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Preface

The Aim of this Book

The manufacturers of microcontrollers report annual sales of hundreds of millions of
units. To support this massive market demand, they offer tens of thousands of pages
of free, good quality technical documentation: data sheets, application notes, articles,
etc.

The problem is that the more information is available on this subject, the harder
it is to find the information useful for you. Therefore, the need for synthesis seems to
be growing.

While the vast majority of the literature available is monographic, dedicated to
a specific circuit, this book tries to emphasize that various microcontrollers have
many common structural characteristics; in fact they are all implementations of the
same concept. When starting with the big picture, it’s easier to focus on details from
time to time, than to build the big picture, starting from details.

Throughout this book, we present three different families of microcontrollers:
HC11, AVR, and 8051 and we aim to make reading of this book more rewarding for
the reader than reading three monographs dedicated to each of the above families.
If you have ever studied one microcontroller, by reading this book you will discover
that you already know a lot of things about all microcontrollers.

Another important aim of this book is to help the reader to make the small, yet
decisive step between theory and practice. The book presents the design of three
development boards, one for each microcontroller discussed, which can serve as
platforms for a large number of experimental projects. The design examples presented
demonstrate that, regardless of the microcontroller selected, and the complexity of
the project, the software applications can be built according to the same general
structure.



VIII Preface

What’s in this Book

The book is structured into three sections. Chapters 1–8 aim to create a detailed
overview of microcontrollers, by presenting their subsystems starting from a general
functional block diagram, valid for most microcontrollers on the market.

In each case, we describe the distinctive features of that specific subsystem for
HC11, 8051 and AVR. This whole section has a more theoretical approach, but, even
here, many practical examples are presented, mainly regarding the initializations
required by each subsystem, or the particular use of the associated interrupts. The
purpose of this section is to create a perspective that views the microcontroller as
a set of resources, easy to identify and use.

Chapters 9–16 contain eight complete projects, described from the initial idea,
to the printed circuit board and detailed software implementation. Here too, we
permanently focus on the similarities between the microcontrollers discussed, from
the hardware and software perspectives.

All chapters contain exercises, suggesting modifications or improvements of the
examples in the book. Most exercises have solutions in the book; for the others the
solutions can be found on the accompanying CD.

Finally, the appendices contain additional information intended to help the reader
to fully understand all the aspects of the projects described in the previous sections.
We chose to present these details separately in these appendices, in order to avoid
fragmentation of the flow of the main text.

Who Should Read this Book

Most of the available books on microcontrollers are either “guides for idiots”, as-
suming that the reader knows nothing on the subject, or “rocket science books” for
a limited academic audience. Little is offered to the majority of readers that are in
between.

This book is primarily aimed at students of technical universities, but can be
rewarding reading for anyone having a reasonable dose of “technical common sense”,
like service technicians, hobbyists, inventors, etc. We assume that the reader knows
the fundamentals about binary representation of numbers, Boolean algebra, logic
functions, and logic circuits, and knows how to locate and read data sheets and other
technical literature supplied by the manufacturers.

We also assume that he has the basic skills required to use a personal computer,
and knows how to install a software application, how to view and create text files, etc.
Thus, we can spare the space needed for explaining these notions for more substantial
projects.

However, eliminating puerile explanations doesn’t mean that we give up all
explanations.

Don’t let yourself be intimidated by projects that seem very complex, like the
“fuzzy logic temperature controller”. Even the most complex projects presented in
this book are built according to the same structure as the simplest, LED flashing type
projects.



Preface IX

How to Read this Book

The chapters are intended to be self-contained, so that advanced users can, in principle,
read the chapters individually as they choose.

However, the density of information requires permanent contact with practice in
order to consolidate the knowledge acquired. We strongly recommend downloading
and installing the software tools needed to test the examples and exercises presented
in the book. For your convenience, all the source files for the examples and exercises
presented in the book have been included on the accompanying CD.

This CD also contains the schematic files and the PCB layout drawings for the
main projects described in the book. In our opinion, PCB design skills are equally
important as good knowledge of the software, and therefore we recommend that you
download and install the freeware version of the Eagle™ layout editor, from CadSoft,
so that you can view and edit the projects included.

The information in this book is not intended to replace the manufacturers’ data
sheets; therefore it is a good idea to keep at hand the data sheets for the microcon-
trollers discussed here: 68HC11F1, AT90S8535, and AT89C51.

If you encounter new terms, try using the glossary of terms included in the
appendices, which contains short definitions for the most common terms used in the
book.

No special conventions have been used in writing this book. The only notation
worth mentioning here is that the names of active LOW signals are written using
a backslash as terminator, e. g. RD\, WR\, etc.

Disclaimer

The information in this book is for educational purposes only. Although we have
made every effort to provide accurate information, the examples in this book should
not be interpreted as a promise or a guarantee that you will be able to reach a certain
level of knowledge or skills by reading this material.

The author and publisher shall in no event be held liable to any party for any
direct, indirect, punitive, special, incidental or other consequential damages arising
directly or indirectly from any use of this material, which is provided “as is”, and
without warranties.

All internet links indicated are for information purposes only and are not war-
ranted for content, accuracy or any other implied or explicit purpose.
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1

Resources of Microcontrollers

1.1 In this Chapter

This chapter is a presentation of the main subsystems of microcontrollers, seen
as resources, organized according to one of the fundamental architectures: Von
Neumann and Harvard. It also contains a description of the internal CPU registers, the
general structure of a peripheral interface, and an overview of the interrupt system.

1.2 Microcontroller Architectures

A microcontroller is a structure that integrates in a single chip a microprocessor,
a certain amount of memory, and a number of peripheral interfaces.

The Central Processing Unit (CPU) is connected to the other subsystems of
the microcontroller by means of the address and data buses. Depending on how
the CPU accesses the program memory, there are two possible architectures for
microcontrollers, called Von Neumann, and Harvard.

Figure 1.1 shows the structure of a computer with Von Neumann architecture,
where all the resources, including program memory, data memory, and I/O registers,
are connected to the CPU by means of a unique address and data bus.

Interrupt
logic

Address bus

Data bus

PROGRAM
MEMORY CPU

DATA

MEMORY
I/O

INTERFACES

Fig. 1.1. Block diagram of Von Neumann architecture
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A typical microcontroller having Von Neumann architecture is 68HC11 from
Motorola. In HC11, all resources are identified by unique addresses in the same
address space, and can be accessed using the same instructions. For example, in case
of the instruction:

LDAA <address> ;load accumulator a from <address>

the operand indicated by the label <address> can be any of the microcontroller’s
resources, from I/O ports, to ROM constants. This way of accessing resources allows
the existence of complex instructions like this:

ASL 35,x ;arithmetic shift left the memory
;location with the address
;obtained by adding 35 to the
;index register X.

Therefore, the Von Neumann microcontrollers tend to have a large instruction set,
including some really complex instructions. This is the reason why computers having
the Von Neumann architecture are often called CISC, or Complex Instruction Set
Computers.

The main disadvantage of this architecture is that the more complex the instruc-
tion, the longer it takes to fetch, decode, execute it, and store the result. The instruction
in the above example takes six machine cycles to execute, while the instruction for
integer divide, IDIV, needs no less than 41 machine cycles to complete.

The Harvard architecture was created to increase the overall speed of computers
in the early years, when very slow magnetic core memory was used to store the
program. It includes an additional, separate bus to access the program memory (refer
to Fig. 1.2).

The presence of the second bus makes the following things possible:

• While an instruction is executed, the next instruction can be fetched from the
program memory. This technique is called pipelining and brings a significant
increase of computer speed.

• The program memory can be organized in words of different size from, and
usually larger than, the data memory. Wider instructions mean a greater data flow
to the CPU, and therefore the overall speed is higher.

PROGRAM
MEMORY

I/O

INTERFACES
DATA

MEMORY

Interrupt
logic

CPU

Address bus

Data bus

Data bus

Address bus

Fig. 1.2. Block diagram of Harvard architecture
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Such architecture, along with reducing and optimizing the instruction set, mean
that most instructions execute in a single machine cycle. Since the Harvard archi-
tecture is often accompanied by the reduction of the size and complexity of the
instruction set, computers with this architecture are also called Reduced Instruction
Set Computers (RISC). For example, some PIC microcontrollers have an instruction
set of only 35 instructions, compared to more than 100 for HC11. The speed increase
is even higher.

The separate bus for the program memory makes the access of the program
to constants (such as tables, strings, etc.) located in ROM more complicated and
more restrictive. For example, some PIC microcontrollers have the program memory
organized in 14-bit wide words, which makes locating and accessing a constant
presented as a byte possible only by embedding the constant in a special instruction.
For this purpose, the instruction “RETLW k” (Return from subprogram with constant
k in register W) has been provided.

The AVR microcontrollers have the program memory organized into 16-bit words,
which makes the task of accessing constants in program memory easier, because each
16-bit word can store two 8-bit constants. A special instruction LPM (Load from
Program Memory) allows access to ROM constants.

1.3 The Memory Map

From the programmer’s point of view, a microcontroller is a set of resources. Each
resource is identified by one or more addresses in an address space. For example, the
68HC11E9 microcontroller has its internal RAM memory organized as 512 locations,
having addresses in the range $0000–$01FF, the ROM memory occupies the addresses
in the range $D000–$FFFF (12288 locations), and the I/O register block takes the
address form $1000–$103F (64 locations).

The memory map is a graphic representation of how the resources are associated
with addresses (see Fig. 1.3 for an example of a memory map).

Obviously, not all addresses are related to existing resources – in some cases it is
possible to add external memory or I/O devices, to which we must allocate distinct
addresses in the address space.

Normally, the memory map is determined by the hardware structure formed by
the microcontroller and the external devices (if any), and cannot be dynamically
modified during the execution of a program.

However, there are situations when, by writing into some special configuration
registers, the user can disable resources (such as the internal ROM memory, or the
EEPROM memory) or can relocate resources in a different area of the address space.
But even in these cases, the access to the configuration registers is restricted, and the
modification becomes effective after the next RESET.

Figures 1.3 and 1.4 show the memory maps for a microcontroller with Von
Neumann architecture, MC68HC11E9, operating in single-chip mode, and for a RISC
microcontroller, the AVR AT90S8535.
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$0000

$01FF

$1000
$103F

$B600

$B7FF

$D000

$FFFF

Internal RAM

Register block

Internal EEPROM

Internal ROM

Fig. 1.3. Memory map for 68HC11E9 operating in single-chip mode

Program
memory

CPU
register

I/O
register

Internal
RAM

Not used

$0000

$0FFF

$0000

$0000
EEPROM

$0020

$0060

$025F

$FFFF $01FF

Fig. 1.4. Memory map for AT90S8515 operating in single-chip mode

Note, for the AVR microcontroller, the presence of three different address spaces,
one for data memory and I/O registers, and two more for the program memory and
the EEPROM.

The 8051 microcontrollers are considered to belong to the Harvard architecture,
but they are CISC, and do not allow pipelining; therefore they look more like Von
Neumann computers with the capability to access program memory, and data memory
as different pages. The two distinct memory pages are accessed through the same
physical bus, at different moments time in. Fig. 1.5 shows the memory map for an
8051 MCU operating in single-chip mode. There are two address spaces here too,
one for the program memory and the other for data memory and special function
registers.

Internal
program
memory

CPU
registers

Bit
memory

Internal
RAM

SFRs

$0000

$0000

$0020

$0030

$00FF$1FFF

$0080

Fig. 1.5. Memory map for 8051 operating in single-chip mode
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One unique feature of this microcontroller is the presence of a RAM area, located
in the address range $0020–$002F, which is bit addressable, using special instructions.
This artifice allows the release of RAM memory by assigning some Boolean variables
to individual bits in this area, rather than using a whole byte for each variable, because
8051 is low on this resource: only 80 RAM locations are available for variables and
stack.

Standard 8051 microcontrollers do not have internal EEPROM memory.

1.4 CPU Registers

The good thing about CPU registers is that they are part of the CPU, and an operand
located in these registers is immediately available as input to the arithmetic and logic
unit (ALU). Since the instructions having operands in the registers of the CPU are
executed faster, the microcontrollers designed for higher speed tend to have more
internal registers. While HC11 has only two accumulator registers, the AVR family
has as many as 32 such registers.

1.4.1 The CPU Registers of HC11

HC11 has seven internal registers, plus the CPU status register, called the Condition
Code Register (CCR).

The accumulator registers A and B are general-purpose 8-bit registers. They can
be concatenated to form a 16-bit register called D, where A is the most significant
byte, and B is the least significant byte. This feature creates a remarkable flexibility
for 16-bit arithmetic operations.

The index registers X and Y are 16-bit registers, which can also be used as storage
registers, 16-bit counters; and most important, they can store a 16-bit value, which,
added with an 8-bit value contained in the instruction itself, form the effective address
of the operand when using the indexed addressing mode.

The Stack Pointer (SP) register is a 16-bit register, that must be initialized by
software with the ending address of a RAM memory area, called the stack. SP
automatically decrements each time a byte is pushed to the stack, and increments
when a byte is pulled from stack. Thus, SP always points to the first free location of
the stack. The stack is affected in the following situations:

• During the execution of the instructions BSR, JSR (Branch or Jump to Subrou-
tine), the return address is automatically pushed on to the stack and the SP is
adjusted accordingly. The instruction RTS (Return from Subroutine) pulls this
value from the stack and reloads it into the program counter.

• During the execution of push and pull type instructions, used to save and restore
the contents of the CPU registers to the stack.

• During the execution of an interrupt, and when returning from an interrupt service
routine upon the execution of the RTI (Return from Interrupt) instruction.
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SP may be directly accessed by means of the LDS (load SP) and STS (Store SP)
instructions or indirectly, using transfer instructions like TXS, TYS (Transfer X/Y to
SP) or TSX, TSY (Transfer SP to X/Y).

The Program Counter (PC) register is a 16-bit register, that contains the address
of the instruction following the instruction currently executed.

The Condition Code Register (CCR) is an 8-bit register with the following struc-
ture:

CCR 7 6 5 4 3 2 1 0

S X H I N Z V C

RESET 1 1 0 1 0 0 0 0

The bits C (Carry/Borrow), V (Overflow), Z (Zero), N (Negative) and H (Half Carry)
are status bits, set or cleared according to the result of the arithmetic and logic
instructions. Refer to the data sheet for details on how these bits are affected by each
instruction.

The bits I (General Interrupt Mask), X (XIRQ Interrupt Mask), and S (Stop
disable) are control bits used to enable/disable the interrupts, or the low-power op-
erating mode. When I = 1 all maskable interrupts are disabled. X = 1 disables the
non-maskable interrupt XIRQ, and S = 1 blocks the execution on the STOP instruc-
tion, which is treated like a NOP.

Some CCR bits (C, V, I) can be directly controlled by means of the instructions
SEC (Set Carry), CLC (Clear Carry), SEV (Set Overflow Bit), CLV (Clear Overflow
Bit), SEI (Set Interrupt Mask), and CLI (Clear Interrupt Mask). The CCR as a whole
may be read or written using the instructions TPA (Transfer CCR to A) and TAP
(Transfer A to CCR)

1.4.2 The CPU Registers of AVR

The CPU of the AVR microcontrollers has 32 general-purpose registers, called R0–
R31. The register pairs R26–R27, R28–R29, R30–R31 can be concatenated to form
the X, Y, Z , registers, which can be used for indirect addressing (R26 is XL – lower
byte of X, R27 is XH – higher byte of X, R28 is YL, R29 is YH, R30 is ZL and
R31 is ZH). The registers R16–R31 may be the destination of immediate addressed
operands like LDI (Load Register Immediate) or CPI (Compare Immediate). Unlike
HC11, the CPU registers of AVR are present with distinct addresses in the memory
map.

The Program Counter (PC) has functions similar to those of the PC register of
HC11. The difference is that the size of PC is not 16 bits, and is limited to the length
required to address the program memory (in case of AT90S8515 only 12 bits are
needed to address the 4K of program memory). PC is cleared at RESET.

The Stack Pointer (SP) has 16 bits, and is placed in the I/O register address space,
which makes it accessible to the programmer only by means of the IN and OUT
instructions, as two 8-bit registers SPH, and SPL.
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The CPU status register is called SREG and has the following structure:

SREG 7 6 5 4 3 2 1 0

I T H S V N Z C

RESET 0 0 0 0 0 0 0 0

The meaning of the bits in SREG is slightly different from those of HC11:
The I bit – Global Interrupt Enable/Disable Bit – has an opposite action: when

set to 1 the interrupts are enabled. The instructions that control this bit have the same
mnemonic SEI (Set I bit) and CLI (Clear I bit).

T – Bit Copy Storage. The status of this bit can be modified by the instructions
BST (Bit Store) and BLD (Bit Load), thus allowing the program to save the status
of a specific bit from a general-purpose register, or transfer this information to a bit
from another register. There is also a pair of conditional branch instructions which
test this bit: BRTS (Branch if T bit is Set), and BRTC (Branch if T bit is Clear)

S –Sign Bit – It is the exclusive OR between N and V

The other bits in SREG (C, Z, N, V, H) have the same meaning described for
HC11. The AVR microcontrollers have distinct SET–CLEAR instructions for each
of the SREG bits.

1.4.3 The CPU Registers of 8051

The accumulator A is a general-purpose 8-bit register, used to store operands or
results in more than a half of the instruction set of 8051.

The R0–R7 registers are 8-bit registers, similar to the registers R0–R31, described
for the AVR family of microcontrollers. There are four sets (or banks) of such registers,
selected by writing the bits [RS1:RS0] in the CPU status register PSW, described
below.

The four sets of eight registers each occupy 32 addresses in the address space
of data memory, at the addresses [0000h–0007h], [0008h–000Fh], [0010h–0017h],
[0018h–001Fh] (refer to Fig. 1.4).

The accumulator B is another general-purpose 8-bit register, having functions
similar to the R0–R7 registers. Besides that, the accumulator B is used to store one
of the operands in the case of the arithmetic instructions MUL AB and DIV AB.

The Data Pointer Register (DPTR) is a 16-bit register, used for indirect addressing
of operands, in a similar way to the X, Y, Z registers of AVR.

The Program Counter (PC) is a 16-bit register similar to the PC of HC11. PC is
cleared at RESET, thus all programs start at the address 0000h.

The Stack Pointer (SP) has the following distinctive features, compared to HC11
and AVR:

• It is an 8-bit register, i.e. it can address a memory area of 256 bytes maximum.
8051 can only use the internal memory for the stack.
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• Unlike HC11 and AVR where SP is initialized with an address at the end of RAM,
and decrements with each byte pushed on to the stack, the SP of 8051 increments
when data is added to the stack.

• For HC11 and AVR, SP points to the first free byte of the stack area. The
SP of 8051 indicates the last occupied location of the stack. At RESET, SP is
automatically initialized with 07h, hence the first byte pushed to the stack will
occupy the location with the address 08h.

The Processor Status Word (PSW) is similar to CCR of HC11 or SREG of AVR,
and has the following structure:

PSW 7 6 5 4 3 2 1 0

CY AC F0 RS1 RS0 OV – P

RESET 0 0 0 0 0 0 0 0

The bits CY, AC and OV have similar functions to the bits C, H, and V of HC11
and AVR.

[RS1:RS0] – Register bank select bits
P – Parity bit. P = 1 if the accumulator contains an odd number of 1s, and P =

0 if the accumulator contains an even number of 1s. Thus the number of 1s in the
accumulator plus P is always even. The bits PSW1 and PSW5 (F0) are uncommitted
and may be used as general-purpose status flags.

1.5 The Peripheral Interfaces

Microcontrollers are designed to be embedded in larger systems, and therefore they
must be able to interact with the outside world. This interaction is possible by means
of the peripheral interfaces. The general structure of a peripheral interface is shown
in Fig. 1.6.

Depending on the complexity of the specific circuits to be controlled by the
program, any peripheral interface contains one or more control and status registers,
and one or more data registers. These registers are normally located in the address
space of the data memory, and are accessed as RAM locations.

I/O lines Interface specific circuits

Internal bus

Control
register

Status
register

Data
register

Interrupt
request

Fig. 1.6. Typical structure of a peripheral interface
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The most common peripheral interfaces, present in almost all the usual micro-
controllers, are:

• The I/O (Input/Output) ports.
• The asynchronous serial interface (SCI, UART)
• The synchronous serial interface (SPI)
• Several types of timers
• The analog to digital (A/D) converters

The following chapters contain detailed descriptions of each of the above peripheral
interfaces. Most of the peripheral interfaces have a common feature, which is the
capability to generate interrupt requests to the CPU, when some specific events
occur. This feature is analyzed in the next paragraph.

1.6 The Interrupt System

1.6.1 General Description of the Interrupt System

Most of the events related to the peripheral interfaces, like the change of status
of an input line, or reception of a character on the serial communication line, are
asynchronous to the program running on the CPU. There are two possible ways to
inform the CPU about these events:

• One solution is to write the program so that it periodically tests the status of some
flags associated with the external events. This technique is called polling.

• The other solution is to interrupt the main program and execute a special subrou-
tine when the external event occurs.

An interrupt is a mechanism that allows an external event to temporarily put on hold
the normal execution of the program, forcing the execution of a specific subroutine.
Once the interrupt service subroutine completes, the main program continues from
the point where it was interrupted.

At the CPU level, this mechanism involves the following steps:

1. The identification of the interrupt source. This is automatically done by hardware.
2. Saving the current value of the PC register, thus providing a means to return from

the interrupt service routine. The contents of PC are saved to the stack, and the
operation is also done by hardware.

3. Then, the PC is loaded either with, or from, the address of a reserved memory
area, called the interrupt vector. For each possible interrupt, a unique vector is
assigned. The interrupt vectors are hardwired and cannot be modified by the
user.

4. At the address of the interrupt vector, the program must contain either the address
of the interrupt service routine (HC11 uses this technique) or an instruction for
an unconditional jump to this routine (AVR and 8051 work this way).

5. The next step is the execution of the Interrupt Service Routine (ISR). This is
a program sequence similar to a subroutine, but ending with a special instruction
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called Return from Interrupt (RTI, RETI). To make sure that the main program
is continued exactly from the status it had in the moment when the interrupt
occurred, it is crucial that all the CPU registers used by the interrupt service
routine are saved at the beginning of the ISR, and restored before returning to
the main program. Some microcontrollers, like the HC11 family, are provided
with a hardware mechanism to save the whole CPU status, upon reception of
an interrupt request. The status is restored by the instruction RTI (Return from
Interrupt) before the actual return to the main program. In all other cases, it is the
user’s responsibility to save and restore the CPU status in the interrupt service
routine.

6. The final step in handling an interrupt is the actual return to the main program.
This is done by executing a RTI (RETI) instruction as mentioned before. When
this instruction is encountered, the contents of PC, saved in step 2, are retrieved
from the stack and restored, which is equivalent to a jump to the point where
the program was interrupted. The process of returning from an ISR is similar
to returning from a regular subroutine, but there is an important difference: the
interrupt service routines cannot be interrupted, and therefore once an interrupt
has been acknowledged, further interrupts are automatically disabled. They are
re-enabled by the RTI (RETI) instruction. All interrupts occurring during the
execution of an ISR are queued and will be handled one by one, once the ISR is
serviced.

Important note. The stack is essential for the interrupt system. Both the PC and
the CPU status are saved in the stack when handling interrupts. Therefore, the
SP must be initialized by software before enabling the interrupts.

The interrupt service routine must save the CPU status and restore it before
returning to the main program.

If two or more interrupt requests occur simultaneously, they are serviced in
a predetermined order according to a hardwired priority. Refer to the data sheet
for each microcontroller for details.

The software control over the interrupt system is exerted either globally, by en-
abling/disabling all the interrupts by means of specific instructions, or individually,
by setting or clearing some control bits, called interrupt masks, associated with each
interrupt. In other words, the process of generating an interrupt request is double
conditioned, as shown in Fig. 1.7.

GLOBAL INTERRUPT MASK

LOCAL INTERRUPT MASK

INTERRUPT FLAG

INTERRUPT
REQUEST

Fig. 1.7. Double conditioning of interrupt requests
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The INTERRUPT FLAG is the actual interrupt source, and, usually, is a flip-flop
set by the external event. This bit is, in most cases, accessible for the program as
a distinct bit in the status register of the peripheral interface.

The LOCAL INTERRUPT MASKS are control bits, located in the control reg-
isters of the interface. When set to 1 by software, the interrupts from that specific
interface are enabled.

The GLOBAL INTERRUPT MASK is a bit located in the CPU status register
(CCR, SREG, PSW) that enables or disables all interrupts.

In some cases, it is required that the CPU is informed immediately about certain
important internal or external events, regardless of the status of the global interrupt
mask. The solution to this problem is the non-maskable interrupt, which is uncon-
ditionally transmitted to the CPU. A special case of non-maskable interrupt can be
considered the RESET. Basically, the behavior of the MCU at RESET is entirely
similar to the process of identification and execution of a non-maskable interrupt.

1.6.2 Distinctive Features of the Interrupt System of HC11

The most important feature of the interrupt system of HC11 is that the CPU status is
automatically saved by hardware, right after the PC is saved. This feature simplifies
the programmer’s work, but it wastes time saving and restoring all CPU registers. In
most cases, the interrupt service routine does not use all the CPU registers, but needs
to be executed as fast as possible.

The global control of the interrupt system is performed by means of the I bit in
the CCR register. When I = 1, all maskable interrupts are disabled. When I = 0, the
interrupts coming from a specific peripheral interface are enabled if the local mask
associated with that interface is set to 1. The I bit can be controlled by means of
the instructions SEI (Set Interrupt Mask) equivalent to Disable Interrupts, and CLI
(Clear Interrupt Mask), equivalent to Enable Interrupts.

Besides the maskable interrupts, HC11 has three non-maskable interrupts, without
counting the three possible RESET conditions (activation of the external RESET
line, clock monitor fail reset, and watchdog reset). These are: XIRQ – External
non-maskable interrupt, ILLOP – Illegal opcode trap, and SWI – software interrupt.

The XIRQ interrupt is generated upon detection of a logic level LOW on the
XIRQ input line, if the X bit in CCR is clear. The X bit acts similarly to I, but it only
affects the XIRQ interrupt, and it is not affected by the SEI and CLI instructions. The
only way the user can alter the status of this bit is by the TAP (Transfer A to CCR)
instruction.

The illegal opcode trap is an internal interrupt generated when an unknown opcode
is fetched and decoded into the CPU.

A software interrupt is generated when the instruction SWI is decoded. This is
useful for defining breakpoints in a program for debug purposes.

The priority of the interrupts is hardwired. However, it is possible to define one of
the interrupts as the highest priority non-maskable interrupt. For this purpose, the bits
[PSEL3–PSEL0] (Priority Select bits) in register HPRIO (Highest Priority Interrupt
Register) code the interrupt with the highest priority.
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The vector area for HC11 is located at the end of the address space between the
addresses $FFC0–$FFFF. See the data sheets for the list of exact addresses assigned
to each interrupt vector.

1.6.3 Distinctive Features of the Interrupt System of AVR

There are a few differences between the interrupt system of AT90S8535 and that of
HC11. They are listed below:

• The interrupt vector does not contain the address of the interrupt service routine,
but a jump instruction to that routine.

• The vector area is located at the beginning of the program memory address space,
between the addresses $0000 and $0010.

• There are no non-maskable interrupts besides RESET.
• The I bit in SREG acts differently, compared to HC11: when I = 1, the interrupts

are enabled.
• There is no equivalent to the HPRIO register, and no other means to modify the

hardwired relative priority of interrupts.

1.6.4 Distinctive Features of the Interrupt System of 8051

8051 has only five possible interrupt sources, compared to 16 for AVR, and 18 for
HC11. The vectors are placed at the beginning of the program memory address space
and must be initialized by the software to contain a jump to the interrupt service
routine.

The interrupts are enabled and disabled according to the same principles described
for HC11 and AVR. The difference is that all the control bits associated with the
interrupt system are placed in a Special Function Register (SFR) called IE (Interrupt
Enable register) located at the address A8h. This register contains the global interrupt
control bit, called in this case EA (Enable All interrupts), and bits to enable each
individual interrupt.

One interesting distinctive feature of the interrupt system of 8051 is the possi-
bility to choose between two priority levels (low and high) for each interrupt. To
this purpose, a special register called IP (Interrupt Priority register) contains a bit
associated with each interrupt. When the priority bit is 0, the associated interrupt
has a low priority level, and when the priority bit is 1, the interrupt has high priority.
Unlike HC11 and AVR, for 8051 a high-priority interrupt can interrupt a low-priority
interrupt service routine.

8051 does not save the CPU status automatically, therefore the interrupt service
routine must save and restore the registers used, including PSW.

1.7 Expanding the Resaurces of Microcontrollers

In many cases it is possible that the internal resources of a microcontroller are
insufficient for certain applications. A typical example is when the number of variables
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used to store data exceeds the capacity of the internal RAM memory. The obvious
solution to these situations is to add external components by creating an expanded
microcontroller structure.

The disadvantage of this solution is that a significant number of the available
I/O lines are used to create the external bus for accessing the new resources, and are
no longer available for normal I/O operations. Note that not all microcontrollers can
operate with an external bus. The following paragraphs describe how to create and
use expanded microcontroller structures.

1.7.1 HC11 Operating with External Bus

The HC11 microcontrollers have two pins, called MODA and MODB, which control
the operating mode. At RESET the status of these pins is read and, according to the
result, the microcontroller selects one of the operating modes listed in Table 1.1.

As shown in Table 1.1, there are four possible operating modes, among which
two are special and the other two are normal. In the special bootstrap mode, a small
ROM memory area becomes visible in the memory map. This ROM contains a short
program, called a bootloader, which is executed after RESET, allowing the user to
load and run a program in the internal RAM. This is useful, for example, to program
the internal ROM memory. See App. A.5 for details on how to do this.

The special test operating mode is destined for factory testing, and will not be
discussed in this book.

In the expanded operating mode, some of the MCU I/O lines are used to implement
the external bus. In some cases, to reduce the number of I/O lines used for this purpose,
the external data bus is multiplexed with the lower byte of the address bus.

Demultiplexing requires an external latch, and a signal AS (Address Strobe),
generated by the MCU, as shown in Fig. 1.8.

Besides AS, the MCU generates the signal R/W\ (Read/Write) to specify the
direction of the transfer on the data bus. A detailed example of using HC11 in
expanded mode is presented in App. A.4.

From the programmer’s point of view, when using HC11 in expanded operating
mode, the following details must be considered:

• All the MCU resources, except the I/O lines used to implement the external bus,
are still available, and have the same addresses.

• The internal ROM can be disabled by clearing the ROMON bit in the CONFIG
register.

Table 1.1. Selection of the operating mode of HC11

MODB MODA Operating mode
0 0 Special bootstrap
0 1 Special test
1 0 Single chip
1 1 Expanded
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1.7.2 AT90S8515 Operating with External Bus

From the two distinct buses of the AVR microcontrollers, only the bus used for the
data memory can be, in some cases, expanded to connect external RAM, or RAM
– like external devices. AT90S8515 uses the lines of port A to multiplex the data
bus with the lower order address bus, and port C for the high order address bus. The
signal that strobes the address into the external latch is called ALE (Address Latch
Enable). The direction of the transfer is indicated by two signals RD\ (Read) and
WR\ (Write) – both active LOW. The circuit for demultiplexing the bus is identical
to the one used by HC11, shown in Fig. 1.8.

The external bus is activated by software, writing 1 to the SRE bit (Static RAM
Enable) in the register MCUCR (MCU Control Register). When using slower external
memory, there is the possibility of including a WAIT cycle to each access to the
external RAM. Writing 1 to the SRW (Static RAM Wait) bit of MCUCR enables this
feature.

Appendix A.8 shows an example on how to use AT90S8515 with an external bus.

1.7.3 8051 Operating with External Bus

The external bus of 8051 is also multiplexed. Port P0 is used for the data bus and
the low-order address bus, and port P2 implements the high-order address bus. The
strobe signal for demultiplexing the bus is called ALE (Address latch Enable).

What is specific for 8051 is the capability to access on the same physical bus
two pages of external memory: one for program memory, and the other for data
memory. The two types of access are distinguished by means of a special signal,
called PSEN\ (Program Store Enable), generated by the MCU, active LOW. When
PSEN\ is active, the external logic must select an external ROM memory in order to
provide program code to the MCU through the data bus. The access to the external
RAM is controlled at the hardware level by the signals RD\ (Read) and WR\ (Write),
generated by the microcontroller. An additional signal, called EA\ (External Access),
active LOW, disables the internal ROM, and redirects all the accesses to the internal
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program memory (in the address range 0000h–0FFFh) to the external bus. Any access
to program memory at addresses higher that 1000h are directed to the external bus
regardless of the status of the EA\ input.

At the software level, accessing the external RAM is done by means of the special
instruction MOVX (Move to or from external RAM).

Chapter 11 and App. A.12 contain detailed examples of using 8051 with an
external bus.

1.8 Exercises

SX 1.1

Write a fragment of program to access a constant stored in the program memory of
a MCU with the Von Neumann architecture (HC11).

Solution

Like all Von Neumann computers, HC11 uses a single bus to connect all the resources
to the CPU, and has a single address space. Therefore, there is no difference between
the ways it accesses constants located in the program memory or variables stored in
RAM. The following code fragment does the job:

.....
LDAA ROMTAB
.....

ROMTAB DB $55 ;This defines $55 as
;a constant located
;in the program memory area

After the execution of the instruction LDAA ROMTAB, the contents of the
accumulator A are identical to the contents of the memory location having the address
ROMTAB ($55 in this case). The following example uses the X register as a pointer
to a table of constants, ROMTAB. After the execution of this code, A contains $55,
B equals $AA, and X contains the address ROMTAB.

.....
LDX #ROMTAB ;set X to point to ROMTAB
LDAA 0,X ;read one constant into A
LDAB 1,X ;read another constant into B
.....

ROMTAB DB $55 ;This defines $55 as a
;constant located in the
;program memory area

DB $AA
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SX 1.2

Write a code fragment to access a constant located in the program memory of
a microcontroller having the Harvard architecture (AT90S8515 AVR)

Solution

The AVR microcontrollers use the special instruction LPM to access constants stored
in the program memory. LPM copies to R0 the contents of the program memory
location with the address specified by the Z register. The problem is that AVR micro-
controllers have the program memory organized in 16-bit words and the assembler
assigns a word address to any label found in the code section.

LPM interprets the contents of the register Z in the following way: the most
significant 15 bits of Z represent the address of the 16-bit word, and the least significant
bit is the address of the byte within the 16-bit word: LSB(Z) = 0 indicates the least
significant byte, and when LSB(Z) = 1 the most significant byte is addressed.

....
LDI ZH,high(ROMTAB<<1)
LDI ZL,low(ROMTAB<<1)
LPM ;read first byte
MOV R1,R0 ;save $34 to R1
ADIW ZL,1 ;increment Z
LPM ;read second byte
MOV R2,R0 ;save $12 to R2
....

ROMTAB DW $1234

In the above example, the expression (ROMTAB<<1) means ROMTAB shifted
one position to the left, and high(ROMTAB<<1) designates the most significant
byte of the 16-bit value (ROMTAB<<1). The first LPM reads in R0 the lower byte
of the constant located at the address ROMTAB ($34) and, after incrementing the
address, (ADIW ZL,1) the second LPM reads the most significant byte of the constant
($12).

SX 1.3

Write a code fragment to access a constant stored in the program memory of an 8051
microcontroller.

Solution

8051 uses a special instruction to read ROM constants. This is MOVC (Move Code)
and has the following syntax:

MOVC A,@A+DPTR
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The effect of this instruction is that the accumulator A is loaded with the contents
of the program memory location having the address obtained by adding the 16-bit
integer in DPTR with the unsigned byte in A.

CLR A ;clear accumulator A
MOV DPTR,#ROMTAB ;load DPTR with the address

;ROMTAB
MOVC A,@A+DPTR ;get constant in A
.....
.....

ROMTAB:
DB 55h ;define the constant here
.....

SX 1.4

Provide an example of interrupt vector initialization for HC11.

Solution

The HC11 interrupt vector is a 2-byte memory space, which must be initialized with
the starting address of the interrupt service routine. For example, the interrupt vector
associated with RESET (remember RESET is treated as a non-maskable interrupt) is
located at the addresses $FFFE–$FFFF. At RESET, the MCU reads the two bytes from
these addresses ($FFFE contains the most significant byte) and loads the resulting
16-bit value into PC.

MAIN ....... ;Program entry point at
;RESET

.......
ORG $FFFE ;store the value of the

;label MAIN at $FFFE-$FFFF
DW MAIN

SX 1.5

Provide an example of interrupt vector initialization for AVR.

Solution

The vector area of the AVR microcontrollers start at the address $0000 in the address
space of the program memory. Each interrupt vector occupies a 16-bit word. Unlike
HC11, the AVR simply loads the hardwired value of the vector into the PC when an
interrupt is acknowledged. Initializing the vector consists in placing in the address of
the vector an instruction of an unconditional jump to the interrupt service routine. For
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example, the interrupt vector associated with the analog comparator has the address
$000C. The initialization of this vector is shown below:

.......

.ORG $000C
RJMP ANA_COMP ;unconditional jump to the

;interrupt handler
.......

ANA_COMP:
.......
RETI
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Using the Digital I/O Lines

2.1 In this Chapter

This chapter contains an overview of the parallel I/O subsystem of the HC11, AVR,
and 8051 microcontrollers, from a hardware and software perspective.

2.2 Overview of the Parallel I/O System

The digital I/O lines are the simplest and most common way microcontrollers interact
with the outside world. Figure 2.1 shows how digital input and output lines are
connected to the internal bus of the MCU.

In case of an input line, the status of the MCU pin is transferred on the internal
bus to the CPU by activating the internal signal RP (Read Port), generated during the
execution of the instruction used to read the port.

An output line is associated with an internal latch, which can be written from the
internal bus and the driver connected to the physical pin.

In practice, things are a bit more complicated. For economic and technological
reasons, it is more convenient to assign two or more functions to each pin than to
double the number of pins of the capsule. This is the reason why all microcontrollers
extensively use bi-directional input/output lines. The simplest way to obtain a bi-
directional line is to use an open drain driver for the output line. When the output

D

Internal bus

Internal bus

Pin Pin

RP

WP CLK

Q

Fig. 2.1. The principle of accessing the input and output lines



20 2 Using the Digital I/O Lines
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Fig. 2.2. Bi-directional I/O line with open drain output driver

transistor is blocked, an external device can control the line. Figure 2.2 shows the
logic diagram of a bi-directional I/O line implemented according to this principle.

