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“Ce qui est simple est toujours faux 
Ce qui ne l’est pas est inutilisable.”  

(Paul Valery) 



 

Preface 

The extraordinary development of digital computers (microprocessors, 
microcontrollers) and their extensive use in control systems in all fields of 
applications has brought about important changes in the design of control systems. 
Their performance and their low cost make them suitable for use in control systems 
of various kinds which demand far better capabilities and performances than those 
provided by analog controllers. 

However, in order really to take advantage of the capabilities of 
microprocessors, it is not enough to reproduce the behavior of analog (PID) 
controllers. One needs to implement specific and high-performance model based 
control techniques developed for computer-controlled systems (techniques that 
have been extensively tested in practice). In this context identification of a plant 
dynamic model from data is a fundamental step in the design of the control system. 

The book takes into account the fact that the association of books with software 
and on-line material is radically changing the teaching methods of the control 
discipline. Despite its interactive character, computer-aided control design software 
requires the understanding of a number of concepts in order to be used efficiently. 
The use of software for illustrating the various concepts and algorithms helps 
understanding and rapidly gives a feeling of the various phenomena. 
Complementary information and material for teaching and applications can be 
found on the book website: 

http://landau-bookic.lag.ensieg.inpg.fr 

The Aim of the Book 
The aim of this book is to give the necessary knowledge for the comprehension and 
implementation of digital techniques for system identification and control design. 
These techniques are applicable to various types of process. The book has been 
written taking into account the needs of the designer and the user of such systems. 
Theoretical developments that are not directly relevant to the design have been 
omitted. The book also takes into account the availability of dedicated control 
software. A number of useful routines have been developed and they can be freely 
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downloaded from the book website. Details concerning effective implementation 
and on-site optimization of the control systems designed have been provided. 

An important feature of the book, which makes it different from other books on 
the subject, is the fact that equal weight has been given to system identification and 
control design. This is because both techniques are equally important for design 
and optimization of a high-performance control system. A control engineer has to 
possess a balance of knowledge in both subjects since identification cannot be 
dissociated from control design. The book also emphasizes control robustness 
aspects and controller complexity reduction, both very important issues in practice.  

The Object of Study 
The closed loop control systems studied in this book are characterized by the fact 
that the control law is implemented on a digital computer (microprocessor, 
microcontroller). This type of system is sketched in Figure 0.1.  

The continuous-time plant to be controlled is formed by the set of actuator, 
process and sensor. The continuous-time measured output y(t) is converted into a 
sequence of numbers {y(k)}  by an analog-to-digital converter (ADC), at sampling 
instants k defined by the synchronization clock. This sequence is compared with 
the reference sequence{r(k)} and the resulting sequence of errors is processed by 
the digital computer using a control algorithm  that will generate a control 
sequence {u(k)}.  By means of a digital-to-analog converter (DAC), this sequence 
is converted into an analog signal, which is usually maintained constant between 
the sampling instants by a zero-order hold (ZOH). 

PLANT  

 
Figure 0.1. Digital control system 

The Main Stream 
Figure 0.2 summarizes the general principles for controller design, implementation 
and validation. 

For design and tuning of a good controller one needs: 

1. To specify the desired control loop performance and robustness 
2. To know the dynamic model of the plant to be controlled 
3. To possess a suitable controller design method making it possible to 

achieve the desired performance and robustness specifications for the 
corresponding plant model 
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4. To implement the resulting controller taking into account practical 
constraints 

5. To validate the controller performance on site and, if necessary, to re-
tune it 
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Figure 0.2. Principle of controller design and validation 

In order to obtain a relevant dynamic plant model for design, system 
identification techniques using input/output measurements (switch 1 is off, switch 
2 is on) should be considered. The methodology for system identification is 
presented in the book together with dedicated algorithms implemented as software 
tools.  

Once the system model is available, the book provides a set of methods (and 
the corresponding software tools) for the design of an appropriate controller. 

The implementation of the controller should take into account aspects related to 
data acquisition, switching from open loop to closed loop, and saturation of the 
actuator as well as constraints on the complexity of the controller. These aspects 
are examined in detail in the book.  

Expected Audience 
The book represents a course reference for Universities and Engineering Schools 
offering courses on applied computer-controlled systems and system identification. 

In addition to its academic audience, Digital Control Systems is aimed at 
practising engineers wishing to acquire the concepts and techniques of system 
identification, control design and implementation using a digital computer. The 
industrial references for the techniques presented in the book and the various 
applications described provide useful information for those directly involved in the 
real-world uses of control. 

Readers who are already familiar with the basics of computer-controlled 
systems will find in this book a clear, application oriented, methodology for system 
identification and the design of various types of controllers for single-input, single-
output (SISO) systems.  
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The Content 
Chapter 1 briefly reviews the continuous-time control techniques which will be 
used later on as a reference for the introduction of basic concepts for computer 
control. 

Chapter 2 provides a concise overview of computer-controlled systems: the 
structure of these systems, the sampling process, discrete-time dynamic models, 
the principles of design of discrete-time two-degrees-of-freedom controllers (RST), 
and robustness analysis of the control loops. 

Chapter 3 presents several pertinent model-based design methods for discrete-
time controllers operating in a deterministic environment. After the design of 
digital PID controllers, more general design methods allowing systems of any 
order, with or without delay, to be controlled are presented. The robustness of the 
closed loop with respect to plant model uncertainties or variations is examined in 
detail and appropriate control design methods that take into account robustness 
specifications are provided. 

The design of discrete-time controllers operating in the presence of random 
disturbances is discussed in Chapter 4. The chapter begins with a review of random 
disturbances and of models and predictors for random disturbances. Connections 
with design in deterministic environments are emphasized. 

The basics of system identification using a digital computer are presented in 
Chapter 5. Methods that are used for the identification of discrete-time models, and 
model validation techniques as well as techniques for order estimation from 
input/output data are described in Chapter 6.  

Chapter 7 discusses the practical aspects of system identification using data 
from several applications: air heater, distillation column, DC motor, and flexible 
transmission. 

The main goal of this work, the use of control design methods and system 
identification techniques in the implementation of a digital controller for a specific 
application, is discussed in Chapter 8. Implementation aspects are reviewed and 
several applications presented (air heater, speed and position control of a DC 
motor, flexible transmission, flexible arm, and hot-dip galvanizing).  

For on-site optimization and controller re-tuning a plant model should be 
obtained by identification in closed loop (switches 1 and 2 are on in Figure 0.2). 
The techniques for identification in closed loop are presented in Chapter 9. 

In many situations constraints on the complexity of the controller are imposed 
so Chapter 10 presents techniques for controller order reduction. 

Appendix A reviews some basic concepts. 
Appendix B offers an alternative time-domain approach to the design of       

RST digital controllers using one-step-ahead and long-range-predictive control 
strategies.  Links and equivalence with the design methods presented in Chapter 3 
are emphasized. 

Appendix C presents a state space approach to the design of RST digital 
controllers. The equivalence with the design approach presented in Chapter 3 is 
emphasized. The linear quadratic control is also discussed. 

Appendix D presents some important concepts in robustness. 
Appendix E demonstrates the Youla–Kucera parametrization of digital 

controllers which is useful for a number of developments. 
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Appendix F describes a numerically robust algorithm for recursive 
identification. 

Appendix G is dedicated to the presentation of suggested laboratory sessions 
that use data files and functions which can be downloaded from the book website. 

Appendix H gives a list and a brief description of the MATLAB®- and Scilab-
based functions and C++ programs implementing algorithms presented in the book. 
These functions and programs can also be downloaded from the book website. 

The book website gives access, to the various functions and programs as well 
as to data files. It contains descriptions of additional laboratory sessions and slides 
for a number of chapters, tutorials and courses related to the material included in 
the book that can be downloaded; all the MATLAB® files used for generating the 
examples and figures in the text can also be found on the website. 

How to Read the Book  
The book can be read in different ways after the basic control concepts presented in 
Chapters 1 and 2 have been assimilated. If the reader is mainly interested in control 
algorithms, it would be useful for him/her to read Chapters 3 and 4 and then 
Chapters 5, 6, 7 and 8. If the reader is mainly interested in identification 
techniques, he or she can jump straight to Chapters 5, 6 and 7 and then return to 
Chapters 3, 4 and 8. Those who are familiar with the basics of computer-controlled 
systems can even start with Section 2.5. Chapters 9 and 10 follow dependently 
from Chapter 8.  Figure 0.3 shows the interdependence between the various 
chapters. 

Course Configurations 
A complete basic course on digital control should cover most of the material 
presented in Chapters 2, 3, 5, 8 and Section 4.1.  For an advanced course, all 
chapters might be included. For an introductory course in digital control one can 
use Chapters 2, 3 and 8. For an introductory course on system identification one 
can use Chapters 5, 6 and 7. 

Why this Book? 
The book reflects the first author’s more than twenty-five years of experience in 
teaching, design and implementation of digital control systems. Involvement in 
many industrial projects and feedback from an industrial and academic audience 
from various countries in Europe, North and South America and Asia have played 
a major role in the selection, organization and presentation of the material. 
Experience from writing the book System Identification and Control Design, 
Prentice Hall, 19901 (Information and System Sciences Series) has been also very 
useful.  

The present book is a revised translation of a book (Commande des systèmes – 
conception, identification et mise en oeuvre) published in 2002 by Hermes-
Lavoisier, Paris. 

                                                 
1 Revised taranslation of a book published by Hermes Paris, 1988 (second edition 1993). 
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Figure 0.3. Logical dependence of the various chapters 

The most recent academic courses based on the material in the present book 
include PhD courses delivered in 2004 at Universita Technologica de Valencia, 
Spain (robust discrete time controller design) and Escuela Superior de Ingenerios 
de Sevilla, Spain (system identification in open and closed loop). 
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List of Principal Notation 

fs sampling frequency 
Ts  sampling period 
ω radian frequency (rad/s)  
f frequency (Hz) or normalized frequency(f /fs) 
t continuous time or normalized discrete-time (with 

respect to the sampling period t /Ts) 
k normalized discrete time (t /Ts) 
u(t), y(t) plant input and output 
y*(t+d+1) tracking reference 
r(t) reference or external excitation 
e(t) discrete time Gaussian white noise  
q-1 shift (delay) operator (q-1 y(t) = y (t-1)) 
s, z complex variables ( z = esTs) 
A(q-1), B(q-1), C(q-1) polynomials in the variable q-1 
d delay of the discrete-time system (integer)  
Â (t,q-1), (t,q-1), C (t,q-1) estimation of polynomials A, B,C at instant t B̂ ˆ

â i(t),  i(t), i(t) estimated coefficients of polynomials A,B,C  b̂ ĉ
H(q-1) pulse transfer operator (discrete time systems) 
H(z-1), H(z) discrete-time transfer functions 
τ time delay of a continuous-time system 
R(q-1), S(q-1), T(q-1) pulse transfer operators used in a RST digital 

controller 
Sxy(s), Sxy(z-1) sensitivity functions 
P(z-1) closed loop characteristic polynomial 

M∆  modulus margin 
τ∆  delay margin 

θ parameter vector 
θ̂ (t) estimated parameter vector  
φ(t), Φ(τ) measurement / observation vector 
F, F(t) adaptation gain 
ε°(t), ε(t) a priori /a posteriori prediction error 

xxiii 



xxiv List of Principal Notation 

ε°CL(t), εCL(t) closed loop a priori / a posteriori prediction error 
υ°(t), υ(t) a priori / a posteriori adaptation error 
A, F matrices 
F > 0 positive definite matrix 
tR rise time 
tS settling time 
M maximum overshoot 
ωo , ζ, natural frequency and damping factor for a 

continuous-time second-order system 
E { . } expectation 
MV mean value 
var. variance 
σ standard deviation 
R(i) auto-correlation or cross-correlation 
RN(i) normalized auto-correlation or cross-correlation  
tim maximum length of pulse in  a PRBS 
OL open loop 
CL closed loop 
BP bandwidth 
AF-CLOE adaptive filtered closed loop output error 
ARMAX Auto-Regressive Moving Average with eXogenous 

input process 
CLIM closed loop input matching 
CLOE closed loop output error 
CLOM closed loop output matching 
ELS extended least squares 
F-CLOE filtered closed loop output error 
GLS generalized least squares 
IVAM instrumental variable with auxiliary model 
OEAFO output error with adaptive filtered observations 
OEEPM output error with extended prediction model 
OEFC output error with fixed compensator 
OEFO output error with filtered observations 
PAA parameter adaptation algorithm 
PID proportional + integral + derivative controller 
PRBS pseudo random binary sequence 
RLS recursive least squares 
RML recursive maximum likelihood 
RST two degrees of freedom digital controller 
X-CLOE extended closed loop output error 

Warning 
For sake of notation uniformity, we shall often use, in the case of linear systems 
with constant coefficients, q-1 notation both for the delay operator and the complex 
variable z-1. The z-1 notation will be especially employed when an interpretation in 
the frequency domain is needed (in this case ). sTjez ω−=
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Continuous Control Systems: A Review 

The aim of this chapter is to review briefly the main concepts of continuous control 
systems. The presentation is such that it will permit at a later stage an easy 
transition to digital control systems. 

The subject matter handled relates to the description of continuous-time models 
in the time and frequency domains, the properties of closed-loop systems and PI 
and PID controllers. 

1.1 Continuous-time Models 

1.1.1 Time Domain 

Equation 1.1.1 gives an example of a differential equation describing a simple 
dynamic system: 

 )()(
1

tu
T
G

ty
Tdt

dy
+−=  (1.1.1) 

In Equation 1.1.1 u represents the input (or the control) of the system and y the 
output. This equation may be simulated by continuous means as illustrated in 
Figure 1.1. 

The step response illustrated in Figure 1.1 reveals the speed of the output 
variations, characterized by the time constant T, and the final value, characterized 
by the static gain G. 

1 
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Figure 1.1. Simulation and time responses of the dynamic system described by Equation 
1.1.1 (I - integrator) 

Using the differential operator p = d/dt, Equation 1.1.1 is written as 

 ;)()()
1

( tu
T
G

ty
T

p =+  
dt
d

p =  (1.1.2) 

For systems described by differential equations as in Equation 1.1.1 we 
distinguish three types of time response: 

1. The “free” response: it corresponds to the system response starting with an 
initial condition y(0)=y0 and for an identically zero input for all t (u = 0, ∀ 
t). 

2. The “forced” response: it corresponds to the system response starting with 
an identically zero initial condition y(0) = 0 and for a non-zero input u(t) 
for all t  0 (u(t) = 0, t < 0 ; u(t) ≥ ≠  0, t  0 and y(t) = 0 for t ≥ ≤  0). 

3. The “total” response: it represents the sum of the “free” and “forced” 
responses (the system being linear, the superposition principle applies). 

Nevertheless later we will consider separately the “free” response and the “forced” 
response. 

1.1.2 Frequency Domain 

The characteristics of the models in the form of Equation 1.1.1 can also be studied 
in the frequency domain. The idea is then to study the system behavior when the 
input u is a sinusoidal or a cosinusoidal input that varies over a given range of 
frequencies. 

Remember that 

 tjttje  sin cos ωωω +=  (1.1.3) 

and, consequently, it can be considered that the study of the dynamic system 
described by an equation of the type 1.1.1, in the frequency domain, corresponds to 
the study of the system output for inputs of the type u(t) = ejωt. 
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Since the system is linear, the output will be a signal containing only the 
frequency ω, the input being amplified or attenuated (and possibly a phase lag will 
appear) according to ω; i.e. the output will be of the form 

  (1.1.4) tjejHty  )()( ωω=

Figure 1.2 illustrates the behavior of a system for an input u(t) = ejωt. 
However there is nothing to stop us from considering that the input is formed 

by damped or undamped sinusoids and cosinusoids, which in this case are written 
as 

  ;)(  )( este tje tje ttu =+== ωσωσ ωσ js +=  (1.1.5) 

where s is interpreted as a complex frequency. As a result of the linearity of the 
system, the output will reproduce the input signal, amplified (or attenuated), with a 
phase lag or not, depending on the values of s; i.e. the output will have the form 

  (1.1.6) stesHty )()( =

and it must satisfy Equation 1.1.1 for u(t) = est1. 

 log H

ω

SYSTEM
u(t) =  e j ω t 

u(t) =  e st 

y(t) = H(j ω ) e jω t

y(t) = H(s) e st

 
Figure 1.2. Response of a dynamic system to periodic inputs 

From Equation 1.1.6 one gets 

 estsHs
dt

tdy
)(

)(
=  (1.1.7) 

and by introducing Equation 1.1.7 in Equation 1.1.1, while bearing in mind that 
u(t) = est, one obtains 

 stst e
T
GesH

T
s =+ )()1(  (1.1.8) 

                                                 
1 est is an eigenfunction of the system because its functional properties are preserved when passing 
through the system (only the amplitude and the phase are modified). 
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H(s), which gives the gain and phase deviation introduced by the system of 
Equation 1.1.1 at different complex frequencies, is known as the transfer function. 
The transfer function H(s) is a function of only the complex variable s. It 
represents the ratio between the system output and input when the input is est. From 
Equation 1.1.8, it turns out that, for the system described by Equation 1.1.1, the 
transfer function is 

 
Ts

G
sH

+
=

1
)(  (1.1.9) 

The transfer function H(s) generally appears as a ratio of two polynomials in s 
(H(s)=B(s)/A(s)). The roots of the numerator polynomial (B(s)) define the “zeros” 
of the transfer function and the roots of the denominator polynomial (A(s)) define 
the “poles” of the transfer function. The “zeros” correspond to those complex 
frequencies for which the system gain is null and the “poles” correspond to those 
complex frequencies for which the system gain is infinite. 

Note that the transfer function H(s) can also be obtained by two other 
techniques: 

• Replacing p by s in Equation 1.1.2 and algebraic computation of the y/u 
ratio. 

• Using the Laplace transform (Ogata 1990). 

The use of the representation of dynamic models in the form of transfer 
functions presents a certain number of advantages for the analysis and synthesis of 
closed-loop control systems. In particular the concatenation of dynamic models 
described by transfer functions is extremely easy. 

1.1.3 Stability 

The stability of a dynamic system is related to the asymptotic behavior of the 
system (when t ), starting from an initial condition and for an identically zero 
input. 

∞→

For example, consider the first-order system described by the differential 
Equation 1.1.1 or by the transfer function given in Equation 1.1.9. 

Consider the free response of the system given in Equation 1.1.1 for  and 
from an initial condition y(0) = y0: 

0≡u

 0)0(;0)(1 yyty
Tdt

dy
==+  (1.1.10) 

A solution for y will be of the form 

  (1.1.11) stKety =)(
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in which K and s are to be determined2. From Equation 1.1.11 one finds 

 stKes
dt
dy

=  (1.1.12) 

and Equation 1.1.10 becomes 

 01
=⎟

⎠
⎞

⎜
⎝
⎛ +

T
sKest  (1.1.13) 

from which one obtains 

 yK
T

s 0;
1

=−=  (1.1.14) 

and respectively 

  (1.1.15) Tteyty /
0)( −=

The response for T > 0 and T < 0 is illustrated in Figure 1.3. 

y
T<o

T>o

o

t  
Figure 1.3. Free response of the first-order system 

For T > 0, we have s < 0 and, when t ∞→ , the output will tend toward zero 
(asymptotic stability). For T < 0, we have s > 0 and, when t ∞→ , the output will 
diverge (instability). Note that s = -1/T corresponds to the pole of the first-order 
transfer function of Equation 1.1.9. 

We can generalize this result: it is the sign of the real part of the roots of the 
transfer function denominator that determines the stability or instability of the 
system. 

In order that a system be asymptotically stable, all the roots of the transfer 
function denominator must be characterized by Re s < 0. If one or several roots of 
                                                 
2 The structure of the solution for Equation 1.1.11 results from the theory of linear differential 
equations. 



6 Digital Control Systems 

the transfer function denominator are characterized by Re s > 0, then the system is 
unstable. 

For Re s = 0 we have a limit case of stability because the amplitude of y(t) 
remains equal to the initial condition (e.g. pure integrator, dy/dt = u(t); in this case 
y(t) remains equal to the initial condition). 

Figure 1.4 gives the stability and instability domains in the plane of the 
complex variable s. 

Note that stability criteria have been developed, which allow determining the 
existence of unstable roots of a polynomial without explicitly computing its roots, 
(e.g. Routh-Hurwitz’ criterion) (Ogata 1990). 

 

stable unstable

j ω 
s s 

σ 

 
Figure 1.4. Stability and instability domains in the s-plane 

1.1.4 Time Response 

The response of a dynamic system is studied and characterized for a step input. 
The response of a stable system is generally of the form shown  in Figure 1.5. 

 
Final value (FV)

(steady state)

t S 

t

Maximum overshoot (M)

FV 
O.9 FV 

t 
R 

y(t) 

 
Figure 1.5. Step response 

The step response is characterized by a certain number of parameters: 

• tR (rise time): generally defined as the time needed to reach 90% of the 
final value (or as the time needed for the output to pass from 10 to 90% of 
the final value). For systems that present an overshoot of the final value, or 
that have an oscillating behavior, we often define the rise time as the time 
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needed to reach for the first time the final value. Subsequently we shall 
generally use the first definition of tR. 

• tS (settling time): defined as the time needed for the output to reach and 
remain within a tolerance zone around the final value (± 10%, ± 5% ± 2%). 

• FV (final value): a fixed output value obtained for t ∞→ . 
• M (maximum overshoot): expressed as a percentage of the final value. 

For example, consider the first-order system 

 
sT

GsH
+

=
1

)(  

The step response for a first-order system is given by 

  )1()( /TteGty −−=

Since the input is a unitary step one has 
FV = G (static gain); tR = 2.2 T 
tS = 2.2 T (for ± 10% FV)  ;  tS = 3 T (for ± 5%FV) ;  M = 0 

and the response of such a system is represented in Figure 1.6. Note that for t = T, 
the output reaches 63% of the final value. 

 

t T 

2,2 T 

FV 

90% 

63% 

 
Figure 1.6. Step response for a first-order system 

1.1.5 Frequency Response 

The frequency response of a dynamic system is studied and characterized for 
periodic inputs of variable frequency but of constant magnitude. For continuous-
time systems, the gain-frequency characteristic is represented on a double 
logarithmic scale and the phase frequency characteristic is represented on a 
logarithmic scale only for the frequency axis. 
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Figure 1.7. Frequency responses 

The gain G(ω) = |H(jω)| is expressed in dB (|H(jω)| dB = 20 log |H(jω)|) on 
the vertical axis and the frequency ω, expressed in rad/s (ω = 2π f where f 
represents the frequency in Hz) is represented on the horizontal axis. Figure 1.7 
gives some typical frequency response curves. 

The characteristic elements of the frequency response are: 

• fB(ωB) (bandwidth): the frequency (radian frequency) from which the zero-
frequency (steady-state) gain G(0) is attenuated more than 3 dB; 

;3)0()( dBGG B −=ω  ))0(707.0)(( GG B =ω . 
• fC(ωC) (cut-off frequency): the frequency (rad/s) from which the attenuation 

introduced with respect to the zero frequency is greater than N dB; 
dBNGjG C −= )0()( ω . 

• Q (resonance factor): the ratio between the gain corresponding to the 
maximum of the frequency response curve and the value G(0). 

• Slope: it concerns the tangent to the gain frequency characteristic in a 
certain region. It depends on the number of poles and zeros and on their 
frequency distribution.  

Consider, as an example, the first-order system characterized by the transfer 
function given by Equation 1.1.9. For s = jω the transfer function of Equation 1.1.9 
is rewritten as 

 )()()(
1

)( )( ωφωω
ω

ω ωφ ∠==
+

= jHejH
Tj

GjH j  (1.1.16) 

 where |H(jω)| represents the modulus (gain) of the transfer function and ∠ φ(ω) 
the phase deviation introduced by the transfer function. We then have 

 
)1(

)()(
22T

GjHG
ω

ωω
+

==  (1.1.17) 
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 [ T
jGRe
jG ω
ω
ωωφ −=⎥

⎦

⎤
⎢
⎣

⎡
=∠ −− 11 tan

)(
)(Imtan)( ]  (1.1.18) 

 From Equation 1.1.17 and from the definition of the bandwidth ωB, we obtain: 

 TB /1=ω  

Using Equation 1.1.18, we deduce that for ω = ωB the system introduces a phase 

deviation φ (ωB) = -45°. Also note that for ω = 0, G(0) = G, ∠ ∠ φ (0) = 0° and 

for ω ∞ , G( ∞ ) = 0, ∠ φ (→ ∞ ) = -90°. 
Figure 1.8 gives the exact and asymptotic frequency characteristics for a first-

order system (gain and phase). 
As a general rule, each stable pole introduces an asymptotic slope of -20 

dB/dec (or 6 dB/octave) and an asymptotic phase lag of -90°. On the other hand, 
each stable zero introduces an asymptotic slope of +20 dB/dec and an asymptotic 
phase shift of +90°. 

It follows that the asymptotic slope of the gain-frequency characteristic in dB, 
for high frequencies, is given by 

 decdBmn
G

/20)( ×−−=
∆

∆

ω
 (1.1.19a) 

 where n is the number of poles and m is the number of zeros. 
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Figure 1.8. Frequency characteristic of a first-order system 
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The relation 

 °×−−=∞∠ 90)()( mnφ  (1.1.19b) 

 gives the asymptotic phase deviation.  
Note that the rise time (tR) for a system depends on its bandwidth (ωB). We 

have the approximate relation 

 
ω B

R
to

t
32

≈  (1.1.20) 

 1.1.6 Study of the Second-order System 

The normalized differential equation for a second-order system is given by: 

 )()()(2)( 2
0

2
002

2
tuty

dt
tdy

dt
tyd ωωζω =++  (1.1.21) 

 Using the operator p = d/dt, Equation 1.1.21 is rewritten as 

  (1.1.22)  )()()2( 2
0

2
00

2 tutypp ωωζω =++

Letting u(t) = est in Equation 1.1.21, or p = s in Equation 1.1.22, the normalized 
transfer function of a second-order system is obtained: 

 
ωωζ

ω
2
00

2

2
0

2
)(

++
=

ss
sH  (1.1.23)  

in which 

• ω0 : natural frequency in rad/s (ω0 = 2 π f0)  
• ζ  : damping factor 

The roots of the transfer function denominator (poles) are 
a)  |ζ| < 1, complex poles (oscillatory response) : 

 s1,2 = - ζ ω0 ± j ω0 1 - ζ2  (1.1.24a)  

(ω0 1 - ζ2 is called “damped resonance frequency”). 
b) ζ|   1, real poles (aperiodic response) : ≥
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 s1,2 = - ζ ω0 ± ω0 ζ2 - 1  (1.1.24b)  

The following situations are thus obtained depending on the value of the damping 
factor ζ: 

• ζ > 0 : asymptotically stable system  
• ζ < 0 : unstable system 

These different cases are summarized in Figure 1.9. 

 
ω ο
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> O ζ 

o−      ω ζ 

< O ζ 

1  -    
2

ζ 

θ = cos   ζ
−1

ω o

* 

* 

Im s 

Re s 

 
Figure 1.9. The roots of the second-order system as a function of ζ (for |ζ| 1) ≤

The step response for the second-order system described by Equation 1.1.21 is 
given by the formula (for |ζ| ≤  1) 

 )1(sin
1

11)( 2
02

0 θζω
ζ

ζω +−
−

−= − tety t  (1.1.25)  

in which 

 θ = cos-1 ζ (1.1.26)  

Figure 1.10 gives the normalized step responses for the second-order system. This 
diagram makes it possible to determine both the response of a given second-order 
system and the values of ω0 and ζ , in order to obtain a system having a given rise 
(or settling) time and overshoot. 

To illustrate this, consider the problem of determining ω0 and ζ so that the rise 
time (0 to 90% of the final value) is 2.75s with a maximum overshoot ≈ 5%. From 
Figure 1.10, it is seen that in order to ensure an overshoot ≈ 5% we must choose 
ζ = 0.7. The corresponding normalized rise time is: ω0 tM ≈  2.75. It can be 
concluded that to obtain a rise time of 2.75s, ω0 = 1 rad/sec must be taken. 
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Figure 1.10. Normalized frequency responses of a second-order system to a step input 
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Figure 1.11. Second-order system: a) maximum overshoot M as a function of the damping 
factor ζ ; b) normalized rise time as a function of ζ 
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In order to make easier the determination of ω0 and ζ for a given rise time tR and a 
given maximum overshoot M, the graph of M as a function of ζ and the graph of 
ω0 tR as a function of ζ  have been represented in Figure 1.11a, b. 

The curve given in Figure 1.11a allows choosing the damping factor ζ  for a 
given maximum overshoot M. Once the value of ζ  chosen, the Figure 1.11b gives 
the corresponding value of ω0 tR. This allows one to determine ω0 for a given rise 
time tR. 

The functions omega_damp.sci (Scilab) and omega_damp.m (MATLAB®) 
allow one to obtain the values of ω0 and ζ directly from the desired overshoot and 
rise time3. 
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Figure 1.12. Normalized frequency responses of a second-order system (gain) 

The settling time tS, for different values of ζ and of the tolerance zone around 
the final value, can be determined from the normalized responses given in Figure 
1.10. 

Figure 1.12 gives the normalized frequency responses for a second-order 
system. 

                                                 
3 To be downloaded from the book website. 
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1.1.7 Systems with Time Delay 

Many industrial processes exhibit a step response of the form shown in Figure 
1.13. The period of time during which the output does not react to the input is 
called time delay (denoted by τ). 

A first-order dynamic system with a time delay τ is described by the following 
differential equation: 

 )()(
1

τ−+−= tu
T
G

ty
Tdt

dy
 (1.1.27)  

where the argument of u(t - τ) reflects the fact that the input will act with a time 
delay of τ. Equation 1.1.27 is to be compared with Equation 1.1.1.  

The corresponding transfer function is 

 
Ts

GesH
s

+
=

−

1
)(

τ
 (1.1.28)  

in which e-sτ represents the transfer function of the time delay τ. 

τ
t

y(t)

u(t)

 
Figure 1.13. Step response of a system with time delay 

Equations 1.1.27 and 1.1.28 can be straightforwardly extended to high-order 
systems with time delay. 

Note that for the systems with time delay the rise time tR is generally defined 
from t = τ. 

The frequency characteristics of the time delay are obtained by replacing s=jω 
in e-sτ. We then obtain 

 Hdelay (j ω) = e- jωτ = | 1 | . ∠ φ(ω) (1.1.29)  

with 

 φ(ω) = - ω τ (rad) (1.1.30)  ∠
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Therefore a time delay does not modify the system gain, but it introduces a phase 
deviation proportional to the frequency. 

1.1.8 Non-minimum Phase Systems 

For continuous time systems (exclusively), non-minimum phase systems have one 
or more unstable zeros. In the continuous time case, the main effect of unstable 
zeros is the appearance of a negative overshoot at the beginning of the step 
response, as it is  shown for example in Figure 1.14. The effect of the unstable 
zeros cannot be offset by the controller (one should use an unstable controller). 
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Figure 1.14. Step responses of a non-minimum phase system (H(s)=(1-sa)/(1+s)(1+0.5s), 
a=1,0.5) 

As an example consider the system 

 
)5.01)(1(

1)(
ss

sasH
++

−
=  

with  and . Figure 1.14 represents the step response of the system.  1=a 5.0
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1.2 Closed-loop Systems 

Figure 1.15 shows a simple control system.  is the plant)(ty 4 output and represents 
the controlled variable,  is the input (control signal) applied to the plant by the 
controller (manipulated variable) and r(t) is the reference signal. 

)(tu

 

 
Figure 1.15. Control system 

The control systems have a closed-loop structure (the control signal is a 
function of the difference between the reference and the measured value of the 
controlled variable) and contains at least two dynamic systems (the plant and the 
controller). 

We shall examine in this section the computation of the closed-loop transfer 
function, the steady-state error with respect to the reference signal, the rejection of 
disturbances and stability of the closed-loop systems. 

1.2.1 Cascaded Systems 

Figure 1.16 represents the cascade connection of two linear systems characterized 
by the transfer functions H1(s) and H2(s). 

H   (s)
1

H    (s)
2{

y1(t) = H1(s) est = u2u1(t)  = est y2 (t)

H(s) = H1(s) H2(s)

 
Figure 1.16. Cascade connection of two systems 

If the input to H1(s) is u1 (t) = est the following relations are found: 

 u2(t) = y1(t) = H1(s) est (1.2.1) 
 y2(t) = H2(s) u2(t) = H2(s) H1(s) est = H(s) est (1.2.2)  

                                                 
4 the term “plant” defines the set : actuator, process to be controlled and sensor. 

+ -

Controller Plant 
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and we can conclude that the transfer function of two cascaded systems is 

 H(s) = H2(s) H1(s) (1.2.3)  

or in the general case of n cascaded systems  

 H(s) = Hn(s) Hn-1(s).....H2(s) H1(s) (1.2.4) 

1.2.2 Transfer Function of Closed-loop Systems 

Consider the closed-loop system represented in Figure 1.17. 

 
u1(t) 

H   (s)1 H   (s)2

- y (t) 

y (t) = H CL (s) est
r(t) = e st 

+ 

 
Figure 1.17. Closed-loop system 

The output y(t) of the closed-loop system in the case of an external reference 
r(t) = est is written as 

 y(t) = HCL(s) est = H2(s) H1(s) u1(t) (1.2.5)  

But u1(t) is given by the relation 

 u1(t) = r(t) - y(t) (1.2.6) 

 Introducing this relation into Equation 1.2.5, one gets 

 [1 + H2(s) H1(s)] y(t) = H2(s) H1(s) r(t) (1.2.7)  

from which 

 
)()(1

)()()(
12

12

sHsH
sHsHsHCL +

=  (1.2.8)  

The stability of the closed-loop system will be determined by the real parts of the 
roots (poles) of the transfer function denominator HCL (s). 
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1.2.3 Steady-state Error 

When carrying out the synthesis of a closed-loop system, our aim is to obtain an 
asymptotically stable system having a given response time, a specified overshoot 
and ensuring a zero steady-state error with respect to the reference signal. In Figure 
1.18, it is desired that, in steady-state, y(t) equals r(t), i.e. the steady-state gain of 
the closed-loop system between y(t) and r(t) must be equal to 1. 

 

+ 
-

r(t) y(t)
HOL(s) 

 
Figure 1.18. Closed-loop system 

In Figure 1.18 the global transfer function of the feedforward channel HOL(s) is 
of the form 
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and the transfer function in closed-loop is given by 
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=  (1.2.10)  

The steady-state corresponds to a zero frequency (s = 0). The steady-state gain is 
obtained by making s = 0 in the transfer function given by Equation 1.2.10. 

 r
ba

br
BA

BrHy CL
00

0

)0()0(
)0()0(

+
=

+
==  (1.2.11)  

in which y and r represent the stationary values of the output and the reference. 
To obtain a unitary steady-state gain (HCL(0) = 1), it is necessary that 

 01 0
00

0 =⇒=
+

a
ba

b  (1.2.12)  

This implies that the denominator of the transfer function H(s) should be of the 
following form: 

  (1.2.13)  )('.)...()( 1
1

2
21 sAssasasassA n

n =+++= −
−
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and, respectively: 

 
)('
)(1)(

sA
sB

s
sH OL ⋅=  (1.2.14) 

 Thus to obtain a zero steady-state error in closed-loop when the reference is a step, 
the transfer function of the feedforward channel must contain an integrator. 

This concept can be generalized for the case of time varying references as 
indicated below with the internal model principle: to obtain a zero steady-state 
error, HOL(s) must contain the internal model of the reference r(t). 

The internal model of the reference is the transfer function of the filter that 
generates r(t) from the Dirac pulse. E.g., Diracsstep ⋅= )/1( , 

). For more details see Appendix A. Diracsramp ⋅= )/1( 2

Therefore, for a ramp reference, HOL(s) must contain a double integrator in 
order to obtain a zero steady-state error. 

1.2.4 Rejection of Disturbances 

Figure 1.19 represents the structure of a closed-loop system in the presence of a 
disturbance acting on the controlled output. HOL(s) is the open-loop global transfer 
function (controller + plant) and is given by Equation 1.2.9. 

 

+ 
- 

r(t) y(t)
HOL(s)

p(t)  (disturbance)

+

+

 
Figure 1.19. Closed-loop system in the presence of disturbances 

Generally, we would prefer that the influence of the disturbance p(t) on the 
system output be as weak as possible, at least in given frequency regions. In 
particular, we would prefer that the influence of a constant disturbance (step 
disturbance), often called “load disturbance”, be zero during in steady-state regime 

. )0 , ( →∞→ st
The transfer function between the disturbance and the output is written as: 
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1)(
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yp +
=

+
=  (1.2.15)  

Syp(s) is called “output sensitivity function”. 
The steady-state regime corresponds to s = 0. 
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 in which y and p represent the steady-state values of the output and respectively of 
the disturbance. 

Syp(0) must be zero for a perfect rejection of the disturbance in steady-state 
regime. It follows (as in Section 1.2.3) that, in order to obtain the desired property, 
we must have a0 = 0. This implies the presence of an integrator in the direct path 
in order to have a perfect rejection of a step disturbance during steady-state regime 
(see previous section). 

As a general rule, the direct path must contain the internal model of the 
disturbance in order to obtain a perfect rejection of a deterministic disturbance (see 
previous section). 

Example: Sinusoidal Disturbance of Constant Frequency. 
The internal model of the sinusoid is  (the transfer function of the 
filter which, excited by a Dirac pulse, generates a sinusoid). For a perfect rejection 
(asymptotically) of this disturbance the controller must contain the transfer 
function  . 

)/1/(1 2
0

2 ωs+

)/1/(1 2
0

2 ωs+
In general, we also have to check if there is not an amplification of the 

disturbance’s effect in certain frequency regions. That is why we must require that 
the modulus of |Syp(jω)| be inferior to a given value at all frequencies. A typical 
value for this condition is 

 | Syp (jω) | < 2  (6 dB)     for all  ω (1.2.17) 

 We may also require that Syp(jω) introduces a given attenuation in a certain 
frequency range, if we know that a disturbance has its energy concentrated in this 
frequency range. 

1.2.5 Analysis of Closed-loop Systems in the Frequency Domain: Nyquist Plot 
and Stability Criterion 

The transfer function of the open-loop HOL(s) (Figure 1.19) can be represented in 
the complex plane when ω varies from 0 to ∞ as 

)(.)()(Im)(Re)( ωφωωωω ∠=+= jHjHjjHjH OLOLOLOL  (1.2.18)  

The plot of the transfer function in this plane is graduated in frequencies (rad/s). 
This representation is often called a Nyquist plot (or hodograph). 

Figure 1.20 shows the Nyquist plot for )1/(1)(1 ssH += and 
. Note that the plot of H2(s) corresponds to the typical case 

where an integrator is present in the loop (to ensure a zero steady-state error). 
)]1(/[1)(2 sssH +=
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-1 +1 Re H (j    )ω

Im H (j    )ω 

ω = 0

ω = 1

ω = ∞

H (j   )ω

φ

H (j   )ω
H  (s)

1

H  (s)
2

ω = 0  
Figure 1.20. Nyquist plot for )1/(1)(1 ssH += and )]1(/[1)(2 sssH +=  

These curves show the gain and phase of the transfer function at different 
frequencies. The vector joining the origin to a point on the hodograph of the 
transfer function represents H(jω) for a certain frequency ω. 

In this diagram, the point [-1, j0] plays a particularly important role (critical 
point). We can see in Figure 1.21 that the vector connecting the point [-1, j0] to the 
plot of the open-loop transfer function HOL (jω) is given by 

  (1.2.19)  )(1)(1 ωω jHjS OLyp +=−

H ( j    )ω 

H ( j    )ω Im

Re

HOL(j   ) ω 1 + HOL(j   )ω 

ω = 0 

ω = ∞ -1 

 

Figure 1.21. Nyquist plot and the critical point 

This vector corresponds to the inverse of the output sensitivity function (see 
Equation 1.2.15). The denominator of the output sensitivity function defines the 
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poles of the closed-loop transfer function. The stability properties of the system are 
determined by the denominator of the transfer function. In order that the closed-
loop system be asymptotically stable, all the poles of must lie in the half-
plane . 

)(sSyp

0Re <s
If the plot of the open-loop transfer function HOL(s) passes through the point [-

1, j0], for a value s = jω, the denominator of the closed-loop system transfer 
function will be null at this frequency. The closed-loop system will not be 
asymptotically stable (more precisely it will have poles on the imaginary axis). It 
then follows a necessary condition (but not sufficient) for the closed-loop system to 
be asymptotically stable: the hodograph of H(s) must not pass through the point [-
1, j0]. The Nyquist criterion gives the necessary and sufficient conditions for the 
asymptotic stability of the closed-loop system. 

For systems having open-loop stable poles (Re s ≤  0) the Nyquist stability 
criterion is expressed as: The plot of the open-loop transfer function HOL (s) 
traversed in the sense of growing frequencies (from ω = 0 to ω = π) must leave the 
critical point [-1, j0] on the left. 

As a general rule, a controller will be computed for the nominal model of the 
plant so that the closed-loop system be asymptotically stable, i.e. HOL (s) will leave 
the critical point on the left. 

It is also obvious that the minimal distance to the critical point will characterize 
the “stability margin” or “robustness” of the closed-loop system in relation to 
variations of the system parameters (or uncertainties in parameter values). 

1.3 PI and PID Controllers 

The PI (proportional + integral) and PID (proportional + integral + derivative) 
controllers are widely used for the control of continuous-time systems. 

An extremely rich literature has been dedicated to design methods and 
parameters adjustment of these controllers. Also note that there are several 
structures for PI and PID controllers (with different transfer function and tuning 
parameters).  

Synthesis methods for PI and PID controllers have been developed and 
implemented (see the references at the end of the chapter). These methods can be 
divided into two categories: a) methods using frequency and time characteristics of 
the plant (non–parametric model) and b) methods using the plant transfer function 
(parametric model). 

In this section, we shall only present basic schemes for PI and PID controllers 
as an introduction to the digital PI and PID controllers. 

1.3.1 PI Controller 

In general PI controllers have as input the difference between the reference and the 
measured output and as output the control signal delivered to the actuator (see 
Figure 1.15). A typical transfer function of a PI controller is 
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in which K is called the proportional gain and Ti the integral action of the PI 
controller. There also exist, however also PI controllers with independent actions, 
i.e. 
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In certain situations the proportional action may operate only on the measured 
output.  

1.3.2 PID Controller 

The transfer function of a typical PID controller is 
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in which K specifies the proportional gain, Ti characterizes the integral action, Td 
characterizes the derivative action and 1 + (Td / N) s introduces a filtering effect on 
the derivative action (low-pass filter). 

By summing up the three terms, the transfer function given by Equation 1.3.2 
can also be rewritten as 
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 (1.3.3)  

Several structures for PID controllers exist. In addition there are situations when 
the proportional and derivative actions act only on the measured output. 
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1.4 Concluding Remarks 

The behavior of controlled plants around an operating point can in general be 
described by linear dynamic models. Linear dynamic models are characterized in 
the time domain by linear differential equations and in the frequency domain by 
transfer functions. 

Control systems are closed-loop systems that contain the plant, the controller 
and the feedback connection. For these systems, the control applied to the plant is a 
function of the difference between the desired value and the measured value of the 
controlled variable. Control systems are characterized by a dynamic model that 
depends upon the structure and the coefficients of the plant and controller transfer 
functions. 

The desired control performances can be expressed in terms of the desired 
characteristics of the dynamic model of the closed-loop system (ex.: transfer 
function with specified coefficients). This allows the synthesis of the controller if 
the plant model is known. 

The plot in the complex plane of the transfer function of the open-loop system 
(controller + plant), also called Nyquist plot, plays an important role in the 
assessment of controller qualities. In particular, it allows studying of the stability 
and robustness properties of the closed-loop system. 

1.5 Notes and References 

Many books deal with the fundamentals of continuous-time control. Among the 
different titles we can mention: 

Takahashi Y., Rabins M., Auslander D. (1970) Control. Addison Wesley, 
Readings, Mass 

Franklin G., Powell J.D. (1986) Feedback Control of Dynamic Systems. Addison 
Wesley, Reading, Mass 

Ogata K. (1990) Modern Control Engineering (second edition). Prentice Hall, N.J 
Kuo B.C. (1991) Automatic Control Systems (sixth edition). Prentice Hall, N.J 
 
PID controller adjustment techniques are discussed in: 

Ziegler J.G., Nichols N.B. (1942) Optimum Settings for Automatic Controllers. 
Trans. ASME, vol. 64, pp. 759-768 

Shinskey F.G. (1979) Process Control Systems. McGraw-Hill, N.Y. 
Aström K.J., Hägglund I. (1995) PID Controllers Theory, Design and Tuning, 2nd 

edition. ISA, Research Triangle Park, N.C., U.S.A 
Voda A., Landau I.D. (1995a) A method for the auto-calibration of PID 

controllers. Automatica, vol. 31, no. 1, pp. 45-53. 
Voda A., Landau I.D. (1995b) The auto-calibration of PI controllers based on two 

frequency measurements. Int. J. of Adaptive Control and Signal Processing, 
vol. 9, no. 5, pp. 395-422 

as well as in (Takahashi et al. 1970) and (Ogata 1990). 
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Computer Control Systems 

In this chapter we present the elements and the basic concepts of computer-
controlled systems. The discretization and choice of sampling frequency will be 
first examined, followed by a study of discrete-time models in the time and 
frequency domains, discrete-time systems in closed loop and basic principles for 
designing digital controllers. 

2.1 Introduction to Computer Control  

The first approach for introducing a digital computer or a microprocessor into a 
control loop is indicated in Figure 2.1. The measured error between the reference 
and the output of the plant is converted into digital form by an analog-to-digital 
converter (ADC), at sampling instants k defined by the synchronization clock. The 
computer interprets the converted signal y(k) as a sequence of numbers, which it 
processes using a control algorithm and generates a new sequence of numbers 
{u(k)} representing the control. By means of a digital-to-analog converter (DAC), 
this sequence is converted into an analog signal, which is maintained constant 
between the sampling instants by a zero-order hold (ZOH). The cascade: ADC- 
computer-DAC should behave in the same way as an analog controller (PID type), 
which implies the use of a high sampling frequency but the algorithm implemented 
on the computer is very simple (we just do not make use of the potentialities of the 
digital computer!). 

A second and much more interesting approach for the introduction of a digital 
computer or microprocessor in a control loop is illustrated in Figure 2.2 which can 
be obtained from Figure 2.1 by moving the reference-output comparator after the 
analog-to-digital converter. The reference is now specified in a digital way as a 
sequence provided by a computer. 

In Figure 2.2 the set DAC - plant - ADC is interpreted as a discretized system, 
whose control input is the sequence {u(k)} generated by the computer, the output 
being the sequence {y(k)} resulting from the A/D conversion of the system output 
y(t). This discretized system is characterized by a “discrete-time model”, which 

25 
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describes the relation between the sequence of numbers {u(k)} and the sequence of 
numbers {y(k)}. This model is related to the continuous-time model of the plant. 

CLOCK 

 
Figure 2.1. Digital realization of an « analog » type controller 

 
Figure 2.2. Digital control system 

This approach offers several advantages. Among these advantages here we 
recall the following: 

1. The sampling frequency is chosen in accordance with the “bandwidth” of 
the continuous-time system (it will be much lower than for the first 
approach).  

DAC 
+

ZOH 
PLANT ADC COMPUTER 

e(k) y(t) e(t) u(k) u(t)

r(t) 
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-

CONTROLLER 

CLOCK 

DAC 
+

ZOH 
PLANT ADC COMPUTER 

y(k) e(k) u(k) u(t) y(t)

r(k) 
+

-

DISCRETIZED PLANT 
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2. Possibility of a direct design of the control algorithms tailored to the 
discretized plant models. 

3. Efficient use of the computer since the increase of the sampling period 
permits the computation power to be used in order to implement 
algorithms which are more performant but more complex than a PID 
controller, and which require a longer computation time. 

In fact, if one really wants to take advantage of the use of a digital computer in 
a control loop, the “language” must also be changed. This may be achieved by 
replacing the continuous-time system models by discrete-time system models, the 
continuous-time controllers by digital control algorithms, and by using dedicated 
control design techniques. 

The changing over to this new “language” (discrete-time dynamic models) 
makes it possible to use various high performing control strategies which cannot be 
implemented by analog controllers.  

The operating details of the ADC (analog-to-digital converter), the DAC 
(digital-to-analog converter) and the ZOH (zero-order hold) are illustrated in 
Figure 2.3. 

 
 
 
 

 

A.D.C.

D.A.C. 
 +        

Z.O.H.

Z.O.H.

Ts

sampling period

 
Figure 2.3. Operation of the analog-to-digital converter (ADC), the digital-to-analog 
converter (DAC) and the zero-order hold (ZOH) 
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The analog-to-digital converter implements two functions: 

1. Analog signal sampling: this operation consists in the replacement of 
the continuous signal with a sequence of values equally spaced in the 
time domain (the temporal distance between two values is the 
sampling period), as these values correspond to the continuous signal 
amplitude at sampling instants. 

2. Quantization: this is the operation by means of which the amplitude of 
a signal is represented with a discrete set of different values (quantized 
values of the signal), generally coded with a binary sequence. 

The general use of high-resolution A/D converters (where the samples are 
coded with 12 bits or more) allows one to consider the quantification effects as 
negligible, and this assumption will hold in the following. Quantization effects will 
be taken into account in Chapter 8. 

The digital-analog converter (DAC) converts at the sampling instants a discrete 
signal, digitally coded, in a continuous signal. 

The zero-order hold (ZOH) keeps constant this continuous signal between two 
sampling instants (sampling period), in order to provide a continuous-time signal. 

2.2 Discretization and Overview of Sampled-data Systems 

2.2.1 Discretization and Choice of Sampling Frequency 

Figure 2.4 illustrates the discretization of a sinusoid of frequency f0 for several 
sampling frequencies fs. 

It can be noted that, for a sampling frequency fs = 8 f0, the continuous nature of 
the analog signal is unaltered in the sampled signal. 

For the sampling frequency fs = 2 f0, if the sampling is carried out at instants 
2π f0 t other than multiples of π, a periodic sampled signal is still obtained. 
However if the sampling is carried out at the instants where 2π f0 t = nπ, the 
corresponding sampled sequence is identically zero. 

If the sampling frequency is decreased under the limit of fs = 2f0, a periodic 
sampled signal still appears, but its frequency differs from that of the continuous 
signal (f = fs - f0). 

In order to reconstruct a continuous signal from the sampled sequence, the 
sampling frequency must verify the condition (Nyquist's theorem): 

 fs > 2 fmax (2.2.1) 
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f s = 2 f 
0 

s f = 8 f 
0 

 

!! 
f s = 2 f 

0 

 
Figure 2.4. Sinusoidal signal discretization 

in which fmax is the maximum frequency to be transmitted. The frequency fs=2 fmax 
is a theoretical limit; in practice, a higher sampling frequency must be chosen. 

The existence of a maximum limit for the frequency that may be converted 
without distortion, for a given sampling frequency, is also understandable when it 
is observed that the sampling of a continuous-time signal is a “magnitude 
modulation” of a “carrier” frequency fs (analogy with the magnitude modulation in 
radio transmitters). The modulation effect may be observed in the replication of the 
spectrum of the modulating signal (in our case the continuous signal) around the 
sampling frequency and its multiples. 

The spectrum of the sampled signal, if the maximum frequency of the 
continuous signal (fmax) is less than (1/2) fs, is represented in the upper part of 
Figure 2.5. 

The spectrum of the sampled signal, if fmax > (1/2)fs, is represented in the lower 
part of Figure 2.5. The phenomenon of overlapping (aliasing) can be observed. 
This corresponds to the appearance of distortions. The frequency (1/2)fs, which 
defines the maximum frequency (fmax) admitted for a sampling with no distortions, 
is known as “Nyquist frequency” (or Shannon frequency). 
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Figure 2.5. Spectrum of a sampled signal 

For a given sampling frequency, in order to avoid the folding (aliasing) of the 
spectrum and thus of the distortions, the analog signals must be filtered prior to 
sampling to ensure that: 

 <f max f s2
1

 (2.2.2)

 

The filters used are known as “anti-aliasing filters”. A good anti-aliasing filter 
must have a minimum of two cascaded second-order cells (fmax << (1/2) fs). An 
example of an anti-aliasing filter of this type is given in Figure 2.6. These filters 
must introduce a large attenuation at frequencies higher than (1/2) fs, but their 
bandwidth must be higher than the required bandwidth of the closed loop system 
(generally higher than open loop system bandwidth). Circuits of this type (or more 
complex) are currently available. 

→ 2
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Figure 2.6. Anti-aliasing filter 
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In the case of very low frequency sampling, first a sampling at a higher 
frequency is carried out (integer multiple of the desired frequency), using an 
appropriate analog anti-aliasing filter. The sampled signal thus obtained is passed 
through a digital anti-aliasing filter followed by a frequency divider (decimation) 
thereby giving a sampled signal having the required frequency. This procedure is 
shown in Figure 2.7. It is also employed every time the frequency of data 
acquisition is higher than the sampling frequency chosen for the loop that must be 
controlled (the sampling frequency should be an integer divider of the acquisition 
frequency). 

 

A/D converter 
(acquisition frequency) 

y(t)      Anti-aliasing  
analog filter

T

Under-sampling 
( Ts = n.Ta) 

a

y (k)

T s

     Anti-aliasing 
digital filter

 
Figure 2.7. Anti-aliasing filtering with under-sampling 

2.2.2 Choice of the Sampling Frequency for Control Systems 

The sampling frequency for digital control systems is chosen according to the 
desired bandwidth of the closed loop system . Note that, no matter how the desired 
performances are specified, these can always be related to the closed loop system 
bandwidth. 

Example: Let us consider the performances imposed in Section 1.1.6 on the 
step response (maximum overshoot 5%, rise time 2.75 s). The transfer function to 
be determined corresponds to the desired closed loop system transfer function. 
From the diagrams given in Figure 1.11 we have deduced that the closed loop 
transfer function must be a normalized second-order transfer function with ζ=0.7 
and ω0=1 rad/s. By immediately using the diagrams given in Figure 1.12, it can be 
observed that the bandwidth of the closed loop system is approximately equal to 

Hzf CL
B π2

1
=  

The rule used to choose the sampling frequency in control systems is the 
following: 

  (2.2.3) ftof CL
Bs )256(=

where 

 fs: sampling frequency,   : closed loop system bandwidth f CL
B
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Rule of Equation 2.2.3 is equally used in open loop, when it is desired to 
choose the sampling frequency in order to identify the discrete-time model of a 
plant. In this case  is replaced by an estimation of the bandwidth of the plant. CL

Bf
For information purposes, Table 2.1 gives the sampling periods (Ts = 1/fs) used 

for the digital control of different types of plants. 
The rule for choosing the sampling frequency given in Equation 2.2.3 can be 

connected to the transfer function parameters. 

First- order system 
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In this case the system bandwidth is 
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(an attenuation greater than 3 db is introduced for frequencies higher than ω0 = 
1/T0 = 2π f0). 

Table 2.1. Choice of the sampling period for digital control systems (indicative values) 

 
Type of variable 

(or plant)) 

Sampling period (s) 

Flow rate 1 – 3 

Level 5 – 10 

Pressure 1 – 5 

Temperature 10 - 180 

Distillation 10 - 180 

Servo-mechanisms 0.001 - 0.05 

Catalytic reactors 10 - 45 

Cement plants 20 - 45 

Dryers 20 – 45 
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By applying the rule of Equation 2.2.3 the condition for choosing the sampling 
period is obtained (Ts = 1/fs): 

 0
0

4
TT

T
s <<  (2.2.4) 

This corresponds to the existence of two to nine samples on the rise time of a step 
response. 

Second- order system 
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)(

++
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ωζω
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The bandwidth of the second-order system depends on ω0 and on ζ (see Figure 
1.12).  

For example: 

 
π

ωζ
2

7.0 0=⇒= f B  

 
π
ωζ

2
6.01 0=⇒= f B  

By applying the rule of Equation 2.2.3, the following relations are obtained 
between the natural frequency ω0 and the sampling period Ts : 

 0.25  ω0 Ts ≤  1   ;     ζ = 0.7 (2.2.5) ≤

and 

 0.4 ≤  ω0 Ts ≤  1.75 ;    ζ = 1 (2.2.6) 

The lower values correspond to the choice of a high sampling frequency and 
the upper values to the choice of a low sampling frequency. 

For simplicity's sake, given that in closed loop the behavior frequently chosen 
as the desired behavior is that of a second order having a damping factor 
ζ  between 0.7 and 1, the following rule can be used (approximation of Equations 
2.2.5 and 2.2.6): 

 0.25 ≤  ω0 Ts ≤  1.5    ;      0.7 ≤≤ ζ 1 (2.2.7) 
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2.3 Discrete-time Models 

2.3.1 Time Domain 

Figure 2.8 illustrates the response of a continuous-time system to a step input, a 
response that can be simulated by a first order system (an integrator with a 
feedback gain indicated in the figure). 

+
-

 1
T

G 
T I

t

u

t

y
u y
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Figure 2.8. Continuous-time model 

The corresponding model is described by the differential equation 

 )()(
1

tu
T
G

ty
Tdt

dy
+−=  (2.3.1) 

or by the transfer function 

 
sT

G
sH

+
=

1
)(  (2.3.2) 

where T is the time constant of the system and G is the gain. 
If the input u(t) and the output y(t) are sampled with a specified sampling 

period, the representations of u(t) and y(t) are obtained as number sequences in 
which t (or k) is now the normalized discrete-time (real time divided by the 
sampling period, t = t/Ts). The relation between the input sequence {u(t)} and the 
output sequence {y(t)} can be simulated by the scheme given in Figure 2.9 by 
using a delay (backward shift) operator (symbolized by q-1: y(t-1) = q-1 y(t)), 
instead of an integrator. 

This relation is described in the time domain by the algorithm (known as 
recursive equation or difference equation) 

 y(t) = -a1 y(t-1) + b1 u(t-1) (2.3.3) 
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Figure 2.9. Discrete-time model 

Let us now examine in greater detail the discrete-time model given by Equation 
2.3.3 for a zero initial condition (y(0) = 0) and a discrete-time unit step input: 

⎩
⎨
⎧

≥
<
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01
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)(
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The response is directly computed by recursively using Equation 2.3.3 from  t = 0 
(in the case of discrete-time models there are no problem with the integration of the 
differential equations like in continuous time). We shall examine two cases. 

Case 1.  a1 = - 0.5    ;      b1 = 0.5 
The output values for different instants are given in Table 2.2 and the 
corresponding sequence is represented in Figure 2.10. 

Table 2.2. Step response of a first-order discrete-time model (a1= -0.5, b1= 0.5) 

T 0 1 2 3 4 5 

y(t) 0 0.5 0.75 0.875 0.937 0.969 

1    2      3     4      5     6 t

y

0,5

1 -

 
Figure 2.10. Step response of a first-order discrete- time model (a1 = -0.5, b1= 0.5) 

It is observed that the response obtained resembles the step response of a 
continuous-time first order system which has been sampled. An equivalent time 
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constant for the continuous-time system can even be determined (rise time from 0 
to 90 %: tR = 2.2 T). From Table 2.2, one then obtains 

 
2.2

4
2.2

3 ss T
T

T
<<  

Case 2.  a1 = 0.5   ;     b1 = 1.5 
Output values for different instants are given in Table 2.3 and the corresponding 
sequence is represented in Figure 2.11. 

Table 2.3. Step response of a first-order discrete-time model (a1=0.5; b1=1.5) 

T 0 1 2 3 4 5 

y(t) 0 1.5 0.75 1.125 0.937 1.062 
 
An oscillatory damped response is observed with a period equal to two sampling 
periods. This type of phenomenon cannot result from the discretization of a 
continuous-time first order system, since this latter is always a-periodic. It may 
thus be concluded that the first order discrete-time model corresponds to the 
discretization of a first order continuous-time system only if a1 is negative1. 

 

1     2     3      4     5     6

y 

0,5 Damped 
oscillating 
response 

1 - 

1,5 - 

t  
Figure 2.11. Step response of a first-order discrete-time model (a1=0.5; b1=1.5) 

We now go back to the method used to describe discrete-time models. The 
delay operator q-1 is used to obtain a more compact writing of the recursive 
(difference) equations which describe discrete-time models in the time domain (it 
has the same function as the operator p = d/dt for continuous-time systems). The 
following relations hold: 

                                                 
1 For a positive , this corresponds to the discretization of a 2nd order system, with a damped resonant 
frequency equal to  (see Section 2.3.2). 

1a
sf5.0



 Computer Control Systems 37 

  (2.3.4) 
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−

By using the operator q-1, Equation 2.3.3 is rewritten as 

 (1 + a1 q-1) y(t) = b1 q-1 u(t) (2.3.5) 

Discrete-time models may also be obtained by the discretization of the differential 
equations describing continuous-time models. This operation is used for the 
simulation of continuous-time models on a digital computer. 

Let us consider Equation 2.3.1 and approximate the derivative by 

 
T

tyTty
dt
dy

s

s )()( −+
=  (2.3.6)

 

Equation 2.3.1 will be rewritten as 
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By multiplying both sides of Equation 2.3.7 by Ts, and with the introduction of the 
normalized time t (= t/Ts), it follows that 

 )()(1)1( tuTT
Gty

T
Tty s

s =⎟
⎠
⎞

⎜
⎝
⎛ −++  (2.3.8) 

which can be further rewritten as: 

 (1 + a1 q-1) y(t+1) = b1 u(t) (2.3.9) 

where 

  11 −=
T
T

a s    (< 0)  ;   TT
G

b s=1  

Shifting Equation 2.3.9 by one step, Equation 2.3.3 is obtained. 
We point out that, in order to represent a first-order continuous model with 

Equation 2.3.9, the condition a1 < 0 must be verified. As a consequence, the 
sampling period Ts must be smaller than time constant T (Ts < T). This result 
corresponds to the upper bound in Equation 2.2.4, introduced for sampling period 
selection of a first-order system as a function of the desired closed loop bandwidth. 
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If Equation 2.3.6 is the approximation of the “derivative”, the digital integrator 
equation can be directly deduced. Thus, if normalized time is used, Equation 2.3.6 
is written as 

 )()1()1()( 1 tyqtytypyy
dt
d −−=−−≈=  (2.3.10) 

where (1 - q-1) is now equivalent to p. As the integration is the opposite of the 
differentiation, one obtains: 

 )(
1

11)( 1 ty
q

y
p

dtyts
−−

≈== ∫  (2.3.11) 

Multiplying both sides of Equation 2.3.11 by (1-q-1), it follows that 

 s(t) (1 - q-1) = y(t)  (2.3.12) 

which we can rewrite as 

 s(t) = s(t-1) + 1 . y(t) (2.3.13) 

corresponding to the approximation of the integration operation by means of the 
rectangular rule, as illustrated in Figure 2.12 (if continuous-time is used, Equation 
2.3.13 is written as s(t) = s(t-Ts) + Ts.y(t)). 

 y 
 

 

 

 tt-1

y(t)

s(t-1)

Figure 2.12. Numerical integration 

2.3.2 Frequency Domain 

The study of continuous-time models in the frequency domain has been carried out 
considering a periodic input of the complex exponential type  

 e 
jωt = cos ωt + j sin ωt  

or est with s = σ + jω. 



 Computer Control Systems 39 

For the study of discrete-time models in the frequency domain we shall 
consider complex (sampled) exponentials, i.e. sequences resulting from complex 
continuous-time exponentials evaluated at the sampling instants t = k Ts. 

These sequences will thus be written as 

  ;   ;  k=1,2,3… kTj se ω ksTse

Since the discrete-time models being considered are linear, if a signal of a certain 
frequency is applied to the input, a signal of the same frequency, but amplified or 
attenuated according to the frequency, will be found at the output. This is 
summarized in Figure 2.13. in which H(s) is the “transfer function” of the system 
that expresses the dependence of the gain and the phase-deviation on the complex 
frequency s ( ωσ js += ). 

u(t)=ejωTsk y(t)=H(jω)ejωTsk 
DISCRETE TIME  

 
Figure 2.13. Frequency response of a discrete-time system 

If the input of the system is in the form , the output will be ksTse

  (2.3.14) ksTsesHty )()( =

and respectively 

  (2.3.15) )()()()1( )1( tyeesHeesHty ssss sTksTsTksT −−− ===−

It is thus observed that shifting backward by one step is equivalent to multiplying 
by . ssTe−

Let now determine the transfer function related to the recursive Equation 2.3.3. 
In this case  and the output will be in the form of Equation 2.3.14. By 
also using Equation 2.3.15 one obtains: 

ksTsetu =)(

  (2.3.16) ksTsTksTsT ssss eebesHea −− =+ 11 )()1(

from which results 

SYSTEM u(t)=esTsk y(t)=H(s)esTsk
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We consider now the following change of variable: 

  (2.3.18) ssTez =

which corresponds to the transformation of the left half-plane of the s-plane into 
the interior of the unit circle centered at the origin in the z- plane, as illustrated by 
Figure 2.14. 

Re s > 0

 

Figure 2.14. Effect of the transformation z = e  ssT

With the transformation given by Equation 2.3.18 the transfer function given in 
Equation 2.3.17 becomes 
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Note that the transfer function in z-1 can be directly obtained from the recursive 
Equation 2.3.3 by using the delay operator q-1 (see Equation 2.3.5), and afterwards 
by formally computing the ratio y(t)/u(t) and replacing q-1 with z-1. This procedure 
can obviously be applied to all models described by linear difference equations 
with constant coefficients, regardless of their complexity. The same result can be 
also derived by means of the z - transform (see Appendix A, Section A.2) 

We also remark that the transfer functions of discrete-time models are often 
written in terms of q-1. It is of course understood that the meaning of q-1 varies 
according to the context (delay operator or complex variable). When q-1 is 
considered as a delay operator, the expression H(q-1) is named “transfer operator”. 
It must be observed that the representation by transfer operators can also be used 
for models described by linear difference equations with time varying coefficients 
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as well. In contrast, the interpretation of q-1 as a complex variable (z-1) is only 
possible for linear difference equations with constant coefficients.  

Properties of the Transformation  ssTez =
The transformation of Equation 2.3.18 is not bijective because several points in the 
s- plane are transformed at the same point in the z-plane. Nevertheless, we are 
interested in the s-plane being delimited between the two horizontal lines crossing 
the points ]2/,[ sj0 ω+  and ]2/,[ sj0 ω−  where ωs = 2π fs = 2π /Ts. This region is 
called “primary strip”. 
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Figure 2.15. Effects of the transformation z = e on the points located in the “primary 
strip” in s-plane 

ssT

The complementary bands are outside the frequency domain of interest if the 
conditions of the Shannon theorem (Section 2.2.1) have been satisfied. 
Figure 2.15 gives a detailed image of the effects of the transformation for 
the points that are inside the “primary strip”. 

ssTez =

Attention must be focused on an important aspect for continuous second-order 
systems in the form:  

 
ss 2

0
2
0

0
2

2 ++ ωζω
ω           (ζ<1) 

for which the resonant damped frequency is equal to half the sampling frequency:  

 2/1 2
0 sωζω =−  

The image of their conjugates poles  

202,1
ωωζ sjs ±−=  
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through the transformation corresponds to a single point placed on the 
real axis in the z- plane and with negative abscissa. 

esTez =

One gets: 
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This is the reason why discrete-time models in the form of Equation 2.3.3 such as 

 (1 + a1 q-1) y(t) = b1 q-1 u(t) 

give oscillating step responses for a1 > 0 (damped if |a1| < 1) with period 2Ts (see 
Section 2.3.1). These first-order discrete-time models have the same poles as the 
discrete-time models derived from second-order continuous-time systems having a 
damped resonant frequency equal to ωs /2. 

2.3.3 General Forms of Linear Discrete-time Models 

A linear discrete-time model is generally described as 
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in which d corresponds to a pure time delay which is an integer multiple of the 
sampling period. 

Let us introduce the following notations: 
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  (2.3.24) 
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By using the delay operator q-1 in Equation 2.3.20 and taking into account the 
notations of Equations 2.3.21 to 2.3.24, the Equation 2.3.20 describing the discrete-
time system is written as 

 A(q-1) y(t) = q-d B(q-1) u(t) (2.3.25) 

or in the predictive form (by multiplying both sides by qd) 

 A(q-1) y(t+d) = B(q-1) u(t) (2.3.26) 

Equation 2.3.25 can also be written in a compact form using the pulse transfer 
operator 

 y(t) = H(q-1) u(t) (2.3.27) 

where the pulse transfer operator is given by 
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The pulse transfer function characterizing the system described by Equation 2.3.20 
is obtained from the pulse transfer operator given in Equation 2.3.28 by replacing 
q-1 with z-1 2  
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Pulse Transfer Function Order 
To evaluate the order of a discrete time model represented by the pulse transfer 
function in the form of Equation 2.3.29, the representation in terms of positive 
power of z is needed. If d is the system pure time delay expressed as number of 
samples, nA the degree of the polynomial A(z-1) and nB the degree of the 
polynomial B(z-1), one must multiply both numerator and denominator of H(z-1) by 
zn in order to obtain a proper3 pulse transfer function H(z) on the positive powers 
of z, where 

                                                 
2 The pulse transfer operator H(q-1) can be used for a compact representation of the input-output 
relationship even in the case of  A(q-1) and B(q-1) have time depending coefficients. The pulse transfer 
function H(z-1) is only defined for the case of A(q-1) and B(q-1) are with constant coefficients. 
3 This means that the denominator degree is greater than (or equal to) the numerator degree. 
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n= max (nA, nB + d) 

n represents the discrete-time system order (the higher power of a term in z in the 
pulse transfer function denominator). 

Example 1:  
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n = max (1, 5) = 5 
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Example 2:  
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One notes that the order n of an irreducible pulse transfer function also corresponds 
to the number of states for a minimal state space system representation associated 
to the transfer function (See Appendix C). 

2.3.4 Stability of Discrete-time Systems  

The stability of discrete-time systems can be studied either from the recursive 
(differences) equation describing the discrete-time system in the time domain, or 
from the interpretation of difference equations solutions as sums of discretized 
exponentials. We shall use examples to illustrate both these approaches. 

Let us assume that the recursive equation is 

 y(t) = -a1 y(t-1)  ;     y(0) = y0 (2.3.30) 

which is obtained from Equation 2.3.3 when the input u(t) is identically zero. The 
free response of the system is written as  

 y(1) = -a1 y0  ;   y(2) = (-a1)2 y0  ;   y(t) = (-a1)t y0 (2.3.31) 
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The asymptotic stability of the system implies 

  (2.3.32) 0)(lim =
∞→

ty
t

The condition of asymptotic stability thus results from Equation 2.3.31. It is 
necessary and sufficient that 

 |a1| < 1 (2.3.33) 

On the other hand, it is known that the solution of the recursive (difference) 
equations is of the form (for a first-order system): 

  (2.3.34) ttTs KzeKty s ==)(

By introducing this solution into Equation 2.3.30, and taking into account Equation 
2.3.15, one obtains 

  (2.3.35) 0)1()1( 1
11 =+=+ −− ttsTsT KzzaKeea ss

from which it follows that 

  (2.3.36) 1
)( aeeeez ssss TjTTjsT −==== + ωσωσ

For this solution to be asymptotically stable, it is necessary that σ = Re s < 0 which 
implies that eσTs < 1 and respectively |z| < 1 (or |a1| < 1). 

However, the term (1 + a1 z-1) is nothing more than the denominator of the 
pulse transfer function related to the system described by Equation 2.3.3 (see 
Equation 2.3.19). 

The result obtained can be generalized. For a discrete-time system to be 
asymptotically stable, all the roots of the transfer function denominator must be 
inside the unit circle (see Figure 2.14): 

 1 + a1 z-1 +.....+ an z-n = 0 ⇒   |z| < 1 (2.3.37) 

In contrast, if one or several roots of the transfer function denominator are in the 
region defined by |z| > 1 (outside the unit circle), this implies that Re s > 0 and 
thus the discrete-time system will be unstable. 

As for the continuous-time case, some stability criteria are available (Jury 
criterion, Routh-Hurwitz criterion applied after the change of variable 
w = (z + 1)/(z-1)) for establishing the existence of unstable roots for a polynomial 
in the variable z with no explicit calculation of the roots (Åström and Wittenmark 
1997). 
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A helpful tool to test z-polynomial stability is derived from a necessary 
condition for the stability of a z-1-polynomial. This condition states: the evaluations 
of the polynomial A(z-1) given by Equation 2.3.37 in z = 1, (A(1)) and in z = -1 
(A(-1)) must be positive (the coefficient of A(q-1) corresponding to z0 is supposed 
to be positive). 

Example:  

 A(z-1) = 1 – 0.5 z-1    (stable system) 

 A(1) = 1 – 0.5 = 0.5 > 0   ;    A(-1) = 1 + 0.5 = 1.5 > 0 

 A(z-1) = 1 – 1.5 z-1;    (unstable system) 

 A(1) = - 0. 5 < 0   ;    A(-1) = 2.5 > 0 

2.3.5 Steady-state Gain 

In the case of continuous-time systems, the steady-state gain is obtained by making 
s = 0 (zero frequency) in the transfer function. In the discrete case, s = 0 
corresponds to 

  (2.3.38) 10 ==⇒= sTezs

and thus the steady-state gain G(0) is obtained by making z = 1 in the pulse 
transfer function. Therefore for the first-order system one obtains: 
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Generally speaking, the steady-state gain is given by the formula 
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In other words, the steady-state gain is obtained as the ratio between the sum of the 
numerator coefficients and the sum of the denominator coefficients. This formula 
is quite different from the continuous-time systems, where the steady-state gain 
appears as a common factor of the numerator (if the denominator begins with 1). 
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The steady-state gain may also be obtained from the recursive equation 
describing the discrete-time models, the steady-state being characterized by u(t) = 
const. and y(t) = y(t-1) = y(t-2)....  
From Equation 2.3.3, it follows that 

 (1 + a1) y(t) = b1 u(t) 

and respectively 
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2.3.6 Models for Sampled-data Systems with Hold 

Up to this point we have been concerned with sampled-data systems models 
corresponding to the discretization of inputs and outputs of a continuous-time 
system. However, in a computer controlled system, the control applied to the plant 
is not continuous. It is constant between the sampling instants (effect of the zero-
order hold) and varies discontinuously at the sampling instants, as is illustrated in 
Figure 2.16. 

It is important to be able to relate the model of the discretized system, which 
gives the relation between the control sequence (produced by the digital controller) 
and the output sequence (obtained after the analog-to-digital converter), to the 
transfer function H(s) of the continuous-time system. The zero-order hold, whose 
operation is reviewed in Figure 2.17 introduces a transfer function in cascade with 
H(s). 

 

ADC
DAC 

+  
ZOH

PLANT

H (z  )-1

H(s)

 
Figure 2.16. Control system using an analog-to-digital converter followed by                        
a zero-order hold 

ZERO 
ORDER 
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Ts

1(t-T  )

+

1(t)

Ts

s  
Figure 2.17. Operation of the zero-order hold 
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The hold converts a Dirac pulse given by the digital-to-analog converter at the 
sampling instant into a rectangular pulse of duration Ts, which can be interpreted as 
the difference between a step and the same step shifted by Ts. As the step is the 
integral of the Dirac pulse, it follows that the zero-order hold transfer function is 
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Equation 2.3.40 allows one to consider the zero-order hold as a filter having a 
frequency response given by 
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From the study of this response in the frequency region 2/0 sff ≤≤  
( 2/0 sωω ≤≤ ), one can conclude: 

1. The ZOH gain at the zero frequency is equal to: GZOH(0) = Ts. 
2. The ZOH introduces an attenuation at high frequencies. For f = fs / 2 one 

gets G(fs / 2) = 
π
2

Ts = 0.637 Ts (-3. 92 dB). 

3. The ZOH introduces a phase lag which grows with the frequency. This 
phase lag is between 0 (for f = 0) and - π /2 (for f = fs / 2) and should be 
added to the phase lag due to H(s). 

The global continuous-time transfer function will be 

 )(1)(' sH
s
esH

Ts s−−
=  (2.3.41)

 

to which a pulse transfer function is associated. 
Tables which give the discrete-time equivalent of systems with a zero-order 

hold are available. Some typical situations are summarized in Table 2.4. 
The computation of ZOH sampled models for transfer functions of different 

orders can be done by means of the functions: cont2disc.sci (Scilab) or cont2disc.m 
(MATLAB®). The corresponding sampled model (with Z.O.H) for a second-order 
system characterized by 0ω and ζ can be obtained with the functions ft2pol.sci 
(Scilab) or ft2pol.m (MATLAB®)4. 

                                                 
4 To be downloaded from the book website. 
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2.3.7 Analysis of First-order Systems with Time Delay 

The continuous-time model is characterized by the transfer function 
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where G is the gain, T is the time constant and τ is the pure time delay. If Ts is the 
sampling period, then τ is expressed as 

 τ = d Ts + L  ;   0 < L < Ts (2.3.43) 

where L is the fractional time delay and d is the integer number of sampling 
periods included in the delay and corresponding to a sampled delay of d-periods. 
From Table 2.4, one derives the transfer function of the corresponding sampled 
model (when a zero-order hold is used) 
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The effect of the fractional time delay can be seen in the appearance of the 
coefficient b2 in the transfer function. For L = 0, one gets b2 = 0. On the other 
hand, if L = Ts, it follows that b1 = 0, which correspond to an additional delay of 
one sampling period. For L<0.5Ts one has b2 < b1, and for L>0.5Ts one has 
b2 > b1. For L=0.5Ts b2 ≈ b1. Therefore, a fractional delay introduces a zero in the 
pulse transfer function. For L > 0.5 Ts the relation |b2| > |b1| holds and the zero is 
outside the unit circle (unstable zero)5. 

The pole-zero configuration in the z plane for the first-order system with ZOH 
is represented in Figure 2.18. The term z-d-1 introduces d+1 poles at the origin    
[H(z) = (b1z + b2) / zd+1 (z + a1)]. 

