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“Ce qui est simple est toujours faux
Ce qui ne l’est pas est inutilisable.”

(Paul Valery)



Preface

The extraordinary development of digital computers (microprocessors,
microcontrollers) and their extensive use in control systems in all fields of
applications has brought about important changes in the design of control systems.
Their performance and their low cost make them suitable for use in control systems
of various kinds which demand far better capabilities and performances than those
provided by analog controllers.

However, in order really to take advantage of the capabilities of
microprocessors, it is not enough to reproduce the behavior of analog (PID)
controllers. One needs to implement specific and high-performance model based
control techniques developed for computer-controlled systems (techniques that
have been extensively tested in practice). In this context identification of a plant
dynamic model from data is a fundamental step in the design of the control system.

The book takes into account the fact that the association of books with software
and on-line material is radically changing the teaching methods of the control
discipline. Despite its interactive character, computer-aided control design software
requires the understanding of a number of concepts in order to be used efficiently.
The use of software for illustrating the various concepts and algorithms helps
understanding and rapidly gives a feeling of the various phenomena.
Complementary information and material for teaching and applications can be
found on the book website:

http://landau-bookic.lag.ensieg.inpg.fr

The Aim of the Book

The aim of this book is to give the necessary knowledge for the comprehension and
implementation of digital techniques for system identification and control design.
These techniques are applicable to various types of process. The book has been
written taking into account the needs of the designer and the user of such systems.
Theoretical developments that are not directly relevant to the design have been
omitted. The book also takes into account the availability of dedicated control
software. A number of useful routines have been developed and they can be freely
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downloaded from the book website. Details concerning effective implementation
and on-site optimization of the control systems designed have been provided.

An important feature of the book, which makes it different from other books on
the subject, is the fact that equal weight has been given to system identification and
control design. This is because both techniques are equally important for design
and optimization of a high-performance control system. A control engineer has to
possess a balance of knowledge in both subjects since identification cannot be
dissociated from control design. The book also emphasizes control robustness
aspects and controller complexity reduction, both very important issues in practice.

The Object of Study

The closed loop control systems studied in this book are characterized by the fact
that the control law is implemented on a digital computer (microprocessor,
microcontroller). This type of system is sketched in Figure 0.1.

The continuous-time plant to be controlled is formed by the set of actuator,
process and sensor. The continuous-time measured output y(?) is converted into a
sequence of numbers {y(k)} by an analog-to-digital converter (ADC), at sampling
instants k defined by the synchronization clock. This sequence is compared with
the reference sequence{r(k)} and the resulting sequence of errors is processed by
the digital computer using a control algorithm that will generate a control
sequence {u(k)}. By means of a digital-to-analog converter (DAC), this sequence
is converted into an analog signal, which is usually maintained constant between
the sampling instants by a zero-order hold (ZOH).

e(k) u(k) u(t) PLANT y(t) y(k)
r(k)
+ DIGITAL DAC

+

_>O_> COMPUTER ] o Lpl|Actuator{ Process [ Sensor [ ADC
A A

CLOCK
Figure 0.1. Digital control system
The Main Stream

Figure 0.2 summarizes the general principles for controller design, implementation
and validation.
For design and tuning of a good controller one needs:

1. To specify the desired control loop performance and robustness

2. To know the dynamic model of the plant to be controlled

3. To possess a suitable controller design method making it possible to
achieve the desired performance and robustness specifications for the
corresponding plant model
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4. To implement the resulting controller taking into account practical

constraints
5. To validate the controller performance on site and, if necessary, to re-

tune it
Performance
specifications

—»| DESICGN MODEL(S)
Robustness METHOD
specifications
IDENTIFICATION I
2
v
Reference 1 + u y
— | CONTROLLER A PLANT —>

Figure 0.2. Principle of controller design and validation

In order to obtain a relevant dynamic plant model for design, system
identification techniques using input/output measurements (switch 1 is off, switch
2 is on) should be considered. The methodology for system identification is
presented in the book together with dedicated algorithms implemented as software
tools.

Once the system model is available, the book provides a set of methods (and
the corresponding software tools) for the design of an appropriate controller.

The implementation of the controller should take into account aspects related to
data acquisition, switching from open loop to closed loop, and saturation of the
actuator as well as constraints on the complexity of the controller. These aspects
are examined in detail in the book.

Expected Audience
The book represents a course reference for Universities and Engineering Schools
offering courses on applied computer-controlled systems and system identification.

In addition to its academic audience, Digital Control Systems is aimed at
practising engineers wishing to acquire the concepts and techniques of system
identification, control design and implementation using a digital computer. The
industrial references for the techniques presented in the book and the various
applications described provide useful information for those directly involved in the
real-world uses of control.

Readers who are already familiar with the basics of computer-controlled
systems will find in this book a clear, application oriented, methodology for system
identification and the design of various types of controllers for single-input, single-
output (SISO) systems.
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The Content

Chapter 1 briefly reviews the continuous-time control techniques which will be
used later on as a reference for the introduction of basic concepts for computer
control.

Chapter 2 provides a concise overview of computer-controlled systems: the
structure of these systems, the sampling process, discrete-time dynamic models,
the principles of design of discrete-time two-degrees-of-freedom controllers (RST),
and robustness analysis of the control loops.

Chapter 3 presents several pertinent model-based design methods for discrete-
time controllers operating in a deterministic environment. After the design of
digital PID controllers, more general design methods allowing systems of any
order, with or without delay, to be controlled are presented. The robustness of the
closed loop with respect to plant model uncertainties or variations is examined in
detail and appropriate control design methods that take into account robustness
specifications are provided.

The design of discrete-time controllers operating in the presence of random
disturbances is discussed in Chapter 4. The chapter begins with a review of random
disturbances and of models and predictors for random disturbances. Connections
with design in deterministic environments are emphasized.

The basics of system identification using a digital computer are presented in
Chapter 5. Methods that are used for the identification of discrete-time models, and
model validation techniques as well as techniques for order estimation from
input/output data are described in Chapter 6.

Chapter 7 discusses the practical aspects of system identification using data
from several applications: air heater, distillation column, DC motor, and flexible
transmission.

The main goal of this work, the use of control design methods and system
identification techniques in the implementation of a digital controller for a specific
application, is discussed in Chapter 8. Implementation aspects are reviewed and
several applications presented (air heater, speed and position control of a DC
motor, flexible transmission, flexible arm, and hot-dip galvanizing).

For on-site optimization and controller re-tuning a plant model should be
obtained by identification in closed loop (switches 1 and 2 are on in Figure 0.2).
The techniques for identification in closed loop are presented in Chapter 9.

In many situations constraints on the complexity of the controller are imposed
so Chapter 10 presents techniques for controller order reduction.

Appendix A reviews some basic concepts.

Appendix B offers an alternative time-domain approach to the design of
RST digital controllers using one-step-ahead and long-range-predictive control
strategies. Links and equivalence with the design methods presented in Chapter 3
are emphasized.

Appendix C presents a state space approach to the design of RST digital
controllers. The equivalence with the design approach presented in Chapter 3 is
emphasized. The linear quadratic control is also discussed.

Appendix D presents some important concepts in robustness.

Appendix E demonstrates the Youla—Kucera parametrization of digital
controllers which is useful for a number of developments.
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Appendix F describes a numerically robust algorithm for recursive
identification.

Appendix G is dedicated to the presentation of suggested laboratory sessions
that use data files and functions which can be downloaded from the book website.

Appendix H gives a list and a brief description of the MATLAB®- and Scilab-
based functions and C™" programs implementing algorithms presented in the book.
These functions and programs can also be downloaded from the book website.

The book website gives access, to the various functions and programs as well
as to data files. It contains descriptions of additional laboratory sessions and slides
for a number of chapters, tutorials and courses related to the material included in
the book that can be downloaded; all the MATLAB® files used for generating the
examples and figures in the text can also be found on the website.

How to Read the Book

The book can be read in different ways after the basic control concepts presented in
Chapters 1 and 2 have been assimilated. If the reader is mainly interested in control
algorithms, it would be useful for him/her to read Chapters 3 and 4 and then
Chapters 5, 6, 7 and 8. If the reader is mainly interested in identification
techniques, he or she can jump straight to Chapters 5, 6 and 7 and then return to
Chapters 3, 4 and 8. Those who are familiar with the basics of computer-controlled
systems can even start with Section 2.5. Chapters 9 and 10 follow dependently
from Chapter 8. Figure 0.3 shows the interdependence between the various
chapters.

Course Configurations

A complete basic course on digital control should cover most of the material
presented in Chapters 2, 3, 5, 8 and Section 4.1. For an advanced course, all
chapters might be included. For an introductory course in digital control one can
use Chapters 2, 3 and 8. For an introductory course on system identification one
can use Chapters 5, 6 and 7.

Why this Book?
The book reflects the first author’s more than twenty-five years of experience in
teaching, design and implementation of digital control systems. Involvement in
many industrial projects and feedback from an industrial and academic audience
from various countries in Europe, North and South America and Asia have played
a major role in the selection, organization and presentation of the material.
Experience from writing the book System Identification and Control Design,
Prentice Hall, 1990 (Information and System Sciences Series) has been also very
useful.

The present book is a revised translation of a book (Commande des systemes —
conception, identification et mise en oeuvre) published in 2002 by Hermes-
Lavoisier, Paris.

! Revised taranslation of a book published by Hermes Paris, 1988 (second edition 1993).
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Chapter 1
!
Chapter 2
Chapter 3 Chapter 5
1 1
Chapter 4 Chapter 6
Chapter 7

Chapter 8 /
!

Chapter 9

!
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Figure 0.3. Logical dependence of the various chapters

The most recent academic courses based on the material in the present book
include PhD courses delivered in 2004 at Universita Technologica de Valencia,
Spain (robust discrete time controller design) and Escuela Superior de Ingenerios
de Sevilla, Spain (system identification in open and closed loop).
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Continuous Control Systems: A Review

The aim of this chapter is to review briefly the main concepts of continuous control
systems. The presentation is such that it will permit at a later stage an easy
transition to digital control systems.

The subject matter handled relates to the description of continuous-time models
in the time and frequency domains, the properties of closed-loop systems and Pl
and PID controllers.

1.1 Continuous-time Models

1.1.1 Time Domain

Equation 1.1.1 gives an example of a differential equation describing a simple
dynamic system:

Y__ 1y G
0 Ty(t)+Tu(t) (1.1.1)

In Equation 1.1.1 u represents the input (or the control) of the system and y the
output. This equation may be simulated by continuous means as illustrated in
Figure 1.1.

The step response illustrated in Figure 1.1 reveals the speed of the output
variations, characterized by the time constant 7, and the final value, characterized
by the static gain G.
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dy
dt

c

Aa
=

Figure 1.1. Simulation and time responses of the dynamic system described by Equation
1.1.1 (I - integrator)

Using the differential operator p = d/dt, Equation 1.1.1 is written as
1 G d
(p+)yO)=—u(); p=— (1.1.2)
T T dt

For systems described by differential equations as in Equation 1.1.1 we
distinguish three types of time response:

1. The “free” response: it corresponds to the system response starting with an
initial condition y(0)=y, and for an identically zero input for all # (u = 0, V'
f).

2. The “forced” response: it corresponds to the system response starting with
an identically zero initial condition y(0) = 0 and for a non-zero input u(f)
forallt > 0(u(®)=0,t<0;u(t) # 0,t > 0and y(f) =0 for t < 0).

3. The “total” response: it represents the sum of the “free” and “forced”
responses (the system being linear, the superposition principle applies).

Nevertheless later we will consider separately the “free” response and the “forced”
response.

1.1.2 Frequency Domain

The characteristics of the models in the form of Equation 1.1.1 can also be studied
in the frequency domain. The idea is then to study the system behavior when the
input u is a sinusoidal or a cosinusoidal input that varies over a given range of
frequencies.

Remember that

ejwt:cosa)t+jsina)t (1.1.3)

and, consequently, it can be considered that the study of the dynamic system
described by an equation of the type 1.1.1, in the frequency domain, corresponds to
the study of the system output for inputs of the type u(¢) = .
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Since the system is linear, the output will be a signal containing only the
frequency w, the input being amplified or attenuated (and possibly a phase lag will
appear) according to w; i.e. the output will be of the form

y(t) = H(jw)e’' (1.1.4)

Figure 1.2 illustrates the behavior of a system for an input u(?) = &“.

However there is nothing to stop us from considering that the input is formed
by damped or undamped sinusoids and cosinusoids, which in this case are written
as

u(t) = Ol J0t = (o + jo)t = st S=0+jw (1.1.5)

where s is interpreted as a complex frequency. As a result of the linearity of the
system, the output will reproduce the input signal, amplified (or attenuated), with a
phase lag or not, depending on the values of s; i.e. the output will have the form

y(t)=H(s)e" (1.1.6)

and it must satisfy Equation 1.1.1 for u(¢) = ¢

log | H |
u(t) =eiot = H(i)eiot
——»| SYSTEM M(J(D)ej
u(t) =est y(t) = H(s)est

(0]

Figure 1.2. Response of a dynamic system to periodic inputs

From Equation 1.1.6 one gets

M=sH(s) e (1.1.7)

and by introducing Equation 1.1.7 in Equation 1.1.1, while bearing in mind that
u(f) = ", one obtains

(s+%)H(s)eS’ =%e” (1.1.8)

U &St is an eigenfunction of the system because its functional properties are preserved when passing
through the system (only the amplitude and the phase are modified).
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H(s), which gives the gain and phase deviation introduced by the system of
Equation 1.1.1 at different complex frequencies, is known as the transfer function.
The transfer function H(s) is a function of only the complex variable s. It
represents the ratio between the system output and input when the input is ¢*. From
Equation 1.1.8, it turns out that, for the system described by Equation 1.1.1, the
transfer function is

H(s)=

(1.1.9)
1+sT

The transfer function H(s) generally appears as a ratio of two polynomials in s
(H(s)=B(s)/A(s)). The roots of the numerator polynomial (B(s)) define the “zeros”
of the transfer function and the roots of the denominator polynomial (4(s)) define
the “poles” of the transfer function. The “zeros” correspond to those complex
frequencies for which the system gain is null and the “poles” correspond to those
complex frequencies for which the system gain is infinite.

Note that the transfer function H(s) can also be obtained by two other
techniques:

e Replacing p by s in Equation 1.1.2 and algebraic computation of the y/u
ratio.
e Using the Laplace transform (Ogata 1990).

The use of the representation of dynamic models in the form of transfer
functions presents a certain number of advantages for the analysis and synthesis of
closed-loop control systems. In particular the concatenation of dynamic models
described by transfer functions is extremely easy.

1.1.3 Stability

The stability of a dynamic system is related to the asymptotic behavior of the
system (when f— ), starting from an initial condition and for an identically zero
input.

For example, consider the first-order system described by the differential
Equation 1.1.1 or by the transfer function given in Equation 1.1.9.

Consider the free response of the system given in Equation 1.1.1 for # =0 and
from an initial condition y(0) = y,:

dy 1
Z 4y =0; y(0)= 1.1.10
r Ty() ¥0) =y, ( )

A solution for y will be of the form

y(t) = Ke* (1.1.11)
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in which K and s are to be determined?. From Equation 1.1.11 one finds

D _ ke (1.1.12)
dt

and Equation 1.1.10 becomes
st 1
Ke'|s+—|=0 (1.1.13)
T
from which one obtains
! K (1.1.14)
s=——; K= 1.
T o

and respectively

(1) = yoe T (1.1.15)
The response for 7> 0 and T < 0 is illustrated in Figure 1.3.

yO

T<o

T>o0

t

Figure 1.3. Free response of the first-order system

For T > 0, we have s < 0 and, when ¢t — oo, the output will tend toward zero
(asymptotic stability). For 7' < 0, we have s > 0 and, when ¢ — o, the output will
diverge (instability). Note that s = -1/T corresponds to the pole of the first-order
transfer function of Equation 1.1.9.

We can generalize this result: it is the sign of the real part of the roots of the
transfer function denominator that determines the stability or instability of the
system.

In order that a system be asymptotically stable, all the roots of the transfer
function denominator must be characterized by Re s < 0. If one or several roots of

2 The structure of the solution for Equation 1.1.11 results from the theory of linear differential
equations.
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the transfer function denominator are characterized by Re s > 0, then the system is
unstable.

For Re s = 0 we have a limit case of stability because the amplitude of y(f)
remains equal to the initial condition (e.g. pure integrator, dy/dt = u(¢); in this case
() remains equal to the initial condition).

Figure 1.4 gives the stability and instability domains in the plane of the
complex variable s.

Note that stability criteria have been developed, which allow determining the
existence of unstable roots of a polynomial without explicitly computing its roots,
(e.g. Routh-Hurwitz’ criterion) (Ogata 1990).

stable

Figure 1.4. Stability and instability domains in the s-plane
1.1.4 Time Response

The response of a dynamic system is studied and characterized for a step input.
The response of a stable system is generally of the form shown in Figure 1.5.

-~ Maximum overshoot (M)

y(t) 4
FV E = = = I =5 = = === -Final value (FV)
O9FVI — (steady state)

Figure 1.5. Step response

The step response is characterized by a certain number of parameters:

e 1p (rise time): generally defined as the time needed to reach 90% of the

final value (or as the time needed for the output to pass from 10 to 90% of
the final value). For systems that present an overshoot of the final value, or
that have an oscillating behavior, we often define the rise time as the time
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needed to reach for the first time the final value. Subsequently we shall
generally use the first definition of #5.

o {g (settling time): defined as the time needed for the output to reach and

remain within a tolerance zone around the final value (£ 10%, £ 5% + 2%).
o FV(final value): a fixed output value obtained for t— oo .
o M (maximum overshoot): expressed as a percentage of the final value.

For example, consider the first-order system

G

H(s) =
) 1+sT

The step response for a first-order system is given by
y()=G(-e"'")

Since the input is a unitary step one has

FV = G (static gain); t, = 2.2 T

tg=22T (for£ 10% FV) ; tg=3 T (for £ 5%FV); M =0
and the response of such a system is represented in Figure 1.6. Note that for t = T,
the output reaches 63% of the final value.

A
[V

90%

63%

-

t

Figure 1.6. Step response for a first-order system

1.1.5 Frequency Response

The frequency response of a dynamic system is studied and characterized for
periodic inputs of variable frequency but of constant magnitude. For continuous-
time systems, the gain-frequency characteristic is represented on a double
logarithmic scale and the phase frequency characteristic is represented on a
logarithmic scale only for the frequency axis.
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20 log |H(j )
A l l Resonance

-~

| dB
BB — — — — — — = A/second order (40 Jec )

( fB)
Figure 1.7. Frequency responses

The gain G(w) = |H(jw)| is expressed in dB (|H(jw)| dB = 20 log |H(j®)|) on
the vertical axis and the frequency @, expressed in rad/s (o = 2zf where f
represents the frequency in Hz) is represented on the horizontal axis. Figure 1.7
gives some typical frequency response curves.

The characteristic elements of the frequency response are:

o fp(wp) (bandwidth): the frequency (radian frequency) from which the zero-
frequency (steady-state) gain G(0) is attenuated more than 3 dB;
G(w,) =G(0)-3dB; (G(w,)=0.707G(0)).

o fowp) (cut-off frequency): the frequency (rad/s) from which the attenuation
introduced with respect to the zero frequency is greater than N dB;
G(jo.)=G0)-NdB.

o ( (resonance factor): the ratio between the gain corresponding to the
maximum of the frequency response curve and the value G(0).

e Slope: it concerns the tangent to the gain frequency characteristic in a

certain region. It depends on the number of poles and zeros and on their
frequency distribution.

Consider, as an example, the first-order system characterized by the transfer

function given by Equation 1.1.9. For s = jw the transfer function of Equation 1.1.9
is rewritten as

H(jo)= lij =|H(jo)e/"” =|H(jo) <) (1.1.16)

where |H(jw)| represents the modulus (gain) of the transfer function and £ Hw)
the phase deviation introduced by the transfer function. We then have

G(a)):|H(ja))|:L (1.1.17)

(1+a’T?)
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_ ool ImGGo) |
Z/¢(w) = tan {—ReG(jw)} tan”! [~ oT | (1.1.18)

From Equation 1.1.17 and from the definition of the bandwidth wp, we obtain:
wp=1/T

Using Equation 1.1.18, we deduce that for ® = wg the system introduces a phase
deviation ~ ¢ (mB) = -45°. Also note that for ® = 0, G(0)=G, 2900) =0° and

for 0 — 00, G(0) =0, £ (o) =-90°.

Figure 1.8 gives the exact and asymptotic frequency characteristics for a first-
order system (gain and phase).

As a general rule, each stable pole introduces an asymptotic slope of -20
dB/dec (or 6 dB/octave) and an asymptotic phase lag of -90°. On the other hand,
each stable zero introduces an asymptotic slope of +20 dB/dec and an asymptotic
phase shift of +90°.

It follows that the asymptotic slope of the gain-frequency characteristic in dB,
for high frequencies, is given by

AG
A—:—(n—m)><20dB/dec (1.1.19a)
1)

where 7 is the number of poles and m is the number of zeros.

BODE diagram
0 0
\ gain
phase
10 -22.5
first order: —1—|
1+s
[dB] [Deg]
-20 -45
-30 -67.5
-40 -90
10° 10" 10° 10' 10°
 [rad/s]

Figure 1.8. Frequency characteristic of a first-order system
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The relation
Z¢(©) = —(n — m)x90° (1.1.19b)

gives the asymptotic phase deviation.
Note that the rise time (¢z) for a system depends on its bandwidth (wg). We
have the approximate relation

N 2t03

tp (1.1.20)

@B

1.1.6 Study of the Second-order System

The normalized differential equation for a second-order system is given by:

2
%ﬁ+2§wo%+wﬁy(0=w%u(ﬂ (1.1.21)

Using the operator p = d/dt, Equation 1.1.21 is rewritten as

(P + 20wy p + 0d) (1) = wiu(?) (1.1.22)

Letting u(z) = % in Equation 1.1.21, or p = s in Equation 1.1.22, the normalized
transfer function of a second-order system is obtained:

2
@9
H(s)=———7"7"— (1.1.23)
s2 + 24’ oS + a)é
in which
e @, : natural frequency in rad/s (a, = 2 7z f;)
e ( :damping factor
The roots of the transfer function denominator (poles) are
a) |¢] < 1, complex poles (oscillatory response) :
s12=-Cwp+]jwp\1-C2 (1.1.24a)

(awpN 1 - {2 is called “damped resonance frequency”).
b) ¢ = I, real poles (aperiodic response) :
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S12=-Gop+ o\ G2 -1 (1.1.24b)

The following situations are thus obtained depending on the value of the damping
factor ¢

e (> (:asymptotically stable system
e (<0 :unstable system

These different cases are summarized in Figure 1.9.

N NS
>0 N\,

| (¢]

| eﬁ\cosflg Re s
ol >
€ 9 ,

[ ¢ <0

NG

Im s @

Figure 1.9. The roots of the second-order system as a function of € (for || < 1)

The step response for the second-order system described by Equation 1.1.21 is
given by the formula (for |{] < 1)

y(t)=1- lze*4wo’(sina)m/1—§2t+0) (1.1.25)
Vyi=-¢

in which
0=cosl ¢ (1.1.26)

Figure 1.10 gives the normalized step responses for the second-order system. This
diagram makes it possible to determine both the response of a given second-order
system and the values of @, and £, in order to obtain a system having a given rise
(or settling) time and overshoot.

To illustrate this, consider the problem of determining @), and ¢ so that the rise

time (0 to 90% of the final value) is 2.75s with a maximum overshoot =~ 5%. From
Figure 1.10, it is seen that in order to ensure an overshoot = 5% we must choose
€= 0.7. The corresponding normalized rise time is: @, fjy = 2.75. It can be

concluded that to obtain a rise time of 2.75s, @, = I rad/sec must be taken.
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0,3
0,6

0,5

0,8
/ 15
0,6

0,4

0,2 4

Figure 1.10. Normalized frequency responses of a second-order system to a step input

M %

100,00
90,00 \
80,00
70,00 ™
60,00 \

N ®
50,00 \

40,00 N

30,00 AN
20,00 AN

10,00
0,00 ¢

ootr

3,5

25 -~ ®
v

/
//
1,5 g

0,1 02 03 04 05 06 07 08 09 1

Figure 1.11. Second-order system: a) maximum overshoot M as a function of the damping
factor ¢ ; b) normalized rise time as a function of
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In order to make easier the determination of @, and ¢ for a given rise time 5 and a
given maximum overshoot M, the graph of M as a function of £ and the graph of
@, tg as a function of ¢ have been represented in Figure 1.11a, b.

The curve given in Figure 1.11a allows choosing the damping factor ¢ for a
given maximum overshoot M. Once the value of ¢ chosen, the Figure 1.11b gives
the corresponding value of @), tg. This allows one to determine @), for a given rise
time p.

The functions omega damp.sci (Scilab) and omega damp.m (MATLAB®)
allow one to obtain the values of @, and ¢ directly from the desired overshoot and
rise time?.

2" Order Systems : Bode Magnitude Diagram

Magnitude (dB)

¢=0.1,03,0.5,0.7,0.9

40

Frequency (a/o))

Figure 1.12. Normalized frequency responses of a second-order system (gain)

The settling time g, for different values of £ and of the tolerance zone around

the final value, can be determined from the normalized responses given in Figure
1.10.

Figure 1.12 gives the normalized frequency responses for a second-order
system.

3 To be downloaded from the book website.
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1.1.7 Systems with Time Delay

Many industrial processes exhibit a step response of the form shown in Figure
1.13. The period of time during which the output does not react to the input is
called time delay (denoted by 7).

A first-order dynamic system with a time delay 7 is described by the following
differential equation:

dy 1 G
Y v+ Zu -+ 1.1.27
P Ty() . (t-17) ( )

where the argument of u(z - 7) reflects the fact that the input will act with a time
delay of z. Equation 1.1.27 is to be compared with Equation 1.1.1.
The corresponding transfer function is

Ge—ST
1+sT

(1.1.28)

H(s)=

in which e*7 represents the transfer function of the time delay z.

A vt
u(t)
e -
|- T t

Figure 1.13. Step response of a system with time delay

Equations 1.1.27 and 1.1.28 can be straightforwardly extended to high-order

systems with time delay.
Note that for the systems with time delay the rise time ¢z is generally defined

from¢ =t
The frequency characteristics of the time delay are obtained by replacing s=j@
in e%. We then obtain
Hdelay (j @) = 30T =[ 1], £9(®) (1.1.29)

with

£ 9(®) = _ @ 1 (rad) (1.1.30)
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Therefore a time delay does not modify the system gain, but it introduces a phase
deviation proportional to the frequency.

1.1.8 Non-minimum Phase Systems

For continuous time systems (exclusively), non-minimum phase systems have one
or more unstable zeros. In the continuous time case, the main effect of unstable
zeros is the appearance of a negative overshoot at the beginning of the step
response, as it is shown for example in Figure 1.14. The effect of the unstable
zeros cannot be offset by the controller (one should use an unstable controller).

Time (s)

Figure 1.14. Step responses of a non-minimum phase system (H(s)=(1-sa)/(1+s)(1+0.5s),
a=1,0.5)

As an example consider the system

1-sa

) = 05

with a =1 and 0.5. Figure 1.14 represents the step response of the system.
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1.2 Closed-loop Systems

Figure 1.15 shows a simple control system. y(¢) is the plant* output and represents
the controlled variable, u(t) is the input (control signal) applied to the plant by the
controller (manipulated variable) and r(¢) is the reference signal.

Controller Plant

v

A 4

Figure 1.15. Control system

The control systems have a closed-loop structure (the control signal is a
function of the difference between the reference and the measured value of the
controlled variable) and contains at least two dynamic systems (the plant and the
controller).

We shall examine in this section the computation of the closed-loop transfer
function, the steady-state error with respect to the reference signal, the rejection of
disturbances and stability of the closed-loop systems.

1.2.1 Cascaded Systems

Figure 1.16 represents the cascade connection of two linear systems characterized
by the transfer functions /,(s) and H,(s).

uq(t) =est yq(t) =H4(s) eSt=up y2 (1)

)
H(s) =H1(s) H2(s)

Figure 1.16. Cascade connection of two systems

If the input to H,(s) is u; (f) = % the following relations are found:

uy(t) =y, (t) = Hy(s) e’ (1.2.1)
Vo(t) = H,(s) uy(t) = Hy(s) H,(s) et = H(s) e (1.2.2)

4 the term “plant” defines the set : actuator, process to be controlled and sensor.
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and we can conclude that the transfer function of two cascaded systems is
H(s) = H,y(s) H(s) (1.2.3)
or in the general case of n cascaded systems

H(s) = H,(s) H,_(s)....H(s) H,(s) (1.2.4)

1.2.2 Transfer Function of Closed-loop Systems

Consider the closed-loop system represented in Figure 1.17.

rt) = eSt___ u,) y (t) = Hgy () eSt
—+> Hy (s) | Hy (s) -

Figure 1.17. Closed-loop system

The output y(7) of the closed-loop system in the case of an external reference
r(t) = % is written as

(1) = Hep(s) e = Hy(s) H(s) u(t) (1.2.5)
But u,(¢) is given by the relation
u (1) =rt) - ¥t (1.2.6)

Introducing this relation into Equation 1.2.5, one gets

[1+ Hy(s) Hy()] () = Has) Hy(5) r(0) (12.7)
from which
HdSFM (1.2.8)

1+ H,(s) Hi(5)

The stability of the closed-loop system will be determined by the real parts of the
roots (poles) of the transfer function denominator H; (s).
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1.2.3 Steady-state Error

When carrying out the synthesis of a closed-loop system, our aim is to obtain an
asymptotically stable system having a given response time, a specified overshoot
and ensuring a zero steady-state error with respect to the reference signal. In Figure
1.18, it is desired that, in steady-state, y(z) equals r(2), i.e. the steady-state gain of
the closed-loop system between y(t) and r(t) must be equal to 1.

r(t) y(t)
- Hov(s) -
+

Figure 1.18. Closed-loop system

In Figure 1.18 the global transfer function of the feedforward channel Ho,(s) is
of the form

by +bys+..+b,s"  B(s)

Hpp(s)= = (1.2.9)
o ag+a;s+..+a,s" A(s)
and the transfer function in closed-loop is given by
Hey(s) = 1) _ B (1.2.10)

1+ Hy, (s)  A(s)+B(s)

The steady-state corresponds to a zero frequency (s = 0). The steady-state gain is
obtained by making s = 0 in the transfer function given by Equation 1.2.10.

_ __BO b 12.11
y=He O A(0)+B(O)r a0+b0r ( )

in which y and r represent the stationary values of the output and the reference.
To obtain a unitary steady-state gain (H;(0) = 1), it is necessary that

(1.2.12)

This implies that the denominator of the transfer function H(s) should be of the
following form:

A(s) = s(ays +ays® +...+a, ;") =5.4'(s) (1.2.13)
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and, respectively:

1 B
Hop(s)= ; A'((Ss))

(1.2.14)

Thus to obtain a zero steady-state error in closed-loop when the reference is a step,
the transfer function of the feedforward channel must contain an integrator.

This concept can be generalized for the case of time varying references as
indicated below with the internal model principle: to obtain a zero steady-state
error, Hp,(s) must contain the infernal model of the reference r(z).

The internal model of the reference is the transfer function of the filter that
generates r(¢) from the Dirac pulse. E.g., step=(1/s)-Dirac,
ramp = (1/ 52) - Dirac ). For more details see Appendix A.

Therefore, for a ramp reference, Hp;(s) must contain a double integrator in
order to obtain a zero steady-state error.

1.2.4 Rejection of Disturbances

Figure 1.19 represents the structure of a closed-loop system in the presence of a
disturbance acting on the controlled output. H ), (s) is the open-loop global transfer

function (controller + plant) and is given by Equation 1.2.9.

p(t) (disturbance)

+

r(t) y(t)

Figure 1.19. Closed-loop system in the presence of disturbances

Generally, we would prefer that the influence of the disturbance p(¢) on the
system output be as weak as possible, at least in given frequency regions. In
particular, we would prefer that the influence of a constant disturbance (step
disturbance), often called “load disturbance”, be zero during in steady-state regime
(t—>00,5>0).

The transfer function between the disturbance and the output is written as:

LA
C1+Hy (s)  A(s)+B(s)

Syp () (1.2.15)

Syp(s) is called “output sensitivity function”.
The steady-state regime corresponds to s = 0.
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_ _ A0 )
y—Syp(O)p—A(0)+B(0)p—ao+bop (1.2.16)

in which y and p represent the steady-state values of the output and respectively of
the disturbance.
S)p(0) must be zero for a perfect rejection of the disturbance in steady-state

regime. It follows (as in Section 1.2.3) that, in order to obtain the desired property,
we must have ap = 0. This implies the presence of an integrator in the direct path

in order to have a perfect rejection of a step disturbance during steady-state regime
(see previous section).

As a general rule, the direct path must contain the infernal model of the
disturbance in order to obtain a perfect rejection of a deterministic disturbance (see
previous section).

Example: Sinusoidal Disturbance of Constant Frequency.
The internal model of the sinusoid is l/(1+s2 / a)g ) (the transfer function of the

filter which, excited by a Dirac pulse, generates a sinusoid). For a perfect rejection
(asymptotically) of this disturbance the controller must contain the transfer

function 1/(1+s* /@g) .

In general, we also have to check if there is not an amplification of the
disturbance’s effect in certain frequency regions. That is why we must require that
the modulus of |S,,(jw)| be inferior to a given value at all frequencies. A typical
value for this condition is

| Sy (o) | <2 (6dB) forall @ (1.2.17)

We may also require that S,(j@) introduces a given attenuation in a certain

frequency range, if we know that a disturbance has its energy concentrated in this
frequency range.

1.2.5 Analysis of Closed-loop Systems in the Frequency Domain: Nyquist Plot
and Stability Criterion

The transfer function of the open-loop Hp;(s) (Figure 1.19) can be represented in
the complex plane when @ varies from 0 to o as

H, (jo)=ReH, (jo)+ jImH,, (jo) =|H,, (jo).£¢(®) (1.2.18)

The plot of the transfer function in this plane is graduated in frequencies (rad/s).
This representation is often called a Nyquist plot (or hodograph).
Figure 1.20 shows the Nyquist plot for H,(s)=1/(1+s)and

H,(s)=1/[s(1+5)]. Note that the plot of H,(s) corresponds to the typical case
where an integrator is present in the loop (to ensure a zero steady-state error).



Continuous Control Systems: A Review 21

H ()~
2

o =0

Figure 1.20. Nyquist plot for H,(s) =1/(1+s)and H,(s)=1/[s(1+s)]

These curves show the gain and phase of the transfer function at different
frequencies. The vector joining the origin to a point on the hodograph of the
transfer function represents H(jw) for a certain frequency w.

In this diagram, the point [-/, jO] plays a particularly important role (critical
point). We can see in Figure 1.21 that the vector connecting the point [-/, jO] to the
plot of the open-loop transfer function Hpy, (jw) is given by

S0 (j) =1+ Hy, (jo) (12.19)
A m H(ip)
‘1 / = 00 Re H (JCO )
N
1+ How(jm) ~ HoL(jo)
o=0

Figure 1.21. Nyquist plot and the critical point

This vector corresponds to the inverse of the output sensitivity function (see
Equation 1.2.15). The denominator of the output sensitivity function defines the
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poles of the closed-loop transfer function. The stability properties of the system are
determined by the denominator of the transfer function. In order that the closed-

loop system be asymptotically stable, all the poles of S,,(s) must lie in the half-

planeRe s < 0.

If the plot of the open-loop transfer function Ho,(s) passes through the point [-
1, jO], for a value s = jw, the denominator of the closed-loop system transfer
function will be null at this frequency. The closed-loop system will not be
asymptotically stable (more precisely it will have poles on the imaginary axis). It
then follows a necessary condition (but not sufficient) for the closed-loop system to
be asymptotically stable: the hodograph of H(s) must not pass through the point [-
1, jO]. The Nyquist criterion gives the necessary and sufficient conditions for the
asymptotic stability of the closed-loop system.

For systems having open-loop stable poles (Res < 0) the Nyquist stability
criterion is expressed as: The plot of the open-loop transfer function Hpy (s)

traversed in the sense of growing frequencies (from @ = 0 to @ = n) must leave the
critical point [-1, jO] on the lefi.

As a general rule, a controller will be computed for the nominal model of the
plant so that the closed-loop system be asymptotically stable, i.e. Hpy (s) will leave
the critical point on the left.

It is also obvious that the minimal distance to the critical point will characterize
the “stability margin” or “robustness” of the closed-loop system in relation to
variations of the system parameters (or uncertainties in parameter values).

1.3 PI and PID Controllers

The PI (proportional + integral) and PID (proportional + integral + derivative)
controllers are widely used for the control of continuous-time systems.

An extremely rich literature has been dedicated to design methods and
parameters adjustment of these controllers. Also note that there are several
structures for PI and PID controllers (with different transfer function and tuning
parameters).

Synthesis methods for PI and PID controllers have been developed and
implemented (see the references at the end of the chapter). These methods can be
divided into two categories: a) methods using frequency and time characteristics of
the plant (non—parametric model) and b) methods using the plant transfer function
(parametric model).

In this section, we shall only present basic schemes for PI and PID controllers
as an introduction to the digital PI and PID controllers.

1.3.1 PI Controller
In general PI controllers have as input the difference between the reference and the

measured output and as output the control signal delivered to the actuator (see
Figure 1.15). A typical transfer function of a PI controller is
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! }:w (13.1)

HR(S)=K|:1+_
T:is Tis

in which K is called the proportional gain and T; the integral action of the PI

controller. There also exist, however also PI controllers with independent actions,
ie.

1
HR(S):KP+_
T:s

In certain situations the proportional action may operate only on the measured
output.

1.3.2 PID Controller
The transfer function of a typical PID controller is

1
Hpp(s)=K 1+_+—T4S
Ta

Tis 1 1ldg

(13.2)

1

in which K specifies the proportional gain, T; characterizes the integral action, T,
characterizes the derivative action and 1 + (T;/ N) s introduces a filtering effect on

the derivative action (low-pass filter).
By summing up the three terms, the transfer function given by Equation 1.3.2
can also be rewritten as

< T4 , TiTa
+S| Ti+— |+ i
(T NJ 2| TiTa+ I
Hpp(s) = = (1.3.3)
T;s 1+195
%)

Several structures for PID controllers exist. In addition there are situations when
the proportional and derivative actions act only on the measured output.
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1.4 Concluding Remarks

The behavior of controlled plants around an operating point can in general be
described by linear dynamic models. Linear dynamic models are characterized in
the time domain by linear differential equations and in the frequency domain by
transfer functions.

Control systems are closed-loop systems that contain the plant, the controller
and the feedback connection. For these systems, the control applied to the plant is a
function of the difference between the desired value and the measured value of the
controlled variable. Control systems are characterized by a dynamic model that
depends upon the structure and the coefficients of the plant and controller transfer
functions.

The desired control performances can be expressed in terms of the desired
characteristics of the dynamic model of the closed-loop system (ex.: transfer
function with specified coefficients). This allows the synthesis of the controller if
the plant model is known.

The plot in the complex plane of the transfer function of the open-loop system
(controller + plant), also called Nyquist plot, plays an important role in the
assessment of controller qualities. In particular, it allows studying of the stability
and robustness properties of the closed-loop system.

1.5 Notes and References

Many books deal with the fundamentals of continuous-time control. Among the
different titles we can mention:

Takahashi Y., Rabins M., Auslander D. (1970) Control. Addison Wesley,
Readings, Mass

Franklin G., Powell J.D. (1986) Feedback Control of Dynamic Systems. Addison
Wesley, Reading, Mass

Ogata K. (1990) Modern Control Engineering (second edition). Prentice Hall, N.J

Kuo B.C. (1991) Automatic Control Systems (sixth edition). Prentice Hall, N.J

PID controller adjustment techniques are discussed in:

Ziegler J.G., Nichols N.B. (1942) Optimum Settings for Automatic Controllers.
Trans. ASME, vol. 64, pp. 759-768

Shinskey F.G. (1979) Process Control Systems. McGraw-Hill, N.Y.

Astrom K.J., Hagglund 1. (1995) PID Controllers Theory, Design and Tuning, 2nd
edition. ISA, Research Triangle Park, N.C., U.S.A

Voda A., Landau L.D. (1995a) A method for the auto-calibration of PID
controllers. Automatica, vol. 31, no. 1, pp. 45-53.

Voda A., Landau 1.D. (1995b) The auto-calibration of PI controllers based on two
frequency measurements. Int. J. of Adaptive Control and Signal Processing,
vol. 9, no. 5, pp. 395-422

as well as in (Takahashi ef al. 1970) and (Ogata 1990).
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Computer Control Systems

In this chapter we present the elements and the basic concepts of computer-
controlled systems. The discretization and choice of sampling frequency will be
first examined, followed by a study of discrete-time models in the time and
frequency domains, discrete-time systems in closed loop and basic principles for
designing digital controllers.

2.1 Introduction to Computer Control

The first approach for introducing a digital computer or a microprocessor into a
control loop is indicated in Figure 2.1. The measured error between the reference
and the output of the plant is converted into digital form by an analog-to-digital
converter (ADC), at sampling instants & defined by the synchronization clock. The
computer interprets the converted signal y(k) as a sequence of numbers, which it
processes using a control algorithm and generates a new sequence of numbers
{u(k)} representing the control. By means of a digital-to-analog converter (DAC),
this sequence is converted into an analog signal, which is maintained constant
between the sampling instants by a zero-order hold (ZOH). The cascade: ADC-
computer-DAC should behave in the same way as an analog controller (PID type),
which implies the use of a high sampling frequency but the algorithm implemented
on the computer is very simple (we just do not make use of the potentialities of the
digital computer!).

A second and much more interesting approach for the introduction of a digital
computer or microprocessor in a control loop is illustrated in Figure 2.2 which can
be obtained from Figure 2.1 by moving the reference-output comparator after the
analog-to-digital converter. The reference is now specified in a digital way as a
sequence provided by a computer.

In Figure 2.2 the set DAC - plant - ADC is interpreted as a discretized system,
whose control input is the sequence {u(k)} generated by the computer, the output
being the sequence {y(k)} resulting from the A/D conversion of the system output
y(t). This discretized system is characterized by a “discrete-time model”, which

25
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describes the relation between the sequence of numbers {u(k)} and the sequence of
numbers {y(k)}. This model is related to the continuous-time model of the plant.

CLOCK
() ¢ e(k) u(k) ¢ ju() ()
t ! |
W, DAC |
i ADC [» COMPUTER » * 9 PLANT
-t ZOH |
CONTROLLER
Figure 2.1. Digital realization of an « analog » type controller
CLOCK
e(k) (k) ¢ u(t) y() $ '
r(k) i DAC
+ I
—»()» CcomMPUTER [P *+ || PLANT P
; ! ZOH

DISCRETIZED PLANT

Figure 2.2. Digital control system

This approach offers several advantages. Among these advantages here we
recall the following:

1. The sampling frequency is chosen in accordance with the “bandwidth” of
the continuous-time system (it will be much lower than for the first
approach).
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2. Possibility of a direct design of the control algorithms tailored to the
discretized plant models.

3. Efficient use of the computer since the increase of the sampling period
permits the computation power to be used in order to implement
algorithms which are more performant but more complex than a PID
controller, and which require a longer computation time.

In fact, if one really wants to take advantage of the use of a digital computer in
a control loop, the “language” must also be changed. This may be achieved by
replacing the continuous-time system models by discrete-time system models, the
continuous-time controllers by digital control algorithms, and by using dedicated
control design techniques.

The changing over to this new “language” (discrete-time dynamic models)
makes it possible to use various high performing control strategies which cannot be
implemented by analog controllers.

The operating details of the ADC (analog-to-digital converter), the DAC
(digital-to-analog converter) and the ZOH (zero-order hold) are illustrated in
Figure 2.3.

D.A.C. _ﬂ_\_'_\_l_

- 4+ >

Z.0.H.

v

H
e

it e

sampling period

Figure 2.3. Operation of the analog-to-digital converter (ADC), the digital-to-analog
converter (DAC) and the zero-order hold (ZOH)
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The analog-to-digital converter implements two functions:

1. Analog signal sampling: this operation consists in the replacement of
the continuous signal with a sequence of values equally spaced in the
time domain (the temporal distance between two values is the
sampling period), as these values correspond to the continuous signal
amplitude at sampling instants.

2. Quantization: this is the operation by means of which the amplitude of
a signal is represented with a discrete set of different values (quantized
values of the signal), generally coded with a binary sequence.

The general use of high-resolution A/D converters (where the samples are
coded with 12 bits or more) allows one to consider the quantification effects as
negligible, and this assumption will hold in the following. Quantization effects will
be taken into account in Chapter 8.

The digital-analog converter (DAC) converts at the sampling instants a discrete
signal, digitally coded, in a continuous signal.

The zero-order hold (ZOH) keeps constant this continuous signal between two
sampling instants (sampling period), in order to provide a continuous-time signal.

2.2 Discretization and Overview of Sampled-data Systems

2.2.1 Discretization and Choice of Sampling Frequency

Figure 2.4 illustrates the discretization of a sinusoid of frequency f, for several
sampling frequencies f;.
It can be noted that, for a sampling frequency f; = § f,, the continuous nature of

the analog signal is unaltered in the sampled signal.
For the sampling frequency f; = 2 f,, if the sampling is carried out at instants

2rf, t other than multiples of 7, a periodic sampled signal is still obtained.
However if the sampling is carried out at the instants where 27f, t = nrx, the

corresponding sampled sequence is identically zero.
If the sampling frequency is decreased under the limit of f; = 2f,, a periodic

sampled signal still appears, but its frequency differs from that of the continuous
signal (f = f; - fy)-

In order to reconstruct a continuous signal from the sampled sequence, the
sampling frequency must verify the condition (Nyquist's theorem):

Js > 2 max (2.2.1)
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fS =8f0
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N M1
N,
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v

Figure 2.4. Sinusoidal signal discretization

in which £, is the maximum frequency to be transmitted. The frequency f,=2 1, ..

is a theoretical limit; in practice, a higher sampling frequency must be chosen.

The existence of a maximum limit for the frequency that may be converted
without distortion, for a given sampling frequency, is also understandable when it
is observed that the sampling of a continuous-time signal is a “magnitude
modulation” of a “carrier” frequency f; (analogy with the magnitude modulation in

radio transmitters). The modulation effect may be observed in the replication of the
spectrum of the modulating signal (in our case the continuous signal) around the
sampling frequency and its multiples.

The spectrum of the sampled signal, if the maximum frequency of the

continuous signal (f,,, ) is less than (1/2) f,, is represented in the upper part of

5

Figure 2.5.
The spectrum of the sampled signal, if f,, = > (1/2)f,, is represented in the lower

part of Figure 2.5. The phenomenon of overlapping (aliasing) can be observed.
This corresponds to the appearance of distortions. The frequency (//2)f;, which

defines the maximum frequency (f, ) admitted for a sampling with no distortions,

max.
is known as “Nyquist frequency” (or Shannon frequency).
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Case1:f <1_f
max

N AA%

max s S S
Continuous-time Spectrum of the
spectrum sampled signal
Case 2: f >

max S S
Continuous-time Overlapplng (aliasing)
spectrum of the spectrum (distorsions !)

Figure 2.5. Spectrum of a sampled signal

For a given sampling frequency, in order to avoid the folding (aliasing) of the
spectrum and thus of the distortions, the analog signals must be filtered prior to
sampling to ensure that:

f max<%f . (2.2.2)

The filters used are known as “anti-aliasing filters”. A good anti-aliasing filter
must have a minimum of two cascaded second-order cells (f,,,. << (1/2) f). An

max
example of an anti-aliasing filter of this type is given in Figure 2.6. These filters
must introduce a large attenuation at frequencies higher than (1/2) f;, but their
bandwidth must be higher than the required bandwidth of the closed loop system
(generally higher than open loop system bandwidth). Circuits of this type (or more
complex) are currently available.

2 2 2 > 2 2 2
@, +2w,4s + s @, +2w,4s + s

Figure 2.6. Anti-aliasing filter
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In the case of very low frequency sampling, first a sampling at a higher
frequency is carried out (integer multiple of the desired frequency), using an
appropriate analog anti-aliasing filter. The sampled signal thus obtained is passed
through a digital anti-aliasing filter followed by a frequency divider (decimation)
thereby giving a sampled signal having the required frequency. This procedure is
shown in Figure 2.7. It is also employed every time the frequency of data
acquisition is higher than the sampling frequency chosen for the loop that must be
controlled (the sampling frequency should be an integer divider of the acquisition
frequency).

y(t) | Anti-aliasing - Anti-aliasing y (k)
™| analog filter ™ digital filter -
T a Ts
A/D converter Under-sampling
(acquisition frequency) (Ts=n.Ta)

Figure 2.7. Anti-aliasing filtering with under-sampling

2.2.2 Choice of the Sampling Frequency for Control Systems

The sampling frequency for digital control systems is chosen according to the
desired bandwidth of the closed loop system . Note that, no matter how the desired
performances are specified, these can always be related to the closed loop system
bandwidth.

Example: Let us consider the performances imposed in Section 1.1.6 on the
step response (maximum overshoot 5%, rise time 2.75 s). The transfer function to
be determined corresponds to the desired closed loop system transfer function.
From the diagrams given in Figure 1.11 we have deduced that the closed loop
transfer function must be a normalized second-order transfer function with {=0.7
and @,y=1 rad/s. By immediately using the diagrams given in Figure 1.12, it can be

observed that the bandwidth of the closed loop system is approximately equal to

a_ 1
=—~H:z
S =5

The rule used to choose the sampling frequency in control systems is the
following:

f.=(61025) 14 (223)

where

Jf,: sampling frequency, fgL : closed loop system bandwidth
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Rule of Equation 2.2.3 is equally used in open loop, when it is desired to
choose the sampling frequency in order to identify the discrete-time model of a

plant. In this case f, BCL is replaced by an estimation of the bandwidth of the plant.
For information purposes, Table 2.1 gives the sampling periods (T = 1/f;) used

for the digital control of different types of plants.
The rule for choosing the sampling frequency given in Equation 2.2.3 can be
connected to the transfer function parameters.

First- order system

H(s) =

- 1+sT,

In this case the system bandwidth is

1

fB:fO:ﬁ

(an attenuation greater than 3 db is introduced for frequencies higher than w, =
I/Ty = 27fp).

Table 2.1. Choice of the sampling period for digital control systems (indicative values)

Type of variable Sampling period (s)
(or plant))

Flow rate 1-3
Level 5-10
Pressure 1-5
Temperature 10 - 180
Distillation 10 - 180
Servo-mechanisms 0.001 - 0.05
Catalytic reactors 10 - 45
Cement plants 20 -45
Dryers 20—45
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By applying the rule of Equation 2.2.3 the condition for choosing the sampling
period is obtained (T = 1/f,):

T,
TO <T, <T, (2.2.4)

This corresponds to the existence of two to nine samples on the rise time of a step
response.

Second- order system

2
[on)
H(s)=—20
(s) @5 +2¢ wos + s

The bandwidth of the second-order system depends on @, and on ¢ (see Figure
1.12).

For example:
(=0T=f,=2
2r

06 ()
2w

¢=1=fy=

By applying the rule of Equation 2.2.3, the following relations are obtained
between the natural frequency @), and the sampling period 7 :

025 < wyTy <1, §=07 (2.2.5)
and
04< 0T, <175, (=1 (2.2.6)

The lower values correspond to the choice of a high sampling frequency and
the upper values to the choice of a low sampling frequency.

For simplicity's sake, given that in closed loop the behavior frequently chosen
as the desired behavior is that of a second order having a damping factor
¢ between 0.7 and 1, the following rule can be used (approximation of Equations
2.2.5 and 2.2.6):

025 < wyT,< 1.5 ; 07<¢<I 2.2.7)
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2.3 Discrete-time Models

2.3.1 Time Domain

Figure 2.8 illustrates the response of a continuous-time system to a step input, a
response that can be simulated by a first order system (an integrator with a
feedback gain indicated in the figure).

dy
u dt y

=
<

- =

Figure 2.8. Continuous-time model
The corresponding model is described by the differential equation

dy 1 G
RCA— — 2.3.1
dt Ty(t) " T u(t) ( )

or by the transfer function

H(s) =

(2.3.2)
1+ sT

where 7 is the time constant of the system and G is the gain.

If the input u(f) and the output y(7) are sampled with a specified sampling
period, the representations of u(f) and y(¢) are obtained as number sequences in
which ¢ (or k) is now the normalized discrete-time (real time divided by the
sampling period, ¢ = #/T,). The relation between the input sequence {u(f)} and the
output sequence {y(f)} can be simulated by the scheme given in Figure 2.9 by
using a delay (backward shift) operator (symbolized by ¢/: y(t-1) = ¢! ¥(1)),
instead of an integrator.

This relation is described in the time domain by the algorithm (known as
recursive equation or difference equation)

Y(t) =-a; y(t-1) + by u(t-1) (2.3.3)
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u(t-1) y

+
. i
t

a delay
q-1

Figure 2.9. Discrete-time model

Let us now examine in greater detail the discrete-time model given by Equation
2.3.3 for a zero initial condition (y(0) = 0) and a discrete-time unit step input:

0 t<0
u(t):{l

t>0

The response is directly computed by recursively using Equation 2.3.3 from ¢ =0
(in the case of discrete-time models there are no problem with the integration of the
differential equations like in continuous time). We shall examine two cases.

Case 1. aj=-05 ; b;=05

The output values for different instants are given in Table 2.2 and the
corresponding sequence is represented in Figure 2.10.

Table 2.2. Step response of a first-order discrete-time model (a;=-0.5, b;=0.5)

y(t) 0 0.5 075 | 0875 | 0937 | 0.969

0,5 |
! _
1 2 3 4

5 6 t

Figure 2.10. Step response of a first-order discrete- time model (a; =-0.5, b;=0.5)

It is observed that the response obtained resembles the step response of a
continuous-time first order system which has been sampled. An equivalent time
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constant for the continuous-time system can even be determined (rise time from 0
t0 90 %: tp = 2.2 T). From Table 2.2, one then obtains

3T 4T
2.2 2.2
Case 2. ajp=05; b;=15

Output values for different instants are given in Table 2.3 and the corresponding
sequence is represented in Figure 2.11.

Table 2.3. Step response of a first-order discrete-time model (a;=0.5; b;=1.5)

T 0 1 2 3 4 5

y(0) 0 1.5 075 | 1125 | 0937 | 1.062

An oscillatory damped response is observed with a period equal to two sampling
periods. This type of phenomenon cannot result from the discretization of a
continuous-time first order system, since this latter is always a-periodic. It may
thus be concluded that the first order discrete-time model corresponds to the
discretization of a first order continuous-time system only if a; is negative'.

y

1,5 »

0,5 Damped
oscillating
response
I

1 2 3 4 5 6 t

Figure 2.11. Step response of a first-order discrete-time model (a;=0.5; b;=1.5)

We now go back to the method used to describe discrete-time models. The
delay operator ¢/ is used to obtain a more compact writing of the recursive
(difference) equations which describe discrete-time models in the time domain (it
has the same function as the operator p = d/dt for continuous-time systems). The
following relations hold:

! For a positive a , this corresponds to the discretization of a 2" order system, with a damped resonant

frequency equal to 0.5f, (see Section 2.3.2).
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g vty =yt -1)

_ (2.3.4)
g~ y(0) = y(t~d)
By using the operator q'l , Equation 2.3.3 is rewritten as
(I+a;q)y®)=b; g u® (2.3.5)

Discrete-time models may also be obtained by the discretization of the differential
equations describing continuous-time models. This operation is used for the
simulation of continuous-time models on a digital computer.

Let us consider Equation 2.3.1 and approximate the derivative by

dy _ y(+Ty) - y()

2.3.6
” T (2.3.6)
Equation 2.3.1 will be rewritten as
t —y(t 1
Wa1)=y0 +Fy(t)=%u(t) 2.3.7)

s

By multiplying both sides of Equation 2.3.7 by T, and with the introduction of the
normalized time ¢ (= #/Ty), it follows that

Ts _ _G
y( +1)+(? )y(t) = Tsu(®) (2.3.8)

which can be further rewritten as:
(1 +a g ) y+l1) =b;u) (2.3.9)

where
T G
a=—-1 (<0); b=—T,
1T (<0) b TTA

Shifting Equation 2.3.9 by one step, Equation 2.3.3 is obtained.

We point out that, in order to represent a first-order continuous model with
Equation 2.3.9, the condition @; < 0 must be verified. As a consequence, the
sampling period 7; must be smaller than time constant 7 (7, < 7). This result
corresponds to the upper bound in Equation 2.2.4, introduced for sampling period
selection of a first-order system as a function of the desired closed loop bandwidth.
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If Equation 2.3.6 is the approximation of the “derivative”, the digital integrator
equation can be directly deduced. Thus, if normalized time is used, Equation 2.3.6
is written as

%yﬂvy ~ (O -yt -1 = (1~ () (2.3.10)

where (I - ¢g”!) is now equivalent to p. As the integration is the opposite of the
differentiation, one obtains:

S(t)=J.ydt=%yzl l_ly(t) 2.3.11)
-q

Multiplying both sides of Equation 2.3.11 by (I-¢7/), it follows that

s@) (1-q71) =) (2.3.12)
which we can rewrite as

) =st-1) + 1. y(1) (2.3.13)

corresponding to the approximation of the integration operation by means of the
rectangular rule, as illustrated in Figure 2.12 (if continuous-time is used, Equation
2.3.13 is written as s(f) = s(-T,) + T,.y(1)).

y 1

Figure 2.12. Numerical integration

2.3.2 Frequency Domain

The study of continuous-time models in the frequency domain has been carried out
considering a periodic input of the complex exponential type

eJ O = cos wt + j sin ot

ore’withs = o+ jw.
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For the study of discrete-time models in the frequency domain we shall
consider complex (sampled) exponentials, i.e. sequences resulting from complex
continuous-time exponentials evaluated at the sampling instants ¢ = k T

These sequences will thus be written as

T .k sT k
JOLE et k=12 3.

e
Since the discrete-time models being considered are linear, if a signal of a certain
frequency is applied to the input, a signal of the same frequency, but amplified or
attenuated according to the frequency, will be found at the output. This is
summarized in Figure 2.13. in which H(s) is the “transfer function” of the system
that expresses the dependence of the gain and the phase-deviation on the complex
frequency s (s=0 + jo).

u(t)=e"" DISCRETE TIME | Y(I=H(i@)e"™
— >
u(t):eSTsk SYSTEM y(t)=H(S)eSTsk

Figure 2.13. Frequency response of a discrete-time system

TT

If the input of the system is in the form e’ s , the output will be

y(t)=H(s)e'" (2.3.14)
and respectively

y(t=1) = H(s)e!T* D ==L H(s)e T =™ y(1) (2.3.15)
It is thus observed that shifting backward by one step is equivalent to multiplying
by el

Let now determine the transfer function related to the recursive Equation 2.3.3.

sT k

In this case u(f) =e” " and the output will be in the form of Equation 2.3.14. By

also using Equation 2.3.15 one obtains:
(1+ a5 H(s)e' ™ =be™h Tk (2.3.16)

from which results
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5T,
H(s)=—bre " (23.17)
1+ ai e_ST“'
We consider now the following change of variable:
7z =T (2.3.18)

which corresponds to the transformation of the left half-plane of the s-plane into
the interior of the unit circle centered at the origin in the z- plane, as illustrated by
Figure 2.14.

Re s < o Res>0
- ok
X / sTs/ X
® e
;: [
X c -1 X 1
X0 _
)

T_S

Figure 2.14. Effect of the transformation z=¢ *

With the transformation given by Equation 2.3.18 the transfer function given in
Equation 2.3.17 becomes

-1
H(z) = % (2.3.19)
+az

Note that the transfer function in z'/ can be directly obtained from the recursive
Equation 2.3.3 by using the delay operator ¢~/ (see Equation 2.3.5), and afterwards
by formally computing the ratio y(2)/u(t) and replacing ¢~/ with z"/. This procedure
can obviously be applied to all models described by linear difference equations
with constant coefficients, regardless of their complexity. The same result can be
also derived by means of the z - transform (see Appendix A, Section A.2)

We also remark that the transfer functions of discrete-time models are often
written in terms of ¢/, It is of course understood that the meaning of ¢~/ varies
according to the context (delay operator or complex variable). When ¢/ is
considered as a delay operator, the expression H(g!) is named “transfer operator”.
It must be observed that the representation by transfer operators can also be used
for models described by linear difference equations with time varying coefficients
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as well. In contrast, the interpretation of ¢~/ as a complex variable (z'/) is only
possible for linear difference equations with constant coefficients.

Properties of the Transformation z = e’

The transformation of Equation 2.3.18 is not bijective because several points in the
s- plane are transformed at the same point in the z-plane. Nevertheless, we are
interested in the s-plane being delimited between the two horizontal lines crossing
the points [0,+j®, /2] and [0,—jw, /2] where o, = 2xf; = 27 /T,. This region is
called “primary strip”.

. sT, . . .
Figure 2.15. Effects of the transformation z = ¢ on the points located in the “primary
strip” in s-plane

The complementary bands are outside the frequency domain of interest if the

conditions of the Shannon theorem (Section 2.2.1) have been satisfied.

Figure 2.15 gives a detailed image of the effects of the transformation z = e'" for
the points that are inside the “primary strip”.

Attention must be focused on an important aspect for continuous second-order
systems in the form:

2

@0 (€<1)

@b +24 wos + s

for which the resonant damped frequency is equal to half the sampling frequency:

oN1-¢ =, /2

The image of their conjugates poles

. s
S1,2:_§0)0i]7
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through the transformation z =e'Te corresponds to a single point placed on the
real axis in the z- plane and with negative abscissa.
One gets:

+
s1275 _ e—é’wOTY . e*]

Zl 2 = e
since:

a)o=—ws
24/1-¢2

This is the reason why discrete-time models in the form of Equation 2.3.3 such as

(1+arq)y@)=brqlu®

give oscillating step responses for a; > 0 (damped if |a;| < I) with period 27 (see
Section 2.3.1). These first-order discrete-time models have the same poles as the
discrete-time models derived from second-order continuous-time systems having a
damped resonant frequency equal to @y /2.

2.3.3 General Forms of Linear Discrete-time Models
A linear discrete-time model is generally described as

ny ng

Y(O) == @iyt =i)+ Y bu(t—d —i) (2.3.20)

i=1 i=1

in which d corresponds to a pure time delay which is an integer multiple of the
sampling period.
Let us introduce the following notations:

ny ) .

1+ aq” =4 =1+q"4"(g7) (23.21)
i=1

A (g Y=a +ayq " +..+a, g """ (2.3.22)

dba =B =q"B"@q") (2.3.23)
i=1
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B (g7)=b +byg +..+b, g 2324

By using the delay operator ¢~/ in Equation 2.3.20 and taking into account the
notations of Equations 2.3.21 to 2.3.24, the Equation 2.3.20 describing the discrete-
time system is written as

A y@®) =g Blg!) u) (2.3.25)

or in the predictive form (by multiplying both sides by ¢%)

A(g™) (t+d) = B(g™") u(?) (2.3.26)

Equation 2.3.25 can also be written in a compact form using the pulse transfer
operator

() = H(g™") u(?) (2.3.27)

where the pulse transfer operator is given by

“B(q")

H(gh=1 2 (23.28)

The pulse transfer function characterizing the system described by Equation 2.3.20
is obtained from the pulse transfer operator given in Equation 2.3.28 by replacing
g withz12

Z—d B(Z—l)

H(zh= T
z

(2.3.29)

Pulse Transfer Function Order

To evaluate the order of a discrete time model represented by the pulse transfer
function in the form of Equation 2.3.29, the representation in terms of positive
power of z is needed. If 4 is the system pure time delay expressed as number of
samples, ny the degree of the polynomial A(z/) and np the degree of the

polynomial B(z!), one must multiply both numerator and denominator of H(z!) by

z" in order to obtain a proper? pulse transfer function H(z) on the positive powers
of z, where

2 The pulse transfer operator H(q'] ) can be used for a compact representation of the input-output
relationship even in the case of A(q’l ) and B(q’l ) have time depending coefficients. The pulse transfer

function H(z'] ) is only defined for the case of A(q'] ) and B(q'] ) are with constant coefficients.
3 This means that the denominator degree is greater than (or equal to) the numerator degree.
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n=max (ny, ng +d)

n represents the discrete-time system order (the higher power of a term in z in the
pulse transfer function denominator).

Example 1:

H(:") = 23 (b 2t b 2)

1 + al Z_l

n=max(l,5) =5

H(z)=22%02

5. 4
ztaz

Example 2:

H(Zil) _ b1 '+ b> 772

-1 -2
I+az +azz

n=max(2,2)=2

H(Z):—2b12+b2
zZ“taztar

One notes that the order # of an irreducible pulse transfer function also corresponds
to the number of states for a minimal state space system representation associated
to the transfer function (See Appendix C).

2.3.4 Stability of Discrete-time Systems

The stability of discrete-time systems can be studied either from the recursive
(differences) equation describing the discrete-time system in the time domain, or
from the interpretation of difference equations solutions as sums of discretized

exponentials. We shall use examples to illustrate both these approaches.
Let us assume that the recursive equation is

y@) =-a;y-1) ;. y(0) =y, (2.3.30)

which is obtained from Equation 2.3.3 when the input u(¢) is identically zero. The
free response of the system is written as

y()=-a;yy; ¥(2)= ('aj)ZJ’() ;oY= ('aj)tyo (2.3.31)
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The asymptotic stability of the system implies

lim y(£) =0 (2.3.32)
—0

The condition of asymptotic stability thus results from Equation 2.3.31. It is
necessary and sufficient that

lag| <1 (2.3.33)

On the other hand, it is known that the solution of the recursive (difference)
equations is of the form (for a first-order system):

y(0) =K T = Kz' (2.3.34)

By introducing this solution into Equation 2.3.30, and taking into account Equation
2.3.15, one obtains

(I+ae™")Ke' =(1+a,z7")Kz' =0 (2.3.35)
from which it follows that

T, )T, 7. joT,
z=e'l =T T ool — g (2.3.36)

For this solution to be asymptotically stable, it is necessary that o = Re s < 0 which
implies that e%s < I and respectively |z| < I (or |a;| < 1)
However, the term (/ + a; z1) is nothing more than the denominator of the

pulse transfer function related to the system described by Equation 2.3.3 (see
Equation 2.3.19).

The result obtained can be generalized. For a discrete-time system to be
asymptotically stable, all the roots of the transfer function denominator must be
inside the unit circle (see Figure 2.14):

I+a;z! +..+a,z"=0= |z|<I (2.3.37)

In contrast, if one or several roots of the transfer function denominator are in the
region defined by |z| > [ (outside the unit circle), this implies that Re s > 0 and
thus the discrete-time system will be unstable.

As for the continuous-time case, some stability criteria are available (Jury
criterion, Routh-Hurwitz criterion applied after the change of variable
w = (z + 1)/z-1)) for establishing the existence of unstable roots for a polynomial
in the variable z with no explicit calculation of the roots (Astrom and Wittenmark
1997).
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A helpful tool to test z-polynomial stability is derived from a necessary
condition for the stability of a z/-polynomial. This condition states: the evaluations
of the polynomial A(z"/) given by Equation 2.3.37 in z = I, (A(I)) and in z = -]
(A(-1)) must be positive (the coefficient of A(g-!) corresponding to z’ is supposed
to be positive).

Example:
A(z!)y=1-0.5z1 (stable system)

A1) =1-05=05>0 ; AC)=1+05=15>0

A(z!y=1-15z1; (unstable system)

A(1)=-0.5<0 ; A(-1)=2.5>0

2.3.5 Steady-state Gain

In the case of continuous-time systems, the steady-state gain is obtained by making
s = 0 (zero frequency) in the transfer function. In the discrete case, s = 0
corresponds to

s=0=z=¢T =1 (2.3.38)

and thus the steady-state gain G(0) is obtained by making z = / in the pulse
transfer function. Therefore for the first-order system one obtains:

bz ! b
G(0) = —! _1| =
l+a,z |Z:1 l+a

Generally speaking, the steady-state gain is given by the formula

=B = (2.3.39)

GO)y=H()=H(z™) = =

In other words, the steady-state gain is obtained as the ratio between the sum of the
numerator coefficients and the sum of the denominator coefficients. This formula
is quite different from the continuous-time systems, where the steady-state gain
appears as a common factor of the numerator (if the denominator begins with 1).
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The steady-state gain may also be obtained from the recursive equation
describing the discrete-time models, the steady-state being characterized by u(¢) =
const. and y(t) = y(t-1) = y(t-2)....

From Equation 2.3.3, it follows that

(1 +ay)y®)=b;u®)
and respectively

b
1+a]

y(1) = u(t) = G(0)u(r)

2.3.6 Models for Sampled-data Systems with Hold

Up to this point we have been concerned with sampled-data systems models
corresponding to the discretization of inputs and outputs of a continuous-time
system. However, in a computer controlled system, the control applied to the plant
is not continuous. It is constant between the sampling instants (effect of the zero-
order hold) and varies discontinuously at the sampling instants, as is illustrated in
Figure 2.16.

It is important to be able to relate the model of the discretized system, which
gives the relation between the control sequence (produced by the digital controller)
and the output sequence (obtained after the analog-to-digital converter), to the
transfer function H(s) of the continuous-time system. The zero-order hold, whose
operation is reviewed in Figure 2.17 introduces a transfer function in cascade with

H(s).
DAC Fri PLANT / I‘ H

+ —| ADC ———— -
ZOH H(s)

H(Z"

Figure 2.16. Control system using an analog-to-digital converter followed by
a zero-order hold

1(t
ZERO 0
—1 ORDER [™
HOLD —
T.F O+
- .
T

1(tT,)

Figure 2.17. Operation of the zero-order hold
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The hold converts a Dirac pulse given by the digital-to-analog converter at the
sampling instant into a rectangular pulse of duration 7', which can be interpreted as

the difference between a step and the same step shifted by 7. As the step is the
integral of the Dirac pulse, it follows that the zero-order hold transfer function is

H 1 () =1 (2.3.40)

Equation 2.3.40 allows one to consider the zero-order hold as a filter having a
frequency response given by

1—e /" sin(@T /2) -jo>
H ) = =T s e ?
2on(J®) o s ol 12

From the study of this response in the frequency region 0< f<f /2
(0<w< w,/2), one can conclude:

1. The ZOH gain at the zero frequency is equal to: Gzop(0) = Ty.
2. The ZOH introduces an attenuation at high frequencies. For /' = f; / 2 one
2
gets G(f; /2) = — Ty = 0.637 T (-3. 92 dB).
T

3. The ZOH introduces a phase lag which grows with the frequency. This
phase lag is between 0 (for /' = 0) and - = /2 (for = f; / 2) and should be

added to the phase lag due to H(s).
The global continuous-time transfer function will be

1—¢Ts

H'(s) = H(s) (2.3.41)

to which a pulse transfer function is associated.

Tables which give the discrete-time equivalent of systems with a zero-order
hold are available. Some typical situations are summarized in Table 2.4.

The computation of ZOH sampled models for transfer functions of different
orders can be done by means of the functions: cont2disc.sci (Scilab) or cont2disc.m
(MATLAB®). The corresponding sampled model (with Z.0.H) for a second-order
system characterized by @jand ¢ can be obtained with the functions fi2pol.sci

(Scilab) or fi2pol.m (MATLAB®™).

4To be downloaded from the book website.
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2.3.7 Analysis of First-order Systems with Time Delay

The continuous-time model is characterized by the transfer function

G e—ST

H(s)=
1+ 74

(2.3.42)

where G is the gain, T is the time constant and zis the pure time delay. If T is the

sampling period, then 7 is expressed as
r=dT,+L; 0<L<T, (2.3.43)

where L is the fractional time delay and d is the integer number of sampling
periods included in the delay and corresponding to a sampled delay of d-periods.
From Table 2.4, one derives the transfer function of the corresponding sampled
model (when a zero-order hold is used)

4 (blz_1 +b22_2) _ 741 (b +b22_1)

H(z)= 1 1

(2.3.44)

I+az I+a1z-

with

T, LT, T,

s

a=—e T 3 by=G(l—e T ); by=Ge T (e

L
T

_])

The effect of the fractional time delay can be seen in the appearance of the
coefficient b, in the transfer function. For L = 0, one gets b, = 0. On the other

hand, if L = T, it follows that b; = 0, which correspond to an additional delay of

A \
b, >b,. For L=0.5T, b, = b,. Therefore, a fractional delay introduces a zero in the

one sampling period. For L<(.57 one has b, <b; and for L>0.5T one has

pulse transfer function. For L > 0.5 T the relation |b,| > |b,| holds and the zero is
outside the unit circle (unstable zero)’.

The pole-zero configuration in the z plane for the first-order system with ZOH
is represented in Figure 2.18. The term z4-/ introduces d+/ poles at the origin
[H(z) = (bjz + by) /2% (z + a))].

3 The presence of unstable zeros has no influence on the system stability, but it imposes constraints on
the use of controller design techniques based on the cancellation of model zeros by controller poles.
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Table 2.4. Pulse transfer functions for continuous-time systems with zero-order hold

H(s) H(z
l Tsz_l
s 1_ .1
G bz
I -T,IT -T,/T
by=G(l—-e ") ; aj=—e"*
1+sT 1+012_1 1 ( 1
G —sL b -1 +b -2
¢ . L<T, SE TRE b =G-eETT,
LesT” = 7 1+a;z”
b, :Ge_TS/T(eL/T -, =— I/T
C()g b1271 + b2272

1+a1271 +(12272
b, =1—a(ﬂ+@aj; b, =a? +a(ﬂ6—ﬂ]
w w

a = —2(Zﬂ ; ay :az

a= e—C{UO TA

s f=cos(@l); 0 =sin(wly)

Figure 2.19 represents the step responses for a system characterized by a pulse
transfer function

with

b

H(z"=

+a1

-1
bz

1+a127

1

(2.3.45)

=1 (steady-state gain = 1) for different values of the parameter a;:

a;=-02; -03; -04; -05; -06,; -0.7; -0.8; -0.9
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D41
b1
0 - zero
{ X - pole
Wk
b.] >1 -

Figure 2.18. Pole-zero configuration of the sampled-data system described by Equation
2.3.44 ( first order system with ZOH)

On the basis of these responses, it is easy to derive the time constant of the
corresponding continuous-time system, expressed in terms of the sampling period
(the time constant is equal to the time required to reach 63% of the final value).

The presence of a time delay equal to an integer multiple of the sampling
period only causes a time shift in the responses given in Figure 2.19.

Step Responses

Figure 2.19. Step responses of the discrete-time system b, z'/(1+a; z') for different values
of'a; and [b, /(1+ a;) =1

The presence of a fractional time delay has as a main consequence a
modification at the beginning of the step response, if compared to the case with no

fractional time delay.

Exercise. Assuming that the sampled-data system model is



52 Digital Control Systems

V() =-0.6y-1) + 0.2 ut-1) + 0.2 u(t-2)

What is the corresponding continuous-time model?

It is interesting to analyze the relation between the location of the pole
(z =—a,) and the rising time of the system. Figure 2.19 indicates that the response
of the system becomes slower as the pole of the system moves toward the point [1,
j0], and it becomes faster as the pole of the system approaches the origin (z = 0).
These considerations can be applied to systems with several poles.

In the case of systems with more than one pole, the term “dominant pole(s)” is
introduced to characterize the pole (or the poles) that is (are) the closest to the
point [7,j0], i.e. which is the slowest pole(s).

Figure 2.20 shows the frequency responses (magnitude and phase) of the first-
order discrete system given by 2.3.45 for a; = - 0.8, -0.5; -0.3. It can be observed
that the bandwidth increases when the system pole is approaching the origin (faster
pole). We can also remark that the phase lag at the frequency 0.5/, is -180° due to

the presence of the ZOH (see Section 2.3.6).

Bode Diagrams
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Figure 2.20. Frequency responses (magnitude and phase) of the discrete-time model by z-1 /

(1 +aj z-1) for different values of aj and by

2.3.8 Analysis of Second-order Systems

The pulse transfer function corresponding to the discretization with a zero-order
hold of a normalized second-order continuous-time system, characterized by a

natural frequency @y and a damping ¢ is given by
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bz + brz?)
2

H(:) = (2.3.46)

1+alz_l+azz_

where d represents the integer number of sampling periods contained in the delay.
The values of a;, a,, b;, b, as a function of @, and ¢ for a pure time delay 7= d-T
are given in Table 2.4.

It is interesting to express the poles of the discretized system as a function of
y, ¢ and the sampling period 7 (or the sampling frequency f;).

From Table 2.4 the following relations are easily found (for ¢ < /):

. 2 . 2
a = —2 e_gon: cos o 1 — 4/2 TS = —e_:on: (eJ!UOVl_: Ts + e‘]ﬂJO 1-¢ Ts)

-2
a=—e CwoT s

The poles of the pulse transfer function (roots of the denominator) are found by
solving the equation

22+a]z+a2=(z—z]) (z-23) =0

From the expressions of a; and a, the solutions are directly derived:

_ Lol tjo1-¢7T,
21’2 =e 0 0 s

Note that the poles of the discretized system correspond to the poles of the

continuous-time system s, , = ¢ o+ Jwoy1-¢* by applying the transformation

z=e'l,

For < 1, the poles of the discretized system are complex conjugate and,
consequently, symmetric with respect to the real axis. They are characterized by a
module and a phase given by

Joo
I 2N

-278
—Cw,T,
el =e

‘zl,z‘ze T=e

221, =11 =P 0y T, = 8271 - ¢ %:ﬁmh—gz “o
S

Wy
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Pole - Zero Map
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Figure 2.21. The curves { = constant and @,I. /27 = f,/ f, = constant in the z-plane for

a second-order discrete-time system

Note that the poles location depends upon {'and @, T (or wy/w;= fy/f,).
That is:

z2=f¢ 0y Ts/27) = (< fo/fs)
and in the z-plane the following curves can be drawn:

z=flwy T /27) = flfo /fs) for {'= constant
and

z=1(¢ for wy Ts /27 = f{fy /fs) = constant

We must remember (see Figure 1.9) that in the s-plane (continuous system) the
curves ¢ = constant are straight lines forming an angle 8 = cos~! ¢ with the real axis
and the curves @, = constant are circles with radius @) (these two sets of curves

are orthogonal). In the z-plane the curves z = f (@, Ty) for { = constant are
logarithmic spirals that are orthogonal in each point to the curves z: f{¢) for @, T =
constant.
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Figure 2.21 shows the set of curves z = f{¢) for @, Ty/27 = constant and z =
foy Ty2r) for § = constant corresponding to different values of ¢ and w,Ty/27

(respectively fy/fs).
We  should also remember (see Section 2.3.2) that for

fol f. = @, /a)szl/(z 1_52} the corresponding poles in the z- plane are

confounded ( £z;, = +7), and they are located on the segment of the real axis (-
g
2
1,0) having an abscissa coordinate equal to —e =
The stability domain of the second-order discrete-time system in the plane of
the parameters a; - a, is a triangle (see Figure 2.22). For values of a;, a, placed

inside of the triangle, the roots of the denominator of the pulse transfer function are
inside the unit circle.

+1

= a

N

1

Figure 2.22. Stability domain for the second-order discrete-time system

2.4 Closed Loop Discrete-time Systems

2.4.1 Closed Loop System Transfer Function

Figure 2.23 gives the diagram of a closed loop discrete-time system. The transfer
function on the feedforward channel can result from the cascade of a digital
controller and of the group DAC+ ZOH + continuous-time system + ADC
(discretized system).
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(disturbance)

Hou(z" p(t)

r(t) B (z1) Ty
— O 7 O

Figure 2.23. Closed loop discrete-time system

Let
_ B (z_])
Hop(z7)=—"5" 2.4.1
or(z7) = (2.4.1)
be the feed-forward channel transfer function with
Bz ) =biz ' +baz 2+ A by, z (24.2)

where the coefficients b;, b, ... b; may be zero if there is a time delay of d

sampling periods.
In the same way as for continuous-time systems, the closed loop transfer
function connecting the reference signal () to the output y(¢) is written as

Ho (271 _ B(z™
1+Hp (27 AH+B(zY

He(z7)= (2.4.3)

The denominator of the closed loop transfer function, whose roots correspond to
the closed loop system poles, is also called characteristic polynomial of the closed
loop.

2.4.2 Steady-state Error

The steady-state is obtained for (f) = constant by making z = I, corresponding to
the zero frequency (z = €57 = 1 for s = 0).

It follows from Equation 2.4.3 that

Db
: 244
y=HaOr=—="=——r @49

A+ p,
i=1
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where H; (1) is the steady-state gain (static gain) of the closed loop system. In

order to obtain a zero steady-state error between the reference signal » and the
output y, it is necessary that

Hey(1) =1 (2.4.5)

From Equation 2.4.4 the following conditions are derived:

b, #0and A(1) =0 (2.4.6)

i=1
In order to obtain A(/) = 0, A(z"!) must have the following structure:

A =1 -21)-4'=) 2.4.7)

where
Az =1+az" tota, 27 (2.4.8)
and thus the global transfer function of the feedforward channel must be of the type

1 B

Ho(z7h)= 20 (2.4.9)

It is thus observed that the feedforward channel must contain a digital integrator in
order to obtain a zero steady-state error in closed loop. This situation is similar to
the continuous case (see Section 1.2.3) and internal model principle is also
applicable to discrete-time systems.

