of identifying a fault 
buried deep inside a logic system and otherwise needing complicated path sensitisation 
to unmask the fault, but it should be borne in mind that these multiplexers can 
themselves be a source of faults, and they may also increase problems caused by 
propagation delays. 

In some cases a module of logic is so large that fault-finding access is improved by 
subdividing the module, usually in such a way that both sub-modules are approxi- 
mately the same size, and using the principle of binary division explained in Section 
13.2. This can be done physically, or if this is not possible then the technique of 
'degating' can be used, in which two extra gates are introduced into the signal path 
of the logic circuit (see Figure 13.32). When (A,B) = (1,1), then the operation of the 
circuit is normal; but if A = 0, then the value of/~ is fed into the second half-module, 
which can then be directly tested with a known input. Again, added propagation delay 
and additional possible faults are the penalties for using this technique. 

Often, logic components such as gates and flip-flops will have unused inputs that 
must be tied to high or low logic level for correct operation. For maximum testability, 
these inputs should be tied to their respective logic levels through individual resistors, 
one for each input, so that, should the need arise, they can be driven individually by an 
external source. This would be impossible if these inputs were connected directly to a 
supply rail. 

Many logic systems, particularly sequential designs, must be initialised on first being 
powered, and this power-on initialisation can also be used to drive all the flip-flops to a 
known and predictable state. If this is done, then the initial state of the circuit is known 
and the subsequent response of the circuit is well characterised, enabling fault condi- 
tions to be recognised rapidly. When highly developed, such as in a computer, it is 
possible for the system to undertake its own basic tests of the important sub-systems, 
and to deduce, for example, the major parameters of the functional parts of the circuit. 
These may then be reported to the user for further consideration and comparison with 
the known fault-free parameters. 

Other techniques for enhancing testability depend upon constructional methods. 
It is still usual to mount the most complex chips using sockets, preferably of the 
'zero insertion force' type which make removing and refitting the chip virtually 
free of the risk of physical damage, despite the disadvantages associated with 
possible contact resistance at each pin connection and slightly degraded high- 
frequency performance. It is wise to ensure that physical access to test points 
and component terminals on printed circuit boards is as easy as possible. Additionally, it 
is frequent practice to provide one or more guided probes at selected points in 

Sub-module 
X 

Figure 13.32 The principle of "degating'" 

Sub-module 
Y 
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the system which can be attached to each of the test points in a properly ordered 
sequence according to a test routine devised according to the principles outlined in 
this chapter. 

Problems 

13.1 
13.2 

13.3 

13.4 

13.5 

13.6 

13.7 

13.8 

13.9 

Determine a complete test set for the 3-input NAND gate shown in Figure P 13.1. 
Using the path sensitisation technique, obtain a complete test set for the circuit 
shown in Figure P13.2. 
Using the path sensitisation technique, determine a test set for the circuit shown 
in Figure P13.3. 
Using the path sensitisation technique, determine the input test set for the fault 
p= in the circuit shown in Figure P13.4, and check the answer using the Boolean 
difference method. 
The NAND implementation of an Exclusive-OR gate is shown in Figure P13.5. 
Determine a complete fault detection test set for each of the following faults: P0; 
ql; r0. 
For each of the circuits shown in Figure P13.6 determine the minimal fault 
detection test set. 
For the circuit shown in Figure P13.7, develop the fault table and find a minimal 
fault detection test set. 
Determine the complete test set for all s-a-O and s-a-1 faults in the four 2-level 
circuits shown in Figure P13.8. 
Determine the Boolean difference OF/OX2 for the following functions: 

(a) F -  X, X2 + X, X3 + X2X3 

(b) F -  (X~ + X2)-(X~ + X3). (X2 + X3). 
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Appendix 
Functional logic symbols 

A.1 Introduction 

Over a period of more than twenty-five years, during which time the technology of 
digital systems has been developing at an unprecedented rate, methods of depicting 
digital systems in circuit diagrams using standardised logic symbols have similarly been 
developing. This has resulted in two completely separate sets of logic gate symbols that 
can be used in drawing circuit diagrams, the 'old' or 'conventional' system and the 
'new' or 'functional' logic symbols. In the UK the 'new' standards for drawing circuit 
diagrams appear in BS 3939, Section 21, and in the USA they appear in IEEE Std. 
91/ANSI Y32.14 and IEC publication 617-12. Perhaps the most significant advantage 
of the standardized system is that it enables 'functional' circuit diagram symbols to be 
defined, corresponding to most or all SSI and MSI components that describe the logic 
function of the component in a consistent and logical manner. It is not practical 
to indicate the detailed logic functions of all VLSI components but the symbolic 
methodology can still be used to indicate the functions of major parts of these 
components. This is an international standard so that circuit diagrams drawn using 
the 'new' system will, in principle, be understood in many different countries. 

One frequently voiced criticism of the functional symbol system is that it was 
originally devised when CAD software was capable of drawing only rectangles, and 
so all the various types of simple logic gates have functional symbols that are rect- 
angular. The older 'conventional' symbols are completely different for the various 
kinds of simple logic gates and so are much less prone to confusion. Furthermore, 
a sizeable number of professional logic designers, having used the distinctive shape 
symbols for many years, are reluctant to abandon the symbols and conventions with 
which they are familiar and which are still in common use, and for these reasons the 
older symbols are used elsewhere throughout this text. However, a professional 
designer should at least be familiar with the new standards since they are now widely 
used in many manufacturers' data sheets and published logic circuit diagrams. 
This Appendix is intended to give sufficient information to allow interpretation of 
the new symbols for typical devices described in this text, and to use them in simple 
cases, but it is beyond the scope of this summary to give all the detailed rules of the 
system to enable symbols for newly available devices to be derived. 

A.2 Basic principles of the functional symbol system 

In the functional symbol system, all logic gates and other fundamental logic units or 
elements are indicated by basic rectangular outlines, each labelled with a general 
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. t . npu, I i outpu, 
lines lines 

Figure A.I General . /ormat  o./a./'unc- 
tional s vmhoi./'or a logic element 

qualify&g symbol defining its function. For example, 
the symbol '&' signifies an AND gate. Additionally, 
each element has both input and output lines with the 
possibility of additional qualifying symbols relating 
specifically to these inputs and outputs. The general 
principle is shown in Figure A.I, where the dagger 
('~f') indicates the position of the general qualifying 
symbol and the asterisks ('*') indicate possible posi- 
tions of qualifying symbols for the input or output 

lines. The inversion circle, used at the inputs and outputs of conventional symbols and 
introduced in Chapter 2, is a simple example of an input or output qualifying symbol 
in the functional system. 

The internal state means the logic state existing inside the rectangular symbol outline 
at an input or output, and the external state means the logic state existing external to the 
complete symbol, i.e. outside of any qualifying symbols applying to that input or output. 

Although a logic element is usually described by a rectangular outline in this system, 
the distinctive conventional shape symbols for gates as used elsewhere in this text are 

;i z 
,i ! V 

(a) 

(b) 

still allowed. However, using the conventional 
distinctive shape symbols loses one major 
advantage of the functional system, which is 
that symbols for complex components may be 
built as combinations of simple gate outline 
symbols. Three examples of abutting elements 
are illustrated in Figure A.2. Symbols joined 
in a vertical direction, and joined by a hori- 
zontal boundary, are part of the same IC 
package but, apart from power supply lines 
are not electrically connected unless indicated 
by other means such as a general qualifying 
symbol. However, symbols joined in a hori- 
zontal direction, and joined by a vertical 
boundary, have a single internal connection, 
usually from left to right. Multiple internal 
connections can be indicated by the approp- 
riate number of short perpendicular strokes 
across the mutual boundary, and a single 
stroke would confirm a single connection. 
Therefore, in Figure A.2(a), there are no 
connections between the adjacent elements, 
while in Figure A.2(b) a vertical line sep- 
arates the two elements and indicates that 

there is a single internal connection between them. 
In Figure A.2(c) there are three interconnections 
between the abutting elements. 

A common control block associated with a number 
of logic elements is indicated by an element with 
a special outline, as shown in Figure A.3. This is 
the only special outline used in the functional system. 

= 

! 

(c) 

Figure A.2 Comhhuttion o./ logic elements 
(a) No internal connection (h) A singh, htternal 
connection (c) Multiph, internal connection 

A 1' | A 

h rJ 

B C 1 I - -  ....... 
I , I,,, 

Figure A.3 Common control block 
(top) ./br two logic elements 
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A I-- - - - - -  

B J- 

D 
A A 
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Figure A.4 Logic array with common output element (bottom) 

& 

>1 
=1 
2k+ 1 

1 
MUX 
X/Y 
DMUX or DX 
CTR m 
CTR DIV m 
SRG m 
EPROM, ROM 
RAM 
T. 

P - Q  

AND gate 
OR gate (at least one input must be active to activate the output) 
2-input XOR gate (one input only must be active to activate the output) 
Multi-input XOR gate (an odd number of inputs must be active to 
activate the output) 
Buffer gate (the single input must be activated to activate the output) 
Multiplexer 
Decoder or code converter 
Demultiplexer 
Counter with m bits 
Counter with cycle length m clock cycles 
Shift register with m bits 
[Erasable programmable] read only memory 
Random access read/write memory 
Adder 
Subtractor 

Figure A.5 Some general qual([ying symbols Some of  the internal qual([ying s),mbols shown in.figure A.6 may also 
be used as general qual(['ying symbols ([they apply to all inputs or outputs 

In the example shown in Figure A.3 there are two logic elements, not connected to each 
other but both controlled by input A. 

When an array of abutting elements has a common output element, this is indicated 
by drawing a double line at the boundary between the output element and the rest of 
the array. In the example shown in Figure A.4 the common output element also has an 
external input (C) connected to it. 

Some of the possible general qualifying symbols are shown in Figure A.5, and some 
of the possible qualifying symbols for inputs and outputs are shown in Figures A.6 and 
A.7. The general qualifying symbols for simple OR and XOR gates and buffers 
indicate the number of inputs that must be active in order to activate the output. 
The functional system includes an alternative to the inversion circle, the polarity 
indicator. In a positive logic circuit diagram this means the same as, and is completely 
interchangeable with, the inversion circle, with the proviso that the direction of the 
arrow indicates the direction of signal flow. None of these tables is intended to be 
complete, however, and only those symbols necessary for understanding the com- 
ponents described in this text are shown. The simplest Boolean logic gates have 
functional symbols that are simply rectangles labelled with the appropriate general 
qualifying symbol, as shown in Figure A.8. 
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+ o} 
Vmin  

Vmax 
V 
J, K, R, S,T 
D 
- - i  

CT =? 
+ 

- - . )  

1> 
0 

Rising-edge triggered control input 

Group of inputs or outputs binary weighted from 1 to 2 r" (e.g. address 
inputs or counter outputs) 

Minimum and maximum values of weighted inputs interpreted internally 

Tri-state output 
Flip-flop inputs 
Single-bit input to any storage element (e.g D-type flip-flop) 
Postponed output (pulse-triggered element, e.g. master/slave flip-flop) 
Contents of an internal register 
Input causing count-up 
Input causing data shift away from control block 
Schmitt input gate 
High output driving capability 
Open collector output 

Figure A.6 Some qmtli/.vin~ symbols for use insi~h' the element out~me ~vith logic inputs aml outputs 

~[~i i i i  Inversion circle (input) 

ii i i~--- Inversion circle (output) 

- -~ i i i i  Polarity indicator (input) 
.... 

.... _j Polarity indicator (output) 

ii~ii Complemented internal connection 

l--fill Analogue input 

Figure A.7 Some quuli/.vinl,, svmhoL~" /m" use outsi~h" the element outline ~l'ith logic inputs and OUtlmtS 

I>1 =1 

(a) (b) (c) (d) 

L 
I 

Figure A.8 Some e.vumph,s o././hnctional logic ,~'.vmhoL~" for .~'imple Boolean logic gates (u) AND gate (h) OR gate 
(c) Inverting Im/li'r (d) 2-inlmt XNOR gate 

A.3 Dependency notation 

The systematic 'dependency notation' is a completely new feature of the functional 
logic symbols, with no precise counterpart in the 'conventional' system, and which 
forms the basis of an extremely flexible method of succinctly indicating the precise 
logical functions of very many complex ICs. The dependency notation summarises the 
relationships between inputs and outputs of complex logic elements, and is in addition 
to the general qualifying symbols describing the overall element function. It thus 
defines a consistent framework for labelling the various inputs and outputs of the 
more complex logical elements. 

The dependency notation is built around a number of distinct 'dependency types', 
indicated by a capital letter. These include, amongst others: 

EN: 
G" 

Enable dependency, 
AND dependency, 
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C: 

S, R: 
Z: 
M: 
A: 
N: 

Control dependency, 
Set and Reset dependency, 
Interconnection dependency (i.e., internal connections between elements), 
Mode dependency (i.e., effects depend on the mode of operation), 
Address dependency, and 
Negate (XOR) dependency. 

The general rules for the dependency notation are that each logic line affecting other 
logic lines is labelled with the appropriate letter chosen from the list of possible 
dependencies above, followed by a decimal integer or a Greek letter unique for the 
particular part of the logic element concerned and obviously usually chosen to describe 
the function of the element as clearly as possible. Furthermore, each logic line affected 
by the affecting logic lines is labelled with the same integer. Logical inversion between 
affecting and affected lines is indicated by placing a complementing bar over the label. 
The OR of two or more logic lines can be indicated by labelling them with the same 
letter and integer or Greek letter. If any line is affected by several affecting logic lines, 
then the order in which the effects are applied is indicated by the left-to-right ordering 
of the affecting labels. 

As an example, an enable signal with EN dependency affects only the outputs of the 
element to which it is connected, even if the logic symbol used contains a number of 

elements, as shown in Figure A.9. When the internal 

" - ' - - -  - - ' - r  EN 

l 

B 

C 

D 

-~ E 

F 

Figure A.9 Control of outputs using 
Enable (EN) dependency. Only outputs 
A, B, C, and F are controlled by the 
Enable input 

enable signal is l, the outputs of that element are 
enabled. When not enabled, the result depends upon 
the type of outputs employed. For a tri-state output, 
a disabling signal puts the outputs into the high 
impedance Z state externally, though the internal state 
is unaffected. Totem-pole outputs are taken to the 
logic 0 state, and open collector outputs are taken to 
the 'off '  state. 

It should be noted that, because of the flexibility 
of the system, any one device can often be described 
by several possible functional symbols; the symbol 
designer chooses the symbol that describes the 
function of the device most clearly, and there are some 
instances where the choice of the clearest symbol 
depends upon the particular use being made of 
the device. 

A.4 Simple examples of G dependency in functional logic symbols 

The rule for the G (AND) dependency is that when the affecting input is in logic state 1, 
the affected input behaves as it would without the dependency symbol; and when the 
affecting input is in the 0 state, the effect is as if the affected input were in the 0 state. 
This is the essence of an 'AND'  gate, of course. A typical example of a functional logic 
symbol using the G dependency, for the 74251 8-to-1 line multiplexer, is shown 
in Figure A.10. Pin numbers on the IC package are given in parentheses outside 
the logic element outline. Polarity symbols indicate an active low Enable input G and 
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G EN 
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Figure A. I0  Functional logic symbol 
./i)r tilt, 74251 8-to-I /me multiplexer 
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lC3 ( 3)- - . ,L~ 
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EN 
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2 

0 
G T 

MUX 

j 
,., [ 

(7) 
1Y 

(91 
- 2Y 

I 
Figure A.I 1 Functional logic symbol for the 
74153 dual 4-to-I line multiplexer 

a complemented output W. Both the inverted and 
non-inverted outputs are tri-state. Select signals A, 
B, and C, having weights 2 ~ 2 ~, and 2 2 respectively, 
provide a range of binary input values from (0)10 to 

0 (7)10 inclusive. The internal qualifying symbol G~ 
indicates AND dependency between these select 
inputs and the data inputs DO to D7 labelled with 
internal qualifying symbols 0 to 7. This dependency 
identifies the combination of select signals (C, B, A) 
required to select individual data lines so that, for 
example, the control signal combination CBA is 
ANDed with data input D4. This is, of course, the 
correct function of a logic multiplexer; if select signals 
(C, B , A ) -  (1,0, 0) are applied, then data line D4 is 
selected. 

A more complex example is the functional logic 
symbol for the 74153 dual 4-to-I line multiplexer, 
shown in Figure A. 11. The following points refer to 
this diagram. 

1. The two main logic elements (specified by the 
general qualifying symbol MUX) are sepa- 
rated by a horizontal straight line, meaning 
that they are not interconnected. 

2. The two logic elements are identical, and so to 
reduce clutter, only the first element is 
described in full on the symbol. 

3. Each logic element has its own Enable signal, 
lff3 and 2(3, controlling outputs IY and 2Y 
respectively. Polarity indicators are used at 
these inputs to indicate that these are active 
low inputs. 

4. Control signals A and B, having weights 
2 o and 2 ~ respectively and providing a range 
of binary input values from (0)10 to (3)10 
inclusive, are supplied to a common control 
block. Since the control block is common to all 

logic elements, both MUX elements are controlled by the same address inputs. 
5. G (AND) dependency is specified by the internal qualifying symbol G o in the 

common control block, corresponding to the internal qualifying symbols 0, 1, 2 and 
3 labelling the data inputs of the top MUX element. This dependency identifies 
the combination of control signals A and B required to select individual data lines. 
For example, if (A, B ) =  (0, 0), then data lines 1C0 and 2C0 are selected; or if 
(A, B ) =  (1, 1) then data lines 1C3 and 2C3 are selected. 