 

 

                                                 
5 The presence of unstable zeros has no influence on the system stability, but it imposes constraints on 
the use of controller design techniques based on the cancellation of model zeros by controller poles. 
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Table 2.4. Pulse transfer functions for continuous-time systems with zero-order hold 
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Figure 2.19 represents the step responses for a system characterized by a pulse 
transfer function 
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with 1
1 1

1 =
+ a
b (steady-state gain = 1) for different values of the parameter a1: 

 a1 = -0.2 ;  -0.3 ;  -0.4 ;  -0.5 ;  -0.6 ;  -0.7 ;  -0.8 ;  -0.9 
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Figure 2.18. Pole-zero configuration of the sampled-data system described by Equation 
2.3.44 ( first order system with ZOH) 

On the basis of these responses, it is easy to derive the time constant of the 
corresponding continuous-time system, expressed in terms of the sampling period 
(the time constant is equal to the time required to reach 63% of the final value). 

The presence of a time delay equal to an integer multiple of the sampling 
period only causes a time shift in the responses given in Figure 2.19.  
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Figure 2.19. Step responses of the discrete-time system b1 z-1/(1+a1 z-1) for different values 
of a1 and [b1 /(1+ a1) ]=1 

The presence of a fractional time delay has as a main consequence a 
modification at the beginning of the step response, if compared to the case with no 
fractional time delay. 

Exercise. Assuming that the sampled-data system model is 
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 y(t) = - 0.6 y(t-1) + 0.2 u(t-1) + 0.2 u(t-2) 

What is the corresponding continuous-time model? 
It is interesting to analyze the relation between the location of the pole 

( ) and the rising time of the system. Figure 2.19 indicates that the response 
of the system becomes slower as the pole of the system moves toward the point [1, 
j0], and it becomes faster as the pole of the system approaches the origin (z = 0). 
These considerations can be applied to systems with several poles. 

1az −=

In the case of systems with more than one pole, the term “dominant pole(s)” is 
introduced to characterize the pole (or the poles) that is (are) the closest to the 
point [1,j0], i.e. which is the slowest pole(s). 

Figure 2.20 shows the frequency responses (magnitude and phase) of the first- 
order discrete system given by 2.3.45 for a1 = - 0.8; -0.5; -0.3. It can be observed 
that the bandwidth increases when the system pole is approaching the origin (faster 
pole). We can also remark that the phase lag at the frequency 0.5fs is   -180o due to 
the presence of the ZOH (see Section 2.3.6). 
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Figure 2.20. Frequency responses (magnitude and phase) of the discrete-time model b1 z-1 / 
(1 + a1 z-1) for different values of a1 and b1 

2.3.8 Analysis of Second-order Systems 

The pulse transfer function corresponding to the discretization with a zero-order 
hold of a normalized second-order continuous-time system, characterized by a 
natural frequency ω0 and a damping ζ, is given by 
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where d represents the integer number of sampling periods contained in the delay. 
The values of a1, a2, b1, b2 as a function of ω0 and ζ for a pure time delay τ = d·Ts 
are given in Table 2.4. 

It is interesting to express the poles of the discretized system as a function of 
ω0, ζ and the sampling period Ts (or the sampling frequency fs). 

From Table 2.4 the following relations are easily found (for ζ < 1): 
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The poles of the pulse transfer function (roots of the denominator) are found by 
solving the equation 

 z2 + a1z + a2 = (z - z1) (z - z2) = 0 

From the expressions of a1 and a2 the solutions are directly derived: 
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Note that the poles of the discretized system correspond to the poles of the 
continuous-time system ζωωζ 2

002,1 1−±= js by applying the transformation 

. ssTez =
For ζ < 1, the poles of the discretized system are complex conjugate and, 

consequently, symmetric with respect to the real axis. They are characterized by a 
module and a phase given by 
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Figure 2.21. The curves =ζ constant and == ss ffT /2/ 00 πω constant in the z-plane for 
a second-order discrete-time system 

Note that the poles location depends upon ζ and ω0Ts (or ω0/ωs = f0/fs).  
That is: 

 z = f(ζ, ω0 Ts / 2π) = f(ζ, f0/fs ) 

and in the z-plane the following curves can be drawn: 

 z = f(ω0 Ts /2π ) = f(f0 /fs)  for ζ = constant 

and 

 z = f(ζ) for ω0 Ts /2π = f(f0 /fs) = constant 

We must remember (see Figure 1.9) that in the s-plane (continuous system) the 
curves ζ = constant are straight lines forming an angle θ = cos-1ζ with the real axis 
and the curves ω0 = constant are circles with radius ω0 (these two sets of curves 
are orthogonal). In the z-plane the curves z = f (ω0 Ts) for ζ = constant are 
logarithmic spirals that are orthogonal in each point to the curves z: f(ζ) for ω0 Ts = 
constant. 
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 Figure 2.21 shows the set of curves z = f(ζ) for ω0 Ts/2π = constant and z = 
f(ω0 Ts/2π) for ζ = constant corresponding to different values of ζ and ω0Ts/2π 
(respectively f0/fs). 

We should also remember (see Section 2.3.2) that for 

⎟
⎠
⎞⎜

⎝
⎛ −== 2

00 12/1// ζωω ssff , the corresponding poles in the z- plane are 

confounded ( z1,2 = ±π ), and they are located on the segment of the real axis (-

1,0) having an abscissa coordinate equal to 

∠

21 ζ

πζ

−
−

− e . 
The stability domain of the second-order discrete-time system in the plane of 

the parameters a1 - a2 is a triangle (see Figure 2.22). For values of a1, a2 placed 
inside of the triangle, the roots of the denominator of the pulse transfer function are 
inside the unit circle. 
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Figure 2.22. Stability domain for the second-order discrete-time system 

2.4 Closed Loop Discrete-time Systems  

2.4.1 Closed Loop System Transfer Function 

 
Figure 2.23 gives the diagram of a closed loop discrete-time system. The transfer 
function on the feedforward channel can result from the cascade of a digital 
controller and of the group DAC+ ZOH + continuous-time system + ADC 
(discretized system). 
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Figure 2.23. Closed loop discrete-time system 

Let 
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be the feed-forward channel transfer function with 
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where the coefficients b1, b2 ... bd may be zero if there is a time delay of d 
sampling periods. 

In the same way as for continuous-time systems, the closed loop transfer 
function connecting the reference signal r(t) to the output y(t) is written as 
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The denominator of the closed loop transfer function, whose roots correspond to 
the closed loop system poles, is also called characteristic polynomial of the closed 
loop. 

2.4.2 Steady-state Error 

The steady-state is obtained for r(t) = constant by making z = 1, corresponding to 
the zero frequency (z = esTs = 1 for s = 0).  

 
It follows from Equation 2.4.3 that 

 r
bA

b
rHy

B

B

n

i
i

n

i
i

CL

∑

∑

=

=

+
==

1

1

)1(
)1(  (2.4.4) 



 Computer Control Systems 57 

where HCL(1) is the steady-state gain (static gain) of the closed loop system. In 
order to obtain a zero steady-state error between the reference signal r and the 
output y, it is necessary that 

 HCL(1) = 1 (2.4.5) 

From Equation 2.4.4 the following conditions are derived: 
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In order to obtain A(1) = 0, A(z-1) must have the following structure: 

 A(z-1) = (1 - z-1) · A'(z-1) (2.4.7) 

where 

  (2.4.8) '
'

...1)(' 1
1

1 A
A

n
n zazazA −−− +++=

and thus the global transfer function of the feedforward channel must be of the type 
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It is thus observed that the feedforward channel must contain a digital integrator in 
order to obtain a zero steady-state error in closed loop. This situation is similar to 
the continuous case (see Section 1.2.3) and internal model principle is also 
applicable to discrete-time systems.  

2.4.3 Rejection of Disturbances  

In the presence of a disturbance p(t) acting on the controlled output (see Figure 
2.23), the objective is to reduce its effect as much as possible, at least in some 
frequency regions. 

In particular, the constant disturbance effect (a step), often called “load 
disturbance”, is expected to be zero in steady-state (t ∞→ ,  z →1). 

The pulse transfer function, which links the disturbance to the output, is 
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As for the continuous-time case, Syp (z-1) is called “output sensitivity function”. 
The steady-state is obtained for z = 1. It follows that 
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(where p is the stationary value of the disturbance). 
In order to achieve a perfect steady-state disturbance rejection, it is necessary 

that Syp(1) = 0 and thus A(1) = 0. This implies that A(z-1) must have the form given 
in Equation 2.4.7, corresponding to the integrator insertion in the feedforward 
channel. 

Similarly, to the continuous case, a perfect steady-state disturbance rejection 
implies that the feedforward channel must contain the internal model of the 
disturbance (the transfer function that produces p(t) from a Dirac pulse). 

As in the continuous-time case, it should be avoided that an amplification of the 
disturbance effect occurs in certain frequency regions. This is the reason why |Syp 
(e-jω)| must be lower than a specified value for all frequencies f = ω/2π ≤  fs / 2.  

A typical value used as upper bound is  

|Syp (e - jω) | ≤  2       0 ≤ ω ≤π fs 

Furthermore, if it is known that a disturbance has its energy concentrated in a 
particular frequency region, |Syp (ejω)| may be constrained to introduce a desired 
attenuation in this frequency region. 

2.5 Basic Principles of Modern Methods for Design of Digital 
Controllers 

2.5.1 Structure of Digital Controllers 

Figure 2.24 gives the diagram of a PI type analog controller. The controller 
contains two channels (a proportional channel and an integral channel) that process 
the error between the reference signal and the output. 

In the case of sampled-data systems the controller is digital, and the only 
operations it can carry out are additions, multiplications, storage and shift. All the 
digital control algorithms have the same structure. Only “the memory” of the 
controller is different, that is the number of coefficients. 

Figure 2.25 illustrates the computation structure of the control u(t) applied to 
the plant at the instant t by the digital controller. This control is a weighted average 
of the measured output at instants t, t-1,...., t-nA .., of the previous control values at 
instants t-1, t-1…, t-nB… and of the reference signal at instants t, t-1,…, the weights 
being the coefficients of the controller. 
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Figure 2.24. PI analog controller 

Figure 2.25. Digital controller 

This type of control law can even be obtained by the discretization of a PI or 
PID analog controller. We shall consider, as an example, the discretization of a PI 
controller. The control law for an analog PI controller is given by 
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For the discretization of the PI controller, p (the differentiation operator) is 
approximated by   (see Section 2.3.1, Equation 2.3.6). This yields sTq /)1( 1−−
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and the equation of the PI controller becomes 
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Multiplying both sides of Equation 2.5.4 by (1 - q-1), the equation of the digital PI 
controller is written as 

 S(q-1) u(t) = T(q-1) r(t) - R(q-1) y(t) (2.5.5) 

where 

 S(q-1) = 1 - q-1 = 1 + s1 q-1   (s1 = - 1) (2.5.6) 
 R(q-1) = T(q-1) = K (1+Ts/Ti) -K q-1 = r0 + r1 q-1 (2.5.7) 

which leads to the diagram represented in Figure 2.26. 
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Figure 2.26. Digital PI controller 

Taking into account the expression of S(q-1), the control signal u(t) is computed 
on the basis of Equation 2.5.5, by means of the formula 

 u(t) = u(t-1) - R(q-1) y(t) + T(q-1) r(t) 

             = u(t-1) - r0 y(t) - r1 y(t-1) + r0 r(t) + r1 r(t-1) (2.5.8) 

which corresponds to the diagram given in Figure 2.26. 
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2.5.2 Digital Controller Canonical Structure 

Dividing by S(q-1) both sides of Equation 2.5.5, one obtains 
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from which we derive the digital controller canonical structure presented in Figure 
2.27 (three branched RST structure). 

In general, T(q-1) in Figure 2.27 is different from R(q-1). 
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Figure 2.27. Digital controller canonical structure 

Consider 
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as the pulse transfer function of the cascade DAC + ZOH + continuous-time 
system + ADC, then the transfer function of the open loop system is written as 
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and the closed loop transfer function between the reference signal r(t) and the 
output y(t), using a digital controller canonical structure, has the expression 
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where 
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is the denominator of the closed loop transfer function that defines the closed loop 
system poles. Note that T(q-1) introduces one more degree of freedom, which 
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allows one to establish a distinction between tracking and regulation performances 
specifications. 

We also remark that r(t) is often replaced by a “desired trajectory” y*(t), 
obtained either by filtering the reference signal r(t) with the so-called shaping filter 
or tracking reference model, or saving in the memory of the digital computer the 
sequence of the desired trajectory values.  

The digital controller represented in Figure 2.27 is also defined as “RST digital 
controller”. It is a two degrees of freedom controller, which allows one to impose 
different specifications in terms of desired dynamics for the tracking and regulation 
problems. 

The goal of the digital controller design is to find the polynomials R, S, and T in 
order to obtain the closed loop transfer functions, with respect to the reference and 
disturbance signals, satisfying the desired performances. 

This explains why the desired closed loop performances will be expressed, (if 
not, they will be converted) in terms of desired closed loop poles, and eventually in 
terms of desired zeros (in this way the closed loop transfer function will be 
completely imposed). 

In the presence of disturbances (see Figure 2.28) there are other four important 
transfer functions to consider, relating the disturbance to the output and the input of 
the plant. 

The transfer function between the disturbance p(t) and the output y(t) (output 
sensitivity function) is given by 
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Figure 2.28. Digital control system in presence of disturbances and noise 

This function allows the characterization of the system performances from the 
point of view of disturbances rejection. In addition, certain components of S(z-1) 
can be pre-specified in order to obtain satisfactory disturbance rejection properties. 

Thus, if a perfect disturbance rejection is required at a specified frequency, S(z-
1) must include a zero corresponding to this frequency. In particular, if a perfect 
load disturbance rejection in steady-state (i.e. zero frequency) is desired, Syp(z-1) 
must include a term (1 - z-1) in the numerator, which leads to a value of the gain 
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equal to zero for z = 1. This is coherent with the result given in Section 2.4.3., 
because a zero of Syp(z-1) corresponds to a pole of the open loop system. 

The transfer function between the disturbance p(t) and the input of the plant u(t) 
(input sensitivity function) is given by 

 
)()()()(

)()()( 1111

11
1

−−−−

−−
−

+
−

=
zRzBzSzA

zRzAzSup  (2.5.15) 

The analysis of this function allows one to evaluate the influence of a disturbance 
upon the plant input, and to specify a factor of the polynomial R(z-1) if the 
controller must not react to disturbances concentrated in a particular frequency 
region. 

When noise is added to the measured output (see Figure 2.28), important 
information can be retrieved by the transfer function that relates the noise b(t) to 
the plant output y(t) (noise-output sensitivity function). 
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As the noise energy is often concentrated at high frequency, attention should be 
paid in order to obtain a low gain of the transfer function )( ωj

yb eS −  in this 

frequency region. 
For T=R, the sensitivity function between r and y (also called complementary 

sensitivity function) is defined as 
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Note that  

  1)()()()( 1111 =+=− −−−− zSzSzSzS yrypybyp

which implies an interdependence between these sensitivity functions.  
Notice that Sub (z-1), the transfer function between the noise and the plant input, 

is equal to Sup (z-1). 
Another important transfer function describes the influence on the output of a 

disturbance v(t) on the plant input. This sensitivity function (input disturbance-
output sensitivity function) is given by 
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The importance of this sensitivity function is that it enhances the possible 
simplification of unstable plant poles by the zeros of R(z-1). 

In order to clarify this point, let us consider the assumption R(z-1)=A(z-1) (plant 
poles compensation by controller zeros) and suppose that the plant to be controlled 
is unstable (A(z-1) has roots outside the unit circle). In this case 
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Note that Syp, Sup, Syb are stable transfer functions if S(z-1) is chosen in order to 
have S(z-1)+B(z-1) stable, that is  

 10)()( 11 <⇒=+ −− zzBzS  

while the sensitivity function Syv(z-1) is unstable. 
This remark yields to the following general statement: 

The feedback system presented in Figure 2.28 is asymptotically stable if and 
only if all the four sensitivity functions Syp, Sup, Syb (or Syr) and Syv (describing 
the relations between disturbances on one hand and plant input or output on the 
other hand) are asymptotically stable. 

The set of five transfer functions HOL (z-1), Syp(z-1), Sup(z-1), Syb(z-1) (or    
Syr(z-1)) and Syv(z-1) also play an important role in the closed loop system 
robustness analysis. 

2.5.3 Control System with PI Digital Controller 

In this section the design of digital PI controllers will be illustrated. The transfer 
(function) operator of the discretized plant with zero-order hold is given by 
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For the sake of notation uniformity, we shall often use, in the case of constant 
coefficients, q-1 notation both for the delay operator and the complex variable z-1. 
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The z-1 notation will be specially employed when an interpretation in the frequency 
domain is needed (in this case ). sTjez ω=

The digital PI controller is characterized by the polynomials (see Equations 
2.5.6 and 2.5.7): 

 R(q-1) = T(q-1) = r0 + r1 q-1 (2.5.20) 
 S(q-1) = 1 - q-1 (2.5.21) 

The closed loop system transfer function (with respect to the reference r(t)) in the 
general form is given by Equation 2.5.12. 

The characteristic polynomial P(q-1), whose roots are the desired closed loop 
system poles, essentially defines the performances. As a general rule, it is chosen 
as a second-order polynomial corresponding to the discretization of a second-order 
continuous-time system with a specified natural frequency ω0 and damping ζ  (ω0 
and ζ , for example, and can be obtained on the basis of the diagrams given in 
Figures 1.10 or 1.11) starting from specifications in the time domain. The 
coefficients corresponding to the polynomial P(q-1) are obtained either by 
conversion tables mentioned in Table 2.4, or by Scilab and MATLAB® functions 
given in Section 2.3. In this case, sampling period Ts, natural frequency ω0 and 
damping ζ  must be specified.  

We recall that the relation between ω0 and Ts must be respected (see Section 
2.2.2, Equation 2.2.7): 

 0.25  ω0 Ts  1.5  ;   0.7 ≤ ≤ ≤  ζ ≤ 1 (2.5.22) 

For a plant having an equivalent discrete-time transfer operator (function) given by 
Equation 2.5.19, and the use of a digital PI controller, the closed loop system poles 
are given by Equation 2.5.13, and they are 

 (1 + a1 q-1) (1 - q-1) + b1 q-1(r0 + r1 q-1) = 1 + p1 q-1 + p2 q-2 (2.5.23) 

By rearranging the terms in Equation 2.5.23 in ascending q-1 powers, we get 

 1 + (a1 - 1 + r0 b1) q-1 + (b1 r1 - a1) q-2 = 1 + p1 q-1 + p2 q-2 (2.5.24) 

For the polynomial Equation 2.5.24 to be verified, it is necessary that the 
coefficients of the same q-1 powers must be equal on both sides. Thus the 
following system is obtained: 

  (2.5.25) 
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which gives for r0 and r1 the results 
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=  (2.5.26) 

One can see that the parameters of the controller depend upon the performance 
specifications (the desired closed loop poles) and the plant model parameters.  

 
By using Equation 2.5.7, one can obtain the parameters of the continuous-time 

PI controller: 

 1rK −=      ;      
01

1

rr
rT

T s
i +

−=  

2.6 Analysis of the Closed Loop Sampled-Data Systems in the 
Frequency Domain 

2.6.1 Closed Loop Systems Stability 

In the case of continuous-time systems, it was shown in Chapter 1, Section 1.2.5, 
how to use the open loop transfer function representation in the complex plane (the 
Nyquist plot) in order to analyze the closed loop system stability and the 
robustness with respect to the parameters variations (or uncertainties on the 
parameters value). The same approach can be applied to the case of sampled-data 
systems. The Nyquist plot for sampled-data systems can be drawn using the 
functions Nyquist-ol.sci (Scilab) and Nyquist-ol.m (MATLAB®)6. 

Figure 2.29 shows the Nyquist plot of an open loop sampled-data system 
including a plant (represented by the corresponding transfer function                      
H (z-1) =B(z-1) / A(z-1) ) and a RST controller. 

In this case, the open loop transfer function is given by 
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The vector linking the plane origin to a point belonging to the Nyquist plot of the 
transfer function represents HOL (e-jω) for a specified normalized radian frequency 
ω = ωΤs = 2 π f/fs. The considered range of variation of the radian natural 

                                                 
6 To be downloaded from the book website. 
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frequency ω is between 0 and π (corresponding to an unnormalized frequency 
variation between 0 and 0.5 fs ). 
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Figure 2.29. Nyquist plot for a sampled-data system transfer function and the critical point 

In this diagram the point [-1, j0] is the “critical point”. As Figure 2.29 clearly 
shows, the vector linking the point [- 1, j0] to the Nyquist plot of HOL (e-jω) has the 
expression 
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This vector represents the inverse of the output sensitivity function Syp (z-1) (see 
Equation 2.5.14) and the zeros of S-1yp (z-1) correspond to the closed loop system 
poles (see Equation 2.5.13). In order to have an asymptotically stable closed loop 
system, it is necessary that all the zeros of S-1yp (z-1) (that are the poles of Syp (z-1)) 
be inside the unit circle ( |z| < 1). The necessary and sufficient conditions for the 
asymptotic stability of the closed loop system are given by the Nyquist criterion. 

For systems having stable poles in open loop (in this case A(z-1) = 0 and  S(z-1) 
= 0 →   |z| ≤  1) the Nyquist stability criterion states (stable open loop system): 
The Nyquist plot of HOL(z-1) traversed in the sense of growing frequencies (from 
ω = 0 to ω = π), leaves the critical point [-1, j0] on the left. 

As a general rule, for the given nominal plant model B(z-1)/A(z-1), polynomials 
R(q-1) and S(q-1) are computed in order to have 

 A(z-1) S(z-1) + B(z-1) R(z-1) = P(z-1) (2.6.3) 

where P(z-1) is a polynomial with asymptotically stable roots. As a consequence, 
for the nominal values of A(z-1) and B(z-1), since the closed loop system is stable, 
the open loop transfer function: 
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does not encircle the critical point (if A(z-1) and S(z-1) have their roots inside the 
unit circle). 

In the case of an unstable open loop system, either if A(z-1) has some pole 
outside the unit circle (unstable plant), or if the computed controller is unstable in 
open loop (S(z-1) has some pole outside the unit circle), the stability criterion is: 
The Nyquist plot of HOL(z-1) traversed in the sense of growing frequencies (from 
ω = 0 to ω = π), leaves the critical point [-1, j0] on the left and the number of 
counter clockwise encirclements of the critical point should be equal to the number 
of unstable poles of the open loop system7. 

Note that the Nyquist locus between 0.5 fs and fs is the symmetric of the 
Nyquist locus between 0 and 0.5 fs with respect to the real axis. 

The general Nyquist criterion formula that gives the number of encirclements 
around the critical point is 

  i
OL

i
CL PPN −=

where is the number of closed loop unstable poles and is the number of 
open loop unstable poles. Positive values of N correspond to clockwise 
encirclements around the critical point. In order that the closed loop system be 
asymptotically stable it is necessary that . Figure 2.30 shows two 
interesting Nyquist loci. 

i
CLP i

OLP

i
OLPN −=

If the plant is stable in open loop and the controller is computed on the basis of 
Equation 2.6.3 to obtain a desired stable closed loop polynomial P(z-1) (this means 
that the nominal closed loop system is stable too), then, if a Nyquist plot of the 
form of Figure 2.30a is obtained, one concludes that the controller is unstable in 
open loop. This situation must be generally avoided8, and this can be achieved by 
reducing the desired closed loop dynamic performances (by modifying P(z-1)). 

                                                 
7 The criterion holds even if an unstable pole-zero cancellation occurs. The number of encirclements 
should be equal to the number of unstable poles without taking into account the possible cancellations. 
8 Note that there exist some « pathological » transfer functions B(z-1)/A(z-1) with unstable poles and/or 
zeros that can be only stabilized by controllers that are unstable in open loop. 
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1 Open Loop unstable pole
   Stable  Closed Loop (a) 

ω =0 

ω = π  

ω = 2π

-1 

Im H

Re Hω = π  

Stable Open Loop
Unstable  Closed Loop (b)

ω =0  
Figure 2.30. Nyquist plots: a) unstable system in open loop but stable in closed loop;         
b) stable system in open loop but unstable in closed loop 

2.6.2 Closed Loop System Robustness 

When designing a control system, one has to take into account the plant model 
uncertainties (uncertainties of the parameter values or of the frequency 
characteristics, variations of the parameters, etc.). It is therefore extremely 
important to assess if the stability of the closed loop is guaranteed in the presence 
of the plant model uncertainties. The closed loop will be termed “robust” if the 
stability is guaranteed for a given set of model uncertainties. 

The robustness of the closed loop is related to the minimal distance between the 
Nyquist plot for the nominal plant model and the “critical point” as well as to the 
frequency characteristics of the modulus of the sensitivity functions. 

The following elements help to evaluate how far is the critical point [-1, j0] (see 
Figure 2.31): 

• Gain margin; 
• Phase margin; 
• Delay margin; 
• Modulus margin. 

Gain Margin 
The gain margin (∆G) equals the inverse of  gain for the frequency 

corresponding to a phase shift ∠φ =  -180° (see Figure 2.31). 

)( ωj
OL eH −

The gain margin is often expressed in dB. In other words, the gain margin gives 
the maximum admissible increase of the open loop gain for the frequency 
corresponding to ∠φ(ω) = - 180°. 
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Figure 2.31. Gain, phase and modulus margins 

Typical values for a good gain margin are 

 ∆G ≥ 2   (6 dB)   [min: 1.6 (4 dB)] 

If the Nyquist plot crosses the real axis at several frequencies ωiπ characterized by 
a phase lag 

 ∠φ(ωiπ) = - i 180°;  i = 1, 3, 5 ... 

and the corresponding gains of the open loop system are denoted by         
)( πωij

OL eH − , then the gain margin is defined by9 
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Phase Margin 
The phase margin (∆φ) is the additional phase that we must add at the crossover 
frequency, for which the gain of the open-loop system equals 1, in order to obtain a 
total phase shift ∠φ   = - 180° (see Figure 2.31). 

 1)(  )(1800 =∠−=∆ − crj
OLcr eHfor ωωφφ  

in which ωcr is called crossover frequency and it corresponds to the frequency for 
which the Nyquist plot crosses the unit circle (see Figure 2.31). 
                                                 
9 Note that if the Nyquist plot crosses the real axis for values less than –1 and leaves the critical point to 
the left, there is a minimal value of the gain margin under which the system becomes unstable. 
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Typical values for a good phase margin are 

 30° ≤ ∆φ ≤ 60° 

If the Nyquist plot crosses the unit circle at several frequencies characterized 
by the corresponding phase margins: 

i
crω

  )(1800 i
cri ωφφ ∠−=∆

then the system phase margin is defined as 

 φφ ii
∆=∆ min  

Delay Margin 
A time-delay introduces a phase shift proportional to the frequency ω. For a certain 
frequency ω0, the phase shift introduced by a time-delay τ is 

 τωωφ 00 )( −=∠  

We can therefore convert the phase margin in a “time-delay margin”, i.e. to 
compute the maximum admissible increase of the delay of the open-loop system 
without making the closed-loop system unstable. It then follows that: 
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If the Nyquist plot intersects the unit circle at several frequencies , 
characterized by the corresponding phase margins ∆φi, the delay margin is defined 
as 
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crω
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∆
=∆ min  

Note that a good phase margin does not guarantee a good delay margin (if the 
frequency crω  is high, then the delay margin is low even if the phase margin is 
important). 

The typical value of the delay margin is ST≥∆τ [min: 0.75TS] 

Modulus Margin 
This concerns a more global measure of the distance between the critical point  
[-1, j0] and the plot of HOL (z-1). The modulus margin (∆M) is defined as the radius 
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of the circle centered in [-1, j0] and tangent to the plot of HOL (z-1) (see Figure 
2.31). 

From the definition of Equation 2.6.2 of the vector connecting the critical point 
[-1, j0] to the plot of  it follows immediately that )( ωj

OL eH −
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 (2.6.4) 

In other words, the modulus margin ∆M is equal to the inverse of the maximum 
value of the sensitivity function Syp (z-1) magnitude. By plotting Syp (z-1) 
magnitude in dB scale, the following condition is immediately derived: 

 dB MdBMdBeS j
yp ∆−=∆= −− 1

max
)( ω  (2.6.5) 

Figure 2.32 shows the relation between the sensitivity function Syp and the 
modulus margin. 
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Figure 2.32. Relation between the output sensitivity function and the modulus margin 

Therefore, the reduction (or the minimization) of |Syp (jω)|max will lead to an 
increase (or maximization) of the modulus margin10. 

Typical values for a good modulus margin are 

 ∆ M ≥ 0.5 (- 6 dB)   [min: 0.4 (-8 dB)] 

                                                 
10 |Syp (jω)|max corresponds to the H ∞ norm of the output sensitivity function. 
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Note that ∆M ≥ 0.5 implies a gain margin ∆G ≥ 2 (6 dB) and a phase margin ∆φ > 
29°. As a general rule, a good modulus margin guarantees satisfactory values for 
the gain and phase margins11. 

 To summarize, typical values for the stability margins in a robust design are: 

• gain margin: ∆G  2 (6dB)                                 [min.: 1.6 (4dB)] ≥
• phase margin: 30° ≤  ∆φ ≤  60° 

• delay margin: ∆τ = 
crω
φ∆

≥  Ts                             [min.: 0.75 Ts]  

• modulus margin: ∆M ≥  0.5 (-6dB),                    [min.: 0.4 (-8dB)] 

If the plant model is known with a very good precision for a certain region of 
operation, the imposed robustness margins can eventually be less restrictive. 

The modulus margin is very important because: 

• It defines the maximum admissible value for the modulus of the output 
sensitivity function and therefore the low limits of the performance in 
disturbance rejection; 

• It defines the tolerance with respect to nonlinear or time varying elements 
that may belong to the system (the circle criterion - see below). 

Tolerance with Respect to Nonlinear Elements 
In control systems we frequently have components with static nonlinear or time-
varying characteristics (often in the actuators). 

The characteristics of these components, without being accurately known, 
generally lie inside the conic region defined by a minimum linear gain (α) and a 
maximum linear gain (β) – see Figure 2.33. 

y = βu

y = αu

y = f(u)

u

y
NL 

TVP
yu

 

Figure 2.33. Nonlinear or time-varying characteristics, contained in the conic domain (α, β) 

The closed-loop system looks, for example, like those in Figure 2.34a. 

                                                 
11 The converse is not true. Systems having satisfactory gain and phase margins may have a very low 
modulus margin. 
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Figure 2.34. Closed-loop systems containing a nonlinear block (NL) and / or time-varying 
parameters (TVP): a) block diagram b) equivalent representation  
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Figure 2.35. Circle stability criterion and modulus margin for discrete time systems  

 
From the stability analysis point of view, we may use an equivalent 

representation of such systems, given in Figure 2.34b, where 
. )()()( 1

2
1

1
1 −−− = zHzHzHOL

For this kind of system we have a generalization of the Nyquist criterion, 
known as “the circle criterion” (Popov-Zames). 

Circle (Stability) Criterion 
The feedback system represented in Figure 2.34b is asymptotically stable for the 
set of nonlinear and/or time-varying characteristics lying in the conic domain 
[α,β] (with α, β > 0) if the plot of , traversed in the sense of growing 
frequencies, leaves on the left, without crossing it, the circle centered on the real 
axis and passes through the points 

)( 1−zHOL

]0,/1[ jβ−  and ]0,/1[ jα− . 
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The modulus margin ∆M defines a circle of radius ∆M centered in [-1, j0] that 
is outside the Nyquist plot of the open loop transfer function. 

Thus, the closed loop system can tolerate non-linear blocks or time-variable 
parameters described by input-output characteristics lying in a conic sector 
delimited by a minimum linear gain (1/(1+∆M)) and a maximum linear gain (1/(1-
∆M)) (see Figure 2.35). 

Tolerances to Plant Transfer Function Uncertainties and/or Parameters 
Variations. 
Figure 2.36 shows the effect of the plant nominal model uncertainties and 
parameters variations on the Nyquist plot of the open loop transfer function. As a 
general rule, the Nyquist plot of the plant nominal model lies inside a “tube” 
corresponding to the accepted tolerances of the parameters variations (or the 
uncertainties) of the plant model transfer function. 

In order to ensure the stability of the closed loop system for an open loop 
transfer function H'OL(z-1) that is different from the nominal one HOL(z-1) (but 
having the same number of unstable poles as HOL (z-1)), it is necessary that the 
Nyquist plot of the open loop transfer function H'OL (z-1) leaves the critical point [-
1, j0] on the left when traversed in the sense of growing frequencies from 0 to 0.5 
fs. This condition is satisfied if the difference between the real open loop transfer 
function H'OL (z-1) and the nominal one HOL (z-1) is smaller than the distance 
between the Nyquist plot of the open loop nominal transfer function and the critical 
point for all frequencies (see Figure 2.36). This robust stability condition is 
expressed by the inequality 
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Figure 2.36. Nyquist plot for the nominal open loop transfer function and the real open loop 
transfer function in presence of uncertainties and parameters variations (HOL and H’OL are 
stable) 
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where S(z-1) and R(z-1) are computed on the basis of Equation 2.6.3 for the nominal 
values of A(z-1) and B(z-1). 

In other words, the magnitude of S-1yp (e-jω) function (evaluated in dB units), 
obtained by symmetry from Syp (e-jω) (see Figure 2.32), gives, at each frequency, a 
sufficient condition for the accepted difference (computed as the Euclidian 
distance) between the real open loop transfer function and the nominal open loop 
transfer function, in order to guarantee the stability of the closed loop. 

This tolerance is higher at low frequencies (see Figure 2.32) where the gain of 
the open loop system is high (especially when an integrator is included), and it has 
a minimum value at the frequency (or frequencies) where S-1yp (e-jω) reaches its 
minimum (= ∆M), that is the frequency where Syp (e-jω) has the maximum value. 

It is necessary to ensure that at these frequencies the plant model variations are 
compatible with the obtained modulus margin. If this is not the case, the solution is 
to provide a more accurate model, or to modify the specifications in order to 
maintain the closed loop stability. 

Equation 2.6.6 expresses a robustness condition in terms of open loop transfer 
function variations (controller + plant). It is interesting to express this robustness 
condition in terms of the plant model variations only. Note that Equation 2.6.6 can 
be further expressed as 
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 (2.6.7) 

where B(z-1)/A(z-1) corresponds to the nominal plant transfer function. 
Multiplying by |S(z-1)/R(z-1)| both sides of Equation 2.6.7 one gets the 

condition 
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By plotting the inverse of the input sensitivity function magnitude, sufficient 
conditions for tolerated (additive) variations (or uncertainties) of the plant transfer 
function are obtained. The inverse of the magnitude of the input sensitivity 
function is symmetric to the input sensitivity function magnitude in dB units with 
respect to the axis at 0 dB (see Figure 2.37). 

As plant model uncertainties at high frequencies are often present, one must 
verify that the maximum of |Sup (e-jω)| at high frequencies is small. On the other 
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hand, the input sensitivity function Sup is an effective image of the actuator stress 
in the frequency domain when disturbances act on the system. The physical 
characteristics of the actuator often impose a bound on actuator stress at high 
frequencies, and an upper bound of the maximum of |Sup (e-jω)| at these frequencies 
should be imposed. 

Notice that (from Equation 2.6.8) the admitted tolerances (neglecting the term 
1/|R(z-1)|) depend to a large extent upon the relation between the open loop system 
poles (defined by A(z-1)) and the desired closed loop poles (defined by P(z-1)).  

In order to understand this phenomenon in greater detail, Figure 2.38 shows the 
Sup(z-1) magnitude functions for a plant model characterized by A(z-1)= 1 – 0.8 z-1; 
B(z-1)= z-1 and for two different desired closed loop system characteristic 
polynomials: P1(z-1)=1-0.6 z-1 and P2(z-1)=1-0.3 z-1 (the controller includes an 
integrator). Note that P2(z-1) corresponds to a closed loop system faster than the 
one specified by P1(z-1), and both closed loop systems are faster than the plant 
(open loop system). 

The |Sup(z-1)| maximum for P2(z-1) is greater than for P1(z-1), and then the 
inverse of |Sup(z-1)| will be smaller. As a consequence, the accepted tolerances for 
the frequency response variations (especially at high frequencies) are smaller in the 
case of P2(z-1) with respect to the case of desired closed loop performances 
imposed by P1(z-1). 

|Sup|-1 

|Sup| dB 
Bounds on the actuator requirements 

0 0.5fs

(Tolerance to additive uncertainties) 

 

Figure 2.37. The input sensitivity function and its inverse
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Figure 2.38. Input sensitivity function for the plant model q-1 /(1 – 0.8 q-1) as a function of 
the desired closed loop performances 

Equation 2.6.8 gives a sufficient condition for the accepted (additive) tolerance 
in terms of real plant transfer function parameters variations (or uncertainties) with 
respect to the nominal plant transfer function.  

Moreover, we may be interested in the evaluation of the accepted relative 
tolerance with respect to the nominal plant transfer function magnitude. It follows 
from Equation 2.6.8 that 
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where Syb is the “noise-output sensitivity function” and Syr is the complementary 
sensitivity function. 

The noise-output sensitivity function Syb allows the definition of a frequency     
“template” to ensure that the “delay margin” constraint is fulfilled. Let consider the 
case of a delay margin sT⋅=∆ 1τ .  

It follows that 
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and consequently 
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Equation 2.6.9 becomes 
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or in dB units 
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Figure 2.39. Frequency template for the noise-output sensitivity function and  ST=∆τ
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This expression defines a frequency robustness template for the sensitivity 
function Syb. This template corresponds to the frequency response of a digital 
integrator and is represented in Figure 2.39. 

As the modulus margin introduces a frequency template on the output 
sensitivity function ( MeS j

yp ∆−≤− )( ω ; πω ≤≤0 ), we are interested in finding 

what template is introduced by the delay margin on | Syp|. 
From Equations 2.5.14 and 2.5.17 it results that 

  (2.6.14) )(1)( 11 −− += zSzS ybyp

and by means of the triangle inequality it follows that 

 )(1)()(1 111 −−− +≤≤− zSzSzS ybypyb  (2.6.15) 

Taking into account the frequency bound on Syb given by Equation 2.6.12, the 
following condition is obtained : 
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Figure 2.40. Frequency template on the output sensitivity function for 5.0=∆M  (-6dB) 
and  ST=∆τ  
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that leads to the robustness template on |Syp| represented in Figure 2.40. 
Notice that, from the point corresponding to 0.17 fs , |Syp| must lie inside a 

region delimited by an upper and a lower bound and that, for frequencies below 
0.17 fs, the frequency template for the modulus margin also assures the delay 
margin constraint to be respected. 

It is important to note that the template on Syp will not always guarantee the 
desired delay margin (it is an approximation). If the condition on |Syb| is satisfied, 
then the condition on |Syp| will also be satisfied. However, if the condition on |Syb| 
is violated, this will not imply necessarily that the condition on |Syp| will also be 
violated. In practice, the results obtained by using the template on the |Syp| are very 
reliable. 

The following remark is important: the closed loop system robustness will be, 
in general, reduced when the closed loop system bandwidth is increased with 
respect to the open loop system bandwidth. Conversely, for a relevant reduction of 
the rise time for the closed loop system, with respect to the open loop system rise 
time, a good estimation of the plant model is required (especially in the frequency 
regions where |Syp(z-1)| is high). 

As a consequence, robustness constraints can imply either a small reduction of 
the closed loop system rise time (with respect to the open loop system rise time), or 
a controller design which takes into account the bounds on the sensitivity 
functions. 

An important challenge in control system design is the maximization of the 
controller robustness for given performances. This is obtained by minimizing the 
sensitivity functions maximum in the critical frequency regions. 

2.7 Concluding Remarks 

Recursive (differences) equations of the form 

  (2.7.1) ∑∑
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where u is the input, y is the output and d is the discrete-time delay, are used to 
describe discrete-time dynamic models. 

The delay operator q-1 [q-1 y(t) = y(t-1)] is a simple tool to handle recursive 
equations. If the operator q-1 is used, the recursive Equation 2.7.1 takes the form 

  )()()()( 11 tuqBqtyqA d −−− =
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where 
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The input-output relation for a discrete-time model is also conveniently described 
by the pulse transfer operator H(q-1): 
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The pulse transfer function of a discrete-time linear system is expressed as function 
of the complex variable (Ts = sampling period). The pulse transfer 
function can be derived from the pulse transfer operator H(q-1) by replacing q-1 
with z-1.  

ssTez =

The asymptotical stability of a discrete-time model is ensured if, and only if, all 
pulse transfer function poles (in z) lie inside the unit circle.  

The order of a pulse transfer function is 

 n = max (nA, nB + d) 

In computer controlled systems, the input signal applied to the plant is held 
constant between two sampling instants by means of a zero-order hold (ZOH). The 
zero-order hold is characterized by the following transfer function: 
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Therefore, the continuous-time part of the system (between digital-to-analog 
converter and the analog-to-digital converter) is characterized by the continuous-
time transfer function 

 H' (s) = HZOH (s) . H(s) 

where H(s) is the plant transfer function. 
In computer controlled systems, the input signal applied to the plant at time t is 

a weighted average of the plant output at times t, t-1, ..., t-nA+1, of the previous 
input signal values at instants t-1, t-2, ..., t-nB-d, and of the reference signal at 
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instants t, t-1,…, the weights being the coefficients of the controller. The 
corresponding control law (controller RST) is written as 

 S(q-1) u(t) = - R(q-1) y(t) + T(q-1) r(t) (2.7.2) 

where u(t) is the control (input) signal to the plant, y(t) is the plant output and r(t) 
is the reference. 

The transfer function of the closed loop system (between the reference signal 
and the plant output) that includes the digital controller of Equation 2.7.2 is given 
by 
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where H(z-1) = B(z-1)/A(z-1) is the pulse transfer function of the discretized plant 
(in this case B(z-1) may include possible delays). 

The characteristic polynomial defining the closed loop system poles is given by 

 P(z-1) = A(z-1) S(z-1) + B(z-1) R(z-1) 

The disturbance rejection properties on the output result from the output sensitivity 
function frequency response 
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Robust stability of the closed loop system, with respect to the plant transfer 
function uncertainties or parameters variations, is essentially characterized by the 
modulus margin and the delay margin. 

The modulus margin and the delay margin introduce frequency constraints on 
the magnitude of the sensitivity functions. These constraints lead to the definition 
of frequency robustness templates that must be respected.  

The robust stability (or performance) of the closed loop system robustness, with 
respect to the plant transfer function uncertainties or parameters variations, 
depends upon the choice of the desired closed loop system performances 
(bandwidth, rise time) with respect to the open loop system dynamics. A 
significant reduction of the closed loop system rise time (or a significant 
augmentation of the bandwidth of the closed loop system), compared to the open 
loop system rise time (or bandwidth), requires a good estimation of the plant 
model. 

In order to ensure closed loop system robustness, when a good estimation of the 
plant model is not available, or when large system parameters variations occur, the 
closed loop system rise time acceleration, compared to the open loop system rise 
time, must be moderate. However, some methods exist for maximizing the 
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controller robustness with respect to plant model uncertainties (or parameters 
variations), for given nominal performance. 
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Robust Digital Controller Design Methods 

In this chapter the design of model based robust digital controllers is discussed. 
The design of digital PID controllers is first presented, emphasizing the general 
structure of digital controllers (three branched structure known as RST), the 
special features of the digital approach and the limitations of the digital PID. The 
following design methods are then presented: pole placement, tracking and 
regulation with independent objectives and tracking and regulation with internal 
model control. The presentation is done from the perspective of robust control.  
These methods permit the control of systems of any order with or without time 
delay. The last section of the chapter presents a general methodology for the 
design of robust digital controllers by means of sensitivity functions shaping. 

3.1 Introduction 

The use of a digital computer or microprocessor in control loops offers several 
advantages. These include: 

• Considerable choice of strategies for controller design 
• Possibility of using algorithms which are both more complex and 

more efficient than the PID 
• Technique perfectly suited for the control of systems with time dela; 
• Technique well suited for the control of systems characterized by 

linear dynamic models of high order (including systems with multiple 
low damped vibration modes) 

Moreover, by combining the controller design methods with the system model 
identification techniques, a rigorous, high performance controller design procedure 
can be implemented. These aspects are covered in Chapters 7, 8 and 9. 

The digital controller design methods that are presented in this chapter relate to 
single input-single output control in the presence of deterministic disturbances. 

These methods are: 

• Digital PID 

85 



86 Digital Control Systems 

• Pole placement 
• Tracking and regulation with independent objectives 
• Tracking and regulation with internal model control 
•  Pole placement with shaping of sensitivity functions 

All the controllers, irrespective of their design method, will have the same RST 
three-branched structure (see Figure 2.27). Only the memory of the controller 
(number of coefficients) will vary depending on the complexity of the system. 

Note that in the case of simple systems (at most second-order and small time 
delay), the various controllers designed by means of the pole placement, tracking 
and regulation with independent objectives and internal model control, correspond 
to digital PID controllers having differently tuned parameters. 

The tracking and regulation with independent objectives and tracking and 
regulation with internal model control can be considered as particular cases of the 
pole placement. They result from a particular choice of the desired closed loop 
poles. 

The robustness of the designed control system with respect to plant model 
uncertainties is a very important issue. The pole placement with shaping of 
sensitivity functions is a general methodology of digital control design that allows 
one to take into account simultaneously robustness and performances 
specifications for the closed loop. 

The digital control design by pole placement (and the various particular cases) 
is a predictive control (the controller implicitly contains a predictor of the plant 
output). This will be illustrated in Sections 3.4.4 and 3.5.3 and in Appendix B. 

The design and tuning of digital controllers require the knowledge of the 
discrete-time model of the plant to be controlled (model based control). It is not 
possible to implement effectively a high performance control loop without 
identifying the plant model. Fortunately the system identification methodology is a 
mature subject and toolboxes or dedicated software are available. System 
identification is discussed in Chapters 5, 6, 7 and 9. 

If the continuous-time model of the plant to be controlled is available, the 
discrete-time model of the sampled-data system can be obtained by using 
appropriate discretization techniques. The functions cont2disc.sci (Scilab) and 
cont2disc.m (MATLAB®), available on the book website, can be used for this 
purpose. 

3.2 Digital PID Controller 

The basic version of the digital PID controller considered in this book results from 
the discretization of the continuous-time PID controller presented in Section 1.3.2. 
Another version, which provides some advantages, will also be presented. 
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The methodology for the digital PID controllers design to be presented is 
rigorously applicable only to1: 

• Plants that can be modeled by a continuous-time system characterized by a 
transfer function of maximum degree equal to 2, with or without time delay 

• Plants having a time delay which is less than one sampling period 

Although continuous-time PID parameters can be recovered from the digital PID 
controller design, in some cases, the discrete-time methodologies have not been 
developed for the tuning of continuous-time (or pseudo-digital) PID controllers. 
Specific methodologies exist and should be used for the tuning of continuous time 
PID controllers (see Chapter 1, Section 1.3). Moreover, it should be pointed out 
that certain tunings of digital PID controller parameters offering excellent 
performances have no counterpart in terms of continuous-time PID controller 
parameters.  

3.2.1 Structure of the Digital PID 1 Controller 

Consider the transfer function of the continuous-time PID controller (Equation 
1.3.2): 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
++=

s
N
T

sT
sT

KsH
d

d

i
PID

1

11)(  (3.2.1) 

This controller is characterized by four tuning parameters: 

• K  – proportional gain 
• Ti           – integral action 
• Td  – derivative action  
• Td /N  – filtering of the derivative action  

Several discretization methods may be used to derive the structure of the digital 
PID controller. The relations between the continuous-time and discrete-time 
parameters will depend on the method used, but the structure of the digital 
controller will remain the same. 

Since in our case the design and implementation of the controller will be in the 
discrete-time, the discretization method is not essential. For this reason we will use 
the backward difference approximation. It follows that s (derivative) will be 
approximated by (1 - q-1)/Ts and 1/s (integration) will be approximated by            
Ts /(1 - q-1) (see Section 2.3, Equations 2.3.6  to 2.3.11 ). 

                                                 
1 A method for the design of digital PID controllers for plants characterized by high order models is 
presented in Chapter 10, Section 10.5. It is based on the complexity reduction of a model based 
controller. 
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By introducing these expressions in Equation (3.2.1), the pulse transfer function 
(operator) of the digital PID 1 controller is obtained2: 
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The expression in terms of the ratio of two polynomials is obtained by summing up 
the three terms. Polynomials R(q-1) and S(q-1) have the form 

 R(q-1) = r0 + r1 q-1 + r2 q-2  (3.2.6) 
 S(q-1) = (1 - q-1) (1 + s’1 q-1) = (1 + s1 q-1 + s2 q-2) (3.2.7) 

where 
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2 As indicated in Section 2.5.3, for systems with constant coefficients the notation q-1 will be used both 
for the backward delay operator and the complex variable z-1, with the exception of cases that require 
an interpretation in the frequency domain. 
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The digital PID 1 controller has four parameters (r0, r1, r2, s’1) as the continuous-
time PID controller. 

Note that the pulse transfer function (operator) of the digital PID 1 controller 
contains as a common factor of the denominator the term (1-q-1), which assures the 
behavior of the numerical integration. The denominator also contains the term 
(1+s’1q-1), which is a digital filter that plays the role of the filter [1 + (Td /N) s] in 
the continuous-time PID controller. 
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r(t) u(t)
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Figure 3.1. Equivalent block diagrams of a digital control loop using the digital PID 1 
controller  

The equivalent block diagram is given in the upper part of Figure 3.1. By 
taking T(q-1) = R(q-1), the digital PID 1 controller can take the standard three 
branched structure of the RST controller, as shown in the lower part of Figure 3.1. 

The pulse transfer function (operator) of the closed loop relating the reference 
r(t) and the output y(t) is 
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in which the polynomial P(q-1) defines the desired closed loop poles (directly 
linked to the desired regulation performances). 

The product B(q-1)R(q-1) defines the closed loop zeros. The digital PID 1 
controller, in general, does not simplify the plant zeros (unless B(q-1) is chosen as a 
factor of P(q-1)) and thus can be used for the regulation of plants having a discrete-
time model with unstable zeros (a situation occurring, for example, if there is a 
fractional time delay greater than half of a sampling period, see Section 2.3.7). 

Furthermore, the digital PID 1 controller introduces additional zeros defined by 
R(q-1) that will depend on A(q-1), B(q-1) and P(q-1) and thus which cannot be 
specified a priori. In certain situations, these zeros may produce undesirable 
overshoots during the transient (see the examples given later on in Section 3.2.3). 
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3.2.2 Design of the Digital PID 1 Controller 

The computation of the parameters involves several stages: 

1. Determination of discrete time plant model 
2. Specification of the performances 
3. Computation of the controller parameters (the coefficients of the 

polynomial R(q-1) and S(q-1)) 
4. Verification of the achieved robustness margins and sensitivity functions 

Discrete-Time Plant Model 
This is the pulse transfer function H(z-1) of the sampled model of a plant having 
the transfer function H(s), and controlled through a zero order hold as is indicated 
in Figure 3.2. 

Z.O.H.

H (z  )-1

H (s)

 
Figure 3.2. Pulse transfer function of a plant 

Continuous-time transfer functions of the following form may be considered: 
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with the restriction 

 τ < Ts (3.2.11) 

Note moreover that for the first-order system the sampling period Ts must be 
smaller than T (Ts < T – see Equation 2.2.4 ). It thus means that the digital PID 
controller design can be correctly applied only to the first-order system with a time 
delay verifying the condition τ < T.  

For these two types of continuous-time models, discretization with hold results 
in a pulse transfer function (operator) of the form 
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The transfer function H(q-1) may be obtained: 

• Directly by identification of the discrete-time plant model 
• From knowledge of H(s) and Ts using discretization routines (as for 

example cont2disc.sci (Scilab) and cont2disc.m (MATLAB®)) or 
transformation tables 

Specification of the Performances 
As a general rule, the desired closed loop system performances can be expressed in 
terms of the parameters of a pulse transfer function. This may be expressed by the 
condition 
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However, BM(q-1) cannot be specified a priori since, in general, B(q-1) is not 
simplified (unless B(q-1) is stable, which corresponds to cases where the time delay 
is negligible); moreover, the controller itself introduces zeros by means of R(q-1). 
The closed loop polynomial remains to be specified. The polynomial P(q-1) is 
chosen of the form 

 P(q-1) = 1 + p’1 q-1 + p’2 q-2  (3.2.14) 

A recommended method for defining p’1 and p’2 consists first in considering a 
second-order normalized continuous-time model (see Section 1.1.6), enabling a 
rise time (tR) or a settling time (tS) and a maximum overshoot (M) to be obtained in 
accordance with the specifications. This choice may be done using the diagrams 
given in Figures 1.10 and 1.11 or using the functions omega_dmp.sci (Scilab) and 
omega_dmp.m (MATLAB®)3. That allows determining the parameters ω0 and ζ of 
the second-order system. The sampling period Ts and the natural frequency ω0 
should verify the condition 

 0.25  ω0 Ts  1.5     ;      0.7 ≤ ≤ ≤  ζ ≤  1 (3.2.15) 

The discretized model with hold can be computed either by means of the functions 
cont2disc.sci (Scilab) and cont2disc.m (MATLAB®), or by means of 

                                                 
3 Available from the book website. 
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transformation tables (see Section 2.3.6). The denominator of the pulse transfer 
function thus obtained will represent the polynomial P(q-1). 

Computation of the Coefficients of the Digital Controller 
From Equation 3.2.13 it results that the following polynomial equation must be 
solved: 

 P(q-1) = A(q-1) S(q-1) + B(q-1) R(q-1) (3.2.16) 

in the unknown polynomials S(q-1) and R(q-1). In Equation 3.2.16  P(q-1) is given 
by Equation 3.2.14  and A(q-1) and B(q-1) are given by Equation 3.2.12 . The 
structures of R(q-1) and S(q-1) are given respectively by Equations 3.2.6 and 3.2.7. 
Equation 3.2.16  is a Bezout polynomial equation. 

The detailed version of Equation 3.2.16 is 
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Solving a polynomial equation implies that coefficients related to the powers of q 
should be equal on both sides. One observes that the maximum order on the right 
hand side is q-4 (it is a system of four equations in four variables that must be 
solved). The higher order of the left side of the equation is q-2, that corresponds to 
a zero value for the coefficients of q-3 and q-4 powers in the polynomial P(q-1). In 
fact, it is possible to impose non-zero values for these coefficients. 

In general one imposes 

  (3.2.20) 
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where coefficients  and 1p′ 2p′  result from the discretization of a second-order 
continuous-time system with 0ω  and ζ  corresponding to the specified nominal 
performances, and with 1α , 2α corresponding to aperiodic “auxiliary poles” 1α−  
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and 2α−  located on the real axis (inside the unit circle) and corresponding to a 
frequency higher than πω 2/0 (see Figure 3.3).  
 

 

 

Figure 3.3. Dominant and auxiliary poles for the design of a digital PID controller 

One observes that 1α−  and 2α−  are smaller than the real part of the dominant 
poles (then they are faster poles). The introduction of auxiliary poles allows 
improving the robustness of the controller. In practice, a typical choice is either 

, or  and the ranges for their values are 21 αα = 02 =α

 5.0,05.0 21 −≤≤− αα  (3.2.21) 

The system of four equations to solve is 

  11011 asrbp ′+′+=

 21111022 aasrbrbp ′+′′++=  

 32121123 aasrbrbp ′+′′++=  

 31224 asrbp ′′+=  

The equivalent matrix form of this system of equations is  

 pMx =  (3.2.22) 

 
where 

1
 

j

Dominant poles  
x 

-1 x  x 2nd order system 

(ω0 , ζ) 
x

-j Auxiliary poles
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and the matrix M is of the form 
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The solution of Equation 3.2.22  is expressed by 

  (3.2.25) pMx 1−=

where 1−M  is the inverse matrix of M. In order to assure the existence of this 
inverse, it is necessary that the determinant of M is non-null. It can be shown that 
this condition is verified if, and only if, A(q-1) and B(q-1) are coprime polynomials 
(no simplification between zeros and poles). 

Exercise 
Let 
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Show that in this case 0det =M . 
In order to solve the Bezout equation, one can use the function bezoutd.sci 

(Scilab) or the function bezoutd.m (MATLAB®) available on the book website4. 
The parameters of the continuous-time PID controller, which by discretization 

with a sampling period equal to Ts gives the digital PID controller with 
polynomials R(q-1) and S(q-1), are computed by means of the following relations: 

 2
1

21110

)1(
)2(

s
rsrsrK

′+

′+−−′
=  (3.2.26) 

                                                 
4 In Scilab and MATLAB® environments one must specify A’(q-1) and B(q-1) to obtain S’(q-1) and 
R(q-1). S(q-1) is obtained by using Equation 3.2.7. 
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For the digital PID controller to be equivalent to a continuous-time PID controller, 
it is necessary that the coefficient  verify the condition 1's

 0'1 1 ≤<− s  (3.2.30) 

In the opposite case ( 1'0 1 << s ), the digital filter  is stable but 
without a continuous-time equivalent (as a first-order filter). The digital PID 
controller in this case may provide very good performances but an equivalent 
continuous-time PID controller cannot be obtained (see examples given in Section 
3.2.3). 

)'1/(1 1
1

−+ qs

 

3.2.3 Digital PID 1 Controller: Examples 

We consider the case of the regulation of a first-order plant with time delay having 
the following characteristics: 

• Gain (G) = 1;     Time Constant (T) = 10 s;   Pure time delay (τ) = 3 s 
• A sampling period Ts = 5 s is chosen in order to verify the conditions: 

τ < Ts and Ts < T 
 The objective of the design is to obtain the best closed loop performances without 
overshoot. The damping factor of the model that specifies the performances is 
fixed at ζ = 0.8, and the natural frequency ω0 will be chosen in the range:         
0.25  ω0 Ts  1.5. ≤ ≤

 
For ω0 = 0.05 (ω0 Ts = 0.25), the results obtained are summed up in Table 3.1. 
 
The model output y(t) and the control signal u(t) are displayed in Figure 3.4. It 

can be observed that the closed loop step response (about 13Ts= 65 s) is slower 
than the open loop step response (about 2.2T + τ = 25 s) since the control u(t) sent  
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Table 3.1. Digital PID 1 controller, ω0 = 0.05 rad/s 

Plant: 
• B(q-1) = 0.1813 q-1 +0.2122 q-2 
• A(q-1) = 1 -0.6065 q-1    
• Ts = 5s, G = 1,  T = 10s, τ = 3 

Performances      Ts = 5s   ,    ω0 = 0.05 rad/s,    ζ = 0.8 

*** CONTROL LAW ***          

S(q-1) . u(t) + R(q-1) . y(t) = T(q-1) . r(t) 
Controller:  

• R(q-1) = 0.0621 + 0.0681 q-1  
• S(q-1) = (1 - q-1) · (1 - 0.0238 q-1) 
• T(q-1) = R(q-1)  

Gain margin:  7.712                                   Phase margin: 67.2 deg  
Modulus margin:  0.751 (-2.49dB)            Delay margin: 45.4 s 
Cont. time PID: k = -0.073,  Ti = -2.735,  Td = - 0.122,  Td/N = 0.122 
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Figure 3.4. Performances of the digital PID 1 controller, ω0 = 0.05 rad/s for tracking and 
regulation 
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by the controller represents a filtered step. This situation is well known in practice. 
For time delays greater than 20 or 25% of the time constant, the continuous time 
PID controller slows down the closed loop system with respect to the open loop 
system. Can a digital PID controller therefore provide improved performances? 

Take ω0 = 0.1 rad/s (twice faster desired closed loop response). The 
computation results are summed up in Table 3.2 and the evolutions of the plant 
output and of the control applied to the plant are represented in Figure 3.5. 

By examining the results given in Table 3.2, first one can see that s'1 is positive, 
and therefore an equivalent continuous-time PID controller does not exist. 

An acceleration in the plant response is observed, but this is accompanied by 
the appearance of a slight overshoot (larger than the one corresponding to ζ = 0.8). 

The explanation of this overshoot is given by the coefficients of T(q-1)=R(q-1). 
The polynomial T(q-1)=R(q-1), which introduces zeros in the pulse transfer 
function, has now its second coefficient with a negative sign. As the zeros have 
influence on the first instants of the response, the contribution of R(q-1) is a 
positive jump followed by a negative one, and the step on the reference filtered, by 
R(q-1) is characterized by a peak related to the difference r0 - r1, that is not 
completely attenuated by the remaining components of the pulse transfer function. 

 In order to avoid an excessive overshoot with this structure of the PID, one 
needs (for ζ > 0.7) to have all coefficients of R(q-1) positive. 

Taking ω0 = 0.15 rad/s (Table 3.3 and Figure 3.6), a significant acceleration of 
the step response is obtained, but the overshoot becomes larger. As in the previous 
case, there is no equivalent continuous-time PID controller. It is also observed that 
the difference r0 - r1 is greater, thus explaining the increased overshoot. 

Table 3.2. Digital PID 1 controller, ω0 = 0.1 rad/s 

Plant:  
• B(q-1) = 0.1813 q-1 + 0.2122 q-2 
• A(q-1) = 1  - 0.6065 q-1    
• Ts = 5s,  G = 1,  T = 10s,  τ = 3                            

Performances     Ts = 5s   ,    ω0 = 0.1 rad/s,    ζ = 0.8 

*** CONTROL LAW ***       

S(q-1) . u(t) + R(q-1)  . y(t) = T(q-1) . r(t) 
Controller:  

• R(q-1)  = 0.8954 - 0.4671 q-1 
• S(q-1)  = (1 - q-1) . (1 + 0.16343 q-1) 
• T(q-1) = R(q-1) 

Gain margin: 6.046                                    Phase margin: 65.9 deg 
Modulus margin: 0.759 (- 2, 39 dB)          Delay margin: 16.8 s 
Cont. time PID:  (no equivalent) 
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Table 3.3. Digital PID 1 controller, ω0 = 0.15 rad/s 

Plant:  
• B(q-1) = 0.1813 q-1  + 0.2122 q-2 
• A(q-1) = 1 - 0.6065 q-2    
• Ts = 5s,  G = 1,   T = 10s,  τ = 3                            

Performances     Ts = 5s   ,    ω0 = 0.15 rad/s,    ζ = 0.8 

*** CONTROL LAW ***       

S(q-1) . u(t) + R(q-1) . y(t) = T(q-1) . r(t) 
Controller:  

• R(q-1) =  1.6874  - 0.8924 q-1 
• S(q-1) = (1 - q-1) . (1 + 0.3122 q-1) 
• T(q-1) = R(q-1) 

Gain margin: 3.681                                    Phase margin: 58.4 deg 
Modulus margin: 0.664 (- 3.56 dB)           Delay margin: 9.4 s 
Cont. time PID:  (no equivalent) 
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Figure 3.5. Performances of the digital PID 1 controller, ω0 = 0.1 rad/s for tracking and 
regulation 
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In order to eliminate the undesirable effect of the zeros introduced by the digital 
PID 1 controller, another structure must therefore be chosen for T(q-1), which does 
not introduce additional zeros in the closed loop transfer function. That leads to the 
digital PID 2 controller. 

3.2.4 Digital PID 2 Controller 

This is a digital PID that does not introduce additional zeros. 
The desired closed loop transfer function (between the reference and the 

output) will be of the form 
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in which B(q-1) contains the plant zeros that will remain unchanged. P(q-1) defines 
the desired closed loop poles and the term P(1)/B(1) is introduced in order to 
ensure a unit gain between the reference and the output in steady state. 

The controller will have the general structure 

 S(q-1) u(t) + R(q-1) y(t) = T(q-1) r(t) (3.2.32) 
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Figure 3.6. Performances of the digital PID 1 controller, ω0 = 0.15 rad/s for tracking and 
regulation 
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in which S(q-1) and R(q-1) are given by Equations 3.2.6  and 3.2.7  respectively. 
The closed loop transfer function using the controller specified by Equation 

3.2.32 will be 
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In the same way as the PID1, the coefficients of the polynomials S(q-1) and R(q-1) 
will be obtained by solving Equation 3.2.16 . It thus results from Equation 3.2.33 
that 
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since S(1) = 0 (which implies P(1) = B(1) R(1)). Then T(q-1) will be a gain equal 
to the sum of the coefficients of R(q-1). 

To conclude: the digital PID 2 controller has the same polynomials S(q-1) and 
R(q-1) as the digital PID 1 controller; the only difference is that now T(q-1) = R(1) 
instead of R(q-1), thereby preserving the unitary gain of the closed loop system in 
steady state without however introducing the effect of the zeros of R(q-1). 

The continuous-time PID (structure 2) that leads by discretization to the digital 
PID 2 controller is represented in Figure 3.7 (proportional and derivative actions 
only on the measure). 
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Figure 3.7. Continuous-time PID controller corresponding to digital PID 2 controller 

The parameters of the continuous-time PID 2 controller, which leads by 
discretization with a sampling period equal to Ts to the digital PID 2 controller 
with polynomials R(q-1) and S(q-1), result from the following relations: 
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Just like the PID 1 digital controller, for the PID 2 digital controller to be 
equivalent to a continuous-time PID controller, the condition of Equation 3.2.30 on 
the coefficient s'1 must be satisfied (that is -1 < s'1 ≤  0). 

Table 3.4 gives the computation results of the digital PID 2 controller for the 
same plant which was considered in the case of the digital PID 1 controller, and 
with a desired closed loop natural frequency ω0 = 0.15 rad/s (the results are to be 
compared with those given in Table 3.3; the values of the coefficients of R(q-1) and 
S(q-1) are the same). 

Table 3.4. Digital PID controller (structure 2) ω0 = 0.15 rad/s 

Plant:   
• B(q-1) = 0.1813 q-1 +0.2122 q-2 
• A(q-1) = 1  - 0.6065 q-1 
• Ts = 5s,  G = 1,   T = 10s,   τ = 3                          

Performances     Ts = 5s   ,    ω0 = 0.15 rad/s,    ζ = 0.8 

*** CONTROL LAW ***       

S(q-1) u(t) + R(q-1) y(t) = T(q-1) r(t) 
Controller:  

• R(q-1) = 1.6874 - 0.8924 q-1 
• S(q-1) = (1 - q-1) (1 + 0.3122 q-1) 
• T(q-1) = 0.795 

Gain margin: 3.681                                    Phase margin: 58.4 deg  
Modulus margin: 0.664 ( - 3.56 dB)          Delay margin: 9.4 s 
Cont. time PID:  (no equivalent) 

The performances obtained are illustrated in Figure 3.8, which must be compared 
with the curves of Figure 3.6. It can be observed that for the same values of the 
polynomials R(q-1) and S(q-1), the overshoot during the transient disappears when 
the digital PID 2 controller is used (for steps on the reference). Moreover, the 
response to a disturbance is the same for PID1 and PID2. 
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Note also that the values obtained for the required robustness margins (gain, 
phase, modulus, delay) are without doubt satisfactory. 

3.2.5 Effect of Auxiliary Poles 

Figures 3.9 and 3.10 show the frequency characteristics of ypS  and upS  for three 

PID controllers designed for the same plant model used in the previous sections 
with the following performances specifications: 

• 8.0;/25.00 == ζω srad ; 
• 8.0;/20.00 == ζω srad ; 
• 8.0;/25.00 == ζω srad  and two auxiliary poles 15.021 =−=− αα . 

In Figure 3.9 the frequency region (low frequencies) where dBS yp  0<  

corresponds to the attenuation band for the disturbances. The frequency regions 
where dBS yp  0> correspond to an amplification of the disturbances. At the 

frequencies where dBS yp 0=  the system behaves “in open loop” since the 

disturbances, at these frequencies, are neither amplified nor attenuated. 
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Figure 3.8. Performances of the digital PID 2 controller, ω0 = 0.15 rad/s for tracking and 
regulation 
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Figure 3.9. Frequency characteristics of the modulus of the output sensitivity function  

for different PID controllers 
ypS
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Figure 3.10. Frequency characteristics of the modulus of the input sensitivity function  
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The performance of a controller is enhanced by the augmentation of the attenuation 
band. But the augmentation of the attenuation band produces an increase of the 
amplification of the disturbances outside the attenuation band and an increase of 
the maximum of ypS  which will reduce the modulus margin and the delay margin 

(it will be shown later in Section 3.6. that the surface of the attenuation band 
should be equal to the surface of the amplification band). 

One observes that for a specified rad/s 25.00 =ω  the attenuation band is larger 

than for rad/s 2.00 =ω  but the ypS is beyond the acceptable value for the 

robustness (it crosses the template for sT=∆τ ). 
One also observes that the introduction of auxiliary poles is more or less 

equivalent to the reduction of the desired performances (the curve for 
rad/s 2.00 =ω  is very close to the curve for rad/s 25.00 =ω  and 15.021 −== αα ). 

However, if one examines the frequency characteristics of the modulus of the 
input sensitivity function upS , one observes that the introduction of the auxiliary 

poles for the case rad/s 25.00 =ω  has a better effect than the reduction of the 
desired performance without introduction of auxiliary poles. The auxiliary poles 
allow reducing the value of upS  in the high frequency region without affecting the 

regulation performances (see the frequency characteristics of ypS ). This means 

that a better robustness with respect to model uncertainties in high frequencies will 
be obtained together with a reduction of the actuator stress in high frequencies. 

In order to assure a good robustness at high frequencies and to reduce the 
actuator stress, it will be desirable to reduce upS  further in this frequency region, 

which implies a reduction of the controller gain at these frequencies. The 
introduction of auxiliary poles improves the situation but does not allow 
overcoming a fundamental limitation of PID controllers, namely the impossibility 
to obtain a very low gain at high frequencies. In order to achieve this it is necessary 
either to increase the order of S(q-1) (which will allow the introduction of a second-
order filter instead of a first-order filter), or “to open the loop”, which implies the 
increase of the order of R(q-1) in order to introduce zeros imposing a null gain of 
the controller at the frequency 0.5 fs. The use of the pole placement, which do not 
impose any restrictions on the size of R(q-1) and S(q-1), will allow such a design. 

3.2.6 Digital PID Controller: Conclusions 

The discretization of the classical PID results in a digital controller with a 
canonical three-branched structure (RST) with T(q-1) = R(q-1) (PID1). 

Based on the coefficient of R(q-1) and S(q-1), the coefficients of a continuous-
time PID may be computed if the polynomial  

 S(q-1) = 1 + s’1 q-1          
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  has    s’1∈ ] - 1,0 ]. 

The model based digital PID controller considered can deal with first-or second-
order systems with time delay, if this latter is less than Ts (sampling period). 

For time delays τ  0.25 T (time constant of the system of the plant), the 
continuous-time PID leads to responses that are slower in closed loop than the ones 
in open loop! 

≥

For systems with time delay, the closed loop performances may be significantly 
improved by choosing coefficients of R, S, T that do not result in an equivalent 
continuous-time PID controller. 

The overshoots that may appear in closed loop can be eliminated by replacing  

 T (q-1) = R(q-1)  [PID 1]      with      T (q-1) = R(1)  [PID 2] 

Digital PID controller design can be carried on the basis of the discrete-time 
plant model and of the desired closed loop performances. 

Every PID design should be concluded by an analysis of the robustness margins 
and of the frequency response of the input sensitivity function at high frequencies. 

3.3 Pole Placement 

The computation of the digital PID controller parameters is a special case of the 
“pole placement” strategy. 

The pole placement strategy allows the design of a RST digital controller both 
for stable and unstable systems: 

• Without restriction on the degrees of the polynomials A(q-1) and B(q-1) of 
the discrete-time plant model (provided that they do not have common 
factors) 

• Without restriction on the time delay 
• Without restriction on the plant zeros (stable or unstable) 

This method does not simplify the system zeros (this is why they can be unstable). 
The only restriction concerns the possible common factors of A(q-1) and B(q-1), 
which must be simplified before the computations are carried out. 

3.3.1 Structure 

The structure of the closed loop system is given in Figure 3.11. 
The plant to be controlled is characterized by the pulse transfer function 

(irreducible) 
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in which d is the integer number of sampling periods contained in the time delay 
and 

  (3.3.2) A
A

n
n qaqaqA −−− +++= ...1)( 1

1
1

  (3.3.3) )(...)( 1*12
2

1
1

1 −−−−−− =+++= qBqqbqbqbqB B
B

n
n

 
) ------------1

(q
- 1

)
---------
q

- d
B

A

   PLANT

R(q
- 1

)

--------------------
q

- d
B(q

- 1
)

(q
- 1

)

S

P

r(t) y(t)+

-

T (    )          q  
- 1

 
Figure 3.11. Pole placement with RST controller 

The closed loop transfer function is given by 
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in which 

 P(q-1) = A(q-1) S(q-1) + q-d B(q-1) R(q-1) = 1 + p1 q-1 + p2 q-2 +... (3.3.5) 

defines the closed loop poles that play an essential role for the regulation behavior. 
The behavior with respect to a disturbance is given by the output sensitivity 

function 
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It can thus be seen that P(q-1) corresponds to the denominator of the output 
sensitivity function and, thereby, it defines for a large extent the regulation 
behavior. 
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3.3.2 Choice of the Closed Loop Poles (P(q-1)) 

We have seen for the case of a digital PID controller that one can specify a 
polynomial P(q-1) defining the closed loop poles on the basis of a second-order 
continuous-time system with the desired natural frequency and damping (see 
Section 3.2.2). One can also directly specify the polynomial P(q-1) from the 
desired performances. To illustrate the last statement, consider the following 
example. 

Let 

 P(q-1) = 1 + p1 q-1    with    p1 = - 0.5 

When there is no reference, the free output response is defined by 

 y(t+1) = - p1 y(t) = 0.5 y(t) 

One thus obtains a relative decrease of 50% for the output amplitude at each 
sampling instant (see Figure 3.12). 

y(o)

y (t+1) = 0,5 y (t)

t

 
Figure 3.12. Responses for P(q-1) = 1-0.5 q-1 

Choosing p1 between -0.2 and -0.8, it is clear that the disturbance rejection 
speed can be controlled. 

Nevertheless, generally speaking, P(q-1) is chosen in the form of a second-order 
polynomial by discretization of a second-order continuous time system, specifying 
ω0, ζ and assuring that the condition  

 0.25  ω0 Ts  1.5    ;      0.7 ≤ ≤ ≤  ζ ≤  1 

is satisfied (see Section 3.2.2)5.  
The polynomial chosen from the desired closed loop performances will define 

the dominant closed loop poles and it will be named PD(q-1). 

                                                 
5 The functions fd2pol.sci, omega_dmp.sci (Scilab) and fd2pol.m, omega_dmp.m (MATLAB®) can be 
used. 
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If it is desired to introduce a filtering action in certain frequency regions (or to 
reduce the effect of the noise on the measure, or to smooth the variations of the 
control signal, or to improve the robustness), the poles of the corresponding filter, 
defined by a polynomial PF(q-1), should also be the poles of the closed loop. As a 
consequence, the polynomial P(q-1) defining the desired closed loop poles will be 
the product of the polynomials PD(q-1) and PF(q-1) specifying dominant and 
auxiliary closed loop poles, respectively. 

 P(q-1) = PD(q-1) . PF(q-1) (3.3.7) 

As a general rule, the poles named “auxiliary poles” are faster than the “dominant 
poles”. That is expressed, for the case of discrete-time models, by the property that 
the roots of PF(q-1) should have a real part smaller than the real part of the roots of 
PD(q-1). 

3.3.3 Regulation (Computation of R(q-1) and S(q-1)) 

Once P(q-1) is specified, in order to compute R(q-1) and S(q-1) according to 
Equation 3.3.4 , the following equation, known as “Bezout identity” (equation), 
must be solved: 

 A(q-1) S(q-1) + q-d B(q-1) R(q-1)= P(q-1) (3.3.8) 

Defining 

 nA = deg A(q-1)     ;      nB = deg B(q-1) (3.3.9) 

this polynomial equation has a unique solution with minimal degree (when (A(q-1) 
and B(q-1) do not have common factors) for 

 nP  = deg P(q-1) nA + nB + d - 1 ; ≤
  nS = deg S(q-1) = nB + d - 1     ;  nR = deg R(q-1) = nA – 1 (3.3.10) 

in which 
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In order to solve effectively Equation 3.3.8 , this latter is often put in the matrix 
form 

 M x = p (3.3.13) 
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in which 

  (3.3.14) ],...,,,...,,1[ 01 RS nn
T rrssx =

  (3.3.15) ]0,...,0,,...,,...,,1[ 1 Pni
T pppp =

and the matrix M has the following form 

                 nB + d                                             nA  

1 0 ... 0
a1 1 .
a2 0

1
a1

anA a2
0 .

0  ... 0 anA

0 ... ... 0
b' 1
b' 2 b' 1
. b' 2
. .

b' nB .
0 . . .
0 0 0 b' nB

nA + nB + d

   

                                           nA + nB + d                 

where: 

 b'i = 0    for    i = 0, 1 ...d         ;          b'i  = bi-d    for    i ≥  d+1 

The vector x, which contains the coefficients of the  polynomials R(q-1) and   S(q-
1), is obtained, after the inversion of the matrix M, by the formula 

 x = M-1 p (3.3.16) 

where M-1is the matrix inverse of M. This inverse exists if the determinant of the 
matrix M is different from zero. One can prove that this is verified if, and only if, 
A(q-1) and B(q-1) are coprime polynomials (no simplifications between zeros and 
poles). 

Several methods are used to solve Equation 3.3.8. These methods give better 
numerical performances with respect to a simple matrix inversion. 

For different reasons the polynomials R(q-1) and S(q-1) may contain, in general, 
fixed parts specified before the resolution of Equation 3.3.8 . For example, if zero 
steady state error is required for a step on the reference, or for a step disturbance, 
the presence of an integrator in the open loop transfer function is required. This 
corresponds to the introduction of a term (1-q-1) in the polynomial S(q-1) (see 
Section 2.4). 
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In order to take into account these pre-specified fixed parts, the polynomials 
R(q-1) and S(q-1) are factorized in the form 

 R(q-1) = R'(q-1) HR (q-1) (3.3.17) 
 S(q-1) = S' (q-1) HS (q-1) (3.3.18) 

where HR (q-1) and HS (q-1) are pre-specified polynomials and 
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For this parameterization of polynomials R(q-1) and S(q-1), the closed loop transfer 
function will be 
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and, instead of Equation 3.3.8 , one needs to solve the equation 

 A(q-1) HS(q-1) S'(q-1) + q-d B(q-1) HR(q-1) R'(q-1) = P(q-1) (3.3.22) 

In order to solve Equation 3.3.22, one needs to solve Equation 3.3.8 after 
replacing: A(q-1) by A'(q-1) = A(q-1)HS(q-1) and B(q-1) and B'(q-1) = q-dB(q-1) 
HR(q-1) with the restriction that polynomials [A(q-1) HS(q-1)] and [B(q-1) HR(q-1)] 
are coprime. 