When the software writes 1 to the latch associated with the output line, the output
transistor is blocked, and the line is turned into an input line. This solution is used by
the 8051 microcontrollers.

Another way to do this is to associate to each bi-directional I/O line an additional
latch, called a direction latch, which controls a tri-state output driver. When the
direction latch is set to 1 by software, the I/O line is configured as an output line.
A simplified logic diagram of an I/O line implemented according to this principle is
shown in Fig. 2.3.

This method of controlling the direction of the I/O lines is characteristic of the
microcontrollers belonging to the HC11 and AVR families.

Usually, the I/O lines are grouped into 8-bit ports, which have individual addresses
in the memory map. Similarly, the direction control bits are grouped into 8-bit
registers, called Data Direction Registers (DDR), associated with each I/O port.

Note that the I/O port, along with the associated data direction register, form
a structure similar to the general structure of the I/O peripheral interface, shown in
Fig. 1.6, where the data register is the port itself, and the control register is the data
direction register.

Often, the I/O lines have alternate functions in connection with some of the
microcontroller’s subsystems. For example, the asynchronous serial interface of the
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Fig. 2.3. Bi-directional I/O line with direction control
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HC11 uses the lines of port D, and the timer subsystem can use the lines of port A.
Normally, the external pins are automatically configured for the alternate function
when the respective subsystem is enabled by software, overriding the settings in the
data direction register, but this is not an absolute rule. Refer to the data sheet of each
microcontroller for details on how a certain peripheral interface shares the MCU pins
with the I/O ports.

2.3 Electrical Characteristics of the I/O Lines

One simple rule about interfacing a microcontroller is that any output line can safely
drive one standard TTL load, and the voltage on any input may swing between the
potential of GND and Vdd. In some particular cases, certain output lines can drive
up to 20 mA each, but even in these cases, care must be taken that the total power
dissipation does not exceed the limit specified by the manufacturer.

If the load current or voltage requirements are higher than the capabilities of the
microcontroller, the solution is to use adequate buffers between the control circuit
and the load. Figure 2.4 shows a possible way to connect a relay to an output line of
the 68HC11F1 microcontroller.

The relay is driven by the CMOS circuit 40107, able to drain a current up to
100 mA. Note the presence of the pull-down resistor R1, which connects the MCU
output to the ground. Its purpose is to maintain the line at the stable potential of
ground during RESET.

This is required because, at RESET, all the I/O lines of the microcontroller are
automatically configured as input lines. In the time interval between RESET and the
moment when the I/O line is configured as output, the potential at the input of the
40107 is undetermined, and thus the relay can be unintentionally activated.

The value of the pull-down resistor is determined by the fact that it loads the
MCU output line, which can supply a maximum current of 8–1 mA. A value of 10 K
for this resistor loads the output line with 0.5 mA and provides a safe pull-down for
the input of 40107.

3
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1
7

40107

3
2

1

R1 68HC11

K1

VCC

GND

Fig. 2.4. Connecting a relay to an output line of a microcontroller
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Fig. 2.5. ULN 2803 typical Darlington transistor interface for output lines

When higher current values are required, Darlington transistors are recommended
to connect the load. Figure 2.5 shows the schematic of a Darlington driver, as im-
plemented in the circuit ULN2803. This contains an array of eight such Darlington
drivers, each being able to sink 500 mA current and to stand 50 V VCE voltage.

As far as the input lines are concerned, the most common way of using them is
to read the status of contacts (push buttons, relays, etc.). The interface circuits must
provide precise logic levels for each possible status of the contact, and to eliminate,
as much as possible, the mechanical vibrations of the contact. A typical interface
circuit for digital input lines is presented in Fig. 2.6.

R1 is a pull-up resistor, intended to maintain a stable logic level high, when the
contact is open. Typical values are in the range 4.7 K–10 K. The capacitor C1, and
the Schmitt trigger 40106 are destined to eliminate the effect of the vibrations of the
contact, and to create clean edges for the electrical signal applied to the MCU port.

Often, it is required that the MCU ground be separated from the ground of
the input circuits. In this case, it is recommended that the input lines are optically
isolated, using circuits similar to that presented in Fig. 2.7. In this circuit, the resistor
R1 limits the current through the LED of the optocoupler OK1. When K1 is closed,
the transistor of the optocoupler saturates, providing a logic level zero at the input
line of the microcontroller. The role of R3 is to drain the charge accumulated in the
parasite capacitance of the junction BE of the transistor, thus improving the rising
edge of the signal in the collector. Typical values for R3 are in the range 330 K–470 K.
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Fig. 2.6. Typical input circuit for reading
relay contacts, push buttons, etc.
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Fig. 2.7. Optically isolated input line
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2.4 Controlling the I/O Lines by Software

The HC11 microcontrollers treat the I/O ports and the associated direction registers
as memory locations. The software initialization of I/O lines consists in writing to
the data direction register a byte having 1 in the positions corresponding to the output
lines, like in this example:

INIT_PORTD LDAA #$30 ;configure PORTD, bit 4,5 as
STAA DDRD ;output

For HC11, the software can read a port configured as output. In this situation, the
last value written to the port is read. Data written to an input port is not visible to the
MCU pins until the port is reconfigured as an output port.

The 8051 microcontrollers have two major features, as far as the I/O ports are
concerned: there are no direction registers, and the ports are bit-addressable.

All output pins of 8051 have open drain drivers, as shown in Fig. 2.2, and writing
a 1 to the port configures the corresponding line as input. Special instructions for bit
manipulation allow code sequences like this:

MOV C,P1.2 ;Move P1 bit2 to carry
MOV P1.3,C ;move carry bit to P1 bit 3
CLR P2.1 ;clear P2 bit 1
SETB P1.0 ;set bit 0 in P1
JB P3.3,LABEL ;Jump to LABEL if P3 bit 3 is set

The I/O subsystem of the AVR microcontrollers have some interesting distinctive
features (refer to Fig. 2.8). First, note the presence of two data registers, having
distinct addresses, associated with each port: one, called PINx, is used when the
port is configured as input, and the other, called PORTx, is used when the port is
configured as output.
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Fig. 2.8. Distinctive Features of the I/O lines of the AVR
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Writing to PORTx when DDRx = 0 (i.e. when the port is configured as input)
connects internal pull-up resistors to the input lines corresponding to the bits in
PORTx set to 1.

The actual status of the input lines is obtained by reading from the address PINx.
Reading from the address PORTx, when the port is configured as output, returns the
last value written to the port.

Special instructions have been provided to allow software access to the I/O ports
or to the individual bits thereof. These are:

IN Rd,ioport ;read from the address ioport to
;register Rd

OUT ioport,Rs ;write data from Rs to ioport
SBI ioport,bit ;set specified bit to ioport
CBI ioport,bit ;clear specified bit to ioport

The following program fragment illustrates aspects of the configuration and access
to PORTB:

LDI R16, $F0 ;configure upper nibble of PORTB
;as output

OUT DDRB,R16
LDI R16,$0F
OUT PORTB,R16 ;enable internal pull-ups on

;lower nibble and write 0 in the
;upper nibble

IN R0,PINB ;read the input lines

2.5 Exercises

SX 2.1

Assuming that the peripheral interfaces that share the lines of PORTD of HC11 are
disabled, specify the content of accumulator A after the execution of the following
code fragment:

LDAA #$38
STAA DDRD
LDAA #$30
STAA PORTD
LDAA PORTD
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Solution

Bits 7 and 6 of PORTD of HC11 are not implemented, and always read 0. By writing
$38 = 00111000b to DDRD, bits 5, 4, 3 of PORTD are configured as output lines.
Only these three bits are affected by subsequent write operations to PORTD. Read
operations from an output port return the last value written to the port.

For this reason, the content of A after the final read from PORTD in the above
example is 00110xxxb. The least significant three bits are input lines, and their status
is determined by the logic levels on the external pins of the MCU.

SX 2.2

Write a code fragment to configure the upper nibble of PORTC of AT90S8535 as
output, and the lower nibble as input, with the internal pull-up resistors enabled, then
read the values of PINC0-3 and write them to PORTC4-7.

Solution

LDI R16,$F0 ;configure port
OUT DDRC,R16
LDI R16,$0F ;enable pull-ups
OUT PORTC,R16
IN R16,PINC ;read input lines
SWAP R16 ;swap nibbles
SBR R16,$0F ;keep pull-ups active
OUT PORTC,R16 ;write to port

SX 2.3

Write a code fragment that configures the line P2.0 of a 8051 as input, then reads the
status of this line, and writes the value read to P2.7.

Solution

SETB P2.0 ;P2.0 configured as input
MOV C,P2.0 ;read input line to carry
MOV P2.7,C ;write carry to the output line
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Using the Asynchronous Serial Interface

3.1 In this Chapter

This chapter is an introduction to serial communication. It contains the description of
the asynchronous serial communication interface of HC11, AVR, and 8051, as well
as an overview of the RS232 and RS422/485 interfaces, and the principles of creating
simple microcontroller networks.

3.2 Synchronous vs. Asynchronous Communication

The main distinctive feature of a serial communication system is that data is handled
in series, i. e. bit by bit. The simplest serial communication device is the shift register.
Consider the example in Fig. 3.1, where two shift registers are connected in such
a way that the content of the first, called the transmitter, is transferred to the second,
called the receiver.

Note that, in this case, the shift clock CLK, and the control signals SH/LD\
and RSTR must be generated at the transmitter level, at precise moments of time
(see Fig. 3.2.) and transmitted along with data on the communication line. Such
a communication system, where the transmission clock is sent to the communication
line, is called synchronous communication.
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Fig. 3.1. Example of synchronous serial communication circuit



28 3 Using the Asynchronous Serial Interface

SH/LD\

CLK

RSTR

Fig. 3.2. Waveforms of the control signals for the circuit presented in Fig. 3.1

The problem becomes more complicated when it is not possible to send the serial
clock over the communication line. In this situation, the receiver must generate its
own clock, RxCLK, to shift data into the Rx shift register.

This type of serial communication, where the serial clock is not transmitted on
the communication line, is called asynchronous communication. The generic block
diagram of an asynchronous communication system is shown in Fig. 3.3.

To make this possible, the first requirement is that the transmitter and the receiver
clock have exactly the same frequency. A limited number of possible frequencies
have been standardized for asynchronous communication. These are: 110, 300, 600,
1200, 2400, 4800, 9600, 19 200, 57 600, 115 200 Hz.

Since the frequency of the transmission clock is directly related to the commu-
nication speed, so that with each clock pulse a bit of information is transmitted, the
communication speed is measured in bits per second or baud. The period of the
transmission clock is called the bit time Tb.

The second requirement is to mark somehow the beginning of the transmission
of a sequence of bits. For this purpose, a special synchronization bit, called the start
bit, has been inserted. This has the polarity opposed to the idle line status and its
duration equals one TxCLK period.

The moment when the transmission ends is known, because the number of bits in
each packet is known. In most cases, data is sent in 8-bit packets. To make sure the
communication line returns to its idle status after each data packet is transmitted, an

Tx Shift register Rx Shift register

TxCLK RxCLK

Data Data

Serial
line

Transmiter Receiver

Fig. 3.3. Block diagram of an asynchronous communication system

Start Stop

Tb/2 Tb Tb Tb Tb Tb Tb Tb Tb Tb

1 0 0 0 1 1 0 0

Fig. 3.4. Sampling data line in an asynchronous serial communication



3.3 Error Detection in Asynchronous Communication 29

additional stop bit is transmitted. This always has the status of the idle line. Figure 3.4.
shows how the data line is sampled at the receiver.

The falling edge of the data line, corresponding to the start bit, starts the reception
process.

The data line is sampled after half of the bit time interval to check for a valid start
bit, and then at intervals equal to Tb. The values of the data line at these moments are
shifted into the receiver data shift register Rx.

Important notes. The first bit transmitted in an asynchronous serial communi-
cation is the least significant bit (LSB).

The idle line status is HIGH.
The start bit always has the opposite polarity of the idle line, i. e. it is always 0.
The stop bit always has the polarity of the idle line, i. e. it is always 1.

3.3 Error Detection in Asynchronous Communication

One serious problem when handling asynchronous serial communication is the vul-
nerability to electromagnetic interference. Several means have been provided to de-
tect communication errors, and the status register of an asynchronous serial interface
normally contains special status bits to indicate these errors.

If, for instance, when sampling the data line at the moment T0 + Tb/2 (refer to
Fig. 3.4), a value of 1 is obtained, that means the falling edge detected at the moment
T0 was not a valid start bit, but a spike due to electromagnetic noise. This type of
error is called noise error.

Similarly, if the data line status at the moment T1 = T0 + Tb/2 + 9 × Tb is
not HIGH, this means that the expected stop bit is invalid, indicating that the byte
received is in error. This type of error is called framing error.

Obviously, these two control methods are insufficient to detect all possible errors.
Another method to verify the integrity of data is parity control. For this purpose,
a special bit, called the parity bit, is transmitted just before the stop bit. This is
either the most significant bit of each byte, or an additional ninth bit attached to each
byte.

The values of the parity bits are automatically set so that the total number of 1s
contained in the byte, plus the parity bit, is always an ODD or EVEN number, at the
user’s choice. Both the transmitter and receiver must calculate the parity according to
the same rule (ODD or EVEN). Upon reception of each byte, the parity is calculated,
and, if the parity does not match the rule, the error is reported.

Parity control still cannot detect all errors, but, at the hardware level, the methods
described above are all that can be done for error detection. For better error detection,
software techniques must be used. Basically, software detection of communication
errors relies on the following principles:
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• The communication is based on data packets, having a determined structure.
• Each data packet contains a special field reserved for a sophisticated checksum.

The transmitter computes the checksum for each packet and inserts it into the
reserved field of the packet.

• The receiver recalculates the checksum of the packet and compares it with the
value calculated by the transmitter and sent along with the packet. If the two
values don’t match the packet is rejected, and the transmitter is requested to
repeat the transmission of the packet.

This method is called Cyclic Redundancy Check Control (CRC). The algorithms
used to compute the checksums are so complex that the probability that a packet with
errors still has a correct checksum is extremely low.

3.4 The General Structure
of the Asynchronous Serial Communication Interface

The general block diagram of an asynchronous serial interface is presented in Fig. 3.5.
This circuit is called a Universal Asynchronous Receiver Transmitter (UART). There
are numerous stand-alone integrated circuits with this function, but most microcon-
trollers include a simplified version of UART, with the generic name Serial Commu-
nication Interface (SCI). This chapter contains details on the implementation of the
SCI of HC11, AVR and 8051 microcontrollers. Even though there are differences in
what concerns the names of the registers associated with the interface, or the names
and particular functions of the control and status bits, the general structure of the
interface is basically the same in all microcontrollers.

BAUD rate generator

Tx shift register

Control logic

Internal bus

Rx shift register

Control Tx Data Rx Data Status

CLK

TxD RxD

Fig. 3.5. General block diagram of the asynchronous serial communication interface

3.5 The Serial Communication Interface of 68HC11F1

SCDR – SCI Data Register

The transmitter’s and receiver’s data registers have the same address and the same
name: Serial Communication Data Register (SCDR). Physically, they are distinct
registers, but the write operations to SCDR are directed to the transmitter’s data
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register, while the read operations from SCDR return the content of the receiver’s
data register.

BAUD – Baud Rate Generator Control Register

To select the communication speed, a special register, called BAUD, has been pro-
vided. This controls how the system clock E is divided in the baud rate generator
block, before it is applied to the control logic that actually generates the clock for
the serial shift registers. The system clock is first applied to a programmable counter,
called a prescaler. The prescaler output is then applied to a second programmable
counter. After the two division stages the frequency of the resulting clock is 16 times
the actual baud rate.

The BAUD register has the following structure:

BAUD 7 6 5 4 3 2 1 0

TCLR – SCP1 SCP0 RCKB SCR2 SCR1 SCR0

RESET 0 0 0 0 0 0 0 0

• TCLR – Clear Baud Rate Counters – and RCKB – SCI Baud Rate Clock Check,
are only used in special test operating mode.

• SCP[1:0] – SCI Baud Rate Prescaller Selects. These two bits control the prescaler
division rate, as defined in Table 3.1.

• SCR[2:0] – SCI Baud Rate Selects. These bits control the second stage pro-
grammable counter of the baud generator, as shown in Table 3.2

Table 3.1. HC11 prescaler control bits

SCP1 SCP0 Prescaller divide internal clock by:

0 0 1
0 1 3
1 0 4
1 1 13

Table 3.2. HC11 baud rate select bits

SCR2 SCR1 SCR0 Prescaller output is divided by:

0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
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Example Knowing that the oscillator frequency is 8 MHz, and that the output fre-
quency of the baud generator must be 16 times the actual baud rate, determine the
value to write in the BAUD register in order to obtain 9600 baud communication
speed.

Solution The input clock for the prescaler is the system clock E.

fE = fOSC/4 = 2 MHz = 2 000 000 Hz

The output clock must have the frequency:

f1 = 9600 × 16 = 153 600 Hz

This gives the global division rate: 2 000 000/153 600 = 13.
Choose the prescaler to divide by 13 (SCP1:SCP0 = 1:1), and the secondary

counter to divide by 1 (SCR2:SCR1:SCR0 = 0:0:0). The resulting value for the
BAUD register is 00110000b = 30H.

Note that for a given oscillator frequency, not all the possible baud rates can be
obtained by programming the BAUD register.

With an 8-MHz oscillator clock it is impossible to obtain the baud rate of
19 200 bps, because the resulting global division rate is 6.5 (obviously, the divi-
sion constant must be as close as possible to an integer value). The solution in this
situation is to choose a different oscillator frequency. If, for example, the oscillator
frequency is 7.3728 MHz, the global division rate required for 19 200 baud is 6, which
can be easily obtained by choosing the prescaler to divide by 3, and the secondary
counter to divide by 2.

SCSR – SCI Status Register

SCSR 7 6 5 4 3 2 1 0

TDRE TC RDRF IDLE OR NF FE –

RESET 0 0 0 0 0 0 0 0

• TDRE – Transmitter Data Register Empty
This bit is automatically set when the transmitter’s data register is available for
a write operation.

0 = SCDR busy
1 = SCDR ready for a new operation

• TC – Transmit Complete flag
The meaning of this bit is very similar to TDRE. The difference is that TC refers
to any activity of the transmitter, including sending of break sequences on the
serial line.

0 = Transmitter busy
1 = Transmitter ready



3.5 The Serial Communication Interface of 68HC11F1 33

• RDRF – Receive Data Register Full Flag

0 = SCDR empty
1 = SCDR full

This flag indicates that a character has been received in SCDR and it is ready to
be handled by software. RDRF is cleared by reading SCSR followed by a read of
SCDR.

• IDLE – Rx Idle Line Detected Flag

0 = RxD line is active
1 = RxD line is idle

IDLE describes the status of the RxD line. It is set to 1 when RxD stays high for
at least one character time. IDLE is cleared by reading SCSR then reading SCDR.
Once cleared, it is not set again until the line becomes active, and then idles again.

• OR – Overrun Error Flag

0 = No overrun
1 = Overrun detected

This is an error flag. An overrun error occurs when all the bits of a new character
are received, and the previous character has not been handled by the software
(RDRF = 1).

• NF – Noise Error Flag
One of the situations when this error flag is set has been described in Sect. 3.3.
In fact, the reception data line is sampled several times during each Tb interval.
NF is set when the samples corresponding to the same interval Tb have different
values.

0 = character received without noise
1 = noise detected for the last character received

• FE – Framing Error
FE is set when a logic zero is detected in the position of the stop bit.

0 = Stop bit detected in the right position
1 = Zero detected instead of a stop bit

All error bits are cleared by reading SCSR followed by a read from SCDR.

SCCR1 – Serial Communications Control Register 1

This is the first of the two control registers of the interface. Only four bits are
implemented in this register as follows:

SCCR1 7 6 5 4 3 2 1 0

R8 T8 – M WAKE – – –

RESET 1 1 0 0 0 0 0 0
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The bits R8, T8, and M control the number of bits of the character transmitted/received
over the interface. If the MODE bit M = 0, 8-bit characters are transmitted along with
the corresponding start and stop bits. If M = 1, 9 data bits are transmitted for each
character. The least significant 8 bits are placed in SCDR, and the most significant
bit is T8 in case of a transmission operation and R8 in case of reception.

The control bit WAKE is related to an operating mode of the interface, which is
specific to HC11, and will not be discussed in this book.

SCCR2 – Serial Communications Control Register 2

This register contains the main control bits of the interface

SCCR2 7 6 5 4 3 2 1 0

TIE TCIE RIE ILIE TE RE RWU SBK

RESET 1 1 0 0 0 0 0 0

The most important control bits in this register are TE (Transmitter Enable) and RE
(Receiver Enable).

When TE = 1, the whole transmitter subsystem is enabled. Similarly RE = 1
enables the receiver subsystem. These bits are cleared at RESET, therefore they must
be set by software in the SCI initialization sequence.

The most significant four bits of this register, TIE, TCIE, RIE, ILIE, are local
interrupt masks for SCI-related interrupts.

• TIE – Transmitter interrupt enable

0 = TDRE interrupts disabled
1 = An interrupt request is generated when TDRE = 1.

• TCIE – Transmit Complete Interrupt Enable

0 = TC interrupts disabled
1 = SCI interrupt requested when TC status flag is set

• RIE – Receiver Interrupt Enable

0 = RDRF and OR interrupts disabled
1 = SCI interrupt requested when RDRF (receiver data register full) flag or the
OR (overrun error) bit in SCSR is set

• ILIE – Idle-Line Interrupt Enable

0 = IDLE interrupts disabled
1 = SCI interrupt requested when IDLE status flag is set

This bit is used in connection with the wake-up operating mode.

• RWU – Receiver Wakeup Control

0 = Normal SCI receiver
1 = Wakeup enabled and receiver interrupts inhibited
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• SBK – Send Break 0 = Break generator off
1 = Break codes generated

Writing 1 to this bit of SCCR2 causes a break character to be generated, i. e. the
TxD line is pulled to zero for at least one character time.

3.6 The Asynchronous Serial Communication Interface
of AVR Microcontrollers

The information in this paragraph refers to the microcontroller Atmel AT90S8535.
Other members of the AVR family may have different structures of the asynchronous
serial interfaces. See the data sheet for each specific microcontroller, for other models.

The data registers of the transmitter and receiver share the same address, just like
in case of the HC11 microcontrollers. The two physical registers are accessible for
the software as a single register, called UDR (UART Data Register). UDR is entirely
similar to SCDR of HC11.

The equivalent of the BAUD register of HC11 is called UBRR (UART Baud
Rate Register), for the AVR. The difference is that it is easier to use and much more
flexible than the HC11 register. The clock frequency of the output signal of the baud
rate generator is 16 times the actual baud rate, and is determined using the following
formula:

16 × BaudRate = Fosc/(UBRR + 1) (3.1)

where UBRR is the contents of UBRR, as written by software.
The status register of the interface is called the USR (UART Status Register) and

has the following structure:

USR 7 6 5 4 3 2 1 0

RXC TXC UDRE FE OR – – –

RESET 0 0 1 0 0 0 0 0

Here is the description of the status bits in USR:

• RXC – Reception Complete. This bit has a similar function to RDRF of the HC11.
It is automatically set by hardware when a character is available in UDR. It is
cleared by reading UDR, or when the associated interrupt is executed.

• TXC – Transmission Complete. This bit is set by hardware when the transmission
of a character completes. It has a similar function to the TC flag of HC11. TXC
is automatically cleared when the associated interrupt is executed or by writing
1 to the corresponding position of USR. This is the only Read/Write bit of USR.
All other bits are Read Only.

• UDRE – USART Data Register Empty. This is the equivalent of the TDRE status
bit of HC11, and indicates that the transmitter is ready to accept a new character.
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• OR – Overrun, and FE – Framing Error, have exactly the same meaning as in
HC11 SCSR. Unlike HC11, these bits are cleared only when a new character has
been received and read correctly.

The control register of the interface UCR (UART Control Register) has the following
structure:

UCR 7 6 5 4 3 2 1 0

RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8

RESET 0 0 0 0 0 0 0 0

• RXCIE, TXCIE, and UDRIE are local interrupt masks associated with the flags
RXC, TXC, and UDRE, respectively. When a mask is set to 1 by software, the
associated flag generates an interrupt when set to 1.

• TXE and RXE have identical functions with TE and RE of HC11. When TXE = 1
the transmitter is enabled, and RXE = 1 enables the receiver.

• CHR9 – this bit is similar to M from HC11. CHR9 = 1 indicates 9-bit transmis-
sion. In this case, RX8 and TX8 are the most significant bits of the transmit-
ted/received characters.

3.7 The Asynchronous Serial Interface of 8051

The 8051 serial communication interface is less typical than those presented in the
previous paragraphs. The first significant difference is that the baud rate generator is
missing. It is replaced by one of the system timers.

The interface data register is called SBUF, and it is similar to the data register of
HC11 and AVR. The control register of the interface, SCON, also contains several
status bits. It has the following structure:

SCON 7 6 5 4 3 2 1 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

RESET 0 0 0 0 0 0 0 0

The bits SM[0:1] (Serial communication Mode control) select one of the four possible
operating modes for the serial interface, as shown in Table 3.3.

Table 3.3. 8051 serial communication mode select bits

SM0 SM1 MODE Description Baud rate

0 0 0 Shift register fosc/12
0 1 1 8-bit UART Variable (set by timer)
1 0 2 9-bit UART fosc/32 or fosc/64
1 1 3 9-bit UART Variable (set by timer)
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In the operating mode 0, the interface acts like a serial shift register. The serial
shift clock has a fixed frequency, equal to fosc/12. Eight data bits are transmitted,
starting with the least significant bit (LSB). In mode 1, 10 bits are shifted from (to)
SBUF: one start bit, eight data bits (LSB first) and one stop bit. The communication
speed is variable and programmable using the system timer. In operating modes 2
and 3, nine data bits are sent, packed by a start bit and a stop bit. The communication
speed is fixed in mode 3 and variable in mode 3. Modes 2 and 3 are designed for
multiprocessor communication. This operating mode is specific for 8051, and will
not be discussed in this book. For normal operating modes 0, 1, the SM2 bit must be
cleared.

The most significant bit of SCON, FE/SM0, has a dual function. The selection
between the two functions is made by the bit SMOD0, in the register PCON (Power
Control Register). If SMOD0 = 1, then bit 7 (SCON) = FE, and if SMOD0 = 0,
then bit 7 (SCON) = SM0. FE (Framing Error) is set if a zero is detected in the
position of the stop bit while receiving a character, and cleared by writing zero to the
corresponding position of SCON.

The control bit REN (Receiver Enable) is used to enable (REN = 1) or disable
(REN = 0) the receiver. There is no similar bit to enable/disable the transmitter.

TB8 – RB8 contain the ninth data bit (the most significant bit, MSB) in operating
modes 2 and 3.

TI (Transmit Interrupt flag) is set by hardware at the end of the transmission
of a character. If the interrupt associated with the serial interface is enabled, the
condition TI = 1 generates an interrupt. TI must be cleared by software by writing
zero to this position of SCON.

RI (Receive Interrupt flag) is hardware set when a character has been received and
is available in SBUF. If the local interrupt mask is set to 1, an interrupt is generated.
RI must be cleared by writing zero to this position of SCON.

If the interrupts are disabled, TI and RI can be polled by software.
As described in Chap. 1, the interrupt system of 8051 is controlled by the IE reg-

ister. For the serial communication interface, one single bit, called ES, is reserved in
this register. Therefore it is not possible to enable/disable the receiver and transmitter
interrupts separately.

To get the full picture on the serial communication of 8051, refer to Chap. 6 for
an example on how to use the system timer as a baud rate generator.

3.8 Programming the Asynchronous Serial Interface

When programming any peripheral interface there are two major aspects to con-
sider: the initialization of the interface, and the actual data handling. Normally, the
initialization sequence is executed only once, after RESET. Data handling can be
performed either by periodically testing the status bits of the interface (polling), or
by enabling the interrupts associated with the interface.

This paragraph contains several examples of initialization sequences and serial
communication data handling for HC11 and AVR.
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3.8.1 Programming the SCI of HC11

The initialization sequence must do the following:

• Enable the transmitter and the receiver.
• Select the communication speed, by writing an appropriate value to the BAUD

register.
• Enable interrupts, if this is required.

Here is an example on how to initialize the SCI of 68HC11F1 for 9600 baud, no
interrupts. In this example it is assumed that the oscillator frequency is 8 MHz.

INIT_SCI LDAA #$30 ;see paragraph 3.5.
STAA BAUD ;9600 baud
CLR SCCR1 ;clear M for 8 bit

;communication
LDAA #$0C ;TE=1, RE=1
STAA SCCR2 ;no interrupts
....

And the reception and transmission routines may look like this:

SCI_REC LDAA SCSR ;read status register
ANDA #$20 ;isolate RDRF bit
BEQ SCI_REC ;wait until RDRF is set
LDAA SCDR ;get received character
STAA SOMEWHERE ;and save it
RTS

SCI_SEND TAB ;save character to B
SSLOOP LDAA SCSR ;read status register

ANDA #$80 ;isolate TDRE
BEQ SSLOOP ;wait until transmitter

;ready
STAB SCDR ;send character
RTS ;and return

This way of writing the SCI_REC routine is a very bad idea. It is always recom-
mended be avoided wait loops, that when the duration of the loop is unknown. In the
above example, the processor spends most of the time waiting for a character from
the SCI. A much better solution would be to write the reception routine like this:

SCI_REC2 LDAA SCSR ;read status register
ANDA #$20 ;isolate RDRF bit
BEQ FRET ;failure return
LDAA SCDR ;get received character
STAA SOMEWHERE ;and save it
SEC ;Set Carry to inform
RTS ;the main program

FRET CLC ;Clear carry
RTS
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This time, the processor doesn’t wait indefinitely for a character. It tests from the
beginning whether a character is available in SCDR, by checking the RDRF flag. If
a character has been received, this is read and saved in a variable, and the carry flag is
set to inform the main program about the event. If no character has been received, the
carry bit is cleared. Such a reception routine must be called periodically in a program
loop, but it has the advantage that the CPU does not hang up until a character is
received.

An even better solution would be to use SCI reception interrupts to handle the
reception of characters. For this purpose, the initialization routine must be modified
to enable the interrupts generated by RDRF.

INIT_SCI LDAA #$30 ;see paragraph 3.5
STAA BAUD ;9600 baud
CLR SCCR1 ;clear M for 8 bit

;communication
LDAA SCSR ;clear flags if any
LDAA SCDR
CLR QSCI
CLR QSCIERR
LDAA #$2C ;RIE=1, TE=1, RE=1
STAA SCCR2 ;enable receiver

;interrupts
.....

The control word written into SCCR2 contains the RIE bit set to 1, thus enabling
the reception interrupts. Note that, before enabling the interrupts, SCSR and SCDR
are read in this sequence in order to clear any flag that might generate a false interrupt.
QSCI and QSCIERR are two variables indicating that a character has been received,
or that a communication error has been detected. The interrupt service routine looks
like this:

SCI_ISR LDAA SCSR
ANDA #$0E ;Isolate all error flags
BNE SCIERR ;if error, inform the

;main program
LDAA SCDR ;get character
STAA SCIRB ;save it in a buffer
INC QSCI ;true QSCI
RTI ;return from interrupt

SCIERR LDAA SCDR ;read SCDR to clear flags
STAA SCIRB
INC QSCI ;true QSCI
INC QSCIERR ;true error flag
RTI

Note that when a reception error occurs, it is important to read the character
received to make sure that the flag that has generated the interrupt is cleared. It is
seldom required to analyze what error occurred, because in most cases, the only thing
to do is to ask for the character to be retransmitted.
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Important note. The SCI of HC11 uses two lines of PORTD to implement the
transmission and reception lines TxD, RxD. By enabling the SCI transmitter and
receiver, the TxD line is automatically configured as an output line, and RxD is
configured as an input line, regardless of the contents of DDRD.

3.8.2 Programming the UART of AT90S8535

Here is an example of initializing the UART of AT90S8535 for 19 200 baud, 8 bits
per character, no interrupts:

.EQU K19200=25 ;xtal=8 MHz
;BaudRate=19200

Init_Uart:
Ldi R16,K19200 ; set baud rate
Out UBRR,R16
Ldi R16,$18 ;RXEN=1, TXEN=1
Out UCR,R16
Ret

To enable reception interrupts, the control word written to UCR must be modified so
that the bit RXCIE = 1 (Reception Complete Interrupt Enable).

.EQU K19200=25 ;xtal=8 MHz
;BaudRate=19200

Init_Uart:
Ldi R16,K19200 ; set baud rate
Out UBRR,R16
Ldi R16,$98 ;RXEN=1, TXEN=1
Out UCR,R16 ;RXCIE=1
Ret

Unlike HC11, AVR microcontrollers clear the interrupt flag automatically by
hardware, when the interrupt is executed. The CPU status is NOT saved and restored
automatically, and therefore the CPU registers used by the interrupt routine must
be saved to the stack by software. Here is an example of a simple interrupt service
routine for AVR:

Uart_ISR:
Push R16 ;save CPU status
In R16,SREG
Push R16
In R16,UDR ;get character
Sts RECBUF,R16 ;save it
Ldi R16,$FF
Sts QUART,R16 ;true QUART
Pop R16 ;restore status
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Out SREG,R16
Pop R16
Reti ;return to main

QUART is a software flag that, when true, informs the main program that a character
is available. RECBUF is a one-character buffer to store the character received from
the UART.

3.8.3 Programming the UART of 8051

The 8051 asynchronous serial interface does not include a dedicated baud rate gen-
erator. It uses the internal timer to generate the serial clock. Refer to Chap. 6 to
understand how the timer is used in the following initialization routine. The control
word written to SCON selects the operating mode 1 for the serial interface, and sets
the bit REN = 1 to enable the receiver subsystem.

INIT_UART:
MOV SCON,#50H ;UART mode 1, REN=1
MOV PCON,#80H ;SMOD=1
MOV TMOD,#20H ;C/T=0, M1=1, M0=0
MOV TH1,#0FAH ;auto reload value
MOV TCON,#40H ;TR1=1 -- start counting
RET

Serial interface interrupts can be enabled by setting the bit ES in the register IE.
Below is an example of serial reception and transmission routines, which use RI and
TI polling rather than interrupts:

GETCHR:
CLR C
JB RI,GETCHR1 ;if character received
RET

GETCHR1: MOV A,SBUF ;get it
CLR RI ;always clear flag!
SETB C ;inform main program
RET

SENDCHR:
CLR C
JB TI,SENDCHR1 ;check if transmitter

;ready
RET

SENDCHR1:
CLR TI
MOV SBUF,A ;start sending
SETB C ;set carry to inform main

;program
RET
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3.9 Hardware Interfaces for Serial Communication

The asynchronous serial interface has been created to allow connection between
digital devices over relatively long distances. The problem is that, as the distance in-
creases, the effect of parasite capacitance and inductance of the cables becomes more
important, and the electromagnetic interference grows stronger. As a consequence,
the signals transmitted in this way are distorted and attenuated to such an extent that
the information carried by the signals cannot be extracted at the receiver.

To overcome the perturbing effect of long connection cables, several methods of
processing the electrical signals have been developed. Before transmission, the signals
are transformed by special interfaces, in order to increase their overall immunity to
perturbations. This section describes three such interfaces.

3.9.1 The RS232 Interface

RS is an abbreviation for Recommended Standard. The recommendation comes
from the Electronics Industry Association (EIA), which proposed in 1969 the RS232
standard, aiming to bring order in the multitude of technical solutions to the problems
of serial communication.

The main characteristic of RS232 is that the signals are carried as single voltages,
referred to a common ground. The voltage levels associated with the logic levels 0
and 1 are as follows:

For logic 0, the voltage on the communication line must be in the range +6 V to
+15 V.

For logic 1, the voltage must be in the range −6 V to −15 V.
In practice, the transmission devices generate ±12 V. The receiving devices

accept as logic 0 any signal ranging from +3 V to +15 V, and as logic 1 any signal
with the amplitude in the range −3 V to −15 V.

A number of special RS232 interface circuits have been developed. One very
popular circuit with this function is MAX232, from Maxim Semiconductors. This
contains two RS232 transmitters and two RS232 receivers in the same package. The
major advantage of this circuit is that it uses an internal oscillator and four external
capacitors to generate the ±12 V power supply sources, starting from a single +5 V
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Fig. 3.7. Waveforms illustrating the level conversion performed by MAX232

power supply. Most of the projects described in this book use this circuit. The
schematic of an RS232 interface using MAX232 is shown in Fig. 3.6.

Figure 3.7 shows the waveforms of a signal before and after the MAX232 driver.

3.9.2 Differential Communication. The Interfaces RS422 and RS485

The RS232 interface guarantees safe transmission up to a distance of 15 meters, at
a maximum communication speed of 19 200 baud. In practice, these limits are often
exceeded, but the overall reliability of the communication system drops. For longer
distances, and higher communication speed, a different interface is required.

The interfaces RS422 and RS485 use two conductors to transmit each digital
signal, the logic levels being defined by the relative difference of potential between
the two conductors. The transmitter’s line driver controls the voltage levels on the
two conductors, so that the difference of potential between them is positive for logic
1 and negative for logic 0, as illustrated in Fig. 3.8. This type of transmission is called
differential.

The advantage of the differential interface is that the electromagnetic interference
and the ground potential differences appear as common mode voltage for the receiver,
and they are rejected. This creates a much better immunity to perturbations and allows
communication speeds up to 10 Mb per second and cable length up to 1200 meters,
using twisted pair cable. The receiver requires at least 200 mV differential input
signal in order to reconstruct the original signal.

X

A

B

X

A

B

Fig. 3.8. Waveforms for differential transmission
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Fig. 3.9. Typical RS422/RS485 transceiver circuit

Both the RS422 and RS485 interfaces use differential communication. The differ-
ence is that RS422 is designed for point-to-point communication. Only one transmitter
and up to 10 receivers may be connected on a conductor pair, in a simplex transmis-
sion. RS485 allows multipoint communication, i. e. up to 32 transmitters/receivers
may be connected on a conductor pair, in a half-duplex communication. Therefore,
the RS485 transmitters must be able to drive their outputs into a high-impedance
status, allowing other transmitters to control the communication line. Note that the
RS485 standard defines only the electrical characteristics of the signals and devices,
and not the rules for accessing the RS485 bus, i. e. the communication protocol.

A typical RS422/RS485 circuit is SN 75176. The functional block diagram of
this circuit is shown in Fig. 3.9.