2.4.3 Rejection of Disturbances

In the presence of a disturbance p(f) acting on the controlled output (see Figure
2.23), the objective is to reduce its effect as much as possible, at least in some
frequency regions.

In particular, the constant disturbance effect (a step), often called “load
disturbance”, is expected to be zero in steady-state (t — o« , z —1).

The pulse transfer function, which links the disturbance to the output, is

_ 1 _ 4G
1+Hp (27 Az H+B(z™

Sp (z7)

As for the continuous-time case, S, (z'!) is called “output sensitivity function”.
The steady-state is obtained for z = /. It follows that
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_ _ A
y=8,0p TR p

(where p is the stationary value of the disturbance).

In order to achieve a perfect steady-state disturbance rejection, it is necessary
that S,,,(7) = 0 and thus A(/) = 0. This implies that A(z'l) must have the form given
in Equation 2.4.7, corresponding to the integrator insertion in the feedforward
channel.

Similarly, to the continuous case, a perfect steady-state disturbance rejection
implies that the feedforward channel must contain the internal model of the
disturbance (the transfer function that produces p(f) from a Dirac pulse).

As in the continuous-time case, it should be avoided that an amplification of the
disturbance effect occurs in certain frequency regions. This is the reason why |S,,

(e7®)| must be lower than a specified value for all frequencies f = &/27 < f; / 2.
A typical value used as upper bound is

Sy (e7i?) | <2 0<w=<xf,

Furthermore, if it is known that a disturbance has its energy concentrated in a

particular frequency region, [Sy,, (ef ®)| may be constrained to introduce a desired
attenuation in this frequency region.

2.5 Basic Principles of Modern Methods for Design of Digital
Controllers

2.5.1 Structure of Digital Controllers

Figure 2.24 gives the diagram of a PI type analog controller. The controller
contains two channels (a proportional channel and an integral channel) that process
the error between the reference signal and the output.

In the case of sampled-data systems the controller is digital, and the only
operations it can carry out are additions, multiplications, storage and shift. All the
digital control algorithms have the same structure. Only “the memory” of the
controller is different, that is the number of coefficients.

Figure 2.25 illustrates the computation structure of the control u(z) applied to
the plant at the instant # by the digital controller. This control is a weighted average
of the measured output at instants ¢, ¢-1,...., t-n4 .., of the previous control values at

instants ¢-1, t-1..., t-ng... and of the reference signal at instants ¢, #-/, ..., the weights
being the coefficients of the controller.
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Analog PI

1
1
K I/ % y(t)
1
, PLANT -
KTi |—» J- i

Figure 2.24. PI analog controller

Digital controller

[
—~
—

) y(®)
PLANT |—=

R EEGEEt TEEE =

Figure 2.25. Digital controller

This type of control law can even be obtained by the discretization of a PI or
PID analog controller. We shall consider, as an example, the discretization of a PI
controller. The control law for an analog PI controller is given by

l

1
u(t) = K{l + —}[r(t) - ()] (2.5.1)
rT;
For the discretization of the PI controller, p (the differentiation operator) is
approximated by (1-¢ ")/ T, (see Section 2.3.1, Equation 2.3.6). This yields

dx _ . x(@O)—x@=1) _ l—Tq (1) (2.5.2)

dt T

s N
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jxdz LN { L — }c(:) (2.5.3)
l-¢

and the equation of the PI controller becomes

ka-q ™+ X
ult) = [0~ 5(0] (2.5.4)

Multiplying both sides of Equation 2.5.4 by (I - ¢*!), the equation of the digital PI
controller is written as

Stq) u®) = T(q™) r(¥) - R(q™) y(®) (2.5.5)
where

Sq)=1-g"=1+s;q4" (s;=-1) (2.5.6)

Rqg!) =T(q") =K (I+TyT) -Kq! =ry+r,q! (2.5.7)

which leads to the diagram represented in Figure 2.26.

Digital PI
E|
— | u(t) y(t)
r(t) + ,/+ 4‘I
L — (= PLANT |
r -
L q-1 - I'1 . 0
E]
I‘1 < q

Figure 2.26. Digital PI controller

Taking into account the expression of S(g/), the control signal u(¢) is computed
on the basis of Equation 2.5.5, by means of the formula

u(t) = u(t-1) - R(q™) y(t) + T(q™") r(t)
=u(t-1) -rogy@) -r; y(t-1) + ror(®) +r; r(t-1) (2.5.8)

which corresponds to the diagram given in Figure 2.26.
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2.5.2 Digital Controller Canonical Structure

Dividing by S(¢7/) both sides of Equation 2.5.5, one obtains

T(q™")
Sg™h

_R(@™H
S(g™)

u(t) = Y(t)+ 0 (2.5.9)

from which we derive the digital controller canonical structure presented in Figure
2.27 (three branched RST structure).
In general, T(g™!) in Figure 2.27 is different from R(q™/).

r(t) u(t) y(t)
— T —_ 1/S - B/A

PLANT

R

Figure 2.27. Digital controller canonical structure

Consider

B(z™h

1D
z

(2.5.10)

as the pulse transfer function of the cascade DAC + ZOH + continuous-time
system + ADC, then the transfer function of the open loop system is written as

B(z YRz

Hor )= s

2.5.11)

and the closed loop transfer function between the reference signal r(z) and the
output y(?), using a digital controller canonical structure, has the expression

B(z"HT(z") _BEHTET
AzHSE Y+ B HRET) P(z™")

He (2= (2.5.12)

where
Pz =AzHSE Y +BE YR Y =1+piz " +pyz? +.. (25.13)

is the denominator of the closed loop transfer function that defines the closed loop
system poles. Note that 7(¢!) introduces one more degree of freedom, which
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allows one to establish a distinction between tracking and regulation performances
specifications.

We also remark that #(¢) is often replaced by a “desired trajectory” y™(f),
obtained either by filtering the reference signal r(f) with the so-called shaping filter
or tracking reference model, or saving in the memory of the digital computer the
sequence of the desired trajectory values.

The digital controller represented in Figure 2.27 is also defined as “RST digital
controller”. It is a two degrees of freedom controller, which allows one to impose
different specifications in terms of desired dynamics for the tracking and regulation
problems.

The goal of the digital controller design is to find the polynomials R, S, and 7 in
order to obtain the closed loop transfer functions, with respect to the reference and
disturbance signals, satisfying the desired performances.

This explains why the desired closed loop performances will be expressed, (if
not, they will be converted) in terms of desired closed loop poles, and eventually in
terms of desired zeros (in this way the closed loop transfer function will be
completely imposed).

In the presence of disturbances (see Figure 2.28) there are other four important
transfer functions to consider, relating the disturbance to the output and the input of
the plant.

The transfer function between the disturbance p(f) and the output y(¢) (output
sensitivity function) is given by

A(z7Hsi™

2.5.14
Az HSE M+ BEHRET ( )

SW(Z_I) =

(disturbance)

p(t)
r(t) v(t)
t
—| T o] 1s »é)—»,:' O g [l X0
PLANT
+
+
R ~bit)
(noise)

Figure 2.28. Digital control system in presence of disturbances and noise

This function allows the characterization of the system performances from the
point of view of disturbances rejection. In addition, certain components of S(z/)
can be pre-specified in order to obtain satisfactory disturbance rejection properties.

Thus, if a perfect disturbance rejection is required at a specified frequency, S(z-
) must include a zero corresponding to this frequency. In particular, if a perfect
load disturbance rejection in steady-state (i.e. zero frequency) is desired, Syp(z'l )

must include a term (/ - z/) in the numerator, which leads to a value of the gain
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equal to zero for z = /. This is coherent with the result given in Section 2.4.3.,
because a zero of Syp(z‘l ) corresponds to a pole of the open loop system.

The transfer function between the disturbance p(f) and the input of the plant u(7)
(input sensitivity function) is given by

—A(z"HR(zTH
Az HSEH+BEHRET

Spz = (2.5.15)

The analysis of this function allows one to evaluate the influence of a disturbance
upon the plant input, and to specify a factor of the polynomial R(z!) if the
controller must not react to disturbances concentrated in a particular frequency
region.

When noise is added to the measured output (see Figure 2.28), important
information can be retrieved by the transfer function that relates the noise b(f) to
the plant output y(f) (noise-output sensitivity function).

—B(z"HR(zTY
Az HSEH+BEHRE™T

Sz = (2.5.16)

As the noise energy is often concentrated at high frequency, attention should be
paid in order to obtain a low gain of the transfer function ‘Syb (e‘j“’)‘ in this
frequency region.

For T=R, the sensitivity function between r and y (also called complementary
sensitivity function) is defined as

B(zHR(zTH

S,z =
e AzHSE ™Y+ BEHRET

=-8,(z7") (2.5.17)

Note that
S,z =8,z =8,E")+S, (") =1

which implies an interdependence between these sensitivity functions.

Notice that S, (z!), the transfer function between the noise and the plant input,
is equal to S, (z77).

Another important transfer function describes the influence on the output of a
disturbance v(f) on the plant input. This sensitivity function (input disturbance-
output sensitivity function) is given by

B(z"Hsiz™
AzHSEH+BEHRET

S,z = (2.5.18)
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The importance of this sensitivity function is that it enhances the possible
simplification of unstable plant poles by the zeros of R(z"/).

In order to clarify this point, let us consider the assumption R(z"/)=A(z"!) (plant
poles compensation by controller zeros) and suppose that the plant to be controlled
is unstable (4(z"/) has roots outside the unit circle). In this case

S ()= Az HSE) __ S
» AzHSEH+BEHAaET)  SEH+BET
G Az"HAE™ Az
Sy (z7)=-—7F ] T N el 1
Az HSEY+BEz YA SEH+B(ET
G BzHA(E") Bz
Sz )=-—7 =l 1 I T 1
A(z7)S(z 7 )+ Bz )A(z ™) S(z7)+B(z)
S ()= Bz )S(z") __ BEHSED

AzNSE Y +BE AT ACTHSE T +BET)]

Note that S, S, Sy are stable transfer functions if S(z'!) is chosen in order to
have S(z'/)+B(z"!) stable, that is

S H+B(z)=0=l7<1

while the sensitivity function Syv(z'l ) is unstable.
This remark yields to the following general statement:

The feedback system presented in Figure 2.28 is asymptotically stable if and
only if all the four sensitivity functions Syp, Sup, Syb (or Syr) and Syv (describing
the relations between disturbances on one hand and plant input or output on the
other hand) are asymptotically stable.

The set of five transfer functions Hpy (z7/), Syp(z'l), Sup(z'l), Syb(z'l) (or
Sy,(z'l )) and Syv(z'l ) also play an important role in the closed loop system
robustness analysis.

2.5.3 Control System with PI Digital Controller

In this section the design of digital PI controllers will be illustrated. The transfer
(function) operator of the discretized plant with zero-order hold is given by

Bz _Blg) _ by

H(g™) = =
O A  Trag

(2.5.19)

For the sake of notation uniformity, we shall often use, in the case of constant
coefficients, g! notation both for the delay operator and the complex variable z”!.
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The z! notation will be specially employed when an interpretation in the frequency
domain is needed (in this case z = e’ oI, ).
The digital PI controller is characterized by the polynomials (see Equations

2.5.6 and 2.5.7):

Rg") = Tlq") =ry+ry g7 (2520
S(q-]) =]- q—] (2521)

The closed loop system transfer function (with respect to the reference r(¢)) in the
general form is given by Equation 2.5.12.

The characteristic polynomial P(¢/), whose roots are the desired closed loop
system poles, essentially defines the performances. As a general rule, it is chosen
as a second-order polynomial corresponding to the discretization of a second-order
continuous-time system with a specified natural frequency @, and damping ¢ (@,
and ¢, for example, and can be obtained on the basis of the diagrams given in
Figures 1.10 or 1.11) starting from specifications in the time domain. The
coefficients corresponding to the polynomial P(g”/) are obtained either by
conversion tables mentioned in Table 2.4, or by Scilab and MATLAB® functions
given in Section 2.3. In this case, sampling period T, natural frequency @, and

damping ¢ must be specified.
We recall that the relation between @, and 7, must be respected (see Section

2.2.2, Equation 2.2.7):

025 < wyT, < 15 ; 0.7< (<1 (2.5.22)

For a plant having an equivalent discrete-time transfer operator (function) given by
Equation 2.5.19, and the use of a digital PI controller, the closed loop system poles
are given by Equation 2.5.13, and they are

(1+a;q)(-q)+b,qltrg+r;qg)=1+p, g +p,q? (2.5.23)
By rearranging the terms in Equation 2.5.23 in ascending g~/ powers, we get

I+ -1+ryb)gl+®;rj-a)qg?=1+p,q! +p,q? (2.5.24)
For the polynomial Equation 2.5.24 to be verified, it is necessary that the

coefficients of the same g/ powers must be equal on both sides. Thus the
following system is obtained:

{al “lnb = (2.5.25)

bn —a, = P
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which gives for r, and 7, the results

= p2b_+al s n= p-a+l (2.5.26)
|

”
i b
One can see that the parameters of the controller depend upon the performance
specifications (the desired closed loop poles) and the plant model parameters.

By using Equation 2.5.7, one can obtain the parameters of the continuous-time
PI controller:

2.6 Analysis of the Closed Loop Sampled-Data Systems in the
Frequency Domain

2.6.1 Closed Loop Systems Stability

In the case of continuous-time systems, it was shown in Chapter 1, Section 1.2.5,
how to use the open loop transfer function representation in the complex plane (the
Nyquist plot) in order to analyze the closed loop system stability and the
robustness with respect to the parameters variations (or uncertainties on the
parameters value). The same approach can be applied to the case of sampled-data
systems. The Nyquist plot for sampled-data systems can be drawn using the
functions Nyquist-ol.sci (Scilab) and Nyquist-ol.m (MATLAB®)S.

Figure 2.29 shows the Nyquist plot of an open loop sampled-data system
including a plant (represented by the corresponding transfer function
H (z'!) =B(z!) / A(z'!) ) and a RST controller.

In this case, the open loop transfer function is given by

—jo —jo
HOL(eﬁ-m):B(ei_ LC) (2.6.1)
A(e”*)S(e™)
The vector linking the plane origin to a point belonging to the Nyquist plot of the
transfer function represents Hoy, (e7%) for a specified normalized radian frequency
o = oTy = 2 r f/f;. The considered range of variation of the radian natural

% To be downloaded from the book website.
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frequency @ is between 0 and 7z (corresponding to an unnormalized frequency
variation between 0 and 0.5 f; ).

ImH
P
Critical point
_1,/ /_‘\ oo ReH
s =1+ H/ o T et
v o™ )
=0

Figure 2.29. Nyquist plot for a sampled-data system transfer function and the critical point

In this diagram the point [-/, j0] is the “critical point”. As Figure 2.29 clearly
shows, the vector linking the point [- /, j0] to the Nyquist plot of Hpy, (e7®) has the
expression

AzHSE Y+ BEHRET
A(z"HS(z ™)

Sy =1+Hy (z7)= (2.6.2)

This vector represents the inverse of the output sensitivity function S, (z1) (see
Equation 2.5.14) and the zeros of S-/ W (z'1) correspond to the closed loop system
poles (see Equation 2.5.13). In order to have an asymptotically stable closed loop
system, it is necessary that all the zeros of $/,,, (z*/) (that are the poles of S,,, (z”/))
be inside the unit circle ( |z| < I). The necessary and sufficient conditions for the
asymptotic stability of the closed loop system are given by the Nyquist criterion.

For systems having stable poles in open loop (in this case A(z/) = 0 and S(z"/)
=0 — |z| £ I) the Nyquist stability criterion states (stable open loop system):
The Nyquist plot of Hpr(z'1) traversed in the sense of growing frequencies (from
@ =0to o =n), leaves the critical point [-1, j0] on the lefi.

As a general rule, for the given nominal plant model B(z"/)/A(z"!), polynomials
R(g!) and S(g7!) are computed in order to have

A=) SE1) + B!) R(z1) = P(z']) (2.6.3)
where P(z/) is a polynomial with asymptotically stable roots. As a consequence,

for the nominal values of A(z/) and B(z"!), since the closed loop system is stable,
the open loop transfer function:
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-1 -1
Hop(z7) = %

A(z7)S(z7)

does not encircle the critical point (if A4(z'/) and S(z"/) have their roots inside the
unit circle).

In the case of an unstable open loop system, either if A(z"!) has some pole
outside the unit circle (unstable plant), or if the computed controller is unstable in
open loop (S(z'/) has some pole outside the unit circle), the stability criterion is:
The Nyquist plot of Hor(z'!) traversed in the sense of growing frequencies (from
w=0to o= n), leaves the critical point [-1, jO] on the left and the number of
counter clockwise encirclements of the critical point should be equal to the number
of unstable poles of the open loop system’.

Note that the Nyquist locus between 0.5 f; and f; is the symmetric of the
Nyquist locus between 0 and 0.5 f; with respect to the real axis.

The general Nyquist criterion formula that gives the number of encirclements
around the critical point is

széL_PéL

where PCiL is the number of closed loop unstable poles and POiL is the number of

open loop unstable poles. Positive values of N correspond to clockwise
encirclements around the critical point. In order that the closed loop system be
asymptotically stable it is necessary that N = —PéL . Figure 2.30 shows two
interesting Nyquist loci.

If the plant is stable in open loop and the controller is computed on the basis of
Equation 2.6.3 to obtain a desired stable closed loop polynomial P(z"/) (this means
that the nominal closed loop system is stable too), then, if a Nyquist plot of the
form of Figure 2.30a is obtained, one concludes that the controller is unstable in
open loop. This situation must be generally avoided?, and this can be achieved by
reducing the desired closed loop dynamic performances (by modifying P(z/)).

7 The criterion holds even if an unstable pole-zero cancellation occurs. The number of encirclements
should be equal to the number of unstable poles without taking into account the possible cancellations.

8 Note that there exist some « pathological » transfer functions B(z'j )/A (z'l ) with unstable poles and/or
zeros that can be only stabilized by controllers that are unstable in open loop.
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| Im H

1 Open Loop unstable pole
[ Stable Closed Loop (a)

L Re H

-

|- Stable Open Loop
Unstable Closed Loop (b)

Figure 2.30. Nyquist plots: a) unstable system in open loop but stable in closed loop;
b) stable system in open loop but unstable in closed loop

2.6.2 Closed Loop System Robustness

When designing a control system, one has to take into account the plant model
uncertainties (uncertainties of the parameter values or of the frequency
characteristics, variations of the parameters, etc.). It is therefore extremely
important to assess if the stability of the closed loop is guaranteed in the presence
of the plant model uncertainties. The closed loop will be termed “robust” if the
stability is guaranteed for a given set of model uncertainties.

The robustness of the closed loop is related to the minimal distance between the
Nyquist plot for the nominal plant model and the “critical point” as well as to the
frequency characteristics of the modulus of the sensitivity functions.

The following elements help to evaluate how far is the critical point [-7, j0] (see
Figure 2.31):

e  Gain margin;

e  Phase margin;

e Delay margin;

e Modulus margin.
Gain Margin

The gain margin (4G) equals the inverse of H,, (¢”/”) gain for the frequency

corresponding to a phase shift = _180° (see Figure 2.31).

The gain margin is often expressed in dB. In other words, the gain margin gives
the maximum admissible increase of the open loop gain for the frequency
corresponding to (@) = _ 180°.

AG = 1 for L¢(a)180)=—1800

‘HOL (e’/”)lxﬂ )‘
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ImH

Re H

Crossover
frequency My

Figure 2.31. Gain, phase and modulus margins
Typical values for a good gain margin are
AG 22 (6dB) [min: 1.6 (4dB)]

If the Nyquist plot crosses the real axis at several frequencies w;, characterized by
a phase lag

ZW”M) =-i180°% i=1375..

and the corresponding gains of the open loop system are denoted by
‘HOL (e—jwm )

, then the gain margin is defined by’

AG=m_in77_M
i ‘HOL(e J m)

Phase Margin
The phase margin (4¢) is the additional phase that we must add at the crossover
frequency, for which the gain of the open-loop system equals /, in order to obtain a

total phase shift £ =_180° (see Figure 2.31).

AP=180°~ 2g(@,) for |Hou(e ™ )|=1

in which @, is called crossover frequency and it corresponds to the frequency for
which the Nyquist plot crosses the unit circle (see Figure 2.31).

° Note that if the Nyquist plot crosses the real axis for values less than —/ and leaves the critical point to
the left, there is a minimal value of the gain margin under which the system becomes unstable.
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Typical values for a good phase margin are
30° < AP <60°

If the Nyquist plot crosses the unit circle at several frequencies ], characterized
by the corresponding phase margins:

Ag;=180°~ Z4(@.,)

then the system phase margin is defined as
Ag = mlln Ag.

Delay Margin

A time-delay introduces a phase shift proportional to the frequency . For a certain
frequency @y, the phase shift introduced by a time-delay 7 is

ZP(wy) =—w,T
We can therefore convert the phase margin in a “time-delay margin”, i.e. to

compute the maximum admissible increase of the delay of the open-loop system
without making the closed-loop system unstable. It then follows that:

_Ad
Wcr

AT

If the Nyquist plot intersects the unit circle at several frequencies a)é,. ,
characterized by the corresponding phase margins A¢;, the delay margin is defined

as

Ag,

AT = min——
i i
1
WDcr

Note that a good phase margin does not guarantee a good delay margin (if the
frequency @, is high, then the delay margin is low even if the phase margin is
important).

The typical value of the delay margin is A7 > T [min: 0.75Ts]

Modulus Margin
This concerns a more global measure of the distance between the critical point
[-1, jO] and the plot of Hpy (z"). The modulus margin (AM) is defined as the radius
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of the circle centered in [-/, j0] and tangent to the plot of Hp; (z) (see Figure

2.31).
From the definition of Equation 2.6.2 of the vector connecting the critical point

[-1, jO] to the plot of H (e/®) it follows immediately that

-1
max )

-1
| acHse | for 2 e
|4 +BEHRET)|

s st <P, (e

(2.6.4)

In other words, the modulus margin AM is equal to the inverse of the maximum
value of the sensitivity function S, (z!) magnitude. By plotting Syp 1)
magnitude in dB scale, the following condition is immediately derived:

5, 7]

dB =AM "'dB =-AM dB (2.6.5)
ax

Figure 2.32 shows the relation between the sensitivity function S, and the
modulus margin.

dB

-
yp|

|s

max

Figure 2.32. Relation between the output sensitivity function and the modulus margin

Therefore, the reduction (or the minimization) of |S,, (j®)|,,,, will lead to an

increase (or maximization) of the modulus margin'®.
Typical values for a good modulus margin are

AM>0.5(-6dB) [min: 0.4 (-8 dB)]

10 |Syp (@), corresponds to the H , norm of the output sensitivity function.
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Note that AM > 0.5 implies a gain margin AG > 2 (6 dB) and a phase margin A¢ >
29°. As a general rule, a good modulus margin guarantees satisfactory values for

the gain and phase margins!!.
To summarize, typical values for the stability margins in a robust design are:

e gain margin: AG > 2 (6dB) [min.: 1.6 (4dB)]
e phase margin: 30° < Ad < 60°
e delay margin: A7 = A—¢ > Ty [min.: 0.75 T]
cr
e modulus margin: AM > 0.5 (-6dB), [min.: 0.4 (-8dB)]

If the plant model is known with a very good precision for a certain region of
operation, the imposed robustness margins can eventually be less restrictive.
The modulus margin is very important because:

o It defines the maximum admissible value for the modulus of the output
sensitivity function and therefore the low limits of the performance in
disturbance rejection;

e [t defines the tolerance with respect to nonlinear or time varying elements
that may belong to the system (the circle criterion - see below).

Tolerance with Respect to Nonlinear Elements
In control systems we frequently have components with static nonlinear or time-

varying characteristics (often in the actuators).
The characteristics of these components, without being accurately known,
generally lie inside the conic region defined by a minimum linear gain (&) and a

maximum linear gain (/) — see Figure 2.33.

ry
y=Bu
SN L
TVP
y = f(u)
y =au

Figure 2.33. Nonlinear or time-varying characteristics, contained in the conic domain (a., f3)

The closed-loop system looks, for example, like those in Figure 2.34a.

I The converse is not true. Systems having satisfactory gain and phase margins may have a very low
modulus margin.
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- Hy(Z") | Wf&» = Hy@"

a) NL Block and / or TVP

— %, > H(s)=H2(z'1). H1(z'1)

Figure 2.34. Closed-loop systems containing a nonlinear block (NL) and / or time-varying
parameters (TVP): a) block diagram b) equivalent representation

b) -

L mH (e @)
Critical circle
1 \ -1
" B R o
CCNp eH(e?™)
AM
Hel®)

Figure 2.35. Circle stability criterion and modulus margin for discrete time systems

From the stability analysis point of view, we may use an equivalent
representation of such systems, given in Figure 2.34b, where
-1 -1 -1
Ho (z7)=H(z )Hy(z 7).
For this kind of system we have a generalization of the Nyquist criterion,
known as “the circle criterion” (Popov-Zames).

Circle (Stability) Criterion

The feedback system represented in Figure 2.34b is asymptotically stable for the
set of nonlinear and/or time-varying characteristics lying in the conic domain
[l (with o, B> 0) if the plot of H, (z7"), traversed in the sense of growing
frequencies, leaves on the lefi, without crossing it, the circle centered on the real
axis and passes through the points [-1/ 3, j0] and [-1/«, jO].
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The modulus margin AM defines a circle of radius AM centered in [-/, jO] that
is outside the Nyquist plot of the open loop transfer function.

Thus, the closed loop system can tolerate non-linear blocks or time-variable
parameters described by input-output characteristics lying in a conic sector
delimited by a minimum linear gain (///+A4M)) and a maximum linear gain (///-

AM)) (see Figure 2.35).

Tolerances to Plant Transfer Function Uncertainties and/or Parameters
Variations.
Figure 2.36 shows the effect of the plant nominal model uncertainties and
parameters variations on the Nyquist plot of the open loop transfer function. As a
general rule, the Nyquist plot of the plant nominal model lies inside a “tube”
corresponding to the accepted tolerances of the parameters variations (or the
uncertainties) of the plant model transfer function.

In order to ensure the stability of the closed loop system for an open loop
transfer function H'gz(z”!) that is different from the nominal one Hp;(z'!) (but

having the same number of unstable poles as Hpy (z'1)), it is necessary that the
Nyquist plot of the open loop transfer function H'; (z”!) leaves the critical point [-
1, jO] on the left when traversed in the sense of growing frequencies from 0 to 0.5
fs- This condition is satisfied if the difference between the real open loop transfer
function H'o; (z!) and the nominal one Hp; (z!) is smaller than the distance

between the Nyquist plot of the open loop nominal transfer function and the critical
point for all frequencies (see Figure 2.36). This robust stability condition is
expressed by the inequality

[ ™) = Hop (7| <1+ Hop (71| =5, 7 =

[ADsE+BeRED| | e | e 3OO
| AzHsi™h | 4acseE ™|
A ImH
N o Re H
T+ Hol
HC')L HoL

Figure 2.36. Nyquist plot for the nominal open loop transfer function and the real open loop
transfer function in presence of uncertainties and parameters variations (Hop, and H’ g are

stable)
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where S(z'/) and R(z"!) are computed on the basis of Equation 2.6.3 for the nominal
values of A(z"!) and B(z")).

In other words, the magnitude of S-/ W (e7?) function (evaluated in dB units),
obtained by symmetry from S, (e7®) (see Figure 2.32), gives, at each frequency, a
sufficient condition for the accepted difference (computed as the Euclidian
distance) between the real open loop transfer function and the nominal open loop
transfer function, in order to guarantee the stability of the closed loop.

This tolerance is higher at low frequencies (see Figure 2.32) where the gain of
the open loop system is high (especially when an integrator is included), and it has
a minimum value at the frequency (or frequencies) where S-/ W (e7%) reaches its

minimum (= AM), that is the frequency where S, (e7?) has the maximum value.

It is necessary to ensure that at these frequencies the plant model variations are
compatible with the obtained modulus margin. If this is not the case, the solution is
to provide a more accurate model, or to modify the specifications in order to
maintain the closed loop stability.

Equation 2.6.6 expresses a robustness condition in terms of open loop transfer
function variations (controller + plant). It is interesting to express this robustness
condition in terms of the plant model variations only. Note that Equation 2.6.6 can
be further expressed as

B HRE  BEHRE|_|Re| [BT) B
|4¢sE™ AEHSE| [sEH| |4 aeh)
3 |4z"SE™") + B HRE)

Az"HS(z™

(2.6.7)

where B(z!)/A(z"!) corresponds to the nominal plant transfer function.
Multiplying by [S(z"/)/R(z!)| both sides of Equation 2.6.7 one gets the
condition

B B < |4z")S¢)+ BEHRE)|
4 A | ARET)

(2.6.8)

P(zh _
A(zHR(zTY

S )‘

By plotting the inverse of the input sensitivity function magnitude, sufficient
conditions for tolerated (additive) variations (or uncertainties) of the plant transfer
function are obtained. The inverse of the magnitude of the input sensitivity
function is symmetric to the input sensitivity function magnitude in dB units with
respect to the axis at 0 dB (see Figure 2.37).

As plant model uncertainties at high frequencies are often present, one must

verify that the maximum of [S,,, (e7/9)| at high frequencies is small. On the other
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hand, the input sensitivity function S, is an effective image of the actuator stress

in the frequency domain when disturbances act on the system. The physical
characteristics of the actuator often impose a bound on actuator stress at high

frequencies, and an upper bound of the maximum of [S,,, (e7/®)| at these frequencies
should be imposed.

Notice that (from Equation 2.6.8) the admitted tolerances (neglecting the term
1/|R(z")|) depend to a large extent upon the relation between the open loop system
poles (defined by A(z"/)) and the desired closed loop poles (defined by P(z"/)).

In order to understand this phenomenon in greater detail, Figure 2.38 shows the
Syp(z"!) magnitude functions for a plant model characterized by A(z"/)=1-0.8 z”/;
B(z!)= z! and for two different desired closed loop system characteristic
polynomials: P;(z/)=1-0.6 z! and P,(z!)=1-0.3 z! (the controller includes an
integrator). Note that P»(z"/) corresponds to a closed loop system faster than the
one specified by P;(z’/), and both closed loop systems are faster than the plant
(open loop system).

The |Sup(z‘1 )| maximum for Py(z!) is greater than for P;(z/), and then the
inverse of |Sup(z'1 )| will be smaller. As a consequence, the accepted tolerances for
the frequency response variations (especially at high frequencies) are smaller in the
case of Py(z”!) with respect to the case of desired closed loop performances
imposed by P;(z]).

b s,im |
Bounds on the actuator requirements

y
AN

>
0 0.5f,

|Supl”

(Tolerance to additive uncertainties)

Figure 2.37. The input sensitivity function and its inverse
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Input Sensitivity Function

Magnitude (dB)

Frequency (fff)

Figure 2.38. Input sensitivity function for the plant model q‘l /(1-0.8 q‘l) as a function of
the desired closed loop performances

Equation 2.6.8 gives a sufficient condition for the accepted (additive) tolerance
in terms of real plant transfer function parameters variations (or uncertainties) with
respect to the nominal plant transfer function.

Moreover, we may be interested in the evaluation of the accepted relative
tolerance with respect to the nominal plant transfer function magnitude. It follows
from Equation 2.6.8 that

B’(zl)_B(z])‘

AT A <|A(z*l)S(z*)+B(z*1)R(z*1)|
Bz | Bz HR(z™) | (2.6.9)
Az
Pz I PO IS TN I P I

—m‘_‘syb(z )‘_Syr(z )‘

where S, is the “noise-output sensitivity function” and S, is the complementary
sensitivity function.

The noise-output sensitivity function S, allows the definition of a frequency
“template” to ensure that the “delay margin” constraint is fulfilled. Let consider the
case of a delay margin A7 =1- TS .

It follows that
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~d (7! —d-1p_-1
- z “B(z . 4 1p,
Heh=22E ) ey 2 )
A(z™) Az
and consequently
H(D-HEY _ o
H(z™"
Equation 2.6.9 becomes
‘S))b(z_l)‘<; ; z=el? 0<w<rn
-
or in dB units
|55l <2010l 27| 5 z=e 0<o<r

Noise-output Sensitivity Function Template

0 T T T T T T T T T
| | | | | | | |
| | | | | | | | |
Al oL Lo L b ___ L+ ___L___1___1___]
| | | %I ] | | | |
| | kY | | | | |
| | | 1", | | | | |
b L L N\-L___Ls__oL___+___L___1___1___]
| | | | | | | | |
: : ‘ : ‘Fl'empla!‘eforDe“Iaymar‘ginM=‘TI's
Y P A
o | | | | I | | | |
T | | | | | | | | |
P | | | | | | | |
k] 1 1 1 1 1 ! ! ! !
,34 | | | ] ] ) | | |
< | | | | | | | | |
2 | | | | | | | |
= 5L L L L L LN Lo
| | | | | | | | |
I I I I I T I I
| | | | | | | [
B —— L L L L Ll Nl oL e
| | | | | | ] | |
| | | | | | | |
| | | | | | | |
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-8 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency (flfs)

(2.6.10)

2.6.11)

(2.6.12)

(2.6.13)

Figure 2.39. Frequency template for the noise-output sensitivity function and A7 = T, s



80  Digital Control Systems

This expression defines a frequency robustness template for the sensitivity
function S This template corresponds to the frequency response of a digital

integrator and is represented in Figure 2.39.
As the modulus margin introduces a frequency template on the output

Syp A )‘ <-AM ; 0<w < x), we are interested in finding

sensitivity function (

what template is introduced by the delay margin on | S),|.
From Equations 2.5.14 and 2.5.17 it results that

S,EH=1+5," (2.6.14)
and by means of the triangle inequality it follows that

S, (z*l)‘ (2.6.15)

- ‘Syb (z*‘)‘ < ‘Syp(z*)‘ <1+

Taking into account the frequency bound on S, given by Equation 2.6.12, the
following condition is obtained :

1—‘1 _271‘71 < ‘Syp (™ )‘ < 1+‘l—271‘71 (2.6.16)

Output Sensitivity Function Template

10 T T T T T T T
| | | | | | |
Modulus margin =0.5' ! ! ! !

P
-

oH------——+ B e e o e e i IR
"Delay margln=J"|'s

Pl
|

Magnitude (dB)

------ Modulus margin template
—.—. Delay margin = Ts template

;70 Y A

| —— Output Sensitivity function

I I

| |

| |

| |
25 L L
1

T T T
0.05 0 0.15 0. 0.25 0.3 0.35 0.4 0.45 0.5
Frequency (flfs)

Figure 2.40. Frequency template on the output sensitivity function for AM =0.5 (-6dB)
and Ar=Tg
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that leads to the robustness template on [S,,| represented in Figure 2.40.

Notice that, from the point corresponding to 0.17 f; , [S,,| must lie inside a
region delimited by an upper and a lower bound and that, for frequencies below
0.17 f, the frequency template for the modulus margin also assures the delay
margin constraint to be respected.

It is important to note that the template on S, will not always guarantee the
desired delay margin (it is an approximation). If the condition on [S);| is satisfied,
then the condition on |S),| will also be satisfied. However, if the condition on [S))|
is violated, this will not imply necessarily that the condition on Sy, will also be
violated. In practice, the results obtained by using the template on the [Sy,| are very
reliable.

The following remark is important: the closed loop system robustness will be,
in general, reduced when the closed loop system bandwidth is increased with
respect to the open loop system bandwidth. Conversely, for a relevant reduction of
the rise time for the closed loop system, with respect to the open loop system rise
time, a good estimation of the plant model is required (especially in the frequency
regions where |Syp(z‘] )| is high).

As a consequence, robustness constraints can imply either a small reduction of
the closed loop system rise time (with respect to the open loop system rise time), or
a controller design which takes into account the bounds on the sensitivity
functions.

An important challenge in control system design is the maximization of the
controller robustness for given performances. This is obtained by minimizing the
sensitivity functions maximum in the critical frequency regions.

2.7 Concluding Remarks

Recursive (differences) equations of the form

4

w0 = —Zaiy(t—i)+ZB:biu(t—d—i) (2.7.1)

i=1 i=1

where u is the input, y is the output and d is the discrete-time delay, are used to
describe discrete-time dynamic models.

The delay operator ¢”/ [¢g”/ y(f) = y(t-1)] is a simple tool to handle recursive
equations. If the operator ¢~/ is used, the recursive Equation 2.7.1 takes the form

Alg My =g Blg ()
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where

4 g
A(g) =1+ aq” Blg")=1+) bq"

i=1 i=1

The input-output relation for a discrete-time model is also conveniently described
by the pulse transfer operator H(g™):

y(t)=H(g " u(t)

where

—d -1
Hig) =4 Ag(ci) )

The pulse transfer function of a discrete-time linear system is expressed as function
of the complex variable z = e’ (Ty = sampling period). The pulse transfer

function can be derived from the pulse transfer operator H(g™!) by replacing g™/
with z-/.

The asymptotical stability of a discrete-time model is ensured if, and only if, all
pulse transfer function poles (in z) lie inside the unit circle.

The order of a pulse transfer function is

n =max (ny, ng +d)

In computer controlled systems, the input signal applied to the plant is held
constant between two sampling instants by means of a zero-order hold (ZOH). The
zero-order hold is characterized by the following transfer function:

e h

1-
H 705 (5) =T

Therefore, the continuous-time part of the system (between digital-to-analog
converter and the analog-to-digital converter) is characterized by the continuous-
time transfer function

H' (s) = Hzom (s) - H(s)

where H(s) is the plant transfer function.

In computer controlled systems, the input signal applied to the plant at time ¢ is
a weighted average of the plant output at times ¢, #-1, ..., t-ny+1, of the previous
input signal values at instants #-/, t-2, ..., t-ng-d, and of the reference signal at
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instants ¢, t-1,..., the weights being the coefficients of the controller. The
corresponding control law (controller RST) is written as

Sta”!) ut) = - Rig”™) y@) + T(q™!) r(t) (2.7.2)

where u(?) is the control (input) signal to the plant, y(¢) is the plant output and »(¢)
is the reference.

The transfer function of the closed loop system (between the reference signal
and the plant output) that includes the digital controller of Equation 2.7.2 is given
by

B(z )T(z™)

Hal(z7)= A(z)S )+ Bz Rz

where H(z!) = B(z'1)/A(z"!) is the pulse transfer function of the discretized plant
(in this case B(z"/) may include possible delays).
The characteristic polynomial defining the closed loop system poles is given by

Pl)=az1)SE!) + Biz!) Rz1)

The disturbance rejection properties on the output result from the output sensitivity
function frequency response

Az"HS(™)
Az HSEH+BEHRET)

S,z )=

Robust stability of the closed loop system, with respect to the plant transfer
function uncertainties or parameters variations, is essentially characterized by the
modulus margin and the delay margin.

The modulus margin and the delay margin introduce frequency constraints on
the magnitude of the sensitivity functions. These constraints lead to the definition
of frequency robustness templates that must be respected.

The robust stability (or performance) of the closed loop system robustness, with
respect to the plant transfer function uncertainties or parameters variations,
depends upon the choice of the desired closed loop system performances
(bandwidth, rise time) with respect to the open loop system dynamics. A
significant reduction of the closed loop system rise time (or a significant
augmentation of the bandwidth of the closed loop system), compared to the open
loop system rise time (or bandwidth), requires a good estimation of the plant
model.

In order to ensure closed loop system robustness, when a good estimation of the
plant model is not available, or when large system parameters variations occur, the
closed loop system rise time acceleration, compared to the open loop system rise
time, must be moderate. However, some methods exist for maximizing the
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controller robustness with respect to plant model uncertainties (or parameters
variations), for given nominal performance.
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Robust Digital Controller Design Methods

In this chapter the design of model based robust digital controllers is discussed.
The design of digital PID controllers is first presented, emphasizing the general
structure of digital controllers (three branched structure known as RST), the
special features of the digital approach and the limitations of the digital PID. The
following design methods are then presented: pole placement, tracking and
regulation with independent objectives and tracking and regulation with internal
model control. The presentation is done from the perspective of robust control.
These methods permit the control of systems of any order with or without time
delay. The last section of the chapter presents a general methodology for the
design of robust digital controllers by means of sensitivity functions shaping.

3.1 Introduction

The use of a digital computer or microprocessor in control loops offers several
advantages. These include:

e Considerable choice of strategies for controller design

e Possibility of using algorithms which are both more complex and
more efficient than the PID

e  Technique perfectly suited for the control of systems with time dela;

e  Technique well suited for the control of systems characterized by
linear dynamic models of high order (including systems with multiple
low damped vibration modes)

Moreover, by combining the controller design methods with the system model
identification techniques, a rigorous, high performance controller design procedure
can be implemented. These aspects are covered in Chapters 7, 8 and 9.
The digital controller design methods that are presented in this chapter relate to
single input-single output control in the presence of deterministic disturbances.
These methods are:

e Digital PID

85
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Pole placement

Tracking and regulation with independent objectives

Tracking and regulation with internal model control
e  Pole placement with shaping of sensitivity functions

All the controllers, irrespective of their design method, will have the same RST
three-branched structure (see Figure 2.27). Only the memory of the controller
(number of coefficients) will vary depending on the complexity of the system.

Note that in the case of simple systems (at most second-order and small time
delay), the various controllers designed by means of the pole placement, tracking
and regulation with independent objectives and internal model control, correspond
to digital PID controllers having differently tuned parameters.

The tracking and regulation with independent objectives and tracking and
regulation with internal model control can be considered as particular cases of the
pole placement. They result from a particular choice of the desired closed loop
poles.

The robustness of the designed control system with respect to plant model
uncertainties is a very important issue. The pole placement with shaping of
sensitivity functions is a general methodology of digital control design that allows
one to take into account simultaneously robustness and performances
specifications for the closed loop.

The digital control design by pole placement (and the various particular cases)
is a predictive control (the controller implicitly contains a predictor of the plant
output). This will be illustrated in Sections 3.4.4 and 3.5.3 and in Appendix B.

The design and tuning of digital controllers require the knowledge of the
discrete-time model of the plant to be controlled (model based control). 1t is not
possible to implement effectively a high performance control loop without
identifying the plant model. Fortunately the system identification methodology is a
mature subject and toolboxes or dedicated software are available. System
identification is discussed in Chapters 5, 6, 7 and 9.

If the continuous-time model of the plant to be controlled is available, the
discrete-time model of the sampled-data system can be obtained by using
appropriate discretization techniques. The functions cont2disc.sci (Scilab) and
cont2disc.m (MATLAB®™), available on the book website, can be used for this

purpose.

3.2 Digital PID Controller

The basic version of the digital PID controller considered in this book results from
the discretization of the continuous-time PID controller presented in Section 1.3.2.
Another version, which provides some advantages, will also be presented.
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The methodology for the digital PID controllers design to be presented is
rigorously applicable only to':

e Plants that can be modeled by a continuous-time system characterized by a
transfer function of maximum degree equal to 2, with or without time delay
e Plants having a time delay which is less than one sampling period

Although continuous-time PID parameters can be recovered from the digital PID
controller design, in some cases, the discrete-time methodologies have not been
developed for the tuning of continuous-time (or pseudo-digital) PID controllers.
Specific methodologies exist and should be used for the tuning of continuous time
PID controllers (see Chapter 1, Section 1.3). Moreover, it should be pointed out
that certain tunings of digital PID controller parameters offering excellent
performances have no counterpart in terms of continuous-time PID controller
parameters.

3.2.1 Structure of the Digital PID 1 Controller

Consider the transfer function of the continuous-time PID controller (Equation
1.3.2):

T
H o (5) = K| 14— 4 245 (3.2.1)
T4S Td
mol+ =5
N

This controller is characterized by four tuning parameters:

e K — proportional gain
o T, — integral action
o T, — derivative action

e T,/N —filtering of the derivative action

Several discretization methods may be used to derive the structure of the digital
PID controller. The relations between the continuous-time and discrete-time
parameters will depend on the method used, but the structure of the digital
controller will remain the same.

Since in our case the design and implementation of the controller will be in the
discrete-time, the discretization method is not essential. For this reason we will use
the backward difference approximation. 1t follows that s (derivative) will be
approximated by (I - ¢!)/T, and I/s (integration) will be approximated by

T A1 - g (see Section 2.3, Equations 2.3.6 t0 2.3.11).

' A method for the design of digital PID controllers for plants characterized by high order models is
presented in Chapter 10, Section 10.5. It is based on the complexity reduction of a model based
controller.
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This produces
1.5 11 (3.2.2)
Iis T, 1-q°
T,s= ﬁ-(l ) (3.2.3)
T
NT,
T, +NT
L ! = d S (3.2.4)
Td Td -1 Td -1
l+Ls 1+—2(1-¢") 1-—4L 4
N NT, T, +NT,

By introducing these expressions in Equation (3.2.1), the pulse transfer function
(operator) of the digital PID 1 controller is obtained?:

NT, .
R(g™ T o1 TNt 01D
Hpp(g ™) = qfl =K1+ ——+-4 ]{ (3.2.5)
S(q™) T 1-q |- td g
T, + NT,

The expression in terms of the ratio of two polynomials is obtained by summing up
the three terms. Polynomials R(g™/) and S(¢"!) have the form

Rig) =rg+riqt+ryq? (3.2.6)
Sqh)=(-g)d+s,q)=(1+s,4"+5,q¢72) (3.2.7)
where
s{z—T—d ; rp=K 1+£—N£S{
T; + NT, ; T,
n=K sl 1+ LIl s — ks ANy
Ti Td Td

2 As indicated in Section 2.5.3, for systems with constant coefficients the notation q'l will be used both

for the backward delay operator and the complex variable 1

an interpretation in the frequency domain.

, with the exception of cases that require
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The digital PID 1 controller has four parameters (), r;, 7, s’;) as the continuous-

time PID controller.
Note that the pulse transfer function (operator) of the digital PID 1 controller

contains as a common factor of the denominator the term (/-g™/), which assures the
behavior of the numerical integration. The denominator also contains the term

(I+s’ ]q'l ), which is a digital filter that plays the role of the filter [/ + (7;/N) 5] in
the continuous-time PID controller.

r(t) u(t) (t)

— RIS —» B/A
+
- PLANT

rt) u(t) y(t)

+
—» T=R = 1/S —=1 B/A
PLANT
R -—

Figure 3.1. Equivalent block diagrams of a digital control loop using the digital PID 1
controller

The equivalent block diagram is given in the upper part of Figure 3.1. By
taking T(g!) = R(¢q’!), the digital PID 1 controller can take the standard three
branched structure of the RST controller, as shown in the lower part of Figure 3.1.

The pulse transfer function (operator) of the closed loop relating the reference
r(f) and the output y(7) is

B(g HR(q™) _Bg HR™ (3.2.8)

1y _ =
HCL(q )_A(q—l)S(q’l)+B(q71)R(q71) P(qil)

in which the polynomial P(¢!) defines the desired closed loop poles (directly
linked to the desired regulation performances).

The product B(g/)R(¢!) defines the closed loop zeros. The digital PID 1
controller, in general, does not simplify the plant zeros (unless B(g™/) is chosen as a
factor of P(¢"!)) and thus can be used for the regulation of plants having a discrete-
time model with unstable zeros (a situation occurring, for example, if there is a
fractional time delay greater than half of a sampling period, see Section 2.3.7).

Furthermore, the digital PID 1 controller introduces additional zeros defined by
R(q’!) that will depend on A(q!), B(g"!) and P(q"!) and thus which cannot be
specified a priori. In certain situations, these zeros may produce undesirable
overshoots during the transient (see the examples given later on in Section 3.2.3).



90  Digital Control Systems

3.2.2 Design of the Digital PID 1 Controller
The computation of the parameters involves several stages:

1. Determination of discrete time plant model

2. Specification of the performances

3. Computation of the controller parameters (the coefficients of the
polynomial R(g™!) and S(¢7!))

4. Verification of the achieved robustness margins and sensitivity functions

Discrete-Time Plant Model
This is the pulse transfer function H(z!) of the sampled model of a plant having
the transfer function H(s), and controlled through a zero order hold as is indicated

in Figure 3.2.

! H & :

Figure 3.2. Pulse transfer function of a plant

Continuous-time transfer functions of the following form may be considered:

Ge —ST

H(s)= 3.2.9
() 1+sT ( )
or
a)2e—sr
H(s)=—5—"—— (3.2.10)
Wy +2Cws +s
with the restriction
t<Tg (3.2.11)

Note moreover that for the first-order system the sampling period 7, must be
smaller than 7' (7, < T — see Equation 2.2.4 ). It thus means that the digital PID
controller design can be correctly applied only to the first-order system with a time
delay verifying the condition 7 < 7.

For these two types of continuous-time models, discretization with hold results
in a pulse transfer function (operator) of the form
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by +bg B
l+aig ' +a,g7°  Alg™)

H(g™"= (3.2.12)

The transfer function H(¢/) may be obtained:

e Directly by identification of the discrete-time plant model
e From knowledge of H(s) and T, using discretization routines (as for

example cont2disc.sci (Scilab) and cont2disc.m (MATLAB®)) or
transformation tables

Specification of the Performances

As a general rule, the desired closed loop system performances can be expressed in
terms of the parameters of a pulse transfer function. This may be expressed by the
condition

B¢ DR _Bulg ) (3.2.13)

He(g™h) = =
g )S@ Y+ B RGP

However, B,/g') cannot be specified a priori since, in general, B(g”) is not

simplified (unless B(g™!) is stable, which corresponds to cases where the time delay
is negligible); moreover, the controller itself introduces zeros by means of R(g/).

The closed loop polynomial remains to be specified. The polynomial P(g!) is
chosen of the form

P(q_[) =] _;’_p»l q—] +p»2 q—2 (3214)

A recommended method for defining p°; and p’, consists first in considering a

second-order normalized continuous-time model (see Section 1.1.6), enabling a
rise time (p) or a settling time (¢g) and a maximum overshoot (/) to be obtained in

accordance with the specifications. This choice may be done using the diagrams
given in Figures 1.10 and 1.11 or using the functions omega dmp.sci (Scilab) and
omega_dmp.m (MATLAB®)3. That allows determining the parameters @, and & of

the second-order system. The sampling period 7, and the natural frequency o,
should verify the condition

025 < wyT,< 15 ; 07<¢<1 (3.2.15)

The discretized model with hold can be computed either by means of the functions
cont2disc.sci  (Scilab) and cont2discm  (MATLAB®™), or by means of

3 Available from the book website.
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transformation tables (see Section 2.3.6). The denominator of the pulse transfer
function thus obtained will represent the polynomial P(g™/).

Computation of the Coefficients of the Digital Controller
From Equation 3.2.13 it results that the following polynomial equation must be
solved:

P(q!) = A(q”) Stg”!) + B(q™!) R(q™) (3.2.16)

in the unknown polynomials S(g"/) and R(¢™!). In Equation 3.2.16 P(q™/) is given
by Equation 3.2.14 and A(¢g”/) and B(q!) are given by Equation 3.2.12 . The
structures of R(g~/) and S(g!) are given respectively by Equations 3.2.6 and 3.2.7.
Equation 3.2.16 is a Bezout polynomial equation.

The detailed version of Equation 3.2.16 is

P(g")=1+piq”" + pbg™ = A(g"")S(g™" )+ B(g"R(g™")
=(l+ag” +a,g H)(1-g H(1+sig7)

(3.2.17)
+(big ™ +byg )y + 17 +1g7%)
= A(¢™)S'(¢™) +Bg IR
where
A(q ) =Aqg"1-g ) =(+alg" +ayg” +dig™) (32.18)
=(+(a,-Dg™" +(a,—a)q”> —a,q™)
S'(g)=1+siq" G219

Solving a polynomial equation implies that coefficients related to the powers of ¢
should be equal on both sides. One observes that the maximum order on the right
hand side is ¢4 (it is a system of four equations in four variables that must be
solved). The higher order of the left side of the equation is ¢, that corresponds to
a zero value for the coefficients of ¢~ and ¢4 powers in the polynomial P(¢/). In
fact, it is possible to impose non-zero values for these coefficients.

In general one imposes

-1 -1 ) -3 4
P(g )=+ piq +prg “+p3q  +psqg )=

(3.2.20)
=+ pig  + phg A+ ag U+ ang™?)

where coefficients p; and p5 result from the discretization of a second-order
continuous-time system with @, and ¢ corresponding to the specified nominal

performances, and with ¢, , o, corresponding to aperiodic “auxiliary poles” -«
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and —a, located on the real axis (inside the unit circle) and corresponding to a

frequency higher than @, /27 (see Figure 3.3).

Dominant poles

-1 AR I 2™order system

(0)0 ) C)
] Auxiliary poles

Figure 3.3. Dominant and auxiliary poles for the design of a digital PID controller

One observes that —a; and —a, are smaller than the real part of the dominant

poles (then they are faster poles). The introduction of auxiliary poles allows
improving the robustness of the controller. In practice, a typical choice is either
o, =a,,or &, =0 and the ranges for their values are

-0.05<¢,,0, £-0.5 (3.2.21)
The system of four equations to solve is

Py =biry+s) +a;

Py =byry + by + 5101 + @

Py =byr + by, + 515 +ay

P4 =byry +5ia;

The equivalent matrix form of this system of equations is

Mx=p (3.2.22)

where
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xTz[l,sl',rO,rl,rz] (3223)
pTz[lsplap27p3ap4] (3224)

and the matrix M is of the form

1 0 0 0 0
a1 b 0 0
a, a b, b 0
ay a, 0 by, b

0 a5 0 0 b,

The solution of Equation 3.2.22 is expressed by

x=M"p (3.2.25)

where M ' is the inverse matrix of M. In order to assure the existence of this
inverse, it is necessary that the determinant of M is non-null. It can be shown that
this condition is verified if, and only if, 4(g"/) and B(q™!) are coprime polynomials
(no simplification between zeros and poles).

Exercise
Let

_ _ _ _ b, _
B(g ) =bg " +byqg " =byg 1(1+b—2q h
1

4™ =<1+Z—2q*1>(1+cq*1>
1

Show that in this case detM =0.
In order to solve the Bezout equation, one can use the function bezoutd.sci
(Scilab) or the function bezoutd.m (MATLAB®™) available on the book website?.
The parameters of the continuous-time PID controller, which by discretization
with a sampling period equal to 7, gives the digital PID controller with

polynomials R(g™/) and S(¢™!), are computed by means of the following relations:

_ 7081 =1 — (2 +s)r
(1+s))?

K (3.2.26)

4 In Scilab and MATLAB® environments one must specify 4 ’(q'l ) and B(q'[ ) to obtain S’(q'] ) and
R(g71). S(47!) is obtained by using Equation 3.2.7.
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CK(+s))

T,=T, (3.2.27)
) + n + 5]
P R G ks (3.2.28)
K(+s))
Ta _=sils (3.2.29)
N  l+s

For the digital PID controller to be equivalent to a continuous-time PID controller,
it is necessary that the coefficient s', verify the condition

“1<s',<0 (3.2.30)

In the opposite case (0<s',<1), the digital filter 1/(1+s',¢") is stable but

without a continuous-time equivalent (as a first-order filter). The digital PID
controller in this case may provide very good performances but an equivalent

continuous-time PID controller cannot be obtained (see examples given in Section
3.2.3).

3.2.3 Digital PID 1 Controller: Examples

We consider the case of the regulation of a first-order plant with time delay having
the following characteristics:

e @Gain(G) =1; Time Constant (7) = 10s; Pure time delay (7) =3 s
e A sampling period T = 5 s is chosen in order to verify the conditions:
r<Tiand T, <T

The objective of the design is to obtain the best closed loop performances without
overshoot. The damping factor of the model that specifies the performances is
fixed at = 0.8, and the natural frequency @, will be chosen in the range:

025 < wy T, < 1.5
For wy = 0.05 (w, T, = 0.25), the results obtained are summed up in Table 3.1.

The model output y(?) and the control signal u(?) are displayed in Figure 3.4. It
can be observed that the closed loop step response (about /37s= 65 s) is slower
than the open loop step response (about 2.27 + 7 =25 s) since the control u(?) sent
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Table 3.1. Digital PID 1 controller, o, = 0.05 rad/s

Plant:
o Bg!)=01813¢1 402122472
o A(ql)=1-0.6065q"!
o Ts=55,G=1 T=10s, =3
Performances > Tg=35s , )= 0.05radls, =08

*** CONTROL LAW ***

Sl u® + R .y = T(q”) . rv

Controller:

e Rg!)=0.0621+0.0681 g1

o S h=-q1) (1-0023847)

o Tq!)=Rig)
Gain margin: 7.712 Phase margin: 67.2 deg
Modulus margin: 0.751 (-2.49dB) Delay margin: 45.4 s
Cont. time PID: k =-0.073, Ti=-2.735, Td =-0.122, Td/N =0.122

Plant Output
T T T T
1
| | | |
S S A N A A A A
| | | | |
| | | | | |
+t+t-——t-—-"—"+-—-—"—"+t-"—-=+-=—=-+- - -1
| | | | | |
L __L_yr_r___c___+r___+r___+r___+___+t___1___/]
| | | | | |
| | | | | |
r-—-—m+r4--rr——>~"r--"~-"*+T-"-"~-"t- - - Tt - - T - - T- - ~-T~-~71
| | | | | |
1 1 1 1 1 1
40 50 60 70 80 90 100
Time (T )

Control Signal

Figure 3.4. Performances of the digital PID 1 controller, o = 0.05 rad/s for tracking and

regulation
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by the controller represents a filtered step. This situation is well known in practice.
For time delays greater than 20 or 25% of the time constant, the continuous time
PID controller slows down the closed loop system with respect to the open loop
system. Can a digital PID controller therefore provide improved performances?

Take @y, = 0.1 rad/s (twice faster desired closed loop response). The
computation results are summed up in Table 3.2 and the evolutions of the plant
output and of the control applied to the plant are represented in Figure 3.5.

By examining the results given in Table 3.2, first one can see that s'; is positive,
and therefore an equivalent continuous-time PID controller does not exist.

An acceleration in the plant response is observed, but this is accompanied by
the appearance of a slight overshoot (larger than the one corresponding to £ = 0.8).

The explanation of this overshoot is given by the coefficients of 7(¢/)=R(q™’).
The polynomial T(q/)=R(q’!), which introduces zeros in the pulse transfer
function, has now its second coefficient with a negative sign. As the zeros have
influence on the first instants of the response, the contribution of R(g™/) is a
positive jump followed by a negative one, and the step on the reference filtered, by
R(q’!) is characterized by a peak related to the difference ry - r;, that is not
completely attenuated by the remaining components of the pulse transfer function.

In order to avoid an excessive overshoot with this structure of the PID, one
needs (for £> (.7) to have all coefficients of R(g™!) positive.

Taking @, = 0.15 rad/s (Table 3.3 and Figure 3.6), a significant acceleration of
the step response is obtained, but the overshoot becomes larger. As in the previous
case, there is no equivalent continuous-time PID controller. It is also observed that
the difference r,) - r; is greater, thus explaining the increased overshoot.

Table 3.2. Digital PID 1 controller, o = 0.1 rad/s

Plant:

o Bgl)y=01813¢1+02122472

o A(gl)=1-0.6065q4"!

o T¢=5s, G=1 T=10s, =3
Performances =2 Tg=135s , wg=0.1radls, ¢=0.8

**%* CONTROL LAW ***

S uw + R .y = Tq)) . rv

Controller:

o Rq!) =08954-0.46714¢1

o Sigl)y=@-q1).1+01634341)

o Tqh) =R
Gain margin: 6.046 Phase margin: 65.9 deg
Modulus margin: 0.759 (- 2, 39 dB) Delay margin: 16.8 s
Cont. time PID: (no equivalent)




98  Digital Control Systems

Table 3.3. Digital PID 1 controller, oy = 0.15 rad/s

Plant:
o Bg!)=01813¢41 +02122472
o Aql)=1-0.6065q7
Ty=5s, G=1, T=10s, =3
Performances > Tg=35s , wp=0.15rad/s, {=10.8

**%* CONTROL LAW ***

Sl u + R .y = Tq) . r(t)

Controller:

e Rg!)= 16874 -0.8924 ¢!

o S l)y=(-qg1).(1+0312241)

o Tg)=ra?
Gain margin: 3.681 Phase margin: 58.4 deg
Modulus margin: 0.664 (- 3.56 dB) Delay margin: 9.4 s
Cont. time PID: (no equivalent)

Plant Output
T T T T
| | | | |
R N I A e A A
| | | | |
| | | | | |
- ft--"—"%t-"—-"—"*t-"—-"—"*+t -4 -=—-—-4 - = -1
| | | | | |
Lo oL L b b __l___t___1___1___/|]
| | | | | | |
| | | | | | |
- - - - - B e e e e B |
| | | | | |
1 1 1 1 1 1
40 50 60 70 80 90 100
Time (T )

Control Signal

40 50 60 70 80 90 100

Figure 3.5. Performances of the digital PID 1 controller, oy = 0.1 rad/s for tracking and

regulation
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In order to eliminate the undesirable effect of the zeros introduced by the digital
PID 1 controller, another structure must therefore be chosen for 7(g!), which does
not introduce additional zeros in the closed loop transfer function. That leads to the
digital PID 2 controller.

3.2.4 Digital PID 2 Controller
This is a digital PID that does not introduce additional zeros.

The desired closed loop transfer function (between the reference and the
output) will be of the form

4, _ P() B(g™)
H (q )_B(l) P (3.2.31)

in which B(g!) contains the plant zeros that will remain unchanged. P(q™/) defines
the desired closed loop poles and the term P(/)/B(I) is introduced in order to
ensure a unit gain between the reference and the output in steady state.

The controller will have the general structure

St u@ + R y) = T(g7!) r(v (3.2.32)

Figure 3.6. Performances of the digital PID 1 controller, w = 0.15 rad/s for tracking and
regulation
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in which S(¢/) and R(g/) are given by Equations 3.2.6 and 3.2.7 respectively.
The closed loop transfer function using the controller specified by Equation
3.2.32 will be

T(¢ DB _P/BMIBET (32.33)
A(qHS(¢™)+BgHR(G™) P(g™)

HCL(q_l):

In the same way as the PID1, the coefficients of the polynomials S(g~/) and R(q/)
will be obtained by solving Equation 3.2.16 . It thus results from Equation 3.2.33
that

L1, P() _ BOR() _
T(g™") = 30" B0) R() (3.2.34)

since S() = 0 (which implies P(1) = B(I) R(1)). Then T(¢!) will be a gain equal
to the sum of the coefficients of R(g/).

To conclude: the digital PID 2 controller has the same polynomials S(q'!) and
R(q!) as the digital PID 1 controller; the only difference is that now T(q™') = R(1)
instead of R(q!), thereby preserving the unitary gain of the closed loop system in
steady state without however introducing the effect of the zeros of R(q!).

The continuous-time PID (structure 2) that leads by discretization to the digital
PID 2 controller is represented in Figure 3.7 (proportional and derivative actions
only on the measure).

1 u(t) v
r(t) K +
S W T
W -
KTds
K [}
.
171+
( +N s)
|

Figure 3.7. Continuous-time PID controller corresponding to digital PID 2 controller

The parameters of the continuous-time PID 2 controller, which leads by
discretization with a sampling period equal to 7§ to the digital PID 2 controller

with polynomials R(g™/) and S(g™!), result from the following relations:

_—(+2n)
1+ 51

K (3.2.35)
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—(r +2r,)

T, =T, (3.2.36)

VO +I”1 +I"2
! + ’ _1

N L G e (3.237)
(1”1 +2r2)(1+S1)

T, —sT

) (3.2.38)

N  l+s

Just like the PID 1 digital controller, for the PID 2 digital controller to be
equivalent to a continuous-time PID controller, the condition of Equation 3.2.30 on
the coefficient s'; must be satisfied (that is -/ <s'; < 0).

Table 3.4 gives the computation results of the digital PID 2 controller for the
same plant which was considered in the case of the digital PID 1 controller, and
with a desired closed loop natural frequency @, = 0.15 rad/s (the results are to be
compared with those given in Table 3.3; the values of the coefficients of R(g”) and
S(q”') are the same).

Table 3.4. Digital PID controller (structure 2) @, = 0.15 rad/s

Plant:

o Bgl)y=018134"1 +02122 472

o A(gl)=1-06065q"1

o Ty=5s, G=1 T=10s, =3
Performances > Tg=135s , wg=0.15radls, (=038

**%* CONTROL LAW ***

S uv) + Rig™) vo) = 771y (0

Controller:

o Rq!)=16874-0.8924q¢1

o Sqlhy=c-qgl)a+03122¢41)

o T(ql)=0.795
Gain margin: 3.681 Phase margin: 58.4 deg
Modulus margin: 0.664 ( - 3.56 dB) Delay margin: 9.4 s
Cont. time PID: (no equivalent)

The performances obtained are illustrated in Figure 3.8, which must be compared
with the curves of Figure 3.6. It can be observed that for the same values of the
polynomials R(g”) and S(g”), the overshoot during the transient disappears when
the digital PID 2 controller is used (for steps on the reference). Moreover, the
response to a disturbance is the same for PID1 and PID2.
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Note also that the values obtained for the required robustness margins (gain,
phase, modulus, delay) are without doubt satisfactory.

3.2.5 Effect of Auxiliary Poles

Figures 3.9 and 3.10 show the frequency characteristics of |S yp| and for three

Sup

PID controllers designed for the same plant model used in the previous sections
with the following performances specifications:

o w,=025 rad/s ; {=08;
e ;=020 rad/s ; ¢ =0.38;
e w,=025 rad/s ; ¢ =0.8 and two auxiliary poles —a; = —a, =0.15.

In Figure 3.9 the frequency region (low frequencies) where |Syp|<0dB

corresponds to the attenuation band for the disturbances. The frequency regions

where |S yp|>OdB correspond to an amplification of the disturbances. At the

frequencies where |S 0dB the system behaves “in open loop” since the

yp| =
disturbances, at these frequencies, are neither amplified nor attenuated.
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Figure 3.8. Performances of the digital PID 2 controller, o = 0.15 rad/s for tracking and
regulation
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Syp Magnitude Frequency Responses
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Figure 3.9. Frequency characteristics of the modulus of the output sensitivity function S W

for different PID controllers

Figure 3.10. Frequency characteristics of the modulus of the input sensitivity function S uwp

for different PID controllers
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The performance of a controller is enhanced by the augmentation of the attenuation
band. But the augmentation of the attenuation band produces an increase of the
amplification of the disturbances outside the attenuation band and an increase of

the maximum of |S yp| which will reduce the modulus margin and the delay margin

(it will be shown later in Section 3.6. that the surface of the attenuation band
should be equal to the surface of the amplification band).
One observes that for a specified @, = 0.25rad/s the attenuation band is larger

than forw, =0.2rad/s but the |S, |is beyond the acceptable value for the

w
robustness (it crosses the template for Az =T).

One also observes that the introduction of auxiliary poles is more or less
equivalent to the reduction of the desired performances (the curve for
@, = 0.2rad/s is very close to the curve for @, =0.25rad/s and a, =a, =-0.15).

However, if one examines the frequency characteristics of the modulus of the

input sensitivity function|S

up|» one observes that the introduction of the auxiliary

poles for the case @, =0.25rad/s has a better effect than the reduction of the
desired performance without introduction of auxiliary poles. The auxiliary poles

allow reducing the value of |S,,

in the high frequency region without affecting the

regulation performances (see the frequency characteristics of |Syp|). This means

that a better robustness with respect to model uncertainties in high frequencies will
be obtained together with a reduction of the actuator stress in high frequencies.
In order to assure a good robustness at high frequencies and to reduce the

Sup

which implies a reduction of the controller gain at these frequencies. The
introduction of auxiliary poles improves the situation but does not allow
overcoming a fundamental limitation of PID controllers, namely the impossibility
to obtain a very low gain at high frequencies. In order to achieve this it is necessary
either to increase the order of S(¢~!) (which will allow the introduction of a second-
order filter instead of a first-order filter), or “to open the loop”, which implies the
increase of the order of R(¢™/) in order to introduce zeros imposing a null gain of
the controller at the frequency 0.5 f;. The use of the pole placement, which do not

actuator stress, it will be desirable to reduce further in this frequency region,

impose any restrictions on the size of R(¢!) and S(¢7!), will allow such a design.
3.2.6 Digital PID Controller: Conclusions

The discretization of the classical PID results in a digital controller with a
canonical three-branched structure (RST) with 7(g™/) = R(g™!) (PID1).

Based on the coefficient of R(g"/) and S(g™!), the coefficients of a continuous-
time PID may be computed if the polynomial

Siq!) =1 +s q!
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has s’;e]-10]

The model based digital PID controller considered can deal with first-or second-
order systems with time delay, if this latter is less than 7 (sampling period).

For time delays 7 > 0.25 T (time constant of the system of the plant), the
continuous-time PID leads to responses that are slower in closed loop than the ones
in open loop!

For systems with time delay, the closed loop performances may be significantly
improved by choosing coefficients of R, S, 7 that do not result in an equivalent
continuous-time PID controller.

The overshoots that may appear in closed loop can be eliminated by replacing

T(¢!)=R(g") [PID1] with T(g)=R(I) [PID2]

Digital PID controller design can be carried on the basis of the discrete-time
plant model and of the desired closed loop performances.

Every PID design should be concluded by an analysis of the robustness margins
and of the frequency response of the input sensitivity function at high frequencies.

3.3 Pole Placement

The computation of the digital PID controller parameters is a special case of the
“pole placement” strategy.

The pole placement strategy allows the design of a RST digital controller both
for stable and unstable systems:

e Without restriction on the degrees of the polynomials 4(g/) and B(q™/) of
the discrete-time plant model (provided that they do not have common
factors)

e  Without restriction on the time delay

e  Without restriction on the plant zeros (stable or unstable)

This method does not simplify the system zeros (this is why they can be unstable).
The only restriction concerns the possible common factors of A(g”/) and B(g!),
which must be simplified before the computations are carried out.

3.3.1 Structure

The structure of the closed loop system is given in Figure 3.11.
The plant to be controlled is characterized by the pulse transfer function
(irreducible)

g “Blg™")

- A(g™)

(3.3.1)
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in which d is the integer number of sampling periods contained in the time delay
and

Al Y =1+aq " +..+a, g " (3.3.2)
B(g)=bg " +byg +..+b, ¢ =q"'B (q") (3.3.3)

r(t) T 1 -d y(t)

—{T(a) [~ 1 98

: S(q ) A I

| PLANT |,

I 4 \

I ] R@q) I

! |

! -d -1 |

g 9 B(q) |

-1 .

P(a )

Figure 3.11. Pole placement with RST controller

The closed loop transfer function is given by

¢'T(¢"HBg™") _aT@HBE) (334

He (g™ = =
“ A(q ™S +q BlgHR(g™) P(g™)

in which
Pq!) =Aq!) Stg!) + 9 Blq) Rq)) =1 +p, g +p,q? +.. (3.3.5)

defines the closed loop poles that play an essential role for the regulation behavior.
The behavior with respect to a disturbance is given by the output sensitivity
function

AlgHS(g™") _A(gHS@@™h
(3.3.6)

S,(q")= =
PGS Y g B ORGP

It can thus be seen that P(q”/) corresponds to the denominator of the output
sensitivity function and, thereby, it defines for a large extent the regulation
behavior.
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3.3.2 Choice of the Closed Loop Poles (P(q'l))

We have seen for the case of a digital PID controller that one can specify a
polynomial P(q"!) defining the closed loop poles on the basis of a second-order
continuous-time system with the desired natural frequency and damping (see
Section 3.2.2). One can also directly specify the polynomial P(q/) from the
desired performances. To illustrate the last statement, consider the following
example.

Let

Plg')=1+p,q! with p,=-05
When there is no reference, the free output response is defined by
Y+ =-pyy® =05y

One thus obtains a relative decrease of 50% for the output amplitude at each
sampling instant (see Figure 3.12).

y (t+1)=0,5y (1)

y(0)
Figure 3.12. Responses for P(q'l) =1-0.5 q'1

Choosing p; between -0.2 and -0.8, it is clear that the disturbance rejection
speed can be controlled.

Nevertheless, generally speaking, P(¢/) is chosen in the form of a second-order
polynomial by discretization of a second-order continuous time system, specifying
@y, ¢ and assuring that the condition

025 < wyTg <15 ; 07<¢<1
is satisfied (see Section 3.2.2)°.

The polynomial chosen from the desired closed loop performances will define
the dominant closed loop poles and it will be named Pp(g™?).

3 The functions fd2pol.sci, omega_dmp.sci (Scilab) and fd2pol.m, omega_dmp.m (MATLAB®) can be
used.
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If it is desired to introduce a filtering action in certain frequency regions (or to
reduce the effect of the noise on the measure, or to smooth the variations of the
control signal, or to improve the robustness), the poles of the corresponding filter,
defined by a polynomial Pr(g/), should also be the poles of the closed loop. As a

consequence, the polynomial P(g™/) defining the desired closed loop poles will be
the product of the polynomials Pp(g!) and Pi{(q!) specifying dominant and
auxiliary closed loop poles, respectively.

P(q!) = Pp(q”!) . Pr(g”") (3.3.7)
As a general rule, the poles named “auxiliary poles” are faster than the “dominant

poles”. That is expressed, for the case of discrete-time models, by the property that
the roots of Pr(g!) should have a real part smaller than the real part of the roots of

Pp(g™).
3.3.3 Regulation (Computation of R(q™!) and S(q!))

Once P(q!) is specified, in order to compute R(g!) and S(g”/) according to
Equation 3.3.4 , the following equation, known as “Bezout identity” (equation),
must be solved:

Aq) Stq7!) + ¢ Bg™) Riq")= P(q”") (3.3.8)
Defining
ng=degA(q?!) ; np=degB(q!) (3.39

this polynomial equation has a unique solution with minimal degree (when (4(g™/)
and B(g™!) do not have common factors) for

np =deg P(q!) <ng+ng+d-1;

ng=degS(q!)=ng+d-1 ; np=degR(qg!)=ny—1 (3.3.10)
in which

S =1+s5g" +.45,47" =1+q7'S"(¢™") (3.3.11)

Rig Y =ry+nq " +..+1, g (3.3.12)

In order to solve effectively Equation 3.3.8 , this latter is often put in the matrix
form

Mx=p (3.3.13)
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in which

XD =18 0eees S, s Tsenn Ty | (3.3.14)

n s g

P =L prss Pisves Py 0502220] (3.3.15)

and the matrix M has the following form

nB+d ny
10 0 0 0 |
ai 1 . b'i
a 0 b'2 b'1
1 ' b2 na+ng+d
al .
anA a2 b' B
0 0 .
0 0 an, 0 0 0 b,
A R
ny +ng+d
where:
bi=0 for i=01.d b’y =bid for i=d+l

The vector x, which contains the coefficients of the polynomials R(¢!) and S(q-
1), is obtained, after the inversion of the matrix M, by the formula

c=mp (3.3.16)

where M_Iis the matrix inverse of M. This inverse exists if the determinant of the
matrix M is different from zero. One can prove that this is verified if, and only if,
A(g!) and B(g!) are coprime polynomials (no simplifications between zeros and
poles).

Several methods are used to solve Equation 3.3.8. These methods give better
numerical performances with respect to a simple matrix inversion.

For different reasons the polynomials R(¢!) and S(g”/) may contain, in general,
fixed parts specified before the resolution of Equation 3.3.8 . For example, if zero
steady state error is required for a step on the reference, or for a step disturbance,
the presence of an integrator in the open loop transfer function is required. This
corresponds to the introduction of a term (/-g”/) in the polynomial S(g~/) (see
Section 2.4).
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In order to take into account these pre-specified fixed parts, the polynomials
R(q!) and S(¢g"!) are factorized in the form

Rq!) =R'(q") Hg (¢°") (3.3.17)
Stq!) =S"(q7) Hs (¢7) (3.3.18)

where Hy (¢7!) and Hg(g™!) are pre-specified polynomials and

R(gY=r+ng " +..+ e (3.3.19)
Sq )=1+sig”" +..+s, ¢ (3.3.20)

For this parameterization of polynomials R(g™/) and S(¢™!), the closed loop transfer
function will be

g ‘T HBGG™)
Ag S (g HHs(g)+q “Blg IR (g HHR(g ™) (3.3.21)
P(g ™)

He (g =

and, instead of Equation 3.3.8 , one needs to solve the equation
A(q) Hy(q™) S'q) + ¢ B(q™) Hp(q™)) R'(q7) = P(q”)) (3.3.22)

In order to solve Equation 3.3.22, one needs to solve Equation 3.3.8 after
replacing: A(q”!) by 4'(¢g”) = A(g)Hs(gq™") and B(g™!) and B'(q”) = ¢B(g”)
Hp(gq™!) with the restriction that polynomials [4(g”/) Hy(q™")] and [B(g"') Hp(g™)]

are coprime.
The condition of Equation 3.3.10 on the orders of the polynomials that allow
one to get a unique solution of minimal order, become in this case

np =deg P(ql) <ny+ ny,tnptngtd-1;
ng = deg S'(q”!)=np + ng, +d—1; np =deg R’(q'l):nA +ng,—1(3.3.23)

For the controller implementation, S(g/) will be given by S'(q‘])HS(q‘] ) and

R(g) by R(q") Hp(q™).
Equation 3.3.22 or 3.3.8 can be solved by means of the functions bezoutd.sci
(Scilab) and bezoutd.m (MATLAB®) available on the book website.
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Use of Fixed Parts of the Controller (Hy and Hg): Examples

Steady-State Error

As illustrated in the previous sections, S(¢”/) must contain a term (I-¢/) in order to
have a zero steady state error for a step input or disturbance (S, (¢"7) must be zero
in steady state, i.e. for ¢ = I). Thus

Al HHg(gHS'(¢7")

S (g = (3.3.24)
w P(q—l)
and then one needs to choose:
HS(q'I) =1-q! (3.3.25)

Rejection of a Sinusoidal Disturbance
If a perfect rejection of a sinusoidal disturbance is required at a specified
frequency, it isessential that S, (g1 is zero at this frequency, which is equivalent

to the requirement that HS(q‘1 ) has a pair of undamped complex zeros at this

frequency.
In this case:

Hyqh)=1+aq!+q? (3.3.26)

with @ =-2 cos @ Ty =- 2 cos (2 7 fif; ).
If one requires only a given attenuation, HS(q‘I) must introduce a pair of

damped complex zeros with a damping factor depending on the desired
attenuation.

Signal Blocking

In some applications the measured signal contains signal components at particular
frequencies for which the controller should not react (these signals may serve for
process technological operation). This implies that at these frequencies one should
have Syp(q'l )=1. It results from Equation 3.3.24 and 3.3.6 that at these

frequencies it is essential that HR(q‘I) be null. As a consequence, the input
sensitivity function Sup(q‘l ) must be null (no effect of the disturbance upon the
control signal).
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The expression of Sup(q'[ ) is given by

A(gHH (g R (¢ (3.3.27)

Sup(qil):_ P(qil)

and one must choose the fixed part R(g”/) named Hp(g™') such that it has a null

gain at this frequency.
The fixed part of R(¢) will be of the form

Hplq!) =1+ pg’ +q? (3.3.28)

where f=-2cos awy Ty =-2 cos (2 & [/fy).

This introduces a pair of undamped complex zeros at the frequency f or, more
generally, in the form of a second order polynomial corresponding to a damped
complex zeros pair, if a desired attenuation is accepted.

In many applications it is required that the controller does not react to signals
close to 0.5 f; (where the gain of the cascade actuator-plant is generally low). In

this case one imposes:

Hp(q!) =(1+Bqg)"  n=12 (3.3.29)

with 0< #<1.

Note that (I + B ¢/)? corresponds to a damped second-order system with a
resonant frequency equal to 7z f; (see Section 2.3.2):

wo‘Vl_gz =7,

and the corresponding damping factor depends upon S through the relation

p=e

For = 1 it follows that{ = 0 and the closed loop system works in open loop at
0.5 f; (even for n=1).

Robustness
In order to guarantee both robustness margins and specified closed loop
performances, fixed parts H R(q'l ) and HS(q'I ) (as well as auxiliary poles) should
be introduced for shaping the frequency characteristics of the sensitivity functions
Syp(q‘l) and Sup(q‘l) in specified frequency regions. This will be discussed in
Section 3.6.
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3.3.4 Tracking (Computation of T(q1))

Ideally, when the reference changes, it is desired that the system output y(¢) follows
a desired trajectory y*(¢). This trajectory may be stored or generated each time the
reference is changed by using a reference model (as indicated in Figure 3.13).