The condition of Equation 3.3.10 on the orders of the polynomials that allow 
one to get a unique solution of minimal order, become in this case 

 nP  = deg P(q-1) nA + nHS + nB + nHR+ d - 1 ;  ≤
 nS' = deg S'(q-1)=nB + nHR + d – 1 ; nR' =deg R'(q-1)=nA + nHS –1 (3.3.23) 

For the controller implementation, S(q-1) will be given by S'(q-1)HS(q-1) and     
R(q-1) by R'(q-1) HR(q-1). 

Equation 3.3.22 or 3.3.8 can be solved by means of the functions bezoutd.sci 
(Scilab) and bezoutd.m (MATLAB®) available on the book website. 
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Use of Fixed Parts of the Controller (HR and HS): Examples 

Steady-State Error 
As illustrated in the previous sections, S(q-1) must contain a term (1-q-1) in order to 
have a zero steady state error for a step input or disturbance (Syp (q-1) must be zero 
in steady state, i.e. for q = 1). Thus 
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and then one needs to choose: 

 HS(q-1) = 1 - q-1 (3.3.25) 

Rejection of a Sinusoidal Disturbance 
If a perfect rejection of a sinusoidal disturbance is required at a specified 
frequency, it isessential that Syp (q-1) is zero at this frequency, which is equivalent 
to the requirement that HS(q-1) has a pair of undamped complex zeros at this 
frequency. 

In this case: 

 HS(q-1)= 1 + α q-1 + q-2 (3.3.26) 

with α = - 2 cos ω Ts = - 2 cos (2 π  f/fs ). 
If one requires only a given attenuation, HS(q-1) must introduce a pair of 

damped complex zeros with a damping factor depending on the desired 
attenuation. 

Signal Blocking 
In some applications the measured signal contains signal components at particular 
frequencies for which the controller should not react (these signals may serve for 
process technological operation). This implies that at these frequencies one should 
have Syp(q-1)=1. It results from Equation 3.3.24  and 3.3.6  that at these 
frequencies it is essential that HR(q-1) be null. As a consequence, the input 
sensitivity function Sup(q-1) must be null (no effect of the disturbance upon the 
control signal).  
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The expression of Sup(q-1) is given by 
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and one must choose the fixed part R(q-1) named HR(q-1) such that it has a null 
gain at this frequency. 

The fixed part of R(q-1) will be of the form 

 HR(q-1) = 1 + β q-1 + q-2 (3.3.28) 

where β = - 2 cos ω0 Ts = - 2 cos (2 π  f / fs). 
This introduces a pair of undamped complex zeros at the frequency f or, more 

generally, in the form of a second order polynomial corresponding to a damped 
complex zeros pair, if a desired attenuation is accepted. 

In many applications it is required that the controller does not react to signals 
close to 0.5 fs (where the gain of the cascade actuator-plant is generally low). In 
this case one imposes:  

 HR(q-1) = (1 + β q-1)n      n=1,2 (3.3.29) 

with 10 ≤< β . 
Note that (1 + β q-1)2 corresponds to a damped second-order system with a 

resonant frequency equal to π fs (see Section 2.3.2): 

 sfπζω =− 2
0 1  

and the corresponding damping factor depends upon β  through the relation 

 
π

ζ

ζ

β
21−

−

= e  

For β = 1 it follows that 0=ζ and the closed loop system works in open loop at 
0.5 fs (even for n=1). 

Robustness 
In order to guarantee both robustness margins and specified closed loop 
performances, fixed parts HR(q-1) and HS(q-1) (as well as auxiliary poles) should 
be introduced for shaping the frequency characteristics of the sensitivity functions 
Syp(q-1) and Sup(q-1) in specified frequency regions. This will be discussed in 
Section 3.6. 
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3.3.4 Tracking (Computation of T(q-1)) 

Ideally, when the reference changes, it is desired that the system output y(t) follows 
a desired trajectory y*(t). This trajectory may be stored or generated each time the 
reference is changed by using a reference model (as indicated in Figure 3.13). 

The transfer function of the reference model is 
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Figure 3.13. Desired trajectory y*(t) generation 

It is generally determined from desired performances (rising time, overshoot, 
settling time). For example, a second-order normalized continuous-time model 
(parameters ω0, ζ) can be defined by means of the curves given in Figure 1.10 
starting from the desired performances. Once the continuous-time transfer function 
and the sampling period Ts, are known, the pulse transfer function of the reference 
model is obtained by discretization.  

The pulse transfer function of the reference model will be of the form 
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This is the transfer function that the controller must achieve between the reference 
r and the output y, eventually multiplied by q-d in the case of a time delay d in the 
plant model (the delay cannot be compensated). In the case of the pole placement 
this cannot be obtained because the plant zeros are maintained (polynomial B(q-1)). 

The objective is then to approach the delayed model reference trajectory 
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For this, firstly y*(t+d+1) is generated from r(t): 
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and one chooses T(q-1) to impose: 

• Unit static gain between y* and y 
• Compensation of the regulation dynamics defined by P(q-1) (because the 

regulation dynamics is in general different from the tracking dynamics 
Am(q-1)) 

This leads to the choice 

 T(q-1) = G P(q-1) (3.3.34) 

where 
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The control law equation becomes 

 S(q-1) u(t) + R(q-1) y(t) = T(q-1) y*(t+d+1) (3.3.36) 

The full diagram for the pole placement is given in Figure 3.14. 
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Figure 3.14. Pole placement - tracking and regulation 

The transfer function (operator) between the reference and the output will be 
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In some cases one can consider a simplification of the polynomial T by taking into 
account just the dominant poles (as auxiliary poles are often at high frequencies 
with a small influence on the time response). In this case 
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and 
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If the regulation dynamics is the same as the tracking dynamics, there is no need 
for a reference model of the form of Equation 3.3.33  and the polynomial T(q-1) is 
replaced by a gain6: 
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which guarantees a unit static gain between the reference trajectory and the output 
(if B(1) is not null). 

The controller equations for the pole placement under different forms are 
summed up in Table 3.5 (the recursive equations needed for the implementation 
are boxed). 

 
 
 
 
 

                                                 
6 If S(q-1) contains an integrator (S(1)=0) it follows from Equation 3.3.21 that 

and)()()( 1P1R1B = ),()(/)( 1R1B1P = respectively. 
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3.3.5 Pole Placement: Examples 

Table 3.6 gives the results for a pole placement design. The considered example is 
the control of a plant model characterized by a second-order discrete-time model 
with two real poles (at 0.6 and 0.7) and an unstable zero.  

The tracking dynamics (polynomials Am(q-1) and Bm(q-1)) has been obtained by 
discretization of a second-order normalized continuous-time model, with ω0 = 0.5 
rad/s and ζ = 0.9, (Ts =1s). The regulation dynamics (polynomials P(q-1)) has 
been obtained by discretization of a second-order normalized continuous-time 
model with ω0 = 0.4 rad/s and ζ = 0.9. The controller includes an integrator. 
Satisfactory robustness margins are obtained. The performances are shown in 
Figure 3.15. 

Table 3.5. Pole placement - control law equations 
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Exercise:  
What are the specifications for the “pole placement” technique that will lead to a 
PID 2 controller ? 

 

 

 



 Robust Digital Controller Design Methods 117 

Table 3.6. Pole placement results 

Plant:   

• d=0 
• B(q-1) = 0.1 q-1 + 0.2 q-2 
• A(q-1) = 1 - 1.3 q-1  + 0.42 q-2 
 

Tracking dynamics: 

• Bm (q-1) =  0.0927 + q-1 + 0.0687 q-2 

• Am (q-1) =  1 - 1.2451q-1 + 0.4066 q-2 
• Ts = 1s  ,  ω0 = 0.5 rad/s, ζ = 0.9 

Regulation dynamics   P (q-1)  = 1 - 1.3741 q-1   + 0.4867 q-2 
                                        Ts = 1s  , ω0 = 0.4 rad/s,  ζ = 0.9 

Pre-specifications: Integrator 

*** CONTROL LAW *** 

S (q-1) u(t) + R (q-1) y(t) = T (q-1) y*(t+d+1) 

y*(t+d+1) = [Bm(q-1)/Am(q-1)] r(t) 
Controller: 

• R(q-1)  = 3 - 3.94 q-1 + 1.3141 q-2 
• S(q-1)  = 1 - 0.3742 q-1  - 0.6258 q-2 
• T(q-1) = 3.333 - 4.5806 q-1 + 1.6225 q-2 

Gain margin: 2.703                                    Phase margin: 65.4 deg 
Modulus margin: 0.618 (- 4.19 dB)           Delay margin: 2.1 s 

3.4 Tracking and Regulation with Independent Objectives  

This controller design method makes it possible to obtain the desired tracking 
behavior (changing of reference) independently of the desired regulation behavior 
(rejection of a disturbance). For example, the performance specifications illustrated 
in Figure 3.16 correspond to a situation for which the desired regulation response 
time (for a step disturbance) is significantly smaller than the desired tracking 
response time (for a step reference). Note that the reverse situation may be 
encountered. This method is a generalization of the so-called “model reference 
control”. 
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Figure 3.15. Pole placement performances 

Unlike the “pole placement” method (Section 3.3), this method leads to the 
simplification of the zeros of the discrete-time plant model. This enables the 
tracking and regulation performances to be achieved without approximation. 

This control strategy permits a RST digital controller to be designed for both 
stable and unstable systems: 

• Without restriction on the degrees of the polynomials A(q-1) and B(q-1) 
characterizing the pulse transfer function of the plant 

• Without restriction on the time delay d of the system 

As a result of the simplification of the zeros, however, this strategy can only be 
applied to discrete time models with stable zeros. 

This method cannot be applied to systems with fractional delay greater than 
0.5Ts. In the case of a fractional delay greater than 0.5Ts, however, one can 
consider approximating (in the identification phase) the model with a fractional 
delay by a model with an augmented integer delay. 

Note that unstable zeros can be the consequence of a too fast sampling of 
continuous time systems characterized by a difference greater than 2 between the 
numerator and denominator degree of the continuous time transfer function (even 
if the continuous time zeros are stable) (Åström and Wittenmark 1997). 

This method can be considered as a particular case of the “pole placement” 
method. This equivalence can be obtained by imposing that the closed loop poles 
contain the zeros of the discrete time plant model (defined by the polynomial     
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B*(q-1)). This is the reason for which the zeros of the plant model must be stable 
(see Section 3.4.2)7. 
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Figure 3.16. Tracking and regulation performances 
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Figure 3.17. Admissible domain (hatching zone) for the zeros of the discrete-time plant 
model (tracking and regulation with independent objectives) 

                                                 
7 An approximation of the tracking and regulation with independent objectives, for the case of unstable 
zeros, can be obtained by pole placement, where the unstable zeros, which should be specified as closed 
loop poles, are approximated by stable zeros. This technique is presented in the stochastic context in 
Section 4.3.  
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It is convenient then to verify that, before the application of this method, the 
zeros of B*(q-1) are stable, and, moreover, that complex zeros have a sufficiently 
high damping factor (ζ > 0.2). In other words, the zeros should lie inside a region 
defined by the cardioids related to the constant damping factor ζ =0.2 (see Figure 
2.21). This admissibility domain is shown in Figure 3.17. 

3.4.1 Structure 

The structure of the closed loop system is presented in Figure 3.18. 

 
Figure 3.18. Tracking and regulation with independent objectives 

The closed loop poles are defined by the polynomial P(q-1) that almost 
completely specifies the desired behavior for the regulation. 

As a general rule, P(q-1) is the product of the two polynomials  

 P(q-1) = PD(q-1) . PF(q-1) 

where PD(q-1) is determined as a function of the desired performances and PF(q-1) 
represents the auxiliary poles (for more details see Section 3.3.2). 

The desired transfer function between the reference r(t) and the plant output 
y(t), which defines the tracking dynamics, is 

 q-(d+1) Bm(q-1) / Am(q-1) 

The output of the tracking model Bm(q-1) / Am(q-1) specifies the desired trajectory 
y* with d+1 steps ahead. 

The plant to be controlled is characterized by the pulse transfer function given 
in Equation 3.3.1, where the polynomials A(q-1) and B(q-1) are specified by 
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Equations 3.3.2  and 3.3.3. Note that in this case polynomials A(q-1) and B(q-1) can 
have common factors. 

The computation of R(q-1), S(q-1), T(q-1) is done in two stages. First, by means 
of polynomials R(q-1) and S(q-1), the closed loop poles will be placed at the desired 
values specified by the polynomial P(q-1), and the zeros of the discrete-time plant 
model will be simplified. Second, the pre-filter T(q-1) is computed in order to 
obtain the tracking of the reference trajectory y*, delayed by d steps. Note that for 
P(q-1) = 1 this method corresponds to the “model reference control”. 

3.4.2 Regulation (Computation of R(q-1) and S(q-1)) 

Without the pre-filter T(q-1), the closed loop transfer function is: 
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The closed loop poles should be those defined by P(q-1) and the system zeros 
should be cancelled (in order to obtain a perfect tracking at a later stage). 

From Equation 3.4.1, it results that the closed loop poles must contain in 
addition the zeros of the plant model. 

Once P(q-1) is specified, it results from Equation 3.4.1 that, in order to compute 
R(q-1) and S(q-1), the following equation must be solved: 

 A(q-1) S(q-1) + q-(d+1) B*(q-1) R(q-1) = B*(q-1) P(q-1) (3.4.2) 

Equation 3.4.2 corresponds to the pole placement with a particular choice of the 
desired closed loop poles (that contain nB-1 additional poles corresponding to the 
plant zeros). 

However, in order to solve Equation 3.4.2, one observes that S(q-1) should have 
B*(q-1) as a common factor: 

  (3.4.3) )()(...)( 11*1
10

1 −−−−− ′=+++= qSqBqsqssqS S
S

n
n

Introducing the expression of S(q-1) given by Equation 3.4.3 in Equation 3.4.2, and 
after simplification by B*(q-1), one obtains 

 A(q-1) S'(q-1) + q-(d+1) R(q-1) = P(q-1) (3.4.4) 

This polynomial equation has a unique solution for 
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 nP  = deg P(q-1)  =  nA+d  ;   deg S'(q-1) = d ;    deg R(q-1) = nA-1 (3.4.5) 

in which 

  (3.4.6) 1
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1
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1 ...)( +−
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−− +++= A
A

n
n qrqrrqR

and 

 S'(q-1) = 1 + s'
1 q-1 +...+ s'

d q-d (3.4.7) 

Equation 3.4.4 corresponds, under the conditions of Equation 3.4.5, to the matrix 
equation 

 M x = p (3.4.8) 

where M is a lower triangular matrix of dimension (nA+d+1) x (nA+d+1)  

                                     nA + d + 1 
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Some coefficients pi can be zero. Since M is a lower triangular matrix, Equation 
3.4.8 (and respectively Equation 3.4.4) always has a solution. 
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In order to solve Equation 3.4.4 one can use predisol.sci (Scilab) and 
predisol.m (MATLAB®) functions available on the book website. 

One observes that, because of the nature of the design methodology, S(q-1) 
already contains a fixed part (Equation 3.4.3) specified before solving Equation 
3.4.4. 

Thus, it is convenient to consider, as in the pole placement case, a 
parameterization of S(q-1) and R(q-1) in the form 

 R(q-1) = HR (q-1) R'(q-1) (3.4.11) 
 S(q-1) = HS (q-1) S'(q-1) (3.4.12) 

In which HR(q-1) and HS(q-1) represent the pre-specified parts of R(q-1) and S(q-1). 
In the case of tracking and regulation with independent objectives, HS(q-1) will 

have the form 

 HS(q-1) = B*(q-1) . H'S(q-1) (3.4.13) 

and Equation 3.4.4, in the general case, becomes 

 A(q-1) H'S(q-1) S'(q-1) + q-(d+1) HR(q-1) R'(q-1) = P(q-1) (3.4.14) 

For solving 3.4.14 one can also use predisol.sci (Scilab) and predisol.m 
(MATLAB®) functions. Note also that pole placement equations can be used for 
computing S’(q-1) and R’(q-1) by introducing B*(q-1) in the expression of P(q-1). 

Steady-State Error 
In order to have a zero steady state error for a step input or a step disturbance, the 
open loop cascade must contain a digital integrator, i.e. the polynomial S(q-1) must 
contain a term (1-q-1): 

 S(q-1) = B*(q-1) (1 - q-1) S'(q-1)= B*(q-1) H'S(q-1) S'(q-1) (3.4.15) 

Introducing this expression in Equation 3.4.2 and after simplification by B*(q-1) 
one gets 

 A(q-1) (1-q-1) S'(q-1) + q-(d+1) R(q-1) = P(q-1) (3.4.16) 

which must be solved in order to obtain the corresponding coefficients of S'(q-1) 
and R(q-1) when an integrator is used. 
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3.4.3 Tracking (Computation of T(q-1)) 

The pre-filter T(q-1) is computed in order to achieve (in accordance with Figure 
3.17), between reference r(t) and y(t), a transfer function: 
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From Equation 3.4.17 

 T(q-1) = P(q-1) (3.4.18) 

The input of T(q-1) is the (d+1) steps ahead prediction of the desired trajectory 
y*(t+d+1), obtained by filtering r(t) with the tracking model Bm(q-1) / Am(q-1). 
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and the controller equation will be given by 

 S(q-1) u(t) + R(q-1) y(t) = P(q-1) y*(t+d+1) (3.4.20) 

Equation 3.4.20 may also take the form 
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Since S(q-1) is of the form 
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and considering the expressions of B*(q-1) and S'(q-1) (given by Equation 3.4.7): 

 s0 = b1 (3.4.23) 

Therefore Equation 3.4.20 may also take the form8 

                                                 
8 One can also normalize the parameters of the controller by dividing all parameters by s0 = b1. This 
avoids a multiplication operation in real time implementation. 
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As for the pole placement case, if the desired dynamics is the same both for 
tracking and regulation, the reference model is no longer necessary and the 
polynomial T(q-1) is replaced by a simple gain to guarantee unit static gain 
between the reference trajectory and the output: 

 T(q-1) = G = P(1) 

If S(q-1) contains an integrator, then the polynomial T(q-1) becomes 

 T(q-1) = G = R(1) 

3.4.4 Tracking and Regulation with Independent Objectives: Examples  

Table 3.7 gives the results of the design for tracking and regulation with 
independent objectives.  

The example considered here concerns the control of a plant characterized by a 
second-order discrete-time model with two poles at z = 0.6 and at z = 0.7, and with 
a stable zero. The desired tracking dynamics (polynomials Am (q-1) and Bm (q-1)) 
has been obtained by discretization of a second-order normalized continuous-time 
model with ω0 = 0.5 rad/s and ζ = 0.9 (Ts = 1s). The desired regulation dynamics 
(polynomial P(q-1)) has been obtained by discretization of a second-order 
normalized continuous-time model with ω0 = 0.4 rad/s and ζ = 0.9. The controller 
contains an integrator. The computed values of R(q-1) and S(q-1) are given in the 
lower part of Table 3.3, and the simulation results, for a reference tracking and a 
load disturbance (step) on the output, are presented in Figure 3.19. Note that the 
position of the zero is close to the boundaries of the admissibility domain (z0 = - 
0.5 corresponds to ζ = 0.2), and this explains the damped oscillations observed on 
the control signal when a step disturbance occurs. 

Table 3.8 gives the computed values of the controller parameters for a plant 
having the same dynamics of the previous one but with a time delay d = 3 (instead 
of d = 0). All the desired performances have been maintained. Polynomial S(q-1) 
has a higher order. Closed loop system responses are presented in Figure 3.20. One 
observes that the output response is the same as in the case of d = 0 (Figure 3.20) 
except that they are shifted by d steps. Moreover, by comparing Figures 3.19 and 
3.20, one observes that the control signal is the same. In other words, even if the 
same output value is recovered with a delay of three sampling periods, the 
controller computes a signal that is the same as in the case of d = 0. In fact, for the 
case with time delay, the controller contains a three step ahead predictor (for 
details see Appendix B). 
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Table 3.7. Tracking and regulation with independent objectives (d=0) 

Plant:  

• d = 0 
• B(q-1) = 0.2 q-1 + 0.1 q-2 
• A(q-1) = 1 - 1.3 q-1  + 0.42 q-2 

Tracking dynamics: 
• Bm (q-1) =  0.0927q-1+ 0.0687 q-2 

• Am (q-1) =  1-1.2451q-1+ 0.4066 q-2 
• Ts = 1s ,  ω0 = 0.5 rad/s,  ζ = 0.9 

Regulation dynamics  P (q-1)  = 1 - 1.3741 q-1   + 0.4867 q-2  
                                        Ts = 1s  , ω0 = 0.4 rad/s,  ζ = 0.9 

Pre-specifications: Integrator 

*** CONTROL LAW *** 

S (q-1) u(t) + R (q-1) y(t) = T (q-1) y*(t+d+1) 

y*(t+d+1) = [Bm (q-1)/Am (q-1)] . r(t) 
Controller:   

• R(q-1)  = 0.9258 - 1.2332 q-1 + 0.42 q-2 
• S(q-1)  = 0.2 - 0.1 q-1 - 0.1 q-2 
• T(q-1) = P(q-1) 

Gain margin: 2.109                             Phase margin: 65.3 deg 
Modulus margin: 0.526 (- 5.58 dB)    Delay margin: 1.2 s 

One observes that the delay margin is smaller than one sampling period. In this 
case, one should specify high frequency auxiliary poles in P(q-1) that lightly affect 
the low frequency behavior but improve the robustness at high frequencies (in 
particular the delay margin).  

The maximum number of closed loop poles (the maximum degree of 
polynomial P(q-1)) is 5. Having already specified a pair of dominant poles, one can 
impose, for example, PF(q-1) = (1 – 0.1 q-1)3 . In this case, one obtains a gain 
margin of 2.157, a modulus margin of 0.534 (-5.45dB), a phase margin of 58.5 
degrees and a delay margin of 1.19s (greater than one sampling period). 

The closed loop system responses are presented in Figure 3.21. Tracking 
performances are the same as for the case without auxiliary pole, and regulation 
performances are almost unchanged. One also remarks that the introduction of 
these poles reduces the stress on the actuator in the transient for the disturbance 
rejection. 
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Table 3.8. Tracking and regulation with independent objectives (d=3) 

Plant:   

• d = 3    
• B(q-1) = 0.2 q-1 + 0.1 q-2 
• A(q-1) = 1 - 1.3 q-1+ 0.42 q-2 

Tracking dynamics: 

• Bm (q-1) = 0.0927 + 0.0687 q-1 

• Am (q-1) = 1 - 1.2451q-1  + 0.4066 q-2 
• Ts  = 1s  ,  ω0 = 0.5 rad/s,  ζ = 0.9 

Regulation dynamics   P (q-1)  = 1 - 1.3741 q-1  + 0.4867 q-2 
                                        Ts = 1s  , ω0 = 0.4 rad/s,  ζ = 0.9 

Pre-specifications: Integrator 

*** CONTROL LAW *** 

S (q-1) u(t) + R (q-1) y(t) = T (q-1) y*(t+d+1) 

y*(t+d+1) = [Bm (q-1)/Am (q-1) ] .ref(t)  
Controller: 

• R(q-1)  = 0.8914 - 1.1521 q-1 + 0.3732 q-2 
• S(q-1) = 0.2 +0.0852 q-1 - 0.0134 q-2 - 0.0045 q-3 - 0.1785 q-4 

               - 0.0888 q-5 
• T(q-1) = P(q-1) 

Gain margin : 2.078                                Phase margin: 58 deg 
Modulus margin: 0.518 (- 5.71 dB)        Delay margin: 0.7 s 

As a general rule, when the plant has a time delay, one needs to specify not only 
the dominant poles of P(q-1), but also auxiliary poles at values other than 0 in order 
to improve the robustness with respect to the possible variation of the delay (this 
remark is also valid for the other methods presented in this chapter). 
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Figure 3.19. Performances of tracking and regulation with independent objectives (d = 0) 
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Figure 3.20. Performances of tracking and regulation with independent objectives in 
presence of a time delay (d = 3) 
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3.5 Internal Model Control (Tracking and Regulation)  

The internal model control (IMC) strategy (not to be confused with the internal 
model principle) is a particular case of the pole placement technique. In the internal 
mode control the poles of the plant model are chosen as the desired dominant poles 
of the closed loop. As a consequence, the closed loop system will not be faster than 
the open loop system. Since there will not be an acceleration of the closed loop 
time response with respect to the open loop time response, one can expect a better 
closed loop robustness with respect to plant model uncertainties. As the closed 
loop poles include the poles of the plant model, this technique can be applied only 
to stable and well damped discrete time plant models. This technique is often used 
for the control of stable plants with a large time delay with respect to the open loop 
rise time (the rise time does not include the time delay!). 
The control structure is the same as for the pole placement (Figure 3.14). 
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Figure 3.21. Performances of tracking and regulation with independent objectives with 
auxiliary poles in presence of a pure time delay (d = 3) 

3.5.1 Regulation 

In the case of the internal model control Equation 3.3.22 of the pole placement 
becomes 

  (3.5.1) )()()()()()()( 1111111 −−−−−−−− ==+ qPqPqAqRqBqqSqA F
d
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Often in practice one selects 

  (3.5.2) ( ) FPn
F qqP 11 1)( −− += α

or 

 ( )( ) 111
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1 11)(
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F qqqP αα  (3.5.3) 

By examining the structure of Equation 3.5.1 one observes that R(q-1) should have 
as a factor A(q-1): 

  (3.5.4) )()()( 111 −−− ′= qRqAqR

and Equation 3.5.1, after elimination of the common factor A(q-1), becomes 
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which presents similarities with Equation 3.4.4 for tracking and regulation with 
independent objectives (by replacing in Equation 3.4.4 S ′ by R′ , A by , 

 by  and  by ). Equation 3.5.5 has a unique minimal 
order solution for  
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The solution of Equation 3.5.5 becomes simpler if one considers the typical case 
where an integrator is introduced in the controller, i.e.: 

 ( ) )(1)( 111 −−− ′−= qSqqS  (3.5.6) 

In this case, for q=1 Equation 3.5.5 becomes  
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and 
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From Equation 3.5.9 it follows that in this design the poles of the plant model 
(defined by A(q-1)) will be simplified by the zeros introduced by the controller. 
This implies that the poles of the plant model should be stable (see Chapter 2, 
Section 2.5.2). 

One interesting aspect of this design is the possibility to characterize the set of 
all the controllers as a function of PF(q-1) without having to solve a polynomial 
equation. 

If, in addition to the integrator, a fixed part HR(q-1) is imposed in R(q-1), S(q-1) 
has the structure given in Equation 3.5.6 and R(q-1) will have the structure 

  (3.5.11) )()()()( 1111 −−−− ′= qRqHqAqR R

Equation 3.5.5 becomes 
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from which one obtains 
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3.5.2 Tracking 

In the case of internal model control the polynomial T(q-1) used for tracking is 
given by (like in the pole placement) 
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But if one chooses the same dynamics for tracking and regulation, the tracking 
reference model can be eliminated and T(q-1) will be given by 
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which guarantees a unit steady state gain between the desired tracking trajectory 
and the controlled output. 

3.5.3 An Interpretation of the Internal Model Control 

Let us consider first the case HR(q-1)=1. The control law equation (Table 3.5) is 
written using the expressions of R, S, T given by Equations 3.5.9, 3.5.10 and 
3.5.17: 
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which can be re-written as 
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Taking into account that by hypothesis A(q-1) is asymptotically stable one obtains  
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 (3.5.21) 

where  
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This leads to the equivalent representation of the closed loop behavior shown in 
Figure 3.22. 

 

 
Figure 3.22. Equivalent diagram of the internal model control 

One can see that an equivalent implementation of the RST controller can be 
considered. This implementation explicitly features the model of the plant 
(prediction model) as a component of the control scheme. It is the error signal 
between the plant output y(t) and the predictor output , which is fed-back. 
Note also that the computation of R0 and S0 does not require the solution of a 
polynomial equation. 

)(ˆ ty

For the case of HR(q-1) 1, using Equations 3.5.14, 3.5.15, 3.5.16 and 3.5.17 
one obtains a similar result. Only the expression of R0(q-1) changes (it will contain 
in addition the factor HR(q-1)/ HR(1)). 

≠

3.5.4 The Sensitivity Functions 

In the case of internal model control the sensitivity functions have a particular 
structure, as a consequence of the choice for the dominant poles of the closed loop 
(they are equal to the plant model poles): 
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Equation 3.5.25 clearly indicates that the plant model should be asymptotically 
stable in open loop. One can also see the direct influence of the transfer function 
HR(q-1)/PF(z-1) (i.e. the choice of HR and PF) upon the sensitivity functions. 

3.5.5 Partial Internal Model Control (Tracking and Regulation) 

In many applications the plant model is characterized by low frequency dominant 
poles (located within or close to the desired attenuation band) and secondary poles 
located outside the desired attenuation band. 

If the dominant poles are too slow, or if they have a too low damping (often the 
case for mechanical systems), the internal model control cannot be applied as such. 

In this case one uses a mixture of pole placement and internal model control. 
The pole placement will be used to assign the desired dominant poles of the closed 
loop but it will not move the secondary poles of the plant model (which will 
become poles of the closed loop). 

Suppose A(q-1) has the form 

  (3.5.26) )()()( 1
2

1
1

1 −−− = qAqAqA

where A1(q-1) defines the dominant poles of the plant model. In the case of partial 
internal model control, the equation defining the closed loop poles will be 

  (3.5.27) 
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d

Examining the structure of Equation 3.5.27 it is seen that R(q-1) will be of the form 

  (3.5.28) )()()( 11
2

1 −−− ′= qRqAqR

and Equation 3.5.27 (after elimination of the common factor A2(q-1)) becomes 
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  (3.5.29) )()()()()()( 111111
1

−−−−−−− =′+ qPqPqRqBqqSqA FD
d

This technique can also be interpreted as a simplification of the plant model 
secondary poles (defined by A2(q-1)) by the zeros of the controller. 

3.5.6 Internal Model Control for Plant Models with Stable Zeros 

If B(q-1) has all its zeros inside the unit circle (and these zeros are sufficiently 
damped) one can use the tracking and regulation with independent objectives 
design but using as desired poles the dominant poles of the plant model.  

One considers that S(q-1) has the structure given by Equation 3.4.15 (presence 
of an integrator) and one supposes HR(q-1)=1 (in order to simplify the 
presentation).  

Equation 3.4.16 becomes 

 A(q-1) (1-q-1) S'(q-1) + q-(d+1) R(q-1) = A(q-1) PF(q-1) (3.5.30) 

This implies that R(q-1) will have the form 

 R(q-1)=A(q-1)R'(q-1) (3.5.31) 

and Equation 3.5.30 becomes 

 (1-q-1) S'(q-1) + q-(d+1) R'(q-1) = PF(q-1) (3.5.32) 

For q=1one has 

 R'(1) = R'(q-1) = PF(1) (3.5.33) 

It results that 

 (1-q-1) S'(q-1) = PF(q-1) - q-(d+1) PF(1) (3.5.34) 

from which one gets 

 S(q-1) =B*(q-1) [PF(q-1) - q-(d+1) PF(1)] (3.5.35) 

 R(q-1) = A(q-1) PF(1) (3.5.36) 
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3.5.7 Example: Control of Systems with Time Delay 

Internal model control is often used for the control of systems with large time delay 
compared to the rise time of the system without time delay. If  d > tR (where tR is 
expressed in sampling periods), the reduction of the rise time in closed loop does 
not produce a significant improvement of the total response time, since this is 
mainly determined by d. Therefore, one is able to use internal model control. 
However, even when one takes PD(q-1)=A(q-1), the introduction of the auxiliary 
poles and/or of the fixed part HR(q-1) is necessary in order to assure the robustness 
of the closed loop with respect to the time delay variations. 

Consider the case PF (q-1)=1, HR (q-1)=1 and B(q-1)= b1q-1 (b1>0).  From 
Equations 3.5.22 and 3.5.23 one gets 

  (3.5.37) )...1)(1(1)( 21111 dd
yp zzzzzzS −−−−−−− ++++−=−=

  (3.5.38) 11)( −−− = d
yb zzS

Syp(z-1) has a zero at and d zeros on the unit circle if d is even, or 
d-1 zeros on the unit circle plus a zero at  if d is odd. From 
Equation 3.5.37, since | z-d-1| is always equal to 1, it results that 

)0(1 == ωz
)(1 πω =−=z

 2)(
max

≤− ωj
yp eS  (3.5.39) 

and then the modulus margin 5.0=∆M  is always achieved. 
 However 

 1)( ≡− ωj
yb eS                              for πω ≤≤0  (3.5.40) 

and therefore the frequency characteristic of | Syb| will cross the template for 
sT=∆τ  (see Figure 2.39: | Syb| should be smaller than 1 starting from f = 0.17fs).  

The condition for satisfying the delay margin in Figure 2.39 is in this case 

 
1

1
1

1

−
≤

−
−−

z
z d  (3.5.41) 

and clearly this will not be satisfied at all frequencies. 
We will examine next the beneficial effect of the introduction of the auxiliary 

poles PF(q-1) and of a fixed part HR(q-1) in the controller. 

Auxiliary Poles (PF(q-1) 1, HR(q-1) = 1) ≠
Let us select: 
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             ) 1()( 11 −− += qqPF α 01 <<− α  (3.5.42) 

and search for the value of α  assuring the delay margin sT=∆τ . In this case Syb is 
given by Equation 3.5.23 and the condition for the delay margin sT=∆τ  takes the 
form 
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yb         (3.5.43) πωω ≤≤= 0jez

which for PF(q-1) given by Equation 3.5.42 becomes 

 
11 1
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zzα
α                                (3.5.44) πωω ≤≤= 0jez

Replacing z by one observes that the worst situation occurs at ωjez =

πω = (i.e. f=0.5fs) where 3.5.44 becomes: 
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Figure 3.23a,b. Auxiliary poles effect on the delay margin: a noise- input sensitivity 
function (Syb); b output sensitivity function (Syp) 
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 5.0
1
1

<
−
+

α
α      ⇒ 333.0−≤α  (3.5.45) 

Figure 3.23a,b shows the frequency characteristics of |Syb| and |Syp| (controller with 
integrator) for a plant model characterized by 7=d ,  ( ), 

with 

11)( −− = qqB 11 =b
1

1
1 1)( −− += qaqA 2.01 −=a  and for three values of α : 1.0−=α ; 3.0−=α ; 

333.0−=α . For 1.0−=α  and 3.0−=α  one gets the delay margin 

sT52.0=∆τ and , respectively, and the corresponding curves of Syb and 

Syp intersect the robustness template for 
sT91.0=∆τ

sT=∆τ . For 333.0−=α  the effective 
delay margin is sT=∆τ  and it can be seen that the corresponding sensitivity 
functions do not cross the robustness template for the delay margin sT=∆τ . 

If one uses auxiliary poles PF(z-1) of the form Equation 3.5.3: 

  
1111 )1)(1()(

−−−− ′++= FPn
F qqqP αα

one selects 01 ≤<− α and 05.025.0 −≤′<− α  with dnn BPF
+≤ . In this case one 

introduces  high frequency auxiliary poles. This choice leads to a further 
contraction of Syp around 0 dB in the high frequency region, and a reduced effect 
upon the reduction of the performance at low frequencies.  

1−Fn

Figures 3.24a,b shows the frequency characteristics of the modulus of the 
sensitivity functions Syb and Syp for the same plant model, using either an auxiliary 
pole of the form of Equation 3.5.42 with 5.0−=α  or auxiliary poles of the form of 
Equation 3.5.3, with 3.0−=α , 1.0−=′α , 71 =−

FPn . The corresponding delay 

margins are 2.09Ts and 2.14Ts, respectively. The second solution is much more 
efficient for attenuating the sensitivity functions at high frequencies (improving the 
robustness and reducing the stress on the actuator). 

Introduction of HR(q-1) (PF(q-1)= 1, HR(q-1) ≠  1) 
In this case, from Equations 3.5.14 and 3.5.15 one has: 

  (3.5.46) )()()()( 1111 −−−− ′= qRqHqAqR R

with 

   (3.5.47) 11 1)( −− += qqH R β

which leads to 
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and (using Equation 3.5.16 ): 
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For one gets 1
1

1)( −− = qbqB
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and the condition for getting a delay margin sT=∆τ  becomes  
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Figure 3.24a,b. Effect of high frequency auxiliary poles on the sensitivity functions of plant 
models with time delay: a noise- input sensitivity function (Syb); b output sensitivity 
function  (Syp) 
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The worst situation occurs at 2/πω = (f=0.25fs) where the condition of Equation 
3.5.51 becomes (replacing  by < ≤ ) 

 5.0
)1(

1
2

2
≤

+

+

β
β      ⇒ 1=β  (3.5.52) 

Therefore one should choose in this case 

  (3.5.53) 11 1)( −− += qqH R

in order to assure a delay margin of (almost) one sampling period. 
It is interesting to note that Equation 3.5.53 corresponds to the opening of the 

closed loop at 0.5fs (see Section 3.3). This solution leads to Sup = 0 at f = 0.5fs and 
therefore a significant increase of the robustness at high frequencies. Figure 
3.25a,b presents comparatively the frequency characteristics of the modulus of Syb 
and Syp for the cases: 1) ,  and 2) , 

.  

11 1)( −− += qqH R 1)( 1 =−qPF 1)( 1 =−qH R
11 333.01)( −− −= zqPF

Of course one can use simultaneously  and . 1)( 1 ≠−qPF 1)( 1 ≠−qH R
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Figure 3.25a,b. Effect of the fixed part on the sensitivity function of a 

plant model with time delay: a noise- input sensitivity function (Syb); b output sensitivity 
function (Syp) 

11 1)( −− += qqH R



 Robust Digital Controller Design Methods 141 

3.6 Pole Placement with Sensitivity Function Shaping 

In many applications, in order to satisfy simultaneously the imposed performance 
in regulation and the robustness margins, one is obliged to shape the modulus of 
the output and input sensitivity functions in the frequency domain. The shaping of 
the sensitivity functions is done by the appropriate selection of the desired closed 
loop poles and the introduction of pre-specified filters in the controllers. 

The modulus of the output sensitivity function |Syp (z-1)|9 is a significant 
indicator of both disturbance rejection properties and robustness properties of the 
closed loop (see Chapter 2, Section 2.6). 

The modulus of the input sensitivity functions |Sup (z-1)| is an indicator of the 
actuator stress in various frequency regions as well as an indicator of the tolerance 
to the additive uncertainties upon the plant model (see Chapter 2, Section 2.6). 

Using a digital RST controller, the output sensitivity function has the 
expression 
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)()()( 1111
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zRzBzzSzA
zSzAzS dyp  (3.6.1) 

and the input sensitivity function has the expression 

 
)()()()(

)()()( 1111

11
1

−−−−−

−−
−

+
−=

zRzBzzSzA
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where  

 R(z-1) = HR(z-1) R'(z-1) (3.6.3) 
 S(z-1) = HS(z-1) S'(z-1) (3.6.4) 

and 

 A(z-1) S(z-1) + z-d B(z-1) R(z-1) = PD(z-1) . PF(z-1) = P(z-1) (3.6.5) 

In Equations 3.6.3 and 3.6.4, HR(z-1) and HS(z-1) correspond to pre-specified fixed 
filters incorporated in R(z-1) and S(z-1) respectively. S(z-1) and R(z-1) (more 
precisely R'(z-1) and S'(z-1)) are the solutions of Equation 3.6.5 where the 
polynomial P(z-1) defines the desired closed loop poles. The polynomial P(z-1) is 
factorized in order to emphasize the dominant poles defined by PD(z-1) and the 
auxiliary poles defined by PF(z-1). 

                                                 
9 In this section the notation “z” (complex variable) will be used instead of “q” when we will examine 
the properties of the various transfer functions in the frequency domain. 
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In what follows we will examine the properties of the sensitivity functions in 
the frequency domain . )/2,( s

j ff ezq πωω ===
The various properties of the sensitivity functions will be illustrated by means 

of the following example (Ts =1s). 

Plant model: 

A(q-1) = 1 – 0.7 q-1, B(q-1) = 0.3 q-1, d = 2. 

Specified performance (polynomial P(q-1)): 

Defined by the discretization of a continuous time second-order system with  

• ω0 = 0.4 or 0.6 or 1 rad/s 
• ζ = 0.9 (constant) 

3.6.1 Properties of the Output Sensitivity Function 

Property 1 
The modulus of the output sensitivity function at a certain frequency gives the 
amplification or the attenuation of the disturbance. 

At the frequencies where |Syp(ω)| = 1 (0 dB), there is neither amplification nor 
attenuation of the disturbance (operation like in open loop). 

At the frequencies where |Syp (ω)| < 1 (0 dB), the disturbance is attenuated. 

At the frequencies where |Syp (ω)| > 1 (0 dB), the disturbance is amplified. 

Property 2 
For asymptotically stable closed loop system, and stable open loop, the integral of 
the logarithm of the modulus of the output sensitivity function from 0 to 0.5 fs 
satisfies10  

 ∫ =−
s

s

f.
πf/fj

yp df)(eS
50

0

2 0log  

In other terms, the sum of the areas between the modulus of the sensitivity function 
and the 0 dB axis, taken with their sign, is null. As a consequence, the attenuation 
of disturbances in a certain frequency region implies necessarily the amplification 
of disturbances in other frequency regions. Figure 3.26 illustrates this 
phenomenon. 

                                                 
10 For a proof of this property see Sung and Hara (1988). In the case of unstable open loop systems but 
stable in closed loop, the value of this integral is positive. 
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The output sensitivity functions shown in Figure 3.26 correspond to the 
example mentioned earlier for various values of ω0 (0.4; 0.6; 1 rad/s) but ζ = 
constant (0.9). 

It follows that increasing the value of attenuation in a frequency region, or 
widening the attenuation band, will lead to a higher amplification of disturbances 
outside the attenuation band. Figure 3.26 clearly emphasizes this phenomenon. 

Property 3 
The inverse of the maximum of the modulus of the output sensitivity function 
corresponds to the modulus margin ∆ M: 

 ∆M = (|Syp(e-jω)|max) –1 (3.6.6) 

The modulus margin is defined as the minimal distance between the Nyquist plot 
of the open loop transfer function and the critical point [-1, j0]. The typical values 
for the modulus margin (see Section 2.6) are  

 ∆M ≥  0.5 (-6 dB)  [min: 0.4 (-8 dB)] 

Recall that a modulus margin ∆M  0.5 implies a gain margin ∆G  2 and a 
phase margin ∆φ > 29o. To assure a safe modulus margin, it is necessary that: 

≥ ≥

 |Syp(e-jω)|max  6 dB (or exceptionally 8 dB) ≤
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Figure 3.26. Modulus of the output sensitivity function for different attenuation bands of the 
disturbance 
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From property 2, it is seen that the increase of the attenuation in a certain 
frequency region, or the increase of the attenuation band, will in general lead to the 
increase of |Syp(e-jω)|max and therefore a reduction of the modulus margin (and of 
the system robustness). 

Property 4 
Cancellation of the disturbance effect on the output (|Syp|= 0) is obtained at the 
frequencies where 

  (3.6.7) s
jj

S
jjj ffeSeHeAeSeA / 2   ;   0)()()()()( πωωωωωω ==′= −−−−−

This results immediately from Equation 3.6.1. Equation 3.6.7 with q= z= e-jω 
defines the zeros of the output sensitivity function in the frequency domain. 

The fixed pre-specified part of S(q-1), denoted HS(q-1), allows one to introduce 
the zeros at the desired frequencies.  

For example 

 HS(q-1) = 1 - q-1 

introduces a zero at the zero frequency and allows a perfect rejection of constant 
disturbances 

 HS(q-1) = 1 + α q-1+ q-2  

with α = -2cos (ωTs) = -2cos (2π f/fs) introduces a pair of undamped complex 
zeros at the frequency f (more precisely the normalized frequency f/fs), while 

 HS (q-1) = 1 + α1 q-1+ α2q-2  

allows one to introduce complex zeros with non-null damping. The damping is 
selected as a function of the desired attenuation at a given frequency. 

In Figure 3.27 the output sensitivity functions are shown for the cases HS(q-1) = 
1 - q-1and HS(q-1) = (1 - q-1)(1 + q-1). The closed loop poles are defined for both 
cases by (ω0=0.6 rad/s and ζ=0.9). The second choice for HS introduces, in 
addition to the integrator, a pair of undamped (ζ=0) complex zeros at 0.25 fs. One 
observes a very strong attenuation both at null frequency and at 0.25 fs (<-100 dB). 

 

 



 Robust Digital Controller Design Methods 145 

Property 5 
The modulus of the output sensitivity functions is equal to 1, that is 

 |Syp(e-jω)| = 1 (0 dB) 

at the frequencies where  

          (3.6.8) s
jj

R
jjj ff   ;  eReHeBeReB /20)()()()()( ** πωωωωωω ==′= −−−−−

This results immediately from Equation 3.6.1 since under the condition of 
Equation 3.6.8 one gets Syp(jω) = 1. 

The specified fixed part of R(q-1), denoted HR(q-1), allows one to obtain a null 
gain for R(q-1) at certain frequencies, assuring at these frequencies |Syp(e-jω)| = 1 
(open loop type operation).  

For example, 

 HR(q-1) = 1 + q-1 

introduces a zero at 0.5 fs implying |Syp(e-jπ)| = 1. 
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Figure 3.27. Output sensitivity function for the case HS(q-1) = (1 - q-1) and                    

HS(q-1) = (1 - q-1) (1 + q-2) 
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 HR(q-1) = 1 + βq-1 + q-2 

with β = -2cos (ω Ts) = -2cos 2π f /fs introduces a pair of undamped complex zeros 
at the normalized frequency f /fs leading to |Syp(e-jπf/fs)| = 1. 

 HR(q-1) = 1 + β1 q-1 + β2 q-2  

introduces a pair of complex zeros with a non null damping, allowing to influence 
the attenuation of the disturbance at a certain frequency.  

Figure 3.28 illustrates the effect of the HR(q-1) = 1 + q-2, which introduces a 
pair of complex zeros with null damping at f = 0.25 fs. One can see that, in the 
presence of HR(q-1), one has |Syp(e-jω)| = 1 (0 dB) at this frequency, while, without 
introducing HR(q-1) one has at f = 0.25 fs a gain |Syp(e-jω)| = 3 dB. 

Note also that R(z-1) defines some of the zeros of the input sensitivity function 
Sup(z-1) (given in Equation 3.6.2). Therefore at the frequencies where R(z-1) = 0, 
this sensitivity function will be null. 

Property 6 
The introduction of asymptotically stable auxiliary poles PF(z-1) leads in 

general to the reduction of |Syp(z-1)| in the attenuation band of 1/PF(z-1). 
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Figure 3.28. Output sensitivity function for the case HR(q-1) = 1 and H(q-1) = 1 + q-2 
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From the expressions of the sensitivity function in Equation 3.6.1 and of the 

closed loop poles, one can see that 1/(PD(z-1) PF(z-1)) will introduce a stronger 
attenuation in the frequency domain than 1/PD(z-1), provided that the auxiliary 
poles defined by PF(z-1) are asymptotically stable aperiodic poles. However, since 
S'(z-1) will depend upon these poles through Equation 3.6.4, this property cannot 
be guaranteed for all possible values of PF(z-1).  

The auxiliary poles are in general selected as real poles located at high 
frequencies, and they take the form 

             FPn
F qpqP )1()( 11 −− ′+= 05.05.0 −≤′≤− p  

where 

 nPF
 ≤  nP - nPD      ;     nP = (deg P)max     ;    nPD = deg PD 

The effect of auxiliary poles is illustrated in Figure 3.29. 

Remark:in many applications, the introduction of high frequency auxiliary poles is 
enough in order to assure the imposed robustness margins.  

Property 7 
Simultaneous introduction of a fixed part  and of a pair of auxiliary poles 

in the form 
iSH

iFP
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resulting from the discretization of the continuous-time filter 
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using the bilinear transformation11 
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11 The bilinear transformation assures a better approximation of a continuous-time model by a discrete-
time model in the frequency domain than the replacement of differentiation by a difference, i.e. s = (1-

z-1) Ts (see Equations 2.3.6 and 2.5.2). 
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introduces an attenuation (a “hole”) at the normalized discretized frequency 

 ⎟
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⎞

⎜
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2
arctan2 0 s

disc
Tωω  (3.6.12) 

as a function of the ratio 1/ <dennum ζζ . The attenuation at discω  is given by 
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The effect upon the frequency characteristics of Syp at frequencies f << fdisc and       
f >> fdisc is negligible. 

Figure 3.30 illustrates the effect of the simultaneous introduction of a fixed part 
HS and a pair of poles in P, corresponding to the discretization of a resonant filter 
of the form of Equation 3.6.10. One observes its weak effect on the frequency 
characteristics of Syp , far from the resonance frequency of the filter. 

This pole-zero filter is essential for an accurate shaping of the modulus of the 
sensitivity functions in the various frequency regions in order to satisfy the 
constraints. It allows one to reduce the interaction between the tuning in different 
regions. 
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Figure 3.29. Effects of auxiliary poles on the output sensitivity function 
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Figure 3.30. Effects of a resonant filter  on the output sensitivity functions. 

ii FS PH /

Design of the Resonant Pole-Zero Filter /  
iSH

iFP

The computation of the coefficients of  and  is done in the following way: 
iSH

iFP
Specifications: 

• Central normalized frequency fdisc ( discdisc f 2πω = ) 
• Desired attenuation at frequency fdisc: Mt dB 
• Minimum accepted damping for auxiliary poles 

 : (
iFP denζ ) min  )3.0(≥

Step I: Design of the continuous-time filter 
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Step II: Design of the discrete-time filter using the bilinear transformation of 
Equation 3.6.11. 

Using Equation 3.6.11 one gets: 
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which will be effectively implemented as12  
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where the coefficients are given by 
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The resulting filters  and  can be characterized by the undamped resonance 

frequency 
iSH

iFP

0ω  and the damping ζ . Therefore, first we will compute the roots of 

numerator and denominator of . One gets )( 1−zF
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From Table 2.4 and expressions given in Section 2.3.8, one can establish the 
relation between the filter and the undamped resonance frequency and damping of 
an equivalent continuous-time filter (discretized with a ZOH). The roots of the 
second-order monic polynomial in z-1 have the expression 
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00 1
2,1

discsdiscsdiscdisc TjT eez ζωωζ −±−=  (3.6.18) 

                                                 
12 The factor γ  has no effect on the final result (coefficients of R and S). It is possible, however, to 
implement the filter without normalizing the numerator coefficients. 
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Figure 3.31. Frequency characteristics of the resonant filter / used in the example 
presented in Figure 3.30 
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where the indexes “num” and “den” correspond to HS and PF, respectively. These 
filters can be computed using the functions filter22.sci (Scilab) filter22.m 
(MATLAB®) and also with ppmaster (MATLAB®)13. 

Remark: for frequencies below 0.17 fs the design can be done with a very good 
precision directly in discrete-time. In this case, numden ,0,00 ωωω ==  and the 
damping of the discrete time filters  and  is computed as a function of the 
attenuation directly using Equation 3.6.13. 

iSH
iFP

Figure 3.31 gives the frequency characteristics of a filter HS / PF obtained by 
the discretization of a continuous-time filter and used in Figure 3.30 (continuous 
line) as well as the characteristics of the discrete-time filter directly designed in 
discrete time (dashed line). The continuous-time filter is characterized by a natural 
                                                 
13 To be download from the book website (http://landau-bookic.lag.ensieg.inpg.fr). 
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frequency , and dampings ) 0.159(  rad/s  1 00 sff ==ω 25.0=numζ  and 
4.0=denζ . The same specifications have been used for a direct design in discrete-

time. One observes a small difference at high frequencies but this is not very 
significant. The differences will become obviously more important as 0ω  
increases. 

Remark: while  is effectively implemented in the controller,  is only used 
indirectly.  will be introduced in Equation 3.6.5 and its effect will be reflected 
in the coefficients of R and S obtained as solutions of Equation 3.6.5. 

SH FP

FP

3.6.2 Properties of the Input Sensitivity Function 

Property 1 
Cancellation of the disturbance effect on the input (i.e. Sup= 0) is obtained at 
frequencies where 

  (3.6.20) s
jj

R
j ffeReHeA / 2     ;     0)()()( πωωωω ==′ −−−

At these frequencies Syp= 1 (see Property 5 of the output sensitivity function) and 
the system operates in open loop. 

Figure 3.32 illustrates the effect of HR(q-1) on | Sup | for  

  (3.6.21) 101)( 11 ≤<+= −− ββqqH R

for β=1, one has | Sup | = 0 at 0.5 fs . Using 0< β <1 one could reduce more or less 
the modulus of Sup around 0.5 fs. Note that this structure for HR(q-1) is 
systematically used for reducing the modulus of the input sensitivity function at 
high frequencies.  
One can also use 

  10)1()( 11 ≤<+= −− ββ n
R qqH

(usually n=1 or 2). 

Property 2 
At frequencies where 
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S
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Figure 3.32. Effect of the filter  on the modulus of the 
input sensitivity function: a) 

101)( 11 ≤<+= −− ββqqH R
β  = 0; b) β  = 0.5;  c) β  = 1 

which correspond to frequencies where a perfect rejection of disturbances is 
achieved (Syp= 0), one has 
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Equation 3.6.23 corresponds to the inverse of the gain of the system to be 
controlled. The implication of Equation 3.6.23 is that cancellation (or in general 
an important attenuation) of disturbances on the output should be done only in 
frequency regions where the system gain is large enough. If the gain of the 
controlled system is to low, |Sup| will be large at these frequencies. Therefore, the 
robustness vs additive term uncertainties will be reduced and the stress on the 
actuator will become important. Equation 3.6.23 also implies that serious problems 
will occur if B(z-1) has complex zeros close to the unit circle (stable or unstable 
zeros) at frequencies where an important attenuation of disturbances is required. It 
is mandatory to avoid attenuation of disturbances at these frequencies 
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Property 3 
Simultaneous introduction of a fixed part  and of a pair of auxiliary poles 

having the form 
iRH

iFP
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resulting from the discretization of the continuous time filter 
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introduces an attenuation (a “ hole”) at the normalized discretized frequency 

 ⎟
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as a function of the ratio 1/ <dennum ζζ . 
The attenuation at discω  is given by 
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The effect on the frequency characteristics of Syp at frequencies f << fdisc and         
f >> fdisc is  negligible.  

The design of these filters is done with the method described in Section 3.6.1. 
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 S yp dB

0,5fs

Syp max
= -   M∆

0 

 
Figure 3.33. Desired template for the output sensitivity function (case of disturbances 
rejection at low frequencies) 

3.6.3 Definition of the “Templates” for the Sensitivity Functions  

The performance and robustness specifications lead to the definition of desired 
“templates” for the frequency characteristics of the sensitivity functions. Most 
often we are interested in attenuating the disturbances at low frequencies, while 
assuring certain values for the modulus and delay margins, in order to achieve both 
good robustness and low amplification of disturbances outside the attenuation 
band. Figure 3.33 shows a typical template for the modulus of the output 
sensitivity function. 
This template is defined by accepted maximum values for the modulus of the 
output sensitivity function (“upper template”). One can also consider introducing a 
“lower template” since on one hand a too large attenuation in a certain frequency 
region will induce a too important increase of the modulus of the sensitivity 
function at other frequency regions (and |Syp|max will increase) and, on the other 
hand, the delay margin requires a “lower template” to be considered. 

However, more complex templates will result if, for example, the attenuation 
should occur in several frequency regions and if, in addition, it is required that the 
system operate in open loop at a specified frequency (neither amplification, nor 
attenuation of the disturbance). Such a type of template is shown in Figure 3.34.  
The constraints on robustness and on the actuator also lead to the definition of an 
upper template for the modulus of the input sensitivity function Sup.  

Recall first that the inverse of the modulus of Sup gives at each frequency the 
tolerated additive uncertainty for preserving the stability of the loop (see Chapter 2, 
Section 2.6). Therefore, in the frequency regions where there are uncertainties 
upon the plant model used for the design, one should impose a very low acceptable 
value for the modulus of the input sensitivity function Sup. 

We recall that opening the loop (Sup= 0) may be required at specified 
frequencies either because the system should not react to a particular disturbance 
(see Section 3.6.6), or because one would not like to excite the plant at certain 
frequencies (for example the plant is characterized by high frequency vibration 
modes). 
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loop 
opening

 
Figure 3.34. Desired templates for the modulus of the output sensitivity function (case of 
disturbances rejection at certain frequencies and open loop operation required at a specified 
frequency) 

Moreover, for robustness reasons and insensitivity to noise at high frequencies, one 
systematically reduces the modulus of Sup close to 0.5 fs (often by opening the loop 
at 0.5 fs). 

The limitation of the actuator stress in certain frequency regions (often at high 
frequencies) induces a limitation of acceptable values of the modulus of Sup in 
these frequency regions. 

An example of a template for |Sup| is given in Figure 3.35. 
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 the frequency f (< -100 dB)  

0.5fs   0 

 

 

 

 

Figure 3.35. Example of a desired template for the modulus of the input sensitivity function 
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3.6.4 Shaping of the Sensitivity Functions 

In order to achieve the shaping of the modulus of the sensitivity functions such that 
the constraints defined by the template are satisfied, one has the following 
possibilities: 

1. Selection of the desired dominant and auxiliary poles of the closed loop 
2. Selection of the fixed parts of the controller (HR(q-1) and HS(q-1)) 
3. Simultaneous selection of the auxiliary poles and of the fixed parts of the 

controller 
Despite the coupling between the shaping of the output sensitivity function and 

the input sensitivity function, it is possible, in practice, to deal with these two 
problems almost independently. 

In particular, it is useful to remember that at frequencies where |Syp| is close to 
1 (0dB), |Sup| is close to 0 (<-60dB). 

Automatic methods using convex optimization techniques (Langer and Landau 
1999; Langer and Constantinescu 1999; Adaptech 1998a) are available in order to 
solve the shaping problem14. However, in most of practical situations, it is 
relatively easy to calibrate the sensitivity functions using the tools previously 
indicated, and taking into account the properties of the sensitivity functions. 

The iterative procedure that will be presented next is very efficient and helps to 
understand the operation of the controller. However, the use of a CACSD tool like 
ppmaster15 (MATLAB®) (Prochazka and Landau 2001) will considerably 
accelerate the procedure. 

Shaping the Output Sensitivity Function. 
The shaping objective can be summarized as follows: given a desired attenuation 
band, select the closed loop poles and the fixed parts HR(q-1) and HS(q-1) in order 
to “flatten” |Syp(e-jω)| outside the attenuation band, and to reduce  |Syp(e-jω)|max 
while satisfying Property 2.  

Often the selection of auxiliary poles and of HR(q-1) and HS(q-1) is sufficient for 
matching the performance and robustness specifications. However, for a fine 
tuning, it may be also necessary to select simultaneously the fixed part HS(q-1) and 
the auxiliary poles. (see Property 7: second-order pole-zero filter). 

The iterative procedure for the shaping of the output sensitivity function can be 
summarized as follows16: 

 

                                                 
14 To apply convex optimization techniques, the Youla-Kucera parametrization of the controller is used. 
See Appendix E. 
15 Available on the book website (http://landau-bookic.lag.ensieg.inpg.fr). 
16 The principles of the methodology for shaping the output sensitivity function can be extended to the 
shaping of other sensitivity functions. 
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Step I 

• Selection of P(q-1) and fixed parts HR(q-1) and HS(q-1) from the 
performance specifications. (Example: zero steady-state error will require 
the introduction of HS(q-1) = 1 - q-1, opening the loop at a certain 
frequency will require HR(q-1) = 1 + αq-1 + q-2) 

• Controller computation 
• Analysis of the resulting output sensitivity function. 

If the upper template corresponding to the desired modulus margin ∆M = 0.5 
and the delay margin ∆τ = Ts are violated, one can distinguish three different 
solutions: 

1. The maximum of the modulus of the sensitivity function is at high 
frequencies (the resulting controller is often unstable as a consequence 
of Property 2, since the area between the modulus of the sensitivity 
function and the 0 dB axis is positive). 

2. A local maximum of the modulus of the sensitivity function is located 
in a frequency region close to the attenuation band. 

3. The modulus of the sensitivity function presents a maximum both at 
low and high frequencies. 

Case 1 and 3  

Step II 
One introduces auxiliary poles at high frequencies: 

 PF(q-1) = (1 + p1q-1)
nF     ;      - 0.05 ≥  p1 ≥  - 0.5 

with increasing values of |p1| starting from 0.05. 
The number of auxiliary poles that can be introduced without increasing the 

size of the controller is given by 

 nPF
 ≤  nP - nPD  ;    nP = (deg P)max ;  nPD = deg PD 

The value of |p1| is increased in order to avoid a violation of the template of the 
sensitivity function at high frequencies (i.e. over 0.25 fs or  0.30 fs). 

Usually, the maximum of the modulus of the sensitivity function will move 
towards low frequencies. If this maximum is above the template we are in case 2 
which will be discussed next. 

Case 2  

Step II – Use of second-order pole-zero resonant filters / . 
iSH iP
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One identifies first the frequency region where |Syp| is above the “upper template”. 
One finds the value of the frequency at which the maximum of |Syp| occurs and the 
attenuation which should be introduced in order to be below the upper template. 
Then one computes the corresponding filter /  on the basis of these 
specifications. The selection of the damping of the denominator depends to some 
extent upon the width of the frequency region where |Syp| is above the template. 

iSH iP

Some Hints 

• If the modulus of the sensitivity function presents a too strong minimum at 
high frequencies, or in the central frequency region, this can be raised by a 
few dB by adding a pair of complex auxiliary poles placed at the frequency 
corresponding to the minimum 

• If the attenuation band increases, then one should impose slower dominant 
poles 

• If the attenuation band is reduced as a consequence of the introduction of 
the auxiliary poles, then one can either raise the natural frequency of the 
dominant poles, or introduce a further zero-pole filter around the frequency 
corresponding to the desired attenuation band. 

In order to match the constraints in the high frequency region corresponding to 
the imposed delay margin, one can either use auxiliary poles or impose the opening 
of the loop at 0.5 fs ( HR(q-1) = 1 + q-1). In practice, a simultaneous application of 
both solutions can be considered.  

Step III 
One iterates around the values of the dominant and auxiliary poles selected in step 
I and II in order to get the best result in terms of robustness and performance 
constraints matching. 

Shaping the Input Sensitivity Function 
The shaping of the input sensitivity function is usually performed after the shaping 
of the output sensitivity function. If the value of the modulus of the input 
sensitivity function is not enough low at high frequencies (frequencies close to 0.5 
fs), one introduces a fixed part HR(q-1) of the form 

  2,115.0)1()( 11 =<<+= −− nqqH n
R ββ

This will have, in general, a weak interaction with the shaping of the output 
sensitivity function. 

In the frequency regions where there are uncertainties upon the plant model, 
|Sup| should be low (upper bound defined by the template). If the resulting 
sensitivity function does not fulfill the specifications, one has to introduce a pole-
zero resonant filter . In order to match the template imposed on |Sup| the 

ii FR PH /
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resonance frequency of the filter is chosen close to that corresponding to the local 
maximum of |Sup|, and an appropriate damping is selected in order to provide the 
required attenuation. 

Once the shaping of |Sup| is achieved, one should go back to check if |Syp| still 
match the template (an appropriate CACSD like ppmaster allows to shape 
simultaneously both sensitivity functions). 

3.6.5 Shaping of the Sensitivity Functions: Example 1 

The considered plant model is characterized by 

A(q-1) = 1 – 0.7 q-1    ;      B(q-1) = 0.3 q-1   ;      d  = 2   ;   Ts = 1s 

An integrator is imposed in the controller. One considers the roots of the 
polynomial obtained from the discretization of a second-order continuous time 
system with ω0 = 1 rad/s, and ζ = 0.9 as the imposed dominant poles for the 
closed loop. The controller is designed by means of pole placement. The output 
sensitivity function corresponding to this design is shown in Figure 3.37 (curve A). 
It crosses the standard robustness template defined by ∆M = - 6dB and ∆τ = Ts. 
Both obtained margins (modulus and delay) are lower than specifications (see 
Table 3.5). The upper frequency of the attenuation band is at 0.058 Hz.  

The objective is to obtain the same attenuation band but with 

 ∆M ≥  - 6dB  (|S yp|max ≤ 6dB)  and  ∆τ  Ts.  ≥

First we will add auxiliary real poles. From Equations 3.3.22 and 3.3.23 it results 
that one can assign a number of closed loop poles equal to: 

 nP  = deg P(q-1) nA + nHS + nB + nHR+ d - 1  ≤

without increasing the size of the controller. Since in this example nA =1,    nB =1, 
nHS =1, d = 2, one can assign four poles. Two poles have been already assigned as 
dominant poles and therefore we will add two auxiliary poles of the form 

 PF (q-1) = (1 – 0.4 q-1)2 

The resulting sensitivity function is shown in Figure 3.36 (curve B). The 
constraints on the modulus margin and the delay margin are satisfied but the 
attenuation band has been reduced (0.045 Hz instead of 0.058 Hz). 
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Figure 3.36. Output sensitivity functions corresponding to different RST controllers (see 
details in Table 3.5) 

In order to increase the attenuation in this frequency region without influencing 
high frequency regions, one chooses a pole-zero filter HS/P’F centered at ω0=0.4 
rad/s (f=0.064 Hz) with HS resulting from the discretization of a second-order 
continuous-time system with ω0 = 0.4 rad/s and ζ = 0.3, and P’F resulting from 
the discretization of a second-order continuous-time system with ω0 = 0.4 rad/s 
and ζ = 0.5 (we are below 0.17 fs and the direct design of the discrete filter is 
possible). Since ζnum = 0.3 and ζden = 0.5, an attenuation will result at 0.064 Hz. 
The corresponding sensitivity function is shown in Figure 3.36 (curve C). One 
observes that the attenuation band matches the specifications but the maximum 
value of |Syp| is slightly higher than 6 dB. In order to match this constraint the value 
of the real auxiliary pole is increased from 0.4 to 0.44. The final sensitivity 
function is shown in Figure 3.36 (curve D). 

3.6.6 Shaping of the Sensitivity Functions: Example 217  

The considered plant model is characterized by 

 A(q-1) = 1 - q-1   ;     B(q-1) = 0.5 q-1   ;      d = 2   ;    Ts = 1s 

                                                 
17 This example and the corresponding specifications are related to the continuous casting of steel. 
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Table 3.9. Shaping of sensitivity functions- example 1 

 

Closed loop poles 

 

HS(q-1) 

 Dominant     Auxiliary 

Modulus

margin 

 

(dB) 

Delay 

margin

 

(Ts) 

 Attenuation 

band 

 

(Hz) 

   A 1 - q-1 
ω0 = 1 

ζ = 0.9 
     --- 

 

-7.71 

 

    0.4 

 

0.058 

   B 1 - q-1 
ω0 = 1 

ζ = 0.9 
(1 – 0.4q-1)2

 

-5.81 

 

   3.07 

 

0.045 

   C 

1 - q-1 

ω0=0.4 

ζ =0.3 

ω0 = 1 

ζ = 0.9 

(1-0.4q-1)2 

ω0=0.4 

 ζ =0.5 

 

-6.33 

 

   5.01 

 

0.063 

   D   idem 
ω0 = 1 

ζ = 0.9 

(1-0.44q-1)2 

ω0=0.4 

 ζ =0.5 

 

-5.99 

 

  5.34 

 

0.060 

 
The plant has an integrator behavior with delay. The plant is subject to two 

types of disturbances: 

• Low frequency disturbances that should be attenuated 
• A sinusoidal disturbance at 0.25 Hz that should not be compensated by the 

action of the controller 

The block diagram related to the plant model is shown in Figure 3.37. 
The robustness and performance specifications are as follows: 

1. No attenuation of the sinusoidal disturbance at f = 0.25 Hz (|Syp| = 0 dB at 
0.25 Hz) 

2. Attenuation band at low frequencies (frequency region corresponding to 
|Syp| < 0dB): 0 to 0.03 Hz 

3. Disturbances amplification at 0.07 Hz less than 3 dB (|Syp| < 3 dB at 0.07 
Hz) 

4. Modulus margin ≥ -6 dB (|Syp|max ≤  6 dB) 
5. Delay margin ≥ 1s (Ts) 
6. No integrator in the controller 
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Figure 3.37. Block diagram for plant model and disturbances 

The presence of an integrator has not been imposed because the plant model 
has already an integrator behavior. 

One starts by designing the fixed parts of the controller, HR(q-1) and HS(q-1). In 
order to obtain |Syp| = 0dB at 0.25 Hz = 0.25 fs, one should introduce HR(q-1) with 
a pair of undamped complex zeros at this frequency. This is obtained by 

 HR(q-1) = 1 + βq-1 + q-2 

with 

 β = -2cos (ωΤs) = -2 cos (2π f/ fs) 

From the condition 

 0)(
4/

=
=

−

s

j
R eH

ωω
ω  

it results that 

 β =  -2cos (2π . 0.25) = 0 

and then 

 HR(q-1) = 1 + q-2  

Since there is no integrator imposed in the controller, as a first choice one chooses 
HS(q-1) = 1. One selects for the dominant poles a polynomial P(q-1) resulting from 
the discretization of a second-order continuous-time system with ω0 = 0.628 rad/s 
(f0 = 0.1 Hz) and ζ = 0.9. 

The corresponding sensitivity function is shown in Figure 3.38 (curve A).  
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Figure 3.38. Output sensitivity functions corresponding to different RST controllers (see 
details in Table 3.6) 

One observes that the specifications at 0.07 Hz are not satisfied. On the other 
hand one can remark that |Syp| is equal to 1 (0dB) for f = 0.25 fs = 0.25 Hz, as 
required. 

In order to reduce the modulus of the output sensitivity function at f = 0.07 Hz, 
one considers the introduction of a narrow-band pole-zero discrete filter HS /PF 
centered at ω0 = 0.44 rad/s (f0 =0.07 Hz). Since the frequency f0 is below 0.17 fs, 
one can directly design the discrete-time filter. One chooses for HS a damping ζ = 
0.3 and for PF a damping  ζ=0.4, corresponding to a filter attenuation of about 2.4 
dB around ω0. Using this filter (that is HS and PF) one obtains the sensitivity 
function shown in Figure 3.38 (curve B). The attenuation introduced by this filter 
at 0.07 Hz is sufficient (|Syp|0.07Hz =2.6 dB) but the width of the attenuation band 
is smaller than the specified one. In order to correct that, it is sufficient to increase 
the natural frequency of the dominant poles. With ω0 = 0.9 rad/s (instead of 0.628) 
one obtains the sensitivity function shown in Figure 3.38 (curve C). All the 
specifications are fulfilled. The results are summarized in Table 3.10. 

Note that the choice of HS /PF is not critical. The specifications can also be 
satisfied with a discrete-time filter HS /PF centered at ω0 = 0.5 rad/s with 
ζnum=0.35 and ζden=0.45. 

The same design steps will be followed for the case when an integrator is 
introduced in the controller. 
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Table 3.10.  Shaping of the sensitivity functions - Example 2 

Closed loop poles 
 

HR HS 

Dominants Auxiliaries 

Attenua-
tion 
band 
(Hz) 

Modulus  
margin 

 (dB) 

 Delay 
margin  

   (Ts) 

|Syp| 

0.07
Hz 

(dB) 

A 1+q-2 --- 
ω0 = 0.628 

ζ = 0.9 
 0.03 -4.12 6.52 4.11 

B 1+q-2 
ω0 = 0.44 

ζ = 0.3 

ω0 = 0.628 

ζ = 0.9 

ω0 = 0.44 

ζ = 0.4 
0.026 -3.06 7.61 2.6 

C 1+q-2 idem 
ω0 = 0.9 

ζ = 0.9 
 0.03 -3.94 6.62 2.6 

3.7 Concluding Remarks 

In this chapter several digital control designs in a deterministic environment have 
been presented. All the digital controllers have a three-branched structure (RST), 
corresponding to a control law of the form 

 S(q-1) u(t) + R(q-1) y(t) = T(q-1) y*(t+d+1) 

where u is the control input, y is the output of the plant, y* is the desired tracking 
trajectory and d is the time delay. 

The design of the controller involves essentially two stages: 

1. Computation of the polynomials S(q-1) and R(q-1) in order to match the 
desired regulation performances 

2. Computation of the polynomial T(q-1) in order to approach (or to match) 
the desired tracking performances 

The digital controllers are perfectly suited for the control of plants characterized by 
high order models with time delay and/or resonant modes. The controller 
complexity (i.e. the degrees of the polynomials R(q-1), S(q-1),  T(q-1)) depends 
upon the complexity of the polynomials of the plant model transfer function. The 
discrete-time plant model used for design can be either obtained directly by an 
identification technique, or by computation from the continuous-time model. 

The pole placement control strategy is applied to plants having discrete-time 
models both with stable and unstable zeros. It makes possible to match the desired 
regulation performance and the desired tracking performance filtered by the plant 
zeros. 

The tracking and regulation with independent objectives allows to match 
perfectly the desired tracking and regulation performances, but, in order to be 
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applied, the pulse transfer function of the discrete-time plant model must have 
stable zeros. 

The internal model control strategy is a particular case of the pole placement in 
which the plant model poles are chosen as closed loop system poles. This strategy 
can only be applied to enough damped stable systems. The closed loop dynamics is 
not faster than the open loop dynamics. 

The digital PID controllers are directly designed by pole placement on the basis 
of discrete-time models of the plants to be controlled. This technique can be 
applied to plants characterized by discrete-time models of lower order ( ). 
Two structures of digital PID controllers have been examined. The difference is 
only in the choice of the polynomial T(q-1). It is advisable to use the choice T(q-1) 
= R(1) (corresponding to the digital PID 2), which offers better tracking 
performances. The digital controllers designed by the methods presented in this 
chapter implement a predictive control in the time domain. They implicitly contain 
a predictor of the plant to be controlled. 

2max ≤n

Independently of the design method used, it is required to verify the robustness 
margins of the closed loop (mainly the modulus margin and the delay margin). 
Taking into account simultaneously performance and robustness margins may 
require the shaping of the sensitivity functions (output and input sensitivity 
functions), by imposing pre-specified fixed parts in the controller and choosing 
appropriate closed loop system poles. 

An iterative methodology for the shaping of the sensitivity functions has been 
presented in Section 3.6.4. Moreover, it is possible to obtain in an automatic way 
the controller, fulfilling the various constraints on the sensitivity functions, by 
means of a convex optimization procedure (see Langer and Landau 1999; 
Adaptech 1998b). 
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4 

Design of Digital Controllers in the Presence of 
Random Disturbances 

A large number of systems are subject to disturbances of a random nature. In the 
first part of this chapter models suitable for the representation of these stochastic 
disturbances (the ARMAX models) will be presented and their properties analyzed. 
Three design methods will be presented: 1. minimum variance tracking and 
regulation (which minimizes the mean-square difference between the reference and 
the controlled variable); 2. the approximation of the minimum variance tracking 
and regulation by means of the pole placement (for the case of systems with 
unstable zeros); 3. generalized minimum variance tracking and regulation. 

4.1 Models for Random Disturbances  

4.1.1 Description of the Disturbances  

First consider the basic deterministic disturbances, namely the Dirac pulse, the step 
and the ramp, represented in Figure 4.1. 

rampstepDirac 
pulse  
Figure 4.1. Main deterministic disturbances 
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Figure 4.2. Deterministic disturbance models 

Note that the step and the ramp may be described as resulting from the passing 
of the Dirac pulse through a filter, as indicated in Figure 4.2. The corresponding 
filters are known as “disturbance models”. Any deterministic disturbance may be 
obtained by passing a Dirac pulse through a “disturbance model” (filter) having an 
appropriate structure. Knowledge of the “disturbance model” is equivalent to 
knowledge of the disturbance.  

What follows is an attempt to extend this concept of the “disturbance model” to 
the description of random disturbances. 

By random or stochastic disturbances, is meant those disturbances, which 
cannot be described in a deterministic way, given as they are not reproducible.  

To provide an example of a random (stochastic) process, one can consider the 
evolution of the controlled output of a plant in regulation on a significant horizon 
(one day) and during several tests (several days). This is illustrated in Figure 4.3. 

 16h10h8h 

1        day st  

2        day 
nd 

3        day 
rd 

 
Figure 4.3. Recording of a controlled variable in regulation  

By examining Figure 4.3, one observes that the evolution during one day may 
be described by a deterministic function f(t), but that this function will be different 
every day (f(t) is known as the “realization” of the stochastic process).  

If the time for carrying out the measurement of the observed variable is fixed 
(e.g. at 10 a.m.), each day (at each test) a new value will be measured (this it what 
is known as a random variable). However, for all values measured every day at the 
same time, statistics can be defined characterized by the mean value and the 
variance of the measurements. The probabilities of the occurrence of different 
values may be defined as well. 

 The stochastic process (partially) represented in Figure 4.3, is dependent on the 
time (during a day) and on the experiment (first, second...fourth day).  

More formally, a stochastic process may be described as a function f(t, ξ) 
where t represents the time and belongs to the set T of real variables, and ξ 
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represents the stochastic variable (the outcome of an experiment), which belongs to 
a probability space S1. For a given ξ = ξ0, the function f(t, ξ0) is a regular time 
function called a realization. For fixed t = t0 the function f(t0, ξ) is a random 
variable. The argument ξ is often omitted.  

If the stochastic (random) process is ergodic, the statistics related to an 
experiment (in our example over one day) are significant, i.e. the result obtained is 
identical to that obtained from measurements taken on several experiments when 
the time is maintained constant (at the same time of the day). If, in addition, the 
stochastic process is gaussian, the knowledge of the mean value and of the 
variance allows the probability of occurrence of a given value to be specified 
(Gauss's bell – see Appendix A). 

In practice, the majority of random disturbances occurring in automatic control 
systems may be accurately described as a discrete-time white noise passed through 
a filter. This discrete-time white noise is a random signal having an energy 
uniformly distributed at all frequencies between 0 and 0.5 fs. Note that the discrete-
time white noise has a physical realization, since it is a finite energy signal (the 
frequency band is finite), whereas the continuous-time white noise does not 
correspond to a physical reality since the energy is constant over an infinite 
frequency range (infinite energy signal). 

The filters that will constitute the random disturbance models will modify the 
frequency spectrum of the energy distribution of the white noise in order to obtain 
a distribution corresponding to the frequency distribution of energy of the various 
random disturbances encountered. 