This circuit contains in the same capsule one differential transmitter, and one
differential receiver, having individual enable inputs: DE (Driver Enable) active
HIGH, and RE\backslash(Receiver Enable) active LOW. When DE = 0, the outputs
A, B are in a high impedance status, thus the transmitter is virtually disconnected
from the communication line, leaving the control of the line to other similar devices.

3.9.3 The Current Loop Interface

When the length of the communication line is higher than 1 km, or in harsh industrial
environments, where galvanic isolation between the transmitter and the receiver is
essential, it is possible to use the interface presented in Fig. 3.10.
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RxD

R1R2
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GNDGND
GND2

GND2
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2

6
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Fig. 3.10. Current loop transmission circuit
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The current generated by I0 closes to the ground either through the transistor
T1, when this is saturated, or through the LED of the optocoupler OK1, when T1
is blocked. As a consequence, the waveform of the signal in the collector of the
optocoupler’s transistor reproduces the TxD signal. Such a circuit can be used for
point-to-point communication systems to transmit data at 9600 bps, over cables a few
kilometers long.

3.10 Basic Principles of Networking with Microcontrollers,
Using the Asynchronous Serial Interface

A microcontroller-based device can be connected to a network if, at the hardware
level, it possesses a communication interface which allows multipoint communica-
tion, and, at the software level, is programmed to observe a set of rules concerning
the access to the communication channel. This set of rules defines the network com-
munication protocol.

From the hardware point of view, the most common solution used to implement
microcontroller-based networks uses the RS485 differential communication interface.

At the software level, a multitude of protocols has been developed, most of them
being structured as MASTER–SLAVE protocols. In a MASTER–SLAVE structured
network, a single device, called the MASTER, initiates all data transfers on the
communication bus. Each SLAVE device has a unique identification code, or address.
The MASTER device starts the communication by sending data packets that are
received and decoded by all SLAVE devices. Only one SLAVE is authorized to
answer the query – the one that recognizes its own address in the data packet received.

The general structure of data packets transferred in a network is given below:

Header Body CRC Tail

The fields Header and Tail are predefined sequences that define the beginning and
the end of the packet. The body of the packet must contain the address of the
destination slave device, the operation code, and, of course, a data field. The CRC
field is a checksum used to detect communication errors, as described in Sect. 3.3.
Assuming that all the bytes in the packet are ASCII codes, then the Header and Tail
fields can be reduced to a single byte, e. g. STX (Start of Text – $02) for the header,
and EOT (End of Text+– $04) for the tail.

Example Design a simple communication protocol for a microcontroller network
comprising one MASTER device and up to 10 slave devices. Each slave device must
be able to report the status of two digital inputs, and to change the status of two digital
outputs, by executing specific commands from the master device.

Solution To match these requirements, the structure of the body of the packets sent
by MASTER may be the following:

Opcode SADR Data1 Data2
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The opcode must identify the two possible operations: reporting the status of the
inputs, and changing the status of the output lines, e. g. the opcode may be the ASCII
character ‘I’ for read input, and ASCII ‘O’ for write output.

SADR is the address of the slave required to perform the operation indicated by
the opcode. Since the maximum number of slaves in the network is 10, SADR may
be the ASCII representation of the numbers ‘0’–‘9’.

Data1 and Data2 are two bytes reserved for the logic values of the inputs and
outputs. In case of a ‘write output’ command, these bytes define the new status of
the outputs: ‘0’, ‘1’, or ‘T’ (Toggle). In case of a ‘read input’ command, these bytes
have no meaning, and always have the value ‘0’. They are maintained in the packet
for the sole purpose of keeping the length of the packets constant.

All packets sent by MASTER must have an answer from the addressed slave. The
packets sent by the slaves have the same structure, but the opcodes are different, e. g.
ACK (acknowledge $06) for a command received and executed correctly, and NAK
(negative acknowledge $15) for a packet received with the wrong CRC. When the
slave answers with a NAK type packet, the MASTER repeats the query.

See Chap. 13 for the detailed description of an implementation of this protocol,
used to interrogate a number of addressable sensors.

3.11 Exercises

SX 3.1

What is the error contained in the interrupt service routine for the reception of
characters on SCI for HC11 listed below?

SCI_ISR LDAA SCSR
ANDA #$0E ;Isolate error flags
BNE SCIERR ;if error, inform the main

;program
LDAA SCDR ;get character
STAA SCIRB ;save it in a buffer
INC QSCI ;true QSCI
RTI ;return from interrupt

SCIERR INC QSCIERR ;true error flag
RTI

Solution

The SCI reception interrupt of HC11 is generated when (RIE = 1) AND ((RDRF = 1)
OR (OR = 1)), i. e. when the interrupt is enabled, and one of the conditions RDRF = 1
(character received) or OR = 1 (overrun error – a new character is received, and the
previous character has not yet been read by the software).

Both RDRF and OR flags are cleared by successively reading SCSR and SCDR.
In the interrupt service routine listed above, everything works fine until an error

occurs. In this case, the error is detected, and the program jumps to the label SCIERR,
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where it reaches RTI without reading SCDR. As a consequence, the flag that gener-
ated the interrupt is NOT cleared, and a new interrupt is generated right after RTI.
Remember that any interrupt service routine must clear the condition that generated
the interrupt.

SX 3.2

What is the main difference between the RS422 and RS485 interfaces?

Solution

Both RS422 and RS485 are designed for differential communication. The main
difference between the two standards is that RS422 is aimed at point-to-point com-
munication, where only one transmitter is connected to the communication line.

RS485 is intended for multipoint communication where more than one transmitter
is allowed to access the serial bus. Therefore, the RS485 line drivers must be able to
go to a high impedance status.

Normally the RS485 interface circuits can be used to implement RS422 point-to-
point communication by simply keeping the transmission driver permanently active.

SX 3.3

Draw the schematic of an RS422 full duplex communication line, using the SN75176
circuit, described in Sect. 3.9.2.

Solution

In full duplex communication it is possible to receive a character during the trans-
mission of another. For this to be possible, the transmission and reception lines must
be physically distinct. In case of differential communication, two conductors are
required for transmission and two others for reception.

VCC1
TxD

R1

GND

RxD

Microcontroller 1 Microcontroller 2

R2 VCC2

GND

GND

RxD

TxD

Fig. 3.11. Implementation of a full duplex RS422 communication line using SN75176
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The SN75176 circuit can operate as a RS422 transmitter or receiver, if the DE
or RE signals are permanently active. This means that two SN75176 circuits are
required at each end of the communication line, as shown in Fig. 3.11.

Both the RS232 and RS422 interfaces are used for point-to-point communication
links. The difference is that RS422 works over much longer distances than RS232.
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Using the Synchronous Serial Interface SPI

4.1 In this Chapter

This chapter contains a detailed description of the SPI of HC11 and AVR microcon-
trollers, with hardware and software applications examples.

4.2 General Description of the SPI

As mentioned in Chap. 3, in synchronous serial communication, both the transmitter
and receiver use the same synchronization clock to transfer data. Therefore, the device
that generates the transmission clock fully controls the moment and the speed of the
transmission, and it is called the MASTER.

The HC11 and AVR families of microcontrollers include a synchronous serial
interface, called the Serial Peripheral Interface (SPI), allowing operation either in
MASTER mode or in SLAVE mode. The general block diagram of a SPI link is
presented in Fig. 4.1.

Four shift registers are involved in this link. All work with the same shift clock,
generated by the MASTER device. The transmission and reception processes occur
simultaneously. Two data line are provided to this purpose: MOSI – (MASTER Out
SLAVE In) and MISO (MASTER In SLAVE Out).

Rx Data Register Tx Data Register

SCK

Tx Data Register Rx Data Register

MISO

SCK

MOSI

SSMaster Slave

Fig. 4.1. General block diagram of a SPI link



50 4 Using the Synchronous Serial Interface SPI

SCK
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CLK

MISOTx shift register Rx shift register

Control logic

Control
register

Status
register

Data
register

Interrupt
request

Internal bus

Fig. 4.2. General block diagram of the SPI

When the MASTER writes by software a byte into the transmitter’s data register,
eight clocks are automatically generated to the SCK line, and the bi-directional
transmission begins. Whatever is found at this moment in the SLAVE’s Tx Data
Register is shifted into the MASTER’s Rx Data Register.

When more than one SLAVE device is connected to the SPI bus, only one SLAVE
may be enabled at a certain time. An additional signal SS (SLAVE Select), active
LOW, is used to select the active SLAVE device.

4.3 The SPI of HC11 Microcontrollers

The structure of the SPI of HC11 follows exactly the general structure of a peripheral
interface, shown in Fig. 1.6. The registers of the interface are called SPDR (SPI Data
Register), SPCR (SPI Control Register), and SPSR (SPI Status Register).

SPDR – SPI Data Register

When writing to the address of SPDR, data is directly written into the transmitter’s
shift register. Reading from this address actually reads the last byte received in the
receivers shift register. SPDR is double buffered for input, and single buffered for
output. This means that SPDR can be read while a data transfer is in progress, but
if a byte is written into SPDR before the transmission of the previous character is
completed, an error condition occurs.

SPSR – SPI Status Register

The status register has the following structure:

SPSR 7 6 5 4 3 2 1 0

SPIF WCOL – MODF – – – –

RESET 0 0 0 0 0 0 0 0
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• SPIF – SPI transfer complete flag. This flag is set when a SPI transfer is complete
(after eight SCK cycles in a data transfer). It is cleared by reading SPSR (with
SPIF = 1), then accessing (reading or writing) SPDR.

SPIF = 0 No SPI transfer complete or SPI transfer still in progress
SPIF = 1 SPI transfer complete

• WCOL – Write Collision. This is an error flag. It is set if the software tries to
write data into SPDR while SPI data transfer is in progress. Clear this flag by
reading SPSR (WCOL = 1), then access SPDR.

WCOL = 0 No write collision
WCOL = 1 Write collision

• MODF – Mode Fault. This is another error flag. This error occurs when the input
line SS is pulled LOW (the device is hardware configured as SLAVE) while the
bit MSTR in the control register SPCR is set to 1.

MODF = 0 No mode fault
MODF = 1 Mode fault

This type of error occurs in multi-MASTER networks when more than one device
is trying to become MASTER at a certain moment.

All other bits of SPSR are not implemented and always read 0. Out of RESET,
SPSR is cleared.

SPCR – SPI Control Register

SPCR 7 6 5 4 3 2 1 0

SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0

RESET 0 0 0 0 0 1 U U

• SPIE – SPI Interrupt Enable. When set to 1, this bit enables interrupt requests
from the SPI system.

SPIE = 0 SPI system interrupts disabled
SPIE = 1 SPI system interrupts enabled

SPI can generate interrupts in two situations:
– Each time the SPIF bit in SPSR is 1 (a serial data transfer is completed).
– Each time MODF is set.
SPE – Serial Peripheral System Enable

SPE = 0 SPI system disabled
SPE = 1 SPI system enabled

This control bit enables the whole SPI system and assigns port D bits 2, 3, 4, 5 to
SPI. If the SPI works in master mode and DDRD bit 5 is set, then the port D bit
5 pin becomes a general-purpose output line instead of the SS input.
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• DWOM – Port D Wired-OR Mode. This bit selects the type of output on PORT
D. DWOM affects all port D pins. This bit is not directly related to the SPI. It is
placed here because the SPI uses most of the PORTD bits.

DWOM = 0 PORTD is configured as normal CMOS outputs
DWOM = 1 PORTD has open-drain outputs

• MSTR – Master Mode Select. This bit must be set by software to configure the
device to work as MASTER for the SPI link.

MSTR = 0 Slave mode
MSTR = 1 Master mode

• CPOL – Clock Polarity

CPOL = 0 SCK line idles LOW
CPOL = 1 SCK line idles HIGH

• CPHA – Clock Phase

CPHA = 0 SS must go HIGH between successive characters transmitted.
CPHA = 1 SS can be maintained LOW for all transfers

CPOL and CPHA must be programmed with identical values for MASTER and
SLAVE

• SPR[1:0] – SPI Clock Rate Selects

When the device is configured as MASTER, these two bits select how the SPI
clock (SCK) is obtained by dividing the main clock E, as described in Table 4.1. When
the device is configured as SLAVE, these bits have no effect, because the MASTER
generates the clock SCK.

Table 4.1. The effect of programming [SPR1–SPR0]

SPR1-SPR0 SCK is E clock divided by:

00 2
01 4
10 16
11 32

Initialization of the Interface

Obviously, the initialization sequence is different for MASTER and SLAVE. Below
is an example of an initialization sequence. Note that the SPI system interrupts are
enabled at the SLAVE device.
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*MASTER SPI initialization routine
SPI_INITM LDAA #$20 ;configure PORTD bit 5 as

;general purpose output
STAA DDRD
BCLR PORTD,$20 ;make SS=0
LDAA #$56 ;SPI enable, Master,

CPHA=1
;clock:32

STAA SPCR
RTS

* SLAVE SPI initialization routine
SPI_INITS LDAA #$C6 ;SPIE, SPE, Slave, CHPA=1

;clock:32
STAA SPCR
RTS

4.4 The SPI of the AVR Microcontrollers

The registers of the SPI interface on AVRs are almost identical with those described
for HC11. Even the names of the registers are identical: SPDR, SPSR, SPCR. Note
that some AVR microcontrollers have a so-called Universal Serial Interface (USI),
instead of SPI. The registers of USI are called USIDR, USISR, USICR. This paragraph
describes the SPI registers of AT90S8515/8535.

SPSR – SPI Status Register

The status register has the following structure:

SPSR 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – –

RESET 0 0 0 0 0 0 0 0

Only two bits are implemented in SPSR: SPIF and WCOL. They have identical
functions with the homologous bits of HC11. MODF is not implemented at the
AVR, because the behavior of the AVR is slightly different. If the SS input is pulled
LOW when the device is software configured as MASTER, the MSTR bit in SPCR is
automatically cleared.

SPCR – SPI Control Register

SPCR 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

RESET 0 0 0 0 0 0 0 0
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DWOM is replaced here by DORD (Data Order).

DORD = 1 then the LSB of the data word is transmitted first
DORD = 0 then the MSB of the data word is transmitted first.

The effect of SPR1–SPR0 is also different, as described in Table 4.2.

Table 4.2. The effect of programming [SPR1–SPR0]

SPR1-SPR0 SCK is the system clock divided by:

00 4
01 16
10 64
11 128

Initialization of the SPI Interface

INIT_SPIM: ;MASTER initialization
SBI DDRB,5 ;configure portb, bit 5 as

;output (MOSI)
SBI DDRB,7 ;configure portb, bit 7 as

output (SCK)
SBI DDRB,4 ;configure portb, bit 4 as

;output
LDI R16,0X54 ;master, no interrupts,

;fastest clock
OUT SPCR,R16
RET ;return to main program

INIT_SPIS: ;SLAVE initialization
CBI DDRB,5 ;configure portb, bit 5 as

;input (MOSI)
SBI DDRB,6 ;portb, bit 6 as output

(MISO)
CBI DDRB,7 ;portb, bit 7 as input

(SCK)
CBI DDRB,4 ;portb, bit 4 as input

(SS)
LDI R16,0XC4 ;slave, interrupts

enabled,
;fastest clock

OUT SPCR,R16
RET ;return to main program

Note that the AVR microcontrollers do not automatically configure the I/O lines used
by the SPI as input or output lines.
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4.5 Examples of Using The SPI

4.5.1 Using the SPI To Connect Two Microcontrollers

The SPI is a fast data communication link. It is not designed to work over long
distances. SPI can be used to create networks with two or more microcontrollers,
when processing tasks are distributed between two or more microcontrollers for
faster processing, or to connect special memory or peripheral devices.

A typical hardware SPI connection between two HC11E9 microcontrollers is
shown in Fig. 4.3. In all situations, it is important to define a communication protocol
between the two devices.

If, for instance, the SLAVE device is used to expand the MASTER’s I/O space
with two input ports, then the MASTER should send al least three bytes through the
SCI: the first byte is an opcode needed to inform the SLAVE about the intention of
the MASTER to read data from the SLAVE’s ports, and two other dummy bytes must
be sent in order to generate the clock pulses needed to read the two data bytes from
SLAVE.

Note that the SLAVE device does not have any initiative in a SPI link – it’s the
MASTER that decides when to start the communication, and how many data bytes
are to be exchanged between the two devices.

A convenient way to write the software is to write an interrupt-driven SPI com-
munication routine for the SLAVE, like in the example below:

MISO
MOSI
SCK
SS

PC5 PC5
PC6 PC6
PC7 PC7

14 14
15 15
16 16

PD0 PD0
PD1 PD1
PD2 PD2
PD3 PD3
PD4 PD4
PD5 PD5

MODA MODA

E E
AS AS

R/W\ R/W\

20 20
21 21
22 22
23 23
24 24
25 25

3 3

5 5
4 4
6 6

Fig. 4.3. SPI link between two 68HC11E9 microcontrollers
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* SPI_SENDCH - sends character stored at XSPI over SPI
* returns the character received form SLAVE in RSPI
SPI_SENDCH LDAA SPSR ;wait for SPIF

ANDA #$80 ;isolate SPIF bit
BEQ SPI_SENDCH ;if zero, wait
LDAA XSPI ;get character to send
STAA SPDR ;send it

SPS05 LDAA SPSR ;wait for end of
;transmission

ANDA #$80
BEQ SPS05
LDAA SPDR ;read the byte just

;received
STAA RSPI ;save it to RSPI, and

;return
RTS

SPISVC LDAA SPSR ;read SPSR to clear SPIF
LDAA SPDR
STAA SPIRDATA ;a RAM location to save

;received byte
INC QSPI ;true QSPI
LDAA SPIXDATA ;get the character to be

;sent next time
STAA SPDR ;place it in SPDR
RTI ;return from interrupt

Note that, at each interrupt, the SLAVE prepares the data to be delivered to
MASTER at the next interrupt. The main program is responsible for preparing the
transmission data in the variable SPIXDATA, according to the value received from
MASTER in SPIRDATA. QSPI is a flag indicating that a character has been received
and placed in SPIRDATA by the interrupt service routine.

4.5.2 Expanding the I/O Space Using the SPI

In some cases, when the number of MCU I/O lines is insufficient for a certain
application, a possible solution to expand the I/O space is to use shift registers
connected to the SPI. The following example shows how the I/O space of an ATMega8
AVR is expanded with one 8-bit input port, and one 8-bit output port. For the input
port, a parallel-input serial-output shift register (74165) is used. The output port is
implemented using a 4094 serial-input parallel-output register. The schematic of the
circuit is presented in Fig. 4.4.

Obviously, in this SPI link, the MASTER device is the microcontroller. The serial
data input of register IC2 is connected to the MOSI line of the MCU. The shift clock
for this register is generated by the microcontroller on the SCK line. The load (LD)
input for the 4094 register is driven by an extra output line of the micrcontroller
(PB2).
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Fig. 4.4. Expanding the I/O space of ATMega8 using the SPI

When the microcontroller writes a byte into SPDR, eight clock pulses are auto-
matically generated on the SCK line, and the content of SPDR is presented to the
MOSI line, bit by bit, and shifted into IC2. When the serial transfer completes, the
data in IC2 is effectively transferred to the output lines by generating a pulse 0-1-0
on LD (PB2).

The load signal SH/LD\ of the 4094 circuit is active LOW. This signal is obtained
by inverting the LD signal with the gate IC6. When 74C165 senses an active LOW
pulse on the SH/LD\ input, the status of the input lines is latched into the shift
register, and will be shifted into the microcontroller through the MISO line on the
same clock pulses SCK used to refresh the status of output registers. The processes
of transmission of output data and reception of input data are simultaneous.

The software must do the following steps:

1. Generate a pulse on LD (SH/LD\) to strobe the input lines into 74C165.
2. Write the output data into SPDR.
3. Poll SPIF waiting for the end of transfer.
4. Read the input byte from SPDR, and save it into a variable.
5. Generate another pulse on LD to strobe the output data onto the parallel lines.

Here is the complete listing of a program that does this in an endless loop:
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.Include "M8def.inc"

.Equ DD_LD=2 ;portb,2 LD signal

.Equ DD_MOSI=3 ;portb,3 MOSI

.Equ DD_SCK=5 ;portb,5 SCK

.Def Tmp1=R16 ;define temporary data
;registers

.Def Tmp2=R17

.Dseg ;DATA segment
BufT: .Byte 1 ;byte to send
BufR: .Byte 1 ;received byte

.Cseg ;start of CODE segment

.Org 0
Rjmp Start

Spi_transfer:
Sbis Spsr,Spif ;check SPIF
Ret ;return if still busy
Sbi PortB,2 ;pulse LD
Nop
Cbi PortB,2
In Tmp1,Spdr ;Get SPI data from

;previous read
Sts BufR,Tmp1 ;save received character
Out Spdr,Tmp1 ;start new transmission
Ret

START:
LDI TMP1,LOW(RAMEND) ;init SP
OUT SPL,TMP1
LDI TMP1,HIGH(RAMEND)
OUT SPH,TMP1
RCALL INIT_SPI ;init SPI interface

MAIN:
RCALL Spi_Transfer

; ..... other tasks here
RJMP MAIN

; init SPI routine
INIT_SPI:
; Configure MOSI SCK and LD

LDI TMP1(1<<DD_MOSI)|(1<<DD_SCK)|(1<<DD_LD)
OUT DDRB,TMP1

; Init SPI as master device, for 8 bit transmission and
; SCK=CK/16

LDI TMP1,(1<<SPE)|(1<<MSTR)|(1<<SPR0)
OUT SPSR,TMP1
RET
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4.6 Exercises

X 4.1

Draw the schematic of a SPI link between a HC11E9 (master) and an AT90S8535
(slave).

X 4.2

Draw the schematic of a circuit that expands the I/O space with 16 input lines
and 16 output lines. Describe how would you connect such circuit to a HC11E9
microcontroller.
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Using The I2C Bus

5.1 In this Chapter

This chapter continues the presentation of the serial communication interfaces with
the description of the I2C bus. It contains suggestions about a possible software
implementation of the I2C protocol, and examples on how to connect a 24×256 I2C
memory to a microcontroller.

5.2 The Principles of Implementation of the I2C Bus

An I2C bus (Inter IC bus) consists of two signal conductors named SDA (Serial
Data) and SCL (Serial Clock) that interconnect at least two devices. Each of the
devices connected to the bus must be identified by a unique address. In principle, any
of the devices connected to the bus can transmit and receive data. The device that
initiates and completes a bus transfer, and generates the transfer clock, is named the
MASTER.

As any of the devices connected on the bus can become MASTER at a certain
time, the SDA and SCL lines must both be bi-directional. In practice open drain or
open collector lines are used. The pull-up resistors have usual values between 2 K
and 10 K, depending on the chosen communication speed (at high speed, the pull-up
resistor has a smaller value). The idle status of the SDA and SCL lines is HIGH.
A bus transfer sequence comprises the following steps:

1. The MASTER device generates a START condition on the bus.
2. The MASTER device generates eight SCL pulses controlling the SDA line in

such a way that it transmits a byte which contains the SLAVE’s device address
and codes the type of the transfer (writing or reading). The receiver samples the
SDA line while the SCL line is HIGH, and therefore data must be stable while
the SCL is HIGH. SDA may change status only when SCL is LOW.

3. The MASTER device sends a ninth clock on the SCL line, while releasing the
SDA data line. The device that recognized its address in the first byte transmitted
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by the MASTER pulls the line LOW for the period of this clock, thus generating
an ACK (acknowledge) condition.

4. The MASTER device continues to generate packages of nine SCL pulses, while
the SDA is controlled either by the MASTER or by the SLAVE, depending on the
type of the transfer in course. After each byte transmitted, the receiver generates
an ACK condition. If the MASTER is the receiver (for example during a SLAVE
byte read operation), then THE MASTER will generate ACK.

5. The process continues until MASTER generates a STOP condition and the bus
returns to the idle status.

The following paragraphs describe each of the above steps.

5.2.1 The Start Transfer Condition

The START transfer condition consists of a HIGH to LOW transition of the SDA
line, while the SCL clock line is maintained HIGH. The waveform corresponding to
this condition is presented in Fig. 5.1.

SDA

SCL

START condition

Data may change

IDLE bus

Fig. 5.1. The START TRANSFER condition on the I2C bus

5.2.2 The Data Transfer on the I2C BuS

The actual data transfer, after a START condition, begins after the SCL line is brought
to LOW. At this moment, the state of the SDA data line may be modified and set to
the value of the bit that follows in the transmission sequence. The receiver samples
the SDA line only after the SCL line is raised HIGH. Figure 5.2 shows the waveforms
for SDA and SCL for a transmission sequence containing the START condition, and
the transmission of the four data bits in the sequence 1101.

The first bit transmitted is the most significant bit (MSB) of each byte.

5.2.3 The ACK Bit

After the transmission of a byte (eight SCL pulses), the MASTER device releases
the SDA line and generates a ninth SCL clock. When the SCL line becomes 1, the
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SDA

SCL
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Fig. 5.2. Example of waveform for data transmission on the I2C bus

SLAVE device pulls SDA to LOW, confirming by this the reception of the byte. In all
situations the data line is controlled by the receiver during the ACK bit time. In case
of a read byte operation, the device that sends ACK is the receiver, i.e. the MASTER
device.

5.2.4 The STOP Condition

A STOP transmission condition is generated when a LOW to HIGH transition of the
SDA line occurs while the SCL line is HIGH. After the STOP condition, both SDA
and SCL bus lines return to the idle state, and a new transmission must be preceded
by a START sequence.

SDA

SCL
STOP Condition

Fig. 5.3. The STOP TRANSFER condition on the I2C bus

In practice, the I2C protocol is more complicated, meaning that it allows operation
in multimaster mode. In this case, an arbitration mechanism is required to allocate
the bus in situations when two or more devices try to become MASTER at the same
time. In this book only single-master I2C buses are discussed.

5.3 A Software Implementation of the I2C Protocol

There is a variety of circuits available, which are designed to communicate with a mi-
crocontroller via the I2C bus: memories, LCD displays, A/D and D/A converters, etc.
Usually these are delivered in small capsules, with extremely low power consumption
and require only two I/O lines of the microcontroller for connection.
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Besides that, the access to any device connected to the I2C bus can be controlled
by a library of reusable software modules. All these advantages recommend the
I2C devices for many microcontroller applications, especially when the use of an
expanded microcontroller structure is difficult or impossible.

The SDA and SCL lines are controlled by software through simple subroutines.
The following example, written for HC11, illustrates the generation of the START
condition on the I2C bus:

I2CSTART BSET PORTA,SCL ;make sure the clock is
HIGH

JSR DELAY ;wait a few microseconds
BCLR PORTA,SDA ;HIGH to LOW transition of

SDA
JSR DELAY
RTS

Similarly, a STOP condition is generated in the following way:

I2CSTOP BSET PORTA,SCL ;make sure the clock is
HIGH

JSR DELAY ;wait a few microseconds
BSET PORTA,SDA ;LOW to HIGH transition of

SDA
JSR DELAY
RTS

5.4 Accessing 24C256 Memory Devices

In the example presented in Fig. 5.4, the two 24Cxx circuits have the address lines
A0, A1, A2, hardwired to different values. In this configuration, the microcontroller
is, obviously, the MASTER device. After the START sequence, the microcontroller
sends a byte that contains the address of the SLAVE device and the type of the
operation: read or write. The structure of this byte is as follows:

MSB LSB

1 0 1 0 A2 A1 A0 R/W

R/W\ = 1 indicates that a read operation follows.
R/W\ = 0 indicates a memory write operation

The upper-nibble of this byte is always 1010 for this type of memory. The A2, A1,
A0 bits contain the SLAVE’s device address. After the transmission of the byte with
the SLAVE address, the device that recognizes its address pulls the SDA line LOW,
for the duration of the ninth clock, thus generating the ACK condition.

In the case of a write operation to the 24C256 memory, after the byte containing
the SLAVE address, the microcontroller sends two bytes containing the address of
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Fig. 5.4. Connecting I2C memory devices to a microcontroller

the location that is to be written, followed by a byte containing the value to be written
in the memory. After each received byte, the memory sends an ACK bit, and, after
the last ACK, the microcontroller generates a STOP condition to complete the write
operation. If, instead of generating a STOP condition, the microcontroller sends a new
byte, this will be written in the memory to the next address. In this manner, up to
64 bytes can be written consecutively. This type of operation is named “page write
mode”.

To read a byte from a random address (random read operation) the microcontroller
initiates a write sequence, in which it sends the byte with the SLAVE address, followed
by two bytes with the address of the location that is to be read. Then, a new START is
generated, followed by the SLAVE address byte, with the R/W\ bit set to 1, indicating
a read operation. After the ACK is received from the SLAVE, the microcontroller
sends eight more SCL pulses to get the read byte from memory, then it generates
a STOP condition.

If, instead of generating the STOP condition, the microcontroller sends an ACK,
followed by eight SCL clock pulses, it reads the byte from the next address. The
process continues in the same way. At each ACK generated by the microcontroller,
the internal address counter of the memory is incremented, and the process continues
with reading of the next byte. The process completes when MCU generates a STOP
condition.

The accompanying CD contains examples of subroutines to access I2C memories,
written for HC11 and 8051.
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5.5 Exercises

SX 5.1

Is the I2C communication synchronous or asynchronous?

Solution

Since there is a dedicated line for transmission of the clock, it follows that the
transmission on the I2C bus is synchronous. The START and STOP conditions delimit
data packets, not data bytes as in the case of the asynchronous communication.

SX 5.2

SPI and I2C are both synchronous communication methods. Which one is faster?

Solution

In theory at least, SPI is faster, because it is full duplex. At a given frequency of
the transmission clock, the data volume transmitted on SPI is double the volume
transmitted on I2C, because data is transmitted in both directions on the MOSI and
MISO lines.

SX5.3

Draw the waveforms for the SDA and SCL in case of the transmission of
a START transfer condition, followed by the transmission of the byte with the value
$A2 = 10100010b, and ACK.

Solution

See Fig. 5.5 for the idealized waveforms of SDA and SCL for this example.

START 1 0 1 0 0 0 1 0 ACK IDLE

1 2 3 4 5 6 7 8 9 IDLE

Fig. 5.5. Solution of the exercise SX 5.3
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Using the MCU Timers

6.1 In this Chapter

This chapter contains a description of the timer system of microcontrollers, including
the general-purpose timer, the PWM timer, and the watchdog.

6.2 The General Structure and Functions of the Timer System

Timing is essential for the operation of microcontroller systems, either for generating
signals with precisely determined duration, or for counting external events. For this
reason, the timer subsystem is present in all microcontroller implementations, and
covers a wide range of functions including:

• Generation of precise time intervals
• Measurement of duration of external events
• Counting external events.

Most microcontrollers are provided with dedicated timers, or use the general-
purpose timer to implement the following additional functions:

• Real time clock
• Generation of Pulse Width Modulated (PWM) signals
• Watchdog for detecting program runaway situations.

Although there are significant variations between different implementations of
the general-purpose timer in different microcontrollers, there are many similarities
in the principles of operation and the structure of the timer subsystem.

Figure 6.1 shows a general block diagram of the timer system, illustrating the
principles of implementation of most MCU timers.

The central element of the timer subsystem is a counter, TCNT (8 or 16-bits in
length), which may be read or (sometimes) written by software. The clock for TCNT
is obtained either from the system clock, divided by a programmable prescaler, or an
external clock applied to one of the MCU pins. The software control upon the timer is
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Fig. 6.1. General block diagram of the timer subsystem

performed by means of the control register TCTL and information regarding various
events related to the timer may be read from the status register TFLG.

Several operating modes are possible for the timer:
Timer overflow. In this mode, the event of interest is when the TCNT counter reaches
its maximum count and returns to zero on the next clock pulse. The overflow signal
that marks this event is applied to the interrupt control logic (ICL), which may
generate an interrupt request to the CPU.

The time interval between two successive overflows is controlled either by mod-
ifying the frequency of the input clock applied to TCNT, or by writing to TCNT an
initial value for counting.

• Input capture. In this operating mode, the contents of TCNT at the moment of the
occurrence of an external event, defined by the edge of an input signal, is trans-
ferred in a capture register (ICR), and an interrupt request may be generated. By
comparing two consecutive values capture by the ICR, it is possible to determine
the time interval between the two external events.

• Output compare. In this operating mode, the contents of TCNT are continuously
compared by hardware to the contents of the OCR (Output Compare Register) by
means of the digital comparator COMP. When the contents of the two registers
match, an interrupt request may be generated. Optionally, the compare match can
be programmed to change the status of one or more output lines.

• External events counter. In this operating mode, the input of TCNT is connected
to one of the MCU input lines, and TCNT counts the pulses associated with the
external events. The software is informed about the recorded number of external
events by reading TCNT.
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6.3 Distinctive Features of the General-Purpose Timer of HC11

The 16-bit TCNT counter of HC11 can count on the internal clock only, and only
upwards. It can be read by software, but cannot be cleared or written. The prescaler
is a programmable 4-bit counter, which divides the system clock E by 1, 4, 8, or 16.

There are four 16-bit output compare registers (OCR), called TOC1, TOC2,
TOC3, and TOC4, three input capture register (ICR), called TIC1, TIC2, and TIC3,
and an additional register, which can be configured by software to operate as a fifth
OCR register, under the name of TOC5, or as a fourth input capture register TIC4.
The various timer functions are associated with the I/O lines of PORT A, as shown
in Table 6.1.

Table 6.1. Alternate functions of the I/O lines of PORT A

PORTA Associated timer function

PA0 input capture 3
PA1 input capture 2
PA2 input capture 1
PA3 input capture 4/output compare 5
PA4 output compare 4
PA5 output compare 3
PA6 output compare 2
PA7 output compare 1

6.3.1 The Control and Status Registers of the HC11 Timer

Although the counter TCNT, and the prescaler are unique, the presence of the eight
ICR/OCR registers, each having distinct status flags, associated I/O lines, along with
the possibility to generate distinct interrupt requests, makes the HC11 timer act as
eight different timers. Therefore, the number of control and status registers associated
with the timer is higher than the average number of registers of a peripheral interface.
For clarity of the presentation, the registers of the timer system are described in
connection with the basic operating modes of the timer.

6.3.1.1 The Timer Overflow Operating Mode

The prescaler is controlled by the bits PR1:PR0 in register TMSK2 (Timer Interrupt
Mask Register 2, bits [1:0]), which select the dividing rate of the system clock E to
obtain the clock for TCNT.

After the transition of the counter TCNT from $FFFF to $0000, a flag is set by
hardware. This is the TOF (Time Overflow Flag) bit in the status register TFLG2
(bit 7). If the associated local interrupt mask, TOI (Time Overflow Interrupt enable)
from register TMSK2 (bit 7), is set, then an interrupt request is generated.

Note that the interrupt service routine must clear TOF by writing 1 in the corre-
sponding position of the TFLG2 register.
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6.3.1.2 The Input Capture Operating Mode

In order to use the input capture feature, the first step required is to configure the
corresponding line of PORTA as input, by clearing the corresponding bit in DDRA.
For IC4, then the IC4/OC5 control bit in the PACTL register must be set to 1. This
bit is cleared at RESET, thus OC5 is enabled.

The next step is to select the edge of the input signal that triggers the capture. For
each of the four capture inputs, two bits are assigned in the TCTL2 register (Timer
Control Register 2), called EDGxB and EDGxA,.

The structure of TCTL2 is as follows:

TCTL2 7 6 5 4 3 2 1 0

EDG4 EDG4 EDG1 EDG1 EDG2 EDG2 EDG3 EDG3
B A B A B A B A

RESET 0 0 0 0 0 0 0 0

And the effect of [EDGxB:EDGxA] is described in Table 6.2.

Table 6.2. Selection of the capture edge for input capture

EDGxB EDGxA Type of capture

0 0 capture disabled
0 1 capture on rising edge
1 0 capture on falling edge
1 1 capture on both edges

The occurrence of an edge with the selected polarity on the input line associated
with the input capture timer sets a flag in the TFLG1 register (Timer Interrupt Flag
Register 1). This flag can be polled by software, or may generate an interrupt if the
input capture interrupt is enabled by setting the local mask bit in the TMSK1 register
(Timer Interrupt Mask Register 1).

The structure of the TFLG1 and TMSK1 registers is presented below:

TFLG1 7 6 5 4 3 2 1 0

OC1F OC2F OC3F OC4F I4/O5F IC1F IC2F IC3F

RESET 0 0 0 0 0 0 0 0

TMSK1 7 6 5 4 3 2 1 0

OC1I OC2I OC3I OC4I I4/O5I IC1I IC2I IC3I

RESET 0 0 0 0 0 0 0 0

ICxF is the flag that indicates an event on the ICx input, while OCxF reports
a match between the contents of TCNT and OCxR. ICxI and OCxI are the local
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interrupt masks that, when set to 1 by software, allow ICxF and OCxF to generate
interrupts.

The ICxF and OCxF flags are cleared by writing 1 to the corresponding position
of the TFLG1 register. The interrupt service routine must clear the flag that generated
the interrupt, otherwise a new interrupt is generated, right after the execution of the
RTI (Return from Interrupt) instruction.

6.3.1.3 The Output Compare Operating Mode

The software initialization sequence for the output compare timers is very similar to
that required by the input capture timers. It starts by configuring the associated lines
of PORT A as output lines by writing 1 to the corresponding bits of DDRA.

Then the software must specify the action to be taken on compare match. The
register TCTL1 (Timer Control Register 1) serves this purpose.

TCTL1 7 6 5 4 3 2 1 0

OM2 OL2 OM3 OL3 OM4 OL4 OM5 OL5

RESET 0 0 0 0 0 0 0 0

OMx and OLx are, respectively, Output Mode and Output Level control bits associated
to the OCx output. The effect of these bits is described in Table 6.3.

Table 6.3. The effect of the control bits in TCTL1

OMx OLx Action taken on compare match

0 0 Timer disconnected from output pin
0 1 Toggle OCx output line
1 0 Clear OCx output line to 0
1 1 Set OCx output line to 1

The event flags associated to OCx and the interrupt mask bits are located in the
registers TFLG1 and TMSK1, described in the previous section.

To increase the flexibility of the HC11 timer, the TOC1 timer has been provided
with the capability to simultaneously control two or more of the PORTA lines asso-
ciated to the timer, i. e. PORTA [3–7]. Two additional registers have been provided
for this purpose, called OC1M (OC1 Mask) and OC1D (OC1 Data).