The transfer function of the reference model is

-1 -1
v _49 Bulg )
H,(¢7)="—"2— (3.3.30)
4,(¢7)
Ideal case
A
-1
r®) [a B, | y () ty*
Am * r
desired trajectory —’t
fory (1)

Figure 3.13. Desired trajectory y*(t) generation

It is generally determined from desired performances (rising time, overshoot,
settling time). For example, a second-order normalized continuous-time model
(parameters @, ¢) can be defined by means of the curves given in Figure 1.10

starting from the desired performances. Once the continuous-time transfer function
and the sampling period T, are known, the pulse transfer function of the reference

model is obtained by discretization.
The pulse transfer function of the reference model will be of the form

-1 -1 -1 -1
B b b
q m(q1 ) _ 4 (buo+bmg 2) (3.3.31)
Am(q7 ) 1—i_aml +am2q7

H,(qg")=

This is the transfer function that the controller must achieve between the reference

r and the output y, eventually multiplied by ¢*? in the case of a time delay d in the

plant model (the delay cannot be compensated). In the case of the pole placement

this cannot be obtained because the plant zeros are maintained (polynomial B(g!)).
The objective is then to approach the delayed model reference trajectory

“B,(¢7h
——— —————F

* q
()= () (3.3.32)
g 4,(q7)



114 Digital Control Systems
For this, firstly y*(¢+d+1) is generated from r(?):

|
y*(t+d+1)=%r(t) (3.3.33)

m

and one chooses 7T(g/) to impose:

o Unit static gain between y* and y

o Compensation of the regulation dynamics defined by P(¢/) (because the
regulation dynamics is in general different from the tracking dynamics
4,(q7)

This leads to the choice

T(g) = G P(q) (3.3.34)
where
G {1/3(1? if B1)#0 (3.335)
1 if B()=0
The control law equation becomes
Sta) u®) + Rg™) y(v) = T(g"!) y*(e+d+1) (3.3.36)

The full diagram for the pole placement is given in Figure 3.14.

a @ e

B(1)
g Bd) Ba?)

y* (t+d+1) u(t) )
rt) | Bm + 1 45
- — ™ T Lt — q_ T
P LAY | S A |
I I I I
I I I I
| | | R |
I I I I
! | | ~(d+1) B |
| | | B@Y)
I I P(q’ I
I I I
I I
I I
I I

A ma”) B(1)
Figure 3.14. Pole placement - tracking and regulation

The transfer function (operator) between the reference and the output will be

‘17d+13,n(‘17]).3*(f]71) (3.3.37)
Ain(qil) B(l)

He ()=
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In some cases one can consider a simplification of the polynomial 7 by taking into
account just the dominant poles (as auxiliary poles are often at high frequencies
with a small influence on the time response). In this case

d'B, (¢ B P

He (g = T 50 B (3.3.38)
and
T(g™")=GPy(q™") (3.3.39)
where
o IZ”((II)) if B()=0
1 if B1)=0

If the regulation dynamics is the same as the tracking dynamics, there is no need
for a reference model of the form of Equation 3.3.33 and the polynomial T(g™/) is
replaced by a gain®:

PO
rqH=-6={3q 7 BO*
1 if B1)=0

which guarantees a unit static gain between the reference trajectory and the output
(if B(1) is not null).

The controller equations for the pole placement under different forms are
summed up in Table 3.5 (the recursive equations needed for the implementation
are boxed).

o If S(q'j) contains an integrator (S(/)=0) it follows from Equation 3.3.21 that
B(I)R(I) = P(I) and P(1)/ B(I) = R(I), respectively.
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3.3.5 Pole Placement: Examples

Table 3.6 gives the results for a pole placement design. The considered example is
the control of a plant model characterized by a second-order discrete-time model
with two real poles (at 0.6 and 0.7) and an unstable zero.

The tracking dynamics (polynomials 4,,(¢"/) and B,,(¢!)) has been obtained by
discretization of a second-order normalized continuous-time model, with @y = 0.5
rad/s and = 0.9, (T, =Is). The regulation dynamics (polynomials P(g/)) has
been obtained by discretization of a second-order normalized continuous-time
model with @y = 0.4 rad/s and ¢ = 0.9. The controller includes an integrator.

Satisfactory robustness margins are obtained. The performances are shown in
Figure 3.15.

Table 3.5. Pole placement - control law equations

_T(g )y t+d+1)-R(g"Hy()
Sa™)

S Hu)+R(g "y =GP(g ™)y (t+d +1)=T(qg ")y (t+d +1)
S(g)=1+¢"'S"(¢™
u(t)=P(g Gy (t+d +1) =S (g Yu(t-1)—R(g ")y

-1
Vi (trd+) =j'"(—ql;r(z)

u(t)

m

Ay (g =1+¢7"4, (™"

y(t+d+1)=—4,(q "yt +d)+B,(q "))

Bm (q_l) = me + bmlq_l +..

Am (q_l) = 1 + amlq_l + am2q_2 + A

Exercise:
What are the specifications for the “pole placement” technique that will lead to a
PID 2 controller ?
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Table 3.6. Pole placement results

Plant:

e d=0
e Biglh=01¢1+0247?
o Aqlh)=1-1341 +042472

Tracking dynamics:

o By (ql)= 00927 +q! +0.0687 g2
o Ay, ()= 1-12451471 +0.4066 42
o Tg=1s, wg=0.5radls, {=0.9
Regulation dynamics > P (q-!) =1-1.3741 41 +0.4867 ¢
Ty=1s , wg=04radss, =079

Pre-specifications: Integrator

**%* CONTROL LAW ***
S huo + Ry =Ty t+d+1)

Y (t+d+1) = By (g VA(aH1 o)
Controller:
o Rgl) =3-394q1+ 13141 42
o Si!) =1-03742¢"1 -0.6258 472
o T(ql)=3333-45806 g + 1.6225 472

Gain margin: 2.703 Phase margin: 65.4 deg
Modulus margin: 0.618 (- 4.19 dB) Delay margin: 2.1 s

3.4 Tracking and Regulation with Independent Objectives

This controller design method makes it possible to obtain the desired tracking
behavior (changing of reference) independently of the desired regulation behavior
(rejection of a disturbance). For example, the performance specifications illustrated
in Figure 3.16 correspond to a situation for which the desired regulation response
time (for a step disturbance) is significantly smaller than the desired tracking
response time (for a step reference). Note that the reverse situation may be
encountered. This method is a generalization of the so-called “model reference
control”.
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Plant Output
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Figure 3.15. Pole placement performances

Unlike the “pole placement” method (Section 3.3), this method leads to the
simplification of the zeros of the discrete-time plant model. This enables the
tracking and regulation performances to be achieved without approximation.

This control strategy permits a RST digital controller to be designed for both
stable and unstable systems:

e Without restriction on the degrees of the polynomials 4(¢!) and B(g™!)
characterizing the pulse transfer function of the plant
e  Without restriction on the time delay d of the system

As a result of the simplification of the zeros, however, this strategy can only be
applied to discrete time models with stable zeros.

This method cannot be applied to systems with fractional delay greater than
0.5T,. In the case of a fractional delay greater than (.57, however, one can

consider approximating (in the identification phase) the model with a fractional
delay by a model with an augmented integer delay.

Note that unstable zeros can be the consequence of a too fast sampling of
continuous time systems characterized by a difference greater than 2 between the
numerator and denominator degree of the continuous time transfer function (even
if the continuous time zeros are stable) (Astrém and Wittenmark 1997).

This method can be considered as a particular case of the “pole placement”
method. This equivalence can be obtained by imposing that the closed loop poles
contain the zeros of the discrete time plant model (defined by the polynomial
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B*(q’!)). This is the reason for which the zeros of the plant model must be stable
(see Section 3.4.2)7.

A
tracking regulation
# output
reference
-t

Figure 3.16. Tracking and regulation performances

Zero Admissible Zone

Imag Axis

Real Axis

Figure 3.17. Admissible domain (hatching zone) for the zeros of the discrete-time plant
model (tracking and regulation with independent objectives)

7 An approximation of the tracking and regulation with independent objectives, for the case of unstable
zeros, can be obtained by pole placement, where the unstable zeros, which should be specified as closed
loop poles, are approximated by stable zeros. This technique is presented in the stochastic context in
Section 4.3.
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It is convenient then to verify that, before the application of this method, the
zeros of B (q!) are stable, and, moreover, that complex zeros have a sufficiently
high damping factor (£ > 0.2). In other words, the zeros should lie inside a region

defined by the cardioids related to the constant damping factor ¢ =0.2 (see Figure
2.21). This admissibility domain is shown in Figure 3.17.

3.4.1 Structure

The structure of the closed loop system is presented in Figure 3.18.

- gl -~

q -(d+1) Bm(q.1)

An@™

y (t+d+1) u(t) y(t)
rt) | B * 1 -d
®) L I I qB -
| A m I I S A |
|
1
I | | |
I | | |
R
| | | |
| | | |
| | | -(d+1) |
' | | 1 o
I | P(a") |
| | |
| |
| |
| |

Figure 3.18. Tracking and regulation with independent objectives

The closed loop poles are defined by the polynomial P(g™/) that almost
completely specifies the desired behavior for the regulation.
As a general rule, P(¢7!) is the product of the two polynomials

P(q!) = Pp(q!) . Pp(q!)

where Pp(q!) is determined as a function of the desired performances and Pr(g™!)

represents the auxiliary poles (for more details see Section 3.3.2).
The desired transfer function between the reference 7(f) and the plant output
y(f), which defines the tracking dynamics, is

g @ VB, (q1)/ A,(q7)

The output of the tracking model B,,(¢°") / 4,,(q”") specifies the desired trajectory
y™* with d+1 steps ahead.

The plant to be controlled is characterized by the pulse transfer function given
in Equation 3.3.1, where the polynomials A(¢!) and B(g!) are specified by
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Equations 3.3.2 and 3.3.3. Note that in this case polynomials 4(¢"/) and B(g"!) can
have common factors.

The computation of R(¢!), S(g™!), T(¢™!) is done in two stages. First, by means
of polynomials R(g™!) and S(¢g"!), the closed loop poles will be placed at the desired
values specified by the polynomial P(¢/), and the zeros of the discrete-time plant
model will be simplified. Second, the pre-filter 7(¢/) is computed in order to
obtain the tracking of the reference trajectory y*, delayed by d steps. Note that for
P(q!) = 1 this method corresponds to the “model reference control”.

3.4.2 Regulation (Computation of R(q™!) and S(q!))

Without the pre-filter 7(g™!), the closed loop transfer function is:

B 7d+lB*(q71) q*d+1
Hey(g™)= 1 ; -
Mg DS g B @RGPl ) G4
_ q*d+1B*(q71)
B'(¢P(g™)

The closed loop poles should be those defined by P(¢ /) and the system zeros
should be cancelled (in order to obtain a perfect tracking at a later stage).

From Equation 3.4.1, it results that the closed loop poles must contain in
addition the zeros of the plant model.

Once P(q!) is specified, it results from Equation 3.4.1 that, in order to compute
R(g™!) and S(¢7!), the following equation must be solved:

A(q) S(q) + @D B Rig)) = B*(q!) P(q°)) (3.4.2)

Equation 3.4.2 corresponds to the pole placement with a particular choice of the
desired closed loop poles (that contain np-/ additional poles corresponding to the
plant zeros).

However, in order to solve Equation 3.4.2, one observes that S(¢/) should have
B*(g”!) as a common factor:

S(g ) =so+597 +..+5,47" =B (g)S"(g7) (3.4.3)

Introducing the expression of S(¢!) given by Equation 3.4.3 in Equation 3.4.2, and
after simplification by B*(¢"/), one obtains

Al ) + @V R = Plgr!) (3.4.4)

This polynomial equation has a unique solution for
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np =deg P(q!) = ny+d ; deg S’(q'l) =d; degR(q!)=ny1 (3.4.5)
in which

R(q_])=r0 +rlc]_1 +...+rnn/’71q7"/“Jrl (3.4.6)
and

Stgh)=1+s,q1+.+5,q4 (3.4.7)

Equation 3.4.4 corresponds, under the conditions of Equation 3.4.5, to the matrix
equation

Mx=p (3.4.8)

where M is a lower triangular matrix of dimension (n+d+1) x (ny+d+1)

ngtd+1

- A
1 0
a| 1 0
a a 0
: : 1
aq  a4.; ... aj 1
+d+
ad+1 ad a1 1 A d 1
Ad+2  aAd+1 Q 0
0
0 0 0 a, 001
d+1 ny
xl = (L, 8] ey Sty s Ty s Fyeees Pyt | (3.4.9)
Pl =1L D1 Paseees Py > P15 P v (3.4.10)

Some coefficients p; can be zero. Since M is a lower triangular matrix, Equation
3.4.8 (and respectively Equation 3.4.4) always has a solution.



Robust Digital Controller Design Methods 123

In order to solve Equation 3.4.4 one can use predisol.sci (Scilab) and
predisol.m (MATLAB®) functions available on the book website.

One observes that, because of the nature of the design methodology, S(g~/)
already contains a fixed part (Equation 3.4.3) specified before solving Equation
3.4.4.

Thus, it is convenient to consider, as in the pole placement case, a
parameterization of S(g”/) and R(¢"!) in the form

R(q") = Hgr () R'(q™) (3.4.11)
Stq") =Hs (¢°") S'(q7) (3.4.12)

In which Hp(g™!) and Hg(q™!) represent the pre-specified parts of R(¢"/) and S(g™/).
In the case of tracking and regulation with independent objectives, Hg(g!) will
have the form

Hs(q!) = B¥(q!) . H's(q7!) (3.4.13)

and Equation 3.4.4, in the general case, becomes
Alq) Hs(a) S'a!) + @D Hytq) R(q™) = Plg”!) (34.14)

For solving 3.4.14 one can also use predisol.sci (Scilab) and predisol.m
(MATLAB®) functions. Note also that pole placement equations can be used for

computing S’(¢”!) and R ’(g”!) by introducing B*(¢”/) in the expression of P(q/).

Steady-State Error

In order to have a zero steady state error for a step input or a step disturbance, the
open loop cascade must contain a digital integrator, i.e. the polynomial S(g"/) must
contain a term (1-¢7/):

Sa!) = B"a) (1-q7) S'(a”)= B (q") H'stq™!) S'q™) (34.15)

Introducing this expression in Equation 3.4.2 and after simplification by B*(g™/)
one gets

A(q) (1-g) S'q) + @D R(g!) = P(q!) (3.4.16)

which must be solved in order to obtain the corresponding coefficients of S ,(q‘] )
and R(g"!) when an integrator is used.
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3.4.3 Tracking (Computation of T(q!))

The pre-filter T(g™/) is computed in order to achieve (in accordance with Figure
3.17), between reference 7(¢) and y(t), a transfer function:

oy VBLgT) _ Bug DT (g Hg o
HCL(q )_ -1 - 1 1 ( <. 7)
4,(q7) 4,(q )P )
From Equation 3.4.17
T(g") = P(g7) (3.4.18)
The input of T(g!) is the (d+1) steps ahead prediction of the desired trajectory
y*(t+d+1), obtained by filtering () with the tracking model B,,(g7) / 4,,(g7").

* Bm(qil)
d+1)=—"—1>—= 3.4.19
Vv =2 L) (3.4.19)

and the controller equation will be given by

Stq) u®) + R(q™) y(v) = P(q!) y™(t+d+1) (3.4.20)

Equation 3.4.20 may also take the form

1y * -1
u(t) = Plg )y (1+d +_11)—R(q )y() (3.421)
S(g™)
Since S(g™!) is of the form

S(g =5y +59" +ots, g =850+ 'S (q™H

. (3.4.22)
=B"(¢7")S'(¢g™")

and considering the expressions of B*(¢”/) and S'(¢"/) (given by Equation 3.4.7):
sp=b; (3.4.23)

Therefore Equation 3.4.20 may also take the form®

8 One can also normalize the parameters of the controller by dividing all parameters by sp = by. This

avoids a multiplication operation in real time implementation.
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u(t) = bi P(g Yy (t+d+1) =S (g Hut-1)-R(g™ )y(r)] (3.4.24)
1

As for the pole placement case, if the desired dynamics is the same both for
tracking and regulation, the reference model is no longer necessary and the
polynomial 7(g/) is replaced by a simple gain to guarantee unit static gain
between the reference trajectory and the output:

Tlq!) = G = P(I)
If S(¢"!) contains an integrator, then the polynomial 7(g"!) becomes

T(q!) = G =R(1)

3.4.4 Tracking and Regulation with Independent Objectives: Examples

Table 3.7 gives the results of the design for tracking and regulation with
independent objectives.

The example considered here concerns the control of a plant characterized by a
second-order discrete-time model with two poles at z = 0.6 and at z = (.7, and with
a stable zero. The desired tracking dynamics (polynomials 4,, (¢°/) and B,, (¢7)))
has been obtained by discretization of a second-order normalized continuous-time
model with @y = 0.5 rad/s and = 0.9 (Ty = Is). The desired regulation dynamics

(polynomial P(gq7)) has been obtained by discretization of a second-order
normalized continuous-time model with @y = 0.4 rad/s and £ = 0.9. The controller

contains an integrator. The computed values of R(¢/) and S(¢7!) are given in the
lower part of Table 3.3, and the simulation results, for a reference tracking and a
load disturbance (step) on the output, are presented in Figure 3.19. Note that the
position of the zero is close to the boundaries of the admissibility domain (zy = -

0.5 corresponds to {'= (.2), and this explains the damped oscillations observed on
the control signal when a step disturbance occurs.

Table 3.8 gives the computed values of the controller parameters for a plant
having the same dynamics of the previous one but with a time delay d = 3 (instead
of d = 0). All the desired performances have been maintained. Polynomial S(g~!)
has a higher order. Closed loop system responses are presented in Figure 3.20. One
observes that the output response is the same as in the case of d = 0 (Figure 3.20)
except that they are shifted by d steps. Moreover, by comparing Figures 3.19 and
3.20, one observes that the control signal is the same. In other words, even if the
same output value is recovered with a delay of three sampling periods, the
controller computes a signal that is the same as in the case of d = 0. In fact, for the
case with time delay, the controller contains a three step ahead predictor (for
details see Appendix B).
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Table 3.7. Tracking and regulation with independent objectives (d=0)

Plant:
e d=0
e Bigl=02¢1+01q¢7?
o Algl)=1-13q41 +042472
Tracking dynamics:
o B, (qL)= 00927471+ 0.0687 42
o Ay, ()= 1-124514"1+ 0.4066 42
o Tg=1Is, wp=0.5rads, {=0.9
Regulation dynamics > P (q°!) =1-1.37414"1 +0.4867 42
Tg=1s , wp=04rad/s, =09

Pre-specifications: Integrator

##% CONTROL LAW ##*
-1 Iy oipy = T~y v
S(@)u@®) + R (g0 =T (q7")y (t+d+1)

Y erd+ D) = By, (VA (D] 1)
Controller:
o Rql) =09258-1.233241 +0.4247
o Sigl)y=02-0141-01q¢7
o Tq)=Pa?
Gain margin: 2.109 Phase margin: 65.3 deg
Modulus margin: 0.526 (- 5.58 dB) Delay margin: 1.2's

One observes that the delay margin is smaller than one sampling period. In this
case, one should specify high frequency auxiliary poles in P(¢™!) that lightly affect
the low frequency behavior but improve the robustness at high frequencies (in
particular the delay margin).

The maximum number of closed loop poles (the maximum degree of
polynomial P(¢7!)) is 5. Having already specified a pair of dominant poles, one can
impose, for example, Pr(qg"/) = (I — 0.1 ¢’!)’ . In this case, one obtains a gain
margin of 2.157, a modulus margin of 0.534 (-5.45dB), a phase margin of 58.5
degrees and a delay margin of 1.19s (greater than one sampling period).

The closed loop system responses are presented in Figure 3.21. Tracking
performances are the same as for the case without auxiliary pole, and regulation
performances are almost unchanged. One also remarks that the introduction of
these poles reduces the stress on the actuator in the transient for the disturbance
rejection.
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Table 3.8. Tracking and regulation with independent objectives (d=3)

Plant:

e d=3
o Bigl=02¢1+0147?
o Al =1-13¢1+042472

Tracking dynamics:

o By (q71)=00927+0.0687 ¢"1

o Am(qgl)=1-124514"1 +0.4066 42
o Ty =1s, wp=05radls, =09

Regulation dynamics > P (q-!) =1-1.3741 41 +0.4867 g2
Ty=1s , wg=04radss, {=10.9

Pre-specifications: Integrator

##% CONTROL LAW ***
Sy u@®) + R (g vy = T (g7 )y (¢+d+1
(Hu@® +R@HO =T ")y (¢t )

v erd+1) = [By, (a1 )Ay, (a71) 1 refid)
Controller:

° R(q']) =0.8914-1.1521 q'] +0.3732 q'2
° S(q_l) =02 +0.0852 q-l -0.0134 C]_Z -0.0045 q’3 -0.1785 q'4

- 0.0888 g~
o Tql) =P
Gain margin : 2.078 Phase margin: 58 deg

Modulus margin: 0.518 (- 5.71 dB) Delay margin: 0.7 s

As a general rule, when the plant has a time delay, one needs to specify not only
the dominant poles of P(¢7!), but also auxiliary poles at values other than 0 in order
to improve the robustness with respect to the possible variation of the delay (this
remark is also valid for the other methods presented in this chapter).
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3.5 Internal Model Control (Tracking and Regulation)

The internal model control (IMC) strategy (not to be confused with the internal
model principle) is a particular case of the pole placement technique. In the internal
mode control the poles of the plant model are chosen as the desired dominant poles
of the closed loop. As a consequence, the closed loop system will not be faster than
the open loop system. Since there will not be an acceleration of the closed loop
time response with respect to the open loop time response, one can expect a better
closed loop robustness with respect to plant model uncertainties. As the closed
loop poles include the poles of the plant model, this technique can be applied only
to stable and well damped discrete time plant models. This technique is often used
for the control of stable plants with a large time delay with respect to the open loop
rise time (the rise time does not include the time delay!).

The control structure is the same as for the pole placement (Figure 3.14).

Plant Output
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Figure 3.21. Performances of tracking and regulation with independent objectives with
auxiliary poles in presence of a pure time delay (d = 3)

3.5.1 Regulation

In the case of the internal model control Equation 3.3.22 of the pole placement
becomes

AgHS(g Y +q ' Blg HR(gTH=A(g P (gTY=P(g")  (3.5.1)
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Often in practice one selects

Pr(g ™) = (1 +aq”! ) (3.5.2)

or

Petg ) =(+ag ivag ) (3.5.3)

By examining the structure of Equation 3.5.1 one observes that R(g™/) should have
as a factor A(q”/):

R(g™)=A4(qHR'q™) (3.5.4)
and Equation 3.5.1, after elimination of the common factor A(g™/), becomes

S +q™BlgHR(q")=Pr(q™") (3.5.5)

which presents similarities with Equation 3.4.4 for tracking and regulation with
independent objectives (by replacing in Equation 3.4.4 S'by R', Aby ¢ “B,

qf(dH)R by S and P(qfl) by Pp (qfl) ). Equation 3.5.5 has a unique minimal
order solution for

np, =degPr(q”)<ng+d

ng=degS(qg ' )=ng+d i  np=degR(qg"')=0

The solution of Equation 3.5.5 becomes simpler if one considers the typical case
where an integrator is introduced in the controller, i.e.:

S =l-g" @™ (3:5.6)
In this case, for g=1 Equation 3.5.5 becomes

B(R'1)=P=(1) 3.5.7)
since S(/)=0 and one obtains

Pr)

R'(g™H=R'()= 30 (3.5.8)
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and
-y Pe(D)
R(g—)=A4(q )B(l) (3.5.9)
-1 “1\orp -1 -1 -d 4, Pr()
S(g)=(0-9g )S(q )=P:(qg )—q "Blg )—B(l) (3.5.10)

From Equation 3.5.9 it follows that in this design the poles of the plant model
(defined by 4(g!)) will be simplified by the zeros introduced by the controller.
This implies that the poles of the plant model should be stable (see Chapter 2,
Section 2.5.2).

One interesting aspect of this design is the possibility to characterize the set of

all the controllers as a function of Pg(g”/) without having to solve a polynomial
equation.

If, in addition to the integrator, a fixed part Hg(g™!) is imposed in R(g™!), S(g!)
has the structure given in Equation 3.5.6 and R(g"!) will have the structure

R(g™") = A(g™YH (g HR (g™ (3.5.11)
Equation 3.5.5 becomes

S +q " BlgYHr(¢ R (g™ ) =Pr(g™") (3.5.12)
with the condition

Pr(1) = BO)H r(HR'(1) (3.5.13)
from which one obtains

Pr ()

R'(@)=R()=—L~_ 3.5.14
(g )=R(® BUOH, (D ( )
-1\ _ -1 -1 PF(l)

R(q™—)=A(q )Hg(q )—B(I)HR(D (3.5.15)

S(g™)=Pr(g)-q™B(g"YH(¢gTHR'(q7") (3.5.16)

3.5.2 Tracking

In the case of internal model control the polynomial 7(g!) used for tracking is
given by (like in the pole placement)
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T(q") = A(g " )P (q7")/ B(1) (3.5.17)

But if one chooses the same dynamics for tracking and regulation, the tracking
reference model can be eliminated and 7(¢/) will be given by

AW P (1)

T(g™)=T()= B0)

(3.5.18)

which guarantees a unit steady state gain between the desired tracking trajectory
and the controlled output.

3.5.3 An Interpretation of the Internal Model Control

Let us consider first the case Hg(q~/)=1. The control law equation (Table 3.5) is
written using the expressions of R, S, T given by Equations 3.5.9, 3.5.10 and
3.5.17:

P

S(q M u(t) = {PF(q‘l) B0

g “B(g™ >}u(r) =
(3.5.19)

[# @y v d - D 4

-1
B B() A(g )y )}

which can be re-written as

PF(q_l)u(f)=ﬁA(q_l)PF(q_l)y*(t+d+l)—

Pr (D)
B()

(3.5.20)
4™y -7 Bg™ ()]

Taking into account that by hypothesis 4(g™!) is asymptotically stable one obtains

So(q ()= PF(ql)ua)—%A(ql)PF(q‘)y (t+d+1)-

Pe(®) o 4'Bg™) 3501
B0, A4 ){() 2 <>} (3.5.21)

To(q™ )y (t+d +1)~Ro(g ){ (-4 B4 <r)}
4@

where
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Pr(D)
B(1)

So(g™)=Pr(g™")

%mlrréﬁpm‘):ﬁﬁAwlﬂyml)

Ry(g )= Ag™)

This leads to the equivalent representation of the closed loop behavior shown in
Figure 3.22.

y*(t+d+1) + u(t) y(t)
—» To 1/S, » Plant T»
_ +
y(t
o o“B/A y(t)
Model

Ro

Figure 3.22. Equivalent diagram of the internal model control

One can see that an equivalent implementation of the RST controller can be
considered. This implementation explicitly features the model of the plant
(prediction model) as a component of the control scheme. It is the error signal
between the plant output y(¢) and the predictor output y(¢), which is fed-back.
Note also that the computation of Ry and Sy does not require the solution of a
polynomial equation.

For the case of Hg(q!)# I, using Equations 3.5.14, 3.5.15, 3.5.16 and 3.5.17
one obtains a similar result. Only the expression of Ry(¢~!) changes (it will contain
in addition the factor H, R(q_j)/ Hg(1)).

3.5.4 The Sensitivity Functions
In the case of internal model control the sensitivity functions have a particular

structure, as a consequence of the choice for the dominant poles of the closed loop
(they are equal to the plant model poles):

S _, 2 BEYH ()P
Pe(z7") B Hz()Pr(z7")

S,z = (3.5.22)
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Z'BEHRT)  ZBzHHR(ETHP()

S (z)=- = 3.5.23
yb (Z ) A(Zil)PF (Zil) B(l)HR (DPF (Zil) ( 5 )
Gy RETY  AGETHHRETHP()
S T T BB ) (3329
S (Z_l)z_z*dB(z*‘)S(zfl) =_z*“’B(zfl)S (3.5.25)
" .

A(zYPp (27 Az 7

Equation 3.5.25 clearly indicates that the plant model should be asymptotically
stable in open loop. One can also see the direct influence of the transfer function

HR(q'I)/Pp(z'I) (i.e. the choice of Hg and PF) upon the sensitivity functions.
3.5.5 Partial Internal Model Control (Tracking and Regulation)

In many applications the plant model is characterized by low frequency dominant
poles (located within or close to the desired attenuation band) and secondary poles
located outside the desired attenuation band.

If the dominant poles are too slow, or if they have a too low damping (often the
case for mechanical systems), the internal model control cannot be applied as such.

In this case one uses a mixture of pole placement and internal model control.
The pole placement will be used to assign the desired dominant poles of the closed
loop but it will not move the secondary poles of the plant model (which will
become poles of the closed loop).

Suppose A(q']) has the form

A(g)=4(q 4,7 (3.5.26)

where 4,(¢”") defines the dominant poles of the plant model. In the case of partial
internal model control, the equation defining the closed loop poles will be

A4S +q BgTHR(@G™)

§ L L (3.5.27)
=Pp(q )A,(q )Pr(q )

Examining the structure of Equation 3.5.27 it is seen that R(g”") will be of the form

R(g™")=4,(g7HR'(q™") (3.5.28)

and Equation 3.5.27 (after elimination of the common factor 45(g™')) becomes
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A(gS(g Y +q7B(g YR (¢ ) =Py(g HPr(g 7" (3.5.29)

This technique can also be interpreted as a simplification of the plant model
secondary poles (defined by 4 g(q_])) by the zeros of the controller.

3.5.6 Internal Model Control for Plant Models with Stable Zeros
If B(q_l) has all its zeros inside the unit circle (and these zeros are sufficiently

damped) one can use the tracking and regulation with independent objectives
design but using as desired poles the dominant poles of the plant model.

One considers that S(q_l) has the structure given by Equation 3.4.15 (presence

of an integrator) and one supposes HR(q_[)=I (in order to simplify the
presentation).
Equation 3.4.16 becomes

A@q™") (-1 S@™") + @V RG") = aq™) Pr(g”) (3.5.30)

This implies that R(¢™") will have the form

R(gH=4(qHR' ¢ (3.531)

and Equation 3.5.30 becomes

(1-¢) Stq") + @V Rq") = Prig”) (3.5.32)
For g=1Ione has

R'(1)=R'(q") = Pr(1) (3.5.33)
It results that

(1-g") S'q") = Pr(q”’) - @+ P(l) (3.5.34)

from which one gets

Sa”") =B @) [Pr(q”) - ¢ @D Pr(1)] (3.5.35)

Rg") = 4(g") Pp(1) (3.5.36)
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3.5.7 Example: Control of Systems with Time Delay

Internal model control is often used for the control of systems with large time delay
compared to the rise time of the system without time delay. If d > g (where ¢ is
expressed in sampling periods), the reduction of the rise time in closed loop does
not produce a significant improvement of the total response time, since this is
mainly determined by d. Therefore, one is able to use internal model control.

However, even when one takes PD(q_l)=A(q_l), the introduction of the auxiliary

poles and/or of the fixed part Hp(g ') is necessary in order to assure the robustness
of the closed loop with respect to the time delay variations.

Consider the case Pr (q_])=1, Hp (q_])=] and B(q_l)= b1q'] (b;>0). From
Equations 3.5.22 and 3.5.23 one gets

S, ) =1-z""=(1-z"1+z"+22 + 427 (3.5.37)
Sp(zh)y=z7" (3.5.38)

Syp(z_]) hasazeroat z=1 (w=0) and d zeros on the unit circle if d is even, or
d-1 zeros on the unit circle plus a zero at z=-1 (w=x) if d is odd. From

Equation 3.5.37, since | z'd']| is always equal to /, it results that

<2 (3.5.39)

max

‘Syp (G

and then the modulus margin AM = 0.5 is always achieved.
However

‘Syb (e )‘ =1 for 0<w <7 (3.5.40)

and therefore the frequency characteristic of | S, will cross the template for
Az =T, (see Figure 2.39: | S| should be smaller than 7 starting from /"= 0.17f;).

The condition for satisfying the delay margin in Figure 2.39 is in this case

‘z*d*‘ <1 (3.5.41)
-

and clearly this will not be satisfied at all frequencies.
We will examine next the beneficial effect of the introduction of the auxiliary

poles Pp(q_l) and of a fixed part H, R(q_l) in the controller.

Auxiliary Poles (Pf(q_l) # 1, HR(q']) =1)
Let us select:
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Po(gH=0+aq™) “l<a<0 (3.5.42)

and search for the value of « assuring the delay margin Az =T . In this case S is
given by Equation 3.5.23 and the condition for the delay margin A7 =T, takes the

form

Exalao] _ 1

:| Pr(z7) | ‘1_2_1‘ z=e¢/” 0<w<rz (3.5.43)

o)
which for Px(g”") given by Equation 3.5.42 becomes

| l+a |< 1
|1+05271| ‘l—z_l‘

z=e/” 0<w<n (3.5.44)

Replacing z by z=e/”one observes that the worst situation occurs at
o = r (i.e. f=0.5f;) where 3.5.44 becomes:

a) Syb Magnitude Frequency Responses

Magpnitude (dB)

Magpnitude (dB)

=.=. Template for Modulus margin
- Template for Delay margin = T,

T T T
0.35 0.4 0.45

Frequency (fff)

Figure 3.23a,b. Auxiliary poles effect on the delay margin: a noise- input sensitivity
function (Syb); b output sensitivity function (Syp)
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l+a

N <05 = a<-0333 (3.5.45)
-a

Figure 3.23a,b shows the frequency characteristics of |S,| and [Syp| (controller with
integrator) for a plant model characterized by d=7, B(g)=¢q' (b =1),
A(g™")=1+a,q " with @, =—-0.2 and for three values of a: a=-0.1; a=-03;
a=-0333. For «=-0.1 and «=-03 one gets the delay margin
A7 =0.527, and A7 = 0.917, , respectively, and the corresponding curves of S, and
S)p intersect the robustness template for Az =7,. For a=-0.333 the effective
delay margin is Ar=7, and it can be seen that the corresponding sensitivity

functions do not cross the robustness template for the delay margin Az =T .

If one uses auxiliary poles PF(Z_]) of the form Equation 3.5.3:

-1\ _ -1 1 —1 nPF71
Pe(qg ) =(+ag )1+aq )

one selects —1<a<0and-0.25<a'<-0.05 with np <nz+d . In this case one

introduces n, —1 high frequency auxiliary poles. This choice leads to a further

contraction of S,, around 0 dB in the high frequency region, and a reduced effect
upon the reduction of the performance at low frequencies.

Figures 3.24a,b shows the frequency characteristics of the modulus of the
sensitivity functions S and Sy, for the same plant model, using either an auxiliary
pole of the form of Equation 3.5.42 with ¢=-05 or auxiliary poles of the form of
Equation 3.5.3, with @ =—-0.3, @'=-0.1, np —1=7. The corresponding delay

margins are 2.097 and 2.14T;, respectively. The second solution is much more
efficient for attenuating the sensitivity functions at high frequencies (improving the
robustness and reducing the stress on the actuator).

Introduction of Hr(q"") (PH(g =1, Hr(g™)) # 1)
In this case, from Equations 3.5.14 and 3.5.15 one has:

Rig™)=A(g HHp(g HR'(q7") (3.5.46)
with
Hp(qg™)=1+pq"" (3.5.47)

which leads to
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1

re =1y _
=300+ 5

and (using Equation 3.5.16 ):

g “Blg”)(1+pg7")
B()(1+ B)

S(g™H=1-

For B(g™") = b,q" one gets

A g

SwE ="

and the condition for getting a delay margin Az =7, becomes

Lepz!| 1
| 1+ | ‘1—271‘

z=e!” 0<w<

a) Syb Magnitude Frequency
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(3.5.48)

(3.5.49)

(3.5.50)

(3.5.51)

Figure 3.24a,b. Effect of high frequency auxiliary poles on the sensitivity functions of plant

models with time delay: a noise- input sensitivity function (Syp); b output sensitivity

function (Syp)
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The worst situation occurs at @ = 7 /2 (f=0.25f;) where the condition of Equation
3.5.51 becomes (replacing < by <)

1+_ﬂ22g0,5 = po (3.5.52)
I+ 5)

Therefore one should choose in this case
Hy(gH=1+4" (3.5.53)

in order to assure a delay margin of (almost) one sampling period.
It is interesting to note that Equation 3.5.53 corresponds to the opening of the

closed loop at 0.5f; (see Section 3.3). This solution leads to Sy, = 0 at f'= 0.5f; and
therefore a significant increase of the robustness at high frequencies. Figure

3.25a,b presents comparatively the frequency characteristics of the modulus of Sy,
and Sy, for the cases: 1)Hy(g)=1+q"', P.(¢)=1 and 2)Hy(¢ ")=1,
Pr(g7)=1-0.333z".

Of course one can use simultaneously P.(¢™') =1 and H, (ghH=l1.

a) Syb Magnitude Frequency Responses
T
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& 2 ‘ ‘ P | k=1 Pp=1-033%
- | | | e, | L Pe=1
o AF-—-b--—bo oL L Tl S
° | | | [T RN
2 | | | |
c bF---r-—--r---rFr---r T T o
> | | | |
= | | | |
] it il el el il S H e e i
| | | | | |
10 L L L L L 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency (flfs)
b) Syp Magnitude Frequency Responses
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Figure 3.25a,b. Effect of the fixed part H,(q™')=1+¢ 'on the sensitivity function of a

plant model with time delay: a noise- input sensitivity function (Syp); b output sensitivity

function (Syp)



Robust Digital Controller Design Methods 141

3.6 Pole Placement with Sensitivity Function Shaping

In many applications, in order to satisfy simultaneously the imposed performance
in regulation and the robustness margins, one is obliged to shape the modulus of
the output and input sensitivity functions in the frequency domain. The shaping of
the sensitivity functions is done by the appropriate selection of the desired closed
loop poles and the introduction of pre-specified filters in the controllers.

The modulus of the output sensitivity function |S,, (z/)]° is a significant
indicator of both disturbance rejection properties and robustness properties of the
closed loop (see Chapter 2, Section 2.6).

The modulus of the input sensitivity functions [S,, (z'1)| is an indicator of the
actuator stress in various frequency regions as well as an indicator of the tolerance
to the additive uncertainties upon the plant model (see Chapter 2, Section 2.6).

Using a digital RST controller, the output sensitivity function has the
expression

Sy = A(zl)S(jEi)ZSE’;(lz)l)R(z‘) @.6.1)
and the input sensitivity function has the expression

S == A(zl)S(zA(é:)ZRE]ZB;(IZ)I)R(ZI) (3.6.2)
where

R(z1) = Hp(z") R'(z")) (3.6.3)

S(z!) = Hyz"1) S'(z"1) (3.6.4)
and

A1) SE1) + 24 B(z!) R(z1) = Pp(z!) . Pu!) = P (3.6.5)

In Equations 3.6.3 and 3.6.4, Hy(z"!) and H{(z"/) correspond to pre-specified fixed
filters incorporated in R(z!) and S(z'/) respectively. S(z/) and R(z"!) (more
precisely R'(z/) and S'(z’!)) are the solutions of Equation 3.6.5 where the
polynomial P(z!) defines the desired closed loop poles. The polynomial P(z/) is
factorized in order to emphasize the dominant poles defined by PD(Z‘I) and the

auxiliary poles defined by Pp(z")).

° In this section the notation “z” (complex variable) will be used instead of “g” when we will examine
the properties of the various transfer functions in the frequency domain.
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In what follows we will examine the properties of the sensitivity functions in
the frequency domain (¢ =z =e’”, 0 =27 f/f,).

The various properties of the sensitivity functions will be illustrated by means
of the following example (T}, =Is).

Plant model:
Aq) =1-07q" Blg) =034 d=2.

Specified performance (polynomial P(q)):
Defined by the discretization of a continuous time second-order system with

o wy=04o0r0.6orlradls
e (=0.9 (constant)

3.6.1 Properties of the Output Sensitivity Function

Property 1
The modulus of the output sensitivity function at a certain frequency gives the
amplification or the attenuation of the disturbance.

At the frequencies where |Syp(@)| = 1 (0 dB), there is neither amplification nor
attenuation of the disturbance (operation like in open loop).

At the frequencies where |Syp (@)| < 1 (0 dB), the disturbance is attenuated.

At the frequencies where |Syp (@)| > 1 (0 dB), the disturbance is amplified.

Property 2
For asymptotically stable closed loop system, and stable open loop, the integral of
the logarithm of the modulus of the output sensitivity function from 0 to 0.5 f

satisfies'”

0.5f,
[1og]s,,,(e7" Jar =0
0

In other terms, the sum of the areas between the modulus of the sensitivity function
and the 0 dB axis, taken with their sign, is null. As a consequence, the attenuation
of disturbances in a certain frequency region implies necessarily the amplification
of disturbances in other frequency regions. Figure 3.26 illustrates this
phenomenon.

10 For a proof of this property see Sung and Hara (1988). In the case of unstable open loop systems but
stable in closed loop, the value of this integral is positive.
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The output sensitivity functions shown in Figure 3.26 correspond to the
example mentioned earlier for various values of @y (0.4, 0.6, I rad/s) but { =

constant (0.9).

It follows that increasing the value of attenuation in a frequency region, or
widening the attenuation band, will lead to a higher amplification of disturbances
outside the attenuation band. Figure 3.26 clearly emphasizes this phenomenon.

Property 3
The inverse of the maximum of the modulus of the output sensitivity function

corresponds to the modulus margin A M:
(3.6.6)

aM = (|Syp(e_jw)|max) -

The modulus margin is defined as the minimal distance between the Nyquist plot
of the open loop transfer function and the critical point [-/, jO]. The typical values

for the modulus margin (see Section 2.6) are

AM > 0.5 (-6 dB) [min: 0.4 (-8 dB)]

Recall that a modulus margin AM > (.5 implies a gain margin AG > 2 and a
phase margin A¢ > 29°. To assure a safe modulus margin, it is necessary that:

1Syp(e7 )| max < 6 dB (or exceptionally 8 dB)

Syp Magnitude Frequency Responses

Magnitude (dB)

------ = 0.6 rad/sec
— o= 1rad/sec
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s : — o= 0.4 rad/sec
i

T
0.45 0.5

T T
0.35 0.4

Frequency (flfs)

Figure 3.26. Modulus of the output sensitivity function for different attenuation bands of the

disturbance
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From property 2, it is seen that the increase of the attenuation in a certain

frequency region, or the increase of the attenuation band, will in general lead to the
increase of |Syp(e7“))| max a0d therefore a reduction of the modulus margin (and of

the system robustness).

Property 4
Cancellation of the disturbance effect on the output (|Sy,|= 0) is obtained at the
frequencies where

A(e)S(e7) = A(e ")V H (e 7*)S' (7Y =0 ; w=27 f/f, (3.6.7)

This results immediately from Equation 3.6.1. Equation 3.6.7 with g= z= €7@
defines the zeros of the output sensitivity function in the frequency domain.
The fixed pre-specified part of S(¢”!), denoted H S(q‘] ), allows one to introduce

the zeros at the desired frequencies.
For example

Hs(q_]) =1- ‘]_1

introduces a zero at the zero frequency and allows a perfect rejection of constant
disturbances

Hy(q!) =1+ aq'+q?

with a = -2cos (wly) = -2cos (2xflf;) introduces a pair of undamped complex
zeros at the frequency f'(more precisely the normalized frequency f/f;), while

Ho(q) =1+ a,q'+ ayg?

allows one to introduce complex zeros with non-null damping. The damping is
selected as a function of the desired attenuation at a given frequency.

In Figure 3.27 the output sensitivity functions are shown for the cases H S(q‘l )=
I - gland Hs(q") = (1 -g)(I + g!). The closed loop poles are defined for both
cases by (@wp=0.6 rad/s and (=0.9). The second choice for Hyg introduces, in
addition to the integrator, a pair of undamped ({=0) complex zeros at 0.25 f;. One
observes a very strong attenuation both at null frequency and at 0.25 f; (<-100 dB).
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Property 5
The modulus of the output sensitivity functions is equal to 1, that is

\Syp(e'f"’)\ =1(0dB)
at the frequencies where
B (/) R(e/) = B' (e '")Hp(e ")R'(e ") =0 ; @ =27 [/, (3.6.8)

This results immediately from Equation 3.6.1 since under the condition of
Equation 3.6.8 one gets S,(jw) = 1.

The specified fixed part of R(g™!), denoted Hy(gq™!), allows one to obtain a null

gain for R(g™!) at certain frequencies, assuring at these frequencies |Syp(e'f D) =1
(open loop type operation).
For example,

Hp(q!) =1+ ¢
introduces a zero at 0.5 f, implying \Syp(efi n=1.

Syp Magnitude Frequency Responses
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Figure 3.27. Output sensitivity function for the case Hs(q'l) = (1 - q'l) and
Hg@h=(-qahd+q?)
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Hy(q) =1+ pg' +q72

with B = -2cos (@ T,) = -2cos 2rf/f, introduces a pair of undamped complex zeros
at the normalized frequency f//; leading to |S,,,(e7%75)| = 1.

Hp(q) =1+ Bq! + pog?

introduces a pair of complex zeros with a non null damping, allowing to influence
the attenuation of the disturbance at a certain frequency.
Figure 3.28 illustrates the effect of the Hy(g!) = 1 + g2, which introduces a

pair of complex zeros with null damping at /' = 0.25 f;. One can see that, in the
presence of Hp(g’), one has |Syp(e‘f )| = 1 (0 dB) at this frequency, while, without
introducing H R(q‘l ) one has at /= 0.25 f; a gain |Syp(e‘f D) =3 dB.

Note also that R(z"/) defines some of the zeros of the input sensitivity function
Sup(z‘j ) (given in Equation 3.6.2). Therefore at the frequencies where R(z"/) = 0,
this sensitivity function will be null.

Property 6
The introduction of asymptotically stable auxiliary poles PF(Z'I ) leads in
general to the reduction of |Syp(z'[ )| in the attenuation band of 1/Pg(z"!).

Syp Magnitude Frequency Responses
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Figure 3.28. Output sensitivity function for the case HR(q'l) =1land H(q'l) =1+ q'2
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From the expressions of the sensitivity function in Equation 3.6.1 and of the
closed loop poles, one can see that ]/(PD(Z‘I ) PF(Z‘I )) will introduce a stronger

attenuation in the frequency domain than 1/Pp(z’/), provided that the auxiliary
poles defined by PF(Z'I ) are asymptotically stable aperiodic poles. However, since

S'(z”1) will depend upon these poles through Equation 3.6.4, this property cannot
be guaranteed for all possible values of PF(z‘f ).

The auxiliary poles are in general selected as real poles located at high
frequencies, and they take the form

Pe(q” ) =(+p'qg)"™ ~0.5< p'<-0.05
where
np < np-np . np= (deg P)yax np, = deg Pp,

The effect of auxiliary poles is illustrated in Figure 3.29.

Remark:in many applications, the introduction of high frequency auxiliary poles is
enough in order to assure the imposed robustness margins.

Property 7
Simultaneous introduction of a fixed part Hg and of a pair of auxiliary poles

Py in the form

Hy, z™h 1+ ﬂlz_l +,Bzz_2

= (3.6.9)
Py " 1tz '+ azzf2
resulting from the discretization of the continuous-time filter
2 2
+2 +
F(s)="5 © 2 (3.6.10)
87 428 gon @S + @
using the bilinear transformation*!
-1
go21-2 (3.6.11)
T 1+z"

11 The bilinear transformation assures a better approximation of a continuous-time model by a discrete-
time model in the frequency domain than the replacement of differentiation by a difference, i.e. s = (/-

=1y Tg (see Equations 2.3.6 and 2.5.2).
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introduces an attenuation (a “hole”) at the normalized discretized frequency

@yr = 2arctan£w°2T“j (3.6.12)
as a function of the ratio &, /& 4., <1. The attenuation at o, is given by

M[ =20 10g[§’1ﬂJ 5 ( é,mtm < gden ) (3 6.1 3)

den

The effect upon the frequency characteristics of S,, at frequencies f << fy,. and
f>> fusc is negligible.

Figure 3.30 illustrates the effect of the simultaneous introduction of a fixed part
Hg and a pair of poles in P, corresponding to the discretization of a resonant filter
of the form of Equation 3.6.10. One observes its weak effect on the frequency
characteristics of S, , far from the resonance frequency of the filter.

This pole-zero filter is essential for an accurate shaping of the modulus of the
sensitivity functions in the various frequency regions in order to satisfy the
constraints. It allows one to reduce the interaction between the tuning in different
regions.
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Figure 3.29. Effects of auxiliary poles on the output sensitivity function
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Syp Magnitude Frequency Responses
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Figure 3.30. Effects of a resonant filter /¢ / P on the output sensitivity functions.

Design of the Resonant Pole-Zero Filter Hg /Py
The computation of the coefficients of Hg and Py is done in the following way:
Specifications:
e  Central normalized frequency fuisc ( @i = 27 fyise )

° Desired attenuation at frequency fyisc: M; dB
° Minimum accepted damping for auxiliary poles

Pr : (Cen) min (20.3)

Step I: Design of the continuous-time filter

Step II: Design of the discrete-time filter using the bilinear transformation of
Equation 3.6.11.
Using Equation 3.6.11 one gets:

b +baz ' +b,z?” ) 1+ Bz + B,z

F(z = 5 5

(3.6.14)

-1 _ -1 _
,g+a,z +a,z l+az7 +a,z
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which will be effectively implemented as'?

HS(Z_I) 1+ ﬁ1271 + ﬂ2272

F(zh= 5

Pz 4oz v,z

where the coefficients are given by

4 é‘nl{ma) . 8
bZO:F+4TO+w§ N bZl:za)j_F
— 4 gnztmwo 2
b, _E_47TS +ay (3.6.15)
4 C yon® 8
aZO_?+4 dx 0+a)§ 5 a21=2 (? Tigz
4 é‘ ena)
z2 _T7Y2 4 dTY . +CU§
b,
y=-—=
azo
b b
b=t P =b42 (3.6.16)
z0 z0
a, = a; D a, = a;
azo a:o

The resulting filters /g and P can be characterized by the undamped resonance
frequency @, and the damping ¢ . Therefore, first we will compute the roots of

numerator and denominator of F(z""). One gets

~ B AR - B .
— “n

Zna = 2
(3.6.17)
o + jyda, —a12 4 o
Zngp = 5 =4d,e

From Table 2.4 and expressions given in Section 2.3.8, one can establish the
relation between the filter and the undamped resonance frequency and damping of
an equivalent continuous-time filter (discretized with a ZOH). The roots of the
second-order monic polynomial in z”/ have the expression

~CascPoaiscTy I P T 1= e (3.6.18)

Zip =¢e

12 The factor ¥ has no effect on the final result (coefficients of R and S). It is possible, however, to

implement the filter without normalizing the numerator coefficients.
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Figure 3.31. Frequency characteristics of the resonant filter H g/ Py used in the example

presented in Figure 3.30

One gets therefore for the numerator and denominator of F(z™")

@ +1n* 4, ) In4,
Donum = P ’ grlumd == T
% Donuns (3.6.19)
Doy = (p§+ln2Ad N In 4,
en ’ en,
T2 deenTs

s

where the indexes “num” and “den” correspond to Hg and P, respectively. These
filters can be computed using the functions filter22.sci (Scilab) filter22.m
(MATLAB®) and also with ppmaster (MATLAB®)!3,

Remark: for frequencies below 0.17 f; the design can be done with a very good
precision directly in discrete-time. In this case, @y =@ 4o, = O, and the

damping of the discrete time filters Hg and P is computed as a function of the

attenuation directly using Equation 3.6.13.

Figure 3.31 gives the frequency characteristics of a filter Hg / Pr obtained by
the discretization of a continuous-time filter and used in Figure 3.30 (continuous
line) as well as the characteristics of the discrete-time filter directly designed in
discrete time (dashed line). The continuous-time filter is characterized by a natural

13 To be download from the book website (http.//landau-bookic.lag.ensieg.inpg fr).
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frequency w, =1 rad/s (f, =0.159 /), and dampings ¢, =025 and
¢ 4on = 0.4 . The same specifications have been used for a direct design in discrete-

time. One observes a small difference at high frequencies but this is not very
significant. The differences will become obviously more important as @,

increases.
Remark: while H g is effectively implemented in the controller, Py is only used

indirectly. Py will be introduced in Equation 3.6.5 and its effect will be reflected
in the coefficients of R and S obtained as solutions of Equation 3.6.5.

3.6.2 Properties of the Input Sensitivity Function
Property 1

Cancellation of the disturbance effect on the input (i.e. Syp= 0) is obtained at
frequencies where

A(efjw)HR(e—jw)Rr(e—jw) =0 ; 0= 27Z-f/ﬂ (3620)

At these frequencies S),= I (see Property 5 of the output sensitivity function) and
the system operates in open loop.
Figure 3.32 illustrates the effect of HR(q'I) on | S, | for

He(g =1+ pg" 0<p<1 (3.6.21)

for =1, one has | S, | = 0 at 0.5 f; . Using 0< f <1 one could reduce more or less
the modulus of §,, around 0.5 f. Note that this structure for Hy(q") is
systematically used for reducing the modulus of the input sensitivity function at
high frequencies.
One can also use

He(gH=0+p"""  0<p<l
(usually n=1 or 2).

Property 2
At frequencies where

A(ei'/w)HS (e’)S'(e7)=0 ; w=2rx f1f. (3.6.22)
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Sup Magnitude Frequency Responses
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Figure 3.32. Effect of the filter Hp (g H=1+p3"" 0<B<1 on the modulus of the
input sensitivity function: a) f =0;b) f =0.5; ¢) f =1

which correspond to frequencies where a perfect rejection of disturbances is
achieved (S,,= 0), one has

Ae™?)

. 3.6.23
B(e™’?) ( )

Sy (€)=

Equation 3.6.23 corresponds to the inverse of the gain of the system to be
controlled. The implication of Equation 3.6.23 is that cancellation (or in general
an important attenuation) of disturbances on the output should be done only in
frequency regions where the system gain is large enough. If the gain of the
controlled system is to low, |S,,| will be large at these frequencies. Therefore, the
robustness vs additive term uncertainties will be reduced and the stress on the
actuator will become important. Equation 3.6.23 also implies that serious problems
will occur if B(z") has complex zeros close to the unit circle (stable or unstable
zeros) at frequencies where an important attenuation of disturbances is required. It
is mandatory to avoid attenuation of disturbances at these frequencies
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Property 3
Simultaneous introduction of a fixed part Hp and of a pair of auxiliary poles

Py having the form

Hp, (z™) B 1+ﬂ,zf1 +ﬂ2272
B 2

Py ™ 1+ alz_l +a,z"
resulting from the discretization of the continuous time filter

2 2
F(s) = §7 428 um@oS + @

s+ 28 gon®oS + a)g

using the bilinear transformation

-z

_21-7
T 1+z"

S

introduces an attenuation (a ““ hole”) at the normalized discretized frequency

T
Oy =2 arctan[ Do’ j
2

as a function of the ratio &, / § gon <1.

The attenuation at @, is given by

Mt =20 log[mj 5 (;num < ;den )

den

The effect on the frequency characteristics of Syp at frequencies f << fgisc and

f>> faisc is negligible.
The design of these filters is done with the method described in Section 3.6.1.
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Figure 3.33. Desired template for the output sensitivity function (case of disturbances
rejection at low frequencies)

3.6.3 Definition of the “Templates” for the Sensitivity Functions

The performance and robustness specifications lead to the definition of desired
“templates” for the frequency characteristics of the sensitivity functions. Most
often we are interested in attenuating the disturbances at low frequencies, while
assuring certain values for the modulus and delay margins, in order to achieve both
good robustness and low amplification of disturbances outside the attenuation
band. Figure 3.33 shows a typical template for the modulus of the output
sensitivity function.

This template is defined by accepted maximum values for the modulus of the
output sensitivity function (“upper template”). One can also consider introducing a
“lower template” since on one hand a too large attenuation in a certain frequency
region will induce a too important increase of the modulus of the sensitivity
function at other frequency regions (and |Syp|max will increase) and, on the other

hand, the delay margin requires a “lower template” to be considered.

However, more complex templates will result if, for example, the attenuation
should occur in several frequency regions and if, in addition, it is required that the
system operate in open loop at a specified frequency (neither amplification, nor
attenuation of the disturbance). Such a type of template is shown in Figure 3.34.
The constraints on robustness and on the actuator also lead to the definition of an
upper template for the modulus of the input sensitivity function S

Recall first that the inverse of the modulus of S, glves at each frequency the

tolerated additive uncertainty for preserving the stablhty of the loop (see Chapter 2,
Section 2.6). Therefore, in the frequency regions where there are uncertainties
upon the plant model used for the design, one should impose a very low acceptable
value for the modulus of the input sensitivity function Sup

We recall that opening the loop (Sup: 0) may be required at specified
frequencies either because the system should not react to a particular disturbance
(see Section 3.6.6), or because one would not like to excite the plant at certain
frequencies (for example the plant is characterized by high frequency vibration
modes).
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Figure 3.34. Desired templates for the modulus of the output sensitivity function (case of
disturbances rejection at certain frequencies and open loop operation required at a specified

frequency)

Moreover, for robustness reasons and insensitivity to noise at high frequencies, one
systematically reduces the modulus of Sup close to 0.5 f; (often by opening the loop

at 0.5 f,).

The limitation of the actuator stress in certain frequency regions (often at high

frequencies) induces a limitation of acceptable values of the modulus of S, in

these frequency regions.
An example of a template for |S | is given in Figure 3.35.

Sup| dB

Limitation of the stress on the

actuator
0 AQ 0.5f,
|

Loop opening at
the frequency f (< -100 dB)

Figure 3.35. Example of a desired template for the modulus of the input sensitivity function

'\Uncertainty region upon theé model quality
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3.6.4 Shaping of the Sensitivity Functions

In order to achieve the shaping of the modulus of the sensitivity functions such that
the constraints defined by the template are satisfied, one has the following
possibilities:

Selection of the desired dominant and auxiliary poles of the closed loop
Selection of the fixed parts of the controller (H, R(q'I )and H S(q'] )

3. Simultaneous selection of the auxiliary poles and of the fixed parts of the
controller
Despite the coupling between the shaping of the output sensitivity function and
the input sensitivity function, it is possible, in practice, to deal with these two
problems almost independently.
In particular, it is useful to remember that at frequencies where |Syp| is close to

1(0dBY), [S,,,| is close to 0 (<-60dB).

Automatic methods using convex optimization techniques (Langer and Landau
1999; Langer and Constantinescu 1999; Adaptech 1998a) are available in order to
solve the shaping problem!*. However, in most of practical situations, it is
relatively easy to calibrate the sensitivity functions using the tools previously
indicated, and taking into account the properties of the sensitivity functions.

The iterative procedure that will be presented next is very efficient and helps to
understand the operation of the controller. However, the use of a CACSD tool like
ppmaster’> (MATLAB®) (Prochazka and Landau 2001) will considerably
accelerate the procedure.

Shaping the Output Sensitivity Function.
The shaping objective can be summarized as follows: given a desired attenuation
band, select the closed loop poles and the fixed parts Hy(g!) and Hy(g™!) in order

to “flatten” |S),(e7@)| outside the attenuation band, and to reduce |Sy,(e7@)[,,,.

while satisfying Property 2.

Often the selection of auxiliary poles and of Hy(q™!) and Hy(q™!) is sufficient for
matching the performance and robustness specifications. However, for a fine
tuning, it may be also necessary to select simultaneously the fixed part Hy(g™/) and
the auxiliary poles. (see Property 7: second-order pole-zero filter).

The iterative procedure for the shaping of the output sensitivity function can be
summarized as follows!®:

14 To apply convex optimization techniques, the Youla-Kucera parametrization of the controller is used.
See Appendix E.

15 Available on the book website (http://landau-bookic.lag.ensieg.inpg.fi).

16 The principles of the methodology for shaping the output sensitivity function can be extended to the
shaping of other sensitivity functions.
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Step 1

e Selection of P(q!) and fixed parts Hg(g/) and Hsg!) from the
performance specifications. (Example: zero steady-state error will require
the introduction of H{g') = I - ¢/, opening the loop at a certain
frequency will require Hy(q') = 1 + ag”! + ¢72)

e Controller computation

e  Analysis of the resulting output sensitivity function.

If the upper template corresponding to the desired modulus margin AM = 0.5
and the delay margin A7 = T are violated, one can distinguish three different

solutions:

1. The maximum of the modulus of the sensitivity function is at high
frequencies (the resulting controller is often unstable as a consequence
of Property 2, since the area between the modulus of the sensitivity
function and the 0 dB axis is positive).

2. A local maximum of the modulus of the sensitivity function is located
in a frequency region close to the attenuation band.

3. The modulus of the sensitivity function presents a maximum both at
low and high frequencies.

Caseland 3

Step 11
One introduces auxiliary poles at high frequencies:

])nF

Pe(q!) = (1 +p,q -0.05>p; >-0.5

with increasing values of |p,| starting from 0.05.

The number of auxiliary poles that can be introduced without increasing the
size of the controller is given by

np. < np-np . Np= (deg P),, ...~ np, =deg Pp,

The value of |p,| is increased in order to avoid a violation of the template of the

sensitivity function at high frequencies (i.e. over 0.25 f; or 0.30 f5).

Usually, the maximum of the modulus of the sensitivity function will move
towards low frequencies. If this maximum is above the template we are in case 2
which will be discussed next.

Case 2

Step 1 — Use of second-order pole-zero resonant filters Hg / F;.
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One identifies first the frequency region where \Syp| is above the “upper template”.
One finds the value of the frequency at which the maximum of \Syp\ occurs and the

attenuation which should be introduced in order to be below the upper template.
Then one computes the corresponding filter Hg /B on the basis of these

specifications. The selection of the damping of the denominator depends to some
extent upon the width of the frequency region where |Syp| is above the template.

Some Hints

e If the modulus of the sensitivity function presents a too strong minimum at
high frequencies, or in the central frequency region, this can be raised by a
few dB by adding a pair of complex auxiliary poles placed at the frequency
corresponding to the minimum

e If the attenuation band increases, then one should impose slower dominant
poles

e If the attenuation band is reduced as a consequence of the introduction of
the auxiliary poles, then one can either raise the natural frequency of the
dominant poles, or introduce a further zero-pole filter around the frequency
corresponding to the desired attenuation band.

In order to match the constraints in the high frequency region corresponding to
the imposed delay margin, one can either use auxiliary poles or impose the opening

of the loop at 0.5 f; ( Hi(q™') = 1 + g’!). In practice, a simultaneous application of
both solutions can be considered.

Step 111

One iterates around the values of the dominant and auxiliary poles selected in step
I and II in order to get the best result in terms of robustness and performance
constraints matching.

Shaping the Input Sensitivity Function

The shaping of the input sensitivity function is usually performed after the shaping
of the output sensitivity function. If the value of the modulus of the input
sensitivity function is not enough low at high frequencies (frequencies close to 0.5

f+), one introduces a fixed part Hg(g™!) of the form
He(gH=0+pg"" 05<p<l1 n=12

This will have, in general, a weak interaction with the shaping of the output
sensitivity function.

In the frequency regions where there are uncertainties upon the plant model,
|Sup| should be low (upper bound defined by the template). If the resulting
sensitivity function does not fulfill the specifications, one has to introduce a pole-
zero resonant filter Hy / Py, . In order to match the template imposed on |S| the
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resonance frequency of the filter is chosen close to that corresponding to the local
maximum of |S,,|, and an appropriate damping is selected in order to provide the
required attenuation.

Once the shaping of |S,| is achieved, one should go back to check if |S),| still
match the template (an appropriate CACSD like ppmaster allows to shape
simultaneously both sensitivity functions).

3.6.5 Shaping of the Sensitivity Functions: Example 1

The considered plant model is characterized by
Algh=1-07¢g"1 ; Blg)=03q! ; d=2; T,=1Is

An integrator is imposed in the controller. One considers the roots of the
polynomial obtained from the discretization of a second-order continuous time
system with @, = I rad/s, and ¢ = 0.9 as the imposed dominant poles for the
closed loop. The controller is designed by means of pole placement. The output
sensitivity function corresponding to this design is shown in Figure 3.37 (curve A).
It crosses the standard robustness template defined by AM = - 6dB and A7 =T,
Both obtained margins (modulus and delay) are lower than specifications (see
Table 3.5). The upper frequency of the attenuation band is at 0.058 Hz.

The objective is to obtain the same attenuation band but with

AM > - 6dB (|S <6dB) and At > T,

yp|max =

First we will add auxiliary real poles. From Equations 3.3.22 and 3.3.23 it results
that one can assign a number of closed loop poles equal to:

np =deg P(q"!) <ny +nys+ng+nypt+d-1

without increasing the size of the controller. Since in this example ny =7 np =1,
nys =1, d = 2, one can assign four poles. Two poles have been already assigned as
dominant poles and therefore we will add two auxiliary poles of the form

Potq)=(1-04q")

The resulting sensitivity function is shown in Figure 3.36 (curve B). The
constraints on the modulus margin and the delay margin are satisfied but the
attenuation band has been reduced (0.045 Hz instead of 0.058 Hz).
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Syp Magnitude Frequency Responses
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Figure 3.36. Output sensitivity functions corresponding to different RST controllers (see
details in Table 3.5)

In order to increase the attenuation in this frequency region without influencing
high frequency regions, one chooses a pole-zero filter H/P’y centered at w,=0.4

rad/s (f=0.064 Hz) with Hg resulting from the discretization of a second-order
continuous-time system with @, = 0.4 rad/s and {' = 0.3, and P’ resulting from
the discretization of a second-order continuous-time system with @, = 0.4 rad/s

and { = 0.5 (we are below 0.17 f; and the direct design of the discrete filter is
possible). Since &, = 0.3 and {y, = 0.5, an attenuation will result at 0.064 Hz.
The corresponding sensitivity function is shown in Figure 3.36 (curve C). One
observes that the attenuation band matches the specifications but the maximum
value of |Syp| is slightly higher than 6 dB. In order to match this constraint the value

of the real auxiliary pole is increased from 0.4 to 0.44. The final sensitivity
function is shown in Figure 3.36 (curve D).

3.6.6 Shaping of the Sensitivity Functions: Example 2!
The considered plant model is characterized by

Alql)y=1-¢g' ; Bgl=05q¢! ; d=2 ; T.=1Is

17 This example and the corresponding specifications are related to the continuous casting of steel.
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Table 3.9. Shaping of sensitivity functions- example 1

Modulus | Delay | Attenuation
Hoq 1) Closed loop poles margin | margin band
Dominant Auxiliary (dB) (Ts) (Hz)
A ] - q -—
=09 -7.71 0.4 0.058
1 “0~ ! 12
B|Il-q (I-04q")
=09 -5.81 3.07 0.045
1-q! ; (1-0.4471)?
¢ lamo0a]| wop=04 | 633 | So1| 0063
=09
£=03 £=0.5
; (1-0.44471)?
ol idem | 0 op=04 | 599 | 534| 0060
=09
£=0.5

The plant has an integrator behavior with delay. The plant is subject to two
types of disturbances:

e Low frequency disturbances that should be attenuated
e A sinusoidal disturbance at 0.25 Hz that should not be compensated by the
action of the controller

The block diagram related to the plant model is shown in Figure 3.37.
The robustness and performance specifications are as follows:

1. No attenuation of the sinusoidal disturbance at /= 0.25 Hz (|Syp|
0.25 Hz)

2. Attenuation band at low frequencies (frequency region corresponding to
IS,,| < 0dB): 0't0 0.03 Hz

3. Disturbances amplification at 0.07 Hz less than 3 dB (|Syp\ <3dB at 0.07
Hz)
Modulus margin > -6 dB (|Sy < 6dB)

p|max =

=0dB at

5. Delay margin > 1s (T)
No integrator in the controller



Robust Digital Controller Design Methods 163
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_— T
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Figure 3.37. Block diagram for plant model and disturbances
The presence of an integrator has not been imposed because the plant model

has already an integrator behavior.
One starts by designing the fixed parts of the controller, Hx(g"') and H¢(g"/). In

order to obtain |Syp| = 0dB at 0.25 Hz = 0.25 f,, one should introduce H #(q") with
a pair of undamped complex zeros at this frequency. This is obtained by

Hy(q) =1+ Bg! +q7
with
B =-2cos (0T) = -2 cos (2xf] f,)

From the condition

Hy(e ™) =0
R(e )a):a)j/4

it results that

p= -2cos 2x.0.25) =0
and then

Hy(q!) =1+ 47

Since there is no integrator imposed in the controller, as a first choice one chooses
H S(q‘l ) = 1. One selects for the dominant poles a polynomial P(¢-!) resulting from

the discretization of a second-order continuous-time system with @y = 0.628 rad/s
(fo = 0.1 Hz) and £'= 0.9.
The corresponding sensitivity function is shown in Figure 3.38 (curve A).
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Syp Magnitude Frequency Responses
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Figure 3.38. Output sensitivity functions corresponding to different RST controllers (see
details in Table 3.6)

One observes that the specifications at 0.07 Hz are not satisfied. On the other
hand one can remark that |Syp| is equal to 1 (0dB) for f'= 0.25 f; = 0.25 Hz, as
required.

In order to reduce the modulus of the output sensitivity function at f'= 0.07 Hz,
one considers the introduction of a narrow-band pole-zero discrete filter Hg /P

centered at wy = 0.44 rad/s (fy =0.07 Hz). Since the frequency f; is below 0.17 f;,
one can directly design the discrete-time filter. One chooses for Hg a damping ¢ =
0.3 and for Pr a damping ¢=0.4, corresponding to a filter attenuation of about 2.4
dB around @y. Using this filter (that is Hg and Pp)one obtains the sensitivity

function shown in Figure 3.38 (curve B). The attenuation introduced by this filter
at 0.07 Hz is sufficient (|S,,|¢.g71 =2.6 dB) but the width of the attenuation band
is smaller than the specified one. In order to correct that, it is sufficient to increase
the natural frequency of the dominant poles. With @y = 0.9 rad/s (instead of 0.628)
one obtains the sensitivity function shown in Figure 3.38 (curve C). All the
specifications are fulfilled. The results are summarized in Table 3.10.

Note that the choice of Hg /Pr is not critical. The specifications can also be
satisfied with a discrete-time filter Hg /Pr centered at wy = 0.5 rad/s with
Cuum=0.35 and ¢y, =0.45.

The same design steps will be followed for the case when an integrator is
introduced in the controller.



Robust Digital Controller Design Methods 165

Table 3.10. Shaping of the sensitivity functions - Example 2

Attenua- | Modulus | Delay ‘Syp‘
Closed loop poles

HR Hy tion margin | margin 0.07
band Hz
Dominants Auxiliaries (Hz) (dB) (Ts) (dB)
@y =0.628
A | I+¢7? 0.03 | 412 | 652 |4.11
=09

) =044 | wy=0.628 | wy=0.44
B | I+¢7 0.026 | -3.06 | 7.61 | 2.6
£=03 £=09 £=04

wy = 0.9
C ]+q'2 idem ;7 0.9 0.03 -3.94 6.62 2.6

3.7 Concluding Remarks

In this chapter several digital control designs in a deterministic environment have
been presented. All the digital controllers have a three-branched structure (RST),
corresponding to a control law of the form

Stq!) u®) + R(q?) y(9) = T(q™?) y*(t+d+1)

where u is the control input, y is the output of the plant, y* is the desired tracking
trajectory and d is the time delay.
The design of the controller involves essentially two stages:

1. Computation of the polynomials S(¢/) and R(¢g/) in order to match the

desired regulation performances

2. Computation of the polynomial 7(¢!) in order to approach (or to match)

the desired tracking performances
The digital controllers are perfectly suited for the control of plants characterized by
high order models with time delay and/or resonant modes. The controller
complexity (i.e. the degrees of the polynomials R(¢!), S(¢”!), T(q!)) depends
upon the complexity of the polynomials of the plant model transfer function. The
discrete-time plant model used for design can be either obtained directly by an
identification technique, or by computation from the continuous-time model.

The pole placement control strategy is applied to plants having discrete-time
models both with stable and unstable zeros. It makes possible to match the desired
regulation performance and the desired tracking performance filtered by the plant
ZEeros.

The tracking and regulation with independent objectives allows to match
perfectly the desired tracking and regulation performances, but, in order to be
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applied, the pulse transfer function of the discrete-time plant model must have
stable zeros.

The internal model control strategy is a particular case of the pole placement in
which the plant model poles are chosen as closed loop system poles. This strategy
can only be applied to enough damped stable systems. The closed loop dynamics is
not faster than the open loop dynamics.

The digital PID controllers are directly designed by pole placement on the basis
of discrete-time models of the plants to be controlled. This technique can be

applied to plants characterized by discrete-time models of lower order (7,,,, <2).

Two structures of digital PID controllers have been examined. The difference is
only in the choice of the polynomial T(g™/). It is advisable to use the choice T(g™/)
= R(I) (corresponding to the digital PID 2), which offers better tracking
performances. The digital controllers designed by the methods presented in this
chapter implement a predictive control in the time domain. They implicitly contain
a predictor of the plant to be controlled.

Independently of the design method used, it is required to verify the robustness
margins of the closed loop (mainly the modulus margin and the delay margin).
Taking into account simultaneously performance and robustness margins may
require the shaping of the sensitivity functions (output and input sensitivity
functions), by imposing pre-specified fixed parts in the controller and choosing
appropriate closed loop system poles.

An iterative methodology for the shaping of the sensitivity functions has been
presented in Section 3.6.4. Moreover, it is possible to obtain in an automatic way
the controller, fulfilling the various constraints on the sensitivity functions, by
means of a convex optimization procedure (see Langer and Landau 1999;
Adaptech 1998b).

3.8 Notes and References

For different types of digital PID controllers and their computation by means of the
pole placement see:

Astrom K.J., Wittenmark B. (1997) Computer Controlled Systems Theory and
Design, 3rd edition, Prentice Hall, N.J., U.S.A.

Astrom K.J., Higglund 1. (1995) PID Controllers Theory, Design and Tuning, 2nd
edition ISA, Research Triangle Park, N.C., U.S.A.

The pole placement and the solution of the Bezout identity is discussed in:

Goodwin G.C., Sin K.S. (1984) Adaptive Filtering Prediction and Control,
Prentice-Hall, Englewood Cliffs, N.J.
Kailath T. (1980) Linear systems, Prentice Hall, Englewood Cliffs, N.J.

For the solution of the Bezout equation by means of recursive least squares see:

Lozano R., Landau I.D. (1982) Quasi-direct adaptive control for nonminimum
phase systems, Transactions A.S.M.E., Journal of D.S.M.C., vol. 104, n°4, pp.
311-316, December.
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For the numerical solutions of the Bezout equation see:

Press W.H., Vetterling W.T., Teukolsky S., Flanery B. (1992) Numerical recipes in
C (The art of scientific computing),2nd edition, Cambridge University Press,
Cambridge, Mass.

For the links between the pole placement and the optimal control with quadratic
criterion see (Astrom and Wittemark 1997).

Tracking and regulation with independent objectives is discussed in:

Landau I.D., Lozano R. (1981) Unification of Discrete-Time Explicit Model
Reference Adaptive Control Designs, Automatica, vol. 12, pp. 593-611.

The interpretation and the design of RST controllers in the time domain are
discussed in appendix B.

Robust control of systems with delay and links with the Smith predictor and the
internal model control are discussed in:
Landau L.D. (1995) Robust digital control of systems with time delay (the Smith
predictor revisited), Int. J. of Control, vol. 62, pp. 325-347.

For properties of the integral of the sensitivity functions in discrete-time see:
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4

Design of Digital Controllers in the Presence of
Random Disturbances

A large number of systems are subject to disturbances of a random nature. In the
first part of this chapter models suitable for the representation of these stochastic
disturbances (the ARMAX models) will be presented and their properties analyzed.
Three design methods will be presented: 1. minimum variance tracking and
regulation (which minimizes the mean-square difference between the reference and
the controlled variable); 2. the approximation of the minimum variance tracking
and regulation by means of the pole placement (for the case of systems with
unstable zeros); 3. generalized minimum variance tracking and regulation.

4.1 Models for Random Disturbances

4.1.1 Description of the Disturbances

First consider the basic deterministic disturbances, namely the Dirac pulse, the step
and the ramp, represented in Figure 4.1.

Dirac step ramp
pulse

Figure 4.1. Main deterministic disturbances
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Disturbance Disturbance
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Figure 4.2. Deterministic disturbance models

Note that the step and the ramp may be described as resulting from the passing
of the Dirac pulse through a filter, as indicated in Figure 4.2. The corresponding
filters are known as “disturbance models”. Any deterministic disturbance may be
obtained by passing a Dirac pulse through a “disturbance model” (filter) having an
appropriate structure. Knowledge of the “disturbance model” is equivalent to
knowledge of the disturbance.

What follows is an attempt to extend this concept of the “disturbance model” to
the description of random disturbances.

By random or stochastic disturbances, is meant those disturbances, which
cannot be described in a deterministic way, given as they are not reproducible.

To provide an example of a random (stochastic) process, one can consider the
evolution of the controlled output of a plant in regulation on a significant horizon
(one day) and during several tests (several days). This is illustrated in Figure 4.3.

8h 10h 16h
48t R W i
2nd day A \//_\V
3" day A

Figure 4.3. Recording of a controlled variable in regulation

By examining Figure 4.3, one observes that the evolution during one day may
be described by a deterministic function f(t), but that this function will be different
every day (f(¢) is known as the “realization” of the stochastic process).

If the time for carrying out the measurement of the observed variable is fixed
(e.g. at 10 a.m.), each day (at each test) a new value will be measured (this it what
is known as a random variable). However, for all values measured every day at the
same time, statistics can be defined characterized by the mean value and the
variance of the measurements. The probabilities of the occurrence of different
values may be defined as well.

The stochastic process (partially) represented in Figure 4.3, is dependent on the
time (during a day) and on the experiment (first, second...fourth day).

More formally, a stochastic process may be described as a function f{z, &)
where ¢ represents the time and belongs to the set 7 of real variables, and &
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represents the stochastic variable (the outcome of an experiment), which belongs to
a probability space S'. For a given &= &, the function f{t, &y) is a regular time

function called a realization. For fixed ¢ = fy the function f{z, &) is a random

variable. The argument & is often omitted.

If the stochastic (random) process is ergodic, the statistics related to an
experiment (in our example over one day) are significant, i.e. the result obtained is
identical to that obtained from measurements taken on several experiments when
the time is maintained constant (at the same time of the day). If, in addition, the
stochastic process is gaussian, the knowledge of the mean value and of the
variance allows the probability of occurrence of a given value to be specified
(Gauss's bell — see Appendix A).

In practice, the majority of random disturbances occurring in automatic control
systems may be accurately described as a discrete-time white noise passed through
a filter. This discrete-time white noise is a random signal having an energy
uniformly distributed at all frequencies between 0 and 0.5 f;. Note that the discrete-

time white noise has a physical realization, since it is a finite energy signal (the
frequency band is finite), whereas the continuous-time white noise does not
correspond to a physical reality since the energy is constant over an infinite
frequency range (infinite energy signal).

The filters that will constitute the random disturbance models will modify the
frequency spectrum of the energy distribution of the white noise in order to obtain
a distribution corresponding to the frequency distribution of energy of the various
random disturbances encountered.

The white noise has, in the random case, the same role as the Dirac pulse in the
deterministic case. It constitutes the fundamental generator signal.

The gaussian discrete-time white noise will henceforward be considered as the
generator signal. This is a sequence of independent equally distributed gaussian
random variables of zero mean value and variance o°. This sequence will be noted
{e(t)} and will be characterized by the parameters (0, o), in which the first term
indicates the mean value and o is the standard deviation (square root of the
variance). A part of such a sequence is represented in Figure 4.4.

Figure 4.4. Discrete-time white noise sequence

1 A set S containing all possible results of an experiment and having subsets called events, to which a
probability of occurrence is associated and named a probability space.
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The mean value (or expectation) is given by
1 N
MV.=Ele(t)} = li —Ze(t)=0 (4.1.1)
= N5
and the variance will be given by
1 N
Var=E{ez(t)}=llvim NZez(t)=cr2 (4.1.2)
AR A=

(note that sequence {e(?)} is an ergodic process, see above).
The autocorrelation or covariance function R(i) is defined by the following
expression:

R(i) = E{e(t)e(t —i)} = lim 172 Z e(t)e(t i) (4.1.3)

or, in other words, by the product between the sequence {e(?)} and the same
sequence shifted by i-steps.
Note that

R(0) = var = & (4.1.4)

The normalized covariance (or autocorrelation) is defined as

RN(i) = 1’:((8)) (RN(0) = 1) (4.1.5)

In the case of the gaussian white noise, which is an ergodic process, since this is a
sequence of independent random variables and taking into consideration the
ergodic nature of the process, it results that the knowledge of e(?) does not allow an
approximation of e(z +1), e(t + 2)... to be predicted, the best prediction being 0.

This independence property is revealed in the following autocorrelation
property (independence test for gaussian data):

RG)=RNG@) =0 i=123., -1 -2 -3.. (4.1.6)

If the evolution of the normalized covariance for the white noise is plotted, the
curve shown in Figure 4.5 is obtained?.

2 This whiteness test is used even when a finite length sequence is available. In this case,
|RN (l)| #0,i=1,2,3,... but they must be smaller than a specified value. The whiteness test for a
sequence of length N is discussed in Chapter 6, Section 6.2.
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Since E{e(f)} = const. and E{e(f) e(t-i)} is only a function of i, the gaussian
discrete-time white noise sequence has the properties of a weakly stationary
stochastic process (in fact it is a real stationary stochastic process since the
properties of the sequence fe(?)} are the same as those of the sequence {e(t+7)}).
The knowledge of the covariances R(i) for a weakly stationary stochastic process
makes it possible to compute the energy distribution in the frequency domain,
known as the spectral density function.

RN

| e —
2 -1 o 1 2 3 4

Figure 4.5. Normalized autocorrelations of the white noise
This is given by (discrete Fourier transform of the covariance function)
OE ZR( e/
l——oo

Since in the case of the discrete-time white noise all the R(7) = 0 for i # 0, it results
that the spectral density of the discrete-time white noise is constant and equal to

R(O) 0_2

Pe(@)=—"==—

The spectral density of the white noise is represented in Figure 4.6. A uniform
energy distribution between 0 and 0.5 f is observed.