The logic IC type 74139 can be used either as a dual 2-to-4 line decoder or as a 2-to-4 
line demultiplexer. Because of its two somewhat different uses it has two alternative 
functional logic symbols using two different general qualifying symbols, as shown 
in Figure A.12. In principle, these two functional logic symbols are equivalent and 
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F i g u r e  A.12 Equivalent functional logic symbols for the 74139 dual 2-to-4 line decoders/demultiplexers 
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F i g u r e  A.13 Equivalent functional logic symbols for the 74138 3-to-8 line decoder/demultiplexer 

interchangeable. In practice, a wise designer will choose to use the one closer to the 
actual function required of the IC in the circuit. Note that in both representations, all 
the output lines are active low. Pin (1) functions as an Enable input in the decoder 
symbol but, in the symbol for the same device used as a demultiplexer, pin (1) acts as 
the data input and so the designation EN is not needed. 

Two possible functional logic symbols for the 74138 3-to-8 line decoder/demultiplexer 
are shown in Figure A.13. Note that instead of the general qualifying symbol for 
a decoder (X/Y), the more specific symbol BIN/OCT is used. Also, there is an 
'embedded AND'  gate within the main outline of both symbols. The symbol EN to 
the right of the gate embedded in the decoder symbol indicates that the implied 
horizontal connection, between the embedded gate and the main part of the logic 
element, takes the function of the Enable signal for the device. For the demultiplexer 
symbol, this connection acts as the data input to the main part of the element and so 
the designation EN is removed. 

A.5 Control, Set, and Reset dependency 

The rule for the C (Control) dependency is that when the affecting input is in logic state 1, 
the affected input behaves as it would without the dependency symbol; and when the 
affecting input is in the 0 state, the affected input is not permitted to control the 
element. An example of C dependency is shown by the controlled SR latch shown in 
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lS  

Cl 

1R 

Q a & I Q 

= ~ i 
(a) (b) 

Figure A.14 An example of the use o[ control dependencw the controlled SR latch 

Figure A.14(a). Control input b is the affecting input and a and c are the affected 
inputs. Normal operation of the SR latch only occurs when the control input is in 
the high state (logic level 1). The Control input is identified by the qualifying 
label C I while the affected inputs are each given the qualifying label 1. Exactly the 
same functionality is indicated in a different manner, using embedded elements, in 
Figure A. 14(b). In this case, internal signal S = a .  b and internal signal R = b.c, so 
that inputs a and c take the roles S and R respectively only when b = 1. 

When S = R = 1 the output of a normal SR latch is unspecified, and in practice this 
is regarded as a forbidden input condition. However, S or R dependency can be used 
in a functional symbol when the corresponding component has a well-defined output 
f o r S = R =  1. 

The rule for the S (Set) dependency is that when the qff'ecting input is in logic state 1, 
the affected output behaves as it would with S = 1, R = 0; and when the af[ecting input 
is in the 0 state, there is no effect. Therefore, S dependency overrides whatever logic 
level is present on an R input. The S input is denoted by S l, indicating that it is now an 
affecting input. The two complementary outputs are labelled by 1 to indicate that they 
are both affected by input S I. For S = R = 1, the S input overrides the effect of R so 
that Q = 1 and Q = 0. Since the latch is behaving as it would for the input conditions 
S = 1, R = 0, this is also known as 'Set overrides Reset'. A functional logic symbol for 
such a latch appears in Figure A. 15(a). 

The rule for the R (Reset) dependency is that when the affecting input is in logic state 1, 
the affected output behaves as it would with S - 0, R - 1; and when the affect&g input 
is in the 0" state, there is no effect. Therefore, R dependency overrides whatever logic 
level is present on an S input. The R input is denoted by R1, indicating that it is now an 
affecting input. The two complementary outputs are labelled by 1 to indicate that they 
are both affected by input R1. For S = R = 1, the R input overrides the effect of S so 
that Q = 0 and Q = 1. Since the latch is behaving as it would for the input conditions 
S = 0, R = 1, this is also known as 'Reset overrides Set'. A functional logic symbol for 
such a latch appears in Figure A. 15(b). 

Q S 
Sl  1 = 

Q R 
R 1 = 

Q 
1 

Q 
R1 1 ; 

(a) (b) 

Figure A.15 (a) Set (S) dependency (b) Reset (R) dependency 
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SR dependency of a NAND gate SR latch (a) Gate implementation of latch, and (b) its functional 
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Figure A . 1 7  SR dependency of a NOR gate SR latch (a) Gate implementation of latch, and (b) its functional logic 
symbol 

In practice, a more common situation is that shown by the SR latch made using 
N A N D  gates, as shown in Figure A.16. For this circuit, Q - Q - 1 when S -  R -  1 
and both Set and Reset dependency are present in the circuit. Both S and R are 
affecting inputs and the corresponding input pins are designated S 1 and R2. Output Q 
is affected by input S1 and so is given label 1 to identify this dependency, while 
output Q is affected by input R2 and so is given label 2 to identify its dependency on R2. 
If inputs S1 and R2 are simultaneously held at high logic level, the notation 
specifies that output Q -  1 (overriding input R2) and simultaneously output Q -  1 
(overriding input S 1), describing the circuit action correctly. However, if both S 1 and R2 
are simultaneously held at low logic level, then neither input is active and so either 
Q - 0, Q - 1 or Q - 1, Q - 0 are possible, corresponding to the previous state of the 
latch. 

For the SR latch made from NOR  gates (Figure A.17(a)), the outputs are 
Q - Q -  0 when S -  R -  1. Again, S and R are both affecting inputs and so, as 
before, the corresponding input pins are designated S 1 and R2. Now, however, output Q 
is affected by input S 1 and so is labelled 1, while output Q is affected by input R2 and 
so is labelled 2. If input S 1 is in logic high state then output Q is 0 irrespective of input 
R2. If input R2 is in logic high state then output Q is 0 irrespective of input S1. 
This gives the functional symbol shown in Figure A.17(b). 

A.6 Bistable logic elements and C dependency 

The master/slave JK flip-flop is an example of a single-bit memory element that is 
'pulse triggered' - that is, the data must be set up prior to the arrival of the first logic 
edge of the clock pulse and must remain stable at least until the clock has returned to 
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j its original state. The final output signal appears when the 
1J "1 -- O clock signal returns to its original state and is said to be 

Ck a 'postponed' output. This is indicated by the internal 
6"1 qualifying symbol '~'. Figure A.18 shows the functional 

logic symbol for a master/slave JK flip-flop, having 
K 1K --1 - t~ Control dependency provided by the clock C1; 1J and 1K 

are the affected inputs. (If there is a change in the logical 
Figure A.18 Functional logic value of 1J or 1 K, or both, while the clock remains active, 
symbol for master~slave then the resulting output state is not described correctly by 
JK.[lip-)qop the functional logic symbol.) 

The presence or absence of the qualifying symbol '-7' 
combined with the presence or absence of the symbol for 

an edge-triggered clock input gives the following four basic types of clocked flip-flops 
and latches that can be represented using the conventions of the functional logic 
symbols, as shown in Figure A. 19. 

C1 C1 C1 --, C1 ---, 

(a) (b) (c) (d) 

Figure A.19 The distinguishing features of the four basic bistable elements (a) The transparent latch 
(b) The edge-triggered flip-flop (c) The pulse-triggered flip-pop (d) The data-lockout flip-[lop 

a. The transparent (controlled) latch. Control dependency label C1 means that data 
input is only enabled when C1 - 1. For C I = 0, the data inputs have no effect. 
Only changes of data input while C1 = 1 will result in a change of output state. 

b. The edge-triggeredflip-flop. Edge triggering is indicated by the internal qualifying 
symbol '> ' .  This means that the control signal C1 only enables data input on 
a rising edge (0 ~ 1) transition. As in the conventional symbol system, operation 
designed to take place on a falling edge (1 ~ 0) transition may be indicated by 
juxtaposing the internal qualifying symbol '> '  by an inversion circle, an external 
qualifying symbol. 

c. The pulse-triggeredflip-flop. As in Figure A. 18, this is identified by the presence of 
the output indicator '~', and the absence of the edge-triggered input indicator '>' .  

d. The data-lockoutflip-flop. This is similar to a pulse-triggered device except that the 
control input C1 is considered dynamic, so that the functional logic symbol 
includes both the edge-triggered symbol '> '  and the postponed output symbol '~'. 
Shortly after C 1 has made a 0 ~ 1 transition, the data inputs are disabled and data 
does not have to be maintained for the remainder of the clock pulse. However, the 
output is postponed until C1 returns to its original state. Type 74110 is an example 
of a flip-flop with data-lockout. 

An example of a functional logic symbol for a single-bit memory element is shown in 
Figure A.20. The device illustrated is the 7470 positive edge-triggered JK flip-flop with 
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7470 

p '~  ~ 1 2 S  
J1 -- - -"  1 & 
J 2 ~  1J 
s q 

Q 

Q 

Figure A.20 Functional logic 
symbol for the 7470 AND-gated 
positive edge-triggered 
JK flip-flop 

additional AND gating. The AND gates at the J and 
K inputs are incorporated within the logic symbol and 
edge-triggered operation is indicated by '> '  at the clock 
input. Logic polarity indicators are used to denote active 
low inputs and an active low output. This device is unusual 
because, as well as the usual edge-triggered JK action, the 
complemented direct Clear and Preset inputs only operate 
when the Clock input is at logic low level. Therefore, the 
Clock and the inverted Clock are both regarded as control 
signals and are designated C1 and C2, respectively. 
The inputs 1J and 1K are affected by the dynamic Clock 
signal C1, where the control dependency is indicated by the 
numeral 1. The inverted Clock signal, control signal C2, 
affects the complemented Preset and Clear inputs, and the 
control dependency is therefore indicated by denoting 

these signals as 2S and 2R respectively. External polarity indicators show that these 
are actually complemented inputs. 

A.7 Counters, Z and M dependency 

The functional logic symbols for MSI counters are broadly similar to those 
described in section A.4 for multiplexers and comparators. For example, the 7468 
is a dual 4-bit non-synchronous counter which may also be used for frequency 
division. The functional logic symbol for this MSI circuit, shown in Figure A.21(a), 
is divided into three separate elements with no logical interconnection. Each element 
is a separate counter and consequently has its own general qualifying symbol. 
The upper counter (CTR DIV 2) is a scale-of-2 counter; the centre block 
(CTR DIV 5) is a scale-of-5 counter; and the lower block (CTR DIV 10) is a 
scale-of-10 counter. All of these elements may also be used for frequency division by 
2, 5, or 10 respectively, and the general qualifying symbols show that all the 
outputs have high current driving capability. In fact the detailed data for the 
74LS68 show that its outputs each have approximately double the fan-out capability 
of normal LS outputs. 

The bit grouping symbols indicate the weightings of the binary outputs, so that the 
potential binary range of the centre element is 0 to (7)10, and for the lower element (0)~0 
to (15)~0. However, the qualifying symbols CTR DIV 5 and CTR DIV 10 indicate that 
these counts are actually limited internally to (5)10 and (10)10 respectively. 

The upper and centre counter elements have a common active low Clear input, while 
a separate active low Clear input is provided for the remaining counter. The symbol 
C T - - 0  by each of these inputs indicates that, when active, these inputs clear the 
counter contents to zero. Separate edge-triggered clock inputs are provided for each 
counter element, and all three elements are capable only of counting up. 

In practice, 1QA can be externally connected to 1CLKB, thus amalgamating the 
upper two counters into a single scale-of-10 counter. Together with the lowest element 
there are then two decade counters, and this is the reason that this IC is described as 
a dual counter. Frequency division by 100 can now be achieved by externally con- 
necting 1QD to 2CLK. 
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F i g u r e  A.21 Functional logic symbols.lor counters (a) The 7468 dual 4-bit asynchronous counter (h) The 74290 
decade counter (c) The 74161 synchronous 4-bit counter 

Another example is the 74290 non-synchronous decade counter, shown in 
Figure A.21(b). This MSI circuit consists of two counters, one a scale-of-2 and the 
other a scale-ofo5, serviced by a common control block. Both counters have indepen- 
dent clock inputs and the potential range of the lower counter is (0)~o to (7)~0. 
However, the qualifying symbol DIV 5 indicates that its count is actually limited to 
5. If QA is connected externally to CKB, the operation of the two counters may be 
combined to give a scale-of-10 counter. 

The two counter elements have a common Clear signal which clears both counts to 
zero when R0(1) AND R0(2) are high. Inputs R9(1) and R9(2) are used to set the 
combined count to (9)~0. These are both active high inputs to an AND gate embedded 
in the control block; this generates an output signal Z3 that controls both counters 
using the Interconnection (Z) dependency. This is specified by prefixing the CT 
symbols in both counter blocks with the same numeral. The rule for the Z dependency 
is that when the affecting input is in logic state 1, the affected input behaves as if logic 
state 1 has been imposed on it; and when the affecting input is in the 0 state, the 
affected input behaves as if logic state 0 has been imposed on it. For the upper counter, 
3CT = 1 indicates that Z3 active c a u s e s  QA ---- 1; simultaneously, for the lower counter 
3CT = 4 indicates that Z3 active causes this counter's outputs to be set to 
(QD, Qc, QB) = (1,0, 0). Therefore, when R9(1) and R9(2) are simultaneously active, 
the combined count is set to (QD, Qc, QB, QA) -- (1,0, 0, 1) = (9)10. 
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Finally, the 74161 is a more complex MSI circuit having further control func- 
tions described by the Mode dependency, M. Its functional logic symbol is shown in 
Figure A.21 (c) and the general qualifying symbol specifies that this device is a scale-of- 16 
counter. The rule for the M dependency is analogous to that for the C dependency: 
when the affecting input is in logic state 1, the corresponding mode is selected; and 
when the affecting input is in logic state 0, the corresponding mode is not selected. 
The basic counting function is indicated by the symbol '2, 3, 4+'  adjacent to pin (2) (CLK). 
This denotes that the count will be incremented by unity when the clock makes a 0 ~ 1 
transition provided inputs LOAD, ENP, and ENT, marked with dependencies M2, 
G3, and G4 respectively, are high. The counter is directly cleared (CT = 0) by an active 
low input on pin (1). The counter block is divided into four similar sections, one for 
each bit of the counter, and the integers 1, 2, 4, and 8 indicate the weighting of each bit 
of the count. Surrounding these integers with brackets [] indicates that these integers 
are non-standard qualifying symbols, introduced purely for clarity. 

The symbol 1,5D adjacent to pin (3) indicates that the counter is loaded with the 
logic values on inputs A, B, C, and D, when the LOAD input is low (Mode dependency 
M1) and pin (2) makes a 0 ~ 1 transition (Control dependency C5). Since pin (2) is 
associated with two separate functions (load and count), both of them are specified 
using the clock input line but separated by an oblique stroke (or forward slash, '/'). 

Each stage of the counter has its own individual postponed output, designated 
QA, QB, Qc and QD. Finally, the ripple carry output RCO is described by qualifying 
label '-~3CT = 15', indicating that it is a postponed output dependent upon the enable 
signal ENT. RCO is active only when the counter contents CT -- 15 and the enable 
signal at G3 is active. 

A.8 Shift registers 

A functional logic symbol for a basic 4-bit shift register with parallel outputs from each 
bit is shown in Figure A.22(a). The upper section of the diagram is the control block 
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a, 

Figure A.22 Functional logic symbols for shift registers (a) Four-bit SIPO (b) 7491 8-bit SISO 
(c) 74164 8-bit SIPO 
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and the lower section contains the four flip-flops that make up the four stages of the 
shift register. Data input to the register is through line A. The qualifying symbol ' ~ '  
indicates that the data shifts one stage further away from the control block every time 
there is a rising logic edge at the clock input Ck. The enabling control of the flip-flops 
by the clock is indicated by Control dependency C1 and the label 1D in the lower 
section of the diagram. 

A typical example of a serial-in, serial-out shift register is the 8-bit type 7491. 
Its functional logic symbol is shown in Figure A.22(b); again the flip-flops are 
controlled by the edge-triggered clock line Ck. Serial-out data is available in true or 
complemented form from the last stage of the register. Independent outputs are not 
available from the seven remaining flip-flops in this device. Serial data formed by the 
result A AND B enters the first stage of the shift register through an implied horizontal 
connection (labelled I D to the right of the embedded AND gate). In practice, one of 
the inputs A and B can be used as the data input line while the other input is used as 
a line to enable or inhibit data input. 

Lastly, the functional logic symbol for the 74164 parallel-out 8-bit shift register is 
shown in Figure A.22(c). Independent outputs are provided from each stage of 
the register and an additional active low clear line (R dependency) is provided for 
initialising the register contents to 0. Because the clear line resets all the flip-flops to 0, 
it is connected to the control block of the symbol. Note once again the implied 
horizontal connection out of the embedded AND gate in the top section of the register. 

A.9 Programmable devices and A dependency 

Programmable logic devices have the common feature (shared with certain other 
devices) that one of an array of elements (usually binary words) is selected by the 
use of a set of address or select inputs. This is indicated on a functional logic symbol by 
the use of the Address (A) dependency. The rule for the Address dependency is that the 
affecting inputs (the address lines) allow the element that is selected by the address to 
function fully and to react to the affected inputs, while the corresponding functions of 
all the other elements in the device are disallowed. 

As an example, the functional logic symbol for the TMS27128 EPROM is shown in 
Figure A.23(a). All outputs are tri-state, and this EPROM has two control lines: 
an output enable G (an active low input) which gates data to the output lines, thus 
eliminating bus contention, and an active low chip enable input E which, besides 
selecting the chip, provides the additional facility of being able to put the EPROM 
in a standby mode. When E -  1 (i.e., this signal is not asserted), the tri-state output 
buffers are placed in their high-impedance (Z) state (see Chapter 10) and simul- 
taneously the EPROM power consumption is reduced to less than 10% of its value 
when fully operational. The address dependency indicates that valid addresses range 
from 0 to 16383, and the eight affected data outputs show that this is a byte-organised 
EPROM. Figure A.23(a) shows the function of the device as a ROM and so the active- 
low input used to program the EPROM (pin 27, denoted PGM) is not shown. 