Only five bits are implemented in these registers, as follows:

OC1M 7 6 5 4 3 2 1 0

OC1M7 OC1M6 OC1M5 OC1M4 OC1M3 – – –

RESET 0 0 0 0 0 – – –
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OC1D 7 6 5 4 3 2 1 0

OC1D7 OC1D6 OC1D5 OC1D4 OC1D3 – – –

RESET 0 0 0 0 0 – – –

• OC1M indicates the lines of PORTA lines to be affected at the next OC1 match,
and OC1D contain the data to be written to PORTA.

OC1Mx = 1 – line x of PORTA will be written with OC1D value at the next
compare match.
OC1Mx = 0 – line x of PORTA will not be affected by OC1.

Note that TOCx interrupts may be used without affecting the associated outputs of
PORTA (OMx = 0, OLx = 0), only for generating interrupts at precise time intervals.

6.3.1.4 Counting External Events

The main timer of HC11 cannot count on the external clock. To solve the problem of
counting external events, an additional 8-bit counter, called the Pulse Accumulator,
has been provided. This is a supplementary, simplified timer, without the input capture
and output compare registers, but having the ability to count either external pulses,
applied on an input pin, or an internal clock.

The line PA7 is used as the pulse accumulator input (PAI) for the external clock.
When configured to count on the internal clock, this clock has a fixed frequency E/64,
and the PAI line is used to enable/disable counting.

The control register of this timer is PACTL, which has the following structure:

PACTL 7 6 5 4 3 2 1 0

– PAEN PAMOD PEDGE – I4/O5 RTR1 RTR0

RESET 0 0 0 0 0 – – –

• PAEN – Pulse Accumulator Timer Enable. Writing 1 in this position enables the
entire subsystem.

• PAMOD – Pulse Accumulator Mode

PAMOD = 0. The pulse accumulator operates as an event counter, counting pulses
applied to the PAI input.
PAMOD = 1. The pulse accumulator operates in Gated Time Accumulation mode,
counting on an internal clock obtained by dividing the system clock E by 64. When
PAMOD = 1, counting of the internal clock pulses is enabled by the logic level
on the PAI line. PAMOD works in conjunction with the bit PEDGE, as shown in
Table 6.4.

• PEDGE – Pulse Accumulator Edge control. In the Event Counter operating mode
(PAMOD = 0), this bit selects the edge of the input signal that increments the
counter. In Gated Time Accumulation mode (PAMOD = 1), PEDGE selects the
level of the signal on the PAI input, which inhibits counting of the internal clock.
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Table 6.4. Pulse accumulator operating modes

PAMOD PEDGE Action on timer

0 0 PA counts on falling edge of PAI
0 1 PA counts on rising edge of PAI
1 0 PAI = 0 inhibits counting.
1 1 PAI = 1 inhibits counting.

The other bits in PACTL refer to other subsystems, or are unimplemented.
There are two status bits associated with the pulse accumulator timer interface,

located in TFLG2:

• PAOVF – Pulse Accumulator Overflow Flag. This is automatically set when PA
overflows from $FF to $00, regardless of the clock (internal or external) selected
for counting. PAOVF is cleared by writing 1 in the corresponding position (bit 5)
of the TFLG2.

• PAIF – Pulse Accumulator Input Edge Flag. This bit is automatically set at the
detection of an edge (selected by PEDGE ) of the signal on the PAI input. It is
cleared by writing 1 in the corresponding condition (bit 4) of TFLG2.

These two flags have associated interrupt mask bits in the TMSK2 register. When
PAOVFI = 1 (bit 5 from TMSK2), the setting of PAOVF generates an interrupt. Sim-
ilarly, when PAII = 1 (bit 4 from TMSK2), an interrupt is generated at the occurrence
of the selected edge of the PAI input.

6.3.2 Exercises Regarding the Use of the General-Purpose Timer of HC11

SX 6.1

Write the initialization routine that enables the interrupts at the detection of a rising
edge of a signal applied on PA0.

Solution

PA0 is associated with the input capture timer IC3 (see Table 6.1). The initialization
sequence must configure this bit of PORTA as the input, along with the following
additional operations:

• Select the rising edge of the signal on PA0, by writing the bits [EDG3B:EDG3A]
in TCTL2 with [0:1].

• Enable TIC3 interrupts by setting to 1 the local mask IC3I (IC3 interrupt enable)
in TMSK1
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Here is the program sequence that performs these operations:

ITIC3 BCLR DDRA,$01 ;PA0 input
LDAA #$01 ;[EDG3B:EDG3A]=[0:1]
STAA TCTL2 ;select rising edge
BSET TFLG1,$01 ;clear IC3F if any
BSET TMSK1,$01 ;enable TIC3 interrupts

SX 6.2

Knowing that the external oscillator frequency is 8 MHz, write the initialization
sequence and the interrupt routine to generate a 500-Hz clock on PA5.

Solution

PA5 is associated with TOC3. The initialization sequence must configure PA5 as
output, define the action to be performed on the OC3 output at compare match, by
writing [OM3:OL3] bits from TCTL1, and enable TOC3 interrupts. The interrupt
service routine must clear the interrupt flag, and prepare the next interrupt by writing
a new value in TOC3. For an 8-MHz frequency of the external oscillator the internal
E clock has a frequency of 2 MHz (0.5 microseconds/period).

Since [PR1:PR0] bits in TMSK2 are cleared at RESET, the prescaler is configured
to divide E by 1. An output frequency of 500 Hz, corresponds to a period of 2
milliseconds, i.e. 4000 periods of the E clock. The interrupt routine must add the
constant 4000 to the current value of the register TOC3, and write the TOC3 register
with the result. Thus, the next moment when TCNT matches the contents of TOC3
comes after 4000 E clock periods, which is equivalent to 2 ms.

The output line associated to TOC3 must be programmed to toggle at every
compare match, by writing the control bits [OM3:OL3] in TCTL1 with [0:1].

Here is the initiation sequence that matches these requirements:

ITOC3 BSET DDRA,$20 ;PA5 output
LDAA #$10 ;[OM3:OL3]=[0:1]
STAA TCTL1 ;toggle output selected
BSET TFLG1,$20 ;clear IC3F if any
BSET TMSK1,$20 ;enable TOC3 interrupts

And the interrupt service routine for TOC3 is:

TOC3SVC BSET TFLG1,$20 ;clear OC3F
LDD TOC3 ;get current value of TOC3
ADDD #4000 ;add 4000 - 2 ms more
STD TOC3 ;update TOC3
RTI ;return from interrupt



6.4 Distinctive Feature of the Timer of the AVR Microcontrollers 75

SX 6.3

Write the initialization sequence for the pulse accumulator timer, so that it generates
an interrupt every tenth rising edge of the signal applied on PA7.

Solution

The required initialization sequence must perform the following operations:

• Configure PORTA bit 7 as the input line.
• Enable the pulse accumulator timer.
• Select the event counter operating mode.
• Select the rising edge of the input signal as the active edge.
• Initialize the counter PACNT with 246, so that the tenth pulse produces an

overflow.
• Enable the PAOVF interrupt by setting the PAOVFI bit in TMSK2.

The resulting initialization sequence looks like this:

INIT_PA BCLR DDRA,$80 ;PA7 input
LDAA #$50 ;PAEN=1, PAMOD=0, PEDGE=1
STAA PACTL ;write control register
LDAA #246
STAA PACNT ;init counter
BSET TFLG2,$20 ;clear PAOVF if any
BSET TMSK2,$20 ;enable PAOVF interrupts

The interrupt routine must do the following:

• Clear the PAOVF flag, by writing 1 in position 5 of TFLG2.
• Write the constant 246 to PANCT, so that the next overflow occurs at the tenth

pulse on PAI.

Below is the listing of the interrupt service routine that does this:

PAOVF_SVC BSET TFLG2,$20 ;clear PAOVF
LDAA #246 ;write 246 to PACNT
STAA PACNT
...
RTI ;return from interrupt

6.4 Distinctive Feature of the Timer of the AVR Microcontrollers

Unlike the HC11 family, where the timer subsystem remains the same for all family
members, for the AVR there may be significant differences in the implementation of
the timer from one family member to another. This section contains the description
of the timer subsystem of the microcontroller AT90S8515.

This, in fact, contains two distinct timers, named Timer0 and Timer1.
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6.4.1 The 8-Bit Timer/Counter Timer0

Timer0 is built around an 8-bit counter TCNT0. The clock for TCNT0 is selected
by means of the control bits [CS02:CS01:CS00] in TCCRO (Timer Counter Control
Register 0), according to Table 6.5.

Table 6.5. Clock selection for TIMER0 of AT90S8515

CS02 CS01 CS00 TCNT0 clock

0 0 0 Stop, the Timer/Counter0 is stopped.
0 0 1 CK
0 1 0 CK/8
0 1 1 CK/64
1 0 0 CK/256
1 0 1 CK/1024
1 1 0 External Pin T0, falling edge
1 1 1 External Pin T0, rising edge

The bits [CS02:CS01:CS00] are located in the positions [2:1:0] in the TCCR0
register. The rest of the bits of this register are not implemented. When the external
clock is selected for TCNT0, this is applied on the T0/B0 input. The I/O line must be
configured as input by clearing bit 0 of DDRB.

The only event reported about TIMER0 is the overflow. When the counter TCNT0
changes status from $FF to $00, the flag TOV0 (bit 1 from the TIFR register (Timer
Interrupt Flag Register)) is set. This flag is cleared, just like the HC11 interrupt flags,
by writing 1 to the respective position of the TIFR.

When set, TOV0 can generate an interrupt, if the interrupts are enabled by setting
the TOIE0 bit (Timer Overflow Interrupt Enable 0) in TIMSK (bit 1).

Note the many similarities between the structure and operation of Timer0 of
the AVR and the pulse accumulator timer of HC11. The presence of the prescaler
increases the flexibility of Timer0 compared to pulse accumulator timer, but the lack
of the gated time accumulation option is a minus.

6.4.2 The 16-Bit Timer/Counter Timer1

The structure of Timer1 of the AVR is very similar to the main timer of HC11. The
central element of this timer is the 16-bit counter TCNT1. This is accessible for
read and write operations on the 8-bit internal bus, as two registers: TCNT1H and
TCNT1L. This is accompanied by two output compare registers, called OCR1A and
OCR1B, and an input capture register, called ICR1.

The I/O lines associated with Timer1 are ICP (Input Capture Pin), T1, (the input
of the external clock), and OC1A, OC1B (Output Compare 1 A, B). For AT90S8515,
ICP and OC1B are available as dedicated pins, while OC1A and T1 share the MCU
pins with PD4 and PB1, respectively. Refer to the data sheet for other AVR models.
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6.4.2.1 The Timer Overflow Operating Mode

The clock for TCNT1 is selected by the bits [CS12:CS11:CS10] in the TCCR1B
register, as shown in Table 6.6.

Table 6.6. The effect of programming [CS12:CS11:CS10]

CS12 CS11 CS10 TCNT1 clock

0 0 0 Stop, the Timer/Counter1 is stopped.
0 0 1 CK
0 1 0 CK/8
0 1 1 CK/64
1 0 0 CK/256
1 0 1 CK/1024
1 1 0 External Pin T1, falling edge
1 1 1 External Pin T1, rising edge

The flag that indicates the change of status of TCNT1 from $FFFF to $0000 is
called TOV1 (Timer1 Overflow) and is located in bit 7 of TIFR (Timer Interrupt
Flag Register). TOV1 = 1 can generate an interrupt, if the mask bit TOIE1 (Timer
Overflow Interrupt Enable- bit 7 from TIMSK) is set to 1.

6.4.2.2 The Input Capture Operating Mode

This operating mode is controlled by two bits in the register TCCR1B (Timer/Counter1
Control Register B):

• ICNC – Input Capture Noise Canceler is bit 7 of TCCR1B.

ICNC1 = 0. The capture is triggered by the selected edge of the ICP (Input Cap-
ture Pin), without further checking.
ICNC1 = 1. The ICP line is sampled four times, at the frequency of the clock CK,
after the active edge is detected, and the capture is enabled only if the ICP line is
stable for the duration of the four samples.

• ICES1 – Input Capture Edge Select is bit 6 of TCCR1B.

ICES1 = 0. Capture on the falling edge.
ICES1 = 1. Capture on the rising edge.

The input capture flag ICF1 is bit 3 in TIFR (Timer Interrupt Flag Register).
When set, ICF1 can generate an interrupt, if TICIE1 (Timer Input Capture Interrupt
Enabled), bit 3 in TIMSK, is set to 1.

An interesting distinctive feature is that the ICF1 can be cleared in two ways,
either by writing 1 in the corresponding position from TIFR, or by hardware, at the
execution of the jump to the interrupt vector.
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Another unique feature of AVR microcontrollers is that the capture can be trig-
gered by the transitions of the output of the built-in analog comparator. See Chap. 7
for details on the use of this feature.

6.4.2.3 The Output Compare Operating Mode

Upon detection of a compare match between TCNT1 and one of the registers OCR1A
or OCR1B, three things can happen:

• A flag is set in the TIFR register. The flags associated with the two output compare
registers are called OC1FA and OC1FB.

• If the corresponding interrupt mask bit OCIE1A or OCIE1B is set, then an
interrupt request is generated.

• The status of the output line associated with the OCR register can be changed, ac-
cording to the control bits [COM1A1:COM1A0] or [COM1B1:COM1B0] (Com-
pare Output Mode select bits) in the control register TCCR1A. The four combi-
nations of these two bits correspond to the situations in Table 6.7.

Table 6.7. Action executed on compare match

COM1x1 COM1x0 Action on OC1x pin (x = A,B)

0 0 Timer/Counter1 disconnect from output pin OC1x
0 1 Toggle OC1x output line
1 0 Clear OC1x output line to zero
1 1 Set OC1x output line to one

The AVR microcontrollers allow the counter TCNT1 to be automatically cleared
by hardware after a compare match. This option is controlled by the CTC1 (Clear
Timer/Counter on Compare Match) bit in the TCCR1B register.

6.4.3 Synopsis of the Timer I/O Registers of AT90S8115

• TCNT0 – Timer0 8-bit counter
• TCCR0 – Timer Counter Control Register 0

TCCR0 7 6 5 4 3 2 1 0

– – – – – CS02 CS01 CS00

RESET 0 0 0 0 0 – – –

• TCNT1 – Timer1 16-bit counter
• TCCR1A – Timer/Counter1 Control Register A

TCCR1A 7 6 5 4 3 2 1 0

COM1 COM1 COM1 COM1 – – PWM1 PWM1
A1 A0 B1 B0 1 0

RESET 0 0 0 0 0 0 0 0
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• TCCR1B – Timer/Counter1 Control Register B

TCCR1B 7 6 5 4 3 2 1 0

ICNC1 ICES1 – – CTC1 CS12 CS11 CS10

RESET 0 0 0 0 0 0 0 0

• OCR1A and OCR1B – Timer Output Compare Registers A and B
• ICR1 – Timer Input Capture Register
• TIFR – Timer Interrupt Flag Register

TIFR 7 6 5 4 3 2 1 0

TOV1 OCF1A OCIFB – ICF1 – TOV0 –

RESET 0 0 0 0 0 0 0 0

• TIMSK – Timer Interrupt Mask Register

TIMSK 7 6 5 4 3 2 1 0

TOIE1 OCIE1A OCIE1B – TICIE1 – TOEI0 –

RESET 0 0 0 0 0 0 0 0

6.4.4 Summary of the Unique Features of the AVR Timer

• 10-bit prescaler.
• TCNT1 is read/write.
• TCNT1 can count on the external clock.
• TCNT1 can be automatically cleared at compare match.
• Input capture can be triggered by the built-in analog comparator.

6.4.5 Exercises Regarding the Use of AVR Timers

SX 6.4

Starting from an 8-MHz clock, use Timer0 to generate interrupts at 1-ms intervals.

Solution

The frequency of 8 MHz corresponds to a period of 0.125 microseconds. This means
that the interrupts must occur at intervals of 8000 periods of the clock CK.

8000 = 64×125, so if the prescaler is programmed to divide by 64, then TCNT0
must count 125 pulses before generating an overflow interrupt. Thus, TCNT0 must
be initialized with the value 256 − 125 = 131.

The initialization sequence must set TOIE0 (bit 1) in TIMSK to enable the TOV0
interrupt. The interrupt service routine must reload TCNT0 with this value.
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Here is the code to does all this:

*MASTER SPI initialization routine
.DEF TEMP1=R16 ;definitions
.DEF R_INT=R1 ;use r1 only for this

;interrupt
.EQU KTOVF=131 ;constant to load in TCNT0

INIT_T0: LDI TEMP1,$03 ; prescaler divide by 64
OUT TCCR0,TEMP1
LDI TEMP1,KTOVF ;init TCNT0
MOV R_INT,TEMP1
OUT TCNT0,R_INT
LDI TEMP1,$02
OUT TIFR,TEMP1 ;clear flag if any
OUT TIMSK,TEMP1 ;enable interrupt
RET ;end of initializations

;The interrupt service routine starts here
T0_ISR OUT TCNT0,R_INT ;reload counter

....
RETI ;return from interrupt

SX 6.5

Starting from an 8-MHz clock, use Timer1 in output compare mode to generate on
OC1A a 500-Hz clock having 50% duty cycle.

Solution

For a 500-Hz clock, OC1A must toggle two times faster, i.e. at 1 KHz. The
initialization sequence must select the clock for TCNT1, by writing the bits
[CS12:CS11:CS10] in TCCR1B with [0:1:0], which corresponds to a division factor
of 1 for CK.

Besides that, the CTC bit in TCCR1B must be set to force clearing of TCNT1
after each compare match. The OCR1A register must be initialized with 8000, and
the action upon OC1A must be set to ‘toggle’, by writing $40 in TCCR1A.

Finaly, the compare match interrupt for OC1A must be enabled by writing $40
in TIMSK. The interrupt routine is only needed to clear the OCF1A flag, because
TCNT1 is automatically cleared at compare match, and OCR1A remains unchanged
after initialization.
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The program sequence that executes the operations mentioned above is:

*MASTER SPI initialization routine
.DEF TEMP1=R16 ;definitions
.EQU KH=$1F ;higher byte of constant
.EQU KL=$40 ;lower byte of constant

INIT_T1: LDI TEMP1,$09 ;prescaler divide by 1
OUT TCCR1B,TEMP1 ;and CTC1=1
LDI TEMP1,$40 ;toggle OC1A
OUT TCCR1A,TEMP1

LDI TEMP1,KH ;write higher byte first !!
OUT OCR1AH,TEMP1
LDI TEMP1,KL
OUT OCR1AL,TEMP1
LDI TEMP1,$40 ;clear flag
OUT TIFR,TEMP1
OUT TIMSK,TEMP1 ;and enable interrupt
RET

6.5 Distinctive Features of the Timer System
of the 8051 Microcontrollers

The timer of the 8051 family of microcontrollers does not have the output compare
and the input capture features. In the standard configuration, there are two timers,
named Timer0 and Timer1, each having as central element a 16-bit counter, called
T0 and T1, respectively.

These are capable of counting, on an internal or external clock, and are accessible
from the internal bus for read and write, as two 8-bit registers: TH0–TL0 for Timer0,
TH1–TL1 for Timer1.

The only event reported by timers to the CPU is the timer overflow condition.
The logic diagram of the circuit for the clock selection and control is presented

in the Fig. 6.2.

OSC :12

Ti pin

INTi

GATE

TRi i=0,1

CONTROL

CK source

C/T=1

C/T=0

Fig. 6.2. Logic diagram of the clock control circuit for the 8051 timer
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6.5.1 The Control and Status Registers of the Timer

Timer1 can operate in three distinct modes and Timer0 in four modes. The control
bits in register TMOD select the timer operating mode and the clock applied to the
counter. The structure of TMOD is detailed below:

TMOD 7 6 5 4 3 2 1 0

GATE C/T M1 M0 GATE C/T M1 M0

RESET 0 0 0 0 0 0 0 0

The two nibbles of this register are identical. The lower nibble refers to Timer0,
and the upper nibble refers to Timer1.

[M1:M0] Mode select bits. These bits control the operating mode of the timer as
described in Table 6.8.

Table 6.8. Selection of the operating mode for 8051 timers

M1 M0 Operating mode

0 0 Mode 0 – 13-bit timer/counter
0 1 Mode 1 – 16-bit timer/counter
1 0 Mode 2 – 8-bit auto reload timer/counter
1 1 Mode 3 for Timer0, Timer 1 stopped

• C/T – Counter/Timer select bit.

C/T = 1 selects the external clock applied on T0 for Timer0, or T1 for Timer1.
C/T = 0 selects an internal clock having the frequency fOSC/12.

• GATE – Gated operation control bit.
GATE = 1 Counting is enabled by a logic level HIGH on the input pin INTi,
associated with the timer
GATE = 0. Counting is only conditioned by the TRi bit in TCON (Timer Control
Register) register.

TCON – The timer control register has the following structure:

TCON 7 6 5 4 3 2 1 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

RESET 0 0 0 0 0 0 0 0

• TFi – Timer i overflow flag. These bits are set by hardware when the counter
overflows, and are automatically cleared at the execution of the associated inter-
rupt service routine.

• TRi – Timer Run control. This is set and cleared by software to start/stop count-
ing. Refer to Fig. 6.2 for a description of the effect of this control bit.

• ITI, IEi – These control bits are not related to the timer system.
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The overflow flags TF0, TF1 can generate interrupt requests, if the interrupts are
enabled by setting the bits ET0, ET1 in the IE (Interrupt Enable) register. The IE
register controls all the possible interrupts of 8051 and has the following structure:

IE 7 6 5 4 3 2 1 0

EA – – ES ET1 EX1 ET0 EX0

RESET 0 0 0 0 0 0 0 0

• EA – Enable All. This is the global interrupt mask.

EA = 0 all interrupts are disabled.
EA = 1 each interrupt can be enabled/disabled individually.

• ES – Enable Serial Port Interrupt

ET1 – Enable interrupts from Timer1.
ET1 = 1 The flag TF1 generates an interrupt request when set.

• EX1 – Enable external interrupts from INT1
• ET0 – Enable interrupts from Timer0 (TF0)
• EX0 – Enable external interrupts from INT0

6.5.2 Description of the Timer Operating Mode 0

In operating mode 0, the counter Ti is 13-bits wide, with 5 bits in TLi, and 8 bits
in THi. The clock can be either internal (timer mode) or external (counter mode).
Selection between the internal or external clock is made by means of the C/T control
bit in the TMOD register.

The overflow condition occurs at the transition from status $1FFF to $0000, and
is indicated by setting the corresponding flag TFi to 1.

6.5.3 Description of the Timer Operating Mode 1

The logical diagram describing the 8051 timers operating in modes 0 and 1 is pre-
sented in Fig. 6.3. The only difference between mode 1 and mode 0 is that, in mode
1, the counter is 16-bit wide, and the overflow condition occurs at the transition from
status $FFFF to $0000.

CK source TLi
5/8 bits

THi
8 bits

TFi Interrupt

EA
ETii=0,1

Fig. 6.3. 8051 timer in mode 0/1
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6.5.4 Description of the Timer Operating Mode 2

In mode 2, the lower half of the counter (TLi) operates as an 8-bit counter, while the
upper half (THi) acts as a register that holds the reload value for TLi.

At overflow, the value written to THi is automatically transferred in TLi, and
counting continues from this value. The logic diagram for the operating mode 2 of
the 8051 timer is presented in Fig. 6.4. The clock source for the counter is selected
as shown in Fig. 6.2.

CK source TLi
8 bits TFi

Reload

THi
8 bits

EA i=0,1
ETi

Interrupt

Fig. 6.4. The 8051 timer operating in mode 2

6.5.5 Description of the Timer Operating Mode 3

This operating mode is specific only for Timer0. In mode 3, the counter T0 is split
into two 8-bit counters that count on different clocks. The lower half, TL0, operates
in a way similar to modes 0, and 1, but the length of the counter is limited to 8 bits.
At overflow, the flag TF0 is set, and an interrupt is generated if ET0 = 1.

The upper half of T0, called TH0, acts like a second 8-bit counter, which counts
a fixed frequency fOSC/12 clock. At overflow, TF1 is set, and an interrupt can be
generated if ET1 = 1. The logic diagram of the timer in this operating mode is
presented in Fig. 6.5.

OSC :12

T0
pin

GATE

INT0
pin

TR 0

C/T=1

C/T=0

Control

TL 0
8 bits

TF 0 Interrupt

EA
ET 0

TR 1 Control
EA
ET 1

InterruptTH 0
8 bits TF 1

Fig. 6.5. The 8051 Timer in mode 3
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6.5.6 Using Timer1 as a Baud Rate Generator

Timer1 is used to generate the communication clock for the serial port. When the
serial port is configured in mode 1 or 3, the baud rate is determined by the Timer1
overflow rate, according to the following formulas (SMOD is bit 7 in PCON):

When SMOD = 0 Baud = (Timer1_Overflow_Rate)/32
When SMOD = 1 Baud = (Timer1_Overflow_Rate)/16
Both internal or external clock sources may be selected; the only thing that

counts is the overflow rate. In practice, for the usual baud rates, the use of the internal
clock is recommended, and to program Timer1 in mode 2, autoreload. The software
initialization sequence loads TH1 with the reload value and starts the timer. No further
action is required for the software.

Timer0 can be configured to operate in mode 3, and use the control signals TF1,
TR1, while Timer1 is used as baud rate generator.

Compared to the AVR and HC11 timers, the general-purpose timer of the 8051
is weaker, for at least two reasons:

• The only event related to the timer reported to the CPU is timer overflow
• The timer cannot directly control any of the MCU I/O lines.

These minuses have been corrected in the next generation of microcontrollers
derived from 8051. The 80x52 family of microcontrollers includes an additional
timer, called Timer2, which solves these problems.

6.5.7 Exercises for Programming the 8051 Timer

SX 6.6

Starting from an oscillator frequency of 11.059 MHz, write an initialization sequence
to use Timer1 as a baud rate generator for 9600 baud.

Solution

The frequency of the internal clock is: fCOUNT = fOSC/12 = 0.92158 MHz. The
frequency of the UART clock is: fUART = 16×Baud_rate = 16×9600 = 153 600 Hz.

The resulting overflow rate for Timer1 is:

Timer1_Overflow_Rate = fCOUNT/ fUART = 6 .

This gives the reload value for Timer1:

(TH1) = 255 − 6 + 1 = 250 = 0xFA .

The other initializations required refer to:

• SMOD (bit 7 of PCON) must be set to 1
• Select operating mode 2 for Timer1 (M1 = 1, M0 = 0)
• Select the internal clock for Timer1 (C/T = 0)
• Start the timer (TR1 = 1)



86 6 Using the MCU Timers

The resulting values for the registers involved are: PCON = 80h, TMOD = 20h,
and TCON = 40h.

Here is the initialization sequence required:

INIT_T1:
MOV PCON,#80H ;SMOD=1
MOV TMOD,#20H ;C/T=0, M1=1, M0=0
MOV TH1,#0FAH ;auto reload value
MOV TCON,#40H ;TR1=1 -- start counting
RET

SX6.7

Starting from an oscillator clock frequency of 20 MHz, write the initialization se-
quence and the interrupt service routine to configure Timer0 in operating mode 1, to
generate interrupts at 10-ms intervals.

Solution

In operating mode 1, with C/T = 0, T0 is a 16-bit counter, using the internal clock with
a frequency of fCLOCK = fOSC/12, which corresponds to a period TCLOCK = 0.6 µs.
The required 10-ms interval corresponds to a number of 10 000/0.6 = 16 666 TCLOCK

periods. To overflow in 16 666 periods, the timer must start counting at the value:
65 535 − 16 666 + 1 = 48 870 = 0BEE6H.

The other initializations required concern selecting the operating mode 1 (M1 =
0, M0 = 1) in TMOD, and starting the timer, by setting TR1 = 1 in TCON. Finally
the initialization sequence must enable a Timer0 interrupt, by setting the bits EA and
ET0 in register IE. The interrupt service routine must reload the value 0BEE6H in
TH0:TL0.

Here is the required initialization sequence:

INIT_T0:
MOV TMOD,#01H ;C/T=0, M1=0, M0=1, Timer0
MOV TH0,#0BEH ;TH0
MOV TL0,#0E6H ;TL0
MOV TCON,#20H ;TR0=1 -- start counting
MOV IE,#82H ;enable interrupts
RET

The interrupt service routine must reload the initialization values in TH0:TL0.
Since each MOV instruction takes two cycles to execute, the reload value must be
decreased by 4, and becomes 0BEE2H.

MOV TH0,#0BEH ;TH0
MOV TL0,#0E2H ;TL0
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6.6 PWM Timers. Principles of Operation

A PWM signal is, basically, a signal with the duty cycle dynamically controlled. If
this signal is passed through a low-pass filter, the output of the filter is the analog
signal VOUT = K × A, where A is the amplitude of the PWM pulses, and K is the
duty cycle.

This is a simple and cheap D/A converter, and therefore most recent microcon-
trollers include a dedicated PWM timer, or have the main timer designed with the
capability to generate PWM signals.

The Motorola 68HC11 series K microcontrollers include a dedicated PWM timer,
consisting of a free-running up-counter, PWCNT, whose content is permanently
compared with two programmable registers, called PWPER and PWDTY. Refer to
the block diagram of this timer, presented in Fig. 6.6.

PWPER defines the period of the output signal, and PWDTY controls the duty
cycle of the PWM output. When the contents of the counter PWCNT match the
contents of PWDTY, the control logic changes the polarity of the output signal, and
when PWCNT reaches the value in PWPER, the counter is automatically cleared.

The register PWCTL contains control bits to select the frequency of the input
clock for PWCNT, the polarity of the output signal, and enable the entire PWM
system.

The operation of the PWM timer is synthetically presented in Fig. 6.7.
The series K microcontrollers 68HCHC11 include four 8-bit PWM channels.

These can be configured to operate as two 16-bit PWM timers. The advantage of the
structure presented in Fig. 6.6 is that it allows fine-tuning of the period of the output
signal in a wide range.

The AVR family of microcontrollers uses Timer1 to generate PWM signals. The
PWCNT counter is implemented using the least significant 8, 9, or 10 bits of TCNT1.
There is no PWPER register, so that the period of the output signal can only be
adjusted by selecting the frequency of the input clock.

The length of the PWCNT counter is software selectable, by means of the bits
[PWM11:PWM10] in register TCCR1A. The functions of the PWDTY register are
executed by the OCR1 register. The difference is that when operating as a PWM

Prescaller PWCNT

PWPER

PWDTY

PWCTL
Internal bus

COMP1

COMP2

Output
logic

PWM out

Reset counter

Fig. 6.6. Simplified block diagram of the PWM timer of 68HC11 series K
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PWCNT

PWPER

PWDTY

PWMOUT

Time

Time

Fig. 6.7. Functional diagram of the PWM timer of 68HC11 series K

timer, TCNT1 is forced to be reversible. It counts up from $0000 to a TOP value,
determined by the length of the counter (8, 9, or 10 bits). When it reaches the TOP
value, it starts counting down to zero. The polarity of the output signal is changed

Up  Down

PWCNT

PWDTY

PWCTL

COMP
Output
logic

PWMOUT

Internal bus

Prescaller

Fig. 6.8. Simplified block diagram of the PWM AVR timer

PWCNT

TOP

PWDTY

PWMOUT

Time

Time

Fig. 6.9. Functional diagram of the PWM AVR timer
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in opposite directions, when TCNT1 matches the value of OCR1 when counting
upwards, and downwards. Refer to Fig. 6.8, and 6.9 for details of the operation of the
PWM AVR timer.

This PWM system is far less flexible than that of the HC11, but it is simple and
cheap, so that it has been implemented in many AVR microcontrollers.

6.7 Watchdog Timers

The block diagram of a watchdog timer is presented in Fig. 6.10. The system con-
sists of a counter, having the overflow time programmable in a range from a few
milliseconds to a few seconds. When the watchdog overflows, a hardware RESET is
generated.

COUNTER

CLK

MUX

RESET COUNTER

OVERFLOW
DETECT

MCU RESET

Internal bus

CONTROL
REGISTER

Fig. 6.10. Block diagram of the watchdog timer

If the watchdog is enabled, the program running on the microcontroller must be
organized so that, periodically, at time intervals shorter than the overflow time, it
resets the watchdog’s counter, otherwise a hardware RESET is generated.

The control register is used to enable the watchdog, to select the overflow time,
and to reset the counter.

6.7.1 The Watchdog of HC11

The watchdog system of HC11 is called the COP Timer (Computer Operating Prop-
erly Timer).

The watchdog overflow time is selected by means of the control bits [CR1:CR0]
(COP Rate select) in the OPTION register, as shown in Table 6.9. [CR1:CR0] can only
be written during the first 64 E clock cycles, after RESET. This artifice is intended
to prevent unintentional modification of the watchdog settings in case of program
runaway.
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Table 6.9. Programming the watchdog timeout for HC11

CR[1:0] Divide E by Watchdog timeout for XTAL = 8.0 MHz

0 0 215 16.384 ms
0 1 217 65.536 ms
1 0 219 262.14 ms
1 1 221 1.049 s

For the same safety reason, the control bit that enables the whole watchdog
system is the NOCOP bit in the CONFIG register. As mentioned before, CONFIG
is a non-volatile, EEPROM type register, which can only be modified using special
programming sequences, as described in Chap. 8.

A special register COPRST has been provided to clear the watchdog counter. This
is cleared by writing bytes $55 and $AA, in this order, to COPSRT:

LDAA #$55 ;clear watchdog counter
STAA COPRST
LDAAA #$AA
STAA COPRST

6.7.2 The Watchdog of AT90S8515

The watchdog of the AVR family counts on a separate clock, distinct from the MCU
clock. This is generated by an internal RC oscillator and has an approximate frequency
of 1 MHz at VCC = 5 V.

The software control on the watchdog system is performed by means of the
WDCTR (Watchdog Control) register, which has the following structure:

WDCTR 7 6 5 4 3 2 1 0

– – – WDTOE WDE WDP2 WDP1 WDP0

RESET 0 0 0 0 0 0 0 0

[WDP2:WDP1:WDP0] – (Watchdog prescaler select) These bits determine the over-
flow time of the timer as shown in Table 6.10.

Before modifying [WDP2:WDP1:WDP0], it is recommended to disable or reset
the watchdog, to avoid accidental activation.

The watchdog is enabled by writing 1 in the WDE (Watchdog Enable) bit. Dis-
abling is more complicated, for safety reasons. An additional control bit WDTOE
(Watchdog Turn-Off Enable) has been introduced Prior to clearing WDE, WDTOE
and WDE must be both set to 1 in the same operation, and, in the next four cycles,
WDE can be written with 0.
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Table 6.10. Programming the watchdog timeout for AVR

WDP2 WDP1 WDP0 Typical time-out at VCC = 5.0 V

0 0 0 15.0 ms
0 0 1 30.0 ms
0 1 0 60.0 ms
0 1 1 0.12 s
1 0 0 0.24 s
1 0 1 0.49 s
1 1 0 0.97 s
1 1 1 1.9 s

WD_DISABLE:
LDI R16,$1F ;WDTOE=1,WDE=1
LDI R17,$17 ;WDTOE=1,WDE=0
OUT WDCTR,R16
OUT WDCTR,R17
RET

To clear the watchdog counter, and reset the watchdog, the special instruction
WDR (Watchdog Reset) has been provided.
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Interfacing to Analog Signals

7.1 In This Chapter

This chapter presents several ways in which the microcontrollers interact with analog
signals. It contains a description of the analog comparator of AT90S8535, the A/D
converter of HC11 and AVR, and an example of interfacing 68HC11 to an external
D/A converter.

7.2 The Analog Comparator

The simplest way for a microcontroller to interact with an analog signal is by using
an analog comparator. It seems that all the information a comparator can offer about
a signal is one bit, containing answer to the question whether the amplitude of the
respective signal is or isn’t higher than a certain threshold. In fact, it’s not only the
amplitude of the signal that counts the moments when the signal crosses the threshold
are also important.

This paragraph presents the interface with the analog comparator of the AVR, an
ingenious and flexible implementation. The block diagram of the interface is shown
in Fig. 7.1.
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0

A
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D

IRQ

ACI
ACIC
ACO

ACSR

INTERNAL BUS

ACIE
(An0)

(An1)

Fig. 7.1. Block diagram of the analog comparator interface of AT90S8535
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The inputs of the comparator are connected to pins PB2, PB3 of the circuit. The
corresponding lines of port B must be configured as inputs, with the internal pull-up
resistors disabled (refer to Chap. 2 for details).

The Control and Status Register ACSR

The bits in the Control and Status Register (ACSR) of the comparator offer the
following control features:

• Control of the comparator’s power supply, by means of the ACD (Analog Com-
parator Disable) bit. Setting this bit to 1 disables the comparator.

• Read the status of the comparator’s output in the ACO (Analog Comparator
Output) bit.

• Select the event that triggers the interrupt mechanism by using the [ACIS1:ACIS0]
control bits (Analog Comparator Interrupt Mode Select). The event selected by
these bits sets the ACI flag (Analog Comparator Interrupt flag), which may
generate an interrupt request. Refer to Table 7.1 for a description of how the
events that set the ACI flag are related to the bits ACIS1:ACIS0.

• If the ACIC (Analog Comparator Input Capture Enable) control bit is set, the
output of the comparator ACO is directly connected to the control logic that
selects the input capture event for Timer1. In this case, the settings described in
Chap. 6 for the selection of the capture edge apply.

The configuration of the bits in the ACSR control and status register is as follows:

ACSR 7 6 5 4 3 2 1 0

ACD – ACO ACI ACE ACIC ACIS1 ACIS0

RESET 0 0 – 0 0 0 0 0

The ACI interrupt flag is erased by writing 1 in this position of the ACSR register,
or by hardware, when the interrupt is executed.

Table 7.1. The effect of programming [ACIS1:ACIS0]

ACIS1 ACIS0 Interrupt mode

0 0 Interrupt on output toggle
0 1 Reserved
1 0 Interrupt on falling edge of ACO
1 1 Interrupt on rising edge of ACO

Example: Consider the following sequence of instructions:

LDI R16,$88
OUT ACSR,R16
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The control byte written to ASCR contains the ACD and ACIE bits set to 1. The
immediate effect of writing this byte to ACSR is to disable the analog comparator,
but the interrupts remain active, and therefore false interrupts may be generated
when power is restored to the analog comparator. It is recommended that the analog
comparator interrupts be disabled when the comparator is enabled/disabled by means
of the ACD bit.

The analog comparator interface is not implemented in the HC11 and 8051
microcontrollers.

7.3 The General Structure of the A/D Converter Subsystem

An analog signal can be represented as a continuous amplitude–time function, which,
in principle, can have any shape, as in the example shown Fig. 7.2.