RO |
&t : 05 f,
s

f

Figure 4.6. Spectral density of the discrete-time white noise
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4.1.2 Models of Random Disturbances

As it has already been mentioned in Section 4.1, different types of random
disturbances, whose spectral density can be approximated by a rational function of
the frequency, can be considered as resulting from the filtering of a white noise
through a shaping filter. Several types of processes thus obtained will be examined.

“Moving Average” Process (MA)
Consider, for example, the process

V() =e(t) + ce(t-1) = (I+c]q'1) e(t) 4.1.7)

which corresponds to the filtering of a white noise through a filter ({+c, g!), as
shown in Figure 4.7a.

e(t) yty el y(t)

S 1+c1q'1 - —= c@™ —

a) b)

Figure 4.7a,b. Generation of a “Moving Average” random process: a first order; b general
case

The mean value of y(¢) is 3

N

V.M.=E{y(1)}= Zy()— Ze(t)+cl%2e(t—l):o (4.1.8)

t=1

The variance of the process y(f) is

R,(0) = Epy>(0)f=— Zy )=~ Ze2(r)+
=l (4.1.9)
—Ze (t-1+c? —Ze(t)e(t—l)=(l+c]2)0'2

t=1

since the third term is zero (see properties of the white noise, Equations 4.1.3 and
4.1.6).

3 In the following we omit lim but one should recall that all formulas are rigorously valid
N—w

only for a large value of N ( — 0).
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From Equation 4.1.7, one obtains by shifting
y(t-1) = e(t-1) + c, e(t-2) (4.1.10)
which enables Ry(l) to be computed:

N N
R = EpOxe-D}= 3 yon-D=~a Y E0=cio® @11
=1

t=1

all the other terms being zero (expectations of products of shifted white noise
sequences).
In the same way one verifies that

R(2)=0 ; R(3)=0... Ry() =0 (4.1.12)

]

The plot of the normalized autocorrelations for this first-order “moving average’
process is represented in Figure 4.8.

¢ (c0)
2

+
1c1

2 -1 0o +1 2

Il

Figure 4.8. The normalized autocorrelation functions for a first-order “moving average’
process

The general form of a “moving average” process is

y(t) =e(t)+zccie(t—i) = C(q_l)e(t) (4.1.13)
i=1
where

Clag)=1+D e =1+¢7'C"(¢"") (4.1.14)

i=l1
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The corresponding filter representation is given in Figure 4.7b.
The “moving average” processes are characterized by the property

RG)=0 i>=nc+l ; i<-(nc+l) (4.1.15)

The spectral density is given by the formula

202

2
4, (@) = C(ej“’)C(e_j’”)j—” - ‘C(ej“’) (4.1.16)

o°/27 being the spectral density of the white noise (noted ¢,(e/®)).

This allows one to obtain the general relation between the spectrum of the input
signal (white noise) of the generator filter and the spectrum of the moving average
process:

¢y(z) =C(z) Cz1) ¢,(2) (4.1.17)

the frequency distribution being obtained for z = &/.
From Equations 4.1.16 and 4.1.17 it can be deduced that the knowledge of

C(g™") (the generator filter) allows one to obtain, for example, the spectral energy

distribution of the random process, since the white noise spectral density is
constant at all frequencies.

“Auto-regressive” (AR) Process
Consider, for example, the process

WO =yt 1)+ e(t) =le(—’)4 lay| <1 (4.1.18)

+a,q

which corresponds to a white noise passed through a stable filter 7 (/+a; g”!) as is
shown in Figure 4.9a. The general form of an “auto-regressive” process is given by

1y
Yty ==Y ay(t=1)+e(t) (4.1.19)
i=1
which is also written as

A(g") (1) = e(2) (4.1.20)

in which
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Ag =1+ a,g" =1+q"4" (¢ (4.1.21)

i=1

is a polynomial with all its roots inside the unit circle (4(z/) = 0 = |z| < ).

e(t) 1 y(t) e(t) 1 y(t)

—

1 — —

1+a1q A(q'1)

-

a) b)
Figure 4.9a,b. Generation of an “Auto-Regressive” process: a) 15t order ; b) general case

The spectral density of the auto-regressive process is given by the expression

1 1
¢y(2) me%(z) (4.1.22)

in which ¢,(z) = 0°/2 and the frequency distribution is given by
b (@) =4,(2)|__, (4.123)

“ARMA” Process (Auto-Regressive Moving Average)
This process is obtained by passing a white noise through a stable filter with poles
and zeros as is illustrated in Figure 4.10.

ety | C@@™) y(t)

A [T

Figure 4.10. Generation of an ARMA random process

This process is described, in the general case, by

y(t) = —ZA:aiy(t —0)+ chcie(t —i)+e(t) (4.1.24)

i=1 i=1
or also in the form

Alg) y(0) = Clg™!) e(r) (4.1.25)
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where 4(g!) is a polynomial (having all its roots inside of the unit circle) given by
Equation 4.1.21 and C(¢!) is given by Equation 4.1.14.
The spectral density of the ARMA process is given by

_(c@)ceEh 4.1.26
%) (A(Z)j(A(zl)j%(Z) (120

4.1.3 The ARMAX Model (Plant + Disturbance)

This is the model used to represent the effect of both control and disturbances on
the plant output. ARMAX means ARMA process with exogenous (external) input,
which in our case is u(z). The generation of the ARMAX process is illustrated in
Figure 4.11.

[ j e 1
| |
: o) |,
| A) |1
| R |
ut) (a") BRIRR
NG R IR
| |

Figure 4.11. Generation of the ARMAX random process

The disturbed output of the plant y(z) is written as

“B(g™"
A(q "

Ce™)

y(@®)= =N e(t) 4.1.27)

u(t) +

in which the first term represents the effect of the control and the second term the

effect of the disturbance. By multiplying both sides of Equation 4.1.27 by A(g™)),
one obtains

A@)y@®) =q9B(q!) + Clq!) e) ; Bg")=q! B'(g"")) (4.1.28)

which, taking into account the expressions of 4(q!), B(g”!) and C(q™’), is also
written as

y(t—i—l):—Za y(t+l—z)+Zbu(t+1— —z)+Zce(t+l—l)

i=1
+ve(t+)=-A (¢ Hy@)+ B (q“)u(t—d)+C(q“)e(t+1)

(4.1.29)
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The question that may arise concerns the presence of the denominator A4 (g~ 1 ), both
in the transfer function of the plant and in the transfer function of the generator
filter of the disturbance (see Equations 4.1.27). Is this a loss of generality as
compared to the case where the two denominators are different, as shown in Figure
4.127?

In this case, output y(?) is given by

—d -1 -1
q “Bi(q ) Cy(q ) 4130
u(t)+A ( _l)e(t) (4.1.30)

A(q7) 2 (g

y(@) =

Reducing to the same denominator, one obtains

—-d

q B4, C, 4, q B C
1) = u(t) + e(t)= u(t)+—e(t 4.1.31
(1) v () A, (?) y 0] y 0] ( )
where
A=A A, ; B=B|A, ; C=C,A (4.1.32)

which, generally speaking, enables the model given by Equation 4.1.27 to be used.

l e(t)

u(t) - + y()

0

w

+
Ofzie

Figure 4.12. ARMAX model with different poles

4.1.4 Optimal Prediction

Taking into account the random nature of the disturbances, it is not possible for
ARMAX models to compute exactly the future value of y(?) at instant ¢+ knowing
all the values of y and u up to and including the instant ¢.

For this reason one considers the concept of optimal prediction of the future
value of y at the instant #+/, computed from the knowledge of y and u up to and
including the instant ¢, which will be denoted y(¢ +1/¢) or simply p(¢+1).

We define a prediction error as



180 Digital Control Systems

et +1) =yt +1)— Pt +1) (4.1.33)

The objective will be to construct an optimal predictor as a function of the
available information at instant z:

PU+1/6) = Pt +1) = L0, y(t = Do ta(),u(t —1),...) (4.1.34)

such that the variance of the prediction error be minimized i.e.

E{Lv(t +1)— (¢ +1)]2}= min (4.1.35)

For example, let consider the plant and the disturbance represented by the
following ARMAX model:

y(E+1) =—a,y(t)+bu(t) +cie(t) + e(t +1) (4.1.36)
The prediction error is given by

e(t+)=y(t+D)—p+1) ) 4.1.37)
=[-a,y()+bu(t)+cie(t)— y(t+1)]+e(t+1)

where the first term within the parenthesis contains all the variables available at the
instant ¢ and the second term is the white noise at #+/ (which is independent with
respect to all other variables at the instant ¢ as well as with respect to e(?)).

One computes the variance of the prediction error, which we would like to
minimize by an appropriate choice of p(z +1).
Using the expression 4.1.37 one gets:

E{[y(t +1)= Pt + 1)]2}
= E{[— ayy(t) + bu(t) + ce(t) — (¢ + 1) }+ E{ez(t + 1)} (4.1.38)
+ 2E{e(t + D)[~ayy(t) + bu(t) + cie(r) — (¢ + 1)1}

The third term in the right hand_side of the Equation 4.1.38 is null since e(z+1), the
white noise at £+, is independent with respect to all signals at the instants 7, ¢-7,...

The term E {ez (t+ 1)} does not depend upon the choice of the predictor. It results
that the choice of p(z +1) will affect only the first term, which can be only positive

or null. The optimal value of the prediction will be the one that makes this term
null at each instant i.e.:

E{[— ay(t) +bu(t) + ce(t) — p(t + 1] }: 0 (4.1.39)
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From this condition one gets the expression of the optimal predictor:

Pt + 1)|Upt = —a, y(t) + byu(t) + c,e(t) (4.1.40)

With this choice of the predictor, the prediction error becomes:
et + 1)|,,p, =y(t+1)-p(t+ 1)|0pt =e(t+1) (4.1.41)

which is a white noise.
Observe that:

e(t)=e(t) (4.1.42)
which allows to rewrite the optimal predictor as:
P+ 1)|D,,, = —a,y(t) + bu(t) + ¢,&(t) (4.1.43)

This result can be generalized for ARMAX models 4.1.29 of any order. For the
general case the optimal predictor has the expression:

P+ =4 (g0 +B (g ult—d)+C (g7 e(0) (4.1.44)
and one immediately concludes that the prediction error is a white noise:

et + 1)|opt =yt +D) =Pt +1) =et+1) (4.1.45)
This allows to rewrite the optimal predictor 4.1.44 under the form:

Jt+1)=-A4 (g (0 + B (g u(t—d)+C (g () (4.1.46)

For the case of the multi-step optimal prediction see Equation 4.2.32 and Appendix
B.

4.2 Minimum Variance Tracking and Regulation

This strategy concerns optimal controller design, ensuring a minimum variance of
the controlled variable around the reference, in the case of systems subject to
random disturbances. It can be applied only to discrete time plant models with
stable zeros.

The objective of the minimum variance tracking and regulation is to reduce the
variance (standard deviation, mean square error) of the controlled output around
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the reference value either for a constant value (minimum variance control) or for a
variable value (minimum variance tracking). The effect of a minimum variance
control is illustrated in Figure 4.13.

minimum variance control

Figure 4.13. Effect of a minimum variance control in the presence of random disturbances.

The interest of the variance minimization of the controlled output clearly results
from the output measures histogram.

If the variance of the controlled output is large, one obtains a distribution of the
measures having the form shown in Figure 4.14. In this case, an important
percentage of the measured values of the controlled output is far from the reference
value. Since in several applications a minimum value should be assured for the
controlled output (i.e.: coat thickness, water content of paper, etc ...) one is obliged
to set the reference to a value significantly greater than the necessary minimum.

o
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Figure 4.14. Histograms of the controlled output

On the other hand, if the controller reduces significantly the variance of the
controlled output, one obtains a distribution of the measures narrowed around the
reference. In this case, one can not only improve the quality of the product (better
uniformity), but also reduce the reference value to approach the desired minimum
value (see Figure 4.14). This implies, in general, a very important reduction of
costs (see Chapter 8).

Taking into account the definition of the variance of a random process (see
Equation 4.1.9), it results that the objective is to compute u(?) which minimizes the
following criterion:



Control in the Presence of Random Disturbances 183

J(u(?)) = E{[}’(Z) - y*(t)]z} ~ %i[y(l) - y*(t)]2 =min 4.2.1)
=1

where () - y*(¢) represents the difference between the output and the desired value
y* at the instant .

For solving this problem, disturbance models must be considered in addition to
plant models. The structure considered is the ARMAX model which incorporates
both the plant and disturbance models (see Section 4.1.3). Consequently, when
identifying a system, both plant model and disturbance model should be identified,
in order to apply this control strategy.

4.2.1 An Example
Let the plant and disturbance be represented by the following ARMAX model:

Y(t+l) =-a; ) +byu®) + byu(t-1)+ c; e(t) + e(tt+l) (4.2.2)

The reference trajectory will be y*(#+1) (it is either stored or generated by a
dynamic model from the reference).

The variance of the difference y(t+1) - y*(t+1) is computed, and it represents
the performance criterion to be minimized:

E{[y(t+1) - y(+1D)]?} = E{[-ap@® + bu(®) + byu(t-1) + cpe(t) - y*(t+1)]?}
+E{ez(t+1)}+2E{e(t+1)[—a1y(t) +bu(t) + byu(t-1) + ce(t) -y t+1)]} 4.2.3)

The third term of the right hand side of Equation 4.2.3 is zero since e(t + 1), the
white noise at instant ¢ + / is independent of all signals appearing at instants ¢, ¢
1,... (note that y* (¢ + 1) depends upon the reference r(f), r(t-1),... only, see for
example Section 3.3. Equation 3.3.33). Of the two terms which then remain in the
criterion given in Equation 4.2.3, F {(e2 (t + 1)} does not depend upon u(z). It
results that the choice of u(?) will only affect the first term which can only be
positive or zero. It follows that the minimization of the criterion 4.2.3 corresponds
to finding u(?) such that:

Eff-a; y(t) + by u(t) + byu(t-1) + c; et) -y t+1)]?) =0 4.2.4)

which may be obtained by making the bracketed expression zero. The (theoretical)
control law that results is:

_ V() —cen) a0
b, +byq"

u(r) (4.2.5)
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Introducing this expression into the plant output equation given by Equation 4.2.2,
one obtains that:

y(+1) -y (+1) = e(t+1) (4.2.6)
and respectively

y(0) - y(t) = e(?) 4.2.7)

This leads to the following remarks:

a) the application of the control law given by Equation 4.2.5 leads to a
minimum variance for the difference y(7) - y*(f) which becomes a white
noise ;

b) The controller cancels the zeros of the discrete time plant model (the zeros
must be stable) ;

c) e(?) can be replaced in Equation 4.2.5 by the measurable expression given
in Equation 4.2.7. This results in the control law:

_ (g )y @+ = (e —a)y()
by +byq™

_ Ty e +D-Rgy()

S(g7™)

u(t)
(4.2.8)

The structure of the minimum variance control law is the same as that for tracking
and regulation with independent objectives in the deterministic case (Chapter3,

Section 3.4) if P(q"!) = C(q™!) (desired closed loop poles).
In fact the transfer operator between y*(t+1) and y(t+]1) is:

T(q g "'B" (¢ 4.2.9)

He (g = :
“ Aq™)S(g™)+q7 B (gHR(@™)

In the example considered above:
A(@) =1+a,q’!

Blg!)=q! B (q") ;B (q)=b, +byq! ; d=0

T(q)=Clg)=1+c,q!
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Sq) =B q) =b;+byq! ; Rg) =ry=c;-aq
and one obtains:

1\ -1 -1y -1
j(q )j . _T4 EI —g! (4.2.10)
Al )+q R(q ) C(g )

He (g™ =

The closed loop poles are effectively defined by C(q‘l ) which characterizes the
disturbance.

In other words, an optimum choice exists for closed loop poles (regulation
behavior), and this choice directly depends upon the zeros of the disturbance
model.

Finally, an optimal performance test can be carried out for controller tuning by

means of a whiteness test applied to the sequence {y(t) - y*(t)} for cases without

time delay. In cases with a time delay of d samples at the optimum, {y(t) - y*(t)} is
a MA process of order d and thus the autocorrelation functions R(i) will be zero
for indexes i > d + I (see Equation 4.2.30).

An Interpretation of the Minimum Variance Control
Let consider the optimal predictor for the ARMAX process given by 4.2.2:

Y +1) =—a,y() +bju(t) + byu(t —1) + cie(t)
Let find the value u(7) that imposes

P+ =y (t+1)

Then one exactly obtains the expression of u(f) given by 4.2.5 and 4.2.8
respectively.

Thus, one can consider the minimum variance control law as obtained in two
stages*:

1. Computation of an optimal output predictor;
Computation of a control law such that the output prediction be equal to
the reference (or in general in order to satisfy a specified deterministic
criterion).

Note that the computation of the control law for the predictor is a deterministic
problem as all the variables are known at the computation stage.

This computation strategy in two stages for the control in a stochastic
environment is very general (separation theorem). It can also be summarized as
follows: first compute the best output prediction and afterwards consider the

4 As in the deterministic case, it is a predictive control (see Appendix B).
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problem as a deterministic control problem, by replacing the real measured output
with its prediction.

4.2.2 General Case

Taking into account the similarity with the deterministic tracking and regulation
with independent objectives, the controller computation will be exactly the same by
choosing:

P(g) = C(gT) @.2.11)

and this is summarized in Figure 4.15.
The process plus the disturbance is described in the general case by:

A(q™H¥(@6) =g~ Blg™ (@) +C(g™e(®) (4.2.12)
in which

Alg ) =1+aq" +..+a, g " (4.2.13)

B(g)=bg ' +..+b,q" =q"'B (¢ (4.2.14)

Cg ) =l+eiqg +..+¢, g7 4.2.15)

Note that B(g"/) must have stable zeros as well as C(g/) that specify the closed
loop poles. Moreover C(g!) is always stable if the disturbance is stationary.
The controller is given by:

_T(qg )y t+d+D)-R(g Hy®)

u(r) = (4.2.16)
S(¢™)
in which the reference trajectory is defined by:
. B, (¢")
yt+d+1) =221 (4.2.17)
4,7
B,(q7")=b,, +b,q " +.. (4.2.18)

A, (g Y =1+a,q " +a, ¢ +.. (4.2.19)
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Figure 4.15. Minimum variance tracking and regulation

The closed loop transfer function without 7(g™/)) is (see Figure 4.15):

Hylgh-——— O Ba) g
Alg )S(q ) +¢q B (¢ )R(g ) C(g) (4.2.20)
B q—(d+1)B*(q—l)
B'(¢™)C(g™)

As for tracking and regulation with independent objectives:

Sta) =B Sq!) (4.2.21)
with

Stg!) =1+ 5’1 gl +..+ S'd g9 (4.2.22)
and:

R =ry+rg " +.+7, g7 (4.2.23)

In order to compute R(¢~!) and S(g~!) the following equation must be solved:

Alq) Stq) + @V B (q"") Riq™)=B™(q”!) C(q) (4.2.24)



188 Digital Control Systems

Taking into account the structure of S(¢~/), Equation 4.2.24 becomes:
Aq) Sq) + g @V Rq!) = Clqg) (4.2.25)
and the solution is the same as for the deterministic case, taking P(¢!) = C(¢7!).
For solving 4.2.25 the functions predisol.sci (Scilab) and predisol.m

(MATLAB®") available on the book website can be used.

The precompensator T(g™!) will have to compensate the closed loop poles and
thus:

T(g!) = C(g™) (4.2.26)
Let study the effect of the minimum variance control law, given by Equation 4.2.16

on the error [1(7) - y*(?)].
Equation 4.2.12 can be rewritten as:

A@!) y(t+d+1) = B @) ut) + C(q’) e(t+d+1) (4.2.27)

Introducing the control law u(¢) given by Equation 4.2.16 and multiplying by S(g™/)
both sides, one obtains:

Alq) Sq7!) y(+d+1) = B*(q”!) Clq™!) y*(t+d+1) +
- @ B (q ) Rq)y(t+d+ 1)+ Sq!) Clq?) e(t+d+1) (4.2.28)

Regrouping the terms in y(t+d+17) and considering Equations 4.2.24 and 4.2.21,
Equation 4.2.28 becomes:

BY(q) Cq”!) yt+d+1) = B*(q”) C(q!) y*(t+d+1) +
+S'ql) B*(q!) C(q) e(t+d+1) (4.2.29)

and dividing by B*(¢"!) C(¢"!) one obtains:

y(t+d+1) - y*(t+d+1) = S'(q!) e(t+d+1) (4.2.30)
in other words, the tracking (or regulation) error is a MA process of order d (for
d=0, [y(t+d+1) - y*(t+d+1)] is a white noise).

This corresponds to the minimization of the variance of the error [y(?) - y*(¢)]. In
fact, using Equation 4.2.25, it is possible to write:

Clg™t) y(e+d+1) = [A(q”) S(q™) + ¢ @ Rig™)] y(t+d+1) (4.2.31)
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Taking into account also Equation 4.2.27 and dividing by C(g”/) both sides, one
obtains®:

*

| vl %, ]
wi+d+1)=R@ l)y(t)+S(q )Bl(" Ju)+ S'q Vet +d+1)  (42.32)

Clq ) Clqa )

from which it results:

E{[y(t+d+l)—y*(t+d+l)]2} -

i ) 2
E {R(q_:) W(t) +&_ll)u(t) - y*(t +d+ 1):|
Cg™ Cq ) (4.2.33)

+ E{[S'(cf1 Ye(t + d + 1)]2}

+ 2E{R(qi) () + S(q:ll) w(t) =y (t+d+ 1)} [sta et ax l)]}
C(qg™) Clg)

The third term of the right hand side member will be zero since S(g/) e(t+d+1)
contains e(t+1), e(t+2).....e(t+d+1), which are all independent of y(#), y(t-1),...,
u(t), u(t-1) ... y*(t+d+1), y*(t+d).... The second term does not depend on u(¢) and,
finally, by using the control law given by Equation 4.2.16 with T(g"/) = C(g"!), the
first term of the second member is zero, which corresponds to the minimization of
the variance of [y() - y*(?)].

Note that Equation 4.2.30 allows a practical test for the optimal tuning of a
digital controller to be defined, if the time delay d is known, since in this case the
error must be a moving average of order d. Defining:

N
R@) = %Z[y(t) - y*(z)]- [y(l —i)—y (t-i)| i=0]12,.. (4.2.34)
t=l1

and RN(7) = R(i)/R(0) respectively, one theoretically must obtain for large N:
RN@G) ~0 i>d+1 (4.2.35)
In practice, based on finite length data, one considers as an acceptable value:

|RN (i) | < 217/\[N ; i=d+1 (4.2.36)

3 The optimal prediction P(t+d +1) is given by the first two terms of Equation 4.2.32.
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where N is the number of samples used for computing RN(i) (for N = 256, RN(i)
<0.136,i 2 d+1).

For more details on independence tests with finite length data see also Chapter
6, Section 6.2.

Finally, we remind that this design method only applies to plants having
discrete-time models with stable zeros since the controller cancels the plant zeros.
In the case of a discrete time plant model with unstable zeros one uses:

— either an approximation of the minimum variance tracking and regulation
control law using the pole placement with a particular choice of the desired
closed loop poles;

— or acontrol law based on a criterion that introduces a weight on the control
signal energy.

Auxiliary Poles
In some applications the poles corresponding to C(g™!) can be too fast with respect
to the open loop system dynamics. This can lead to an unacceptable stress on the
actuator or to unacceptable robustness margins. In this case, one can either use
generalized minimum variance tracking and regulation design (see below Section
4.3), or add auxiliary poles.

If one chooses to add additional poles, the polynomial defining the desired
closed loop poles becomes:

P(q!) = C(q”") Pr(q’")

where Pr (q°!) represents the polynomial corresponding to the additional poles.
This corresponds to the polynomial P(¢7!) to be used in Equation 4.2.25 instead of
C(g™!) and in this case, consequently, T(g™/) = C(q"!) PH(g™)).

This modification corresponds to minimize the variance of the regulation error
filtered by Pr (¢7), i.e.:

min E {[Pg (¢71) [W(t+d+]1) - y*(t+d+ D)7}

4.2.3 Minimum Variance Tracking and Regulation: Example

The considered plant model is the same as the one used for the tracking and
regulation with independent objectives in Section 3.4.4 (the desired tracking
performance is also the same). The results of the minimum variance tracking and
regulation design are summarized in Table 4.1.
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Table 4.1. Minimum Variance Tracking and regulation

191

Plant:
e d=10
e Biglh=02q¢1+01q¢7?
o Al =1-13¢41+04247
Tracking dynamics =2 T, = Is, wp = 0.5 rad/s, {= 0.9
o B, =+0.0927 +0.0687 q”!
o A, =1-12451¢"1 +0.4066 472
Disturbance polynomial > C(q'l) =1-134 q'] +0.49 q'2
Pre-specifications: Integrator

#4% CONTROL LAW #**
Sq™y u(t) + Rgy (o) = T(g™ 1)y (t+a+1
(g7") u@®) + R(g™) y(@) = T(g™) y (t+d+1)

V¥ (t+d+1) = [(qu'] )/Am(q'] )] . reflt)
Controller:

o Rig)=096-123¢"1+042472
o Sglh)y=02-0141-0147

« Tqh)=Cg)
Gain margin: 2.084 Phase margin: 61.8 deg
Modulus margin: 0.520 (- 5.68 dB) Delay margin: 1.3 s

The controller design results for R(g”!) and S(¢!) are given in the lower part of
Table 4.1. Before starting the simulation, the variance and mean value of the white

noise generating the disturbance (through the filter C(q‘l )/A(q‘l )) must be

specified.

The simulations results shown in Figure 4.16 illustrate the operation of the
minimum variance controller in regulation and tracking. One can see that

introduction of the controller effectively reduce the variance of the output.
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Figure 4.16. Minimum variance tracking and regulation

4.3 The Case of Unstable Zeros: Approximation of the Minimum
Variance Tracking and Regulation by Means of Pole Placement

4.3.1 Controller Design

First remember that minimum variance tracking and regulation for the case where
the zeros of the plant model are inside the unit circle (asymptotically stable zeros)
is equivalent to a pole placement design with:

P(g"=B(gHC@™) 4.3.1)

(see Equations 4.2.20 and 4.2.24).

In the case where B*(q_l)contains unstable zeros, we will apply pole
placement design but replacing the unstable zeros of B*(q_l)by stable
approximations.

For this, one first factorizes the polynomial B*(q_l) under the form:

B (¢"H=B"(¢"HB (4™ (4.3.2)
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where B+(q_1) contains all the zeros of B” (q_l) which lie inside the unit circle
(asymptotically stable zeros) and B (¢”') contains all the zeros of B*(g™")
located outside the unit circle (unstable zeros). The factorization is done such that
the coefficient of the highest power ¢~ of the polynomial B~ (q_l) is equal to 1.
Let define the reciprocal polynomial of B~ (q™'), the polynomial which is
obtained by inverting the order of the coefficients and which will be denoted
B_'(q_l) . This monic polynomial will have all the zeros inside the unit circle.

Example:
B (g"H)=05+q¢7"; B'(¢g")=1+0.5¢"

B_(q_l) has a zero at 2+j0 (outside the unit circle) and B_'(q_l) has a zero at
0.5+j0 (inside the unit circle).

Observe that B_'(q_l) is a good approximation of B_(q_l) in the frequency
domain since:

B (e7/?)
B™'(e7/®)

=1 forallw (4.3.3)

This can be easily verified for the example considered above. In this case one
has:

‘Bf(efj’”) ‘2 125+ cosw

- = =1 forall ®
‘B—'(e—fw)‘ 1.25+ cosw

The approximation of the minimum variance tracking and regulation is obtained by
applying the pole placement design for:

P(gY=B (¢ HB (¢ )HC(g™")

B a e O (4.3.4)
=A(gHS(g ) +q "B (¢HR(g™)

Taking in account the structure of B (qfl) (given in Equation 4.3.2) it results that
S(qil) will have the form:

S(g=B"(¢HS' (@)

and therefore S '(q_l) and R(q_l) are solutions of the equation:
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B™'(¢7"C(g)=A4g S (¢ +q "B (¢THR(™") 4.3.5)
Polynomial T’ (q_l) is given by:

T(qg"")=B""(¢"")C(q™")/B (1) (4.3.6)

For a proof of the optimality of this stochastic control law see (Astrom,
Wittemmark 1997)°.

4.3.2 An Example

Table 4.2 give the results of the design for the approximation of the minimum
variance tracking and regulation by the pole placement.

Table 4.2. Approximation of minimum variance tracking and regulation design by means of
the pole placement

Plant:
e d=0
o B lh)=01ql+0242
o Al =1-13q1+042¢72
Tracking dynamics > T, =1s, wg = 0.5 rad/s, {=0.9
o B, =+0.0927 +0.0687 ¢"!
o Ay, =1-12451¢"1+0406647

Regulation dynamics > P(g~!) = (1 + 0.5 ¢ 1)(1 - 1.34 g1+ 0.49 ¢°2)
Pre-specifications: Integrator

**% CONTROL LAW ***
Stq7!y wt) + Rg™) y(0) = Ty y (e+a+1)

Y (erd 1) = [Byy (VA (D] (1)
Controller:
o R(g1)=4813-6.118¢71+2.05542
o S(g)=1-002139q1 -0.9786 42

o T(ql)=-280q"1-064¢72+08166q3
Gain margin: 2.082 Phase margin: 58.5 deg
Modulus margin: 0.520 (- 5.69 dB) Delay margin: 1.42 s

% The idea of this method can be used also in a deterministic context if we would like a better
approximation of the tracking and regulation with independent objectives by the pole placement when
the plant model has unstable zeros.



Control in the Presence of Random Disturbances 195

The plant model has an unstable zero. For defining the desired closed loop poles
one should first factorize B (q_l) :

B (¢7")=01+02¢"=02(05+¢")=B"(¢HB (¢
So
B (g H)=05+9g"" B (¢g7"H)=1+05¢"

The disturbance model C (qfl) is the same as the one used in the example 4.2.3
and the controller is computed using Equations 4.3.4 and 4.3.5.

4.4 Generalized Minimum Variance Tracking and Regulation

The minimum variance tracking and regulation strategy only applies to plants
having a discrete-time model with stable zeros.

The generalized minimum variance tracking and regulation strategy is an
extension of the minimum variance control strategy to plants having discrete-time
models with unstable zeros. This method computes a control () which minimizes
the following criterion:

2

* Q¢

E d+1)- d+)+=—"—"=
ﬂ:y(w +D)—-y (t+d+ )+C(q_l)u(t):l }

(4.4.1)
N
%Z[y(HdH) y (t+a’+1)+Q(q )u(t)} =min
in which
g Al=q!
0(q 1)=ﬁ (4.4.2)

and C(g™!) characterizes the disturbance in the ARMAX model of the plant output.
In the case where « = 0, the criterion of Equation 4.4.1 is written as:

2
)[u<t>—u(r—1>]—y*<r+d+1> = min (4.4.3)

A
y(t+d+1)+c -
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The quantity y(t+d+1) + [A/C(g"1)] [u(f) - u(t-1)] is interpreted as a generalized
output, and its variations around y*(¢+d+1) will be minimized.

For 4= 0, this strategy corresponds to the minimum variance tracking and
regulation. For A > 0, the variance of the difference between the generalized output
and the reference trajectory y* will be minimized but this will no more assure the
minimization of E{[y(t+d+1) - y*(t+d+1)]?} and for this reason a small value of 1
assuring however the stability of the closed loop is desirable in practice.

Note also that A has a weighting effect upon the variations of u(¢) and therefore
it can be used even in the case of plant models with stable zeros in order to reduce
the control signal variation (and then the stress on the actuator).

4.4.1 Controller Design

Using Equation 4.2.33, the following expression is obtained for criterion 4.4.1:

E {y(r+d+1)—y*(t+d+l)+QEq ;u(t)}

2
(¢ N 0™ *
=E - d+1 4.4.4
L( ,l)y() cah u(t) + Cla ,l)u(t) y(t+d+ )} (4.4.4)

+ E{ [ yet +d + 1)]2}

To minimize this criterion, #(¢) must be chosen such that the first term of the
right hand side is zero. One thus obtains:

Clg )y (t+d+D) - Rg () (4.4.5)

()=
! S+ 04

Controller design is carried out in two stages.

The first stage consists of computing the polynomials R(g™!), S(g"!) and T(g!)
= C(q’!) for O(¢!) = 0 by the minimum variance tracking and regulation method
even if B(g!) has unstable zeros.

The second stage is to introduce the polynomial O(q™/) given by Equation 4.4.2
with 4> 0. Using Equation 4.4.5, the closed loop transfer operator from the
reference trajectory to the output is given by:

g ‘B¢ HT(g™
A(g IS H+0@ N+q "B (¢ HR(g™)
_ g ‘Blg™)
A(gH0(g Y+ B (¢HC(g™)

Hep =
(4.4.6)
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since from Equation 4.2.24, one has

Alq”) Sta”!) + @V B q!) Rig”!) = B*(q”") Clg™) (4.4.7)

One chooses A (smaller than 1, as a general rule) and one checks that the
polynomial [(A(g”)) O(q!) + B*(¢”!) C(¢g!)] defining the closed loop poles is
asymptotically stable. If this is not the case, the value of 17 is changed.

As initial choice, in the case of unstable roots of B*(g7/), one takes the lowest
values of A allowing to obtain a stable polynomial S(g/) + Q(¢g”!) for a=0 (since

S(g") = B*(q"!) S'(¢’") is unstable). This makes the controller stable.

Note that the main limitation of this technique is that the existence of A leading
to a stable closed loop system is not guaranteed (especially in the case of several
unstable zeros) whereas with the design illustrated in Section 4.3 one always
obtains an asymptotically stable closed loop system.

4.5 Concluding Remarks

In this chapter the design of digital controllers in the presence of random
disturbances has been considered. Many of the random disturbances encountered in
practice may be modeled as a gaussian discrete-time white noise passed through a
filter. The knowledge of this filter called the disturbance model allows the
disturbance to be completely characterized (with the approximation of a scaling
factor).

For the design of digital controllers in the presence of random disturbances one
considers a joint plant and disturbance model called ARMAX (autoregressive
moving average with exogenous input) model:

C(g™)

—d -1
g "B(qg )
u(t)+ e e(t)

Alg™

y(@)=

where y is the plant output, u is the plant input and, and e is a discrete-time white
noise sequence. The first term represents the effect of the plant input and the
second term represents the effect of the disturbance upon the plant output.

The ARMAX model is often written in the form:

Alq) () = g Blg™) u() + Clq™!) e(t)

The Minimum Variance Tracking and Regulation control strategy minimizes the
criterion:

7 This technique can be also used in the deterministic case when the zeros of the plant model are
unstable.
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E {[y(t+d+]1) - y¥(t+d+1)]?} = min

where y* is the desired output trajectory. This control strategy applies to plants
models with stable zeros.

The poles of the closed loop system are the zeros of polynomial C(g7/)
characterizing the stochastic disturbance model, with the addition of the zeros of
polynomial B*(g!). The obtained controller is identical to the controller
corresponding to tracking and regulation with independent objectives design used
in a deterministic environment if the polynomial P(¢™!), defining the desired closed
loop system poles, is chosen equal to C(g~1). Note that, in some cases, in order to
reduce the stress on the actuator or to improve the robustness margins, auxiliary
poles should be added to those imposed by C(g™!).

In the case of a plant model with unstable zeros one chooses:

e cither an approximation of the minimum variance tracking and regulation
control law using the pole placement ;

e or a control law based on a criterion that introduces a weight on the control
signal energy.

The Generalized Minimum Variance Tracking and Regulation control strategy is
an extension of the Minimum Variance Tracking and Regulation control strategy
for the case of a plant model with unstable zeros. This strategy minimizes the
criterion:

2
E {y(t+d+l)+ /11 [u(t)—u(t—l)]—y*(z+d+1)} = min
Clg )

where 4 (> 0) is chosen such that the resulting closed loop system poles are
asymptotically stable. Note that A has the effect to weight the variations of u(z). It
can also be used to smooth the variations of the control signal resulting from a
minimum variance control design. However, since a value of A that stabilizes the
closed loop system may not always exist, the approximation of the minimum
variance tracking and regulation by pole placement is recommended.

Regardless to the method used, in the final stage of the design it is required to
verify the resulting sensitivity functions and the corresponding robustness margins.
If these are not satisfactory, modifications should be done (see Chapter 3) because,
in practice, one cannot use controllers leading to insufficient robustness margins or
imposing an excessive stress on the actuator in the frequency regions where the
gain of the model is low (leading to large peaks on the input sensitivity functions).
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System Identification: The Bases

In this chapter the basic principles of identification of dynamic systems are first
introduced. This is followed by a presentation of the main types of parameter
adaptation algorithms used in recursive identification methods. The choice of input
signals for identification and the influence of disturbances is also discussed. The
last section presents the general structure of recursive identification methods.

5.1 System Model Identification Principles

Identification means the determination of the model of a dynamic system from
input/output measurements. The knowledge of the model is necessary for the
design and the implementation of a high performance control system.

Figure 5.1 sums up the general principles of controller design. In order to
design and tune a controller correctly, one needs:

1. To specify the desired control loop performance and robustness
To know the dynamic model of the plant to be controlled (also known as
the control model) which describes the relation between the control
variations and the output variations

3. To possess of a suitable controller design method enabling to achieve the

desired performance and robustness specifications for the corresponding
plant model
The notion of the mathematical model of a system or phenomenon is a
fundamental concept. In general, a multitude of model types exist, each one
dedicated to a particular application.

For example, the knowledge type models (based on the laws of physics,
chemistry, etc...) permit a fairly complete system description and are used for plant
simulation and design. These models are in general extremely complex and can
only rarely be directly used for the design of control systems. The dynamic control
models that give the relation between the input and output variations of a system
are, as indicated above, the type of model suitable for the design and tuning of
control systems.

201
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DESIRED > CONTROLLER ¢ MODEL OF
PERFORMANCES DESIGN THE PLANT
+
CONTROLLER » PLANT >

Figure 5.1. Controller design principles

Although indications concerning the structure of these control models can be
obtained from the structure of the knowledge type model, it is in general very
difficult to determine the significant parameter values from these models. This is
why in the majority of practical situations, it is necessary to implement a
methodology for direct identification of these dynamic (control) models from
experimental data.

Note that there are two types of dynamic models:

1. Non-parametric models (example: frequency response, step response)
2. Parametric models (example: transfer function, differential or difference
equation)

Henceforward we shall be concerned with the identification of sampled discrete-
time parametric dynamic models, which are the most suitable for the design and
tuning of digital control systems.

System identification is an experimental approach for determining the dynamic
model of a system. It includes four steps:

1. Input/output data acquisition under an experimentation protocol

2. Selection or estimation of the “model” structure (complexity)

3. Estimation of the model parameters

4. Validation of the identified model (structure and values of the parameters)

A complete identification operation must necessarily comprise the four stages
indicated above. The specific methods used at each stage depend on the type of
model desired (parametric or non-parametric, continuous-time or discrete-time)
and on the experimental conditions (for example: hypothesis on the noise, open
loop or closed loop identification). The validation is the mandatory step to decide
if the identified model is acceptable or not.
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As there does not exist a unique parameter estimation algorithm and a unique
experimental protocol that always lead to a good identified model, the models
obtained may not always pass the validation test. In this case, it is necessary to
reconsider the estimation algorithms, the model complexity or the experimental
conditions. System identification should be then considered as an iterative
procedure as illustrated in Figure 5.2.

We now present a brief sum-up of the essential elements that characterize the
different steps of the identification.

Input/Output Data Acquisition with an Experimental Protocol
One should essentially select an excitation signal with a rich frequency spectrum in
order to cover the bandwidth of the plant to be identified, but with small magnitude
(since in practice, the accepted magnitude variations of the input signals are
strongly constrained).

This aspect will be discussed in details in Section 5.3 and 7.2.

Selection or Estimation of the Model Complexity

The typical problem encountered is to define the orders of the polynomials
(numerator, denominator) of the pulse transfer function that represents the plant
model.

One often uses trial and error procedures, but valuable techniques for
complexity estimation of models have been developed (see for example Duong and
Landau 1996).

These aspects will be discussed in Section 6, Section 6.5 and in Chapter 7,
Section 7.3.

Model Parameter Estimation

The “classic” identification methodology used to obtain parametric models based
on non-parametric models of the type “step response” is illustrated in Figure 5.3.
This methodology, initially used to obtain continuous time parametric models, has
been extended to the identification of discrete time models.

From the shape of the plant step response, one selects a type of model and the
parameters of this model are graphically determined. As the sampling frequency is
known, one can obtain the corresponding discrete time model from conversion
tables.

This methodology has several disadvantages:

o Test signals with large magnitude (seldom acceptable in the industrial
systems)

e Reduced accuracy

e Bad influence of disturbances

e Models for disturbances are not available

e Lengthy procedure

e Absence of model validation
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Figure 5.2. System identification methodology

The availability of a digital computer permits the implementation of algorithms
that automatically estimate the parameters of the discrete time models. It should be
emphasized that the identification of the parametric discrete time models allows to
obtain (by simulation) non-parametric models of the step-response or frequency-
response type, with a far higher degree of accuracy with respect to a direct
approach, and using extremely weak excitation signals. The identification of
parametric sampled data models leads to models of a very general use and offers
several advantages over the other approaches.

High performance identification algorithms, which have a recursive
formulation tailored to real-time identification problems and to their
implementation on micro-computer, have been developed. The fact that these
identification methods can operate with extremely weak excitation signals is a very
much appreciated quality in practical situations.

The parameter estimation principle for discrete time models is illustrated in
Figure 5.4. A sampled input sequence u(f) (where ¢ is the discrete time) is applied
to the physical system (the cascade actuator-plant-transducer) by means of a
digital-to-analog converter (DAC) followed by a zero order hold block (ZOH). The
measured sampled plant output y(7) is obtained by means of an analog-to-digital
converter (ADC).

A discrete-time model with adjustable parameters is implemented on the
computer. The error between the system output y(#) at instant ¢, and the output p(¢)
predicted by the model (known as the prediction error) is used by a parameter

adaptation algorithm that, at each sampling instant, will modify the model
parameters in order to minimize this error on the basis of a chosen criterion.
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Figure 5.3. “Classic” identification methodology
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The input is, in general, a very low level pseudo-random binary sequence
generated by the computer (sequence of rectangular pulses with randomly variable
duration). Once the model is obtained, an objective validation can be made by
carrying out statistical tests on the prediction error & () and the predicted output
(t) . The validation test enables the best model to be chosen (for a given plant),

i.e. the best structure and the best algorithm for the estimation of the parameters.
Finally, by computing and graphically representing the step responses and the
frequency response of the identified model, the characteristics of the continuous-
time model (step response or frequency response) can be extracted.
This modern approach to system model identification avoids all the problems
related to the previously mentioned ‘“classical” methods and also offers other
possibilities such as:

e Tracking of the variations of the system parameters in real time allowing
retuning of controllers during operation

Identification of disturbances models

Modeling of the transducer noises in view of their elimination

Detection and measurement of vibration frequencies

Spectral analysis of the signals
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Figure 5.4. Principle of model parameter estimation

One of the key elements for implementing this system model identification
approach is the parameter adaptation algorithm (P.A.A.) that drives the
parameters of the adjustable prediction model from the data collected on the
system at each sampling instant. This algorithm has a “recursive” structure, i.e. the
new value of the estimated parameters is equal to the previous value plus a
correction term that will depend on the most recent measurements.

A “parameter vector” is defined, in general, as the vector of the different
parameters that must be identified. All the parameter adaptation algorithms have
the following structure:

[ New parameters Old parameters
estimation =| estimation |+
(vector) (vector)
[ Adaptation| [Measurement | [Error prediction

Gain X function X function

| (matrix) (vector) (scalar)

The measurement function vector is also known as the “observation vector”.

Note that non-recursive parametric identification algorithms also exist (which
process as a one block the input/output data files obtained over a certain time
horizon). Recursive identification offers the following advantages with respect to
these non-recursive techniques:

e Obtaining an estimated model as the system evolves

e Considerable data compression, since the recursive algorithms process at
each instant only one input/output pair instead of the whole input/output
data set

e  Much lower requirements in terms of memory and CPU power

e Easy implementation on microcomputers
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e Possibility to implement real-time identification systems

e Possibility to track the parameters of time variable systems
Section 5.2 introduces the main types of parameter estimation (identification)
algorithms in their recursive form. The effect of the noise on the parameter
estimation algorithms will be discussed in Section 5.4.

Model Validation

Different points of view can be considered for the choice of a model validation
procedure. The goal is to verify that the output model excited by the same input
applied to the plant reproduce the variations of the output caused by the variations
of the input regardless the effect of the noise. Techniques for model validation will
be presented in Chapter 6 (Section 6.2 and 6.4).

5.2 Algorithms for Parameter Estimation

5.2.1 Introduction

We will illustrate the principles of parametric identification presented in Figure 5.3
by an example.
Consider the discrete-time model of a plant described by

V(4 1) = —ayy(6) + by (Ou(r) = 07 (o) (5.2.1)

where a; and b, are the unknown parameters.

The model output can be also written under the form of a scalar product
between the unknown parameter vector

0" =[a,,b] (5.2.2)

and the vector of measures termed measurement vector or plant model regressor
vector

#(0)" =[-y(0),u(®)] (5.2.3)

This vector representation is extremely useful since it allows easy consideration of
models of any order.

Following the diagram given in Figure 5.4, one should construct an adjustable
prediction model, which will have the same structure as the discrete-time model of
the plant given in Equation 5.2.1:

POt +1) = 3t +1)0(0)) = a, () y(0) + by (Du(r) = 61 §(2) (5.2.4)
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where p°(t+1)is the predicted output at the instant 7 based on the knowledge of

the parameters estimated at time ¢ (4, (t),l;] (). °(@+1) is called the a priori
prediction. In Equation 5.2.4

0(t)" =1[a, ()b (1)] (5.2.5)

is the vector of estimated parameters at time t.
One can define now the prediction error (a priori) as in Figure 5.4:

EX(t+1) = y(t+1) = POt +1) = £°(t +1,6(2)) (5.2.6)

The term p° (¢ + 1) is effectively computed between the sampling instants 7 and ¢+/
once é(t) is available, £°(z+1) is computed at the instant #+/ after the acquisition

of y(t+1) (between ¢+ and t+2 ). Note that £° (¢ + 1) depends on é(t) .

Now it will be necessary to define a criterion in terms of the prediction error,
which will be minimized by an appropriate evolution of the parameters of the
adjustable prediction model, driven by the parameter adaptation algorithm. Since
the objective is to minimize the magnitude of the prediction error independently of
its sign, the choice of a quadratic criterion is natural. A first approach can be the
synthesis of a parameter adaptation algorithm which at each instant minimizes the
square of the a priori prediction error. This can be expressed as finding an

expression for é(t) such that at each sampling one minimizes

2 NNE
J(+1)= [g”(t+1)] = [go (t+1,9(t))] (5.2.7)
The structure of the parameter adaptation algorithm will be of the form
Ot +1) = 0(t) + AO(t +1) = O(t) + f(é(t),gzﬁ(t),g” (t+ 1)) (5.2.8)

The correction term f(é(t),gb(t),g” (t+ 1)) should only depend upon the information

available at the instant 7+/ (last measurement y(¢+1/), parameter vector é(t) and a

finite number of measurements or information at ¢, ¢-1,..., t-n ). The solution to this
problem will be given in Section 5.2.2. A recursive adaptation algorithm will be
derived enabling both on-line and off-line implementation.

The criterion of Equation 5.2.7 is not the only one step ahead criterion which
can be considered and this aspect will also be discussed in Section 5.2.2.

When a set of input/output measurements over a time horizon ¢ (i=1, 2,..., t) is
available, and we are looking for an off line identification, one may ask how to use
this set of data optimally. The objective will be to search for a vector of parameters
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é(t) using the available data up to instant ¢ and that minimizes a criterion of the
form

t
N
J+)=Y [go @, 0(r))] (5.2.9)

i=1
that means the minimization of the sum of the squares of the prediction errors over
the time horizon ¢. This point of view will lead to the least squares algorithm which
will be presented in Section 5.2.3 (under the non-recursive and recursive form).
5.2.2 Gradient Algorithm
The aim of the gradient parameter adaptation algorithm is to minimize a one step
quadratic criterion in terms of the prediction error (one-step ahead).

Consider the same example as in Section 5.2.1. The discrete time model of the
plant is expressed by

Y(+1) =-a; (1) + b u) = 6" H1) (5.2.10)
where

0 =1la, b;] (5.2.11)
is the parameter vector and

AT = [- (1), ()] (5.2.12)

is the vector of measures (pant model regressor vector).
The adjustable prediction model (a priori) is described by

PO+ = 3t +10(0)) = =a, () y(0) + by (u(t) = 0()) §(2) (5.2.13)

where j/o(t+1) represents the a priori prediction depending on the values of the

parameters estimated at instant # and
o) =[a,(t).b,(1)] (5.2.14)

is the estimated parameter vector’.
The a priori prediction error is given by

! In this case the predictor regressor vector is identical to the measurement vector.
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0(t+1) =yt +1)— 7°(t+1) (5.2.15)

To evaluate the quality of the new estimated parameter vector é(t +1), which

will be provided by the parameter adaptation algorithm, it is useful to define the a
posteriori output of the adjustable predictor, which corresponds to re-computing
Equation 5.2.13 with the new values of the parameters estimated at #+/.

The a posteriori predictor output is defined by

P(e+1) = e +10( +1)) = =G, (¢ + D)y (0) + by (¢ + Du(r) = e +1)7 §(2) (5.2.16)

One also defines an a posteriori prediction error:
e(t+)=y(t+)—p+1) (5.2.17)

A recursive parametric adaptation algorithm with memory is desired.
The structure of such an algorithm is?

O(t+1)=0(t) + AO(t +1) = 6(r) + f(é(t),¢(t),g" (t+ 1)) (5.2.18)

The correction term f° (é(t),¢(t),g” (t+ 1)) must only depend upon the information

available at instant ¢+/ (last measure y(¢+/), parameters of é(t) and eventually a

finite number of information at instants ¢, ¢-1, t-2, ..., t-n). The correction term
should allow one to minimize at each step the a priori prediction error with respect
to the criterion

minJ(r+1) = [ + 1)) (5.2.19)
o)

If one represents the criterion J and the parameters g, and l;l in three-dimensional

space, one gets the form represented in Figure 5.5 ( a reversed conic surface). The
optimum of the criterion will correspond to the bottom of the cone and the

projection of this point on the plane g, ,lgl will give us the optimal values of the
plant parameters: a; and b;. It is obvious that, in order to reach as quickly as

possible this point (the optimum of the criterion), it will be advantageous to go
down along the steepest descent. This solution is analytically given by the gradient
technique.

2 Effectively, if the correction term is null, one holds the previous value of the estimated parameters.
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The horizontal sections of the surface correspond to curves along which the
criterion has a constant value (isocriterion curves). If one represents the projection

of the isocriterion curves (J = const.) in the plane of the parameters q, ,1;1 , one
obtains concentric closed curves around the point a;, b; (the parameters of the

plant model) which minimizes the criterion. As the value of the criterion J (=
const.) increases, the isocriterion curves move further and further away from the
minimum. This is illustrated in Figure 5.5.

In order to minimize the value of the criterion, one moves in the direction of the

steepest descent that, in the plane a, ,131, corresponds to move in the opposite

direction of the gradient associated to the isocriterion curve. This will lead us to a
curve corresponding to J = const of a smaller value, as shown in Figure 5.5.
The corresponding parametric adaptation algorithm will have the form

bt +1) = by - pLUHD (5.2.20)
26(t)

where F' = al (> 0) is the adaptation matrix gain (/ — identity matrix) and
0J(t+1)/0 () is the gradient of the criterion of Equation 5.2.19 with respect to

0 (2.

TN

A
J@,@E

dient

— sense of adaptation

a
»
iso-criterion curve (surface)

Figure 5.5. Principle of gradient method
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From Equation 5.2.19, one gets

L@+l 2°+D) ,

T (5.221)
But
£+ =y e+ ) =3+ ) = p(+D)=0(0)" $(0) (52.22)
and then
Tl (5.2.23)
20(t)

By introducing Equation 5.2.23 into Equation 5.2.20, the parametric adaptation
algorithm of Equation 5.2.20 becomes

O(t+1) = 0(t) + Fp(1)e° (1 +1) (5.2.24)

where F is the adaptation matrix gain®. Two choices are possible:

1) F=al ; a>0
2) F > 0 (positive definite matrix)*

The geometric interpretation of the parametric adaptation algorithm expressed by
Equation 5.2.24 is given in Figure 5.6.

o (t)

Fo(t)e°(t+1); F=a |

Y

Fo(t)e®(t+1); F >0

0(r)

Figure 5.6. Geometric interpretation of the gradient adaptation algorithm

3 In equations of the form of Equation 5.2.24 the vector ¢ is generally called the observation vector. In
this particular case it corresponds to the measurement vector.

4 A positive definite matrix is characterized by: (i) each diagonal term is positive; (ii) the matrix is
symmetric ; (iii) the determinants of all principal matrix minors are positive.
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The parametric adaptation algorithm given by Equation 5.2.24 presents some
instability possibilities if the adaptation gain (respectively a) is large (this can be
well understood with the support of Figure 5.5).

Let consider Equation 5.2.17 of the a posteriori error. By using Equations
5.2.13 and 5.2.14, it can be re-written as

et+1) =yt +1) =Pt +1) =yt + 1) - 0) $(t) + |0(t) - Ot + 1)]’ #(t) (5.2.25)
From Equation 5.2.24 it results that
() —6(t+1) = —Fp(t)e’ (t +1) (5.2.26)
and by also taking into account Equation 5.2.15, Equation 5.2.25 becomes
s(t+1) =" (t+1) - () Fp(t)e° (t +1) (5.2.27)
that for F' = al becomes:
e(t+1) = (1= ap() g0 (1 +1) (5.2.28)

If é(t +1) is a better estimation than é(t) (which means that the estimation of the

parameters goes in the good sense) one should get &(¢+1) < £°(¢ +1)*. Therefore

it results from Equation 5.2.28 that the adaptation gain « should satisfy the
(necessary) condition

a<2/¢@)" ¢(t) (5.2.29)

In this algorithm, in other words, the adaptation gain must be chosen as a function
of the magnitude of the signals’.

In order to avoid the possible instabilities, and the dependence of the adaptation
gain with respect to the magnitude of the measured signals, one uses the same
gradient approach but with a different criterion, which has as objective the
minimization of the a posteriori prediction error at each step according to

min J(z+1) = [e(t + )] (5.2.30)
O(t+1)

Thus one gets:

3 One can derives from Equation 5.2.28 that an optimal value for & is & = l/¢(t)T (1) .
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L) _ose+D)
200(t+1) 00(t+1)

) (5.2.31)

From Equations 5.2.16 and 5.2.17 it follows that
e+ =yt +1) =Pt +1) =yt +1) =0 +1)7 ¢(r) (5.2.32)

and respectively that

oe(t+1) _

d 10 (5.2.33)
00(1 +1)

Introducing Equation 5.2.33 into Equation 5.2.31, the parameter adaptation
algorithm of Equation 5.2.20 becomes

Ot +1) = 0(t) + F(t)e(t +1) (5.2.34)

This algorithm depends on &(z+/), which is a function é(t+l). In order to
implement this algorithm, it is necessary to express £(¢+/) as a function of

(t+1): (e(t+1) =f6(0), A1), £2(t+1)).

Equation 5.2.32 can be rewritten as

st+1) =yt +1)=60)T gy o + =6 [ (1) (5.2.35)

The first two terms of the right side correspond to £%(¢+/) and, from Equation
5.2.34, one gets

O(t +1) = O(t) = F(t)e(t +1) (5.2.36)
which allows one to write Equation 5.2.35 in the form

gt+l) = &(t+1) - T F 1) e (t+1) (5.2.37)
from which one derives the desired relation between & (¢+1) and &°(¢+1):

g%(t+1)
1+ ()" Fo(r)

s(t+1) = (5.2.38)

and the algorithm of Equation 5.2.34 becomes
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Fo(t)e® (¢ +1)

Ot +1)=6(t) + -
1+¢(t)" Fg(1)

(5.2.39)

that is a stable algorithm regardless of the gain F (positive definite matrix). The
division by I + &#)T F §{) introduces a normalization that reduces the sensitivity
of the algorithm with respect to " and &(?).

The sequence of operation corresponding to the recursive estimation algorithms
can be summarized as follows:

1. Before t+1 : u(?), u(t-1),..., W), Wt-1),..., d(t), 8(¢), F are available

2. Before t+/ one computes: __ P90 and ¥°(¢ +1) (given by Equation
L+4(0)" Fp(0)
5.2.13)
3. Atinstant t+/ y(¢+1) is acquired and u(z+1) is applied

4. The parametric adaptation algorithm is implemented

a) One computes &(t+1) by using Equation 5.2.15
b) One computes §(¢+17) from Equation 5.2.39

¢) (Optionally) one computes & (£+7)
5. Return to step 1

5.2.3 Least Squares Algorithm

By using the gradient algorithm, at each step &’(¢+1) is minimized or, more
precisely, one moves in the steepest decreasing direction of the criterion, with a
step update depending on F. The minimization of £°(¢+1)at each step does not
necessarily lead to the minimization of

5 62()
i=1

on a f-steps time horizon, as illustrated in Figure 5.7. In fact, in the proximity of the
optimum, if the gain is not small enough, oscillations may occur around the
minimum. On the other hand, in order to obtain a satisfactory convergence speed at
the beginning, when the current estimation is theoretically far from the optimum, a
high adaptation gain is preferable. The least squares algorithm offers, in fact, such
a variation profile for the adaptation gain.

The same equations, as in the gradient algorithm, are considered for the plant,
the prediction model and the prediction errors, namely Equations 5.2.15 to 5.2.22.

The aim is to find a recursive algorithm of the form of Equation 5.2.18 that
minimizes the “least squares” criterion
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i A

ap

Figure 5.7. Evolution of an adaptation algorithm of the gradient type

%1 J(0)= %Zl [y(i) -0 (i - 1)] - % D& (i, é(t)) (5.2.40)

i=1

The term é(t)ngS(i —1) corresponds to

O()(i —1) = —a, () y(i — 1) + by (Hu(i —1) = j/(i|é(t)) (5.2.41)

This is the prediction of the output at instant i (i<¢) based on the parameter
estimate at instant ¢ obtained using ¢ measurements. The objective is therefore the
minimization of the sum of the squares of the prediction errors.

First, a parameter 0 must be estimated at instant t, so that it minimizes the sum
of the squares of the differences between the output of the plant and the output of
the prediction model over a horizon of ¢ measurements. The value of é(t) that

minimizes the criterion of Equation 5.2.40 is obtained by looking for the value that
cancels 0 J(£)/0 K1)

I

g0, N =0 dli—1)|di—1)=0 5242
o ;[ym O g —D)ga-1) (52.42)

From Equation 5.2.42, taking into account that

[60) 9= p(i-1) = - D - be)

© This is the real minimum with the condition that the second derivative of the criterion, with respect to

0 (t) is positive, that is

a%J(0)

t
— = 22¢(i71)¢(i—l)T >0, as it is in general the case for ¢ = dim 6 (see also Section
00(1)

i=1
5.3).
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one obtains

t n t
{Z #(i — (i - N}e(t) = > ()i -1)

i=1 i=1

By left multiplying on the left both terms of this equation with

P -1
{Z¢(i—l)¢(i—1f}

i=1

it results in

. t -1, t
0(t) = {Z Pli —Dg(i - I)T} 2y —-1)=FO X y(i)pi—1) (5.2.43)
i=1 i=1 =1
where

F@)" =) g~ 1" (5.2.44)

i=1

This estimation algorithm is not recursive. In order to obtain a recursive algorithm,

the estimation of & (t+1) is considered:

Ot +1)=F(t + 1)%1 (@) —1) (5.2.45)
i=1
t+1
F+)' =Yg -Dpi -7 =F()™" +¢(0)p(t)" (5.2.46)
i=1

And one should express it as a function of 0 (9):
Ot +1)=6(t) + AO(t +1) (5.2.47)

From Equation 5.2.45 (adding and subtracting ¢(¢)¢(t)" é(t) ) one gets

t+1 t A
Sy -1 = Xy — 1)+ y(t + Dp(O) £ p)p(0)" (1) (5.2.48)

i=1 i=1
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Taking into account Equations 5.2.43, 5.2.45 and 5.2.46, Equation 5.2.48 can
be rewritten as

t+1

El y(i)gli-1)=F(@+1)7" 0@ +1) (52.49)

= F(t)" 00) + ()p(0)" 0(t) + )|yt + 1) =) $(0)
But, on the basis of Equations 5.2.46 and 5.2.15, one gets
F+)'0@+1)=F@+1)7'000) + p(1)e (1 +1) (5.2.50)
Multiplying on the left by F(i+1),one gets
Ot +1) = 0(t) + F(t + D)(t)e’ (t +1) (5.2.51)

The adaptation algorithm of Equation 5.2.51 has a recursive form similar to the
gradient algorithm given in Equation 5.2.24, with the difference that the gain
matrix F (¢ + 1) is now time varying since it depends on the measurements (it
automatically corrects the gradient direction and the step length). A recursive
formula for (¢ + 1) remains to be provided starting from the recursive formula for
F! (t + 1) given in Equation 5.2.46. This is obtained by using the matrix inversion
lemma (given below in a simplified form).

Lemma: Let F be a regular matrix of dimension (n x n) and ¢ a vector of
dimension n; then’

T
Flagg ) — L 5.2.52
(F +497) Wi (5.252)
From Equations 5.2.46 and 5.2.52 one gets
T
Fl+1) = Fe) - (t)¢(’)T¢(t) F@ (5.2.53)
1+¢(t)" F(0)p(t)

and, regrouping the different equations, a first formulation of the recursive least
squares (RLS) parameter adaptation algorithm (PAA) is given by

7 One can simply multiply both terms by F' -! + ¢¢T to verify the inversion formula.
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Ot +1) = 0(t) + F(t + ) ()& (¢ +1) (5.2.54)
T
Fe+1)=F@)-L (t)¢(’)T¢(t ) F(©) (5.2.55)
1+¢(t)" F(0)p(1)
2+ =yt +1) -0 ¢(r) (5.2.56)

An equivalent form of this algorithm is obtained by introducing the expression of
F(¢t+1) given by Equation 5.2.55 in Equation 5.2.54. Then it follows that

g%(t+1)

———————(52.57)
1+ ¢(1)" F(t)g(1)

Ot +1)— 0(t)|= F(t + (1) (t +1) = F(1)d(¢)

However from Equations 5.2.15, 5.2.16 and 5.2.17, also using Equation 5.2.57, one
obtains:

e(t+1) = y(t +1) = Ot + Dp(t) = y(t +1) — O()p(1) — [é(r +1)- é(z)]T 0
g(+l)  _ &+D
L+ F(g(t)  1+4(1)" F(O)d(t)

(5.2.58)

=&’ (t+ ) - g()" F(t)p(1)

which expresses the relation between the a posteriori prediction error and the a
priori prediction error. Using this relation in Equation 5.2.57, an equivalent form
of the parameter adaptation algorithm for the recursive least squares is obtained?:

Ot +1) = 0(t) + F()d(t)e(t +1) (5.2.59)

Ft+1)'=F@) " +o0)d0)" (5.2.60)
FO)p0)p)' F@)

F(t+1)=F(t)— (5.2.61)
1+ ¢()" F(0)g(1)

8 This equivalent form is especially used to analyze and understand the algorithm.
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Y+ 1) =00 p(t)
L+¢(t)" F(t)p(t)

e(t+1) =

(5.2.62

For the recursive least squares algorithm to be exactly equivalent to the non-
recursive least squares algorithm, it must be started at instant #, = dim 1), since

normally F(t)'l given by Equation 5.2.44 becomes non-singular for #=¢,. In
practice, the algorithm is initialized at # = 0 by choosing

F(0) = %1 =(GDI ; 0<5<<1 (5.2.63)

a typical value being o= 0.001 (GI = 1000). It can be observed, from the
expression of F(t+1)! given by Equation 5.2.46 that the influence of this initial
error decreases with time. A rigorous analysis (based on the stability theory - see

Landau et al. 1997) shows nevertheless that for any positive definite matrix F(0)
(F(0) > 0),

lime(+1)=0
t—0

The recursive least squares algorithm is an algorithm with a decreasing adaptation
gain. This is clearly seen if the estimation of a single parameter is considered. In
this case F(z) and ¢(?) are scalars and Equation 5.2.61. becomes

F(it+1)= _ o <F(t)
1+ ¢(1)* F (1)
The recursive least squares algorithm gives, in fact, less and less weight to the new
prediction errors, and thus to the new measurements.

As a consequence, this type of variation of the adaptation gain is not suitable
for the estimation of time varying parameters, and other variation profiles must
therefore be considered for the adaptation gain.

The least squares algorithm, presented up to now for (z) and ¢ (z) of dimension
2, may be generalized to the n-dimensional case on the basis of the description of
discrete-time systems of the form

—d p —1
@)= %u@) (5.2.64)

Alg

where
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1

Aq Y =1+ayg + . +a, g™ (5.2.65)

Blg " y=bg " +..+b, g (5.2.66)

which can further be rewritten as

(e +1)= —nzAa,-y(r +1-i)+ nng,-u(r —d—i+1)=07T¢(r) (5.2.67)
i=1 i=1
where
0" =lay,ay byt | (5.2.68)
¢ =[- y(t)e.— y(t —n g + 1) u(t —d)..u(t —d —ng +1)] (5.2.69)

The a priori adjustable predictor is given in the general case by

PO(t+1) = —"ﬁ&iy(t +1-i)+ nzgé,-u(t —d-i+)=0)"¢@t)  (5.2.70)

i=1 i=
where
o’ = [&l (0),a, (0),by(1),.... b, (t)] (5.2.71)
and, for the estimation of 0 (¢), the algorithm given in Equations 5.2.54 to 5.2.56 is
used with the appropriate dimension for 0 (9), ) and F(?).

5.2.4 Choice of the Adaptation Gain

The recursive formula for the inverse of the adaptation gain F(¢+/ )'1 given by
Equation 5.2.46 (or Equation 5.2.60) is generalized by introducing two weighting
sequences A z(?) and A(1), as indicated below:

Fe+D)™ = 4(0F@0) + 4 0d0¢0) (5.272)
0< (<1 ; 0<A(1)<2 ; F(0)>0

Note that A;(¢) and Ay(?) in Equation 5.2.72 have the opposite effect: A;(1) < I

tends to increase the adaptation gain (the gain inverse decreases), A»(#) > 0 tends to
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decrease the adaptation gain (the gain inverse increases). For each choice of
sequences A;(2) and Ay(t) a different variation profile of the adaptation gain is
found and, consequently, an interpretation in terms of the error criterion that is
minimized by the PAA®.

Using the matrix inversion lemma given by Equation 5.2.52, one obtains from
Equation 5.2.721°

T
Fl+1)=—! Fm—ﬂFmWQWQ}W) (5.2.73)
AOL A ) Fopo
2

Next a selection of choices for A;(#) and Ay(t) and their interpretations will be
given.

A.1: Decreasing Gain (RLS)
In this case

MO =4 =1; =1 (5.2.74)

and F(t+1)! is given by Equation 5.2.60 which leads to a decreasing adaptation
gain. The minimized criterion is expressed by Equation 5.2.40.

This type of profile is suited for the identification of stationary systems (with
constant parameters).

A.2: Constant Forgetting Factor
In this case

/11(1)=/11 5 0</11 <1 ; /12(1‘)=/12 =1 (5275)
Typical values for 4; are: 4, =0.95,...,0.99..

The criterion to be minimized will be

. 2
10 = A~ -1 (52.76)

i=1

o F(t+1)'1 given by Equation 5.7.72 can be interpreted as the output of a filter characterized by the
pulse transfer operator H(qil) =k () /(1-2y (t)qil) whose input is ¢¢T .

10 More numerically robust updating algorithms for the adaptation gain are available. See Appendix F.
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The effect of 4; < I is to introduce a decreasing weighting on the past data (i < ¢).
This is why A; is known as the forgetting factor. The maximum weight is given to

the most recent error.
This type of profile is suited for the identification of slowly time varying
systems'!.

A.3: Variable Forgetting Factor
In this case

Lt)y=74, =1 (5.2.77)
and the forgetting factor 4, is given by
/11(1‘)2/10/11(1—1)4-1—/10 5 0</10 <1 (5278)

typical values being: 4,(0)=0.95,...,0.99 ; 4, =0.95,...,0.99 .

Equation 5.2.78 leads to a forgetting factor that asymptotically tends towards 1.
The criterion minimized will be

2
! -1

10 =Y| S a0 [y -7 -] (52.79)

i=1 | j=1

As A,(t) tends towards 1 for large i, only the initial data are forgotten (the

adaptation gain tends towards a decreasing gain).

This type of profile is highly recommended for the identification of stationary
systems, since it avoids a too rapid decrease of the adaptation gain, thus generally
resulting in an acceleration of the convergence (by maintaining a high gain at the
beginning when the estimates are far from the optimum).

A.4: Constant Trace
In this case, 4 ,(f) and A,(¢) are automatically chosen at each step in order to ensure

a constant trace of the gain matrix (constant sum of the diagonal terms)
trF(t+1) =trF(t) = trF(0) =nGI (5.2.80)

in which #n is the number of parameters and G/ the initial gain (typical values:
GI=0,1...,4), the matrix F(0) having the form

T When an excitation is not provided ( d)(t)(b(t)T =0), F(t+ l)'1 goes towards zero (because in this case

F (t-¢—1)71 =\F (t)71 ,Ap<1), leading to very high adaptation gains, a situation that should be
avoided.
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GI 0
F(0) = ' (5.2.81)

0 GI

The minimized criterion is of the form

! A
IO =2 1Dy -0 4G~ 1)]z (5.2.82)

in which f{t, i) represents the forgetting profile.

Using this technique, at each step there is a movement in the optimal direction
of the RLS but the gain is maintained approximately constant (reinflation of the
RLS gain).

The values of 1,(f) and A,(¢) are determined from the equation

T
BF(+1) = ——u] F(py - LOPOIO FO | ey (5.2.83)
A1 () a(t)+ ¢ F(0)g(t)

by imposing the ratio « (¢) = 4,(#)/A,(#) (Equation 5.2.83 is obtained from Equation

5.2.73).
This type of profile is suited for the identification of systems with time varying
parameters.

A.5: Decreasing Gain + Constant Trace
In this case, there is a switch from A1l to A4 when

tF(0)<nG ; G=0.1to4 (5.2.84)

where G is fixed at the beginning.
This profile is suited for the identification of time variable systems in the
absence of initial information on the parameters.

A.6: Variable Forgetting Factor +Constant Trace
In this case, there is a switch from A3 to A4 when

trF (t) < nG (5.2.85)

The domain of application is the same as for 4 5.
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A.7: Constant Gain (Improved Gradient Algorithm)
In this case

L) =4=1; LHL{H)=1,=0 (5.2.86)
and thus from Equation 5.2.72, it results that
F(t+1)=F()=F(0) (5.2.87)

The improved gradient adaptation algorithm given by Equations 5.2.34 or 5.2.39 is
then obtained.

This algorithm can be used to identify stationary or time varying systems with
few parameters (< 3), and in the presence of a reduced noise level.

This type of adaptation gain results in performances which are inferior to those
provided by the A1, A2, A3 and A4 profiles, but it is simpler to implement.

Choice of the Initial Adaptaion Gain F(0)
The initial adaptation gain F(0) is of the form given by Equation 5.2.63,
respectively Equation 5.2.81.

In the absence of initial information upon the parameters to be estimated (a
typical choice is to set the initial estimation to zero), a high initial gain (GI/) is
chosen for reasons that have been explained in Section 5.2.3 (Equation 5.2.63). A
typical value is G/ = 1000.

On the other hand, if an initial parameter estimation is available (resulting for
example from a previous identification), a low initial gain is chosen. In general, in
this case GI < 1.

Since the adaptation gain decreases as the correct model parameter estimations
are approached (a significant index is its trace), the adaptation gain may be
interpreted as an index of the accuracy of the estimation (or prediction). This
explains the choices of F(0) proposed above. Note that, under certain hypotheses,
F(1) is effectively an index of the quality of the estimation because it represents the

covariance of the parameter error vector 0 ()= é(t) — 68 (see Landau 2001b). This

property can give some information on the evolution of an estimation procedure. If
the trace of F(f) is not significantly decreasing, the parameter estimation, in
general, is bad. This phenomenon occurs, for example, when the amplitude and the
type of the input used are not suited for the identification. The importance of the
nature of the identification signal will be discussed in the following section.
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5.3 Choice of the Input Sequence for System Identification

5.3.1 The Problem

The convergence towards zero of the prediction error &) does not always imply
that the estimated model parameters will converge towards the true parameters of
the plant model.

This will be illustrated by an example. Let the discrete-time plant model be
described by

y(t+1)=—a;y(t)+bu(t) (5.3.D)

and consider an estimated model described by
(e +1) =—ayy(t) + bu(t) (5.3.2)

where y (¢+1) is the output predicted by the estimated model.

Now assume that u(t) = constant and that the parameters a;, b,, &1,151 verify
the following relation:

A

by b
l+a; 1+a

(5.3.3)

i.e. that the steady state gains of the plant and of the estimated model are the same,
even if the condition I;I =by and a4, = a; don’t hold.
Under the effect of the constant input u(¢) = u, the plant output will be given by

Wi+l = () =2y (5.3.4)
1+a1

and the output of the estimated prediction model will be given by

A

b{ u (5.3.5)
1+ a

Y+ =y() =

Therefore, considering Equation 5.3.3, it results that

et +1) = y(t+1) =t +1)=0 for u(t)=const;d, #a, ;b #b, (5.3.6)
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It can thus be concluded from this example that the application of a constant input
does not allow the two models to be distinguished, since they both have the same
steady state gain.

If the frequency characteristics of both systems are plotted, we obtain the
curves shown in Figure 5.8.

G
S plant

model

oy

Q)

Figure 5.8. Frequency characteristics of two systems with the same steady state gain

It can be observed that, in order to put in evidence the differences between the
two models (that is, between the parameters), one must apply a signal u(f)=sin(wr)
(@ # 0) and not a signal u(f) = constant.

Let us analyze this phenomenon in greater detail. When the prediction error is
null, from Equations 5.3.1 and 5.3.2 one obtains

s+ =yt +1) =P +1)=0 ; —[a; —a, () + [bl —él]u(t) =0 (5.3.7)
From Equation 5.3.1, y(¢) can be expressed as a function of u(f):
-1

W) = Llu(t) (5.3.8)
I+aq

Introducing the expression of y(#) given by Equation 5.3.8 in Equation 5.3.7, the
following equivalent relation follows:

[ a _al)blq_l +(b1 —131)(1+a1q_1)Ju(t)

(
:[ b, —151)+q—1 (b1&1 —a1151) () =0 (5.3.9)

We are concerned with finding the characteristics of u(z) so that verification of
Equation 5.3.9. results in zero parametric errors.
Note that

b] —bA] =0y b]d] —all;l =0 (5310)

Equation 5.3.9 can then be written as
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(ao +a1q*1)u(t) =0 (5.3.11)

that is a difference equation having a solution of the discretized exponential type.
Let

u(ty=z" = (5.3.12)
where T is the sampling period. Equation 5.3.11 becomes

o+ 72 )2 =(zerg + e, )2 =0 (5.3.13)

and it will be verified for z, which is the solution of the characteristic equation

zZag +op = 0 (5314)
One gets
s % _ et o = real (5.3.15)
aO

and the aperiodic solution
u(t) = e (5.3.16)

leads to the verification of Equations 5.3.11 and 5.3.7 respectively, without having
a, =a, and I;I = b, . In practice, the signal u(f) = constant, previously considered,

corresponds to o = 0, that is - a; = «,. However

A b b
—ay =g = b —b =ab ~bd = ——=——
1+611 1+a1

In other words, if u(f) = constant, we can just identify the static gain.

Therefore it is necessary to apply a signal u(f) such that ¢, =, and I;l =b.

This can be obtained if u(?) is not a possible solution of Equation 5.3.11.
Let

u(t):eijxt or e /oLt (5.3.17)

Equation 5.3.11 becomes (for u(f) = &/@Tst)
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[e SO, g al] /T _ (5.3.18)

As a and q; are real, &®’s cannot be a root of the characteristic equation and it
results that ¢ () = 0 will be obtained only if

ag=a;=0=b =b , 4 =a (5.3.19)

It is this type of input which was previously proposed when the frequency

characteristics of the two models were examined (sin @t = (¢/®-e7?)/2j). A non-
zero frequency sinusoid is thus required in order to identify two parameters.

This approach for determining the input u(z) allowing satisfactory model
parameter identification may also be applied to systems of the general form

y(l‘)=—%a,~y(l—i)+%bl-u(t—d—i) (5.3.20)
i=l i=1

for which the total number of parameters to be identified is:

number of parameters = ny + ng

In this case u(¢) can be chosen as a sum of p-sinusoids of different frequencies:

P
u(t) =—- sinw;T,t (5.3.21)
i=l

and the value p, allowing good parameter identification, is given by'?
ny+ng

2
. (5.3.22)

ny+ng even pz=

ng+ng= odd p2
In other words, in order to identify a correct model, it is necessary to apply a

frequency rich input. The standard solution in practice is provided by the use of
“pseudo-random binary sequences”.

t
12 The condition of Equation 5.3.22 also guarantees that z¢(l - - I)T is an invertible
i=1
positive definite matrix for # = ny + ng = dim ¢ (see Equations 5.2.42 to 5.2.46).
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5.3.2. Pseudo-Random Binary Sequences (PRBS)

Pseudo-random binary sequences are sequences of rectangular pulses, modulated
in width, which approximate a discrete-time white noise and thus have a spectral
content rich in frequencies.

They owe their name pseudo-random to the fact that they are characterized by a
sequence length within which the variations in pulse width vary randomly, but that,
over a large time horizon, they are periodic, the period being defined by the length
of the sequence.

A

(-addition modulus 2)

Figure 5.9. Generation of a PRBS of length 25-1=31 sampling periods

The PRBS are generated by means of shift registers with feedback
(implemented in hardware or software). The maximum length of a sequence is 2N
I in which N is the number of cells of the shift register. Figure 5.9 presents the

generation of a PRBS of length 31 = 25-1 obtained by means of a five cells shift
register. Note that at least one of the N cells of the shift register should have an
initial logic value different from zero (one generally takes all the initial values of
the N cells equal to the logic value 1).

Table 5.1. Generation of maximum length PRBS

Number of cells Length of the sequence Bits added
N L=2N_q Bj and Bj
2 3 1 and 2
3 7 1 and 3
4 15 3 and 4
5 31 3and 5
6 63 5 and 6
7 127 4 and 7
8 255 2,3,4and 8
9 511 5and 9
10 1023 7 and 10
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Table 5.1 gives, for different numbers of cells, the structure enabling the
generation of maximum length PRBS.

A C™" program as well as a MATLAB® function (prbs.m) for generation of
pseudo-random binary sequences can be found on the book website.

Note also a very important characteristic element of the PRBS: the maximum
duration of a PRBS pulse (t;,,) is equal to NTg (where N is, the number of cells and

Ty is the sampling period). This property is to be considered when choosing a
PRBS for system identification.

Sizing of a PRBS

In order to identify correctly the steady state gain of the plant dynamic model, the
duration of, at least, one of the pulses (e.g. the maximum duration pulse) must be
greater than the rise time 7 of the plant (including the time delay). The maximum

duration of a pulse being N.T, the following condition results:
t;y = NT, >tz (5.3.23)

that is illustrated in Figure 5.10.
From Equation 5.3.23, one derives N and thus the length of the sequence 2V-1.

[~ NT, —

L)

<—tR —|

tm =T 'N > t_

Figure 5.10. Choice of the maximum duration of a pulse in a PRBS

Furthermore, in order to cover the entire frequency spectrum generated by a
particular PRBS, the length of a test must be at least equal to the length of the
sequence. In a large number of cases, the duration of the test (L) is chosen equal to
the length of the sequence. If the duration of the test is specified, it must therefore
be ensured that

2N T, <L ; L =testduration (5.3.24)

Note that the condition of Equation 5.3.23 can result in fairly large values of N,
corresponding to sequence lengths of prohibitive duration.

This is why, in many practical situations, a sub-multiple of the sampling
frequency is chosen as the clock frequency for the PRBS. If

S ores = L ; p=123,.. (5.3.25)
p
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then Equation 5.2.23 becomes
t, =pNT, >t, (5.3.26)

This approach is more interesting than the extension of the sequence length
(increase of N) in order to satisfy Equation 5.3.23. Indeed, if one passes from N to
N'=N + I, the maximum duration of a pulse passes from N7 to (N+1)T, but the

duration of the sequence is doubled L' = 2L. On the other hand, if fpppg = f/2 is
chosen, the maximum duration of a pulse passes from N7 to 2NT for a doubled

sequence duration L' = 2L.

From a comparison of the two approaches, it results that the second approach
(frequency division) enables a pulse of greater duration to be obtained for an
identical duration of the sequence and thus of the test. If p is the integer frequency
divider, one has in the case of clock frequency division (d,,,,, = maximum pulse

duration)
t,, =pNT ; L =pL=p(2N_1)TS ; p=123,...