A second example, the TMS47256 ROM, is shown in Figure A.23(b); there are two 
possible symbols as pin (20) has a dual function. It can either be operated as a chip 
enable/power down input (E or E)  or, alternatively, as a secondary chip select pin 
($2 or $2). Both of these functions can be programmed as either active low or active 
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Figure A.23 Logic symbols for (a) TMS27128 16 Kbyte EPROM, and (b) the two modes of operation of the 
TMS47256 32 Kbyte ROM 

high during mask fabrication. The chip select input (pin (22), labelled Si or Si) can 
also be programmed during mask fabrication to be either active high or active low. 
The address dependency indicates that valid addresses range from 0 to 32767, and the 
eight affected data outputs show that this is also a byte-organised ROM. 

A.IO Arithmetic circuits and N dependency 

A typical example of a 4-bit adder is type 74283, and its functional logic symbol 
is shown in Figure A.24. The preferred designations for the operands in a device 
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.for the 74283 4-bit adder 
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Figure A.25 Functional logic symbol.[or the 7487 
true/complement unit 

performing a mathematical operation are P and Q. 
Note that the binary weighting of the operand input 
lines and the sum output lines are indicated by the 
braces ('}'). In this diagram, the carry-in line is desig- 
nated both by the acronym CI and as CO, i.e. the carry 
from the bit one place less significant than bit 1, and 
the carry-out line is designated both by the acronym 
CO and as C4. 

IC type 7487 is a ' true/complement unit' intended 
for controlling one set of inputs to a 4-bit adder. 

The functional logic symbol for the 7487 is 
shown in Figure A.25. The functional logic 
symbol indicates that the device has a com- 
mon block having an input C and an active 
low input B. The polarity indicator and the 
qualifying symbol G2 (AND dependency) at 
pin (8) denote that B is ANDed with the data 
inputs A l, A2, A3, and A4 (all labelled 2) 
inside each controlled element. The rule for 
the Negate or XOR (N) dependency is that 
when the affecting input is in logic state 1, 
the affected input is complemented; and 
when the affecting input is in the 0 state, 
the affected input is not complemented. 

This is the essence of 'controlled inversion' provided by an XOR gate, of course (see 
Chapter 4). Input C has qualifying symbol N3, controlling the four outputs identified 
by the label 3 that are then complemented. Thus, the result from the topmost con- 
trolled element is 

Y1 - c �9 (A1 �9 B)  - c �9 ( A l  �9 B) .  

If C -  1 then Y1 - A1 �9 B, whereas if C -  0 then Y1 = (A1 �9 B). In this case, all the 
logic in the device is indicated by the dependency symbols G and N, so that each 
controlled element is given the general qualifying symbol 1, denoting a logic buffer 
with no further logic functions. Finally, as the controlled elements are all similar, it is 
actually only necessary to label the topmost controlled element in the symbol. 
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2.5 f~ = A ( B + C )  f z - ( A + B C ) ( B + D + A C )  
f3 - (,~ +/~)[C' + A(/5 + E)] + B[,~ + C + E(B  + D ) ]  

m 

2.6 (a) f l  - A B C  (b) f2 - BC (c) f3 - A + C 

2.8 f l ' 9  included, 7 not  f 2 : 1 3  included, 3 not  

fl  - ms + m6 + m7 q- m9 q- ml0 if- mli -}- ml3 + m14 -f- m15 

f2 - m2 -}- m3 + ms + m6 q- m7 q- ms -}- m9 if- ml0 -}- roll + m12 -k- ml3 + m14 -}- m15 

f~ - BD + BC + A D + A C 

f z - A + C + B D  

m 

2.9 f - A B  + BC 

2.10 

The solutions to (b) and (c) are left to the reader. 

2.11 A ~ 3 B @ C .  

2.12 

2.14 If D-passengers in doorway ,  P - passengers still moving,  B bu t ton  pressed, 
then f - d o o r s  c l o s e -  D P B  
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3.12 

A• 0 1 

0 D D 

u 

1 CD+CD 

3.13 
A'X~% 01 11 10 

0 DE D+E 

1 D DE DE' 

3.14 

A• 0 1 

CD+ CD 
0 C+ CDX 

+ CDX 

1 CD + CDX C+/~ 

3.15 (a)  f l  - -  ABD + A CD + ABC 

(b) f2 - CO + A B ~  + BCD 

(c) f3 - A + BC + BC + CO 

Chapter 4 

4.1 
(a) 8 I 

B - D  
c 

,4 

1 

(b) 

8 ! 

,~_________r 
o 

B 

E" 

1 
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4.2 

C 

D 

(a) (b) 

4.3 (a) 

4.4 

(c) 

(b) 

,4 

o �9 ~ 

o 

A 

E 

(a) 
,4 

(b) 

o 

D 
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4.5 
D 

(a) f l  = A + D(BC + BC) 

(b) f2 - C(A + B) + AD or f2 = A(C + D) + BC 

(c) f3 = ABD + C(A + D)(B + D) or f3 = A B C  + D(A + C)(B + C) 

4.6 
D 

(a) f l  - BC(A + D) + A(C + D) 

(b) f2 - A(B + C) + D(A + B + C) 

(c) ]3 = CO + ABD + ABD 

4.7 - 4 . 8  (a) f l  = ABCD 
(b) f2 - [AB + E F  + (C + D)]GEF 

(c) f3 = (:] + B)(C' + DE) + G[F + C(D + E)] 

4.9 
m m 

(a) f~ = (A + BC)(D + A C)(B + C) 

(b) f2 = (A + C + B + C)(A + C) 

(c) f3 -- B(A + CD) + ABD 

4.10 (a) A B C  + ABC 
o 

(b) A B C  + A B C  

(c) A + BC + BC 

(d) A + BC + BC 

Chapter 5 

5.1 (a) Do = C, Di = 1, D 2  - -  C ,  D3  - -  C 

(b) D o = A ,  Dl = A ,  D 2 - A ,  D 3 =  1 

(c) Do = 1, Dl = 0, D 2 -  1, D3 = 1 

5.2 (a) Do = C + D, Dl -- CD + CD, D 2  - -  C + D, 

(b) D o = A + D ,  D I - A ,  D 2 = 0 ,  D 3 - D  

(c) D o = A B ,  Dl = 1, D2 = A, D3 = A + B 

(d) Do = O, Dl -- BC, D2 - 1, D3 - -  B + C 

D3 = C 

5.3 (a) Level 1 4-to-1 M U X  control signals D and E 
Level 2 four 4-to-1 MUXs;  
M U X I ' D E = 0 0 .  D o - A ,  Dl = 1, 32 = A, D3 = A; 
MUX2" DE = 01. Do = A, D~ = A, D2 = 1, D3 = 1; 
M U X 3 " D E = 1 0 .  D o = I ,  Dl = 0 ,  D 2 - A ,  D 3 - 1 ;  
MUX4:  D E -  11. D o -  1, Dl = O, D 2  = A ,  D3 - - A  
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5.4 

(b) Level 1 4-to-1 M U X  contro l  signals D and E 
Level 2 four  4-to-1 M U X s ;  
M U X I :  D E  - 00. Do = A,  D1 = 0,D2 = 1, D3 -- 0; 
M U X 2 :  D E  = 01. Do = A, D~ = A, D2 = 1, D3 = A; 
M U X 3 :  D E  = 10. Do = A, DI - 1, D2 = 1,D3 = 1; 
M U X 4 :  D E  = 11. Do = A,  Dl = O, D2 = 1, D3 = 1 

(a) 

(b) 

Inputs  to M U X 1 ,  Do - A + B, Dl = A B ,  D2 - 0, D3 = A + B; 

Inputs  to M U X 2 ,  Do - A B ,  D~ = A + B, D2 - A B ,  D3 -- A; 

Inputs  to M U X 3 ,  Do - A + B, D! = ,4B, D2 = ,4B, D3 -- ,4 -+- B; 

Inputs  to M U X 4 ,  Do - A B  + AB ,  Dl -- B, D2 - A B ,  D3 - A B  

M U X 5 ,  E and F control  signals; M U X s  1, 2, 3 and 4, B, C 
and D control  signals. 
Inputs  to M U X 1 ,  Do - 1, Di -- 0, D2 - 0, D3 -- A, D4 = A, D5 - A, D6 - 0, 
D 7  - -  1; 

_ 

Inputs  to M U X 2 ,  Do - A, Dt - 1, D2 - A, D3 - A, D4 = 0, D5 - A, D6 - 0, 
D7 - -  A; 
Inputs  to M U X 3 ,  Do - A, Dl -- 0, D2 - 0, D3 - A, D4 - 1, D5 - ,4, D6 - A, 
D7 - 1; 

_ 

Inputs  to M U X 4 ,  Do = A, Dl = 1, D2 - A, D3 - 0, D4 = A, D5 = 0, D6 - 0, 
D 7  - A 

5.5 Represent  8421 by A B C D  and 5421 by P Q R S .  M U X  control  signals A and B: 

M U X I ( P )  D 0 - 0 ,  Dl = C + D ,  D 2 = C ,  D 3 - 0  

M U X 2 ( Q )  Do - 0, Dl = CD,  D2 - CD,  D3 - 0 

M U X 3 ( R )  Do - C, Dl = CD,  D2 = CD,  D3 - 0  

M U X 4 ( S )  Do = D, Dl = CD,  D2 = CD,  D3 - - 0  

5.6 The four N B C D  digits are A, B, C and D, digit A the most  significant. Segment 
equations:  a = A + C + B @ D; 
b - B + C G D; c - BCf ) ;  d = e + B C D  + BC; e - { ) (B + C); f -  A + t~/) + B/) + 
BC; g -  A + C D  + (B O C). 

. 7  . 

3 - t o - 8  
line 
decoder 

I T T 
A B C 

Po 
Pt 

P5 
Pe 
P7 

P7 

~3p4 ~ ~  ~ 
P5 
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5.8 

5.9 

5.10 

5.11 

Requires one 4-to-10 line decoder generating the complement of the P terms, i.e. 
Po, P1 etc. in each case. Then 

(a) W = Ps"P6"PT"P8"P9, X -- P4"P6"P7"P8"P9, 

Y - -  P2"P3"P5"P8"P9, Z = PI.P3.P5.P7.P9, 

where W is the left-most digit of  the 2421 code. 

(b) W -  Ps'P6"PT'P8"P9, X -- PI'P2"P3"P4"P9, 

Y -- Po'P3"P4"PT"P8, Z = Po'P2"P4"P6"P8, 

where W is the left-most digit of  the XS3 code. 

(c) W = Ps"P6"PT"P8"P9, X =/30"/39, 

Y - P3"P4"P5"P6, Z = P2"P3"P6"PT, 

where W is the left-most digit of  the XS3 Gray  code. 

Requires one 4-t0-16 line decoder, then f l  - P2"P3"P14"P15, f2 - P12, f3 - Po'P2 

andf4  = P5"P6"P8"P1]'P12"PI3"P]a'P]5. 

DO 

D1 ,,, . : - = 
D2 

~ 0 

1 

2 
(" EN3 Z2 ~ = 

3 
Z3 ; = 

4 
Z 4  = -- 

5 
A Z5 r = 
B Z 6 ~  6 

~C Z7/.c 7 =  

EN Z0 > EN0/7 

/ 

r 

8 
= �9 ' EN1 Z0 ~ -"- 

9 
= �9 r EN2 Z l  ; 

10 
= �9 , 0 EN3 Z2 ; -  = 

= 11 [ Z3 ; = 
! Z4 ~ 12= 

A Z5 "r 
B Z6  ; 14 

C Z7 ; 15_ 

Z l  ~ EN8115 
D3 EN 16/23 

A Z 2 ~  
D4 

B Z3  

EN1 

E.N3 , . , ~ 

i 

[ 
�9 EN1 Z 0  ~ 1 _  

r EN2 Z l  ;- - 
18 

-" EN3 Z2 ; = 
I Z3 ; 19= 

Z 4  ; 20=  
21 

' A  Z5 '~ - - -P -  
[ ' 22 

' B Z 6 r  = 
[ C Z7 :: 23= 

Zo !~ 24 

'i EN~ z ~  2~ EN2 Z2 ~:, 26= 

E,,,:, z~ I= ~''" 
z41, 2~ 

/ 29  
A Z 5 ~  = 

1 30= 
e ze  I~ 

fl  - Po" P1 �9 P3 �9 P9" P12" el4 

f3 = Po" P3" P8" Pll  " P12" P]5 

f2 -- Ps" P9" Plo" P12" P13" P]5 

f4 -- P] �9 P2" P7" e8" Pll  �9 P12" P14 
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5.12 

5.13 

5.14 

5.15 

5.16 

~ T 
�9 I ! 

I 

1 

I 

J [ 

I 1 

! 
I 

~ P 3  

Solution obtained with a Gray code allocation of the addresses: 

A =/7 +~ +A +Y, B =U6U~C5 +j, +j3 +~) 
c = fT[f6 +f5 +f3f4tA +A)] 

C - fafsJ~f7 B = fzfafwr A = flf3fsf7 

E4 - A 4 B 4  + A4B4; similarly E3, E2, and E! 

Then E -  E4E3EzEI 
A > B = A4B4 + E4A3B3 + E4E3AzB2 + E4E3EzAIBI 

A < B = A > B . E  

x i~ "~ x§ 

x \  t~7 



Answers to problems 477 

5.17 

X 

(D  x ( D  

oo 

C h a p t e r  6 

6.1 

6.2 

6.3 

(i) a - l , b - 0 ,  c -  1 
(iii) a -  1 ,b - 0, c - 0 

(ii) a - 0 ,  b -  1 , c -  1 

I 

"o | LJ 
I 

I i 
R' 

0 I 
I 

' ] 
O o 

[ 1 1  1 
! 
! 

[ . ,  

; - . .  
I 

I 

! 
, t 

1 
! 

I 

~ o  | 

~ o  1 
! 

~ o  Fi ! 
I 0 . -0 .0  1-1 1 
I 

o, o 

I . o  
f 

' ~ I n p u ~  doto of rising 
~ ~ ~ ' 1  edge ~ cl~ 

1 
I 

I g 

I 
f 

(i) Rising edge of clock pulse 1 

(a) 1 ~ 0 ,  ( b ) 0 - - ,  1, (c) 1-- ,  1, ( d ) 0 - - , 0 ,  (e) 1 ~  1, (f) 1--+0, ( g ) 0 ~  1, 
(h) 1-- ,  1 

Trailing edge of clock pulse 1 

(a) 0 ~ 1, (b) l --+ 1, (c) l --, 0, ( d )0 - - ,  1, (e) l ~ 1, ( f )0--~  0, (g) l --, 1, (h) l ~ 0 

(ii), (iii) and (iv) repeat as in (i) above. 
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- o R  R 
- - -  I ~*o U LI 

I 
J o__] 

I 

I 

~ o ,  I 1 
I O.o l 

I 

~ o_J I 

R 

U 

..J 

! " "  

f - - -  

f 
~ 

/ ..... 

I r .-... 

6.4 

Ck 

D 0 

0 

6.5 
6.6 

6.7 

Qt+6, _ ( j 'Q  + #;Q)' 

For both cases 

(2Y+xF)~ 

( X Y - I - X Y  IJ"I. 

1 "I 
B ' i 

o : 
1 c] 
o i 

1 - -  
S 

0 - -  
1 

R 
0 

1 
O 

O-- 

, i 
i 
I ! 
i 
i i 

I 
I 

i 

L 
I 
! 
! 

! 

! 
! 

F 
i 
i 
i 
i 

,, 
! 

I 

i 

! 

i 

F 
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6.8 

F 

I 

P 
i 

i 

r 

Q, 

6.9 Each gate is a N A N D  gate, so the analysis is as shown in Figure 6.10. 

C h a p t e r  7 

7.1 

7.2 

7.3 

7.4 

D is assumed to be the most  significant bit of  the counter.  
TD -- A B C  + A B D ,  T c  - A B D ,  T8 - A ,  TA -- 1, SD -- A B C ,  

RD -- A B D  or A B C ,  S c  - A B C D ,  R c  - A B C ,  S B -  A B ,  R 8  - A B ,  SA - A ,  

R A  - -  A , J D  - A B C ,  KD - A B ,  J c  - A B { ) , K c  - A B ,  JB - A , K B  - A , J A  = 1, 

KA -- 1, Dz) - B D  + A D  + A B C ,  D c  - B C  + A C + A B C D ,  DB -- A B  + f i B ,  DA = f t .  

J c  - A + B,  K c  - A ,  J ~ -  C,  K 8 -  C,  JA -- B,  KA -- B. Lock-in state C B A  - 111. 

P is the most  significant bit of the counter.  
J e  - R S ,  K e  - Q., JQ - [', KQ - P R S ,  JR -- P S ,  KR -- P S ,  ,Is -- P Q R  + P R ,  

K s -  P R +  PR. 

Z t Z r+~t P Q C is assumed to be the most  significant bit of  the counter.  
0 0 1 X P c - A + B ,  Q c - A B ,  P s - A ,  Q s - A ,  PA = O ,  Q A -  1. 