The only way a digital system, like a microcontroller, can acquire information
about the evolution of such a signal is to measure, at discrete time intervals (T1, T2,
T3, T4, . . . ), samples from the signal, which are converted to series of numerical
values S1, S2, S3, S4, . . . This measuring process is performed by the A/D converter.

Obviously, as the time between successive samples decreases, the resulted discrete
signal better approximates the analog signal input. There is, however, a limit to
the time between which two successive samples can be reduced, imposed by the
conversion time, which is a constructive constant of the A/D converter, defined as the
time required to obtain the numerical value of a sample of the analog signal.

An important parameter of the A/D converter is the resolution, defined as the
number of bits of the result. The more bits are used for representing the number, the
better is the accuracy of the representation.

Figure 7.3 shows the general block diagram of a typical A/D converter, as imple-
mented in most microcontrollers.

Usually, a microcontroller has several analog inputs (eight, typically). The inputs
are processed one by one, the selection being made by a multiplexer MUX, depending
on the selection bits in the control register. The selected input is applied to a sample
& hold (S & H) circuit, which retains the sampling value until the conversion is com-
pleted. The actual converter is of the ‘successive approximation’ type, and comprises

f(t)

S1

S2

S3
S4

T1 T2 T3 T4
t

Fig. 7.2. Example of sampling an analog signal
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Fig. 7.3. Block diagram of a typical ADC

the SAR (Successive Approximation Register), a DAC (Digital to Analog Converter),
and an analog comparator.

The conversion result is delivered in an ADC data register, along with an End of
Conversion Flag in the ADC status register. Optionally, the End of Conversion Flag
can generate an interrupt.

7.4 The A/D Converter of the HC11 Family of Microcontrollers

The HC11 A/D converter has the following characteristics:

• 8-bit resolution.
• 128 clock periods conversion time.
• Separate AVDD and AGND supply pins, to reduce the effect of noise.
• The entire A/D conversion system power supply is software controllable using the

ADPU (Analog to Digital Converter Power Up) bit from the OPTION register.
• Separate reference voltage inputs VRH and VRL to define the margins of the input

voltage domain. An input voltage equal to VRL is converted to $00, and an input
voltage equal to VRH is converted to $FF (full scale).

• The conversion clock can be either the system clock E, or an internal clock
generated by a distinct internal oscillator. The selection of the clock is made by
means of the CSEL bit in the OPTION register. However, the use of the internal
oscillator is recommended only when the frequency of the E clock is below
750 kHz.

• Four conversions are performed in each conversion cycle, either by converting
four times the same input, or by converting four different inputs. The selection
between the single-channel mode and multiple-channel mode is done using the
MULT control bit from the ADCTL control register.

• There are four registers to store the conversion results named ADR1–ADR4
(A/D Result Registers). When the converter operates in single-channel mode
(MULT = 0), the four ADR registers store the results of the four consecutive
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conversions performed on the selected channel. When the converter operates in
multiple-channel mode (MULT = 1), each of the four ADR registers contains the
converted value of a different input from the selected input group.

• The ADC can operate either under software control, when a conversion is started
by writing to the ADCTL register, or in continuous mode, when, after finishing
a conversion cycle, a new cycle is automatically restarted. To select the continuous
conversion mode, set the SCAN control bit to 1.

• There is no interrupt associated with the A/D converter for HC11. This event is
marked only by setting the CCF (Conversion Complete Flag) status bit in the
ADCTL register.

The control and status bits related to the A/D converter are distributed in OPTION
and ADCTL register as follows:

The OPTION Register

SPCR 7 6 5 4 3 2 1 0

ADPU CSEL IRQE DLY CME FCME CR1 CR0

RESET 0 0 0 1 0 0 0 0

• ADPU – A/D Power-Up. At RESET, ADPU is cleared, therefore it is required
to set this bit to 1 by software, to enable the A/D subsystem. Note that, after
power-up, the converter needs a settle time of about 10 ms.

• CSEL – AD clock select.

CSEL = 0 selects the system clock E as the A/D clock.
CSEL = 1 selects a clock supplied by an internal RC internal oscillator.

The other bits in the OPTION register refer to other subsystems or functions of the
microcontroller, and will not be discussed here.

The ADCTL Register

ADCTL 7 6 5 4 3 2 1 0

CCF – SCAN MULT CD CC CB CA

RESET 1 0 x x x x x x

• CCF – Conversion Complete Flag. This read only bit is automatically erased
when writing to the ADCTL which is tantamount to a start conversion command,
and is automatically set at the end of a four conversion cycle. When SCAN = 1,
CCF is set at the end of the first cycle of four conversions.

• SCAN – Continuous Scan Control bit.

SCAN = 0 single conversion cycle.
SCAN = 1 continuous scan.
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Table 7.2. The effect of programming the bits [CC:CB:CA]

[CC:CB:CA] Channel selected Result placed in ADRx if MULT = 1

000 AN0 ADR1
001 AN1 ADR2
010 AN2 ADR3
011 AN3 ADR4
100 AN4 ADR1
101 AN5 ADR2
110 AN6 ADR3
111 AN7 ADR4

• MULT – Multiple-channel/single-channel control.
MULT = 0 the conversions are made on a single-input channel, selected by the
[CD:CC:CB:CA] bits
MULT = 1 the conversions are executed on a four-channel group. In this case,
the CB and CA selection bits have no effect and the conversions are performed
on the four input group addressed by the CD:CC

• [CD:CC:CB:CA]-channel select. The CD bit is reserved for factory testing –
always use CD = 0. The effect of the other three bits is described in Table 7.2.

7.5 Exercises on Programming the A/D Converter of HC11

SX 7.1

Write the initialization sequence that prepares the A/D subsystem to be used with the
E clock, in single-channel conversion mode, single conversion cycle.

Solution

At RESET, the APDU bit from the OPTION register is cleared. The initialization
sequence must set ADPU to 1 to power up the converter. The E clock is selected by
erasing the CSEL bit. These initializations must be made after RESET, at least 10 ms
before the first conversion cycle. For the other initializations: erasing the MULT bit
to select the single-channel operating mode, and SCAN for single conversion cycle,
can be made directly in the start conversion routine.

The required initialization routine is this:

*MASTER SPI initialization routine
INIT_AD BSET OPTION,$80 ;power up ADC (ADPU=1)

BCLR OPTION,$40 ;select clock E (CSEL=0)
CLR ADCTL ;MULT=0, SCAN=0
RTS
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SX 7.2

Write a subroutine that receives as input in A the address of the analog channel.
The subroutine starts the conversion of the specified channel, waits for the end of
conversion and returns the conversion result in A.

Solution

The conversion is automatically started by any write operation to the ADCTL register.
CCF = 1 indicates the end of the conversion. When SCAN = 0, four consecutive
conversions are performed on the same analog input. At the end of conversion, the
four result registers ADR1–ADR4 contain the results of the four conversions. Here
is the subroutine that performs the requested operations:

READ_ADC ANDA #$F8 ;keep only the channel address
STAA ADCTL ;start conversion MULT=SCAN=0

POLL_ADC LDAA ADCTL
ANDA #$80 ;poll CCF until true
BEQ POLL_ADC
LDAA ADR1 ;get result in A
RTS ;return

SX 7.3

Write a subroutine that starts the conversion and reads the AN4–AN7 channels,
updating the variables ANALOG4–ANALOG7.

Solution

To execute a conversion cycle on a group of four inputs, the bit MULT in ADCTL
must be set to 1. The inputs AN4–AN7 are selected by CC = 1 (when MULT = 1, CB
and CA are ignored). The required control word for ADCTL is 00010100 = $14. To
read the group AN0–AN3, the control word would be $10. The subroutine performing
the requested tasks looks like this:

*MASTER SPI initialization routine
READ_ADC4 LDAA #$14 ;MULT=1, CC=1

STAA ADCTL ;start conversion
POLL_ADC LDAA ADCTL

ANDA #$80 ;poll CCF until true
BEQ POLL_ADC
LDAA ADR1 ;get result in A for AN4
STAA ANALOG4 ;update variables
LDAA ADR2
STAA ANALOG5
LDAA ADR3
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STAA ANALOG6
LDAA ADR4
STAA ANALOG7
RTS

7.6 The A/D Converter of the AVR Microcontrollers

The AVR ADC has some distinguishing features, compared to HC11:

• 10-bit resolution. Therefore, the conversion result is presented in two registers
(ADCH:ADCL).

• The ADC can generate an interrupt request at the end of conversion.
• The ADC can operate while the CPU is in sleep mode. This reduces the errors

caused by noise.
• A dedicated prescaler generates the ADC clock.
• The ADC can operate in two different modes: single conversion and free running.

When in free running operating mode the ADC works like the HC11 ADC with
SCAN = 1. In single conversion mode, only the selected channel is converted,
then the ADC halts until a new conversion is started by software.

Details on the Implementation of the ADC of AT90S8535

The control and status register of the A/D Converter, ADCSR, has the following
structure:

ADCSR 7 6 5 4 3 2 1 0

ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADS0

RESET 0 0 0 0 0 0 0 0

• ADEN – AD Converter Enable. When ADEN = 1 the ADC is enabled. This bit
is cleared at RESET, therefore it is required to set it to 1 in the initialization
sequence.

• ADSC – A/D Start Conversion Command. Writing 1 to this bit starts the con-
version. Once written with 1, the bit remains set until the end of the conversion.
Writing 0 to this bit has no effect.

• ADFR – A/D Free Running Mode select. When set, this bit selects the free running
operating mode. In this mode, the ADC permanently samples the input line and
executes conversions.

• ADIF – A/D Interrupt Flag. This bit is set automatically at the end of a con-
version after the data registers have been updated. If the ADC interrupts are
enabled (ADIE = 1) ADIF = 1 generates an interrupt request. ADIF is automati-
cally cleared when executing the interrupt service routine, or by writing 1 in the
corresponding position of ADCSR.

• ADIE – AD Interrupt Enable. When set to 1, this bit enables the interrupts from
the ADC subsystem. The interrupt is generated at the end of the conversion, by
the ADIF flag.
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Table 7.3. The effect of programming [ADPS2:ADPS1:ADPS0]

[ADPS2:ADPS1:ADPS0] ADC clock is XTAL divided by:

000 2
001 2
010 4
011 8
100 16
101 32
110 64
111 128

• [ADPS2:ADPS1:ADPS0] – AD Prescaller Select. The clock applied to the ADC
subsystem is obtained by dividing the system clock using a prescaler.
These bits select the prescaler dividing rate according to Table 7.3.

The selection of the input upon which the conversion is executed is made by
the ADMUX register. This has only three bits implemented, in the least significant
positions.

ADMUX 7 6 5 4 3 2 1 0

– – – – – MUX2 MUX1 MUX0

RESET 0 0 0 0 0 0 0 0

[MUX2:MUX1:MUX0] Analog multiplexer selection bits. These bits instruct the
analog multiplexer to select the input to be converted. [0:0:0] corresponds to ADC0,
and so on; [1:1:1] selects ADC7.

Important note. The analog inputs of AT90S8535 use the I/O lines of PORTA.
In principle, some of the A port lines can be configured as output lines. However,
it is not recommended to activate these output lines while a conversion is in
progress, because conversion errors can occur.

7.7 Exercises on Programming the A/D Converter AT90S8535

SX 7.4

Write the initialization sequence to select the ADC to operate using the clock fre-
quency XTAL/2, in single conversion mode, with the interrupts enabled.

Solution

The control word to be written in ADCSR must contain the bits ADEN, ADIE and
ADPS2 set to 1, the remaining bits being 0.
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INIT_ADC:
LDI R16,$89
OUT ADCSR,R16
RET

SX7.5

Write a subroutine that initializes the ADMUX register with the value of the variable
CHAD (Channel Address), then starts a conversion.

Solution

START_ADC:
LDS R16,CHAD ;read channel address
OUT ADMUX,R16 ;select channel
SBI ADCSR,7 ;start conversion
RET

;The interrupt service routine must get the ADC data
;and store it in RAM variables

7.8 Digital-to-Analog Converters

7.8.1 The Principles of the D/A Conversion

In many situations, is not enough for a microcontroller to measure analog signals – it
is also required to generate analog signals. There is a variety of industrial equipment
that is controlled by analog signals. To communicate with this type of equipment,
the microcontroller system must be able to generate analog signals with precisely
controlled amplitudes.

One simple way to do this is to use a PWM timer. By applying a PWM signal to
a low-pass filter, the resulting output signal has the amplitude Vout = K × VM where
VM is the amplitude of the VPWM signal, and K is the duty cycle (refer to Fig. 7.4).

Vmax

Vmax

VPWM

VOUT

Tp
T

Vout

t

t

Fig. 7.4. The analog signal associated with a PWM signal
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Fig. 7.5. Simplified schematic of a 4-bit DAC, using R-2R ladder network

In cases when a PWM timer is not available, or when the number of PWM channels
is less than the required number of analog outputs, the solution is to use special
external circuits, called Digital-to-Analog Converter, or DACs. There is a variety of
such circuits with different resolutions (the number of bits of the converted word),
different conversion time, or different ways to present the result (serial/parallel). The
majority of them operate on the same principle, by dividing the current in a ladder
type R-2R resistor network. The simplified schematic of a 4-bit DAC based on this
principle is presented in Fig. 7.5.

In this circuit, the operational amplifier acts in such a way that the potential of the
inverting input is maintained equal to the potential of the non-inverting input, which
is connected directly to ground. As a consequence, regardless of the status of the
switches S3–S0, the network acts as if all of the 2R resistors, have a terminal connected
to ground. This means that the equivalent resistance that loads Vref is constant, equal
to R, and the total absorbed current from Vref is also constant, Iref = Vref/R. The
currents flowing through the four switches (S3, S2, S1, S0) are I3 = Iref/2, I2 = Iref/4,
I1 = Iref/8, I0 = Iref/16. The output voltage is

Vout = −IF × RF

where IF is a fraction of Iref, directed by the switches S3–S0 to the inverting input of
the operational amplifier,

IF = b3 × I3 + b2 × I2 + b1 × I1 + b0 × I0

IF = Iref(b0/2 + b1/4 + b2/8 + b3/16)

were (b3–b0) are the bits of the word that must be converted to an analog value.
It follows that the output voltage Vout is proportional to the binary value to be

converted.
A typical example of a circuit, built on this principle, is MX7224 from Maxim.

The functional block diagram and the pin configuration of the circuit are shown in
Fig. 7.6.

The circuit is designed so that it can be directly connected to a data bus. When
both the CS\ and WR\ signals are active, the data from the bus is transferred to the
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Fig. 7.6. Block diagram and pin configuration of a typical DAC IC

Input Register. The LDAC\ signal controls the transfer of data to the DAC register.
When CS\= 0, WR\= 0 and LDAC\= 0, both registers are transparent and the data
from the DB0–DB7 inputs is converted to Vout. With this configuration of the control
signals the circuit can be directly connected on an output port of the microcontroller

7.8.2 Exercise on Using MX7224

SX 7.6

Using the MX7224 circuit, connected to the PORTA of a 68HC11F1 microcontroller,
write a program that generates a signal with the characteristics shown in Fig. 7.7. The
reference voltage used is 2.5 V, and the frequency of the internal E clock is 2 MHz.
The output signal is periodic with 10-ms period. Figure 7.7 gives the values of the
samples for one period.

Solution

The values of the 10 samples, corresponding to a period of the output signal, must
be written in the port connected to the DAC at 1-ms intervals. To generate the time

10ms1

0.5

1.2

2.1

Vout

t

Fig. 7.7. Waveform of the signal referred in the exercise from paragraph 7.8.2
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intervals a timer is required, TOC1 for example, which generates periodic interrupts.
The timer interrupt service routine must update the port data. The initiation sequence
must configure the PORTA in output mode, enable the TOC1 interrupt, and initialize
the pointer XTAB with the address of the ROM table that contains the values of the
samples.

INIT_DAC LDD TOC1
ADDD #2000 ;next interrupt in 1 ms
STD TOC1
LDX #DACTAB
STX XTAB ;init pointer in DACTAB
BSET TFLG1,$80 ;clear OC1F if any
BSET TMSK1,$80 ;enable TOC1 interrupts
LDAA #$FF
STAA DDRA ;PORTA all lines output
RTS ;end of initialization

The interrupt service routine must do the following:

• Erase the interrupt flag.
• Prepare the next interrupt from TOC1 to come in 1 ms.
• Write the value from DACTAB in PORTA
• Increment the XTAB pointer, and check if the end of table has been reached.

If the end of the table is detected, XTAB must be reinitialized with the starting
address.

TOC1_ISR BSET TFLG1,$80 ;clear interrupt flag
LDD TOC1
ADDD #2000 ;next interrupt in 1 ms
STD TOC1
LDX XTAB
LDAA 0,X ;get data from table
STAA PORTA ;write it to DAC
INX ;increment pointer
CPX #ENDTAB ;check for end of table
BHS TOC1X
STX XTAB ;update pointer and exit
RTI

TCO1X LDX #DACTAB ;reload pointer if end of
;table detected

STX XTAB
RTI

The table with the DAC values for the specified curve is obtained by linear
interpolation, considering that the value Vout = Vref = 2.5 V corresponds to a binary
input $FF.
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DACTAB DB $00
DB $33
DB $D6
DB $A3
DB $7A
DB $4C
DB $33
DB $7A
DB $A3
DB $4C

ENDTAB EQU * ;end of table

Obviously, by modifying the data in DACTAB, it is possible to obtain any wave-
form for the output signal. The only limitation is imposed by the speed of the
processor. For HC11, the 1-ms interval between two successive interrupts is close to
the upper limit. The AVR microcontrollers are much faster.
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Using the Internal EEPROM Memory

8.1 In this Chapter

This chapter contains a description of the EEPROM memory as implemented in the
HC11 and AVR families of microcontrollers, as well as a description of the EEPROM
control registers, and software examples for erasing and programming the EEPROM.

8.2 Overwiew of the EEPROM Subsystem

In many situations it is required that some program parameters, calibration tables,
etc. are stored in nonvolatile memory, able to keep its contents indefinitely after the
system is powered off.

The solution to this problem is to include in the structure of the microcontroller
an EEPROM memory area (Electrically Erasable Programmable Read Only Mem-
ory). Most modern microcontrollers include between 128 bytes and 2 kilobytes of
EEPROM.

For technological reasons, erasing and programming the EEPROM requires
a 20 V Vpp voltage, obtained by means of a so-called charge pump. The current
capability of this internal source is very low, and therefore the charge pump requires
a time of around 10 milliseconds to stabilize. The following restrictions apply when
accessing the EEPROM:

• Before programming, an EEPROM bit must be erased. The value of an erased bit
is 1.

• After an erase or program operation, a 10-ms delay is required for the charge
pump to stabilize.

8.3 The EEPROM Memory and the CONFIG Register of HC11

Depending on the model, the microcontrollers of the HC11 family have between 512
and 2048 EEPROM memory bytes, mapped in the general memory map. The starting
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address of the EEPROM memory area differs from one model to another, but, in
some cases, the whole EEPROM block can be remapped, by means of the control
bits [EE3:EE0] from the CONFIG register.

8.3.1 The Registers Controlling the EEPROM of HC11

HC11 has two registers involved in the control of the EEPROM. These are the
PPROG register (EEPROM Programming Control Register) and the BPROT register
(EEPROM Block Protect Register). The PPROG register has the following structure:

PPROG 7 6 5 4 3 2 1 0

ODD EVEN – BYTE ROW ERASE EELAT EEPGM

RESET 0 0 0 0 0 0 0 0

The ODD and EVEN bits are used in the special test operating mode and they
will not be discussed here.

The BYTE, ROW and ERASE bits control the erase process of the EEPROM,
according to Table 8.1.

Table 8.1. The effect of programming the bits BYTE, ROW, and ERASE

BYTE ROW ERASE Erase mode

x x 0 Normal read/program
0 0 1 All locations erased
0 1 1 A 16 bytes “row” is erased
1 0 1 One byte is erased
1 1 1 One byte is erased

• EELAT – EEPROM Latch Control bit

EELAT = 0 EEPROM address and data buses are prepared for normal read op-
erations.
EELAT = 1 EEPROM address and data buses are prepared for write or erase
operations. Write operations to EEPROM with EELAT = 1 cause the values of
address and data to be retained in special latches.

• EEPGM – EEPROM Program Control bit.

EEPGM = 1 starts the charge pump assuring the programming tension for the
EEPROM. The EEPGM bit can be written only if EELAT = 1.

The BPROT register has the following structure:

BPROT 7 6 5 4 3 2 1 0

– – – PTCON BPRT3 BPRT2 BPRT1 BPRT0

RESET 0 0 0 1 1 1 1 1
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Table 8.2. Block addresses associated with BPRTi, valid for 68HC11F1

Bit name Block protected

BPRT0 $xE00–$xE1F
BPRT1 $xE20–$xE5F
BPRT2 $xE60–$xEDF
BPRT3 $xEE0–$xFFF

• PTCON – Protect CONFIG register. When this bit is set to 1, the CONFIG register
cannot be written or erased.

• BPRT3–BPRT0 – When these bits are 1, the protection of an EEPROM memory
block associated with each bit is activated, as shown in Table 8.2.

The BPROT register can only be written during the first 64 E cycles after RESET. Out
of RESET, all BPROT bits are set to 1, which means that the protection is activated.
The programming examples presented in the next paragraph assume that all bits
of interest in the BPROT register have been erased in the initialization sequence,
executed immediately after RESET.

8.3.2 Software Routines to Erase and Write the EEPROM

8.3.2.1 Erasing a Single Byte of EEPROM

The E2BE (EEPROM Byte Erase) subroutine receives in X the address of the byte
to be erased. The first step is to write in PPROG a control word, which specifies an
erase operation (EELAT = 1 and ERASE = 1) at the byte level (BYTE = 1). The next
step is to perform a write operation to the address of the byte to be erased.

When EELAT = 1, the address of the destination of any write operation is stored in
special latches, and will be used in further erase or write operations to EEPROM. The
actual erase process starts when the EEPGM bit is set, and lasts about 10 milliseconds.
After this delay, the PPROG register must be cleared to return to normal operation
mode. Here is the subroutine that executes an EEPROM byte erase.

E2BE LDAB #$16 ;BYTE=1, ERASE=1, EELAT=1
STAB PPROG
STAB 0,X ;write operation to latch

;address
LDAB #$17 ;make EEPGM=1
STAB PPROG ;start Vpp charge pump
JSR DLY10 ;wait 10 ms
CLR PPROG ;stop Vpp and return to

read ;mode
RTS ;return to main program
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8.3.2.2 Writing a Byte to EEPROM

The E2W (EEPROM write) subroutine, listed below, assumes that:

E2W LDAB #$02 ;BYTE=0, ERASE=0, EELAT=1
STAB PPROG
STAA 0,X ;write operation to latch the

;address and data
LDAB #$03 ;make EEPGM=1
STAB PPROG ;start Vpp charge pump
JSR DLY10 ;wait 10 ms
CLR PPROG ;stop Vpp and return to read

;mode
RTS ;return to main program

• The bit in BPROT associated with the destination address of the write operation
is cleared, i.e. the destination is not write protected.

• The destination byte has been previously erased.
• The address of the destination byte is placed in X.
• The data byte to be written in the EEPROM is placed in A.

If ERASE = 1 and BYTE = 0, setting PPROG will initiate an erase sequence on
the entire EEPROM memory, called BULK ERASE.

Reading EEPROM while a write or erase operation is in progress (EELAT = 1)
will return erroneous data. There is no hardware mechanism to prevent this type
of error.

8.3.3 The CONFIG Register

The CONFIG register consists of eight EEPROM cells, organized as a register lo-
cated in the I/O register block of the MCU. The CONFIG register can be erased or
programmed just like any other EEPROM location. The structure of the CONFIG
register of 68HC11F1 is as follows:

CONFIG 7 6 5 4 3 2 1 0

– – – – – NOCOP ROMON EEON

RESET 0 0 0 0 0 x x x

• NOCOP = 1 disables the COP (Computer Operating Properly) watchdog,
• ROMON = 1 enables the internal ROM.
• EEON = 1 enables the internal EEPROM.

Some members of the HC11 family allow remapping of the EEPROM block to
the beginning of any 4 K boundary in the memory map. To this purpose, the most
significant four bits of the CONFIG registers, called [EE3:EE2:EE1:EE] are used to
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define the most significant four bits of the address of the EEPROM. For example, if
[EE3:EE2:EE1:EE] = [0:1:0:1], then the starting address of the EEPROM is $5000.

Bulk erase operations on the EEPROM do not affect the CONFIG register.
A new value written to the CONFIG register becomes effective only after

a subsequent RESET sequence.

8.4 The EEPROM Memory of the AVR Microcontrollers

There are significant differences in the way the EEPROM memory is implemented in
AVR microcontrollers, compared to HC11. While in HC11, the EEPROM memory
is directly visible in the memory map, and can be used as data memory or as program
memory, for the AVRs the access to the EEPROM looks more like accessing data
from a peripheral interface.

8.4.1 The Registers of the Interface with the EEPROM Memory

Four registers control the access to the EEPROM. These are named EEARH, EEARL,
EEDR and EECR.

• EEARH – EEARL (EEPROM Address Register High/Low) form together a 16-bit
register that implements the EEPROM address space.

• EEDR – EEPROM Data Register. This is used to access the EEPROM data,
during the read and write operations.

• EECR – EEPROM Control Register contains the control bits for the write and
read operations. EECR has the following structure:

EECR 7 6 5 4 3 2 1 0

– – – – – EEMWE EEWE EERE

RESET 0 0 0 0 0 0 0 0

• EEMWE – EEPROM Master Write Enable. This bit provides a protection mech-
anism of the EEPROM data, in case of program runaway. The EEMWE is set
by software, but is automatically cleared by hardware, after four cycles of the
main system clock. In this interval of four cycles, it is possible to initiate a write
operation to the EEPROM, by writing 1 to EEWE. Attempts to write to EEWE
when EEMWE = 0 have no effect. EEWE is cleared by hardware when the write
operation completes, usually after 2.5–4 ms, depending on the value of the supply
voltage. Therefore, it is recommended to poll EEWE, to determine the end of the
write operation.

• EERE – EEPROM Read Enable. This bit selects the access type to the EEPROM.

EERE = 1 indicates a read operation, while EERE = 0 indicates a write operation.
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8.4.2 Software Routines to Read and Write EEPROM

8.4.2.1 Reading a Byte from EEPROM

The following program sequence reads in R16 an EEPROM byte from the address
indicated by register Z. It starts by testing EEWE to determine if the interface is ready.
If EEWE = 0 the contents of Z are transferred to EEARH–EEARL, then a control
word is written to EECR having EERE = 1 (read operation). The EEPROM data is
now readable in EEDR.

EERead:
SBIC EECR,EEWE ;make sure EEWE=0
RJMP EERead
OUT EEARH,ZH ;write address in EEARH-EEARL
OUT EEARL,ZL
LDI R16,$01 ;EERE=1 -- read operation
OUT EECR, R16
IN R16,EEDR ;read data in R16
RET

8.4.2.2 Writing a Byte To EEPROM

The subroutine described below writes the byte in R16 to the EEPROM address
specified by Z. The following sequence of operations is performed:

• Check EEWE to determine if the interface is ready.
• Write Z to EEARH:EEARL.
• Write R16 to EEDR.
• Set EEWME.
• Set EEWE to start the actual write operation.

Here is the program that executes these operations:

EEWrite:
SBIC EECR,EEWE ;make sure EEWE=0
RJMP EEWrite
OUT EEARH,ZH ;write address in EEARH-EEARL
OUT EEARL,ZL
OUT EEDR,R16 ;write data to EEDR
CLI ;disable interrupts
LDI R16,$04 ;EEMWE=1
OUT EECR, R16
LDI R16,$02 ;EEWE=1
OUT EECR,R16
SEI ;enable interrupts
RET
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Note that before launching the actual write command, the program disables all
interrupts. The reason for this is that an interrupt occurring between the execution of
steps 4 and 5 would delay the moment when EEWE is set beyond the limit of four
cycles after EEMWE is set. Writing EEWE in step 5 would find EEWME cleared by
hardware, and the whole write operation would fail.



9

HC11 Development Board

9.1 In this Chapter

This chapter contains the description of a simple development board based on the
microcontroller 68HC11F1, and related software utilities, intended to allow the user
to write and test software applications for this microcontroller.

9.2 Description of the Hardware Module

A development system for the study of a microcontroller comprises a hardware module
and a set of software utilities (cross-assembler, compiler, etc). Along with the data
sheets and application notes from the manufacturer, this allows the user to reach a clear
understanding of the resources and capabilities of that specific microcontroller, and
to write and test software applications for it.

The module presented here is one of the simplest possible. It is built around the
Motorola 68HC11F1 microcontroller, operating with an external EEPROM memory
AT28C256, easily reprogrammable around 10 000 times. Test programs can be written
directly to AT28C256 using a standard commercial EPROM programmer.

The 68HC11F1 microcontroller does not have internal program memory – it
is designed to work with external ROM in expanded mode. For this purpose, the
microcontroller can provide up to four chip select signals for external memory or
other I/O devices. The way these signals activate, their polarity and relative priority are
software controlled. The schematic of the hardware module is presented in Fig. 9.1.

There are very few external components, besides the microcontroller. The pro-
gram memory is connected directly to the address and data buses, and the chip select
signal CSPROG is provided by the microcontroller, without the need of an external
address decoder.

The external clock circuit is implemented using the crystal Q1 (8 MHz typical),
the capacitors C5 and C6 (15–22 pF) and the resistor R1 (1–10 M). This type of
oscillator circuit is typical of all HC11 family members.
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Fig. 9.1. Schematics of the HC11 development board
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The RESET circuit comprises the transistor T1 along with resistors R2, R3,
R4, capacitor C9 and connector JP1. At power-up, the capacitor C8 starts charging
through R2, feeding current to the base of T1. This saturates the transistor for a time
interval comparable to R2×C9, generating an active LOW pulse on the RESET
line of the microcontroller. A similar process occurs when the terminals of JP1 are
short-circuited, providing a means for manual reset of the module.

The IC2 circuit (MAX232) along with capacitors C1, C2, C3, and C4 implement
the typical RS232 interface presented in Chap. 3.

The control signals MODA, MODB and the external interrupts IRQ and XIRQ
are pulled up to Vcc using four 10 K resistors. The rest of the I/O lines of the
microcontroller are brought to three header-type connectors SV1, SV2, SV3.

The module is powered from a DC or ac adapter, able to deliver 9–12 V at
250 mA. The input voltage is applied through the bridge rectifier B1 to the voltage
regulator IC4 (7805) that generates the +5 V supply voltage.

9.3 Assembling and Testing the Module

All the projects described in this section come with detailed schematics and printed
circuit board drawings available on the accompanying CD. The PCB drawings
are created with Eagle 4.11 from CadSoft. A freeware version of this software
is available for free download from Cadsoft, so that the user can view, edit, and
print all the schematics and the PCB drawings of the projects described in this
book.

The major advantage of this CAD software is that it is very easy to learn, and
the freeware version, despite some limitations, still allows the user to design pretty
complex microcontroller based circuits.

Most companies manufacturing custom printed circuit boards accept drawings
created with Eagle 4.11, and the cost per square decimeter of printed circuit board is
reasonable. However, in this particular case, the circuit is so simple that it can be easily
realized on a prototyping board using the wire wrap technique. It is recommended to
use appropriate IC sockets for all ICs, except IC4.

Refer to Fig. 9.2 for a possible component layout of the PCB.
Once you have the module assembled, follow this test sequence:

1. Apply power to the module, without having the ICs inserted in the sockets.
2. Check the +5 V voltage on every socket.
3. Check the RESET circuit by measuring the voltage in the collector of T1. When

a short-circuit is applied to the terminals of JP1, the voltage on this point drops
near 0 V, while without short-circuit it stays near the Vcc value.

4. Insert the ICs into the sockets and apply power to the module. With an oscillo-
scope check the E clock on pin 4 of the microcontroller. If you don’t have an
oscilloscope, use a voltmeter to measure the RESET signal on the collector of T1.
If the oscillator fails to operate, the clock monitor circuit of the microcontroller
will force this line to logic zero.
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5. If everything is alright, install the cross-assembler, as described in the next
paragraph and assemble a simple software example, like the one presented in this
chapter in exercise X9.1.

6. Using a commercial EPROM programmer, program the AT28C256 memory with
the binary file created by the cross-assembler, and check the expected behavior
of the module.

IC3
IC1

R5
R3
R2
JP1

C1
C2 C4

C3
IC2

C9

Q2
R4
R6
R7
R8

JP2JP3

C5

Q1

R1

C6

1

SV3

IC4

C7

B1

X1

C8

C10 SV1

1

1

SV2

SV4
1

SV5

JP4
1

Fig. 9.2. Component layout of the PCB for the HC11 development board
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For ALL the projects described in this book, the RS232 interface is connected to
a header-type connector. The adapter cable between the header connector and the
NULL MODEM cable is presented in Fig. 9.3, and the NULL MODEM CABLE
is shown in Fig. 9.4.

9.4 Description of the Software Components

The freeware cross-assembler offered by Motorola for the HC11 family, called
AS11.EXE, is extremely simple and has many weak points. Among them, the most
important are:

• It does not allow the INCLUDE directive, thus forcing the user to write all the
source code in a single file. This can be extremely inconvenient. For example,
the source code for the free monitor offered by Motorola (BUFFALO) has over
5000 lines of code. Obviously, it is virtually impossible to debug such a program,
if anything goes wrong. On the other hand, if the assembler accepts INCLUDE,
the source code can be organized in smaller, reusable, blocks of code, placed
in distinct files, according to some user selected criteria, e.g. TIMER.ASM,
SCI.ASM, OUTPUT.ASM, etc. All these software modules are invoked by a main
module, using the INCLUDE directive.

• It does not allow macro definitions, thus severely limiting the freedom of the user
to customize his/her programming environment.

For these reasons, we chose to use a different freeware cross-assembler, called
ASHC11, created by Peter Gargano. Besides INCLUDE and macro definitions,
this cross-assembler has many additional features. See Appendix B2 for details on
how to download this free software.

Getting Started

Step 1. Installing the Cross-Assembler

ASHC11 is a DOS application and does not require any special installation procedure.
To install it, create a folder on the hard drive with the name C:\ASHC11, and unzip
the downloaded archive to this folder. Then create a DOS window, having the working
directory in C:\ASHC11.

To do this, in Windows™ 9.x, press the right button of the mouse on the desk-
top, and, from the list of options presented, choose New, then Shortcut. In the space
reserved to define the command line associated to the new shortcut, type “Com-
mand.com”, then press the Next button, and Finish.

The effect of this operation is that a new shortcut appears on the desktop, named
“MS-DOS™ Prompt”. To complete the job, specify the working directory for this
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shortcut. To do this, select the new shortcut, then press the right button of the mouse
and choose the option Properties, and then Program.

In the field labeled Working, type C:\ASHC11, and then press OK. Double click-
ing on the new shortcut opens a DOS window, where applications can be launched
from the command line by simply typing their names, followed by [ENTER].

To simplify the use of the assembler, we created a batch file, called LASM.BAT,
with the following contents:

ashc11 %1.asm -LIST=%1.lst
bincvt %1.s19 -OV

The first line invokes the assembler, and instructs it to create a list file, having the
same name as the source file, and the extension .LST. The default extension for the
source file is assumed to be .ASM.

The second line calls a conversion utility BINCVT, provided by the author of
ASHC11 in the same archive with the assembler. BINCVT creates a binary file having
the same name as the source, and the extension .BIN. This can be useful, since some
EPROM programmers do not properly handle the S19 output files generated by the
assembler.

The batch file must be invoked by specifying the name of the source file, without
extension, like in the example below:

LASM STEP1

This causes the file STEP1.ASM to be open and assembled. The following files
are created in this process:

• STEP1.S19 – this contains the actual executable code in Motorola S19 format.
• STEP1.BIN – contains the executable code in plain binary format.
• STEP1.LST – this is the list file.

The list file is a text file, containing detailed information on the source file, as well as
on the result of the assembly process – the output code, and the address where this
will be placed in the memory map. The list file also explains the variable definitions,
and gives a short description of the errors that might occur during assembly.

ASHC11, like all MS-DOS™ based programs, admits only short file names in
the format “8.3”, i.e. maximum eight characters for the file name, and maximum
three characters for the extension. If you are using a Windows™ based text editor
to create your source files, like Notepad, make sure you observe this rule when
you save your files on disk.

If you are not familiar with MS-DOS™ programs, consult Appendix A15
for the description of a software utility that allow invoking the assembler from
a Windows™ application. This utility also contains a text editor for creating and
editing the assembler source files.
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Step 2. Defining the Memory Sections for the Program

Consider the following simple source file: (STEP1.ASM)

TITLE Defining origins for DATA and CODE sections
DATA
ORG $100 ;DATA starts at $100

VAR1 DS 1 ;reserve 1 byte for
a variable

CODE
ORG $8000 ;CODE starts at $8000

RESET EQU * ;Assign the value $8000 to
;the label RESET

LDAA VAR1 ;some code here
BRA RESET

*Define the RESET vector here
ORG $FFFE
DW RESET ;place $8000 at the

address of ;vector
END

Though very simple, this code fragment contains some fundamental elements,
to be considered in any program, written for any microcontroller. It shows how to
define the starting address of the two main memory segments: the CODE segment
(or section), where the executable code is placed, and the DATA segment, normally
a RAM zone, reserved for variables. This is done with the ORG (Origin) directive.

The assembler associates a pointer to each predefined memory section (DATA,
CODE). The ORG directive initializes the pointer of the current section to the value
specified as a parameter to ORG.

Symbolic parameters for ORG are allowed, like in this example:

RESET EQU $8000
CODE
ORG RESET

The assembler automatically increments the pointer associated with the section,
after each operation that reserves space in that section. In the example below, three
variables are defined:

DATA
ORG $100

VAR1 DS 1
BUF1 DS 10
VAR2 DS 1
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Here is the list file generated by ASHC11 for this fragment:

=0000 1 DATA
0100 =0100 2 ORG $100
0100 3 VAR1 DS 1
0101 4 BUF DS 10
010b 6 VAR2 DS 1

For the variable VAR1, one byte is reserved, at the current address in the DATA
section. The variable BUF1 takes the next 10 bytes between the addresses $101 and
$10A, and VAR2 will take the memory location at the address $010B.

A similar process occurs for the CODE section. The assembler automatically
determines how many bytes of code each instruction need, and increments the pointer
accordingly.