In the case of an augmentation of the number of registers N by p-I, without
changing the clock frequency, one gets

t,=(N+p-DT, ; L'=Q2"")L ; p=123,.

Note that dividing the clock frequency of the PRBS will augment the spectral
density in low frequencies (which it is desired) but will reduce the frequency range
corresponding to a constant spectral density.

As an example, the spectral densities of the PRBS sequences generated with
N=8, for p=1,2,3 are represented in Figure 5.11.

One can observe that for p>1 the signal energy is augmented at low frequencies
but it is reduced at high frequencies. Furthermore, for p=3 there is a hole at f/3

(the PRBS does not contain the sinusoid of frequency f,/3).

In general this will not affect the quality of the identification either because the
plant to be identified has a reduced band pass with respect to the sampling
frequency, or because the effect of the reduction of the signal/noise ratio at high
frequencies can be compensated by using appropriate parameter estimation
algorithms. However it is recommended to use p <4 (see Landau et al. 1997,

Landau 2001Db).
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a) PRBS Spectrum: N=8,p=1
T
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b) PRBS Spectrum: N=8,p=2
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c) PRBS Spectrum: N=8,p=3

Magnitude (dB)

|
1
0.05 0.10 0.15 0.20 0.25 0.30 0.
Frequency (f/f)

Figure 5.11a-c. Spectral density for a PRBS: a N=8, p=1 ; b N=8, p=2 ; ¢ N=8§, p=3

Choice of the Magnitude of the PRBS
The magnitude of the PRBS may be very small, but it must be larger than the
amplitude of the residual noise. If the ratio signal/noise is too small, it is necessary
to augment the length of the test in order to obtain a good parameter estimation.
Note that, in a large number of applications, the significant increase in the
PRBS level may be undesirable in view of the non-linear character of the plants to
be identified (we are concerned with the identification of a linear model around an
operating point).

5.4 Effects of Random Disturbances upon Parameter Estimation

The plant measured output is in general contaminated by noise. This is due either
to the effect of random disturbances acting at different points of the plant, or to
measurement noises. These random disturbances are frequently modeled by
ARMA models, the plant plus the disturbance being modeled by an ARMAX
model (see Chapter 4, Section 4.1. for the description of random disturbances).

These disturbances introduce errors into the identification of the plant model
parameters when the recursive (or non recursive) least squares algorithm is used.
This type of error is called the bias of parameters.



234 Digital Control Systems

Before presenting those algorithms able to eliminate the bias on the estimated
parameters, first let analyze the effect of the random disturbances on the least
squares algorithm.

Replace the plant model Equation 5.2.67 by

Yt +1)=0" (1) + w(t +1) (5.4.1)

where w(f) represents the effect of the measurement noise (supposed stationary,
with zero mean value, finite variance and independent with respect to u(z)).

By introducing this expression of y(#) into Equation 5.2.43 one obtains for a
number of data N

N Iy
O(N) =0+ {Z Bt —D)p(t — 1)T1 {Z é(t - l)w(t)} (5.4.2)
t=1 t=1

By multiplying and by dividing by N the second term of the right side one obtains

-1
A 1< 1<
O(N) = 49{W ;:] ot —Dp(t —1)T1 {W Zl o(t —l)w(t):| (5.4.3)

We are interested in the properties of é(N ) when N — o« and we would like to
find the conditions allowing one to obtain an asymptotically unbiased estimation

N
( lim O(N)=6). By examining Equation 5.4.3, as lim Z¢(1—1)¢(t—1)T is
N—o N—>o© p_—

supposed non-singular (the system is correctly excited — see Section 5.3), it results
that the condition to obtain an asymptotically unbiased estimation is

18
lim hg ot — l)w(t):| = Elg(t —)w(t)} =0 (5.4.4)

Thus, asymptotically unbiased parameter estimation will be obtained only if
#(t —1) and w(?) are uncorrelated. Unfortunately, this will hold only in the case in

which w(f) = e(f) = white noise. From Equation 5.4.1 it results that y(f) depends on
w(f) and, as a consequence, ¢(t—1), which contains y(¢-1), y(t-2),..., y(t-n4 ), is a

function of w(t-1), w(t-2), ..., w(t- nyq ). Therefore

d(t — 17 = £t = 1), w(t = 2)sees Wt —1)),...) (5.4.5)

Equation 5.4.4 becomes
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E{w(t —iyw(i)}=0  pour i=1.2,.n, (5.4.6)

and Equation 5.4.6 is satisfied only by white noise (see Section 4.1).

This clearly shows that the use of a least squares algorithm will lead to an
unbiased estimation only in the very unlikely practical situation where w(?) = e(?)
= white noise.

In particular, the parameter estimation will be biased if the system “plant +
disturbance” is modeled by an ARMAX model that is representative of many
situations encountered in practice.

Let
Y(+1)=—a,y(t) +bu(t)+ce(t) +e(t+1)
One then gets:
w(t) =cje(t—1)+e(t);
w(t—1)=cie(t —2) +e(t —1)
and

E{w(Oyw(t —1)} = clE{e(t -1)? }+ Ele(t)e(t =)} + ¢, Ele(t - 2)e(t)}
+ e Ele(t—1)e(t—2)} = clE{e(t -1)? }: ¢’ #0

Suppose now that the exact value 0=0 is known, and we require that the
estimation algorithm leaves unchanged (asymptotically) the estimated value. For

6 =0 the least squares predictor equation is written as
P +10) =0" (1) (5.4.7)
and the prediction error becomes

et +10) = y(t +1) = H(t +1j0) = w(r +1) (5.4.8)

It thus results from Equation 5.4.4 that in order to obtain é(N )=6 when t >

there is a necessary condition to be satisfied for é(t) =6 = const (by replacing w()

with &(¢,0) in Equation 5.4.4)"3:

13 Notation ¢(t-1, 0) and £(z, @) indicates that these variables have been obtained with a fixed vector of
estimated parameter 6 .
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N-1
lim HZ_; #(t —1,0)e(t, 9)1 = E{p(1 -1,0)(1,0)} = 0 (5.4.9)

N—>x

To avoid bias, one needs to choose other observation vectors, other types of
predictors and other adaptation errors in order that

E{p(e(t+1)}=0 for 6=6 (5.4.10)

Two criteria have been retained for the generation of algorithms fulfilling the
condition of Equation 5.4.10 and asymptotically leading to unbiased parameter
estimations:

1. &(ttl) (or At+1) = adaptation error) is a white noise for 6=0
2. ¢ and g(¢t+1) (or t+1)) are uncorrelated (or independent) ford =0

It is the elimination of the bias on the estimated parameters in presence of
disturbances that is at the origin of the development of most of identification
methods.

5.5 Structure of Recursive Identification Methods

All the recursive identification methods correspond to the basic scheme given in
Figure 5.12.

They all use the same structure for the parametric adaptation algorithm (PAA)
with the different possible choices for the “adaptation gain”

Ot +1) = 0(t) + F()D(t)e(t +1) (5.5.1)

F ' t+1) = 4,()F(1) + 2, D()D(1)"

(5.5.2)
0<A()<1;0<A,()<2; F(0)>0

e't+1)

) = e Fon

(5.5.3)




System Identification: The Bases 237

where g(t+1) and &(t+1) are the a posteriori and a priori prediction errors,

respectively, @(f) is the observation vector, F(f) is the adaptation gain and 6(t)
represents the vector of the estimated parameters.

Disturbance

¥
t
"o y(t)

Pl ANT

-1

-------- q
PAA [

d(t—1)

Figure 5.12. Structure of recursive identification methods

The different identification methods can be classified by:

e  The structure of the predictor
e The origin of the elements of the observation vector (@)
e The dimension of the adjustable parameter vector @(s) and of the

observation vector @X)
e The way to compute the prediction error and respectively the adaptation
errors

The convergence properties, in the presence of random disturbances, will depend
on the different choices indicated above.

Table 5.2 gives a compact description of the various recursive identification
methods which will be discussed in Chapter 6.

All these identification methods are classified in two categories, with respect to
the criterion considered for their development (in order to obtain unbiased
estimated parameters):

e Identification methods based on the whitening of the prediction error ()
e Identification methods based on the uncorrelation of the observation vector
(@) and the prediction error (&) (E{@ (f) e (t+1)} # 0)

Since the different methods have been developed in order to verify one of the two
criteria mentioned above, the models identified with a particular method must be
validated by using the corresponding criterion, used to define the objective of the
method itself. It results that two validation techniques are available, allowing one
to verify, according to the case, one of the two criteria.
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If one considers in more detail the structure of the predictor and the choice of
the observations vector, three types of methods can be distinguished:

The equation error methods (recursive least squares and the different
extensions: extended least squares, generalized least squares, recursive
maximum likelihood). Each method tends to obtain a white prediction error
(white noise) for a class of disturbance models by modeling the
disturbance

The instrumental variable methods (with delayed observations or with
auxiliary model). Each method tends to obtain E{@¢) &t+1)} = 0 by the
modification of the observation vector @(f) used in the least squares
algorithm

The output error methods (with fixed or adjustable compensator, with
filtered observations, with extended estimation model). These methods tend
to obtain asymptotically either E{@(¢) &(t+1)} = 0, or the whitening of the
adaptation error by the modification of the predictor and of the method for
obtaining the adaptation error

Four model structures can be considered for the representation of the system
“plant + disturbance”. These four structures are summarized in Figure 5.13 and
they are briefly described below.

S1:

Alq) () = g9 Blq™!) u(1) + e(1)

The method that can be used for this structure is:

1.

S2:

Recursive Least Squares (RLS)

Alq) y(® = a4 Blg™) u()) + A(q!) w(t)

This structure corresponds to a model of the form:

—d -1
v =LY Dy 4w
Ag™)

where w() is a non-modeled disturbance for which it is assumed only that it is of
zero mean value, finite power and independent of the input.
The methods that can be used for this structure are:

bl N e

S3:

Instrumental Variable with Auxiliary Model (IVAM)
Output Error with Fixed Compensator (OEFC)

Output Error with Filtered Observations (OEFO)

Output Error with Adaptive Filtered Observations (OEAFO)

Alq) y@) = a9 Blq™) u(t) + Clq!) e()

The methods that can be used for this structure are:

1.
2.
3.

Extended Least Squares (ELS)
Recursive Maximum Likelihood (RML)
Output Error with Extended Prediction Model (OEEPM)
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S4: Alq) y(®) = g Bq!) u@) + [1/C(q7)] et)
The method that can be used for this structure is:

1. Generalized Least Squares (GLS)

S1: A(q™Y) y(®) = 4 B(q™) u(t) + ()

¢ e(t)
A
A
u(t) a9 B +y y(t)
—] A —+>

$2: A(qh) y() = q9B(q) ut) + Aq") w(t)

w(t)
u(t) q9 B + y(t)
A +

$3: A(qh) y®) = q94B(qh) u® + C(q) e(t)

l e(t)

£
A
u) [gd9g | =+ i y(t
A +

S4: A(qh) y(t) = g4 B(q!) u(t) + [1/C(q ) ]e(t)

l e(t)
1

CA
w) [dg | =+ i (0
A +

Figure 5.13. Structures of the “plant + disturbance” models

(AQ@H=1+aq' +..,B@)=bq" +..,CQq") =1+cq'+..)
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No single « plant + disturbance » structure exists that can describe all the

situations encountered in practice

In practice, it can be pointed out that structure 3 corresponds to slightly less
than two-thirds of situations, structure 2 corresponds to approximately one-third of

the situations, and structures 1 and 4 correspond to the remaining situations.
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Note that there does not exist a unique identification method which may be used
with all the possible « plant + disturbance » structures such that the estimated
parameters are always unbiased.

Since a unique “plant + disturbance” structure for describing all the situations
that may be encountered in practice does not exist and since a unique identification
method that always provides unbiased parameter estimations does not exist, it
results that an interactive procedure for the system identification is required.
Therefore a computer aided system identification software should provide:

Different structures for the “plant + disturbance”

Different identification methods and PAA

Validation methods for the identified models

A system for input/output data acquisition and processing (including the
generation of a PRBS)

e Tools for the model analysis

e Tools for visualising different graphs and plots

There are dedicated stand-alone system identification software like WinPIM"
(Adaptech 1996a) or interactive software using MATLAB®™ environment like the
System Identification Toolbox (Mathworks 1998).

Routines corresponding to the different identification and validation methods,
which will be presented in Chapter 6, are available in Scilab and MATLAB®
environments (see Appendix H) and can be downloaded from the book website.

5.6 Concluding Remarks

Basic elements for the identification of dynamical systems have been laid down in
this chapter.
System identification includes four basic steps:

1. Input/output data acquisition under an experimental protocol

2. Selection or estimation of model structure (complexity)

3. Estimation of the model parameters

4. Validation of the identified model (structure and values of parameters)

Recursive or non-recursive parameter identification algorithms can be used for
estimating the parameter of a model from input-output data. Preference has been
given to recursive algorithms for several reasons including: (i) estimation of the
model as the system evolves ; (ii) less memory and computer power required ; (iii)
real-time identification capability.

The core of the recursive identification methods is the parameter adaptation
algorithm (PAA) which has the form

Ot +1)=0(t)+ Ft + )D(1)e’ (t +1)
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where @ is the estimated parameter vector and F(t+1) @(t) &°(t+1) represents the
correcting term at each step. F is the adaptation gain (constant or time varying), @
is the observation vector and €° is the prediction error (or in general the adaptation
error), i.e. the difference between the true output and the predicted one.

Different choices are possible for the adaptation gain sequence in relation with
the type of identification problem (constant or time varying plant parameters, with
or without initial information, ezc...).

The uniqueness of the identified parameters depends upon the characteristics of
the input signal. To obtain a unique set of identified parameters, in the case of the
identification of a plant model characterized by an irreducible transfer function, the
input signal should contain a number of distinct sinusoidal components superior to
half of the number of parameters to be identified. In practice, one systematically
uses as input for system identification the pseudo-random binary sequences
(PRBS), which approximates a discrete-time white noise.

The stochastic disturbances which contaminate the measured output may cause
bias in the parameter estimations. For specific types of disturbances appropriate
recursive identification methods, providing asymptotically unbiased estimations,
are available.

The different recursive identification methods available use the same structure
for the PAA. They can be distinguished by:

1. The structure of the predictor
2. The origin of the elements of the observation vector (D)

3. The dimension of the adjustable parameter vector é(t) and of the
observation vector @

4. The way in which the prediction errors (or the adaptation errors) are
generated

These identification methods can be grouped in two categories:

1. Identification methods based on the whitening of the prediction error
2. Identification methods based on the uncorrelation of the observation vector
and the prediction error

A unique plant + disturbance structure, which describes all the situations
encountered in practice, does not exist, as also does not exist a unique
identification method providing unbiased parameter estimates in all the situations.
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System Identification Methods

In this chapter two categories of identification methods: (1)methods based on the
whitening of the prediction error; (2) methods based on the uncorrelation of the
observation vector and the prediction error, are presented in their recursive form
together with the corresponding model validation techniques.

Methods for the model order estimation are presented in the last part of the
chapter.

6.1 Identification Methods Based on the Whitening of the
Prediction Error (Type )

The following recursive identification methods given in Table 5.1 fall into this
category:

Recursive Least Squares (RLS)

Extended Least Squares (ELS)

Recursive Maximum Likelihood (RML)

Output Error with Extended Prediction Model (OEEPM)
Generalized Least Squares (GLS)

6.1.1 Recursive Least Squares (RLS)

The recursive least squares method has been presented in detail in Chapter 5,
Section 5.2.3.

The analysis in the presence of random disturbances has been presented in
Section 5.4. It should be remembered that the recursive least squares method gives
unbiased estimations only for “plant + disturbance” models of the form (structure
S1)

247
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A(g My() = ¢ BgHu(0) +e(2) (6.1.1)

i.e. for a disturbance model with C(g/) = I in the equation of the ARMAX
models.

6.1.2 Extended Least Squares (ELS)

This method has been developed in order to identify without bias “plant +
disturbance” models of the form (structure S3):

Aq™(0 = BlgHu®) + CqgHe(r) (6.12)
The idea is to identify simultaneously the plant model and the disturbance model,
in order to obtain a prediction (adaptation) error, which is asymptotically “white”.
This method will be presented by means of an example. Let the “plant +
disturbance” model be

y(t+1) =—ayy(t) + biu(t) + cre(t) + e(t +1) (6.1.3)

Assume that the parameters are known and construct a predictor, which will give a
white prediction error

Pt +1)=—ayy(t) + bju(t) + cpe(t) (6.1.4)

Furthermore this predictor minimizes the variance of the prediction error E{[y(t+/)
- 9 (t+1)]?} (see Chapter 4, Section 4.1.4).
The prediction error is given by

e(t+)=y(t+D)—p+1)=e(t+1) (6.1.5)
This allows to rewrite Equation 6.1.4 in the form
P +1) =—a,y(t) + bju(t) + c,&(t) (6.1.6)

In the case of unknown parameters, the adjustable predictor will be given by
Equation 6.1.6, in which the unknown parameters are replaced by their estimates.
The a priori adjustable predictor will therefore take the form

PO +1) = —a, () y(e) + by (Du(e) + & (D) = 0() (1) (6.1.7)

where
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00 =|awbo.a0| s =Froum.e0] 618
The a posteriori adjustable predictor will be given by

Pt +1)==ay(t +Dy(0)+ by (¢ + D) + &t + De@) = 0t +1) (1) (6.1.9)
The a posteriori prediction error &(t+1) is expressed as

e(t+D)=yt+1)—p@+1) (6.1.10)
and the a priori prediction error is defined as

e(t+D)=y(t+D)—-p°@+1) (6.1.11)

Using the adjustable predictor given by Equation 6.1.7, the formulation of the
problem of the simultaneous identification of the plant model and of the
disturbance model has been reduced to a least squares type formulation as
considered in Section 5.2.3.

The parameter adaptation algorithm (PAA) described in Section 5.5 (Equations

5.5.1 to 5.5.3) will be used with é(t) and (7)) = ¢(¢) given by Equation 6.1.8. All
“adaptation gain” policies may be used.

Compared to the simple least squares method, there is a larger number of
parameters to be estimated. é(t) includes in addition the coefficients of C(g™/). The
observation vector will be obviously larger. It contains in addition the a posteriori
errors (1), £(t-1)...e (t-nc+1).

In the general case, the estimated parameters vector and the observation vector
will be of the form

o’ = [&1 (O By (0., (,61(0)..2,, (r)]

) = [~ y()=y(t—n g+ 1), u(t —d).cas(t —d —ny +1), £(t)...6(t —ne +1)]

In the presence of a random disturbance corresponding to the ARMAX model and
with an asymptotically decreasing adaptation gain, &£(f) asymptotically tends
towards a white noise, which guarantees an unbiased estimation of the parameters
of A(q"!), B(g™!) (if the input is sufficiently rich)'.

! The convergence of @is rigorously guaranteed within a convergence domain

D, ;{9|(¢9* — 0)T¢(t, 0)= O} in which 6" is the vector of true parameters. For a rich input, this
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Nevertheless, this convergence is subject to a sufficient (but not necessary)
condition

B s A s max () (6.1.12)
czh 2 : ?

is a strictly positive real transfer function. A strictly positive real transfer function

is characterized by the following two properties:

1. itis asymptotically stable
2. the real part of the transfer function is positive at all frequencies

This concept is illustrated for continuous time systems in the upper part of Figure
6.1 and for discrete time systems in the lower part of Figure 6.1.

Continuous-time
Yo . Im H
® 7l /7
1" — Re H
c /
o=

ReH<0 ReH>0

Discrete-time
Im z Im H

&){ Re z / :

1 ,—¢® ReH<0 ReH>0

H(e")

m'
()

Figure 6.1. Strictly positive real transfer functions

An eventual non-convergence of the method for certain values of C(q'l ) and
for certain types of input signals can be explained by the violation of this
condition.

domain is reduced to a single point 6", The convergence of the parameters of C(q'l ) is slower than that

of A(q’] ) and B(q‘] ) parameters, and it depends on the realization of the stochastic process.
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6.1.3 Recursive Maximum Likelihood (RML)

This is an improved version of the extended least squares method. Instead of using
directly ¢(f) given by Equation 6.1.8 in the parameter adaptation algorithm, it is

first filtered by 7/ c (t, g!) where C (t, g°!) is an estimation at instant t of C(q'l ).

This modification has the effect of eliminating the positive real condition on C(q'l )
in the final convergence stage, and of accelerating the uncorrelation between the
observation vector and the prediction error. An example will be used to present this
method. The “plant + disturbance” model is given by Equation 6.1.3.

The a priori adjustable predictor is written as (similar to the ELS)

PO (e +1) = =Gy (6)9(0) + by (Du(t) + &, (1)e(t) = 0 §(2) (6.1.13)
where

00" =l@h0.a0] o w0 = roue.s0] 6114
The a posteriori adjustable predictor is written as

e+ =0¢+D"p(0) (6.1.15)
and the corresponding prediction errors are given by

e+ D) =y(t+1)—p°(t+1)

(6.1.16)
e(t+)=y(t+1)—p+1)
The estimation of the polynomial C(g™/) at instant ¢ is written as
Clt,g H=1+¢(1)g" (6.1.17)
The observation vector d(¢) is defined by
1
o) =¢,0) = & [ (@), u(0), ()]
(t.q7) (6.1.18)

A OO0
Clt,g™) C.g™) Cltg™)

which corresponds to the filtering of the components of ¢(f) by 1/ C (tg™).
The parameter adaptation algorithm is given by Equations 5.5.1, to 5.5.3, where
@() is now given by Equation 6.1.18. In the general case
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0" =|ay(0)...a,, (0).by (0)..b, (1), (0)..é,,_ (z)J

o) =, (1) =——
TR

e y@) =yt —n g+ D u(t —d)eu(t —d —ng +1),6(0)..6(t — ne +1)]

Nevertheless, this method cannot be implemented starting from the instant /=0 if a
good estimation C(g/) is not available. First an initialization horizon must be
considered, during which the extended least squares (ELS) method is used in order
to obtain a first estimation. As a rule, the initialization horizon is taken equal to 5
(up to 8) times the number of the parameters to be identified.

On the other hand, filtering of the observations can only be carried out for

stable estimations of C (t.g™1). A stability test must therefore be incorporated. Note
that the transition ELS— RML should only occur if C (¢, ¢°!) is stable. If at the
end of the initialization horizon C (¢, ¢’!) is not stable, the commutation is delayed

up to the instant for which C (¢, ¢°) becomes stable.
A gradual transition of the ELS towards the RML may also be used by

introducing a “contraction factor” in c (¢, ¢°1). This corresponds to a filter defined
by (I + ac,;q”') with: 0 < a <1, instead of (/+ ¢,¢"!). This forces the polynomial
roots into the unit circle. It is possible to use a variable contraction factor that
asymptotically tends toward 1. This type of variation can be obtained using the
formula

a(t) =aga(t—1)+1-a, (6.1.19)

which corresponds to a first-order discrete stable filter with a unit static gain
excited by a unit step (the final value is equal to 1). A possible choice for ¢ is

0.5 <ay = (0) < 0.99

The recursive maximum likelihood method is used to improve, if necessary, the
results of the extended least squares method. However, if the above mentioned
precautions are not taken into account, the algorithm may diverge.

6.1.4 Output Error with Extended Prediction Model (OEEPM)

Originally, this is an extension of the output error method (see further on in Section
6.3). This method can be interpreted as a variant of the ELS. It offers asymptotic
performances similar to the ELS, but with improved transient estimation (faster
bias rejection). This method will be presented by means of an example. The “plant
+ disturbance” model is given by Equation 6.1.3.

The a priori adjustable predictor of the ELS (defined by Equation 6.1.7) can be
rewritten in the form (adding and subtracting the term £a; (1) p(¢) )
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PO +1) = =ay (O p(0) + by (u(®) + & ()a(0) + a4y ()5(0) (6.1.20)

and, by regrouping differently the terms of Equation 6.1.20, the structure of the a
priori adjustable predictor used in the OEEPM is obtained:

PO +1) ==y () 3(t) + by (Oue) + by (De(t) = 0(t) §(2) (6.1.21)
where

Iy (1) = é,(6) = 4y (1) (6.1.22)

00" =la.bo.an] 0 07 =Fi0um.en] (6123

The a posteriori adjustable predictor is given by
P+ =0+ (1) (6.1.24)
and the prediction errors are given by

e+ D) =y(t+1)—p°(t+1)

(6.1.25)
e+ =yt +1) = Pt +1)

The parameter adaptation algorithm is the one given by Equations 5.5.1, 5.5.2 and
5.5.3 with 6(r) and ®(t) = #(t) as in Equation 6.1.23. In the general case:

00" =(a(0)..40,, (0.5, (0)..b,, (0.1 (0)..1,, (0)
() =[-5(0)...— 9t —n g + Dt —d)..u(t —d —ng +1),6(0)..£(t —ne +1)]

As for the ELS, &f) asymptotically tends towards a white noise, thereby
guaranteeing an unbiased estimation of the parameters of A(¢g™/) and B(g™/) (if the
input is sufficiently rich). The convergence is subject to the same sufficient
condition as in the ELS, i.e. the transfer function given by Equation 6.1.12 must be
strictly positive real.

Note that the values of the coefficients of C(g/) are obtained from the relation:

¢ = hi + a; (6126)

The difference with the ELS lies essentially within the components of vector
(f) in which the measurements y(f) directly affected by the disturbance are
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replaced by J (f), which only indirectly depends upon the disturbance. This

explains why a better estimation is obtained with this method than with the ELS
method over short horizons.

6.1.5 Generalized Least Squares (GLS)

The aim of this method is to obtain a “white” prediction error for a “plant +
disturbance” model having the form (structure S4):

Alg (0 =7 Blg ™) + 1_1 e(t) (6.1.27)
Clq )

(the term C(gq!)e(?) of the ARMAX model has been replaced by [1/C(g!)]e(?)).
This method will be illustrated by means of an example. The “plant + disturbance”
model is given by:

e(t+1)

y(t+1)=—a;y(t)+bju(t)+ : (6.1.28)
I+c1q
Let us define
a(t+1) =(1+alq_l)y(t+1)—bll,t(t)=e(t—Jrl)l (6.1.29)
I+cq
The relation
(+cig Da@+1) =e(t+1) (6.1.30)

is then obtained ((f) is a AR process — see Section 4.1.2).
Assuming that the parameters are known, a predictor can be constructed
ensuring a white prediction error

Pt +1) =—a,; y(t) + bju(t) — c;a(t) (6.1.31)
Indeed
pea—pe+ny=—LD €O 4 (6.1.32)
l-i-clcf1 l-i-clcf1

If the parameters are not known, an adjustable predictor is built by replacing the
known parameters in Equation 6.1.31 by their estimations. The a priori adjustable
predictor will be given by
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PO +1) = —a, () () + by (u(t) — & (Da(t) = 0()" (t) (6.1.33)
in which
00" =la0.b0.60] 1 s = yOu—a®)] (6134

The quantity «a(¢) will be estimated using Equation 6.1.29, in which the unknown
parameter values are replaced by their estimations:

alt)= At,q " )y(t) - ¢~ Bt,q " Hu()

. | . (6.1.35)
=(+a, (g )y(t)=b (Dut 1)
The a priori prediction error is defined as
e2(t+D)=y(t+1)=y°(t+1) (6.1.36)

Since the adjustable predictor equation given in Equation 6.1.33 has the
formulation permitting the use of the least squares algorithm, as in the case of the
ELS, the parameter adaptation algorithm is given by Equations 5.5.1, 5.5.2 and
5.5.3. In this case ®(¢) is defined by Equation 6.1.34 and &°(t+7) by Equation
6.1.36. In the general case

0" =014, 00.5,0)..5,, (0,0)..4,, 0
D) = [ y(0)..= y(t =1y +1),u(t = d)..1(t —d — g +1),~0(t)..— At = +1)

In the presence of a random disturbance corresponding to the S4 structure, and
with an asymptotically decreasing adaptation gain, &) asymptotically tends
towards white noise, thereby allowing an unbiased estimation of the model
parameters.

The convergence of the algorithm is nevertheless linked to a sufficient (but not
necessary) condition

c(z™h —’172 ;2> A, >max A, (1) (6.1.37)

is a strictly positive real transfer function.
This method is used in particular if the disturbance has a narrow band
frequency spectrum (for example a periodic disturbance close to a sinusoid).

Indeed, this kind of disturbance can be fairly modeled by [1/C(g™")]e(r) with a few
parameters whereas the modeling of this kind of disturbances by C(g ")e(r)
requires a high order for C(¢™").
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6.2 Validation of the Models Identified with Type I Methods

This section is concerned with the validation of models identified using methods
based on the “whitening” of the prediction error. These methods are

Recursive Least Squares (RLS)

Extended Least Squares (ELS)

Recursive Maximum Likelihood (RML)

Output Error with Extended Prediction Model (OEEPM)
Generalized Least Squares (GLS)

The principle of the validation method is the following:

e [fthe “plant + disturbance” structure chosen is correct, i.e. representative of
reality

e If the degrees of the polynomials A(g™!), B(g!), C(g”!) and the value of d
(delay) have been correctly chosen

then the prediction error &(f) asymptotically tends towards white noise, that implies

lim E{e(1)e(t i)} =0 i=123..;—1,-2,-3...
t—o0

The validation method implements this principle. It is made up of several steps:

1. Creation of an I/O file for the identified model (using the same input
sequence as for the system)

2. Creation of a prediction error file for the identified model (minimum 100
samples)

3. “Whiteness* (uncorellation) test on the prediction errors sequence (also
known as residual prediction errors)

Whiteness test
Let {&(f)} be the centered sequence of the residual prediction errors (centered: the
mean value is subtracted from the measured values).

One computes

N
RO)= D20 RN(0)=%=1 6.2.1)
t=1

R(i)
R(0)

N
R(i):%z,s(t)g(t—i) . RN(i)= D i=12300 0, (6.2.2)
t=1

where
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Imax =Max(n,,ng +d)
and the RN(i) are estimations of the (normalized) autocorrelations.

If the residual prediction error sequence is perfectly white (theoretical situation)
and the number of samples is very large (N — o ) one gets RN(0) = 1 ; RN(i) = 0
i> 1%

In real situations, however, this is never the case (i.e. RN(i) # 0 ; i > I) since on
one hand &) contains residual structural errors (order errors, non-linear effects,
non-gaussian noises) and, on the other hand, the number of samples is generally
relatively small (several hundreds). Also, it should be kept in mind that one always
seeks to identify good simple models (with few parameters).

One considers as a practical validation criterion (extensively tested on
applications)

RN(O)=1 ; |RN(i)|sﬂ i1 (6.2.3)

\/N >
where N is the number of samples.

This test has been defined taking into account the fact that, for white noise, the
sequence RN(i) (i# 0) has an asymptotically gaussian (normal) distribution with
zero mean and standard deviation: o = 1/\/N .

The confidence interval considered in Equation 6.2.3 corresponds to a 3% level
of significance of the hypothesis test for a gaussian distribution.

Indeed, if RN(i) obeys the gaussian distribution (0, ]/\/N ), there is only a
probability of 1.5 % that RN(i) is larger than 2./ 7/\/]_\/ , or that RN(i) is smaller than
72.17/\/N . Therefore, if a computed value RN(i) falls outside the range of the
confidence interval, the hypothesis on the basis of which &) and &t-i) are
independent should be rejected, i.e. {&(2)} is not a white noise sequence.

Sharper confidence intervals can be defined. Table 6.1 gives the values of the
validation criterion for various N and a 3% test level of significance as well as for 5
and 7% level of significance.

Table 6.1. Confidence intervals for independence (whiteness) tests

N=51

Level of significance Criterion N=128 | N=256 5
3%

(validation criterion) 2.17AIN | 0.192 | 0.136 | 0.096
0

3% 1.96AIN | 0.173 | 0.122 | 0.087
0

7% 1.808A/N | 0.16 | 0.113 | 0.08

2 For gaussian data, uncorrelation implies independence. In this case RN(i) = 0, i > I implies
independence between &(7), &(t-1) i.e. the sequence of residuals {&(?)} is a gaussian white noise.
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The following remarks are imperative:

An acceptable identified model has in general

|RN(i)|_ﬁ LIRS

NI

max

Taking into account the relative weight of various non-gaussian and
modeling errors (which increase with the number of samples), the
validation criterion may be slightly tightened for small N and slightly
relaxed for large N. Therefore, for simplicity's sake, one can consider for
the validation criterion the following practical value

RN <015 i=1,..i

max

A too good validation criterion indicates that model simplifications may be
possible.

If several identified models have the same complexity (number of
parameters), one selects the model given by the methods which lead to the
smallest [RN(i)| and R(0).

Note also that a complete model validation implies, after the validation done
with the input/output sequence used for identification, a validation using a new
plant input/output sequence.

There is another important point to consider: if the level of the residual
prediction errors is very low compared to the output level (lets us say more than 60
dB) the whiteness test loses its significance. This occurs because on one hand the
noise level is so low that the bias on the RLS is negligible and, on the other hand,
because the residual noise may not be gaussian to a large extent (for example,
noise caused by the propagation of round-off errors). This situation may occur
when identifying simulated I/O data generated without disturbances.

6.3 Identification Methods Based on the Uncorrelation of the
Observation Vector and the Prediction Error (Type II)

The following recursive identification methods fall into this category:

Instrumental Variable with Auxiliary Model (IVAM)
Output Error with Fixed Compensator (OEFC)

Output Error with Filtered Observations (OEFO)

Output Error with Adaptive Filtered Observations (OEAFO)
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6.3.1 Instrumental Variable with Auxiliary Model

The general idea behind the instrumental variable methods consists in creating a
new observation vector which is highly correlated with the uncontaminated
variables (and therefore representative), but uncorrelated with the noise disturbance
in order to obtain E{ () &(t+1)} = 0.

The “plant + disturbance” model considered in this case is that of structure S2
(see Section 5.5):

Alg )y =g " Blg Hu®) +w(r+1) (6.3.1)
in which

w(t+1) = A(gHw(r) (6.3.2)
and corresponding to the diagram given in Figure 6.2.

w(t)
u) [qdg |+ y(t)

—w
A +

Figure 6.2. The “plant + disturbance” structure (type S2)
w(f) is any disturbance, independent from u(#), with zero mean value and a finite

variance.
The final objective is to obtain unbiased estimations of the coefficients of

A(g™") and B(q"!) without taking into consideration a model for the disturbance.

Thus, one builds an instrumental vector uncorrelated with the prediction error
provided by the least squares predictor.

Let consider the following example, where the “plant + disturbance” is
described by:

Y+ =—a,y()+bu(t)+w'(t+1) (6.3.3)
where

w(t+1) = +a,g " Hwt+1) (6.3.4)
Let consider the recursive least squares adjustable predictor

O+ 1) = =a, (Oy(0) + by (Ou(r) = 6) $(1) (6.3.5)

in which
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o0 =|nwbo] 07 =[] (6.3.6)
and respectively

P+ =0+ ¢(t) (6.3.7)
the prediction errors being defined by:

2t +1) =yt +1)— Pt +1) (6.3.8)
e(t+1) =yt +1) =Pt +1) (6.3.9)

Let us define an auxiliary prediction model that provides the instrumental variable:

iy (0) = =8y () (¢ =1)+ by (D ~1) (6.3.10)

This prediction model differs from the one given by Equations 6.3.5 or 6.3.7 as the
predicted output depends on the previous predictions and not on the previous
outputs (y(t-1) has been replaced by y;(#-1)). These new variables will be less

affected by disturbances, which will have an effect only through the PAA. If a
decreasing adaptation gain is used, y;{(#) will asymptotically depend only on u(z-1),

that is not the case for p °(¢) or p (¢) respectively given by Equations 6.3.5 and
6.3.7 (as y(?) is a noisy signal).
The new observations vector is defined by

o) =gy 0" =[yp O.u(®)] (6.3.11)
One observes that y(f), y(¢-1),..., which are used in recursive least squares, have
been replaced by y (1), ypAt-1)...

In the general case, the observations vector has the structure:

o) =g () ==y Oy = Dssut —d)u(t —d -1),..]  (6.3.12)

and the instrumental variable y,; is generated by the auxiliary model

At.q ™Yy ()= g7 B(t.g () (6.3.13)

where

At gy =1+4,0)g " +... (6.3.14)
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Bt,g™ ) =b, (g +by()g % +... (6.3.15)

The parameter adaptation algorithm is given by Equations 5.5.1, 5.5.2 and
5.5.3, in which ®(¢) is now given by Equation 6.3.12. This method uses the same
adjustable predictor of RLS for generating the prediction error but the observation
vector is different. For y;(7) to be representative of y(¢), an estimation of a; and b;
is required. This is why this method must be initialized by the recursive least
squares. In general, an initialization horizon is chosen equal to five (up to eight)
times the number of parameters to be identified. If the initialization horizon is not
enough long, divergence of the algorithm may occur.

6.3.2 Output Error with Fixed Compensator

The “plant + disturbance” model is the one given by Equations 6.3.1 and 6.3.2 and,
for the first order example, by Equations 6.3.3 and 6.3.4 respectively.

The idea behind this method is the observation that, in the absence of
disturbances, the output predicted by the RLS predictor p (#+1) tends towards
y(t+1). In these conditions one can consider replacing y(z) by p (¢) (the a posteriori

prediction) in the predictor equation.
Indeed, consider, by means of an example, the RLS adjustable predictor for the
“plant + disturbance” model of Equation 6.3.3

POt +1) = —a,(£)y(6) + by (Hu(?) (6.3.16)

and replace in Equation 6.3.16 y(¢) by p (f) (“output error” type predictor). Then,

we get

POt +1) = =a, () 3(0) + by (Hu(r) = 0(0) (1) (6.3.17)
in which

00" =la.bo] 0" = 50w)] (63.18)
where

P +1) =0+ )T gty = (1) =00)T p(t 1) (6.3.19)

represents the new a posteriori prediction.

The difference between the RLS and the Output Error is illustrated in Figure
6.3.

The usefulness of this modification is clearly seen in the presence of
disturbances. If p is used instead of y(z) in the predictor equation and in the
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observations vector, one can see that, with an asymptotically decreasing adaptation
gain, p(¢) will only depend on u(f) (which is not the case for the RLS predictor)

and this will asymptotically lead to E{@(?) &(t+1)} = 0. As a consequence a plant
model with unbiased parameter estimates will be obtained.

In the general case, the observation vector used both in the predictor and in the
parameter adaptation algorithm is of the form

D) =¢(t) = [—j}(l),—j/(t—1),...,—)7(1—nA +1),u(t = d),...su(t —d —n, +1)] (6.3.20)

; DISTURBANCES

u(® y()
Plant l o
+ Fes (t
y(t-1) L
L q v _ PAA
Adjustable] Y'®
predictor

l

Recursive Least Squares (RLS)
| DISTURBANCE

ut) y(t)
Plant

cye ()
(t-1) q—1 PAA
.
Adjustable| |¥'®
predictor
I

Output Error (OE)

Figure 6.3. Comparison between the recursive least squares and the output error prediction
structures

The prediction errors are defined from Equations 6.3.3, 6.3.17 and 6.3.19:

e+ =y +1)—p°@+1)

. (6.3.21)
e+ =y(t+1)—y(t+1)
and the adaptation algorithm given by Equations 5.5.1 through 5.1.3 is used.
One can also define, in the general case, an adaptation error (V) obtained by
filtering the prediction error:
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v(t+1)=D(g He(t+1)

1 1 (6.3.22)
D(g ) =1+diq" +..+d, ¢
L)
V)= e+ D)+ Y dis(+1-0) (6.3.23)

i=1

In this case, we replace in the adaptation algorithm of Equations 5.5.1 through
5.5.3, &(t+1) and gt+1) respectively by 2(1+1) and W¢+1).

This is a method that assures therefore an unbiased identification of the
coefficients of 4(¢!) and B(gq!), without using a model for the disturbance to be
estimated, and without requiring an initialization by another method.

This method is subject to a sufficient convergence condition (both in the case
without and the case with disturbances):

D) A
Az 2

2> 4, 2max A, () (6.3.24)

should be a strictly positive real transfer function. This is why the filter D(q'l ) on
the prediction error has been introduced.
Forn, < 2 (n, = deg A(g!)), the compensator D(g™!) is not necessary (since

1/A(q") - 2,/2 is strictly positive real almost everywhere 4(g™/) is asymptotically
stable). For n, > 2 and a decreasing adaptation gain, the compensator is generally

unnecessary (it is proved that the prediction error remains bounded). If the
compensator is introduced, one takes n; < n, - 1 or n, (n; = degree D(q™!)).

Since the condition on the transfer function of Equation 6.3.24 is only
sufficient, D(¢!) = I (no compensator) is always used to start, and a compensator
is introduced only if the prediction error diverges.

It is also possible to estimate simultanecously model parameters and those of the
filter on the prediction error (output error with adjustable compensator). For more
details see Landau (2001b), Landau ef al. (1997).

6.3.3 Output Error with (Adaptive) Filtered Observations

It is an extension of the basic output error method in which the filtering of the
prediction error is replaced by the filtering of the observation vector (in order to
satisfy the convergence conditions).

The equations for the adjustable predictor and the prediction errors are the same
as for the output error with fixed compensator (Equations 6.3.16 to 6.3.19 and
6.3.21).

One uses the prediction error as adaptation error (it is not filtered). However,
this algorithm uses a filtered version of the observation vector.
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For the output error with filtered observations one defines a filter with constant
parameters:

Lg) =A™ (6.3.25)

where A(g~')is an estimation of the polynomial A(g~') obtained by another

estimation algorithm (for example: recursive least squares or output error without
filtering of the prediction error) and one defines the vector of filtered observations

#0):

1
Ag™)

Q) =¢,(1) = 9(0) (6.3.26)

where ¢(7) is given by Equation 6.3.20.
One can uses instead of the filter of Equation 6.3.25 a filter with time varying
parameters:

Lig.=Atq ™" (6.3.27)

where A(t,g") is an estimation of the polynomial A(g™") at instant ¢ (provided by
the parameter adaptation algorithm) and the vector of filtered observations is
defined by Equation 6.3.26 where 4(¢™") is replaced by A(t,¢™"). One obtains the

output error with adaptive filtered observations.
As in the case of the recursive maximum likelihood algorithm, a stability test

on A(t,g”") should be done at each sampling.

The initialization of the algorithm can be done by the non-filtered output error
algorithm (with no compensator) or the recursive least squares (in order to get a

first estimation of A(¢~")), but this is not mandatory since the algorithm can start
with 40,47 =1).

The sufficient condition for the convergence of the algorithm is expressed for a
fixed value of the filter L(,¢™") = L(¢™",0) = A(¢™",0):

Az0) A

H' -1 _
CE 2

; 2>, >max A, (1) (6.3.28)
t

should be a strictly positive real discrete time transfer function. In particular, this

condition will always be satisfied around the correct value 0=06.
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6.4 Validation of the models identified with Type II Methods

This section is concerned with the validation of models identified using the
identification methods based on the uncorrelation between the observations and the
prediction errors.

These methods are:

Instrumental Variable with Auxiliary Model (IVAM)
Output Error with Fixed Compensator (OEFC)

Output Error with Filtered Observations (OEFO)

Output Error with Adaptive Filtered Observations (OEAFO)

The principle of the validation method is as follows:

e If the disturbance is independent of the input (E{w(?) u(f)} = 0)

e If the “model + disturbance” structure chosen is correct, i.e., representative
of the reality

e If an appropriate identification method has been used for the chosen
structure

e If the degrees of the polynomials A(g/), B(q"!) and the value of d (delay)
have been correctly chosen

then the predicted outputs generated by a predictor model of “output error” type

A@H I O=q9 B (g u®)

are asymptotically uncorrelated with respect to the output prediction error, that
implies

N

E{g(t)j/(t—i)}z%Zg(t)j/(t—i):0 =123,

t=1

The validation method implements this principle. It is made up of several steps:

e Creation of an I/O file for the identified model (using the same input
sequence as for the system)

e Creation of files for the sequences {(9)}; { y (8)}; {&(?)} (system output,
model output, residual output prediction error). These files must contain at
least 100 samples

e Uncorrelation test between the residual output prediction error sequence
and the delayed prediction model output sequences

Uncorrelation test
Let {y(¥)} and { p (¥)} be the centered output sequences of the plant and of the
identified model respectively.
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Let {&(f)} be the centered sequence of the residual output (prediction) errors
(centered = measured values - mean values).
One computes

N

R(i) = %Zg(t)j/(t—i) =012 i (6.4.1)

t=1

R(i)

[{zlviﬁ%>][;v§gz(t)]]uz

=max(n,,ng +d)

RN(i) = D i=01.2,. (6.4.2)

2%e max

where

imax
and the RN(i) are estimations of the (normalized) cross-correlations. Note that
RN(0) # 1.

If the uncorrelation is perfect between &(F) and p (¢-i), i > 1 (theoretical

situation) thus
RN(D)=RN@@)=0 ; i=12,.,0in.

In practice this is never the case, either because the duration of the identification
was not long enough to approach the asymptotic character, or because the
identification of good simple models is desired (with few parameters, i.e. under
estimation of the orders of 4(¢!) and B(g!)), which results in structural errors
which are correlated with the input (7).

In practice it is desired that the values of |[RN(i)|, i = 1,..., i;yqc be as small as
possible, but the difficulty lies in defining a reference (validation criterion).

The wvalidation criterion for type II identification methods based on an
uncorrelation test will be defined similarly to that for type I identification methods
which also use an uncorrelation test, but on different sequences of variables (see
Section 6.2). In this case one therefore considers as a practical validation criterion

2.17

N

where N is the number of samples. Table 6.1 can be used for finding the numerical
value of the validation criterion for various N and levels of signification of the test.

|RN ()| <

3 i=L2,0 0
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All the comments made in Section 6.2 upon the significance of the values of the
validation criterion remain valid. In particular the basic practical numerical value
for the validation criterion which is

|RNG)[<0.15 5 i=12,..i

max

is worth remembering.

One can say that the uncorrelation test allows one to compare the results
provided by all identification methods since it only requires the parameters of the
plant model (B(g”).A(q”)). Therefore, it is useful to perform this validation test
even for models identified with type I identification methods in order to compare
them with estimated models obtained with type II identification methods.

In short, one only takes the estimated plant model (B(g”),4(g™")) obtained with
type I identification methods (the noise model is not considered) and one performs
the uncorrelation test. The best model is that which will give the lowest cross-
correlation terms?.

6.5 Estimation of the Model Complexity*

6.5.1 An Example

In order to understand the principle of the model complexity estimation, let us
consider a first-order discrete time model. It will be assumed that there is no noise.
Assume that the plant model is described by

y(t) =-a, y(t-1) + b, u(t-1) (6.5.1)

and that the data are not corrupted by noise. The order of this model is
n=max(ny,ny+d)=1

Question: Does there exist a test allowing one to verify if the hypothesis upon
the order of the model is correct?

Construct the following matrix:

e On the first row one writes y(?) as well as the variables represented in the
right hand term of Equation6.5.1

e The other rows are formed by the delayed variables occurring in Equation
6.5.1.

3 However, in comparing the models obtained by type I identification methods, priority will be given to
the whiteness test.

4 Can be omitted for a first reading.
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Ae=1) i —y=2) u(-2)|=[r@) RO)]

we=2) 1 =ye-3) ult-3) (6.5.2)
A

Y (1) R(1)=R(n)

The resulting matrix can be split into two parts: the first column denoted Y(7), is
a vector containing the current and previous outputs ; the remaining rows define a
matrix denoted by R(1).

If the structure of Equation 6.5.1 is true (which means that it can represent the
relationship between u and y), one can replace the components of the first column
of Equation 6.5.2 by their expression given by Equation 6.5.1. One obtains by
evaluating the determinant of the matrix given in Equation 6.5.2:

—apy(e=1)+bu(t-1) : —y(e-1) ulz—1)
rank[Y(t) R(l)] =rank —ayy(t-2)+bult-2) + —y(t 72) u(t-2)|=2(<3) (6.5.3)
—a(t=3)+bu(t-3) 1 —yt-3) u(t-3)

since the first column is a linear combination of the two other columns. Effectively
Y(t)= R(1)O with 8" = [a;,b,] and the rank of the matrix is 2 (instead of 3).

It results that the rank test on the matrix of Equation 6.5.2 (size of the largest
non-null determinant) allows one to conclude upon the validity of the structure of
the model considered for representing the plant.

Let assume that the plant model is second-order and that the data are not
corrupted by noise. It can be described by the following equation:

2 2

y(t):—Zaiy(t—i)+ Zbiu(t—i) (6.5.4)

i=1 i=1
If one computes the rank of the matrix of Equation 6.5.3, one gets:

() = =yle=1) ule-1)
1) 1 —y(t-2) ult-2)|=3= full rank
2) ¢ o—y(t=3) ult-3) (6.5.5)

y
rank y(t
G

0 0
Y(2) R(1)=R(7)

The determinant of the matrix of Equation 6.5.5 is not null since Y(?) cannot be
expressed as a linear combination of columns 2 and 3.
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However if one also uses the measurements from the instant ¢-2, one can
construct the following matrix:

w5 =ye=1) —p-2) ule-1) ule-2)

We=1) 5 =ye=2) ~y(=3) ule-2) ule-3)

We=2) & —yle=3) —yle-4) u(=3) u(-4)|=[r() RQ)]

ye=3) 1 —yt=4) —y(t=5) ult-4) ul(t-5) (6.5.6)
We=4) 1 =pe=5) —yle-6) ule=5) ult-6)

1

Y (1) R(2)=R(n)

The rank of this matrix is strictly less than 5 (in fact it is equal to 4), since Y(?)
is a linear combination of columns 2, 3, 4 and 5.

The objective of model order estimation will be to search for the number of
columns that has to be added in order to be able to express Y(t) as a linear
combination of the other columns (one adds the same number of delayed columns
of y and u) . The algorithm will stop when the matrix of the form given in
Equation 6.5.6 is no more of full rank. In this way n =max (n, n, + d).

6.5.2 The Ideal Case (No Noise)

In the ideal case, which means in the absence of noise, we are interested to
estimate the order (complexity) of a model of the form

y(t) = —Zn:aiy(t—i)+zn:biu(t—i) (6.5.7)

i=1 i=1

by the rank test. To do this, one constructs the matrix

—y(t—l) —y(t—fl) u(t-1) u(t—ﬁ)
R(ﬁ): —y(t-2) —y(t—ft—l) u(t—2) u(t—ﬁ—l)
—y(t-N) - —yt-A-N+1) u(t-N) ult-A-N+1)| (6.5.8)
p-n'
=| pt-2)"
pt-N)"

where

¢t — )T =yt = oyt —F— j+1)u(t = j)yu(t == j+1)];j=1,.,N (6.5.9)
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and the vector

YO =[y@), y(t =1),.... y(t = N +1)] (6.5.10)
and one tests the rank of the matrix

[v@t) @ R()] (6.5.11)

for increasing values of the estimated order 7.

Remark: the number of data N should be larger than 2n,,,,+1 (Where nyqy is
the supposed maximum value of the model order).
One has the following result:

o Ifn<n, [Y(t) : R(ﬁ)] is a full rank matrix (of rank 27 +1).
o If n>n, [Y @) : R(ﬁ)] is not a full rank matrix (rank 2n instead of
2n+1).

The value used to test the rank can be the determinant, the singular values of the
matrix, efc..

6.5.3 The Noisy Case

In the presence of noise, Equation 6.5.7 becomes

n

v ==Y ae-iy+ Y butt—i)+ wio (6.5.12)
i=l

i=1

where w(?) represents the noise effect.
Unfortunately, the method presented ecarlier does not work when noise is
present since the matrix [Y(z) ¢ R(#)] never becomes singular.

White noise
It is important to remark that the rank test is equivalent to the search of a parameter

vector @ that minimizes the following criterion for an estimated value of the model
order denoted by 7

A o1 RY K
J1s() = min Y0~ R(3)0;

(6.5.13)

2
3 "x" =x"x.
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A

where € expresses the linear dependence of Y(?) with respect to the columns
of R(#) . However this criterion is the least squares criterion of Equation 5.2.40.

Taking in account Equations 6.5.8, 6.5.9 and 6.5.10, Equation 6.5.13 can be
expressed as

7150 = min— > [y -8 @i

i=t—-N+1

where
[ oA N
0” :[al,...,aﬁ,bl,...,bﬁ]

Therefore, for the case where the noise in Equation 6.5.12 is white, the use of
the least squares algorithm (the least squares estimation algorithm is unbiased in
this case) allows one to estimate the order of the model by evaluating the value of
the criterion for increasing estimated ordersn. If n>nthe criterion becomes
practically null, or takes a constant value in the presence of white noise in Equation
6.5.12 (this is illustrated in Figure 6.4)

Non-white noise
However, the procedure for order estimation will not work when the noise in

Equation 6.5.12 is not white since the difference J LS(fz)—J LS(ﬁ+l) does not

really goes towards 0 when n>n (i.e. the procedure tends to overestimate the
order of the model).
To overcome this problem one should use an algorithm allowing one to obtain

an unbiased estimation of éﬁ. To achieve this one can use the technique of

“instrumental variables” (used also in Section 6.3.1).

A s

White noise

Non white noise

No hoise

Figure 6.4. Least squares criterion evolution as a function of 7
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In this approach one replaces the measurements by the instrumental variables that

are correlated with the “good” measures but less correlated with the noise. The

number of instrumental variables to be used (2L) should be larger than twice the

order of the model to be estimated. One can use the delayed inputs as instrumental

variables, since u(z-L) is correlated with y(¢) for L > n ( see Equation 6.5.12), but,

on the other hand, u(%) is not correlated with the noise.

In this case one replaces R(#) and Y(z) by R, () and Y, (t) where

RIV(ﬁ):MIVR(ﬁ) s Y () =M Y(0) (6.5.14)

M ;, is the matrix of instrumental variables and it is constructed from the matrix

2" ()= b 1),y (-2), ... by (-N)] (6.5.15)

where

oL (1) = [~ u(t-Loj),.... u(t-L-n=j +1),u(t=)),... u(t-n-j +1)] (6.5.16)

One searches first for a matrix

2
0,
such that (triangularization of the matrix Z())
0.2(i)=7,(3)
where Z, () is a triangular matrix and
0,Z (ﬁ) =0
The matrix of instrumental variables M ;;, is given by®
My = (ZIT )_1 z'

The test quantity becomes in this case

6 The construction of the instrumental variables in this case is related to the orthogonal projection of the
measurements on the space defined by Z (ﬁ) .
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Ty ()= ngn%“yu/(t)_Rw(ﬁ)é “2 (6.5.17)

A theoretical study shows that this quantity goes towards 0 as the estimated order
approaches the true one (Duong and Landau 1996)’. As a consequence, a
significant slope change will appears on the curve J,, (fz), allowing, in general, a

clear estimation of the order.
6.5.4 Criterion for Complexity Estimation

One of the objectives of system identification is to estimate models of reduced
order (parsimony principle). It is therefore reasonable to add to the criterion of
Equation 6.5.17 a term that penalizes the model complexity. Such a term can be of
the form

): 2n log(N)

S(a, N
N

(6.5.18)

but other choices are possible (Duong and Landau 1996; Séderstrom and Stoica
1989).
One defines the criterion for model order estimation as

CJ oy (A)=J, (7)+ S(A,N) (6.5.19)

and therefore n will be given by the value that minimizes the criterion of Equation
6.5.19:

n=n" = CJy(n)=min (6.5.20)

The complexity estimation obtained in this way is consistent, which means that one
finds the exact order as the number of data tends toward infinity (N — o).

A typical curve for the evolution of the criterion 6.5.18 as a function of 7 is
given in Figure 6.5.

Once the order n is estimated, one can apply a similar procedure for estimating

A

n—d, ny, ng +d fromwhich 7 ,,ny,and d are obtained.

The functions estorderls.sci, estorderiv.sci (Scilab) and estorderls.m,
estorderiv.m (MATLAB®™) implement the above described techniques for model
order estimation®.

7 It is shown in (Duong, Landau 1996) that J w (fl) has a well defined statistical distribution allowing

to define an “over estimation risk” for the estimation of the model order 71 .
8 Available on the book website.
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Other aspects related to the estimation of ny, ng, and d will be presented in
Chapter 7, Section 7.3.

A

minimum

Figure 6.5. Evolution of the criterion for the estimation of the model order

6.6 Concluding Remarks

In this chapter recursive identification methods have been presented. They have
been classified in two categories:

The first category includes the identification methods based on the whitening of
the prediction error in order to get unbiased parameter estimates. The following
identification methods belong to this category:

Recursive Least Squares (RLS)

Extended Least Squares (ELS)

Recursive Maximum Likelihood (RML)

Output Error with Extended Prediction Model (O.E.E.P.M)
Generalized Least Squares (GLS)

The validation of the models identified using these methods consists in testing if
the residual prediction error sequence is approaching the characteristics of a white
noise sequence. This is done by carrying out a whiteness test on the sequence of
residuals. An acceptable identified model should verify the condition

|RN(i)|sﬂ Ci=12,...max(n,ng+d)

v

where
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1 < 1<,
RN(i) = WZg(t)g(z —i) /{WZ P (t)}
t=1

t=1

and N is the number of samples.

The second category includes the identification methods based on the
uncorrelation between the prediction error and the observations in order to get
unbiased parameter estimates. The following identification methods belong to this
category:

Instrumental Variable with Auxiliary Model (IVAM)
Output Error with Fixed Compensator (OEFC)

Output Error with Filtered Observations (OEFO)

Output Error with Adaptive Filtered Observations (OEAFO)

The validation of models identified using these methods consist in testing if the
residual prediction error sequence and the predicted outputs (generated by the

model A(g”!) $ (¢) = ¢@ B (¢”!) u(t)) are uncorrelated. This is done by carrying out
an uncorrelation test. An acceptable identified model should verify the condition:

2.17
RN()|f— ; i=12,...max(n ,n, +d
(RN <= (ng,mp +d)

where

| N ' N ' N 1/2
RN(i) = Wz ()Pt —i) /{[ﬁz 7? (z)}[ﬁz &’ (r)}}
t=1

t=1 t=1

and N is the number of samples.

Taking into account the relative weight of various non-gaussian and modeling
errors (which increases with the number of samples), the validation criterion can be
slightly tightened for small N and slightly relaxed for large N. Therefore, for
simplicity's sake, one can consider as a basic practical numerical value for the
validation criterion (for both tests) the value

|RN()|<0.15 ; i=12,.,max(n,,ng +d)

Before doing a parameter estimation, it is obviously necessary either to estimate
the order of the model from the data, or to choose a model order from the available
a priori information. The techniques of order estimation from input/output data
have been presented in Section 6.5

The problem of order estimation can be converted in a parameter identification
problem whose objective is to minimize a criterion with two terms. One of the
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terms of the criterion corresponds to the variance of the prediction error, while the
other term is a penalty terms which increases with the order of the model.
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Practical Aspects of System Identification

This chapter reviews a variety of practical aspects concerning system
identification. Several identification examples are presented, using both simulated
data and real data from several plants (air heater, distillation column, DC motor,
flexible transmission).

7.1 Input/Output Data Acquisition

7.1.1 Acquisition Protocol

In Chapter 5, Section 5.3 it was shown that, in order to obtain a good identified
model, the excitation signal (applied to the plant input) should contain a wide
spectrum of frequencies. This signal will be superposed to the steady state control
signal corresponding to the operating point around which we would like to identify
the model of the plant.

As a general rule, one uses as an excitation signal a PRBS (pseudo random
binary sequence) with a low magnitude. The properties of the PRBS have been
examined in Chapter 5, Section 5.3.2.

We recall that, for correctly estimating the steady state gain of the dynamical
model, it is necessary that at least the duration of one of the pulses of the PRBS be
larger than the rising time of the plant to be identified. This leads to the following
condition:

PNT, > 1,

where

e T, =sampling period
e p = frequency divider
e p Ty =clock period of the PRBS generator (clock frequency = f/p)

279
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e N =number of cells of the shift register
e 1), =rising time of the system

The magnitude of the PRBS should not exceed, as a general rule, a few percent of
the steady state control signal amplitude.

Data acquisition is done either by dedicated data acquisition equipment or, very
often, by using a computer equipped with a data acquisition board containing
analog-to-digital and digital-to-analog converters. The board is emulated by the
computer, which provides the PRBS and the input DC component corresponding to
the operating point.

A C"" program as well as a MATLAB®™ function (prbs.m) for the generation of
the PRBS can be downloaded from the book website.

Several options for connecting the data acquisition system to the plant are
possible.

Plant Operated in Open Loop
This is the most typical case and the simplest one. It is illustrated in Figure 7.1.

IUL | Physical | "MV
u(t) system y(t)
Input " Measure
signal

SOFTWARE
Board
\%;

Figure 7.1. Data acquisition for system identification - plant operated in open loop

In this situation, the excitation signal superposed to the DC control signal
corresponding to the operating point is directly applied to the process. To start the
data acquisition protocol, the plant should be in a steady state operation regime
(i.e. the PRBS is sent once the transient related to the application of the DC
control signal is over).

Plant Operated in Closed Loop
In this situation two possibilities can be considered:



Practical Aspects of System Identification 281

I/O

Board SOFTWARE

T

1

PRBS

YOE

reference T
L Controller F=O-—@—~| Physical

+ oyt system

4______-_______

! output y(t)

Figure 7.2. Data acquisition for identification — plant operated in closed loop with excitation
signal added to the controller output

1. Excitation superposed to the controller output
The PRBS is added to the controller output and one performs the
acquisition of the PRBS and of the effective input applied to the plant
together with the corresponding plant output. The transfer between y, and
y; will be identified.
2. Excitation on the reference
The PRBS is added to the reference defining the operating point and one
performs the acquisition of the PRBS, the input and the output of the plant.
This is shown in Figure 7.3.
If one would like to identify the plant model from data acquisition in closed loop
operation, two options can be considered.

In the first case one tries to ignore the presence of the controller. For this, it is
important to use what is called a “soft” controller. In the case of a PID one should
suppress the derivative action and use a low value of proportional gain. However
the integral action is important for maintaining in the average the operating point.

If an RST controller is used, the design based on an imprecise available model
should be done such that the closed loop is slow but the presence of an integrator in
the controller is important in order to maintain the operating point. The quality of
the model obtained with this approach can vary considerably.

In the second case, one uses dedicated methods for plant model identification
in closed loop operation. These methods, which take into account the presence of
the controller, are presented in Chapter 9. They provide, in general, excellent
identified models.
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———— I/0

. PRBS Board @

|

! )

I I

| u

! I

! I

+3 ¥ ! ) :
——(5—» Controller -H@—| Physical
reference ‘ u(t) system y(t)
output

Figure 7.3. Data acquisition for identification — plant operated in closed loop with excitation
added to the reference

7.1.2 Anti-Aliasing Filtering

It was shown in Chapter 2, Section 2.2, that the conversion of signals having a
frequency spectrum exceeding 0.5 f; will introduce distortions on the discretized
signal in the useful band between 0 and 0.5 f;.

In order to avoid this situation, it is necessary to insert between the plant output
and the analog to digital converter a continuous time anti-aliasing filter (low pass
filter) allowing to significantly attenuate the components of the signal beyond 0.5f;.

The violation of this rule can produce important errors in identification. Even if
one may be able to get discrete time models that can be validated, they do not
represent, in practice, the real behavior of the system (i.e. the continuous time
behavior of the plant).

7.1.3 Over Sampling

Different situations encountered in practice lead to the use of a data acquisition
frequency that is a multiple of the sampling frequency used in the control loop
(over — sampling). For example:

e In many digital control systems (DCS), the data acquisition frequency is
significantly higher than the one used in the control loops.

e In systems using a sampling period for the control loop that is higher than
Is, it becomes difficult to implement a continuous time anti aliasing filter
and it is necessary to use a digital filtering technique.

In both cases, one should do data acquisition at a frequency which is a multiple of
the sampling frequency used for control (or conversely: the sampling frequency of
the control loop should be a sub-multiple of the data acquisition frequency):
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where

e f,=data acquisition frequency
e n=ratio of frequencies (integer)
o f.=sampling frequency of the control loop

The discrete time signal obtained at the frequency £, is passed through a digital
anti-aliasing filter which will attenuate the signal components over
0.5f, =0.5f, /n. On the resulting sequence we will take data every n samples

(decimation). The implementation of a data acquisition using over-sampling is
illustrated in Figure 7.4.

y(t) | Anti-aliasing _/ Digital y (k)
— analog filter | - filter - T
T a s
A/D converter under-sampling
(acquisition frequency) (Ts=n.Ta)

Figure 7.4. Implementation of the data acquisition using over-sampling

If n is sufficiently large (n > 4), a moving average type filter

y@)+y(t-D+..+y(t—-n+1)
n

yp()=

will be enough.

When using over-sampling for data acquisition, one should pay attention how
the frequency divider (p) for the clock frequency of the PRBS is chosen. The
frequency divider used for the PRBS should be a multiple of n, in order that the
final sampling frequency f; is still an integer multiple of the clock frequency of the
PRBS.

The clock frequency of the PRBS is given by

1
fPRBS = 7f‘u
p

The final sampling frequency is given by

1
fs :7fu :£fPRBS
n n

where (p/n) should be an integer.
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7.2 Signal Conditioning

7.2.1 Elimination of the DC Component

The structures of the models used for identification correspond to dynamic models
(that express output variations as a function of input variations around an operating
point).

It is therefore necessary, for a correct identification, to eliminate from the
input-output data either the DC components (corresponding to the operating point)
or the slow drift of the operating point during identification.

Case 1. Elimination of stationary (or quasi-stationary) DC components.
This is carried out in two stages:

a. Computation of the mean value (MV) of the /O files
b. The mean value of the I/O files is subtracted from the I/O data and a new
I/0 file is created

Case 2. Elimination of non-stationary DC components (drift)
The I/O measurement files are replaced by variations of the /O measurements
filtered if necessary:

yl(t): J’(f)—y(t—l) . u,(t): M(f)—u(t—l)
1+ fig™ ’ 1+ fig™!
with
~0,5< £, <0

but other types of filters may be used.
7.2.2 Identification of a Plant Containing a Pure Integrator

A plant incorporating a pure integrator may be identified. However, if the existence
of this integrator is known a priori, this a priori information can be used to reduce
the complexity of the model to be identified and to improve the precision of the
identification. Two methods can be used:

1. The input is replaced by its integral, the output remaining the same:

u(t)

Y=y 5 u@O)=—7
I-¢

2. The output is replaced by its variations, the input remaining the same:
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YO =yO-ye-1 5 w@O=u(®)
y'(¢#) and u'(r) may also be filtered if necessary.
7.2.3 Identification of a Plant Containing a Pure Differentiator

If the presence of a differentiator is known, this a priori information can be used. In
this case, the input is replaced by its variations, the output remaining the same:

Y=y ;  uO=u@)-u-1)

7.2.4 Scaling of the Inputs and Outputs

The observation vector ®(#) used in the parameter adaptation algorithm is built

from the measurements y(¢), y(¢-1)... (or by variables correlated with the output)
and u(?), u(¢-1)...

o(t)" =[-y(t)~y(t=1),u(t)u(t-1),..]

On the other hand, the adaptation gain F(¢) is expressed as

13
F(n)™ =Zq>(i71)q>7(i71)+%1 ; 5<<1
i=1

If the level of u(?), u(z-1)... is very different from the level of y(¢), y(¢-1), the gain
matrix will be extremely unbalanced, thus resulting in significantly different
convergence speeds for G;(¢) and b,(7) .

It is therefore convenient to scale the I/O files (by multiplying, if required,
either u(?) or )(¢)). This will result in the modification of the identified steady state
gain. The values of the estimated parameters b; must therefore be divided or

multiplied accordingly in order to obtain a model with a static gain corresponding
to the real one.

7.3 Selection (Estimation) of the Model Complexity
This section discusses the determination of the delay (d) and the degrees of the

polynomials A(g™!), B(¢!) and C(g!).
The “plant + disturbance” model to be identified is of the form

A(g™y(@) = ¢ BlgHu(e) + w'(2)
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where, according to the structures chosen, one has:

w'(t) = e(t) (7.3.1)

w'(t) = A(g~ () (73.2)

w'(t) = C(qelt) (73.3)

w'(t) = 1_1 e(t) (7.3.4)
Cg™)

In order to start the parameter estimation methods, we need to specify
I’lAZ? 5 I’lBZ? 5 d="?

and for structures [S3] and [S4]

where 1,4, ng and n are the degrees of the polynomials A(q™!), B(q!) and C(g™)

respectively.
Remember that the order of a sampled-data system is given by n = max (ny,

Techniques for order estimation have been presented in Chapter 6, Section 6.5.
If order estimation functions that allows the estimation of n = max (ny, ng+d), n,

ng and d, are available (like estimorderiv.sci (Scilab) and estimorderiv.m

(MATLAB®)!, that estimate ), it is advisable to use them. Nevertheless the order
estimation can also be done on the basis of “a priori” knowledge and a set of trials
on the acquired data®. We give next details about this procedure.

“A priori” Choice for n,
Two cases can be distinguished:

1. Industrial plant (temperature control, flow rate, concentration, etc...).
For this type of plant in general

ny <3

! Available from the book website.

2 This approach can be also used for a confirmation of the order estimation results obtained with the
techniques described in Section 6.5.
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and the value n,= 2, which is very typical, is a good starting value to
choose.
2. Electromechanical systems.

n 4 results from the structural analysis of the system.

Example: flexible transmission with two resonant modes.
In this case, ny=4 is chosen, since a second-order is required to model each

resonant mode.

Initial Choice of d and ng
If no knowledge of the time delay is available, d = 0 is chosen as an initial value. If
a minimum value is known, an initial value d = d,,;,, is chosen.

If the time delay has been underestimated during identification, the first
coefficients of B(g~') will be very low. Thus » must then be chosen so that it can

indicate the presence of the time delays and identify the transfer function
numerator. ng = (d,,,. - d,;,) + 2 is then chosen as the initial value. At least two

coefficients are required in B(q!) because of the fractional delay (see Section
2.3.7). If the time delay is known, np > 2 is chosen, however the value 2 is a good

initial value.

Initial Choice of no
As a general rule n- = n is chosen.

Determination of the Time Delay d (First Approximation)
Method 1. One identifies the system using the RLS. The estimated numerator will
be of the form

f?(qil) :bAqul +bA2(f2 +l;3q73 +...
If
‘131‘3 0.15‘132‘

b; = 01is considered, and time delay d is increased by 1: d = d};, + I (since if b; =

0,Bq!) =gl g1 +b3472)).
If

ci=12,..,d;

1

‘Ei‘ < O'IS‘bAdﬁ'l
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time delay d is increased by d;: d = d,, + d;. After these modifications, a new

identification session is performed.
Method 2. An identification of the system is performed with the RLS in order to
obtain a model of the type “impulse response”

ny

y(t)szl.u(t—i) ; ny=Large (20,...30)

If there is a time delay, then

‘13,.‘<0.15‘13d+1 i=12,d

From this time delay estimation, a new identification is performed to find a pole-
zero model.

Both these methods may of course be completed by a display of the step
response.

A more accurate estimation of time delay d is carried out by performing a new
identification, followed by a validation of the identified model. Note that if the
system is contaminated by measurement system noise an accurate estimation of the
delay will only be carried out with the method that enables the identified model to
be validated.

Determination of (n ), and () ;..

The aim is to obtain the simplest identified model that verifies the validation
criteria. This is linked on the one hand to the complexity of the controller (which
will depend on n, and np), and, on the other hand, to the robustness of the
identified model with respect to the operating conditions.

From the results presented in Section 6.5, a first approach to estimate the values
of (14),q A0d (1), 15 to use the RLS and to study the evolution of the variance

of the residual prediction errors, i.e. the evolution of

| &
R(O) = Efe? (1)} = =20
=1
as a function of the value of n, + npg. A typical curve is given in Figure 7.5.

In theory, if the example considered is simulated and noise free, the curve
should present a neat elbow followed by a horizontal segment, which indicates that
the increase in parameter number does not improve the performances. (see Section
6.5, Figure 6.5.1).

In practice, this elbow is not neat if non-white noise is present. The practical
test used for determining n, + np is the following: consider first n,, np and the

corresponding variance of the residual errors R(0). Consider now n,' = n, + 1, ng
and the corresponding variance of the residual errors R'(0).
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If
R'(0) = 0.8R(0)

it is unwise to increase the degree of n, (same test with np' = np + 1).

R(0)

|

/ The good value

I I 1 I 1 I

I
12 3 4 5 6 7 n=(nsny)

Figure 7.5. Evolution of the variance of residual errors as a function of the number of model
parameters

It is advisable to increase the values of 1, and np in a non-simultaneous way. A
simultaneous increase may induce the identification of a pair of very close poles
and zeros that have a small influence on the criterion with respect to the increase of
n 4 or np but that could make the controller computation harder.

With the choice that results for 7, and np, the model identified by the RLS does
not necessarily verify the validation criterion. Therefore, while keeping the values
of n, and np, other structures and methods must be tried out in order to obtain a
“valid” model. If after all the methods have been tried none is able to give a model
that satisfies the validation criterion, then n ; and nz must be increased.

The estimated numerical values of the coefficients corresponding to the highest
powers of polynomials zzl(q’l) and f?(q’l) (after the estimation of the time delay
d) also give a clue on the maximum order to be chosen. If these values are very
small compared to the previous ones, it is often possible to reduce the order of
Izl(q’l) and B(g™") (one must obviously perform a new identification session with
the updated orders).

The order estimation techniques presented in Section 6.5 rapidly provide good

results. Moreover, it is recommended to compare these results with the available a
priori information upon the system structure.
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7.4 Identification of Simulated Models: Examples?

We consider now two files (T and T1) containing I/O data generated by a known
discrete-time model. Each file contains 256 input/output recordings. In each case,
the input has been a PRBS generated by a register with 8 cells (N = 8). The length
of a complete sequence is therefore 2554,

The file TS has been obtained using the following model:
A(g )y(0)=q"'B(q u(n)
where
Alg Y =1-15¢"+0.7¢7>

B(g ) =1¢7"+0.5¢7>

Plant Output

| hﬂ.. ﬁﬂﬂwﬂﬂm nuﬁnjuhn[\ﬂﬁn
VIV W e

&)

o

&

! 1 ! 1
100 150 200 250

Plant Input

T T T T T
0
1 ) B
0

50 100 151 200 250
Samples

Figure 7.6. File TY: I/O data set

3 All the examples presented in this chapter have been worked out with WinPim (Adaptech)
identification software and the MATLAB®/Scilab routines for model order estimation (see Section
6.5.4). Small numerical differences will result when using other identification routines.

4 These files are available from the book web sites: http://landau-bookic.lag.ensieg.inpg.fr.
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The file T1 has been generated with the same polynomials A(g™/) and B(g™!), but
adding a stochastic disturbance, the ARMAX model being of the form

Alg Yy =q7'Bg Hu(t) + C(g™"e(t)

in which {e(?)} is an almost white noise generated by the computer and the degree
of C(g”!)isnp= 2.

FILETO

We now come back to the file TS, Figure 7.6 shows the input and output
sequences collected in this file. For the file T, by using the recursive least
squares (RLS) method with the decreasing adaptation gain, the following results
are obtained:

S=1 M=I(RLS) A=1 FILE: TO DELAY D=1
INSTANT K =50
FORGETTING FACTOR =1
TRACE OF ADAPTATION GAIN =7.106747E-02
PROCESS OUTPUT =-5.030791
MODEL OUTPUT =-5.030789
PROCESS INPUT -1
ADAPTATION ERROR = -1.430511E-06
A(1) = -1.49999 B(1)= 0.99998
A(2) = 0.69999 B(2) = 0.50000

where S, M, and A designate the structure, the method and the type of the
adaptation gain® (see Chapter 5, Sections 5.5 and 5.2.4) respectively. A(1), A(2),
B(1), B(2) designate the estimated coefficients of polynomials 4(¢/) and B(g!). It
can be observed that the estimated parameters converge very fast towards the good
values in the case of a noise free system (initial values A(/) = A(2) =B(l)=B(2) =
0).

Similar results are obtained with the output error method, with fixed
compensator, decreasing adaptation gain and compensator degree np=0

(adaptation error = prediction error), as indicated below.

S=2 M=2(OEFC) A=1 FILE: TO DELAYD=1

INSTANT K =50
FORGETTING FACTOR =1

TRACE OF ADAPTATION GAIN = 7.107091E-02
PROCESS OUTPUT =-5.030791
MODEL OUTPUT =-5.031748
PROCESS INPUT =-1
ADAPTATION ERROR = 9.570122E-04
A(1)=-1.50000 B(1) = 1.00002
A(2) = 0.700000 B(2) = 0.49993

3 Before starting the identification, data must be centred.
6 §=1 designates the structure S1, M=I designates the first method used for the structure S1 (see
Section 5.5) and A=1 corresponds to the choice of the adaptation gain A.1 discussed in Section 5.2.4.
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The estimation of the time delay for the file TY in the absence of a priori
information will be illustrated next. Indeed with the recursive least squares method
and a decreasing adaptation gain, for n, = 2, ny = 4 and d = 0 the following

parameters are obtained:

S=1 M=1(RLS) A=1 FILE: TO  DELAY D=0
INSTANT K =50
FORGETTING FACTOR =1
TRACE OF ADAPTATION GAIN =.1623274
PROCESS OUTPUT =-5.030791
MODEL OUTPUT =-5.030764
PROCESS INPUT -1
ADAPTATION ERROR = -2.717972E-05
A(1) = -1.49998 B(1) = 5.39346E-06 B(3) = .50001
AQ2) = .699984 B(2) = .99998 B(4) = 2.62828E-05

The results obtained (B(/) and B(4), very small compared to B(2) and B(3)) clearly
show that d = I and np = 2. However it must be stressed that this situation is

without any ambiguity in this example, since there is no disturbing noise.

FILETI
The file T1 is highly contaminated by noise and certain methods (in particular the
recursive least squares) will give biased parameter estimates. The quality of the
identification will be reflected in the validation results. The estimation has been
carried out on 256 samples and the validation has been carried out on the same
input/output data set.

The results obtained with the recursive least squares with decreasing gain are
given below”:

S=1 M=1 (RLS) A=1 FILE: Tl NS=256 DELAY D=1
COEFFICIENTS OF POLYNOMIAL A: A(1)=-1.403533
A(2) = 0.6066453
COEFFICIENTS OF POLYNOMIAL B: B(1)= 0.9831312
B(2)= 0.6512049
VALIDATION TEST : Whiteness of the residual error
System Variance: 18.3791 Model Variance: 17.9035
Error variance R(0): 0.4749
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion: Theor. Val.: RN(1)] <0.136, Pract. Val.: [RN(i)| <0.15
RN(0) = 1.000000 - RN(1)=-0.505234 <«
RN(2) =0.115732 RN(3) =-0.054398
RN(4) =0.016311

The appearance of a bias on the estimated parameters is observed, which is also
reflected in unsatisfactory validation results (|RN(1)|] > 0.15). The residual
prediction error is not close to white noise. One should thus consider another “plant

7 In the tables shown in this section the system variance corresponds to the variance of the measured
output, the model variance corresponds to the variance of the predicted output and the error variance
corresponds to the variance of the residual prediction error (R(0)).



Practical Aspects of System Identification 293

+ disturbance” structure such as, for example, the S3 structure, which replaces the
disturbance model e(?) in S1 by C(q‘1 ) e(t).

We choose, among the identification methods applicable to structure S3, the
output error method with extended estimation model (M3) and decreasing
adaptation gain (A1). The results obtained are given in the following table.

S=3 M=3(OEEPM) A=1 FILE:TI NS=256 DELAY D=1
COEFFICIENTS OF POLYNOMIAL A A(1)=-1.50009
AQ2)= 0.69614
COEFFICIENTS OF POLYNOMIAL B B(1)= 0.95782
B(2) = 0.54005
COEFFICIENTS OF POLYNOMIAL C C(1)= -0.83917
C(2)= 0.05308
VALIDATION TEST: Whiteness of the residual error
System Variance: 18.3791 Model Variance: 18.1894
Error variance R(0): 0.2571
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion: Theor. Val.: [RN(i)] £0.136, Pract. Val.: [RN(i)| <0.15
RN(0) = 1.000000 RN(1) =-0.141702
RN(2) = 0.021206 RN(3) =0.008497
RN(4) =0.051014

It can be observed that the estimated values of A(/), A(2) and B(2) are better than
in the case of the recursive least squares (the sum of the squared biases is lower in
this case). On the other hand, the validation results are acceptable since all the
normalized autocorrelation functions (RN(1) to RN(4)) have a module less than
0.15. The residual prediction error becomes closer to white noise and its variance
has been reduced compared to estimation using the recursive least squares.