0 1 0 X 

1 0 X 1  
1 1 X 0  

7.5 

J 2 3 4 5 6 7 e 9 I0  I I  12 13 14 

S t a r t  (~._._.J"  [ , , , , . . . .  , . . . . . . . . .  

o = ~  1' L_ 
I 

S t o p  0 , ,  , J' " L _  

; L n _ j  Ln_L  L L L L L L n _  
r = c o u n t e r  reset 

O s , o 0  o 
o 
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7.6 (a) f .  = 5 MHz 

7.7 

7.8 

7.9 

7.10 

7.11 

(b) 15 
_J'L (c) 

B B 

e l l !  c 
o i l i l  o 

t 

k" .----l~-:l~ne E" 

15 

.-J-I 
12On| 

I 
L 

i 

16 

1 - -  

! 

1 - -  

A~_I ! F - - ]  I - - I  I '1 ~ l _  t l f - - I  f - - I  i -  

~ d~.._] " t. J ~ I - - - - I  ~ J i,, r 
c ~ j  l I t V 
o ~_j /.-bit down counter | r 

i 
Ck o__ 

i 
o | 

c j 

o ~ 1 i 

I 

[ 

F- 

i 

C h o s e n  s e q u e n c e :  S o -  S I  - -  8 2  - 85  - S I i  - 8 7  - 815  - 8 1 4  - 813  - 8 1 0 -  
$4 - S~ - So.  

Feedback  funct ion assuming  A is least significant flip-flop in register 
f -  B{) + A C { )  + f t B C  + A C D  + A C D ,  O - A B C D ,  1 - A C D ,  2 = BCD,  

3 - A B C { ) ,  4 -  A C D ,  5 - AB{) ,  6 -  A B C D ,  7 - A B C ,  8 - [~CD, 9 -  A B C D ,  

10 - A B C ,  11 - A B D  

Because of  ambigui t ies  in the shift register sequence deve loped  f rom the 
given b inary  sequence it is necessary to design a m o d u l o - I  l S R  counter .  The 
m o d u l o - I I  sequence chosen f rom the De Bruijn d i a g r a m  is So - Si - $2 - $5 - 

Sll -- $7 - Sl4 - SI3 - Slo - $4 - $8 - So. F e e d b a c k  logic f -  A C D  + B C D +  
A C D  + A B C D  where  A is the least significant stage o f  the shift register. O u t p u t  
logic g -  D + A C 

(a) Se So 

/ k -f7 
S,l_ t - ~  ~ IS,, 

n S7 ]S3 

S~z 

The so lu t ion  to (b) is left to the reader.  
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7.12 

7.13 

Feedback logic f -  B ~3 C + A B  + m B  (A is the least significant stage of the 
shift register) 

P -  A B C  + A B C ,  Q - AC,  R - A B  + B C  + A C  + A B C ,  S - A B C  + A C  

7.14 
I 

6"k o 

A ~__1 . . . . .  1 
e ~  I i .... 
c ~  1 I. 
o+ ! L__ 

Reduced sequence requires f -  CD. 

Chapter 8 

8.1 
'• $2 

0 J 

S~ S~ 
So Z :O  Z : O  

Sa $:~ 

S~ Z : O  Z :  O ! ISo ~ S ~  

So S~ 
Sa Z :O  Z : O  XJ'L 

Se So 53 
S) Z:O Z : I  

Examines 3-digit words to give an output  Z = 1 if the last two bits of  the word are l's. 

8.2 
A 

B 

B -I - -1 --- 

Ck 

8.3 Circuit solution depends upon state assignment. 

�9 s o  

, 1 
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8.4 

8.5 

~A m m 

KA -- ~ 

Z = A X  

m I SA 7 A 

A 

D 
X 

- Z  

AB 1oo 
| L 

I- 

1 

1 01 

| 
, 11 

L 
f 

o~ ____ 

Q 

10 

Q 

m 

8.6 

i 

$2 S ~  

$4 $3 
~J'L. J'l. 

E 

B - Z  
. l ' k  
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8.7 Q 

0 1 

I --I | 

0 0 1 

iz=llO 

o~ ,, 

8.8 

I _tcou. ,,r o x,.;ooll 
P-OA~.Z'L PO.n.. 

h-oie~ )po~ 

II [Z 3 : PO.rL 

L 

L_J 
I0 

POJ'L 
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8.9 

8.10 

8.11 

_1 o, ~|  PQR 
-1 000 

li| 
1 

oe (~  
010 

o!1| 

op| 
111 

oP ( ~  
110 

1 
o, @ 
101 

(a) P/ - ($435)(3o)(81)(32)(83)(36) 
(b) P / -  (8386810811SI3)(32S5812)(S437514)(S0)(31)(88)(89) 

( 

I| 

o/ -i 
(. 

I| 
/ 
0 

10 ! 
( z=x)  

1 

,l 
I I| 

]- 

Iz=,l| 
I 

, , ,  , , ,  ]- 

! I| 
I 

o /  
\ ) 

1 

1 
I I| I|176 

I- 

1 
I !| 

I 
I 

I I| 
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Chapter 9 

9.1 The basic state diagram for the problem. 

w m 
)(1)(2 + X1X= = X2 

Os, 
00 

xlx2 xlx2 

S4 

AB 
01 

(._) 
XlX2 

XlXz + XlX2 = X1 

CD~, 

~ Z  =IIAB 
lO 

)(1)(2 

x1x2 x1x2 

ABIZ=111 ! 

(._) 
XlX2 

State diag ram 

00 01 11 10 

Sl 00 00 01 10 00 

$4 01 O0 01 01 01 

S3 11 11 11 10 11 

$2 10 00 11 10 10 

At+atBt+St 

A t +6t = (AB + AXz + AXI+ BXIX2) t 

B t.st = (X1X2 + ABX1 + ABX2) t 

Z = A  

A B  
O0 

T , 

Q 
I o+1 

1 

-1 
I I o A B  Z =  1 

11 



486 Answers to problems 

9.2 So 

Io-ol 
A B  

O0 
Ck 

10 

Io:11 
$3 

J-Ck 
L 

Sl 

I~176 
01 

Ck 

11 

I l e  11 
S2 

D 

Turn-on set of A = BCk 

Turn-of f  set of A = BCk 

A t-at = [BCk + (B + Ck)A]  t 

Turn-on set of B = A J . C k  

Turn-of f  set of B = Ak  ,Ck 

B t ,at = [AJoCk + (A + K + Ck)B ]  t 

9.3 x~.~2 x~x2 ,~x2 

z,=o ~ _ _ : _ _ _ 4 z , ; o ~  

Xl + X2 Xl + X~ 

Three secondary 
variables are required 
and to obtain a 
race-free assignment 
a dummy  state is 
also required. 

9.4 so Sl - S2 

m 

Ck 

ABC 001 011 

000 

lO0 101 111 

_ ! I ! 
S5 S~ $3 

9.5 ABC : 0 0 0  001 010 

x,~'2 1 x2~ - i ~ : . - - ,  t x'- [ ] 

I01 I00 011 

Basic state diagram. 

9.6 Xt X2 

A : O  A : I  

X2  

O0 01 ~a IO 

~o ~| ~, ~,o ~o 
~, ~o ~ ~ ~  

Z:O : : : 
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9.7 

Xl X2 00 01 11 
State So So S~ 
Output  Z - 0  Z - 1  Z - 0  

X~ X2 

iz', ~ ' ~ 2 ~  ~ " M z , :  o I 
i",:~ s' 

s, ,: o x, x~ k,:x~l 

Xj X2 

10 11 01 00 10 00 

Sl S1 $1 So So So 
Z - 1  Z - 0  Z - 0  Z - 0  Z - 0  Z - 0  

X~X2 

0,3 Oi I~ 

So : 

So 
Z2:X2 Zl:X2 

S, S, --,-"-'-,:-",~" z~.(~ ~ $2 

S3 Z, : i2 Z2:~72 i 

9.8 

9.9 

9.10 

XIX2  00 01 l l  10 00 01 l l  01 l l  l0 00 
State So So $3 $2 SI So $3 $3 $3 $2 SI 
O u t p u t Z i Z 2  10 01 00 01 00 01 00 00 00 01 00 

Races (1) So ~ $3 on signal X I X 2 -  critical 
(2) Sl ~ $2 on signal X I X 2 -  critical 

$1 
I I )(1)(2 

ABC ~ - - / I 101 

Sd2 [____~ / 1 1 0  L _ _ ~  Sd3 t ,~1X2 + Xl,e~ 2 ooo71-/ 
s,I I , ,  , , i  s , 001 XlX2  I I ~- I 

$dl 111 

Turn-on  condition for A - BC.~IX2 + B C  

= CXI  X2 § B C  

Turn-of f  condition for A - B C X I X 2  

A t+~' - [C.~l.~'2 + B C  + (B + C + -~1 § Xz)A]' 
B t+et and C t+~t can be found in the same way. 

(a) f -  C D  + A D  + BE) + A B C  + A B C  + A CD + A B D  + A B C  

(b) f - A B  + B C  + B D  + A CD + B C D  

(a) Static 1-hazards A -- B - -  C - 1 and A - 1 , B - -  1, C - 0; 
Static 0-hazards B -  C -  0, D -  1. 

(b) Static 1-hazards A - 0, C - D -- 1 and B - -  D - 0, C - 1; 
Static 0-hazards A - B -  C -  0. 
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SO S l  

A B  01 t _ O0 
J t .  .I-t. 

10 11 

- I z = l [  

S3 S2 

Hazard-free equations for  
A t+st and B t+st 

A t+st = B.~I_ + A(B  + .rL) 

B ~+St = A D . n .  + B ( A  + D +_n.) 

Z = A  

9.12 (a) Compatible pairs 
($4S5) (82S5) (SI54) ($2S3) (S!33) (3033) (3182) (3032) (SoSl) 

(b) Maximal compatibles 
(So51S2S3) (3285) (8134) (S4S5) 

Minimum state table can be formed from Sol, $23 and $45. 

Chapter lO 

10.1 Assuming threshold voltage is ~ 0.5V~c" 

,npu, ! I I ! 

NAND 
Output 

Point A 

Point B 

I I 
II I I i 

, I ', I 
I i i I 
i I I i 

I I 

I \ I I 
i \ I I 
i \ i i 

--*I 
I 

x = 0.27gs 

f 
I 

I 

I 

I 

L f 

I I I i I 
I i  I i  I i  I i  I I I  I I  
t ;  i t i :  ~ .  i i ,; ,. ,, ,, ,: ,; ,; ,, 
I :  I ;  i :  I :  I ;  I ,  I ,  I I 
, :  , ;  , :  , :  ,I ,; , ,, 
I " I " I " I " I " I " I I 

il H H H U Lr 

As f increases, waveform at point A 
becomes more like this. Amplitude 
decreases as it is governed by time avail- 
able for RC charge/discharge cycle. 

Waveform at B has mark/space ratio 
no longer 50/50 because threshold 
voltage is unlikely to be the average 
voltage at point A. Eventually point B 
becomes stuck at logic 0 or 1 level. 

Finally, A -  high, B - low. 
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10.2 

10.3 

10.4 

10.5 

10.6 

400 Kbyte. 

783 Mbyte. 

(220 - 1) -~ 120 dB. 

n 

;10 t 
I 

Shift register 

~z bl bo . ~--~'-~, 

' I I 
)/L/ 

~ D  Q 
A 

I 

Final state of shift register 
CIk after 4 clock pulses: 

g2 91 go X 

10.7 

10.8 

10.9 

10.10 

10.11 

10.12 

D I - D + A C + B C ;  C I - C + B + A D + f t D ; B  ~ - B C + A C + A B C ; A ' - B  

CLK - high except for low spikes, ,,~ 0.4gs long, at each transition in X. Q - 0 
for clockwise, Q -  1 for anticlockwise. 

(AB). CD. 

Q3 on, Q4 off. 

Connect LED in series with R -  360fl between gate output and ground. 

15mA. 
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Chapter 11 

11.1 

QI 

Q 

T 
Q I  1 ~ 0000 

1, QI iooo1 
1 0 

L. 

rl~176 G 

I I ~176 ~ i (~  1+o 
Q I  I olo1 

! 

1 Q I  ! o''1 

1 Q I  I 'ooo 

l 
0 1  I 'oo1 

i 

,+o 
X . 

L 111~ I G  

1 
11111 I Q  

L 
1'~ I 0  

l 
11~176 1 0  

! 

Present state 

X D C B A 
0 0 0 0 0 
1 0 0 0 0 
0 0 0 0 1 
1 0 0 0 1 
0 0 0 1 0 

1 0 0 1 0 
0 0 0 1 1 
1 0 0 1 1 
0 0 1 0 0 
1 0 1 0 0 
0 0 1 0 1 

1 0 1 0 1 
0 0 1 1 0 
1 0 1 1 0 

Output word 

D C  B A  
0 0 0 1 
0 0 0 1 
0 0 1 1 
0 0 1 0 
0 1 1 0 

0 0 1 1 
0 0 1 0 
0 1 0 0 
0 0 0 0 
0 1 0 1 
0 1 1 0 

0 1 1 0 

1 1 1 0 
0 1 1 1 

Present state 

X D C B A  
0 0 1 1 1 

1 0 1 1 1 
0 1 0 0 0 
1 1 0 0 0 

0 1 0 0 1 

1 1 0 0 1 
0 1 1 0 0 
1 1 1 0 0 
0 1 1 0 1 
1 1 1 0 1 

0 1 1 1 0 

1 1 1 1 0 

0 1 1 1 1 
1 1 1 1 1 

Output word 

D C B A 
1 0 0 0 
1 0 0 0 
1 0 0 1 
1 0 0 1 

0 0 0 0 

0 0 0 0 
0 1 0 0 
0 1 0 0 
1 1 0 0 
1 1 0 0 
1 1 1 1 

1 1 1 1 

1 1 0 1 
1 1 0 1 
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DCBA 
t l t J t l t l  

0001 
0010 
0011 
0100 
0101 
0110 
0111 " 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 ,. 

i 
! T 

== 

1 
i T 

i 
I I 

t 
D D 

C 128-bit C 
ROM. 

B B 

- - ~ I A  A I - - -  mi 

m |  

Ko 

Jc 7 t - - - I "1-"  

Kc 

Js 

Ka 

Js 7 t - l -P1  -~ 
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D o - BD + A-CD + A C D  + B C X  + ABC, D c . CD + ABC + ~ ,BX + A C X  + ABC'X, D B . AB + BC'X + ABD, 

D A - B D  + A D X  + A D X  + B C D X  

A 

B - 

C - L>o_ 
D - t__>o_ 
X - 

i l  
i l  

m 

BOll 

T I I I I I I I I I I I I I T  

A N D  
a r r a y  

OR 
a r r a y  

D o " 7 -  
. - > .  

O c .-'1 
~ - >  

I 

- - A  

, B  

"--C 

: - D  

D m -I 

D A - I - - - - - - -  

C~ 

11.2 

r ~  

r ~  

f l = ACD + ACD + ACD 
1 2 3 

f2 = ACD + ABC + ACD 
4 5 3 

f3 = ACD + ACD + ABC 
6 1 7 

f4 = ACD + ACD + ABC + ABC + ACD 
4 2 8 5 3 
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11.3 2-out-of-5 code 

E D C B A  
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 0 
0 1 1 0 0 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 

EDCB 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

A 

7-segment code 

a b c d e  f g 
1 1 1 1 1 1 0 
0 1 1 0 0 0 0 
1 1 0 1 1 0 1 
1 1 1 1 0 0 1 
0 1 1 0 0 1 1 
1 0 1 1 0 1 1 
0 0 1 1 1 1 1 
1 1 1 0 0 0 0 
1 1 1 1 1 1 1 
1 1 1 0 0 1 1 

a b c d �9 f g fault  

i i i  

MUXs 

a b c d �9 f g fault 

11.4 
0 0 
3 010 
4 O l0  
7 040 
11 0 0 
16 0 1  
18 0 1  
19 011 
20 0 1  
31 0 1 
36 1 0 
41 1 0 
43 1 0 
50 1 1 
51 1 1 
52 1 1 
55 1 1 
57 1 1 
63 1 1 

cl o Ei F 

o,,~176176176176176 lil!lilil I!1!1! 0 1 1 1 1  

,,o,, lilit!lii li]!li o 1 0 0 0  
0 1 0 1 0  
O l 0 1  1 

1 0 
1 1  
1 0 
o 0  
0 1  
0 1  
0 1  
1 0  
1 1  
o 0  
1 1  

0 0 1 0 0 0 1  
0 ~ 0 0 1 1  
0 0 1 0 1  
0 0 0 1 1 1  
0 0 1 1 1 1  
0 1 0 0 0 1  
0 1 0 0 1 1  
0 1 0 1 1 1  
0 1 1 0 0 1  
0 1 1 1 0 1  
1 0 0 1 0 1  
1 0 0 1 1 1  
1 0 1 0 1 1  
1 1 0 0 1 1  
1 1 0 1 1 1  
1 1 1 0 0 1  
1 1 1 0 1 1  
1 1 1 1 0 1  
1 1 1 1 1 1  

CDEF 
0000 
0001 

0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

x= x3 
ROM1 

x,x=x3 
000- ,  ~ . . . . . .  
001 -: . . . . . .  
010 -: . . . . . .  
011 -: . . . .  - . . . . .  
100 . . . . . . .  
101 - ' . . . . . . . .  
110 . . . . . . .  
111 . . . . . . . .  