The white noise has, in the random case, the same role as the Dirac pulse in the 
deterministic case. It constitutes the fundamental generator signal.  

The gaussian discrete-time white noise will henceforward be considered as the 
generator signal. This is a sequence of independent equally distributed gaussian 
random variables of zero mean value and variance σ2. This sequence will be noted 
{e(t)} and will be characterized by the parameters (0, σ), in which the first term 
indicates the mean value and σ is the standard deviation (square root of the 
variance). A part of such a sequence is represented in Figure 4.4. 

 

 
 

Figure 4.4. Discrete-time white noise sequence 

                                                 
1 A set S containing all possible results of an experiment and having subsets called events, to which a 
probability of occurrence is associated and named a probability space. 
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The mean value (or expectation) is given by 
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and the variance will be given by 
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(note that sequence {e(t)} is an ergodic process, see above). 
The autocorrelation or covariance function R(i) is defined by the following 

expression: 
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or, in other words, by the product between the sequence {e(t)} and the same 
sequence shifted by i-steps. 

Note that 

 R(0) = var = σ2 (4.1.4) 

The normalized covariance (or autocorrelation) is defined as 

 )1)0((
)0(
)()( == RN

R
iRiRN  (4.1.5) 

In the case of the gaussian white noise, which is an ergodic process, since this is a 
sequence of independent random variables and taking into consideration the 
ergodic nature of the process, it results that the knowledge of e(t) does not allow an 
approximation of e(t +1), e(t + 2)… to be predicted, the best prediction being 0.  

 
This independence property is revealed in the following autocorrelation 

property (independence test for gaussian data): 

 R(i) = RN(i) = 0    i = 1,2,3..., -1, -2, -3.... (4.1.6) 

If the evolution of the normalized covariance for the white noise is plotted, the 
curve shown in Figure 4.5 is obtained2. 
                                                 
2 This whiteness test is used even when a finite length sequence is available. In this case, 

,...3,2,1 , 0)( =≠ iiRN but they must be smaller than a specified value. The whiteness test for a 

sequence of length N is discussed in Chapter 6, Section 6.2. 
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Since E{e(t)} = const. and E{e(t) e(t-i)} is only a function of i, the gaussian 
discrete-time white noise sequence has the properties of a weakly stationary 
stochastic process (in fact it is a real stationary stochastic process since the 
properties of the sequence {e(t)} are the same as those of the sequence {e(t+τ)}). 
The knowledge of the covariances R(i) for a weakly stationary stochastic process 
makes it possible to compute the energy distribution in the frequency domain, 
known as the spectral density function.  

1

RN

i

o 1 2 3 4-1-2  
Figure 4.5. Normalized autocorrelations of the white noise 

This is given by (discrete Fourier transform of the covariance function) 
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Since in the case of the discrete-time white noise all the R(i) = 0 for i ≠ 0, it results 
that the spectral density of the discrete-time white noise is constant and equal to 

 
π

σ
π

ωφ
22

)0()(
2

==
R

e  

The spectral density of the white noise is represented in Figure 4.6. A uniform 
energy distribution between 0 and 0.5 fs is observed.  
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ƒ 
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Figure 4.6. Spectral density of the discrete-time white noise 
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4.1.2 Models of Random Disturbances 

As it has already been mentioned in Section 4.1, different types of random 
disturbances, whose spectral density can be approximated by a rational function of 
the frequency, can be considered as resulting from the filtering of a white noise 
through a shaping filter. Several types of processes thus obtained will be examined. 

“Moving Average” Process (MA) 
Consider, for example, the process 

 y(t) = e(t) + c1e(t-1) = (1+c1q-1) e(t) (4.1.7) 

which corresponds to the filtering of a white noise through a filter (1+c1 q-1), as 
shown in Figure 4.7a.  

e(t)
1+ c

1
q-1

y(t)

a)

e(t) y(t)
-1

b)

C(q   )

 
Figure 4.7a,b. Generation of a “Moving Average” random process: a first order; b general 
case 

The mean value of y(t) is 3
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The variance of the process y(t) is 
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since the third term is zero (see properties of the white noise, Equations 4.1.3 and 
4.1.6). 

                                                 
3 In the following we omit  but one should recall that all formulas are rigorously valid 

only for a large value of N ( 
∞→N

lim

∞→ ). 
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From Equation 4.1.7, one obtains by shifting 

 y(t-1) = e(t-1) + c2 e(t-2) (4.1.10) 

which enables Ry(1) to be computed: 
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all the other terms being zero (expectations of products of shifted white noise 
sequences). 

In the same way one verifies that 

 Ry(2) = 0  ;  Ry(3) = 0..... Ry(n) = 0 (4.1.12) 

The plot of the normalized autocorrelations for this first-order “moving average” 
process is represented in Figure 4.8. 
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Figure 4.8. The normalized autocorrelation functions for a first-order “moving average” 
process 

The general form of a “moving average” process is 
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The corresponding filter representation is given in Figure 4.7b. 
The “moving average” processes are characterized by the property 

 R(i) = 0     i  n≥ C+1    ;   i ≤  - (nC+1) (4.1.15) 

The spectral density is given by the formula 
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σ2/2π  being the spectral density of the white noise (noted φe(ejω)). 
This allows one to obtain the general relation between the spectrum of the input 

signal (white noise) of the generator filter and the spectrum of the moving average 
process:  

 φy(z) = C(z) C(z-1) φe(z) (4.1.17) 

the frequency distribution being obtained for z = ejω. 
From Equations 4.1.16 and 4.1.17 it can be deduced that the knowledge of 

 (the generator filter) allows one to obtain, for example, the spectral energy 
distribution of the random process, since the white noise spectral density is 
constant at all frequencies.  

)( 1−qC

 “Auto-regressive” (AR) Process 
Consider, for example, the process 
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which corresponds to a white noise passed through a stable filter 1 /(1+a1 q-1) as is 
shown in Figure 4.9a. The general form of an “auto-regressive” process is given by 
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which is also written as 

 A(q-1) y(t) = e(t) (4.1.20) 

in which 
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is a polynomial with all its roots inside the unit circle (A(z-1) = 0  |z| < 1). ⇒

------------------
1

1+ a1 q
- 1

y(t)e(t)

a)

-------------1

A( q-1)

y(t)e(t)

b)  

Figure 4.9a,b. Generation of an “Auto-Regressive” process: a) 1st order ;  b) general case 

The spectral density of the auto-regressive process is given by the expression 
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in which φe(z) = σ2/2π and the frequency distribution is given by 
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“ARMA” Process (Auto-Regressive Moving Average) 
This process is obtained by passing a white noise through a stable filter with poles 
and zeros as is illustrated in Figure 4.10. 
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Figure 4.10. Generation of an ARMA random process 

This process is described, in the general case, by 
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or also in the form 

 A(q-1) y(t) = C(q-1) e(t) (4.1.25) 
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where A(q-1) is a polynomial (having all its roots inside of the unit circle) given by 
Equation 4.1.21 and C(q-1) is given by Equation 4.1.14. 

The spectral density of the ARMA process is given by 
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4.1.3 The ARMAX Model (Plant + Disturbance) 

This is the model used to represent the effect of both control and disturbances on 
the plant output. ARMAX means ARMA process with exogenous (external) input, 
which in our case is u(t). The generation of the ARMAX process is illustrated in 
Figure 4.11. 
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Figure 4.11. Generation of the ARMAX random process  

The disturbed output of the plant y(t) is written as 
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in which the first term represents the effect of the control and the second term the 
effect of the disturbance. By multiplying both sides of Equation 4.1.27 by A(q-1), 
one obtains 

 A(q-1) y(t) = q-d B(q-1) + C(q-1) e(t) ; (B(q-1)= q-1 B*(q-1)) (4.1.28) 

which, taking into account the expressions of A(q-1), B(q-1) and C(q-1), is also 
written as 

 (4.1.29) 
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The question that may arise concerns the presence of the denominator A(q-1), both 
in the transfer function of the plant and in the transfer function of the generator 
filter of the disturbance (see Equations 4.1.27). Is this a loss of generality as 
compared to the case where the two denominators are different, as shown in Figure 
4.12 ? 

In this case, output y(t) is given by 
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Reducing to the same denominator, one obtains 
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 (4.1.31) 

where 

 A = A1 A2  ;  B = B1 A2  ;  C = C2 A1 (4.1.32) 

 
which, generally speaking, enables the model given by Equation 4.1.27 to be used. 

q
- d

B1

A
1

------
C2
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y(t)

e(t)

u(t) ++

 
Figure 4.12. ARMAX model with different poles 

4.1.4 Optimal Prediction 

Taking into account the random nature of the disturbances, it is not possible for 
ARMAX models to compute exactly the future value of y(t) at instant t+1 knowing 
all the values of y and u up to and including the instant t. 

For this reason one considers the concept of optimal prediction of the future 
value of y at the instant t+1, computed from the knowledge of y and u up to and 
including the instant t, which will be denoted )/1(ˆ tty + or simply )1(ˆ +ty . 
We define a prediction error as 
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 )1(ˆ)1()1( +−+=+ tytytε  (4.1.33) 

The objective will be to construct an optimal predictor as a function of the 
available information at instant t: 

 ),...)1(),(),...,1(),(()1(ˆ)/1(ˆ −−=+=+ tututytyftytty  (4.1.34) 

such that the variance of the prediction error be minimized i.e. 

 [ ]{ } min)1(ˆ)1( 2 =+−+ tytyE  (4.1.35) 

For example, let consider the plant and the disturbance represented by the 
following ARMAX model: 

 )1()()()()1( 111 ++++−=+ tetectubtyaty  (4.1.36) 

The prediction error is given by 
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where the first term within the parenthesis contains all the variables available at the 
instant t and the second term is the white noise at t+1 (which is independent with 
respect to all other variables at the instant t as well as with respect to e(t)). 

One computes the variance of the prediction error, which we would like to 
minimize by an appropriate choice of )1(ˆ +ty .  
Using the expression 4.1.37 one gets:  
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The third term in the right hand side of the Equation 4.1.38 is null since e(t+1), the 
white noise at t+1, is independent with respect to all signals at the instants t, t-1,… 
The term { })1(2 +teE  does not depend upon the choice of the predictor. It results 
that the choice of  will affect only the first term, which can be only positive 
or null. The optimal value of the prediction will be the one that makes this term 
null at each instant i.e.: 

)1(ˆ +ty

 [ ]{ } 0)1(ˆ)()()( 2
111 =+−++− tytectubtyaE  (4.1.39) 
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From this condition one gets the expression of the optimal predictor: 

 )()()()1(ˆ 111 tectubtyaty opt ++−=+  (4.1.40) 

With this choice of the predictor, the prediction error becomes: 

 )1()1(ˆ)1()1( +=+−+=+ tetytyt optoptε  (4.1.41) 

which is a white noise. 
Observe that: 

 )()( tet =ε  (4.1.42) 

which allows to rewrite the optimal predictor as: 

 )()()()1(ˆ 111 tctubtyaty opt ε++−=+  (4.1.43) 

This result can be generalized for ARMAX models 4.1.29 of any order. For the 
general case the optimal predictor has the expression: 

  (4.1.44) )()()()()()()1(ˆ 1*1*1* teqCdtuqBtyqAty −−− +−+−=+

and one immediately concludes that the prediction error is a white noise: 

 )1()1(ˆ)1()1( +=+−+=+ tetytyt optε  (4.1.45) 

This allows to rewrite the optimal predictor 4.1.44 under the form: 

  (4.1.46) )()()()()()()1(ˆ 1*1*1* tqCdtuqBtyqAty ε−−− +−+−=+

For the case of the multi-step optimal prediction see Equation 4.2.32 and Appendix 
B. 

4.2 Minimum Variance Tracking and Regulation  

This strategy concerns optimal controller design, ensuring a minimum variance of 
the controlled variable around the reference, in the case of systems subject to 
random disturbances. It can be applied only to discrete time plant models with 
stable zeros. 

The objective of the minimum variance tracking and regulation is to reduce the 
variance (standard deviation, mean square error) of the controlled output around 
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the reference value either for a constant value (minimum variance control) or for a 
variable value (minimum variance tracking). The effect of a minimum variance 
control is illustrated in Figure 4.13. 

 

          minimum variance control 

y 

y 

**

t t 

y 

y 

Figure 4.13. Effect of a minimum variance control in the presence of random disturbances. 

The interest of the variance minimization of the controlled output clearly results 
from the output measures histogram. 

If the variance of the controlled output is large, one obtains a distribution of the 
measures having the form shown in Figure 4.14. In this case, an important 
percentage of the measured values of the controlled output is far from the reference 
value. Since in several applications a minimum value should be assured for the 
controlled output (i.e.: coat thickness, water content of paper, etc ...) one is obliged 
to set the reference to a value significantly greater than the necessary minimum. 

 % 

minimum 
value 

controlled
output 

large
variance

reference

reference

small
variance

 
Figure 4.14. Histograms of the controlled output 

On the other hand, if the controller reduces significantly the variance of the 
controlled output, one obtains a distribution of the measures narrowed around the 
reference. In this case, one can not only improve the quality of the product (better 
uniformity), but also reduce the reference value to approach the desired minimum 
value (see Figure 4.14). This implies, in general, a very important reduction of 
costs (see Chapter 8). 

Taking into account the definition of the variance of a random process (see 
Equation 4.1.9), it results that the objective is to compute u(t) which minimizes the 
following criterion: 
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where y(t) - y*(t) represents the difference between the output and the desired value 
y* at the instant t. 

For solving this problem, disturbance models must be considered in addition to 
plant models. The structure considered is the ARMAX model which incorporates 
both the plant and disturbance models (see Section 4.1.3). Consequently, when 
identifying a system, both plant model and disturbance model should be identified, 
in order to apply this control strategy. 

4.2.1 An Example  

Let the plant and disturbance be represented by the following ARMAX model: 

 y(t+1) = - a1 y(t) + b1 u(t) + b2 u(t-1)+ c1 e(t) + e(t+1) (4.2.2) 

The reference trajectory will be y*(t+1) (it is either stored or generated by a 
dynamic model from the reference). 

The variance of the difference y(t+1) - y*(t+1) is computed, and it represents 
the performance criterion to be minimized: 

E{[y(t+1) - y*(t+1)]2} = E{[-a1y(t) + b1u(t) + b2u(t-1) + c1e(t) - y*(t+1)]2} 
+E{e2(t+1)}+2E{e(t+1)[-a1y(t) + b1u(t) + b2u(t-1) + c1e(t) - y*(t+1)]} (4.2.3) 

The third term of the right hand side of Equation 4.2.3 is zero since e(t + 1), the 
white noise at instant t + 1 is independent of all signals appearing at instants t, t-
1,... (note that y* (t + 1) depends upon the reference r(t), r(t-1),… only, see for 
example Section 3.3. Equation 3.3.33). Of the two terms which then remain in the 
criterion given in Equation 4.2.3, E {(e2 (t + 1)} does not depend upon u(t). It 
results that the choice of u(t) will only affect the first term which can only be 
positive or zero. It follows that the minimization of the criterion 4.2.3 corresponds 
to finding u(t) such that: 

 E{[-a1 y(t) + b1 u(t) + b2 u(t-1) + c1 e(t) - y*(t+1)]2} = 0 (4.2.4) 

which may be obtained by making the bracketed expression zero. The (theoretical) 
control law  that results is: 
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Introducing this expression into the plant output equation given by Equation 4.2.2, 
one obtains that: 

 y(t+1) - y*(t+1) = e(t+1) (4.2.6) 

and respectively  

 y(t) - y*(t) = e(t) (4.2.7) 

This leads to the following remarks: 

a) the application of the control law given by Equation 4.2.5 leads to a 
minimum variance for the difference y(t) - y*(t) which becomes a white 
noise ;  

b) The controller cancels the zeros of the discrete time plant model (the zeros 
must be stable) ; 

c) e(t) can be replaced in Equation 4.2.5 by the measurable expression given 
in Equation 4.2.7. This results in the control law: 
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The structure of the minimum variance control law is the same as that for tracking 
and regulation with independent objectives in the deterministic case (Chapter3, 
Section 3.4) if    P(q-1) = C(q-1) (desired closed loop poles). 

In fact the transfer operator between y*(t+1) and y(t+1) is: 
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In the example considered above: 

 A(q-1) = 1 + a1 q-1 

 B(q-1) = q-1 B*(q-1)  ; B*(q-1) = b1 + b2 q-1    ;    d = 0 

 T(q-1) = C(q-1) = 1 + c1 q-1 
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 S(q-1) = B*(q-1) = b1 + b2 q-1  ;  R(q-1) = r0 = c1 - a1 

and one obtains: 
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The closed loop poles are effectively defined by C(q-1) which characterizes the 
disturbance. 

In other words, an optimum choice exists for closed loop poles (regulation 
behavior), and this choice directly depends upon the zeros of the disturbance 
model. 

Finally, an optimal performance test can be carried out for controller tuning by 
means of a whiteness test applied to the sequence {y(t) - y*(t)} for cases without 
time delay. In cases with a time delay of d samples at the optimum, {y(t) - y*(t)} is 
a MA process of order d and thus the autocorrelation functions R(i) will be zero 
for indexes i ≥ d + 1 (see Equation 4.2.30).  

An Interpretation of the Minimum Variance Control 
Let consider the optimal predictor for the ARMAX process given by 4.2.2: 

 )()1()()()1(ˆ 1211 tectubtubtyaty +−++−=+  

Let find the value u(t) that imposes 

  )1()1(ˆ * +=+ tyty

Then one exactly obtains the expression of u(t) given by 4.2.5 and 4.2.8 
respectively. 

Thus, one can consider the minimum variance control law as obtained in two 
stages4: 

1. Computation of an optimal output predictor; 
2. Computation of a control law such that the output prediction be equal to 

the reference (or in general in order to satisfy a specified deterministic 
criterion).  

Note that the computation of the control law for the predictor is a deterministic 
problem as all the variables are known at the computation stage. 

This computation strategy in two stages for the control in a stochastic 
environment is very general (separation theorem). It can also be summarized as 
follows: first compute the best output prediction and afterwards consider the 
                                                 
4 As in the deterministic case, it is a predictive control (see Appendix B). 
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problem as a deterministic control problem, by replacing the real measured output 
with its prediction. 

4.2.2 General Case 

Taking into account the similarity with the deterministic tracking and regulation 
with independent objectives, the controller computation will be exactly the same by 
choosing: 

 P(q-1) = C(q-1) (4.2.11) 

and this is summarized in Figure 4.15. 
The process plus the disturbance is described in the general case by: 
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Note that B(q-1) must have stable zeros as well as C(q-1) that specify the closed 

 

loop poles. Moreover C(q-1) is always stable if the disturbance is stationary. 
The controller is given by: 
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in which the reference trajectory is defined by: 
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Figure 4.15. Minimum variance tracking and regulation 

The closed loop transfer function without T(q-1)) is (see Figure 4.15): 
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 (4.2.20) 

As for tracking and regulation with independent objectives: 

 S(q-1) = B*(q-1) S'(q-1) (4.2.21) 

with 

 S'(q-1) = 1 + s'
1 q-1 +...+ s'

d q-d (4.2.22) 

and: 
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In order to compute R(q-1) and S(q-1) the following equation must be solved: 

 A(q-1) S(q-1) + q-(d+1) B*(q-1) R(q-1)= B*(q-1) C(q-1) (4.2.24) 
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Taking into account the structure of S(q-1), Equation 4.2.24 becomes: 

 A(q-1) S'(q-1) + q-(d+1) R(q-1) = C(q-1) (4.2.25) 

and the solution is the same as for the deterministic case, taking P(q-1) = C(q-1). 
For solving 4.2.25 the functions predisol.sci (Scilab) and predisol.m 

(MATLAB®) available on the book website can be used. 
The precompensator T(q-1) will have to compensate the closed loop poles and 

thus: 

 T(q-1) = C(q-1) (4.2.26) 

Let study the effect of the minimum variance control law, given by Equation 4.2.16 
on the error [y(t) - y*(t)]. 

Equation 4.2.12 can be rewritten as: 

 A(q-1) y(t+d+1) = B*(q-1) u(t) + C(q-1) e(t+d+1) (4.2.27) 

Introducing the control law u(t) given by Equation 4.2.16 and multiplying by S(q-1) 
both sides, one obtains: 

 A(q-1) S(q-1) y(t+d+1) = B*(q-1) C(q-1) y*(t+d+1) + 
 - q-(d+1) B*(q-1) R(q-1)y(t+d+1)+ S(q-1) C(q-1) e(t+d+1) (4.2.28) 

Regrouping the terms in y(t+d+1) and considering Equations 4.2.24 and 4.2.21, 
Equation 4.2.28 becomes: 

 B*(q-1) C(q-1) y(t+d+1) = B*(q-1) C(q-1) y*(t+d+1) + 
 + S'(q-1) B*(q-1) C(q-1) e(t+d+1) (4.2.29) 

and dividing by B*(q-1) C(q-1) one obtains: 

 y(t+d+1) - y*(t+d+1) = S'(q-1) e(t+d+1) (4.2.30) 

in other words, the tracking (or regulation) error is a MA process of order d (for 
d=0, [y(t+d+1) - y*(t+d+1)] is a white noise). 
This corresponds to the minimization of the variance of the error [y(t) - y*(t)]. In 
fact, using Equation 4.2.25, it is possible to write: 

 C(q-1) y(t+d+1) = [A(q-1) S'(q-1) + q-(d+1) R(q-1)] y(t+d+1) (4.2.31) 
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Taking into account also Equation 4.2.27 and dividing by C(q-1) both sides, one 
obtains5: 
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from which it results: 
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 (4.2.33) 

The third term of the right hand side member will be zero since S'(q-1) e(t+d+1) 
contains e(t+1), e(t+2).....e(t+d+1), which are all independent of y(t), y(t-1),..., 
u(t), u(t-1) ... y*(t+d+1), y*(t+d).... The second term does not depend on u(t) and, 
finally, by using the control law given by Equation 4.2.16 with T(q-1) = C(q-1), the 
first term of the second member is zero, which corresponds to the minimization of 
the variance of [y(t) - y*(t)]. 

Note that Equation 4.2.30 allows a practical test for the optimal tuning of a 
digital controller to be defined, if the time delay d is known, since in this case the 
error must be a moving average of order d. Defining: 
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** ,...2,1,0)()()()(1)(  (4.2.34) 

and RN(i) = R(i)/R(0) respectively, one theoretically must obtain for large N: 

 RN(i) ≈  0    i  d + 1 (4.2.35) ≥

In practice, based on finite length data, one considers as an acceptable value: 

 | RN (i) | ≤  2.17 / N      ;   i ≥  d + 1 (4.2.36) 

                                                 
5 The optimal prediction  is given by the first two terms of Equation 4.2.32. )d(ty 1ˆ ++
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where N is the number of samples used for computing RN(i) (for N = 256, RN(i) 
0. 136, i  d + 1).  ≤ ≥

For more details on independence tests with finite length data see also Chapter 
6, Section 6.2. 

Finally, we remind that this design method only applies to plants having 
discrete-time models with stable zeros since the controller cancels the plant zeros. 
In the case of a discrete time plant model with unstable zeros one uses: 

− either an approximation of the minimum variance tracking and regulation 
control law using the pole placement with a particular choice of the desired 
closed loop poles; 

− or a control law based on a criterion that introduces a weight on the control 
signal energy. 

Auxiliary Poles 
In some applications the poles corresponding to C(q-1) can be too fast with respect 
to the open loop system dynamics. This can lead to an unacceptable stress on the 
actuator or to unacceptable robustness margins. In this case, one can either use 
generalized minimum variance tracking and regulation design (see below Section 
4.3), or add auxiliary poles. 

If one chooses to add additional poles, the polynomial defining the desired 
closed loop poles becomes: 

 P(q-1) = C(q-1) PF(q-1) 

where PF (q-1) represents the polynomial corresponding to the additional poles. 
This corresponds to the polynomial P(q-1) to be used in Equation 4.2.25 instead of 
C(q-1) and in this case, consequently, T(q-1) = C(q-1) PF(q-1). 

This modification corresponds to minimize the variance of the regulation error 
filtered by PF (q-1), i.e.: 

 min E {[PF (q-1) [y(t+d+1) - y*(t+d+1)]]2} 

4.2.3 Minimum Variance Tracking and Regulation: Example 

The considered plant model is the same as the one used for the tracking and 
regulation with independent objectives in Section 3.4.4 (the desired tracking 
performance is also the same). The results of the minimum variance tracking and 
regulation design are summarized in Table 4.1. 
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Table 4.1. Minimum Variance Tracking and regulation 

Plant:    
•  d = 0 
•  B(q-1) = 0.2 q-1 + 0.1 q-2 
•  A(q-1) =  1 - 1.3 q-1 + 0.42 q-2             

Tracking dynamics    Ts = 1s,  ω0 = 0.5 rad/s, ζ = 0.9 

•  Bm = +0.0927 +0.0687 q-1  

• Am = 1 - 1.2451 q-1 + 0.4066 q-2 

Disturbance polynomial  C(q-1)  = 1 -1.34 q-1 + 0.49 q-2 
Pre-specifications: Integrator 

*** CONTROL LAW ***  

S(q-1) u(t) + R(q-1) y(t) = T(q-1) y*(t+d+1) 

y*(t+d+1) = [(Bmq-1)/Am(q-1)] . ref(t)  
Controller:    

• R(q-1) = 0.96 - 1.23 q-1 + 0.42 q-2 
• S(q-1) = 0.2 - 0.1 q-1 - 0.1 q-2 
• T(q-1) = C(q-1) 

Gain margin: 2.084                                    Phase margin: 61.8 deg 
Modulus margin: 0.520 (- 5.68 dB)           Delay margin: 1.3 s 

The controller design results for R(q-1) and S(q-1) are given in the lower part of 
Table 4.1. Before starting the simulation, the variance and mean value of the white 
noise generating the disturbance (through the filter C(q-1)/A(q-1)) must be 
specified. 

The simulations results shown in Figure 4.16 illustrate the operation of the 
minimum variance controller in regulation and tracking. One can see that 
introduction of the controller effectively reduce the variance of the output. 
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Figure 4.16. Minimum variance tracking and regulation 

4.3 The Case of Unstable Zeros: Approximation of the Minimum 
Variance Tracking and Regulation by Means of Pole Placement 

4.3.1 Controller Design 

First remember that minimum variance tracking and regulation for the case where 
the zeros of the plant model are inside the unit circle (asymptotically stable zeros) 
is equivalent to a pole placement design with: 

  (4.3.1) )()()( 11*1 −−− = qCqBqP

(see Equations 4.2.20 and 4.2.24). 
In the case where contains unstable zeros, we will apply pole 

placement design but replacing the unstable zeros of by stable 
approximations. 

)( 1−∗ qB
)( 1−∗ qB

For this, one first factorizes the polynomial under the form: )( 1−∗ qB

  (4.3.2) )()()( 111* −−−+− = qBqBqB
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where  contains all the zeros of which lie inside the unit circle 
(asymptotically stable zeros) and  contains all the zeros of  
located outside the unit circle (unstable zeros). The factorization is done such that 
the coefficient of the highest power of the polynomial  is equal to 1. 

)( 1−+ qB )( 1−∗ qB
)( 1−− qB )( 1−∗ qB

Bnq− )( 1−− qB
Let define the reciprocal polynomial of , the polynomial which is 

obtained by inverting the order of the coefficients and which will be denoted 
. This monic polynomial will have all the zeros inside the unit circle. 

)( 1−− qB

)(' 1−− qB

Example: 

 ;                11 5.0)( −−− += qqB 11 5.01)(' −−− += qqB

)( 1−− qB  has a zero at 2+j0 (outside the unit circle) and  has a zero at 
0.5+j0 (inside the unit circle). 

)(' 1−− qB

Observe that  is a good approximation of  in the frequency 
domain since: 

)(' 1−− qB )( 1−− qB

 ωω

ω
 allfor    1

)('
)(

=
−−

−−

j

j

eB
eB   (4.3.3) 

This can be easily verified for the example considered above. In this case one 
has: 

 ω
ω
ω

ω

ω
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The approximation of the minimum variance tracking and regulation is obtained by 
applying the pole placement design for: 

  (4.3.4) 
)()()()(

)()(')()(
11*)1(11

1111

−−+−−−

−−−−+−

+=

=

qRqBqqSqA

qCqBqBqP
d

Taking in account the structure of  (given in Equation 4.3.2) it results that 

 will have the form: 

)( 1* −qB

)( 1−qS

  )()()( 1'11 −−+− = qSqBqS

and therefore  and  are solutions of the equation: )( 1' −qS )( 1−qR
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  (4.3.5) )()()()()()(' 11)1(1'111 −−−+−−−−−− += qRqBqqSqAqCqB d

Polynomial is given by: )( 1−qT

  (4.3.6) )1(/)()(')( *111 BqCqBqT −−−− =

For a proof of the optimality of this stochastic control law see (Astrom, 
Wittemmark 1997)6. 

4.3.2 An Example 

Table 4.2 give the results of the design for the approximation of the minimum 
variance tracking and regulation by the pole placement.  

Table 4.2. Approximation of minimum variance tracking and regulation design by means of 
the pole placement 

Plant: 
• d = 0 
• B(q-1) = 0.1 q-1 + 0.2 q-2 
•  A(q-1) =  1 - 1.3 q-1 + 0.42 q-2                                  

Tracking dynamics    Ts = 1s,  ω0 = 0.5 rad/s, ζ = 0.9 

• Bm = +0.0927 +0.0687 q-1  

• Am = 1 - 1.2451 q-1 + 0.4066 q-2 

Regulation dynamics  P(q-1) = (1 + 0.5 q-1)(1 - 1.34 q-1+ 0.49 q-2) 
Pre-specifications: Integrator 

*** CONTROL LAW *** 

S(q-1) u(t) + R(q-1) y(t) = T(q-1) y*(t+d+1) 

y*(t+d+1) = [Bm (q-1)/Am (q-1)] r(t)                    
Controller: 

• R(q-1) = 4.813 - 6.118 q-1 + 2.055 q-2 
• S(q-1) = 1 - 0.02139 q-1  - 0.9786 q-2 
• T(q-1) = - 2.80 q-1 - 0.6 q-2 + 0.8166 q-3 

Gain margin: 2.082                                   Phase margin: 58.5 deg 
Modulus margin: 0.520 (- 5.69 dB)          Delay margin: 1.42 s 

                                                 
6 The idea of this method can be used also in a deterministic context if we would like a better 
approximation of the tracking and regulation with independent objectives by the pole placement when 
the plant model has unstable zeros. 
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The plant model has an unstable zero. For defining the desired closed loop poles 
one should first factorize : )( 1* −qB

  )()()5.0( 2.02.01.0)( 11111* −−−+−−− =+=+= qBqBqqqB

So 

  11'11 5.01)(5.0)( −−−−−− +=+= qqBqqB

The disturbance model is the same as the one used in the example 4.2.3 
and the controller is computed using Equations 4.3.4 and 4.3.5. 

)( 1−qC

4.4 Generalized Minimum Variance Tracking and Regulation 

The minimum variance tracking and regulation strategy only applies to plants 
having a discrete-time model with stable zeros. 

The generalized minimum variance tracking and regulation strategy is an 
extension of the minimum variance control strategy to plants having discrete-time 
models with unstable zeros. This method computes a control u(t) which minimizes 
the following criterion: 
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and C(q-1) characterizes the disturbance in the ARMAX model of the plant output. 
In the case where α = 0, the criterion of Equation 4.4.1 is written as: 
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The quantity y(t+d+1) + [λ/C(q-1)] [u(t) - u(t-1)] is interpreted as a generalized 
output, and its variations around y*(t+d+1) will be minimized. 

For λ = 0, this strategy corresponds to the minimum variance tracking and 
regulation. For λ > 0, the variance of the difference between the generalized output 
and the reference trajectory y* will be minimized but this will no more assure the 
minimization of E{[y(t+d+1) - y*(t+d+1)]2} and for this reason a small value of λ 
assuring however the stability of the closed loop is desirable in practice. 

Note also that λ has a weighting effect upon the variations of u(t) and therefore 
it can be used even in the case of plant models with stable zeros in order to reduce 
the control signal variation (and then the stress on the actuator). 

4.4.1 Controller Design 

Using Equation 4.2.33, the following expression is obtained for criterion 4.4.1: 
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To minimize this criterion, u(t) must be chosen such that the first term of the 
right hand side is zero. One thus obtains: 
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Controller design is carried out in two stages. 
The first stage consists of computing the polynomials R(q-1), S(q-1) and T(q-1) 

= C(q-1) for Q(q-1) = 0 by the minimum variance tracking and regulation method 
even if B(q-1) has unstable zeros. 

The second stage is to introduce the polynomial Q(q-1) given by Equation 4.4.2 
with λ > 0. Using Equation 4.4.5, the closed loop transfer operator from the 
reference trajectory to the output is given by: 
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since from Equation 4.2.24, one has 

 A(q-1) S(q-1) + q-(d+1) B*(q-1) R(q-1) = B*(q-1) C(q-1) (4.4.7) 

One chooses λ (smaller than 1, as a general rule) and one checks that the 
polynomial [(A(q-1) Q(q-1) + B*(q-1) C(q-1)] defining the closed loop poles is 
asymptotically stable. If this is not the case, the value of λ7 is changed. 

As initial choice, in the case of unstable roots of B*(q-1), one takes the lowest 
values of λ  allowing to obtain a stable polynomial S(q-1) + Q(q-1) for α=0 (since 
S(q-1) = B*(q-1) S'(q-1) is unstable). This makes the controller stable. 

Note that the main limitation of this technique is that the existence of λ  leading 
to a stable closed loop system is not guaranteed (especially in the case of several 
unstable zeros) whereas with the design illustrated in Section 4.3 one always 
obtains an asymptotically stable closed loop system. 

4.5 Concluding Remarks 

In this chapter the design of digital controllers in the presence of random 
disturbances has been considered. Many of the random disturbances encountered in 
practice may be modeled as a gaussian discrete-time white noise passed through a 
filter. The knowledge of this filter called the disturbance model allows the 
disturbance to be completely characterized (with the approximation of a scaling 
factor). 

For the design of digital controllers in the presence of random disturbances one 
considers a joint plant and disturbance model called ARMAX (autoregressive 
moving average with exogenous input) model: 
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where y is the plant output, u is the plant input and, and e is a discrete-time white 
noise sequence. The first term represents the effect of the plant input and the 
second term represents the effect of the disturbance upon the plant output. 

The ARMAX model is often written in the form: 

 A(q-1) y(t) = q-d B(q-1) u(t) + C(q-1) e(t) 

The Minimum Variance Tracking and Regulation control strategy minimizes the 
criterion: 

                                                 
7 This technique can be also used in the deterministic case when the zeros of the plant model are 
unstable. 
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 E {[y(t+d+1) - y*(t+d+1)]2} = min 

where y* is the desired output trajectory. This control strategy applies to plants 
models with stable zeros. 

The poles of the closed loop system are the zeros of polynomial C(q-1) 
characterizing the stochastic disturbance model, with the addition of the zeros of 
polynomial B*(q-1). The obtained controller is identical to the controller 
corresponding to tracking and regulation with independent objectives design used 
in a deterministic environment if the polynomial P(q-1), defining the desired closed 
loop system poles, is chosen equal to C(q-1). Note that, in some cases, in order to 
reduce the stress on the actuator or to improve the robustness margins, auxiliary 
poles should be added to those imposed by C(q-1). 

In the case of a plant model with unstable zeros one chooses:  

• either an approximation of the minimum variance tracking and regulation 
control law using the pole placement ; 

• or a control law based on a criterion that introduces a weight on the control 
signal energy. 

The Generalized Minimum Variance Tracking and Regulation control strategy is 
an extension of the Minimum Variance Tracking and Regulation control strategy 
for the case of a plant model with unstable zeros. This strategy minimizes the 
criterion: 
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where λ (> 0) is chosen such that the resulting closed loop system poles are 
asymptotically stable. Note that λ has the effect to weight the variations of u(t). It 
can also be used to smooth the variations of the control signal resulting from a 
minimum variance control design. However, since a value of λ that stabilizes the 
closed loop system may not always exist, the approximation of the minimum 
variance tracking and regulation by pole placement is recommended. 

Regardless to the method used, in the final stage of the design it is required to 
verify the resulting sensitivity functions and the corresponding robustness margins. 
If these are not satisfactory, modifications should be done (see Chapter 3) because, 
in practice, one cannot use controllers leading to insufficient robustness margins or 
imposing an excessive stress on the actuator in the frequency regions where the 
gain of the model is low (leading to large  peaks on the input sensitivity functions). 
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System Identification: The Bases 

In this chapter the basic principles of identification of dynamic systems are first 
introduced. This is followed by a presentation of the main types of parameter 
adaptation algorithms used in recursive identification methods. The choice of input 
signals for identification and the influence of disturbances is also discussed. The 
last section presents the general structure of recursive identification methods. 

5.1 System Model Identification Principles 

Identification means the determination of the model of a dynamic system from 
input/output measurements. The knowledge of the model is necessary for the 
design and the implementation of a high performance control system. 

Figure 5.1 sums up the general principles of controller design. In order to 
design and tune a controller correctly, one needs: 

1. To specify the desired control loop performance and robustness 
2. To know the dynamic model of the plant to be controlled (also known as 

the control model) which describes the relation between the control 
variations and the output variations 

3. To possess of a suitable controller design method enabling to achieve the 
desired performance and robustness specifications for the corresponding 
plant model  

The notion of the mathematical model of a system or phenomenon is a 
fundamental concept. In general, a multitude of model types exist, each one 
dedicated to a particular application. 

For example, the knowledge type models (based on the laws of physics, 
chemistry, etc...) permit a fairly complete system description and are used for plant 
simulation and design. These models are in general extremely complex and can 
only rarely be directly used for the design of control systems. The dynamic control 
models that give the relation between the input and output variations of a system 
are, as indicated above, the type of model suitable for the design and tuning of 
control systems. 
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Figure 5.1. Controller design principles 

Although indications concerning the structure of these control models can be 
obtained from the structure of the knowledge type model, it is in general very 
difficult to determine the significant parameter values from these models. This is 
why in the majority of practical situations, it is necessary to implement a 
methodology for direct identification of these dynamic (control) models from 
experimental data. 

Note that there are two types of dynamic models: 

1. Non-parametric models (example: frequency response, step response) 
2. Parametric models (example: transfer function, differential or difference 

equation) 

Henceforward we shall be concerned with the identification of sampled discrete-
time parametric dynamic models, which are the most suitable for the design and 
tuning of digital control systems. 

System identification is an experimental approach for determining the dynamic 
model of a system. It includes four steps: 

1. Input/output data acquisition under an experimentation protocol 
2. Selection or estimation of the “model” structure (complexity) 
3. Estimation of the model parameters 
4. Validation of the identified model (structure and values of the parameters) 

A complete identification operation must necessarily comprise the four stages 
indicated above. The specific methods used at each stage depend on the type of 
model desired (parametric or non-parametric, continuous-time or discrete-time) 
and on the experimental conditions (for example: hypothesis on the noise, open 
loop or closed loop identification). The validation is the mandatory step to decide 
if the identified model is acceptable or not. 
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As there does not exist a unique parameter estimation algorithm and a unique 
experimental protocol that always lead to a good identified model, the models 
obtained may not always pass the validation test. In this case, it is necessary to 
reconsider the estimation algorithms, the model complexity or the experimental 
conditions. System identification should be then considered as an iterative 
procedure as illustrated in Figure 5.2. 

We now present a brief sum-up of the essential elements that characterize the 
different steps of the identification.  

Input/Output Data Acquisition with an Experimental Protocol 
One should essentially select an excitation signal with a rich frequency spectrum in 
order to cover the bandwidth of the plant to be identified, but with small magnitude 
(since in practice, the accepted magnitude variations of the input signals are 
strongly constrained). 

This aspect will be discussed in details in Section 5.3 and 7.2. 

Selection or Estimation of the Model Complexity 
The typical problem encountered is to define the orders of the polynomials 
(numerator, denominator) of the pulse transfer function that represents the plant 
model. 

One often uses trial and error procedures, but valuable techniques for 
complexity estimation of models have been developed (see for example Duong and 
Landau 1996).  

These aspects will be discussed in Section 6, Section 6.5 and in Chapter 7, 
Section 7.3. 

Model Parameter Estimation 
The “classic” identification methodology used to obtain parametric models based 
on non-parametric models of the type “step response” is illustrated in Figure 5.3. 
This methodology, initially used to obtain continuous time parametric models, has 
been extended to the identification of discrete time models.  

From the shape of the plant step response, one selects a type of model and the 
parameters of this model are graphically determined. As the sampling frequency is 
known, one can obtain the corresponding discrete time model from conversion 
tables. 

This methodology has several disadvantages: 

• Test signals with large magnitude (seldom acceptable in the industrial 
systems) 

• Reduced accuracy 
• Bad influence of disturbances 
• Models for disturbances are not available 
• Lengthy procedure  
•  Absence of model validation 
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Figure 5.2. System identification methodology 

The availability of a digital computer permits the implementation of algorithms 
that automatically estimate the parameters of the discrete time models. It should be 
emphasized that the identification of the parametric discrete time models allows to 
obtain (by simulation) non-parametric models of the step-response or frequency-
response type, with a far higher degree of accuracy with respect to a direct 
approach, and using extremely weak excitation signals. The identification of 
parametric sampled data models leads to models of a very general use and offers 
several advantages over the other approaches. 

High performance identification algorithms, which have a recursive 
formulation tailored to real-time identification problems and to their 
implementation on micro-computer, have been developed. The fact that these 
identification methods can operate with extremely weak excitation signals is a very 
much appreciated quality in practical situations. 

The parameter estimation principle for discrete time models is illustrated in 
Figure 5.4. A sampled input sequence u(t) (where t is the discrete time) is applied 
to the physical system (the cascade actuator-plant-transducer) by means of a 
digital-to-analog converter (DAC) followed by a zero order hold block (ZOH). The 
measured sampled plant output y(t) is obtained by means of an analog-to-digital 
converter (ADC). 

A discrete-time model with adjustable parameters is implemented on the 
computer. The error between the system output y(t) at instant t, and the output  
predicted by the model (known as the prediction error) is used by a parameter 
adaptation algorithm that, at each sampling instant, will modify the model 
parameters in order to minimize this error on the basis of a chosen criterion. 

)(ˆ ty
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Figure 5.3.  “Classic” identification methodology 

The input is, in general, a very low level pseudo-random binary sequence 
generated by the computer (sequence of rectangular pulses with randomly variable 
duration). Once the model is obtained, an objective validation can be made by 
carrying out statistical tests on the prediction error ε (t) and the predicted output 

. The validation test enables the best model to be chosen (for a given plant), 
i.e. the best structure and the best algorithm for the estimation of the parameters. 

)(ˆ ty

Finally, by computing and graphically representing the step responses and the 
frequency response of the identified model, the characteristics of the continuous-
time model (step response or frequency response) can be extracted. 

This modern approach to system model identification avoids all the problems 
related to the previously mentioned “classical” methods and also offers other 
possibilities such as: 

• Tracking of the variations of the system parameters in real time allowing 
retuning of controllers during operation 

• Identification of disturbances models 
• Modeling of the transducer noises in view of their elimination 
• Detection and measurement of vibration frequencies 
• Spectral analysis of the signals 
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Figure 5.4.  Principle of model parameter estimation 

One of the key elements for implementing this system model identification 
approach is the parameter adaptation algorithm (P.A.A.) that drives the 
parameters of the adjustable prediction model from the data collected on the 
system at each sampling instant. This algorithm has a “recursive” structure, i.e. the 
new value of the estimated parameters is equal to the previous value plus a 
correction term that will depend on the most recent measurements. 

A “parameter vector” is defined, in general, as the vector of the different 
parameters that must be identified. All the parameter adaptation algorithms have 
the following structure: 
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The measurement function vector is also known as the “observation vector”. 
Note that non-recursive parametric identification algorithms also exist (which 

process as a one block the input/output data files obtained over a certain time 
horizon). Recursive identification offers the following advantages with respect to 
these non-recursive techniques: 

• Obtaining an estimated model as the system evolves 
• Considerable data compression, since the recursive algorithms process at 

each instant only one input/output pair instead of the whole input/output 
data set 

• Much lower requirements in terms of memory and CPU power 
• Easy implementation on microcomputers 
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• Possibility to implement real-time identification systems 
• Possibility to track the parameters of time variable systems 

Section 5.2 introduces the main types of parameter estimation (identification) 
algorithms in their recursive form. The effect of the noise on the parameter 
estimation algorithms will be discussed in Section 5.4. 

Model Validation 
Different points of view can be considered for the choice of a model validation 
procedure. The goal is to verify that the output model excited by the same input 
applied to the plant reproduce the variations of the output caused by the variations 
of the input regardless the effect of the noise. Techniques for model validation will 
be presented in Chapter 6 (Section 6.2 and 6.4). 

5.2 Algorithms for Parameter Estimation 

5.2.1 Introduction 

We will illustrate the principles of parametric identification presented in Figure 5.3 
by an example. 

Consider the discrete-time model of a plant described by 

  (5.2.1) )()()()()1( 11 ttutbtyaty Tφθ=+−=+

where a1 and b1 are the unknown parameters. 
The model output can be also written under the form of a scalar product 

between the unknown parameter vector 

  (5.2.2) ],[ 11 baT =θ

and the vector of measures termed measurement vector or plant model regressor 
vector 

  (5.2.3) )](),([)( tutyt T −=φ

This vector representation is extremely useful since it allows easy consideration of 
models of any order. 

Following the diagram given in Figure 5.4, one should construct an adjustable 
prediction model, which will have the same structure as the discrete-time model of 
the plant given in Equation 5.2.1: 

 )()(ˆ)()(ˆ)()(ˆ))(ˆ1(ˆ)1(ˆ 11 tttutbtytattyty To φθθ =+−=+=+  (5.2.4) 
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where is the predicted output at the instant t based on the knowledge of 

the parameters estimated at time t ( ).  is called the a priori 
prediction. In Equation 5.2.4 

)1(ˆ +tyo

)(ˆ),(ˆ 11 tbta )1(ˆ +tyo

  (5.2.5) )](ˆ),(ˆ[)( 11 tbtat T =θ

is the vector of estimated parameters at time t. 
One can define now the prediction error (a priori) as in Figure 5.4: 

  (5.2.6) ))(ˆ,1()1(ˆ)1()1( tttytyt ooo θεε +=+−+=+

The term  is effectively computed between the sampling instants t and t+1 

once  is available, is computed at the instant t+1 after the acquisition 

of y(t+1) (between t+1 and t+2 ). Note that depends on . 

)1(ˆ +tyo

)(ˆ tθ )1( +toε

)1( +toε )(ˆ tθ
Now it will be necessary to define a criterion in terms of the prediction error, 

which will be minimized by an appropriate evolution of the parameters of the 
adjustable prediction model, driven by the parameter adaptation algorithm. Since 
the objective is to minimize the magnitude of the prediction error independently of 
its sign, the choice of a quadratic criterion is natural. A first approach can be the 
synthesis of a parameter adaptation algorithm which at each instant minimizes the 
square of the a priori prediction error. This can be expressed as finding an 
expression for such that at each sampling one minimizes )(ˆ tθ

 [ ] [ ]2 2 
))(ˆ,1()1()1( ttttJ oo θεε +=+=+  (5.2.7) 

The structure of the parameter adaptation algorithm will be of the form 

 ( ))1(),(),(ˆ)(ˆ)1(ˆ)(ˆ)1(ˆ ++=+∆+=+ tttftttt oεφθθθθθ  (5.2.8) 

The correction term ( ))1(),(),(ˆ +tttf oεφθ should only depend upon the information 

available at the instant t+1 (last measurement y(t+1), parameter vector and a 
finite number of measurements or information at t, t-1,…, t-n ). The solution to this 
problem will be given in Section 5.2.2. A recursive adaptation algorithm will be 
derived enabling both on-line and off-line implementation. 

)(ˆ tθ

The criterion of Equation 5.2.7 is not the only one step ahead criterion which 
can be considered and this aspect will also be discussed in Section 5.2.2. 

When a set of input/output measurements over a time horizon t (i=1, 2,…, t) is 
available, and we are looking for an off line identification, one may ask how to use 
this set of data optimally. The objective will be to search for a vector of parameters 
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)(ˆ tθ  using the available data up to instant t and that minimizes a criterion of the 
form 

  (5.2.9) [∑
=

=+
t

i

o titJ
1

2 
))(ˆ,()1( θε ]

that means the minimization of the sum of the squares of the prediction errors over 
the time horizon t. This point of view will lead to the least squares algorithm which 
will be presented in Section 5.2.3 (under the non-recursive and recursive form). 

5.2.2 Gradient Algorithm 

The aim of the gradient parameter adaptation algorithm is to minimize a one step 
quadratic criterion in terms of the prediction error (one-step ahead).  

Consider the same example as in Section 5.2.1. The discrete time model of the 
plant is expressed by 

 y(t+1) = - a1 y(t) + b1 u(t) = θT φ(t) (5.2.10) 

where 

 θT = [a1, b1] (5.2.11) 

is the parameter vector and 

 φ(t)T = [- y(t), u(t)] (5.2.12) 

is the vector of measures (pant model regressor vector). 
The adjustable prediction model (a priori) is described by 

 )()(ˆ)()(ˆ)()(ˆ))(ˆ1(ˆ)1(ˆ 11 tttutbtytattyty To φθθ =+−=+=+  (5.2.13) 

where (t+1) represents the a priori prediction depending on the values of the 
parameters estimated at instant t and 

oŷ

  (5.2.14) )](ˆ),(ˆ[)(ˆ 11 tbtat T =θ

is the estimated parameter vector1. 
The a priori prediction error is given by 

                                                 
1 In this case the predictor regressor vector is identical to the measurement vector. 
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  (5.2.15) )1(ˆ)1()1( +−+=+ tytyt ooε

To evaluate the quality of the new estimated parameter vector , which 
will be provided by the parameter adaptation algorithm, it is useful to define the a 
posteriori output of the adjustable predictor, which corresponds to re-computing 
Equation 5.2.13 with the new values of the parameters estimated at t+1. 

)1(ˆ +tθ

The a posteriori predictor output is defined by 

         )()1(ˆ)()1(ˆ)()1(ˆ))1(ˆ1(ˆ)1(ˆ 11 tttutbtytattyty T φθθ +=+++−=++=+  (5.2.16) 

 
One also defines an a posteriori prediction error: 

 )1(ˆ)1()1( +−+=+ tytytε  (5.2.17) 

A recursive parametric adaptation algorithm with memory is desired.  
The structure of such an algorithm is2 

 ( ))1(),(),(ˆ)(ˆ)1(ˆ)(ˆ)1(ˆ ++=+∆+=+ tttftttt oεφθθθθθ  (5.2.18) 

The correction term ( ))1(),(),(ˆ +tttf oεφθ  must only depend upon the information 

available at instant t+1 (last measure y(t+1), parameters of  and eventually a 
finite number of information at instants t, t-1, t-2, ..., t-n). The correction term 
should allow one to minimize at each step the a priori prediction error with respect 
to the criterion  

)(ˆ tθ

  (5.2.19) [ 2 

)(ˆ
)1()1(min +=+ ttJ o

t
ε

θ
]

                                                

If one represents the criterion J and the parameters  and  in three-dimensional 
space, one gets the form represented in Figure 5.5 ( a reversed conic surface). The 
optimum of the criterion will correspond to the bottom of the cone and the 
projection of this point on the plane ,  will give us the optimal values of the 
plant parameters: a1 and b1. It is obvious that, in order to reach as quickly as 
possible this point (the optimum of the criterion), it will be advantageous to go 
down along the steepest descent. This solution is analytically given by the gradient 
technique. 

1â 1̂b

1â 1̂b

 
2 Effectively, if the correction term is null, one holds the previous value of the estimated parameters. 



 System Identification: The Bases 211 

The horizontal sections of the surface correspond to curves along which the 
criterion has a constant value (isocriterion curves). If one represents the projection 
of the isocriterion curves (J = const.) in the plane of the parameters , , one 
obtains concentric closed curves around the point a1, b1 (the parameters of the 
plant model) which minimizes the criterion. As the value of the criterion J (= 
const.) increases, the isocriterion curves move further and further away from the 
minimum. This is illustrated in Figure 5.5. 

1â 1̂b

In order to minimize the value of the criterion, one moves in the direction of the 
steepest descent that, in the plane , , corresponds to move in the opposite 
direction of the gradient associated to the isocriterion curve. This will lead us to a 
curve corresponding to J = const of a smaller value, as shown in Figure 5.5. 

1â 1̂b

The corresponding parametric adaptation algorithm will have the form 

 
)(ˆ

)1()(ˆ)1(ˆ
t

tJFtt
θ

θθ
∂

+∂
−=+  (5.2.20) 

where F = α I (α > 0) is the adaptation matrix gain (I – identity matrix) and 
J(t+1)/ θ(t) is the gradient of the criterion of Equation 5.2.19 with respect to 
(t). 

∂ ∂

θ̂
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Figure 5.5.  Principle of gradient method 
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From Equation 5.2.19, one gets 

 )1(
)(ˆ

)1(
)(ˆ

)1(
2
1

+
∂

+∂
=

∂

+∂ t
t

t
t

tJ o
o

ε
θ

ε
θ

 (5.2.21) 

But 

  (5.2.22) )()(ˆ)1()1(ˆ)1()1( tttytytyt Too φθε −+=+−+=+

and then  

 )(
)(ˆ

)1( t
t

to
φ

θ
ε

−=
∂

+∂  (5.2.23) 

By introducing Equation 5.2.23 into Equation 5.2.20, the parametric adaptation 
algorithm of Equation 5.2.20 becomes 

  (5.2.24) )1()()(ˆ)1(ˆ ++=+ ttFtt oεφθθ

where F is the adaptation matrix gain3. Two choices are possible: 

1) F = α I    ;    α > 0 
2) F > 0 (positive definite matrix)4  

The geometric interpretation of the parametric adaptation algorithm expressed by 
Equation 5.2.24 is given in Figure 5.6. 

 

 

Figure 5.6. Geometric interpretation of the gradient adaptation algorithm 

                                                 
3 In equations of the form of Equation 5.2.24 the vector φ is generally called the observation vector. In 
this particular case it corresponds to the measurement vector. 
4 A positive definite matrix is characterized by: (i) each diagonal term is positive; (ii) the matrix is 
symmetric ; (iii) the determinants of all principal matrix minors are positive. 

 

  

φ ( t )

  )1(θ̂ t )1(ˆ +θ t

)(ˆ tθ

Fφ(t)ε°(t+1) ; F = α I +

Fφ(t)ε°(t+1) ; F > 0
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The parametric adaptation algorithm given by Equation 5.2.24 presents some 
instability possibilities if the adaptation gain (respectively α) is large (this can be 
well understood with the support of Figure 5.5). 

Let consider Equation 5.2.17 of the a posteriori error. By using Equations 
5.2.13 and 5.2.14, it can be re-written as 

       [ ] )()1(ˆ)(ˆ)()(ˆ)1()1(ˆ)1()1( ttttttytytyt
TT φθθφθε +−+−+=+−+=+  (5.2.25) 

From Equation 5.2.24 it results that  

  (5.2.26) )1()()1(ˆ)(ˆ +−=+− ttFtt oεφθθ

and by also taking into account Equation 5.2.15, Equation 5.2.25 becomes 

  (5.2.27) )1()()()1()1( +−+=+ ttFttt oTo εφφεε

that for IF α=  becomes: 

 ( ) )1()()(1)1( +−=+ tttt oT εφαφε  (5.2.28) 

If is a better estimation than  (which means that the estimation of the 
parameters goes in the good sense) one should get . Therefore 
it results from Equation 5.2.28 that the adaptation gain 

)1(ˆ +tθ )(ˆ tθ
22 )1()1( +<+ tt oεε

α should satisfy the 
(necessary) condition 

  (5.2.29) )()(/2 tt T φφα <

In this algorithm, in other words, the adaptation gain must be chosen as a function 
of the magnitude of the signals5. 

In order to avoid the possible instabilities, and the dependence of the adaptation 
gain with respect to the magnitude of the measured signals, one uses the same 
gradient approach but with a different criterion, which has as objective the 
minimization of the a posteriori prediction error at each step according to 

  (5.2.30) [ 2

)1(ˆ
)1()1(min +=+

+
ttJ

t
ε

θ
]

                                                

Thus one gets: 

 
5 One can derives from Equation 5.2.28 that an optimal value for α  is . )()(/1 tt T φφα ≈
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 )1(
)1(ˆ
)1(

)1(ˆ
)1(
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1
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+∂

+∂
=

+∂

+∂ t
t
t

t
tJ ε

θ
ε

θ
 (5.2.31) 

From Equations 5.2.16 and 5.2.17 it follows that 

  (5.2.32) )()1(ˆ)1()1(ˆ)1()1( tttytytyt T φθε +−+=+−+=+

and respectively that 

 )(
)1(ˆ
)1( t

t
t φ

θ
ε

−=
+∂

+∂  (5.2.33) 

Introducing Equation 5.2.33 into Equation 5.2.31, the parameter adaptation 
algorithm of Equation 5.2.20 becomes 

  (5.2.34) )1()()(ˆ)1(ˆ ++=+ ttFtt εφθθ

This algorithm depends on ε (t+1), which is a function . In order to 
implement this algorithm, it is necessary to express ε (t+1) as a function of 
ε°(t+1): (ε (t+1) = f( (t), φ(t), ε°(t+1)). 

)1(ˆ +tθ

θ̂
Equation 5.2.32 can be rewritten as 

 [ ] )()(ˆ)1(ˆ)()(ˆ)1()1( ttttttyt
TT φθθφθε −+−−+=+  (5.2.35) 

The first two terms of the right side correspond to ε°(t+1) and, from Equation 
5.2.34, one gets 

  (5.2.36) )1()()(ˆ)1(ˆ +=−+ ttFtt εφθθ

which allows one to write Equation 5.2.35 in the form 

 ε(t+1) = ε°(t+1) - φ(t)T F φ(t) ε (t+1) (5.2.37) 

from which one derives the desired relation between ε (t+1) and ε°(t+1): 

 
)()(1

)1()1(
tFt

tt T

o

φφ
εε

+

+
=+  (5.2.38) 

and the algorithm of Equation 5.2.34 becomes 
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)()(1
)1()()(ˆ)1(ˆ

tFt
ttFtt T

o

φφ
εφθθ

+

+
+=+  (5.2.39) 

that is a stable algorithm regardless of the gain F (positive definite matrix). The 
division by 1 + φ(t)T F φ(t) introduces a normalization that reduces the sensitivity 
of the algorithm with respect to F and φ(t). 

The sequence of operation corresponding to the recursive estimation algorithms 
can be summarized as follows: 

1. Before t+1  : u(t), u(t-1),…, y(t), y(t-1),…, ),(tφ ),(ˆ tθ F are available 

2. Before t+1 one computes: 
)()(1

)(
tFt

tF
T φφ

φ
+

 and (given by Equation 

5.2.13)  

)1(0 +ty

3. At instant t+1 y(t+1) is acquired and u(t+1) is applied  
4. The parametric adaptation algorithm is implemented 

a) One computes ε0(t+1) by using Equation 5.2.15 
b) One computes (t+1) from Equation 5.2.39  θ̂
c) (Optionally) one computes ε (t+1) 

5. Return to step 1 

5.2.3 Least Squares Algorithm 

By using the gradient algorithm, at each step  is minimized or, more 
precisely, one moves in the steepest decreasing direction of the criterion, with a 
step update depending on F. The minimization of at each step does not 
necessarily lead to the minimization of 

)1(2 +tε

)1(2 +tε

  ∑
=

t

i
i

1

2 )(ε

on a t-steps time horizon, as illustrated in Figure 5.7. In fact, in the proximity of the 
optimum, if the gain is not small enough, oscillations may occur around the 
minimum. On the other hand, in order to obtain a satisfactory convergence speed at 
the beginning, when the current estimation is theoretically far from the optimum, a 
high adaptation gain is preferable. The least squares algorithm offers, in fact, such 
a variation profile for the adaptation gain. 

The same equations, as in the gradient algorithm, are considered for the plant, 
the prediction model and the prediction errors, namely Equations 5.2.15 to 5.2.22. 

The aim is to find a recursive algorithm of the form of Equation 5.2.18 that 
minimizes the “least squares” criterion 
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1̂b

1â  
Figure 5.7. Evolution of an adaptation algorithm of the gradient type 
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The term corresponds to )1()(ˆ −it T φθ

 ( ))(ˆˆ)1()(ˆ)1()(ˆ)1()(ˆ 11 tiyiutbiytait θφθ =−+−−=−  (5.2.41) 

This is the prediction of the output at instant i ( ti ≤ ) based on the parameter 
estimate at instant t obtained using t measurements. The objective is therefore the 
minimization of the sum of the squares of the prediction errors. 

First, a parameter  must be estimated at instant t, so that it minimizes the sum 
of the squares of the differences between the output of the plant and the output of 
the prediction model over a horizon of t measurements. The value of (t) that 
minimizes the criterion of Equation 5.2.40 is obtained by looking for the value that 
cancels ∂ J(t)/ ∂ θ(t)6: 

θ̂

θ̂

 [ ]∑
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=−−−−=
∂

∂ t

i

T iitiy
t
tJ

1

0)1( )1()(ˆ)(2
)(ˆ
)( φφθ

θ
 (5.2.42) 

From Equation 5.2.42, taking into account that 

 [ ] )(ˆ)1()1()1( )1()(ˆ tiiiit TT θφφφφθ −−=−−  

                                                 
6 This is the real minimum with the condition that the second derivative of the criterion, with respect to 

 is positive, that is )(ˆ tθ

0)1()1(2
)(ˆ

)(

1
2

2
>−φ−φ=

θ∂
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=

T
t

i

ii
t

tJ , as it is in general the case for t  dim θ  (see also Section 

5.3). 

≥
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one obtains 
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By left multiplying on the left both terms of this equation with  
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it results in 
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where 

  (5.2.44) ∑
=

− −−=
t

i

TiitF
1

1 )1()1()( φφ

This estimation algorithm is not recursive. In order to obtain a recursive algorithm, 
the estimation of (t+1) is considered: θ̂

  (5.2.45) ∑
+

=
−+=+

1

1
)1()()1()1(ˆ

t

i
iiytFt φθ

  (5.2.46) Tt

i

T tttFiitF )()()()1()1()1( 11

1

1 φφφφ +=−−=+ −
+

=

− ∑

And one should express it as a function of (t): θ̂

  (5.2.47) )1(ˆ)(ˆ)1(ˆ +∆+=+ ttt θθθ

From Equation 5.2.45 (adding and subtracting  ) one gets )(ˆ)()( ttt T θφφ

  (5.2.48) )(ˆ)()()()1()1()()1()(
1

1

1
tttttyiiyiiy Tt

i

t

i
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Taking into account Equations 5.2.43, 5.2.45 and 5.2.46, Equation 5.2.48 can 
be rewritten as 

  (5.2.49) 

[ ])()(ˆ)1()()(ˆ)()()(ˆ)(

)1(ˆ)1()1()(

1

11

1

tttyttttttF

ttFiiy

TT

t

i

φθφθφφθ

θφ

−+++=

++=−

−

−
+

=
∑

But, on the basis of Equations 5.2.46 and 5.2.15, one gets 

  (5.2.50) )1()()(ˆ)1()1(ˆ)1( 11 +++=++ −− ttttFttF oεφθθ

Multiplying on the left by F(t+1),one gets 

  (5.2.51) )1()()1()(ˆ)1(ˆ +++=+ tttFtt oεφθθ

The adaptation algorithm of Equation 5.2.51 has a recursive form similar to the 
gradient algorithm given in Equation 5.2.24, with the difference that the gain 
matrix F (t + 1) is now time varying since it depends on the measurements (it 
automatically corrects the gradient direction and the step length). A recursive 
formula for F( t + 1) remains to be provided starting from the recursive formula for 
F-1(t + 1) given in Equation 5.2.46. This is obtained by using the matrix inversion 
lemma (given below in a simplified form). 

Lemma: Let F be a regular matrix of dimension (n x n) and φ a vector of 
dimension n; then7 

 ( )
φφ

φφφφ
F
FFFF T

T
T

+
−=+

−−

1
11  (5.2.52) 

From Equations 5.2.46 and 5.2.52 one gets 

 
)()()(1
)()()()()()1(

ttFt
tFtttFtFtF T

T

φφ
φφ

+
−=+  (5.2.53) 

and, regrouping the different equations, a first formulation of the recursive least 
squares (RLS) parameter adaptation algorithm (PAA) is given by 

                                                 
7 One can simply multiply both terms by  to verify the inversion formula. TF φφ+−1
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)1()()1()(ˆ)1(ˆ +++=+ tttFtt oεφθθ  (5.2.54)
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)()(ˆ)1()1( tttyt To φθε −+=+  (5.2.56)

An equivalent form of this algorithm is obtained by introducing the expression of 
F(t+1) given by Equation 5.2.55 in Equation 5.2.54. Then it follows that 
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However from Equations 5.2.15, 5.2.16 and 5.2.17, also using Equation 5.2.57, one 
obtains: 
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(5.2.58) 

which expresses the relation between the a posteriori prediction error and the a 
priori prediction error. Using this relation in Equation 5.2.57, an equivalent form 
of the parameter adaptation algorithm for the recursive least squares is obtained8: 

)1()()()(ˆ)1(ˆ ++=+ tttFtt εφθθ  (5.2.59)

TtttFtF )()()()1( 11 φφ+=+ −−  (5.2.60)
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8 This equivalent form is especially used to analyze and understand the algorithm. 
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For the recursive least squares algorithm to be exactly equivalent to the non-
recursive least squares algorithm, it must be started at instant t0 = dim φ(t), since 

normally F(t)-1 given by Equation 5.2.44 becomes non-singular for t=t0. In 
practice, the algorithm is initialized at t = 0 by choosing 

 10;)(1)0( <<<== δ
δ

IGIIF  (5.2.63) 

a typical value being δ = 0.001 (GI = 1000). It can be observed, from the 
expression of F(t+1)-1 given by Equation 5.2.46 that the influence of this initial 
error decreases with time. A rigorous analysis (based on the stability theory - see 
Landau et al. 1997) shows nevertheless that for any positive definite matrix F(0) 
(F(0) > 0), 

 0)1(lim
0

=+
→

t
t

ε  

The recursive least squares algorithm is an algorithm with a decreasing adaptation 
gain. This is clearly seen if the estimation of a single parameter is considered. In 
this case F(t) and φ(t) are scalars and Equation 5.2.61. becomes 
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φ

 

The recursive least squares algorithm gives, in fact, less and less weight to the new 
prediction errors, and thus to the new measurements. 

As a consequence, this type of variation of the adaptation gain is not suitable 
for the estimation of time varying parameters, and other variation profiles must 
therefore be considered for the adaptation gain. 

The least squares algorithm, presented up to now for θ(t) and φ (t) of dimension 
2, may be generalized to the n-dimensional case on the basis of the description of 
discrete-time systems of the form 
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where 
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which can further be rewritten as 
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The a priori adjustable predictor is given in the general case by 

  (5.2.70) )()(ˆ)1(ˆ)1(ˆ)1(ˆ
11

ttidtubityaty T
n

i
i

n

i
i

o BA
φθ=+−−+−+−=+ ∑∑

==

where 

 [ ])(ˆ),...,(ˆ),(ˆ),...(ˆ)(ˆ 11 tbtbtatat
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and, for the estimation of (t), the algorithm given in Equations 5.2.54 to 5.2.56 is 
used with the appropriate dimension for (t), φ(t) and F(t). 

θ̂
θ̂

5.2.4 Choice of the Adaptation Gain 

The recursive formula for the inverse of the adaptation gain F(t+1)-1 given by 
Equation 5.2.46 (or Equation 5.2.60) is generalized by introducing two weighting 
sequences λ1(t) and λ2(t), as indicated below: 
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Note that λ1(t) and λ2(t) in Equation 5.2.72 have the opposite effect:  λ1(t) < 1 
tends to increase the adaptation gain (the gain inverse decreases), λ2(t) > 0 tends to 
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decrease the adaptation gain (the gain inverse increases). For each choice of 
sequences λ1(t) and λ2(t) a different variation profile of the adaptation gain is 
found and, consequently, an interpretation in terms of the error criterion that is 
minimized by the PAA9. 

Using the matrix inversion lemma given by Equation 5.2.52, one obtains from 
Equation 5.2.7210 
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 (5.2.73) 

Next a selection of choices for λ1(t) and λ2(t) and their interpretations will be 
given.  

A.1: Decreasing Gain (RLS) 
In this case 

 1)(;1)( 211 === tt λλλ  (5.2.74) 

and F(t+1)-1 is given by Equation 5.2.60 which leads to a decreasing adaptation 
gain. The minimized criterion is expressed by Equation 5.2.40. 

This type of profile is suited for the identification of stationary systems (with 
constant parameters). 

A.2: Constant Forgetting Factor 
In this case 

 1)(;10;)( 22111 ==<<= λλλλλ tt  (5.2.75) 

Typical values for λ1 are: 99.0,...,95.01 =λ . 
The criterion to be minimized will be 
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9 F(t+1)-1 given by Equation 5.7.72 can be interpreted as the output of a filter characterized by the 

pulse transfer operator whose input is . ))(1/()()( 1
12

1 −− λ−λ= qttqH Tφφ
10 More numerically robust updating algorithms for the adaptation gain are available. See Appendix F. 
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The effect of λ1 < 1 is to introduce a decreasing weighting on the past data (i < t). 
This is why λ1 is known as the forgetting factor. The maximum weight is given to 
the most recent error. 

This type of profile is suited for the identification of slowly time varying 
systems11. 

A.3: Variable Forgetting Factor 
In this case 

 1)( 22 == λλ t  (5.2.77) 

and the forgetting factor λ1 is given by 

 10;1)1()( 00101 <<−+−= λλλλλ tt  (5.2.78) 

typical values being: 99.0,...,95.0;99.0,...,95.0)0( 01 == λλ . 
Equation 5.2.78 leads to a forgetting factor that asymptotically tends towards 1. 

The criterion minimized will be 
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As λ1(t) tends towards 1 for large i, only the initial data are forgotten (the 
adaptation gain tends towards a decreasing gain). 

This type of profile is highly recommended for the identification of stationary 
systems, since it avoids a too rapid decrease of the adaptation gain, thus generally 
resulting in an acceleration of the convergence (by maintaining a high gain at the 
beginning when the estimates are far from the optimum). 

A.4: Constant Trace 
In this case, λ1(t) and λ2(t) are automatically chosen at each step in order to ensure 
a constant trace of the gain matrix (constant sum of the diagonal terms) 

 nGItrFttrFttrF ===+ )0()()1(  (5.2.80) 

in which n is the number of parameters and GI the initial gain (typical values: 
GI=0,1...,4), the matrix F(0) having the form 

                                                 
11 When an excitation is not provided ( ), F(t+1)-1 goes towards zero (because in this case 

), leading to very high adaptation gains, a situation that should be 
avoided. 
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The minimized criterion is of the form 
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in which f(t, i) represents the forgetting profile.  
Using this technique, at each step there is a movement in the optimal direction 

of the RLS but the gain is maintained approximately constant (reinflation of the 
RLS gain). 

The values of λ1(t) and λ2(t) are determined from the equation 
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by imposing the ratio α (t) = λ1(t)/λ2(t) (Equation 5.2.83 is obtained from Equation 
5.2.73). 

This type of profile is suited for the identification of systems with time varying 
parameters. 

A.5: Decreasing Gain + Constant Trace 
In this case, there is a switch from A1 to A4 when 

  (5.2.84) 4  to1.0;)( =≤ GnGttrF

where G is fixed at the beginning.  
This profile is suited for the identification of time variable systems in the 

absence of initial information on the parameters. 

A.6: Variable Forgetting Factor +Constant Trace 
In this case, there is a switch from A3 to A4 when 

  (5.2.85) nGttrF ≤)(

The domain of application is the same as for A 5. 
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A.7: Constant Gain (Improved Gradient Algorithm) 
In this case 

 0)(;1)( 2211 ==== λλλλ tt  (5.2.86) 

and thus from Equation 5.2.72, it results that 

  (5.2.87) )0()()1( FtFtF ==+

The improved gradient adaptation algorithm given by Equations 5.2.34 or 5.2.39 is 
then obtained. 

This algorithm can be used to identify stationary or time varying systems with 
few parameters (≤ 3), and in the presence of a reduced noise level. 

This type of adaptation gain results in performances which are inferior to those 
provided by the A1, A2, A3 and A4 profiles, but it is simpler to implement. 

Choice of the Initial Adaptaion  Gain F(0) 
The initial adaptation gain F(0) is of the form given by Equation 5.2.63, 
respectively Equation 5.2.81.  

In the absence of initial information upon the parameters to be estimated (a 
typical choice is to set the initial estimation to zero), a high initial gain (GI) is 
chosen for reasons that have been explained in Section 5.2.3 (Equation 5.2.63). A 
typical value is GI = 1000. 

On the other hand, if an initial parameter estimation is available (resulting for 
example from a previous identification), a low initial gain is chosen. In general, in 
this case GI ≤ 1. 

Since the adaptation gain decreases as the correct model parameter estimations 
are approached (a significant index is its trace), the adaptation gain may be 
interpreted as an index of the accuracy of the estimation (or prediction). This 
explains the choices of F(0) proposed above. Note that, under certain hypotheses, 
F(t) is effectively an index of the quality of the estimation because it represents the 
covariance of the parameter error vector θθθ −= )(ˆ)(~ tt  (see Landau 2001b). This 
property can give some information on the evolution of an estimation procedure. If 
the trace of F(t) is not significantly decreasing, the parameter estimation, in 
general, is bad. This phenomenon occurs, for example, when the amplitude and the 
type of the input used are not suited for the identification. The importance of the 
nature of the identification signal will be discussed in the following section. 
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5.3 Choice of the Input Sequence for System Identification 

5.3.1 The Problem 

The convergence towards zero of the prediction error ε(t) does not always imply 
that the estimated model parameters will converge towards the true parameters of 
the plant model. 

This will be illustrated by an example. Let the discrete-time plant model be 
described by 

 )()()1( 11 tubtyaty +−=+  (5.3.1) 

and consider an estimated model described by 

  (5.3.2) )(ˆ)(ˆ)1(ˆ 11 tubtyaty +−=+

where (t+1) is the output predicted by the estimated model. ŷ

Now assume that u(t) = constant and that the parameters a1, b1,  verify 
the following relation: 
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i.e. that the steady state gains of the plant and of the estimated model are the same, 
even if the condition  and 11̂ bb = 11ˆ aa =  don’t hold. 

Under the effect of the constant input u(t) = u, the plant output will be given by 
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and the output of the estimated prediction model will be given by 
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Therefore, considering Equation 5.3.3, it results that 

  (5.3.6) 1111
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It can thus be concluded from this example that the application of a constant input 
does not allow the two models to be distinguished, since they both have the same 
steady state gain.  

If the frequency characteristics of both systems are plotted, we obtain the 
curves shown in Figure 5.8.  

 

ω 

plant

   model

  G 

 
Figure 5.8. Frequency characteristics of two systems with the same steady state gain 

It can be observed that, in order to put in evidence the differences between the 
two models (that is, between the parameters), one must apply a signal u(t)=sin(ωt) 
(ω 0) and not a signal u(t) = constant. ≠

Let us analyze this phenomenon in greater detail. When the prediction error is 
null, from Equations 5.3.1 and 5.3.2 one obtains 

 [ ] [ ] 0)( ˆ)(ˆ    ;   0)1(ˆ)1()1( 1111 =−+−−=+−+=+ tubbtyaatytytε  (5.3.7) 

From Equation 5.3.1, y(t) can be expressed as a function of u(t): 
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Introducing the expression of y(t) given by Equation 5.3.8 in Equation 5.3.7, the 
following equivalent relation follows: 
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We are concerned with finding the characteristics of u(t) so that verification of 
Equation 5.3.9. results in zero parametric errors. 

Note that 

  (5.3.10) 11111011
ˆˆ;ˆ αα =−=− baabbb

Equation 5.3.9 can then be written as 
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 ( ) 0)(  1
10 =+ − tuqαα  (5.3.11) 

that is a difference equation having a solution of the discretized exponential type. 
Let 

  (5.3.12) tsTt seztu ==)(

where Ts is the sampling period. Equation 5.3.11 becomes 
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and it will be verified for z, which is the solution of the characteristic equation 

 010 =+ααz  (5.3.14) 

One gets 
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and the aperiodic solution 

  (5.3.16) tTsetu σ=)(

leads to the verification of Equations 5.3.11 and 5.3.7 respectively, without having 
 and . In practice, the signal u(t) = constant, previously considered, 

corresponds to σ = 0, that is - α1 = α0. However 
11ˆ aa = 11̂ bb =
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In other words, if u(t) = constant, we can just identify the static gain. 
 
Therefore it is necessary to apply a signal u(t) such that 11ˆ aa =  and . 

This can be obtained if u(t) is not a possible solution of Equation 5.3.11. 
11̂ bb =

Let 

  (5.3.17) tTjtTj ss eoretu ω−ω=)(

Equation 5.3.11 becomes (for u(t) = ejωTst) 
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 [ ] 0)1(
10 =+ −tTjTj ss e e ωω αα  (5.3.18) 

As α0 and α1 are real, ejωTs cannot be a root of the characteristic equation and it 
results that ε (t) = 0 will be obtained only if 

  (5.3.19) 111110 ˆ,ˆ0 aabb ==⇒== αα

It is this type of input which was previously proposed when the frequency 
characteristics of the two models were examined (sin ωt = (ejωt-e-jωt)/2j). A non-
zero frequency sinusoid is thus required in order to identify two parameters. 

This approach for determining the input u(t) allowing satisfactory model 
parameter identification may also be applied to systems of the general form 
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for which the total number of parameters to be identified is: 

 number of parameters = nA + nB 

In this case u(t) can be chosen as a sum of p-sinusoids of different frequencies:  
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and the value p, allowing good parameter identification, is given by12 
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In other words, in order to identify a correct model, it is necessary to apply a 
frequency rich input. The standard solution in practice is provided by the use of 
“pseudo-random binary sequences”. 