The results obtained can be further improved if the output error with extended
estimation model, and an adaptation gain with variable forgetting factor are used
(A3 with 1,(0) = 0.97). The following results are obtained:

S=3 M=3(0.EEEM.P.) A=3 FILE:TI NS=256 DELAYD=1

COEFFICIENTS OF POLYNOMIAL A: A(1) = -1.508445
A(2) = 0.70574

COEFFICIENTS OF POLYNOMIAL B: B(1)= 0.95120
B(2) = 0.52940

COEFFICIENTS OF POLYNOMIAL C: C(1) = -0.90610

C (2)= 0.08344

VALIDATION TEST: Whiteness of the residual error

System Variance: 18.3791 Model Variance: 18.2276

Error variance R(0): 0.2531

NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion: Theor. Val.: RN(i)] £0.136, Pract. Val.: [RN(i)] £0.15

RN(0) = 1.0000 RN(1) =-0.091665

RN(2) = 0.032701 RN(3) =0.025042

RN(4) =0.064717

which corresponds to an improvement of the results in terms of whiteness and
variance of the residual prediction error, on the one hand, and in terms of the sum
for the squared biases, on the other hand.
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Better results than those obtained with the recursive least squares method can
also be obtained with structure S2 by using the output error method with fixed
compensator, decreasing adaptation gain and compensator degree np=0

(adaptation error = prediction error). The results obtained are given below:

S=2 M=2(0OEFC) A=1 FILE:TI NS=256 DELAY D=l
COEFFICIENTS OF POLYNOMIAL A A(1)=-1.52885
A(2)= .73410
COEFFICIENTS OF POLYNOMIAL B B(1)= .93228
B(2)= .51900
VALIDATION TEST: Error / prediction uncorrelation
System variance: 18.3791 Model variance: 18.5921
Error variance R(0): 0.4860
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion: Theor. Val.: |RN(i)| <0.136, Pract. Val.: RN(i)] <0.15
RN(0) =-0.116266
RN(1) =-0.028968
RN(2)=0.103195

One can see that the values obtained for the normalized cross-correlations satisfy
the validation condition.

However, it is interesting to compare these results with those provided by the
model identified with recursive least squares for the same validation test.

S=1 M=1(RLS) A=1 FILE:Tl NS=256 DELAY D=1
COEFFICIENTS OF POLYNOMIAL A A(1)=-1.403533
A(2) = 0.6066453
COEFFICIENTS OF POLYNOMIAL B B(1)= 0.9831312
B(2) = 0.6512049
VALIDATION TEST: Error / prediction uncorrelation
System variance: 18.3791 Model variance: 18.5921
Error variance R(0): 0.76355
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion: Theor. Val.: |RN(i)| £0.136, Pract. Val.: RN(i)] <0.15
RN(0) = 0.248184
- RN(1)= 0.313691 <«
- RN(2) = 0.284383 &

It is observed that the parameters estimated by the output error method with fixed
compensator are better than those obtained by the recursive least squares (the latter
do not satisfy the validation criterion).

This is also confirmed by the validation results (the model identified with
recursive least squares does not pass the uncorrelation test).

Finally it can be shown that, even in the presence of significant noise, the time
delay can be determined from the relative values of the coefficients of the
polynomial B(g/). The following results are obtained for d = 0, n p=3 ny=2,by

using the recursive least squares method:
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S=1 M-1([RLS) A=1 FileTl DELAY D=0
INSTANT K =256
FORGETTING FACTOR -1
TRACE OF ADAPTATION GAIN = 1.574461E-02
PROCESS OUTPUT =11.39311
MODEL OUTPUT = 11.06473
PROCESS INPUT =1
PREDICTION ERROR = 0.3283825
A(1) = -1.4043 B(1) = -5.39615E-02
AQ2) = 0.60742 B(2) =.98315

B(3) = .65067

One observes that |B(/)| < 0.15 |B(2)|. This leads to choose d = / and ng = 2.

Exercise: Compare the model obtained using the output error with fixed
compensator (S = 2, M = 2) with the model obtained using output error with
extended estimation model (S = 3, M = 3). See Chapter 6, Section 6.4 for the
comparison procedure.

If techniques for the model complexity estimation are used, (by using the error
criterion of Equation 6.5.17 and the criterion for the complexity estimation of
Equation 6.5.19) a minimum of the criterion is obtained for n = max(n np+d)= 3,

that is indeed the good value (see Figure 7.7). The function estorderiv.m has been
used. A detailed estimation of the complexity leads ton, = 2, ng=2and d = 1.

File T1 : Model Complexity Estimation
0.25 T T T T T
—— Eror criterion (IV)
------ Complexity estimation criterion

0.2

0.1

0.05F

0 1 2 3 4 5 6 7 8
Complexity (order)

Figure 7.7. Estimation of the model complexity (n=max(n,,ng+d)) from the data collected
in the file T1
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7.5 Plant Identification Examples

7.5.1 Air Heater

The diagram of the system is represented in Figure 7.8. The air is heated at the pipe
input by means of an electrical resistor supplied by a power amplifier. The
temperature of the air at the output is measured by a thermocouple. This section is
concerned with identifying the dynamic model linking the power amplifier control
to the temperature of the output air, around a certain temperature. The steady state
characteristic of the air heater + power amplifier is very non-linear. This results in
the appearance of a DC component at the output even for centered input signals of
low magnitude.

temperature | y(t)
o measurement [+
power u(t)
'/\/\N amplifier

C>’<>

Figure 7.8. Schematic representation of the air heater (Laboratoire d’Automatique de
Grenoble INPG/CNRS)

The data acquisition has been carried on around an operating point
corresponding to an output temperature of 60° and a DC input signal up=5V (yo(¢)
=3.20).

ThVe) file AERO.dat contains 128 raw input/output data obtained with a sampling
period of 5 s. The input was a PRBS generated with a length register equal to 6 and
a clock frequency f/2 (sequence length: 126 samples). The raw data file was
centered. The 1/0 data set relative to the centered file AERO.c?® is shown in Figure
7.9.

A first identification is started up, using the S1 structure and the recursive least
squares method M1 with decreasing adaptation gain. Since this is a thermal system,
ny = 2 can be a good initial choice. On the other hand d = 0 (no prior knowledge

on the delay) and ng = 2. The following results are obtained:

8 Available from the web site: http:/landau-bookic.lag.ensieg.inpg.fi
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S=1 M=1(RLS) A=1 FILE: AERO.C NS— 128 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A:  A(1)= -0.66872
A(2) = 0.00115
COEFFICIENTS OF POLYNOMIAL B:  B(1)= 0.17360
B(2)= 0.05424

The system clearly has a time delay less than 0.5 T (since |b;|>|b,| ), thus the

choice d=0 was a good one. As the coefficient A(2) has a very small value
(resulting from the product of poles) one can say that the value of one of the poles
is very small and it can be neglected.

Plant Output
T

A AL A ﬂJLJHﬂ
L\JJU UW oy

60 80 100 120

0.15

0.1

0.0!

&

=)

-0.0

&

-0.1

Plant Input

O O
L0 |

. . .
60 80 100 120
Samples

=)

Figure 7.9. File AERO.c: I/O data set

This model structure is also compatible with the complexity estimation
provided by the functions estorderiv.m (MATLAB®) or estorderiv.sci (Scilab)
(estimation with the method of instrumental variable with delayed inputs) that
gives n = max (nynp+d) = 2 and n =1, nz=2, d=0 respectively (see Figure 7.10).

Another identification is thus carried out with the same structure, method and
adaptation gain, but with np=2, d=0, n,=1.

The results obtained are as follows:

S=1 M=1(RLS) A=1 FILE:AERO.C NS=128 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A:  A(1) = -0.6672
COEFFICIENTS OF POLYNOMIAL B: B(1)= 0.1736

B(2)= 0.0545
VALIDATION TEST: Whiteness of the residual error
System variance: 0.0035 Model variance: 0.0034

Error variance R(0): 3.991 E-04
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NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.:[RN(i)| <0.192, Pract. Val.: RN(i)] £0.15
RN(0) = 1.000000 - RN(1) =-0.2284 <
RN(2)=0.1 RN(3)=10.017
RN(4) =0.0054

Air Heater : Model Complexity Estimation
0.25 T T

T
— Error criterion (IV)
------ Complexity estimation criterion

0.2

0.15

0.11

0 1 2 3 4
Complexity (order)

Figure 7.10. Complexity estimation for the air heater model based on the data file AERO.c

The result of the validation is not acceptable. The results of the identification
can be further improved by taking into account the fact that disturbances are
present. A first approach is to choose structure S3 with the method M3, the output
error with extended prediction model, which gives also an estimation of the model
of disturbances. The following results are obtained (with decreasing adaptation
gain):

S=3 M=3 (O.E.EEIM.P) A=1 FILE:AERO.C NS =128 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A:  A(1)= -0.6589
COEFFICIENTS OF POLYNOMIAL B: B(1)= 0.1724
B(2)= 0.0579

COEFFICIENTS OF POLYNOMIAL C: C(1)=-0.1248
VALIDATION TEST: Whiteness of the residual error

System variance: 0.00351 Model variance: 0.00346

Error variance R(0): 3.837E-05

NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.:[RN(i)] < 0.192, Pract. Val.: RN(i)| < 0.15

RN(0)=1.000000 RN(1)= 0.1303

RN(@2)= 0.1029 RN@3)= 10.0192

RN#) = 0.0326

The results of the validation are without doubt satisfactory.
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Air Heater : Step Responses
0.8
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Figure 7.11. Step response for the models identified in the air heater example:
OEEPM - output error with extended prediction model, variable forgetting factor, d =0, ng

=1, ng = 2; OEFC - output error with fixed compensator, d =0, np = 1, ng =2

The step response for this model is shown in Figure 7.11 (OEEPM). Structure
S2 can also be used, which may lead to an asymptotically unbiased estimated
model without modeling the disturbances. The output error with fixed compensator
(method M2) is chosen with n,=0 (because n,=1), and with an adaptation gain

with forgetting factor ( 4,(0)=0.97 ). The results are summed up in the following
table:

S=2 M=2 (OEFC) A=3 FILE: AERO.C NE=128 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A:  A(l)= -0.6837
COEFFICIENTS OF POLYNOMIAL B: B(1)= 0.1771 B(2)= 0.043
VALIDATION TEST: Error / prediction uncorrelation

System variance: 0.00351 Model variance: 0.00317

Error variance R(0): 9.77 E-05

NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.:[RN(i)| < 0.192, Pract. Val.: RN(i)| < 0.15

RN(0)= -0.2208 RN(1)= 0.1508

RN(2)= 0.0432 RN(3)= 0.0116

RN(4) = 0.0469

The step response for this model, which has passed the validation test, is presented
in Figure 7.11 (OEFC). The model obtained with the output error with fixed
compensator has a static gain and a rise time slightly larger than the corresponding
values for the previous model (a larger rise time means that the identified model is
slower).
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In this case, in order to compare further the quality of the two models, the
model identified with the output error with extended prediction model should also
be validated by the uncorrelation test. This test gives the following results:

S=3 M=3 (OEEPM) A=1 FILE: AERO.C NS=128 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A:  A(1) = -0.6589
COEFFICIENTS OF POLYNOMIAL B: B(1)= 0.1724

B(2)= 0.0579
VALIDATION TEST: Error / prediction uncorrelation
System variance: 0.00351 Model variance: 0.00317

Error variance R(0): 1.02E-04
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.: [RN(i)] < 0.192, Pract. Val.:[RN(i)| < 0.15
RN(0)= -0.2154 RN(1)= -0.1465
RN(2)= -0.1033 RN@3)= -0.1094
RN#4)= -0.1769

Both models are validated and the results are very close.
As the models identified have the same quality, one of them will be used to
compute the controller and the result of the design will be tested on both models.

7.5.2 Distillation Column

The diagram of the binary column (water-methanol), which is the subject of the
identification, is given in Figure 7.12a and a view of the plant is shown in Figure
7.12b.

The control variables are the heating power (OB) and the reflux rate (R). The
flow rate (LF) and concentration (XF) of the input product are assumed constant
(their variations produce disturbances in the system). The controlled variables are
the flow rate of the top product (LD) and the concentration of the top product (XD).
(T) designate the temperature and (LB) the flow rate of the product at the bottom.
The corresponding block diagram is given in Figure 7.13.

The input and output variations will be related around an operating point by a
linear model characterized by a 2 x 2 transfer matrix operator

{LD}z Hy (g™ Hig™) { R }_|:Wl:|

XD] | Hy(¢7) Hyp(q™)]OB] [w

where w; and w, represent the unmodeled disturbances. Each element of the
transfer matrix operator is of the form

qid (blzf1 +b2q72 +)
1+alq_l +a2q_2 +...

Hy(q ™=
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Figure 7.12a,b. Binary distillation column (Laboratoire d'Automatique de Grenoble,
INPG/CNRS). a Functional diagram, b View
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that corresponds to a model of the form:

Alg () =g Blg™" Yu(t) + w(t)

(reflux
rate) (flow)
R — — LD
PLANT
QB — XD
(heating (concentr.)
power)

Figure 7.13. Block diagram of the distillation column (inputs-outputs)

Henceforward we shall be concerned with the identification of the transfer
between the heating power (QB) and the concentration of the top product (XD).
The input/output file is named QXD? file. It contains an I/O data set made of 256
samples. The input is a pseudo random binary sequence generated with a register
with 8 cells (N = 8, L = 255). Figure 7.14 displays the inputs and outputs of the
centered QXD file. The sampling period was 10 s.

The identification procedure starts after having centered the I/O sequences. As
no prior knowledge of the system is available, first we choose structure S1, the
recursive least squares method (M1) with a decreasing adaptation gain Al, delay
d=0, degree for the polynomial B: np = 4 (in order to capture a possible time delay

of the system) and degree for the polynomial A: n, = 2 (since it is a chemical

plant). The initial value of the parameters to be estimated is set to zero. The results
obtained with this method are summarized below:

S=1 M=1(RLS) A=1 FILE: QXD NS=256 DELAY D=0
INSTANT K =256
FORGETTING FACTOR =1

COEFFICIENTS OF POLYNOMIAL A:  A(1) = -0.23644

A(2) = -0.21889

COEFFICIENTS OF POLYNOMIAL B:  B(1)= 0.01177

B(2)= 0.07982
B(3)= 0.18311
B(4) = 0.13271

Note that B(/) < 0.15 B(2). This shows that we have to set the delay d equal to 1,
as a first approximation.

9 Available from the book website http:/landau-bookic.lag.ensieg.inpg.fi.
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Figure 7.14. I/O data set for the distillation column QXD

0.6

0.

'S

0

N

o

-0.

N

-0.

~

100 200

303

Thus a new identification is performed with d = I, ny = 3, ny, = 2 and the

results obtained are

S=1 M=1(RLS) A=1 FILE:QXD NS=256 DELAY D=1
COEFFICIENTS OF POLYNOMIAL A A(1) =-.23806

A(2) =-.18820
COEFFICIENTS OF POLYNOMIAL B B(1)= .07982
B(2)= .18303
B(3)= .13244
VALIDATION TEST: Whiteness of the residual error
System variance: 0.0542 Model variance: 0.0274

Error variance R(0): 0.0268
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.: |RN(i)| <0.136, Pract. Val.: RN(i)] <0.15
RN(0)= 1.0000 RN(1) = -0.1216
2> RN(2)= -0.2278 &« RN(3)= 0.0112
RN4) = 0.0718

It is observed that the validation is unsatisfactory since the residual error is not
sufficiently white (JRN(2)|) > 0.15). We may consider that this situation arises from
the fact that the disturbances are incorrectly modeled by the structure S1. A
different structure (S3) and the output error method with extended estimation
model (M3), still with decreasing adaptation gain, are then tried. In this way a

disturbance model will be identified. The results obtained are
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S=3 M=3(OEEPM) A=1 FILE:QXD NS =256 DELAY D=1
COEFFICIENTS OF POLYNOMIAL A A(1) = -.5065

AQ2)= -.1595
COEFFICIENTS OF POLYNOMIAL B B(1)= 0.0908
B(2)= .1612
B(3) = .0776
COEFFICIENTS OF POLYNOMIAL C C(1)=-.4973
C(2)=-.2593
VALIDATION TEST: Whiteness of the residual error
System variance: 0.0542 Model variance: 0.0308

Error variance R(0): 0.0231
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.: [RN(i)| £0.136, Pract. Val.: |RN(i)| <0.15
RN(0) = 1.000000 RN(1)= -0.0241
RN(2)= -0.0454 RN@3)= 0.0518
RN@#)= 0.1014

The validation results obtained are very good. This is therefore a representative
model. Figure 7.15 gives the step response for this model with n, = 2 (gain

normalized to 1). The analysis of this response shows that the rise time is 7, = 70
T, (with a delay d = I). On the other hand, since the number of cells of the

generator register of the PRBS is N = 8, the duration of the largest pulse is less
than ¢p. The validation will thus not be significant for the steady state gain (several

models may be validated without their steady state gain being the same). A direct
verification of the steady state gain shows that the value obtained (0.987) is
correct.

Note also that the polynomial B(g™/) is unstable, B(I) < B(2) revealing the
presence of a fractional delay greater than .57 (which explains the presence of an

unstable zero).
As the coefficient 4(2) is small if compared to A(/) and the validation results
are very good, one may think of identifying a new model with n,=1. In this case

the results are

S=3 M=3(OEEPM) A =1 FILE:QXD NS =256 DELAY D=1
COEFFICIENTS OF POLYNOMIAL A A(l)= -.7096
COEFFICIENTS OF POLYNOMIAL B B(1)= .0839

B(2)= 0.1415
B(3)= 0.0528
COEFFICIENTS OF POLYNOMIAL C C(1)= -.688
VALIDATION TEST: Whiteness of the residual error
System variance: 0.0542 Model variance: 0.02952
Error variance R(0): 0.0227
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.: [RN(i)| <0.136, Pract. Val.: RN(i)| <0.15
RN(0) = 1.0000 RN(1)= -0.0035
RN(2)= -0.0748 RN@3)= -0.0131
RN#) = 0.0442
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Distillation Column : Step Responses
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Figure 7.15. Flle QXD: normalized step responses for the two models identified (static gain
normalized to 1)

The model obtained is validated. The static gain of the model is 0.958. It will
be necessary to scale the values of the coefficients of the polynomial B(g™/) in
order to obtain the static gain previously obtained (nevertheless the difference
found between the two static gain can be neglected).

The normalized step responses of both models are presented in Figure 7.15.

7.5.3 DC Motor

The identification of a DC motor model is examined in this section. The input of
the system is the voltage applied to a power amplifier that feeds the motor, and the
output is the speed measured by means of a tachometer. A short description of the
global system is shown in Figure 7.16. From the identification point of view, let
us consider the cascade power amplifier, motor, tachometer, filter on the measured
output as the plant.

The file MOT3.c!” contains 256 centered 1/O data obtained with a sampling
period of 15 ms. The input is a PRBS generated by a shift register with seven cells
and a clock frequency f/2 (sequence length: 254).

10 Available from the website: http:/landau-bookic.lag.ensieg.inpg.fi-.
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Figure 7.16. Schematic representation of a DC motor and other external elements

0.4

Amplitude (Volt)
o

-0.2

-0.4

0.4

0.2

-0.2

Amplitude (Volt)
°

-0.4

The magnitude of the PRBS is set to 0.3 V and applied when the operating
point of the system is an input voltage of 3V (scales for u: 0-10V corresponding to

Motor Speed

100

150 200 250

Motor Input Voltage

AR

JUTILOEAT T R

I
100

L L L
150 200 250
Samples

Figure 7.17. 1/O data set for the DC motor (MOT3.c)

a speed variation from 0 to +1500 rpm). This file is shown in Figure 7.17.

The result of the complexity estimation algorithm (instrumental variable with

delayed inputs method using estorderiv.sci or estorderiv.m) is (see Figure 7.18)

n=max (n ng+d) =2

The detailed complexity estimation gives the values ny, = I, ng = 2, d = 0. This
complexity is coherent with the model obtained from physical equations that

describe the DC motor, with at most two time constants, but the electrical time
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DC Motor : Model Complexity Estimation
0.25 T T

T
— Eror criterion (IV)
------ Complexity estimation criterion
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0.05-
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Complexity (order)

Figure 7.18. Model complexity estimation for the DC motor (input: voltage, output: speed)
using the data file MOT3.c

constant in this case is very small if compared to the electro-mechanical one. The
absence of a pure time delay is not surprising as well. The degree of the
polynomial B , np = 2 reveals the presence of a fractional delay as a result of the

filtering action on the measure.

A first identification is carried on with structure S1 and the recursive least
squares (M1) with a decreasing adaptation gain (Al), the following results are
obtained:

S=1 M=1(RLS) A=1 FILE:MOT3.c NS=256 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A A(1)= -0.5402
COEFFICIENTS OF POLYNOMIAL B B(1)= 0.2629
B(2)= 0.2257
VALIDATION TEST: Whiteness of the residual error
System variance: 0.0412 Model variance: 0.041
Error variance R(0): 1.157 E-4
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.:[RN(i)] < 0.136, Pract. Val.: RN(i)| < 0.15
RN(0) = 1.0000 - RN(1)=-0.4529 <
RN(2)=0.3113 RN(3) =0.0332
RN(4) =-0.0297

The model obtained is not validated. Next an identification with the structure S3 is
performed by using the output error with extended prediction model method (M3)
that simultaneously estimates the plant model and the disturbance model with the
choice n = I (a decreasing adaptation gain is still used). In this case the results are
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S=3 M=3 (OEEPM) A=1 FILE:MOT3.c NS=256 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A A(l)= -0.5372
COEFFICIENTS OF POLYNOMIAL B B(1)= 0.2628
B(2)= 0.2273
COEFFICIENTS OF POLYNOMIAL C C(1)=0.3808
VALIDATION TEST: Whiteness of the residual error
System variance: 0.0412 Model variance: 0.041
Error variance R(0): 1.004 E-04
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.:[RN(i)| < 0.136, Pract. Val.: RN(i)] < 0.15
RN(0)=1.0000 RN(1)= -0.0144
--> RN(2)= 0.3414 <-- RN(3)=  0.0952
RN@4)=  0.0399

It can be observed that the model obtained is not validated too. If the choice n-= 1

does not allow one to model suitably the effects of disturbances on the system (as
RN(2) still has a large value), it is advisable to perform a new identification with
ne=2.

The following results for the whitening test on the residual prediction errors
and for the uncorrrelation test between the output error and the output prediction
are found:

S=3 M=3 (OEEPM) A=1 FILE:MOT3.c NS=256 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A A(l)= -0.535
COEFFICIENTS OF POLYNOMIAL B B(1)= 0.2617 B(2) =0.2288
COEFFICIENTS OF POLYNOMIAL C  C(1)=-0.84848  C(2)=0.19255
VALIDATION TEST: Whiteness of the residual error
System variance:0.0042 Model variance:0.041 Error variance R(0): 8.856 E-05
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.:[RN(i)] < 0.136, Pract. Val.: RN(i)] < 0.15
RN(0)=1.0000 RN(1)= -0.0432 RN(2)=  0.0404
RN@3)=  0.0453 RN#)= 0.01179
VALIDATION TEST: Error / prediction uncorrelation
System variance:0.0412 Model variance:0.0408 Error variance R(0): 2.71 E-04
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.:|RN(i)| < 0.136, Pract. Val.: |RN(i)| < 0.15
RN(0)=0.0119 RN(1)=0.0156 RN(2) =0.0284
RN(3) =0.0356 RN(4)=10.0186

Both the whitening test and the uncorrelation test give good values. Thus the model
identified is validated. Another structure and method can be tested nevertheless
with the same model complexity. If the structure S2 and the output error with fixed
compensator method (M4) are chosen, in order to obtain an asymptotically
unbiased estimation without estimating the disturbance model, one gets (d =0)

S=2 M=4 (OEFC) A=1 FILE:MOT2C NS=256 DELAY D=0
COEFFICIENTS OF POLYNOMIAL A A(l)= -0.5347
COEFFICIENTS OF POLYNOMIAL B B(1)= 0.2629

B(2)= 0.2266
VALIDATION TEST: Error / prediction uncorrelation
System variance: 0.0412 Model variance: 0.0406

Error variance R(0): 2.723 E -04
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NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion:Theor. Val.: [RN(i)] < 0.136, Pract. Val.:[RN(i)| < 0.15
RN(0) = 0.043 RN(1) =0.0591 RN(2) =0.0631
RN(3)=0.0564 RN(4) =0.031

Note that the results of the validation are very good, but slightly worse than those
obtained with the output error with extended prediction model method. However,
the parameters obtained in these two cases are very close. The step responses
obtained using these models are extremely close each other and are shown in
Figure 7.19.

DC Motor : Step Responses
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Figure 7.19. Step responses for the identified DC motor models (Output error with extended
prediction model and output error with fixed predictor, d =0, np = 1, ng = 2)

7.5.4 Flexible Transmission

In this example the dynamic model of a flexible transmission, with low damped
resonant modes, will be identified for control design purposes. A view of the
flexible transmission is given in Figure 7.20 and the schematic representation of
the control system is shown in Figure 7.21.

The flexible transmission is made of three pulleys linked by two elastic belts
(see Figure 7.20). One of these pulleys is constrained to the axis of a DC motor.
The motor position is controlled by a local servo (speed and position feedback).
The dynamics of the local position control is very fast if compared to the
mechanical system.

The control problem is to get the desired position of the third pulley, by
modifying the input voltage of the position control of the motor that drives the first
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pulley. The output y(#) of the system is the axis position of the third pulley, and the
command signal u(f) is the reference for the first pulley axis position. The
mechanical loads that can be added on the third pulley modify the system inertia
and, consequently, also the resonant modes of the mechanical system.

We are concerned in the following with the open loop identification of the
model for this process (between u(f) and y(f)) for the case without additional load
(the controller in Figure 7.21 is not connected).

The sampling frequency is 20 Hz (7, = 50ms). The excitation signal is a PRBS
of small magnitude generated by a shift register with N = 7, and with a frequency
divider p = 2. In the file poulbol.c 254 1/O samples are stored after removal of DC
component. The data stored in the file poulbol.c!'are plotted in Figure 7.22.

The system has two resonant modes and then a possible choice is n, = 4.
However, an estimation of the order for the model can be carried on by using
techniques presented in Chapter 6, Section 6.5.

The results obtained (with the functions estorderiv.m (MATLAB®) or
estorderiv.sci (Scilab)) are shown in Figure 7.23, thus confirming that the order for
the model to be chosen is

n=max(n,,ng +d)=4

A detailed order estimation (using WinPim) gives the values n, = 4, np =2,
d=2.
The estimation of the delay can be verified by identifying with the RLS, with n, =
ng=4,d=0.

The results obtained are

S=1 M= I(RLS) A =1 FILE: POULBOI.C DELAY D=0
A(1) = -1.5752 B(1) = 0.0104
AQ2)= 1.8384 B(2) = 0.0098
AQ3) =-1.4788 B(3)=0.3077
A(4) = 0.8896 B(4) = 0.4146

Note that |[B(1)|, |B(2)| << 0.15|B(3)|, and that clearly implies d = 2.

I Available from the website: http://landau-bookic.lag.ensieg.inpg.ftr.
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Figure 7.20. View of the flexible transmission (Laboratoire d’Automatique de Grenoble
INPG/CNRS/UJF)
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Figure 7.21. Control scheme for the flexible transmission
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Figure 7.22. 1/O data used for the identification of the flexible transmission

Flexible Transmission : Model Complexity Estimation
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Figure 7.23. Complexity estimation for the flexible transmission model based on the file
poulbO1.c



Practical Aspects of System Identification 313

If a new identification is performed with d = 2, ngp = 2, ny, = 4 by using
structure S1 and the recursive least squares methods, one gets the following results:

S=1 M=1 (RLS) A=1 FILE: POULBOI.C NS=254 DELAY D=2
COEFFICIENTS OF POLYNOMIAL A:  A(1)=-1.5748
A(2)= 1.8329
A(3)=-1.4784
A(4)= 0.8895
COEFFICIENTS OF POLYNOMIAL B:  B(1)=10.3010
B(2)=0.4181
VALIDATION TEST: Whiteness of the residual error
System variance: 0.3317 Model variance: 0.1053 Error variance R(0):
0.0007
NORMALIZED AUTOCORRELATION FUNCTIONS
Validation Criterion: Theor. Val.: RN(1)] <0.136, Pract. Val.: [RN(1)] £0.15
RN(0) = 1.0000 2> RN(1)= -0.5727 &
2> RN(2)= 0.2360 < RN(3)= -0.0475
RN(4)= -0.0158

Flexible Transmission : Magnitude Bode Diagrams
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Figure 7.24. Frequency characteristics of the models identified for the flexible transmission
(RLS — recursive least squares, OEEPM — output error with extended prediction model)

The validation is not satisfactory as RN(/), RN(2) are greater than 0.15. The
frequency characteristics of this model is shown in Figure 7.25 (line RLS).

Thus one tries structure S3 which introduces a model for the disturbance
(ARMAX model). The output error with extended prediction model is used
(OEEPM) with a decreasing adaptation gain (A1). The results of identification and
validation are given below:
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S=3 M=3 (OEEPM) A=1 FILE:POULBO1.C NS=254 DELAY D=2
COEFFICIENTS OF POLYNOMIAL A:  A(1) = -1.60955

COEFFICIENTS OF POLYNOMIAL B: B(1)= 0.30530

COEFFICIENTS OF POLYNOMIAL C: C(1)=-0.67530

VALIDATION TEST: Whiteness of the residual error

Validation Criterion: Theor. Val.: | RN(i)| <0.136, Pract. Val.: RN(i)] £0.15

AQ)= 1.87644
A@3) = -1.49879
A(d)= 0.88574

B(2)= 0.39430

C(2) = 0.2283
C(3) =-0.0653
C(4) = -0.0585

System variance: 0.1061 Model variance: 0.1055

Error variance R(0): 0.0004
NORMALIZED AUTOCORRELATION FUNCTIONS

RN(0)= 1.0000 RN(1) = -0.0425
RN(2)= 0.0959 RN(3)= -0.0563
RN(4) = -0.0407

The validation is really satisfactory, as all the values RN(i) are smaller than 0.136
for i = 1,2,3,4. The frequency characteristics of this model is shown in Figure 7.24
(line OEEPM). The comparison of the frequency characteristics of the models
identified shows that a good validation corresponds to the identification of a less
damped second resonant mode.

7.6 Concluding Remarks

This chapter has shown how effectively an identification of a plant model has to be
carried out. The different steps can be summarized as follows:

Input/output data acquisition using a PRBS (pseudo-random-binary
sequence) as input

Conditioning of the acquired data (DC removing, data scaling, filtering);
selection or initial estimation of the system order n = max (n4, ng +d)
Selection or estimation of n,, ng, d either by order estimation techniques,
or by inspection of the numerical values of the estimated parameters
Identification and validation using several structures plant + disturbance
and identification methods with the objective of obtaining the best
acceptable model with lowest n 4 and ng

Analysis of the model identified and validated both in the frequency and
time domain
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Practical Aspects of Digital Control

Digital controller design methods and system identification techniques provide the
basic tools for effectively solving a control problem. The final stages in the
controller design are emphasized in this chapter. This involves implementation
aspects, performance specifications and the interaction between plant
identification and controller design.

The first part of the chapter reviews several topics related to the
implementation of digital controllers: effect of the digital-to-analog conversion,
effect of saturations, effect of the computational delay, manual to automatic
switching, cascade control, performance evaluation, adaptation of controller
parameters, the hardware for controllers implementation.

In the second part of the chapter, the joint use of system identification and
controller design is illustrated through several examples:

Temperature control of an air heater

Speed control of a DC motor

Cascade position control of a DC motor

Position control through a flexible transmission

Position control of a 360° flexible robot arm

Deposited zinc control in hot-dip galvanizing (SOLLAC-Florange)

8.1 Implementation of Digital Controllers

8.1.1 Choice of the Desired Performances

The choice of desired performance, in terms of response time, is linked to the
dynamics of the open loop system and to the power availability of the actuator
during the transient. One should also take into account some “robustness” aspects.

Indeed, the acceleration of the natural response of a plant requires control
“peaks” during transients that are greater than the steady state values.

317



318 Digital Control Systems

If, for example, a system has the transfer function //(1+s7) and it is desired to
accelerate the closed loop system response twice, i.e. to obtain a transfer function
1/(1+sT/2), it is necessary to apply, for a certain time during the transient interval,
a maximum input level which is twice the steady state value (i.e. 1y, = 2 ugys,

(ug,, = value of control signal during the steady state).

yﬂ

2y

X 2u
N — u

1t

Here the control is reduced

Figure 8.1. Acceleration of the natural response of a system

This is shown in Figure 8.1. By applying 2u_, ., we expect to have the value 2y

star
at the end of the system natural time response, but the value y is approximately
obtained after a period that is equal to half of the time response. The controller

should then reduce the control signal to u,, to get the desired steady state value y.

The following relation can thus be considered:

u _ desired  speed  desired  pass  band

max

u natural  speed  natural  pass  band

stat

It follows that the closed loop performances will depend on the actuator power
availability. Or, vice versa, it will be necessary to choose the actuator according to
the desired performances and the open loop response of the system.

With regard to the structure of the performance models for tracking (4,,(g7"))

and for regulation (P(q/)), second-order models are preferred over first-order
models for the same time response. This choice is a consequence of the fact that for
a given time response the transient stress on the actuator will be weaker for a
second-order model (as a result of a smoother response slope at the beginning of
the transient).

It has been shown, in Chapter 2, Section 2.6 that the robustness of the closed
loop system, with respect to uncertainties or variations of plant parameters,
depends upon the ratio between the band pass (related to the rise time) of the
regulation dynamics (mainly defined by P(¢7!)), and the band pass (related to the
rise time) of the plant in open loop (mainly defined by A(¢g/)). The robustness of
the closed loop systems is better as this ratio is approaching 1 (assuming that the
open loop is stable).
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In the situations where the desired dynamics in closed loop is significantly
faster than the plant dynamics, a more careful design is necessary in order to assure
the robustness margins. In such cases one should

1. Optimize the choice of the closed loop poles and of the fixed parts of the
controller S(g/) and R(g/), in order to obtain the best possible robustness
margins

2. Improve the quality of the plant model and reduce the uncertainties by:

e Better identification in order to obtain a model which is relevant for the
band pass desired in closed loop

e Reduction of the size of the operating regions where only one
controller is used

e Use of “adaptive control” techniques

Note that the techniques for identification in closed loop described in Chapter 9
allow, in general, improvement of the quality of the models for the design of high
performance controllers.

The achievable tracking dynamics is mainly limited by the power and the band
pass of the actuators.

If the dynamics of the actuator is much faster than that of the plant, there is a
risk that the high frequency dynamics of the plant be excited. It is therefore
necessary, in these cases, on one hand to have a plant model which is relevant in
the high frequencies and, on the other hand, to design a controller leading to an
input sensitivity function with a low magnitude at high frequencies.

8.1.2 Effect of the Computational Time Delay

Two situations can be distinguished:

1. Computation time equal to or greater than 0.5 T.

In this case, the values measured at instant ¢ are used to compute the
control u that will be sent at instant #+/. The computer thus introduces an
additional time delay of 1 and the new delay to be considered for the design
of the controller will be

d' =d+1

This is illustrated in Figure 8.2a.

2. Computation time less than 0.5 7.

In this case, the control is sent at the end of the computation. This is
illustrated in Figure 8.2b. The computer introduces a fractional time delay
which has the effect either of introducing a zero, or of modifying the
existing zeros in the pulse transfer function of the plant. This effect is
negligible if the computation time is much smaller than the sampling
period.
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Figure 8.2a,b. Synchronization procedure for the measurement and the computed control: a
computation time greater than 0.5 T, ; b computation time less than 0.5 T

8.1.3 Effect of the Digital-to-analog Conversion

The control signal generated by the digital controller is often computed with
floating (or fixed) point arithmetic on 16, 32 or 64 bits. So the distinct values of
this signal are larger than the distinct values of a digital to analog (D/A) converter
which in general does not have more than 12 bits (4096 distinct values).

Figure 8.3 shows the characteristic of a digital to analog converter. The
computed values of the control signal (1) are represented on the horizontal axis and
the rounded values (u,), effectively obtained at the output of the D/A converter, are
represented on the vertical axis. Q represents the quantization step.

In a digital controller, the control signal generated at instant # depends upon the
previous values of the control signal effectively applied on the plant input. It is
therefore necessary to round the control u(#) inside the digital controller in order to
correctly compute the future values.

The equation defining the controller has the form

S(g ™ Yu(@)+R(gy(0)=T(qg )y (t+d +1) (8.1.1)
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Figure 8.3. The characteristic of a digital to analog converter
and respectively

u(t) =Si T(q )y (t+d+1)=S (g Hut =)= R(g ™)) (8.1.2)
0

(where sy = I in the case of pole placement).

In order to take into account the effect of the D/A converter, the expression of
the control u(t ) becomes

u(t) = Si Ty @+ d+1)-5" (g, (t~1) - Rg™)y(0)] (8.1.3a)
0

where u,(?) is the rounded control signal sent to the D/A converter and satisfying
he, (1) —u(t)| <1/20 (8.1.3b)

If this rounding operation is not implemented, an equivalent noise is introduced at
the plant input. This produces, in general, an increase of the variance of the plant
output. In some cases low magnitude oscillations can be observed on the plant
output.

8.1.4 Effect of the Saturation: Anti Windup Device

The effect of the saturation on the actuator can deteriorate the performance, in
particular if the controller includes an integrator. Therefore, the effect of the
actuator saturation has to be taken into account since for the computation of u(?)
the previous values of the control must be considered. The previous computed
values are replaced by the applied values. This is equivalent to the introduction of
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a “copy” of the nonlinear actuator characteristic in the controller. As a
consequence, the control law becomes

T(q™ )y (t+d+1)-R(qg" )y(t)=S"(¢" Ju(t-1) (8.1.4)
So

u(t) =

In Equation 8.1.4, u (¢-1) is the vector of previous values of u(¢) passed through
the nonlinear characteristic (saturation).
This is shown in Figure 8.4 for the control law

_ T )y ) —ry(0) — syt =)
So

u(t)

(8.1.5a)

ut) i u)| <ugy,
() =1 uy i u®)2ugy, (8.1.5b)
—Ugy lf u(t) < Uy

corresponding to tracking and regulation with independent objectives for a discrete
time model described by

Y(t+1) = —ay (t) + byu(t) + bou(t — 1) (8.1.6)

yH(t+1) u(®) S y(t)
+ -1

’OC”SO nESIEE:
q's. | u(t)

Figure 8.4. Digital control in the presence of actuator saturation (anti windup device)

The effects of the saturation of the control input and of the anti windup device
are illustrated in Figure 8.5 for the case of a position control of a DC motor
(described in Section 8.4). Both the plant and the controller contain an integrator.

One can observe that the saturation of the control slowdowns the system
response and produces a significant overshoot, with respect to the case without
saturation. The introduction of an anti windup device allows one to obtain a
response without overshoot but which is obviously slower than the response in the
linear operation case.
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One can ask, looking at the evolution of the control signal, if it is possible to
accelerate the system response in the presence of saturation, by maintaining the
control at the saturation level for a longer duration, but still assuring a system
response without or with a small overshoot.

Anti Saturation: Step Responses
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Figure 8.5. Response (in simulation) of a digital position control in the presence of
saturation

In order to achieve this, it is necessary to impose dynamics on the trajectory of
u(t) when it leaves the saturation level (instead of a simple gain). Such a scheme is
represented in Figure 8.6, where the dynamics of u(?) when it leaves the saturation
level is defined by the polynomial

Pg(g)=1+q"'Ps(q™") (8.1.7)
Ty *-Ry (t 1 |ue u(
* S ] ]
SER

Figure 8.6. Anti windup device with specified dynamics when u(t) leaves the saturation
level
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In the linear domain (ju(f)| < | ugy | —> u (f) = u(?)), this system has the transfer
function 1/5(¢g™!). Effectively from Figure 8.6 one gets

1

SOPS(qil) — 1 — (8 1 8)
1 1 -1 -1 -1 -1 o
1_5@ ) =s0P(g ) soPlq ) +S(g ) =soPs(q) Sl )
SOPS (q - )
The controller equation in the general case will take the form
soP (g~ () =T(g™ )y (t+d +1) = R(g™)y(1) 319
~Isa ™= sop. )] e
and u(z) will be given by
u() = s )y 1+ + D)~ Rig ™) 5110,
~[sta™) 502, @] EO 50 (g7 ute -1
but
S@=s0P@ =50+ S @D g 0BG
=q [S*(q" )=soP (g™ )]
One gets therefore the following equation for the control signal:
u(0) = (1/50) (g™ )y @+ d + 1)~ Rig ™300 o1

5™ =soP @] 7 1)~ 5P (g™ e 1)}

where

u(t) if |u()| <y,
u(ty=u,, if u(t)>u,, (8.1.12b)

Usar Ul‘ Ll(t) < Uy

The next question is how to choose the dynamics for the evolution of u(?) when it
leaves the saturation level. One generally chooses

Py(q ) =1+pgq” ;. —08<pg <0 (8.1.13)



Practical Aspects of Digital Control 325

This choice for pg is easier to interpret if one considers Equation 8.1.13 as the

denominator of a first-order discrete time filter resulting from the discretization of
a first-order continuous time filter characterized by a time constant

Tou ( P, =—¢ /T ). In this case the choices indicated in Equation 8.1.13

become

0<T, <4T,

(T,

sat

Figure 8.7 illustrate the accelerating effect of this dynamics in the presence of
saturation. One observes that for T, =27, ( p; =—0.602 ) one gets an acceleration

sat

with respect to the case T, =0 and still without overshoot.

= 4T, corresponds to p; =—0.778).

Note that the value to be selected for pg (7, ), within the indicated bounds, is

at

related to the specificity of each application.

Anti Saturation with a Specified Dynamics: Step Responses
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Figure 8.7. Digital position control (in simulation) with anti-wind-up device and dynamics
when u(t) leaves the saturation level
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8.1.5 Bumpless Transfer from Open Loop to Closed Loop Operation

To avoid large transients when one moves from the open loop operation to the
closed loop operation, it is necessary to initialize the « memory » of the controller
(i.e. to provide y(t-1), y(¢-2) ..., u(t-1), u(t-2), ...r(¢t-1), ...).

A method for controller initialization (when it is still in open loop operation) is
described next:

1. One replaces the reference and the desired output by the measured output
value (y*(t+d+1) = y(1); r(t) = (7).

2. One stores the control u(f), applied in open loop operation, in the controller
memory.

3. One repeats step 1 and 2, for a number of times equal to n = max (ny + ng,

d+np+np).
4. One switches from open loop to closed loop operation.
Using this procedure, the control signal will have, at the switching instant, the
value of the control signal applied at the previous instant in open loop operation.
To see this, suppose that y(f) = constant during the initialization phase and that

the controller has an integrator. The control signal at the switching instant will be
given by

u(t) = (1/so)[T(l)y(t)—R(l)y(t)—S*(l)u(z—1)J (8.1.14)

(since y*(t+d+1) has been replaced by y(?)).
The controller has an integrator so S(/) = 0 and S*(/) = -sy, because

S(q’l):so +q’1S*(q’1). Furthermore, 7(/) = R(I) (since one has a unit gain
between y™ and y). One gets then from Equation 8.1.14:

u(t)y=u(t-1) ; t:max(nA +ng;d+ng +nR) (8.1.15)

A C*™ code for a RST digital controller which takes in account the D/A effect,
the anti windup device and the bumpless transfer protocol can be downloaded from
the book website'.

8.1.6 Digital Cascade Control

Cascade control has been used in industry for many years. Its origin is probably
the observation that between the actuator and the main controlled variable, there
are intermediate physical variables that is interesting to control for various reasons.
The block diagram of a cascade control is shown in Figure 8.8.

!http//: landau-bookic.lag ensieg.inpg.fr
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Figure 8.8. Block diagram of a cascade control

The controller for the main variable (n) provides the desired value for the
intermediate variable (n-/). The controller for the intermediate variable (k) will
provide the desired value for the variable (k-/). With cascade control, bounds on
the intermediate variable (k-/) can be easily achieved by limiting the output of the
(k) controller which provides the reference for the loop (k-1).

The logical order of the variables in a cascade control scheme results from the
physical structure of the system. For example in a positioning system using a DC
motor, the position will depend upon the speed, which in turn depends on the
current which will be driven by the voltage applied to the motor. The physical
constraints require that, during position transients (in tracking or regulation), the
maximum rotational speed and the maximum current be bounded. These bounds
will be obtained easily by bounding the output of the position controller and of the
speed controller, respectively.

A similar situation is encountered in the level control of a liquid in a tank. The
level of the liquid will depend upon the flow rate of the incoming liquid, which,
itself, will depend upon the valve position.

Another important aspect in cascade control is related to the dynamics of the
intermediate variables. These dynamics become more and more rapid as we
approach the actuator. This allows decomposition of the transfer function from the
control signal to the main output variable in several blocks, each being
characterized by a different time scale.

This is particularly important in the case of digital control where the selection
of the sampling frequency will depend for each loop upon the dynamics associated
to the intermediate variable. It is this aspect that makes the difference between a
continuous time cascade control and a digital cascade control.

In practice, we will start by selecting the sampling frequency for the first
control loop characterized by the fastest dynamics. The sampling frequency for the
other loops should be an integer under multiple of the sampling frequency for the
first loop. In addition the sampling frequency for the loop (k) should be either an
integer under multiple of the sampling frequency of the (k-7) loop or equal to it?.

The implementation of a cascade control first requires one to identify the
transfer function between the input to the actuator and the first intermediate
variable followed by the design of the RST controller for this loop. Once the first

2 This sampling frequency selection concerns the frequency at which the controller operates. This has
not to be confounded with the data acquisition frequency that can be the same for all the loops.
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loop is implemented, one has to identify the model corresponding to the first closed
loop cascaded with the part of the plant connecting the intermediate variables 1 and
2. The excitation sequence is superposed to the reference input of the RST
controller for the first loop and the output is the intermediate variable 2 (see
Section 8.4 for an example). The controller for the loop 2 will be designed on the
basis of this model and the control specifications. One then repeats the procedure
for the other loops.

8.1.7 Hardware for Controller Implementation

There is a variety of hardware options for implementing a digital control scheme.

For a rapid test prior to final implementation on a specific hardware, one can
use a “software in the loop” systems which include real time kernels (like Vissim
(Visual solutions) or Simulink (Mathworks). Dedicated RST real time schemes
operating on a PC can also be used (like Wintrac (Adaptech), which also provides
the C™" code to be compiled and downloaded on the controller).

For the effective implementation on a micro-controller, a C++ code (Adaptech),
available from the book website?, can be used as a reference.

Many applications use a PC in which several controllers are implemented
together with the logic related to the operation of a specific plant.

Another option is provided by the DCS (digital control systems). They have a
high level programming language allowing to code the RST controller. See, for
example, Roland and Landau (1991).

The PLC (programmable logic controller) is probably the device on which RST
controllers are mostly implemented. The PLC produced by various manufacturers
(see Figure 8.9) incorporate the function “RST controller” (like LTI 160 (Leroy),
Alspa (Alstom), Quantum (Schneider Modicon)). A guide for the integration of
RST controllers on a programmable system is available (Adaptech 2001a)*.

A number of programmable controllers (like T640 (Eurotherm), u - pilot

(Soléa)) also allow the implementation of RST controllers.

The micro-controller boards, the VME boards under real time operating system
OS9 and DSP boards also allow one to implement RST digital controllers
operating at high sampling frequency.

To summarize: any digital computer with a data acquisition system and a real
operating system can be used for the implementation of a digital control.

8.1.8 Measuring the Quality of a Control Loop

An important aspect of controller design and implementation is the measure of the
achieved performance. This is easy, in general, for the tracking aspects (some step
changes may be enough) but less obvious for the regulation aspects since, in
practice, one cannot apply the disturbances. Evaluating the regulation performance
for continuous type production processes is extremely important since any

3 hittp:/landau-bookic.lag.ensieg.inpg.fi
4To be downloaded from the website: http://www.adaptech.com
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improvement in the regulation performance has an economic impact (improvement
of the product quality, reduction of raw materials and energy consumption,
reduction of machine stress).

For continuous time production processes, evaluation of the regulation
performance is done using histograms of the measurements of the controlled
variable over a certain time horizon (the horizon should be long enough in order
that the results have a statistical meaning).

Figure 8.10 illustrates the histogram of a controlled variable for a “poor”
control and for a “good” control.

If the control performance is “poor”, one observes that a significant number of
measurements are far from the average value (corresponding to the reference
value). This will require to move the reference value towards higher values in order
to guarantee a minimum acceptable value for the controlled variable (for example:
minimum depth coating on a steel strip, minimum humidity in drying processes,
etc.).

Figure 8.9. PLC Leroy LT160 embedding several RST controllers and I/O modules
(courtesy of Leroy Automatisme)

If one has a “good” control, the dispersion of the measurements around the
mean value will be significantly reduced. This corresponds to the reduction of the
variance of the controlled variable (and of the standard deviation). As a
consequence, on one hand a better quality (uniformity) of the products will be
obtained and, on the other hand, the set point can be moved close to the tolerance
limits. This in general will induce raw material and energy savings.

From a histogram one makes the following computations:

e Mean value:

N

1
Ym :Wzly(l')

If the controller has an integrator, the mean value is often very close to the
reference value (assuming that the disturbances over the measurement
horizon have an almost zero mean value — this is often the case in
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continuous time production processes if the measurement horizon is
enough large).
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Figure 8.10. Histograms of the controlled variable

e Standard deviation:

1/2
UZ{%JZVZ()’U)—YM)Z}

i=1

If the histogram has a form close to that of a Gauss bell (Gaussian
distribution - see Appendix A), 63% of the measurements will be in the
interval 4+ o around the mean value and more than 95% of the
measurements will be in the interval £ 2 ¢ around the mean value. In
addition, from the histogram one can directly determine the percentage of
measurements which are inside a certain tolerance zone.
It is important to mention that for high capacity production processes an
improvement of the regulation performance (i.e. the reduction of the standard
deviation) of 1%, or less, may have an important economic impact. This impact
may be significantly higher than the investment for improving the control
performance (in many cases a plant model identification and replacement of a PID
controller by a digital RST controller designed on the basis of the identified model
may achieve this).
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8.1.9 Adaptive Control

“Adaptive Control” is a set of techniques used for on-line automatic tuning of
controllers in order to achieve (or to maintain) a certain level of performance when

e The plant parameters are unknown or vary during plant operation
e The plant parameters are known but the characteristics of the disturbances
are unknown or vary during operation

Adaptive control techniques should be considered only when the large variability
of the plant parameters, or of the disturbance characteristics, does not allow to
design a robust linear controller assuring satisfactory performance. We distinguish
two categories:

1. “Closed loop” adaptive control
2. “Open loop” adaptive control

A “closed loop” adaptive control combines in general a real time (recursive)
identification algorithm with the computation in real time of the controller
parameters based on the current values of the estimated model parameters and of
the desired performance. The tuning of the controller can be done at each sampling
instant or at a lower frequency. In this second case one has a time horizon for the
estimation of the plant model followed by the computation of the new controller
parameters.

If this estimation horizon is significantly larger than the number of parameters
to be estimated and, in addition, an external excitation is added during the
parameter estimation stage (the controller being constant over this horizon), one
has an iterative scheme which combines plant model identification in closed loop’
with the redesign of the controller.

A “closed loop” adaptive control system should incorporate a supervision
function, which monitors the correct operation conditions for the adaptive loop (ex:
richness of the excitation signal used for identification, compatibility of the
identified model with the control design, efc.). A block diagram of a “closed loop
adaptive” system is shown in Figure 8.11a. It includes a control loop, an adaptation
loop, and a supervision device. Closed loop adaptive control schemes, featuring
explicitly a real time model estimation block followed by a real time controller
design block, are termed “indirect adaptive control”.

In a number of cases, one can directly tune (estimate) the controller parameters
without an explicit use of the current model parameters for controller redesign.
This type of scheme, shown in Figure 8.11b, is termed “direct adaptive control”
(examples: model reference adaptive control, adaptive tracking and regulation,
adaptive minimum variance control, adaptive rejection of unknown disturbances).

3 The techniques for plant model identification in closed loop operation are presented in Chapter 9.
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Figure 8.11a,b. Closed loop adaptive control: a indirect adaptive control; b direct adaptive
control

Closed loop adaptive control schemes have basically two modes of operation:
self-tuning operation and adaptive operation. In the self-tuning operation, the
adaptation starts when a degradation of the performance is detected and stops when
the desired performance is achieved. In the adaptive operation the algorithm
operates all the time.

The characteristics of a plant dynamic model often depend upon a set of
measurable variables which define an operating point (for example in hot dip
galvanizing, the dynamic characteristics of the process depend upon the steel strip
speed and the position of the air knives with respect to the steel strip — see Section
8.7 for details). In such cases one can use an “open loop” adaptive control scheme,
as shown in Figure 8.12.

The range of operating points is divided in a number of operation regions. For
each region, a relevant operating point is selected and a corresponding controller is
designed based on an identified model. This controller assures the desired
performances for all the operating points located within this region. The
corresponding controllers are stored in a table. When the plant will operate in one
of the operation regions, the corresponding values of the controller parameters will
be used according to the table.
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Figure 8.12. Open loop adaptive control scheme

For many applications characterized by a large variability of the plant
dynamics, resulting from the change of the operating point, an “open loop”
adaptive control is enough for assuring the desired performance over the range of
possible operating points.

It is this approach which is illustrated in Section 8.6 (hot-dip galvanizing at
SOLLAC-Florange).

For a detailed presentation of adaptive control techniques see: Landau (1979),
Landau (1986), Astrom and Wittenmark (1995), Landau et al. (1997), Landau
(1993) and Landau et al (2005).

8.2 Digital Control of an Air Heaters

This section aims at illustrating the implementation on a real system (air heater) of
an RST digital controller, designed according to one of the methods presented in
Chapter 3 and based on an identified discrete-time model of the plant (for details
concerning the identification of the air heater see Chapter 7, Section 7.5.1).

The diagram of the system and of the digital control loop is represented in
Figure 8.13. The air is heated by means of a resistor supplied by a computer
controlled thyristor power amplifier. The controlled variable is the air temperature
at the output which is measured by a thermocouple.

Two models have been identified and validated for this air heater with 7, =5s

(see Chapter 7, Section 7.5.1):

© The examples presented in this chapter have been worked out with WinPim (Adaptech) identification
software and WinReg (Adaptech) control design software. Small numerical differences will result when
using other identification and control design routines.
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The pole placement method has been used for the controller design’. The same
dynamics for the tracking and regulation desired performances will be chosen. The
rise time for the two models is about 6 7 (= 30s) (see Figure 7.11). First we will
consider for the closed loop response an acceleration of /.25 times with respect to
the open loop response (desired rise time =~ 24s) with almost no overshoot. In
order to obtain a rise time of about 24s in closed loop, it is found , from diagrams
of Figure 1.10 (or 1.11b), that for a second-order with damping & = 0.9, it is
necessary to set @, = 0.136 rad/s. The desired closed loop poles will result from

the discretization of a second order continuous time system with @, = 0.136 rad/s

and ¢ = 0.9 (the response has almost no overshoot) for 7, = 5s.

f 1t

temperature Y(t)
measurement [——————————%»

micro-
computer

(\/\/\/ power u(t) /

amplifier -

Figure 8.13. Digital control of an air heater

Table 8.1 summarizes the results of the digital controller design based on the
model 1 and using the pole placement. Figure 8.14 shows the magnitude of the
frequency response of the output sensitivity function Syp. Note that the resulting

curve respects the robustness template.
The designed controller has been tested first in simulation, both on model 1 and
model 2. Figure 8.15 illustrates the closed loop response with both models

7 In this case one can also use the tracking and regulation with independent objectives, as the zeros of
the plant model are stable (b, < b ).
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(simulation). The rise time is about five sampling periods (=~ 25s) matching the
desired performance. The differences between the responses obtained with the two
models are negligible (one can note a difference in the input signal applied to the
system, caused by the different identified static gains).

Table 8.1. Controller designed by “pole-placement” for the air heater, with ©,= 0.136 rad/s,
and € = 0.9 (both tracking and regulation)

Plant:

e d=0
o B(qg')=0.1724q" +0.0579 ¢
o A(qg')=1-0.658947

Tracking dynamics > T = 5s, @y = 0.136 rad/s, {= 0.9

o B, (q)=01543 +0.1024 "1
o Am(q')=-1.0372¢"'+0.2940 ¢”

Regulation dynamics 2> T =J5s, wp = 0.136, {=10.9
P(g")y=1-1.0372 ¢ +0.2940 47
Pre-specifications: Integrator

##% CONTROL LAW **¥*
Sgly u) + RigH y(0) = (g7l .y (t+d+1
() u@ +R(@gH ) =T(g") .y ( )

Y e+d+1) = Bulg™) /Al . (o)
Controller:

o R(qg!)=27637 -1.6491 ¢!
o Sigl)=1-0854941-0.1451 ¢

o T(ql)=434-45017q1 + 1276247
Gain Margin: 5.61 Phase margin: 63.6 deg
Modulus margin: 0.732 (- 2.71 dB) Delay margin: 9.6 s
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Air Heater: Syp Magnitude Frequency Response
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Figure 8.15. Simulated closed loop response for the air heater (model 1 and model 2) with

the controller based on model 1 and the desired performances: w(
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Figure 8.16. Real time responses for the controller designed from the specifications
®,=0.136 rad/s, £ =0.9

The experimental results for temperature variations around 60°C (3.2V) are
given in Figure 8.16. One can see that the rise time is indeed about 25s.

We now consider the case in which a stronger acceleration is required for the
closed loop system if compared to the natural system response (open loop
response). For a rise time about /5s (rise time reduced to half of open loop rise
time), it results, from the diagrams of Figure 1.11, that the desired dynamics for the
closed loop corresponds to that of a second-order system characterized by @, =

0.226 rad/s; ¢ = 0.9. The new controller must guarantee, nevertheless, a modulus

margin greater or equal to 0.5 and a delay margin at least equal to 5s (1 7).

On the basis of these new specifications, the results of the controller design are
given in Table 8.2. Note that the robustness margins are reduced with respect to the
margins found in the previous case, as a consequence of the stronger acceleration
required (rise time reduction). The delay margin obtained, in particular, is very
close to the limits (I,;=3s). However the robustness conditions for the modulus and

the delay margins are still satisfied.

The magnitude of the output sensitivity function is presented in Figure 8.17.
We observe that the sensitivity function reaches the upper template. The system
response cannot be further accelerated while preserving the robustness (without
specific calibration of the sensitivity functions).
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Table 8.2. Controller designed by “pole-placement” for the air heater, with w, = 0.226 rad/s
and £=0.9

Plant:

o d=0
e B(g")=0.1724q" +0.0579 ¢~
o A(q")=1-0.6589q"

Tracking dynamics = T = 5s, oy = 0.226, = 0.9

o B, (ql)=03281+0.1652 47!
o Ay, (ql)=1-0637341 +0.1308 ¢72
Regulation dynamics > P (¢°!) = 1-0.637 "1 +0.1308 g2

Ty =355, wp=0.226, {=10.9
Pre-specifications: Integrator

*#% CONTOL LAW *%#%
Sg 1y u() + Rig™!) y() = T(g 1)y (t+d+1
(@ u@+R(GHyO)=T(g)y ( )

Verd+D) = Bulg ) 1 Am(q™) - )
Controller:
o R(gl)y=4.6461-25045q1+0.1147 42
o Sigl)y=1-07797¢1-0.2202 472
o T(gl)=434-27662 ¢! +0.5677 2

Gain Margin: 3.159 Phase margin: 51.9 deg
Modulus margin: 0.613 (- 4.25 dB) Delay margin: 5.05 s

The simulated responses for both models of the air heater are presented in
Figure 8.18. The responses obtained in simulation with the two models are again
very close. The only difference one can see is the steady state value of the input
signal (as the model gain is different). The rise time is about 15s. One can note an
increase of the actuator effort needed during the transient as the rise time has been
reduced (to be compared with Figure 8.15).

The experimental results obtained for temperature variations around 60°C
(3.2V) are given in Figure 8.19. The controller designed with the specifications
@y=0.226 rad/s and { = (0.9 allows one to obtain the desired performances (rise
time ~ [35s, no overshoot).

Figure 8.20 shows the behavior during regulation (around 65°C) for a
disturbance introduced by a step variation of the fan speed (see Figure 8.13).
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Figure 8.17. Output sensitivity functions for the controllers designed from the specifications
0= 0.226 rad/s, £ = 0.9 and o,= 0.136 rad/s, { = 0.9 respectively
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Figure 8.18. Simulated closed loop response for the air heater (model 1 and model 2) for
the controller designed from w,= 0.226 rad/s, = 0.9
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Air Heater: Output
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8.3 DC Motor Speed Control

The block diagram of the DC motor digital speed control is shown in Figure 8.21.
For controller design, the model of the motor previously identified (see Chapter 7,
Section 7.5.3) has been used. The specific real time implementation has been done
using Wintrac (Adaptech 2004).

inertia

DC motor

u(t) Power

170 amplifier
soms [yt

filter

% tachometer

Figure 8.21. Digital speed control of a DC motor

The model identified with OEEPM (7, = 15 ms) has been used (see Chapter 7,
Section 7.5.3).

0.2617¢7" +0.22884 7>
1-0.535¢""

Motor model:

The model has a stable zero since b, < by, but very close to the unit circle. It is
therefore not recommended to use the tracking and regulation with independent
objectives. The pole placement method will be used. The model rise time is around
4.5 Ty (= 67 ms) (see Figure 7.19). An acceleration by a factor of 1.33 is desired
for the closed loop time response (desired rise time: =50 ms) together with a small
overshoot. In order to obtain a rise time /g = 50 ms, from Figure 1.10 it results that
a second-order continuous time system with § = 0.9 o, @y = 75 rad/s has to be
chosen as desired closed loop dynamics. Therefore the desired closed loop poles
will result from the discretization of a second-order continuous time system with
wg =75 rad/s, = 0.9 and T; = 15 ms. The same dynamics have been chosen for
tracking.

Table 8.3 summarizes the controller design for the identified model of the
motor. The robustness margins are satisfactory. Figure 8.22 illustrates the
simulation results using the identified model both in tracking and regulation. The
rising time is~55 ms. This is normal, since in pole placement there is the
additional dynamics of B(g!) which will influence the results. In this case it is a
fractional delay of about ~ 5 ms.
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Table 8.3. “Pole placement” speed controller with wg = 75 rad/s and £ = 0.9 (DC motor)

Plant:
e d=0
o Bgl)y=02617¢41+02288q47°
o A(ql)=1-053514"1

Tracking dynamics = T = 0.015s, wg = 75 rad/s, = 0.9

o B, =03262+0.1647 ¢!
o A, =1-0.6409¢1 +0.1319 472

Regulation dynamics = P = [-0.6409 q'] +0.1319 q'2
Tg= 0.015s, wp =75 &=0.9

Pre-specifications: Integrator

##% CONTROL LAW ***
Stg7ly . u()) + Rg™Dy . w0y Tg™l) y ™ (t+d+ 1)

i+ 1) =By, (7)1 Ay (a71)) - refi)
Controller:
o R(g1)=19176-0.9168 ¢!
o Stgl)=1-060784¢1-0.3921 47
o T(qg!)=2.0382-13065¢1-0.269 42

Gain margin: 3.205 Phase margin: 57.8 deg
Modulus margin: 0.625 (- 4.08 dB) Delay margin: 22 ms (/.46 T)

Real time results are shown in Figures 8.23 and 8.24. Figure 8.23 shows the time
response of the motor speed for a step change in the desired speed. The rising time
is close to the simulated one (=55 ms). Figure 8.24 illustrates the behavior of the
closed loop system for a load disturbance. It is an almost step disturbance followed
by an almost instantaneous take off of the load at 393 T§. The disturbance rejection

time is =~ 105 ms.
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Figure 8.22. Simulation results for the digital speed control with wy = 75 rad/s and £ =0.9

Amplitude (Volt)

Amplitude (Volt)

DC Motor: Output
T

T T T T T T
| | | | | | |
dr - - [ i
| |
| |
| |
35 - — - - e i T Tl Tl | EEEE
_— Spec.:u)0= 5rad/sec, {= 0.9 |
— Reference L :
3 SRR L VI e
| | | | | | |
! 1 1 1 ! 1 1
100 150 200 250 300 350 400 450 500

Time (s) (T_ =15 ms)
DC Motor: Control Signal

|
|
I
1 1 1 1
250 300 350 400 450 500
Time (s) (TS =15ms)

Figure 8.23. Closed loop speed response of a DC motor for a step on the reference
(tracking dynamics oo = 75 rad/s, £=0.9)
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DC Motor: Output
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Figure 8.24. Motor speed response for a load disturbance (regulation dynamics: wg = 75
rad/s, £ =0.9)

8.4 Cascade Position Control of a DC Motor Axis

The block diagram of the cascade position control of a DC motor axis is shown in
Figure 8.25.

DC motor + inertia

1
2] RrRsT 2| RrRsT Y| Power Lo Y2
Position ~»| Speed | amplifier |1+
1
1
Speed loop -------------

Position loop

Figure 8.25. Digital cascade control position of a DC motor axis (the D/A and A/D
converters are not shown)

In this specific application the DC motor already considered in Section 8.3 (speed
control) will be used. We will discuss now the integration of the speed control loop
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in a cascade position control. The implementation of this cascade control scheme
in real time has been done with a PC using WinTRAC (Adaptech 2004)3.

The sampling period for the speed loop is /5 ms (see Section 8.3). Since the
dynamics of the position is significantly slower (presence of an integrator and of an
important mechanical mass), a longer sampling time has to be used in the position
control loop. A sampling time of /20 ms has been chosen (it is a multiple of /5
ms). In order to design the position controller it is necessary to identify the
dynamic model between the reference of the speed loop and the axis position.

The PRBS for identification has been applied to the reference input of the
controller. The characteristics of the PRBS used for identification are:

e Number of cells of the shift register: N = 7

e Clock frequency: fprps = fs/2 (Tprps = 240 ms)
e Magnitude: 2V (300 rpm)

e Length: 256 samples

The data acquired are shown in Figure 8.26 (after centering the data). The
integrator behavior of the system is obvious.

DC Motor: Output

Amplitude (Volt)

Time (s) (Ts =120 ms)
DC Motor Signal Excitation

Amplitude (Volt)
o
T
|
n
T

50 100 150 2
Time (s) (Ts =120 ms)

Figure 8.26. Input/output sequences for identification (input: speed reference;
output: axis position)

8 A PLC can also be used for the implementation of digital cascade control.
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Data Pre-Processing

Since it is known that the dynamic model contains an integrator (position is the
integral of the speed) and taking into account the indications given in Chapter 7,
Section 7.2.2, a model without integrator will be identified. In order to do that, a
new input/output data set is considered: the input sequence is unchanged, whilst a
new output sequence representing the variations of the output between the
sampling instants (y(¢)-y(¢-1)) will be used. The corresponding I/O sequences (after
elimination of the residual DC component) are represented in Figure 8.27.

One observes that the output level is about one fifth of the input level.
Following the indications given in Section 7.2.3, the output should be multiplied
by a factor of 5 in order to get a magnitude of the same order as the input. The
resulting identified model will need to be scaled by dividing the coefficients of
B(g™!) with a factor of 5.

Complexity Estimation

Using the order estimation procedure based on the use of the instrumental variable
with delayed inputs (see Chapter 6, Section 6.5) and implemented in
estororderiv.sci (estororderiv.m), as well as in WinPIM software (Adaptech,
1996a), one gets for the model without integrator n = max (ny,ngtd) = 2 (see
Figure 8.28) and ny = I, ng = 2, d = 0, with an over estimation risk of 0.1%.
These orders seem to be reasonable since the response time of the speed loop is
about half of the sampling period used in the position loop, which leads to the
presence of a fractional delay ( ng = 2).

DC Motor: Differentiated Output
0.5
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o
|
|

| |

| |

1 1
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Time (s) (Ts =120 ms)

DC Motor: Signal Excitation
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05 L L L

Amplitude (Volt)
o
T
|
n
T

50 100 150 2
Time (s) (TS =120 ms)

Figure 8.27. Input/output file for the system without integrator
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DC Motor : Model (without Integrator) Complexity Estimation
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Figure 8.28. Order estimation from data for the model without integrator

Parameter Identification and Validation

The model (without integrator) identified with the recursive least squares
(structure S1) does not pass the statistical validation tests. Selecting the structure
S3 and the output error with extended prediction model with ny=1, ng=2, d=0 and

nc=2 one gets a model satisfying the whiteness validation test. The results are
summarized in Table 8.4.

Table 8.4. Parameters of the model (without integrator)

Model without integrator and gain multiplied by 5
ny=1, ng=2, nc=2, d=0
COEFFICIENTS OF POLYNOMIAL A(g!): A(1) = 0.2154
COEFFICIENTS OF POLYNOMIAL B(¢!): B(1) =-0.1737

B(2) =-0.5563
COEFFICIENTS OF POLYNOMIAL C(q°'): C(1) =-0.3176
C(2) =-0.1878

TEST DE VALIDATION: Whiteness of the residual error

Validation criterion: Theor. Value: |RN(i)] <£0.136, Pract. Value: |RN(i)| <0.15
RN(1) = 0.0422 RN(2) =0.0057
RN(3)=-0.136 RN(4) = 0.0497

Remarks:

1. The validation results can be improved using a variable forgetting
factor, but the time responses of the two models are almost the same.
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2. The gain model is negative because of the polarity of the measurement
used.

Inserting an integrator and dividing by 5 the coefficients of polynomial B one gets
the model displayed in Table 8.5.

Table 8.5. Parameters of the complete “position” model (input: speed reference; output: axis
position)

Position model (with integrator)
HAZZ, n3=2, d=0
COEFFICIENTS OF POLYNOMIAL A(g!): A(I) = -0.7846

A(2)=-0.2154
COEFFICIENTS OF POLYNOMIAL B(g™): B(I) = -0.03476
B(2)=-0.1112

The polynomial B(g~!) has |b,|>|b;], therefore the model has an unstable zero and
the pole placement control strategy has to be used.

Design of the Controller
Based on the identified model, a RST controller is designed using the pole
placement with shaping of the sensitivity functions.

The control specifications are:

e Dominant regulation dynamics: discretization of a second-order continuous
time system with @y = 3 rad/s and & = 0.8 (T;= 120 ms)

e An integrator in the controller

e Opening of the loop at 0.5 f;

e Modulus margin: AM >0.5; delay margin: Ar> T

e Tracking dynamics: discretization of a second-order continuous time
system with @y = 4.5rad/s and { = 0.9

To get the integrator effect a fixed part Hg (¢7/) = I - g/ must be included. For
opening the loop at 0.5 f, a fixed part Hg(q™') = 1 + g'also has to be included.
In the absence of the opening of the loop at 0.5 f; (using a filter Hg), the

modulus of the input sensitivity function would be very large at high frequencies,
where the system has a very small gain (it is an integrator). This leads to an
important stress on the actuator without having any effect on the output.

Figures 8.29 and 8.30 give the modulus of the output and input sensitivity
functions for the following three designs:

1. without Hp and without auxiliary poles
2. with Hg, but without auxiliary poles
3. with Hp and 3 auxiliary poles at 0.1

The final controller corresponds to the third design. The auxiliary poles have been
introduced in order to significantly reduce the stress on the actuator over 0.3 f..

One notes a small reduction of the modulus margin with respect to the design a and
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b, but which still has a value larger than 0.5 (|S,, (@) max < 6dB). The coefficients
of the controller corresponding to the third design are given in Table 8.6.

Table 8.6. RST controller for the position loop

Polynomial R(g”) | Polynomial S(¢/) | Polynomial 7(q"')| Polynomial By(g-)
B, (0)=0.1057
T(0)=-6.8479 B, (1)=0.076381
R(0)=-1.2139 S(0)=1.0000 Ty—t2 0545
i -1
R(1)=-0.7543 S(1)=-1.0222 T2)—70639 | Polynomial 4, (g
R(2)=0.9699 5(2)=0.2836 T(3)=1.4625 —
R(3)=0.5111 S(3)=-0.2614 Tty—t1255 ol
7(5)=0.0038 Ap(1)=-1.1962

4,(2)=0.3783

DC Motor Position Loop: Syp Magnitude Frequency Responses
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Figure 8.29. Output sensitivity function (modulus) for the various controllers

Figure 8.31 gives the simulation results (tracking and regulation) for the
position loop. The rise time is slightly longer than 77, = 840 ms.
The experimental results with the two cascaded loops (speed and position) are
illustrated in Figure 8.32. Figure 8.32a,b gives the evolution of the position for a

step change on the reference for the position and the evolution of the output of
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Figure 8.32a-d. Real time evolution of the variables in cascade position control of the DC
motor: a position and reference for the position; b output of the position controller (speed
reference); ¢ speed and reference for speed; d output of the speed controller(command for
DC motor supply voltage)
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the position controller, which represents the reference signal for the internal speed
loop. The rise time is practically the same as the one obtained in simulation (8§40
ms). Figure 8.32c,d gives the evolution of the speed and of the speed controller
output signal which will drive the DC motor supply voltage. For these last two
figures the time scale is the same as for the “position” but the number of samples is
different since the sampling frequencies in the two loops are different.

8.5 Position Control by means of a Flexible Transmission

The flexible transmission has been described in Chapter 7, Section 7.5.4. In this
Section we will discuss the design of the controller for the position control of the
third pulley (see Figure 8.33), based on the identified model. The control input is
the reference for the axis position of the first pulley. It was shown in Section 7.5.4
that the system has two very low damped vibration modes. It is operated with a
sampling period of 50 ms. The identified model (open loop) is

A(g™") =1-1.609555¢ " +1.87644¢ > —1.49879¢ > +0.88574¢ *
B(g7")=0.3053¢ " +0.3943¢ >
d=2

! AXIS
DC POSITION POSITION
MOTOR TRANSDUCER
A
v u(t) y(t) A
D rRsT |
CONTROLLER |[€¢— , (€ D e
. CONTROLLER | 4 c
(Dref

Figure 8.33. Digital control of a flexible transmission
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The frequency characteristic of this model has been presented in Figure 7.24. The
two vibration modes of the model are characterized by wy = 11.949 rad/s, =
0.042 and wy = 31.462 rad/s, = 0.023. The model has an unstable zero (because
Iba>[bi).

Since the model has an unstable zero the pole placement strategy will be used
for controller design. It is desired to get a regulation and a tracking behavior
characterized by a pair of well damped dominant poles, corresponding to the first
vibration mode of the flexible transmission. The controller should also assure
certain robustness specifications in terms of modulus margin, delay margin and
maximum value of the modulus of the input sensitivity function at high
frequencies. The performance and robustness specifications are summarized next:

e Tracking dynamics: discretization of a second-order continuous time
system with @y = 11.94 rad/s and {= 0.9 (Rise time tgz ~ 0,285s which
corresponds to g =~ 67)

e  Zero steady state error (controller should include an integrator)

e Dominant poles of the closed loop corresponding to the discretization of a
second-order continuous time system with @y = 11.94 rad/s and { = 0.8;

e Modulus margin: AM >0.5; delay margin: A7 > 0.05s

* ISy (@ )|max < 10dB for /> 0.35f;

A first controller design, for which only the dominant poles have been specified,
leads to the sensitivity functions Sy, and S,, shown in Figures 8.34 and 8.35

(curves A).

Flexible Transmission: Syp Magnitude Frequency Responses
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Figure 8.34. Output sensitivity functions for various controllers
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Flexible Transmission: Sup Magnitude Frequency Responses
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Figure 8.35. Input sensitivity functions for various controllers

The resulting modulus margin AM =0.498 is slightly less than the desired
value. The delay margin A7 =0.043s is less than the desired value and the
maximum of |Sup(q'1)| at high frequencies is over the required value /0 dB (see
Table 8.7).

The number of closed loop poles that can be specified for a minimum size of
the controller (ng = ng = 4) is in this case

np=nA+nB+an+d—]=8

Since one has specified only a pair of poles corresponding to the first vibration
mode but with {'= 0.8, it results that all the other poles for the closed loop have
been implicitly set to zero (i.e. aperiodic poles at 0.5 f; ). Therefore controller (A)
will damp the poles corresponding to the first vibration mode without changing the
frequency but, in the mean time, it will accelerate and strongly damp the second
vibration mode (z=0 corresponding to wy=62.8 rad/s and {'=I). This requires an
important control effort in a frequency region where the gain of the system is low
and, consequently, a high value of |S,,| at high frequencies will result.

In order to avoid this phenomenon, it is necessary to specify a second pair of
poles corresponding to the second vibration mode, with a damping equal or higher
to the open loop value. Increasing the desired value of the damping will induce an
increasing of |S,,| in this frequency region. Thus a second pair of desired closed

loop poles is selected with @,=31.46 rad/s and {'= 0.15 (this value of the damping



Practical Aspects of Digital Control 355

Table 8.7. Specifications, and achieved modulus margin, delay margin and maximum [Syp|
for various controllers

Modulus | Delay | [Supl
Closed 1 1 i in | Ma
Hs(q_l) HR(q_l) osed [oop poles margin margin X
(dB) (s) | (dB)
Dominant Auxiliary
oy =11.94 0.498
Al 1! £=0.8 (-6.06) | 0.043 | 18.43
@y =31.46
oy =11.94 £=015 0.522
B| ¢! -08 - (-5.65) | 0.062 | 6.24
1 5 (1-0.2q"H* )
@y =31.46
oy =11.94 £=0.15 0.544
-1 -1 _ =Y -
Cl 1q l+q £=08 (02014 (-5.29) | 0.057 | 1.5

is not critical). For the remaining poles to be assigned, as indicated in Chapter 3,
Section 3.6, it is wise to select aperiodic poles located on the real axis between
0.05 and 0.5. These poles will have a beneficial effect upon the maximum value of
|Sypl at high frequencies. The remaining four poles have been set to 0.2 (since four
poles have been already assigned). The frequency characteristics of S, and S, for
the new controller are represented in Figures 8.34 and 8.35 (curves B). The new
controller satisfies the imposed specifications (see Table 8.7).

Figures 8.36 and 8.37 show the real time results obtained with controller B. Figure
8.36 corresponds to a step change on position reference. One observes that the rise
time of the real system is close to the specified one (67 plus the delay of 27T).

Figure 8.37 illustrates the behavior in regulation for a position disturbance
followed by an instantaneous release (it is the return to the equilibrium position
that is interesting for performance evaluation in regulation).

A detailed examination of the control signal (see Figures 8.36 and 8.37) shows
the presence of a high frequency component without effect on the output (the
position of the third pulley), since this frequency region is far beyond the band pass
of the closed loop.

This phenomenon is even visible on the real system, where the position of the
first pulley will follow to a large extent the control signal (the local position control
of the first pulley has a high band pass). The input sensitivity function, in fact, will
amplify by a few dB the high frequency measurement noise (which is interpreted
as a disturbance). To counteract this effect it is sufficient to open the loop at high
frequencies, by introducing in the controller a fixed part of the form Hg =1 + ¢/
(the controller gain will be zero at 0.5f;), and to re-compute the controller with the

same specifications.
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Figure 8.38. Position step response of the flexible transmission (controller C)
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Table 8.8. The parameters of the RST controllers (B and C) for the flexible transmission

Controller B

Controller C

Coefficients of polynomial R(g™/)

R(0) = 0.497161
R(I) = -1.009731
R(2) = 0.622142

R(3) =-0.186272
R(4) = 0.285405

R(0) = 0.307895
R(I) =-0.515832
R(2) =-0.037637

R(3) = 0.452544
R(4) = -0.165905
R(5) = 0.167641

Coefficients of polynomial S(g™/)

S(0) = 1.000000
S(1) = -0.376884
S(2) = -0.256739

S(3) = -0.239733
S(4) = -0.126644

S(0) = 1.000000
S(I) = -0.376884
5(2) = -0.256739

S(3) =-0.181950
S(4) =-0.109785
S(5) = 0.074642

Coefficients of polynomial T(q'!) (identical for B and C)

T(0) = 1.429225
(1) = -2.839061
7(2) = 3.181905

7(3) = -2.687952
T(4) = 1.594832
7(5) = -0.576414

7(6) = 0.118277
7(7) = -0.012656
T(8) = 5.488E-04

Coefficients of polynomials B,,(¢/) and 4,, (¢”!) (identical for B and C)

A,(0) = 1.000000
B, (0) = 0.124924
A, (1) = -1.129301
B, (1) = 0.087209
A,(2) = 0.341434

The characteristics of this controller (C) are summarized in Table 8.7. The
corresponding frequency characteristics of the sensitivity functions are shown in
Figures 8.34 and 8.35 (curves C) and the real time results are presented in Figures
8.38 and 8.39 (to be compared with Figures 8.36 and 8.37).

The parameters of the controllers B and C are given in Table 8.8.

8.6 Control of a 360° Flexible Robot Arm

Figure 8.40 gives a view of the 360° flexible robot arm.

It is constituted by two aluminium sheets, each one is Im long and 10cm wide,
with a thickness of 0.7mm. The two sheets are coupled every 10cm by a rigid
frame. The system is very flexible and presents many low damped vibration
modes. The energy is essentially concentrated in the first three vibration modes.
The sampling frequency (20 Hz) has been chosen such that these three vibration
modes lie between 0 and 0.5 f; . Data acquisition is performed through anti aliasing

filters. The block diagram of the control scheme is given in Figure 8.41. One of the
extremities of the arm is directly coupled to the axis of a DC motor. The
corresponding local position loop contains a cascade control of motor current,
speed and position (measured by a potentiometer type transducer). The band pass
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Figure 8.40. 360° Flexible robot arm (Laboratoire d’Automatique de Grenoble,
INPG/CNRS/UJF)

of this loop is higher than the frequency of the first vibration mode.

The output of the system is the position of the free end of the arm. The
measurement of the position of the free end is done by combining information
upon the position of the motor axis (provided by an incremental transducer) and
those provided by a carried on measurement device (including a light beam and a
mirror), which gives the angular position with respect to the motor axis position
(for details concerning the measurement device see Landau et al. 1996).