B ~ , ROM2 MI JX I 
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11.5 
Present Next State 

State X=0 X= 1 

A B C A B C A B C  

0 0 0 0 0 0 0 0 1 
0 0 1 0 1 1 0 0 0 
0 1 1 0 1 0 0 0 0 
0 1 0 0 0 0 1 1 0 
1 1 0 0 0 0 1 1 1 
1 1 1 1 0 1 0 0 0 
1 0 1 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 

Flip-f lop excitation signals 

X=0 X = l  X=0  X = l  X=0  X = l  

J A K A J A K A J s K B J a K a J c K c J c K c  

0 X 0 X 0 X 0 X 0 X 1 X 
0 X 0 X 1 X 0 X X 0 X 1 
0 X 0 X X 0 X 1 X 1 X 1 
0 X 1 X X 1 X 0 0 X 0 X 
X 1 X 0 X 1 X 0 0 X 1 X 
X 0 X 1 X 1 X 1 X 0 X 1 
X 0 X 1 0 X 0 X X 1 X 1 
X 1 X 1 0 X 0 X 0 X 0 X 

From the table 
JA=XBC 
KA = XB + XC + XC 
Ja=R~C 
Ka = AC + XC + RC 
Jc = XAB + X , ~  
Kc= X+ AB+,,~B 

A 

a J C ~r 

, k  

l n n l  
l l n u  
I I I I I I I  

Ck 

11.6 ROM0 

r CE 
--< OE 

ROM1 

c CE 
�9 -.< OE 

ROM2 ROM3 
i 

.---<CE 
---< OE 

F 

r CE 
.--r OE 

,4[0--9 
D[O--7] 

Read 
v 

'll 

3-to-8 line 
decoder 

A,, E2 O1 
A,, E3 02 

03 
04 

A,o So Os 
sl 06 All $2 

A12 07 Address ranges 
ROM0 0000-03FF 
ROM1 0400-07FF 
ROM3 0800-0BFF 
ROM4 0C00-0FFF 
ROM5 1000-13FF 

IROM4 

OE 
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Chapter 12 

12.1 

12.2 

12.3 

12.4 

Binary n u m b e r -  ABCD,  2's complement f o r m -  PQRS,  
P =  A (D(B+ C + D ) , Q -  B (D(C  + D ) , R =  C G  D , S -  D. 

NBCD - ABCD,  10's complement form - PQRS,  
P -  A B C  + ABD, Q - BC + BD + BCD, R - CD + CD, S - D. 

(a) When a carry is not generated by the addition of two XS3 numbers, 
correction is add 1101. 

(b) When a carry is generated by the addition, correction is add 0011. 

NBCD - ABCD,  XS3 = PQRS,  P -  A + BD + BC, 
Q - BD + BC + BCD, R - C Q D , S -  L) 

12.5 

Co 

i 

4 

4-bit 
adder 

1 

+X4 
True/ L 
complement I- 

qo I_ 

F 
4 

4-bit Gin 
adder 

4 

Sum 

Mode M = 0 Add 

control M = 1 Subtract 

+5V 

_W Least significant 
decade 

12.6 

12.7 

Algorithm for duodecimal addition 
0 < S <_ (11)l 0 no correction required 
(11)10 < S _< (23)~ 0 add 0100 

d 2421 

0 0000 

I 0001 

2 0010 

3 0011 

4 0100 

P 
, . .  

2421 

1011 

1100 

1101 

1110 

1111 

Q 
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Algorithm 
(a) 0 < S < 4 no correction required 
(b) 4 < S < 8 both digits from section P, sum falls in section Q, add 0110 
(c) 4 < S < 13 one digit from P and one from Q, no correction required 
(d) 9 < S < 14 both digits from Q, sum falls in P, add 1010 
(e) 14 < S < 18 both digits from Q, sum falls in Q, no correction required 

12.8 One solution is 
Yi -- SI Ai  -k- SoSI Ai 
Zi - So[~i + SoS1Bi 

CO 

A 
,, , v  S O 

I Control 1 ~  
I logic I $1 
l forA p - -  

4 - bit adder 

IF  

C01 
Ic 
fc 

( 

~B 

SO r o l ~  
c 1 
B 

~Z 

C i L Oorl  

r 

12.9 ~ 18: I~ 
18'. 18' ~ I ~0 

..... "i ' - " i  '- ' i ' l  
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Index 

0s catching and Is catching, 153 
10's complement, 7, 383-5 
l-equivalent, 226 
2421 code, 475 
2-dimensional (coincident) decoding, 119-20 
2-out-o~5 code, 19 
2-state output, 314-16 
3-state output see  Tri-state buffers and gates 
4-bit binary full (ripple-through) adder, 

371-2 
4000 series (CMOS gates), 99, 101 
50% points, 100 
5421 code, 139, 347-8 
7 segment display, 350 
74ALS see  ALS 
74 series, 125, 178, 202, 401 
8421 code, 139 
9's complement, 7, 18, 383-5, 406 
74HCT, 100-2 
74LS, 98, 99, 102 
74LS00, 315 
74LS04, 315 
74LS10, 315 
74LS18, 290 
74LS19, 290, 325 
74LS20, 315 
7425, 106, 112, 115-16, 455-6 
7442, 119 
7449, 122, 124 
7468, 135, 137, 461 
7470, 460-1 
7485, 134, 136-7 
7486, 376-7 
7487, 385-7, 389, 466 
7491, 463-4 
7494, 185 
7495, 186 
7497, 202-3 
74110, 460 
74138, 114-16 
74139, 456-7 
74147, 125-6 
74148, 126-7 

74150, 106 
74153, 456 
74154, 117-19, 121 
74157, 106-7 
74161, 462-3 
74164, 63-4 
74165, 187 
74167, 202 
74176, 178 
74180, 130-2 
74181, 373-4, 391-2 
74182, 373-4, 390-1 
74251, 106, 112, 115, 116, 455-6 
74279, 146 
74280, 131, 133 
7 4 2 8 3 , 1 3 7 , 3 7 2 - 8 , 3 8 2 , 3 8 4 , 3 8 6 - 9 , 4 0 1 , 4 6 5 - 6  

74284, 401-2 
74285, 401-2 
74290, 181-3, 462 
74293, 182 
74353, 106, 108, 110, 390 
74381, 390-2 
74382, 390, 392 
74384, 405 
74ALS560, 178-9 
74682, 135, 137 
74688, 135 
74886, 135 

A (address) dependency notation, 464-5 
A/D converters, A-to-D converters, ADCs 

see  Analogue-to-digital (A/D) 
converters/conversion 

Absolute decoding, 335 
Absolute encoders and Gray code, 306-9 
Absorption/redundancy theorem, 

Boolean algebra, 35, 36 
Access time, 329 
AC-coupled amplifier, 311 
Accumulating adder, 380 
Accuracy, 294 
ACEs (asynchronous communications 

elements), 243-4 
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ACIAs (asynchronous communications 
interface adapters), 243-4 

Actel programmable gate arrays, 361-3 
Adaptive testing, 427 
Adaptive tree, 427 
Addends and augends, 5 
Adder, accumulating, 380 
Adders, 367-70 
Addition and subtraction see  Arithmetic 

circuits and processes; Binary 
addition; Binary subtraction; 
Complement arithmetic 

Address (A) dependency notation, 464-5 
Address bus and Address pin, 329, 336 
Address, base 337 
Adjacencies and Adjacent cells, 49, 52, 307 
Affected lines and Affecting lines, 455 
Algorithm, 14 
Algorithmic state machine charts 

see  ASM charts 
Alpha-numeric displays, 318, 323 
ALS, 93, 100-1 
Altera erasable programmable logic 

devices, 363-5 
ALU/Function generators, 386-92 
ALUs (arithmetic/logic units): 

chips available, 390-2 
design, 386-90 

Analogue inputs, 295, 297, 299-302, 454 
Analogue-to-digital (A/D) 

converters/conversion: 
analogue comparator, 295-6 
basic principle, 295-6 
Compact Disc (CD) audio format, 303 
dual slope integrating converter, 298-9 
flash converter, 296-7 
integrating converters, 298-9 
successive approximations, 300-2 
with embedded D/A converter, 299-302 

AND (G) dependency notation, 455-7 
AND arrays, 339-42, 346-7, 349, 365, 431 
AND gates/function: 

AND-OR-INVERT, 92-3 
AND-OR operation, 93-4 
AND-OR-NOT operation, 92-3 
basic gating function, 33 
Boolean multiplication, 31-2 
definition, 29 
implementation using NAND, 82 
implementation using NOR, 86 
phantom, 316 
wired AND, 316 

AND/OR lattices, 363-4 
ANSI, 451 
Answers to problems, 467-97 
Anti-fuses, 361-2 
AO, 81, 106 
AOI, 81, 105, 106, 122, 126, 130-1, 185 
APEX devices, 364 
Architectures, 355 
Arithmetic circuits and processes: 

arithmetic overflow, 5 
arithmetic underflow, 6 
arithmetic/logic unit (ALU) design, 386-90 
arithmetic/logic units (ALUs) 

available, 390-2 
binary addition, 5, 367-8, 368-70 
binary subtraction, 6, 370-1 
carry look-ahead addition, 372-6 
carry ripple, 5 
decimal arithmetic with MSI adders, 381-5 
full adders, 368-70 
half adders, 367-8 
overflow, 377-8 
serial addition and subtraction, 378-80 
signed arithmetic, 6-7, 401-3 
true/complement unit, 385-6 
see  a lso  Complement arithmetic; Division; 

Floating point arithmetic; 
Multiplication/multipliers 

ASCII (American Standard Code for 
Information Interchange), 24-6 

ASM (algorithmic state machine) charts: 
basic principles, 232-5 
conditional output box, 233-4 
hardware conversion from, 235-6 
'one-hot' state assignment, 237-8 

Associative law, Boolean algebra, 35, 39, 96 
Asynchronous (event driven) circuits: 

compatibility, concept, 264-5 
compatibility pair determination, 265-7 
design procedure, 248-9 
hazard avoidance design, 277-9 
lamp switching circuit design, 250-2 
merger diagram, 267 
pump problem, 256-8 
race problems, 252-3 
sequence detector design, 258-63 
stable and unstable states, 248, 249-50 
state assignment, 249, 252 
state reduction, 264, 267 
UARTs (universal asynchronous 

receiver/transmitters), 243-4 
see  a lso  Hazards; Counters 
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Asynchronous binary counters, 173-5 
Asynchronous communications 

elements, 243-4 
Asynchronous communications 

interface adapters, 243-4 
Asynchronous controls (preset and clear), 152 
Asynchronous inputs to clock-driven 

circuits, 240-2 
Asynchronous mode, 364 
Asynchronous presettable counters, 178. 180 
Asynchronous resettable counters, 177-8 
Asynchronous sequential circuit, 248, 250 
A ugends and addends, 5 
Automotive engines, 305 

Back-EM F, 319 
Back-lit LCD, 122 
Backplane bus, 242 
Backward trace. 4 ! 5, 419 
Bandwidth, 288. 294, 303, 323 
Base, 2, 292-3, 296. 301,306, 

307-12, 392 
conversion from Gray code, 309-10 
conversion to Gray code, 307-9 

Base address, 337 
Base systems, 2 

base conversions, 3-5 
Baud rate, 243 
BCD counters, 170 
BCD, 18, 122, 163, 170, 332, 367 
BCD/seven segment decoders, 122, 124, 170 
Bi-directional bus, 322 
Binary adaptive tree, 427 
Binary adder/subtractor, 97, 367, 376, 383-5 
Binary addition: 

accumulating adder, 380 
basic principles, 5 
carry look-ahead addition, 372-6 
complement arithmetic addition, 376-7 
full adders, 368-70 
half adders, 367-8 
overflow, 377-8 
serial addition, 378-80 

Binary coded decimal s e e  NBCD 
Binary counters s e e  Counters 
Binary division, 15-16 
Binary multiplication s e e  Multiplication 
Binary number system, 2 

binary codes for decimal digits, 18-19 
decimal, octal and hexadecimal system 

conversion, 3-5 
Hamming distance, 19 

multiplication of signed numbers, 14-15 
multiplication of unsigned numbers, 13-14 
NBCD (naturally binary coded 

decimal), 18, 341,343, 381-5 
offset binary, 10 

Binary subtraction: 
basic principles, 6 
complement arithmetic subtraction, 376-7 
full subtractor, 370-1 
overflow, 377-8 
serial subtraction, 378-80 

Binary weighted resistor network, 293-4 
Binary word, 293, 306, 326 
Bipolar technology, 100 
Biquinary code, 19 
Bistable elements, 142-3 
4-bit binary full (ripple-through) adder, 371-2 
Bit line, 331 
Bit slice, 388-9 
Bitwise conversion. 308 
Boole, George, 28 
Boolean algebra, 28-42 

absorption/redundancy theorem. 35. 36 
AND (Boolean multiplication) 

function, 31-2 
associative law. 35, 39. 96 
basic definitions, 28-9 
Boolean difference method for 

fault detection, 435-40 
canonical form, 39-40, 44-5 
canonical sum-of-products, 30 
commutative law/commutation 

theorem, 35, 39, 96 
complementary functions, 29 
complementation theorem, 33, 49 
complete sets, 38 
consensus theorem/term, 36 
criteria for minimisation, 77-8 
De Morgan's theorem, 37, 57, 91 
derived operations, 29 
distributive law, 35.39 
dual of a function, 29 
equivalent functions, 29 
exclusive-NOR (XNOR) function, 97-8 
exclusive-OR (XOR) function, 29, 

38-9, 94-8 
expansion theorem, Shannon, 37-8 
factorisation, 35 
finite induction, 37 
function generators, MUXs, 107-11, 112 
function simplification using K-map, 51-4 
functions of two variables, 45 
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gate or switch implementation, 34 
gating function of AND and OR gates, 33 
idempotency theorem, 34-5 
intersection theorem, 35 
inversion function, 33-4 
inversion theorem, 35 
and Karnaugh maps, 49-50 
literal expressions, 28 
maxterms, 30 
minterms, 30 
NAND function, 81-5 
NAND network analysis, 88-9 
NOR function, 85-7 
NOR network analysis, 88-9 
OR (Boolean addition) function, 32-3 
perfect induction verification method, 34 
product terms, 35 
redundancy/absorption theorem, 35, 36 
Reed-Muller canonical equation, 39-40 
ROM (read only memory) implementation, 

331-3 
set theory, 40-1 
Shannon's expansion theorem, 37-8 
switch-based logic, 30-1 
switch implementation of AND 

function, 31-2 
switch implementation of OR 

function, 32-3 
theorems, 34-8 see also Theorems, 

Boolean algebraic 
truth tables, 30, 33 
union theorem, 35 
XNOR function, 97-8 
XOR function, 29, 38-9, 94-8 
see also K-map (Karnaugh map); Prime 

implicants; Quine-McCluskey 
function simplification 

Boolean difference method for fault 
detection, 435-40 

Boolean operation, 91 
Booth's algorithm: 

basic principle, 403-4 
implementation, 404-5 

Borrow/borrow-in/borrow-out, 6, 370-1 
Bridging faults, 422-3 
BS, 451 
Bus systems: 

bus contention, 320-1 
EIA-232, 243 
GP-IB, 243-4 
handshaking operations, 242-4 
HP-IB, 243-4 

IEEE-488, 243-4 
ISA, 243 
PCI bus, 243 
RS-232C, 243-4 
S-100, 243 
V24, 243 

Bus-bar, 320, 330 
Byte, 327 

C (control) dependency notation, 
457-9, 459-61 

CAD, 355, 357, 365, 451 
Caldwell's merging procedure, 213 
CAM, 364 
Camshaft, 305 
Can't happen terms, 55-6 
Canonical forms, 39-40, 44-5 
Canonical sum-of-products, 30 
Capacitor, 292, 304, 315, 327 
Carry look-ahead addition, 372-6 
Carry ripple, 5 
Cascade connection, 82, 86, 137, 151, 

153, 183, 373, 445, 446 
Cascading counters, 178, 182-3 
Catcher cell, 240-1 
Catching, 153 
Cathode ray tube, 323 
CD and CD player and CD-ROM, 323 
Central processing unit CPU, 123, 125 
Ceramic dielectric, 123, 125 
Characteristic equation, 105, 107, 144-5 
Checker, signature, 443-4 
Chip count, 63, 78 
Chip select access time, 329 
Chip select, 315, 320, 327, 331,464 
Chip-to-chip interconnection, 78 
Circuit hazards see Hazards 
Circuit under test, 441-4 
CL, 349 
CLA, 372 
Class B, 314 
CLB, 357, 359, 362 
Clear Logic, 365 
Clear to send, 243 
Clear, asynchronous control of flip-flop, 152 
Clk, 179, 313, 325 
Clock pulse, 151-4, 163-4, 172-3 
Clock signals, 163-4 

clock buffering, 239 
clock skew, 238-9, 365 
timing constraints, 239-40 
see also Sequential circuits 
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CMOS, 99-102, 314, 316, 357, 411-12 
Code converter, 343, 348 
Codes: 

2-out-of-5 code, 19 
ASCII, 24-6 
biquinary code, 19 
codeword weight, 19-20 
EBCDIC, 25-6 
Gray code, 23-4 
Hamming code, 21-3 
Petherick code, 311-12 

Coincidence, 29, 97, 120, 133 
Coincident decoders, 120-1 
Collector dotting, 316 
Collector, 314-19, 339, 401. 411,455 
Collector, open see Open collector gates 
Combinable term. 58 
Combinational logic. 81-104 

see also  AND gates/functions; 
Decoders; Encoders; I terative 
circuits; Multiplexers (MUXs); 
NAND gates/functions; NOR 
gates/functions; OR 
gates/functions; 
Parity generation and 
checking; XNOR 
(exclusive-NOR); XOR 
(exclusive-OR) function 

Combinational multipliers, 393-4 
Combinational networks: 

hazard-free design, 273-5 
static hazards, 270-1 

Common anode and Common 
cathode, 122-3 

Common control blocks, 452-3 
Commutative law/commutation theorem, 

Boolean algebra, 35, 39, 96 
Compact Disc (CD) audio and A/D 

converters, 303 
Compact testing techniques, 441-2 
Compacter, 442-4 
Comparators: 

analogue, 295-6 
digital, 131-5 
identity comparator, 134-5 

Compatibility, event driven circuits: 
concept, 264 
compatible class, 265 
compatible state pairs determination, 265-7 