Step 3. Creating Symbolic Names for Resources

The EQU (EQUation) directive associates a numeric value to a symbolic name like
in this example:

REGBASE EQU $1000
SCDR EQU REGBASE+$002F

In this mode, all the resources of the microcontroller can have symbolic names
assigned. These definitions can be saved in distinct files that can be invoked later,
using the INCLUDE directive. The accompanying CD includes several definition files
for the HC11 microcontrollers. They are named 68HC11E9.DEF, 68HC11F1.DEF,
68HC11KA.DEF.

STEP 4. USING MACROS

A MACRO is a block of code delimited by the directives MACRO and ENDM,
associated with the label NAME:

NAME MACRO <param>, <param>
....
ENDM

When the assembler encounters a previously defined MACRO name in the source
file, it automatically inserts the whole block of code associated with that MACRO
name. The examples below are intended to illustrate the utility of this feature:

PSHD MACRO
PSHA
PSHB
ENDM

PULD MACRO
PULB
PULA
ENDM
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The next MACROs create the possibility of conditional program jumps anywhere
in the 64 K addressable space.

JEQ MACRO ?dest
LOCAL @A
BNE @A

JMP ?dest
@A EQU *

ENDM

JNE MACRO ?dest
LOCAL @A
BEQ @A
JMP ?dest

@A EQU *
ENDM

Please note the following distinctive features of these MACROs:

1. MACROs allow the use of parameters, in this case the destination address of the
jump.

2. Local labels are allowed. This avoids “duplicate symbol” errors, when the macro
is used more than once in a software module. Note that not all assemblers allow
local labels in MACROs.

3. The line
@A EQU *
indicates that the symbolic label @A receives the current value of the pointer of
the CODE section.

An interesting application of this feature is shown in the following example:

VECTOR_SCI MACRO
LOCAL @SCI_SVC
CODE

@SCI_SVC SET *
ORG $FFD6
DW @SCI_SVC
ORG @SCI_SVC
ENDM

This MACRO saves the current address in the CODE section in the variable
@SCI_SVC, then stores this value to the addresses $FFD6-$FFD7, which contain
the interrupt vector for the SCI system. After this operation the pointer of the section
is restored to the value saved in the variable @SCI_SVC. Similar MACROs define
the other interrupt vectors. See the file AS11.MAC on the accompanying CD, for the
whole set of MACROs used in this book.

Step 5. Defining a General Structure for Software Applications

Consider the example found in the file STEP5.ASM:
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TITLE MAIN MODULE
INCLUDE 68HC11F1.DEF ;definitions
INCLUDE AS11.MAC ;macro definitions
INCLUDE MAP.ASM ;memory map

CODE
VECTOR_RESET

RESET EQU *
INCLUDE INIT.ASM ;initialization

MLOOP EQU * ;start of main loop
INCLUDE TIMER.ASM ;timer routines
INCLUDE SCI.ASM

* ............................
* other user modules come here

JMP MLOOP ;the program is an
;infinite loop

INCLUDE GENLIB.ASM
;general purpose
;routines

INCLUDE TABLES.ASM ;ROM tables
END

The first line instructs the assembler to include in the source file the file
68HC11F1.DEF, which contains symbolic definitions for the resources of the mi-
crocontroller.

The second line invokes the library of MACRO definitions AS11.MAC.
The file MAP.ASM, invoked in the third line, contains the origins of the DATA and

CODE sections. It is advisable to define here all the variables used by the program.
Here is an example of structure for MAP.ASM.

TITLE Memory map & global variables

DATA
ORG RAMBASE ;RAMBASE is defined in

;68HC11F1.DEF
VAR1 DS 1 ;some variables
VAR2 DS 1
VAR3 DS 1

CODE
ORG ROMBASE ;ROMBASE is defined in

;68HC11F1.DEF
END

Note that no actual executable code has been generated so far. The purpose of all
these include files is to simplify and to organize the dialog with the assembler.

The MACRO named VECTOR_RESET defines the entry point in the main pro-
gram after RESET. The first piece of code executed after RESET is the initialization
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sequence for registers associated with the hardware subsystems and for RAM vari-
ables.

The example below presents some typical initializations: the stack pointer, data
direction register for an I/O port, and some variables:

TITLE INITIALIZATION SEQUENCE

LDS #RAMEND ;Init SP
LDAA #$05 ;Enable CSPROG
STAA CSCTL ;for a 32 k memory
LDAA #$3C
STAA DDRD ;PORTD 2-5 for output
CLR VAR1 ;other initializations

*.......
END

An important detail on this initialization sequence concerns the ability of
68HC11F1 to generate four selection signals, CSPROG, CSGEN, CSIO1, CSIO2,
for external memory or I/O devices

These signals are software controlled by means of four special registers: CSCTL,
CSGADR, CSGSIZ and CSSTRH.

The CSPROG line that selects the external program memory is controlled by the
CSCTL register. The structure of CSCTL register is as follows:

CSCTL 7 6 5 4 3 2 1 0

IO1EN IO1PL IO2EN IO2PL GCSPR PCSEN PSIZA PSIZB

RESET 0 0 0 0 0 0 0 0

• IO1EN – Enable CSIO1.
When set to 1, CSIO1 is enabled. When cleared to 0, CSIO1 is disabled and the
associated pin, PORTG bit 5, is usable as a general-purpose I/O pin.

• IO1PL – Controls the polarity of CSIO1. When this bit is 0, CSIO1 is active
LOW; when set to 1, CSIO1 is active HIGH.
IO2EN and IO2PL act similarly on CSIO2.

• GCSPR – General-Purpose Chip Select Priority

GCSPR =0 CSPROG has priority compared to CSGEN
GCSPR = 1 CSGEN has priority compared to CSPROG

• PCSEN – Program Chip Select Enable

When the microcontroller operates in expanded mode (i.e. with external bus) this
bit is automatically set out of RESET.

PSIZA and PSIZB. These bits relate the selection signal with the size of the
external memory, as shown in Table 9.1.

This explains why, in the initialization sequence, CSCTL is written with $05.
This means that an external 32 K ROM is used, while the other three chip selects are
disabled and the pins of PORTG are usable as general-purpose I/O pins.
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Table 9.1. The effect of programming the bits [PSIZA:PSIZB] in CSCTL

PSIZA PSIZB Size (Kbytes) Address range

0 0 64 $0000–$FFFF
0 1 32 $8000–$FFFF
1 0 16 $C000–$FFFF
1 1 8 $E000–$FFFF

After the initialization sequence, the program enters an infinite loop. In the exam-
ple presented (STEP5.ASM) the program loop includes the modules TIMER.ASM
and SCI.ASM, while GENLIB.ASM and TABLES.ASM remain outside the loop.
See the examples in the next paragraph for a better understanding on how to organize
your software.

Step 6. Creating Reusable Software Modules

This paragraph presents a detailed solution to create a set of software timers. A soft-
ware timer is basically a predefined variable that can be initialized by the program.
Once initialized these predefined “timers” are automatically decremented at precise
time intervals. Thus, the timer will reach zero after a time T = N ×Kt , where N is the
initialization value and Kt is the time quantum between two successive decrements.
The time quantum is generated using the TOC2 (Timer Output Compare 2) interrupt,
which is generated every 4 milliseconds. Based on this interrupt, precise 100 ms,
1-second, and 1-minute intervals are generated.

When a time quantum expires, the associated set of variables (software timers) is
scanned, and if their value is greater than zero, they are decremented.

The software timers are defined in MAP.ASM, which becomes:

TITLE Memory map & global variables

DATA
ORG RAMBASE

TIRQ DS 1 ;flag set by TOC2 ISR
T4MS0 DS 1 ;4 ms timers
T4MS1 DS 1
T4MS2 DS 1
T4MS3 DS 1
T4MS4 DS 1
T4MS5 DS 1
T4MS6 DS 1
T4MS7 DS 1
T100MS0 DS 1 ;100 ms timers
T100MS1 DS 1
T100MS2 DS 1
T100MS3 DS 1
T100MS4 DS 1
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T100MS5 DS 1
T100MS6 DS 1
T100MS7 DS 1
T1S0 DS 1 ;1 second timers
T1S1 DS 1
T1S2 DS 1
T1S3 DS 1
T1S4 DS 1
T1S5 DS 1
T1S6 DS 1
T1S7 DS 1
T1M0 DS 1 ;1 minute timers
T1M1 DS 1
T1M2 DS 1
T1M3 DS 1
T1M4 DS 1
T1M5 DS 1
T1M6 DS 1
T1M7 DS 1
CNT100MS DS 1 ;counters
CNT1S DS 1
CNT1M DS 1

CODE
ORG ROMBASE
END

The TOC2 initialization routine, the interrupt service routine, and the code that
scans and decrements the software timers are placed in TIMER.ASM.

To improve the readability of the program, a MACRO, called DJEQ (Decrement
or Jump if EQual to zero), has been defined. It has the following structure:

DJEQ MACRO ?dest
LOCAL @A
TST ?dest
BEQ @A
DEC ?dest

@A EQU *
ENDM

DJEQ receives a parameter, which is the symbolic address of the destination. It
checks the content of the destination, and if greater than zero, it decrements it by one.
If the destination is zero, DJEQ returns leaving the destination unchanged.

Here is the full listing of TIMER.ASM:

TITLE MAIN TIMER
CODE
JMP TMRMAIN
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*the initialization routine is called from INIT.ASM
ITIMER LDAA #$40 ;clear OC2F if any

STAA TFLG1
STAA TMSK1 ;enable TOC2 interrupt
LDX #T4MS0 ;clear all timers
LDAB #32

IT10 CLR 0,X
INX
DECB
BNE IT10
LDAA #25 ;init counters
STAA CNT100MS
LDAA #10
STAA CNT1S
LDAA #60
STAA CNT1M
RTS

* TOC2 interrupt service routine
VECTOR_TOC2

TOC2ISR LDAA #$40
STAA TFLG1 ;clear OC2F flag
LDD TOC2
ADDD #8000 ;next interrupt in 4 ms
STD TOC2
INC TIRQ ;true the flag
RTI ;return from interrupt

* main timer task
TMRMAIN TST TIRQ ;check for previous

JEQ TMREXIT ;interrupt
CLR TIRQ
DJEQ T4MS0 ;scan the 4 ms timers
DJEQ T4MS1
DJEQ T4MS2
DJEQ T4MS3
DJEQ T4MS4
DJEQ T4MS5
DJEQ T4MS6
DJEQ T4MS7
DEC CNT100MS
BEQ TMR10
JMP TMREXIT

TMR10 LDAA #25 ;reload counter
STAA CNT100MS
DJEQ T100MS0 ;scan the 100 ms timers
DJEQ T100MS1
DJEQ T100MS2
DJEQ T100MS3
DJEQ T100MS4
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DJEQ T100MS5
DJEQ T100MS6
DJEQ T100MS7
DEC CNT1S
BEQ TMR20
JMP TMREXIT

TMR20 LDAA #10
STAA CNT1S
DJEQ T1S0 ;scan the 1 s timers
DJEQ T1S1
DJEQ T1S2
DJEQ T1S3
DJEQ T1S4
DJEQ T1S5
DJEQ T1S6
DJEQ T1S7
DEC CNT1M
BEQ TMR30

TMR30 LDAA #60
STAA CNT1M
DJEQ T1M0 ;scan the 1 min timers
DJEQ T1M1
DJEQ T1M2
DJEQ T1M3
DJEQ T1M4
DJEQ T1M5
DJEQ T1M6
DJEQ T1M7

TMREXIT EQU * ;continue with the next
END ;module

9.5 Exercises

SX 9.1

Using the software timers described in this paragraph, write a program that toggles
PORTA bit 7 every 1 second, and PORTA bit 6 every 2.5 seconds.

Solution

Out of RESET, all I/O lines are configured as inputs. Therefore, we must configure
the selected bits of PORTA as outputs, by adding the following lines to INIT.ASM.

LDAA #$C0 ;select PORTA bits 7 and 6
STAA DDRA
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The main program looks like this:

INCLUDE68HC11F1.DEF
INCLUDEAS11.MAC
INCLUDEMAP.ASM
CODE
VECTOR_RESET

RESET EQU *
INCLUDEINIT.ASM

MLOOP EQU * ;main loop start
TST T100MS0
BEQ M10
BRA M20

M10 LDAA #10 ;restart timer
STAA T100MS0
LDAA PORTA
EORA #$80 ;toggle PORTA bit 7
STAA PORTA

M20 TST T100MS1 ;next timer
BEQ M30
JMP MLOOP

M30 LDAA #25 ;restart second timer
STAA T100MS1
LDAA PORTA ;toggle PORTA bit 6
EORA #$40
STAA PORTA
JMP MLOOP
END

The program uses two timers with the quantum 100 milliseconds, T100MS0 and
T100MS1, which are tested one by one in an endless loop. When a timer reaches
zero, the associated I/O line is toggled, and the timer is reloaded with the desired
value.

X 9.2

Write a program that reads all the analog inputs every 20 milliseconds, and updates
a set of variables AN0–AN7.

X 9.3

Write a program that uses the SCI reception interrupt. Upon reception of an ASCII
code for ‘A’ ($41) the program answers with the last value read from the analog
input AN0. The byte is transmitted as two ASCII characters, corresponding to its
hexadecimal representation.

X 9.4

Modify the schematics of the module described in this chapter, by adding an external
32 K RAM circuit, selected by CSGEN. Describe the initialization sequence in this
case.
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AVR Development Board

10.1 In this Chapter

This chapter describes a simple, yet flexible development board, based on AT90S8535,
for the study of the AVR microcontrollers. This board can be used to test most of the
AVR projects presented in this book.

10.2 The Hardware

The schematic of the development board is shown in Fig. 10.1. The circuit comprises
the following functional blocks:

1. Microcontroller
2. Clock circuit
3. RESET circuit
4. Output buffers
5. ISP interface
6. RS232 interface
7. Power supply circuit.

The microcontroller is an AT90S8535-P in a DIP40 package. Note that this
microcontroller is pin by pin, hardware compatible with other members of the analog
series of AVR microcontrollers, like ATMega8535 and ATMega16. However, there
are many differences between these microcontrollers. Consult the data sheets before
making the replacement.

The external clock circuit uses an 8 MHz crystal, Q1, and the capacitors C10, C11
(12–47 pF). The RESET circuit consists of the resistor R1 (10 K), and the capacitor
C1 (10 F/10 V). These values are not critical, because AT90S8535 contains internal
signal conditioning circuits for the RESET signal.

The digital input lines are connected to PORTC, and are pulled up to Vcc with
resistors. A group of LEDs has been included, to show the status of each input.
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Fig. 10.1. Schematic of the AVR development board

The idle status of the input lines is HIGH. An input line is active when pulled to
GND (for example by the contact of a relay). In this case, the associated LED will
light, indicating the active input.

The analog input lines use PORTA, and are provided with RC filters for noise
rejection. Note that these lines can be programmed to work as digital I/O lines. When
using the lines of PORTA for digital output, reduce the values of the filter capacitors
C11–C19, or remove them completely.

For digital output, the system uses the eight lines of PORTB of the microcontroller.
They are buffered with IC4 – ULN2803, an array of eight open collector transistors
able to sink up to 300 mA, at 30 V. This allows driving higher current loads, like
relays, lamps, coils, etc. Each output line is also provided with a LED-resistor group
to indicate its active status.

The output lines OC1A, OC1B of the MCU are buffered with two 2N2222
transistors, Q2 and Q3. They can be programmed to work either with timer 1 in
output compare mode, or can be used as PWM outputs. LED18 and LED19 indicate
the status of these lines.
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Fig. 10.2. PCB layout of the AVR development board

The input lines INT0, INT1, and INPUT CAPTURE of the MCU are not available
on the external connectors. Instead, they are connected to test points and can be used
for extensions of the board in the custom area.

The ISP connector SV2 is configured to make the board compatible with AVRISP,
for programming the internal flash memory of the microcontroller. The ISP uses the
MOSI, MISO, SCK and RESET lines of the microcontroller. The SS (Slave Select)
signal has been added on the ISP connector, to allow the use of the ISP connector for
a standard SPI interface.

The RS232 interface is a typical MAX232 implementation, and uses the connector
SV1. Note that all the projects and examples in this book use the same circuits and
connector layouts for RS232 and ISP.

The power supply circuit comprises the diode D1, the voltage regulator IC1, and
filter capacitors C5, C6, C20. LED1 indicates when the circuit is powered.

Figure 10.2 shows the component layout of the printed circuit board for this
module. Detailed execution drawings of the printed circuit board, as well as the
complete component list, are available on the accompanying CD.
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10.3 Testing the Circuit

Once you have the board assembled and visually checked for short-circuits, execute
the following steps to test the circuit. It is recommended to use appropriate sockets
for all the ICs, except IC1.

1. Power up the circuit without having the ICs inserted in their sockets.
2. Check for a value of +5 V of Vcc .
3. LED1 must be ON.
4. The RESET line (pin 9 of IC3) must be around +5 V.
5. Pins 10, 30, and 32 of IC3 must be at +5 V.
6. Pins 31 and 11 of IC3 must be at GND.

If everything is OK, remove the power and insert the ICs in their sockets.
Using the ISP interface, load one of the test programs described in the following

paragraphs into the MCU internal flash memory and check the behavior of the module
on the LEDs associated with the I/O lines.

10.4 The Software

Atmel Corporation offers an excellent, free programming and debugging tool to
support AVRs, called AVRStudio. The latest version of AVRStudio is available for
download at the Atmel Corporation web site.

Step 1. Installing the Avrstudio

To install AVRSTUDIO, unzip the downloaded archive in a new folder on your hard
disk, then launch SETUP.EXE and follow the instructions on screen.

Once the program has installed, read the detailed help file included, for an
overview of the capabilities of the program. This help file also contains a good
description of the instruction set of AVR microcontrollers.

Step 2. Creating a New Project

When launched, AVRStudio4 prompts the user whether to create a new project, or
open an existing one. Figure 10.3 shows a snapshot of the first dialog window of
AVRStudio.

If you choose the option Create new project, the following information is required:

• the name for the new project,
• the name of the initial file,
• the working directory where the project will be placed.
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Fig. 10.3. Snapshot of the first dialog window in AVRSTUDIO4

Fig. 10.4. Snapshot of the dialog window for Create new project in AVRSTUDIO4

See Fig. 10.4 for a snapshot of the dialog window for Create new project.
Fill in the information required and press the Next button.
One final dialog window is presented, as shown in Fig. 10.5, where the user

is prompted to choose the debugging platform and the device type. For this par-
ticular development board, choose AVR Simulator as the debugging platform, and
AT90S8535 for the device, then press Finish to start writing the new program.

Step 3. Writing and Testing Simple Programs in AVRStudio4

Before starting, note a few syntax differences between the assembler included in
AVRStudio and ASHC11, the assembler used for HC11.
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Fig. 10.5. Snapshot of the dialog window for selecting the debug platform and device

For example, labels must be terminated with colon ‘:’ when they are defined:

Loop: ;note the ‘:’ in label definition
.....
Rjmp Loop ;do not use ‘:’ when invoking

;the label

Another important difference is that all assembler directives start with a period
‘.’ and the filenames specified for Include must be delimited by double quotes: for
example

.Include ‘‘8535def.inc’’

The directives that switch between DATA and CODE segments are now named
.DSEG and .CSEG, respectively.

Here is an example of a fragment of code illustrating these distinctive features:

.Include ‘‘8515def.inc’’

.CSEG ;select CODE segment
Ldi R16,0xFF;load R16 with

;hex value $FF
Out Ddrb,R16;configure PORTB

;as output port
Loop:

In R6,Pinc;read PORTC in R6
Com R6 ;complement R6

To assemble the program press [F7].The assembler creates several output files
having the name chosen for the project, and the extensions .HEX (this is the executable
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code), .LST (this is the list file), and .MAP (this contains all the symbols defined in
the program, and the invoked include files)

The list file also contains the error messages (if any), so this is where you have to
look for explanations, in case of errors.

Once you have your program assembled without errors, you can invoke the
simulator to run it by pressing [Ctrl]+[F7].

If you want to run the program step by step, press [F11]. At each step, the whole
status of the microcontroller (program counter, registers, memory, I/O lines, etc.) is
updated, and displayed, or even modified by the user.

See Fig. 10.6. for a snapshot of the simulator screen. Notice the left window,
which displays the status of hardware resources for that particular step. In the right
window, a cursor indicates the current instruction.

You can also choose to run the program normally ([F5]), to break the current
execution ([Ctrl]+[F5]), to add breakpoints in the program ([Ctrl]+[F9]), etc. All
these options are offered in the Debug pull-down menu.

The AVRStudio simulator is an exceptional tool that lets you perform complex
and detailed test and debug procedures on your program, without having to download
the program into the microcontroller’s flash memory.

Explore for yourself the numerous features and tools available in AVRStudio, by
launching the on-line help (Start>Programs>Atmel AVR Tools>AVR Tools Online
Help).

Fig. 10.6. Snapshot of the AVRStudio simulator screen
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Step 4. Loading the Executable Code into the Flash Memory

If the assembly process completes without errors, the assembler generates a file with
the extension .HEX, which contains the actual executable code of the program. This
code can be loaded into the microcontroller’s flash memory through the ISP interface,
following the instructions in Appendix A9.

Step 5. Choosing a Structure for Your Application

The principles on how to organize a software application, described in Chap. 9
for HC11, can be entirely followed when writing AVR programs. The assembler
built in AVRStudio accepts MACROs as well as the .INCLUDE directive. Although
the macro capabilities of the AVR assembler are weaker than those of the HC11
assembler, you can still use MACROs to simplify your work.

The following examples illustrate what MACROs can do:

.MACRO LDXI
ldi
xh,high(@0)
ldi
xl,low(@0)

.MACRO LDX
lds xh,@0
lds xl,@0+1

.ENDM

MACRO TSX
out SPH,XH
out SPL,XL

.ENDM

.MACRO TXS
in XH,SPH
in XL,SPL

.ENDM

Though very simple, the following example illustrates the concept on the general
structure of a software application for microcontrollers. This program toggles the
lines of port B every 500 milliseconds. Since each line of port B is connected to
a LED, this program can be used to test the development board, without the need to
measure any signal. Here is the listing of the main program module LEDMAIN.ASM.

.include ‘‘8535def.inc’’

.include ‘‘map.asm’’ ;application variables

.cseg

.org 0
reset: ;reset vector

rjmp init
.org 9

vector_t0_ov: ;timer0 overflow vector
rjmp isr_t0_ov

init:
.include ‘‘init.asm’’ ;all initializations

here
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sei ;enable interrupts
ldi tmp1,time_s_timer0
sts s_timer0,tmp1 ;start soft timer

main_loop:
lds tmp1,s_timer0
tst tmp1 ;check if timer

expired
brne main_loop
ldi tmp1,time_s_timer0
sts s_timer0,tmp0 ;restart timer
rcall toggle ;toggle portb
rjmp main_loop
.include ‘‘timer.asm’’ ;timer routines
.include ‘‘io.asm’’ ;i/o routines

The definitions file 8535def.inc is provided by AVRStudio and contains a number
of equation directives (.equ) that associate symbolic names to the addresses of all the
ressources. Here is a fragment of the contents of this file:

.device AT90S8535
;***** I/O Register Definitions
.equ SREG =$3f
.equ SPH =$3e
.equ SPL =$3d
....
.equ PORTA =$1b
.equ DDRA =$1a
.equ PINA =$19
.equ PORTB =$18
.equ DDRB =$17
.equ PINB = $16
.....

The following Include file, MAP.ASM, contains application-specific variables
and definitions. Below is the listing of MAP.ASM for this particular application:

.def rint=r1 ;just change the names

.def rsav=r2 ;of some registers

.def tmp1=r16

.def tmp2=r17

.def tmp3=r18
;define variables in data segment
.dseg
s_timer0: .byte 1 ;software timer0
s_timer1: .byte 1 ;software timer1
;constants used by timer
.equ prescaler_constant=5
.equ ft_div=177
.equ time_s_timer0=50
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The CODE segment starts with the interrupt vector area. In this example, only
two vectors are used: the reset vector, and the vector for the interrupt for timer0
overflow. The reset vector directs the program to the initialization sequence, and the
timer0 overflow vector contains a jump instruction to the associated interrupt service
routine, isr_t0_ov.

INIT.ASM contains the initialization sequence, which starts by loading the stack
pointer SP with the last address of the internal RAM (Ramend), then calls the
initialization routines for timer0, and I/O port B.

After the initialization sequence, the program enables the interrupts, loads the
software timer s_timer0 with a constant (time_s_timer0), which defines the time
between the moments when port B changes its status, then enters the main loop.

This software timer is the key element of the program. Basically, s_timer0 is an
8-bit RAM variable defined in MAP.ASM, and decremented every 10 milliseconds
by the interrupt service routine for timer0 overflow. If the timer is loaded with the
value N , it will reach zero after a time T = N × 10 ms.

In this example, N is the constant time_s_timer, defined in MAP.ASM with the
value 50, which gives a total time of 500 ms between the moments when port B is
toggled. When the software timer expires, port B changes its status, then the timer is
reloaded, and the program continues in an endless loop.

The resource-specific routines are placed outside the main loop in the modules
TIMER.ASM and IO.ASM. TIMER.ASM contains the initialization sequence for
timer0, organized as a subroutine init_timer0, and the interrupt service routine that
implements the software timer.

Here is the listing of TIMER.ASM:

init_timer0:
ldi tmp1,prescaler_constant
out tccr0,tmp1
ldi tmp1,ft_div
mov rint,tmp1
out tcnt0,tmp1
ldi tmp1,$01
out timsk,tmp1
ret

This routine chooses the division factor for the prescaler, and the number of clocks
before overflow, then enables the interrupt for timer0 overflow.

isr_t0_ov:
out tcnt0,rint
in rsav,sreg
push tmp1
rcall soft_timer
pop tmp1
out sreg,rsav
ret
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Note how this routine saves and restores the CPU status. The register rint (an alias
for r1) is preloaded with the number of clocks before tcnt0 overflows, so that tcnt0
can be reloaded as fast as possible.

soft_timer:
lds tmp1,s_timer0
tst tmp1
breq sft1
dec tmp1
sts s_timer0,tmp1

sft1:
lds tmp1,s_timer1
tst tmp1

breq ex_sft
dec tmp1
sts s_timer1,tmp1

ex_sft:
ret

The routine soft_timer implements two independent software timers, s_timer0
and s_timer1. In principle, the number of distinct timers that can be implemented
using this technique is limited only by the time required to execute the interrupt
service routine. If a larger number of software timers is required, use the technique
described in Chap. 9 for HC11 to reduce the execution time of the interrupt service
routine.

Step 6. Adding a New Task to an Existing Application

The structure of the software described in the previous paragraph can be used for
almost any application. Adding a new task to an existing application involves the
following steps:

1. Modify MAP.ASM to define more variables if needed.
2. Write a new software module if a new resource is required. It is recommended

to keep all the routines associated with specific resources in separate files (e.g.
TIMER.ASM, IO.ASM, UART.ASM, ADC.ASM, etc.)

3. Modify the main program so that it includes calls to subroutines that actually
execute the new task.

In the following example, the program reports the status of port B as a string of
two ASCII digits, followed by CR+LF, over the asynchronous serial communication
line, when the ASCII code for ‘?’ is received on the serial line. Note that port B is
toggled every 500 ms, as described in the previous example.

The UART initialization routine and the communication routines are placed in
a separate file UART.ASM, invoked in the main module using the “.include” directive.
A separate file, LIB.ASM, is used for miscellaneous library routines – in this case
hex-to-ASCII conversion routines used to prepare data for serial communication.



142 10 AVR Development Board

Here is the listing of the main module UARTMAIN.ASM:

.include ‘‘8535def.inc’’

.include ‘‘map.asm’’

.cseg

.org 0
reset:

rjmp init
.org 9

vector_t0_ov:
rjmp isr_t0_ov

init:
.include ‘‘init.asm’’
sei

ldi tmp1,time_s_timer0
sts s_timer0,tmp1

main_loop:
rcall get_uart
brcc main0
cpi tmp1,’?’
brne main0
rcall send

main0:
lds tmp1,s_timer0
tst tmp1
brne main_loop
ldi tmp1,time_s_timer0
sts s_timer0,tmp1
rcall toggle
rjmp main_loop
,include ‘‘timer.asm’’
.include ‘‘uart.asm’’
.include ‘‘io.asm’’
.include ‘‘lib.asm’’

Note the two new subroutine calls included in the main loop: get_uart, and send.
Get_uart checks if a character is available in the receiver’s data register, reads

the character in tmp1, and sets the carry bit to inform the main program. When no
character is available, get_uart returns carry = 0.

get_uart:
clc
sbis usr,rxc ;check rxc status bit
ret
in tmp1,udr ;get character received
sec ;set carry
ret ;and return
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Send prepares and sends over the communication line a string comprising two
ASCII digits corresponding to the hexadecimal value of each nibble of port B, plus
CR and LF.

send:
rcall hex_asc ;convert tmp1 to ASCII
rcall put_uartw ;send tmp1
mov tmp1,tmp2 ;next character in tmp2
rcall put_uartw ;send next character
ldi tmp1,$0D ;CR
rcall put_uartw
ldi tmp1,$0A ;LF
rcall put_uartw
ret

Put_uartw waits for the status bit UDRE to be set, then writes the content of tmp1
to UDR. It does not check for valid ASCII characters before sending.

put_uartw:
sbis usr,udre ;check if TX

;register empty
rjmp put_uartw ;wait until ready to send
out udr,tmp1 ;send the byte
ret
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10.5 Exercises

SX 10.1

Use two software timers to make the upper and lower nibble of port B toggle at
different time intervals.

Solution

The two software timers s_timer0 and s_timer1 described in the previous paragraphs
must be loaded with different constants to obtain different time intervals for toggling
the lines of port B. Here is how LEDMAIN.ASM should be modified for this:

init:
.include ‘‘init.asm’’
sei
ldi tmp1,time_s_timer0
sts s_timer0,tmp1 ;start s_timer0
ldi tmp1,time_s_timer1
sts s_timer1,tmp1 ;start s_timer1

main_loop:
lds tmp1,s_timer0
tst tmp1
brne main1
ldi tmp1,time_s_timer0 ;restart s_timer0
sts s_timer0,tmp1
rcall toggle1 ;act on port

main1:
lds tmp1,s_timer1 ;check s_timer1
tst tmp1
brne main_loop
ldi tmp1,time_s_timer1 ;restart s_timer1
sts s_timer1,tmp1
rcall toggle2 ;act on port
rjmp main_loop

Each of the subroutines toggle1 and toggle2 must affect only one nibble of port B,
leaving the other nibble unchanged:

toggle1:
in tmp1,portb ;read port
mov tmp2,tmp1 ;save it to tmp2
andi tmp2,$0F ;mask lower nibble
com tmp1
andi tmp1,$F0 ;mask upper nibble
or tmp1,tmp2 ;recompose
out portb,tmp1 ;write new value
ret ;to the port
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8051 Development Board

11.1 In this Chapter

This chapter contains the description of a simple development board for the study of
the 8051 family of microcontrollers.. Unlike the development boards dedicated to the
HC11 and AVR families, presented in the previous chapters, this project allows the
user to load and execute programs in an external RAM area, addressed to be visible
both in the program memory and data memory address space.

11.2 Hardware

The schematic of the board is presented in Fig. 11.1, 11.2, and 11.3. Figure 11.1 shows
the microcontroller IC10, the bus demultiplexer IC7, the RS232 interface IC12, the
RESET and clock circuits, and the ISP connector SV1.

Note the presence of the two NAND gates IC6C and IC6D, which implement
the logic function AND between the signals RD\ (Read) and PSEN\ (Program Store
Enable), both active LOW, and generate the signal RDPSEN. RDPSEN is active
LOW when either RD\ or PSEN\ is LOW. Connecting this signal to the RD\ input
of an external RAM circuit allows the use of this RAM to store program as well as
data.

The microcontroller can be any of 8032, 8051, 8052, AT89C51, AT89C52, etc.
in a DIP40 package. The input EA\ (External Access) of the MCU is connected to
the jumper JP1 to allow the use of the internal ROM, if this is available. Connect the
jumper so that EA\ = 1 to use the internal ROM. When the external ROM is used,
EA\ must be connected to GND.

The clock circuit comprises the crystal Q1 (14.74 MHz) and the capacitors C6,
C7 (22 pF). C5 (10 µF) and R4 (10 K) implement the RESET circuit. The pushbutton
S1 is provided to allow manual reset of the circuit.

The latch SN74HC573 (IC7), controlled by the signal ALE (Address Latch En-
able), is used to demultiplex the external data bus, by storing the lower half (A0–A&)
of the address bus.
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Fig. 11.1. MCU, bus demultiplexer, RESET, clock, and RS232

The ISP (In System Programming) connector SV1 has been included to allow
the use of microcontrollers like AT89LS51, AT89S52 that are provided with this
feature. In this case, the jumper JP2 must be connected to bring the signal RST to
SV1 pin 5.

The memory circuits and the address decoder are presented in Fig. 11.2. IC5
(AT28C64) is an 8-kilobytes EEPROM, having the chip select input CS\ connected
to the signal CS0000, generated by the address decoder IC9 (7445), and the output
enable input OE driven by the signal PSEN, generated by the MCU.
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IC2 is a generic 8-kilobytes RAM circuit (6264) controlled by the selection signal
CS2000, the RDPSEN signal prepared with the gates IC6, and the write control signal
WR, generated by the MCU.

Note the pull-up resistor network R6 connected to the data bus.
The address decoder IC9 (7445) is used here to generate eight active LOW output

signals, CS0000 to CSE000, each corresponding to an 8-kilobytes address range. Only
three of these outputs are actually used in this circuit: CS0000, which decodes the
address range between $0000 and $1FFF, used to select the external ROM; CS2000,
corresponding to the address range $2000–$3FFF, used for the external RAM, and
CSE000 ($E000–$FFFF), used for the external I/O ports.

Figure 11.3 shows the circuits that implement the external input and output ports
and the address decoders for these ports. The actual output port is IC3 (SN74HC574),
controlled by the signal OUTE000 (active HIGH), and the input port is implemented
with IC11 (SN74HC573), controlled by the signal INE000, (active LOW).

The address decoder for the external I/O ports is implemented with the circuit
IC8 (74HC138), along with the NAND gates IC6A and IC6B, which decode as I/O
addresses any address combination of the type: 111x xxxx xxxx xx00. Note that the
two registers have the same address, but the selection signal INE000 is active only
for read operations, while OUTE000 is active for write operations.

A MOVX instruction at the address $E000 will cause the selection of either the
input or output port, depending on the status of the RD\ signal.
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Fig. 11.4. Component layout for the PCB of the 8051 development board

The output port is buffered with IC4 (ULN2804). LED2–LED9 and the resistor
network R2 have been included to indicate the status of the output lines at any
moment. Similarly, LED10–LED17 and R5 are used to indicate the status of the
input lines.

Figure 11.3 also shows the voltage regulator IC1 (7805) which generates the
power supply voltage Vcc for the board. LED1 indicates the power present. The
external power is applied on X1-1, X1-2, with the polarity indicated, and must be in
the range +12 V to +16 V/250 mA.

The component layout of the PCB for this schematic is shown in Fig. 11.4.

11.3 The Software

11.3.1 Installing the Cross-Assembler

From the many freeware 8051 cross-assemblers available, we chose ASEM-51, cre-
ated by W.W. Heinz, because it is fully compatible with the Intel syntax, allows nested
include directives, and macros, and is very well documented. This tool is available
for free download at http://plit.de/asem-51/.

To install the tools for creating and testing 8051 software, perform the following
steps:

1. Locate the subfolder ASM51 of the folder SOFTWARE on the accompanying
CD, and copy it to your hard drive, with all its content. This contains all the
software examples described in this chapter.

2. Download the archive ASEM51 from http://plit.de/asem-51/ and unzip all the
files to a temporary folder.

3. Copy the executable ASEMW.EXE to the hard disk in the folder ASM51.
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4. Follow the instructions from Chap. 9 to create a new DOS window, having the
working directory C:\ASM51, and a shortcut on your desktop linking to it.

The assembler is invoked from the command line by typing ASEMW sourcefile.
The extension of the source file is assumed to be .A51. If another extension is

used, this must be specified in the command line, e.g. ASEMW sourcefile.asm.

If you are not familiar with MS-DOS™ programs, consult Appendix A15 for
the description of a software utility that allow invoking the assembler from
a Windows™ application. This utility also contains a text editor for creating and
editing the assembler source files.

The assembler generates two output files, both having the same name as the source
file, and the extensions .LST and .HEX. The list file, sourcefile.lst contains the detailed
listing of the program and information on the errors occurred during the assembly
process. The hex file, sourcefile.hex contains the actual executable code in Intel Hex
format. The ASEM-51 package also contains a utility program to convert this type of
file to plain binary files, called HEXBINW.EXE, but this is seldom necessary because
most EPROM programmers directly handle Intel hex files.

The accompanying CD contains several examples of 8051 assembler source files,
which can be used to verify that the assembler is correctly installed.

11.3.2 Writing and Testing Simple 8051 Programs

ASEM-51 accepts INCLUDE directives. This means that the user programs can be
organized according to the structure described in the previous chapters for HC11 and
AVR microcontrollers.

The simplest program (inout.asm) reads the status of the external input port and
writes this value to the external output port. This is a good and simple method to test
the hardware, and to get in touch with the software tools. Here is the listing of this
program:

org 0000h ;reset sends here
mov Dptr,#0e000h

main_loop:
movx a,@dptr ;read input port to A
movx @dptr,a ;write A to output port
sjmp Main_loop ;in an endless loop
end

The next example is a bit more complicated. It uses the timer0 overflow interrupt
to implement a user programmable software timer, which is used to determine the
time intervals between the moments when the output port toggles its status. Compare
this example with those presented in Chap. 9 and 10 and note the similarities and the
differences. Besides the syntax differences (like $include instead of .include, ) another
significant difference is that, in this case, the symbolic names of the special function
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registers are automatically recognized by the assembler, and it is not necessary to
define them in a special include file.

$include (map.asm) ;map
Cseg ;code segment
Org Startaddr ;start address

Rst:
Ajmp Init ;go to init
Org rst+0bh ;timer0 ovf interrupt

Int_t0_ov: ;timer0 vector
Ajmp isr_t0_ov

Init:
$include (init.asm) ;all initializations
Mov s_timer1,#time_st1;start software timer1

Mainloop:
Mov a,s_timer1 ;read timer value
Jnz Mainloop ;loop until expires
Mov s_timer1,#time_st1;restart timer1
Mov a,port_v ;get the value for

port
Cpl A ;complement it
Mov port_v,a ;save new value
Movx @dptr,a ;out to port
Sjmp Mainloop ;loop forever
$include (timer.asm) ;timer0 routines
End

MAP.ASM contains, as usual, the application specific variables and constants.