LIGHT
SOURCE -

MIRROR
5

ALLUMINIUM

COMPUTER

LOCAL
POSITION
SERVO

—
’ =3
ENCODER M-

Figure 8.41. Position control scheme for the 360° flexible robot arm
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The measurement system allows one to cover a rotation from 0 to 360°. The
control signal provided by the computer is the reference position for the motor
axis.

The identified and validated model for the case without load is (Langer and
Landau 1999)

A(g7")=1-2.1049 ¢ 7' +1.04851 ¢ > + 0.33836 ¢ > + 0.46¢4 *
~1.5142¢7° +0.7987 ¢ ¢

B(g™')=0.0064 ¢ ' +0.0146 ¢ 2 —0.0697 ¢ > + 0.044 ¢ ~*
+0.0382 ¢ > - 0.007¢ ¢

d=0

The frequency characteristic of this model is shown in Figure 8.42.
This model is characterized by three very low damped vibration modes
(w; = 2.6173, §; = 0.018; w, = 14.4027, {, = 0.025; w3 = 48.1169, {3 = 0.038).

The pole — zero map is shown in Figure 8.43. One notes the presence of unstable
zeros. The unstable zeros with positive real part correspond to continuous time
unstable zeros (non-minimum phase system). Since the model has unstable zeros
the pole placement strategy will be used for the controller design.

Flexible Robot Arm : Magnitude Bode Diagram

Magnitude (dB)

5 0.20 0.25 0.
Frequency (flfs)

Figure 8.42. Frequency characteristics of the identified model for the 360° flexible robot
arm
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Flexible Robot Arm : Pole-Zero Map
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Figure 8.43. Pole — zero map of the identified model for the 360° flexible robot arm

The design of the controller will be done using the iterative pole placement
design with shaping of the sensitivity functions, by simultaneous tuning of Hg
(respectively Hp) and of auxiliary poles (see Chapter 3, Section 3.6 and (Prochazka
and Landau 2003)). The effective computations have been carried on with

ppmaster (MATLAB®)® (Prochazka and Landau 2001). The specifications are the
same as in (Langer and Landau 1999):

Tracking dynamics: discretization of a second-order continuous time
system with @wy=2.6173rad/s and §'= 0.9

Zero steady state error (controller should include an integrator)

Dominant poles of the closed loop system corresponding to the
discretization of a second-order continuous time system with w)=2.6173
rad/s and §'= 0.8

Modulus margin: AM > 0.5 (-6 dB); delay margin: Az >0.05s (17})

Constraints on the input sensitivity function |S,, (gh): < 15 dB at low

frequencies (< 4 Hz); <0 dB from 4.5 Hz to 6.5 Hz; < 15 dB from 6.5 Hz
to 8 Hz; <10 dB from 8 to 10 Hz (f;=20Hz)

The low value imposed on |S,,,| between 4.5 Hz and 6.5 Hz (0.225 to 0.325 fif;) is a
constraint resulting from the low value of the open loop gain and the uncertainties

% To be downloaded from http//:landau-bookic.lag.ensieg.inpg fr
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upon the model in this frequency region. The bound |S,,| at high frequencies will
limit the effect of the measurement noise upon the control signal.

The templates for the modulus of the sensitivity functions are represented in
Figures 8.44 and 8.45 (dotted lines).

The desired dominant closed loop poles are chosen as indicated in the

specifications, and an integrator is introduced in the controller (Hg =1-¢7").
Note that it is not necessary to damp the second and third (high frequency)
vibration mode because closed loop band pass (defined by the dominant closed
loop poles), the disturbances and the tracking model dynamics are all are at low
frequencies. Therefore these poles will be kept unchanged by specifying them as
poles of the closed loop (see the partial internal model design, Section 3.5.5).

The result of this first design is a controller for which [S,| and |S,,,| are far

outside the imposed templates at high frequencies (Figures 8.44 and 8.45 — curves
A). In such situations auxiliary poles have to be added. The total number of poles
which can be specified (without increasing the size of the controller) is

nP:nA+nB+d+nHS1 -1=12

Six poles have been have been already assigned. It is therefore possible to add
auxiliary poles of the form

Pe(zH=0+pz"H" ; -05<p <-0.05

Taking p, = —0.5 one gets a controller leading to sensitivity functions which are
slightly above the templates in two frequency regions (Figures 8.44 and 8.45 —
curves B). |S,,| is above the template around / Hz and [S,,| is above the template
between 4 and 6 Hz. First, to improve the design, we will consider the introduction
of a resonant pole—zero filter Hg, /P, in Sy),. The continuous time filter, which will
serve for the computation of the discrete time filter, is chosen with a resonance
frequency fy =1Hz (6.28 rad/s). The damping for the denominator is chosen as
Cien =0.8 (in order that the auxiliary poles which will be introduced be well
damped). The desired attenuation is M; = -5.5 dB, leading to ¢, =0.424. The
characteristics of the discrete time filters Hg and P, are given in Table 8.9'. The

sensitivity functions obtained with the new controller are illustrated in Figures 8.44
and 8.45 — curves C. It remains to correct now the frequency characteristics of |S,,|

10 Since the resonace frequency of the filter is below 0.17 f;, the filter design can be done with an
excellent precision directly in discrete time.
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Flexible Robot Arm: Syp Magnitude Frequency Responses
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Figure 8.44. Flexible 360° arm. Output sensitivity function (|Syp|) for various controllers
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between 4 and 6 Hz. A resonant pole-zero filter Hp /Py in [Syp| is considered. It

will be centred around 5 Hz. Choosing fy = 4.7 Hz, M; = -16.4 dB and ¢y,,, =0.9,
one gets the desired results (Figures 8.44 and 8.45 — curves D). The characteristics
of Hy and P;are given in Table 8.9.

Table 8.9. Specifications of the various controllers for the 360° flexible robot arm

Hy(q') Hp(q') Closed loop poles
Dominant Auxiliary
o ®, =2.1673
q £=08
o, =2.1673
1-q! - Og:og (1-0.5q1)°
P _ -1\6
wlzgzs ©p = 21673 (10) g'566128)
o= £=08 o -
C=0.424 c=038
(1-0.5q7H)°
_q! =6.28
ST 02957 | 0y =21673 wg s
o~ ©° _ _ =0.
£ = 0424 £=0.092 =038 o =40.1
£=0.74

8.7 Control of Deposited Zinc in Hot Dip Galvanizing (Sollac-
Florange)

This application is interesting for several reasons:

e [t clearly shows the benefit of a good control

e [t points out the interest of using digital RST controllers for processes with
a long time delay

e [t illustrates the concept of the ”open loop adaptive control”

A detailed presentation of this application can be found in Fenot et al. (1993a).
8.7.1 Description of the Process
The objective of the galvanizing line is to obtain galvanized steel with formability,

surface quality and weldability equivalent to uncoated cold rolled steel. The variety
of products is very large in terms of deposited zinc thickness and steel strip
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thickness. The deposited zinc may vary between 50 and 350 g/m” (each side) and
the strip speed may vary from 30 to 180 m/mn.

The most important part of the process is the hot-dip galvanizing. The principle
of the hot-dip galvanizing used at Sollac — Florange is illustrated in Figure 8.46
Preheated steel strip is passed through a bath of liquid zinc and then rises vertically
out of the bath through the stripping “air knives” which remove the excess zinc
before it solidifies (Figure 8.47). The remaining zinc on the strip surface solidifies
before it reaches the rollers which guide the finished product. The effect of air
knives depends on the air pressure, the distance between the air knives and the
strip, and the speed of the strip. Nonlinear static models have been developed for
computing the appropriate pressure, distance and speed for a given value of the
desired deposited zinc.

The objective of the control is to assure a good uniformity of the deposited zinc
whilst guaranteeing a minimum value of the deposited zinc per unit area. Tight
control (i.e., small variance of the controlled variable) will allow a more uniform
coating and a reduction of the average quantity of deposited zinc per unit arca. As a
consequence, in addition to quality improvement, a tight control of the deposited
zinc per unit area has an important economic impact since the average
consumption for a modern galvanizing line is of the order of 40 tons per day.

The main difficulty for control results from the fact that measurement of the
deposited zinc can be made only on the cooled finished strip. The transducers are
located more than 100 m after the zinc bath, which results in an important delay
between the action of the pressure at the level of air knives and the measurement of
its effect on the finished product. The digital RST controller is well suited for the
control of such processes with long delay for which PID control cannot be used.

In addition, the delay will depend upon the speed of the steel strip which may
vary in a ratio 1 to 3. Furthermore, the dynamic behavior will also depend upon the
position of the steel strip with respect to the air knives.

8.7.2 Process Model

The static model of the hot dip galvanizing process can be approached by

m:KD\/Z+§m
P

where m is the deposited mass per unit area, K is a constant of proportionality, D is
the distance between the air knives and the strip, P is the air pressure and V' is the
strip speed. &, accounts for unpredictable effects and/or modelling errors. At
SOLLAC Sainte Agathe, the control variable is the air pressure.

A linearized model around an operating point (Py, Dy, V) can be obtained using

a standard Taylor series expansion for variations of pressure (AP), speed (AV) and
distance (AD). It has the form
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/V
m= KD, ?0+OLAD+[3AV—MM’+£W
0

where Py,Dy, V), are the values of the pressure, distance and speed defining the
operating point and AP, AD, AV, are the variations of these variables. It can be seen
that using the pressure as the control variable one can compensate for the
disturbances created by variations of distance and speed as well as by the term &,,.

Finished
Steel product
i

o } o B —

X

Air Measurement of
knives deposited mass

\JZinc bath

>4

Preheat
oven

Figure 8.46. Scheme of the hot dip galvanizing process at Sollac - Florange

|
l

' L~ inc
Steel strip

Figure 8.47. Details of the hot dip galvanizing process

The pressure in the air knives is regulated through a pressure loop, which can be
approximated by a first-order system. The delay of the process will depend linearly
on the steel strip speed. Therefore, for describing the relationship between the
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variations of pressure and the variations of the deposited mass, one can consider a
continuous time dynamic model of the form

—ST
H(S)=Ge ; r=£
1+sT V

where L is the distance between the air knives and the transducers and V' is the strip
speed.

When discretizing this model, the major difficulty comes from the variable time
delay. In order to obtain a controller with a fixed number of parameters, the delay
of the discrete-time model should remain constant. Therefore, the sampling period
is tied to the strip speed (it is an “open loop adaptation™) in order to get a discrete
time model of constant complexity, using the formula

A
T, = . d

. ; d =integer
’ d

where d is the discrete-time delay (integer) and o is an additional small time-delay
due to implementation.

The corresponding linearized discrete-time model, which has been identified
around various operating points, has the form

~d -1
_ b
Hg =2 (1(171)

1+aq

with d = 7. The fractional delay (which corresponds to the presence of an

additional term bgq‘z) is negligible because of the way the sampling period Ty is
selected and this was confirmed by the model identification procedure. However,
the parameters of the model, given above, will depend on the distance D and on the
speed V.

8.7.3 Model Identification

The plant is formed by the air pressure control loop and the coating process. The
control input to the process is the reference of the air pressure control loop, the
output of the process is the measured deposited mass per unit area (see Figure
8.48). The identification of the discrete time model of the plant has been done by
superposing a PRBS to the reference for the pressure loop, as illustrated in Figure
8.48.
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Figure 8.48. Block diagram of the identified plant (input: 4p, output: 4Am)

The input used was a PRBS (Pseudo Random Binary Sequence) of a magnitude of
+4% with respect to the static pressure (Po). The PRBS was generated by a shift
register with N = 5 cells and a clock frequency equal to half of the sampling
frequency (length of the sequence: 64); 100 to 160 (average: 128) measurements
have been used for the various identifications made in different regions of
operation. The choice made for the PRBS allowed at least one full sequence to be
sent for each experiment and yielded the largest pulse width (10 Ts) comparable
with the rise time of the process (including the time delay). As both sides of the
steel strip have to be galvanized, and because of the non symmetric position and
physical realization of the two actuators, both “front” side and “back” side models
have been identified. Data acquisition has been done using over sampling as
indicated in Chapter 7, Section 7.1.3.

A comparative study has shown that for this application the output error
identification method gives the best results in terms of model validation.

The identification of the process model around various operating points,
defined by the strip speed and the distance between the air knives and steel strip,
has shown a significant variability of the identified parameters. This has imposed
the use of an “open loop adaptive control” in order to assure good performance in
all operating points.

8.7.4 Controller Design

RST controllers (with integrator behavior) have been designed for the various
operation regions using tracking and regulation with independent objectives (see
Chapter 3, Section 3.4) since the model always has stable zeros (the sampling
period is tied to the steel-strip speed). An important requirement is the achievement
of a delay margin of 2 T.

The polynomial P(q/) defining the closed loop poles will have a maximum
degree given by
degP(¢™") < (nA +ng+d+ng —1)

In this application one gets (n Hy = 1)
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ng+ng+d+ny —1=9

and therefore one can specify nine poles. The real poles of the model vary from
0.15 to 0.4 over the entire range of operating points. Two poles have been assigned
to 0.2 and 0.3 (respectively 0.4 depending on the operating region and the values of
the identified pole of the model) and the other seven auxiliary poles have been
assigned at 0.1'. These auxiliary poles introduce an attenuation at high frequencies
(outside the band pass of the system) and improve the robustness of the system (in
particular, the delay margin is increased) without affecting the regulation
performance at low frequencies.

Figure 8.49a gives the Nyquist plot for the case where only two poles are
specified for P(¢”/) (0.2 and 0.3) and Figure 8.49b allows one to see the effect of
the additional auxiliary poles (seven poles at 0.1). One observes an important
increase of the delay margin from /0.9 s to 25.7 s (T, = 12s) since the Nyquist plot

does no longer intersect the unit circle at high frequencies. The introduction of the
auxiliary poles also produces a significant reduction of the magnitude of the input
sensitivity function at high frequencies and, therefore, a reduction of the stress of
the actuator in this frequency region. The other robustness margins have
satisfactory values with or without the auxiliary poles (AM > - 6dB AG > 2 A¢>
60 deg).

Simulation tests have shown that the closed loop system tolerates delay
variations of + 7 (one sampling period corresponds to about 15% variations of the
delay) and +50% variations of other model parameters (b; and a;).

Procedures for taking into account the quantization, the saturation and the
bumpless transfer from open loop to closed loop (see Sections 8.1.3 through 8.1.5)
have been implemented.

Since the speed of the steel strip is measured, it was also possible to make an
“open loop compensation” of this disturbance. This has a beneficial effect upon the
regulation transient; however, it is the integrator included in the controller which
cancels the effect of this disturbance in steady state.

8.7.5 Open Loop Adaptation
To maintain the performance of the control system, the controller is adapted as a
function of:

e Speed of the steel strip
e The distance between the air knives and the steel strip

In addition to the adaptation of the sampling frequency as a function of the speed
of the steel strip, the operation range of the hot dip galvanization process has been
divided into three speed regions (the speed of the strip may vary from 30 m/min to

! The choice made for the dominant and auxiliary poles is close to the choice made in the example of
the internal model control of systems with time delay discussed in Chapter 3, Section 3.5.7.
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180 m/min) and in three regions for the distance between the air knives and the
steel strip which lead to a total of nine regions of operation, each one defined by a
range of speeds and a range of distances. An identification of the plant model has
been done for various operating points within each region of operation. A
controller design on the basis of a model estimated for the central operating point
within a region has been designed, and tested in simulation on the various
identified plant models for the corresponding region. The controllers have been
stored in a table. The controllers are switched when the system moves in a new
region of operation. A bumpless transfer from one controller to another is
implemented. In addition hysteresis is used to avoid unnecessary switching when
one operates very close to the regions boundaries.

8.7.6 Results

Figure 8.50 shows one of the typical results obtained when one of the sides is
under digital regulation and the other side is under computer aided manual control
(the operator has on display a moving short time history of the deposited zinc and
applied pressure).

The analysis of this curve points out two relevant facts when closed loop digital
control is used:

e A smaller dispersion of the coating thickness (the standard deviation on the
side where the feedback control was applied is about 30 % smaller than on
the side under manual control). This assures a better finished product
quality (extremely important for the use in the automotive industry, for
example).

e The average quantity of deposited zinc is reduced by 3% still guaranteeing
the specifications for minimum zinc deposit. This corresponds to a
significant reduction of the zinc consumption and to an important economic
impact.

Table 8.10 summarize the results obtained in different operation regions.

Table 8.10. Performances of the digital control of deposited zinc in the hot dip galvanizing
(Sollac-Florange)

Digital control Computer aided manual control
Di Speed Mean Stan Out of Mean Stan Out of
1stance .
(mm) (m/min) szlue dev. | reference value dev. | reference
% % +10 % % % +10 %
10 60-90 100 4.7 4.3 102.5 6.7 10.1
10 95 100 3.3 0.7 103 4.5 5.9
10 85-100 100 2.9 0 99 5.2 5.9
10 110-116 100 43 2.5 105 4.3 3.9
10 100-117 100 5.1 6.4 100 6.3 8.4
15 70 100 1.5 102 2
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Figure 8.50. Typical performances for the digital control of deposited zinc in the hot dip
galvanizing (SOLLAC-Florange)

8.8 Concluding Remarks

Digital controllers can be implemented on a large variety of hardware. This
implementation, however, has to be done by paying attention to a number of issues
listed here:

Specification of the desired performances taking into account the actuator
power and band pass, the time response of the plant in open loop and the
desired robustness margins.

Taking into account the computation delay.

Taking into account the characteristics of the digital to analog converter.
Introducing anti-saturation schemes.

Implementation of a bumpless transfer procedure from open loop operation
to closed loop operation.
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For applications where significant variations of the dynamic model of the plant
occur with the change of the operating points, it is recommended to proceed as
follows:

e To identify the model of the plant in the various regions of operation.

e To design a controller for each region of operation assuring desired
performance and robustness.

e To store the parameters of the controllers in a table.

e To change the parameters of the controllers when the system moves in a
new region of operation by downloading the values of the controller
parameters stored in the table.

This procedure is called “open loop adaptation”.

In continuous production processes it is very useful to measure the quality of
the control from the histogram of the regulated variables.

The application examples presented in this chapter (there are many others) have
illustrated how the methodology for system identification and control design has to
be used in order to implement a high performance control system.

8.9 Notes and References

For the implementation of digital controllers see also the C++ code (on the book
website) as well as:

Astrom K.J., Wittenmark B. (1997) Computer Controlled Systems - Theory and
Design, 3rdedition, Prentice-Hall, Englewood Cliffs, N.J.

Franklin G.F., Powell J.D., Workman M.L. (1998): Digital Control of Dynamic
Systems , 3rd edition, Addison Wesley, Reading, Mass.

For implementation of digital controllers on PLC see also:

Adaptech (2001a) Guidelines for RST controller implementation, St. Martin
d’Heres, France.

For the implementation of digital controllers on a PC see:

Vieillard J.P. (1991) Machine automatique pour la fabrication de cables torsadés
téléphoniques, La Lettre d’Adaptech, no. 2, pp. 1-2, Adaptech, St. Martin
d’Heéres, France.

For the digital control of DC motors see:

Landau 1.D., Rolland F. (1993) Identification and digital control of electrical
drives, Control Eng. Practice, vol. 1, no. 3, 539-546.

Adaptech (2004) Wintrack, Software for Data acquisition and real time RST digital
control, St. Martin d'Heres, France.
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Identification in Closed Loop

The techniques for model identification of plants operating in closed loop together
with the corresponding validation techniques are presented in this chapter. The
possibilities offered by the identification in closed loop for obtaining improved
models for controller re-design leading to better performance are illustrated in the
final part of the chapter.

9.1 Introduction

There exist situations in practice where the plant model should be identified in
closed loop (i.e. in the presence of a controller):

e The first case is related to the plant dynamics characteristics. If the plant
has an integrator or it is unstable, or an important drift of the operating
point occurs, it is very difficult and, in some situations, very dangerous to
operate it in open loop.

e The second case is related to systems where a controller is already
operating and where it is neither possible nor recommended to open the
loop in order to acquire data for the system identification.

e The third case corresponds to situation where the controller has been
designed based on a plant model identified in open loop and where, for the
purpose of improving the achieved performance, it is necessary to carry on
model identification in closed loop for the re-design of the controller.

It is this last aspect that has gained importance in the last years since identification
in closed loop on one hand provides in general better models for design than open
loop identification and on the other hand allows tuning of a controller without
opening the loop.

The objective of identification in closed loop is to obtain a plant model
describing as precisely as possible the behavior of the real closed loop system for a
given controller. It is also expected that this model identified in closed loop will
allow redesigning of the controller in order to improve the performance of the real-

375
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time control system. In other words, (assuming that the real system is linear around
an operating point), the objective of system identification in closed loop is to
search for a plant model that in feedback with the controller operating on the true
plant will lead to a closed loop transfer function (sensitivity function) that is as
close as possible to that of the real closed loop system.

It has been shown in Landau and Karimi (1997b), Landau and Karimi (2001b),
as well as in many other references, that identification in closed loop, provided that
appropriate identification algorithms are used, leads in general to better models for
controller design. It is effectively possible to improve the quality of the identified
model in the frequency regions that are critical for controller design. These
frequency regions are those where the Nyquist plot of the open loop transfer
function is close to the critical point [-7, jO].

In order to understand the potential of the identification in closed loop as well
as the difficulties which can be encountered, let us consider the case of plant model
identification in closed loop where the external excitation is added to the controller
output (see Figure 9.1a). Figure 9.1b shows an equivalent scheme that emphasizes
the transfer function between the external excitation 7, and the plant input u, as
well as the effect of the measurement noise upon the plant input. Assume that the
external excitation is a PRBS that has almost constant frequency spectrum from 0
to 0.5f;.

One observes that the effective plant input corresponds to the external
excitation filtered by the output sensitivity function S,, whose magnitude has a
maximum in the frequency regions close to the critical point [-/, j0] (see Chapter 2,
Section 2.6.2). Therefore the frequency spectrum of the effective input applied to
the plant will be enhanced in these frequency zones. As a consequence, the quality
of the identified model in these critical regions for stability and performance will
be improved. Unfortunately, in the meantime, the feedback introduces a correlation
between the measurement noise and the plant input. This leads to an important bias
on the estimated parameters if one would like to identify the plant model with open
loop techniques based on uncorrelation (see Chapter 6). One may expect that the
open loop identification techniques based on the whitening of the prediction error
will still provide good results in closed loop operation. However, as a consequence
of feedback, interdependence between the noise model and the plant model occurs
and the parameter estimates will also be biased (Karimi and Landau 1998).

Therefore, for a good identification in closed loop operation one needs
identification methods that take advantage of the “improved” characteristics of the
effective excitation signal applied to the plant input but which are not affected by
the noise in the context of feedback. An efficient solution for this problem is
provided by the “closed loop output error” methods (CLOE) that will be presented
in Section 9.2.

The schemes for data acquisition in closed loop operation have been already
presented in Chapter 7 (Section 7.1).
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Figure 9.1a,b. Identification in closed loop: a excitation added to the control output; b
equivalent representation

9.2 Closed Loop Output Error Identification Methods

9.2.1 The Principle

The principle of closed loop identification methods is illustrated in Figure 9.2. The
upper part represents the true closed loop system and the lower part represents an
adjustable predictor of the closed loop. This closed loop predictor uses a controller
identical to the one used in the real time system.

The prediction error between the output of the real time closed loop system and
the closed loop predictor (closed loop output error) is a measure of the difference
between the true plant model and the estimated one. This error can be used to adapt
the estimated plant model such that the closed loop prediction error is minimized
(in the sense of a certain criterion). In other words the objective of the
identification in closed loop is to find the best plant model which minimizes the
prediction error between the measured output of the true closed loop system and
the predicted closed loop output.

In Figure 9.2 the external excitation is superposed to the reference. However it
can be superposed to the controller output as shown in Figure 9.3 (the reference is
not represented). In both cases the same parameter adaptation algorithm is used,
although the characteristics of the identified model will be slightly different since
in the first case (Figure 9.2) one tries to approximate the sensitivity function S,
while in the second case one tries to approximate the sensitivity function S,,. Use
of these methods requires knowledge of the controller.
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All the algorithms which will be presented are available in a MATLAB®™
toolbox CLID" (Adaptech) which can be downloaded from the book web site.
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Figure 9.2. Closed loop output error identification method (excitation superposed to the
reference)

9.2.2 The CLOE, F-CLOE and AF-CLOE Methods

The algorithms will be introduced using, as an example, a first order type plant
model and then the general formulas will be given.
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Figure 9.3. Closed loop output error identification method (excitation added to the
controller output)
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Closed Loop Output Error (CLOE)
The closed loop system is described by:

At +1)=—apl0)+bule)= 0" 4, ¢) (9.2.1)
0" =[an.by]: go(e) =[- p(t)ut)] (9.2.2)
u(t)= —%y@ﬂu (t) (9.2.3)

The plant model is described by Equation 9.2.1 and the control u is given by
Equation 9.2.3. r,(?) is the external excitation superposed to the controller output
(see Figure 9.3).

In the case where the external excitation is superposed to the reference, the
signal r,(?) is replaced by (see Figure 9.2)

ARACE WA 9.2.4)

The adjustable closed loop predictor is described by
3 (e+1)==ay (0)3()+ by (0)a(e) = )" ple) (9.2.5)
(e +1) = —=a (¢ +1)3()+ by (e +1)ia(e) = 6(c +1)" $(2) (9.2.6)

60 =la (B0 407 = 560a()] 9.2.7)

. R(g™") .
=—— 7, 9.2.8
a(r) S (e)+r, (1) (9.2.8)

where 70(¢+1) and j(t+1) represent the a priori and the a posteriori outputs of

the closed loop predictor. #(¢) is the control signal delivered by the controller

(which is identical to the one used on the true system) using the a posteriori output
of the predictor and not the measured outputs (compare Equation 9.2.8 with
Equation 9.2.3 ).

The closed loop prediction error is given by

e (t+1)=y(t+1)=3°(t+1)  apriori (9.2.9)
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ec (t+1) =yt +1)=p(t +1) a posteriori (9.2.10)

The parameter adaption algorithm to be used is similar to those used for open loop
identification:

Ot +1)=0()+ F(1)0(t)e ey (1 +1) (9.2.11)
F(e+1)" = 4(0)F@)" + 2, ()o()o()" 5 0<4,(6)<10< A4,(t)<2 (9.2.12)

ggL (t + 1)
1+ 0(r)" Fr)D(c)

gert+1)= (9.2.13)

(1) = (1) (9.2.14)

The fundamental differences with respect to the open loop output error are that the
adjustable predictor and the regressor vector are different.

Note: If S(g”") = 1 and R(g”") = 0 one operates in open loop and the open loop
output error algorithm is obtained as a particular case.
In the general case Equation 9.2.1 is replaced by

y(t+1)==A"(gY(@O)+ B (g @t —d)+ A(g " H)wt +1). (9.2.15)

where w represents the noise effect. The noise w is supposed to be centered, of
finite power and independent with respect to the external excitation r,,. Equations

9.2.5 and 9.2.6 keep the same form with

o) =|a(e).a, (0).5,().5, (1) (9.2.16)

o) =[Pt —n, 1)t —d ). i(t =0y +1-d))] (9.2.17)
and the parameter adaptation algorithm is the one given by Equations 9.2.11
through 9.2.14.

The convergence of this algorithm (CLOE), in the absence of noise, is subject
to a sufficient condition: the transfer function

NER I

5 2> A, >maxA, (¢ 9.2.18
reh 2 ) (1) (9.2.18)

should be strictly positive real, where the polynomial
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Pz Y=4czNHsE Y +z79BEHRET. (9.2.19)

defines the poles of the closed loop.

It has been shown that, under the sufficient condition of Equation 9.2.18 , the
closed loop output error (CLOE) gives asymptotically unbiased parameter
estimates in the presence of noise (independent with respect to the external
excitation) if the estimation model and the true model have the same structure.

Filtered Closed Loop Output Error (F-CLOE)
In order to relax the condition of Equation 9.2.18 one can filter the vector ¢(¢)

through S(q_l)/ ﬁ’(q_l) where ﬁ(q_l) is an estimation of the polynomial
defining the poles of the closed loop. If an estimated plant model
q_dé(q_])/ ;‘i(q_]) is available, one can compute

Pg™h =4S +q  BlaTHRG™. (9:2.20)
and in the parameter adaptation algorithm one uses

N
O(t) ==
P(g™)

#(0). 9.2.21)

We get in this way the F-CLOE method. In this case, the transfer function of
Equation 9.2.18 is replaced by

D —1
Pz 1) “h g5, smaxay(0) (9.2.22)
Piz7) 2

which should be strictly positive real. This condition is clearly easier to satisfy.

A first estimation of the plant model is necessary in order to compute the filter.
This estimation can be provided by AF-CLOE or X-CLOE methods (described
next) as well as by identification in closed loop, using an open loop type
identification method or using the model identified in open loop (if it is available).

Adaptive Filtered Closed Loop Output Error (AF-CLOE)
One may consider filtering ¢(r) through a time-varying filter S(¢™")/P(t.q”")

where 16( t,q_l ) is the estimation at time ¢ of the polynomial defining the closed
loop poles:

P(t,q" )= A(t,q7" )S(q™" )+q " B(t,q" )R(¢™") (9.2.23)
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computed from the estimations of .21( t,q_l ) and é( t,q_l ) available at time ¢. This

leads to the AF-CLOE algorithm.
In this case the vector @(¢) given in Equation 9.2.21 is replaced by

~S(g™h
O(t) = Foah o) (9.2.24)

9.2.3 Extended Closed Loop Output Error (X-CLOE)

If it is assumed that the disturbance acting on the plant output can be represented
by an ARMAX type model, Equations 9.2.1 and 9.2.3 become:
We+1)=—4 (g H(e)+ B (¢ ult —d)+C (g elt) +elt+1) (9.2.25)
R _1
ult)=— (6]_1)
S(q)

At)+r, (o) (9.2.26)
where e(?) is a Gaussian white noise and

ClgH=1+¢7'C (g =1+¢,q”" tete,.qc

is an asymptotically stable polynomial.
X-CLOE is an identification method based on the whitening of the closed loop
prediction error. An adjustable closed loop predictor of the following form is used:

Ec ()

0 1:_1&*’_1 é*’—lf\_d [:‘1*’—1
70t +1) (t.g™)+B (g ilt—d)+ H (t.q )S(q_l) (9.2.27)

=0,(0"4,(0)
where
R R(g™") .
=29 ) 9.2.28
ilt) S OO (9.2.28)
0.0 =[a)(1).ustty (0.5 (0)sesby (O, 1] (O)seecsry (0] (9.2.29)

.0 =190, ecry (O ey (=g +1)] (9:230)
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ey (1) = ;g;f?) (9.2.31)

gop(t+1) = (e +1D) =30 +1) (9.2.32)

e (t+D)=y(t+1)=0,t+D)"4,(0) (9.2.33)
For

A (g =4, B (,gH=B"(¢"HandH (t,¢")=H (g7
where!

H(gH=1+q¢"H (¢7")=1+C(gHS(g™H-Pg™) (9.2.34)

the closed loop prediction error is white noise (Landau and Karimi 2001b).
The parameter adaptation algorithm is given by Equations 9.2.11 through
9.2.14 where:

00)=6,() ; O@1) =g,

In the deterministic case (without noise) there is no any condition to be satisfied for
stability. In the presence of an ARMA disturbance one obtains asymptotically
unbiased parameter estimates under the sufficient condition that

-2 ;. 2>, >maxA, (¢ 9.2.35
LB ) 0235

is a strictly positive real transfer function (note that it is the same condition as in
open loop identification using extended least squares or output error with extended
prediction model).

9.2.4 Identification in Closed Loop of Systems Containing an Integrator

The identification methods presented previously allow a better estimation of a pure
integrator than the open loop identification methods. However, if the existence of a
pure integrator is known, it is better to take this into account. Two procedures can
be used, and both require a modification of the controller used in the closed loop

! From Equation 9.2.34 it results that Ny = max(nc +ng, np).
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adjustable predictor in order to preserve the input/output behaviour of the closed
loop:

1. The plant input is replaced by its integral and the output remains
unchanged. In this case the equations describing the adjustable predictor

become
POt +1)==4 (6,7 )P ()+ B (t,g7 )it —d) (9.2.36)
- 1L | R@g™ .,
=== 9.2.37
0'(r) l_q{ S(ql)y(t)m(r)} (9.2.37)
with
Al =(1=g¢+q7 4 (¢ H=0-g"4 (") (9.2.38)

2. The plant output is replaced by its variations and the input remains
unchaged. In this case the plant output in closed loop is

V() = y(@) -yt -1)=(1-q ")) (9.2.39)

and the corresponding equations of the adjustable predictor are

POe+1)=-41 (t.qVP' O + B (g it - d) (9.2.40)
o RgH

—d)=—————— 9.2.41
Wt =d) == T YO+ (9.2.41)

The closed loop prediction error is in this case
e (t+D) =y ()= +1) (9.2.42)

Figure 9.4a,b illustrates the modifications for the case when the external excitation
is applied to the controller output.

9.2.5 Model Validation in Closed Loop

As in open loop identification, it is the model validation that will tell us on one
hand if the identified model is acceptable and on the other hand it will allow us to
select the best model among the models provided by various identification
methods.

The objective of the model validation in closed loop is to find what plant model
combined with the current controller provides the best prediction of the behavior of
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the closed loop system. The model validation in closed loop will depend upon the
controller which will be used.
Four validation procedures can be defined:

1. Statistical validation tests on the closed loop output error (uncorrelation
test between ¢ (t + 1) and (¢))

2. Closeness of the computed and identified poles of the closed loop system

3. Closeness of the computed and identified sensitivity functions of the
closed loop system

4. Time response validation (comparison of time response of the real closed
loop system and of the closed loop predictor)

Statistical Validation
The statistical validation follows the same principles as for open loop
identification. However in this case one considers the residual prediction error
between the output of the plant operating in closed loop and the output of the
closed loop predictor. An uncorrelation test will be used.

Using the schemes shown in Figure 9.2 (or Figure 9.3) where the predictor is
given by Equations 9.2.5 through 9.2.8, one computes with the identified values of
the parameters:

e The correlations between the residual closed loop output error &; (¢ +1)
and the components of the predictor regressor vector ¢(¢) ( p(¢) ,u(t —d)

and their delayed values)
e The covariance of the residual closed loop output error

This type of test is motivated on one hand by the fact that uncorrelation between
the observations (the components of ¢(¢)filtered or not) and the closed loop

prediction error leads to unbiased parameter estimates and on the other hand this
uncorrelation implies the uncorrelation between the closed loop output error and
the external excitation. This means that the residual prediction error does not
contain any information which depends upon the external excitation and therefore
all the correlations between the external excitation and the output of the closed
loop system are captured by the closed loop predictor.
One defines
RN .
R(i) =~ ;ga OPE—i)  (9.2.43)
and one computes

RN() = k@) D i=012,....max(,,ny +d) (9.2.44)

: N ) | N ) 1/2°
A0 EDYAG
[iErofsEao)
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Figure 9.4a,b. Identification in closed loop of systems containing a pure integrator
(A(qil)z(l—qfl)Al(qfl)): a plant input replaced by its integral; b plant output
replaced by its variations

As a validation test one uses the criterion (Landau ef al. 1997)

(03

NG

where « is the confidence interval (a typical value is 2.17 which corresponds to
97% level of confidence) and N is the number of data (see Chapter 6).

In many practical situations, from one set of input/output data several models
can be identified using various methods (even a model identified in open loop may
be available). A comparative validation is necessary in order to select the best
model. The comparison indicators are the variance of the residual closed loop

prediction error and maX|RN (i)| for each model.

|RN ()| < S =120 i
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Pole Closeness Validation

If the model identified in closed loop in feedback with the controller used during
identification allows one to construct a good predictor for the real system, this
implies that the poles of the closed loop system and of the closed loop predictor are
close (assuming that a persistent excitation has been applied for identification). As
a consequence, the closeness of the closed loop predictor poles (which can be
computed) and those of the real closed loop system (which can be identified by an
open loop type identification between the external excitation and the output) will
give an indication of the quality of the identified model.

The closeness of the two sets of poles can be judged by a visual examination of
the poles chart. It is however possible to quantify this closeness by evaluating the
distance between the closed loop transfer function of the real system and of the
predictor (see next).

Sensitivity Functions Closeness Validation

From the same arguments as above it results that if the identified model is good,
the sensitivity functions of the closed loop predictor (which can be computed) are
close to the sensitivity functions of the real system (which can be identified by an
open loop type identification between the external excitation and the output).

To some extent the closeness of the sensitivity functions can be assessed by
visual inspection. Moreover it is possible to quantify rigorously the distance
between two transfer functions by computing the Vinnicombe distance (see
Appendix D).

Extensive simulations and a large number of experimental results have shown
that the statistical tests and the poles or sensitivity functions closeness give
coherent results and allow a clear comparison between several models (Landau and
Karimi 1997b).

Time Domain Validation

For the validation in the time domain, one compares the time responses of the
closed loop system and of the closed loop predictor. Unfortunately in practice it is
in general not easy to compare accurately several models using this technique. In
fact a good validation by poles or sensitivity functions closeness will imply a good
superposition of the time domain responses while the reciprocal is not always true.

9.3 Other Methods for Identification in Closed Loop

1. Using Open Loop Identification Techniques on Filtered Data

The procedures try to approximate the methods presented in Section 9.2.
Identification algorithms for open loop identification will process the plant
input/output (u,y) data generated through feedback, but in general these data will
be filtered. The filters are estimations of various sensitivity functions. These
methods require the knowledge of the controller (Landau and Karimi 1997b,
Landau and Karimi 2001b).
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2. Direct identification

One tries to identify the plant model from plant input/output data ignoring the
effect of the feedeback (the external excitation being added either to the reference
or to the controller output). Open loop identification algorithms are used and in
particular those assuming the structure S3 for the noise (ARMAX), like extended
least squares, output error with extended prediction model, efc. This approach can
be viewed as a particular case of the previous one.

The quality of the results is very variable. Despite the fact that the knowledge
of the controller is not explicitly required, the results will strongly depend on the
characteristics of the controller and the level of noise. As a general rule a “soft”
controller which essentially tries to stabilize the operating point has to be used.

3. Multi steps identification
These methods have as objective on one hand to ecliminate the need for the
knowledge of the controller and on the other hand to eliminate the effect of the
measurement noise (which is critical when using open loop type identification
methods) (Van den Hof and Shrama 1993).

To understand this approach it is necessary to refer to Figure 9.1. The
implementation of this approach is done in several steps:

1. The sensitivity function S v = AS /P between the external excitation

r,(t) and and the plant input u(¢) is identified.

2. One filters the external excitation 7,(t) through the estimated sensitivity

function §yp and one gets the instrumental variable #(f) which is not

correlated with the noise
() =5,,(q ", 1)

3. One uses the open loop output error identification method on #(z) , y(¢) .

9.4 Identification in Closed Loop: A Simulated Example
The model used for simulation is

(g™ )y(0) = B(g Hu(0)+Clge(?)
with

AgY)=1-15¢"+07¢7;: BlgH)=¢"+05¢7%; d=0
Clg™)=1+1.6¢7"+0.9¢7
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where e(?) is a gaussian white noise sequence (zero mean, finite variance).
The controller used (stored in the text file SIMUBF_RST.reg?) is defined by

R(g™")=0.8659-1.2763¢" +0.5204¢
S(g™)=1-0.6283¢™" —0.3717¢ 2
T(g")=0.11

The excitation signal superposed to the reference is a PRBS generated by a shift
register with N=7 and a frequency divider equal to 2 (fprps=0.5f;). A total of 1024
samples are used. A high noise level has been voluntarily chosen (approximately
20% noise to signal ratio).

With 1024 data it is not possible to reach the asymptotic results; however the
relative performance of the various methods are clearly emphasized. The external
excitation, the plant input and the plant output are stored in the file
SIMUBF4.ACQ? and represented in Figure 9.5.

Table 9.1 gives the identified parameters and the statistical validation results
for the models obtained with various methods. The F-CLOE algorithm has
provided the best model in terms of validation tests (the model identified with AF-
CLOE has been used for computing the data filter).

The last row of Table 9.1 gives the results with the best model (in terms of
validation in closed loop) obtained by a direct open loop type identification using
the plant input and output (and ignoring the feedback). The extended least squares
method provided the best results. One can observe that this model does not pass the
closed loop validation tests and the maximum value of the normalized cross-
correlations is much larger than the values obtained with the methods dedicated to
the identification in closed loop.

Table 9.1. Models identified in closed loop

Normalized cross-
Closed loop .
Method a a b b error variance correlations
! 2 ! 2 R(0) valid. threshhold:
0.068  |RN(max)|
Nominal
-1.5 0.7 1 0.5
model
AF-CLOE -1.47 10.6708 | 0.954 |0.5218 2.63e-4 0.0097
CLOE -1.4761 | 0.667 | 0.959 |0.4858 0.00187 0.0284
F-CLOE -1.4691 | 0.6703 | 0.9593 | 0.5152 4.51e-5 0.0085
X-CLOE -1.4695 1 0.6524 | 0.942 |0.3849 2.42¢-4 0.083
OL type
identification | -1.423 [0.6216 | 0.9408 | 0.4898 0.0025 0.0749
(ELS)

2 Available from the web site: http/:landau-bookic.lag.ensieg.inpg.fi
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Figure 9.5. The external excitation, the plant input and output (file SIMUBF4.ACQ) for

identification in closed loop (simulated example)
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Figure 9.6. Frequency characteristics of various identified models
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Figure 9.6 illustrates the frequency characteristics of the nominal model, the
model identified with F-CLOE and the model identified with the extended least
squares (ELS).

It is the model identified by F-CLOE which is the closest to the nominal model (it
is also the one which gives the best results for statistical validation in terms of
uncorrelation).

Augmenting the number of data, the models obtained with F-CLOE (or CLOE,
AF-CLOE) will approach more and more the nominal model. See Landau and
Karimi (1997b) and Landau et al. (1997).

9.5 Identification in Closed Loop and Controller Re-Design (the
Flexible Transmission)?

We will illustrate next the advantage of identification in closed loop for the
improvement of the achieved control performances for the case of a flexible
transmission (see also Chapters 7 and 8). The system has been described in Chapter
7, Section 7.5.2 and in Chapter 8, Section 8.5. The block diagram of the system is
recalled in Figure 9.7 where in addition the point of application of the external
excitation in closed loop is indicated.

The controller used is the R-S-T controller (B) designed in Chapter 8, Section
8.5 (see Tables 8.7 and 8.8) and is stored in the text file flex rst.reg. The external
excitation (same PRBS used for open loop identification, the data are stored in the
text file ibfs_sor.c) has been added to the output of the controller (see Figure 9.7).

The model identified in closed loop with F-CLOE (the model identified with
AF-CLOE has been used for computing the data filter) has provided the best
validation results. The validation results for various models are given in Table 9.2
and the parameters of the model considered for further use (F-CLOE) are

Table 9.2. Statistical validation of the various identified models for the flexible transmission

Normalized cross-
Closed loop .
Method error variance . correlations
R(0) valid. threshhold: 0.136
[RN(max)|
AF-CLOE 0.01164 0.0498
CLOE 0.01310 0.0998
F-CLOE 0.01117 0.0147
OL identified 0.01455 0.3821
model

3 This example has been worked out with the WinPIM® (Adaptech) identification software.
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Figure 9.7. Closed loop identification scheme for the flexible transmission

The statistical validation in closed loop (see Table 9.2) clearly indicates that the
model identified in closed loop is better than the model identified in open loop.
The frequency characteristics of the model identified in open loop (see Chapter 7,
Section 7.5.2) and the model identified in closed loop (F-CLOE) are shown in
Figure 9.8. One observes a difference in the values of the damping factors for the
two vibration modes (the model identified in open loop is less damped). The
conclusions drawn from statistical validation are confirmed also by the pole
closeness validation between the identified and computed poles of the closed loop.
In Figure 9.9 are represented the estimated “true” poles of the closed loop and the
poles of the closed loop computed by using the model identified in open loop and
the controller (B) designed in Section 8.5. The “true” poles are obtained by open
loop type identification between the external excitation and the output of the closed
loop system (using the same data as for identification of the plant model in closed
loop). One observes first a qualitative difference since the computed poles
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correspond to a pair of poles with the damping ¢ =0.8 and @, =11.94rad/s

while the “true” dominant poles are an aperiodic pole at 0.763 and a pair of poles
with the damping ¢ =0.523 and w, =11.6rad/s.

In Figure 9.10 the identified “true” poles of the closed loop and the closed loop
poles computed using the model identified in closed loop (F-CLOE) and the same
controller as before are shown. One observes an almost superposition of the
dominant poles and of one pairs of auxiliary poles. Comparing Figures 9.9 and
9.10 one can conclude that the model identified in closed loop gives a better
description of the behavior of the closed loop.

Flexible Transmission : Models Magnitude Bode Diagrams
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Figure 9.8. Frequency characterisitics of the models of the flexible transmission identified
in open loop (OL) and in closed loop(CL)

The identified model of the “closed loop” whose poles are used in Figures 9.9
and 9.10 has been obtained with the recursive maximum likelihood method
(structure S3) using decreasing adaptation gain and an initialization horizon of 120
samples. The size of the model results from the complexity of the model of the
flexible transmission and of the controller which has been wused
(ny=8nz=8n-=8,d=0).

The better quality of the plant model identified in closed loop is also confirmed
by the time domain validation. Figures 9.11 and 9.12 provide comparisons of the
simulated and achieved time response to a step on the reference. One observes a
better coherence between the simulation and the real time response in Figure 9.12
where the simulation uses the model identified in closed loop (F-CLOE).
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Figure 9.9. Pole closeness validation: x-identified closed loop poles; o-closed loop poles
computed with the model identified in open loop
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Figure 9.10. Pole closeness validation: x-identified closed loop poles; o-closed loop poles
computed with the model identified in closed loop
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Flexible Transmission: Closed Loop Simulated Response vs Real Time Reponse
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Figure 9.11. Time domain validation: (--) simulation using the model identified in open
loop; (-) real time response
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Figure 9.12. Time domain validation: (--) simulation using the model identified in closed
loop; (-) real time response
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Flexible Transmission: Closed Loop Simulated Response vs Closed Loop Real Time Reponse
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Figure 9.13. Improvement of the performance with the controller designed using the model
identified in closed loop: (--) simulation; (-) real time

We will now illustrate that this improved model identified in closed loop allows
designing a new controller that achieves better performance (in the sense that the
achieved performance is closer to the specified performance). Keeping the same
performance specifications as for the controller designed in Section 8.5 using the
open loop identified model one gets a new controller (modulus margin
AM =0.537, delay margin Az =0.075s) whose performances are illustrated in
Figure 9.13 (to be compared with Figure 9.11).

9.6 Concluding Remarks

We have examined in this chapter the important problem of identification of plant
models in closed loop. Identification in closed loop should be considered in the
following situations:

1. Unstable processes or showing an important drift of the operating
point

2. A controller exits already

3. Improvement of the closed loop system performance (controller re-
tuning)

The objective of the identification in closed loop is to obtain, for a given controller,
a model of the plant allowing the best description of the behavior of the closed
loop system.

Identification in closed loop, provided that appropriate algorithms are used,
allows to obtain better models for the controller design.
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The closed loop output error identification methods (CLOE) are well suited for
the identification of the plant models in closed loop operation. These methods
require the knowledge of the controller.

As for open loop identification, the model identified in closed loop should be
validated. Several techniques for model validation in closed loop have been
defined:

e  Statistical validation (uncorrelation test)

e Pole closeness validation (evaluating the closeness of the true closed
loop poles and those of the closed loop predictor)

e Sensitivity functions closeness (evaluating the closeness of the true
sensitivity functions and those of the closed loop predictor)

e Time domain validation (comparison of real time response and of the
simulated time response).

The choice of the best model for re-design of the controller is done by comparing
the validation results for all available models. It is useful to take also in account the
model identified in open loop for this comparative validation (if it is available).
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Reduction of Controller Complexity

Controller complexity reduction is an issue in many applications. Techniques for
controller complexity (order) reduction based on the estimation in closed loop of a
reduced order controller will be presented. Methods for the validation of the
estimated reduced order controllers are also presented. The use of these
techniques is illustrated by their application to the complexity reduction of a
controller for a flexible transmission.

10.1 Introduction

The complexity (order of the polynomials R and S) of the controllers designed on
the basis of identified models depends upon:

e The complexity of the identified model
e The performance specifications
e The robustness constraints

The controller will have a minimum complexity equal to that of the plant model
but as a consequence of performance specifications and robustness constraints this
complexity increases (often up to the double of the size of the model, in terms of
number of parameters, and in certain cases even more).

In many applications the reduction of the controller complexity results from
constraints on the computational resources (reduction of the number of additions
and multiplications). These computational resources constraints come from various
reasons:

e Price in mass production (ex: cars)

e Miniaturization and reduction of the energy consumption in certain
embedded systems

e High sampling frequency

399
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One should also add that often in practice one may be interested in tuning an
existing digital PID even if the order of the plant model to be controlled is higher
than 2.

Therefore one should ask the question: can we obtain a simpler controller with
almost the same performance and robustness properties as the nominal one
(designed on the basis of the plant model)?

Let us recall first that the polynomial defining the closed loop poles results
from the equation

Plg")=A(g HHs(g S (¢ ) +q *Blg" Y Hr(g YR (¢™")  (10.1.1)

where A4, B, d correspond to the model of the plant to be controlled and H and
H ¢ correspond to the fixed parts of the controller (introduced for performance and

robustness reasons). The controller polynomials R(¢ ') and S(g~")are given by

Rig)=Hy(g R (@™ (10.1.2)

S¢™)=Hs(g HS"(q™) (10.13)
and the corresponding minimal orders are

ng=ny+ny +ny -1 (10.1.4)
ng=ng+d+ny +ny —1 (10.1.5)

The concrete objective will be to reduce the order of ng and n.

The basic rule for developing procedures for controller complexity reduction is
to search for controllers of reduced order which preserve as much as possible the
properties of the closed loop. A direct simplification of the controller transfer
function by traditional techniques (cancellation of poles and zeros which are close,
approximations in the frequency domain, balanced reduction, efc.) without taking
into account the properties of the closed loop leads in general to unsatisfactory
results.

Two approaches can be considered for the controller complexity reduction:

1. Indirect Approach
This approach is implemented in two steps:

1. Reduction of the complexity of the model used for design, trying to
preserve the essential characteristics of the model in the critical frequency
regions for design.

2. Design of the controller on the basis of the reduced model.
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2. Direct Approach
Search for a reduced order approximation of the nominal controller which
preserves the properties of the closed loop.

The indirect approach has a number of drawbacks:

e Does not guarantee the complexity of the resulting controller (since the
robustness specifications will be more severe when using reduced models).

e The errors resulting from model reduction will propagate in the design of
the controller.

The direct approach seems the most appropriate for the reduction of the controllers
complexity since the approximation is done in the last stage of the design and the
resulting performance can be easily evaluated. It is this approach which will be
developed in this chapter.

Two criteria can be considered for direct reduction of the controller complexity:

e Closed loop input matching (CLIM). In this case one would like that the
control generated in closed loop by the reduced order controller be as close
as possible to the control generated in closed loop by the nominal
controller.

e Closed loop output matching (CLOM). In this case one would like that the
closed loop output obtained with the reduced order controller be as close
as possible to the closed loop output obtained with the nominal controller.

These two criteria are illustrated in Figure 10.1a,b where the nominal controller is
denoted by K:

-1
gk=Ra ) (10.1.6)

with

ng

R Y=ry+nq™" totr, g S(g Y =1+s54q" +otr,q " (10.1.7)

the reduced controller by K:

5 -1
=R ) (10.1.8)

with

Rg™) =y +hg™ +.+F, a5 S@)=1+81g" +..47,q " (10.19)

and the plant model by G:
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(10.1.10)

with
Ag Y =1+aq " +.+d, g™ Blg)=bg +..+b, g™ (10.1.11)

For closed loop input matching (Figure 10.1a) one tries to find a reduced controller

K which will minimize the difference between the input sensitivity function of the
nominal simulated system

s K
1+ KG

(10.1.12)

computed with K and G and the input sensitivity function of the simulated
system using the reduced controller

F_Jf_% v
- +vy MINIMIZe
y = -
a) G
+ C = U
K
y S e
c U —
SR L
- +y Minimize
U N ey y
Ab?—p K G -

Figure 10.1a,b. Criteria for controller complexity reduction: a tracking of the nominal
control; b tracking of the nominal output
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N
N
A K

wp = A (10.1.13)
1+ KG

computed with K and G. This is equivalent to the search of a reduced controller

K which minimizes the error between the two loops (in the sense of a certain
criterion) for a white noise type excitation (like PRBS).

For the tracking of the nominal output (Figure 10.1b) the principle remains the
same except that in this case one tries to minimize the difference between!

A

. KG
14 KG

(10.1.14)

computed with K and G and the sensitivity function of the simulated system
using the reduced controller

A A

5, =—
1+ KG

(10.1.15)

computed with Kand G.

One can see immediately that in both cases the problem of finding a reduced
order controller can be formulated as an identification in closed loop (see Chapter
9) where the plant model is replaced by the reduced order controller to be
estimated and the controller is replaced by the available estimated model of the
plant (dual problem).

The reduction procedures and the validation techniques for reduced order
controllers to be presented next are available in the MATLAB® toolbox REDUC®
(Adaptech 1999a) which can be downloaded from the book web site? .

Design of a reduced order RST controller and of a digital PID for the flexible
transmission presented in Section 7.5.4, using the reduction of a nominal RST
controller (designed by pole placement), will illustrate the use of the techniques
presented in this chapter. For the use of these techniques for controller reduction
applied to an active suspension see (Landau et al. 2001).

1 & & _ S S . . . .
Note that S T S o= S w S W and therefore the tracking of the nominal output is equivalent to

the minimization of the difference between the nominal and reduced output sensitivity functions.
2 http://landau-bookic.lag.ensieg.inpg fr



404 Digital Control Systems

10.2 Estimation of Reduced Order Controllers by Identification
in Closed Loop

10.2.1 Closed Loop Input Matching (CLIM)

The principle is illustrated in Figure 10.2.

Nominal closed loop (simulation)

UL i+ c u
K

o
Reduced order |
controller

Figure 10.2. Estimation of reduced order controllers by the method of closed loop input
matching (CLIM). Use of simulated data

The upper part represents the simulated nominal closed loop system. It is made

up of the nominal controller (K ) and the best identified plant model (G). This
model should assure the best closeness behavior of the true closed loop system and
the nominal simulated one. Identification of this plant model in closed loop can be
considered if the nominal controller can be implemented.

The lower part is made up of the estimated reduced order controller (I% ) in

feedback connection with the plant model (G) used in the nominal simulated
system. The parameter adaptation algorithm (PAA) will try to find the best reduced
order controller which will minimize the closed loop input error. The closed loop
input error is the difference between the plant input generated by the nominal
simulated closed loop system and the plant input generated by the simulated closed
loop using the reduced order controller.

The output of the nominal controller (plant input) is given by

u(t+1)==S" (g Hu(?) + R(g et +1) (10.2.1)
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with
ct+D)=r@+)—y@+1) (10.2.2)
The a priori predicted output of the reduced order controller is given by
G0t +1) ==S"(t,g i)+ R(t,g He +1) = 0(t)” (1) (10.2.3)

and the a posteriori predicted output is given by

Gt +1) =0+ )7 ¢(r) (10.2.4)
where

o' =, (Ve (O Oy () (10.2.5)

B0 = [0t =g +1),6+1),s6t 1, +1)] (10.2.6)

e+ =rt+ 1) =P+ D) =r(t+ 1)+ A (¢ p@) - B (g Hu(t—d) (10.2.7)
The closed loop input error is given by

el t+) =u@e+1)—a’(t+1)  (a priori) (10.2.8)

sq (t+D)=u+1)—ut+1) (a posteriori) (10.2.9)

and the parameter adaptation algorithm is expressed as

Ot +1) = (1) + F()D (1), (£ +1) (10.2.10)
F e+ = 4 (0O)F 7 (0) + 2, () ()P (0)" (102.11)
0<A()<1 ; 0<A,(6)<2 ; F(0)>0
0
ecp(t+1)
1) = 10.2.12
falt+h=17 ()" F()D(t) ( )

Specific algorithms are obtained for different choices of the observation vector:

e CLIM algorithm: ®(¢) = ¢(¢)
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o
e  F-CLIM algorithm: ®(f) = /f(qil) #(0)
P(q™)
where
P(g™Yy=4(g7S(g ) +q BgTR(q™") (10.2.13)

The introduction of the filtering of #(f) is motivated by the elimination of a
sufficient condition for convergence which, in the case of the CLIM algorithm,
depends on 121(2_1)/;’(2_1). A detailed analysis of the properties of these
algorithms can be found in Landau et al. (2001).

Nominal closed loop (real time)

LV
JUUL i+ c
r -
y
-+
P
+ C
y
Reduced order|

controller

Figure 10.3. Estimation of reduced order controllers using real data (CLIM)

The estimation of reduced order controllers is also possible by using real time
data (if the prototype of the nominal controller can be implemented on the real
system). It is shown in Landau et al. (2001) that the use of real data allows one to
take in account the error between the model and the true plant model in certain
frequencies regions.
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10.2.2 Closed Loop Output Matching (CLOM)
The principle of this method is illustrated in Figure 10.4.

Nominal closed loop (simulation)

=+ ~
J‘I.:'IJ‘L><2_>G x‘Ku|
+ — X —— 0
- G =

Reduced order
controller

Figure 10.4. Estimation of reduced order controllers by the method of closed loop output
matching (CLOM). Use of simulated data

Despite that the point where the external excitation is applied and the output
variable is different with respect to Figure 10.1b, the transfer function between r(¢)
and u(¢) is still the one given by Equation 10.1.14. This means that in the absence
of disturbances (it is the case in simulation) u(#) generated by the upper part of the
scheme given in Figure 10.4 is equal to y(f) generated in Figure 10.1b. This allows
one to use for closed loop output matching the CLIM (or F-CLIM) algorithm with
the only difference that ¢(¢) in Equation 10.2.1 is replaced by:

(1) = G(g ) (0) — u(t) (10.2.14)

and accordingly ¢(z)in 10.2.3 and 10.2.6 is replaced by x(¢):

() = G(g™)(r ()~ (1)) (10.2.15)

One should note that the order of the blocks in the upper part of Figure 10.4 can
be interchanged (like the upper part of Figure 10.1b) without affecting the
operation of the algorithm. This observation is of interest when real time data are
used.

10.2.3 Taking into Account the Fixed Parts of the Nominal Controller

It is often required that the reduced order controller contains some of the fixed
filters incorporated in the nominal controller (for example: integrator, opening of
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the loop at 0.3f; or at other frequency). In order to do this one first factorizes the
nominal controller under the form?

K=K.K' (10.2.16)
where K represents all the fixed parts that one would like to be also incorporated
in the reduced order controller.

The reduced order controller is factorized as

K=Kk’ (10.2.17)

One replaces in the CLIM algorithm the input ¢ of the controller K by the input to

the controller K', denoted ¢’ , where ¢' is given by
&) = K (g7Hé() (10.2.18)

and in ¢(¢), ¢ is replaced by ¢'. In the CLOM algorithm one replaces x(¢) by
X'(¢) given by

2(t) =K (g7HG(g r(6) - ()] (10.2.19)

10.2.4 Re-Design of Polynomial T(q™")

Once a controller of reduced order is obtained and validated, one should re-
compute the polynomial T(g~') using the new polynomial defining the closed
loop poles

Py = Aq™HS( ™)+ 4 BgHRG™) (10.2.20)

10.3 Validation of Reduced Order Controllers

Once a reduced order controller has been estimated, it should be validated before
considering its implementation on the real system.

3 If the nominal controller has unstable poles (which is certainly not desirable), they should be
maintained as they are and therefore they should be included in K F-
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10.3.1 The Case of Simulated Data

It is assumed that the nominal controller stabilizes the nominal plant model (used
for controller reduction). One implicitly assumes that the model uncertainties have
been taken into account in the design of the nominal controller.

The reduced order controller should satisfy the following conditions:

e [t stabilizes the nominal plant model.

o The reduced sensitivity functions (computed with the reduced order
controller) are close to the nominal sensitivity functions in the critical
frequency regions for performance and robustness. In particular output and
input sensitivity functions should be examined.

o The generalized stability margin (see Appendix D) of the system using the
reduced order controller should be close to the generalized stability margin
of the nominal closed loop. This condition is expressed as

b(K,G)-b(K,G)|<e ; e>0

where b(K ,é) and b(l%,CAr’) are the generalized stability margins

corresponding to the nominal controller and to the reduced order controller
and ¢ is a small positive number. The closeness of the two stability
margins allows maintaining the robustness properties of the initial design.
The proximity or the nominal and reduced sensitivity functions can be judged
by visual examination of their frequency characteristics. There exists however the
possibility to make a numerical evaluation of this proximity by computing the
Vinnicombe distance (v gap) between these transfer functions (see Appendix D).
The Vinnicombe distance allows one with one number (between 0 and 1), to make
a first evaluation of the proximity of the reduced and nominal sensitivity functions
which is useful for the comparative evaluation of the various reduced order
controllers.

10.3.2 The Case of Real Data

The use of real data (in the case where the prototype of the nominal controller can
be implemented) allows completion of the validation done with simulated data.

From Figure 10.3 it results that the objective is to test to what extent the
simulated closed loop using the reduced order controller is close to the real closed
loop system using the nominal controller.

Initial information is provided by the variance of the residual closed loop input
error. Subsequent information can be obtained by identifying the transfer function
of the real closed loop system (between r7,and u) and then comparing the

frequency characteristics of this transfer function with that of the simulated closed
loop system using the reduced order controller. In this case, using the Vinnicombe
distance one can also evaluate rapidly the quality of various reduced order
controllers.
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10.4 Practical Aspects

The quality of the resulting reduced order controller will depend upon the ability of
the plant model in feedback with the nominal controller to reproduce the behavior
of the real feedback system.

If one has access to the real system and the nominal controller can be
implemented, it is wise to identify a new plant model in closed loop and to validate
comparatively in closed loop the various available models in order to select the
best one.

Note also that the same input/output data used for identification in closed loop
can be in general used for controller reduction. For more details on these aspects
see Landau and Karimi (2002).

Once the best plant model is selected, the procedure for controller reduction is
implemented (with simulated or real data).

Using the methods described in this chapter, all the controllers with order of the
polynomials R and S lower than the nominal one, can be estimated with only one
set of data. Then, using the validation techniques, one select those reduced order
controllers which assure a good approximation of the behavior of the nominal
closed loop system.

10.5 Control of a Flexible Transmission — Reduction of
Controller Complexity

The algorithms for reducing the controller complexity described in the previous
sections will be applied to the flexible transmission already presented in Chapter 7,
Section 7.5.4. On the basis of the fourth-order model identified for the flexible
transmission (following an open loop identification procedure, see Section 7.5.4), a
controller that guarantees the specified performances (standard robustness margins
and regulation/tracking closed loop dynamics) has been computed by pole
placement with the sensitivity functions shaping method in Chapter 8, Section 8.5.

In this section we consider the RST controller obtained by requiring the same
specifications (i.e. same assigned closed loop poles, controller fixed parts and
robustness constraints) considered in Chapter 8, Section 8.5 (design C) but with the
model identified in closed loop in Chapter 9, Section 9.5. It is characterized by the
orders np = ng= 5 for the polynomials R and S. We will refer to this controller as
the nominal controller.

The first objective of the controller reduction will be to find a good controller
with orders for the polynomials R and S lower than the minimum orders which can
be obtained in model based control design when only the integrator is imposed (7
=ng= 4) .

Consider now the following problem: is it possible to design a digital PID
controller for the flexible transmission which will provide closed loop performance
and robustness close to those provided by the nominal controller? The answer to
this control design problem is not easy if one tries to tune directly the PID
parameters. An effective solution can be obtained by reducing the complexity of
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the full controller to nz = n ¢ = 2 using the techniques presented in this chapter®.
Therefore the second objective of controller reduction will be to tune a digital PID.

The procedure for finding a controller of reduced complexity involves the
following steps:

1. Load the RST full controller, the flexible transmission model identified in
closed loop and the excitation used to estimate the reduced order controller.

2. Specify the fixed parts of the reduced controller together with the
desired polynomials orders (7z and ng).
3. Run an appropriate algorithm for the reduction of the controller

complexity in closed loop (CLIM or CLOM).
4. Validate the results in terms of comparison of the nominal and reduced:
sensitivity functions and generalized stability margin.

In this specific application, we will look for reduced order controllers with

e ng=3,ng=3
e np=2,ng= 2 (digital PID)

and with the fixed parts:
e Hg=1—gq" (integrator), Hy = I

In Table 10.1 three reduced order controllers are considered. The reduced order
RST controller K; has a lower complexity than the minimum complexity which can
be obtained in a model based control design and has been obtained using the
CLOM reduction algorithm (simulated data).

The orders of the polynomials R and S have been reduced from 5 to 3.
Controllers K; and K, correspond to digital PID controllers and they have been
obtained using CLOM (K;) and CLIM (K) algorithms respectively. These reduced
controllers are compared with the nominal controller (K),).

The values found for the Vinnicombe normalized distance’ (3,, rows 1 and 2)
give a first indication of the proximity between the sensitivity functions computed
with K, and those computed with K;, K, and Kj;. As the first objective is to
maintain the robustness properties and performance with respect to output external

disturbances, the proximity of the reduced output sensitivity function S), with

respect to the nominal one is the main criterion for selecting the reduced order
controller. Row 3 gives the generalized stability margin for each controller. The
last two rows of the table give the frequency and the amplitude of the peak of the
output sensitivity functions.

Clearly controller K; provides very close performances with respect to the
nominal one in terms of the gap on S,,, generalized stability margin and maximum
of the output sensitivity function.

4 More details about this example and the files to run the simulations can be found in Appendix G,
Section G.6.

3 For definitions of the Vinnicombe normalized distance (v-gap) and the generalized stability margin
see Appendix D.4.
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Table 10.1. Comparison of the reduced order (PID and RST) controllers with the nominal
controller (validation)

K K K
o ] 2 : 2 3 3
Controller ng =5 "R = R = "R =
ne = ng =2 ng =2 ng =3
§ (CLOM) | (CLIM) | (CLOM)
1 5,(SpSh,) - 0.6331 0.5280 0.1416
2 5,(87,.5,,) - 0.1443 02396 | 0.0111
3 b(k) 02875 | 0.2490 0.2446 0.2854
4 Max(S,,)(dB) 5.13 6.31 6.35 5.25
5 foax (HZ) 0.93 0.99 2.85 0.93

The PID obtained with CLOM algorithm (K;) provides a smaller gap for the S,
than the one obtained using CLIM algorithm (K}) (this result was expected taking
in account the criterion which is minimized — see Section 10.1). This is confirmed
by a visual inspection of the output sensitivity frequency characteristics (see Figure
10.5). In terms of closeness of nominal and reduced S,,, controller K; is slightly
less good than K (see Figure 10.6).

Note that since in the reduced order controllers the opening of the loop at 0.5 f;
has not been imposed (in order to get a low order controller), there are important
differences at 0.5 f;. However the level of obtained S, is acceptable.

The generalized stability margins (b(K)) for the reduced PID controllers are still
close to that of K,,, and then the robustness properties will be only slightly changed.
The magnitude of the peak of S, is almost the same for both PID controllers but
for the K; controller the frequency is very close to that of K. The peak for K; is
only 0.31 dB over the standard 6 dB level required for robustness margin.

In Figure 10.7 time domain simulations are given for comparing both tracking
and regulation behavior of the reduced controllers considered in Table 10.1 with
respect to the full RST controller (for a fair comparison with the PID, the full
controller uses 7 = R(I) which corresponds to having same performance
specifications in tracking and regulation). The K controller also uses 7 = R(1). A
PID2 structure (see Chapter 3, Section 3.2.4) has been used (with 7 = R(1)). In the
case of the controller K3, the number of parameters for R and S has been reduced
from 11 to 7 and in the case of the PID the reduction is from 11 to 5.

The simulations show that controller K3 gives almost the same performances as
the full controller and that K/ controller provides a better performance than K2
controller. The performance of controller K/ is acceptable both in tracking and
regulation (filtering the reference can further reduce the overshoot while providing
the same time response as the full controller).

Real time results are shown in Figure 10.8 and they confirm the results
obtained in simulation.
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Syp PID Comparison: Magnitude Frequency Responses
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=== RST reduction(CLOM): nR=3, ns=3
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Frequency (fif)

Figure 10.5. Syp comparison between the reduced order (PID and RST) controllers and the
full RST controller

Sup PID Comparison: Magnitude Frequency Responses
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Figure 10.6. Sup comparison between the reduced order (PID and RST) controllers and the
full RST controller
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Flexible Transmission : Controllers Comparison
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Figure 10.7. Time domain comparison (both tracking and regulation) between the reduced
order (PID and RST) controllers and the nominal RST controller (simulation)

Flexible transmission : Real Time Controllers Comparison
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Figure 10.8. Real time domain comparison between the reduced order (PID and RST)
controllers and the nominal RST controller
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10.6 Concluding Remarks

In this chapter the bases of controller reduction have been presented together with
a set of methods allowing one to effectively achieve controller order reduction.
These methods are based on the use of closed loop identification techniques for
estimating a reduced order controller. The objective is to find a reduced order
controller such that the characteristics of the closed loop is as close as possible to
the closed loop characteristics obtained with the nominal controller.

Two specific objectives for controller reduction have been considered:

e Closed loop input matching (CLIM)
e Closed loop output matching (CLOM)

The reduced order controller should be validated before its effective use. Dedicated
validation techniques have been presented.

In addition to the practical considerations which require reduction of the
controller complexity, the use of the reduction techniques allows one to provide
indirect answers to the following two important questions:

e What is the optimal choice of the closed loop poles for a design by pole
placement?

e How to compute a reduced order controller (and in particular a digital PID)
for a plant characterized by a high order dynamical model?

10.7 Notes and References

For basic references in controller reduction see:

Anderson B.D.O., Liu Y. (1989) Controller reduction: concepts and approaches,
IEEE Trans. on Automatic Control, vol. 34, no. 8, pp. 802-812.

Anderson B.D.O. (1993) Controller reduction: moving from theory to practice,
IEEE Control Magazine, vol. 13, pp. 16-25.

The main references for the techniques presented in this chapter are:

Landau I.D., Karimi A., Constantinescu A. (2001) Direct controller reduction by
identification in closed loop, Automatica, vol. 37, no. 11, pp. 1689-1702.

Adaptech (1999a) REDUC® — Controller order reduction by closed-loop
identification (Toolbox for MATLAB®), Adaptech, 4 rue du Tour de I’Eau, St.
Martin d’Heéres, France

Experimental results for the controller reduction applied to an active suspension
can be found in the above references.

Interaction between controller complexity reduction and closed loop
identification is discussed in:

Landau I.D., Karimi A. (2002) A unified approach to closed-loop plant
identification and direct controller reduction, European J. of Control, vol. §,
no.6, pp 561-572.
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A Brief Review of Some Results from Theory of Signals
and Probability

A.1 Some Fundamental Signals

For the analysis of dynamic systems in the time domain the knowledge of some
typical signals is necessary.

Dirac Pulse
It is a fundamental signal, since all the other signals are obtained by passing the
Dirac pulse through an appropriate filter. The Dirac pulse is defined as the limit
when A —> 0, of a pulse of unit surface having duration A and magnitude /A (see
Figure A.1). For 4 —> 0, the magnitude goes towards infinity.

The Dirac pulse is written as

=lim—, 0<t<A
u(t) A—0 A
=0, t<0,t>A

Despite the fact that it is an abstract mathematical object, in many situations, the
duration of a pulse applied to a system is very short compared to the time constants
of the system, and it can be approximated by a Dirac pulse. The response of a
system to a Dirac pulse is known as the impulse response.

The discrete time equivalent of the Dirac pulse (also known as delta (J)
function or Kronecker’s function) is

0):1 t=0
u
=0 t#0

417
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¥ A
—| -
[
A
Dirac step ramp
pulse

Figure A.1. Dirac pulse, step and ramp signals

Step
The unit step is defined as follows:
0):0 t<0
u
=1 =20

The step can be interpreted as the integral of the Dirac pulse.
The discrete time step is defined in a similar way:

0 =0 <0
u
=1 t=0,1,2,3,...

The discrete time step can be obtained by the numerical integration of the discrete
time Dirac pulse (J function).
The response of a system to a step is known as step response.

Ramp
The ramp is defined as follows:
Q):o t<0
u
=t t20

The ramp corresponds to the integral of the unit step or to the double integration of
the Dirac pulse. In discrete time, the ramp is defined as

(t)=0 t<0
u
=t t=0,1,2,3...
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A.2 The z - transform

Let f(k) a discrete time sequence defined forall k>0, (k=0,1,2,...).
The z - transform of the sequence f(k) is defined by

F(z)=) f)z"

k=0

If U(z) is the z -transform of the discrete time input sequence u(k) applied to a
linear system andY(z) is the z- transform of the discrete time output
sequence y(k) , one can define the pulse transfer function of a discrete time system
as

H(z)=Y(Z)/U(z)

(for an equivalent definition see Chapter 2, Section 2.3.2).
The z -transform of the discrete time Dirac pulse is 1. Therefore the pulsed
transfer function H(z) of a linear discrete time system is equal to the z -transform

of the output sequence when the input is a discrete time Dirac pulse.

A.3 The Gauss Bell

It is extremely important for a random variable (or for an ergodic stochastic
process) to be able to specify what is the probability that this variable takes a value
within a certain interval, or to specify what is the percentage of points, over a set of
measurements of a random variable, which will be within a certain interval. If the
random variable is gaussian (normal) or if the ergodic stochastic process is
gaussian, this information is obtained from the measure of the area under the
“Gauss bell” between the coordinates (values) x; and x; (see Figure A.2).

The expression for the “Gauss bell” is:

1 -Mr)?

fX(X):G—\/E;ze 252 —0<x< 400 (A1)

where, for the case of gaussian stochastic processes, MV is the expectation (or the
mean value)

MV = E{X (1)} = Jlim % % X(0) (A.2)
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ol2n }auss bell

X0 VM x1|X2 X
P(xgxo) P(x1< x < x2)

Figure A.2. Gauss bell

and o is the standard deviation related to the variance of the stochastic process by
the relationship

N
Var.= E{(X(t) —MV)2} = Nlim % zg)((t) My =52 (A.3)
—> 00 =

From Equation A.1, it results that the “Gauss bell” shrinks around the mean value
and its maximum will grow as the standard deviation odecreases. This is
illustrated in Figure A.3.

The probability that X takes a value between - and + oo being equal to 1, it
results that the total area under the “Gauss bell” is equal to 1 (or 100 %).

Af

X 1

Figure A.3. Gauss bells for two different values of the standard deviation

The probability that X takes a value < x; is equal to the area under the Gauss
bell for -0 < x < xy. This probability (denoted P) is a function which depends
upon x. It is called probability distribution function.

Fy(x)= P{X < x}=P{-o0 < X <x} (A.4)
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From Figure A.2, it results that
Plx, < X <x,}=P{X < x, } = P{X < x,} = Fy (x,) = Fy (x)) (A.5)

The derivative of the probability distribution function (if it exists), is called the
probability density function of the random variable.

dFy (x)

Jx)=—r

(A.6)

where
dFy (x) = P{x < X < x+dx}

F(x) being represented by the area under the “Gauss bell”, one concludes that the
Gauss bell gives the probability density for gaussian random variables (or for
ergodic guassian stochastic processes).

From Equation A.6, it results that

dFy (x) = Plx < X < x+dx}= fy(x)dx (A.7)

which means that the probability that a random gaussian variable takes a value
between x and x + dx is equal to fx(x) dx.

Let us return now to the expression of the density of probability given by
Equation A.l. If we will center the random variable (or the realization of the
gaussian stochastic process) by subtracting the mean value, the Gauss bell will be
centered around 0. In Figure A.4, a Gauss bell centered on 0 has been represented.
The value of the area between various values of x has been indicated. This will
give the percentage of points which will be found within these values (or the
probability that a gaussian random variable takes a value within this interval).

Some significant values concerning the Gauss bell are summarized in Table
A.l.

Table A.1. Percentage of points verifying | X | £ a,a = 0 for an ergodic gaussian
stochastic process

o G 1,808c | 1,960 20 2,170 2,580 3o
63 93 95 95,5 97 99 99,7

X| < o (%)
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1 Gauss bell

<y

Figure A.4. Centered Gauss bell. Percentage of points located within two values of x
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Design of RST Digital Controllers in the Time Domain

B.1 Introduction

In Chapter 3, the design of digital controllers in a deterministic environment has
been discussed using exclusively the plant and controller representation by transfer
functions (operators) in order to assign the poles of the closed loop.

The same results can be obtained by designing the controllers in the time
domain. The time domain approach emphasizes the predictive character of digital
control by pole placement (or by other related control strategies presented in
Chapter 3). This approach allows one on one hand to get a deeper understanding of
the control of systems with delay since it clearly shows the presence of a predictor
inside the controller and, on the other hand, it allows one to understand better the
connection with the synthesis of digital controllers in a stochastic environment.

An essential aspect in the design of digital controllers in the time domain is the
synthesis of an (explicit or implicit) predictor for discrete time systems. Another
important issue is that the resulting control u(#) should depend only upon the
information available up to and including time ¢.

If one takes the point of view of the controller design in the time domain, there
are a number of specific control strategies known under the generic name model
predictive control. Comparing the time domain control objectives for various
model predictive control strategies, one can classify these strategies into two
categories:

1. One step ahead model predictive control

In these strategies one computes a prediction of the plant output at t+d+1 (d-
integer delay of the plant) namely p(t+d+1)= f(u(@),u(t—1),..y@1), y(t-1),..)
and one computes u(?) such that the control objectives expressed in terms of
y(t+d +1) be satisfied.

423
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2. Long range model predictive control

In these strategies the control objective is expressed in terms of future values of the
output over a certain horizon and of a sequence of future control values. In order to
solve this problem one need to compute the following predictions:

yt+d+1D)=f,0000), y(t = 1),.u(t),u(t -1),.)
y+d+ )= f;(@), vt =D,u(@),ut =1),.) + g (u(t +1),..u(t+ j-1)); g =0

Note that predictions of the output beyond d+/ will depend on the future values of
the control. The sequence of present and future values of the control ie. u(?),
u(t+1), ...u(ttj-1) is computed in order to satisfy the control objective. However
only u(?) is applied to the plant and the procedure is restarted at t+1. This is known
as the receding horizon procedure.

All these strategies will lead to a linear controller as long as constraints on the
values of the admissible control applied to the plant will not be considered. In all
cases the resulting design can be interpreted as a pole placement. The closed loop
poles will be defined by the design criterion used in time domain. The control
strategies presented in Chapters 3 and 4 belong to the category of one step ahead
predictive control (i.e.: there is a time domain control objective associated to each
of these strategies).

This appendix is organized as follows. Predictors for linear discrete time
systems will be presented in Section B.1. The design of RST controllers in the time
domain using one step ahead model predictive control strategies will be illustrated
in Section B.2 for the tracking and regulation with independent objectives and pole
placement. In Section B.3 it will be shown that the RST controller for a system
with delay d can be decomposed in a d steps ahead predictor for the plant output
and an RST controller for the plant without delay, using the predictor output
instead of the measured output. Section B.4 will present briefly the long range
model predictive control strategies which will be illustrated by the generalized
predictive control strategy.

B.2 Predictors for Discrete Time Systems

The discrete-time model of a sampled-data system is described in the general case
by

N4 np
YO == a yt=i)+ Y bu(t—d-i) (B.1)

i=1 i=1

The linear discrete time model given in Equation B.1 is in fact a one step ahead
predictor. Moving from ¢ to ¢+ its expression becomes
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y(t+1)= —ZA:al-y(t+1—i)+ Zgbiu(t+l—d ~i) =4 (@ HyO+q B (g Hu()
i=1 i=l

= fIy(@), y(t =1),...,u(t),u(t-1),..] (B.2)

where 4" (¢7") and B"(¢™") are given by Equations 2.3.22 and 2.3.24. One can

observe that y(#+1) depends only on the values of y and u up to the instant ¢.
An important problem is the prediction of the output y for t+17,¢+2,... using

the information (measures) available up to the instant 7. This type of problem
occurs for the control of systems with a discrete time delay d. In this case, we
would like either to predict the value of the output with d+/ steps in advance,
using only the information available at instant ¢, or to compute the value of u(z)
allowing us to obtain a specified value of the output y at instant #+d+/. In fact we
are looking for an expression of the form

Y+ N=3@+jlt)=fTy@),yt = D,.u(t),u(t-1),...]1; j<d+1 (B.3)

where p(t+ j/t), denoted in a simplified notation by p(z+ j), represents the

prediction of the output at the instant ¢ + j based on the knowledge of y and u up to
and including .

In order to illustrate the concept and the synthesis of a predictor, first let
consider an example.

Example: Let
y(t+1) =—a;y(t)+Dbu(t-1) (B.4)

which corresponds to a system with a discrete time delayd =1.