                                                 

12 The condition of Equation 5.3.22 also guarantees that  is an invertible 

positive definite matrix for t  nA + nB = dim φ (see Equations 5.2.42 to 5.2.46). 
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5.3.2. Pseudo-Random Binary Sequences (PRBS) 

Pseudo-random binary sequences are sequences of rectangular pulses, modulated 
in width, which approximate a discrete-time white noise and thus have a spectral 
content rich in frequencies.  

They owe their name pseudo-random to the fact that they are characterized by a 
sequence length within which the variations in pulse width vary randomly, but that, 
over a large time horizon, they are periodic, the period being defined by the length 
of the sequence.  

B1    B2 B3 B4 B5

+

( addition modulus 2 )  

Figure 5.9. Generation of a PRBS of length 25−1 = 31 sampling periods 

The PRBS are generated by means of shift registers with feedback 
(implemented in hardware or software). The maximum length of a sequence is 2N-
1 in which N is the number of cells of the shift register. Figure 5.9 presents the 
generation of a PRBS of length 31 = 25-1 obtained by means of a five cells shift 
register. Note that at least one of the N cells of the shift register should have an 
initial logic value different from zero (one generally takes all the initial values of 
the N cells equal to the logic value 1). 

Table 5.1. Generation of maximum length PRBS 

Number of cells  
N 

Length of the sequence 
L = 2N - 1 

Bits added 
Bi and Bj 

2 3 1 and 2 
3 7 1 and 3 
4 15 3 and 4 
5 31 3 and 5 
6 63 5 and 6 
7 127 4 and 7 
8 255 2, 3, 4 and 8 
9 511 5 and 9 

10 1023 7 and 10 
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Table 5.1 gives, for different numbers of cells, the structure enabling the 
generation of maximum length PRBS. 

A C++ program as well as a MATLAB® function (prbs.m) for generation of 
pseudo-random binary sequences can be found on the book website. 

Note also a very important characteristic element of the PRBS: the maximum 
duration of a PRBS pulse (tim) is equal to NTs (where N is, the number of cells and 
Ts is the sampling period). This property is to be considered when choosing a 
PRBS for system identification. 

Sizing of a PRBS 
In order to identify correctly the steady state gain of the plant dynamic model, the 
duration of, at least, one of the pulses (e.g. the maximum duration pulse) must be 
greater than the rise time tR of the plant (including the time delay). The maximum 
duration of a pulse being N.Ts, the following condition results: 

 Rsim tNTt >=  (5.3.23) 

that is illustrated in Figure 5.10. 
From Equation 5.3.23, one derives N and thus the length of the sequence 2N-1. 

t R

NT s    T s · N     >   t Rt im = 

 
Figure 5.10. Choice of the maximum duration of a pulse in a PRBS 

Furthermore, in order to cover the entire frequency spectrum generated by a 
particular PRBS, the length of a test must be at least equal to the length of the 
sequence. In a large number of cases, the duration of the test (L) is chosen equal to 
the length of the sequence. If the duration of the test is specified, it must therefore 
be ensured that 

  (5.3.24) duration testLLTs
N =<− ;2 1

Note that the condition of Equation 5.3.23 can result in fairly large values of N, 
corresponding to sequence lengths of prohibitive duration.  

This is why, in many practical situations, a sub-multiple of the sampling 
frequency is chosen as the clock frequency for the PRBS. If 

 ,...3,2,1; == p
p
f

f s
PRBS

 (5.3.25) 
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then Equation 5.2.23 becomes 

 Rsim tpNTt >=  (5.3.26) 

This approach is more interesting than the extension of the sequence length 
(increase of N) in order to satisfy Equation 5.3.23. Indeed, if one passes from N to 
N' = N + 1, the maximum duration of a pulse passes from NTs to (N+1)Ts, but the 
duration of the sequence is doubled L' = 2L. On the other hand, if fPRBS = fs/2 is 
chosen, the maximum duration of a pulse passes from NTs to 2NTs for a doubled 
sequence duration L' = 2L.  

From a comparison of the two approaches, it results that the second approach 
(frequency division) enables a pulse of greater duration to be obtained for an 
identical duration of the sequence and thus of the test. If p is the integer frequency 
divider, one has in the case of clock frequency division (dmax = maximum pulse 
duration) 

  ,...3,2,1;)2(; 1 ===′= − pTppLLpNTt s
N

sim

In the case of an augmentation of the number of registers N by p-1, without 
changing the clock frequency, one gets 

  ,...3,2,1;)2(;)1( 1 ==′−+= − pLLTpNt p
sim

Note that dividing the clock frequency of the PRBS will augment the spectral 
density in low frequencies (which it is desired) but will reduce the frequency range 
corresponding to a constant spectral density.  

As an example, the spectral densities of the PRBS sequences generated with 
N=8, for p=1,2,3 are represented in Figure 5.11.  

One can observe that for p>1 the signal energy is augmented at low frequencies 
but it is reduced at high frequencies. Furthermore, for p=3 there is a hole at fs/3 
(the PRBS does not contain the sinusoid of frequency fs/3). 

In general this will not affect the quality of the identification either because the 
plant to be identified has a reduced band pass with respect to the sampling 
frequency, or because the effect of the reduction of the signal/noise ratio at high 
frequencies can be compensated by using appropriate parameter estimation 
algorithms. However it is recommended to use 4≤p  (see Landau et al. 1997; 
Landau 2001b). 
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Figure 5.11a-c. Spectral density for a PRBS: a N=8, p=1 ; b N=8, p=2 ; c N=8, p=3 

Choice of the Magnitude of the PRBS 
The magnitude of the PRBS may be very small, but it must be larger than the 
amplitude of the residual noise. If the ratio signal/noise is too small, it is necessary 
to augment the length of the test in order to obtain a good parameter estimation. 

Note that, in a large number of applications, the significant increase in the 
PRBS level may be undesirable in view of the non-linear character of the plants to 
be identified (we are concerned with the identification of a linear model around an 
operating point). 

5.4 Effects of Random Disturbances upon Parameter Estimation 

The plant measured output is in general contaminated by noise. This is due either 
to the effect of random disturbances acting at different points of the plant, or to 
measurement noises. These random disturbances are frequently modeled by 
ARMA models, the plant plus the disturbance being modeled by an ARMAX 
model (see Chapter 4, Section 4.1. for the description of random disturbances). 

These disturbances introduce errors into the identification of the plant model 
parameters when the recursive (or non recursive) least squares algorithm is used. 
This type of error is called the bias of parameters. 
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Before presenting those algorithms able to eliminate the bias on the estimated 
parameters, first let analyze the effect of the random disturbances on the least 
squares algorithm. 

Replace the plant model Equation 5.2.67 by 

  (5.4.1) )1()()1( ++φθ=+ twtty T

where w(t) represents the effect of the measurement noise (supposed stationary, 
with zero mean value, finite variance and independent with respect to u(t)). 

By introducing this expression of y(t) into Equation 5.2.43 one obtains for a 
number of data N 
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By multiplying and by dividing by N the second term of the right side one obtains 
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We are interested in the properties of  when )(ˆ Nθ ∞→N  and we would like to 
find the conditions allowing one to obtain an asymptotically unbiased estimation 

( ). By examining Equation 5.4.3, as  is 

supposed non-singular (the system is correctly excited – see Section 5.3), it results 
that the condition to obtain an asymptotically unbiased estimation is 

θθ =
∞→

)(ˆlim N
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φφ  (5.4.4) 

Thus, asymptotically unbiased parameter estimation will be obtained only if 
)1( −tφ and w(t) are uncorrelated. Unfortunately, this will hold only in the case in 

which w(t) = e(t) = white noise. From Equation 5.4.1 it results that y(t) depends on 
w(t) and, as a consequence, )1( −tφ , which contains y(t-1), y(t-2),…, y(t-nA ), is a 
function of w(t-1), w(t-2), …, w(t- nA ). Therefore 

  (5.4.5) ),...)(),...,2(),1(()1( A
T ntwtwtwft −−−=−φ

Equation 5.4.4 becomes 
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{ } AniiwitwE ,...2,1pour         0)()( ==−  (5.4.6) 

and Equation 5.4.6 is satisfied only by white noise (see Section 4.1).  
This clearly shows that the use of a least squares algorithm will lead to an 

unbiased estimation only in the very unlikely practical situation where w(t) = e(t) 
= white noise.  

In particular, the parameter estimation will be biased if the system “plant + 
disturbance” is modeled by an ARMAX model that is representative of many 
situations encountered in practice.  

Let 

 )1()()()()1( 111 ++++−=+ tetectubtyaty  

One then gets: 
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Suppose now that the exact value  is known, and we require that the 
estimation algorithm leaves unchanged (asymptotically) the estimated value. For 

 the least squares predictor equation is written as 

θθ =ˆ

θθ =ˆ

 )()1(ˆ tty Tφθθ =+  (5.4.7) 

and the prediction error becomes 

 )1()1(ˆ)1()1( +=+−+=+ twtytyt θθε  (5.4.8) 

It thus results from Equation 5.4.4 that in order to obtain  when θθ =)(ˆ N ∞→t  

there is a necessary condition to be satisfied for  (by replacing w(t) constt == θθ )(ˆ

 
with ),( θε t in Equation 5.4.4)13: 

                                                 
13 Notation φ(t-1,θ ) and ε (t,θ ) indicates that these variables have been obtained with a fixed vector of 
estimated parameter θ . 
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To avoid bias, one needs to choose other observation vectors, other types of 
predictors and other adaptation errors in order that 

 { } θθεφ ≡=+ ˆ0)1()( forttE  (5.4.10) 

Two criteria have been retained for the generation of algorithms fulfilling the 
condition of Equation 5.4.10 and asymptotically leading to unbiased parameter 
estimations: 

1. ε (t+1) (or ν(t+1) = adaptation error) is a white noise for   θθ ≡ˆ

2. φ(t) and ε (t+1) (or ν(t+1)) are uncorrelated (or independent) for  θθ ≡ˆ

It is the elimination of the bias on the estimated parameters in presence of 
disturbances that is at the origin of the development of most of identification 
methods. 

5.5 Structure of Recursive Identification Methods 

All the recursive identification methods correspond to the basic scheme given in 
Figure 5.12. 

They all use the same structure for the parametric adaptation algorithm (PAA) 
with the different possible choices for the “adaptation gain” 
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where ε(t+1) and ε0(t+1) are the a posteriori and a priori prediction errors, 

respectively, Φ(t) is the observation vector, F(t) is the adaptation gain and  
represents the vector of the estimated parameters. 

)(ˆ tθ

 
Disturbance

 

 

 

 

 

 

 

Figure 5.12. Structure of recursive identification methods  

The different identification methods can be classified by: 

• The structure of the predictor 
• The origin of the elements of the observation vector (Φ) 
• The dimension of the adjustable parameter vector  and of the 

observation vector Φ(t) 
)(ˆ tθ

• The way to compute the prediction error and respectively the adaptation 
errors 

The convergence properties, in the presence of random disturbances, will depend 
on the different choices indicated above. 

Table 5.2 gives a compact description of the various recursive identification 
methods which will be discussed in Chapter 6. 

All these identification methods are classified in two categories, with respect to 
the criterion considered for their development (in order to obtain unbiased 
estimated parameters): 

• Identification methods based on the whitening of the prediction error (ε) 
• Identification methods based on the uncorrelation of the observation vector 

(Φ) and the prediction error (ε) (E{Φ (t) ε (t+1)} ≠  0) 

Since the different methods have been developed in order to verify one of the two 
criteria mentioned above, the models identified with a particular method must be 
validated by using the corresponding criterion, used to define the objective of the 
method itself. It results that two validation techniques are available, allowing one 
to verify, according to the case, one of the two criteria. 
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If one considers in more detail the structure of the predictor and the choice of 
the observations vector, three types of methods can be distinguished: 

• The equation error methods (recursive least squares and the different 
extensions: extended least squares, generalized least squares, recursive 
maximum likelihood). Each method tends to obtain a white prediction error 
(white noise) for a class of disturbance models by modeling the 
disturbance  

• The instrumental variable methods (with delayed observations or with 
auxiliary model). Each method tends to obtain E{Φ(t) ε(t+1)} = 0 by the 
modification of the observation vector Φ(t) used in the least squares 
algorithm  

• The output error methods (with fixed or adjustable compensator, with 
filtered observations, with extended estimation model). These methods tend 
to obtain asymptotically either E{Φ(t) ε(t+1)} = 0, or the whitening of the 
adaptation error by the modification of the predictor and of the method for 
obtaining the adaptation error 

Four model structures can be considered for the representation of the system 
“ plant + disturbance”. These four structures are summarized in Figure 5.13 and 
they are briefly described below. 

S1: A(q-1) y(t) = q-d B(q-1) u(t) + e(t) 
The method that can be used for this structure is: 

1. Recursive Least Squares (RLS) 

S2: A(q-1) y(t) = q-d B(q-1) u(t) + A(q-1) w(t) 

This structure corresponds to a model of the form: 

 )()(
)(

)()( 1

1
twtu

qA
qBqty

d
+=

−

−−
 

where w(t) is a non-modeled disturbance for which it is assumed only that it is of 
zero mean value, finite power and independent of the input. 

The methods that can be used for this structure are: 

1. Instrumental Variable with Auxiliary Model (IVAM) 
2. Output Error with Fixed Compensator (OEFC) 
3. Output Error with Filtered Observations (OEFO) 
4. Output Error with Adaptive Filtered Observations (OEAFO) 

S3: A(q-1) y(t) = q-d B(q-1) u(t) + C(q-1) e(t) 
The methods that can be used for this structure are: 

1. Extended Least Squares (ELS) 
2. Recursive Maximum Likelihood (RML) 
3. Output Error with Extended Prediction Model (OEEPM) 
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SS44::   A(q-1) y(t) = q-d B(q-1) u(t) + [1/C(q-1)] e(t) 
The method that can be used for this structure is: 

1. Generalized Least Squares (GLS) 

SS11::  A(q-1) y(t) = q-d B(q-1) u(t) + e(t) 

+

+u(t) y(t)

1
A

q-d B
A

e(t)

 

SS22::  A(q-1) y(t) = q-d B(q-1) u(t) + A(q-1) w(t) 

+
+u(t) y(t)q-d B

A

w(t)

 

SS33::  A(q-1) y(t) = q-d B(q-1) u(t) + C(q-1) e(t) 

+
+u(t) y(t)
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SS44::  A(q-1) y(t) = q-d B(q-1) u(t) + [1/C(q-1)]e(t) 
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Figure 5.13. Structures of the  “plant + disturbance” models                                                                                   

(A(q-1) = 1 + a1q-1 + ..., B(q-1) = b1q-1 + ..., C(q-1)  = 1 + c1q-1+ ...) 

No single « plant + disturbance » structure exists that can describe all the 
situations encountered in practice  

In practice, it can be pointed out that structure 3 corresponds to slightly less 
than two-thirds of situations, structure 2 corresponds to approximately one-third of 
the situations, and structures 1 and 4 correspond to the remaining situations. 
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Note that there does not exist a unique identification method which may be used 
with all the possible « plant + disturbance » structures such that the estimated 
parameters are always unbiased. 

Since a unique “plant + disturbance” structure for describing all the situations 
that may be encountered in practice does not exist and since a unique identification 
method that always provides  unbiased parameter estimations does not exist, it 
results that an interactive procedure for the system identification is required. 
Therefore a computer aided system identification software should provide: 

• Different structures  for the “plant + disturbance” 
• Different identification methods and PAA 
• Validation methods for the identified models 
• A system for input/output data acquisition and processing (including the 

generation of a PRBS) 
• Tools for the model analysis 
• Tools for visualising different graphs and plots 

There are dedicated stand-alone system identification software like WinPIM+ 
(Adaptech 1996a) or interactive software using MATLAB® environment like the 
System Identification Toolbox (Mathworks 1998). 

Routines corresponding to the different identification and validation methods, 
which will be presented in Chapter 6, are available in Scilab and MATLAB® 
environments (see Appendix H) and can be downloaded from the book website. 

5.6 Concluding Remarks 

Basic elements for the identification of dynamical systems have been laid down in 
this chapter.  

System identification includes four basic steps: 

1. Input/output data acquisition under an experimental protocol 
2. Selection or estimation of model structure (complexity) 
3. Estimation of the model parameters 
4. Validation of the identified model (structure and values of parameters) 

Recursive or non-recursive parameter identification algorithms can be used for 
estimating the parameter of a model from input-output data. Preference has been 
given to recursive algorithms for several reasons including: (i) estimation of the 
model as the system evolves ; (ii) less memory and computer power required ; (iii) 
real-time identification capability. 

The core of the recursive identification methods is the parameter adaptation 
algorithm (PAA) which has the form 

  )1()()1()(ˆ)1(ˆ +++=+ tttFtt oεΦθθ
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θ̂

θ̂

where  is the estimated parameter vector and F(t+1) Φ(t) ε°(t+1) represents the 
correcting term at each step. F is the adaptation gain (constant or time varying), Φ 
is the observation vector and ε° is the prediction error (or in general the adaptation 
error), i.e. the difference between the true output and the predicted one. 

Different choices are possible for the adaptation gain sequence in relation with 
the type of identification problem (constant or time varying plant parameters, with 
or without initial information, etc...). 

The uniqueness of the identified parameters depends upon the characteristics of 
the input signal. To obtain a unique set of identified parameters, in the case of the 
identification of a plant model characterized by an irreducible transfer function, the 
input signal should contain a number of distinct sinusoidal components superior to 
half of the number of parameters to be identified. In practice, one systematically 
uses as input for system identification the pseudo-random binary sequences 
(PRBS), which approximates a discrete-time white noise. 

The stochastic disturbances which contaminate the measured output may cause 
bias in the parameter estimations. For specific types of disturbances appropriate 
recursive identification methods, providing asymptotically unbiased estimations, 
are available. 

The different recursive identification methods available use the same structure 
for the PAA. They can be distinguished by: 

A unique plant + disturbance structure, which describes all the situations 
encountered in practice, does not exist, as also does not exist a unique 
identification method providing unbiased parameter estimates in all the situations. 

These identification methods can be grouped in two categories: 

3. The dimension of the adjustable parameter vector (t) and of the 
observation vector Φ 

4. The way in which the prediction errors (or the adaptation errors) are 
generated 

1. The structure of the predictor 
2. The origin of the elements of the observation vector (Φ) 

1. Identification methods based on the whitening of the prediction error 
2. Identification methods based on the uncorrelation of the observation vector 

and the prediction error 
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6 

System Identification Methods  

In this chapter two categories of identification methods: (1)methods based on the 
whitening of the prediction error; (2) methods based on the uncorrelation of the 
observation vector and the prediction error, are presented in their recursive form 
together with the corresponding model validation techniques. 

Methods for the model order estimation are presented in the last part of the 
chapter. 

6.1 Identification Methods Based on the Whitening of the 
Prediction Error   (Type I) 

The following recursive identification methods given in Table 5.1 fall into this 
category: 

• Recursive Least Squares (RLS) 
• Extended Least Squares (ELS)  
• Recursive Maximum Likelihood (RML)  
• Output Error with Extended Prediction Model (OEEPM) 
• Generalized Least Squares (GLS) 

 

6.1.1 Recursive Least Squares (RLS) 

The recursive least squares method has been presented in detail in Chapter 5, 
Section 5.2.3. 

The analysis in the presence of random disturbances has been presented in 
Section 5.4. It should be remembered that the recursive least squares method gives 
unbiased estimations only for “plant + disturbance” models of the form (structure 
S1) 

247 
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  (6.1.1) )()()()()( 11 tetuqBqtyqA d += −−−

i.e. for a disturbance model with C(q-1) = 1 in the equation of the ARMAX 
models. 

6.1.2 Extended Least Squares (ELS) 

This method has been developed in order to identify without bias “plant + 
disturbance” models of the form (structure S3): 

  (6.1.2) )()()()()()( 111 teqCtuqBqtyqA d −−−− +=

The idea is to identify simultaneously the plant model and the disturbance model, 
in order to obtain a prediction (adaptation) error, which is asymptotically “white”. 

This method will be presented by means of an example. Let the “plant + 
disturbance” model be 

 )1()()()()1( 111 ++++−=+ tetectubtyaty  (6.1.3) 

Assume that the parameters are known and construct a predictor, which will give a 
white prediction error 

 )()()()1(ˆ 111 tectubtyaty ++−=+  (6.1.4) 

Furthermore this predictor minimizes the variance of the prediction error E{[y(t+1) 
- (t+1)]2} (see Chapter 4, Section 4.1.4).  ŷ

The prediction error is given by 

 )1()1(ˆ)1()1( +=+−+=+ tetytytε  (6.1.5) 

This allows to rewrite Equation 6.1.4 in the form 

 )()()()1(ˆ 111 tctubtyaty ε++−=+  (6.1.6) 

In the case of unknown parameters, the adjustable predictor will be given by 
Equation 6.1.6, in which the unknown parameters are replaced by their estimates. 

The a priori adjustable predictor will therefore take the form 

  (6.1.7) )()(ˆ)()(ˆ)()(ˆ)()(ˆ)1(ˆ 111 ttttctutbtytaty To φθε =++−=+

where 
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 [ ] [ ])(),(),()(;)(ˆ),(ˆ),(ˆ)(ˆ 111 ttutyttctbtat TT εφθ −==  (6.1.8) 

The a posteriori adjustable predictor will be given by 

  (6.1.9) )()1(ˆ)()1(ˆ)()1(ˆ)()1(ˆ)1(ˆ 111 ttttctutbtytaty T φθε +=+++++−=+

The a posteriori prediction error ε(t+1) is expressed as 

 )1(ˆ)1()1( +−+=+ tytytε  (6.1.10) 

and the a priori prediction error is defined as 

  (6.1.11) )1(ˆ)1()1( +−+=+ tytyt ooε

Using the adjustable predictor given by Equation 6.1.7, the formulation of the 
problem of the simultaneous identification of the plant model and of the 
disturbance model has been reduced to a least squares type formulation as 
considered in Section 5.2.3. 

The parameter adaptation algorithm (PAA) described in Section 5.5 (Equations 
5.5.1 to 5.5.3) will be used with  and )(ˆ tθ )()( tt φ=Φ  given by Equation 6.1.8. All 
“adaptation gain” policies may be used. 

Compared to the simple least squares method, there is a larger number of 
parameters to be estimated. includes in addition the coefficients of C(q-1). The 
observation vector will be obviously larger. It contains in addition the a posteriori 
errors ε (t), ε (t-1)...ε (t-nC+1). 

)(ˆ tθ

In the general case, the estimated parameters vector and the observation vector 
will be of the form 

 [ ])(ˆ)...(ˆ),(ˆ)...(ˆ,ˆ)...(ˆ)(ˆ 111 tctctbtbatat
CBA nnn

T =θ  

         [ ])1()...(),1()...(),1()...()( +−+−−−+−−−=Φ CBA
T nttndtudtuntytyt εε

In the presence of a random disturbance corresponding to the ARMAX model and 
with an asymptotically decreasing adaptation gain, ε (t) asymptotically tends 
towards a white noise, which guarantees an unbiased estimation of the parameters 
of A(q-1), B(q-1) (if the input is sufficiently rich)1. 

                                                 
1 The convergence of is rigorously guaranteed within a convergence domain θ̂

{ }0),()(: * =− θφθθθ tD T
C  in which θ* is the vector of true parameters. For a rich input, this 
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Nevertheless, this convergence is subject to a sufficient (but not necessary) 
condition 

 )(max2;
2)(

1
22

2
1 t

zC
λλ

λ
≥>−

−
 (6.1.12) 

is a strictly positive real transfer function. A strictly positive real transfer function 
is characterized by the following two properties:  

1. it is asymptotically stable 
2. the real part of the transfer function is positive at all frequencies  

This concept is illustrated for continuous time systems in the upper part of Figure 
6.1 and for discrete time systems in the lower part of Figure 6.1. 

Continuous-time

 

Figure 6.1. Strictly positive real transfer functions 

An eventual non-convergence of the method for certain values of C(q-1) and 
for certain types of input signals can be explained by the violation of this 
condition. 

                                                                                                                 

domain is reduced to a single point θ*. The convergence of the parameters of C(q-1) is slower than that 
of A(q-1) and B(q-1) parameters, and it depends on the realization of the stochastic process. 

s 
ω j

σ

Im  H

Re H

H(jω)s = jω
 

Re H > 0Re H < 0

Discrete-time

 z

-1 
Re z

1

-j 

+j
Im z Im  H

z=ejω

H(ejω)z=ejω

Re H

Re H > 0Re H < 0 
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6.1.3 Recursive Maximum Likelihood (RML) 

This is an improved version of the extended least squares method. Instead of using 
directly φ(t) given by Equation 6.1.8 in the parameter adaptation algorithm, it is 
first filtered by 1/ C (t, q-1) where (t, q-1) is an estimation at instant t of C(q-1). 
This modification has the effect of eliminating the positive real condition on C(q-1) 
in the final convergence stage, and of accelerating the uncorrelation between the 
observation vector and the prediction error. An example will be used to present this 
method. The “plant + disturbance” model is given by Equation 6.1.3.  

ˆ Ĉ

The a priori adjustable predictor is written as (similar to the ELS) 

  (6.1.13) )()(ˆ)()(ˆ)()(ˆ)()(ˆ)1(ˆ 111 ttttctutbtytaty To φθε =++−=+

where 

 [ ] [ ])(),(),()(;)(ˆ),(ˆ),(ˆ)(ˆ 111 ttutyttctbtat TT εφθ −==  (6.1.14) 

The a posteriori adjustable predictor is written as 

  (6.1.15) )()1(ˆ)1(ˆ ttty T φθ +=+

and the corresponding prediction errors are given by 

  (6.1.16) 
)1(ˆ)1()1(

)1(ˆ)1()1(
+−+=+

+−+=+
tytyt

tytyt oo

ε
ε

The estimation of the polynomial  C(q-1) at instant t is written as 

  (6.1.17) 1
1

1 )(ˆ1),(ˆ −− += qtcqtC

The observation vector Φ(t) is defined by 

 
[ ]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

−==Φ

−−−

−

),(ˆ
)(,

),(ˆ
)(,

),(ˆ
)(                         

)(),(),(
),(ˆ

1)()(

111

1

qtC
t

qtC
tu

qtC
ty

ttuty
qtC

tt T
f

T

ε

εφ
 (6.1.18) 

which corresponds to the filtering of the components of φ(t) by 1/ C (t,q-1). ˆ
The parameter adaptation algorithm is given by Equations 5.5.1, to 5.5.3, where 

Φ(t) is now given by Equation 6.1.18. In the general case 
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[ ]

[ ])1()...(),1()...(),1()...(
),(ˆ

1)()(

)(ˆ)...(ˆ),(ˆ)...(ˆ),(ˆ)...(ˆ)(ˆ

1

111

+−+−−−+−−−⋅

==Φ

=

−

CBA

T
f

T

nnn
T

nttndtudtuntyty
qtC

tt

tctctbtbtatat
CBA

εε

φ

θ

 

Nevertheless, this method cannot be implemented starting from the instant t=0 if a 
good estimation C(q-1) is not available. First an initialization horizon must be 
considered, during which the extended least squares (ELS) method is used in order 
to obtain a first estimation. As a rule, the initialization horizon is taken equal to 5 
(up to 8) times the number of the parameters to be identified. 

On the other hand, filtering of the observations can only be carried out for 
stable estimations of (t,q-1). A stability test must therefore be incorporated. Note 
that the transition ELS→ RML should only occur if (t, q-1) is stable. If at the 
end of the initialization horizon C (t, q-1) is not stable, the commutation is delayed 
up to the instant for which (t, q-1) becomes stable. 

Ĉ
Ĉ

ˆ

Ĉ
A gradual transition of the ELS towards the RML may also be used by 

introducing a “contraction factor” in C (t, q-1). This corresponds to a filter defined 
by (1 + αc1q-1) with: 

ˆ
10 ≤≤ α , instead of (1+ c1q-1). This forces the polynomial 

roots into the unit circle. It is possible to use a variable contraction factor that 
asymptotically tends toward 1. This type of variation can be obtained using the 
formula 

 00 1)1()( αααα −+−= tt  (6.1.19) 

which corresponds to a first-order discrete stable filter with a unit static gain 
excited by a unit step (the final value is equal to 1). A possible choice for 0α  is 

 99.0)0(5.0 0 ≤=≤ αα  

The recursive maximum likelihood method is used to improve, if necessary, the 
results of the extended least squares method. However, if the above mentioned 
precautions are not taken into account, the algorithm may diverge. 

6.1.4 Output Error with Extended Prediction Model (OEEPM) 

Originally, this is an extension of the output error method (see further on in Section 
6.3). This method can be interpreted as a variant of the ELS. It offers asymptotic 
performances similar to the ELS, but with improved transient estimation (faster 
bias rejection). This method will be presented by means of an example. The “plant 
+ disturbance” model is given by Equation 6.1.3. 

The a priori adjustable predictor of the ELS (defined by Equation 6.1.7) can be 
rewritten in the form (adding and subtracting the term )(ˆ)(ˆ1 tyta± ) 
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  (6.1.20) )(ˆ)(ˆ)()(ˆ)()(ˆ)()(ˆ)1(ˆ 1111 tytattctutbtytatyo ±++−=+ ε

and, by regrouping differently the terms of Equation 6.1.20, the structure of the a 
priori adjustable predictor used in the OEEPM is obtained: 

  (6.1.21) )()(ˆ)()(ˆ)()(ˆ)(ˆ)(ˆ)1(ˆ 111 tttthtutbtytaty To φθε =++−=+

where 

  (6.1.22) )(ˆ)(ˆ)(ˆ
111 tatcth −=

 [ ] [ ])(),(),(ˆ)(;)(ˆ),(ˆ),(ˆ)(ˆ 111 ttutyttctbtat TT εφθ −==  (6.1.23) 

The a posteriori adjustable predictor is given by 

  (6.1.24) )()1(ˆ)1(ˆ ttty T φθ +=+

and the prediction errors are given by 

  (6.1.25) 
)1(ˆ)1()1(

)1(ˆ)1()1(
+−+=+

+−+=+
tytyt

tytyt oo

ε
ε

The parameter adaptation algorithm is the one given by Equations 5.5.1, 5.5.2 and 
5.5.3 with and  )(ˆ tθ (t)(t) φ=Φ as in Equation 6.1.23. In the general case: 

 
[ ]
[ ])1()...(),1()...(),1(ˆ)...(ˆ)(

)(ˆ)...(ˆ),(ˆ)...(ˆ),(ˆ)...(ˆ)(ˆ 111

+−+−−−+−−−=Φ

=

CBA
T

nnn
T

nttndtudtuntytyt

ththtbtbtatat
CBA

εε

θ
 

As for the ELS, ε(t) asymptotically tends towards a white noise, thereby 
guaranteeing an unbiased estimation of the parameters of A(q-1) and B(q-1) (if the 
input is sufficiently rich). The convergence is subject to the same sufficient 
condition as in the ELS, i.e. the transfer function given by Equation 6.1.12 must be 
strictly positive real. 

Note that the values of the coefficients of C(q-1) are obtained from the relation: 

 iii ahc +=  (6.1.26) 

The difference with the ELS lies essentially within the components of vector 
Φ(t) in which the measurements y(t) directly affected by the disturbance are 
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replaced by (t), which only indirectly depends upon the disturbance. This 
explains why a better estimation is obtained with this method than with the ELS 
method over short horizons. 

ŷ

6.1.5 Generalized Least Squares  (GLS) 

The aim of this method is to  obtain a “white” prediction error for a “plant + 
disturbance” model having the form (structure S4): 

 )(
)(

1)()()()( 1
11 te

qC
tuqBqtyqA d

−
−−− +=  (6.1.27) 

(the term C(q-1)e(t) of the ARMAX model has been replaced by [1/C(q-1)]e(t)). 
This method will be illustrated by means of an example. The “plant + disturbance” 
model is given by: 

 1
1

11
1

)1()()()1(
−+

+
++−=+

qc
tetubtyaty  (6.1.28) 

Let us define 
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The relation 

  (6.1.30) )1()1()1( 1
1 +=++ − tetqc α

is then obtained (α(t) is a AR process – see Section 4.1.2). 
Assuming that the parameters are known, a predictor can be constructed 

ensuring a white prediction error 

 )()()()1(ˆ 111 tctubtyaty α−+−=+  (6.1.31) 

Indeed 
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If the parameters are not known, an adjustable predictor is built by replacing the 
known parameters in Equation 6.1.31 by their estimations. The a priori adjustable 
predictor will be given by 
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  (6.1.33)  )()(ˆ)()(ˆ)()(ˆ)()(ˆ)1(ˆ 111 ttttctutbtytaty To φθα =−+−=+

in which 

 [ ] [ ])(),(),()(;)(ˆ),(ˆ),(ˆ)(ˆ 111 ttutyttctbtat TT αφθ −−==  (6.1.34) 

The quantity  α(t) will be estimated using Equation 6.1.29, in which the unknown 
parameter values are replaced by their estimations: 

  (6.1.35) 
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The a priori prediction error is defined as 

  (6.1.36) )1(ˆ)1()1( +−+=+ tytyt ooε

Since the adjustable predictor equation given in Equation 6.1.33 has the 
formulation permitting the use of the least squares algorithm, as in the case of the 
ELS, the parameter adaptation algorithm is given by Equations 5.5.1, 5.5.2 and 
5.5.3. In this case Φ(t) is defined by Equation 6.1.34 and ε°(t+1) by Equation 
6.1.36. In the general case 
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In the presence of a random disturbance corresponding to the S4 structure, and 
with an asymptotically decreasing  adaptation gain, ε(t) asymptotically tends 
towards white noise, thereby allowing an unbiased estimation of the model 
parameters. 

The convergence of the algorithm is nevertheless linked to a sufficient (but not 
necessary) condition 

 )(max2;
2

)( 22
21 tzC λλ

λ
≥>−−  (6.1.37) 

is a strictly positive real transfer function. 
This method is used in particular if the disturbance has a narrow band 

frequency spectrum (for example a periodic disturbance close to a sinusoid). 
Indeed, this kind of disturbance can be fairly modeled by with a few 
parameters whereas the modeling of this kind of disturbances by  
requires a high order for . 

)()](/1[ 1 teqC −

)()( 1 teqC −

)( 1−qC
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6.2 Validation of the Models Identified with Type I Methods 

This section is concerned with the validation of models identified using methods 
based on the “whitening” of the prediction error. These methods are 

• Recursive Least Squares (RLS) 
• Extended Least Squares (ELS) 
• Recursive Maximum Likelihood (RML) 
• Output Error with Extended Prediction Model (OEEPM) 
• Generalized Least Squares (GLS) 

The principle of the validation method is the following: 

• If the “plant + disturbance” structure chosen is correct, i.e. representative of 
reality 

• If the degrees of the polynomials A(q-1), B(q-1), C(q-1) and the value of d 
(delay) have been correctly chosen  

then the prediction error ε(t) asymptotically tends towards white noise, that implies 

 { } ...3,2,1...;3,2,10)()(lim −−−==−
→∞

iittE
t

εε  

The validation method implements this principle. It is made up of several steps: 

1. Creation of an I/O file for the identified model (using the same input 
sequence as for the system)  

2. Creation of a prediction error file for the identified model (minimum 100 
samples) 

3. “Whiteness“ (uncorellation) test on the prediction errors sequence (also 
known as residual prediction errors) 

Whiteness test 
Let {ε(t)} be the centered sequence of the residual prediction errors (centered: the 
mean value is subtracted from the measured values). 

One computes 
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where 
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  ),max(max dnni BA +=

and the RN(i) are estimations of the (normalized) autocorrelations. 
If the residual prediction error sequence is perfectly white (theoretical situation) 

and the number of samples is very large (N ∞→ ) one gets RN(0) = 1 ; RN(i) = 0  
i  12. ≥

In real situations, however, this is never the case (i.e. RN(i) ≠ 0 ; i ≥ 1) since on 
one hand ε(t) contains residual structural errors (order errors, non-linear effects, 
non-gaussian noises) and, on the other hand, the number of samples is generally 
relatively small (several hundreds). Also, it should be kept in mind that one always 
seeks to identify good simple models (with few parameters). 

One considers as a practical validation criterion (extensively tested on 
applications) 

 1;17.2)(;1)0( ≥≤= i
N

iRNRN  (6.2.3) 

where N is the number of samples. 
This test has been defined taking into account the fact that, for white noise, the 

sequence RN(i) (i 0) has an asymptotically gaussian (normal) distribution with 
zero mean and standard deviation: σ = 1/

≠
N  . 

The confidence interval considered in Equation 6.2.3 corresponds to a 3% level 
of significance of the hypothesis test for a gaussian distribution. 

Indeed, if RN(i) obeys the gaussian distribution (0, 1/ N ), there is only a 
probability of 1.5 % that RN(i) is larger than 2.17/ N , or that RN(i) is smaller than 
–2.17/ N . Therefore, if a computed value RN(i) falls outside the range of the 
confidence interval, the hypothesis on the basis of which ε(t) and ε(t-i) are 
independent should be rejected, i.e. {ε(t)} is not a white noise sequence. 

Sharper confidence intervals can be defined. Table 6.1 gives the values of the 
validation criterion for various N and a 3% test level of significance as well as for 5 
and 7% level of significance. 

Table 6.1. Confidence intervals for independence (whiteness) tests 

Level of significance Criterion N=128 N=256
N=51

2 
3% 

(validation criterion) 2.17/ N  0.192 0.136 0.096 

5% 1.96/ N  0.173 0.122 0.087 
7% 1.808/ N  0.16 0.113 0.08 

                                                 
2 For gaussian data, uncorrelation implies independence. In this case RN(i) = 0, i ≥  1 implies 
independence between ε(t), ε(t-1) i.e. the sequence of residuals {ε(t)} is a gaussian white noise. 
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The following remarks are imperative: 

• An acceptable identified model has in general 

 max,...,117.2...8.1)( ii
NN

iRN =≤  

• Taking into account the relative weight of various  non-gaussian and 
modeling errors (which increase with the number of samples), the 
validation criterion may be slightly tightened for small N and slightly 
relaxed for large N. Therefore, for simplicity's sake, one can consider for 
the validation criterion the following  practical value 

 max,...,115.0)( iiiRN =≤  

• A too good validation criterion indicates that model simplifications may be 
possible. 

• If several identified models have the same complexity (number of 
parameters), one selects the model given by the methods which lead to the 
smallest |RN(i)| and R(0). 

Note also that a complete model validation implies, after the validation done 
with the input/output sequence used for identification, a validation using a new 
plant input/output sequence. 

There is another important point to consider: if the level of the residual 
prediction errors is very low compared to the output level (lets us say more than 60 
dB) the whiteness test loses its significance. This occurs because on one hand the 
noise level is so low that the bias on the RLS is negligible and, on the other hand, 
because the residual noise may not be gaussian to a large extent (for example, 
noise caused by the propagation of round-off errors). This situation may occur 
when identifying simulated I/O data generated without disturbances. 

6.3 Identification Methods Based on the Uncorrelation of the 
Observation Vector and the Prediction Error (Type II) 

The following recursive identification methods fall into this category:  

• Instrumental Variable with Auxiliary Model (IVAM) 
• Output Error with Fixed Compensator (OEFC) 
• Output Error with Filtered Observations (OEFO) 
• Output Error with Adaptive Filtered Observations (OEAFO) 
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6.3.1 Instrumental Variable with Auxiliary Model 

The general idea behind the instrumental variable methods consists in creating a 
new observation vector which is highly correlated with the uncontaminated 
variables (and therefore representative), but uncorrelated with the noise disturbance 
in order to obtain E{Φ(t) ε(t+1)} = 0. 

The “plant + disturbance” model considered in this case is that of structure S2 
(see Section 5.5): 

  (6.3.1) )1()()()()( 11 +′+= −−− twtuqBqtyqA d

in which 

  (6.3.2) )()()1( 1 twqAtw −=+′

and corresponding to the diagram given in Figure 6.2. 

+
+u(t) y(t)q-d B

A

w(t)

 
Figure 6.2. The “plant + disturbance” structure (type S2) 

w(t) is any disturbance, independent from u(t), with zero mean value and a finite 
variance. 

The final objective is to obtain unbiased estimations of the coefficients of 
 and B(q-1) without taking into consideration a model for the disturbance. 

Thus, one builds an instrumental vector uncorrelated with the prediction error 
provided by the least squares predictor. 

)( 1−qA

Let consider the following example, where the “plant + disturbance” is 
described by: 

  (6.3.3) )1(')()()1( 11 +++−=+ twtubtyaty

where 

  (6.3.4) )1()1()1(' 1
1 ++=+ − twqatw

Let consider the recursive least squares adjustable predictor 

  (6.3.5) )()(ˆ)()(ˆ)()(ˆ)1(ˆ 11
0 tttutbtytaty T φθ=+−=+

in which 
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 [ ] [ ])(),()(;)(ˆ),(ˆ)(ˆ 11 tutyttbtat TT −== φθ  (6.3.6) 

and respectively  

  (6.3.7) )()1(ˆ)1(ˆ ttty T φθ +=+

the prediction errors being defined by: 

  (6.3.8) )1(ˆ)1()1( +−+=+ tytyt ooε
 )1(ˆ)1()1( +−+=+ tytytε  (6.3.9) 

Let us define an auxiliary prediction model that provides the instrumental variable:  

  (6.3.10) )1()(ˆ)1()(ˆ)( 11 −+−−= tutbtytaty IVIV

This prediction model differs from the one given by Equations 6.3.5 or 6.3.7 as the 
predicted output depends on the previous predictions and not on the previous 
outputs (y(t-1) has been replaced by yIV(t-1)). These new variables will be less 
affected by disturbances, which will have an effect only through the PAA. If a 
decreasing adaptation gain is used, yIV(t) will asymptotically depend only on u(t-1), 
that is not the case for °(t) or (t) respectively given by Equations 6.3.5 and 
6.3.7 (as y(t) is a noisy signal). 

ŷ ŷ

The new observations vector is defined by 

  (6.3.11) [ )(),()()( tutytt IV
T

IV
T −==Φ φ ]

One observes that y(t), y(t-1),..., which are used in recursive least squares, have 
been replaced by yIV(t), yIV(t-1)... 

In the general case, the observations vector has the structure: 

  (6.3.12) [ ]),...1(),(),...,1(),()()( −−−−−−==Φ dtudtutytytt IVIV
T

IV
T φ

and the instrumental variable yIV is generated by the auxiliary model 

  (6.3.13) )(),(ˆ)(),(ˆ 11 tuqtBqtyqtA d
IV

−−− =

where  

  (6.3.14) ...)(ˆ1),(ˆ 1
1

1 ++= −− qtaqtA
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  (6.3.15) ...)(ˆ)(ˆ),(ˆ 2
2

1
1

1 ++= −−− qtbqtbqtB

The parameter adaptation algorithm is given by Equations 5.5.1, 5.5.2 and 
5.5.3, in which Φ(t) is now given by Equation 6.3.12. This method uses the same 
adjustable predictor of RLS for generating the prediction error but the observation 
vector is different. For yIV(t) to be representative of y(t), an estimation of ai and bi 
is required. This is why this method must be initialized by the recursive least 
squares. In general, an initialization horizon is chosen equal to five (up to eight) 
times the number of parameters to be identified. If the initialization horizon is not 
enough long, divergence of the algorithm may occur. 

6.3.2 Output Error with Fixed Compensator  

The “plant + disturbance” model is the one given by Equations 6.3.1 and 6.3.2 and, 
for the first order example, by Equations 6.3.3 and 6.3.4 respectively. 

The idea behind this method is the observation that, in the absence of 
disturbances, the output predicted by the RLS predictor (t+1) tends towards 
y(t+1). In these conditions one can consider replacing y(t) by (t) (the a posteriori 
prediction) in the predictor equation. 

ŷ
ŷ

Indeed, consider, by means of an example, the RLS adjustable predictor for the 
“plant + disturbance” model of Equation 6.3.3 

  (6.3.16) )()(ˆ)()(ˆ)1(ˆ 11 tutbtytatyo +−=+

and replace in Equation 6.3.16 y(t) by (t) (“output error” type predictor). Then, 
we get 

ŷ

  (6.3.17) )()(ˆ)()(ˆ)(ˆ)(ˆ)1(ˆ 11 tttutbtytaty To φθ=+−=+

in which 

 [ ] [ ])(),(ˆ)(;)(ˆ),(ˆ)(ˆ 11 tutyttbtat TT −== φθ  (6.3.18) 

where 

  (6.3.19) )1()(ˆ)(ˆ)()1(ˆ)1(ˆ −=⇒+=+ tttyttty TT φθφθ

represents the new a posteriori prediction. 
The difference between the RLS and the Output Error is illustrated in Figure 

6.3. 
The usefulness of this modification is clearly seen in the presence of 

disturbances. If  is used instead of y(t) in the predictor equation and in the ŷ
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observations vector, one can see that, with an asymptotically decreasing adaptation 
gain,  will only depend on u(t) (which is not the case for the RLS predictor) 
and this will asymptotically lead to E{φ(t) ε(t+1)} = 0. As a consequence a plant 
model with unbiased parameter estimates will be obtained. 

)(ˆ ty

In the general case, the observation vector used both in the predictor and in the 
parameter adaptation algorithm is of the form 

[ ])1(),...,(),1(ˆ),...,1(ˆ),(ˆ)()(Φ +−−−+−−−−−== BA
TT ndtudtuntytytytt φ  (6.3.20) 
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Figure 6.3. Comparison between the recursive least squares and the output error prediction 
structures 

The prediction errors are defined from Equations 6.3.3, 6.3.17 and 6.3.19: 

  (6.3.21) 
)1(ˆ)1()1(

)1(ˆ)1()1(
+−+=+

+−+=+
tytyt

tytyt oo

ε
ε

and the adaptation algorithm given by Equations 5.5.1 through 5.1.3 is used. 
One can also define, in the general case, an adaptation error (ν) obtained by 

filtering the prediction error: 
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In this case, we replace in the adaptation algorithm of Equations 5.5.1 through 
5.5.3, ε0(t+1) and ε(t+1) respectively by νo(t+1) and ν(t+1). 

This is a method that assures therefore an unbiased identification of the 
coefficients of A(q-1) and B(q-1), without using a model for the disturbance to be 
estimated, and without requiring an initialization by another method. 

This method is subject to a sufficient convergence condition (both in the case 
without and the case with disturbances): 
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 (6.3.24) 

should be a strictly positive real transfer function. This is why the filter D(q-1) on 
the prediction error has been introduced. 

For nA ≤  2 (nA = deg A(q-1)), the compensator D(q-1) is not necessary (since 
1/A(q-1) - λ2/2 is strictly positive real almost everywhere A(q-1) is asymptotically 
stable). For nA > 2 and a decreasing adaptation gain, the compensator is generally 
unnecessary (it is proved that the prediction error remains bounded). If the 
compensator is introduced, one takes nd ≤  nA - 1 or nA (nd = degree D(q-1)). 

Since the condition on the transfer function of Equation 6.3.24 is only 
sufficient, D(q-1) = 1 (no compensator) is always used to start, and a compensator 
is introduced only if the prediction error diverges. 

It is also possible to estimate simultaneously model parameters and those of the 
filter on the prediction error (output error with adjustable compensator). For more 
details see Landau (2001b),  Landau et al. (1997). 

6.3.3 Output Error with (Adaptive) Filtered Observations 

It is an extension of the basic output error method in which the filtering of the 
prediction error is replaced by the filtering of the observation vector (in order to 
satisfy the convergence conditions). 

The equations for the adjustable predictor and the prediction errors are the same 
as for the output error with fixed compensator (Equations 6.3.16 to 6.3.19 and 
6.3.21). 

One uses the prediction error as adaptation error (it is not filtered). However, 
this algorithm uses a filtered version of the observation vector. 
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For the output error with filtered observations one defines a filter with constant 
parameters: 

  (6.3.25) )(ˆ)( 11 −− = qAqL

where is an estimation of the polynomial  obtained by another 
estimation algorithm (for example: recursive least squares or output error without 
filtering of the prediction error) and one defines the vector of filtered observations 
φf(t): 

)(ˆ 1−qA )( 1−qA
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t
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tt f φφ
−

==Φ  (6.3.26) 

where φ(t) is given by Equation 6.3.20. 
One can uses instead of the filter of Equation 6.3.25 a filter with time varying 

parameters: 

  (6.3.27) ),(ˆ),( 11 −− = qtAtqL

where  is an estimation of the polynomial  at instant t (provided by 
the parameter adaptation algorithm) and the vector of filtered observations is 
defined by Equation 6.3.26 where  is replaced by . One obtains the 
output error with adaptive filtered observations. 

),(ˆ 1−qtA )( 1−qA

)(ˆ 1−qA ),(ˆ 1−qtA

As in the case of the recursive maximum likelihood algorithm, a stability test 
on  should be done at each sampling. ),(ˆ 1−qtA

The initialization of the algorithm can be done by the non-filtered output error 
algorithm (with no compensator) or the recursive least squares (in order to get a 
first estimation of ), but this is not mandatory since the algorithm can start 
with ). 

)(ˆ 1−qA

1),0(ˆ 1 =−qA
The sufficient condition for the convergence of the algorithm is expressed for a 

fixed value of the filter : )ˆ,(ˆ)ˆ,(),( 111 θ=θ= −−− qAqLqtL
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should be a strictly positive real discrete time transfer function. In particular, this 
condition will always be satisfied around the correct value . θθ =ˆ
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6.4 Validation of the models identified with Type II Methods 

This section is concerned with the validation of models identified using the 
identification methods based on the uncorrelation between the observations and the 
prediction errors. 

These methods are: 

• Instrumental Variable with Auxiliary Model (IVAM) 
• Output Error with Fixed Compensator (OEFC) 
• Output Error with Filtered Observations (OEFO) 
• Output Error with Adaptive Filtered Observations (OEAFO) 

The principle of the validation method is as follows: 

• If the disturbance is independent of the input (E{w(t) u(t)} = 0) 
• If the “model + disturbance” structure chosen is correct, i.e., representative 

of the reality 
• If an appropriate identification method has been used for the chosen  

structure 
• If the degrees of the polynomials A(q-1), B(q-1) and the value of d (delay) 

have been correctly chosen 

then the predicted outputs generated by a predictor model of “output error” type 

 Â (q-1) (t) = q-d (q-1) u(t) ŷ B̂

are asymptotically uncorrelated with respect to the output prediction error, that 
implies 

 { } ,...3,2,1;0)(ˆ)(1)(ˆ)(
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The validation method implements this principle. It is made up of several steps: 

• Creation of an I/O file for the identified model (using the same input 
sequence as for the system) 

• Creation of files for the sequences {y(t)}; { (t)}; {ε (t)} (system output, 
model output, residual output prediction error). These files must contain at 
least 100 samples 

ŷ

• Uncorrelation test between the residual output prediction error sequence 
and the delayed prediction model output sequences 

Uncorrelation test 
Let {y(t)} and { (t)} be the centered output sequences of the plant and of the 
identified model respectively. 

ŷ
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Let {ε(t)} be the centered sequence of the residual output (prediction) errors 
(centered = measured values - mean values). 

One computes 
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 (6.4.2) 

where 

  ),max(max dnni BA +=

and the RN(i) are estimations of the (normalized) cross-correlations. Note that 
RN(0) 1. ≠

If the uncorrelation is perfect between ε(t) and (t-i), i  1 (theoretical 
situation) thus 

ŷ ≥

 max,...,2,1;0)()1( iiiRNRN ===  

In practice this is never the case, either because the duration of the identification 
was not long enough to approach the asymptotic character, or because the 
identification of good simple models is desired (with few parameters, i.e. under 
estimation of the orders of A(q-1) and B(q-1)), which results in structural errors 
which are correlated with the input u(t). 

In practice it is desired that the values of |RN(i)|, i = 1,..., imax be as small as 
possible,  but the difficulty lies in defining a reference (validation criterion). 

The validation criterion for type II identification methods based on an 
uncorrelation test will be defined similarly to that for type I identification methods 
which also use an uncorrelation test, but on different sequences of variables (see 
Section 6.2). In this case one therefore considers as a practical validation criterion 

 max,...,2,1;17.2)( ii
N

iRN =≤  

where N is the number of samples. Table 6.1 can be used for finding the numerical 
value of the validation criterion for various N and levels of signification of the test. 
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All the comments made in Section 6.2 upon the significance of the values of the 
validation criterion remain valid. In particular the basic practical numerical value 
for the validation criterion which is 

 max,...,2,1;15.0)( iiiRN =≤  

is worth remembering. 
One can say that the uncorrelation test allows one to compare the results 

provided by all identification methods since it only requires the parameters of the 
plant model (B(q-1),A(q-1)). Therefore, it is useful to perform this validation test 
even for models identified with type I identification methods in order to compare 
them with estimated models obtained with type II identification methods. 

In short, one only takes the estimated plant model (B(q-1),A(q-1)) obtained with 
type I identification methods  (the noise model is not considered) and one performs 
the uncorrelation test. The best model is that which will give the lowest cross-
correlation terms3. 

6.5 Estimation of the Model Complexity 4 

6.5.1 An Example 

In order to understand the principle of the model complexity estimation, let us 
consider a first-order discrete time model. It will be assumed that there is no noise. 

Assume that the plant model is described by 

 y(t) = - a1 y(t-1) + b1 u(t-1) (6.5.1) 

and that the data are not corrupted by noise. The order of this model is 
 1),max( =+= dnnn BA

Question: Does there exist a test allowing one to verify if the hypothesis upon 
the order of the model is correct? 

Construct the following matrix:  

• On the first row one writes y(t) as well as the variables represented in the 
right hand term of Equation6.5.1 

• The other rows are formed by the delayed variables occurring in Equation 
6.5.1. 

                                                 
3 However, in comparing the models obtained by type I identification methods, priority will be given to 
the whiteness test. 
4 Can be omitted for a first reading. 
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The resulting matrix can be split into two parts: the first column denoted Y(t), is 
a vector containing the current and previous outputs ; the remaining rows define a 
matrix denoted by R(1). 

If the structure of Equation 6.5.1 is true (which means that it can represent the 
relationship between u and y), one can replace the components of the first column 
of Equation 6.5.2 by their expression given by Equation 6.5.1. One obtains by 
evaluating the determinant of the matrix given in Equation 6.5.2: 
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since the first column is a linear combination of the two other columns. Effectively 
 and the rank of the matrix is 2 (instead of 3). ],[ with )1()( 11 baRtY T == θθ

It results that the rank test on the matrix of Equation 6.5.2 (size of the largest 
non-null determinant) allows one to conclude upon the validity of the structure of 
the model considered for representing the plant. 

Let assume that the plant model is second-order and that the data are not 
corrupted by noise. It can be described by the following equation: 
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If one computes the rank of the matrix of Equation 6.5.3, one gets: 
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The determinant of the matrix of Equation 6.5.5 is not null since Y(t) cannot be 
expressed as a linear combination of columns 2 and 3. 
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However if one also uses the measurements from the instant t-2, one can 
construct the following matrix: 
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The rank of this matrix is strictly less than 5 (in fact it is equal to 4), since Y(t) 
is a linear combination of columns 2, 3, 4 and 5. 

The objective of model order estimation will be to search for the number of 
columns that has to be added in order to be able to express Y(t) as a linear 
combination of the other columns (one adds the same number of  delayed columns 
of  y and u) . The algorithm will stop when the matrix of the form given in 
Equation 6.5.6 is no more of full rank.  In this way n = max (nA, nB + d). 

6.5.2 The Ideal Case (No Noise) 

In the ideal case, which means in the absence of noise, we are interested to 
estimate the order (complexity) of a model of the form 
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by the rank test. To do this, one constructs the matrix 
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where 
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and the vector 

  (6.5.10) [ )1(),...,1(),()( +−−= NtytytytY T ]

]

and one tests the rank of the matrix 

  (6.5.11) ( )[ nRtY ˆ)( M

for increasing values of the estimated order  .n̂
Remark: the number of data N should be larger than 2nmax+1 (where nmax is 

the supposed maximum value of the model order). 
One has the following result: 

• If nn <ˆ , ( )[ nRtY ˆ)( M ]  is a full rank matrix  (of rank 1ˆ2 +n ). 
• If , nn ≥ˆ ( )[ nRtY ˆ)( M ]  is not a full rank matrix (rank  instead of n2

1ˆ2 +n ). 

The value used to test the rank can be the determinant, the singular values of the 
matrix, etc.. 

6.5.3 The Noisy Case 

In the presence of noise, Equation 6.5.7 becomes 
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where w(t) represents the noise effect. 
Unfortunately, the method presented earlier does not work when noise is 

present since the matrix ( )[ nRtY ˆ)( M ]  never becomes singular. 

White noise 
It is important to remark that the rank test is equivalent to the search of a parameter 
vector that minimizes the following criterion for an estimated value of the model 
order denoted by 5: 

θ̂
n̂

 ( ) ( ) 2
ˆˆ

ˆˆ)(1minˆ nLS nRtY
N

nJ θ−=
θ

 (6.5.13) 

                                                 

5 xxx T=2
. 
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where  expresses the linear dependence of Y(t) with respect to the columns 
of . However this criterion is the least squares criterion of Equation 5.2.40. 

θ̂
( )nR ˆ

Taking in account Equations 6.5.8, 6.5.9 and 6.5.10, Equation 6.5.13 can be 
expressed as 

 ( ) [ ]∑
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T
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ˆ,...,ˆ,ˆ,,ˆˆ K=θ  

Therefore, for the case where the noise in Equation 6.5.12 is white, the use of 
the least squares algorithm (the least squares estimation algorithm is unbiased in 
this case) allows one to estimate the order of the model by evaluating the value of 
the criterion for increasing estimated orders . If the criterion becomes 
practically null, or takes a constant value in the presence of white noise in Equation 
6.5.12 (this is illustrated in Figure 6.4)   

n̂ nn ≥ˆ

Non-white noise 
However, the procedure for order estimation will not work when the noise in 
Equation 6.5.12 is not white since the difference ( ) ( )1ˆˆ +− nJnJ LSLS  does not 
really goes towards 0 when  (i.e. the procedure tends to overestimate the 
order of the model). 

nn ≥ˆ

 To overcome this problem one should use an algorithm allowing one to obtain 
an unbiased estimation of . To achieve this one can use the technique of 
“instrumental variables” (used also in Section 6.3.1). 

n̂θ̂

 

 

 

 

 

 

 

 

Figure 6.4. Least squares criterion evolution as a function of  n̂
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0
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In this approach one replaces the measurements by the instrumental variables that 
are correlated with the “good” measures  but less correlated with the noise. The 
number of instrumental variables to be used (2L) should be larger than twice the 
order of the model to be estimated. One can use the delayed inputs as instrumental 
variables, since u(t-L) is correlated with  y(t) for ( see Equation 6.5.12), but, 
on the other hand, u(t) is not correlated with the noise. 

nL ˆ≥

In this case one replaces ( )nR ˆ and Y(t)  by ( )nRIV ˆ  and  ( )tYIV where 

 ( ) )()(    ;    )ˆ(ˆ tYMtYnRMnR IVIVIVIV ==  (6.5.14) 

IVM  is the matrix of instrumental variables and it is constructed from the matrix 
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T φφφ ,,2,1ˆ K= ]  (6.5.15) 

where 
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One searches first for a matrix 
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such that (triangularization of the matrix ( )nZ ˆ ) 
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where  is a triangular matrix and ( )nZ ˆ1
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The matrix of instrumental variables  is given by6 IVM

  ( ) TT
IV ZZM

1
1

−
=

The test quantity becomes in this case 

                                                 
6 The construction of the instrumental variables in this case is related to the orthogonal projection of the 
measurements on the space defined by ( )nZ ˆ . 
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( ) ( ) 2
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ˆˆ)(1minˆ θ
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N
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A theoretical study shows that this quantity goes towards 0 as the estimated order 
approaches the true one (Duong and Landau 1996)7. As a consequence, a 
significant slope change will appears on the curve ( )nJ IV ˆ , allowing, in general, a 
clear estimation of the order. 

6.5.4 Criterion for Complexity Estimation 

One of the objectives of system identification is to estimate models of reduced 
order (parsimony principle). It is therefore reasonable to add to the criterion of 
Equation 6.5.17 a term that penalizes the model complexity. Such a term can be of 
the form 

 ( ) ( )
N

NnNnS logˆ2,ˆ =  (6.5.18) 

but other choices are possible (Duong and Landau 1996; Söderström and Stoica 
1989). 

One defines the criterion for model order estimation as 

 ( ) ( ) ( )NnSnJnCJ IVIV ,ˆˆˆ +=  (6.5.19) 

and therefore will be given by the value that minimizes the criterion of  Equation 
6.5.19: 

n̂

  (6.5.20) ( ) minn̂CJn̂n̂ IV
* =⇒=

The complexity estimation obtained in this way is consistent, which means that one 
finds the exact order as the number of data tends toward infinity ( ∞→N ). 

 A typical curve for the evolution of the criterion 6.5.18 as a function of is 
given in Figure 6.5. 

n̂

Once the order  is estimated, one can apply a similar procedure for estimating 
, ,  from which , , and are obtained. 

n̂
dn ˆˆ − An̂ dnB

ˆˆ + An̂ Bn̂ d̂
The functions estorderls.sci, estorderiv.sci (Scilab) and estorderls.m, 

estorderiv.m (MATLAB®) implement the above described techniques for model 
order estimation8.  

                                                 
7 It is shown in (Duong, Landau 1996) that ( )nJ IV ˆ  has a well defined statistical distribution allowing 

to define an “over estimation risk” for the estimation of the model order . n̂
8 Available on the book website. 
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Other aspects related to the estimation of nA, nB, and will be presented in 
Chapter 7, Section 7.3. 

d

 

minimum
CJIV(n) ˆ

ˆS(n,N) 

JIV(n) ˆ
0 

n̂  
Figure 6.5. Evolution of the criterion for the estimation of the model order 

6.6 Concluding Remarks 

In this chapter recursive identification methods have been presented. They have 
been classified in two categories: 

The first category includes the identification methods based on the whitening of 
the prediction error in order to get unbiased parameter estimates. The following 
identification methods belong to this category: 

• Recursive Least Squares (RLS) 
• Extended Least Squares (ELS) 
• Recursive Maximum Likelihood (RML) 
• Output Error with Extended Prediction Model (O.E.E.P.M) 
• Generalized Least Squares (GLS) 

The validation of the models identified using these methods consists in testing if 
the residual prediction error sequence is approaching the characteristics of a white 
noise sequence. This is done by carrying out a whiteness test on the sequence of 
residuals. An acceptable identified model should verify the condition 

 )dn,nmax(,...,,i;
N

.)i(RN BA +=≤ 21172  

where 
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and N is the number of samples. 
The second category includes the identification methods based on the 

uncorrelation between the prediction error and the observations in order to get 
unbiased parameter estimates. The following identification methods belong to this 
category: 

• Instrumental Variable with Auxiliary Model (IVAM) 
• Output Error with Fixed Compensator (OEFC) 
• Output Error with Filtered Observations (OEFO) 
• Output Error with Adaptive Filtered Observations (OEAFO) 

The validation of models identified using these methods consist in testing if the 
residual prediction error sequence and the predicted outputs (generated by the 
model A(q-1) (t) = q-d (q-1) u(t)) are uncorrelated. This is done by carrying out 
an uncorrelation test. An acceptable identified model should verify the condition: 

ŷ B̂
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and N is the number of samples. 
Taking into account the relative weight of various non-gaussian and modeling 

errors (which increases with the number of samples), the validation criterion can be 
slightly tightened for small N and slightly relaxed for large N. Therefore, for 
simplicity's sake, one can consider as a basic practical numerical value for the 
validation criterion (for both tests) the value 

 ),max(,...,2,1;15.0)( dnniiRN BA +=≤  

Before doing a parameter estimation, it is obviously necessary either to estimate 
the order of the model from the data, or to choose a model order from the available 
a priori information. The techniques of order estimation from input/output data 
have been presented in Section 6.5 

The problem of order estimation can be converted in a parameter identification 
problem whose objective is to minimize a criterion with two terms. One of the 
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terms of the criterion corresponds to the variance of the prediction error, while the 
other term is a penalty terms which increases with the order of the model. 
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7 

Practical Aspects of System Identification 

This chapter reviews a variety of practical aspects concerning system 
identification. Several identification examples are presented, using both simulated 
data and real data from several plants (air heater, distillation column, DC motor, 
flexible transmission). 

7.1 Input/Output Data Acquisition 

7.1.1 Acquisition Protocol 

In Chapter 5, Section 5.3 it was shown that, in order to obtain a good identified 
model, the excitation signal (applied to the plant input) should contain a wide 
spectrum of frequencies. This signal will be superposed to the steady state control 
signal corresponding to the operating point around which we would like to identify 
the model of the plant. 

As a general rule, one uses as an excitation signal a PRBS (pseudo random 
binary sequence) with a low magnitude. The properties of the PRBS have been 
examined in Chapter 5, Section 5.3.2.  

We recall that, for correctly estimating the steady state gain of the dynamical 
model, it is necessary that at least the duration of one of the pulses of the PRBS be 
larger than the rising time of the plant to be identified. This leads to the following 
condition: 

  Rs tpNT ≥

where  

• Ts = sampling period 
• p = frequency divider 
• p Ts = clock period of the PRBS generator (clock frequency = fs/p) 
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• N = number of cells of the shift register 
• tM = rising time of the system 

The magnitude of the PRBS should not exceed, as a general rule, a few percent of 
the steady state control signal amplitude. 

Data acquisition is done either by dedicated data acquisition equipment or, very 
often, by using a computer equipped with a data acquisition board containing 
analog-to-digital and digital-to-analog converters. The board is emulated by the 
computer, which provides the PRBS and the input DC component corresponding to 
the operating point. 

A C++ program as well as a MATLAB® function (prbs.m) for the generation of 
the PRBS can be downloaded from the book website. 

Several options for connecting the data acquisition system to the plant are 
possible. 

Plant Operated  in Open Loop 
This is the most typical case and the simplest one. It is illustrated in Figure 7.1. 

 
 
 Physical  

 system 
 
 
 

 

 

 

 

 

Figure 7.1. Data acquisition for system identification - plant operated  in open loop 

In this situation, the excitation signal superposed to the DC control signal 
corresponding to the operating point is directly applied to the process. To start the 
data acquisition protocol, the plant should be in a steady state operation regime 
(i.e. the PRBS is sent once the transient related to the application of the DC 
control signal is over). 

Plant Operated in Closed Loop 
In this situation two possibilities can be considered: 

u(t) y(t)
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Board
SOFTWARE

MeasureInput 

signal 



 Practical Aspects of System Identification 281 
 

 

 

Figure 7.2. Data acquisition for identification – plant operated in closed loop with excitation 
signal added to the controller output 

1. Excitation superposed to the controller output 
The PRBS is added to the controller output and one performs the 
acquisition of the PRBS and of the effective input applied to the plant 
together with the corresponding plant output. The transfer between y0 and 
y1 will be identified. 

2. Excitation on the reference 
The PRBS is added to the reference defining the operating point and one 
performs the acquisition of the PRBS, the input and the output of the plant. 
This is shown in Figure 7.3. 

If one would like to identify the plant model from data acquisition in closed loop 
operation, two options can be considered. 

In the first case one tries to ignore the presence of the controller. For this, it is 
important to use what is called a “soft” controller. In the case of a PID one should 
suppress the derivative action and use a low value of proportional gain. However 
the integral action is important for maintaining in the average the operating point. 

 If an RST controller is used, the design based on an imprecise available model 
should be done such that the closed loop is slow but the presence of an integrator in 
the controller is important in order to maintain the operating point. The quality of 
the model obtained with this approach can vary considerably. 

 In the second case, one uses dedicated methods for plant model identification 
in closed loop operation. These methods, which take into account the presence of 
the controller, are presented in Chapter 9. They provide, in general, excellent 
identified models. 
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Figure 7.3. Data acquisition for identification – plant operated in closed loop with excitation 
added to the reference 

7.1.2 Anti-Aliasing Filtering 

It was shown in Chapter 2, Section 2.2, that the conversion of signals having a 
frequency spectrum exceeding 0.5 fs  will introduce distortions on the discretized 
signal in the useful band between 0 and 0.5 fs. 

In order to avoid this situation, it is necessary to insert between the plant output 
and the analog to digital converter a continuous time anti-aliasing filter (low pass 
filter) allowing to significantly attenuate the components of the signal beyond 0.5fs. 

The violation of this rule can produce important errors in identification. Even if 
one may be able to get discrete time models that can be validated, they do not 
represent, in practice, the real behavior of the system (i.e. the continuous time 
behavior of the plant). 

7.1.3 Over Sampling 

Different situations encountered in practice lead to the use of a data acquisition 
frequency that is a multiple of the sampling frequency used in the control loop 
(over – sampling). For example: 

• In many digital control systems (DCS), the data acquisition frequency is 
significantly higher than the one used in the control loops. 

• In systems using a sampling period for the control loop that is higher than 
1s, it becomes difficult to implement a continuous time anti aliasing filter 
and it is necessary  to use a  digital filtering technique. 

In both cases, one should do data acquisition at a frequency which is a multiple of 
the sampling frequency used for control (or conversely: the sampling frequency of 
the control loop should be a sub-multiple of the data acquisition frequency): 

y(t)reference 
Controller Physical 

system
+

y1

u(t)

output 
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 sa nff =  

where 

• fa = data acquisition frequency 
• n = ratio of frequencies (integer) 
• fs = sampling frequency of the control loop 

The discrete time signal obtained at the frequency fa is passed through a digital 
anti-aliasing filter which will attenuate the signal components over 

. On the resulting sequence we will take data every n samples 
(decimation). The implementation of a data acquisition using over-sampling is 
illustrated in Figure 7.4. 

n/f.f. as 5050 =

A/D converter
(acquisition frequency) 

y(t) 
T

Digital 
filter 

y (k)

under-sampling 
( Ts = n .Ta)

T
a s

Anti-aliasing 
analog filter 

 
Figure 7.4. Implementation of the data acquisition using over-sampling 

If n is sufficiently large (n  4), a moving average type filter ≥

 
n

ntytytyty f
)1(...)1()()( +−++−+

=  

will be enough. 
When using over-sampling for data acquisition, one should pay attention how 

the frequency divider (p) for the clock frequency of the PRBS is chosen. The 
frequency divider used for the PRBS should be a multiple of n, in order that the 
final sampling frequency fs is still an integer multiple of the clock frequency of the 
PRBS. 

The clock frequency of the PRBS is given by 

 
aPRBS f

p
f 1

=  

The final sampling frequency is given by 

 PRBSas f
n
pf

n
f ==

1  

where  (p/n) should be an integer.   
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7.2 Signal Conditioning 

7.2.1 Elimination of the DC Component 

The structures of the models used for identification correspond to dynamic models 
(that express output variations as a function of input variations around an operating 
point). 

It is therefore necessary, for a correct identification, to eliminate from the 
input-output data either the DC components (corresponding to the operating point) 
or the slow drift of the operating point during identification. 

Case 1. Elimination of stationary (or quasi-stationary) DC components.  
This is carried out in two stages: 

a. Computation of the mean value (MV) of the I/O files 
b. The mean value of the I/O files is subtracted from the I/O data and a new 

I/O file is created 

Case 2. Elimination of non-stationary DC components (drift)  
The I/O measurement files are replaced by variations of the I/O measurements 
filtered if necessary:  

 1
1

1
1 1

)1()()(;
1

)1()()(
−− +

−−
=′

+

−−
=′

qf
tututu

qf
tytyty  

with 

  05,0 1 ≤≤− f

but other types of filters may be used. 

7.2.2 Identification of a Plant Containing a Pure Integrator 

A plant incorporating a pure integrator may be identified. However, if the existence 
of this integrator is known a priori, this a priori information can be used to reduce 
the complexity of the model to be identified and to improve the precision of the 
identification. Two methods can be used: 

1. The input is replaced by its integral, the output remaining the same: 

11
)()(;)()(
−−

=′=′
q
tututyty  

2. The output is replaced by its variations, the input remaining the same: 
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 )()(;)1()()( tututytyty =′−−=′  

y'(t) and u'(t) may also be filtered if necessary. 

7.2.3 Identification of a Plant Containing a Pure Differentiator 

If the presence of a differentiator is known, this a priori information can be used. In 
this case, the input is replaced by its variations, the output remaining the same: 

 )1()()(;)()( −−=′=′ tutututyty  

7.2.4 Scaling of the Inputs and Outputs 

The observation vector used in the parameter adaptation algorithm is built 
from the measurements  y(t), y(t-1)... (or by variables correlated with the output) 
and u(t), u(t-1)... 

)(tΦ

  [ ]),...t(u),t(u),...,t(y),t(y)t( T 11 −−−−=Φ

On the other hand, the adaptation gain F(t) is expressed as 

 1;1)1()1()(
1

1 <<+−Φ−Φ= ∑
=

− δ
δ

IiitF
t

i

T  

If the level of u(t), u(t-1)... is very different from the level of y(t), y(t-1), the gain 
matrix will be extremely unbalanced, thus resulting in significantly different 
convergence speeds for and . )(ˆ ta i )(ˆ tbi

It is therefore convenient to scale the I/O files (by multiplying, if required, 
either u(t) or y(t)). This will result in the modification of the identified steady state 

gain. The values of the estimated parameters  must therefore be divided or 
multiplied accordingly in order to obtain a model with a static gain corresponding 
to the real one. 

ib̂

7.3 Selection (Estimation) of the Model Complexity 

This section discusses the determination of the delay (d) and the degrees of the 
polynomials A(q-1), B(q-1) and C(q-1). 

The “plant + disturbance” model to be identified is of the form  

  )()()()()( 11 twtuqBqtyqA d ′+= −−−
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where, according to the structures chosen, one has: 

 )()( tetw =′  (7.3.1) 

  (7.3.2) )()()( 1 twqAtw −=′

  (7.3.3) )()()( 1 teqCtw −=′

 )(
)(

1)( 1 te
qC

tw
−

=′  (7.3.4) 

In order to start the parameter estimation methods, we need to specify 

 ?;?;? === dnn BA  

and for structures [S3] and [S4] 

?=Cn  

where nA, nB and nC are the degrees of the polynomials A(q-1), B(q-1) and C(q-1) 
respectively. 

Remember that the order of a sampled-data system is given by  n = max (nA, 
nB+d). 

Techniques for order estimation have been presented in Chapter 6, Section 6.5. 
If order estimation functions that allows the estimation of n = max (nA, nB+d), nA, 
nB and d, are available (like estimorderiv.sci (Scilab) and estimorderiv.m 
(MATLAB®)1, that estimate n), it is advisable to use them. Nevertheless the order 
estimation can also be done on the basis of “a priori” knowledge and a set of trials 
on the acquired data2. We give next details about this procedure.  

“A priori” Choice for nA 
Two cases can be distinguished: 

1. Industrial plant (temperature control, flow rate, concentration, etc...).   
For this type of plant in general 

 3≤An  

                                                 
1 Available from the book website. 
2 This approach can be also used for a confirmation of the order estimation results obtained with the 
techniques described in Section 6.5. 
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and the value nA= 2, which is very typical, is a good starting value to 
choose. 

2. Electromechanical systems.  

nA results from the structural analysis of the system. 

Example: flexible transmission with two resonant modes. 
In this case, nA=4 is chosen,  since a second-order is required to model each 
resonant mode. 

Initial Choice of d and nB 
If no knowledge of the time delay is available, d = 0 is chosen as an initial value. If 
a minimum value is known, an initial value d = dmin is chosen. 

If the time delay has been underestimated during identification, the first 
coefficients of B(q-1) will be very low. Thus nB must then be chosen so that it can 
indicate the presence of the time delays and identify the transfer function 
numerator. nB = (dmax - dmin) + 2 is then chosen as the initial value. At least two 
coefficients are required in B(q-1) because of the fractional delay (see Section 
2.3.7). If the time delay is known, nB  2 is chosen, however the value 2 is a good 
initial value. 

≥

Initial Choice of nC 
As a general rule nC = nA is chosen. 

Determination of the Time Delay d (First Approximation) 
Method 1. One identifies the system using the RLS. The estimated numerator will 
be of the form 

  ...ˆˆˆ)(ˆ 3
3

2
2

1
1

1 +++= −−−− qbqbqbqB

If 

 21 150 b̂.b̂ ≤  

b1  0 is considered, and time delay d is increased by 1: d = din + 1 (since if b1 = 

0, B(q-1) = q-1 (b2 q-1 + b3 q-2)). 

≈

If 

 idi d,...,,i;b̂.b̂
i

21150 1 =< +  
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time delay d is increased by di: d = din + di. After these modifications, a new 
identification session is performed. 

Method 2. An identification of the system is performed with the RLS in order to 
obtain a model of the type “impulse response” 

  )30,...,20(;)()(
1

Largenitubty B

n

i
i

B

=−=∑
=

If there is a time delay, then 

 dibb di ,...,2,1;ˆ15.0ˆ
1 =< +  

From this time delay estimation, a new identification is performed to find a pole-
zero model. 

Both these methods may of course be completed by a display of the step 
response. 

A more accurate estimation of time delay d is carried out by performing a new 
identification, followed by a validation of the identified model. Note that if the 
system is contaminated by measurement system noise an accurate estimation of the 
delay will only be carried out with the method that enables the identified model to 
be validated. 

Determination of (nA)max and (nB)max 
The aim is to obtain the simplest identified model that verifies the validation 
criteria. This is linked on the one hand to the complexity of the controller (which 
will depend on nA and nB), and, on the other hand, to the robustness of the 
identified model with respect to the operating conditions. 

From the results presented in Section 6.5, a first approach to estimate the values 
of (nA)max and (nB)max is to use the RLS and to study the evolution of the variance 
of the residual prediction errors, i.e. the evolution of 

 { } ∑
=

==
N

t

t
N

tER
1

22 )(1)()0( εε  

as a function of the value of  nA + nB. A typical curve is given in Figure 7.5. 
In theory, if the example considered is simulated and noise free, the curve 

should present a neat elbow followed by a horizontal segment, which indicates that 
the increase in parameter number does not improve the performances. (see Section 
6.5, Figure 6.5.1). 

In practice, this elbow is not neat if non-white noise is present. The practical 
test used for determining nA + nB is the following: consider first nA, nB and the 
corresponding variance of the residual errors R(0). Consider now nA' = nA + 1, nB 
and the corresponding variance of the residual errors R'(0).  
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If 

 )0(8.0)0( RR ≥′  

it is unwise to increase the degree of nA (same test with nB' = nB + 1). 