Time_st1equ 50 ;constant to timer1
Startaddrequ 0000h ;start address
Dseg ;data segment
Org 28h

s_timer1: ds 1 ;software timer1
port_v: ds 1 ;out port value
icnt1: ds 1 ;interrupt counter

time_st1 is the value that, multiplied by the timer quantum, determines the actual
time until the software timer expires. In this example, time_st1 is 50 and the timer
quantum is 10 ms, which leads to 500 ms total time between the moment when the
software timer is loaded, and the moment when it reaches zero.

The actual software timer is a RAM location s_timer1, and port_v is another RAM
location used to store the value to write in the external output port. It is initialized
with the value 055h. Finally icnt1 is an 8-bit software counter initialized with the
value 100. Here is the whole initialization sequence located in the file INIT.ASM:

acall init_timer0;init timer0 system
mov port_v,#55h;start with 055h
mov icnt1,#100 ;100x0.1mS=10 ms
mov dptr,#0e000h;dptr points to port
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The subroutine init_timer0, called here, is located in the file TIMER.ASM.
Note that the initialization sequence does not contain initialization of the stack

pointer SP. There is no need for this because the SP of 8051 is hardware initialized
with the value 07h.

The module TIMER.ASM contains the subroutine init_timer0, and the interrupt
service routine for timer0 overflow:

init_timer0:
mov tmod,#02 ;timer0 in mode 2
mov th0,#131 ;256-131=125

;125x0.8us=0.1ms
mov tl0,#131
setb et0 ;timer0 interrupt enable
setb ea ;global interrupt enable
setb tr0 ;start timer0
ret

Remember that in operating mode 2, timer0 is reloaded by hardware, at every
overflow, with the content of th0. For the given value of the frequency of the oscillator,
th0 is initialized so that the overflow interrupts from timer0 occur every 0.1 ms.

The interrupt service routine is listed below:

Isr_t0_ov:
push psw ;save psw
push acc ;save accumulator
djnz icnt1,exit_st;decrement & exit if zero
mov icnt1,#100

St1:
mov a,s_timer1 ;get timer1 value
jz exit_st ;exit if zero
dec a ;else decrement it
mov s_timer1,a

Exit_st:
pop acc ;restore accumulator
pop psw ;restore psw
reti ;return from interrupt

The quantum of the software timer is determined by the interval between two
consecutive overflow interrupts from timer0, and by the value loaded in icnt1. In this
example, the interval between interrupts is 0.1 ms, and the value loaded in icnt1 is
100, and the resulting timer quantum is 10 ms.

The software timer s_timer1 is decremented by the interrupt service routine every
10 ms, only if its value at the moment of the interrupt is non-zero. The main program
must load the desired number of quanta in s_timer1, then check the moment when
s_timer1 reaches zero. In this example, the software timer expires after 50×10 ms =
500 ms.
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11.3.3 Loading and Executing Programs in the External Ram Memory

Consider the memory of the development board described in this chapter, presented
in Fig. 11.2.

Note that the external RAM is visible both in the address space of the program
memory, and in the address space of data memory.

This allows, in principle, the execution of a program loaded in the external RAM.
The problem is that the RAM memory is volatile, and the program must be loaded
into the memory via the serial communication line after each power down.

The solution for this is to place in ROM a special program, which allows the user
to enter into a “dialogue” with the board, and to launch at least two “commands”: one
to load a program in RAM, and the other to execute the program. Other possible com-
mands are for displaying and/or modifying the contents of the code or data memory.

The accompanying CD contains the file MONITOR.HEX, which is the executable
code of a program that does all this. This very simple monitor program uses the RS232
interface to connect the development board to a computer running a standard terminal
program, like HyperTerminal. The link cable needed is a null-modem cable, and the
communication parameters are 9600, N, 8, 1, i.e. 9600 baud, 8-data bits, no parity
bit, one stop bit.

When executed, the monitor program starts by sending the prompter ‘>’ to the
terminal, then awaits a command string. All the command strings must be ended by
CR. Table 11.1. contains the list of valid commands accepted by this monitor.

The command strings consist of one or two letters, followed by a two-digit (xx)
or four-digit (xxxx) hexadecimal parameter signifying a memory address referred
to by the command. No delimiters are required between the letter that defines the
command and the parameter. For example, the effect of the command G2000 is an
unconditional jump to the address 2000h.

There are two commands that do not require any parameter: ‘?’ and ‘S’. The
command ‘?’ displays a help screen, and ‘S’ displays a list of entry point addresses
for several ROM resident subroutines, available for the user by means of the acall
instruction (absolute address call).

The ‘L’ commands (LH or LB) start the process of loading a program into the
external RAM of the board. No parameter is required for LH because the program is

Program memory address space Data memory address space

$0000 $0000
$007F
$0080
$00FF

$1FFF
$2000$2000

$3FFF $3FFF

SFR space

Internal RAM

External RAMExternal RAM
(program memory)

EEPROM
28C64

Fig. 11.5. Memory map for the 8051 development board
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Table 11.1. List of valid commands of the monitor program

Command syntax Effect

? Display a help screen on the terminal
LH Load user program in RAM, via RS232, as Intel HEX file
LBxxxx,yyyy Load binary file starting address xxxx. yyyy is the byte count
Gxxxx Execute program starting the address xxxx (four hex digits)
Dxx Dump content of internal RAM starting the address xx
XDxxxx Dump content of external RAM starting xxxx
XSxxxx Substitute content external RAM starting xxxx
Cxxxx Dump code memory starting xxxx
Ixxxx Set pseudovectors for a program starting at xxxx
S Display a list of entry points for some monitor subroutines

presented in Intel hex format, which contains information about the address where
the code must be stored.

After receiving the command ‘LH’, the monitor displays a new prompter ‘:’ and
waits indefinitely until the transmission process begins. When the transmission ends,
the monitor returns to the main prompter, and waits for a new command.

The command LB acts similarly, but two parameters must be supplied, separated
by a comma, each consisting in four hex digits. The first parameter indicates the
starting address; the second is the number of bytes expected.

The terminal program used for communication must allow transmission of user
specified text or binary files. HyperTerminal has this feature.

See also the utility software ASMEDIT.EXE on the accompanying CD, described
in Appendix A15. This contains a terminal program that allow serial communication
between a computer and the development board.

The command ‘Ixxxx’ requires special attention because it introduces a new
concept: the pseudovectors. As mentioned before, the interrupt vectors are hardwired
and link each interrupt to a ROM address, containing the interrupt service routine or
a jump to this routine. Apparently, this seems to be a major limitation when writing
programs aimed to run in RAM, because all the interrupt vectors point to ROM
addresses. In fact, there is a simple solution to this problem. The fix is to reserve two
RAM locations, called pseudovectors, for each interrupt and initialize these locations
with the actual address of the interrupt service routine, before the interrupts are
enabled. At the address of the vector, in ROM, place a piece of code that reads the
contents of the pseudovector and loads it into the program counter. The following
example lists the ROM code for the timer0 interrupt:

Org 0bh
Int_tm0:

Push 76h
Push 77h
Ret
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The initialization sequence must write to the RAM locations 76h–77h the address
of the actual interrupt service routine for timer0.

The ‘Ixxxx’ command assumes that the entry points for the interrupt service
routines are located at addresses of the form:

ISR_entry = start + vector

Where start is the start address of the RAM program, and vector is the address of
the hardwired vector associated with the respective interrupt (e.g. 0bh for timer0
interrupt, or 23h for UART events, etc.).

In fact, the commands ‘LH’ and ‘LB’ automatically set the values of the pseu-
dovectors according to this rule, starting with the specified start address. The com-
mand ‘Ixxxx’ is useful in case of program runaway, or when several programs are
loaded in RAM at different addresses, and must be tested separately.

11.4 Exercises

SX11.1

Modify the schematic of the memory section of the development board, presented
in Fig. 11.2 by adding a new 32K RAM chip (62 256) located in the address range
$4000-$BFFF.

Solution

The solution is presented in Fig. 11.6. Note the simple way to obtain the selection
signal CS4000, which uses the fact that 7445 has open collector outputs.
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SX11.2

Modify the schematic of the I/O section of the development board, presented in
Fig. 11.3, by adding one more input port and one more output port, located at the
address $E001.

Solution

The solution is shown in Fig. 11.7.
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Digital Voltmeter with RS232 Interface

12.1 In this Chapter

This chapter contains a didactic example on how to use the AVR development board
described in Chap. 10 as an 8-channel digital voltmeter that can be interrogated over
the RS232 interface. The characters received from the serial line are interpreted as
the address of the analog channel to be read and reported.

12.2 The Hardware

The voltage levels expected by the A/D converter are in the range [0,Vref] and Vref is
connected to Vcc. The analog inputs are presented as positive voltage signals to the
connector X100, pins 1–8, referred to the ground line X100-9, then filtered by the
RC filters implemented by R11–R26 and C11–C19, and applied to the analog inputs
ADC0–ADC7 of the MCU.

The output of the ADC system, corresponding to Vin is a 10-bit binary value:

ADC_value = 1023 × Vin/Vref. (12.1)

Since Vref = Vcc = +5 V, an input voltage Vin = 3.1 V, for example, is converted to
decimal 634, which corresponds to the hexadecimal value $27A.

The example presented in this chapter uses only the serial communication inter-
face RS232 to report the values read by the ADC, but optionally a local display, like
the one presented in Appendix A14, can be connected to the board on the synchronous
peripheral interface SPI.

12.3 The Software

The software application is structured according to the principles described in
Chap. 10. After the initialization sequence, the program enters an infinite loop, where
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it reads all the analog inputs of the ADC, and stores the results in a RAM buffer. If an
ASCII character in the range ‘0’ to ‘7’ is received on the asynchronous serial inter-
face, the two bytes needed to represent the 10-bit value of the corresponding analog
input are converted to four ASCII digits and transmitted on the serial communication
line.

Here is the listing of the main module VMMAIN.ASM:

.include ‘‘8535def.inc’’

.include ‘‘map.asm’’ ;local variables
.cseg
.org 0

reset:
rjmp init
.org $10

init:
.include ‘‘init.asm’’ ;calls to init routines

sei
main_loop:

rcall get_adc ;read analog inputs
rcall get_cmd ;check for data from UART
brcc main_loop
rcall exec_cmd ;answer query over

;serial line
rjmp main_loop

.include ‘‘uart.asm’’ ;UART specific routines

.include ‘‘lib.asm’’ ;misc routines

.include ‘‘adc.asm’’ ;ADC specific routines

Note that the main program loop only contains calls to three subroutines. Get_adc
reads all the analog inputs, get_cmd checks the UART receiver data register for an
ASCII character between ‘0’ and ‘7’, and returns the CARRY flag set if one of these
characters has been received. Finally, exec_cmd extracts the value of the analog line
indicated by the command character, converts it to four ASCII digits, and sends them
to the serial line.

All other modules contain either variable definitions (MAP.ASM), calls to
the initialization routines (INIT.ASM), peripheral specific routines (UART.ASM,
SDC.ASM) or miscellaneous data conversion or execution routines (LIB.ASM).

MAP.ASM contains a number of definitions for constants, and RAM variables:

.def rint=r1 ;some aliases for regs

.def rsav=r2

.def tmp1=r16

.def tmp2=r17

.def tmp3=r18

.def op1l=r19
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.equ prescaler_adc=7 ;ADC clock=CK/128

.equ adc_max_ch=7 ;max # of ADC channels

.equ f_baud=51 ;9600 baud

.dseg ;RAM variables
buf_adc: .byte 16 ;buffer for ADC data

.equ f_baud=51 ;9600 baud

INIT.ASM is a block of code containing the initialization of the stack pointer
SP, and calls to the initialization routines associated with the peripheral interfaces
used by the application. The resource-specific initialization routines are located in
the corresponding module: init_uart in UART.ASM and init_adc in ADC.ASM. The
whole block of code contained in INIT.ASM is inserted in the main program at the
point specified by the .include directive.

init_sp:
ldi tmp1,high(ramend)
out sph,tmp1
ldi tmp1,low(ramend)
out spl,tmp1
rcall init_uart
rcall init_adc

end_init:

The UART initialization routine, init_uart. has been described in the previous
chapters. Below is the listing of the subroutine for the initialization of the ADC
subsystem:

init_adc:
ldi tmp1,0 ;channel 0 first
out admux,tmp1
ldi tmp1,prescaler_adc ;ADC clock=CK/128
out adcsr,tmp1
sbi adcsr,aden ;ADC enabled
sbi adcsr,adsc ;start first

;conversion
ret

This code selects channel number 0 by writing to admux, then selects the ADC
clock by programming the prescaler to divide the system clock by 128, and enables
the ADC system by setting the bit ADEN (A/D converter enable) in ADCSR. Finally,
it starts the conversion on the selected channel, by setting the bit ADSC (Start A/D
conversion) in ADCSR.

The subroutine get_adc checks the bit ADIF in ADCSR to determine if the last
conversion is completed. If ADIF = 1, then the ADC result value (read as two bytes)
is stored in a RAM buffer buf_adc, using the channel number as index in this buffer,
then a new conversion is started on the next channel:
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get_adc:
sbis adcsr,adif ;exit if ADIF=0
ret
in tmp1,admux ;else, get channel number
andi tmp1,0b00000111
ldi xl,low(buf_adc) ;x points to start

;of buffer
ldi xh,high(buf_adc)
clr tmp2
push tmp1 ;save channel number
add tmp1,tmp1 ;two bytes foe each channel
add xl,tmp1 ;add offset to x
adc xh,tmp2
in tmp1,adcl ;get ADC conversion result
in tmp2,adch
st x+,tmp1 ;and store it in buffer
st x,tmp2
pop tmp1 ;restore channel number
inc tmp1 ;increment
cpi tmp1,adc_max_ch+1 ;check if last channel
brlo getadc1
clr tmp1 ;if so, return to channel 0

getadc1:
out admux,tmp1 ;select new channel
sbi adcsr,adsc ;start a new conversion
ret

The RS232 communication is performed by means of two subroutines called in the
main program loop: get_cmd and exec_cmd, both located in the module LIB.ASM.

Get_cmd checks the UART receiver data register for an ASCII code between ‘0’
and ‘7’. If no character is received, or the ASCII code is outside the expected range,
get_cmd returns CARRY = 0, otherwise it returns the valid code in the register r16
(tmp1) and CARRY = 1.

get_cmd:
rcall get_uart ;check if character received
brcs getcmd1 ;exit if none
ret

getcmd1:
clc
cpi tmp1,$30 ;$30 is the ASCII code for ‘0’
brlo exit_gcmd
cpi tmp1,$38 ;$38 is ASCII ‘8’
brsh exit_gcmd
sec ;set carry

exit_gcmd:
ret
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Exec_cmd sends on the serial line a data packet, having the following structure:

N : AAAA CR LF

where N is the ASCII code of the channel number, ‘:’ is used as delimiter, AAAA is
the last converted value in hexadecimal of the selected analog channel, and CR, LF
are the ASCII codes for ‘carriage return’ ($0D) and ‘line feed’ ($0A). This is required
to allow the use of any ASCII terminal emulator, such as Windows™ HyperTerminal,
to test the program.

Note that exec_cmd calls hex_asc – a subroutine that converts the content of tmp1
to two ASCII characters, returned in tmp1 and tmp2 corresponding to the nibbles of
the input value.

Therefore, the string output to the terminal by exec_cmd in case of reading on
channel 3 the binary value 1100100111b is: 3:0C27

Here is the listing of exec_cmd:

exec_cmd:
rcall put_uartw ;display channel number
rcall asc_hex ;convert it to hex
ldi xl,low(buf_adc) ;x points to start of buf
ldi xh,high(buf_adc)
clr tmp2
add tmp1,tmp1 ;compute offset in buf_adc
add xl,tmp1
adc xh,tmp2
adiw xh:xl,2
ldi tmp1,’:’ ;send ‘:’ as separator
rcall put_uartw
ld tmp1,-x ;get high byte from buffer
rcall hex_asc ;convert to ascii
rcall put_uartw ;send first character
mov tmp1,tmp2
rcall put_uartw ;send second chr
ld tmp1,-x ;get low byte
rcall hex_asc ;convert it
rcall put_uartw ;send it
mov tmp1,tmp2
rcall put_uartw
ldi tmp1,$0d ;CR
rcall put_uartw
ldi tmp1,$0a ;LF
rcall put_uartw
ret

Note that the input for exec_cmd is the channel number in ASCII, as received
from the serial line. Exec_cmd starts by echoing this value. Then, the ASCII value
of the channel number is converted to its corresponding hexadecimal value by the
subroutine asc_hex. The resulting binary value is used to compute the offset in the
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buffer buf_adc, to retrieve the result of the last conversion performed on the selected
analog channel.

The accompanying CD contains a terminal emulator, Voltm.exe, which auto-
matically interrogates the voltmeter for the values of all eight analog channels, and
displays the values on the screen. The default Comm port is COM2, but this can be
changed by the user. The Start/Stop button initiates and interrupts the communication
process. The program runs under Windows™ 9x.

12.4 Exercises

X 12.1

Write a subroutine CBCD16 that converts a 16-bit binary number, lower than 9999,
received as input in the registers tmp1:tmp2, to four BCD digits placed in the same
registers.

X12.2

Modify the software so that the data sent on the serial line contains the decimal
representation of the analog value read from the requested channel.

X12.3

Modify the software so that the decimal value of channel 0 is also displayed on the
SPI display described in Appendix A14.
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Simple RS485 Network with Microcontrollers

13.1 In this Chapter

This chapter contains the description of a device capable of reading the status of
a number of digital inputs, or the values of a number of analog inputs, to store this
information, and to report it when it receives a specific interrogation from a master
device. It is implemented using an AVR microcontroller, and uses a RS485 line
to communicate with the master. The aim of this chapter is to introduce the basic
concepts of distributed data acquisition systems.

13.2 The Hardware

The simple data acquisition modules described in this chapter are meant to be con-
nected as slaves in a RS485 network, as shown in Fig. 13.1.

The master device in this network is a personal computer (PC), which uses one
of the asynchronous communication ports (COM1/COM2) connected to the network
through a RS232-to-RS485 interface converter.

Two different slave devices are described for this application: one, called SLD, is
designed to read and report the status of three digital inputs, such as relay contacts;
the other, called SLA, reads the values of three analog inputs in the range 0–2.56 V.

It is possible, in principle, to design and add more slave devices, with different
functions, provided that they communicate according to the same protocol as the

RS232/485

PC/AT
Rx

A
B

Tx DTR
SLAVE 0 SLAVE 1 SLAVE n

Fig. 13.1. Block diagram of the network described in this chapter
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others. According to the recommendations of the RS485 standard, the total number
of slaves connected to the same bus is limited to 32.

13.2.1 The RS232-to-RS485 Converter

This circuit converts the ±12 V voltage levels required by the RS232 interface of the
PC used as a master device in the network, to differential signals compatible with the
RS485 communication bus. The schematic of the circuit is presented in Fig. 13.2.

The actual RS485 interface circuit is IC3 –SN75176, described in Chap. 3. This
converts TTL levels to differential signals, and its line driver can be controlled to enter
a high-impedance status by means of the input DE (Driver Enable, active HIGH). This
allows the implementation of a two-wire, half-duplex differential communication bus.

IC4 –MAX232 converts TTL to RS232 voltage levels and vice-versa. The in-
verting gate IC2A (74HC04) is used to provide proper polarity for DE, so that the
interface signal DTR (Data Terminal Ready), available on pin 4 of the nine-pin in-
terface connector, can be used to control the direction of data transfer on the RS485
bus.

The external power supply VPP = +12 V is applied on connector X1. VPP is
reduced to +5 V by means of the voltage regulator IC1 –LM7805, to supply local
circuits, but is also made available on the connector X2, along with the differential
data lines, in order to provide power to the slave devices. For this particular application
VPP must be able to deliver at least 200 mA.

Note the resistors R1, R2, connected to VCC and GND. Their purpose is to maintain
the voltage levels on the data lines A and B to a steady potential when all the line
drivers of the devices connected to the RS485 bus are in the high-impedance status.
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Fig. 13.2. Schematic of the RS232-to-RS485 converter
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Fig. 13.3. PCB layout for the RS232-to-RS485 converter

Figure 13.3 shows a possible layout for the printed circuit board for this circuit.

13.2.2 The Digital Input Module

This circuit shown in Fig. 13.4 is one of the simplest microcontroller structures
possible.

The circuit comprises the microcontroller AVR AT90S2313, with very few ex-
ternal components: the RS485 interface circuit IC3 (SN75176), the voltage regulator
IC1 (LM7805), and the oscillator and RESET circuits.

The digital inputs are read on the PB0–PB2 I/O lines, which must be software
configured to use the internal pull-up resistors, and another I/O line, PD2, enables
the line drivers of the interface circuit SN75176.
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13.2.3 The Analog Input Module

The schematic of the analog input module SLA is presented in Fig. 13.5.
This circuit uses a different microcontroller, ATMEGA8-16AI (IC2), which in-

cludes an ADC converter, and internal analog reference. For better protection from
communication errors the circuit uses an external oscillator (Y1, C3, C4).

The analog inputs of the MCU, ADC0–ADC2, are directly connected to the
external connector X1, without additional protection or conditioning circuits. The
internal reference voltage is decoupled with the external capacitor C6.

The RS485 interface is identical to the one used by the digital input module SLD,
described in the previous paragraph. The data direction on the bus is controlled by the
I/O line PD2 of the microcontroller, which is software controlled so that, in normal
operation, the local line driver is disabled, and the receiver circuit of IC3 (SN75176)
is enabled. Any slave device is allowed to take control of the communication bus
only when it receives a specific query from the master.

The power supply voltage for the circuits VCC is prepared using the voltage
regulator IC1 (LM7805), and the filter capacitors C1, C2, starting from the external
voltage VPP. Normally, VPP is common for all slaves.

13.2.4 Using the AVR Development Board to Emulate Thel SLD and SLA
Modules

The AVR development bard described in Chap. 10 can be used to emulate the functions
of the SLD and SLA modules and to test the software for the implementation of the
network protocol. A simple hardware modification is required for this, as shown in
Fig. 13.6.
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Fig. 13.6. Adding the RS485 interface circuit to the AVR development board

Table 13.1. Connections between the RS485 interface circuit and the MCU

Signal name MCU pin SN75176 X2

DE 16 2, 4 –
TX 15 3 –
RX 14 1 –
GND 11 5 X2-1
VCC 10 8 –
A – 6 X2-4
B – 7 X2-3

The purpose of the modification is to add a SN75176 circuit, which implements
the RS485 interface, and the X2 connector in the custom area of the development
board. These components must be connected to the MCU according to Table 13.1.

With the RS485 interface, the development board is capable of emulating all the
functions of the SLD and SLA modules described above.

13.3 The Software

The principles of a simple master–slave network protocol have been described in
Chap. 3. The following paragraphs contain an example of the implementation of
a simple microcontroller network based on these principles.

13.3.1 Description of the Communication Protocol

The devices connected to the RS485 bus communicate according to the following set
of rules:

• Communication data consists of fixed-length packets, having a predetermined
structure.

• All the information in the data packets is ASCII encoded.
• All data transfers are initiated by the master device, which sends interrogation or

command packets to specific slave devices.
• All slave devices are identified by a unique address.
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The data packets have the following structure:

Header Opcode Address Data field CRC EOT

Since all data transmitted is represented in ASCII, the header and end of trans-
mission marker (EOT) can be defined by single ASCII characters, without the risk of
misinterpreting other characters in the data field as false packet delimiters. For this
particular example, the header is the ASCII character STX (Start of Text –$02), and
the end of transmission marker is the ASCII character for EOT (End of Text –$04).

The opcode and the address fields are one character (ASCII) each. The dimension
of the data field is related to the number of inputs or outputs of the slave devices re-
ferred to by the packet. In this example, the digital input module has only three inputs,
and therefore three ASCII characters are enough to encode the status of all inputs.

Similarly, the 10-bit value of the result of an analog-to-digital conversion, which
ranges between 0 and $3FF, can also be represented using three ASCII characters,
corresponding to the three hex digits of the ADC result. This means that a three-byte
data field covers the requirements of both the SLD and SLA modules.

The CRC field is, in this example, a simple checksum consisting of the two-byte
ASCII representation of the sum of the bytes in the packet starting with the opcode,
and ending with the last byte of the data field.

Note that this is not a real cyclic redundancy control sum, but it serves the purpose
of this simple example.

With these specifications, the detailed structure of the data packets corresponding
to this protocol becomes:

STX OPC ADR D1 D2 D3 CRCH CRCL EOT

D1, D2, D3 are the three bytes of the data field, and CRCH–CRCL are the two
ASCII characters corresponding to the two nibbles of the CRC checksum.

The packets sent by the master device have opcodes in the range ‘0’–‘9’ ($30–
$39), as described in Table 13.2.

Table 13.2. List of valid opcodes for data packets sent by MASTER

Opcode Command

‘0’ ($30) Reserved
‘1’ ($31) Reserved
‘2’ ($32) Read digital inputs from the SLD module specified by ADR
‘3’ ($33) Read analog input 0 from the SLA module specified by ADR
‘4’ ($34) Read analog input 1 from the SLA module specified by ADR
‘5’ ($35) Read analog input 2 from the SLA module specified by ADR
‘6’ ($36) Reserved
‘7’ ($37) Reserved
‘8’ ($38) Reserved
‘9’ ($39) Reserved
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The packets returned by the slaves can only have the opcode ACK (Acknowledge –
$06), when the command has been received and executed correctly, or NAK (Negative
Acknowledge –$15), for packets received with the wrong CRC, or an invalid opcode.

Here is an example of a data packet containing a command to read digital inputs
(opcode $32) from the slave module SLD having the address ‘1’:

$02 $32 $31 $30 $30 $30 $46 $33 $04

Note that the data field of the packets sent by the master is filled with dummy ‘0’
characters. The reason for this is to maintain the same structure for all packets, and to
allow adding new commands. The CRC field is two-bytes long, $46 (‘F’), $33 (‘3’),
which corresponds to $F3 = $32 + $31 + $30 + $30 + $30.

The answer from the slave device that reports the status of all digital inputs to
logic 1 is a data packet having the opcode ACK ($06), like this:

$02 $06 $31 $31 $31 $31 $43 $41 $04

13.3.2 The Software for the SLD Module

The software is structured according to the general principles described in the previous
chapters. The main module, called SLDMAIN.ASM, is listed below:

.include "8535def.inc" ;general definitions

.include "macro.asm" ;macro definitions

.include "map.asm" ;specific variables

.cseg

.org 0
reset:

rjmp init
init:

.include "init.asm" ;all initializations
main_loop:

rcall get_io ;read digital input
rcall send ;send char if any
rcall get_cmd ;check rec. buffer
brcc main_loop
rcall make_pk ;prepare the answer
rjmp main_loop
.include "uart.asm" ;uart routines
.include "lib.asm" ;general routines
.include "io.asm" ;i/o routines

MAP.ASM contains definitions of the application-specific variables and a number
of equations:
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.dseg ;data segment
starts at $60

.org $60
Buf_io: .byte 1 ;store the status of

the input
Buf_rx: .byte 9 ;Rx buffer
Buf_tx: .byte 9 ;Tx buffer
Stat_rx: .byte 1 ;Tx status
Stat_tx: .byte 1 ;Rx status
Ack_nak: .byte 1 ;error flag

.def tmp1=r16

.def tmp2=r17

.def tmp3=r18

.def op1l=r19

INIT.ASM contains the usual initialization routines for the resources involved in
the application. The uart is programmed for 9600 baud, the lines 0, 1, and 2 of port C
are configured as inputs, with internal pull-up resistors, and port D, bit 2 is configured
as output.

The core of the application is the subroutine get_cmd, located in the module
LIB.ASM. Get_cmd receives the data packets from the uart, checks its structure
and CRC, and sets the carry flag and the variable Ack_nak to inform the main
program about the result of the analysis. If no command is received, get_cmd returns
carry = 0. Valid commands are signaled by carry = 1, and Ack_nak = ACK. Invalid
commands (i.e. commands with invalid opcode, or with the wrong CRC) are indicated
by carry = 1, and Ack_nak = NAK. Valid commands having different slave address
are ignored (carry = 0).

Get_cmd uses two macros, aimed to improve the readability of the program, both
defined in MAP.ASM.

The macro Get_adr expects two parameters: the first parameter is an 8-bit value,
the second is a 16-bit value. Get_adr adds the two parameters and stores the result in
register X. This is useful to create a pointer in a table, starting from the address of
the first location of the table, and an 8-bit offset. Here is the definition of the Get_adr
macro:

.macro get_adr ; two parameters @0 and @1
ldi xl,low(@1) ; X<-@1
ldi xh,high(@1)
clr tmp2
add xl,@0
adc xh,tmp2 ;xh+0+carry !!

.endm

Example: get_adr op1l, buf_rx

The second macro, Mk_crc, computes the CRC on a buffer indicated by the first
16-bit parameter taking into consideration a number of bytes indicated by the second
parameter. Here is the definition of Mk_crc:
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.macro mk_crc ;two parameters @0 ands @1
ldi xl,low(@0)
ldi xh,high(@0)
ldi tmp2,@1
rcall crc

.endm

Example: mk_crc Buf_rx, pack_len

Get_cmd starts by calling get_uart, which returns carry = 1 if a character has been
received from the serial line. The character received is available in tmp1. If the offset
in buf_rx, stored in the variable stat_rx, is zero then get_cmd expects the character
STX, which is the marker of the beginning of a data packet. Any other character is
ignored. The characters received are stored in the buffer buf_rx, and their count is
checked against the maximum length of the packet, pack_len (9). If the last character
is not EOT, the whole packet is rejected.

If the packet received has the expected structure, get_cmd checks the opcode
and the CRC and sets the variable Ack_nak accordingly, then exits with carry = 1.
When carry = 1, the main program calls the subroutine make_pk, which prepares
the transmission buffer buf_tx. The content of buf_tx is sent to the serial line, one
character at a time until the counter stat_tx is decremented to zero.

See the accompanying CD for the full listing of all the program modules involved
in this application.

13.3.3 The Software for the MASTER Device

The accompanying CD contains a small executable, called MASTER485.EXE, which
generates and sends data packets according to the communication protocol described
in this chapter. The program is able to interrogate up to four slaves, having the
addresses ‘1’, ‘2’, ‘3’, and ‘4’.

The slaves with the addresses ‘1’ and ‘2’ are assumed to be digital input modules,
SLD, and the slaves with the addresses ‘3’ and ‘4’ are assumed to be SLAs.

The program can operate in manual mode, when the user is expected to click
on the buttons Query1–Query4 to generate query packets for the slaves with the
corresponding addresses, or automatically when the user presses the Start button.

The default communication port is COM2, but the user can select any port in
the range COM1–COM4. The communication parameters are 9600, N, 8, 1, and the
DTR signal is used to control the RS485 line driver.

When interrogating one of the SLD modules, the opcode is automatically selected
to be ‘2’. For the SLA modules, the user can select one of the opcodes ‘3’, ‘4’, or ‘5’.

The data fields are updated with the values returned by the slaves, or with one of
the following error messages:

Timeout – when the slave has failed to answer within a specified time interval.
NAK – when the slave returned a NAK type packet.
CRC Error – when the packet received has the wrong CRC.

A snapshot of the main screen presented by this program is shown in Fig. 13.7.
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Fig. 13.7. Snapshot for MASTER485.EXE

13.4 Exercises

X13.1

Write the software for the analog input module SLA.

X13.2

Based on the examples presented in this chapter, write a software application so that
the AVR development board acts like two distinct slaves, one SLA and one SLD,
having distinct addresses.
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PI Temperature Controller

14.1 In this Chapter

This chapter is an introduction to the basic principles of control systems. It also
contains a description of a didactic implementation of a PI temperature controller
that uses the HC11 development board described in Chap. 9.

14.2 Basic Concepts

A control system is a system comprising physical and decisional elements, designed
to control (to interferewith, to influence, to modify) a process.

In the classic example of a switch that controls an electric heater, the human
operator has both decision and execution functions. A system where the intervention
of a human operator is required is called manual control. If in this example the
human operator is replaced by a time relay that switches the heater on and off at
predetermined time intervals, the system becomes an automatic sequential system.

This system does not check whether the controlled heater actually produces heat,
and the temperature of the environment does not influence the time relay. When the
interaction between the control system and the controlled process is unidirectional,
the control system is called an open-loop control system (see Fig. 14.1) .

Open-loop control systems are often associated with manual control. Most auto-
matic control systems have at least one active feedback loop which allows the system
to evaluate the response of the controlled process and adjust the control action, so
that the value of a controlled variable is maintained close to a set-point value. The
general block diagram of a closed-loop control system is shown in Fig. 14.2.

CONTROL Vout PLANT

Fig. 14.1. Block diagram of an open-loop control system
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Vs

Vm CONTROL PLANT

SENSOR

Vout

Disturbances

Fig. 14.2. General structure of a closed-loop control system

In this configuration, the sensor measures the value Vm of the process variable
(which can be temperature, pressure, speed, flow, pH, etc.) and submits it to the
control unit, which compares it to the desired value, or set-point value Vs, and adjusts
the output Vout to reduce the error e = Vs − Vm.

Figure 14.3 describes the simplest control algorithm, where the controlled process
variable is the temperature. The output of the control circuit Vout turns the heating
element on, when the measured temperature Tm is lower than the set-point temperature
Ts, and off, when Tm > Ts.

In practice, the turn-on (T1) and turn-off (T2) threshold temperatures are delib-
erately made to differ by a small amount (called hysteresis), to prevent switching of
the heating element rapidly and unnecessarily, when the measured temperature Tm is
close to the set-point value Ts (refer to Fig. 14.4). Most domestic thermostats use this
control algorithm.

The problem with the on–off control systems is that the fluctuations of the con-
trolled process variable are often too large to be acceptable. A better solution, from
this point of view, is proportional control. In this case, the output of the control
circuit Vout adjusts the power applied to the heater in proportion to the error signal

Tm

Ts

Vout

t

t

Fig. 14.3. Waveforms for the on–off control

Tm

Ts

Vout

t

t

T2

T1

Fig. 14.4. On–Off control with hysteresis



14.2 Basic Concepts 175

Tm

Ts
Te

Kp2>Kp1

Kp1

t

Fig. 14.5. Waveforms for proportional control

e(t) = Ts − Tm:

Vout = Kp × e(t) . (14.1)

Kp is called the proportional gain of the control circuit. The response of this system
to a step change of the set-point temperature is shown in Fig. 14.5.

For moderate values of Kp, and in the absence of disturbances, the system reaches
a steady state temperature Te < Ts, when the energy brought into the system by the
heater compensates the energy losses. The steady state error (Ts −Te) can be reduced
by increasing Kp, but higher values for Kp cause overshoot, or oscillations of the
controlled temperature around the set-point value. In fact, for very large values of
Kp, the proportional control acts like the on–off control described above. The reason
for that is that the heating can only supply a limited power Vmax, and it cannot sink
power when Tm > Ts.

Therefore, when Kp is very large, Vout = Vmax, even for small values of the error
e(t), as shown in Fig. 14.6. The interval of values for e(t) where Vout takes values in
proportion to e(t) is called the proportional band (PB).

The expression (14.1) reflects only the status of the system at the present time.
To solve the problem of the steady state error, it is required to adjust Vout by
adding a term that reflects the evolution of the error in the past. Mathematically,
this is expressed by the integral of the error over a period of time. The output of
a proportional-integral (PI) control system is described by:

Vout = Kp × e(t) + Ki ×
t∫

0

e(t)dt (14.2)

The constant Ki is called the integral gain. Often, Ki is represented as Ki = 1
Ti

,
where Ti is called integral time constant of the control system. The response of this
system to a step change of the set-point temperature is shown in Fig. 14.7.

Vout

Vmax

Vout=0

Vout=Vmax

e(t)=Ts-TmPB

Vout=Kp*e(t)

Fig. 14.6. The output of a proportional control system
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Tm

Ts
Kp2>Kp1

Kp1

t

Fig. 14.7. Response of a PI control system to a step change in the error

The effect of the integral term is to adjust the output of the control circuit, until
the time-averaged error is zero. Note that if the error e(t) is large for a long period,
for example after a large change of the set-point, or at start-up, then the value of the
integral of the error becomes too large, and causes overshoot that takes a long time
to recover. One method to avoid this problem (which is called integral wind-up) is to
inhibit integral action while the error is outside the proportional band.

The integral action solves the problem of the steady state error, but not the problem
of overshoot. In principle, by keeping Kp at relatively low values it is possible to
avoid the overshoot, at the expense of a slow response of the system, as shown in
Fig. 14.8, curve 1.

To reduce the response time, it is required to adjust Vout by adding a new term to
the expression (14.2). This term should be proportional to the speed of variation of
the error, e(t), which is the first derivative of e(t). The expression for Vout becomes:

Vout = Kp × e(t) + Ki ×
t∫

0

e(t)dt + Kd × de(t)

dt
. (14.3)

This is the general expression of the output of a proportional-integral-derivative
control system (PID). Kd is called the derivative gain, or damping factor. The deriva-
tive term only affects Vout when the error has a fast variation, for example when the
set-point value is changed. In steady state, the value of the derivative term is zero. The
effect of the derivative term on the response of the system is presented in Fig. 14.8,
curve 2.

While the proportional term in the expression for Vout describes the present status
of the system, and the integrative term is related to the past evolution of the system,
the derivative contains information about the tendency of evolution of the system in
the future. Negative values of the derivative mean that the error is decreasing, i.e. the
controlled parameter tends to approach the set-point value, and therefore the control

Tm

Ts

12

t

Fig. 14.8. Two possible responses to a step change in the error
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action Vout is reduced. This explains the damping effect of the derivative component
on the oscillations of the response of the system around the set-point value.

Temperature control systems are in most cases inherently slow-response systems,
and therefore the derivative component is seldom useful for temperature control.
Moreover, in noisy environments, some noise spikes can be misinterpreted as step
changes of the error, and induce instability in the whole system. For these reasons, the
example of the temperature controller described in this chapter is a PI type controller.

14.3 Hardware Implementation of a Microcontroller-Based
Temperature Controller

The hardware implementation of the temperature controller uses the HC11 devel-
opment board described in Chap. 9, along with an expansion board containing the
circuits for interfacing the temperature sensor and the heater. The schematic of the
interface with the temperature sensor is presented in Fig. 14.9.