We are interested in predicting the output value y(z+2) at instant ¢ on the basis
of information available at instant ¢. In order to compute this predicted value, one
expresses first the output y(z+2) as a function of the available information at instant
t. From Equation B.4 one gets

y(E+2)=—apy(t+1)+bu(t) (B.5)

which can also be written

Alg Yy +2)=B (g Hu(); AqgYy=1+ag™'s B (¢)=b  (B.6)

Note that y(#+2), given by Equation B.5, depends upon y(#+7) which is unknown at
instant ¢z. Therefore this expression does not allow a two steps ahead prediction.
But y(t+1) can be replaced in Equation B.5 by its expression given by Equation
B.4. One then gets



426 Design of RST Digital Controllers in the Time Domain

Y(t +2) = —ay[—a,y(t) + bu(t = D]+ bu(t) = fo () + (1 +e;q byu(?)

. (B.7)
=F(g )y(t)+E(g™)B (g " u()

with

Flg)=fo=a}; E@)=1+eg =1-a)q™ (B.8)

One observes that the right hand member of Equation B.7 depends only on the
information available at instant ¢ and therefore the expression of the two steps
ahead predictor will be given by

Pe+2)=F(g Hy@)+ E(@HB (¢ Hu() (B.9)

where F (q_l) and £ (q_l) are given by Equation B.8.

This technique of successive substitution of the one step ahead prediction can
be generalized for any d, 4 and B. However, it is possible to directly find the

polynomials E(q_l) and F (q_l). Using Equation B.6 in Equation B.7 for
replacing the term B (¢~ )u(r) one gets

y(t+2)=F(g ")y(t)+ E(q")A(g )yt +2)

L PR (B.10)
=[A(q )E(g )+q “F(g )Iy(t+2)

In order that the two sides of Equation B.10 be equal, E(¢~') and F (q_l) should
verify the polynomial equation

1= A(g HE@G Y +q 2 F(g™) (B.11)

In other terms, this means that the coefficients of the polynomials E(qil) and

F (qil) required for the computation of the predicted value j(¢+2) at instant ¢,

are the solutions of the polynomial Equation B.11. This approach can be
generalized forany 4, B and d .
In general, we look for the expression of a filtered prediction

P(qil)j/(t +d+1) = fply@), y(t=1),...,u(t),u-1),..] (B.12)

where P(qil) is an asymptotically stable monic polynomial (the coefficient of

power qo is 1). The discrete time system B.2 can be re-written in the form:
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A Yy +d+1)=B" (g ) (B.13)

We will search for an expression of the output having the form

P(g (e +d+1)=F(gy(0)+ E(g™)B" (7 u() (B.14)
where
F(g = fo+ fig "+t a7 (B.15)
E(q_l)=1+elq_1 +...+enEq_"E (B.16)

Using Equation B.13, Equation B.14 becomes:

Pg )yt +d+1)=[A¢ DE@G ) +q T F(gTO+d+1)  (B.17)
and therefore E (q_l) and F (q_l) are solutions of the polynomial equation
P(g")=A(q E(q ) +q " F(g™) (B.18)
with

np =max(n, —l,np—d-1);n;=d (B.19)

in order to obtain minimum unique solution.
Equation B.18 can also be expressed in matrix form

where M is a lower triangular matrix of dimension (n, +d +1)x(n, +d +1), the
vector X contains the coefficients of E(qil) and F (qil) and the vector

p contains the coefficients of the polynomial P(q’l) .
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X = [(Ley.eq, fo, 1S, ]

T
p = [LPlaPQ---PNA s PN, +1 "'pNAer]

i ny+d+l1
1 0 .
a, I 0 .
a, a 10
a; agy - . . a 1°
Aay Ay @
Agr2 A a
0 o . . 0 a, 0 1
B d+1 ny

ny+d+1

(B.21)

(B.22)

In general n, <n,+d.If n, <n,+dsome of the components p; in B.22 will

be null.

The computation of E(g™') and F(¢™") requires uniquely the knowledge of

dand A(g™") . For effective computations the functions: predisol.sci (Scilab) et

predisol.m (MATLAB™)! can be used (see also Chapter 3, Section 3.4).
The d+1 steps ahead predictor will be given by

P(g )p(t+d +1)=F(qg ")y(t)+ E(g")B" (g " Hu()

and the prediction error defined by

e(t+)=y(t+1)—p@+1)

will satisfy the equation

P(g et +d +1)=0

' To be downloaded from the book web site.

(B.23)

(B.24)

(B.25)
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which is obtained by subtracting Equation B.23 from Equation B.14. In other
words, the prediction error will tend towards zero for any initial prediction error

provided that P(¢”') is asymptotically stable. For P(¢”") =1the prediction error
becomes zero at 1+d +1.

B.3 One Step Ahead Model Predictive Control

Tracking and Regulation with Independent Objectives

Since an expression of the predicted output with d + 1 steps ahead is available, it is
now possible to compute the control u(¢) allowing us to obtain at t+d +1 an
output y(t +d +1) = y*(t +d+1) where y*(t +d+1) is the desired output at

t+d+1.
Let us considers the example of Equation B.4. The condition

y(t+2)= y*(t + 2) can be expressed using Equations B.7 and B.8 as
¥ (t+2) = af y(t) — aybu(t = 1)+ bu(t)

from which one gets

Y (t+2)—afy(t) + apu(t - 1)

u(t) %
|

In the general case one would like to obtain
Plg Yy(t+d+1)=Plg )y (t+d+1) (B.26)

and one gets from Equation B.14:

P(g )y (t+d +1)=F(qg Yy()+ E(g)B (g u(t) (B.27)

and accordingly

P(g™") : F(g™"
O=—TU ) gy FE@) (B.28)
T EeHE @ E@ B (¢

Introducing the notations
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R(gH=F(@@™ (B.29)
S(gY=b+q'S (¢ =E@@ "B (¢ (B.30)
T(g)=Pg™") (B31)

Equation B.26 becomes

S(g u(t)y=T(g ")y (t+d+1)-R(g )y(t) (B.32)

that corresponds to an RST digital controller given in Chapter 3, Section 3.4.
Since in the general case u(¢) has been computed such that Equation B.27 be
satisfied at each sampling instant, it results from Equations B.24 and B.27 that

P(g e+ =P(g )y (t+1) (B.33)

and taking in account the definition of &(¢+1) given in Equation B.24 as well as
Equation B.25, one gets

Pl Oy@t+d+1)—y (t+d+1)]1=0 , V>0 (B.34)

which can be considered as the time domain objective of the tracking and
regulation with independent objectives.
To summarize: the problem of the design of the control law is to compute

u®) = 1,0,y =1),..,ult=1),u(t-2),..) (B.35)

such that Equation B.34 be satisfied (with P(¢7'), an asymptotically stable
polynomial).
The solution is obtained in two stages:

Stage I: A d+1 step ahead predictor of the output is designed such that the
prediction error satisfies

P(g He(t+d+1)=0
Stage 1I: Compute u(?) such that:
Pg OYpt+d+1)=Plg )y (t+d+1) , Vi>0

Note that the same result is obtained if the criterion of Equation B.35 is replaced
by the one step ahead quadratic criterion
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rn(igl](t +d+1)= {P(qfl)[y(t +d+1)—y (t+d+ 1)B2

Pole Placement
To get the pole placement, the time domain objective B.35 is replaced by

P(@ M y(t+d+1)—pB*(g " y*(t+d +1)]=0 V>0 (B.36)

with g = %; *(1) and imposing the restriction that B*(¢™") should not appear in

the denominator of the controller. This restriction requires a different structure for
the output predictor to be considered:

P(g )yt +d +1)=B*(g HR(g )y +B (¢ HS(g @) (B37)
Using Equation B.13, Equation B.37 becomes

P(g Yyt +d+1)=[AS+q 'B*Rly(t+d +1) (B.38)
and therefore polynomials S and R are solutions of the polynomial equation

P(gy=Ag"S(g)+q 'B*(gTHR(g™) (B.39)

which is exactly the pole placement equation discussed in Chapter 3, Section 3.3.
Introducing Equation B.38 into Equation B.36 and taking into account Equation
B.13 one gets the RST controller of Equation B.32 where S and R are solutions of

Equation B.39 and T(¢")=gP(¢").

B.4 An Interpretation of the Control of Systems with Delay

We will show next that the RST controller for a system with a delay d can be
decomposed in a d step ahead predictor for the plant output and an RST controller
for the system without delay which uses instead of the measured output, the output
of the predictor.

Consider first a system without delay (d = 0) characterized by the discrete time
model

Algh) we+1) =B (q!) u(z) (B.40)

The desired closed loop poles are defined by a polynomial P(q™/). Using the pole
placement, the controller equation is
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_ T Hy*e+D - Ry(g™) (1)

u(t) — (B.41)
Sog™)
where S (¢!) and Ry (q°!) are the solution of the polynomial equation
Aq) So (a7) + ¢ B*q!) Ro(q") = P(q”") (B42)

and 7(q™") = fP(g 7).
The transfer operator between the reference trajectory and the output has the
expression

g'T(gHB*(¢™") _4a'T(gHB*(¢) (B.43)

Hy(qg )= =
’ Aq ) Solg ) +q7 B*(g Ry (g P(g™)

Consider now a system with an integer delay d characterized by

Alq?) y(t+d+1) = B*(q™) u(t) (B.44)

The desired closed loop poles are defined by the same polynomial P(g™!) as above.
Using the pole placement, the controller equation will be

_ T )y*+d+D) =Ry (g ) y(0)

u(t) — (B.45)
Salg 1)
where R (q°!) et S (g!) are solutions of the polynomial equation
Aq) Syq!) + ¢ B¥(q!) Ry(q™) = P(q”!) (B.46)

The transfer operator between the reference trajectory and the output has the
expression

—d-1 “I\ s —1 d=1pp %
Hy g™ = q " T(q )B*(q ) _q9 7B (B.47)

AgS, (g ) +q B (g YR () P

We will show next that this controller can be equivalently represented as shown in
Figure B.1a. The controller of Equation B.47 is replaced by the controller for the
system without delay given by Equation B.41 which uses instead of the measured
output, the d step ahead predicted output given by

Pt+d/t)y=F(g " )y)+q " E(g™)B (¢ u() (B.48)
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where E(q!) and F(g™!) are solutions of the polynomial equation (for prediction)?

Alq) E@@!) + ¢ Fq?) = 1 (B.49)

Using the predictor Equation B.48, the scheme given in Figure B.la takes the
equivalent form shown in Figure B.1b.

y*(t+d+1) u(t) y(t)
— + 1 -d-1 B*
—w» =P L »| d -
S A
B 0
| i 1
1 1
1 1
a) g1 a7 BE :
R ! |
0 () :
f |
1 1
1 1
f/(t+d)|t d steps ahead predictor
y*(t+d+1) u(t) y(t)
+ *
— T=P | 1_1 . q—d-1 B -
So+q B*ERg A
b)
RoF

Figure B.1a,b. Equivalent representation of RST digital controllers for systems with delay

The control signal is given by Equation B.41 in which y(z) is replaced by the
predicted output p(¢+d /t), which leads to

Solg Yu(@)=T(qg Hy*t+1)~Ry(qg )3t +d/d) (B.50)

Introducing in Equation B.50 the expression of p(z+d /) given by Equation B.48
one gets

[So(g™ )+ g E(g)B* (g7 Ry (g Nu@) =T (g Yy *(t+d +1) = Ry(q"F(q™") ¥(t)

2 If additional auxiliary poles are considered, they can be interpreted as poles of the predictor. In this
case in Equation B.49, the right hand side is replaced by a polynomial defining the auxiliary poles. See
Landau et al. (1997).
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which corresponds to the controller shown in Figure B.3b. If one computes now
from Figure B.1b, the transfer operator between the reference trajectory and the
output one gets

_ g "'TgHB* ¢
AT Sea ) a7 BH g DR (¢ DA HEG ) +a Fg ]
_ g "' HB* ™) _ 4T HB*¢™)
A(gSy(g ) +q ' B* (g Ry(q ™) P(g")

since A(q™) E(g™!) + ¢ F(g"")= 1 and A(q™") So(q°") + ¢! B'(q”)) Ro(q™))= P(g”))
(see Equations B.49 and B.42).

The same interpretation is obtained for all the control strategies presented in
Chapter 3.

B.5 Long Range Model Predictive Control

The subject long range predictive control is discussed in a number of books
(Camacho and Bordons 2004; Macejowski 2001). We will consider here the
control strategy called generalized predictive control (Clarke and Mothadi 1987).
For a detailed presentation see Landau et al. (1997).

The generalized predictive control belongs to the class of long range predictive
control. The control objective is the minimization of a quadratic criterion involving
future inputs and outputs. The minimization is done in a receding horizon sense,
i.e. one computes a sequence of control signals in the future, but only the first one
is applied and the optimization procedure is re-started at the next step. Indeed the
resulting control law is stationary and the controller takes the form of a linear
digital RST controller. With an appropriate formulation of the performance
criterion, generalized predictive control can be interpreted as a generalization of
the various one step ahead control strategies. However the generalized predictive
control can be also viewed as a way of assigning the desired closed loop poles
starting from a time domain performance criterion.

In order to make a direct connection with pole placement it is convenient to
make the following change of variables:

e, (t+j)=y(t+ j)—BB*(q y*(t+)) (B.51)
eu(t+j):u(t+j)—ﬁA(q*1)y*(t+j+d+1) (B.52)

where e, and e, define a new output and a new input respectively. They are related
by

A(g e, (t+d+1)=B*(q e, (1) (B.53)
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One considers as control objective the minimization of the quadratic criterion

hy . . 2

J(thy b )= Y ey(t-i-])]z-i-/i[eu(t—i-]—hi)] D A>0 (B.54)
J=h;

where

e  h,— prediction horizon
e /i, — control horizon
e h;—1initial horizon (> d +1)

The criterion of Equation B.54 should be minimized in a receding horizon sense
with respect to the vector of control signals

El(t+h,—1)=[e,(t),e,(t+1),...e,(t+h, —1)] (B.55)
subject to the constraint:

e, (t+i)=0 h <i<h,

The initial horizon #; is taken equal or larger than the delay d+/. The prediction
horizon 4, is usually taken close to the time response of the system. The control
horizon /. will define the complexity of the optimization procedure and the
objective is to take it as small as possible. However instabilities may occur for too

short control horizons. If h,,h. — o one gets the infinite horizon quadratic

criterion and this is discussed in Appendix C.
It is important to note that for A, =h; =d +1,h. =1 one step ahead control

strategies will be obtained. If in addition A=0 one obtains the pole placement. For a
more detailed discussion see Landau et al. (1997).
The minimization of the criterion of EquationB.54 involves two steps:

1. Computation of the future values of e, (¢ + j) for je[h;,h,] as
e (t+))=fIE,(t+h —1]+&)(t+j/1) (B.56)

where éf, (t+ j/t) is the prediction based on the available information

up to the instant #:

O+ j10)= fle,(t),e,(t— 1)y, (t—1),e,(t —2),....]
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2. Minimization of the criterion of Equation B.54 with respect to
E,t+h -1).
We will give now the details of these two steps for the computation of the control
law.
Step 1: Computation of the Future Values of e, (t+ J)

Using the polynomial equation
Py=AE;+q'F, (B.57)

with degE; = j—land degF; =max(np, —j,n, —1),one can express the filtered
values of e, (7 + j), which are used in the criterion of Equation B.54, as follows

(taking also in account Equation B.53):
Ppe,(t+j)=E;B¥e,(t+j—d-1)+Fe,(t) (B.58)

The effect of using a filtered prediction equation is that the resulting closed loop
characteristic polynomial will contain a factor equal to the P, polynomial. In other
words one can assign by this choice a number of poles of the closed loop.

To get the desired form of the prediction indicated in Equation B.56 one should
use a second polynomial equation

B*E;=PyG, 4+q/"H, 4 (B.59)
where

degG, ,=/j-d-1
degB*E; =ng«—j—1
degH;_;=ng.—d -1

The polynomials G;,and H,.; will have the form

Gi_a =80 +g1q_l +....+gj-,d,1q_j_d_l (B.60)
Hy_y=hi™ +h/ g 4 an] g7 (B.61)

Using Equation B.59, the filtered prediction e, (¢+ j) given in Equation B.58 can

be written
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Ppe,(t+))=PpG,_q4e,(t+j—d—-1)+H; ye,(t-1)+Fe,(t) (B.62)
Passing this expression through the transfer operator 1/ P, and denoting
Ppé)(t+jIt)=H, 4e,(t—1)+Fe,(t) (B.63)
one gets
e, (t+))=G, ye,(t+j—d—1)+&)(t+j/1) (B.64)

with the important remark that the term G;_e,(1+j—d—1)will contain

e, (t),e,(t+1),.e,(t+j—d—-1),ie. only future values of e, since j=h >d +13.

Step 2 Minimization of the Criterion
Introducing the notation

E] =[e,(t+h),...e,(t+h,)] (B.65)
El =[e,(0),...e,(t+h, —1)] (B.66)

the criterion of Equation B.54 takes the form:
J=ElE,+JEE, (B.67)

Taking in account the expression of e,(s+j)given in Equation B.64 and

introducing the notation
ol _r0 0
E, =[e,(t+h/1),..et+h,/1)] (B.68)
one can re-write Equation B.65 using Equations B.64 and B.68 as
0
E,=GE,+E, (B.69)

where G is a matrix formed with the coefficients of the polynomials G,_; :

3 At instant t, e, (2) is available before the computation of e, (¢) .
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_gh,-—d—l o & 0 - 0 ]
&h-da - & & 0 0
G=| : (B.70)
- P g0
| 8hydt e e e e &l |

The criterion of Equation B.67 will take the form

J(t,h h) =[GE, + E)1'[GE, + E)1+ AE, E, (B.71)

s> La

Minimization of this criterion is obtained by searching for E, assuring — =0,
u

which yields

={G"G+1, 1"'G"E) (B.72)

u opt™

This formula clearly indicates that the problem always has a solution provided that
2>0 (however the stability of the resulting closed loop has to be checked).

For an effective implementation of the control one only needs the first
component of E,, namely e,(?), and, as a consequence, only the first row of the

matrix [GT G+ Al h 17'G" is of interest. Therefore one obtains

e, () =73, VipIEy (B.73)

where 7 are the coefficients of the first row of [GT G + ALy, 'GT.
Using Equations B.63, Equation B.73 can be further rewritten as:

Ppe,(t) = =Py}, w71y JEy

Jj= h =h
( Z 7] Jj— dJe (t 1) ( z J (t)
J=h; J=hi

or as
Jj=h, Jj=h,
Py+q H g le, (0)+ File, (1) =
pt4q j_zhy] j—d u() j:hv]/j J )() (B74)

= S(g e, () +R(g e, (1) =0
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where the polynomials S and R correspond to
-1 -1 RN -1
S(q )= Pplqg )—q Zh viH;_4(q) (B.75)
J=hi
Ly -
R(g )= Zh 7iFi(g™) (B.76)
Jj=h;

Using now the expressions for e,(?) and e,(t) given by Equations B.51 and B.52,
one gets the expression of the RST control law:

S(g u)=T(g Hy*(t+d+1)-R(g™)y() (B.77)
where
T(qg")=pBP=plAS+q " 'B*R] (B.78)

and P defines the resulting closed loop poles corresponding to the minimization of
the criterion of Equation B.54. The controller structure is the same as for the pole
placement (see Chapter 3, Section 3.3). It can be shown that the resulting closed
loop poles are (Landau et al. 1997)

P(g™") =Py )Pspc(a™)

where:

hp )
Popc(g N =Ag )+ X 7,4’ [B*(g7) - 4(g7)G,_4(¢7 )]

J=h;

and Pp is the polynomial defining the poles of the predictor.

If Pp is chosen such that it defines the dominant poles of the closed loop, the
poles introduced by the minimization of the criterion of Equation B.54 can be
interpreted as auxiliary poles. However if Pp=1, then the poles of the closed loop
will be exclusively defined by the minimization of the criterion of Equation B.54.
The values of the closed loop poles will depend of how A, %;, h. and h, will be
selected.
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B.6 Notes and References

For a time domain approach to internal model control of systems with delay see:

Landau L.D. (1995) Robust digital control of systems with time delay (the Smith
predictor revisited), Int. J. of Control, vol. 62, no. 22, pp. 325-347.

For more details on long range model predictive control strategies see:

Landau I.D., Lozano R., M’Saad M. (1997) Adaptive control, (Chapter 7),
Springer, London, UK.

Clarke D., Mothadi C. (1987) Generalized predictive control, Automatica, vol 23,
pp- 137-160.

Clarke D., Mothadi C. (1989) Properties of generalized predictive control,
Automatica, vol 25, pp. 859-876.

Camacho E.F., Bordons C. (2004) Model predictive control, 2nd edition, Springer,
London, UK.

Macejowski J.M.(2001) Predictive control with constraints, Prentice Hall, N.J.
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State-Space Approach for the Design of RST
Controllers

C.1 State-Space Design

In Chapter 3 we discussed the pole placement design using a two degrees of
freedom polynomial RST controller. The assignment of the closed loop poles is a
problem that can be solved also taking a state-space formulation of the problem.

The same type of controller is obtained by designing the controller using a
state-space approach. The state-space approach will emphasize the interpretation of
the RST controller as a state estimator followed by a state feedback using the
estimated state. This approach also provides an interesting interpretation for the
dominant and auxiliary closed loop poles. Furthermore the relation for passing
from a controller designed in state-space for SISO systems to a polynomial
controller will be provided. This result can be used for transforming state-space
controllers designed by different approaches in a polynomial form.

A detailed discussion of regulation by state feedback is beyond the purposes of
this book. The reader can find exhaustive descriptions of this technique in (Phillips
and Nagel 1995; Franklin et al. 2000). Here we just recall some fundamental facts.
We will consider in this appendix the state space solutions for pole placement and
linear quadratic control.

Let consider the controllable canonical space state representation of a single
input single output discrete time model characterized by the transfer operator

B(q’l)/A(q’l)1 (it is assumed that A(q’l) and B(q’l)do not have common
factors, i.e. the system is both controllable and observable)

! The delay is included in the B polynomial (i.e. the first coefficients b; of B will be null up to the value
d of the integer delay).
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-a; ... ... —a, 1
1 0
x.(t+1) = . x. (1) + :u(t)
1 0 0
(C.1)
yit) = | ... .. b x.(0)

Suppose that the desired closed loop characteristic polynomial is specified by
Pz =l+pz'+. . +p,z" (C.2)

If the full state is available, the control law that allows to obtain the specified
closed loop poles is

u(t) = —kx (1) +y" (t+d) (C.3)
where
k=[k, ky ... k,] (C.4)

is a state-space feedback gain matrix (which has to be computed) and y*) is the
external reference.

The closed loop system in the state-space form is found by introducing
Equation C.3 in Equation C.1:

(~a,-k) ... ... (-a,—k,) 1
X, (1+1) = : x, (1) + ?y*(t+d)
1 0 0
A —
= Ax,(t)+by" (t+d)

(C.5)

The characteristic polynomial of the closed loop system thus is

Pz Y =1+(aqy+k)z" +...+(a, +k,)z™" (C.6)
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and it can be easily observed that, comparing Equations C.2 and C.6, the closed
loop poles can be assigned with an appropriate choice of vector k (k; = p; —a;).

If the full state x.z) is not directly available a state observer will be
implemented. We consider the canonical observable form of the plant model

x,(t+1)

y(t)

_al 1

= [to

L [e®

by

u(t)

(C.7)

0]x, (1)

An estimate of the state X, () can be provided by the so-called current estimator

(see Phillips and Nagel 1995; Franklin et al. 2000), where a description of the
standard prediction estimator is also provided), that is described by the following

expressions:
—a 1 _bl
X(1+1) = ' 1;20(:) +
~a, 0 o,
ll
X,(t+1) = X, (t+1) +
!

where x, (¢ +1) is the a priori state estimation at time ¢+/, on the basis of the

signals acquired at time ¢, and X,(¢+1) is the estimation depending on the current

measurement at time ¢+/. The coefficients /; are the observer gains acting on the
error between the measured output and the a priori predicted output.
Consider now the state estimation error e(t) = x, () — X, (¢) .

Then

e(t+1)

x,(t+1)
Ax, (©)
[6—Ich]u(t)
[A = leA][x(1) - X, (1)]

+

x,(t+1)
bu(t)—[A—IcA]x,(¢)
le[Ax,(t)+ Du(t)]
[A—IcAle(t)
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where

—a, 1 b,

A = cob =

1

—-a, 0 | b,
g
c =1 ) I A
_ln

The state estimation error will converge asymptotically to zero if the matrix
[4—IcA] is asymptotically stable. This property will be defined by the roots of the

characteristic equation
2 - dried =0 =<1

and the estimation error can be made to converge to zero with a desired dynamics.
Once the desired dynamics is imposed the parameters of / can be computed
accordingly.

Assuming that the desired estimator dynamics is defined by the polynomial

Pz =14 ppz 4.+ ppz” (C.9)

then the coefficients /; are given by

1

11 cA N 0
12 CA2

I=| 7 |=Pp(4)
)i CA" 1

n

where Pg(A4) is a matrix polynomial whose coefficients are those of Pg(z):
P(A)=A"+pp A"+ .+ pp I

Note that, if the new state representation

_[x(®)
Xep = e(t)
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is considered, the closed loop system matrix is expressed by

x(t+1)) (A-bk  +bk \(x(1)
e(t+1)) |\ 0 A—icd)\ e@t)
from which it results that the closed loop poles are a combination of the estimator

poles and the control poles (specified by Equations C.2 and C.9 respectively).
The characteristic equation of the closed loop system is thus defined by

z‘ll—A+chHz"1—A+bk =P.(z)P(z)=0 (C.10)

We remark the rapprochement between the RST pole-placement and the state-
space approach in terms of the assigned closed loop poles. In the RST pole
placement we have specified the closed loop poles as a combination of dominant
poles (slow poles) and auxiliary poles (fast poles). In the state-space pole
placement the control poles (defined by Equation C.2) correspond to the dominant
poles while the estimator poles (defined by Equation C.8) play the role of the
auxiliary poles. Note however that one could choose the dominant poles as the
estimator poles and the auxiliary poles as control poles (this is the case in the
predictive control approach).

We recall that in Chapter 3 several techniques for selecting auxiliary poles have
been proposed in order to obtain a robust control design. One notes that the choice
of the estimator poles could be not immediate if robustness considerations are not
taken into account.

Thus, the full controller will be given by the current estimator and the state
feedback as shown in Figure C.1.

The corresponding pulse transfer function of the digital controller resulting
from the state-space approach is given by

=l - A e+ bk —1cbk] 1 (C.11)

It is now straightforward to show the equivalence between the digital controller
K (g ") resulting from the state-space approach and the digital controller

R(g™")/S(q™") obtained by pole placement design in polynomial form, when
imposing the same closed loop dynamics.
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u(t) y(t)
—— P Plant

Control
Law

Compensator

Figure C.1. State-space control scheme

Consider the transfer function of the RS controller

_ 1 -
R(q 1) I R EA - "R

= (C.12)
S(g™")  sy+sz SpgZ S
The numerator and the denominator of the RS controller transfer function are
R(z_l)=Z_IKadj[z_ll—A+ch+bk—lcble (C.13)

Sz = ‘z‘ll—A+ch+bk—lcbk‘

Introduction of the Internal Model

Note that with the state-space design no special compensation of specific classes of
disturbances (for example constant or sinusoidal disturbances) is done unless the
pole placement problem in state-space is reformulated.

The basic idea in order to introduce the internal model of the disturbance in the
controller is to augment the state-space representation of the model by adding the
internal model and then apply the procedure presented above. If, for example, a
compensation for constant disturbances is desired, then an integral action is
required. This can be accomplished by augmenting the model of the plant with an
integrator and recalculating the feedback control gains for the augmented state. Of
course in the implementation the internal model will appear in the controller.

In the same way, for a generic class of disturbances modeled by a system
matrix A, the augmented system matrix should contain the model of the
disturbances that is

4 C,
Aaug = 0 Ad
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where C; is the matrix that describes how the disturbance is injected into the
system.

Taking into Account Tracking Performance Specifications

So far we have discussed the regulation problem. A common control problem has
specifications that also involve tracking properties. A controller that takes into
account both regulation and tracking requirements generally has a two degrees of
freedom structure (feedback and feedforward compensator).

Feedforward + u(t) y(®)
Compensator Plant

Feedback
Compensator

Figure C.2. Two degrees of freedom control scheme

The control signal generated by the state feedback is designed in order to have a
closed loop system with desired regulation and robustness properties. The
feedforward compensator is designed in order to match the desired tracking
performances.

In order to obtain the standard RST control law (Equation 2.5.9, which takes
into account both tracking and regulation performances) starting from a state space
representation, one considers the plant model described by

Alg Yyt +d +1)= B* (g Hu(@) (C.14)

and the following variable transformation:

-1
e, ()= (1) - B]_f?q(l) ) yx (o)
i (C.15)
_ 4y %
e,(t)=u(t) —B(l) y¥(t+d+1)

Left multiplying the first row of Equation C.15 with A(g”) and considering an
instant t+d+/ we obtain the following relation (by taking in account Equation
C.14):

A(q ey (t+d+1)=B*(qg e, () (C.16)
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Note that e, and e, are related to each other by the same transfer operator as the
plant model.

The state-space representation in observable form of the system described by
Equation C.16 is:

-a 1 by
x(t+1) = [0+ e,(t) =Ax(t)+b'e,(t)
-a, 0 En
e ) = [1 0 0]x(2) = cx(1)
(C.17)
where

b;=0;0<i<d; b, =b;1<i<ny

If we apply to the system of Equation C.14 both state-feedback and observer
Equations C.3 and C.8 an RS controller of the form of Equation C.12 is found.
The control law for the system of Equation C.14 becomes:

S(g e, () +R(g e, (H)=0 (C.18)

We now rewrite this equation in the initial variables u(?), y(¢) and y*(?). The control
law is thus

o gl AqHSE™H Bg DR .
St =~Rig™ o+ HEE Dy ) R v
=—R(g YO +T(g y*(+d +1)
(C.19)
where
- - @S+ BRG] P (C20)

B(1) B()
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Equation C.19 represents the two degrees of freedom RST control law, as obtained
in Chapter 3, Section 3.3.

C.2 Linear Quadratic Control

Consider again the system of Equation C.14. The objective is to find an admissible
control #(#) which minimizes the following quadratic criterion:

.
J@= Jim — Zlb/(t + ) —y*+ )
—o L j=

+ Au(t+ j-1+d)]

(C.21)

However in order to obtain directly a two degrees of freedom controller it is useful
to use again the change of variables given in Equation C.15 and to consider the
criterion:

1w )
J@t,T)= lim— ) e (t+))

T—mT;y (C.22)
+Ale,t+j-1+)f;  A>0

The criterion of Equation C.22, with the state-space representation of Equation
C.17, takes the form:

T
J(t.T)= lim %Zﬂ(z + NCCTx(t+ j)+ Ae2(t+ ) (C.23)
Jj=1

Assuming that the state x(?) is measurable, the optimal control law e,(?) is given by

b'TA

o4 C.24
b'TA+ 2 *0) (€.24)

€y (t) ==

where I is the positive definite solution of the Algebraic Riccati Equation (Astrém
and Wittenmark 1997):

A'TA-T-A"Tb(b"Thb+2)'p"TAd+c"c=0 (C.25)

The existence and unicity of the solution for Equation C.25 is guaranteed by the
following conditions:

The pair (A,B) is stabilizable
The pair (A,C) is detectable
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Since the state is not measurable, the certainty equivalence principle will be used
and the non-accessible states will be replaced by the estimated states given by
Equation C.8. A two degrees of freedom RST controller will be obtained just by
replacing the controller gains in Equation C.3 by those resulting from Equation
C.24.

For further details on this control strategy see Landau et al. (1997); Astrém and
Wittenmark (1997).

C.3 Notes and References

State space approach for the design of digital controllers is presented in many
books. We mention:

Astrom K.J., Wittenmark B. (1997) Computer-Controlled Systems, Theory and
Design, 3rd edition, Prentice Hall, NJ.

Phillips C.L., Troy Nagel H. (1997) Digital Control System Analysis and Design,
3rd edition, Prentice Hall, NJ.

Goodwin G.C., Sin K.S. (1984) Adaptive Filtering Prediction and Control,
Prentice Hall, NJ.

Franklin G.F., Powell J.D., Workman M. (2000) Digital Control of Dynamic
Systems, 3rd edition, Addison Wesley, CA.

Landau I.D., Lozano R., M’Saad M. (1997) Adaptive Control, Springer, London,
UK.
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Generalized Stability Margin and Normalized Distance
Between Two Transfer Functions

D.1 Generalized Stability Margin

In Chapter 2, Section 2.6.2 we presented the modulus margin, which gives the
minimum distance between the Nyquist plot of the open loop transfer function and
the critical point [-/, j0] and is a good indicator of the robustness of the closed loop
system. The modulus margin has the expression

-1
AM = [‘Syp(e‘f‘”) max} - Hsyp (e_j”)“: , foro=0tor f, (D.1)

Effectively the maximum of the modulus of a transfer function corresponds to “H
infinity norm” and is denoted H, . In other words the modulus margin is the

inverse of the H, norm of the output sensitivity function.

In Section 2.6 it has also been mentioned that stability of the closed loop
system requires that all the sensitivity functions be asymptotically stable.
Furthermore it was shown in Section 2.6 that the uncertainties tolerated on the
plant model depend upon the sensitivity functions. More specifically, the
admissible uncertainties will be smaller as the maximum of the modulus of the
various sensitivity functions grows.

One can ask if it is not possible to give a global characterization of the stability
margin of a closed loop system and its robustness, taking simultaneously into
account all the four sensitivity functions. This problem can be viewed as the
generalization of the modulus margin.
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Denoting the controller by

_R(zTH

K = (D.2)
NER!
and the transfer function of the plant model by
-d -1
G= L(Zl) (D.3)
Az™)

one defines for the closed loop system (K,G) the matrix of sensitivity functions

(z=e')

S, (@) S,(jo)

T(jw) =
VeI=ls, (o) s, (o)

(D.4)

where S..,S..,S

yroRyvoDup
2.5.14 through 2.5.18).

In order to be able to give an interpretation similar to the modulus of a transfer
function, one should factorize the matrix T(j®)in the form (singular value

S, have been defined in Chapter 2, Section 2.5 (Equations

decomposition)
T(jw)=US(jo)V" (D.5)

where U and V are orthonormal (unit) matrices with the property that
UU =U"U=1I, VV' = V"V =1 (* indicates the complex conjugate) and

o(jo) 0 0 0

0 oe o 0

SUar= 0 oy(jw) 0 (D-6)
0 0 0 o,(jw)

is a diagonal matrix (of transfer functions), with the property
oy (jo)| 2|0, ( jw)|=|os( jo)| 2|04 jo)| from ©=0tonf, (D.7)
o,(jw) is called “the largest singular value of T(j@) ” and it is denoted by

c(jo)=o0,(jw) (D-8)
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One defines the modulus of T(jw) as follows:
T(jo) =lg(jo) (D.9)
and the maximum of the modulus of T(jw) as

T(jo),  =[c(jo) =|T(jo)|, .for ©=0tonf, (D.10)

® ®

Similarly to the modulus margin, one defines the generalized stability margin as

-1
BK.G)= (|T(jm)|mng =|T(jo)|  if (K.G)isstable D.11)
0 if (K,G)is unstable

The generalized stability margin can be computed with the function smarg.m from
the toolbox REDUC" (Adaptech 1999a)!.
As the value of b(K,G) decreases, the closed loop system will be close to

instability and it will be less robust with respect to the variations (or uncertainties)
of the plant nominal transfer function.

In what follows it will be shown that the generalized stability margin allows
one to characterize the tolerated uncertainties on the plant transfer function for
which the closed loop remains stable. To do this, first it is necessary to introduce
the concept of normalized distance between two transfer functions.

D.2 Normalized Distance Between Two Transfer Functions

Consider a transfer function G. Let denotes the number of unstable zeros by
n. and the number of unstable poles by n, . The number of encirclements of the

origin of the complex plane is given by
wno (G) =n_ (G)—n, (G) (D.12)

(positive value = counter clockwise encirclements; negative value = clockwise
encirclements.). It is possible to compare two transfer functions G;, G, only if

they satisfy the following property:
wno(1+G;G1)+npi(Gl)—npl_(G2)—nP](Gz):O (D.13)

' To be downloaded from the book website.
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where G; is the complex conjugate of G, and np(G,)is the number of poles

G, located on the unit circle?.

The normalized distance between two transfer functions satisfying the property
of Equation D.13 is called the Vinnicombe distance or v —gap (Vinnicombe 1993).

Let defines the normalized difference between two transfer functions G, (jw)

and G,(jw)as

G (o)-G,(jo)

P[G,(j@),G,(jo)]= N7 —7 (D.14)
b+laor’ )1+l
The normalized distance (Vinnicombe distance) is defined by
8,(G\.G,) =] P[G\(jo),Gy(jo)]| =|¥[Gi(jo).Gy( jo)]|, 0.15)
for o=0tom f; ‘
One observes immediately from the structure of ¥ that
0<9,(G,,G,) <1 (D.16)

If the condition of Equation D.13 is not satisfied, by definition

5V(G1’G2):1

The Vinnicombe distance can be computed with the function smarg.m from the
toolbox REDUC" (Adaptech 1999a)3.

D.3 Robust Stability Condition

Using the generalized stability margin and the Vinnicombe distance between two
transfer functions, one can express a robust stability condition (sufficient
condition) for a controller K designed on the basis of the nominal model G, as

follows. Controller K which stabilizes model G, will also stabilize model G, if

6V(GI7G2)Sb(K9G1) (D17)

2 The condition of Equation D.13 is less restrictive than the condition used in Section 2.6 where two
transfer functions with the same number of unstable poles and with the same number of encirclements
of the origin have been considered.

3 To be downloaded from the book website.
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This condition can be replaced by a less restrictive condition, but which should be
verified at all frequencies*:

| ¥[G,(j0).Gy( jo))|<[T(jo)| for0=0t0nf, (D.18)

D.4 Notes and References

The concepts of Vinnicombe distance (v —gap) and generalized stability margin are

extremely useful in practice since with one number it is possible to characterize

either the distance between two transfer functions or the robustness of a controller.

The original reference is:

Vinnicombe G. (1993) Frequency domain uncertainty and the graph topology,
IEEE Trans. on Automatic Control, vol. 38, no. 9, pp. 1371-1383.

For a good pedagogical presentation, but with extensive use of the /_, norm, see :

Zhu K.,(1998) Essentials of robust control, Prentice Hall, N.J., U.S.A.

These concepts have been very useful for various applications. In particular they
have been used for the validation of controllers resulting from controller reduction
techniques (see Chapter 10) and for the validation of models identified in closed
loop (see Chapter 9). Details and examples can be found in :

Landau I.D., Karimi A., Constantinescu A. (2001) Direct controller reduction by
identification in closed loop, Automatica, vol. 37, no. 11, pp. 1689-1702.

Adaptech (1999a) REDUC® — Controller order reduction by closed-loop
identification (Toolbox for MATLAB®), Adaptech, 4 rue de la Tour de I’Eau,
St. Martin d’Héres, France.

4 This condition has to be compared with the conditions given in Section 2.6.2 (Equations 2.6.7, 2.6.9
and 2.6.10). Equation D.18 can be interpreted as a generalization of these conditions.
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The Youla—Kucera Controller Parametrization

E.1 Controller Parametrization

The Youla-Kucera parametrization allows characterizing the set of all stabilizing
controllers for a given plant model. This result has interesting implications in the
design of RST controllers.

Let consider a plant model characterized by the transfer function

9Bz

“1N _
T

(E.1)

a stabilizing controller R, (zh/ So(z_l) also termed the “central controller” and an
asymptotically stable rational proper function

-1
o"=LE) (E2)

a(z™h

The poles of the closed loop when using the central controller are defined by the
polynomial

P=AS,+z “BR, (E.3)

Youla — Kucera Parametrization
All rational stabilizing controllers for the plant model G(z Y are given by :

R(z”')  Ry+A4Q
S(z)  S,-z“BO

(E.4)
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This controller will lead to the following expression of the polynomial defining the
closed loop poles:

A(aS, — 2 B)+z " B(aRy + AB) = a(ASy +z * BR,) (E.5)

Comparing Equation E.5 with Equation E.3 and taking in account the hypotheses
made upon 0(z™"), it results that the closed loop poles will be asymptotically

stable. One can also see that the denominator of Q(z™')appears in the

characteristic polynomial defining the closed loop poles (i.e. it can serve to
introduce additional poles at the desired location).

The structure of the Youla—Kucera parametrized controller is shown in Figure
E.1.

v
-Ql
o
@
>
v

Ro |«

Figure A.5.1. The Youla — Kucera RST parametrized controller

For a review of Youla-Kucera parametrization see Anderson (1998). We will
briefly present next the implications of the Youla-Kucera parametrization in the
design of RST controllers. Let assume that a central controller has been designed
such that the closed loop is asymptotically stable and that we are looking to the
redesign of the controller in order to achieve some objectives but without re-

computing the central controller. Instead we will tune O(z™') in order to achieve

the desired properties of the closed loop. We will examine next some of these
situations.

Introduction of Auxiliary Poles (for Robustness)
From Equation E.5 one can see that desired additional auxiliary poles can be
introduced by taking

L (E.6)

—1\ _
R e W
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Affine Parametrization of the Sensitivity Functions
Using the Q polynomial given in Equation E.2, the sensitivity functions given in
Chapter 2, Equations 2.5.14 through 2.5.16 and 2.5.18 will take the form:

_AS A4S, ¢ B, q ‘B
yp_?‘T_TQ_SyPO_ P 0
AR AR, 4 A
Sup =0 0= up0 -9
P P P P E)
¢ .4 ‘BR ¢ “BR, AQ S ﬁQ '
v P p p- " p
S _q“’BS_q—"BSO_q‘dBQ_S _q_dBQ
»oop P P wop

One distinguishes two cases :

0= ﬁ(z’l); a(z™") =1 this allows tuning the sensitivity functions by using the
coefficients of ,B(z’l) without modifying the closed loop poles

0=p(z"")/ a(z"): this allows tuning the sensitivity functions by using the
coefficients of A(z™') and by modifying the auxiliary poles using the

coefficients of polynomial a(z™")

Automatic tuning of the sensitivity functions taking advantage of this affine
parametrization can be done by convex optimization. See Boyd and Barratt (1991);
Rantzer and Megretsky (1994); Langer and Landau (1999).

Introduction and Tuning of thelnternal Model in the Controller Without Changing
the Closed Loop Poles

In the context of RST controllers the internal model corresponding to the
disturbance model is the polynomial Hg (see Chapter 3), which is a factor of
polynomial S. But the internal model can be alternatively introduced using the
Youla-Kucera parametrization. In fact one should select 3 such that

S=S'Hy=S,-z""BS (E.8)

In order to leave unchanged the poles of the closed loop one should take
a(z")=1and B (zfl) should satisfy the following polynomial equations resulting
from the condition of Equation E.8 :

S'Hy+-z"Bf=5, (E.9)
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where z7“B, Hg and S, are known and fand S~ are unknown. The order of the
polynomial S is

ng, Sngg +ng+d—1
and therefore
ng=ny —ling=ng+d-1.

This allows determination of the order and coefficients of the polynomial
Bz H= Lo+ ﬂlz_l +oene See Tsypkin (1997); Landau et al. (2005).

E.2 Notes and References

For a tutorial on the Youla-Kucera parametrization see:

Anderson B.D.O. (1998) From Youla Kucera to identification, adaptive and
nonlinear control, Automatica vol. 34, 1485-1506.

For the use of the Youla-Kucera parametrization in convex optimization see:

Boyd St.P, Barratt C.H. (1991) Linear controller design. Limits of performance,
Prentice Hall, Englewood Cliffs.

Langer J., Landau L.D. (1999) Combined pole placement/sensitivity function
shaping method using convex optimization criteria, Automatica, vol.35, 1111-
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The Adaptation Gain Updating — The U-D
Factorization

F.1 The U-D Factorization

The adaptation gain given by Equation 5.2.73 is in principle sensitive to round-off
errors, in particular if the number of samples to be processed is very high (typical
situation encountered in real time applications). The objective is to preserve the
positive definite property of the adaption gain matrix despite round-off errors. This
problem is comprehensively discussed in Bierman (1977) where the U-D
factorization has been developed in order to ensure the numerical robustness of the
adaptation gain. To this end the adaptation gain matrix is rewritten as follows:

F()=U@{)D()U(1)" (F.1)

where U(f) is an upper triangular matrix with all diagonal elements equal to 1 and
D(?) is a diagonal matrix (with positive elements). This allows the adaptation gain
matrix to remain positive definite despite the presence of the rounding errors.

Let

G(t) = D)V (1)
V(e)=U(1)" &)

(F.2)
B =1+V ()" G(1)
_ /11 (t) T
o) = 0 +V () G(t)
Define:
= Y060 __ FOo© (F3)

B 1+ 00 F(H)d(t)
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The U-D factorization algorithm for adaptation gain updating is given next.
Initialize U(0) and D(0) at time ¢=0. This provides the initial value of the
adaptation gain matrix F(0) = U(0)D(0)U(0)". At time ¢+, compute /{f) while
updating D(t+1) and U(t+1) by performing the following steps
° Compute V(2), G(2), S, =1 and &, = 4,(t)/ 4,(1);
° For j=1I to n, (number of parameters) compute

B, (0= p,,0)+V,(OG, (1)

5,(0)=5,,()+V,(0G,(0)
9.1

D (t+1)=———

! 5,(NA4 (1)

r,(0)=G, ()

V(1)

5/—1 (t)

If j#1 then

For i=1 to j-1 compute

U,(t+)=U,;(0)+T, ()M (1)
Lo =L0)+U;(OF; )

Djj (t)

M (1)=-

end
end
end
e  Fori=]ton,do

1
IL@)=——-rI.(¢
(1) 5, (1)
end
A lower bound on the adaptation gain is simply obtained by maintaining the
values of the elements of the diagonal matrix D(¢) above some specified threshold.
The U-D algorithm is implemented in the function: udris.m (MATLAB®™) (see
the book website).

F.2 Notes and References

Bierman, G. (1977) Factorization methods for discrete sequential estimation,
Academic Press, New York.

Landau I.D., Lozano R., M’Saad M. (1997) Adaptive control, Springer, London,
U.K.
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Laboratory Sessions

In this appendix we propose several laboratory sessions in order to help the reader
to become familiar with the techniques presented in this book. The sessions
described in this Appendix can be worked out with the help of the MATLAB® and
Scilab control design and identification functions and toolboxes available from the
book website (hhtp://landau-bookic.lag.ensieg.inpg.fr). Additional laboratory
sessions can be developed by the reader from the examples and applications
presented in Chapters 3, 4, 7, 8 and 9. Other laboratory sessions are described on
the book website.

G.1 Sampled-data Systems

Objective
To become familiar with the discrete-time representation of a physical system.

Functions to be wused: cont2discm (cont2disc.sci) and standard
MATLAB®/Scilab functions.

Sequence of operations

1. Study the step response of the first-order discrete-time model
corresponding to the ZOH discretization of a first-order continuous-time
model G/(1+7s):

-1
bz

H(z Y= :

l+az
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fora; =-0.2;-0.5;-0.7 ; -0.9 by choosing b; such that the static gain
b; /(I + ay) = I for all models. Superimpose the curves obtained on the
same plot for an easy comparison.
2. Find for all models the equivalent time constant (normalized with respect
to the sampling period).

Reminder: the time constant is equal to the time necessary to reach the 63%
of the final value.
3. Question: Does a; = - (.2 correspond to a fast sampling of a continuous

time first order system, or to a slow one ?
Same question fora; = - 0.9.

4. What are the approximated values for a; if the sampling periods
T, =T/4and T, = T (T = time constant) are chosen?
5. Study the response in time domain for a; = 0.5 and 0.7. Give an

interpretation of the results.

6. Study the effect caused by the sampling period and the fractional delay on
the discrete time model obtained by discretizing with a ZOH the following
system:

G. e*SL

1+ sT

H(s) =

forG=1,T=10s;L=0;05s;1s;2s; 3sand T, = 5s and 10s.

Analyze the properties of poles and zeros of the pulse transfer function for
all models.

G.2 Digital PID Controller

Objective
To become familiar with the digital PID and to emphasize the importance of using
a three-branched digital controller (RST).

Functions to be used. cont2disc.m (cont2disc.sci), bezoutd.m (bezoutd.sci) and
standard MATLAB®/Scilab functions.

Sequence of operations

1. Find the discrete-time model from the ZOH discretization of

—sL
H(s) = IG'e

Jor G=1,T=10s,L=3sand T, =5s
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2. Find the digital PID1! controller with a continuous-time equivalent
which provides the best performances, corresponding to a second
order system with a damping equal to 0.8.

3. Once the PID is computed, perform a simulation of the closed loop in
the time domain. Use a rectangular wave as reference.

Is it possible to obtain a closed loop response faster than the open
loop response for this ratio of time delay/time constant equal to 0.3?

4. Find the digital PID1 with no continuous time equivalent that provides
a closed loop rise time approximately equal to half of the open loop
one.

5. Perform a simulation in the time domain. Explain the possible
overshoot from the values of R(g™/).

6. In the same conditions as the point 4, compare the digital PID
controllers type 1 and 2.

G.3 System Identification

Objectives
Session G.3-1: to become familiar with the recursive parameter identification
methods and the model validation procedures.

Session G.3-2: to identify two real systems (a distillation column and a flexible
robot arm) directly from I/O data.

Functions to be used: rls.m, rels.m, oloe.m, afoloe.m, foloe.m, estorderiv.m,
vimaux.m, xoloe.m, olvalid.m (or the corresponding Scilab functions) and standard
MATLAB®/Scilab functions.

Session G.3-1

Data files

The files to be used are T@, T1 and XQ, each one containing 256 1/0 samples?.
The files should be centered.

The input signal is a PRBS generated by a shift register with N = 8 cells. The
file TO has been obtained by simulating the following model:

Alg () =q¥Blg")u(t);  u-input,y - output

Algh=1-15q¢1+07q2 ; Bgh=1q'+05q2; d=1

! Digital PID 1 and 2 controllers are presented in Chapter 3, Section 3.2.
2 Files available on the website: http//:landau-bookic.lag.ensieg.inpg fr.
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The file T1 has been generated with the same polynomials A and B, but a stochastic
disturbance has been added to the model output.
The file XQ is given with no a priori information (degree of 4 <5).

Sequence of operations

1. Use structure 1 and the RLS (Recursive Least Squares) method with a
decreasing adaptation gain to identify the model corresponding to T@
(withny=2,ng=2,d=1).

2. Try with degrees B = 4 and d = 0 on the same file TO using the same
algorithm previously used, to see how a pure time delay can be found
out (the first coefficient of B is much smaller than the second one).

3. Identify the model corresponding to the file T1 using structure 1 and
the recursive least squares method with a decreasing adaptation gain
(as for TQ). Note the bias of the identified parameters. Try to validate
the model identified.

4. Try other structures and methods to improve the results (S3 then S2).

5. When a satisfactory validation is obtained, compute and plot the step
response.

6. Perform a complexity estimation (values of n,,nz,d) with the

different methods described in Chapters 6 and 7.
7. Identify the model corresponding to XQ.

Session G.3-2

Data files: OXD, ROB2

QXD: this file contains 256 1/0 samples that describe the interaction between the
heating power on the bottom of a binary distillation column and the concentration
of product on the top. The input signal is a PRBS generated by a shift register with
eight cells. The sampling period is 10 s. A priori knowledge: for the distillation
columns the degree of polynomial A is generally not greater than 3. The file has to
be centered.

Sequence of operations
Identify the model(s) corresponding to the I/O data set, validate the models
identified, and plot the step response(s).

Question 1: what is the value of the plant rise time?
Question 2: has the PRBS been correctly chosen with respect to the rise time?

ROB2: 256 1/O samples corresponding to a very flexible robot arm. Input: motor
torque. Output: robot arm end position. The input signal is a PRBS. The sampling
frequency is 5 Hz. Any vibration mode over 2.5 Hz has been eliminated by an anti-
aliasing filter. A4 priori knowledge: in the frequency region from 0 to 2.5 Hz, there
are two vibration modes. The file has to be centered.
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Sequence of operations
Identify the model(s) corresponding to the I/O data set, validate the models
identified, and plot the frequency responses (= 200 points).

Question 1: at what frequencies are the vibration modes? What are the
corresponding damping factors?

Question 2: what are the differences between the frequency responses of a
validated model and of a model which does not pass the validation test?

G.4 Digital Control (Distillation Column Control Design)

Objective
The purpose of this session is to apply the control algorithms presented in Chapter
3 to the distillation column case study (file QXD), and to evaluate the
performances in simulation.

We consider two different models for the distillation column, corresponding to
a time delay d = 1, and d = 2 respectively (the sampling period is 10 s). Digital
controllers will be computed for both models, and the controllers robustness will
be tested by carrying on crossed simulations (Model 1 with controller 2 and Model
2 with controller 1). The models are the following:

d=1
Ml:  A(ql)=1-0.5065q1—-0.1595 ¢~
B(q1)=0.0908 g1 + 0.1612 g2 + 0.0776 g3

d=2
M2:  A(qgl)=1-0.589q-0.098 g2
B (q!) =0.202 ¢"1+0.0807 ¢~

Functions to be used: bezoutd.m, cont2disc.m, omega_dmp.m, fd2pol.m (or the
corresponding Scilab functions) and standard MATLAB®/Scilab functions.

Sequence of operations

1. Design a digital controller (with integrator) for the model M1 (then for
the model M2) of the distillation column.
This operation can be carried on by using a deterministic control
algorithm well suited to the model used (depending on the zeros
position with respect to the unit circle).
The desired closed loop dynamics (regulation) is specified by a
second-order system, with damping factor equal to 0.9, such that the
closed loop rise time be 20% shorter than the open loop rise time. The
dynamics specified for the tracking performances is the same as for
the regulation.

2. Compute the controller that guarantees the performances specified
above and the robustness margins AM >0.5, At>10s =7,.
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3. Perform cross-simulation tests with both controllers and both models.
Give an interpretation of the results.

4. Repeat the sequence of operations to design a controller assuring an
acceleration (reduction) of 50% of the closed loop rise time compared
to the open loop system, an overshoot less than 5% (both tracking and
regulation), and satisfying the robustness margins (AM >0.5,
A7 >10s). If both performance and robustness cannot be
simultaneously satisfied, select the desired closed loop dynamics such
that the resulting robustness margins match the specifications.
Question: is it possible to assure the robustness requirements with this
specification for the regulation dynamics (acceleration of 50%)?

5. Perform cross-simulation tests with both controllers and both models.
Give an interpretation of the results. Do a comparison with the
previous case.

G.5 Closed Loop Identification

Objective
To introduce the closed loop identification algorithms. This is carried on with a
simulated closed loop system.

Functions to be used: functions contained in the CLID® toolbox.

Data files: the file simubf-mat contains the external excitation r, the input u and
the output y of the plant. The external excitation is a PRBS applied on the
reference. The file simubf rst.mat contains the parameters of the RST controller.
The  simulated plant model to be identified is  characterized
by:ny=2,n=2,d=0.

Sequence of operations

1. Identify and validate a model with open loop identification techniques
(from u to y) ignoring the feedback.

2. Identify plant models with different closed loop identification
algorithms and the given digital controller. Validate the model.
Compare the various models on the basis of validation results.

3. Compare the models obtained with an open loop identification
technique with the models obtained with the closed loop identification
algorithms. Check the closed loop poles proximity (between the
identified closed loop poles and the computed ones using both open
loop and closed loop identified models).

4. Plot the step responses and the frequency responses for the identified
models.
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G.6 Controller Reduction

Objective

To focus attention on controllers’ complexity, and to present an effective solution
to the controller implementation in the case of strict constraints imposed by the
available resources. The flexible transmission example will be studied and a
reduced order controller will be estimated.

Functions to be used: functions contained in the REDUC" toolbox.

Data files: the file flex prbs.mat contains the external excitation ; the file
BF RST.mat  contains  the  parameters  of the RST  controller
(ng =ng =5,T =R(1)); the file BF mod.mat contains the discrete-time model of

the plant.
Sequence of operations

1. Compute the simulated control signal on the basis of the given closed
loop system (will be used in the estimation algorithms). Use the
appropriate sensitivity function with respect to the reduction algorithm
to be used (Closed Input Matching (S,,) and Closed Loop Output
Matching (S,,).

2. Find a reduced order RST controller with ny =ng=3,T=R(1)

starting from the given one. Validate the resulting controller.
3. Impose np=ng=2,T=R(l)in order to get a digital controller

corresponding to a digital PID 2 controller.

4. Compare the results obtained with the two methods (CLIM and
CLOM). Give an interpretation.

5. Plot the response for a step reference change and a step disturbance on
the output for the closed loop system with the nominal controller and
the reduced controllers.
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List of Functions (MATLAB®, Scilab and C™)

All functions listed in the table below are available on the website : http ://landau-
bookic.lag.ensieg.inpg.fr.

Scilab MATLAB® c Description
Function Function | function
bezoutd.sci bezoutd.m Bezout equation (P=ASyHs+BRyHy )

solution

cont2disc.sci

cont2disc.m

Continuous-time to discrete-time transfer
function conversion (F(s) 2 F(z)) with
Zero Order Hold

fd2pol.sci

fd2pol.m

Second-order discrete-time system
computation from second-order
continuous-time system natural frequency
and damping factor

omega_dmp.s
ci

omega dmp.m

Computation of natural frequency and
damping factor for a second-order
continuous-time system from desired rise
time and overshoot

predisol.sci

predisol.m

Predictor equation solution

nyquist_ol.sci

nyquist_ol.m

Nyquist plot

filter22.sci

filter22.m

Resonant zero-pole filter computation

ppmaster.zip

Pole placement digital control design

reduc.zip

Reduction of controller complexity

clid.zip

Closed loop system identification

estorderls.sci

estorderls.m

Complexity estimation with the least
squares criterion

estorderiv.sci

estorderiv.m

Complexity estimation with the
instrumental variable criterion

nrls.sci nrls .m Non-recursive least squares
rls.sci rls.m Recursive least squares
udrls.m U-D factorized recursive least squares
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rels.sci rels.m Recursive extended least squares
oloe.sci oloe.sci Output error (recursive)
vi_maux.sci vi_maux.m Instrumental variable with auxiliary
model
foloe.sci foloe.m Output error with filtered observations
afoloe.sci afoloe.m Output error with adaptive filtered
observations
xoloe.sci xoloe.m Output error with extended prediction
model
olvalid.m Open loop model validation
prbs.m prbs.c Pseudo random binary sequence
generation
rst.c RST controller algorithm

Polynomials (4,B, R, ...) are considered in MATLAB® environment as vectors of
coefficients. In Scilab the object “polynomial” is directly available. However, in
order to have uniformity in polynomials processing, polynomials must be defined
as vectors of coefficients to be used as inputs of Scilab functions. In the same way,
the outputs of the Scilab functions are vectors of coefficients instead of the object
“polynomial”.



References

Adaptech (1996a) WinPIM'TR — System Identification Software, Adaptech, St. Martin
d’Heres, France.

Adaptech (1997b) WinPIM-BF — Software for closed loop identification, Adaptech, St.
Martin d’Héres, France.

Adaptech (1998) Optreg — Software for automated design of robust digital controllers using
convex optimization (for MATLAB®™), Adaptech, St. Martin d’Héres, France.

Adaptech (1999a) REDUC — Controller order reduction by closed-loop identification
(Toolbox for MATLAB®), Adaptech, St. Martin d’Heres, France

Adaptech (1999b) CLID — Plant model identification in closed loop (Toolbox for
MATLAB/@), Adaptech, St. Martin d’Heres, France.

Adaptech (2001a) Guidelines for RST controller implementation, Adaptech, St. Martin
d’Héres, France.

Adaptech (2001) Guidelines for PRBS integration, Adaptech, St. Martin d'Heres, France.

Adaptech (2004) Wintrac — Software for data acquisition and real time RST digital control,
Adaptech, St. Martin d'Héres, France.

Anderson B.D.O., Liu Y. (1989) Controller reduction concepts and approaches, IEEE Trans.
on Automatic Control, vol. 34, no. 8, pp. 802-812.

Anderson B.D.O. (1993) Controller reduction: moving from theory to practice, IEEE
Control Magazine, vol. 13, pp. 16-25.

Anderson B.D.O. (1998) From Youla Kucera to identification, adaptive and nonlinear
control, Automatica vol. 34, 1485-1506.

Anderson B.D.O, Moore J.B. (1971) Linear Optimal Control, Prentice Hall, Englewood
Cliffs, N.J.

Astrom K.J. (1970) Introduction to Stochastic Control Theory, Academic Press, N.Y.

Astrom K.J., Hagglund 1. (1995) PID Controllers Theory, Design and Tuning, 2nd edition
ISA, Research Triangle Park, N.C., U.S.A.

Astrom K.J., Wittenmark B. (1995) Adaptive Control, 2nd edition, Addison Wesley,
Reaching, Mass.

Astrom K.J., Wittenmark B. (1997) Computer Controlled Systems — Theory and Design, 3rd
edition, Prentice-Hall, Englewood Cliffs, N.J.

Bendat J.S., Piersol A.G. (1971) Random Data Analysis and Measurement Procedures, John
Wiley.

Béthoux G. (1976) Approche unitaire des méthodes d'identification et de commande
adaptative des procédés dynamiques, Ph.D., Institut National Polytechnique de
Grenoble, juillet.

473



474 References

Bierman, G. (1977) Factorization methods for discrete sequential estimation, Academic
Press, New York.

Bourlés H., Irving E. (1991) La méthode LQG/LTR une interprétation polynomiale, temps
continu/temps discret , RAIRO-APII, Vol. 25, pp. 545-568.

Box G.E.P., Jenkins G.M. (1970) Time Series Analysis, Forecasting and Control, Holden
Day, S. Francisco.

Boyd St.P, Barratt C.H. (1991) Linear controller design. Limits of performance, Prentice
Hall, Englewood Cliffs.

Camacho, E.F., Bordons, C. (2004) Model Predictive Control, 2nd edition, Springer,
London, UK.

Candy J.V. (1986) Signal Processing - The Model Based Approach, MacGraw-Hill, N.Y.

Clarke D.W., Gawthrop P.J. (1975) A Self-Tuning Controller , Proc. IEE, vol.122, pp. 929-
34.

Clarke D.W., Gawthrop P.J. (1979) Self-tuning Control, Proc. IEEE, vol. 126, pp .633-40.

Clarke D., Mothadi C. (1987) Generalized predictive control, Automatica, vol 23,

pp- 137-160.

Clarke D., Mothadi C. (1989) Properties of generalized predictive control, Automatica, vol
25, pp. 859-876.

Doyle J.C., Francis B.A., Tanenbaum A.R.,(1992) Feedback Control Theory, Mac Millan,
N.Y.

Dugard L., Landau 1.D. (1980) Recursive Output Error Identification Algorithms Theory
and Evaluation , Automatica, vol. 16, pp.443-462.

Duong H.N., Landau 1D. (1996) An LV. based criterion for model order selection,
Automatica, vol. 32, no. 6, pp. 909-914.

Eykhoff P. (1974) System Identification Parameter and State Estimation, John Wiley,
London.

Fenot C., Rolland F., Vigneron G., Landau 1.D. (1993) Open loop adaptive feedback control
of depozited zinc in hot dip galvanizing , Control Engineering Practice, vol. 1, no. 5,
pp 347-352.

Fenot C., Vigneron G., Rolland F., Landau 1.D. (1993) Régulation d’épaisseur de dépdt de
zinc a Sollac, Florange , Revue Générale d’Electricité, no. 11, pp. 25-30, Déc.

Forsell U., Ljung L. (1999) Closed loop identification revisited, Automatica, vol. 35, n. 7,
pp. 1215-1241.

Franklin G., Powell J.D. (1986) Feedback Control of Dynamic Systems, Addison Wesley,
Reading, Mass.

Franklin G.F., Powell J.D., Workman M.L. (1998) Digital Control of Dynamic Systems,
3rd edition, Addison Wesley, Reading, Mass.

Gevers M. (1993) Towards a joint design of identification and control , in Essays in Control
(H.L. Trentelman, J.C. Willems, Eds), Birkhduser, Boston, USA, pp. 111-152.

Goodwin G.C., Payne R.L. (1977) Dynamic System Identification Experiment Design and
Data Analysis, Academic Press, N.Y.

Goodwin G.C., Sin K.S. (1984) Adaptive Filtering Prediction and Control, Prentice-Hall,
Englewood Cliffs, N.J.

Hogg R., Graig A. (1970) Introduction to Mathematical Statistics, MacMillan, N.Y.

Isermann R. (1980) Practical aspects of process identification, Automatica, vol.16, pp. 575-
587.

Isermann R. (Ed) (1981) Special Issue on System Identification, Automatica, vol 17, n°® 1.

Kailath T. (1980) Linear systems, Prentice Hall, Englewood Cliffs, N.J.

Karimi A., Landau 1.D. (1998) Comparison of the closed loop identification methods in
terms of the bias distribution, Systems and Control Letters, vol. 34, pp. 159-167.

Kuo B. (1980) Digital Control Systems, Holt Saunders, Tokyo.

Kuo B.C. (1991) Automatic Control Systems (6th edition), Prentice Hall, N.J.



References 475

Kwakernaak H. (1993) Robust control and H;,¢ optimization — a tutorial Automatica, vol.29,
pp.255-273.

Landau L.D. (1976) Unbiased recursive identification using model reference adaptive
tehniques I.E.E.E., Trans. on Automatic Control, vol AC-20, n°2, pp. 194-202.

Landau L.D. (1979) Adaptive control — the model reference approach, Dekker, N.Y.

Landau 1.D. (1981) Model Reference Adaptive Controllers and Stochastic Self-tuning
Regulators, A Unified Approach, Trans. A.S.M.E, J. of Dyn. Syst. Meas. and
Control, vol. 103, n°4, pp. 404, 416.

Landau LD. (1982) Near Supermartingales for Convergence Analysis or Recursive
Identification and Adaptative Control Schemes , Int J. of Control, vol.35, pp. 197-226.

Landau I.D. (1984) A Feedback System Approach to Adaptive filtering, IEEE Trans. on
Information Theory, vol. 30, n°2, pp. 251-262.

Landau I.D. (1986) La Commande Adaptative Un Tour Guidé, in Commande adaptative -
Aspects pratiques et théoriques (Landau, Dugard- Editeurs), Masson, Paris.

Landau L.D. (1990) System Identification and Control Design, Prentice Hall, Englewood
Cliffs, N.J.

Landau I.D. (1993) Evolution of Adaptive Control, A.S.M.E. Transactions, Journal
D.S.M.C., vol. 115, no. 2, pp. 381-391, june.

Landau I.D. (1995) Robust digital control of systems with time delay (the Smith predictor
revisited) , Int. J. of Control, vol. 62, pp. 325-347.

Landau L.D. (2001a) Identification in closed loop a powerful design tool (better models,
simple controllers) , Control Engineering Practice, vol. 9, no. 1, pp. 51-65.

Landau 1.D. (2001b) Les bases de I’identification des systémes, in Identification des
Systémes (I.D. Landau, A. Bensangon-Voda, ed), pp. 19-130, Hermes, Paris.

Landau L.D., Constantinescu A., Rey D. (2005) Adaptive Narrow Band Disturbance
Rejection Applied to an Active Suspension — An Internal Model Principle Approach,
Automatica, Vol.61, n°4.

Landau ID., Karimi A. (1997a) An output error recursive algorithm for unbiased
identification in closed loop , Automatica, vol. 33, no. 8, pp. 933-938.

Landau L.D., Karimi A. (1997b) Recursive algorithms for identification in closed-loop — a
unified approach and evaluation , Automatica, vol. 33, no. 8, pp. 1499-1523.

Landau I.D., Karimi A. (1998) Robust digital control using pole placement with sensitivity
function shaping method , Int. J. of Robust and Nonlinear Control, vol. 8, pp. 191-
210.

Landau I.D., Karimi A. (2001) Identification des mod¢les de procédé en boucle fermée, in
Identification de systémes (I.D. Landau, A. Besancon-Voda, Eds), pp. 213-244,
Hermes, Paris.

Landau 1.D., Karimi A. (2002) A unified approach to closed-loop plant identification and
direct controller reduction, European J. of Control, vol. 8, no.6.

Landau 1.D., Karimi A., Constantinescu A. (2001) Direct controller reduction by
identification in closed loop , Automatica, vol. 37, no. 11, pp. 1689-1702.

Landau 1.D., Langer J., Rey D., Barnier J. (1996) Robust control of a 360° flexible arm
using the combined pole placement / sensitivity function shaping method, IEEE
Trans. on Control Systems Tech., vol. 4, no. 4, pp. 369-383.

Landau 1.D., Lozano R. (1981) Unification of Discrete-Time Explicit Model Reference
Adaptive Control Designs , Automatica, vol. 12, pp. 593-611.

Landau I.D., Lozano R., M’Saad M. (1997) Adaptive Control, Springer, London, UK.

Landau [.D., M'Sirdi N., M'Saad M. (1986) Techniques de modélisation récursives pour
l'analyse spectrale paramétrique adaptative, Traitement du Signal, vol.3, pp. 183-204.

Landau I.D., Rolland F. (1993) Identification and digital control of electrical drives, Control
Engineering Practice, vol. 1, no. 3.



476 References

Langer J., Constantinescu A. (1999) Pole placement design using convex optimization
criteria for the flexible transmission benchmark, European Journal of Control, vol. 5,
no. 2-4, pp. 193-207.

Langer J., Landau 1.D. (1996) Improvement of robust digital control by identification in
closed loop. Application to a 360° flexible arm , Control Engineering Practice, vol. 8,
no. 4, pp. 1079-1088.

Langer J., Landau L.D. (1999) Combined pole placement / sensitivity function shaping using
convex optimization criteria , Automatica, vol. 35, pp. 1111-1120.

Ljung L.,(1999) System Identification - Theory for the User, 2nd edition, Prentice Hall,
Englewood Cliffs.

Ljung L., Soderstrom T. (1983) Theory and Practice of Recursive Identification, MIT Press,
Cambridge, Mass.

Lozano R., Landau LD. (1982) Quasi-direct adaptive control for nonminimum phase
systems, Transactions A.S.M.E., Journal of D.S.M.C., vol. 104, n°4, pp. 311-316,
décembre.

Macejowski J.M.(2001) Predictive control with constraints, Prentice Hall, N.J.

Mathworks (1998) Identification toolbox for Matlab, The Mathworks Inc., Mass. U.S.A.

Morari M., Zafiriou E. (1989) Robust Process Control, Prentice Hall International,
Englewood Cliffs, N.J.

M'Saad M., Landau L.D. (1991) Adaptive Control An overview, Actes du Symposium
International IFAC ADCHEM 91, pp.3-11, Toulouse.

Narendra K.S., Taylor J.H. (1973) Frequency Domain Criteria for Absolute Stability,
Academic Press, New York.

Ogata K. (1990) Modern Control Engineering (2nd edition), Prentice Hall, N.J.

Ogata K. (1987) Discrete-Time Control Systems, Prentice Hall, N.J.

Phillips, C.L., Nagle, H.T. (1995) Digital Control Systems Analysis and Design, 3rd edition,
Prenctice Hall, N.J.

Press W.H., Vetterling W.T., Teukolsky S., Flanery B. (1992) Numerical recipes in C (The
art of scientific computing), 2nd edition, Cambridge University Press, Cambridge,
Mass.

Prochazka H., Landaul.D. (2003) Pole placement with sensitivity function shaping using
2nd order digital notch filters, Automatica, Vol. 39, 6, pp. 1103-1107.

Rantzer A., Megretski A. (1994) A convex parametrization of robustly stabilizing
controllers, IEEE Trans. Aut. Control. Vol. 39, pp. 1802-1808.

Rolland F., Landau 1.D. (1991) Pour mieux réguler le PC va vous aider, Mesures, pp. 71-73,
december.

Shinskey F.G. (1979) Process Control Systems, McGraw-Hill, N.Y.

Séderstrom T., Stoica P. (1983) Instrumental variable methods for system identification ,
Lectures Notes in Control and Information Sciences, Springer Verlag, Berlin.

Soéderstrom T., Stoica P. (1989) System Identification, Prentice Hall International,
Hertfordshire.

Solo V. (1979) The Convergence of A.M.L., IEEE Trans. Automatic Control, vol. AC-24,
pp. 958-963.

Sung H.K., Hara S. (1988) Properties of sensitivity and complementary sensitivity functions
in single-input, single-output digital systems, Int. J. of Cont., vol. 48, n°6, pp. 2429-
2439.

Takahashi Y., Rabins M., Auslander D. (1970) Control, Addison Wesley, Reading, Mass.

Tsypkin Y.Z. (1997) Stochastic discrete systems with internal models, Journal of
Automation and information Sciences, Vol. 29 pp. 156-161.

Van den Bossche E. (1987) Etude et commande adaptative d'un bras manipulateur flexible,
Ph.D., LN.P.G.



References 477

Van den Hof P., Shrama R. (1993) An indirect method for transfer function estimation from
closed loop data, Automatica, vol. 29, no. 6, pp. 1523-1528.

Vieillard J.P. (1991) Machine automatique pour la fabrication de cables torsadés
téléphoniques, La Lettre d’Adaptech, no. 2, pp. 1-2, Adaptech, St. Martin d’Héres,
France.

Vinnicombe G. (1993) Frequency domain uncertainty and the graph topology , IEEE Trans.
on Automatic Control, vol. 38, no. 9, pp. 1371-1383.

Voda A., Landau L.D. (1995a) A method for the auto-calibration of P.L.D. controllers,
Automatica, no. 2.

Voda A., Landau LD. (1995b) The auto-calibration of P.I. controllers based on two
frequency measurements , Int. J. of Adaptive Control and Signal Processing, vol. 9,
no. 5, pp. 395-422.

Wirk G.S. (1991) Digital Computer Systems, 3rd edition, MacMillan, London.

Young P.C. (1969) An Instrumental Variable Method for Real Time Identification of a
Noisy Process , Automatica, vol.6, pp. 271-288.

Young P.C., Jakeman A.J. (1979) Refined Instrumental Variable Methods of Recursive
Time Series Analysis, Part I, Single-input, Single-output Systems, Int. J. of Control,
vol. 29, pp.1-30.

Zames G. (1966) On the input-output stability of time-varying non linear feedback systems,
IEEE-TAC, vol. AC-11, April, pp. 228-238, july pp. 445-476.

Zhu K. (1998) Essentials of robust control, Prentice Hall, N.J., U.S.A.

Ziegler J.G., Nichols N.B. (1942) Optimum Settings for Automatic Controllers, Trans.
ASME, vol. 64, pp. 759-768.



Index

A

a posteriori prediction error 210
a priori prediction error 208
adaptation error 236
adaptation gain 213

choice of 221

constant 225

constant trace 223

decreasing 222

initial 225
adaptive control 331

direct 331

indirect 331
air heater

digital control of a 333

identification of a 296
algorithm

gradient 209

parameter adaptation 206

recursive estimation 215
aliasing 29
analysis

frequency domain 2, 38

time domain 1, 34
anti-aliasing filter 30
anti windup (device) 321
ARMAX 178
analog to digital converter 27
autocorrelation 172

function 172

normalized 172
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B

backward shift operator 34
bandwidth 8
bias 233

C

closed loop identification 377
closed loop input error 404
method 405
closed loop output error
extended 382
method (identification) 377
with filtering 381
complexity reduction
direct 401
indirect 400
of controllers 399
computational time delay 319
computer control 25
confidence interval 257
constant trace (see also adaptation
gain) 223
continuous-time system 1
contraction factor 252
control
cascade 326
internal model 129
position 327
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with independent objectives
117
convergence domain 250
converter
analog-to-digital 25
digital-to-analog 25, 27
covariance (see also correlation
functions) 172
criterion
stability 4, 46
validation 266
validation practice 256
Nyquist stability 22, 67
cross-correlation test 266
cut-off frequency 8

D

damping factor 10
data acquisition 279
dc component

elimination of 284
dc motor

control 341

identification 305
delay operator (see also backward

shift operator) 36
derivative action 23

desired performances 107, 317
differences equation 44
differential equation 2
digital controller

pi 64

pid 86

rst 62

time domain design 423
digital integrator 38
digital to analog converter 25
Dirac pulse 169, 417
discrete-time

normalized 34

systems 42

white noise 171
discretization 28
discretized system (process) 25
distillation column identification 300

disturbance model 170

E

equation
differences 44
differential 2
error 238

recursive 34
ergodic 171
error
adaptation 236
equation method 238
closed loop input 405
closed loop output 376
output 238, 252
output (residual) prediction 266
output with extended prediction
model 252
prediction 179
steady-state (static) 18, 56
estimation
model complexity 267
parameter 203
reduced order controller 404
extended least squares 248

F

filtering

anti-aliasing 282

of derivative action 23
final value 6
flexible robot 358
flexible transmission

control (position) 352

identification 309
forgetting factor

constant 222

variable 223
frequency

complex 3

domain 2

Nyquist 29

response 7

sampling 28, 32



functions
matlab 463
scilab 471

G

gain
adaptation 213
decreasing 222
initial 223

in continuous-time 1
in discrete-time 46
proportional 23
steady-state (static) 8

galvanizing line 364

gap 409, 454

generalized least squares 254

generalized output 196

gradient algorithm 209
improved 225

gauss bell 419

gaussian 171

I

identification
methods type I 248
methods type II 258
non recursive 206
recursive 206
real time 204
impulse response 288
independence test 172
initialization horizon 252
input sequence
choice of the 226
instrumental variable
method (identification) 238
with auxiliary model 259
integral action 23
internal model control 129
partial 134

L

laboratory sessions
digital pid 464

Index 481

digital controller 467
discrete-time systems 463
identification 465

linear quadratic control 449

M

margin
delay 71
gain 69
generalized stability 452
modulus 71
phase 70
matching
of the control signal (closed
loop) 404
of the output (closed loop) 407
matrix
inversion lemma 218
positive definite 212
mean value
removal of the 284
measurement function 206
model
adjustable prediction 207
continuous-time 1
control oriented 202
discrete-time 34
discrete-time (adjustable) 204
discrete-time with hold 47
dynamic 202
first order 6
frequency domain 66
general form 42
knowledge type 201
non parametric 202
of disturbances 170
of stochastic disturbances 173
parametric 202
prediction 207
second order 10
model validation
for type I methods 256
for type II methods 265
moving average (see also process)
174
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N

natural frequency 10
Nyquist
criterion 22, 67
frequency 29
plot 66

(0]

observation vector 206

open loop 19

order estimation 269

output error
extended (closed loop) 382
method (identification) 238
residual 266
with extended prediction model
252
with fixed compensator 261
with filtered observations 263

overshoot (maximum) 6

P

parameter adaptation algorithm
(PAA) 218
parameter estimation vector 206
performance specifications 91
pi controller
analog 22
digital 60
pid controller
analog 23
digital 86
pid 1 87
pid 2 99
pole placement 105
poles 4, 41
positive definite matrix 212
practical aspects 279
prediction error
a posteriori 210
a priori 208
residual 256
predictive control
one step ahead 423

long range 424
probability density 421
process

AR 176

ARMA 177

ARMAX 178

MA 174

stochastic 170
pseudo random binary sequence

(prbs) 230
pulse transfer operator 43

R

ramp 169
random
disturbance 169
variable 170
real time identification 204
recursive
equation 34
estimation algorithm 215
form 218
identification 236
least squares 219
maximum likelihood 251
reduced order controller estimation
399
regulation 121
residual prediction error 256
resonance factor 8
rise time 6
robustness 22, 69
rst controller 61

S

sampled data system with hold
first order 49
model of a 47

second order 52
sampled signal spectrum 29
sampling frequency

choice of the 31
saturation (effect of) 321
scaling 285



sensitivity function
complementary 63
input 63
noise-output 63
output 19, 57

settling time 7

shift operator 34

simulation 471
software 471
spectral density 173, 232
spectrum aliasing 30
s-plane 6
stability
asymptotic 5, 45
discrete-time 44
domain of 41
test of 46
stability margin
generalized 452
standard deviation 171, 420
state-space 441
state observer 443
steady state error
in continuous-time 18
in discrete-time 56
zero 57
step 169, 418
stochastic disturbances

effect on identification 233

stochastic process
ergodic 171
gaussian 171
realization 170

stochastic variable
independent 171

system identification
closed loop 375

closed loop output error 377

in real time204

of a flexible transmission 309

of a dc motor 305

of a distillation column 300

of an air heater 296

of a plant with an integrator 284

practical aspects 279

recursive parameter 236

Index

system
in cascade 16
in closed loop 16
in open loop 19
sampled 47

T

time constant 1
time delay
of computation 319
continuous-time 14
discrete-time 42
fractional 49
pure time delay 42
system with 14
time domain 1
time domain response 2
tracking and regulation

483

generalized minimum variance

195
minimum variance 181

with independent objectives 117

transfer function
continuous 4
pulse 43

strictly positive real 250

U

U-D factorization 461
unit circle 40

A\

validation
closed loop 384
criterion 266
test 256, 265
variance 172, 420
vector
parameter 206
observations 206
vinnicombe gap 454



484 Index

W Z
white noise zero order hold 26
gaussian 172 zeros 4
discrete time 171 stable 118
whiteness test 256 unstable 49, 118
z-plane 41
Y z-transform 419

Youla—Kucera parametrization 458
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