 

1 2 3 4 5 6 7

R(0) 

npar = (n A+ n B)

The good value

 
Figure 7.5. Evolution of the variance of residual errors as a function of the number of model 
parameters  

It is advisable to increase the values of nA and nB in a non-simultaneous way. A 
simultaneous increase may induce the identification of a pair of very close poles 
and zeros that have a small influence on the criterion with respect to the increase of 
nA or nB but that could make the controller computation harder. 

With the choice that results for nA and nB, the model identified by the RLS does 
not necessarily verify the validation criterion. Therefore, while keeping the values 
of nA and nB, other structures and methods must be tried out in order to obtain a 
“valid” model. If after all the methods have been tried none is able to give a model 
that satisfies the validation criterion, then nA and nB must be increased. 

The estimated numerical values of the coefficients corresponding to the highest 
powers of polynomials  and  (after the estimation of the time delay 
d) also give a clue on the maximum order to be chosen. If these values are very 
small compared to the previous ones, it is often possible to reduce the order of 

 and  (one must obviously perform a new identification session with 
the updated orders). 

)(ˆ 1−qA )(ˆ 1−qB

)(ˆ 1−qA )(ˆ 1−qB

The order estimation techniques presented in Section 6.5 rapidly provide good 
results. Moreover, it is recommended to compare these results with the available a 
priori information upon the system structure. 
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7.4 Identification of Simulated Models: Examples3  

We consider now two files (T∅ and T1) containing I/O data generated by a known 
discrete-time model. Each file contains 256 input/output recordings. In each case, 
the input has been a PRBS generated by a register with 8 cells (N = 8). The length 
of a complete sequence is therefore 2554. 

The file T∅  has been obtained using the following model: 

  )()()()( 111 tuqBqtyqA −−− =

where 

  211 7.05.11)( −−− +−= qqqA

  211 5.01)( −−− += qqqB
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Figure 7.6. File T∅: I/O data set 

                                                 
3 All the examples presented in this chapter have been worked out with WinPim (Adaptech) 
identification software and the MATLAB®/Scilab routines for model order estimation (see Section 
6.5.4). Small numerical differences will result when using other identification routines. 
4 These files are available from the book web sites: http://landau-bookic.lag.ensieg.inpg.fr. 
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The file T1 has been generated with the same polynomials A(q-1) and B(q-1), but 
adding a stochastic disturbance, the ARMAX  model being of the form 

  )()()()()()( 1111 teqCtuqBqtyqA −−−− +=

in which {e(t)} is an almost white noise generated by the computer and the degree 
of C(q-1) is nC = 2. 

FILE T∅ 
We now come back to the file T∅5. Figure 7.6 shows the input and output 
sequences collected in this file. For the file T∅, by using the recursive least 
squares (RLS) method with the decreasing adaptation gain, the following results 
are obtained: 

S = 1    M = 1(RLS)  A = 1                 FILE: T0  DELAY  D = 1 
 INSTANT K = 50 
 FORGETTING FACTOR = 1 
 TRACE OF ADAPTATION GAIN                 = 7.106747E-02 
 PROCESS OUTPUT                                        = -5.030791 
 MODEL OUTPUT                                           = -5.030789 
 PROCESS INPUT                                            = -1 
 ADAPTATION ERROR                                  = -1.430511E-06 
            A(1) = -1.49999                                                B(1) =  0.99998 
            A(2) =  0.69999                                                 B(2) = 0.50000 

where S, M, and A designate the structure, the method and the type of the 
adaptation gain6 (see Chapter 5, Sections 5.5 and 5.2.4) respectively. A(1), A(2), 
B(1), B(2) designate the estimated coefficients of polynomials A(q-1) and B(q-1). It 
can be observed that the estimated parameters converge very fast towards the good 
values in the case of a noise free system (initial values A(1) = A(2)  = B(1) = B(2) = 
0). 

Similar results are obtained with the output error method, with fixed 
compensator, decreasing adaptation gain and compensator degree nD=0 
(adaptation error = prediction error), as indicated below. 

S = 2        M = 2 (OEFC)     A = 1         FILE: T0       DELAY D = 1 
 INSTANT K = 50 
 FORGETTING FACTOR =   1 
 TRACE OF ADAPTATION GAIN =   7.107091E-02 
 PROCESS OUTPUT = -5.030791 
 MODEL OUTPUT = -5.031748 
 PROCESS INPUT = -1 
 ADAPTATION ERROR =   9.570122E-04
 A(1) = -1.50000 B(1) =  1.00002 
 A(2) =  0.700000 B(2) =  0.49993 

                                                 
5 Before starting the identification, data must be centred. 
6 S=1 designates the structure S1, M=1 designates the first method used for the structure S1 (see 
Section 5.5) and A=1 corresponds to the choice of the adaptation gain A.1 discussed in Section 5.2.4. 
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The estimation of the time delay for the file T∅ in the absence of a priori 
information will be illustrated next. Indeed with the recursive least squares method 
and a decreasing adaptation gain, for nA = 2, nB = 4 and d = 0 the following 
parameters are obtained: 

S = 1  M = 1 (RLS)          A = 1 FILE: T0        DELAY  D = 0 
 INSTANT K   = 50 
 FORGETTING FACTOR  = 1 
 TRACE OF ADAPTATION GAIN            = .1623274 
 PROCESS OUTPUT  = -5.030791 
 MODEL OUTPUT   = -5.030764 
 PROCESS INPUT    = -1 
 ADAPTATION ERROR  = -2.717972E-05 
 A(1) = -1.49998            B(1) = 5.39346E-06           B(3) = .50001 
 A(2) =   .699984            B(2) = .99998                    B(4) = 2.62828E-05 

The results obtained (B(1) and B(4), very small compared to B(2) and B(3)) clearly 
show that d = 1 and nB = 2. However it must be stressed that this situation is 
without any ambiguity in this example, since there is no disturbing noise. 

FILE T1 
The file T1 is highly contaminated by noise and certain methods (in particular the 
recursive least squares) will give biased parameter estimates. The quality of the 
identification will be reflected in the validation results. The estimation has been 
carried out on 256 samples and the validation has been carried out on the same 
input/output data set. 

The results obtained with the recursive least squares with decreasing gain are 
given below7: 

S =1   M = 1   (RLS)   A = 1   FILE: T1   NS = 256   DELAY  D = 1 
COEFFICIENTS OF POLYNOMIAL A:         A(1) = -1.403533 
 A(2) =  0.6066453 
COEFFICIENTS OF POLYNOMIAL B:         B(1) =   0.9831312 
 B(2) =   0.6512049 
VALIDATION TEST : Whiteness of the residual error 
 System Variance: 18.3791            Model Variance: 17.9035 
 Error variance R(0): 0.4749 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion: Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 

       RN(0) = 1.000000                         RN(1) = -0.505234  
 RN(2) = 0.115732                             RN(3) = -0.054398 
 RN(4) =0.016311 

The appearance of a bias on the estimated parameters is observed, which is also 
reflected in unsatisfactory validation results (|RN(1)| > 0.15). The residual 
prediction error is not close to white noise. One should thus consider another “plant 

                                                 
7 In the tables shown in this section the system variance corresponds to the variance of the measured 
output, the model variance corresponds to the variance of the predicted output and the error variance 
corresponds to the variance of the residual prediction error (R(0)). 
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+ disturbance” structure such as, for example, the S3 structure, which replaces the 
disturbance model e(t) in S1 by C(q-1) e(t). 

We choose, among the identification methods applicable to structure S3, the 
output error method with extended estimation model (M3) and decreasing 
adaptation gain (A1). The results obtained are given in the following table. 

S =3   M = 3 (OEEPM)   A = 1   FILE:T1   NS = 256   DELAY  D=1 
COEFFICIENTS OF POLYNOMIAL A A(1) = -1.50009 
  A(2) =  0.69614 
COEFFICIENTS OF POLYNOMIAL B B(1) =  0.95782 
  B(2) =  0.54005 
COEFFICIENTS OF POLYNOMIAL C C(1) =  -0.83917 
  C(2) =   0.05308 
VALIDATION TEST: Whiteness of the residual error 
 System Variance: 18.3791            Model Variance: 18.1894 
 Error variance R(0): 0.2571 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion: Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
 RN(0) = 1.000000                          RN(1) = -0.141702 
 RN(2) =  0.021206                         RN(3) = 0.008497 
 RN(4) = 0.051014 

It can be observed that the estimated values of A(1), A(2) and B(2) are better than 
in the case of the recursive least squares (the sum of the squared biases is lower in 
this case). On the other hand, the validation results are acceptable since all the 
normalized autocorrelation functions (RN(1) to RN(4)) have a module less than 
0.15. The residual prediction error becomes closer to white noise and its variance 
has been reduced compared to estimation using the recursive least squares.  

The results obtained can be further improved if the output error with extended 
estimation model, and an adaptation gain with variable forgetting factor are used 
(A3 with λ1(0) = 0.97). The following results are obtained: 

S =3   M = 3 (O.E.E.M.P.)   A = 3   FILE:T1   NS = 256   DELAY D = 1 
COEFFICIENTS OF POLYNOMIAL A:                 A(1) = -1.508445 
  A(2) =  0.70574 
COEFFICIENTS OF POLYNOMIAL B:                 B(1) =  0.95120 
  B(2) =  0.52940 
COEFFICIENTS OF POLYNOMIAL C:                 C(1) =  -0.90610 
  C (2) =  0.08344 
VALIDATION TEST: Whiteness of the residual error 
 System Variance: 18.3791            Model Variance: 18.2276 
 Error variance R(0): 0.2531 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion: Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
 RN(0) = 1.0000                                RN(1) = -0.091665 
 RN(2) =  0.032701                           RN(3) = 0.025042 
 RN(4) = 0.064717 

which corresponds to an improvement of the results in terms of whiteness and 
variance of the residual prediction error, on the one hand, and in terms of the sum 
for the squared biases, on the other hand. 
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Better results than those obtained with the recursive least squares method can 
also be obtained with structure S2 by using the output error method with fixed 
compensator, decreasing adaptation gain and compensator degree nD=0 
(adaptation error = prediction error). The results obtained are given below: 

S =2   M = 2 (OEFC)   A = 1    FILE:T1   NS = 256    DELAY  D=1 
COEFFICIENTS OF POLYNOMIAL A A(1) = -1.52885 
  A(2) =   .73410 
COEFFICIENTS OF POLYNOMIAL B B(1) =   .93228 
  B(2) =   .51900 
VALIDATION TEST: Error / prediction uncorrelation 
 System variance: 18.3791           Model variance: 18.5921 
 Error variance R(0): 0.4860 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion: Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
            RN(0) = -0.116266            
            RN(1) = -0.028968           
            RN(2) = 0.103195 

One can see that the values obtained for the normalized cross-correlations satisfy 
the validation condition. 

However, it is interesting to compare these results with those provided by the 
model identified with recursive least squares for the same validation test. 

S =1   M = 1 (RLS)   A = 1   FILE:T1   NS = 256    DELAY  D=1 
COEFFICIENTS OF POLYNOMIAL A A(1) = -1.403533 
  A(2) =  0.6066453 
COEFFICIENTS OF POLYNOMIAL B B(1) =  0.9831312 
  B(2) =  0.6512049 
VALIDATION TEST: Error / prediction uncorrelation 
 System variance: 18.3791            Model variance: 18.5921 
 Error variance R(0): 0.76355 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion: Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
                 RN(0) =  0.248184 
  RN(1) =  0.313691  
  RN(2) =  0.284383  

It is observed that the parameters estimated by the output error method with fixed 
compensator are better than those obtained by the recursive least squares (the latter 
do not satisfy the validation criterion).  

This is also confirmed by the validation results (the model identified with 
recursive least squares does not pass the uncorrelation test). 

Finally it can be shown that, even in the presence of significant noise, the time 
delay can be determined from the relative values of the coefficients of the 
polynomial B(q-1). The following results are obtained for d = 0, nB = 3, nA = 2, by 
using the recursive least squares method: 
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S =1      M = 1 (RLS)      A = 1      File: T1      DELAY    D = 0 
 INSTANT K = 256 
 FORGETTING FACTOR =   1 
 TRACE OF ADAPTATION GAIN =   1.574461E-02 
 PROCESS OUTPUT = 11.39311 
 MODEL OUTPUT = 11.06473 
 PROCESS INPUT = -1 
 PREDICTION ERROR =  0.3283825 
 A(1) = -1.4043 B(1) =  -5.39615E-02 
 A(2) =  0.60742 B(2) = .98315 
      B(3) = .65067 

One observes that |B(1)| < 0.15 |B(2)|. This leads to choose d = 1 and nB = 2. 
Exercise: Compare the model obtained using the output error with fixed 

compensator (S = 2, M = 2) with the model obtained using output error with 
extended estimation model (S = 3, M = 3). See Chapter 6, Section 6.4 for the 
comparison procedure. 

If techniques for the model complexity estimation are used, (by using the error 
criterion of Equation 6.5.17 and the criterion for the complexity estimation of 
Equation 6.5.19) a minimum of the criterion is obtained for n = max(nA,nB+d)= 3, 
that is indeed the good value (see Figure 7.7). The function estorderiv.m has been 
used. A detailed estimation of the complexity leads to nA = 2, nB = 2 and d = 1. 
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File T1 : Model Complexity Estimation

Complexity (order)

Error criterion (IV)
Complexity estimation criterion

 
Figure 7.7. Estimation of the model complexity (n=max(nA,nB+d)) from the data collected 
in the file T1 
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7.5 Plant Identification Examples  

7.5.1 Air Heater  

The diagram of the system is represented in Figure 7.8. The air is heated at the pipe 
input by means of an electrical resistor supplied by a power amplifier. The 
temperature of the air at the output is measured by a thermocouple. This section is 
concerned with identifying the dynamic model linking the power amplifier control 
to the temperature of the output air, around a certain temperature. The steady state 
characteristic of the air heater + power amplifier is very non-linear. This results in 
the appearance of a DC component at the output even for centered input signals of 
low magnitude. 

 

temperature
measurement

      power
    amplifier

y(t)

u(t)

 

Figure 7.8. Schematic representation of the air heater (Laboratoire d’Automatique de 
Grenoble INPG/CNRS) 

The data acquisition has been carried on around an operating point 
corresponding to an output temperature of 60o and a DC input signal u0=5V (y0(t) 
= 3.2V). 

The file AERO.dat contains 128 raw input/output data obtained with a sampling 
period of 5 s. The input was a PRBS generated with a length register equal to 6 and 
a clock frequency fs/2 (sequence length: 126 samples). The raw data file was 
centered. The I/O data set relative to the centered file AERO.c8 is shown in Figure 
7.9. 

A first identification is started up, using the S1 structure and the recursive least 
squares method M1 with decreasing adaptation gain. Since this is a thermal system, 
nA = 2 can be a good initial choice. On the other hand d = 0 (no prior knowledge 
on the delay) and nB = 2. The following results are obtained: 

                                                 
8 Available from the web site: http:/landau-bookic.lag.ensieg.inpg.fr 
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S = 1  M = 1(RLS)  A = 1  FILE: AERO.C  NS = 128  DELAY  D = 0 
COEFFICIENTS OF POLYNOMIAL A:        A(1) =  -0.66872 
                                                                          A(2) =  0.00115 
COEFFICIENTS OF POLYNOMIAL B:        B(1) =   0.17360 
                                                                          B(2) =   0.05424 

The system clearly has a time delay less than 0.5 Ts (since |b1|>|b2| ), thus the 
choice d=0 was a good one. As the coefficient A(2) has a very small value 
(resulting from the product of poles) one can say that the value of one of the poles 
is very small and it can be neglected. 
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Figure 7.9. File AERO.c: I/O data set 

This model structure is also compatible with the complexity estimation 
provided by the functions estorderiv.m (MATLAB®) or estorderiv.sci (Scilab) 
(estimation with the method of instrumental variable with delayed inputs) that 
gives n = max (nA,nB+d) = 2 and nA=1, nB=2, d=0 respectively (see Figure 7.10). 

Another identification is thus carried out with the same structure, method and 
adaptation gain, but with nB=2, d=0, nA=1.  

The results obtained are as follows: 

S = 1  M = 1 (RLS)  A = 1  FILE:AERO.C   NS = 128   DELAY D=0 
COEFFICIENTS OF POLYNOMIAL A:    A(1) =  -0.6672 
COEFFICIENTS OF POLYNOMIAL B:    B(1) =   0.1736 
                                                           B(2) =   0.0545 
VALIDATION TEST: Whiteness of the residual error 
 System variance: 0.0035             Model variance: 0.0034 
 Error variance R(0): 3.991 E-04 
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NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.:|RN(i)| ≤ 0.192, Pract. Val.: |RN(i)| ≤ 0.15 
   RN(0) = 1.000000                   RN(1) = -0.2284  
             RN(2) = 0.1                                 RN(3) = 0.017 
             RN(4) = 0.0054 
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Figure 7.10. Complexity estimation for the air heater model based on the data file AERO.c 

The result of the validation is not acceptable. The results of the identification 
can be further improved by taking into account the fact that disturbances are 
present. A first approach is to choose structure S3 with the method M3, the output 
error with extended prediction model, which gives also an estimation of the model 
of disturbances. The following results are obtained (with decreasing adaptation 
gain): 

S=3  M=3 (O.E.E.M.P)  A = 1  FILE:AERO.C  NS = 128 DELAY D=0 
COEFFICIENTS OF POLYNOMIAL A:    A(1) =  -0.6589 
COEFFICIENTS OF POLYNOMIAL B:    B(1) =   0.1724 
                                                                      B(2) =   0.0579 
COEFFICIENTS OF POLYNOMIAL C:    C(1) = -0.1248 
VALIDATION TEST: Whiteness of the residual error 
 System variance: 0.00351            Model variance: 0.00346 
 Error variance R(0): 3.837E-05 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.:|RN(i)| ≤  0.192, Pract. Val.: |RN(i)| ≤  0.15 
 RN(0) =    1.000000                        RN(1) =    0.1303 
 RN(2) =    0.1029                            RN(3) =    0.0192  
 RN(4) =    0.0326 

The results of the validation are without doubt satisfactory. 
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Figure 7.11. Step response for the models identified in the air heater example:                      
OEEPM - output error with extended prediction model, variable forgetting factor, d = 0, nA 
= 1, nB = 2; OEFC - output error with fixed compensator, d = 0, nA = 1, nB = 2 

The step response for this model is shown in Figure 7.11 (OEEPM). Structure 
S2 can also be used, which may lead to an asymptotically unbiased estimated 
model without modeling the disturbances. The output error with fixed compensator 
(method M2) is chosen with nD=0 (because nA=1), and with an adaptation gain 
with forgetting factor ( 97.0)0(1 =λ ). The results are summed up in the following 
table: 

S=2   M=2 (OEFC)   A=3   FILE: AERO.C   NE=128   DELAY D=0 
COEFFICIENTS OF POLYNOMIAL A:    A(1) =  -0.6837 
COEFFICIENTS OF POLYNOMIAL B:    B(1) =   0.1771 B(2) =   0.043 
VALIDATION TEST: Error / prediction uncorrelation 
 System variance: 0.00351            Model variance: 0.00317 
 Error variance R(0): 9.77 E-05 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.:|RN(i)| ≤  0.192, Pract. Val.: |RN(i)| ≤  0.15 
 RN(0) =    -0.2208                             RN(1) =    0.1508 
 RN(2) =    0.0432                              RN(3) =    0.0116 
 RN(4) =    0.0469 

The step response for this model, which has passed the validation test, is presented 
in Figure 7.11 (OEFC). The model obtained with the output error with fixed 
compensator has a static gain and a rise time slightly larger than the corresponding 
values for the previous model (a larger rise time means that the identified model is 
slower). 
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In this case, in order to compare further the quality of the two models, the 
model identified with the output error with extended prediction model should also 
be validated by the uncorrelation test. This test gives the following results: 

S=3  M=3 (OEEPM)   A=1   FILE: AERO.C   NS=128  DELAY D=0 
COEFFICIENTS OF POLYNOMIAL A:    A(1) =  -0.6589 
COEFFICIENTS OF POLYNOMIAL B:    B(1) =   0.1724 
  B(2) =   0.0579 
VALIDATION TEST: Error / prediction uncorrelation 
 System variance: 0.00351           Model variance: 0.00317 
 Error variance R(0): 1.02E-04 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.: |RN(i)| ≤  0.192, Pract. Val.:|RN(i)| ≤  0.15 
 RN(0) =    - 0.2154                         RN(1) =    - 0.1465 
 RN(2) =    - 0.1033                         RN(3) =    - 0.1094  
 RN(4) =    - 0.1769 

Both models are validated and the results are very close. 
As the models identified have the same quality, one of them will be used to 

compute the controller and the result of the design will be tested on both models. 

7.5.2 Distillation Column 

The diagram of the binary column (water-methanol), which is the subject of the 
identification, is given in Figure 7.12a and a view of the plant is shown in Figure 
7.12b. 

The control variables are the heating power (QB) and the reflux rate (R). The 
flow rate (LF) and concentration (XF) of the input product are assumed constant 
(their variations produce disturbances in the system). The controlled variables are 
the flow rate of the top product (LD) and the concentration of the top product (XD). 
(T) designate the temperature and (LB) the flow rate of the product at the bottom. 
The corresponding block diagram is given in Figure 7.13. 

The input and output variations will be related around an operating point by a 
linear model characterized by a 2 × 2 transfer matrix operator 
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Figure 7.12a,b. Binary distillation column (Laboratoire d'Automatique de Grenoble, 
INPG/CNRS). a Functional diagram, b View 
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that corresponds to a model of the form: 
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Figure 7.13. Block diagram of the distillation column (inputs-outputs) 

Henceforward we shall be concerned with the identification of the transfer 
between the heating power (QB) and the concentration of the top product (XD). 
The input/output file is named QXD9 file. It contains an I/O data set made of 256 
samples. The input is a pseudo random binary sequence generated with a register 
with 8 cells (N = 8, L = 255). Figure 7.14 displays the inputs and outputs of the 
centered QXD file. The sampling period was 10 s.  

The identification procedure starts after having centered the I/O sequences. As 
no prior knowledge of the system is available, first we choose structure S1, the 
recursive least squares method (M1) with a decreasing adaptation gain A1, delay 
d=0, degree for the polynomial B: nB = 4 (in order to capture a possible time delay 
of the system) and degree for the polynomial A: nA = 2 (since it is a chemical 
plant). The initial value of the parameters to be estimated is set to zero. The results  
obtained with this method are summarized below: 

S=1    M=1 (RLS)   A=1    FILE: QXD    NS=256    DELAY   D=0 
 INSTANT K                                             = 256 
 FORGETTING FACTOR                        = 1 
COEFFICIENTS OF POLYNOMIAL A:    A(1) = -0.23644 
                                                                      A(2) = -0.21889 
COEFFICIENTS OF POLYNOMIAL B:    B(1) =  0.01177 
                                                                      B(2) =  0.07982 
                                                                      B(3) =  0.18311 
                                                                      B(4) =  0.13271 

Note that B(1) < 0.15 B(2). This shows that we have to set the delay d equal to 1, 
as a first approximation. 

                                                 
9 Available from the book website http://landau-bookic.lag.ensieg.inpg.fr. 
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Figure 7.14. I/O data set for the distillation column QXD 

Thus a new identification is performed with d = 1, nB = 3, nA = 2 and the 
results obtained are 

S = 1   M = 1(RLS)   A = 1   FILE: QXD   NS = 256   DELAY D=1 
COEFFICIENTS OF POLYNOMIAL A A(1) = -.23806 
  A(2) = -.18820 
COEFFICIENTS OF POLYNOMIAL B B(1) =   .07982 
  B(2) =   .18303 
  B(3) =   .13244 
VALIDATION TEST: Whiteness of the residual error 
 System variance: 0.0542             Model variance: 0.0274 
 Error variance R(0):  0.0268 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
   RN(0) =    1.0000                          RN(1) =  -0.1216 
   RN(2) =   -0.2278                     RN(3) =    0.0112 
   RN(4) =    0.0718 

It is observed that the validation is unsatisfactory since the residual error is not 
sufficiently white (|RN(2)|) > 0.15). We may consider that this situation arises from 
the fact that the disturbances are incorrectly modeled by the structure S1. A 
different structure (S3) and the output error method with extended estimation 
model (M3), still with decreasing adaptation gain, are then tried. In this way a 
disturbance model will be identified. The results obtained are 
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S = 3  M = 3 (OEEPM)  A = 1  FILE:QXD   NS = 256 DELAY D=1 
COEFFICIENTS OF POLYNOMIAL A A(1) =  -.5065 
  A(2) =  -.1595 
COEFFICIENTS OF POLYNOMIAL B B(1) =   0.0908 
  B(2) =   .1612 
  B(3) =  .0776 
COEFFICIENTS OF POLYNOMIAL C C(1) = -.4973 
  C(2) = -.2593 
VALIDATION TEST: Whiteness of the residual error 
 System variance: 0.0542             Model variance: 0.0308 
 Error variance R(0):  0.0231 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
 RN(0) =   1.000000                               RN(1) =  -0.0241 
 RN(2) =   -0.0454                                  RN(3) =   0.0518 
 RN(4) =   0.1014 

The validation results obtained are very good. This is therefore a representative 
model. Figure 7.15 gives the step response for this model with  nA = 2 (gain 
normalized to 1). The analysis of this response shows that the rise time is  tR  10 
Ts (with a delay d = 1). On the other hand, since the number of cells of the 
generator register of the PRBS is N = 8, the duration of the largest pulse is less 
than tR. The validation will thus not be significant for the steady state gain (several 
models may be validated without their steady state gain being the same). A direct 
verification of the steady state gain shows that the value obtained (0.987) is 
correct. 

≈

Note also that the polynomial B(q-1) is unstable, B(1) < B(2) revealing the 
presence of a fractional delay greater than 0.5Ts (which explains the presence of an 
unstable zero). 

As the coefficient A(2) is small if compared to A(1) and the validation results 
are very good, one may think of identifying a new model with nA=1. In this case 
the results are 

S = 3   M = 3 (OEEPM)  A = 1  FILE:QXD  NS = 256  DELAY D=1 
COEFFICIENTS OF POLYNOMIAL A A(1) =  -.7096 
COEFFICIENTS OF POLYNOMIAL B B(1) =   .0839 
  B(2) =    0.1415 
  B(3) =    0.0528 
COEFFICIENTS OF POLYNOMIAL C C(1) =  -.688 
VALIDATION TEST: Whiteness of the residual error 
 System variance: 0.0542              Model variance: 0.02952 
 Error variance R(0): 0.0227 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
 RN(0) =   1.0000                                 RN(1) =  -0.0035 
 RN(2) =   -0.0748                                RN(3) =   -0.0131 
 RN(4) =   0.0442 
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Figure 7.15. FIle QXD: normalized step responses for the two models identified (static gain 
normalized to 1) 

The model obtained is validated. The static gain of the model is 0.958. It will 
be necessary to scale the values of the coefficients of the polynomial B(q-1) in 
order to obtain the static gain previously obtained (nevertheless the difference 
found between the two static gain can be neglected). 

The normalized step responses of both models are presented in Figure 7.15. 

7.5.3 DC Motor 

The identification of a DC motor model is examined in this section. The input of 
the system is the voltage applied to a power amplifier that feeds the motor, and the 
output is the speed measured by means of a tachometer. A short description of the 
global system is shown in Figure 7.16. From the  identification point of view, let  
us consider the cascade power amplifier, motor, tachometer, filter on the measured 
output as the plant. 

The file MOT3.c10 contains 256 centered I/O data obtained with a sampling 
period of 15 ms. The input is a PRBS generated by a shift register with seven cells 
and a clock frequency fs/2 (sequence length: 254). 

                                                 
10 Available from the website: http://landau-bookic.lag.ensieg.inpg.fr. 
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Figure 7.16. Schematic representation of a DC motor and other external elements 
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Figure 7.17. I/O data set for the DC motor (MOT3.c) 

The magnitude of the PRBS is set to 0.3 V and applied when the operating 
point of the system is an input  voltage of 3V (scales for u: 0-10V corresponding to 
a speed variation from 0 to +1500 rpm). This file is shown in Figure 7.17. 

The result of the complexity estimation algorithm (instrumental variable with 
delayed inputs method using estorderiv.sci or estorderiv.m) is (see Figure 7.18) 

  n = max (nA,nB+d) = 2 

The detailed complexity estimation gives the values nA = 1, nB = 2, d = 0. This 
complexity is coherent with the model obtained from physical equations that 
describe the DC motor, with at most two time constants, but the electrical time  
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Figure 7.18. Model complexity estimation for the DC motor (input: voltage, output: speed) 
using the data file MOT3.c 

constant in this case is very small if compared to the electro-mechanical one. The 
absence of a pure time delay is not surprising as well. The degree of the 
polynomial B , nB = 2 reveals the presence of a fractional delay as a result of the 
filtering action on the measure. 

A first identification is carried on with structure S1 and the recursive least 
squares (M1) with a decreasing adaptation gain (A1), the following results are 
obtained: 

S=1    M=1(RLS)    A=1   FILE:MOT3.c   NS=256   DELAY D=0 
COEFFICIENTS OF POLYNOMIAL A A(1) =  - 0.5402 
COEFFICIENTS OF POLYNOMIAL B B(1) =   0.2629 
  B(2) =   0.2257 
VALIDATION TEST: Whiteness of the residual error 
 System variance: 0.0412             Model variance: 0.041 
 Error variance R(0): 1.157 E-4 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.:|RN(i)| ≤  0.136, Pract. Val.: |RN(i)| ≤  0.15 
   RN(0) = 1.0000                 RN(1) = - 0.4529         
   RN(2) = 0.3113                     RN(3) = 0.0332 
             RN(4) = - 0.0297 

The model obtained is not validated. Next an identification with the structure S3 is 
performed by using the output error with extended prediction model method (M3) 
that simultaneously estimates the plant model and the disturbance model  with the 
choice nC = 1 (a decreasing adaptation gain is still used). In this case the results are 
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S=3   M=3 (OEEPM)   A=1   FILE:MOT3.c   NS=256  DELAY D=0 
COEFFICIENTS OF POLYNOMIAL A A(1) =  - 0.5372 
COEFFICIENTS OF POLYNOMIAL B B(1) =   0.2628 
  B(2) =   0.2273 
COEFFICIENTS OF POLYNOMIAL C C(1) = 0.3808 
VALIDATION TEST: Whiteness of the residual error 
 System variance: 0.0412             Model variance: 0.041 
 Error variance R(0): 1.004 E-04 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.:|RN(i)| ≤  0.136, Pract. Val.: |RN(i)| ≤  0.15 
 RN(0) =    1.0000                            RN(1) =    - 0.0144 
     -->  RN(2) =      0.3414  <--                    RN(3) =      0.0952 
 RN(4) =      0.0399  

It can be observed that the model obtained is not validated too. If the choice nC = 1 
does not allow one to model suitably the effects of disturbances on the system (as 
RN(2) still has a large value), it is advisable to perform a new identification with 
nC = 2.  

The following results for the whitening test on the residual prediction errors 
and for the uncorrrelation test between the output error and the output prediction 
are found: 

S=3   M=3 (OEEPM)   A=1   FILE:MOT3.c   NS=256  DELAY D=0 
COEFFICIENTS OF POLYNOMIAL A A(1) =  - 0.535 
COEFFICIENTS OF POLYNOMIAL B      B(1) =   0.2617        B(2) = 0.2288 
COEFFICIENTS OF POLYNOMIAL C      C(1) = - 0.84848      C(2) = 0.19255 
VALIDATION TEST: Whiteness of the residual error 
System variance:0.0042  Model variance:0.041  Error variance R(0): 8.856 E-05 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.:|RN(i)| ≤  0.136, Pract. Val.: |RN(i)| ≤  0.15 
 RN(0) =     1.0000            RN(1) =    - 0.0432           RN(2) =      0.0404 
 RN(3) =      0.0453           RN(4) =      0.01179 
VALIDATION TEST: Error / prediction uncorrelation 
System variance:0.0412  Model variance:0.0408  Error variance R(0): 2.71 E-04 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.:|RN(i)| ≤  0.136, Pract. Val.: |RN(i)| ≤  0.15 
 RN(0) = 0.0119             RN(1) = 0.0156              RN(2) = 0.0284 
 RN(3) = 0.0356             RN(4) = 0.0186 

Both the whitening test and the uncorrelation test give good values. Thus the model 
identified is validated. Another structure and method can be tested nevertheless 
with the same model complexity. If the structure S2 and the output error with fixed 
compensator method (M4) are chosen, in order to obtain an asymptotically 
unbiased estimation without estimating the disturbance model, one gets (d =0) 

S=2   M=4 (OEFC)    A=1   FILE:MOT2C   NS=256   DELAY D=0 
COEFFICIENTS OF POLYNOMIAL A A(1) =  - 0.5347 
COEFFICIENTS OF POLYNOMIAL B B(1) =   0.2629 
  B(2) =   0.2266 
VALIDATION TEST: Error / prediction uncorrelation 
 System variance: 0.0412             Model variance: 0.0406 
 Error variance R(0): 2.723 E -04 
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NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion:Theor. Val.: |RN(i)| ≤  0.136, Pract. Val.:|RN(i)| ≤  0.15 

 RN(0) = 0.043        RN(1) = 0.0591           RN(2) = 0.0631 
 RN(3) = 0.0564      RN(4) = 0.031 

Note that the results of the validation are very good, but slightly worse than those 
obtained with the output error with extended prediction model method. However, 
the parameters obtained in these two cases are very close. The step responses 
obtained using these models are extremely close each other and are shown in 
Figure 7.19. 
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Figure 7.19. Step responses for the identified DC motor models (Output error with extended 
prediction model and output error with fixed predictor, d = 0,  nA = 1, nB = 2) 

7.5.4 Flexible Transmission 

In this example the dynamic model of a flexible transmission, with low damped 
resonant modes, will be identified for control design purposes. A view of the 
flexible transmission is given in Figure 7.20 and the schematic representation of 
the control system is shown in Figure 7.21. 

The flexible transmission is made of three pulleys linked by two elastic belts 
(see Figure 7.20). One of these pulleys is constrained to the axis of a DC motor. 
The motor position is controlled by a local servo (speed and position feedback). 
The dynamics of the local position control is very fast if compared to the 
mechanical system.  

The control problem is to get the desired position of the third pulley, by 
modifying the input voltage of the position control of the motor that drives the first 
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pulley. The output y(t) of the system is the axis position of the third pulley, and the 
command signal u(t) is the reference for the first pulley axis position. The 
mechanical loads that can be added on the third pulley modify the system inertia 
and, consequently, also the resonant modes of the mechanical system.  

We are concerned in the following with the open loop identification of the 
model for this process (between u(t) and y(t)) for the case without additional load 
(the controller in Figure 7.21 is not connected). 

The sampling frequency is 20 Hz (Ts = 50ms). The excitation signal is a PRBS 
of small magnitude generated by a shift register with N = 7, and with a frequency 
divider p = 2. In the file poulbo1.c  254 I/O samples are stored after removal of DC 
component. The data stored in the file poulbo1.c11are plotted in Figure 7.22. 

The system has two resonant modes and then a possible choice is nA = 4. 
However, an estimation of the order for the model can be carried on by using 
techniques presented in Chapter 6, Section 6.5.  

The results obtained (with the functions estorderiv.m (MATLAB®) or 
estorderiv.sci (Scilab)) are shown in Figure 7.23, thus confirming that the order for 
the model to be chosen is 

 4),max( =+= dnnn BA  

A detailed order estimation (using WinPim) gives the values nA = 4, nB = 2, 
 d = 2. 
The estimation of the delay can be verified by identifying with the RLS, with nA = 
nB = 4, d = 0.  

The results obtained are 

S = 1   M =  1(RLS)   A  = 1    FILE: POULBO1.C   DELAY  D = 0 
 A(1) = -1.5752  B(1) = 0.0104 
 A(2) =  1.8384  B(2) = 0.0098 
 A(3) = -1.4788  B(3) = 0.3077 
 A(4) =  0.8896  B(4) = 0.4146 

Note that |B(1)|, |B(2)| << 0.15|B(3)|, and that clearly implies d = 2.  
 

                                                 
11 Available from the website: http://landau-bookic.lag.ensieg.inpg.fr. 
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Figure 7.20. View of the flexible transmission (Laboratoire d’Automatique de Grenoble 
INPG/CNRS/UJF) 
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Figure 7.21. Control scheme for the flexible transmission 



312 Digital Control Systems 
 

50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5
Plant Output

50 100 150 200 250
-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Plant Input

Samples

 
Figure 7.22. I/O data used for the identification of the flexible transmission  
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Figure 7.23. Complexity estimation for the flexible transmission model based on the file 
poulb01.c 
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If a new identification is performed with d = 2, nB = 2, nA = 4 by using 
structure S1 and the recursive least squares methods, one gets the following results: 

S=1  M=1 (RLS)  A=1  FILE: POULBO1.C  NS=254  DELAY D=2 
COEFFICIENTS OF POLYNOMIAL A:     A(1) = -1.5748 
                                                                       A(2) =   1.8329              
                                                                       A(3) = -1.4784  
                                                                       A(4) =  0.8895 
COEFFICIENTS OF POLYNOMIAL B:     B(1) = 0.3010 
                                                                       B(2) = 0.4181 
VALIDATION TEST: Whiteness of the residual error 

System variance: 0.3317  Model variance: 0.1053 Error variance R(0): 
0.0007 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion: Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
  RN(0) =   1.0000                             RN(1) =   -0.5727  
  RN(2) =   0.2360                             RN(3) =    -0.0475   
                 RN(4) =   -0.0158 
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Figure 7.24. Frequency characteristics of the models identified for the flexible transmission 
(RLS – recursive least squares, OEEPM – output error with extended prediction model) 

The validation is not satisfactory as RN(1), RN(2) are greater than 0.15. The 
frequency characteristics of this model is shown in Figure 7.25 (line RLS). 

Thus one tries structure S3 which introduces a model for the disturbance 
(ARMAX model). The output error with extended prediction model is used 
(OEEPM) with a decreasing adaptation gain (A1). The results of identification and 
validation are given below: 
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S=3 M=3 (OEEPM) A=1 FILE:POULBO1.C NS=254 DELAY D=2 
COEFFICIENTS OF POLYNOMIAL A:    A(1) =  -1.60955 
                                                           A(2) =   1.87644          
                                                                      A(3) =  -1.49879      
                                                                      A(4) =   0.88574 
COEFFICIENTS OF POLYNOMIAL B:    B(1) =   0.30530   
                                                                      B(2) =   0.39430 
COEFFICIENTS OF POLYNOMIAL C:   C(1) = -0.67530 
                                                          C(2) = 0.2283      
                                                                     C(3) = -0.0653     
                                                                     C(4) = -0.0585 
VALIDATION TEST: Whiteness of the residual error 
 System variance: 0.1061              Model variance:   0.1055 
 Error variance R(0):  0.0004 

NORMALIZED AUTOCORRELATION FUNCTIONS 
Validation Criterion: Theor. Val.: |RN(i)| ≤ 0.136, Pract. Val.: |RN(i)| ≤ 0.15 
 RN(0) =   1.0000                         RN(1) =  -0.0425 
            RN(2) =   0.0959                                       RN(3) =   -0.0563   

       RN(4) =  -0.0407  

The validation is really satisfactory, as all the values RN(i) are smaller than 0.136 
for i = 1,2,3,4. The frequency characteristics of this model is shown in Figure 7.24 
(line OEEPM). The comparison of the frequency characteristics of the models 
identified shows that a good validation corresponds to the identification of a less 
damped second resonant mode. 

7.6 Concluding Remarks 

This chapter has shown how effectively an identification of a plant model has to be 
carried out. The different steps can be summarized as follows: 

• Input/output data acquisition using a PRBS (pseudo-random-binary 
sequence) as input 

• Conditioning of the acquired data (DC removing, data scaling, filtering); 
• selection or initial estimation of the system order n = max (nA, nB +d) 
• Selection or estimation of nA, nB, d either by order estimation techniques, 

or by inspection of the numerical values of the estimated parameters 
• Identification and validation using several structures plant + disturbance 

and identification methods with the objective of obtaining the best 
acceptable model with lowest nA and nB 

• Analysis of the model identified and validated both in the frequency and 
time domain 
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7.7 Notes and References  
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For the identification of DC motors see also: 
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drives, Control Engineer Practice, vol.1, n°3. 
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Practical Aspects of Digital Control 

 Digital controller design methods and system identification techniques provide the 
basic tools for effectively solving a control problem. The final stages in the 
controller design are emphasized in this chapter. This involves implementation 
aspects, performance specifications and the interaction between plant 
identification and controller design. 

The first part of the chapter reviews several topics related to the 
implementation of digital controllers: effect of the digital-to-analog conversion, 
effect of saturations, effect of the computational delay, manual to automatic 
switching, cascade control, performance evaluation, adaptation of controller 
parameters, the hardware for controllers implementation.  

In the second part of the chapter, the joint use of system identification and 
controller design is illustrated through several examples:  

• Temperature control of an air heater 
• Speed control of  a DC motor 
• Cascade position control of a DC motor 
• Position control through a flexible transmission 
• Position control of a 360° flexible robot arm 
• Deposited zinc control in hot-dip galvanizing (SOLLAC-Florange) 

8.1 Implementation of Digital Controllers 

8.1.1 Choice of the Desired Performances 

The choice of desired performance, in terms of response time, is linked to the 
dynamics of the open loop system and to the power availability of the actuator 
during the transient. One should also take into account some “robustness” aspects. 

Indeed, the acceleration of the natural response of a plant requires control 
“peaks” during transients that are greater than the steady state values. 

317 
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If, for example, a system has the transfer function 1/(1+sT) and it is desired to 
accelerate the closed loop system response twice, i.e. to obtain a transfer function 
1/(1+sT/2), it is necessary to apply, for a certain time during the transient interval, 
a maximum input level which is twice the steady state value (i.e. umax = 2 ustat, 
(ustat = value of control signal during the steady state).  

 y 

t

y

u 
2 u 

Here the control is reduced

2y

 
Figure 8.1. Acceleration of the natural response of a system 

This is shown in Figure 8.1. By applying 2ustat, we expect to have the value 2y 
at the end of the system natural time response, but the value y is approximately 
obtained after a period that is equal to half of the time response. The controller 
should then reduce the control signal to ustat to get the desired steady state value y. 

The following relation can thus be considered: 

 
bandpassnatural
bandpassdesired

speednatural
speeddesired

u
u

stat
≈≈max  

It follows that the closed loop performances will depend on the actuator power 
availability. Or, vice versa, it will be necessary to choose the actuator according to 
the desired performances and the open loop response of the system. 

With regard to the structure of the performance models for tracking (Am(q-1)) 
and for regulation (P(q-1)), second-order models are preferred over first-order 
models for the same time response. This choice is a consequence of the fact that for 
a given time response the transient stress on the actuator will be weaker for a 
second-order model (as a result of a smoother response slope at the beginning of 
the transient). 

It has been shown, in Chapter 2, Section 2.6 that the robustness of the closed 
loop system, with respect to uncertainties or variations of plant parameters, 
depends upon the ratio between the band pass (related to the rise time) of the 
regulation dynamics (mainly defined by P(q-1)), and the band pass (related to the 
rise time) of the plant in open loop (mainly defined by A(q-1)). The robustness of 
the closed loop systems is better as this ratio is approaching 1 (assuming that the 
open loop is stable). 
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In the situations where the desired dynamics in closed loop is significantly 
faster than the plant dynamics, a more careful design is necessary in order to assure 
the robustness margins. In such cases one should  

1. Optimize the choice of the closed loop poles and of the fixed parts of the 
controller S(q-1) and  R(q-1), in order to obtain the best possible robustness 
margins 

2. Improve the quality of the plant model and reduce the uncertainties by: 

• Better identification in order to obtain a model which is relevant for the  
band pass desired in closed loop 

• Reduction of the size of the operating regions where only one 
controller is used 

• Use of  “adaptive control” techniques 

Note that the techniques for identification in closed loop described in Chapter 9 
allow, in general, improvement of the quality of the models for the design of high 
performance controllers. 

The achievable tracking dynamics is mainly limited by the power and the band 
pass of the actuators. 

 If the dynamics of the actuator is much faster than that of the plant, there is a 
risk that the high frequency dynamics of the plant be excited. It is therefore 
necessary, in these cases, on one hand to have a plant model which is relevant in 
the high frequencies and, on the other hand, to design a controller leading to an 
input sensitivity function with a low magnitude at high frequencies.   

8.1.2 Effect of the Computational Time Delay 

Two situations can be distinguished: 

1. Computation time equal to or greater than 0.5 Ts. 
In this case, the values measured at instant t are used to compute the 
control u that will be sent at instant t+1. The computer thus introduces an 
additional time delay of 1 and the new delay to be considered for the design 
of the controller will be 

 1+=′ dd  

This is illustrated in Figure 8.2a. 

2. Computation time less than 0.5 Ts. 

In this case, the control is sent at the end of the computation. This is 
illustrated in Figure 8.2b. The computer introduces a fractional time delay 
which has the effect either of introducing a zero, or of modifying the 
existing zeros in the pulse transfer function of the plant. This effect is 
negligible if the computation time is much smaller than the sampling 
period. 
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Figure 8.2a,b. Synchronization procedure for the measurement and the computed control: a 
computation time greater than 0.5 Ts ; b computation time less than 0.5 Ts 

8.1.3 Effect of the Digital-to-analog Conversion 

The control signal generated by the digital controller is often computed with 
floating (or fixed) point arithmetic on 16, 32 or 64 bits. So the distinct values of 
this signal are larger than the distinct values of a digital to analog (D/A) converter 
which in general does not have more than 12 bits (4096 distinct values). 

Figure 8.3 shows the characteristic of a digital to analog converter. The 
computed values of the control signal (u) are represented on the horizontal axis and 
the rounded values (ur), effectively obtained at the output of the D/A converter, are 
represented on the vertical axis. Q represents the quantization step. 

In a digital controller, the control signal generated at instant t depends upon the 
previous values of the control signal effectively applied on the plant input. It is 
therefore necessary to round the control u(t) inside the digital controller in order to 
correctly compute the future values. 

The equation defining the controller has the form  

  (8.1.1) )1()()()()()( *111 ++=+ −−− dtyqTtyqRtuqS
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Figure 8.3. The characteristic of  a digital to analog  converter 

and respectively 
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(where s0 = 1 in the case of pole placement).  
In order to take into account the effect of the D/A converter, the expression of 

the control u(t ) becomes  

 [ ])()()1()()1()(1)( 11**1

0
tyqRtuqSdtyqT

s
tu r

−−− −−−++=  (8.1.3a) 

where ur(t) is the rounded control signal sent to the D/A converter and satisfying 

 Qtutur 2/1)()( ≤−  (8.1.3b) 

If this rounding operation is not implemented, an equivalent noise is introduced at 
the plant input. This produces, in general, an increase of the variance of the plant 
output. In some cases low magnitude oscillations can be observed on the plant 
output.  

8.1.4 Effect of the Saturation: Anti Windup Device 

The effect of the saturation on the actuator can deteriorate the performance, in 
particular if the controller includes an integrator. Therefore, the effect of the 
actuator saturation has to be taken into account since for the computation of u(t) 
the previous values of the control must be considered. The previous computed 
values are replaced by the applied values. This is equivalent to the introduction of 
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a “copy” of the nonlinear actuator characteristic in the controller. As a 
consequence, the control law becomes 

 
0

111 11
s

)t(u)q(S)t(y)q(R)dt(y)q(T)t(u
** −−−++

=
−−−

 (8.1.4) 

In Equation 8.1.4, u (t-1) is the vector of previous values of u(t) passed through 
the nonlinear characteristic (saturation). 

This is shown in Figure 8.4 for the control law 
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corresponding to tracking and regulation with independent objectives for a discrete 
time model described by 

 )1()()()1( 211 −++−=+ tubtubtyaty  (8.1.6) 
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Figure 8.4. Digital control in the presence of actuator saturation (anti windup device) 

The effects of the saturation of the control input and of the anti windup device 
are illustrated in Figure 8.5 for the case of a position control of a DC motor 
(described in Section 8.4). Both the plant and the controller contain an integrator. 

One can observe that the saturation of the control slowdowns the system 
response and produces a significant overshoot, with respect to the case without 
saturation. The introduction of an anti windup device allows one to obtain a 
response without overshoot but which is obviously slower than the response in the 
linear operation case. 
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One can ask, looking at the evolution of the control signal, if it is possible to 
accelerate the system response in the presence of saturation, by maintaining the 
control at the saturation level for a longer duration, but still assuring a system 
response without or with a small overshoot. 
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Figure 8.5. Response (in simulation) of a digital position control in the presence of 
saturation 

In order to achieve this, it is necessary to impose dynamics on the trajectory of 
u(t) when it leaves the saturation level (instead of a simple gain). Such a scheme is 
represented in Figure 8.6, where the dynamics of u(t) when it leaves the saturation 
level is defined by the polynomial 

  (8.1.7) )(1)( 1*11 −−− += qPqqP SS

u (t)

S – s0P

-

Ty * - Ry (t) 1
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Figure 8.6. Anti windup device with specified dynamics when u(t) leaves the saturation 
level 
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In the linear domain (|u(t)| < | usat | −> u (t) = u(t)), this system has the transfer 
function 1/S(q-1). Effectively from Figure 8.6 one gets 
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The controller equation in the general case will take the form 
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and u(t) will be given by 
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but 
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One gets therefore the following equation for the control signal: 
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where 
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The next question is how to choose the dynamics for the evolution of u(t) when it 
leaves the saturation level. One generally chooses 

  (8.1.13) 08.0;1)(
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This choice for is easier to interpret if one considers Equation 8.1.13 as the 
denominator of a first-order discrete time filter resulting from the discretization of 
a first-order continuous time filter characterized by a time constant 

( ). In this case the choices indicated in Equation 8.1.13 
become  

1Sp

satT sats TT
S ep /

1

−−=

 ssat TT 40 ≤<  

(  corresponds to  ssat TT 4= 778.01 −=p ). 
Figure 8.7 illustrate the accelerating effect of this dynamics in the presence of 

saturation. One observes that for ssat TT 2=  ( 602.01 −=p ) one gets an acceleration 
with respect to the case  and still without overshoot. 0=satT

Note that the value to be selected for ( ), within the indicated bounds, is 
related to the specificity of each application. 
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Figure 8.7. Digital position control (in simulation) with anti-wind-up device and dynamics 
when u(t) leaves the saturation level 
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8.1.5 Bumpless Transfer from Open Loop to Closed Loop Operation 

To avoid large transients when one moves from the open loop operation to the 
closed loop operation, it is necessary to initialize the « memory » of the controller 
(i.e. to provide y(t-1), y(t-2) ..., u(t-1), u(t-2), ...r(t-1), ...). 

A method for controller initialization (when it is still in open loop operation) is 
described next: 

1. One replaces the reference and the desired output by the measured output 
value (y*(t+d+1) = y(t); r(t) = y(t)). 

2. One stores the control u(t), applied in open loop operation, in the controller 
memory. 

3. One repeats step 1 and 2, for a number of times equal to n = max (nA + nS, 
d + nB + nR). 

4. One switches from open loop to closed loop operation. 

Using this procedure, the control signal will have, at the switching instant, the 
value of the control signal applied at the previous instant in open loop operation.  

To see this, suppose that y(t) = constant during the initialization phase and that 
the controller has an integrator. The control signal at the switching instant will be 
given by   

 [ ])t(u)(S)t(y)(R)t(y)(T)s/()t(u * 11111 0 −−−=  (8.1.14) 

(since y*(t+d+1) has been replaced by y(t)). 
The controller has an integrator so S(1) = 0 and  S*(1) = -s0, because 

. Furthermore, T(1) = R(1) (since one has a unit gain 
between y* and y). One gets then from Equation 8.1.14:  

)()( 11
0

1 −−− += qSqsqS *

 ( )RBSA nndnnttutu +++=−= ;max;)1()(  (8.1.15) 

A C++ code for a RST digital controller which takes in account the D/A effect, 
the anti windup device and the bumpless transfer protocol can be downloaded from 
the book website1. 

8.1.6 Digital Cascade Control 

Cascade control has been used in industry for many years. Its origin is probably 
the observation that between the actuator and the main controlled variable, there 
are intermediate physical variables that is interesting to control for various reasons. 
The block diagram of a cascade control is shown in Figure 8.8. 

                                                 
1 http//: landau-bookic.lag.ensieg.inpg.fr 
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Figure 8.8. Block diagram of a cascade control 

The controller for the main variable (n) provides the desired value for the 
intermediate variable (n-1). The controller for the intermediate variable (k) will 
provide the desired value for the variable (k-1). With cascade control, bounds on 
the intermediate variable (k-1) can be easily achieved by limiting the output of the 
(k) controller which provides the reference for the loop (k-1).  

The logical order of the variables in a cascade control scheme results from the 
physical structure of the system. For example in a positioning system using a DC 
motor, the position will depend upon the speed, which in turn depends on the 
current which will be driven by the voltage applied to the motor. The physical 
constraints require that, during position transients (in tracking or regulation), the 
maximum rotational speed and the maximum current be bounded. These bounds 
will be obtained easily by bounding the output of the position controller and of the 
speed controller, respectively.  

A similar situation is encountered in the level control of a liquid in a tank. The 
level of the liquid will depend upon the flow rate of the incoming liquid, which, 
itself, will depend upon the valve position. 

Another important aspect in cascade control is related to the dynamics of the 
intermediate variables. These dynamics become more and more rapid as we 
approach the actuator. This allows decomposition of the transfer function from the 
control signal to the main output variable in several blocks, each being 
characterized by a different time scale. 

This is particularly important in the case of digital control where the selection 
of the sampling frequency will depend for each loop upon the dynamics associated 
to the intermediate variable. It is this aspect that makes the difference between a 
continuous time cascade control and a digital cascade control.  

In practice, we will start by selecting the sampling frequency for the first 
control loop characterized by the fastest dynamics. The sampling frequency for the 
other loops should be an integer under multiple of the sampling frequency for the 
first loop. In addition the sampling frequency for the loop (k) should be either an 
integer under multiple of the sampling frequency of the (k-1) loop or equal to it2. 

The implementation of a cascade control first requires one to identify the 
transfer function between the input to the actuator and the first intermediate 
variable followed by the design of the RST controller for this loop. Once the first 

                                                 
2 This sampling frequency selection concerns the frequency at which the controller operates. This has 
not to be confounded with the data acquisition frequency that can be the same for all the loops. 
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loop is implemented, one has to identify the model corresponding to the first closed 
loop cascaded with the part of the plant connecting the intermediate variables 1 and 
2. The excitation sequence is superposed to the reference input of the RST 
controller for the first loop and the output is the intermediate variable 2 (see 
Section 8.4 for an example).  The controller for the loop 2 will be designed on the 
basis of this model and the control specifications. One then repeats the procedure 
for the other loops. 

8.1.7 Hardware for Controller Implementation 

There is a variety of hardware options for implementing a digital control scheme.  
For a rapid test prior to final implementation on a specific hardware, one can 

use a “software in the loop” systems which include real time kernels (like Vissim 
(Visual solutions) or Simulink (Mathworks). Dedicated RST real time schemes 
operating on a PC can also be used (like Wintrac (Adaptech), which also provides 
the C++ code to be compiled and downloaded on the controller). 

For the effective implementation on a micro-controller, a C++ code (Adaptech), 
available from the book website3, can be used as a reference. 

Many applications use a PC in which several controllers are implemented 
together with the logic related to the operation of a specific plant. 

Another option is provided by the DCS (digital control systems). They have a 
high level programming language allowing to code the RST controller. See, for 
example, Roland and Landau (1991). 

The PLC (programmable logic controller) is probably the device on which RST 
controllers are mostly implemented. The PLC produced by various manufacturers 
(see Figure 8.9) incorporate the function “RST controller” (like LTI 160 (Leroy), 
Alspa (Alstom), Quantum (Schneider Modicon)). A guide for the integration of 
RST controllers on a programmable system is available (Adaptech 2001a)4. 

A number of programmable controllers (like T640 (Eurotherm), µ - pilot 
(Soléa)) also allow the implementation of RST controllers. 

The micro-controller boards, the VME boards under real time operating system 
OS9 and DSP boards also allow one to implement RST digital controllers 
operating at high sampling frequency. 

To summarize: any digital computer with a data acquisition system and a real 
operating system can be used for the implementation of a digital control. 

8.1.8 Measuring the Quality of a Control Loop 

An important aspect of controller design and implementation is the measure of the 
achieved performance. This is easy, in general, for the tracking aspects (some step 
changes may be enough) but less obvious for the regulation aspects since, in 
practice, one cannot apply the disturbances. Evaluating the regulation performance 
for continuous type production processes is extremely important since any 

                                                 
3 http://landau-bookic.lag.ensieg.inpg.fr 
4 To be downloaded from the website: http://www.adaptech.com 
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improvement in the regulation performance has an economic impact (improvement 
of the product quality, reduction of raw materials and energy consumption, 
reduction of machine stress). 

For continuous time production processes, evaluation of the regulation 
performance is done using histograms of the measurements of the controlled 
variable over a certain time horizon (the horizon should be long enough in order 
that the results have a statistical meaning). 

Figure 8.10 illustrates the histogram of a controlled variable for a “poor” 
control and for a “good” control.  

If the control performance is “poor”, one observes that a significant number of 
measurements are far from the average value (corresponding to the reference 
value). This will require to move the reference value towards higher values in order 
to guarantee a minimum acceptable value for the controlled variable (for example: 
minimum depth coating on a steel strip, minimum humidity in drying processes, 
etc.). 

Figure 8.9. PLC Leroy LT160 embedding several RST controllers and I/O modules 
(courtesy of Leroy Automatisme) 

If one has a “good” control, the dispersion of the measurements around the 
mean value will be significantly reduced. This corresponds to the reduction of the 
variance of the controlled variable (and of the standard deviation). As a 
consequence, on one hand a better quality (uniformity) of the products will be 
obtained and, on the other hand, the set point can be moved close to the tolerance 
limits. This in general will induce raw material and energy savings.   

From a histogram one makes the following computations: 

• Mean value:  
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If the controller has an integrator, the mean value is often very close to the 
reference value (assuming that the disturbances over the measurement 
horizon have an almost zero mean value – this is often the case in 
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continuous time production processes if the measurement horizon is 
enough large). 
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Figure 8.10.  Histograms of the controlled variable 
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If the histogram has a form close to that of a Gauss bell (Gaussian 
distribution -  see Appendix A), 63% of the measurements will be in the 
interval  ± σ  around the mean value and more than 95% of the 
measurements will be in the interval ± 2 σ  around the mean value. In 
addition, from the histogram one can directly determine the percentage of 
measurements which are inside a certain tolerance zone. 

It is important to mention that for high capacity production processes an 
improvement of the regulation performance (i.e. the reduction of the standard 
deviation) of 1%, or less, may have an important economic impact. This impact 
may be significantly higher than the investment for improving the control 
performance (in many cases a plant model identification and replacement of a PID 
controller by a digital RST controller designed on the basis of the identified model 
may achieve this). 
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8.1.9 Adaptive Control 

“Adaptive Control” is a set of techniques used for on-line automatic tuning of 
controllers in order to achieve (or to maintain) a certain level of performance when 

• The plant parameters are unknown or vary during plant operation 
• The plant parameters are known but the characteristics of the disturbances 

are unknown or vary during operation 

Adaptive control techniques should be considered only when the large variability 
of the plant parameters, or of the disturbance characteristics, does not allow to 
design a robust linear controller assuring satisfactory performance. We distinguish 
two categories: 

1. “Closed loop” adaptive control 
2. “Open loop” adaptive control 

A “closed loop” adaptive control combines in general a real time (recursive) 
identification algorithm with the computation in real time of the controller 
parameters based on the current values of the estimated model parameters and of 
the desired performance. The tuning of the controller can be done at each sampling 
instant or at a lower frequency. In this second case one has a time horizon for the 
estimation of the plant model followed by the computation of the new controller 
parameters.  

If this estimation horizon is significantly larger than the number of parameters 
to be estimated and, in addition, an external excitation is added during the 
parameter estimation stage (the controller being constant over this horizon), one 
has an iterative scheme which combines plant model identification in closed loop5 
with the redesign of the controller. 

A “closed loop” adaptive control system should incorporate a supervision 
function, which monitors the correct operation conditions for the adaptive loop (ex: 
richness of the excitation signal used for identification, compatibility of the 
identified model with the control design, etc.). A block diagram of a “closed loop 
adaptive” system is shown in Figure 8.11a. It includes a control loop, an adaptation 
loop, and a supervision device. Closed loop adaptive control schemes, featuring 
explicitly a real time model estimation block followed by a real time controller 
design block, are termed “indirect adaptive control”.  

In a number of cases, one can directly tune (estimate) the controller parameters 
without an explicit use of the current model parameters for controller redesign. 
This type of scheme, shown in Figure 8.11b, is termed “direct adaptive control” 
(examples: model reference adaptive control, adaptive tracking and regulation, 
adaptive minimum variance control, adaptive rejection of unknown disturbances). 

                                                 
5 The techniques for plant model identification in closed loop operation are presented in Chapter 9. 
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Figure 8.11a,b. Closed loop adaptive control: a indirect adaptive control; b direct adaptive 
control 

Closed loop adaptive control schemes have basically two modes of operation: 
self-tuning operation and adaptive operation. In the self-tuning operation, the 
adaptation starts when a degradation of the performance is detected and stops when 
the desired performance is achieved. In the adaptive operation the algorithm 
operates all the time. 

The characteristics of a plant dynamic model often depend upon a set of 
measurable variables which define an operating point (for example in hot dip 
galvanizing, the dynamic characteristics of the process depend upon the steel strip 
speed and the position of the air knives with respect to the steel strip – see Section 
8.7 for details). In such cases one can use an “open loop” adaptive control scheme, 
as shown in Figure 8.12.  

The range of operating points is divided in a number of operation regions. For 
each region, a relevant operating point is selected and a corresponding controller is 
designed based on an identified model. This controller assures the desired 
performances for all the operating points located within this region. The 
corresponding controllers are stored in a table. When the plant will operate in one 
of the operation regions, the corresponding values of the controller parameters will 
be used according to the table. 
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Figure 8.12. Open loop adaptive control scheme 

 
For many applications characterized by a large variability of the plant 

dynamics, resulting from the change of the operating point, an “open loop” 
adaptive control is enough for assuring the desired performance over the range of 
possible operating points. 

It is this approach which is illustrated in Section 8.6 (hot-dip galvanizing at 
SOLLAC-Florange). 

 For a detailed presentation of adaptive control techniques see: Landau (1979), 
Landau (1986), Åström and Wittenmark (1995), Landau et al. (1997), Landau 
(1993) and Landau et al (2005). 

8.2 Digital Control of an Air Heater6 

This section aims at illustrating the implementation on a real system (air heater) of 
an RST digital controller, designed according to one of the methods  presented in  
Chapter 3 and  based on an identified discrete-time  model of the plant (for details 
concerning the identification of the air heater see Chapter 7, Section 7.5.1).  

The diagram of the system and of the digital control loop is represented in 
Figure 8.13. The air is heated by means of a resistor supplied by a computer 
controlled thyristor power amplifier. The controlled variable is the air temperature 
at the output which is measured by a thermocouple.  

Two models have been identified and validated for this air heater with Ts=5s 
(see Chapter 7, Section 7.5.1): 

                                                 
6 The examples presented in this chapter have been worked out with WinPim (Adaptech) identification 
software and WinReg (Adaptech) control design software. Small numerical differences will result when 
using other identification and control design routines. 
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The pole placement method has been used for the controller design7. The same 
dynamics for the tracking and regulation desired performances will be chosen. The 
rise time for the two models is about 6 Ts ( ≈ 30s) (see Figure 7.11). First we will 
consider for the closed loop response an acceleration of 1.25 times with respect to 
the open loop response (desired rise time ≈  24s) with almost no overshoot. In 
order to obtain a rise time of about 24s in closed loop, it is found , from diagrams 
of  Figure 1.10 (or 1.11b), that for a second-order with damping ζ = 0.9, it is 
necessary to set ω0 = 0.136 rad/s. The desired closed loop poles will result from 
the discretization of a second order continuous time system with ω0 = 0.136 rad/s 
and ζ = 0.9 (the response has almost no overshoot) for Ts = 5s. 

 

 y(t)

 u(t)

micro- 
computer 

power 
 amplifier

temperature 
measurement

 
Figure 8.13. Digital control of an air heater 

Table 8.1 summarizes the results of the digital controller design based on the 
model 1 and using the pole placement. Figure 8.14 shows the magnitude of the 
frequency response of the output sensitivity function Syp. Note that the resulting 
curve respects the robustness template. 

The designed controller has been tested first in simulation, both on model 1 and 
model 2. Figure 8.15 illustrates the closed loop response with both models 

                                                 
7 In this case one can also use the tracking and regulation with independent objectives, as the zeros of 
the plant model are stable (b2 < b1). 
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(simulation). The rise time is about five sampling periods ( ≈  25s) matching the 
desired performance. The differences between the responses obtained with the two 
models are negligible (one can note a difference in the input signal applied to the 
system, caused by the different identified static gains). 

Table 8.1. Controller designed by “pole-placement” for the air heater, with ωo= 0.136 rad/s, 
and ζ = 0.9 (both tracking and regulation) 

Plant: 

• d = 0 
• B(q-1) = 0.1724 q-1 +0.0579 q-2 
• A(q-1) = 1 -0.6589 q-2 

Tracking dynamics   Ts  = 5s, ω0 = 0.136 rad/s, ζ = 0.9 

• Bm (q-1) = 0.1543  +0.1024 q-1 
• Am (q-1) = - 1.0372 q-1+0.2940 q-2 

              
Regulation dynamics    Ts  = 5s , ω0  = 0.136,  ζ = 0.9 

                                   P(q-1) = 1 -1.0372  q-1  +0.2940 q-2 
Pre-specifications: Integrator 

*** CONTROL LAW *** 

S(q-1) u(t) + R(q-1) y(t) = T(q-1) . y*(t+d+1) 

y*(t+d+1) = (Bm(q-1) / Am(q-1)) . r(t)  
Controller: 

• R(q-1) = 2.7637  - 1.6491 q-1  
• S(q-1) = 1 -0.8549 q-1 - 0.1451 q-2 
• T(q-1) = 4.34 - 4.5017 q-1 + 1.2762 q-2 

Gain Margin: 5.61                                        Phase margin: 63.6 deg 
Modulus margin: 0.732 (- 2.71 dB)             Delay margin: 9.6 s 
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Figure 8.14. Output sensitivity function with the controller based on the specifications     
ωo= 0.136 rad/s, and ζ = 0.9  
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Figure 8.15.  Simulated closed loop response for the air heater (model 1 and model 2) with 
the controller based on model 1 and the desired performances: ω0 = 0.136 rad/s and ζ=0.9 
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Figure 8.16. Real time responses for the controller designed from the specifications   
ωo=0.136 rad/s, ζ = 0.9 

The experimental results for temperature variations around 60°C (3.2V) are 
given in Figure 8.16. One can see that the rise time is indeed about 25s. 

We now consider the case in which a stronger acceleration is required for the 
closed loop system if compared to the natural system response (open loop 
response). For a rise time about 15s (rise time reduced to half of open loop rise 
time), it results, from the diagrams of Figure 1.11, that the desired dynamics for the 
closed loop corresponds to that of a second-order system characterized by ω0 = 
0.226 rad/s;  ζ = 0.9. The new controller must guarantee, nevertheless, a modulus 
margin greater or equal to 0.5 and a delay margin at least equal to 5s (1 Ts). 

On the basis of these new specifications, the results of the controller design are 
given in Table 8.2. Note that the robustness margins are reduced with respect to the 
margins found in the previous case, as a consequence of the stronger acceleration 
required (rise time reduction). The delay margin obtained, in particular, is very 
close to the limits (Ts=5s). However the robustness conditions for the modulus and 
the delay margins are still satisfied.  

The magnitude of the output sensitivity function is presented in Figure 8.17. 
We observe that the sensitivity function reaches the upper template. The system 
response cannot be further accelerated while preserving the robustness (without 
specific calibration of the sensitivity functions). 
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Table 8.2. Controller designed by “pole-placement” for the air heater, with ω0 = 0.226 rad/s 
and ζ = 0.9 

Plant: 

• d = 0 
• B(q-1) = 0.1724 q-1 +0.0579 q-2 
• A(q-1) = 1 -0.6589 q-2 

Tracking dynamics   Ts = 5s , ω0 = 0.226, ζ = 0.9 

• Bm (q-1) = 0.3281 +0.1652 q-1 

• Am (q-1) = 1 - 0.6373 q-1  +0.1308 q-2 

Regulation dynamics   P (q-1) = 1 -0.637 q-1  +0.1308 q-2 
                                        Ts  = 5s , ω0 = 0.226,  ζ = 0.9 
Pre-specifications: Integrator 

*** CONTOL LAW *** 

S(q-1) u(t) + R(q-1) y(t) = T(q-1) y*(t+d+1) 

y*(t+d+1) = (Bm(q-1) / Am(q-1)) . r(t)  
Controller: 

• R(q-1) = 4.6461 -2.5045 q-1 + 0.1147 q-2 
• S(q-1) = 1 - 0.7797 q-1 -0.2202 q-2 
• T(q-1) = 4.34 -2.7662 q-1 + 0.5677 q-2 

Gain Margin: 3.159                                      Phase margin: 51.9 deg 
Modulus margin: 0.613 (- 4.25 dB)             Delay margin: 5.05 s 

 
The simulated responses for both models of the air heater are presented in 

Figure 8.18. The responses obtained in simulation with the two models are again 
very close. The only difference one can see is the steady state value of the input 
signal (as the model gain is different). The rise time is about 15s. One can note an 
increase of the actuator effort needed during the transient as the rise time has been 
reduced (to be compared with Figure 8.15). 

The experimental results obtained for temperature variations around 60°C 
(3.2V) are given in Figure 8.19. The controller designed with the specifications 
ω0=0.226 rad/s and ζ = 0.9 allows one to obtain the desired performances (rise 
time  15s, no overshoot). ≈

Figure 8.20 shows the behavior during regulation (around 65°C) for a 
disturbance introduced by a step variation of the fan speed (see Figure 8.13). 
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Figure 8.17. Output sensitivity functions for the controllers designed from the specifications  
ωo= 0.226 rad/s, ζ = 0.9 and ωo= 0.136 rad/s, ζ = 0.9 respectively 
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Figure 8.18. Simulated closed loop response for the air heater  (model 1 and model 2) for 
the controller designed from ωo= 0.226 rad/s, ζ = 0.9 
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Figure 8.19. Real time response for the air heater with the controller designed from the 
specifications: ω0=0.226 rad/s and ζ = 0.9 
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Figure 8.20. Air heater output in regulation with the controller based on the specifications: 
ω0=0.226 rad/s and ζ = 0.9 



 Practical Aspects of Digital Control 341 
 

8.3 DC Motor Speed Control 

The block diagram of the DC motor digital speed control is shown in Figure 8.21. 
For controller design, the model of the motor previously identified (see Chapter 7, 
Section 7.5.3) has been used. The specific real time implementation has been done 
using Wintrac (Adaptech 2004). 
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Figure 8.21. Digital speed control of a DC motor 

 
The model identified with OEEPM (Ts = 15 ms) has been used (see Chapter 7, 

Section 7.5.3). 
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The model has a stable zero since b2 < b1, but very close to the unit circle. It is 
therefore not recommended to use the tracking and regulation with independent 
objectives. The pole placement method will be used. The model rise time is around 
4.5 Ts ( ≈  67 ms) (see Figure 7.19). An acceleration by a factor of 1.33 is desired 
for the closed loop time response (desired rise time: ≈ 50 ms) together with a small 
overshoot. In order to obtain a rise time tR ≈  50 ms, from Figure 1.10 it results that  
a second-order continuous time system with ζ = 0.9 o, ω0 ≈  75 rad/s has to be 
chosen as desired closed loop dynamics. Therefore the desired closed loop poles 
will result from the discretization of a second-order continuous time system with 
ω0 =75 rad/s, ζ = 0.9 and Ts = 15 ms. The same dynamics have been chosen for 
tracking. 

Table 8.3 summarizes the controller design for the identified model of the 
motor. The robustness margins are satisfactory. Figure 8.22 illustrates the 
simulation results using the identified model both in tracking and regulation. The 
rising time is 55 ms. This is normal, since in pole placement there is the 
additional dynamics of B(q-1) which will influence the results. In this case it is a 
fractional delay of about 5 ms. 

≈

≈
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Table 8.3. “Pole placement” speed controller with ω0 = 75 rad/s  and ζ = 0.9 (DC motor) 

Plant: 
• d = 0   
• B (q-1) = 0.2617 q-1 + 0.2288 q-2 
• A (q-1) = 1 -0.5351 q-1 

Tracking dynamics   Ts = 0.015s, ω0  = 75 rad/s, ζ= 0.9 

• Bm  = 0.3262 +0.1647 q-1 

• Am = 1 -0.6409 q-1  +0.1319 q-2 

 Regulation dynamics   P = 1-0.6409 q-1 +0.1319 q-2 
                                         Ts =  0.015s, ω0 = 75,  ζ = 0.9  
Pre-specifications: Integrator 

*** CONTROL LAW *** 

S(q-1) . u(t) + R(q-1) . y(t) T(q-1) y*(t+d+1) 

y*(t+d+1) = (Bm (q-1) / Am (q-1)) . ref(t)  
Controller: 

• R(q-1) = 1.9176 - 0.9168 q-1 
• S(q-1) = 1 - 0.6078 q-1-0.3921 q-2 
• T(q-1) = 2.0382 - 1.3065 q-1-0.269 q-2 

Gain margin: 3.205                                    Phase margin: 57.8 deg 
Modulus margin: 0.625 (- 4.08 dB)           Delay margin: 22 ms (1.46 Ts) 

Real time results are shown in Figures 8.23 and 8.24. Figure 8.23 shows the time 
response of the motor speed for a step change in the desired speed. The rising time 
is close to the simulated one ( ≈ 55 ms). Figure 8.24 illustrates the behavior of the 
closed loop system for a load disturbance. It is an almost step disturbance followed 
by an almost instantaneous take off of the load at 393 Ts. The disturbance rejection 
time is 105 ms. ≈
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Figure 8.22. Simulation results for the digital speed control with ω0  = 75 rad/s and ζ = 0.9 

 

100 150 200 250 300 350 400 450 500

3

3.5

4

DC Motor: Output

Time (s) (Ts = 15 ms)

A
m

pl
itu

de
 (V

ol
t)

Spec. : ω0 = 75 rad/sec, ζ = 0.9

Reference

100 150 200 250 300 350 400 450 500
2.5

3

3.5

4
DC Motor: Control Signal

Time (s) (Ts = 15 ms)

A
m

pl
itu

de
 (V

ol
t)

 
Figure 8.23. Closed loop speed response of a DC motor for a step on the reference     
(tracking dynamics ω0  = 75 rad/s,  ζ = 0.9 ) 
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Figure 8.24. Motor speed response for a load disturbance (regulation dynamics: ω0 = 75 
rad/s, ζ = 0.9) 

8.4 Cascade Position Control of a DC Motor Axis 

The block diagram of the cascade position control of a DC motor axis is shown in 
Figure 8.25. 

 
DC motor + inertia 

 

 

 

 

 

RST 
Position  r2 u2 u1 y2 y1 

Position loop 

Speed loop 

Power 
amplifier 

RST 
Speed 

Figure 8.25. Digital cascade control position of a DC motor axis (the D/A and A/D 
converters are not shown) 

In this specific application the DC motor already considered in Section 8.3 (speed 
control) will be used. We will discuss now the integration of the speed control loop 
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in a cascade position control. The implementation of this cascade control scheme 
in real time has been done with a PC using WinTRAC (Adaptech 2004)8.   

The sampling period for the speed loop is 15 ms (see Section 8.3). Since the 
dynamics of the position is significantly slower (presence of an integrator and of an 
important mechanical mass), a longer sampling time has to be used in the position 
control loop. A sampling time of 120 ms has been chosen (it is a multiple of 15 
ms). In order to design the position controller it is necessary to identify the 
dynamic model between the reference of the speed loop and the axis position.  

The PRBS for identification has been applied to the reference input of the 
controller. The characteristics of the PRBS used for identification are: 

• Number of cells of the shift register: N = 7 
• Clock frequency: fPRBS = fs/2 (TPRBS = 240 ms) 
• Magnitude: 2V (300 rpm) 
• Length: 256 samples 

The data acquired are shown in Figure 8.26 (after centering the data). The 
integrator behavior of the system is obvious.  
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Figure 8.26. Input/output sequences for identification (input: speed reference;             
output: axis position) 

                                                 
8 A PLC can also be used for the implementation of digital cascade control. 
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Data Pre-Processing 
Since it is known that the dynamic model contains an integrator (position is the 
integral of the speed) and taking into account the indications given in Chapter 7, 
Section 7.2.2, a model without integrator will be identified. In order to do that, a 
new input/output data set is considered: the input sequence is unchanged, whilst a 
new output sequence representing the variations of the output between the 
sampling instants (y(t)-y(t-1)) will be used. The corresponding I/O sequences (after 
elimination of the residual DC component) are represented in Figure 8.27. 

One observes that the output level is about one fifth of the input level. 
Following the indications given in Section 7.2.3, the output should be multiplied 
by a factor of 5 in order to get a magnitude of the same order as the input. The 
resulting identified model will need to be scaled by dividing the coefficients of 
B(q-1) with a factor of 5. 

Complexity Estimation 
Using the order estimation procedure based on the use of the instrumental variable 
with delayed inputs (see Chapter 6, Section 6.5) and implemented in 
estororderiv.sci (estororderiv.m), as well as in WinPIM software (Adaptech, 
1996a), one gets for the model without integrator n = max (nA,nB+d) = 2 (see 
Figure 8.28) and  nA = 1, nB = 2, d = 0, with an over estimation risk of 0.1%. 
These orders seem to be reasonable since the response time of the speed loop is 
about half of the sampling period used in the position loop, which leads to the 
presence of a fractional delay ( nB = 2).   
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Figure 8.27. Input/output file for the system without integrator  
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Figure 8.28. Order estimation from data for the model without integrator 

Parameter Identification and Validation  
The model (without integrator) identified with the recursive least squares 
(structure S1) does not pass the statistical validation tests. Selecting the structure 
S3 and the output error with extended prediction model with nA=1, nB=2, d=0 and 
nC=2 one gets a model satisfying the whiteness validation test. The results are 
summarized in Table 8.4. 