Complement arithmetic, 7-13 
l's (diminished radix) complement 

arithmetic, 9-10, 13 

l's (diminished radix) complement 
representation, 7 

2's (radix) complement arithmetic, 
9-10, 10-12 

2's (radix) complement representation, 
7-9, 12-13 

binary number representation, 7-9 
circuits for addition/subtraction, 376-7 
diminished radix complement, 8 
end-about carry, 9 
graphical interpretation, 12-13 
self-complementation, 18 
sign digits, 9 
sign extension process, 8 
subtraction of l's complement numbers, 13 
true/complement unit, 385-6 
validity considerations, 9-10 

Complementary functions, 29 
Complementary metal-oxide-semiconductor 

see  CMOS 
Complementation theorem, Boolean 

algebra, 33, 49 
Complete decoder, I 16 

ripple through counters, 173-5 
Complete sets, 38 
Completely specified machine and Completely 

specified state table, 225, 264 
Computer, 14, 16, 43, 58, I 17, 242, 243, 

244, 314, 327, 328, 427, 441,448 
Computer-aided design, 355, 357, 365, 451 
Conditional output box, 233, 235 
Configurable logic block, 357, 359-60 
Configuration program, 358, 360 
Connection matrix, 332, 334, 338, 366 
Consensus theorem/term, Boolean algebra, 36 
Contact resistance, 448 
Content addressable memory, 364 
Contents, 328 
Continuous variable, 435-7 
Control (C) dependency notation, 

457-9, 459-61 
Control input, 33, 159, 178, 363, 458, 460 
Control line, 105-6, 142, 464 
Control pulse width, 148 
Controlled D latch, 147-8, 277 
Controlled inverter, 96-7, 340-1,376-7, 413 
Controlled latch, 148, 150, 460 
Controlled SR latch, 146-7, 153, 457-8 
Controller, 244 
Conventional logic symbols: 

AND gate, 32 
D latch, 147 
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decoder, 117 
inverter, 34 
JK flip-flop, 149 
MUX, 107, 108 
NAND gate, 81 
NOR gate, 85 
OR gate, 32 
parity generator/checker, 132 
SR latch, 144 
T flip-flop, 157 
usage, 451 
XNOR gate, 97 
XOR gate, 94 
see  a l so  Functional logic symbols 

Conversion: 
between Gray code and base 2, 307-10 
between number systems, 3-5 
see also Analogue-to-digital (A/D) 

converters/conversion; Base systems; 
Digital-to-analogue (D/A) 
converters/conversion 

Conversion rate, 294-5 
Correlation, 444 
Count sequence, 170, 172, 180, 189-90, 

192-6, 200, 202 
Count/load, 180 
Counters: 

and dependency notation, 461-3 
asynchronous binary counters, 173-5 
asynchronous presettable counters, 

178, 180 
asynchronous resettable counters, 177-8 
basic design, 164-6 
BCD counters, 170 
cascading IC counters, 182-3 
decade counter design (shift register type), 

189-91 
decoding asynchronous counters, 176-7 
Gray code counters, 170-2, 173 
integrated circuit counters, 178-82 
interconnection of Johnson counters, 195-6 
Johnson (twisted ring)counter, 192-6 
ring counter (shift register type), 191-2 
scale-of-eight, 165-6 
scale-of-five up-counter, 167-9 
scale-of-sixteen up/down counter, 172, 174 
scale-of-two, 164-5 
series/parallel connection in, 166-7 
series/parallel interconnection of 

Johnson counters, 195-6 
shift registers as, 187-96 
synchronous counter design, 170, 171 

synchronous down-counters, 166 
synchronous presettable counter, 

178, 179 
twisted ring (Johnson) counter, 192-6 

CPU, 123, 125 
Criteria for circuit minimisation, 77-8 
Critical race, 254 
CRT (Cathode ray tube), 323 
Crystal oscillator, 299 
CS, 320, 327-9 
CTR s e e  Counters 
CTS (Clear to send), 243 
Current-limiting resistor, 318 
Cyclic code checkers, 443 
Cyclic prime implicant tables, 61-3 

D connector, 243 
D latch, 147-8 
D/A converters, D-to-A converters, DACs 

s e e  Digital-to-analogue (D/A) 
converters/conversion 

DAA, 242-4 
DAT, 303 
Data, 244, 327 
Data acknowledge, 242 
Data bus, 320-1,335-6, 412 
Data hold time, 148-9, 155 
Data recording, 323 
Data selector, 106 
Data setup time, 
Data shift, 464 
Data transmission, serial, using 

MUX/DMUX, 115-16 
Data valid, 242 
Data-lockout flip-flop, 460 
DAV, 242-4 
DC, 311 
De Bruijn diagram, 188-9 
De Morgan's theorem, Boolean algebra, 

37, 57, 91 
Decade counters s e e  Counters 
Decimal adjust s e e  NBCD correction 
Decimal arithmetic with MSI 

adders, 381-5 
Decimal number system, l, 2 

binary codes for decimal digits, 18-19 
binary, octal and hexadecimal 

system conversion, 3-5 
decimal display, 1 
naturally binary coded decimal 

(NBCD), 18, 341,343, 381-5 
self-complementation, 18 
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Decimal, Quine-McCluskey function 
simplification, 65-7 

Decimal/NBCD priority encoder, 18, 
55, 119, 126 

Decision box, 233-5, 261 
Decoders: 

as minterm generators, 121-2 
basic functions, 11 6-19 
coincident decoders, 120-1 
coincident/2-dimensional decoding, 119-20 
complete decoder, 116 
decoder networks, 119-21 
display decoding, 122-3 
Gray code with, 117, 119 
NBCD/decimal decoders, 119 
tree decoding, 119-20 

Decoding, absolute, 335 
Decoupling capacitor, 315 
Degating, 448 
Delay faults, 412 
Demultiplexers, 114-15 

in serial data transmission, 115-16 
Dependency notation: 

Address (A) dependency, 464-5 
AND (G) dependency, 455-7 
basic concepts, 454-5 
bistable elements, 459-61 
Control (C) dependency, 457-9, 459-61 
counters, 461-3 
data-lockout flip-flop, 460 
edge-triggered flip-flop, 460 
Enable (EN) dependency, 456-7 
Interconnection (Z) dependency, 462 
JK flip-flop, 460-1 
Mode (M) dependency, 463 
Negate (N) dependency, 465-6 
pulse-triggered flip-flop, 460 
Set and Reset (SR) dependency, 457-9 
transparent (controlled) latch, 460 
XOR (N) dependency, 465-6 
Z (Interconnection) dependency, 462 
see also Functional logic symbols 

Derivative, 435-6 
Design: 

ALUs (arithmetic/logic units), 386-90 
asynchronous (event driven) circuits, 248-9 
asynchronous circuits with hazard 

avoidance, 277-9 
clock-driven sequential circuits, 21 0-15 
counters, 164-6 
decade counters (shift register type), 189-91 
hazard-free, 273-5 

lamp switching circuit, 250-2 
level sensitive scan method (LSSD), 445-6 
sequence detector, 215-17, 258-63 
sequential circuits, 21 0-15 
sequential circuits using JK flip-flop, 221-5 
synchronous counters, 165-72 

Designing for testability, 447-9 
DFF, 155-7, 170, 178, 184, 217, 235, 237-8, 

241,379, 401 
DFT, 447 
Difference, 6, 11-13, 19, 58, 65, 131, 137, 

144, 159, 192, 287-9, 294, 312, 330, 
357, 364, 370, 384, 390, 426, 435-41 

Difference voltage, 288 
Differential amplifier, 287 
Differential, 435 
Differentiation, 436-7 
Digital audio, 303, 356 
Digital comparators, 131-5 
Digital system, I, 20, 28, 106, 130, 

142, 159, 163, 178, 238, 240, 
268, 287, 288, 292, 305, 306, 
310, 314, 322-3, 327, 442, 451 

Digital video, 303 
Digital-to-analogue (D/A) 

converters/conversion, 292-5 
embedded within A/D 

converters, 299-302 
for Compact Disc (CD) digital 

audio, 303 
Diminished radix (l's)complement: 

addition and subtraction, 9-10, 13 
representation, 7, 8 

Diode, 122, 304, 305, 318-20 
flywheel, 319-20 

Direct clear input, 183, 185, 405, 461 
Direct preset input, 461 
Disable, 94, 122, 128, 150, 151, 154, 

158, 176, 179, 187, 221,321, 
329, 337, 347, 355, 379, 405, 
412-13, 421,446, 460 

Discrete component, 28, 77, 367 
Display decoding, 122-3 
Distance, 19 
Distinguishable faults, 409, 428 
Distributive law, Boolean algebra, 35, 39 
DIV, 453, 461-2 
Divide-by-2 circuit, 292 
Dividend and Divisor, 16 
Division, binary, 15-16 
DMUXs see Demultiplexers 
Dominating rows and columns, 61 
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Don't care terms: 
in K-maps, 55-6 
in Quine-McCluskey simplification, 64 

Double latch, 446 
Down-counter, 166, 205 
Dropper resistor, 318 
D-type edge triggered flip-flops, 154-7 

in counters, 178-9 
Dual of Boolean function, 29 
Dual port latch, 148 
Dual slope integrating converter, 298-9 
Dummy state, 255-6, 258-61 
Dynamic hazards, 268, 279-81 
Dynamic input indicator, 154 
Dynamic RAM, 327 

EAB (Embedded array block), 364 
EAC (End-about carry), 13, 376-7 
EBCDIC (Extended Binary Coded Decimal 

Interchange Code), 25-6 
ECL, 100, 102, 423 
Edge triggered flip-flops: 

D type, 154-7 
dependency notation, 460 
JK type, 157 

EEPROMs (Electrically Erasable 
Programmable ROMs), 328 

internal structure, 331 
EIA-232 bus, 243 
Electric motor, 305 
Electromagnetic actuator, 322 
Electromechanical relay, 319, 322-3 
Electronic ignition system, 305 
Electro-rheological components, 323 
Element, 451-66 
ELSI, 77 
Embedded D/A converter in A/D 

converter, 299-302 
Emitter, 38, 100, 331 
EN, 110, 454-7 
Enable, 320, 454-7 
Enable (EN) dependency notation, 456-7 
Enable line, 105-6, 114, 320, 322, 

329, 341 
Enable/disable, 158 
Encoder head, 310 
Encoders: 

absolute encoders and Gray 
code, 306-9 

basic principle, 303-4 
circuit principles, 123-5 
encoding networks, 127-9 

incremental encoders, 312-14 
motion sensing, 304-5 
MSI encoders available, 125-7 
Petherick code, 311-12 
priority encoder, 125, 126 
truth table for, 125, 126 
use of Schmitt input gates, 314 

End-about carry (EAC), 9, 13, 377 
Engines, automotive, 305 
EP300/EP 1800, 364 
EPLD, 363 
EPROMs (Erasable PROMs), 328, 329 

internal structure, 331 
Equality, 45, 131, 134 
Equivalent functions, 29 
Erasable programmable logic 

device, 363 
Error detection and correction: 

basic principles, 20--1 
error syndrome, 23 
Hamming code, 21-3 
iterative parity checking, 21 
parity bits, 20-1 
syndrome indicating error, 23 

ESB (Embedded system block), 364 
Essential hazards, 268, 282-3 
Essential prime implicant, 52, 53 
Essential test, 426 
Even parity, 20-1, 129, 132-3 
Event driven circuits s e e  Asynchronous 

(event driven) circuits 
eX256, 363 
Excess-3 code s e e  XS3 code 
Excitation equation, 218 
Exclusive-NOR s e e  XNOR, XOR 
Exclusive-OR (XOR) function, 29, 

38-9, 94-8 
Expandable AND-OR, 81, 94 
Expandable AND-OR-NOT, 92-4 
Expansion theorem, Shannon, 

Boolean algebra, 37-8 
Exponent, 17 
Extended Binary Coded Decimal Interchange 

Code (EBCDIC), 25-6 
External state, 144, 147, 151, 165, 452 
External/Internal states in functional 

symbols, 452 
Extra-large scale integration, 77 

Factorisation, Boolean algebra, 35 
Fall time, 100, 165 
False, 45, 119, 176, 192, 233 
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Fan-in: 
expansion of, 91-2 
maximum, 103 

Fan-out, 101-2 
Fault diagnosis and testing: 

2-input AND gate fault test, 413-14 
basic methods, 408-9 
Boolean difference method, 435-40 
bridging faults, 422-3 
compact testing techniques, 441-2 
delay faults, 412 
designing for testability, 447-9 
fault detection and location, 409-12 
fault dictionaries, 427 
fault table method, 423-8 
gate sensitivity, 412-13 
intermittent faults, 411 
K-map assisted, 433-5 
level sensitive scan design (LSSD) 

method, 445-6 
overheating, 412 
path sensitisation, 41 4-19 
pattern-sensitive faults, 412 
redundancy problems, 429 
scan path testing, 444-7 
signal tracing, 410 
signature analysis, 442-4 
test pattern generation (TPG), 409 
testability, designing for, 447-9 
two-level detection in AND/OR 

circuits, 428-32 
two-level detection in OR/AND 

circuits, 432-5 
undetectable faults, 419-22 
see also Hazards 

Fault matrix, 423 
Fault-free parameter, 448 
Faulty signature, 444 
Feedback, 150, 287-8, 347 
FF, 170, 183 
Field programmable gate arrays 

(FPGAs), 355-7 
Field-effect transistor, 99 
FIFO see Shift registers 
Figure of merit, 101 
File directory structure, 324 
Finite fields theory, Evariste Galois, 198-9 
Finite induction, 37 
Finite state machine, 378 
Fixed point, 16-17 
Flag, 123-5, 437 
Flash (A/D) converters, 296-7 

general minimised logic, 297 
FLEX device, 364 
Flip-flops: 

with enable/disable, 158 
l's and O's catching, 153 
and registers, 159-60 
asynchronous controls (preset and 

clear), 152 
basic principles, 142 
bistable elements, 142-3 
characteristic equation, 147-8, 150, 158 
edge-triggered D flip-flop, 154-7 
master/slave SR flip-flop, 153-4 
pulse-triggered flip-flop dependency 

notation, 460 
T flip-flop, 157-8 
toggle mode, 152, 157-8, 178-81 
see also JK flip-flop; Latches 

Floating gate MOSFET, 331 
Floating point arithmetic, 16-17 
Flywheel diode, 3 ! 9-20 
Forward bias, 318-19 
Forward trace, 415 
Fourier analysis, 299 
FPGAs (field programmable gate 

arrays), 355-7 
FPLA, 341-2 
Fractional part, 3-4 
Frequency division, 163, 175, 183, 461 
Frequency, mains supply, 298-9 
Full adders, 368-70 
Full subtractors, 370-1 
Fully-custom chip, 78, 339, 356 
Function: 

generators, MUXs, 107-1 l, 112 
hazards, 268, 281-2 

Function simplification using 
K-map, 51-4 

Functional logic symbols: 
arithmetic circuits, 465-6 
basic principles, 451-4 
common control blocks, 452-3 
example symbols, 454 
general qualifying symbols, 451-2, 453 
internal/external states, 452 
inversion circles, 452 
polarity indicators, 453 
programmable devices, 464-5 
qualifying symbols, 451-2, 453 
shift registers, 463-4 
see also Conventional logic symbols, 

Dependency notation 
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Fundamental mode circuits see Asynchronous 
(event driven) circuits 

Fusible link, 331,356 

G (AND) dependency notation, 455-7 
GaA1As, 318 
GaAs, 101-2 
Galois, E., Galois algebra and finite 

fields theory, 198-9 
Gate delays, 268 

see also Propagation times 
Gate sensitivity, 412-13 
Gate signal conventions, 91 
Gated latch, 147 
Gates see AND gates/functions; NAND 

gates/functions; NOR gates/functions; 
OR gates/functions; XNOR 
(exclusive-NOR); XOR (exclusive-OR) 
function 

Gating function of AND and OR gates, 33 
General qualifying symbols, 451-2, 453 
Generation of spikes, 268-70 
Glitch, 176, 178 
Glue logic, 359 
GP-IB, 243-4 
Gray code, 23-4 

and the Karnaugh map, 46-7, 308 
conversion from base 2, 307-9 
conversion to base 2, 309-10 
Gray code counters, 170-2, 173 
reflected binary form, 23 
with decoders, 117, 119 
with shaft and linear absolute 

encoders, 306-9 
Group of cells, 51-2, 56, 77 
Group size, 56, 77 
Guided probe, 448 

Half adders, 367-8 
Hall effect, 305 
Hamming 

code, 2 t-3 
distance, 19 

Handshaking, 242-4 
Harmonic, 299 
Hazards: 

asynchronous circuit design, 277-9 
in combinational networks, 

270-1,273-5 
detection of hazards, 275-7 
dynamic hazards, 268, 279-81 
essential hazards, 268, 282-3 

function hazards, 268, 281-2 
gate delays, 268 
hazard-free design, 273-5 
K-map examination, 276 
spike generation, 268-70 
static hazards, 268, 270-1,271-3 
see also Fault diagnosis and testing 

HCT, 100-2 
Hewlett Packard, 442 
Hexadecimal counter, 350-2 
Hexadecimal number system, 2 

binary, octal and decimal conversion, 3-5 
Hierarchical logic design, 355 
High impedance (Z) state, 178, 315, 321, 

327, 329, 347, 455, 464 
High-frequency performance, 448 
Hold time, for latch, 148-9 
HP-IB, 243-4 
Hysteresis, in Schmitt trigger circuits, 287-9 