Table 8.4. Parameters of the model (without integrator)  

Model without integrator and gain multiplied by 5 
nA=1, nB=2, nC=2, d=0 

COEFFICIENTS OF POLYNOMIAL A(q-1):   A(1) = 0.2154 
COEFFICIENTS OF POLYNOMIAL B(q-1):   B(1) = -0.1737 
   B(2) = -0.5563 
COEFFICIENTS OF POLYNOMIAL C(q-1):  C(1) = -0.3176 
  C(2) = -0.1878 
TEST DE VALIDATION: Whiteness of the residual error 
Validation criterion: Theor. Value: |RN(i)| ≤ 0.136, Pract. Value: |RN(i)| ≤ 0.15 
 RN(1) = 0.0422                           RN(2) = 0.0057 
 RN(3) = -0.136                            RN(4) = 0.0497 

Remarks: 

1. The validation results can be improved using a variable forgetting 
factor, but the time responses of the two models are almost the same.  
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2. The gain model is negative because of the polarity of the measurement 
used. 

Inserting an integrator and dividing by 5 the coefficients of polynomial B one gets 
the model displayed in Table 8.5. 

Table 8.5. Parameters of the complete “position” model (input: speed reference; output: axis 
position) 

Position model (with integrator) 
nA=2, nB=2, d=0 

COEFFICIENTS OF POLYNOMIAL A(q-1):   A(1) = -0.7846 
                                                                 A(2) = -0.2154 
COEFFICIENTS OF POLYNOMIAL B(q-1):   B(1) = -0.03476 
   B(2) = -0.1112 

The polynomial B(q-1) has |b2|>|b1|, therefore the model has an unstable zero and 
the pole placement control strategy has to be used. 

Design of the Controller 
Based on the identified model, a RST controller is designed using the pole 
placement with shaping of the sensitivity functions. 

The control specifications are: 

• Dominant regulation dynamics: discretization of a second-order continuous 
time system with ω0 = 3 rad/s and ζ  = 0.8 (Ts = 120 ms) 

• An integrator in the controller 
• Opening of the loop at 0.5 fs 
• Modulus margin: ; delay margin: ∆τ ≥ Ts 5.0≥∆M
• Tracking dynamics: discretization of a second-order continuous time 

system with ω0 = 4.5rad/s and ζ  = 0.9 

To get the integrator effect a fixed part HS (q-1) = 1 - q-1 must be included. For 
opening the loop at 0.5 fs a fixed part HR(q-1) = 1 + q-1also has to be included. 

In the absence of the opening of the loop at 0.5 fs (using a filter HR), the 
modulus of the input sensitivity function would be very large at high frequencies, 
where the system has a very small gain (it is an integrator). This leads to an 
important stress on the actuator without having any effect on the output. 

Figures 8.29 and 8.30 give the modulus of the output and input sensitivity 
functions for the following three designs:  

1. without HR and without auxiliary poles 
2. with HR, but without auxiliary poles 
3. with HR and 3 auxiliary poles at 0.1 

The final controller corresponds to the third design. The auxiliary poles have been 
introduced in order to significantly reduce the stress on the actuator over 0.3 fs. 
One notes a small reduction of the modulus margin with respect to the design a and 
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b, but which still has a value larger than 0.5 (|Syp (q-1)|max < 6dB). The coefficients 
of the controller corresponding to the third design are given in Table 8.6. 

Table 8.6. RST controller for the position loop 

Polynomial R(q-1) Polynomial S(q-1) Polynomial T(q-1) Polynomial Bm(q-1) 

Bm(0)=0.1057 
Bm(1)=0.076381 

Polynomial Am(q-1) 
R(0)=-1.2139 
R(1)=-0.7543 
R(2)=0.9699 
R(3)=0.5111 

S(0)=1.0000 
S(1)=-1.0222 
S(2)=0.2836 
S(3)=-0.2614 

T(0)=-6.8479 
T(1)=12.0843 
T(2)=-7.0639 
T(3)=1.4625 
T(4)=-0.1255 
T(5)=0.0038 

Am(0)=1.0000 
Am(1)=-1.1962 
Am(2)=0.3783 
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Figure 8.29. Output sensitivity function (modulus) for the various controllers  

Figure 8.31 gives the simulation results (tracking and regulation) for the 
position loop. The rise time is slightly longer than 7Ts = 840 ms. 

The experimental results with the two cascaded loops (speed and position) are 
illustrated in Figure 8.32. Figure 8.32a,b gives the evolution of the position for a 
step change on the reference for the position and the evolution of the output of 
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Figure 8.30. Input sensitivity function (modulus) for various controllers 
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Figure 8.31. Tracking and regulation for the position loop (simulation) 
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Figure 8.32a-d. Real time evolution of the variables in cascade position control of the DC 
motor: a position and reference for the position; b output of the position controller (speed 
reference); c speed and reference for speed; d output of the speed controller(command for 
DC motor supply voltage) 
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 the position controller, which represents the reference signal for the internal speed 
loop. The rise time is practically the same as the one obtained in simulation (840 
ms). Figure 8.32c,d gives the evolution of the speed and of the speed controller 
output signal which will drive the DC motor supply voltage. For these last two 
figures the time scale is the same as for the “position” but the number of samples is 
different since the sampling frequencies in the two loops are different. 

8.5 Position Control by means of a Flexible Transmission  

The flexible transmission has been described in Chapter 7, Section 7.5.4. In this 
Section we will discuss the design of the controller for the position control of the 
third pulley (see Figure 8.33), based on the identified model. The control input is 
the reference for the axis position of the first pulley. It was shown in Section 7.5.4 
that the system has two very low damped vibration modes. It is operated with a 
sampling period of 50 ms. The identified model (open loop) is 
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Figure 8.33. Digital control of a flexible transmission 
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The frequency characteristic of this model has been presented in Figure 7.24. The 
two vibration modes of the model are characterized by ω0 = 11.949 rad/s, ζ = 
0.042 and ω0 = 31.462 rad/s, ζ = 0.023. The model has an unstable zero (because 
|b2|>|b1|). 

Since the model has an unstable zero the pole placement strategy will be used 
for controller design. It is desired to get a regulation and a tracking behavior 
characterized by a pair of well damped dominant poles, corresponding to the first 
vibration mode of the flexible transmission. The controller should also assure 
certain robustness specifications in terms of modulus margin, delay margin and 
maximum value of the modulus of the input sensitivity function at high 
frequencies. The performance and robustness specifications are summarized next: 

• Tracking dynamics: discretization of a second-order continuous time 
system with ω0 = 11.94 rad/s and ζ = 0.9 (Rise time tR ≈ 0,285s which 
corresponds to tR ≈ 6Ts) 

• Zero steady state error (controller should include an integrator) 
• Dominant poles of the closed loop corresponding to the discretization of a  

second-order continuous time system with ω0 = 11.94 rad/s and ζ = 0.8; 
• Modulus margin: ; delay margin:5.0≥∆M s05.0≥∆τ  
• |Sup (q-1)|max ≤  10 dB for f ≥  0.35 fs 

A first controller design, for which only the dominant poles have been specified, 
leads to the sensitivity functions Syp and Sup shown in Figures 8.34 and 8.35 
(curves A). 
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Figure 8.34. Output sensitivity functions for various controllers 
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Figure 8.35. Input sensitivity functions for various controllers 

The resulting modulus margin 498.0=∆M  is slightly less than the desired 
value. The delay margin s043.0=∆τ  is less than the desired value and the 
maximum of |Sup(q-1)| at high frequencies is over the required value 10 dB (see 
Table 8.7). 

The number of closed loop poles that can be specified for a minimum size of 
the controller (nR = nS = 4) is in this case 

 nP = nA + nB + nHs + d – 1 = 8 

Since one has specified only a pair of poles corresponding to the first vibration 
mode but with ζ = 0.8, it results that all the other poles for the closed loop have 
been implicitly set to zero (i.e. aperiodic poles at 0.5 fs ). Therefore controller (A) 
will damp the poles corresponding to the first vibration mode without changing the 
frequency but, in the mean time, it will accelerate and strongly damp the second 
vibration mode (z=0 corresponding to ω0=62.8 rad/s and ζ =1). This requires an 
important control effort in a frequency region where the gain of the system is low 
and, consequently, a high value of |Sup| at high frequencies will result.  

In order to avoid this phenomenon, it is necessary to specify a second pair of 
poles corresponding to the second vibration mode, with a damping equal or higher 
to the open loop value. Increasing the desired value of the damping will induce an 
increasing of |Sup| in this frequency region. Thus a second pair of desired closed 
loop poles is selected with ω0=31.46 rad/s and ζ = 0.15 (this value of the damping  
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Table 8.7. Specifications, and achieved modulus margin, delay margin and maximum |Sup| 
for various controllers 

 

HS(q-1) HR(q-1) Closed loop poles 

Modulus 

margin 

(dB) 

Delay 

margin 

(s) 

|Sup| 

Max 

(dB) 

   Dominant Auxiliary    

A 1-q-1  
ω0 = 11.94 
ζ = 0.8 

 0.498 
(-6.06) 0.043 18.43 

B 1-q-1  
ω0 = 11.94 

ζ = 0.8 

ω0 = 31.46 

ζ = 0.15 
(1-0.2q-1)4 

0.522 
(-5.65) 0.062 6.24 

C 1-q-1 1+q-1 
ω0 = 11.94 

ζ = 0.8 

ω0 = 31.46 

ζ = 0.15 
(1-0.2q-1)4 

0.544 
(-5.29) 0.057 1.5 

is not critical). For the remaining poles to be assigned, as indicated in Chapter 3, 
Section 3.6, it is wise to select aperiodic poles located on the real axis between 
0.05 and 0.5. These poles will have a beneficial effect upon the maximum value of 
|Sup| at high frequencies. The remaining four poles have been set to 0.2 (since four 
poles have been already assigned). The frequency characteristics of Syp and Sup for 
the new controller are represented in Figures 8.34 and 8.35 (curves B). The new 
controller satisfies the imposed specifications (see Table 8.7). 

Figures 8.36 and 8.37 show the real time results obtained with controller B. Figure 
8.36 corresponds to a step change on position reference. One observes that the rise 
time of the real system is close to the specified one (6Ts plus the delay of 2Ts). 
Figure 8.37 illustrates the behavior in regulation for a position disturbance 
followed by an instantaneous release (it is the return to the equilibrium position 
that is interesting for performance evaluation in regulation). 

A detailed examination of the control signal (see Figures 8.36 and 8.37) shows 
the presence of a high frequency component without effect on the output (the 
position of the third pulley), since this frequency region is far beyond the band pass 
of the closed loop.  

This phenomenon is even visible on the real system, where the position of the 
first pulley will follow to a large extent the control signal (the local position control 
of the first pulley has a high band pass). The input sensitivity function, in fact, will 
amplify by a few dB the high frequency measurement noise (which is interpreted 
as a disturbance). To counteract this effect it is sufficient to open the loop at high 
frequencies, by introducing in the controller a fixed part of the form HR =1 + q-1 
(the controller gain will be zero at 0.5fs), and to re-compute the controller with the 
same specifications.  
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Figure 8.36. Position step response of the flexible transmission (controller B)  
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Figure 8.37. Flexible transmission – rejection of a position disturbance (controller B) 
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Figure 8.38. Position step response of the flexible transmission (controller C)  

12 13 14 15 16 17 18
-1.5

-1

-0.5

0

0.5

1

1.5
Flexible Transmission: Output

Time (s) (Ts = 50 ms)

A
m

pl
itu

de
 (V

ol
t)

12 13 14 15 16 17 18

-0.2

0

0.2

0.4

Flexible Transmission: Control Signal

Time (s) (Ts = 50 ms)

A
m

pl
itu

de
 (V

ol
t)

 
Figure 8.39. Flexible transmission – rejection of a position disturbance (controller C) 
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Table 8.8. The parameters of the RST controllers (B and C) for the flexible transmission 

Controller B Controller C 

Coefficients of polynomial R(q-1) 

R(0) =  0.497161 

R(1) = -1.009731 

R(2) =  0.622142 

R(3) = -0.186272 

R(4) = 0.285405 

R(0)  =  0.307895 

R(1) = -0.515832 

R(2) = -0.037637 

R(3)  =  0.452544 

R(4) = -0.165905 

R(5)  =  0.167641 

Coefficients of polynomial S(q-1) 

S(0) =  1.000000 

S(1) = -0.376884 

S(2) = -0.256739 

S(3) = -0.239733 

S(4) = -0.126644 

S(0)  =  1.000000 

S(1) = -0.376884 

S(2) = -0.256739 

S(3)  = -0.181950 

S(4) = -0.109785 

S(5)  =  0.074642 

Coefficients of polynomial T(q-1) (identical for B and C) 

T(0) =  1.429225 

T(1) = -2.839061 

T(2) =  3.181905 

T(3) = -2.687952 

T(4) =  1.594832 

T(5) = -0.576414 

T(6) =  0.118277 

T(7) = -0.012656 

T(8) = 5.488E-04 

Coefficients of polynomials Bm(q-1) and Am (q-1) (identical for B and C) 

Bm(0) = 0.124924 

Bm(1) = 0.087209 

Am(0) =  1.000000 

Am(1) = -1.129301 

Am(2) =  0.341434 

The characteristics of this controller (C) are summarized in Table 8.7. The 
corresponding frequency characteristics of the sensitivity functions are shown in 
Figures 8.34 and 8.35 (curves C) and the real time results are presented in Figures 
8.38 and 8.39 (to be compared with Figures 8.36 and 8.37).  

The parameters of the controllers B and C are given in Table 8.8. 

8.6 Control of a 360° Flexible Robot Arm 

Figure 8.40 gives a view of the 360° flexible robot arm. 
It is constituted by two aluminium sheets, each one is 1m long and 10cm wide, 

with a thickness of 0.7mm. The two sheets are coupled every 10cm by a rigid 
frame. The system is very flexible and presents many low damped vibration 
modes. The energy is essentially concentrated in the first three vibration modes. 
The sampling frequency (20 Hz) has been chosen such that these three vibration 
modes lie between 0 and 0.5 fs . Data acquisition is performed through anti aliasing 
filters. The block diagram of the control scheme is given in Figure 8.41. One of the 
extremities of the arm is directly coupled to the axis of a DC motor. The 
corresponding local position loop contains a cascade control of motor current, 
speed and position (measured by a potentiometer type transducer). The band pass  
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Figure 8.40. 360° Flexible robot arm (Laboratoire d’Automatique de Grenoble, 
INPG/CNRS/UJF) 

of this loop is higher than the frequency of the first vibration mode. 
The output of the system is the position of the free end of the arm. The 

measurement of the position of the free end is done by combining information 
upon the position of the motor axis (provided by an incremental transducer) and 
those provided by a carried on measurement device (including a light beam and a 
mirror), which gives the angular position with respect to the motor axis position 
(for details concerning the measurement device see Landau et al. 1996).  
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Figure 8.41. Position control scheme for the 360° flexible robot arm  
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The measurement system allows one to cover a rotation from 0 to 360°. The 
control signal provided by the computer is the reference position for the motor 
axis. 

The identified and validated model for the case without load is (Langer and 
Landau 1999) 
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The frequency characteristic of this model is shown in Figure 8.42. 
This model is characterized by three very low damped vibration modes            

(ω1 = 2.6173, ζ1 = 0.018; ω2 = 14.4027, ζ2 = 0.025; ω3 = 48.1169, ζ3 = 0.038). 
The pole – zero map is shown in Figure 8.43. One notes the presence of unstable 
zeros. The unstable zeros with positive real part correspond to continuous time 
unstable zeros (non-minimum phase system). Since the model has unstable zeros 
the pole placement strategy will be used for the controller design.  
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Figure 8.42. Frequency characteristics of  the identified model for the 360° flexible robot 
arm  
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Figure 8.43. Pole – zero map of the identified model for the 360° flexible robot arm  

The design of the controller will be done using the iterative pole placement 
design with shaping of the sensitivity functions, by simultaneous tuning of HS 
(respectively HR) and of auxiliary poles (see Chapter 3, Section 3.6 and (Prochazka 
and Landau 2003)). The effective computations have been carried on with 
ppmaster (MATLAB®)9 (Prochazka and Landau 2001). The specifications are the 
same as in (Langer and Landau 1999): 

• Tracking dynamics: discretization of a second-order continuous time 
system with  ω0=2.6173rad/s and ζ = 0.9 

• Zero steady state error (controller should include an integrator) 
• Dominant poles of the closed loop system corresponding to the 

discretization of a  second-order continuous time system with ω0=2.6173 
rad/s and ζ = 0.8 

• Modulus margin: (-6 dB); delay margin: 5.0≥∆M )1( 05.0 sTs≥∆τ  
• Constraints on the input sensitivity function |Sup (q-1)|: < 15 dB at low 

frequencies   (< 4 Hz); <0 dB from 4.5 Hz to 6.5 Hz; < 15 dB from 6.5 Hz 
to 8 Hz; <10 dB from 8 to 10 Hz (fs=20Hz) 

The low value imposed on |Sup| between 4.5 Hz and 6.5 Hz (0.225 to 0.325 f/fs) is a 
constraint resulting from the low value of the open loop gain and the uncertainties 

                                                 
9 To be downloaded from http//:landau-bookic.lag.ensieg.inpg.fr 
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upon the model in this frequency region. The bound |Sup| at high frequencies will 
limit the effect of the measurement noise upon the control signal.  

The templates for the modulus of the sensitivity functions are represented in 
Figures 8.44 and 8.45 (dotted lines). 

The desired dominant closed loop poles are chosen as indicated in the 
specifications, and an integrator is introduced in the controller (  ). 
Note that it is not necessary to damp the second and third (high frequency) 
vibration mode because closed loop band pass (defined by the dominant closed 
loop poles), the disturbances and the tracking model dynamics are all are at low 
frequencies. Therefore these poles will be kept unchanged by specifying them as 
poles of the closed loop (see the partial internal model design, Section 3.5.5).  

11
1

−−= qH S

The result of this first design is a controller for which |Syp| and |Sup| are far 
outside the imposed templates at high frequencies (Figures 8.44 and 8.45 – curves 
A). In such situations auxiliary poles have to be added. The total number of poles 
which can be specified (without increasing the size of the controller) is  

 121
1

=−+++=
SHBAP ndnnn  

Six poles have been have been already assigned. It is therefore possible to add 
auxiliary poles of the form 

  05.05.0      ;     )1()( 1
61

1
1 −≤≤−+= −− pzpzPF

Taking 5.01 −=p one gets a controller leading to sensitivity functions which are 
slightly above the templates in two frequency regions (Figures 8.44 and 8.45 – 
curves B). |Syp| is above the template around 1 Hz and |Sup| is above the template 
between 4 and 6 Hz. First, to improve the design, we will consider the introduction 
of a resonant pole–zero filter in Syp. The continuous time filter, which will 
serve for the computation of the discrete time filter, is chosen with a resonance 
frequency f0 =1Hz (6.28 rad/s). The damping for the denominator is chosen as 
ζden =0.8 (in order that the auxiliary poles which will be introduced be well 
damped). The desired attenuation is Mt = -5.5 dB, leading to ζnum =0.424. The 
characteristics of the discrete time filters and are given in Table 8.910. The 
sensitivity functions obtained with the new controller are illustrated in Figures 8.44 
and 8.45 – curves C. It remains to correct now the frequency characteristics of |Sup|  

2/
2

PH S

2SH 2P

                                                 
10 Since the resonace frequency of the filter is below 0.17 fs, the filter design can be done with an 
excellent precision directly in discrete time. 
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Figure 8.44.  Flexible 360° arm. Output sensitivity function (|Syp|) for various controllers  
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Figure 8.45.  Flexible 360° arm. Input  sensitivity function (|Sup|) for various controllers 
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between 4 and 6 Hz. A resonant pole-zero filter  in |Sup| is considered. It 

will be centred around 5 Hz. Choosing f0 = 4.7 Hz, Mt = -16.4 dB and ζden =0.9, 
one gets the desired results (Figures 8.44 and 8.45 – curves D). The characteristics 
of  and are given in Table 8.9. 

3/
1

PH R

1RH 3P

Table 8.9. Specifications of the various controllers for the 360° flexible robot arm 

  

 
HS(q-1) HR(q-1) Closed loop poles 

 

 

  
Dominant Auxiliary 

A 1 - q-1 - 
ω0 = 2.1673 

ζ = 0.8 
- 

B 1 - q-1 - 
ω0 = 2.1673 

ζ = 0.8 
(1 – 0.5q-1)6 

C 
1 - q-1 

ω0 = 6.28 
ζ = 0.424 

- 
ω0 = 2.1673 

ζ = 0.8 

(1 – 0.5q-1)6 
ω0 = 6.28 

ζ = 0.8 

D 
1 - q-1 

ω0 = 6.28 
ζ = 0.424 

ω0 = 29.57 
ζ = 0.092 

ω0 = 2.1673 
ζ = 0.8 

(1 – 0.5q-1)6 
ω0 = 6.28 

ζ = 0.8 
ω0 = 40.1 
ζ = 0.74 

8.7 Control of Deposited Zinc in Hot Dip Galvanizing (Sollac-
Florange) 

This application is interesting for several reasons: 

• It clearly shows the benefit of a good control 
• It points out the interest of using digital RST controllers for processes with 

a long time delay 
• It illustrates the concept of the ”open loop adaptive control” 

A detailed presentation of this application can be found in Fenot et al. (1993a).  

8.7.1 Description of the Process 

The objective of the galvanizing line is to obtain galvanized steel with formability, 
surface quality and weldability equivalent to uncoated cold rolled steel. The variety 
of products is very large in terms of deposited zinc thickness and steel strip 
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thickness. The deposited zinc may vary between 50 and 350 g/m2 (each side) and 
the strip speed may vary from 30 to 180 m/mn. 

The most important part of the process is the hot-dip galvanizing. The principle 
of the hot-dip galvanizing used at Sollac – Florange is illustrated in Figure 8.46 
Preheated steel strip is passed through a bath of liquid zinc and then rises vertically 
out of the bath through the stripping “air knives” which remove the excess zinc 
before it solidifies (Figure 8.47). The remaining zinc on the strip surface solidifies 
before it reaches the rollers which guide the finished product. The effect of air 
knives depends on the air pressure, the distance between the air knives and the 
strip, and the speed of the strip. Nonlinear static models have been developed for 
computing the appropriate pressure, distance and speed for a given value of the 
desired deposited zinc. 

The objective of the control is to assure a good uniformity of the deposited zinc 
whilst guaranteeing a minimum value of the deposited zinc per unit area. Tight 
control (i.e., small variance of the controlled variable) will allow a more uniform 
coating and a reduction of the average quantity of deposited zinc per unit area. As a 
consequence, in addition to quality improvement, a tight control of the deposited 
zinc per unit area has an important economic impact since the average 
consumption for a modern galvanizing line is of the order of 40 tons per day. 

 The main difficulty for control results from the fact that measurement of the 
deposited zinc can be made only on the cooled finished strip. The transducers are 
located more than 100 m after the zinc bath, which results in an important delay 
between the action of the pressure at the level of air knives and the measurement of 
its effect on the finished product. The digital RST controller is well suited for the 
control of such processes with long delay for which PID control cannot be used.  

In addition, the delay will depend upon the speed of the steel strip which may 
vary in a ratio 1 to 3. Furthermore, the dynamic behavior will also depend upon the 
position of the steel strip with respect to the air knives. 

8.7.2 Process Model 

The static model of the hot dip galvanizing process can be approached by   

 mP
VKDm ξ+=  

where m is the deposited mass per unit area, K is a constant of proportionality, D is 
the distance between the air knives and the strip, P is the air pressure and V is the 
strip speed. ξm accounts for unpredictable effects and/or modelling errors. At 
SOLLAC Sainte Agathe, the control variable is the air pressure. 

A linearized model around an operating point (P0,D0,V0) can be obtained using 
a standard Taylor series expansion for variations of pressure (∆P), speed (∆V) and 
distance (∆D). It has the form 
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 mPD
P
VKDm ξ+∆µ−ν∆β+∆α+=

0

0
0  

where P0,D0,V0 are the values of the  pressure, distance and speed defining the 
operating point and ∆P, ∆D, ∆V, are the variations of these variables. It can be seen 
that using the pressure as the control variable one can compensate for the 
disturbances created by variations of distance and speed as well as by the term ξm. 
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Figure 8.46. Scheme of the hot dip galvanizing process at Sollac - Florange 

airair

Steel strip zinc

 
Figure 8.47. Details of the hot dip galvanizing process 

The pressure in the air knives is regulated through a pressure loop, which can be 
approximated by a first-order system. The delay of the process will depend linearly 
on the steel  strip speed. Therefore, for describing the relationship between the 
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variations of pressure and the variations of the deposited mass, one can consider a 
continuous time dynamic model of the form 

 
V
L

sT
GesH

s
=

+
=

−
τ

τ
;

1
)(  

where L is the distance between the air knives and the transducers and V is the strip 
speed. 

When discretizing this model, the major difficulty comes from the variable time 
delay. In order to obtain a controller with a fixed number of parameters, the delay 
of the discrete-time model should remain constant. Therefore, the sampling period 
is tied to the strip speed (it is an “open loop adaptation”) in order to get a discrete 
time model of constant complexity, using the formula 

 integer; =
⎟
⎠
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⎜
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= d
d

V
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δ
 

 
where d is the discrete-time delay (integer) and δ is an additional small time-delay 
due to implementation. 

The corresponding linearized discrete-time model, which has been identified 
around various operating points, has the form  

 1
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 with d = 7. The fractional delay (which corresponds to the presence of an 
additional term b2q-2) is negligible because of the way the sampling period TS is 
selected and this was confirmed by the model identification procedure. However, 
the parameters of the model, given above, will depend on the distance D and on the 
speed V. 

8.7.3 Model Identification 

The plant is formed by the air pressure control loop and the coating process. The 
control input to the process is the reference of the air pressure control loop, the 
output of the process is the measured deposited mass per unit area (see Figure 
8.48). The identification of the discrete time model of the plant has been done by 
superposing a PRBS to the reference for the pressure loop, as illustrated in Figure 
8.48. 
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Figure 8.48. Block diagram of the identified plant (input: ∆p, output: ∆m) 

The input used was a PRBS (Pseudo Random Binary Sequence) of a magnitude of 
±4% with respect to the static pressure (Po). The PRBS was generated by a shift 
register with N = 5 cells and a clock frequency equal to half of the sampling 
frequency (length of the sequence: 64); 100 to 160 (average: 128) measurements 
have been used for the various identifications made in different regions of 
operation. The choice made for the PRBS allowed at least one full sequence to be 
sent for each experiment and yielded the largest pulse width (10 Ts) comparable 
with the rise time of the process (including the time delay). As both sides of the 
steel strip have to be galvanized, and because of the non symmetric position and 
physical realization of the two actuators, both “front” side and “back” side models 
have been identified. Data acquisition has been done using over sampling as 
indicated in Chapter 7, Section 7.1.3.  

A comparative study has shown that for this application the output error 
identification method gives the best results in terms of model validation.  

The identification of the process model around various operating points, 
defined by the strip speed and the distance between the air knives and steel strip, 
has shown a significant variability of the identified parameters. This has imposed 
the use of an “open loop adaptive control” in order to assure good performance in 
all operating points.  

8.7.4 Controller Design  

RST controllers (with integrator behavior) have been designed for the various 
operation regions using tracking and regulation with independent objectives (see 
Chapter 3, Section 3.4) since the model always has stable zeros (the sampling 
period is tied to the steel-strip speed). An important requirement is the achievement 
of a delay margin of 2 Ts.  

The polynomial P(q-1) defining the closed loop poles will have a maximum 
degree given by 

 ( )1)(deg 1 −+++≤−
SHBA ndnnqP  

In this application one gets ( )1=
SHn  
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and therefore one can specify nine poles. The real poles of the model vary from 
0.15 to 0.4 over the entire range of operating points. Two poles have been assigned 
to 0.2 and 0.3 (respectively 0.4 depending on the operating region and the values of 
the identified pole of the model) and the other seven auxiliary poles have been 
assigned at 0.111. These auxiliary poles introduce an attenuation at high frequencies 
(outside the band pass of the system) and improve the robustness of the system (in 
particular, the delay margin is increased) without affecting the regulation 
performance at low frequencies. 

Figure 8.49a gives the Nyquist plot for the case where only two poles are 
specified for P(q-1) (0.2 and 0.3) and Figure 8.49b allows one to see the effect of 
the additional auxiliary poles (seven poles at 0.1). One observes an important 
increase of the delay margin from 10.9 s to 25.7 s (Ts = 12s) since the Nyquist plot 
does no longer intersect the unit circle at high frequencies. The introduction of the 
auxiliary poles also produces a significant reduction of the magnitude of the input 
sensitivity function at high frequencies and, therefore, a reduction of the stress  of 
the actuator in this frequency region. The other robustness margins have 
satisfactory values with or without the auxiliary poles (∆M > - 6dB  ∆G > 2  ∆φ > 
60 deg). 

Simulation tests have shown that the closed loop system tolerates delay 
variations of  ± Ts (one sampling period corresponds to about 15% variations of the 
delay) and  ±50%  variations of  other model parameters (b1 and a1). 

Procedures for taking into account the quantization, the saturation and the 
bumpless transfer from open loop to closed loop (see Sections 8.1.3 through 8.1.5) 
have been implemented. 

 Since the speed of the steel strip is measured, it was also possible to make an     
“open loop compensation” of this disturbance. This has a beneficial effect upon the 
regulation transient; however, it is the integrator included in the controller which 
cancels the effect of this disturbance in steady state. 

8.7.5 Open Loop Adaptation  

To maintain the performance of the control system, the controller is adapted as a  
function of: 

• Speed of the steel strip 
• The distance between the air knives and the steel strip 

In addition to the adaptation of the sampling frequency as a function of the speed 
of the steel strip, the operation range of the hot dip galvanization process has been 
divided into three speed regions (the speed of the strip may vary from 30 m/min to  

                                                 
11 The choice made for the dominant and auxiliary poles is close to the choice made in the example of 
the internal model control of systems with time delay discussed in Chapter 3, Section 3.5.7. 
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Figure 8.49a,b. Nyquist plot for hot dip galvanizing (a1=-0.2, d=7): a Closed loop poles: 
0.2; 0.3; b Closed loop poles. 0.2; 0.3; 7 × 0.1 
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180 m/min) and in three regions for the distance between the air knives and the 
steel strip which lead to a total of nine regions of operation, each one defined by a 
range of speeds and a range of distances. An identification of the plant model has 
been done for various operating points within each region of operation. A 
controller design on the basis of a model estimated for the central operating point 
within a region has been designed, and tested in simulation on the various 
identified plant models for the corresponding region. The controllers have been 
stored in a table. The controllers are switched when the system moves in a new 
region of operation. A bumpless transfer from one controller to another is 
implemented. In addition hysteresis is used to avoid unnecessary switching when 
one operates very close to the regions boundaries. 

8.7.6 Results 

Figure 8.50 shows one of the typical results obtained when one of the sides is 
under digital regulation and the other side is under computer aided manual control 
(the operator has on display a moving short time history of the deposited zinc and 
applied pressure). 

The analysis of this curve points out two relevant facts when closed loop digital 
control is used: 

• A smaller dispersion of the coating thickness (the standard deviation on the 
side where the feedback control was applied is about 30 % smaller than on 
the side under manual control). This assures a better finished product 
quality (extremely important for the use in the automotive industry, for 
example). 

• The average quantity of deposited zinc is reduced by 3% still guaranteeing 
the specifications for minimum zinc deposit. This corresponds to a 
significant reduction of the zinc consumption and to an important economic 
impact. 

Table 8.10 summarize the results obtained in different operation regions. 

Table 8.10. Performances of the digital control of deposited zinc in  the hot dip galvanizing 
(Sollac-Florange)   

  Digital control Computer aided manual control
 

Distance 
(mm) 

Speed  
(m/min) 
 

Mean  
value 

% 

Stan 
dev. 
% 

Out of 
reference 
± 10 % 

Mean 
 value 

% 

Stan 
dev. 
% 

Out of 
 reference  

± 10 % 
10 60-90 100 4.7 4.3 102.5 6.7 10.1 
10 95 100 3.3 0.7 103 4.5 5.9 
10 85-100 100 2.9 0 99 5.2 5.9 
10 110-116 100 4.3 2.5 105 4.3 3.9 
10 100-117 100 5.1 6.4 100 6.3 8.4 
15 70 100 1.5  102 2  
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Figure 8.50. Typical performances for the digital control of deposited zinc in the hot dip 
galvanizing (SOLLAC-Florange) 
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8.8 Concluding Remarks 

Digital controllers can be implemented on a large variety of hardware. This 
implementation, however, has to be done by paying attention to a number of issues 
listed here: 

• Specification of the desired performances taking into account the actuator 
power and band pass, the time response of the plant in open loop and the 
desired robustness margins. 

• Taking into account the computation delay. 
• Taking into account the characteristics of the digital to analog converter. 
• Introducing anti-saturation schemes. 
• Implementation of a bumpless transfer procedure from open loop operation 

to closed loop operation. 
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For applications where significant variations of the dynamic model of the plant 
occur with the change of the operating points, it is recommended to proceed as 
follows:  

• To identify the model of the plant in the various regions of operation. 
• To design a controller for each region of operation assuring desired 

performance and robustness. 
• To store the parameters of the controllers in a table. 
• To change the parameters of the controllers when the system moves in a 

new region of operation by downloading the values of the controller 
parameters stored in the table.  

This procedure is called “open loop adaptation”. 
In continuous production processes it is very useful to measure the quality of 

the control from the histogram of the regulated variables. 
The application examples presented in this chapter (there are many others) have 

illustrated how the methodology for system identification and control design has to 
be used in order to implement a high performance control system.  

8.9 Notes and References 

For the implementation of digital controllers see also the C++ code (on the book 
website) as well as: 

Åström K.J., Wittenmark B. (1997) Computer Controlled Systems - Theory and 
Design, 3rdedition, Prentice-Hall, Englewood Cliffs, N.J. 

Franklin G.F., Powell J.D., Workman M.L. (1998): Digital Control of Dynamic 
Systems , 3rd edition, Addison Wesley, Reading,  Mass. 

For implementation of digital controllers on PLC see also: 

Adaptech (2001a) Guidelines for RST controller implementation, St. Martin 
d’Hères, France. 

For the implementation of digital controllers on a PC see: 

Vieillard J.P. (1991) Machine automatique pour la fabrication de cables torsadés 
téléphoniques, La Lettre d’Adaptech, no. 2, pp. 1-2, Adaptech, St. Martin 
d’Hères, France. 

For the digital control of DC motors see: 

Landau I.D., Rolland F. (1993) Identification and digital control of electrical 
drives, Control Eng. Practice, vol. 1, no. 3, 539-546. 

Adaptech (2004) Wintrack, Software for Data acquisition and real time RST digital 
control, St. Martin d'Hères, France. 
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9 

Identification in Closed Loop 

The techniques for model identification of plants operating in closed loop together 
with the corresponding validation techniques are presented in this chapter. The 
possibilities offered by the identification in closed loop for obtaining improved 
models for controller re-design leading to better performance are illustrated in the 
final part of the chapter. 

9.1 Introduction 

There exist situations in practice where the plant model should be identified in 
closed loop (i.e. in the presence of a controller): 

• The first case is related to the plant dynamics characteristics. If the plant 
has an integrator or it is unstable, or an important drift of the operating 
point occurs, it is very difficult and, in some situations, very dangerous to 
operate it in open loop. 

• The second case is related to systems where a controller is already 
operating and where it is neither possible nor recommended to open the 
loop in order to acquire data for the system identification. 

• The third case corresponds to situation where the controller has been 
designed based on a plant model identified in open loop and where, for the 
purpose of improving the achieved performance, it is necessary to carry on 
model identification in closed loop for the re-design of the controller.  

It is this last aspect that has gained importance in the last years since identification 
in closed loop on one hand provides in general better models for design than open 
loop identification and on the other hand allows tuning of a controller without 
opening the loop. 

The objective of identification in closed loop is to obtain a plant model 
describing as precisely as possible the behavior of the real closed loop system for a 
given controller. It is also expected that this model identified in closed loop will 
allow redesigning of the controller in order to improve the performance of the real-
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time control system. In other words, (assuming that the real system is linear around 
an operating point), the objective of system identification in closed loop is to 
search for a plant model that in feedback with the controller operating on the true 
plant will lead to a closed loop transfer function (sensitivity function) that is as 
close as possible to that of the real closed loop system. 

It has been shown in Landau and Karimi (1997b), Landau and Karimi (2001b), 
as well as in many other references, that identification in closed loop, provided that 
appropriate identification algorithms are used, leads in general to better models for 
controller design. It is effectively possible to improve the quality of the identified 
model in the frequency regions that are critical for controller design. These 
frequency regions are those where the Nyquist plot of the open loop transfer 
function is close to the critical point [-1, j0]. 

In order to understand the potential of the identification in closed loop as well 
as the difficulties which can be encountered, let us consider the case of plant model 
identification in closed loop where the external excitation is added to the controller 
output (see Figure 9.1a). Figure 9.1b shows an equivalent scheme that emphasizes 
the transfer function between the external excitation ru and the plant input u, as 
well as the effect of the measurement noise upon the plant input. Assume that the 
external excitation is a PRBS that has almost constant frequency spectrum from 0 
to 0.5fs.  

One observes that the effective plant input corresponds to the external 
excitation filtered by the output sensitivity function Syp whose magnitude has a 
maximum in the frequency regions close to the critical point [-1, j0] (see Chapter 2, 
Section 2.6.2). Therefore the frequency spectrum of the effective input applied to 
the plant will be enhanced in these frequency zones. As a consequence, the quality 
of the identified model in these critical regions for stability and performance will 
be improved. Unfortunately, in the meantime, the feedback introduces a correlation 
between the measurement noise and the plant input. This leads to an important bias 
on the estimated parameters if one would like to identify the plant model with open 
loop techniques based on uncorrelation (see Chapter 6). One may expect that the 
open loop identification techniques based on the whitening of the prediction error 
will still provide good results in closed loop operation. However, as a consequence 
of feedback, interdependence between the noise model and the plant model occurs 
and the parameter estimates will also be biased (Karimi and Landau 1998).    

Therefore, for a good identification in closed loop operation one needs 
identification methods that take advantage of the “improved” characteristics of the 
effective excitation signal applied to the plant input but which are not affected by 
the noise in the context of feedback. An efficient solution for this problem is 
provided by the “closed loop output error” methods (CLOE) that will be presented 
in Section 9.2. 

The schemes for data acquisition in closed loop operation have been already 
presented in Chapter 7 (Section 7.1). 
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Figure 9.1a,b. Identification in closed loop: a excitation added to the control output; b 
equivalent representation 

9.2 Closed Loop Output Error Identification Methods 

9.2.1 The Principle 

The principle of closed loop identification methods is illustrated in Figure 9.2. The 
upper part represents the true closed loop system and the lower part represents an 
adjustable predictor of the closed loop. This closed loop predictor uses a controller 
identical to the one used in the real time system. 

The prediction error between the output of the real time closed loop system and 
the closed loop predictor (closed loop output error) is a measure of the difference 
between the true plant model and the estimated one. This error can be used to adapt 
the estimated plant model such that the closed loop prediction error is minimized 
(in the sense of a certain criterion). In other words the objective of the 
identification in closed loop is to find the best plant model which minimizes the 
prediction error between the measured output of the true closed loop system and 
the predicted closed loop output.   

In Figure 9.2 the external excitation is superposed to the reference. However it 
can be superposed to the controller output as shown in Figure 9.3 (the reference is 
not represented). In both cases the same parameter adaptation algorithm is used, 
although the characteristics of the identified model will be slightly different since 
in the first case (Figure 9.2) one tries to approximate the sensitivity function Syr 
while in the second case one tries to approximate the sensitivity function Syv. Use 
of these methods requires knowledge of the controller. 
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All the algorithms which will be presented are available in a MATLAB® 
toolbox CLID® (Adaptech) which can be downloaded from the book web site.  
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Figure 9.2. Closed loop output error identification method (excitation superposed to the 
reference) 

9.2.2 The CLOE, F-CLOE and AF-CLOE Methods 

The algorithms will be introduced using, as an example, a first order type plant 
model and then the general formulas will be given. 

Plant

 

-

-
Model ^

+

+ ŷ

Parameter 
Adaptation 
Algorithm 

u 

R 
S 

q-d B 
Â

+

+
r u 

+

-

w

u

R 
S 

^ 

q-d B 
A

 
y

 

 
εCL 

 

 

 

 

 

 

Figure 9.3. Closed loop output error identification method (excitation added to the 
controller output) 



 Identification in Closed Loop 379 
 
Closed Loop Output Error (CLOE) 
The closed loop system is described by: 

 ( ) ( ) ( ) ( )ttubtyaty T
0111 φθ=+−=+  (9.2.1) 

 [ ] ( ) ( ) ( )[ ]tutytba TT ,;, 011 −== φθ  (9.2.2) 

 ( ) ( ) ( )trty
qS
qRtu u+−=
−

−

)(
)(

1

1

 (9.2.3) 

The plant model is described by Equation 9.2.1  and the control u is given by 
Equation 9.2.3. ru(t) is the external excitation superposed to the controller output 
(see Figure 9.3). 

In the case where the external excitation is superposed to the reference, the 
signal ru(t) is replaced by (see Figure 9.2) 

 ( ) ( )tr
qS
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1
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−

=  (9.2.4) 

The adjustable closed loop predictor is described by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )tttutbtytaty T φθ̂ˆˆˆˆ1ˆ 11 =+−=+o  (9.2.5) 
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where  and  represent the  a priori and the  a posteriori outputs of 
the closed loop predictor.  is the control signal delivered by the controller 
(which is identical to the one used on the true system) using the a posteriori output 
of the predictor  and not the measured outputs (compare Equation 9.2.8  with 
Equation 9.2.3 ). 

)1(ˆ0 +ty )1(ˆ +ty
)(ˆ tu

The closed loop prediction error is given by 

 ( ) ( ) ( )1ˆ11 +−+=+ tytytCL
ooε      a priori (9.2.9) 



380 Digital Control Systems 
 

 ( ) ( ) ( )1ˆ11 +−+=+ tytytCLε         a posteriori (9.2.10) 

The parameter adaption algorithm to be used is similar to those used for open loop 
identification: 

 ( ) ( ) ( ) ( ) ( )1ˆ1ˆ +Φ+=+ tttFtt CLεθθ  (9.2.11) 
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The fundamental differences with respect to the open loop output error are that the 
adjustable predictor and the regressor vector are different.  

Note: If S(q-1) = 1 and R(q-1) = 0 one operates in open loop and the open loop 
output error algorithm is obtained as a particular case. 

In the general case Equation 9.2.1 is replaced by 

  (9.2.15) ).1()()()()()()1( 11*1* ++−+−=+ −−− twqAdtuqBtyqAty

where w represents the noise effect. The noise w is supposed to be centered, of 
finite power and independent with respect to the external excitation ru. Equations 
9.2.5  and 9.2.6  keep the same form with 

 ( ) ( ) ( ) ( ) ( )[ ]tbtbtatat
BA nn

T ˆ,...,ˆ,ˆ,...,ˆˆ
11=θ  (9.2.16) 

 ( ) ( ) ( ) ( ) ( )[ ]dntudtuntytyt BA
T −+−−+−−−= 1ˆ,...,ˆ,1ˆ,...,ˆφ  (9.2.17) 

and the parameter adaptation algorithm is the one given by Equations 9.2.11 
through 9.2.14. 

The convergence of this algorithm (CLOE), in the absence of noise, is subject 
to a sufficient condition: the transfer function 

 ( )t
zP
zS

22
2
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1
max2;

2)(
)( λλ

λ
≥>−

−

−

 (9.2.18) 

should be strictly positive real, where the polynomial 
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  (9.2.19) ).()()()()( 11111 −−−−−− += zRzBzzSzAzP d

defines the poles of the closed loop. 
It has been shown that, under the sufficient condition of Equation 9.2.18 , the 

closed loop output error (CLOE) gives asymptotically unbiased parameter 
estimates in the presence of noise (independent with respect to the external 
excitation) if the estimation model and the true model have the same structure. 

Filtered Closed Loop Output Error (F-CLOE) 
In order to relax the condition of Equation 9.2.18 one can filter the vector )(tφ  

through  where  is an estimation of the polynomial 
defining the poles of the closed loop. If an estimated plant model 

 is available, one can compute 

)(ˆ/)( 11 −− qPqS )(ˆ 1−qP

)(ˆ/)(ˆ 11 −−− qAqBq d

  (9.2.20) ).()(ˆ)()(ˆ)(ˆ 11111 −−−−−− += qRqBqqSqAqP d

and in the parameter adaptation algorithm one uses 
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1
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We get in this way the F-CLOE method. In this case, the transfer function of 
Equation 9.2.18  is replaced by 
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which should be strictly positive real. This condition is clearly easier to satisfy.  
A first estimation of the plant model is necessary in order to compute the filter. 

This estimation can be provided by AF-CLOE or X-CLOE methods (described 
next) as well as by identification in closed loop, using an open loop type 
identification method or using the model identified in open loop (if it is available).  

Adaptive Filtered Closed Loop Output Error (AF-CLOE) 
One may consider filtering )(tφ  through a time-varying filter  

where  is the estimation at time t of the polynomial defining the closed 
loop poles: 

)q,t(P̂/)q(S 11 −−

)q,t(P̂ 1−

 )q(R)q,t(B̂q)q(S)q,t(Â)q,t(P̂ d 11111 −−−−−− +=  (9.2.23) 
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computed from the estimations of )q,t(Â 1−  and available at time t. This 
leads to the AF-CLOE algorithm. 

)q,t(B̂ 1−

In this case the vector  given in Equation 9.2.21 is replaced by )(tΦ

 )(
),(

)()( 1-

-1
t

qtP̂
qSt φ=Φ  (9.2.24) 

9.2.3 Extended Closed Loop Output Error (X-CLOE) 

If it is assumed that the disturbance acting on the plant output can be represented 
by an ARMAX type model, Equations 9.2.1  and 9.2.3  become: 
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where e(t) is a Gaussian white noise and 
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is an asymptotically stable polynomial. 
X-CLOE is an identification method based on the whitening of the closed loop 

prediction error. An adjustable closed loop predictor of the following form is used:  
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where 
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where1 
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the closed loop prediction error is white noise (Landau and Karimi 2001b). 
The parameter adaptation algorithm is given by Equations 9.2.11 through 

9.2.14 where: 

  )()(    ;    )(ˆ)(ˆ tttt ee φθθ =Φ=

In the deterministic case (without noise) there is no any condition to be satisfied for 
stability. In the presence of an ARMA disturbance one obtains asymptotically 
unbiased parameter estimates under the sufficient condition that 

 ( )t
zC 22

2
1 max2;

2)(
1 λλ

λ
≥>−

−
 (9.2.35) 

is a strictly positive real transfer function (note that it is the same condition as in 
open loop identification using extended least squares or output error with extended 
prediction model). 

9.2.4 Identification in Closed Loop of Systems Containing an Integrator 

The identification methods presented previously allow a better estimation of a pure 
integrator than the open loop identification methods. However, if the existence of a 
pure integrator is known, it is better to take this into account. Two procedures can 
be used, and both require a modification of the controller used in the closed loop 

                                                 
1 From Equation 9.2.34  it results that ),max( PSCH nnnn += . 
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adjustable predictor in order to preserve the input/output behaviour of the closed 
loop: 

1. The plant input is replaced by its integral and the output remains 
unchanged. In this case the equations describing the adjustable predictor 
become 

 ( ) ( )dtuqtBtyqtAty −′+′−=+′ −− ˆ),(ˆ)(ˆ),(ˆ1ˆ 1*1*
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with  
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2. The plant output is replaced by its variations and the input remains 
unchaged. In this case the plant output in closed loop is 

 ( )tyqtytyty )1()1()()( 1−−=−−=′  (9.2.39) 

and the corresponding equations of the adjustable predictor are 
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The closed loop prediction error is in this case 

  (9.2.42) )1(ˆ)()1( 00 +′−′=+ tytytCLε

Figure 9.4a,b illustrates the modifications for the case when the external excitation 
is applied to the controller output. 

9.2.5 Model Validation in Closed Loop 

As in open loop identification, it is the model validation that will tell us on one 
hand if the identified model is acceptable and on the other hand it will allow us to 
select the best model among the models provided by various identification 
methods.  

The objective of the model validation in closed loop is to find what plant model 
combined with the current controller provides the best prediction of the behavior of 
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the closed loop system. The model validation in closed loop will depend upon the 
controller which will be used. 

Four validation procedures can be defined: 

1. Statistical validation tests on the closed loop output error (uncorrelation 
test between ( 1+t

CL
)ε  and φ(t)) 

2. Closeness of the computed and identified poles of the closed loop system 
3. Closeness of the computed and identified sensitivity functions of the 

closed loop system 
4. Time response validation (comparison of time response of the real closed 

loop system and of the closed loop predictor) 

Statistical Validation 
The statistical validation follows the same principles as for open loop 
identification. However in this case one considers the residual prediction error  
between the output of the plant operating in closed loop and the output of the 
closed loop predictor. An uncorrelation test will be used. 

Using the schemes shown in Figure 9.2 (or Figure 9.3) where the predictor is 
given by Equations 9.2.5 through 9.2.8, one computes with the identified values of 
the parameters: 

• The correlations between the residual closed loop output error )1( +tCLε  
and the components of the predictor regressor vector )(tφ  ( ,  
and their delayed values)  

)(ˆ ty )(ˆ dtu −

• The covariance of the residual closed loop output error 

This type of test is motivated on one hand by the fact that uncorrelation between 
the observations (the components of )(tφ filtered or not) and the closed loop 
prediction error leads to unbiased parameter estimates and on the other hand this 
uncorrelation implies the uncorrelation between the closed loop output error and 
the external excitation. This means that the residual prediction error does not 
contain any information which depends upon the external excitation and therefore 
all the correlations between the external excitation and the output of the closed 
loop system are captured by the closed loop predictor.  

One defines 

 ∑
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Figure 9.4a,b. Identification in closed loop of systems containing a pure integrator  
( ): a plant input replaced by its integral; b plant output 
replaced by its variations   
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As a validation test one uses the criterion (Landau et al. 1997) 
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where α  is the confidence interval (a typical value is 2.17 which corresponds to  
97% level of confidence) and N is the number of data (see Chapter 6). 

In many practical situations, from one set of input/output data several models 
can be identified using various methods (even a model identified in open loop may 
be available). A comparative validation is necessary in order to select the best 
model. The comparison indicators are the variance of the residual closed loop 
prediction error and )(max iRN  for each model. 
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Pole Closeness Validation 
If the model identified in closed loop in feedback with the controller used during 
identification allows one to construct a good predictor for the real system, this 
implies that the poles of the closed loop system and of the closed loop predictor are 
close (assuming that a persistent excitation has been applied for identification). As 
a consequence, the closeness of the closed loop predictor poles (which can be 
computed) and those of the real closed loop system (which can be identified by an 
open loop type identification between the external excitation and the output) will 
give an indication of the quality of the identified model.  

The closeness of the two sets of poles can be judged by a visual examination of 
the poles chart. It is however possible to quantify this closeness by evaluating the 
distance between the closed loop transfer function of the real system and of the 
predictor (see next). 

Sensitivity Functions Closeness Validation 
From the same arguments as above it results that if the identified model is good, 
the sensitivity functions of the closed loop predictor (which can be computed) are 
close to the sensitivity functions of the real system (which can be identified by an 
open loop type identification between the external excitation and the output).  

To some extent the closeness of the sensitivity functions can be assessed by 
visual inspection. Moreover it is possible to quantify rigorously the distance 
between two transfer functions by computing the Vinnicombe distance (see 
Appendix D). 

Extensive simulations and a large number of experimental results have shown 
that the statistical tests and the poles or sensitivity functions closeness give 
coherent results and allow a clear comparison between several models (Landau and 
Karimi 1997b).  

Time Domain Validation 
For the validation in the time domain, one compares the time responses of the 
closed loop system and of the closed loop predictor. Unfortunately in practice it is 
in general not easy to compare accurately several models using this technique. In 
fact a good validation by poles or sensitivity functions closeness will imply a good 
superposition of the time domain responses while the reciprocal is not always true. 

9.3 Other Methods for Identification in Closed Loop 

1. Using Open Loop Identification Techniques on Filtered Data 
The procedures try to approximate the methods presented in Section 9.2. 
Identification algorithms for open loop identification will process the plant 
input/output (u,y) data generated through feedback, but in general these data will 
be filtered. The filters are estimations of various sensitivity functions. These 
methods require the knowledge of the controller (Landau and Karimi 1997b, 
Landau and Karimi 2001b).  
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2. Direct identification 
One tries to identify the plant model from plant input/output data ignoring the 
effect of the feedeback (the external excitation being added either to the reference 
or to the controller output). Open loop identification algorithms are used and in 
particular those assuming the structure S3 for the noise (ARMAX), like extended 
least squares, output error with extended prediction model, etc. This approach can 
be viewed as a particular case of the previous one. 

The quality of the results is very variable. Despite the fact that the knowledge 
of the controller is not explicitly required, the results will strongly depend on the 
characteristics of the controller and the level of noise. As a general rule a “soft” 
controller which essentially tries to stabilize the operating point has to be used.  

3. Multi steps identification 
These methods have as objective on one hand to eliminate the need for the 
knowledge of the controller and on the other hand to eliminate the effect of the 
measurement noise (which is critical when using open loop type identification 
methods) (Van den Hof and Shrama 1993). 

To understand this approach it is necessary to refer to Figure 9.1. The 
implementation of this approach is done in several steps: 

1. The sensitivity function  between the external excitation 

 and and the plant input  is identified. 

PASS yp /=

)(tru )(tu

 
2. One filters the external excitation  through the estimated sensitivity 

function  and one gets the instrumental variable  which is not 
correlated with the noise 
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9.4 Identification in Closed Loop: A Simulated Example 

The model used for simulation is 
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where e(t) is a gaussian white noise sequence (zero mean, finite variance). 

The controller used (stored in the text file SIMUBF_RST.reg2) is defined by 

  

11.0)(

3717.06283.01)(

5204.02763.18659.0)(

1

211

211

=

−−=

+−=

−

−−−

−−−

qT

qqqS

qqqR

The excitation signal superposed to the reference is a PRBS generated by a shift 
register with N=7 and a frequency divider equal to 2 (fPRBS=0.5fs). A total of 1024 
samples are used. A high noise level has been voluntarily chosen (approximately 
20% noise to signal ratio). 

With 1024 data it is not possible to reach the asymptotic results; however the 
relative performance of the various methods are clearly emphasized. The external 
excitation, the plant input and the plant output are stored in the file 
SIMUBF4.ACQ2 and represented in Figure 9.5.   

Table 9.1 gives the identified parameters and the statistical validation results 
for the models obtained with various methods. The F-CLOE algorithm has 
provided the best model in terms of validation tests (the model identified with AF-
CLOE has been used for computing the data filter). 

The last row of Table 9.1 gives the results with the best model (in terms of 
validation in closed loop) obtained by a direct open loop type identification using 
the plant input and output (and ignoring the feedback). The extended least squares 
method provided the best results. One can observe that this model does not pass the 
closed loop validation tests and the maximum value of the normalized cross-
correlations is much larger than the values obtained with the methods dedicated to 
the identification in closed loop. 

Table 9.1. Models identified in closed loop 

Method a1 a2 b1 b2 
Closed loop  

error variance   
R(0) 

Normalized cross-
correlations  

valid. threshhold: 
0.068     |RN(max)|  

Nominal 

model 
-1.5 0.7 1 0.5   

AF-CLOE -1.47 0.6708 0.954 0.5218 2.63e-4 0.0097 

CLOE -1.4761 0.667 0.959 0.4858 0.00187 0.0284 

F-CLOE -1.4691 0.6703 0.9593 0.5152 4.51e-5 0.0085 

X-CLOE -1.4695 0.6524 0.942 0.3849 2.42e-4 0.083 

OL type 
identification 

(ELS) 
-1.423 0.6216 0.9408 0.4898 0.0025 0.0749 

                                                 
2 Available from the web site: http//:landau-bookic.lag.ensieg.inpg.fr 
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Figure 9.5. The external excitation, the plant input and output (file SIMUBF4.ACQ) for 
identification in closed loop (simulated example) 
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Figure 9.6. Frequency characteristics of various identified models 
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Figure 9.6 illustrates the frequency characteristics of the nominal model, the 
model identified with F-CLOE and the model identified with the extended least 
squares (ELS). 
It is the model identified by F-CLOE which is the closest to the nominal model (it 
is also the one which gives the best results for statistical validation in terms of 
uncorrelation). 

Augmenting the number of data, the models obtained with F-CLOE (or CLOE, 
AF-CLOE) will approach more and more the nominal model. See Landau and 
Karimi (1997b) and Landau et al. (1997). 

9.5 Identification in Closed Loop and Controller Re-Design (the 
Flexible Transmission)3 

We will illustrate next the advantage of identification in closed loop for the 
improvement of the achieved control performances for the case of a flexible 
transmission (see also Chapters 7 and 8). The system has been described in Chapter 
7, Section 7.5.2 and in Chapter 8, Section 8.5.  The block diagram of the system is 
recalled in Figure 9.7 where in addition the point of application of the external 
excitation in closed loop is indicated.  

The controller used is the R-S-T controller (B) designed in Chapter 8, Section 
8.5 (see Tables 8.7 and 8.8) and is stored in the text file flex_rst.reg. The external 
excitation (same PRBS used for open loop identification, the data are stored in the 
text file ibfs_sor.c) has been added to the output of the controller (see Figure 9.7). 

The model identified in closed loop with F-CLOE (the model identified with 
AF-CLOE has been used for computing the data filter) has provided the best 
validation results. The validation results for various models are given in Table 9.2 
and the parameters of the model considered for further use (F-CLOE) are 

Table 9.2. Statistical validation of the various identified models for the flexible transmission 

Method 
Closed loop 

 error variance 
R(0) 

Normalized cross-
correlations  

valid. threshhold: 0.136     
|RN(max)| 

AF-CLOE 0.01164 0.0498 

CLOE 0.01310 0.0998 

F-CLOE 0.01117 0.0147 

OL identified 
model 0.01455 0.3821 

 

                                                 
3 This example has been worked out with the WinPIM® (Adaptech) identification software. 
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Figure 9.7. Closed loop identification scheme for the flexible transmission 

The statistical validation in closed loop (see Table 9.2) clearly indicates that the 
model identified in closed loop is better than the model identified in open loop. 
The frequency characteristics of the model identified in open loop (see Chapter 7, 
Section 7.5.2) and the model identified in closed loop (F-CLOE) are shown in 
Figure 9.8. One observes a difference in the values of the damping factors for the 
two vibration modes (the model identified in open loop is less damped). The 
conclusions drawn from statistical validation are confirmed also by the pole 
closeness validation between the identified and computed poles of the closed loop. 
In Figure 9.9 are represented the estimated “true” poles of the closed loop and the 
poles of the closed loop computed by using the model identified in open loop and 
the controller (B) designed in Section 8.5. The “true” poles are obtained by open 
loop type identification between the external excitation and the output of the closed 
loop system (using the same data as for identification of the plant model in closed 
loop). One observes first a qualitative difference since the computed poles 
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correspond to a pair of poles with the damping 8.0=ζ  and rad/s 94.110 =ω  
while the “true” dominant poles are an aperiodic pole at 0.763 and a pair of poles 
with the damping 523.0=ζ  and rad/s 6.110 =ω . 

In Figure 9.10 the identified “true” poles of the closed loop and the closed loop 
poles computed using the model identified in closed loop (F-CLOE) and the same 
controller as before are shown. One observes an almost superposition of the 
dominant poles and of one pairs of auxiliary poles. Comparing Figures 9.9 and 
9.10 one can conclude that the model identified in closed loop gives a better 
description of the behavior of the closed loop. 
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Figure 9.8. Frequency characterisitics of the models of the flexible transmission identified 
in open loop (OL) and in closed loop(CL) 

The identified model of the “closed loop” whose poles are used in Figures 9.9 
and 9.10 has been obtained with the recursive maximum likelihood method 
(structure S3) using decreasing adaptation gain and an initialization horizon of 120 
samples. The size of the model results from the complexity of the model of the 
flexible transmission and of the controller which has been used 
( 0,8,8,8 ==== dnnn CBA ). 

The better quality of the plant model identified in closed loop is also confirmed 
by the time domain validation. Figures 9.11 and 9.12 provide comparisons of the 
simulated and achieved time response to a step on the reference. One observes a 
better coherence between the simulation and the real time response in Figure 9.12 
where the simulation uses the model identified in closed loop (F-CLOE). 
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Figure 9.9. Pole closeness validation: x-identified closed loop poles; o-closed loop poles 
computed with the model identified in open loop 
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Figure 9.10. Pole closeness validation: x-identified closed loop poles; o-closed loop poles 
computed with the model identified in closed loop 
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Figure 9.11. Time domain validation: (--) simulation using the model identified in open 
loop; (-) real time response 
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Figure 9.12. Time domain validation: (--) simulation using the model identified in closed 
loop; (-) real time response 
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Figure 9.13. Improvement of the performance with the controller designed using the model 
identified in closed loop: (--) simulation; (-) real time 

We will now illustrate that this improved model identified in closed loop allows 
designing a new controller that achieves better performance (in the sense that the 
achieved performance is closer to the specified performance). Keeping the same 
performance specifications as for the controller designed in Section 8.5 using the 
open loop identified model one gets a new controller (modulus margin 

, delay margin 537.0=∆M s075.0=∆τ ) whose performances are illustrated in 
Figure 9.13 (to be compared with Figure 9.11). 

9.6 Concluding Remarks 

We have examined in this chapter the important problem of identification of plant 
models in closed loop. Identification in closed loop should be considered in the 
following situations: 

1. Unstable processes or showing an important drift of the operating 
point 

2. A controller exits already 
3. Improvement of the closed loop system performance (controller re-

tuning) 

The objective of the identification in closed loop is to obtain, for a given controller, 
a model of the plant allowing the best description of the behavior of the closed 
loop system. 

Identification in closed loop, provided that appropriate algorithms are used, 
allows to obtain better models for the controller design. 
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The closed loop output error identification methods (CLOE) are well suited for 
the identification of the plant models in closed loop operation. These methods 
require the knowledge of the controller.  

As for open loop identification, the model identified in closed loop should be 
validated. Several techniques for model validation in closed loop have been 
defined: 

• Statistical validation (uncorrelation test) 

• Pole closeness validation (evaluating the closeness of the true closed 
loop poles and those of the closed loop predictor) 

• Sensitivity functions closeness (evaluating the closeness of the true 
sensitivity functions and those of the closed loop predictor) 

• Time domain validation (comparison of real time response and of the 
simulated time response). 

The choice of the best model for re-design of the controller is done by comparing 
the validation results for all available models. It is useful to take also in account the 
model identified in open loop for this comparative validation (if it is available). 
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Landau I.D., Lozano R., M’Saad M. (1997) Adaptive Control, Chap. 9, Springer, 
London, UK. 
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pp. 159-167. 
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Reduction of Controller Complexity 

Controller complexity reduction is an issue in many applications. Techniques for 
controller complexity (order) reduction based on the estimation in closed loop of a 
reduced order controller will be presented. Methods for the validation of the 
estimated reduced order controllers are also presented. The use of these 
techniques is illustrated by their application to the complexity reduction of a 
controller for a flexible transmission. 

10.1 Introduction 

The complexity (order of the polynomials R and S) of the controllers designed on 
the basis of identified models depends upon: 

• The complexity of the identified model 
• The performance specifications 
• The robustness constraints 

The controller will have a minimum complexity equal to that of the plant model 
but as a consequence of performance specifications and robustness constraints this 
complexity increases (often up to the double of the size of the model, in terms of 
number of parameters, and in certain cases even more). 

In many applications the reduction of the controller complexity results from 
constraints on the computational resources (reduction of the number of additions 
and multiplications). These computational resources constraints come from various 
reasons: 

• Price in mass production (ex: cars) 
• Miniaturization and reduction of the energy consumption in certain 

embedded systems 
• High sampling frequency 

399 
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One should also add that often in practice one may be interested in tuning an 
existing digital PID even if the order of the plant model to be controlled is higher 
than 2.  

Therefore one should ask the question: can we obtain a simpler controller with 
almost the same performance and robustness properties as the nominal one 
(designed on the basis of the plant model)? 

Let us recall first that the polynomial defining the closed loop poles results 
from the equation 

  (10.1.1) )()()()()()()( 1111111 −−−−−−−− ′+′= qRqHqBqqSqHqAqP R
d

S

where A, B, d correspond to the model of the plant to be controlled  and  and  
 correspond to the fixed parts of the controller (introduced for performance and 

robustness reasons). The controller polynomials and are given by 

RH

SH

)( 1−qR )( 1−qS
 

  (10.1.2) )()()( 111 −−− ′= qRqHqR R

  (10.1.3) )()()( 111 −−− ′= qSqHqS S

and the corresponding minimal orders are 

 1−++=
RS HHAR nnnn  (10.1.4) 

  (10.1.5) 1−+++=
RS HHBS nndnn

The concrete objective will be to reduce the order of nR and nS. 
The basic rule for developing procedures for controller complexity reduction is 

to search for controllers of reduced order which preserve as much as possible the 
properties of the closed loop. A direct simplification of the controller transfer 
function by traditional techniques (cancellation of poles and zeros which are close, 
approximations in the frequency domain, balanced reduction, etc.) without taking 
into account the properties of the closed loop leads in general to unsatisfactory 
results.  

Two approaches can be considered for the controller complexity reduction: 

1. Indirect Approach 
This approach is implemented in two steps: 

1. Reduction of the complexity of the model used for design, trying to 
preserve the essential characteristics of the model in the critical frequency 
regions for design. 

2. Design of the controller on the basis of the reduced model. 
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2. Direct Approach 
Search for a reduced order approximation of the nominal controller which 
preserves the properties of the closed loop. 

The indirect approach has a number of drawbacks: 

• Does not guarantee the complexity of the resulting controller (since the 
robustness specifications will be more severe when using reduced models). 

• The errors resulting from model reduction will propagate in the design of 
the controller. 

The direct approach seems the most appropriate for the reduction of the controllers 
complexity since the approximation is done in the last stage of the design and the 
resulting performance can be easily evaluated. It is this approach which will be 
developed in this chapter. 

Two criteria can be considered for direct reduction of the controller complexity: 

• Closed loop input matching (CLIM). In this case one would like that the 
control generated in closed loop by the reduced order controller be as close 
as possible to the control generated in closed loop by the nominal 
controller. 

• Closed loop output matching (CLOM). In this case one would like that the 
closed loop output obtained  with  the reduced order controller be as close 
as possible to the closed loop output obtained with the nominal controller. 

These two criteria are illustrated in Figure 10.1a,b where the nominal controller is 
denoted by K: 
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402 Digital Control Systems 
 

 
)(ˆ

)(ˆˆ
1

1

−

−−

=
qA

qBqG
d

 (10.1.10) 

with 

         ;    (10.1.11) A
A

n
n qaqaqA −−− +++= ˆ...ˆ1)(ˆ 1

1
1 B

B

n
n qbqbqB −−− ++= ˆ...ˆ)(ˆ 1

1
1

For closed loop input matching (Figure 10.1a) one tries to find a reduced controller 
K̂  which will minimize the difference between the input sensitivity function of the 
nominal simulated system 
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computed with K  and  and the input sensitivity function of the simulated 
system using the reduced controller 
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Figure 10.1a,b. Criteria for controller complexity reduction: a tracking of the nominal 
control; b tracking of the nominal output  
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computed with K̂ and . This is equivalent to the search of a reduced controller Ĝ
K̂ which minimizes the error between the two loops (in the sense of a certain 

fference between  

criterion) for a white noise type excitation (like PRBS). 
For the tracking of the nominal output (Figure 10.1b) the principle remains the 

same except that in this case one tries to minimize the di 1
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computed with K and  and the sensitivity function of the simulated system 
using the reduced controller 

Ĝ

 
GK

GKS
ˆˆˆ̂

=  (1yr ˆˆ1+
0.1.15) 

computed with K̂ and 
One can see immediately that in both cases the problem of finding a reduced 

 f ulated as an identification in closed loop (see Chapter 
9) 

ted next are available in the MATLAB  toolbox REDUC  

con

                                                

Ĝ . 

order controller can be orm
where the plant model is replaced by the reduced order controller to be 

estimated and the controller is replaced by the available estimated model of the 
plant (dual problem).  

The reduction procedures and the validation techniques for reduced order 
controllers to be presen ® ®

(Adaptech 1999a) which can be downloaded from the book web site2 . 
Design of a reduced order RST controller and of a digital PID for the flexible 

transmission presented in Section 7.5.4, using the reduction of a nominal RST 
troller (designed by pole placement), will illustrate the use of the techniques 

presented in this chapter. For the use of these techniques for controller reduction 
applied to an active suspension see (Landau et al. 2001). 

 

1 Note that and therefore the tracking of the nominal output is equivalent to 

the minimization of the difference between the nominal and reduced output sensitivity functions.  
ypypyryr SSSS ˆˆ̂ˆ̂ˆ −=−

2 http://landau-bookic.lag.ensieg.inpg.fr 
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10.2 Estimation of Reduced Order Controllers by Identification 
in Closed Loop 

10.2.1 Closed Loop Input Matching (CLIM) 

The principle is illustrated in Figure 10.2. 

Nominal closed loop (simulation) 

 
Figure 10.2. Estimation of reduced order controllers by the method of closed loop input 
matching (CLIM). Use of simulated data 

The upper part represents the simulated nominal closed loop system. It is made 
up of the nominal controller ( K ) and the best identified plant model ( G ). This 
model should assure the best closeness behavior of the true closed loop system and 
the nominal simulated one. Identification of this plant model in closed loop can be 
considered if the nominal controller can be implemented.   

ˆ

The lower part is made up of the estimated reduced order controller ( K̂ ) in 
feedback connection with the plant model ( ) used in the nominal simulated 
system. The parameter adaptation algorithm (PAA) will try to find the best reduced 
order controller which will minimize the closed loop input error. The closed loop 
input error is the difference between the plant input generated by the nominal 
simulated closed loop system and the plant input generated by the simulated closed 
loop using the reduced order controller. 

Ĝ

The output of the nominal controller (plant input) is given by 
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with   

 )1()1()1( +−+=+ tytrtc  (10.2.2) 

The a priori predicted output of the reduced order controller is given by 
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and the a posteriori predicted output is given by  
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The closed loop input error is given by 
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and the parameter adaptation algorithm is expressed as 

  (10.2.10) )1()()()(ˆ)1(ˆ +Φ+=+ tttFtt CLεθθ

  (10.2.11) 
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Specific algorithms are obtained for different choices of the observation vector: 

• CLIM algorithm: )()( tt φ=Φ  
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• F-CLIM algorithm: )(
)(ˆ
)(ˆ

)( 1

1
t

qP
qAt φ
−

−

=Φ  

where 

  (10.2.13) )()(ˆ)()(ˆ)(ˆ 11111 −−−−−− += qRqBqqSqAqP d

The introduction of the filtering of )(tφ  is motivated by the elimination of a 
sufficient condition for convergence which, in the case of the CLIM algorithm, 
depends on . A detailed analysis of the properties of these 
algorithms can be found in Landau et al. (2001). 

)(ˆ/)(ˆ 11 −− zPzA

 
Figure 10.3. Estimation of reduced order controllers using real data (CLIM) 

The estimation of reduced order controllers is also possible by using real time 
data (if the prototype of the nominal controller can be implemented on the real 
system). It is shown in Landau et al. (2001) that the use of real data allows one to 
take in account the error between the model and the true plant model in certain 
frequencies regions. 
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Ĝ

K̂
ĉ û
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10.2.2 Closed Loop Output Matching (CLOM) 

The principle of this method is illustrated in Figure 10.4. 

Nominal closed loop (simulation) 

 

 

Figure 10.4. Estimation of reduced order controllers by the method of closed loop output 
matching (CLOM). Use of simulated data 

Despite that the point where the external excitation is applied and the output 
variable is different with respect to Figure 10.1b, the transfer function between r(t) 
and u(t) is still the one given by Equation 10.1.14. This means that in the absence 
of disturbances (it is the case in simulation) u(t) generated by the upper part of the 
scheme given in Figure 10.4 is equal to y(t) generated in Figure 10.1b. This allows 
one to use for closed loop output matching the CLIM (or F-CLIM) algorithm with 
the only difference that c(t) in Equation 10.2.1 is replaced by:   

  (10.2.14) ))()()((ˆ)( 1 tutrqGtx −= −

and accordingly in 10.2.3 and 10.2.6 is replaced by : )(ˆ tc )(ˆ tx

  (10.2.15) ))(ˆ)()((ˆ)(ˆ 1 tutrqGtx −= −

One should note that the order of the blocks in the upper part of Figure 10.4 can 
be interchanged (like the upper part of Figure 10.1b) without affecting the 
operation of the algorithm. This observation is of interest when real time data are 
used.  

10.2.3 Taking into Account the Fixed Parts of the Nominal Controller 

It is often required that the reduced order controller contains some of the fixed 
filters incorporated in the nominal controller (for example: integrator, opening of 
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the loop at 0.5fs or at other frequency). In order to do this one first factorizes the 
nominal controller under the form3  

 KKK F ′=  (10.2.16) 

where represents all the fixed parts that one would like to be also incorporated 
in the reduced order controller. 

FK

The reduced order controller is factorized as 

  (10.2.17) KKK F
ˆˆ ′=

One replaces in the CLIM algorithm the input of the controller ĉ K̂ by the input to 
the controller K ′ˆ , denoted , where c′ˆ c′ˆ is given by 

  (10.2.18) )(ˆ)()(ˆ 1 tcqKtc F
−=′

and in )(tφ ,  is replaced by ĉ c′ˆ . In the CLOM algorithm one replaces by 
given by 

)(ˆ tx
)(ˆ tx′

  (10.2.19) )]()()[(ˆ)()(ˆ 11 tytrqGqKtx F −=′ −−

10.2.4 Re-Design of Polynomial T(q-1) 

Once a controller of reduced order is obtained and validated, one should re-
compute the polynomial  using the new polynomial defining the closed 
loop poles 

)( 1−qT

  (10.2.20) )(ˆ)(ˆ)(ˆ)(ˆ)(ˆ̂ 11111 −−−−−− += qRqBqqSqAqP d

10.3 Validation of Reduced Order Controllers 

Once a reduced order controller has been estimated, it should be validated before 
considering its implementation on the real system. 
                                                 
3 If the nominal controller has unstable poles (which is certainly not desirable), they should be 
maintained as they are and therefore they should be included in .  FK
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10.3.1 The Case of Simulated Data 

It is assumed that the nominal controller stabilizes the nominal plant model (used 
for controller reduction). One implicitly assumes that the model uncertainties have 
been taken into account in the design of the nominal controller. 

The reduced order controller should satisfy the following conditions: 

• It stabilizes the nominal plant model. 
• The reduced sensitivity functions (computed with the reduced order 

controller) are close to the nominal sensitivity functions in the critical 
frequency regions for performance and robustness. In particular output and 
input sensitivity functions should be examined.   

• The generalized stability margin (see Appendix D) of the system using the 
reduced order controller should be close to the generalized stability margin 
of the nominal closed loop. This condition is expressed as 

0     ;      )ˆ,ˆ()ˆ,( ><− εGKbGKb ε  

where  and are the generalized stability margins 
corresponding to the nominal controller and to the reduced order controller 
and 

)ˆ,( GKb )ˆ,ˆ( GKb

ε  is a small positive number. The closeness of the two stability 
margins allows maintaining the robustness properties of the initial design.  

The proximity or the nominal and reduced sensitivity functions can be judged 
by visual examination of their frequency characteristics. There exists however the 
possibility to make a numerical evaluation of this proximity by computing the 
Vinnicombe distance (ν gap) between these transfer functions (see Appendix D). 
The Vinnicombe distance allows one with one number (between 0 and 1), to make 
a first evaluation of the proximity of the reduced and nominal sensitivity functions 
which is useful for the comparative evaluation of the various reduced order 
controllers. 

10.3.2 The Case of Real Data  

The use of real data (in the case where the prototype of the nominal controller can 
be implemented) allows completion of the validation done with simulated data. 

From Figure 10.3 it results that the objective is to test to what extent the 
simulated closed loop using the reduced order controller is close to the real closed 
loop system using the nominal controller. 

Initial information is provided by the variance of the residual closed loop input 
error. Subsequent information can be obtained by identifying the transfer function 
of the real closed loop system (between and ) and then comparing the 
frequency characteristics of this transfer function with that of the simulated closed 
loop system using the reduced order controller. In this case, using the Vinnicombe 
distance one can also evaluate rapidly the quality of various reduced order 
controllers. 

ur u
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10.4 Practical Aspects 

The quality of the resulting reduced order controller will depend upon the ability of 
the plant model in feedback with the nominal controller to reproduce the behavior 
of the real feedback system. 

If one has access to the real system and the nominal controller can be 
implemented, it is wise to identify a new plant model in closed loop and to validate 
comparatively in closed loop the various available models in order to select the 
best one. 

Note also that the same input/output data used for identification in closed loop 
can be in general used for controller reduction. For more details on these aspects 
see Landau and Karimi (2002). 

Once the best plant model is selected, the procedure for controller reduction is 
implemented (with simulated or real data). 

Using the methods described in this chapter, all the controllers with order of the 
polynomials R and S lower than the nominal one, can be estimated with only one 
set of data. Then, using the validation techniques, one select those reduced order 
controllers which assure a good approximation of the behavior of the nominal 
closed loop system. 

10.5 Control of a Flexible Transmission – Reduction of 
Controller Complexity 

The algorithms for reducing the controller complexity described in the previous 
sections will be applied to the flexible transmission already presented in Chapter 7, 
Section 7.5.4. On the basis of the fourth-order model identified for the flexible 
transmission (following an open loop identification procedure, see Section 7.5.4), a 
controller that guarantees the specified performances (standard robustness margins 
and regulation/tracking closed loop dynamics) has been computed by pole 
placement with the sensitivity functions shaping method in Chapter 8, Section 8.5.  

In this section we consider the RST controller obtained by requiring the same 
specifications (i.e. same assigned closed loop poles, controller fixed parts and 
robustness constraints) considered in Chapter 8, Section 8.5 (design C) but with the 
model identified in closed loop in Chapter 9, Section 9.5.  It is characterized by the 
orders nR = nS = 5 for the polynomials R and S. We will refer to this controller as 
the nominal controller. 