I/O block, 357, 359, 361 
I/O, 347 
IBM, 25, 242, 445 
IBM-compatible computer, 242 
IC, 101, 105, 178, 181-3, 243, 288, 290, 

303, 315, 323, 329, 339, 355, 356, 
409, 412, 452, 454-7, 466 

Idempotency theorem, Boolean algebra, 34-5 
Identity comparator, 134-5 
IEC, 451 
IEEE Std., 451 
IEEE-488 bus system, handshaking, 243-4 
IFC, 244 
Ignition system, 305 
IIH(max), 102 
III-V semiconductor, 318 
IIL(max), 102 
Implication table for sequential 

circuits, 227-9 
Incompletely specified 

machine, 264-7 
state table, 267 

Incremental encoders, 312-14 
Index mark, 312 
Indistinguishable faults, 409 
Induced voltage, 305 
Induction, 34, 37, 309 
Inductive load, 319-20 
Inhibit, 320 
Initialising, 443, 464 
InP, 318 
Input expansion of gates, 91-2 
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Input variable, 32, 86, 94, 134, 250, 254, 260, 
268, 281,334, 337, 341-2, 416, 425, 438 

Input/output, 339 
block, 357, 359, 361 
module, 361 

In-system programmability interface, 364 
Integral part, 3 
Integrated circuit, 77, 91,367 

counter, 178 
Integrated Logic Systems, 363 
Integrating A/D converter, 298-9 
Interconnection (Z) dependency notation, 462 
Interconnection: 

of Johnson counters, 195-6 
of MUXs, 106-7, 109, 110 

Interface, 18, 287, 313-14, 323, 364 
card, 242-4, 313 
clear, 244 

Interfacing, use of Schmitt input gates. 305 
Interference, 298-300 

mains-borne, 298-9 
Intermittent faults, 411 
Internal state diagrams: 

lamp switching circuit design, 250-2 
sequential circuits, 211-12, 223-4 

Internal/external states in functional 
symbols, 452 

Interrupt, 123 
Intersection theorem, Boolean algebra, 35 
Invalid code detector, 230-2 
Inverse function, 54-5 
Inversion: 

bubbles/circles, 33, 452 
function, 33-4 
parity, 417 
theorem, Boolean algebra, 35 

Invert control, 363 
Inverter, 34, 38, 55, 81 
Inverting input, 288, 295-6, 333 
lOB, 359 
IOH(min ) and IOL(min), 102 
ISA bus, 243 
ISP interface, 364 
Iterative circuits, 135-8 

iterative adders, 137 
iterative parity checking, 21 
K-map plots with, 136, 138 
magnitude comparison, 135-6 

JK flip-flop, 149-51 
characteristic equation, 150 
dependency notation, 460-1 

edge-triggered, 157 
in counters, 164-6, 166-7, 167-9, 177 
master/slave, 151-2 
sequential circuit design/analysis, 221-5 

JKFF, 149-58, 232 
Johnson (twisted ring)counter, 192-6 
Joint test action group (JTAG), 364 
Junction diode, 318 

Kbyte. 117. 327. 329. 335, 366. 395. 
465. 489 

K-map (Karnaugh map): 
2 variables, 46 
3 variables, 46-7 
4/5/6 variables, 47-8 
and Gray codes. 46-7. 308 
basic concept. 46-7 
Boolean function simplification. 51--4 
can't happen terms. 55-6 
criteria for minimisation. 77-8 
cyclic prime implicant tables. 61- 3 
don't care terms. 55---6 
essential prime implicants. 52, 53 
for hazard investigation. 276 
for iterative circuits, 136-8 
full adders, 369-70 
inverse function usage, 54-5 
looping rules for RDMs, 76-7 
maxterms on, 50-1 
minterms on, 49-50 
multiple output circuits, 67-70 
multiple output function, tabular 

methods, 70-3 
never occur terms, 55-6 
plotting Boolean functions on, 49-50 
prime implicant table, 60, 61, 72-3 
prime implicants, 52 
product simplification with maxterms, 57 
reduced dimension maps (RDMs), 73-7 
rules summary for RDMs, 76-7 
rules summary for simplification, 56 
semi-cyclic prime implicant tables, 63-4 
sequence detector design, 262-3 
with fault detection, 433-5 

KSa/s, 303 

LAB (Logic array block), 363 
Lamp switching circuit design, 250-2 

internal state diagram, 250-2 
race problems, 252-4 
reduction of basic state table, 252 

Large scale integration, 77-8 
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Latches: 
and registers, 159-60 
basic principles, 142 
bistable elements, 142-3 
characteristic equation, 144-5, 147-8, 

150, 158 
D latch, controlled, 147-8 
for mechanical switch debouncing, 158-9 
hold time, 148-9 
representations for, 145 
RS, 142 
set-up time, 148-9 
SR (set/reset) latch, 143-6, 146-7 
static hazards with, 148 
steering tables, 145 
timing diagrams, 146 
see  a l so  Flip-flops 

LCDs (liquid crystal displays), decoders 
for, 122-3 

LCM (lowest common multiple), 196 
Least significant bit, 14, 26, 46, 294, 307, 

324, 368, 379, 394, 400, 402-3, 405 
LEDs (light emitting diodes): 

decoders for, 122-3 
with open collector gates, 318-19 

Lenz's law, 320 
Level sensitive scan design (LSSD) 

testing method, 445-6 
Light emitting diodes see  LEDs 
Limit switches, 322 
Line decoder, 11 4-19, 170-1, 191, 

195, 335, 456-7 
Linear encoders see  Encoders 
Linearity, 294 
Liquid crystal displays 122-3 
Literal expressions, 28 
Load resistor, 314 
Lock-in state, 196, 227 
Locus, 307-8 
Logic array block (LAB), 363 
Logic bus, 318 
Logic conventions, 91,453 
Logic gate, 77-8, 81-2, 94, 98, 100-1, 

108, 143, 289, 305, 312, 314, 316, 
318-19, 325, 339, 355, 357, 359, 363, 
390, 451,453-4 

Logic of a switch, 30 
Logic symbols see  Functional logic symbols 
Look-up table, 358, 363, 367 
Looping rules for RDMs, 76-7 
Lowest common multiple (LCM), 196 
LS (Low power Schottky), 93 

LSB (Least significant bit), 14, 26, 46, 294, 
307, 379, 394, 400, 402, 403, 405 

LSI (Large scale integration), 77-8 
LSN (Least significant nybble), 383 
LSSD (level sensitive scan design) 

testing method, 445-6 
LUT (look-up table), 358, 363, 367 

M (mode) dependency notation, 463 
Macrocell, 363-4 
Magnetic disc drive, 323 
Magnetic encoder, 305 
Magnitude comparators, iterative, 135-6 
Mains supply frequency, 298-9 
Mains-borne interference, 298-9 
Mantissa, 17 
Map-entered variables (MEVs), 74 
Mark/space ratio, 488 
Mask programmed, 328, 341,356 
Master flag, 123-4 
Master/slave, 151-4 
Master/slave JK flip-flop, 151-3, 

158, 234, 459-60 
MAX7000/MAX9000, 364 
Maximal compatibility class, 265 
Maximum length sequence (MLS), 

196-200, 201 
Maxterms, 30, 43-4, 50-1 

simplification of products with, 57 
Mcluskey, E.J. see  Quine-McCluskey 

function simplification 
MD, 14, 398 
Mealy and Moore synchronous sequential 

machines, 217-21 
Mechanical switch debouncing, 158-9 
Medium scale integration, 77 
Memory access time, 329 
Memory chips see  RAM, ROM 
Memory fold-back, 337 
Memory location, 117, 326-7, 337, 395 
Memory matrix, 330, 333 
Merger diagram, event driven circuits, 267 
Metal bridge architecture, 363 
Metal-oxide-semiconductor, 99 
Metastable state, 143 
Method of induction, 309 
MEVs, 74 
Microcomputer, 304, 310 
Microphotolithography, 305 
Microprocessor, 78, 320-1,327-8, 

335-7 
Minimal implementation, 70, 419 
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Minimisation, 46, 52, 70, 77-8, 81, 
119, 213, 341,345 

criteria for circuits, 77-8 
Minterms, 30, 43-4, 45, 49-50 

minterm generator decoders, 121-2 
Minuends and subtrahends, 6 
MLS (maximum length sequence), 

196-200, 20 I 
Mod-2, 19, 23, 38, 196 
Mode (M) dependency notation, 463 
Mode input, 33 
Modulo-2 sum, 19, 94-5 
Modulus, 195-6, 436 
Moore and Mealy synchronous sequential 

machines, 217 21 
MOS and MOS technology, 99, 330 
MOSFET, 327 
MOST, 327 
Most significant bit, 6, 16, 19, 21, 46, 223, 

246, 301,307, 376, 397, 400 
Most significant nybble see MSN 
Motion sensing, 304-5 
Motional feedback sensor, 305 
Motor, 305, 312, 322-3 
Motor speed, 305 
MR, 14 
MSB (Most significant bit), 6, 8, 10, 293~4, 

296-7, 301,307, 310, 402 
MSI (Medium scale integration), 77 
MSN (Most significant nybble), 383 
M ulti-axis, 314 
Multi-bit adder, 367, 380 
Multi-bit rate multipliers, 200-4 
Multi-level logic design, 111, 113, 355 
Multi-level multiplexing, 111--14 
Multiple outputs: 

circuits, 67-70 
economy on PLAs, 345-6 
tabular methods for functions, 70-3 
using PLDs, 337-49 

Multiple paths, 280 
Multiplexers (MUXs): 

as Boolean function generators, 107-11, 112 
basic characteristics, 105-6 
demultiplexers, 11 4-15 
in serial data transmission, 115-16 
interconnecting considerations, 106-7, 

109, 110 
MSI multiplexers available, 106, 107, 108 
multi-level multiplexing, 111-14 
residue variables and functions, 108-11 
truth tables for, 111 

Multiplicand, 14-15, 393-8, 400-6 
Multiplication/multipliers: 

basic principles, 392 
Boolean multiplication, 31 
Booth's algorithm, 403-5 
combinational multipliers, 393-4 
packages available, 401,402 
ROM implemented multipliers, 394--6 
shift and add multiplier, 396-401 
signed arithmetic, 401--3 
signed binary numbers, 14-15 
unsigned binary numbers, 13-14 

M UXs see  M ultiplexers 

N (negate)dependency notation, 465-6 
n output functions, 70--1,331 
NAND gates/function: 

alternative representations, 90-1 
basic principles, 81 2 
Boolean algebraic analysis, 88-9 
implementation of AND and OR, 82 
input expansion, 91-2 
sums-of-products implementation, 83-5 
symbolic circuit analysis, 89-90 

NAND logic, 82-5 
NAND/NAND configuration, 83 
NBCD (naturally binary coded 

decimal), 18 
arithmetic with MSI adders, 381--5 
conversion from XS3 code with a PLA, 

341,343 
decoders, 119 

NBCD correction, 383 
NBCD invalid code detector, 337 
n-cubes and distance, 19-20 
NDAC, 244 
Negate (N) dependency notation, 465-6 
Negative feedback, 288 
Negative logic, 91 
Negative reconvergence, 417 
Nested block definition, 356 
Never occur terms, 55-6 
Next state equations, 217, 224-5 
No data accepted, 244 
Noise immunity, 99 
Noise margins, 98-9 
Non-combinable term, 58 
Non-critical race see  Critical race 
Non-essential prime implicant, 53 
Non-inverting input, 287-8, 295-6 
Non-maximum length sequence, 199-201 
Non-volatile memory, 327 
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NOR gates/function: 
alternative representations, 90-1 
basic principles, 85-6 
Boolean algebraic analysis, 88-9 
implementation of AND and OR, 86 
input expansion, 92 
products-of-sums implementation, 86-7 
sums-of-products implementation, 87-8 
symbolic circuit analysis, 89-90 

NOR inverter, 38 
NOR logic, 86-7 
Normalisation, 17 
NOT, 28-9, 45, 81, 89, 92-5, 127, 388, 391 
npn transistor, 315, 331 
Number systems see Binary number system; 

Decimal number system; Hexadecimal 
number system; Octal number system 

Number systems conversions, 3-5 
Numerical label, 52 
Numerical minterm, 52 
Nybble, 26, 383 

Octal number system, 2 
binary, decimal and hexadecimal 

conversions, 3-5 
Odd parity, 20-1, 129-30, 243 
OE (output enable), 327, 329-30, 337, 

355, 366, 464 
Offset binary representation, 10 
Onboard EPROM and Onboard RAM, 364 
One time programmable, 328, 340 
One-dimensional addressing, 334-5 
'One-hot' state assignment in ASM, 237-8 
Op-amp and Operational amplifier, 288, 

294-6, 298 
Open collector gates: 

as NOR gates, 316-17 
basic principle, 31 4-16 
collector dotting, 316 
in totem pole circuits, 316 
phantom AND gate, 316 
relay driving, 319-20 
wired AND, 316 
with light Emitting Diodes (LEDs), 

318-19 
Optical scale, 304 
Optical sensing, 305 
OR array, 339, 341,342, 344, 349, 350 
OR gates/function: 

basic gating function, 33 
Boolean addition, 32-3 
definition, 29 

implementation using NAND, 82 
implementation using NOR, 86 

OR/AND, 87, 271,281,432-4, 440 
Oscillators, with Schmitt trigger 

circuits, 290-2 
OTP (One time programmable), 328, 340 
2-out-of-5 code, 19 
Output 

consistent, 265-6 
disable time, 329 
enable, 327, 329, 337, 355, 464 
enable time, 329 
pin, 329, 339, 347, 349, 373 
stage, 288, 31 4-20, 411 

Overflow, addition and subtraction, 377-8 
Overheating faults, 412 
Overlap, 288 
Oversampling, 303 

P - Q, 453 
Packing density, 327, 330 
PAL (programmable array logic), 346-9 
Parallel connection, 32, 97, 166-7 
Parallel data, 184, 243-4 

enable time, 329 
Parallel/series connection in counters, 

166-7 
Parallel/series interconnection of Johnson 

counters, 195-6 
Parity generation and checking, 129-31, 

132, 133 
parity bits, 20-1, 129 

Partial derivative/differential, 435-7 
Partial product, 14, 394-7, 403, 405 
Partitioning analysis in sequential 

circuits, 226-7 
Path sensitisation: 

basic technique, 41 4-16 
multiple path sensitisation, 418 
networks with fan-out, 41 6-19 

Pattern-sensitive faults, 412 
PCI bus, 243 
Perfect induction in Boolean algebra, 34 
Peripheral, 123 

device, 243-4 
Petherick code, 311-12 
PGAs (programmable gate arrays), 339-41 
Phantom AND gate, 316 
Phase, 298, 312 
Phase difference, 312, 364 
Phase-locked-loop, 364 
Photodiode, 304-5 
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Phototransistor, 304 
PIPO (parallel-in/parallel-out) registers, 184 
PISO (parallel-in/serial-out) registers, 184 
PLAs (programmable logic arrays), 341-6 
Plasma display, 323 
PLDs see  Programmable logic devices 
PLSs (programmable logic sequencers), 

349-55 
pn junction, 318 
P-of-S and POS, 57 
Polarity indicator, 453 
Positive feedback, in Schmitt trigger, 287-9 
Positive logic, 91,453 
Positive reconvergence, 41 6-17 
Postponed output, 217, 454, 460-3 
Power amplifier, 314 
Power dissipation, 82, 101,317-18 
Power-on initialisation, 448 
Power-speed products, 100-1 
PP, 14 
PR (Preset), 349 
Precision oscillator, 291 
Preset, asynchronous control of flip-flop, 152 
Presettable counter, asynchronous, 178, 180 
Primary address, 244 
Primary 

input, 135, 137 
output, 135, 137 
variable, 250 

Prime implicant table, 59-73, 271-9, 345, 
370, 426-34 

Prime implicants, 52-3, 
basic features, 52-3 
cyclic prime implicant tables, 61-3 
essential, 52, 53 
prime implicant tables, 60-4, 72-3 
semi-cyclic prime implicant tables, 63-4 

Primitive state table, 251,253 
Priority, 125-7, 232, 296 
Priority encoder, 125, 126 
Product line, 350 
Product of maxterms, 30, 42, 44-5 
Product of sums, 30, 57, 87-8, 92-3, 145, 374 
Product terms in Boolean algebra, 35 
Programmable input/output block, 346, 

359, 361 
Programmable logic block, 357 
Programmable logic devices (PLDs): 

Actel programmable gate arrays, 361-3 
advantages and applications, 78, 337, 339 
Altera erasable programmable logic 

devices, 363-5 

field programmable gate arrays (FPGAs), 
355-7 

programmable array logic (PAL), 346-9 
programmable gate arrays (PGAs), 

339-41 
programmable logic arrays (PLAs), 

341-6 
programmable logic sequencers (PLSs), 

349-55 
programmable ROM see  PROM 
uncommitted logic arrays (ULAs), 339 
Xilinx field programmable gate arrays, 

357-61 
Programmable register, 364 
Programmable switch matrix, 362 
PROM (Programmable ROM), 328 

internal structure, 331 
programmer, 328 

Propagation times, 99--100 
see  a lso  Gate delays 

Pseudo-random binary sequence 
generator, 198 

for signature analysis, 443--4 
PSM, 362 
P-term, 43 
Pull-up resistor, 314, 316 
Pulse trigger and dependency notation, 460 
Pump problem, 256-8 

state diagram/state table, 258 

Quadrature, 312-13 
Qualifying symbols, 451-2, 453 
Quartz crystal, 291 
Quine-McCluskey function simplification: 

criteria for minimisation, 77-8 
decimal approach, 65-7 
tabular method, 58-60 
with "don't care" terms, 64 

Quotient, 15-17 

R (reset)dependency, 457-9 
Race, critical and non-critical, 253-4, 

285, 359 
Race-free assignment, 254-60 
Races: 

avoidance using dummy state, 255-6 
light switching problem, 252-4 
race free assignments, 254-60 

Racing hazards see  Races; Hazards 
Radices and Radix, 2 

radix point, 3 
see  a lso  base systems 
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Radix (2's) complement: 
addition and subtraction, 9-10, 10-12 
graphical interpretation, 12-13 
representation, 7-9 

RAM (random access memory), 327-8 
refreshing, 327 

Rate constant input, 200, 202 
R C  oscillator, 291-2 
RD, 328, 331 
RDMs (reduced dimension maps): 

and map-entered variables (MEVs), 74 
concept, 73-5 
looping rules for, 76-7 
plotting from truth tables, 75-6 
reading RDM functions, 76 

Read only memory see  ROM 
Read/write head, 323 
Read/write memory 327-8 
Reconvergent fan-out, 416-17 
Reduced dimension maps see  RDMs 
Reduced input dependency asssignment, 

231-2 
Reduced state table, 211, 213, 214, 219, 220, 

226-9, 249, 251-4, 259, 260, 266-7, 285 
Redundancy in fault detection, 429 
Redundancy/absorption theorem, Boolean 

algebra, 35, 36 
Redundant state, 210, 212 
Reed switch, 295 
Reed-Muller canonical equation, Boolean 

algebra, 39-40 
Re-entrant path, 307 
Reflected binary, 23 
Reflective LCD, 122 
Refreshing, of RAM, 327-8 
Registers see  Shift registers 
Relay driving, with open collector gates, 

319-20 
Remainder, 3, 15, 16, 261,460 
Repetitive waveform, 289, 292 
Request to send, 243 
Reset (R) dependency, 457'9 
Reset overrides set, 458 
Resettable counter, 177-8, 182 
Residue variables and functions, 108-11 
Resistor: 

dropper, 318 
load, 314 
network, binary weighted, 293-4 
pull-up, 314, 316 

Resolution, 24, 294-5, 303-4, 313 
Restoring division process, 16 

Reticle, 304-6, 312 
Reverse bias, 318-19 
Reverse engineering, 346 
Revised state table, 214 
Ring counters: 

basic principle, 191-2 
twisted ring/Johnson counter, 192-6 

Ripple counter, 182, 205 
Ripple-through adder, 371-2 
Rise time, 100, 295, 317 
Roll-over, 311 
ROM (read only memory): 

absolute decoding, 335-7 
and RAM (random access memory), 327-8 
basic applications and configurations, 

326-8 
Boolean function implementation, 331-3 
clock-driven sequential circuit, 

implementation, 337, 338 
EEPROMs (Electrically Erasable 

Programmable ROMs), 328, 331 
EPROMs (Erasable PROMs), 328, 329, 331 
internal addressing techniques, 334-5 
internal structure, 330-1 
mask programmed, 328 
matrix, 330, 334-5 
memory addressing, 335-7 
PROMs (Programmable ROMs), 328, 331 
ROM implemented multipliers, 394-6 
sequential circuit, implementation, 

337, 338 
speed, 330 
timing considerations, 329-30 

Rotation sensing, 304 
Routing channel, 362 
RS latches, 143-6, 146-7 
RS-232C bus system, handshaking, 243-4 
RS-422, 243 
RS-423, 243 
RTS, 243 
Rules: 

for simplifying K-maps, 56 
for simplifying RDMs, 76-7 

S (set) dependency notation, 457-9 
S- 100 bus, 243 
s-a-fault, 411-15, 424-5, 429-49 
Sa/s (Samples per second), 295 
Sample-and-hold, 363 
Sampling rate, 303 
Scale-of- 16 up/down counter, 172, 174 
Scale-of-2 counter, 164-5 
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Scale-of-5 up-counter, 167-9 
Scale-of-8 counter, 165-6 
Scan path testing technique, 444-7 
Schlumberger, 298 
Schmitt delay circuit, 289 
Schmitt input gates, 289-92 

hysteresis and positive feedback, 287-9 
in encoder circuit, 314 
in interface circuits, 305 
in oscillators, 290-2 
trigger circuits, 287-9 

Schmitt inverter, 289-91,305, 313 
Schmitt NAND, 290 
Schottky, 93 
Screen, 304 
SDI, 445 
SDO, 445 
Secondary: 

input, 135, 136 
output, 135, 136 
variable, 214-15. 224-5. 233. 252, 255, 261 

Security fuse, 346 
Selection line, 105 
Self-complementation, 18 
Self-correcting ring counter, 192 
Self-starting: 

generator, i 99 
ring counter, 192 

Semi-custom chip, 339 
Semi-cyclic prime implicant tables, 63-4 
Sensing coil, 305 
Sensing of motion, 304-5 
Sensitisation of paths: 

basic technique, 41 4-16 
dual path sensitisation. 417-18 
networks with fan-out, 416-19 

Sequence detector design, 258-63 
K-maps, 262-3 
state diagrams/state tables, 259-60 

Sequence generators, shift registers as, 187-8 
Sequential circuits: 

algorithmic state machine (ASM) 
charts, 232-8 

analysis, 207-10 
asynchronous inputs, 240-2 
basic circuit, 207 
design steps, 21 0-15 
handshaking, 242-4 
implication table method of 

analysis, 227-9 
internal state diagram, 211-12, 223-4 
invalid code detection, 230-2 

JK flip-flop implementations, 221-5 
Mealy machine, 217-20 
Moore machine, 217-21 
next state equations, 217, 224-5 
'one-hot' state assignment, 237-8 
partitioning method of analysis, 226-7 
programmable logic sequencers, 230 
reduced input dependency 

assignment, 231-2 
ROM implementation, 337, 338 
sequence detector design, 215-17 
state assignment, 214, 229-32 
state reduction, 212-14, 216, 224, 225-9 
state tables, 212. 214 
timing diagrams, 208, 210, 215-16 
see also Clock signals 

Serial addition and subtraction, 378-80 
Serial data, !15, 243, 445, 464 

input. 445 
out, 445 
transmission, using MUX/DMUX, 115-16 

Serial signature analysers, 443 
Serial subtraction, 
Series, 166, 195 
Series/parallel connection in counters, 166-7 
Series/parallel interconnection of Johnson 

counters, 195-6 
Service routine, 123 
Set and Reset (SR) dependency notation, 

457-9 
Set overrides reset, 458 
Set theory and the Venn diagram, 40-1 
Set union, 51 
Set. 38, 40 
Settling time, 295 
Set-up time, for latch, 148-9 
Seven-segment display, 350, 352 
Shaft encoders see Encoders 
Shannon's expansion theorem, Boolean 

algebra, 37-8 
Shift and add multiplier, 396--401 
Shift pulse, 159, 160, 183, 397, 400, 405, 407 
Shift register latch, 445-7 
Shift registers: 

4-bit 7494 shift register, 185 
4-bit 7495 universal shift register, 186 
8-bit 74165 parallel loading 

shift register, 187 
as counters and sequence 

generators, 187-96 
as sequence generators, 187-8 
basic principles, 183-5 
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De Bruijn diagram, 188-9 
double/single-rail input, 184 
for signature analysis, 443-4 
functional logic symbols, 463-4 
maximum length sequence (MLS), 

196-200, 201 
multi-bit rate multipliers, 200-4 
parallel-in/parallel-out (PIPO), 184 
parallel-in/serial-out (PISO), 184 
pseudo-random binary sequence 

generator, 198, 443-4 
serial-in/parallel-out (SIPO), 183 
serial-in/serial-out (SISO), 183 
universal state diagram, 188-9 
with D latches, 159-60 
with XOR feedback, 196-200, 443-4 

Si (Silicon), 101 
Sign: 

bit, 8, 10, 11, 12, 376, 377 
digits, complement arithmetic, 9 
extension process, 8 

Signal: 
conventions, 91 
recovery amplifier, 311,323 
tracing, 410 

Signature analyser/analysis, 442-4 
Signature checker, 443-4 
Signed arithmetic: 

basic principles, 6-7 
multiplication, 401-3 
sign digits, 6 
sign magnitude representation, 7 

Silk-screen printing, 305 
Simplest form, 56, 87, 144, 163, 261,288, 392 
Simplification of Boolean functions using 

K-map, 51-4 
Simplification, 28, 41, 51, 53, 55, 56, 58-61, 

63, 65, 67, 72, 79, 109, 119, 136, 144, 150, 
166, 170, 172, 194, 199, 214, 218, 225, 
251-2, 260-3, 275, 278, 332, 351,381 

Single-bit comparator, 134 
SIPO (serial-in/parallel-out) registers, 183 
SISO (serial-in/serial-out) registers, 183 
Slave, in master/slave flip-flops, 151-4 
Slider, 303-6, 312 
Sling, 259, 260 
Slow edge, 289 
Small scale integration, 77 
Smoothing capacitor, 315 
Socket, 243, 448 
S-of-P (Sum of products), 35 
Software, 310, 339, 355-9, 365, 451 

Solid-state switch, 298 
SOP (Sum of products), 57 
Spartan, 358, 359, 360, 361,362 
Speed-power products, 100-1 
Spike generation, 268-70 
SR (set/reset) latches/flip-flops, 143-6, 146-7 

SR master/slave flip-flop, 153-4 
with event driven circuits, 249 

SRG, 453 
SRL, 445, 446 
SR latch, 143-6, 146-7 
SSI (Small scale integration), 77 
Stabilised voltage source, 294 
Stable and unstable states, 248, 249-50 
Start bit, 243 
State assignment: 

in asynchronous circuits, 249, 252 
in sequential circuits, 214, 229-32 
'one-hot', in ASM, 237-8 
race free, 254-6 

State box, 233 
State diagrams/state tables, 212, 214 

and races, 253 
De Bruijn diagram, 188-9 
internal state diagrams, 211-12, 

223-4, 250-2 
lamp switching circuit, 250-2 
pump problem, 257-8 
sequence detector design, 259-60 
shift registers, 188-9 
universal, for shift registers, 188-9 

State machine, 217, 230, 232, 254, 350, 
378, 444-6 

State reduction: 
in asynchronous circuits, 264, 267 
in sequential circuits, 212-14, 216, 

224, 225-9 
State tables see State diagrams 
State, metastable, 143 
Static charge, 364 
Static hazards: 

combinational networks, 271 
controlled D latches, 148 
detection, 275-7 
elimination of, 271-3 

Static RAM, 327, 357 
Steering tables, SR latches, 145 
Stepper motors, 322-3 
S-term, 43 
Stop bit, 243 
Stored signature, 442 
Stray capacitance, 315-17, 325, 362 
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Strobe line, 112 
Stuck-at fault, 413, 415, 423, 427 
Subset, 61,243, 265, 287 
Subtraction and addition s e e  Arithmetic 

circuits and processes; Binary addition; 
Binary subtraction; Complement 
arithmetic 

Subtractors, 370--1 
Subtrahends and minuends, 6 
Successive approximations A/D 

converter, 300--2 
Sum of 

minterms, 3(71, 42, 44, 45, 51, 57, 
79, 332 

products, 30, 35, 39, 57, 79, 83, 85, 93, 
178, 281,332, 339, 344, 363 

Sum term, 43, 434 
Summary of rulcs for simplifying functions: 

using K-maps, 56 
using RDMs, 76 7 

Superimposed interference, 298 
Supply rail, 82, 287, 288, 314, 316, 319, 448 
Switch debouncing, 158 9 
Switch implementation ot" Boolean 

functions, 31-3 
Symbolic axis label, 52 
Symbolic circuit analysis, 89 
Symbols see Conventional logic symbols, 

Functional logic symbols 
Synchroniser, 241 2 
Synchronous: 

counter design, 165 72 
inputs, 147 
interference, 300 
mains interference, 298-9 
mode, 364 
presettable counter, 178, 179 
sequential circuits s e e  Sequential circuits 

Syndrome indicating error, 23 
System interconnecting bus, 321 

T (toggle) flip-flop, 157-8 
in counters, 178-81 

Tabular method, 70 
Tabular simplification, 58 
Tacho generator, 312 
Tachometer, 312 
TDM (Time division multiplexing), 115 
Test 

input, 421,422, 432, 447 
pattern generation (TPG), 409 
point, 422, 441,442, 444, 446, 447, 448,449 

routine, 426, 449 
sequence, 435, 441-4 

Testing, 177, 227, 265, 318, 36 l, 408-48 
Testing/testability s e e  Fault diagnosis and 

testing 
TFF and Toggle flip-flop s e e  T flip-flop 
Theorems, Boolean algebraic, 34-8 

absorption/redundancy theorem, 35, 36 
associative law, 35, 39, 96 
commutative law/commutation theorern, 

35, 39, 96 
complementation theorem, 33, 49 
consensus theorem/term, 36 
De Morgan's theorem, 37, 57, 91 
distributive law, 35, 39 
expansion theorem, Shannon, 37--8 
idempotency theorem, 34 5 
intersection theorem, 35 
inversion theorem, 35 
redundancy/absorption theorem, 35, 36 
Reed-Muller equation, 39 40 
Shannon's expansion theorem, 37 8 
union theorem, 35 

Time delay, 96, 100, 155, 166, 239, 268, 
270, 279, 333, 262, 370, 394 

Time division multiplexing, ! 15 
Timing constraints, clock, 239 40 
Timing diagrams: 

lbr sequential circuits, 208, 210, 215 16 
tbr SR latch, 146 

TMS27128, 329, 464, 465 
TMS47256, 329, 464, 465 
Toggle mode, flip-llops, 152, 157 8, 178---81 
Toothed wheel, 305 
Totem-pole output stages, 314-16 
TPG (test pattern generation), 409 
Traditional logic symbols see Conventional 

logic symbols 
Transistor switch, 315-16 
Transistor transistor logic, 98 
Transition time, 100, 317, 329 
Transitivity law, 229 
Transmission line, 106, 325 
Transmission of serial data using 

MUX/DMUX, 115-16 
Transparent (controlled) latch, dependency 

notation, 460 
Tree decoding, 119-20 
Trigger circuits, Schmitt, 287-9 
Tri-state buffers and gates: 

and bus contention, 320-1 
applications, 320-2 
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basic principles, 31 4-16 
giving bi-directional capability, 322 
in RAM and ROM, 327 
Z (high impedance) state, 321,327 

Tri-state driver, 321 
Tri-state output, 106, 178-9, 320, 321,346, 

355, 454, 455, 464 
True, 28, 34, 37, 43, 112, 175, 184, 185, 233, 

320, 333, 385-9, 464, 466 
True/complement unit, 385-6 
Truth tables: 

and Boolean algebra, 30, 33 
and multiplexers, 111 
and reduced dimension maps, 75-6 
encoders, 125, 126 

TTL (Transistor-transistor logic), 98 
TTL-compatible, 323 
Turn-off condition and Turn-off set, 144, 

178, 252, 258, 260-1,282, 487 
Turn-on condition and Turn-on set, 144, 

178, 252, 258, 261,282, 487 
Twisted ring (Johnson) counter, 192-6 
Two-dimensional (coincident) 

decoding, 119-20 
Two-dimensional addressing, 334-5, 337 
Two-level product-of-sums, 87, 93, 96 
Two-level sum-of-products, 83-5, 93-4 

UARTs (universal asynchronous 
receiver/transmitters), 243-4 

ULAs (uncommitted logic arrays), 339 
Ultra-violet see UV EPROM 

technology 
Underflow, 6 
Undetectable faults, 419-22 
Union theorem, Boolean algebra, 35 
Universal state diagram (shift registers), 

188-9 
Unstable states, 248, 249-50 
Unused state, 167, 168, 170, 172, 189, 

192, 194, 200, 204, 213, 214, 215, 
221,222, 255, 260 

Unweighted code, 307, 310 
Up/down counter, 172 
Up-counter, 166, 167, 170, 172-6, 205 
UV EPROM technology, 363 

V24 bus, 243 
Valid data, 329, 330 
Validity of Gray code, 309 
Venn diagrams and set theory, 40-1 

VersaRing routing channel, 358 
Very large scale integration, 78 
Video: 

bandwidth, 323 
digital, 303 
signal, 303, 323 

ViH(min ) and ViL(max), 98-9 
VLSI (Very large scale integration), 28, 

78, 320, 355, 412, 447, 451 
VOH(mi.) and VOL(max), 98-9 
Volatile RAM, 327 
Voltage: 

drop, 293, 318 
follower, 294 
transfer characteristic, 143 

Washing machine, 312 
Weight, code, 19-20, 46 
Weighted resistor network, 

binary, 293-4 
Wired AND, 316 
Word, 19-21, 107, 129, 131, 137, 235, 292, 

293, 296, 306, 326, 378, 383, 481 
Word line, 330-5, 337 
Worst case, 98, 102, 300, 318, 371,401 
Worst case design, 100 
WR, 328 
Wrap around, 50, 56 
Write, 328 

X/Y, 116, 453, 457 
XC3090, 359 
Xilinx field programmable gate arrays, 

357-61 
XNOR (exclusive-NOR): 

as digital comparator, 131-5 
function, 94-8 

XOR (exclusive-OR) gates/function, 29, 
38-9, 94-8 

XOR (N) dependency notation, 465-6 
XOR feedback, shift registers with, 

196-200, 443-4 
XS3 code: 

conversion to NBCD code, 341,343 
invalid code detector, 350-1,353 

Z (high impedance) state, 321,327 
Z (interconnection) dependency 

notation, 462 
ZIF (Zero insertion force) 

sockets, 449 
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