The first objective of the controller reduction will be to find a good controller 
with orders for the polynomials R and S lower than the minimum orders which can 
be obtained in model based control design when only the integrator is imposed (nR 
= n S = 4) .   

Consider now the following problem: is it possible to design a digital PID 
controller for the flexible transmission which will provide closed loop performance 
and robustness close to those provided by the nominal controller? The answer to 
this control design problem is not easy if one tries to tune directly the PID 
parameters. An effective solution can be obtained by reducing the complexity of 
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the full controller to nR = n S = 2 using the techniques presented in this chapter4. 
Therefore the second objective of controller reduction will be to tune a digital PID. 

The procedure for finding a controller of reduced complexity involves the 
following steps: 

1. Load the RST full controller, the flexible transmission model identified in 
closed loop and the excitation used to estimate the reduced order controller. 

2. Specify the fixed parts of the reduced controller together with the 
desired polynomials orders (nR and nS). 

3. Run an appropriate algorithm for the reduction of the controller 
complexity in closed loop (CLIM or CLOM). 

4. Validate the results in terms of  comparison of the nominal and reduced: 
sensitivity functions and  generalized stability margin.  

In this specific application, we will look for reduced order controllers with  

• nR = 3, nS =  3 
• nR = 2, nS =  2  (digital PID) 

and with the fixed parts: 
• HS = 1 – q-1 (integrator), HR = 1 

In Table 10.1 three reduced order controllers are considered. The reduced order 
RST controller K3 has a lower complexity than the minimum complexity which can 
be obtained in a model based control design and has been obtained using the 
CLOM reduction algorithm (simulated data).  

The orders of the polynomials R and S have been reduced from 5 to 3. 
Controllers K1 and K2 correspond to digital PID controllers and they have been 
obtained using CLOM (K1) and CLIM (K2) algorithms respectively. These reduced 
controllers are compared with the nominal controller (Kn). 

The values found for the Vinnicombe normalized distance5 (δν, rows 1 and 2) 
give a first indication of the proximity between the sensitivity functions computed 
with Kn and those computed with K1, K2 and K3. As the first objective is to 
maintain the robustness properties and performance with respect to output external 
disturbances, the proximity of the reduced output sensitivity function  with 
respect to the nominal one is the main criterion for selecting the reduced order 
controller. Row 3 gives the generalized stability margin for each controller. The 
last two rows of the table give the frequency and the amplitude of the peak of the 
output sensitivity functions.  

i
ypS

Clearly controller K3 provides very close performances with respect to the 
nominal one in terms of the gap on Syp, generalized stability margin and maximum 
of the output sensitivity function. 
                                                 
4 More details about this example and the files to run the simulations can be found in Appendix G, 
Section G.6. 
5 For definitions of the Vinnicombe normalized distance (ν-gap) and the generalized stability margin 
see Appendix D.4. 
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Table 10.1. Comparison of the reduced order (PID and RST) controllers with the nominal 
controller (validation) 

 Controller 
nK  

5=Rn  

5=Sn  

1K  

2=Rn  

  2=Sn  
(CLOM) 

2K  

2=Rn  

2=Sn  
(CLIM) 

3K  

3=Rn  

3=Sn  
(CLOM) 

1 ),( i
up

n
up SSνδ  - 0.6331 0.5280 0.1416 

2 ),( i
yp

n
yp SSνδ  - 0.1443 0.2396 0.0111 

3 )(kb  0.2875 0.2490 0.2446 0.2854 

4 )( ypSMax (dB) 5.13 6.31 6.35 5.25 

5 maxf  (Hz) 0.93 0.99 2.85 0.93 

The PID obtained with CLOM algorithm (K1) provides a smaller gap for the Syp 
than the one obtained using CLIM algorithm (K2) (this result was expected taking 
in account the criterion which is minimized – see Section 10.1). This is confirmed 
by a visual inspection of the output sensitivity frequency characteristics (see Figure 
10.5).  In terms of closeness of nominal and reduced Sup, controller K1 is slightly 
less good than K2 (see Figure 10.6).  

Note that since in the reduced order controllers the opening of the loop at 0.5 fs 
has not been imposed (in order to get a low order controller), there are important 
differences at 0.5 fs. However the level of obtained Sup is acceptable.  

The generalized stability margins (b(K)) for the reduced PID controllers are still 
close to that of Kn, and then the robustness properties will be only slightly changed. 
The magnitude of the peak of Syp is almost the same for both PID controllers but 
for the K1 controller the frequency is very close to that of Kn. The peak for K1 is 
only 0.31 dB over the standard 6 dB level required for robustness margin. 

In Figure 10.7 time domain simulations are given for comparing both tracking 
and regulation behavior of the reduced controllers considered in Table 10.1 with 
respect to the full RST controller (for a fair comparison with the PID, the full 
controller uses T = R(1) which corresponds to having same performance 
specifications in tracking and regulation). The K3 controller also uses T = R(1). A 
PID2 structure (see Chapter 3, Section 3.2.4) has been used (with T = R(1)). In the 
case of the controller K3, the number of parameters for R and S has been reduced 
from 11 to 7 and in the case of the PID the reduction is from 11 to 5. 

The simulations show that controller K3 gives almost the same performances as 
the full controller and that K1 controller provides a better performance than K2 
controller. The performance of controller K1 is acceptable both in tracking and 
regulation (filtering the reference can further reduce the overshoot while providing 
the same time response as the full controller).  

Real time results are shown in Figure 10.8 and they confirm the results 
obtained in simulation.  



 Reduction of Controller Complexity 413 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

Frequency (f/fs)

M
ag

ni
tu

de
 (d

B
)

Syp PID Comparison: Magnitude Frequency Responses

FUll RST: nR=5, nS=5
RST reduction(CLOM): nR=3, nS=3

PID from RST reduction (CLIM)
PID from RST reduction (CLOM)

 
Figure 10.5. Syp comparison between the reduced order (PID and RST) controllers and the 
full RST controller 
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Figure 10.6. Sup comparison between the reduced order (PID and RST) controllers and the 
full RST controller 
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Figure 10.7. Time domain comparison (both tracking and regulation) between the reduced 
order (PID and RST) controllers and the nominal RST controller (simulation) 

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

O
ut

pu
t (

Vo
lt)

Time (s)

Flexible transmission : Real Time Controllers Comparison

5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1

C
on

tro
l s

ig
na

l (
Vo

lt)

Time (s)

Full RST
RST Reduction (CLOM): nR=3,nS=3

PID from RST Reduction (CLIM)
PID from RST Reduction (CLOM)

 
Figure 10.8. Real time domain comparison between the reduced order (PID and RST) 
controllers and the nominal RST controller  
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10.6 Concluding Remarks 

In this chapter the bases of controller reduction have been presented together with 
a set of methods allowing one to effectively achieve controller order reduction.  
These methods are based on the use of closed loop identification techniques for 
estimating a reduced order controller. The objective is to find a reduced order 
controller such that the characteristics of the closed loop is as close as possible to 
the closed loop characteristics obtained with the nominal controller. 

Two specific objectives for controller reduction have been considered: 

• Closed loop input matching (CLIM) 
• Closed loop output matching (CLOM) 

The reduced order controller should be validated before its effective use. Dedicated 
validation techniques have been presented.  

In addition to the practical considerations which require reduction of the 
controller complexity, the use of the reduction techniques allows one to provide 
indirect answers to the following two important questions: 

• What is the optimal choice of the closed loop poles for a design by pole 
placement? 

• How to compute a reduced order controller (and in particular a digital PID) 
for a plant characterized by a high order dynamical model? 

10.7 Notes and References 

For basic references in controller reduction see: 

Anderson B.D.O., Liu Y. (1989)  Controller reduction: concepts and approaches, 
IEEE Trans. on Automatic Control, vol. 34, no. 8, pp. 802-812. 

Anderson B.D.O. (1993) Controller reduction: moving from theory to practice, 
IEEE Control Magazine, vol. 13, pp. 16-25. 

The main references for the techniques presented in this chapter are: 
Landau I.D., Karimi A., Constantinescu A. (2001) Direct controller reduction by 

identification in closed loop, Automatica, vol. 37, no. 11, pp. 1689-1702. 
Adaptech (1999a) REDUC® – Controller order reduction by closed-loop 

identification (Toolbox for MATLAB®), Adaptech, 4 rue du Tour de l’Eau, St. 
Martin d’Hères, France 

Experimental results for the controller reduction applied to an active suspension 
can be found in the above references. 

Interaction between controller complexity reduction and closed loop 
identification is discussed in: 

Landau I.D., Karimi A. (2002) A unified approach to closed-loop plant 
identification and direct controller reduction, European J. of Control, vol. 8, 
no.6, pp 561-572. 
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A Brief Review of Some Results from Theory of Signals 
and Probability 

A.1 Some Fundamental Signals 

For the analysis of dynamic systems in the time domain the knowledge of some 
typical signals is necessary. 

Dirac Pulse 
It is a fundamental signal, since all the other signals are obtained by passing the 
Dirac pulse through an appropriate filter. The Dirac pulse is defined as the limit 
when ∆ −> 0, of a pulse of unit surface having duration ∆ and magnitude 1/∆ (see 
Figure A.1). For ∆ −> 0, the magnitude goes towards infinity.  

The Dirac pulse is written as 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∆><=

∆≤≤
∆

=
→∆

                   

                       

tt
  

        ,

 t
tu

,00

0,1lim
)( 0  

Despite the fact that it is an abstract mathematical object, in many situations, the 
duration of a pulse applied to a system is very short compared to the time constants 
of the system, and it can be approximated by a Dirac pulse. The response of a 
system to a Dirac pulse is known as the impulse response.  

The discrete time equivalent of the Dirac pulse (also known as delta (δ) 
function or Kronecker’s function) is 

  
⎩
⎨
⎧

≠=
==

00
01

)(
t
t

tu

417 



418 A Brief Review of Some Results from Theory of Signals and Probability 
 

rampstepDirac 
pulse 

∆ 

∆ 

 
Figure A.1. Dirac pulse, step and ramp signals 

Step 
The unit step is defined as follows: 

  
⎩
⎨
⎧

≥=
<=

01
00

)(
t
t

tu

The step can be interpreted as the integral of the Dirac pulse.  
The discrete time step is defined in a similar way:  
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The discrete time step can be obtained by the numerical integration of the discrete 
time Dirac pulse (δ function). 

The response of a system to a step is known as step response.  

Ramp 
The ramp is defined as follows: 
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The ramp corresponds to the integral of the unit step or to the double integration of 
the Dirac pulse. In discrete time, the ramp is defined as  
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A.2 The z - transform 

Let  a discrete time sequence defined for all )(kf ,...)2,1,0(  , 0 =≥ kk . 
The z - transform of the sequence  is defined by )(kf

  ∑
∞

=

−=
0

)()(
k

kzkfzF

If  is the )(zU z -transform of the discrete time input sequence  applied to a 
linear system and  is the 

)(ku
)(zY z - transform of the discrete time output 

sequence , one can define the pulse transfer function of a discrete time system 
as 

)(ky

  )(/)()( zUZYzH =

(for an equivalent definition see Chapter 2, Section 2.3.2). 
The z -transform of the discrete time Dirac pulse is 1. Therefore the pulsed 

transfer function of a linear discrete time system is equal to the )(zH z -transform 
of the output sequence when the input is a discrete time Dirac pulse.  

A.3 The Gauss Bell 

It is extremely important for a random variable (or for an ergodic stochastic 
process) to be able to specify what is the probability that this variable takes a value 
within a certain interval, or to specify what is the percentage of points, over a set of 
measurements of a random variable, which will be within a certain interval. If the 
random variable is gaussian (normal) or if the ergodic stochastic process is 
gaussian, this information is obtained from the measure of the area under the 
“Gauss bell” between the coordinates (values) x1 and x2 (see Figure A.2). 

The expression for the “Gauss bell” is: 

 +∞≤≤∞−
−

−= xe
MVx

xf X σπσ 22

2)(

2
1)(  (A.1) 

where, for the case of gaussian stochastic processes, MV is the expectation (or the 
mean value)  

 { } ∑==
=∞→

N

tN
tX

N
tXEMV

1
)(1lim)(  (A.2) 
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Figure A.2. Gauss bell 
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and σ is the standard deviation related to the variance of the stochastic process by 
the relationship  

 { } ∑
=
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∞→
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N

t
MVtX
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MVtXEVar

1
22))((1lim  2))(( . σ  (A.3) 

From Equation A.1, it results that the “Gauss bell” shrinks around the mean value 
and its maximum will grow as the standard deviation σ decreases. This is 
illustrated in Figure A.3. 

The probability that X takes a value between - ∞ and + ∞ being equal to 1, it 
results that the total area under the “Gauss bell” is equal to 1 (or 100 %). 

fx

1
σ1 2π

1
σ2 2π

σ2 < σ1  

xVM  
Figure A.3. Gauss bells for two different values of the standard deviation  

The probability that X takes a value ≤  x0 is equal to the area under the Gauss 
bell for -  < x ≤  x0. This probability (denoted P) is a function which depends 
upon x. It is called probability distribution function.  

∞

 { } { }xXPxXPxFX ≤<∞−=≤=)(  (A.4) 
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From Figure A.2, it results that 

 { } { } { } )()( 121221 xFxFxXPxXPxXxP XX −=≤−≤=≤<  (A.5) 

 The derivative of the probability distribution function (if it exists), is called the 
probability density function of the random variable.  

 
dx

xdFxf x
X )()( =  (A.6)

 

where 

 { }dxxXxPxdFX +≤≤=)(  

F(x) being represented by the area under the “Gauss bell”, one concludes that the 
Gauss bell gives the probability density for gaussian random variables (or for 
ergodic guassian stochastic processes). 

From Equation A.6, it results that 

 { } dxxfdxxXxPxdF XX )()( =+≤≤=  (A.7) 

which means that the probability that a random gaussian variable takes a value 
between  x and  x + dx is equal to fX(x) dx. 

Let us return now to the expression of the density of probability given by 
Equation A.1. If we will center the random variable (or the realization of the 
gaussian stochastic process) by subtracting the mean value, the Gauss bell will be 
centered around 0. In Figure A.4, a Gauss bell centered on 0 has been represented. 
The value of the area between various values of x has been indicated. This will 
give the percentage of points which will be found within these values (or the 
probability that a gaussian random variable takes a value within this interval). 

Some significant values concerning the Gauss bell are summarized in Table 
A.1. 

Table A.1. Percentage of points verifying | X | ≤  α, α  0 for an ergodic gaussian 
stochastic process 

≥

α σ 1,808σ 1,96σ 2σ 2,17σ 2,58σ 3σ 

|X| ≤  α (%) 63 93 95 95,5 97 99 99,7 
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B 

Design of RST Digital Controllers in the Time Domain 

B.1 Introduction 

In Chapter 3, the design of digital controllers in a deterministic environment has 
been discussed using exclusively the plant and controller representation by transfer 
functions (operators) in order to assign the poles of the closed loop.  

The same results can be obtained by designing the controllers in the time 
domain. The time domain approach emphasizes the predictive character of digital 
control by pole placement (or by other related control strategies presented in 
Chapter 3). This approach allows one on one hand to get a deeper understanding of 
the control of systems with delay since it clearly shows the presence of a predictor 
inside the controller and, on the other hand, it allows one to understand better the 
connection with the synthesis of digital controllers in a stochastic environment.  

An essential aspect in the design of digital controllers in the time domain is the 
synthesis of an (explicit or implicit) predictor for discrete time systems. Another 
important issue is that the resulting control u(t) should depend only upon the 
information available up to and including time t. 

If one takes the point of view of the controller design in the time domain, there 
are a number of specific control strategies known under the generic name model 
predictive control. Comparing the time domain control objectives for various 
model predictive control strategies, one can classify these strategies into two 
categories: 

1. One step ahead model predictive control 
In these strategies one computes a prediction of the plant output at t+d+1 (d- 
integer delay of the plant) namely ),..)1(),(),...1(),(()1(ˆ −−=++ tytytutufdty  
and one computes u(t) such that the control objectives expressed in terms of 

 be satisfied. )1(ˆ ++ dty

423 
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2. Long range model predictive control 
In these strategies the control objective is expressed in terms of future values of the 
output over a certain horizon and of a sequence of future control values. In order to 
solve this problem one need to compute the following predictions: 

 ),..)1(),(),..1(),(()1(ˆ 1 −−=++ tututytyfdty  
                            M  

0;))1(),...1((),..)1(),(),..1(),(()(ˆ 1 =−+++−−=++ gjtutugtututytyfjdty jj  

Note that predictions of the output beyond d+1 will depend on the future values of 
the control. The sequence of present and future values of the control i.e. u(t), 
u(t+1), …u(t+j-1) is computed in order to satisfy the control objective. However 
only u(t) is applied to the plant and the procedure is restarted at t+1. This is known 
as the receding horizon procedure. 

All these strategies will lead to a linear controller as long as constraints on the 
values of the admissible control applied to the plant will not be considered. In all 
cases the resulting design can be interpreted as a pole placement. The closed loop 
poles will be defined by the design criterion used in time domain. The control 
strategies presented in Chapters 3 and 4 belong to the category of one step ahead 
predictive control (i.e.: there is a time domain control objective associated to each 
of these strategies). 

This appendix is organized as follows. Predictors for linear discrete time 
systems will be presented in Section B.1. The design of RST controllers in the time 
domain using one step ahead model predictive control strategies will be illustrated 
in Section B.2 for the tracking and regulation with independent objectives and pole 
placement. In Section B.3 it will be shown that the RST controller for a system 
with delay d can be decomposed in a d steps ahead predictor for the plant output 
and an RST controller for the plant without delay, using the predictor output 
instead of the measured output. Section B.4 will present briefly the long range 
model predictive control strategies which will be illustrated by the generalized 
predictive control strategy. 

B.2 Predictors for Discrete Time Systems  

The discrete-time model of a sampled-data system is described in the general case 
by 

  (B.1) )()()(
11

idtu
n

bity
n

aty
BA

i
i

i
i −−+−−= ∑∑

==

The linear discrete time model given in Equation B.1 is in fact a one step ahead 
predictor. Moving from t to t+1 its expression becomes 
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)()()()()1()1()1( 1*1*
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tuqBqtyqAidtubityaty d
n

i
i

n

i
i

BA
−−−

==

+=−−++−+−=+ ∑∑             

),...]1(),(),...,1(),([ −−= tututytyf  (B.2) 

where  and  are given by Equations 2.3.22 and 2.3.24. One can 
observe that y(t+1) depends only on the values of y and u up to the instant t. 

)( 1* −qA )( 1* −qB

An important problem is the prediction of the output  for t+1,t+2,… using 
the information (measures) available up to the instant t. This type of problem 
occurs for the control of systems with a discrete time delay d. In this case, we 
would like either to predict the value of the output with d+1 steps in advance, 
using only the information available at instant t, or to compute the value of u(t) 
allowing us to obtain a specified value of the output y at instant t+d+1. In fact we 
are looking for an expression of the form  

y

       ),...]1(),(),...,1(),([)/(ˆ)(ˆ −−=+=+ tututytyftjtyjty ; 1+≤ dj  (B.3) 

where )/(ˆ tjty + , denoted in a simplified notation by )(ˆ jty + , represents the 
prediction of the output at the instant t + j based on the knowledge of y and u up to 
and including t. 

In order to illustrate the concept and the synthesis of a predictor, first let 
consider an example.  

Example: Let 

 )1()()1( 11 −+−=+ tubtyaty  (B.4) 

which corresponds to a system with a discrete time delay 1=d . 
We are interested in predicting the output value y(t+2) at instant t on the basis 

of information available at instant t. In order to compute this predicted value, one 
expresses first the output y(t+2) as a function of the available information at instant 
t. From Equation B.4 one gets 

 )()1()2( 11 tubtyaty ++−=+  (B.5) 

which can also be written 

  (B.6) );()()2()( 1*1 tuqBtyqA −− =+ ;1)( 1
1

1 −− += qaqA 1
1* )( bqB =−

Note that y(t+2), given by Equation B.5, depends upon y(t+1) which is unknown at 
instant t. Therefore this expression does not allow a two steps ahead prediction. 
But y(t+1)  can be replaced in Equation B.5 by its expression given by Equation 
B.4. One then gets 
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        (B.7) 
)()()()()(             

)()1()()()]1()([)2(
1*11

1
1

101111

tuqBqEtyqF

tubqetyftubtubtyaaty
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+=

++=+−+−−=+

with 

  (B.8) ;)( 2
10

1 afqF ==− 1
1

1
1

1 11)( −−− −=+= qaqeqE

One observes that the right hand member of Equation B.7 depends only on the 
information available at instant t and therefore the expression of the two steps 
ahead predictor will be given by  

  (B.9) )()()()()()2(ˆ 1*11 tuqBqEtyqFty −−− +=+

where  and  are given by Equation B.8. )( 1−qF )( 1−qE
This technique of successive substitution of the one step ahead prediction can 

be generalized for any d, A and . However, it is possible to directly find the 
polynomials  and . Using Equation B.6 in Equation B.7 for 

replacing the term  one gets 

B
)( 1−qE )( 1−qF

)()( 1* tuqB −

   (B.10) 
)2()]()()([             

)2()()()()()2(
1211

111

++=

++=+
−−−−

−−−

tyqFqqEqA

tyqAqEtyqFty

In order that the two sides of Equation B.10 be equal,  and  should 
verify the polynomial equation 

)( 1−qE )( 1−qF

   (B.11) )()()(1 1211 −−−− += qFqqEqA

In other terms, this means that the coefficients of the polynomials  and 

 required for the computation of the predicted value 

)( 1−qE

)( 1−qF )2(ˆ +ty  at instant t, 
are the solutions of the polynomial Equation B.11. This approach can be 
generalized for any A ,  and d . B

In general, we look for the expression of a filtered prediction 

  (B.12) ),...]1(),(),...,1(),([)1(ˆ)( 1 −−=++− tututytyfdtyqP P

where  is an asymptotically stable monic polynomial (the coefficient of 

power  is 1 ). The discrete time system B.2 can be re-written in the form: 

)( 1−qP
0q



 Design of RST Digital Controllers in the Time Domain 427 

  (B.13) )()()1()( 1*1 tuqBdtyqA −− =++

We will search for an expression of the output having the form  

  (B.14) )()()()()()1()( 1*111 tuqBqEtyqFdtyqP −−−− +=++

where 

F
F

n
n qfqffqF −−− +++= ...)( 1

10
1  (B.15) 

E
E

n
n qeqeqE −−− +++= ...1)( 1

1
1  (B.16) 

Using Equation B.13, Equation B.14 becomes: 

  (B.17) )1()]()()([)1()( 11111 +++=++ −−−−−− dtyqFqqEqAdtyqP d

and therefore  and  are solutions of the polynomial equation )( 1−qE )( 1−qF

)()()()( 11111 −−−−−− += qFqqEqAqP d  (B.18) 

with 

 dndnnn EPAF =−−−= ;)1,1max(   (B.19) 

in order to obtain minimum unique solution. 
Equation B.18 can also be expressed in matrix form 

 pMx =  (B.20) 

where M  is a lower triangular matrix of dimension )1()1( ++×++ dndn AA , the 

vector x  contains the coefficients of  and  and the vector 

contains the coefficients of the polynomial . 

)( 1−qE )( 1−qF

p )( 1−qP
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  (B.21) ]...,,...,1[ 101 Fnd
T fffeex =

  (B.22) ]...,...,,1[ 121 dNNN
T

AAA
pppppp ++=

In general . If some of the components  in B.22 will 
be null. 

dnn Ap +≤ dnn Ap +< ip

The computation of  and  requires uniquely the knowledge of 

and . For effective computations the functions: predisol.sci (Scilab) et 
predisol.m (MATLAB®)1 can be used (see also Chapter 3, Section 3.4). 

)( 1−qE )( 1−qF

d )( 1−qA

The d+1 steps ahead predictor will be given by 

  (B.23) )()()()()()1(ˆ)( 1*111 tuqBqEtyqFdtyqP −−−− +=++

and the prediction error defined by 

 )1(ˆ)1()1( +−+=+ tytytε  (B.24) 

will satisfy the equation 

0)1()( 1 =++− dtqP ε  (B.25) 

                                                 
1 To be downloaded from the book web site.  
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which is obtained by subtracting Equation B.23 from Equation B.14. In other 
words, the prediction error will tend towards zero for any initial prediction error 
provided that  is asymptotically stable. For the prediction error 
becomes zero at . 

)( 1−qP 1)( 1 =−qP
1++ dt

B.3 One Step Ahead Model Predictive Control  

Tracking and Regulation with Independent Objectives 
Since an expression of the predicted output with 1+d steps ahead is available, it is 
now possible to compute the control   allowing us to obtain at  an 

output  where  is the desired output at 
. 

)(tu 1++ dt

)1()1( * ++=++ dtydty )1(* ++ dty
1++ dt

Let us considers the example of Equation B.4. The condition 
can be expressed using Equations B.7 and B.8 as )2()2( * +=+ tyty

  )()1()()2( 111
2
1

* tubtubatyaty +−−=+

from which one gets 

 
1

11
2
1

* )1()()2()(
b

tubatyatytu −+−+
=   

In the general case one would like to obtain 
 

   (B.26) )1()()1()( *11 ++=++ −− dtyqPdtyqP

 
and one gets from Equation B.14: 

  (B.27) )()()()()()1()( 1*11*1 tuqBqEtyqFdtyqP −−−− +=++

and accordingly 

 )(
)()(

)()1(
)()(

)()( 1*1

1
*

1*1

1
ty

qBqE
qFdty

qBqE
qPtu

−−
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−−

−

−++=  (B.28) 

Introducing the notations 
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  (B.29) )()( 11 −− = qFqR

  (B.30) )()()( )( 1*11*1
1

1 −−−−− =+= qBqEqSqbqS

  (B.31) )()( 11 −− = qPqT

Equation B.26 becomes 

  (B.32) )()()1()()()( 1*11 tyqRdtyqTtuqS −−− −++=

that corresponds to an RST digital controller given in Chapter 3, Section 3.4. 
Since in the general case u(t) has been computed such that Equation B.27 be 

satisfied at each sampling instant, it results from Equations B.24 and B.27 that 

  (B.33) )1()()1(ˆ)( *11 +=+ −− tyqPtyqP

and taking in account the definition of )1( +tε  given in Equation B.24 as well as 
Equation B.25, one gets 

  (B.34) 0  ,    0] )1()1()[( 1 >∀=++−++− tdtydtyqP *

which can be considered as the time domain objective of the tracking and 
regulation with independent objectives.  

To summarize: the problem of the design of the control law is to compute  

 ),...)2(),1(),...,1(),(()( −−−= tututytyftu u  (B.35) 

such that Equation B.34 be satisfied (with , an asymptotically stable 
polynomial).  

)( 1−qP

The solution is obtained in two stages: 

Stage I: A d+1 step ahead predictor of the output is designed such that the 
prediction error satisfies  

  0)1()( 1 =++− dtqP ε

Stage II: Compute u(t) such that: 

  0  ,   )1()()1(ˆ)( *11 >∀++=++ −− tdtyqPdtyqP

Note that the same result is obtained if the criterion of Equation B.35 is replaced 
by the one step ahead quadratic criterion 
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[ ]{ }  )1()1()()1(min

2*1
)(

++−++=++ − dtydtyqPdtJ
tu  

Pole Placement 
To get the pole placement, the time domain objective B.35 is replaced by 

   (B.36) 00)]1(*)(*)1()[( 11 >∀=++−++ −− tdtyqBdtyqP β

with )1(*
1

B=β  and imposing the restriction that should not appear in 

the denominator of the controller. This restriction requires a different structure for 
the output predictor to be considered: 

)(* 1−qB

   (B.37) )()()()()()(*)1()( 11*111 tuqSqBtyqRqBdtyqP −−−−− +=++

Using Equation  B.13, Equation B.37 becomes 

   (B.38) )1(]*[)1()( 11 +++=++ −−− dtyRBqASdtyqP d

and therefore polynomials S and R are solutions of the polynomial equation 

   (B.39) )()(*)()()( 111111 −−−−−−− += qRqBqqSqAqP d

which is exactly the pole placement equation discussed in Chapter 3, Section 3.3. 
Introducing Equation B.38 into Equation B.36 and taking into account Equation  
B.13 one gets the RST controller of Equation B.32 where S and R are solutions of 
Equation  B.39 and . )()( 11 −− = qPqT β

B.4 An Interpretation of the Control of Systems with Delay  

We will show next that the RST controller for a system with a delay d can be 
decomposed in a d step ahead predictor for the plant output and an RST controller 
for the system without delay which uses instead of the measured output, the output 
of the predictor.  

Consider first a system without delay (d = 0) characterized by the discrete time 
model 

 A(q-1) y(t+1) = B*(q-1) u(t) (B.40) 

The desired closed loop poles are defined by a polynomial P(q-1). Using the pole 
placement, the controller equation is  
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qS
tyqRtyqTtu  (B.41) 

where S0 (q-1) and R0 (q-1) are the solution of the polynomial equation 

 A(q-1) S0 (q-1) + q-1 B*(q-1) R0(q-1) = P(q-1) (B.42) 

and . )()( 11 −− = qPqT β
The transfer operator between the reference trajectory and the output has the 

expression 
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Consider now a system with an integer delay d characterized by 

 A(q-1) y(t+d+1) = B*(q-1) u(t) (B.44) 

The desired closed loop poles are defined by the same polynomial P(q-1) as above. 
Using the pole placement, the controller equation will be  
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d  (B.45) 

where Rd(q-1) et Sd(q-1) are solutions of the polynomial equation 

 A(q-1) Sd(q-1) + q-d-1 B*(q-1) Rd(q-1) = P(q-1) (B.46) 

The transfer operator between the reference trajectory and the output has the 
expression 
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We will show next that this controller can be equivalently represented as shown in 
Figure B.1a. The controller of Equation B.47 is replaced by the controller for the 
system without delay given by Equation B.41 which uses instead of the measured 
output, the d step ahead predicted output given by 

  (B.48) )()()()()()/(ˆ 1*111 tuqBqEqtyqFtdty −−−− +=+
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where E(q-1) and F(q-1) are solutions of the polynomial equation (for prediction)2 

 A(q-1) E(q-1) + q-d F(q-1) = 1 (B.49) 

Using the predictor Equation B.48, the scheme given in Figure B.1a takes the 
equivalent form shown in Figure B.1b. 
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Figure B.1a,b. Equivalent representation of  RST digital controllers for systems with delay  

The control signal is given by Equation B.41 in which y(t) is replaced by the 
predicted output , which leads to )/(ˆ tdty +

  (B.50) )/(ˆ)()1(*)()()( 1
0

11
0 ddtyqRtyqTtuqS +−+= −−−

Introducing in Equation B.50 the expression of )/(ˆ tdty + given by Equation B.48 
one gets 

)()()()1()()()]()()()([ 11
0

11
0

1111
0 tyqFqRdt*yqTtuqRq*BqEqqS −−−−−−−− −++=+

 

                                                 
2 If additional auxiliary poles are considered, they can be interpreted as poles of the predictor. In this 
case in Equation B.49, the right hand side is replaced by a polynomial defining the auxiliary poles. See 
Landau et al. (1997). 
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which corresponds to the controller shown in Figure B.3b. If one computes now 
from Figure B.1b, the transfer operator between the reference trajectory and the 
output one gets  
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since A(q-1) E(q-1) + q-d F(q-1)= 1 and A(q-1) S0 (q-1) + q-1 B*(q-1) R0(q-1)= P(q-1) 
(see Equations B.49 and B.42). 

The same interpretation is obtained for all the control strategies presented in 
Chapter 3. 

B.5 Long Range Model Predictive Control 

The subject long range predictive control is discussed in a number of books 
(Camacho and Bordons 2004; Macejowski 2001). We will consider here the 
control strategy called generalized predictive control (Clarke and Mothadi 1987). 
For a detailed presentation see Landau et al. (1997). 

The generalized predictive control belongs to the class of long range predictive 
control. The control objective is the minimization of a quadratic criterion involving 
future inputs and outputs. The minimization is done in a receding horizon sense, 
i.e. one computes a sequence of control signals in the future, but only the first one 
is applied and the optimization procedure is re-started at the next step. Indeed the 
resulting control law is stationary and the controller takes the form of a linear 
digital RST controller. With an appropriate formulation of the performance 
criterion, generalized predictive control can be interpreted as a generalization of 
the various one step ahead control strategies. However the generalized predictive 
control can be also viewed as a way of assigning the desired closed loop poles 
starting from a time domain performance criterion. 

In order to make a direct connection with pole placement it is convenient to 
make the following change of variables: 

                        (B.51) )(*)(*)()( 1 jtyqBjtyjtey +−+=+ −β

   (B.52) )1(*)()()( 1 +++−+=+ − djtyqAjtujteu β

where ey and eu define a new output and a new input respectively. They are related 
by 

                (B.53) )()(*)1()( 11 teqBdteqA uy
−− =++
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One considers as control objective the minimization of the quadratic criterion 

 [ ] [ ]{ } 0;)()(),,,( 22 >∑ −+++=
=

λλ
p

i

h

hj
iuyicp hjtejtehhhtJ   (B.54) 

where 

• hp – prediction horizon 
• hc – control horizon 
• hi – initial horizon ( 1+≥ d ) 

The criterion of Equation B.54 should be minimized in a receding horizon sense 
with respect to the vector of control signals 

   (B.55) )]1(),....1(),([)1( −++=−+ cuuuc
T
u htetetehtE

subject to the constraint: 

 pcu hihite ≤≤=+ 0)(  

The initial horizon hi is taken equal or larger than the delay d+1. The prediction 
horizon hp is usually taken close to the time response of the system. The control 
horizon hc will define the complexity of the optimization procedure and the 
objective is to take it as small as possible. However instabilities may occur for too 
short control horizons. If ∞→cp hh , one gets the infinite horizon quadratic 
criterion and this is discussed in Appendix C. 

It is important to note that for 1,1 =+== cip hdhh  one step ahead control 

strategies will be obtained. If in addition λ=0 one obtains the pole placement. For a 
more detailed discussion see Landau et al. (1997). 

The minimization of the criterion of EquationB.54 involves two steps: 

Computation of the future values of for  as )( jte y + ],[ pi hhj∈1. 

 )   (B.56)                                   /(ˆ]1([)( 0 tjtehtEfjte ycuy ++−+=+

where is the prediction based on the available information 

up to the instant t: 

)/(ˆ0 tjtey +

  ),....]2(),1(),...1(),([)/(ˆ0 −−−=+ teteteteftjte uuyyy
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2. Minimization of the criterion of Equation B.54 with respect to 
)1( −+ cu htE . 

We will give now the details of these two steps for the computation of the control 
law. 

Step 1: Computation of the Future Values of  )( jtey +

Using the polynomial equation 

   (B.57) j
j

jD FqAEP −+=

with and one can express the filtered 

values of , which are used in the criterion of Equation B.54, as follows 
(taking also in account Equation B.53): 

1deg −= jE j ),1,max(deg −−= APj njnF
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)( jtey +

   (B.58) )()1(*)( teFdjteBEjteP yjujyD +−−+=+

The effect of using a filtered prediction equation is that the resulting closed loop 
characteristic polynomial will contain a factor equal to the PD polynomial. In other 
words one can assign by this choice a number of poles of the closed loop. 

To get the desired form of the prediction indicated in Equation B.56 one should 
use a second polynomial equation 
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The polynomials Gj-d and Hj-d will have the form 

   (B.60) 1
1

1
10 .... −−−

−−
−

− +++= dj
djdj qgqggG

   (B.61) 1
1

1
10

*
*

.... −−−−
−−

−−−
− +++= dndj

dn
djdj

dj
B

B
qhqhhH

Using Equation B.59, the filtered prediction given in Equation B.58 can 
be written 

)( jtey +
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   (B.62) )()1()1()( teFteHdjteGPjteP yjudjudjDyD +−+−−+=+ −−

Passing this expression through the transfer operator  and denoting DP/1

   (B.63)                             )()1()/(ˆ0 teFteHtjteP yjudjyD +−=+ −

one gets 
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with the important remark that the term )1( −−+− djteG udj will contain 

, i.e. only future values of since 3. )1(),...1(),( −−++ djtetete uuu ue 1+≥≥ dhj i

Step 2 Minimization of the Criterion 
Introducing the notation 

   (B.65) )](),....([ puiy
T
y htehteE ++=

   (B.66) )]1(),....([ −+= cuu
T
u hteteE

the criterion of Equation B.54 takes the form: 
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Taking in account the expression of )( jtey + given in Equation B.64 and 
introducing the notation 

   (B.68) )]/(ˆ),.../(ˆ[ 000 thtethteE pyiy
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y ++=

one can re-write Equation B.65 using Equations B.64 and B.68 as 
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where G is a matrix formed with the coefficients of the polynomials : djG −

                                                 
3 At instant t, is available before the computation of . )(tey )(teu
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The criterion of Equation B.67 will take the form 
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Minimization of this criterion is obtained by searching for  assuring uE 0=
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J
δ
δ , 

which yields 
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This formula clearly indicates that the problem always has a solution provided that 
λ>0 (however the stability of the resulting closed loop has to be checked). 

For an effective implementation of the control one only needs the first 
component of Eu, namely eu(t), and, as a consequence, only the first row of the 
matrix is of interest. Therefore one obtains T

h
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Using Equations B.63, Equation B.73 can be further rewritten as: 
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where the polynomials S and R correspond to 
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Using now the expressions for ey(t) and eu(t) given by Equations B.51 and B.52, 
one gets the expression of the RST control law: 

  (B.77) )()()1(*)()()( 111 tyqRdtyqTtuqS −−− −++=

where 

   (B.78) ]*[)( 11 RBqASPqT d −−− +== ββ

and P defines the resulting closed loop poles corresponding to the minimization of 
the criterion of Equation B.54. The controller structure is the same as for the pole 
placement (see Chapter 3, Section 3.3). It can be shown that the resulting closed 
loop poles are (Landau et al. 1997) 

  )()()( 111 −−− = qPqPqP GPCD

where: 
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and PD is the polynomial defining the poles of the predictor. 
If PD is chosen such that it defines the dominant poles of the closed loop, the 

poles introduced by the minimization of the criterion of Equation B.54 can be 
interpreted as auxiliary poles. However if PD=1, then the poles of the closed loop 
will be exclusively defined by the minimization of the criterion of Equation B.54. 
The values of the closed loop poles will depend of how λ, hi, hc and hp will be 
selected. 
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B.6 Notes and References 

For a time domain approach to internal model control of systems with delay see:  

Landau I.D. (1995) Robust digital control of systems with time delay (the Smith 
predictor revisited), Int. J. of Control, vol. 62, no. 22, pp. 325-347. 

For more details on long range model predictive control strategies see: 

Landau I.D., Lozano R., M’Saad M. (1997) Adaptive control, (Chapter 7), 
Springer, London, UK. 

 
Clarke D., Mothadi C. (1987) Generalized predictive control, Automatica, vol 23, 

pp. 137-160. 
Clarke D., Mothadi C. (1989) Properties of generalized predictive control, 

Automatica, vol 25, pp. 859-876. 
Camacho E.F., Bordons C. (2004) Model predictive control, 2nd edition, Springer, 

London, UK. 
Macejowski J.M.(2001) Predictive control with constraints, Prentice Hall, N.J. 



C 

State-Space Approach for the Design of RST 
Controllers 

C.1 State-Space Design 

In Chapter 3 we discussed the pole placement design using a two degrees of 
freedom polynomial RST controller. The assignment of the closed loop poles is a 
problem that can be solved also taking a state-space formulation of the problem.  

The same type of controller is obtained by designing the controller using a 
state-space approach. The state-space approach will emphasize the interpretation of 
the RST controller as a state estimator followed by a state feedback using the 
estimated state. This approach also provides an interesting interpretation for the 
dominant and auxiliary closed loop poles. Furthermore the relation for passing 
from a controller designed in state-space for SISO systems to a polynomial 
controller will be provided. This result can be used for transforming state-space 
controllers designed by different approaches in a polynomial form. 

A detailed discussion of regulation by state feedback is beyond the purposes of 
this book. The reader can find exhaustive descriptions of this technique in (Phillips 
and Nagel 1995; Franklin et al. 2000). Here we just recall some fundamental facts. 
We will consider in this appendix the state space solutions for pole placement and 
linear quadratic control. 

Let consider the controllable canonical space state representation of a single 
input single output discrete time model characterized by the transfer operator 

1 (it is assumed that and do not have common 
factors, i.e. the system is both controllable and observable) 

)(/)( 11 −− qAqB )( 1−qA )( 1−qB

                                                 
1 The delay is included in the B polynomial (i.e.  the first coefficients bi of B will be null up to the value 
d of the integer delay). 
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Suppose that the desired closed loop characteristic polynomial is specified by 

   (C.2) n
nc zpzpzP −−− +++= K1
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If the full state is available, the control law that allows to obtain the specified 
closed loop poles is 

  (C.3) )()()( * dtytkxtu c ++−=

where           

 ][ 21 nkkkk K=   (C.4) 

is a state-space feedback gain matrix (which has to be computed) and y*(t) is the 
external reference. 

The closed loop system in the state-space form is found by introducing 
Equation C.3 in Equation C.1: 
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The characteristic polynomial of the closed loop system thus is 
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and it can be easily observed that, comparing Equations C.2 and C.6, the closed 
loop poles can be assigned with an appropriate choice of vector k ( iii apk −= ). 

If the full state xc(t) is not directly available a state observer will be 
implemented. We consider the canonical observable form of the plant model 
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An estimate of the state can be provided by the so-called current estimator 
(see Phillips and Nagel 1995; Franklin et al. 2000), where a description of the 
standard prediction estimator is also provided), that is described by the following 
expressions: 
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(C.8) 

where )1( +txo is the a priori state estimation at time t+1, on the basis of the 
signals acquired at time t, and )1(ˆ +txo  is the estimation depending on the current 
measurement at time t+1. The coefficients li are the observer gains acting on the 
error between the measured output and the a priori predicted output. 

Consider now the state estimation error )(ˆ)()( txtxte oo −= . 
Then 
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The state estimation error will converge asymptotically to zero if the matrix 

is asymptotically stable. This property will be defined by the roots of the 
characteristic equation 

][ lcAA −

 101 <⇒=+−− zlcAAIz  

and the estimation error can be made to converge to zero with a desired dynamics. 
Once the desired dynamics is imposed the parameters of l can be computed 
accordingly. 

Assuming that the desired estimator dynamics is defined by the polynomial 
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then the coefficients li are given by 
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where PE(A) is a matrix polynomial whose coefficients are those of PE(z): 
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is considered, the closed loop system matrix is expressed by 
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from which it results that the closed loop poles are a combination of the estimator 
poles and the control poles (specified by Equations C.2 and C.9 respectively).  

The characteristic equation of the closed loop system is thus defined by 

 0)()( 1111 ==+−+− −−−− zPzPbkAIzlcAAIz EC   (C.10) 

We remark the rapprochement between the RST pole-placement and the state-
space approach in terms of the assigned closed loop poles. In the RST pole 
placement we have specified the closed loop poles as a combination of dominant 
poles (slow poles) and auxiliary poles (fast poles). In the state-space pole 
placement the control poles (defined by Equation C.2) correspond to the dominant 
poles while the estimator poles (defined by Equation C.8) play the role of the 
auxiliary poles. Note however that one could choose the dominant poles as the 
estimator poles and the auxiliary poles as control poles (this is the case in the 
predictive control approach). 

We recall that in Chapter 3 several techniques for selecting auxiliary poles have 
been proposed in order to obtain a robust control design. One notes that the choice 
of the estimator poles could be not immediate if robustness considerations are not 
taken into account. 

Thus, the full controller will be given by the current estimator and the state 
feedback as shown in Figure C.1. 

The corresponding pulse transfer function of the digital controller resulting 
from the state-space approach is given by 
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It is now straightforward to show the equivalence between the digital controller 
resulting from the state-space approach and the digital controller 

 obtained by pole placement design in polynomial form, when 
imposing the same closed loop dynamics. 

)( 1−qK

)(/)( 11 −− qSqR
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Figure C.1. State-space control scheme 

Consider the transfer function of the RS controller 
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The numerator and the denominator of the RS controller transfer function are 
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Introduction of the Internal Model 
Note that with the state-space design no special compensation of specific classes of 
disturbances (for example constant or sinusoidal disturbances) is done unless the 
pole placement problem in state-space is reformulated.  

The basic idea in order to introduce the internal model of the disturbance in the 
controller is to augment the state-space representation of the model by adding the 
internal model and then apply the procedure presented above. If, for example, a 
compensation for constant disturbances is desired, then an integral action is 
required. This can be accomplished by augmenting the model of the plant with an 
integrator and recalculating the feedback control gains for the augmented state. Of 
course in the implementation the internal model will appear in the controller. 

 In the same way, for a generic class of disturbances modeled by a system 
matrix Ad, the augmented system matrix should contain the model of the 
disturbances that is 
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where Cd is the matrix that describes how the disturbance is injected into the 
system. 

Taking into Account Tracking Performance Specifications 
So far we have discussed the regulation problem. A common control problem has 
specifications that also involve tracking properties. A controller that takes into 
account both regulation and tracking requirements generally has a two degrees of 
freedom structure (feedback and feedforward compensator).  

 
Figure C.2. Two degrees of freedom control scheme 

The control signal generated by the state feedback is designed in order to have a 
closed loop system with desired regulation and robustness properties. The 
feedforward compensator is designed in order to match the desired tracking 
performances.  

In order to obtain the standard RST control law (Equation 2.5.9, which takes 
into account both tracking and regulation performances) starting from a state space 
representation, one considers the plant model described by 
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Left multiplying the first row of Equation C.15 with A(q-1) and considering an 
instant t+d+1 we obtain the following relation (by taking in account Equation 
C.14):  

  (C.16) )()(*)1()( 11 teqBdteqA uy
−− =++
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Note that ey and eu are related to each other by the same transfer operator as the 
plant model. 

The state-space representation in observable form of the system described by 
Equation C.16 is: 
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where 

 Bidii nibbdib ≤≤=≤≤= + 1;;0;0                        

If we apply to the system of Equation C.14 both state-feedback and observer 
Equations C.3 and C.8 an RS controller of the form of Equation C.12 is found. 

The control law for the system of Equation C.14 becomes: 

                         (C.18) 0)()()()( 11 =+ −− teqRteqS yu

We now rewrite this equation in the initial variables u(t), y(t) and y*(t). The control 
law is thus 
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Equation C.19 represents the two degrees of freedom RST control law, as obtained 
in Chapter 3, Section 3.3. 

C.2 Linear Quadratic Control 

Consider again the system of Equation C.14. The objective is to find an admissible 
control u(t) which minimizes the following quadratic criterion: 
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However in order to obtain directly a two degrees of freedom controller it is useful 
to use again the change of variables given in Equation C.15 and to consider the 
criterion: 
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The criterion of Equation C.22, with the state-space representation of Equation 
C.17, takes the form: 
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Assuming that the state x(t) is measurable, the optimal control law eu(t) is given by 
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where Γ is the positive definite solution of the Algebraic Riccati Equation (Åström 
and Wittenmark 1997): 

  (C.25) 0)( 1 =+Γ+ΓΓ−Γ−Γ − ccAbbbbAAA TTTTT λ

The existence and unicity of the solution for Equation C.25 is guaranteed by the 
following conditions: 

The pair (A,B) is stabilizable 
The pair (A,C) is detectable 
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Since the state is not measurable, the certainty equivalence principle will be used 
and the non-accessible states will be replaced by the estimated states given by 
Equation C.8. A two degrees of freedom RST controller will be obtained just by 
replacing the controller gains in Equation C.3 by those resulting from Equation 
C.24. 

For further details on this control strategy see Landau et al. (1997); Åström and 
Wittenmark (1997). 

C.3 Notes and References 

State space approach for the design of digital controllers is presented in many 
books. We mention: 

Åström K.J., Wittenmark B. (1997) Computer-Controlled Systems, Theory and 
Design, 3rd edition, Prentice Hall, NJ. 

Phillips C.L., Troy Nagel H. (1997) Digital Control System Analysis and Design, 
3rd edition, Prentice Hall, NJ. 

Goodwin G.C., Sin K.S. (1984)  Adaptive Filtering Prediction and Control, 
Prentice Hall, NJ. 

Franklin G.F., Powell J.D., Workman M. (2000) Digital Control of Dynamic 
Systems, 3rd edition, Addison Wesley, CA. 

Landau I.D., Lozano R., M’Saad M. (1997) Adaptive Control, Springer, London, 
UK. 

 



D 

Generalized Stability Margin and Normalized Distance 
Between Two Transfer Functions 

D.1 Generalized Stability Margin 

In Chapter 2, Section 2.6.2 we presented the modulus margin, which gives the 
minimum distance between the Nyquist plot of the open loop transfer function and 
the critical point [-1, j0] and is a good indicator of the robustness of the closed loop 
system. The modulus margin has the expression 
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Effectively the maximum of the modulus of a transfer function corresponds to “H 
infinity norm” and is denoted . In other words the modulus margin is the 
inverse of the  norm of the output sensitivity function.  

∞H

∞H
In Section 2.6 it has also been mentioned that stability of the closed loop 

system requires that all the sensitivity functions be asymptotically stable. 
Furthermore it was shown in Section 2.6 that the uncertainties tolerated on the 
plant model depend upon the sensitivity functions. More specifically, the 
admissible uncertainties will be smaller as the maximum of the modulus of the 
various sensitivity functions grows. 

One can ask if it is not possible to give a global characterization of the stability 
margin of a closed loop system and its robustness, taking simultaneously into 
account all the four sensitivity functions. This problem can be viewed as the 
generalization of the modulus margin.  
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Denoting the controller by 
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and the transfer function of the plant model by 
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one defines for the closed loop system the matrix of sensitivity functions 
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where have been defined in Chapter 2, Section 2.5 (Equations 
2.5.14 through 2.5.18). 

ypupyvyr SSSS ,,,

In order to be able to give an interpretation similar to the modulus of a transfer 
function, one should factorize the matrix )( ωjT in the form (singular value 
decomposition) 
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is a diagonal matrix (of transfer functions), with the property 

 sf)j()j()j()j( π=ωωσ≥ωσ≥ωσ≥ωσ   to0   from    4321  (D.7) 

)(1 ωσ j is called “the largest singular value of )( ωjT ” and it is denoted by  

 )()( 1 ωσωσ jj =  (D.8) 
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One defines the modulus of )( ωjT  as follows: 

 )()( ωσω jjT =  (D.9) 

and the maximum of the modulus of )( ωjT  as 
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Similarly to the modulus margin, one defines the generalized stability margin as  
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The generalized stability margin can be computed with the function smarg.m from 
the toolbox REDUC® (Adaptech 1999a)1. 

As the value of decreases, the closed loop system will be close to 
instability and it will be less robust with respect to the variations (or uncertainties) 
of the plant nominal transfer function. 

),( GKb

In what follows it will be shown that the generalized stability margin allows 
one to characterize the tolerated uncertainties on the plant transfer function for 
which the closed loop remains stable. To do this, first it is necessary to introduce 
the concept of normalized distance between two transfer functions.  

D.2 Normalized Distance Between Two Transfer Functions 

Consider a transfer function G. Let denotes the number of unstable zeros by 
and the number of unstable poles by . The number of encirclements of the 

origin of the complex plane is given by  
izn

ipn

  (D.12) )()()( GnGnGwno
ii pz −=

(positive value = counter clockwise encirclements; negative value = clockwise 
encirclements.). It is possible to compare two transfer functions ,  only if 
they satisfy the following property: 

1G 2G
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1 To be downloaded from the book website. 
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where is the complex conjugate of  and is the number of poles 

located on the unit circle2. 

*
2G 2G )( 21
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2G
The normalized distance between two transfer functions satisfying the property 

of Equation D.13 is called the Vinnicombe distance or ν –gap (Vinnicombe 1993). 
Let defines the normalized difference between two transfer functions )(1 ωjG  

and )(2 ωjG as 
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The normalized distance (Vinnicombe distance) is defined by 
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One observes immediately from the structure of Ψ  that 

 1),(0 21 <≤ GGνδ  (D.16) 

If the condition of Equation D.13 is not satisfied, by definition 

 1),( 21 =GGνδ  

The Vinnicombe distance can be computed with the function smarg.m from the 
toolbox REDUC® (Adaptech 1999a)3. 

D.3 Robust Stability Condition 

Using the generalized stability margin and the Vinnicombe distance between two 
transfer functions, one can express a robust stability condition (sufficient 
condition) for a controller K designed on the basis of the nominal model as 
follows. Controller K which stabilizes model  will also stabilize model if 

1G

1G 2G

 ),(),( 121 GKbGG ≤νδ  (D.17) 

                                                 
2 The condition of Equation D.13 is less restrictive than the condition used in Section 2.6 where two 
transfer functions with the same number of unstable poles and with the same number of encirclements 
of the origin have been considered. 
3 To be downloaded from the book website. 
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This condition can be replaced by a less restrictive condition, but which should be 
verified at all frequencies4: 

 [ ] sftofor)j()j(G),j(G π=ωω≤ωωΨ − 0T   1
21  (D.18) 

D.4 Notes and References 

The concepts of Vinnicombe distance (ν –gap) and generalized stability margin are 
extremely useful in practice since with one number it is possible to characterize 
either the distance between two transfer functions or the robustness of a controller. 
The original reference is:   
Vinnicombe G. (1993) Frequency domain uncertainty and the graph topology, 

IEEE Trans. on Automatic Control, vol. 38, no. 9, pp. 1371-1383. 

For a good pedagogical presentation, but with extensive use of the norm, see : ∞H

Zhu K.,(1998) Essentials of robust control, Prentice Hall, N.J., U.S.A. 

These concepts have been very useful for various applications. In particular they 
have been used for the validation of controllers resulting from controller reduction 
techniques (see Chapter 10) and for the validation of models identified in closed 
loop (see Chapter 9). Details and examples can be found in : 

Landau I.D., Karimi A., Constantinescu A. (2001) Direct controller reduction by 
identification in closed loop, Automatica, vol. 37, no. 11, pp. 1689-1702. 

Adaptech (1999a) REDUC® – Controller order reduction by closed-loop 
identification (Toolbox for MATLAB®), Adaptech, 4 rue de la Tour de l’Eau, 
St. Martin d’Hères, France. 

                                                 
4 This condition has to be compared with the conditions given in Section 2.6.2 (Equations 2.6.7, 2.6.9 
and 2.6.10). Equation D.18 can be interpreted as a generalization of these conditions.  



E 

The Youla–Kučera Controller Parametrization 

E.1 Controller Parametrization 

The Youla-Kučera parametrization allows characterizing the set of all stabilizing 
controllers for a given plant model. This result has interesting implications in the 
design of RST controllers. 

Let consider a plant model characterized by the transfer function 
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a stabilizing controller  also termed the “central controller” and an 
asymptotically stable rational proper function  
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The poles of the closed loop when using the central controller are defined by the 
polynomial  

   (E.3) 00 BRzASP d−+=

Youla – Kucera Parametrization 
 All rational stabilizing controllers for the plant model are given by : )( 1−zG
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This controller will lead to the following expression of the polynomial defining the 
closed loop poles: 

  (E.5) )()()( 0000 BRzASARBzBzSA ddd −−− +=++− αβαβα

Comparing Equation E.5 with Equation E.3 and taking in account the hypotheses 
made upon , it results that the closed loop poles will be asymptotically 

stable. One can also see that the denominator of appears in the 
characteristic polynomial defining the closed loop poles (i.e. it can serve to 
introduce additional poles at the desired location). 

)( 1−zQ

)( 1−zQ

The structure of the Youla–Kučera parametrized controller is shown in Figure 
E.1. 
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Figure A.5.1. The Youla – Kucera RST parametrized controller 

For a review of Youla-Kučera parametrization see Anderson (1998). We will 
briefly present next the implications of the Youla-Kučera parametrization in the 
design of RST controllers.  Let assume that a central controller has been designed 
such that the closed loop is asymptotically stable and that we are looking to the 
redesign of the controller in order to achieve some objectives but without re-
computing the central controller. Instead we will tune  in order to achieve 
the desired properties of the closed loop. We will examine next some of these 
situations. 
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Introduction of Auxiliary Poles (for Robustness) 
From Equation E.5 one can see that desired additional auxiliary poles can be 
introduced by taking 
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Affine Parametrization of the Sensitivity Functions 
Using the Q polynomial given in Equation E.2, the sensitivity functions given in 
Chapter 2, Equations 2.5.14 through 2.5.16 and 2.5.18 will take the form: 
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One distinguishes two cases : 

1)();( 11 == −− zzQ αβ : this allows tuning the sensitivity functions by using the 

coefficients of  without modifying the closed loop poles )(zβ 1−

)(/)( 11 −−= zzQ αβ : this allows tuning the sensitivity functions by using the 

coefficients of  and by modifying the auxiliary poles using the 

coefficients of polynomial   

)( 1−zβ

)( 1−zα
Automatic tuning of the sensitivity functions taking advantage of this affine 
parametrization can be done by convex optimization. See Boyd and Barratt (1991); 
Rantzer and Megretsky (1994); Langer and Landau (1999). 

Introduction and Tuning of theInternal Model in the Controller Without Changing 
the Closed Loop Poles  
In the context of RST controllers the internal model corresponding to the 
disturbance model is the polynomial HS (see Chapter 3), which is a factor of 
polynomial S. But the internal model can be alternatively introduced using the 
Youla-Kučera parametrization. In fact one should select β such that 

  (E.8) βBzSHSS d
S

−−== 0'

In order to leave unchanged the poles of the closed loop one should take 
and should satisfy the following polynomial equations resulting 

from the condition of Equation E.8 : 
1)( 1 =−zα )( 1−zβ

  (E.9) 0' SBzHS d
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where  and  are known and β and S’ are unknown. The order of the 
polynomial S0 is 

S
d HBz ,−

0S

   1
0

−++≤ dnnn BHS S

and therefore  

 . 1;1 ' −+=−= dnnnn BSH sβ

This allows determination of the order and coefficients of the polynomial 
  See Tsypkin (1997); Landau et al. (2005). .......)( 1

10
1 ++= −− zz βββ

E.2 Notes and References 

For a tutorial on the Youla-Kučera parametrization see: 

Anderson B.D.O. (1998) From Youla Kučera to identification, adaptive and 
nonlinear control, Automatica vol. 34, 1485-1506. 

 For the use of the Youla-Kučera parametrization in convex optimization see: 

Boyd St.P, Barratt C.H. (1991) Linear controller design. Limits of performance, 
Prentice Hall, Englewood Cliffs. 

Langer J., Landau I.D. (1999) Combined pole placement/sensitivity function 
shaping method using convex optimization criteria, Automatica, vol.35, 1111-
1120. 

Rantzer A., Megretski A. (1994) A convex parametrization of robustly stabilizing 
controllers, IEEE Trans. Aut. Control. Vol. 39, pp. 1802-1808. 

For the introduction of the internal model in Youla-Kučera parametrized 
controllers see:  

Tsypkin Y.Z. (1997) Stochastic discrete systems with internal models, Journal of 
Automation and information Sciences, Vol. 29 pp. 156-161. 

Landau I.D., Constantinescu A., Rey D. (2005) Adaptive narrow band disturbance 
rejection applied to an active suspension – an internal model approach, 
Automatica vol. 41, no.4. 

 



F 

The Adaptation Gain Updating – The U–D 
Factorization 

F.1 The U-D Factorization 

The adaptation gain given by Equation 5.2.73 is in principle sensitive to round-off 
errors, in particular if the number of samples to be processed is very high (typical 
situation encountered in real time applications). The objective is to preserve the 
positive definite property of the adaption gain matrix despite round-off errors. This 
problem is comprehensively discussed in Bierman (1977) where the U-D 
factorization has been developed in order to ensure the numerical robustness of the 
adaptation gain. To this end the adaptation gain matrix is rewritten as follows:  

  (F.1) TtUtDtUtF )()()()( =

where U(t) is an upper triangular matrix with all diagonal elements equal to 1 and 
D(t) is a diagonal matrix (with positive elements). This allows the adaptation gain 
matrix to remain positive definite despite the presence of the rounding errors.  

Let 
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The U-D factorization algorithm for adaptation gain updating is given next.  

Initialize U(0) and D(0) at time t=0. This provides the initial value of the 
adaptation gain matrix F(0) = U(0)D(0)U(0)T. At time t+1, compute Γ(t) while 
updating D(t+1) and U(t+1) by performing the following steps 

• Compute V(t), G(t), 10 =β  and )(/)( 210 tt λλδ = ; 
• For j=1 to np (number of parameters) compute 
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                               If  j≠1 then  
                                        For i=1 to j-1 compute 
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• For i=1 to np do 
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 end 
A lower bound on the adaptation gain is simply obtained by maintaining the 

values of the elements of the diagonal matrix D(t) above some specified threshold. 
The U-D algorithm is implemented in the function: udrls.m (MATLAB®) (see 

the book website). 

F.2 Notes and References 

Bierman, G. (1977) Factorization methods for discrete sequential estimation, 
Academic Press, New York. 

Landau I.D., Lozano R., M’Saad M. (1997) Adaptive control, Springer, London, 
U.K. 
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Laboratory Sessions 

In this appendix we propose several laboratory sessions in order to help the reader 
to become familiar with the techniques presented in this book. The sessions 
described in this Appendix can be worked out with the help of the MATLAB® and 
Scilab control design and identification functions and toolboxes available from the 
book website (hhtp://landau-bookic.lag.ensieg.inpg.fr). Additional laboratory 
sessions can be developed by the reader from the examples and applications 
presented in Chapters 3, 4, 7, 8 and 9. Other laboratory sessions are described on 
the book website. 

G.1 Sampled-data Systems 

Objective 
To become familiar with the discrete-time representation of a physical system. 

 
Functions to be used: cont2disc.m (cont2disc.sci) and standard 

MATLAB®/Scilab functions.  

Sequence of operations 

1. Study the step response of the first-order discrete-time model 
corresponding to the ZOH discretization of a first-order continuous-time 
model G/(1+τs): 

1
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for a1 = -0.2 ; -0.5 ; -0.7 ; -0.9 by choosing b1 such that the static gain 
b1 / (1 + a1) = 1 for all models. Superimpose the curves obtained on the 
same plot for an easy comparison. 

2. Find for all models the equivalent time constant (normalized with respect 
to the sampling period).  

Reminder: the time constant is equal to the time necessary to reach the 63% 
of the final value.  

3. Question: Does a1 = - 0.2 correspond to a fast sampling of a continuous 
time first order system, or to a slow one ?  

Same question for a1 = - 0.9. 
4. What are the approximated values for a1 if the sampling periods  

and Ts = T (T = time constant) are chosen? 4/TTs =
5. Study the response in time domain for a1 = 0.5 and 0.7. Give an 

interpretation of the results. 
6. Study the effect caused by the sampling period and the fractional delay on 

the discrete time model obtained by discretizing with a ZOH  the following 
system:  

sT
G

sH e sL

+
=

−

1
.

)(  

for G = 1, T = 10s ; L = 0 ; 0.5s ; 1s ; 2s ; 3s and Ts = 5s and 10s. 
Analyze the properties of poles and zeros of the pulse transfer function for 
all models. 

G.2 Digital PID Controller 

Objective 
To become familiar with the digital PID and to emphasize the importance of using 
a three-branched digital controller (RST). 

Functions to be used: cont2disc.m (cont2disc.sci), bezoutd.m (bezoutd.sci) and 
standard MATLAB®/Scilab functions. 

Sequence of operations 

1. Find the discrete-time model from the  ZOH discretization of 
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2. Find the digital PID11 controller with a continuous-time equivalent 
which provides the best performances, corresponding to a second 
order system with a damping equal to 0.8. 

3. Once the PID is computed, perform a simulation of the closed loop in 
the time domain. Use a rectangular wave as reference. 
Is it possible to obtain a closed loop response faster than the open 
loop response for this ratio of time delay/time constant equal to 0.3? 

4. Find the digital PID1 with no continuous time equivalent that provides 
a closed loop rise time approximately equal to half of the open loop 
one. 

5. Perform a simulation in the time domain. Explain the possible 
overshoot from the values of R(q-1). 

6. In the same conditions as the point 4, compare the digital PID 
controllers type 1 and 2. 

G.3 System Identification 

Objectives 
Session G.3-1: to become familiar with the recursive parameter identification 
methods and the model validation procedures. 

Session G.3-2: to identify two real systems (a distillation column and a flexible 
robot arm) directly from  I/O data. 

Functions to be used: rls.m, rels.m, oloe.m, afoloe.m, foloe.m, estorderiv.m, 
vimaux.m, xoloe.m, olvalid.m (or the corresponding Scilab functions) and standard 
MATLAB®/Scilab functions. 

Session G.3-1 

Data files  
The files to be used are TØ, T1 and XQ, each one containing 256 I/O samples2. 
The files should be centered. 

The input signal is a PRBS generated by a shift register with N = 8 cells. The 
file TØ has been obtained by simulating the following model: 

 A(q-1) y(t) = q-d B(q-1) u(t) ;      u - input, y - output 

 A(q-1) = 1 –1.5 q-1 + 0.7 q-2  ;  B(q-1) = 1 q-1 + 0.5 q-2 ;   d = 1 

 
1 Digital PID 1 and 2 controllers are presented in Chapter 3, Section 3.2. 
2 Files available on the website: http//:landau-bookic.lag.ensieg.inpg.fr. 
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The file T1 has been generated with the same polynomials A and B, but a stochastic 
disturbance has been added to the model output. 

The file XQ is given with no a priori information (degree of 5≤A ). 

Sequence of operations 

1. Use structure 1 and the RLS (Recursive Least Squares) method with a 
decreasing adaptation gain to identify the model corresponding to TØ 
(with nA = 2, nB = 2, d = 1). 

2. Try with degrees B = 4 and d = 0 on the same file TØ using the same 
algorithm previously used, to see how a pure time delay can be found 
out (the first coefficient of B is much smaller than the second one). 

3. Identify the model corresponding to the file T1 using structure 1 and 
the recursive least squares method with a decreasing adaptation gain 
(as for TØ). Note the bias of the identified parameters. Try to validate 
the model identified. 

4. Try other structures and methods to improve the results (S3 then S2). 
5. When a satisfactory validation is obtained, compute and plot the step 

response. 
6. Perform a complexity estimation (values of ) with the 

different methods described in Chapters 6 and 7. 
dnn BA ,,

7. Identify the model corresponding to XQ. 

Session G.3-2 

Data files: QXD, ROB2 
QXD: this file contains 256 I/O samples that describe the interaction between the 
heating power on the bottom of a binary distillation column and the concentration 
of product on the top. The input signal is a PRBS generated by a shift register with 
eight cells. The sampling period is 10 s. A priori knowledge: for the distillation 
columns the degree of polynomial A is generally not greater than 3. The file has to 
be centered. 

Sequence of operations 
Identify the model(s) corresponding to the I/O data set, validate the models 
identified, and plot the step response(s). 

Question 1: what is the value of the plant rise time? 

Question 2: has the PRBS been correctly chosen with respect to the rise time? 

ROB2: 256 I/O samples corresponding to a very flexible robot arm. Input: motor 
torque. Output: robot arm end position. The input signal is a PRBS. The sampling 
frequency is 5 Hz. Any vibration mode over 2.5 Hz has been eliminated by an anti-
aliasing filter. A priori knowledge: in the frequency region from 0 to 2.5 Hz, there 
are two vibration modes. The file has to be centered. 
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Sequence of operations 
Identify the model(s) corresponding to the I/O data set, validate the models 
identified, and plot the frequency responses (  points). 200≥

Question 1: at what frequencies are the vibration modes? What are the 
corresponding damping factors? 

Question 2: what are the differences between the frequency responses of a 
validated model and of a model which does not pass the validation test? 

G.4 Digital Control (Distillation Column Control Design) 

Objective 
The purpose of this session is to apply the control algorithms presented in Chapter 
3 to the distillation column case study (file QXD), and to evaluate the 
performances in simulation.  

We consider two different models for the distillation column, corresponding to 
a time delay d = 1, and d = 2 respectively (the sampling period is 10 s). Digital 
controllers will be computed for both models, and the controllers robustness will 
be tested by carrying on crossed simulations (Model 1 with controller 2 and Model 
2 with controller 1). The models are the following: 

  d = 1 
 M1: A (q-1) = 1 – 0.5065 q-1 – 0.1595 q-2 
  B (q-1) = 0.0908 q-1 + 0.1612 q-2 + 0.0776 q-3 

 
  d = 2 
 M2: A (q-1) = 1 – 0.589 q-1- 0.098 q-2 
  B (q-1) = 0.202 q-1+0.0807 q-2 

Functions to be used: bezoutd.m, cont2disc.m, omega_dmp.m, fd2pol.m (or the 
corresponding Scilab functions) and standard MATLAB®/Scilab functions. 

Sequence of operations 

1. Design a digital controller (with integrator) for the model M1 (then for 
the model M2) of the distillation column. 
This operation can be carried on by using a deterministic control 
algorithm well suited to the model used (depending on the zeros 
position with respect to the unit circle).  
The desired closed loop dynamics (regulation) is specified by a 
second-order system, with damping factor equal to 0.9, such that the 
closed loop rise time be 20% shorter than the open loop rise time. The 
dynamics specified for the tracking performances is the same as for 
the regulation. 

2. Compute the controller that guarantees the performances specified 
above and the robustness margins 5.0≥∆M , sTs =≥τ∆ 10 . 
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3. Perform cross-simulation tests with both controllers and both models. 
Give an interpretation of the results. 

4. Repeat the sequence of operations to design a controller assuring an 
acceleration (reduction) of 50% of the closed loop rise time compared 
to the open loop system, an overshoot less than 5% (both tracking and 
regulation), and satisfying the robustness margins ( , 5.0≥∆M

s10≥∆τ ). If both performance and robustness cannot be 
simultaneously satisfied, select the desired closed loop dynamics such 
that the resulting robustness margins match the specifications. 
Question: is it possible to assure the robustness requirements with this 
specification for the regulation dynamics (acceleration of 50%)? 

5. Perform cross-simulation tests with both controllers and both models. 
Give an interpretation of the results. Do a comparison with the 
previous case. 

G.5 Closed Loop Identification 

Objective 
To introduce the closed loop identification algorithms. This is carried on with a 
simulated closed loop system. 

Functions to be used: functions contained in the CLID® toolbox. 

Data files: the file simubf.mat contains the external excitation r, the input u and 
the output y  of the plant. The external excitation is a PRBS applied on the 
reference. The file simubf_rst.mat contains the parameters of the RST controller. 
The simulated plant model to be identified is characterized 
by: .  0,2,2 === dnn BA

Sequence of operations 

1. Identify and validate a model with open loop identification techniques 
(from u to y) ignoring the feedback.  

2. Identify plant models with different closed loop identification 
algorithms and the given digital controller. Validate the model. 
Compare the various models on the basis of validation results. 

3. Compare the models obtained with an open loop identification 
technique with the models obtained with the closed loop identification 
algorithms. Check the closed loop poles proximity (between the 
identified closed loop poles and the computed ones using both open 
loop and closed loop identified models). 

4. Plot the step responses and the frequency responses for the identified 
models. 
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G.6 Controller Reduction 

Objective 
To focus attention on controllers’ complexity, and to present an effective solution 
to the controller implementation in the case of strict constraints imposed by the 
available resources. The flexible transmission example will be studied and a 
reduced order controller will be estimated. 

Functions to be used: functions contained in the REDUC® toolbox. 

Data files: the file flex_prbs.mat contains the external excitation ; the file 
BF_RST.mat contains the parameters of the RST controller 
( ); the file BF_mod.mat contains the discrete-time model of 
the plant. 

)1(,5 RTnn SR ===

Sequence of operations 

1. Compute the simulated control signal on the basis of the given closed 
loop system (will be used in the estimation algorithms). Use the 
appropriate sensitivity function with respect to the reduction algorithm 
to be used (Closed Input Matching (Sup) and Closed Loop Output 
Matching (Syr). 

2. Find a reduced order RST controller with )1(,3 RTnn SR ===  
starting from the given one. Validate the resulting controller. 

3. Impose )1(,2 RTnn SR === in order to get a digital controller 
corresponding to a digital PID 2 controller. 

4. Compare the results obtained with the two methods (CLIM and 
CLOM). Give an interpretation. 

5. Plot the response for a step reference change and a step disturbance on 
the output for the closed loop system with the nominal controller and 
the reduced controllers. 
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List of Functions (MATLAB®, Scilab and C++) 

All functions listed in the table below are available on the website : http ://landau-
bookic.lag.ensieg.inpg.fr. 

Scilab 
Function  

MATLAB® 
Function  

C++ 

function 
Description 

bezoutd.sci bezoutd.m  Bezout equation (P=AS0HS+BR0HR ) 
solution  

cont2disc.sci cont2disc.m  Continuous-time to discrete-time transfer 
function conversion  (F(s)  F(z)) with 
Zero Order Hold 

fd2pol.sci fd2pol.m  Second-order discrete-time system 
computation from second-order 
continuous-time system natural frequency 
and damping factor 

omega_dmp.s
ci 

omega_dmp.m  Computation of natural frequency and 
damping factor for a second-order 
continuous-time system from desired rise 
time and overshoot 

predisol.sci predisol.m  Predictor equation solution 

nyquist_ol.sci nyquist_ol.m  Nyquist plot 

filter22.sci filter22.m  Resonant zero-pole filter computation 

 ppmaster.zip  Pole placement digital control design 

 reduc.zip  Reduction of controller complexity 

 clid.zip  Closed loop system identification 

estorderls.sci estorderls.m  Complexity estimation with the least 
squares criterion  

estorderiv.sci estorderiv.m  Complexity estimation with the 
instrumental variable criterion 

nrls.sci nrls .m  Non-recursive least squares 

rls.sci rls.m  Recursive least squares 

 udrls.m  U-D factorized recursive least squares   
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rels.sci rels.m  Recursive extended least squares 

oloe.sci oloe.sci  Output error  (recursive) 

vi_maux.sci vi_maux.m  Instrumental variable with auxiliary 
model 

foloe.sci foloe.m  Output error with filtered observations 

afoloe.sci afoloe.m  Output error with adaptive filtered 
observations 

xoloe.sci xoloe.m  Output error with extended prediction 
model 

 olvalid.m  Open loop model validation 

 prbs.m prbs.c Pseudo random binary sequence 
generation 

  rst.c RST controller algorithm 

Polynomials (A,B, R, …) are considered in MATLAB® environment as vectors of 
coefficients. In Scilab the object “polynomial” is directly available. However, in 
order to have uniformity in polynomials processing, polynomials must be defined 
as vectors of coefficients to be used as inputs of Scilab functions. In the same way, 
the outputs of the Scilab functions are vectors of coefficients instead of the object 
“polynomial”. 
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 extended (closed loop) 382 
 method (identification) 238 
 residual 266   
 with extended prediction model 

252 
 with fixed compensator 261 
 with filtered observations 263   

overshoot (maximum) 6 
 
P 
 
parameter adaptation algorithm 

(PAA) 218 
parameter estimation vector 206 
performance specifications 91 
pi controller 

     analog 22 
     digital 60  

pid controller 
     analog 23  
     digital 86  
   pid 1 87 
     pid 2 99 

pole placement 105 
poles 4, 41 
positive definite matrix 212 
practical aspects 279  
prediction error  

 a posteriori 210  
 a priori 208  
 residual 256 

predictive control  
 one step ahead 423 

 long range 424  
probability density 421  
process  

 AR 176 
 ARMA 177 
 ARMAX 178 
 MA 174 
    stochastic 170  

pseudo random binary sequence 
(prbs) 230  

pulse transfer operator 43  
 
R 

 
ramp 169 
random 
 disturbance 169 
 variable 170 
real time identification 204  
recursive  

     equation 34  
         estimation algorithm 215  
         form 218 
 identification 236 

  least squares 219  
     maximum likelihood 251  

reduced order controller estimation 
399 

regulation 121 
residual prediction error 256 
resonance factor 8  
rise time 6 
robustness 22, 69 
rst controller 61  
 

S 
 
sampled data system with hold 

    first order 49  
    model of a 47   
    second order 52   

sampled signal spectrum 29 
sampling frequency  

    choice of the 31 
saturation (effect of) 321  
scaling 285  



 Index 483 

sensitivity function 
 complementary 63   
 input 63  
 noise-output 63  
 output 19, 57 

settling time 7  
shift operator 34 
 
simulation 471  
software  471 
spectral density 173, 232  
spectrum aliasing 30 
s-plane 6  
stability  

 asymptotic 5, 45   
 discrete-time 44  
 domain of 41  
 test of 46 

stability margin 
 generalized 452 

standard deviation 171, 420  
state-space 441 
state observer 443 
steady state error 

 in continuous-time 18 
 in discrete-time 56  
 zero 57 

step 169, 418  
stochastic disturbances  

 effect on identification 233 
stochastic process  

 ergodic 171  
 gaussian 171  
 realization 170 

stochastic variable  
 independent 171   

system identification  
   closed loop 375 
    closed loop output error 377 
    in real time204  
    of a flexible transmission 309  
    of a dc motor 305 
    of a distillation column 300 
    of an air heater 296 

of a plant with an integrator 284 
    practical aspects 279  
    recursive parameter 236 

system  
 in cascade 16 
 in closed loop 16 
 in open loop 19  
 sampled 47 

 
 
T 
 
time constant 1  
time delay  

 of computation 319    
 continuous-time 14 
 discrete-time 42  
 fractional 49  
 pure time delay 42 
 system with 14 

time domain 1  
time domain response 2 
tracking and regulation  

 generalized minimum variance    
195 

 minimum variance 181  
 with independent objectives 117 

transfer function  
 continuous 4  
 pulse 43 
 strictly positive real 250  

 

U 
 
U-D factorization 461 
unit circle 40 
 

V 
 
validation  

 closed loop 384 
 criterion 266  

test 256, 265  
variance 172, 420 
vector 

 parameter 206 
 observations 206 

vinnicombe gap 454 
 



484 Index 
 
W 
 
white noise 

 gaussian 172 
 discrete time 171 

whiteness test 256 
 
Y 
 
Youla–Kučera parametrization 458 

Z 
 
zero order hold 26  
zeros 4  

 stable 118  
 unstable 49, 118 

z-plane 41  
z-transform 419
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