The actual temperature sensor is an RTD (Resistance Temperature Detector),
connected to J1. The RTD used in this design example has a nominal resistance of
100 ohms at 0 ◦C, and a rate of variation with the temperature of +0.4 ohms/◦C. To
sense the variation of the resistance, a constant current of 2.5 mA is supplied by the
voltage-to-current converter made with the operational amplifier IC2B, the transistor
Q1 and the resistor R3. The current generated by the converter is I0 = VREF−VA

R3 ,
where VA is a fraction of VREF, adjustable by means of the potentiometer R2. VREF is
a 2.5 V reference voltage generated by the special circuit MAX872. IC2A is a voltage
follower intended to separate the reference generator from the load. The variations of
the voltage on the RTD sensor are sensed and amplified by the differential amplifier
IC3, and applied to the analog input AN1 of the MCU. The gain of IC3 is 10, so
that the voltage on the analog input AN1 has a variation of 10 mV/◦C. By tuning
the value of the reference voltage VREF of the A/D converter at 2.55 V, each 10 mV
quantum corresponds to 1 ◦C temperature; thus the value read by the A/D converter
directly represents the temperature.

The circuit ICL7660 (IC5) creates the negative voltage (−5 V) required to supply
the operational amplifiers.
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Fig. 14.9. The interface with the temperature sensor
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The set-point temperature, and the control parameters Kp and Ti are read by the
MCU as analog inputs, by means of three external potentiometers R12, R13, R14, that
divide the reference voltage VREF. The cursors of the potentiometers are connected
to the AN0, AN2, and AN3 analog inputs of the MCU. (Refer to Fig. 14.10).

A rotary encoder, S1, connects to ground the four digital inputs PA1–PA4 ac-
cording to the binary code of the digit selected. This information is used by software
to determine which parameter is selected for display. The system uses a four-digit,
seven-segment, multiplexed display, connected to the SPI, as described in Appendix
A14. Two more digital inputs, PA5, PA6, are connected to external push buttons for
the operator START and STOP commands.

Figure 14.11 shows the zero crossing detector circuit that generates a square
wave out of the sine wave of the ac power. The output of this circuit is connected to
PA0, which is also used as the input for the input capture 3 timer. The edges of this
signal generate interrupt requests used by the software to synchronize the pulses that
control the output triac. The same transformer that provides the ac voltage used by
the zero crossing detector also provides the ac input for the bridge rectifier B1, which
generates Vpp.

The heater is driven by the triac T2, controlled to open at precise time moments
by the pulses generated by software on PA7, and transmitted to the gate of the triac
by means of the transistor T1 and the pulse transformer L1, as shown in Fig. 14.12.
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Fig. 14.11. Schematic of the zero crossing detector
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Fig. 14.12. The gate control circuit of the triac
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Fig. 14.13. Waveforms explaining the operation of the gate control circuit

Figure 14.13 explains how the power transferred to the heater is controlled by
controlling the delay between the moment when the ac voltage crosses zero and the
moment when a pulse is generated by software to open the triac.

The actual output of the control circuit is a time delay: the shorter the delay, the
longer time the triac stays in conduction, and the more power is transferred to the
load.

14.4 Software Implementation of a PI Temperature Controller

The structure of the software for this application follows the general structure de-
scribed in Chap. 9. The MAIN.ASM module includes a number of other ASM files,
each associated with a particular function, or task. Here is the listing of the MAIN
module:

TITLE PI CONTROLLER MAIN
INCLUDE 68HC11F1.DEF
INCLUDE AS11.MAC
INCLUDE MAP.ASM
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CODE
VECTOR_RESET ;RESET entry point

RESET EQU *
INCLUDE INIT.ASM ;initializations

MLOOP EQU *
INCLUDE TIMER.ASM ;software timers
INCLUDE INPUT.ASM ;digital&analog
INCLUDE INTEGRAL.ASM
INCLUDE CONTROL.ASM
INCLUDE DISPLAY.ASM
JMP MLOOP
INCLUDE OUTPUT.ASM
END

The first two include files, 68HC11F1.DEF and AS11.MAC, are present un-
changed in all HC11 applications described in this book. They contain the symbolic
definitions of the I/O registers, and a set of useful macro definitions.

MAP.ASM defines the memory map, by specifying the beginning of the DATA
and CODE segments, and also contains the definitions of all RAM variables used
by the program. Although MAP.ASM contains application-specific code, a similar
file must be present in all applications, along with INIT.ASM, which contains the
initialization routines for all the resources used by the application. In this particular
project, INIT.ASM has the following contents:

TITLE INITIALIZATION MODULE
CODE
SEI ;disable all interrupts

;during init sequence
LDAA #$0A
STAA HPRIO ;TIC3 has the highest

;priority
LDAA #$05 ;Enable CSPROG
STAA CSCTL ;for a 32k memory
LDS #RAMEND ;init stack pointer
LDAA #$80 ;init I/O ports
STAA DDRA
LDAA #$20
STAA DDRD
JSR ITIMER ;init TOC2
JSR IADC ;init ADC
JSR ITIC3 ;init TIC3
JSR ISPI ;init SPI
JSR INITVAR ;init variables
CLI ;enable interrupts
END

Note that the actual initialization sequences, associated with specific resources,
are organized as subroutines (ITIMER, ISPI, IADC), and are located in the soft-ware
modules dealing with the respective resources.
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The rest of the modules are included in an endless program loop. TIMER.ASM
defines a set of software timers, as described in Chap. 9. INPUT.ASM reads the
analog input lines AN0–AN3, connected to the temperature sensor and three external
potentiometers, and updates the variables TS, TM, KP and TI. For scaling purposes,
the 8-bit value read from AN2 is truncated to the four most significant bits, so that KP
is limited to take values in the range [0–15]. Similarly, TI is reduced to take values
in the range [0–63]. The digital input lines PA0–PA6 are read to update the variables
SWSTATUS, which encodes the status of the rotary switch, and QSTART, a Boolean
variable set to $FF when the START button is pressed, and cleared by pressing the
STOP button. The subroutine CERR (Compute Error) is called here and updates the
variable ERR – a 16-bit signed integer, defined as the difference (TS − TM).

The module INTEGRAL.ASM approximates the term:

1

Ti
×

Ti∫

0

e(t)dt .

Using the notation Ei = e(i × T0), then the integral can be approximated by the
sum:

N∑
i=1

(T0 × Ei) = T0 ×
N∑

i=1

Ei . (14.4)

If Ti = N × T0, then:

1

Ti
×

Ti∫

0

e(t)dt =

N∑
i=1

Ei

N
. (14.5)

This means that the integral term in the expression (14.3) can be approximated
by the average of the last N values of the variable ERR = TS − TM. The number N
of samples considered for computing the integral is determined by the variable TI.
T0 is a constant, equal to 100 ms, implemented by means of a software timer.

The values of the samples Ei are stored in a buffer IBUF. The size of IBUF must
be dimensioned so that it can store the maximum value of samples, as indicated by
the variable TI. Since TI can have one of 64 possible values, and the error ERR is
a 16-bit integer, then IBUF must be128 bytes in length.

Two additional bytes are reserved for a pointer in IBUF, named XIBUF. IBUF
is organized as a circular buffer. Each time the timer that defines T0 expires, the
computed value of ERR is stored in the buffer at the location indicated by XIBUF,
and then the pointer is incremented by 2. When the end of buffer is reached, the
pointer is reloaded with the starting address of IBUF.

Only the last TI values in IBUF are used to compute the average. The result is
stored in the variable INTEGRAL This is used by the module CONTROL.ASM,
which computes VOUT = KP ∗ (ERR + INTEGRAL). VOUT is adjusted to be an
8-bit value in the range [0–255].
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The computed value of VOUT is used in OUTPUT.ASM to determine the moment
at wich to generate the pulse to open the triac that drives the heater. This is done in
the interrupt service routine of TIC3. When an edge on IC3 (PA0) occurs, the TIC3
interrupt service routine prepares a value for TOC1, based on the value of VOUT,
then enables the TOC1 interrupt.

To avoid time-consuming calculations in the interrupt service routine, VOUT
is used as an offset in a table (TOCTAB) that contains for each possible value of
VOUT, a 16-bit value that is added to the current TCNT and written to TOC1. These
cause a TOC1 interrupt to be generated after a number of E cycles equal to the value
extracted from TOCTAB.

The TOC1 interrupt service routine simply generates a pulse on PA7, then disables
further TOC1 interrupts. A new interrupt will only be generated when an edge is
sensed on IC3 and QSTART = $FF.

Here is what the interrupt service routines for TIC3 and TOC1 look like:

VECTOR_TIC3
LDAA TFLG1 ;clear interrupt flag
ORAA #$01
STAA TFLG1
LDX #TOCTAB
LDD VOUT
ABX ;add VOUT as offset
LDD 0,X ;get data from table
ADDD TCNT
STD TOC1 ;prepare TOC1 interrupt
LDAA #$80 ;enable TOC1 interrupts
ANDA QSTART ;if QSTART=$FF
BEQ TIC310
ORAA TMSK1
STAA TMSK1
RTI

TIC310 LDAA TMSK1 ;disable TOC1 interrupts
ANDA #$7F ;if QSTART=0
STAA TMSK1
RTI

VECTOR_TOC1
LDAA TFLG1
ORAA #$80 ;clear interrupt flag
STAA TFLG1
LDAA #$80 ;pulse on PA7
STAA PORTA
NOP ;wait a few microseconds
NOP
NOP
NOP
NOP
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LDAA TMSK1 ;disable TOC1
ANDA #$7F
STAA TMSK1
CLRA
STAA PORTA
RTI

The module DISPLAY.ASM contains the software routines needed to control the
four-digit seven-segments display unit described in Appendix A14.
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Fuzzy Logic Temperature Controller

15.1 In this Chapter

This chapter contains an introduction to the principles of fuzzy control and the
description of a simple temperature controller based on these principles.

15.2 The Principles of Fuzzy Control

Tuning a PID controller, i.e. adjusting the values of K p, Ti , and Kd , to obtain the
desired response of the controlled process, can be a difficult task. The mathematical
solution to this problem requires that the transfer function of the controlled process is
known. In practice, real-world systems are seldom described by a simple and obvious
transfer function. It would be much more convenient to define the behavior of the
control system through simple sentences like this: “If the temperature is higher than
the set-point and rising fast, then the output of the controller must be very low”.

Fuzzy controllers work this way. Basically, a fuzzy controller is a control system
that operates according to fuzzy logic. In fuzzy logic, the sentence “the element x
is member of the set A” can be true to a degree of y%, which is equivalent to “the
element x has a y% degree of membership to the set A”. For example, when speaking
about temperatures, the domain from 0 to 100 ◦C can be divided in two subsets: cold,
and warm. An object having a temperature of 15 ◦C could be considered to be 60%
cold and 40% warm.

Ts

Tm Preprocessor
e(t)

d(t)
FUZZY

CONTROL Process

Sensor

Vout

Fig. 15.1. Block diagram of a fuzzy controller
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Fig. 15.2. Example of membership functions

This means that it is possible to associate to any fuzzy set A, a function f : A →
[0, 1] called the membership function. Figure 15.2 shows a possible shape of the
membership functions associated with the fuzzy sets “cold” and “warm” defined in
the above example.

In practice, it is not very useful to know the absolute temperature of the controlled
system – it is more important to know how warm the controlled system is with respect
to the set-point temperature. In other words, it is more convenient to use the calculated
error e(t) = Ts − Tm , instead of the measured temperature Tm.

The domain of variation of e(t) can be divided in three fuzzy subsets: a subset N
for the negative values, a subset Z for the values near zero, and another subset P
for positive values. Figure 15.3 shows the graphic shape of the three membership
functions associated with these fuzzy subsets of values of e(t).

But, as mentioned in the previous chapter, the information provided by the error
function e(t) describes only the present status of the system, and it is not enough
for efficient control action. The information about the tendency of evolution of the
system is contained in the derivative of the function e(t), d(t) = de(t)

dt . d(t) is also
called the error dot. The possible values of d(t) can be described as having a certain
degree of membership to fuzzy subsets ND, Z D, PD similar to those related to e(t).

The domain of variation of the output can also be divided in three fuzzy subsets of
values: Low (L), Medium (M), and High (H). To make things simpler, these subsets
are singletons, i.e. a single numeric value is assigned to represent the whole range of
low values of the output, another single value represents the medium range of values,
etc. For example, if Vout ∈ [0, 255], it is possible to define the singleton subsets L,
M, H as L = {15}, M = {125}, and H = {250}.

Having the fuzzy subsets associated with each input and the output defined,
it becomes possible to describe the behavior of the system through a number of
sentences (or “rules”) similar to this: “If the error is positive and the derivative of the

N 1

Z

P

e(t)
-4 -2 0 2 4

Fig. 15.3. Membership functions for the subdomains N , Z, and P of e(t)
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error (the error dot) is positive, then the output is high.” This translates to: “If the
temperature of the controlled system is lower than the set-point temperature, and the
difference between the two values tends to become bigger, then the output must be
high.” Which is pretty close to the natural human language.

The general structure of these rules is: “If (A and B), then C”, where A, B, and C
are logic sentences referring to the inputs e(t), d(t) and the output Vout(t), respectively.

(A and B) is called the antecedent of the proposition, and C is the consequent.
Note that in fuzzy logic the truth value of a proposition is not 0 or 1, but a number

in the interval [0, 1]. A, B, C and the proposition “If (A and B) then C” are all fuzzy
logic propositions.

The total number of rules that describe the behavior of the system is K = N M,
where N is the number of fuzzy subsets associated with the input e(t), and M is
the number of subsets associated with d(t). In the example presented in this chapter,
N = 3 and M = 3, which leads to a total of K = 9 rules.

For maximum clarity, the nine rules can be presented in two tables (Tables 15.1
and 15.2): one containing the values for the antecedent, the other for consequent.

The antecedent table and the consequent table define the rule matrix. The whole
system of rules defines the rule base.

Knowing the membership functions for x = e(t) and y = d(t), it is possible to
determine at any moment the truth value of the sentences Ai and Bi corresponding
to the antecedent of each rule. In fuzzy logic, if (Ai), (Bi) are the truth values of the
sentences Ai , Bi , then the truth value of the sentence Ai and Bi is zi = (Ai and Bi) =
min((Ai), (Bi)).

One possible way to obtain the crisp output Vout is by combining all the rules in
the rule matrix, according to the following formula:

Vout =

K∑
i=1

zi × Si

K∑
i=1

zi

(15.1)

Table 15.1. The antecedent table

x = e(t)
y = de(t)/dt

N Z P

N x = N and y = N x = Z and y = N x = P and y = N
Z x = N and y = Z x = Z and y = Z x = P and y = Z
P x = N and y = P x = Z and y = P x = P and y = P

Table 15.2. The consequent table

z = Vout(t) N Z P

N L L M
Z L L M
P L M H
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Where zi = min((Ai), (Bi)), Si is the corresponding singleton value of the fuzzy
output, and K is the total number of rules in the rule base.

The process of computing the crisp value of the output of the fuzzy controller is
called defuzzyfication.

Example

Consider a fuzzy temperature controller having the membership functions for e(t) =
Ts−Tm defined in Fig. 15.4, and for d(t) = de(t)/dt defined in Fig. 15.5. The singleton
values of the output are Low = 10, Medium = 125, and High = 250. Compute the crisp
output for a time moment when e(t) = 3 ◦C, and d(t) = 1 ◦C/s.

N

Z

P1

0.75

0.25

-12 0 3 12
e(t)

Fig. 15.4. Sample membership functions
for e(t)

-2 0 1 2
d(t)

0.5

1

Z

N P

Fig. 15.5. Sample membership functions
for d(t)

Solution

The first step in solving this problem is to create the antecedent table, starting from
the data provided in Figs. 15.4 and 15.5 (see Table 15.3). In this table, the notation
x = N indicates the truth value of the position “x = N” (“x is negative”).

Each cell of Table 15.3 contains two numeric values, the first of which represents
the degree of membership of e(t) to the sets N , Z, and P (extracted from Fig. 15.4),
and the second represents the degree of membership of d(t) to the sets N , Z, and P
(as results from Fig. 15.5).

By selecting the minimum of the two values, the antecedent table becomes Ta-
ble 15.4 and, after filling the values of singletons for each situation, the consequent
table becomes Table 15.5.

Table 15.3. Sample antecedent table

x = e(t)
y = de(t)/dt

N Z P

N (x = N) = 0
(y = N) = 0

(x = Z) = 0.75
(y = N) = 0

(x = P) = 0.25
(y = N) = 0

Z (x = N) = 0
(y = Z) = 0.5

(x = Z) = 0.75
(y = Z) = 0.5

(x = P) = 0.25
(y = Z) = 0.5

P (x = N) = 0
(y = P) = 0.5

(x = Z) = 0.75
(y = P) = 0.5

(x = P) = 0.25
(y = P) = 0.5



15.3 A Microcontroller Implementation of a Fuzzy Controller 189

Table 15.4. Sample antecedent table

x = e(t)
y = de(t)/dt

N Z P

N 0 0 0
Z 0 0.5 0.25
P 0 0.5 0.25

Table 15.5. Sample consequent table

z = Vout(t) N Z P

N 10 10 125
Z 10 10 125
P 10 125 250

It is now possible to compute the crisp value of Vout, according to the for-
mula (15.1), which is a weighted average of the values in the consequent table, with
the weights extracted from the corresponding cells of the antecedent table.

Vout = 0.5 × 10 + 0.25 × 125 + 0.5 × 125 + 0.25 × 250

0.5 + 0.25 + 0.5 + 0.75
= 107 .

15.3 A Microcontroller Implementation of a Fuzzy Controller

From a hardware perspective, nothing distinguishes a fuzzy controller from a micro-
controller-based PID controller. It’s the software that makes the difference. The
project described in this chapter uses exactly the same hardware as that used for the
PI temperature controller described in the previous chapter.

The key element in designing the software for this application is the way of
representing the membership functions, The simplest solution to do this is to use the
values of e(t) and d(t) as the offset in ROM tables associated with every function. In
this case, obtaining the degree of membership for any value of the variable ERR = e(t)
is as simple as this:

* HC11 code
LDX #MFTAB ;load X with the starting address
LDAB ERR ;load current value of e(t) in B
ABX ;adjust index
LDAA 0,X ;get the value from table
....
....

MFTAB DB $00
DB $01
....
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This fragment of code assumes that ERR is an 8-bit unsigned integer. In practice,
things are a bit more complicated because e(t) and d(t) can take values in the range
[−255, 255]. To cover this range, the variables associated with e(t) and d(t), called
ERR and DERIV, must be 16-bit signed integers.

To avoid working with negative offsets in a table, a simple solution is to split
the table associated with a membership function in two distinct tables: one for the
positive values of the variable, the other for the negative values. Here is an example
of code that uses this artifice:

LDD ERR ;ERR is now a 16-bit signed INT
BMI NEGVAL ;check sign of D
LDX #MFTAB1 ;one table for positive values
ABX ;id D>=0, B contains the offset
LDAA 0,X ;get value from table
....

NEGVAL LDX #MFTAB2 ;table for negative values
COMA ;compute 2’s complement
COMB ;of the negative value in D
ADDD #1 ;B contains now abs(ERR)
ABX
LDAA 0,X ;get the value from table
....

MFTAB1 DB $00 ;table for positive values
DB $01
....
....

MFTAB2 DB $00 ;table for negative values
....
....

Besides the obvious simplicity of the program, defining membership functions
as tables has another important advantage: it allows the use of any shape for the
membership functions without the need to change anything in the code, only the
tables.

The general structure of the software application, defined in MAIN.ASM, is
very similar to the implementation of the PI temperature controller, described in the
previous chapter.

INCLUDE 68HC11F1.DEF
INCLUDE AS11.MAC
INCLUDE MAP.ASM
CODE
VECTOR_RESET

RESET EQU *
INCLUDE INIT.ASM
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MLOOP EQU *
INCLUDE TIMER.ASM
INCLUDE INPUT.ASM
INCLUDE DERIV.ASM
INCLUDE FUZZY.ASM
INCLUDE DISPLAY.ASM
JMP MLOOP
INCLUDE OUTPUT.ASM
INCLUDE MFTAB.ASM
END

INPUT.ASM contains the code to read the status of the digital input lines (the
START and STOP buttons, and the rotary encoder used to select the variable to
display) and the values of the analog inputs AN0, AN1, AN2, assigned to the variables
TS – set-point temperature, TM – measured temperature, and TD – the time interval
used to compute the error dot. The variable ERR is updated here with the values of
the difference TS – TM by the subroutine CERR, listed below:

CERR CLRA
LDAB TM
STD TEMP ;TEMP is a 16-bit storage
LDAB TS
SUBD TEMP ;D=TS-TM 16-bit signed INT
STD ERR ;update ERR
RTS

The rest of the preprocessing task is performed in the module DERIV.ASM,
which calculates the derivative of the error, by comparing the current value of ERR
with the previous value, stored in the variable PREVERR. The time interval between
two successive samples is obtained using a software timer, and it is made adjustable
by multiplying the timer quantum with the value of the variable TD, which stores
the analog value of the potential on the cursor of the potentiometer R13. The effect
is that the variable DERIV = ERR − PREVERR is updated at time intervals of 100
ms*TD.

The six membership functions associated with the subdomains N , Z, and P of
e(t) and d(t) are defined as tables in module MFTAB.ASM. This also contains the
nine-byte consequent table SGTAB.

The actual fuzzy inference is performed in FUZZY.ASM, by the subroutine CAT
(Create Antecedent Table), which updates the contents of the 9-byte RAM table
ATAB, according to the rule matrix described above. Finally, the subroutine CRISP
computes the crisp output of the controller, and updates the variable VOUT, as the
weighted average of the values in SGTAB, with the weights extracted from the
antecedent table ATAB.

The value of VOUT is used in OUTPUT.ASM to determine the moments when
the triac that drives the heater must be open, as described in the previous chapter.
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Exercises

SX 15.1

What is the influence of the parameter TD on the overall behavior of the fuzzy
controller described above?

Solution

TD determines the time between the moments when the variables ERR and PRE-
VERR are updated. The values of the error dot d(t) = e(t2) − e(t1) = e(t1 + TD ×
k) − e(t1) are directly related to the parameter TD and to the response time of the
controlled system. When TD is too small, t2 is very close to t1, d(t) tends to zero, and
the process is misinterpreted as being at equilibrium. Therefore, the control system
exerts low-to-moderate action on the process, even if the error is positive and high.

On the contrary, when TD is too large, the controller tends to react drastically
even at small variations of the temperature, and the system tends to become unstable.
In practice, TD should be set to high values only for slow response processes.

SX 15.2

What is the effect of changing the shape of the membership functions associated with
the subdomains N , Z, P of e(t) to the shape presented in Fig. 15.6?

-8 -3 0 3 8
e(t)

0.8

0.2

N P

Z

1

Fig. 15.6. Membership functions for exercise SX15.2

Solution

The slope of a function f(x) contains information about the speed of variation of
the function. For high values of the slope, even small variations of the argument x
produce important variations in f(x). In this particular example, the controller senses
the variations of e(t) as being more significant when the slope of the membership
functions is higher, and therefore Vout will change more drastically when Tm is far
from Ts, than in the vicinity of the equilibrium point.

Note the similarity between the slope of the membership functions associated with
e(t) and the proportional gain K p of a PID controller. Using membership functions
with the shape presented in Fig. 15.2 is equivalent to dynamically adjusting the
parameter K p of a PID controller. The risk of overshoot is reduced in this case,
compared to the case of triangular membership functions.
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Remote Relay Controller over Telephone Lines

16.1 In this Chapter

This chapter contains the description of a device that interfaces a microcontroller to
a telephone line, and is capable of receiving and decoding a series of DTMF signals,
and to execute commands received this way.

16.2 Description of the Hardware Solution

Since telephone lines are available almost anywhere, it is interesting to design a device
that, when connected to a phone line, is able to answer a call, and to recognize and
execute a series of commands generated directly from the keypad of the telephone
set that initiated the call.

This device operates according to the following set of rules:

• The human operator initiates a call, using a regular telephone set.
• The relay controller senses and counts the ring tones generated by the central

office.
• After a specified number of rings, the relay controller answers the call and trans-

mits a specific audible tone over the telephone line to acknowledge its presence.
• Using the telephone keypad, the operator generates a series of DTMF (Dual

Tone Multi Frequency) tones, having a determined structure, which are received
and decoded by the controller. The DTMF tones are audio signals, consisting
of a combination of two sine waves, having precise frequencies in the range
697–1633 Hz. Each key of the telephone set keypad is associated with a distinct
combination of frequencies, so that the receiving device can easily identify the
key pressed.

• The relay controller sends back to the operator distinct audible tones after the
reception of correct, or erroneous DTMF series.

• After 30 seconds of inactivity, i.e. if no DTMF tone is received for 30 seconds,
the controller closes the line, and terminates the session.
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Fig. 16.1. Block diagram of the remote relay controller

The block diagram of such a device, called remote relay controller, is presented
in Fig. 16.1.

The circuit is designed to use the HC11 development board, described in Chap. 9,
extended with a telephone line interface, and the actual relay interface.

The telephone line interface comprises the following functional blocks:

• The ring detector. This is the circuit that recognizes the ring tone, and informs
the microcontroller about an incoming call.

• The auto-answer circuit. This allows the microcontroller to open the line and
answer the call, after a specified number of rings.

• The DTMF decoder. This decodes DTMF tones received over the telephone line
and reports the codes to the microcontroller, along with a STROBE signal. The
DTMF tones are generated by the telephone set that initiates the call.

The schematics of the ring detector and auto-answer circuits are presented in
Fig. 16.2.

The device emulates the behavior of a standard telephone set. While in the on-
hook status, the capacitor C1 separates the interface from the telephone line, but
allows the ring signal, which is an ac signal with amplitude 48–50 V, and frequency
of approximately 30 Hz, to go through, towards the rectifier formed by D1, D2 and
C2.
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Fig. 16.2. Ring detector and auto-answer circuits
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The resulting dc voltage activates the LED of the optocoupler U1, which results
in the saturation of the output transistor. The output of the optocoupler is conditioned
and inverted by the Schmitt trigger gate U5A, and then applied to the PA0 (TIC3)
input of the microcontroller. The rising edge of the signal on PA0 generates a TIC3
interrupt, thus informing the microcontroller about the detected ring.

After counting a programmed number of rings, the MCU activates the relay K1,
by writing 1 to PA7, and opens the telephone line. In the off-hook status, the telephone
line is connected to the primary circuit of the transformer TR1, in series with the
resistor R4 (560 ohms), which gives a total load impedance of around 600 ohms, as
required by all modern central offices.

Besides galvanic isolation, the transformer TR1 has two additional functions: it
transfers the audio signal DTMF_IN from the telephone line to the input of the DTMF
decoder, and, on the other hand, transmits the audible dialog tones DT, generated by
the interface, to the telephone line, by means of the transistor Q1.

The actual DTMF decoder is shown in Fig. 16.3.
The input for the decoder circuit CM8870 (U2) is the analog signal DTMF_IN,

which is the analog signal present on the telephone line, separated by the transformer
TR1, without further processing. When this signal contains a valid combination of
tones, corresponding to the DTMF standard, the circuit presents on the output lines
Q1–Q4 the 4-bit binary code of the digit associated with the DTMF tone, along with
a strobe signal STD, active HIGH. STD stays HIGH as long as the DTMF tone is
stable at the input of the circuit (min 100 ms).

The combinations of frequencies associated with each digit are presented in
Table 16.1, and the corresponding binary codes are shown in Table 16.2.

The strobe signal is connected to the line PA1/IC2 of the MCU, and generates
a TIC2 interrupt on the rising edge. The data bits Q1–Q4 (Q4 is the most significant
bit) are connected to the port D (PD2–PD5) of the microcontroller.

Note that the binary codes associated with each digit are not the hexadecimal codes
for these digits. Table 16.2 lists the binary codes corresponding to the frequency pairs
in Table 16.1.

Figure 16.4 shows the schematic of the circuit that generates the audible dia-
log tones DT, transmitted by the controller over the telephone line in response to
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Fig. 16.3. Schematic of the DTMF decoder circuit
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Table 16.1. DTMF combinations of frequencies for each digit

Digit Low frequency (Hz)

Digit

1 2 3 A 697
4 5 6 B 770
7 8 9 C 852
* 0 # D 941

High frequency (Hz) 1209 1336 1477 1633

Table 16.2. The binary codes associated with the digits of the telephone set keypad

Digit Q4 Q3 Q2 Q1

1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
0 1 0 1 0
.∗ 1 0 1 1
# 1 1 0 0
A 1 1 0 1
B 1 1 1 0
C 1 1 1 1
D 0 0 0 0
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Fig. 16.4. Schematic of the multivibrator that generates the dialog tones

the DTMF commands received. This is a classic multivibrator, built with NE555,
calibrated to generate a square wave signal with frequency around 1 kHz.

The circuit is controlled by the output line PA5 of the microcontroller. When
PA5 = 1 the multivibrator is enabled. The duration of the audible beep transmitted is
controlled by software by controlling PA5. One long beep (1 s) is used to indicate that



16.3 Description of the Software 197

the last DTMF command is invalid, while three short beeps (0.3 s) indicate a valid
command.

16.3 Description of the Software

The structure of the software application, as defined in MAIN.ASM, is entirely similar
to the structure of the other HC11 applications described in this book:

INCLUDE 68HC11F1.DEF
INCLUDE AS11.MAC
INCLUDE MAP.ASM
CODE
VECTOR_RESET

RESET EQU *
INCLUDE INIT.ASM

MLOOP EQU *
INCLUDE TIMER.ASM
INCLUDE RING.ASM
INCLUDE DTMF.ASM
INCLUDE BEEP.ASM
JMP MLOOP
END

The application-specific modules are RING.ASM, which controls the ring detec-
tor and the auto-answer circuits, DTMF.ASM, containing the interrupt service routine
that handles the data from CM8870, and executes the commands, and BEEP.ASM,
which contains the routines for controlling the generation of the dialog tones.

The central element of RING.ASM is the interrupt service routine for TIC3,
called on the rising edge of the output of the ring detector circuit. This increments
the variable RCNT (Ring Counter) and sets the variable QRING to $FF, to inform
the main program that a ring has been detected.

The logic diagram of the task RING.ASM is presented in Fig. 16.5. Besides
the variable RCNT, which is compared to the EEPROM constant MAXRING to
determine the moment when the controller must open the telephone line, RING.ASM
uses two software timers.

The first timer controls the time interval between two successive rings detected. If
this interval is longer than 3 seconds, the detection sequence is aborted and RCNT is
cleared. The other timer provides a software mechanism to terminate the connection
and close the line when no DTMF tones are detected for more than 30 seconds.

The interesting aspect of this piece of software is that it is implemented as a finite
state machine. The ring detection and auto-answer machine has three distinct states,
encoded by the variable RSTATUS.

State 0 is the idle state, when no ring has been detected yet, and the line is closed.
State 1 corresponds to the situation when 1 < RCNT < MAXRING, and state 2 is
the open line state, when the controller receives and executes DTMF commands.
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Fig. 16.5. Logic diagram of the ring counter and auto-answer program

Each time the program enters this task, it is directed to a different section,
according to the value of the variable RSTATUS. The value of RSTATUS is used as
an offset in a table containing the starting addresses of the routines associated with
the corresponding states:

LDX #JTAB ;X points to jump table
LDAB RSTATUS
LSLB ;multiply by 2 !
ABX ;adjust X
LDX 0,X ;get the address to jump

to
JMP 0,X ;and jump there
...
...

RNG00 ... ;jump here when RSTATUS=0
...

RNG10 ... ;jump here when RSTATUS=1
...

RNG20 ... ;jump here when RSTATUS=2
...
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JTAB DW RNG00 ;2 bytes for each address
DW RNG10
DW RNG20

The transitions from one state to another occur when global variables, controlled
by the interrupt service routines or by other tasks, change their values. Here is an
example showing how this particular state machine changes state from 0 to 1:

RNG00 TST QRING ;QRING is set by TIC3 ISR
BEQ END_RING ;if no ring, continue

;to next task
LDAA #$01
STAA RSTATUS ;prepare transition

;to next state
LDAA #3
STAA T1S0 ;start 3 sec. timer
CLR QRING ;clear QRING

;after using it
JMP END_RING ;execute the rest of tasks

;before entering state1

This simple technique can be used to implement pretty complex finite state
machines, with dozens of states.

The module DTMF.ASM handles data provided by the interrupt service routine
for TIC2, the interrupt generated by the data strobe of CM8870. This routine places
the DTMF data in a four-byte buffer DTBUF. When the end of buffer is reached, or
when the binary code associated with the key ‘#’ is detected, the flag DBFULL is set
to true to inform the program that the data buffer is full, and ready to be interpreted.

The following commands are accepted:

• *10# – Change relay status to OFF
• *11# – Change relay status to ON
• *2x# – Change the number of rings before the call is answered to the value x, rang-

ing from 2 to 9. This parameter is stored in the EEPROM location MAXRING.
• *30# – Close the line and terminate the session.

The content of the buffer is checked against this structure, and if a valid command
is recognized, it is executed immediately, and three short beeps are transmitted to the
telephone line to acknowledge the command. One long beep indicates invalid data
detected in the buffer.

Here is the listing of the interrupt service routine for TIC2:

VECTOR_TIC2
LDAA TFLG1
ORAA #$02
STAA TFLG1 ;clear interrupt flag
LDAA #30
STAA T1S1 ;restart off-hook timer
LDAA PORTD ;get DTMF code
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LSRA ;shift to the lower nibble
LSRA
CMPA #$0A ;$0A is the code for ’0’
BNE TIC210
CLRA ;change it to 0

TIC210 LDX XDTBUF ;get pointer in DTBUF
STAA 0,X ;put data in buffer
INX ;update pointer
CPX #ENDDBUF ;check for end of buffer
BHS TIC220
CMPA #$0C ;DTMF code for ‘#’
BEQ TIC220
RTI

TIC220 LDX #DTBUF ;point to start of buffer
STX XDTBUF
LDAA #$FF ;true the flag DBFULL
STAA DBFULL
RTI

The information prepared in DTBUF by the interrupt service routine is inter-
preted in the task DTMF.ASM. The following code fragment shows how the relay is
controlled according to the contents of the reception buffer:

TST DBFULL ;if buffer not full,
;exit task

JEQ END_DTMF
LDX #DTBUF
LDAA 0,X
CMPA #$0B ;check if first code

;is ‘*’
BNE DT99 ;error if not
LDAA 1,X ;check next code
CMPA #$01 ;check all valid opcodes
BEQ DT10
CMPA #$02
BEQ DT20
CMPA #$03
BEQ DT30
BRA DT99 ;any other value

;is invalid
DT10 LDAA 2,X ;relay ON/OFF command

BEQ RELOFF
CMPA #$01
BEQ RELON
BRA DT99 ;any other value is

invalid
RELON LDAA PORTA ;relay ON

ORAA #$40
STAA PORTA
BRA DT90 ;generate dialog tone
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RELOFF LDAA PORTA ;relay OFF
ANDA #$BF
STAA PORTA
BRA DT90 ;generate dialog tone

The module BEEP.ASM that controls the generation of the dialog tones is struc-
tured as a finite state machine, in a way similar to the module RING.ASM. This
time, the variable that directs the program to the subsections dedicated to each state
is called BSTATUS.

There are two predefined sequences of states, associated with the two types of
dialog tones required. The program transits from one state to another when a timer
expires, and, after going through all the states in sequence, it returns to the idle state 0.

To start a sequence, another active task must write a value in BSTATUS, according
to the initial state in the sequence. In this particular case, the initial states for the two
sequences are defined as follows:

• BSTATUS = 1 starts the sequence that generates one long beep (1 sec).
• BSTATUS = 3 start the sequence that generates three 0.3-seconds beeps, sepa-

rated by a pause of 0.1 seconds.
DTMF.ASM writes directly to BSTATUS to generate the two possible dialog
tones:

DT90 LDAA #$03 ;valid command executed
STAA BSTATUS

DT91 LDX #DTBUF ;reset pointer to DTBUF
STX XDTBUF
CLR DBFULL
BRA END_DTMF

DT99 LDAA #$01 ;invalid command
STAA BSTATUS
BRA DT91
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A.1 Glossary of Terms

ADC

Acronym for Analog-to-Digital Converter. A circuit that converts the amplitude of
an analog signal into a numeric value, presented as a binary number.
See also: Resolution, S/H, SAR

Address

An unique code that identifies a resource in a microcontroller system.
See also: Address bus, Address space

Address bus

Physical connection between the CPU and the resources accessed, carrying the ad-
dress information. The number of lines of the address bus determines the maximum
number of resources that can be accessed.
See also: Address, Address space

Address space

The range of addresses associated with a resource, or a group of resources.
See also: Address, Address bus

Architecture

In a computer system, this term designates the structure and organization of the
resources which determines the way resources are accessed by the CPU.
See also: Harvard, Von Neumann data memory, Program memory, Address bus, Data
bus
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ASCII

Acronym for American Standard Code for Information Interchange. This is a 7-
bit binary code created to facilitate data communication between computers and
peripheral equipment created by different manufacturers.

Asynchronous communication

Communication technique that allows data exchange without the need of a common
synchronization clock for the transmitter and receiver(s).
See also: SCI, UART, Baud rate

Baud rate

Data transmission rate in serial communications, measured in bits per second.
See also: Asynchronous communication, SCI, UART

Buffer

Hardware: A device intended to adapt the electrical characteristics of a MCU I/O line
to a load, or signal source.
Software: Temporary data storage intended to compensate the differences in commu-
nication rates between processes or devices involved in a computer system.

Bus

Physical connection between the CPU and the other resources of a computer system
that carries data or addresses.
See also: Address bus, Data bus, Architecture, Harvard, Von Neumann

CPU

Acronym for Central Processing Unit. The core of any computer system that does all
data processing, and controls the access to the data and address buses of the system.
The CPU includes the instruction decoder, and an arithmetic and logic unit (ALU).
See also: Architecture, Data bus, Address bus, Peripheral interface, Instruction,
Program

CRC

Acronym for Cyclic Redundancy Check. A special checksum included in data packets
for error detection.
See also: Asynchronous communication, Parity bit
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Current loop

Older technique of encoding information on serial communication lines. Typical
values for the switched currents are 20 mA for an “IDLE,” “MARK,” or “1” condition
and 0 mA for a “START,” “SPACE,” or “0” condition. This type of connection has
high noise immunity and built-in ground loop isolation. The disadvantage is that the
data rate is usually limited to less than 19.2 kbps.
See also: Asynchronous communication, RS232, RS422, RS485

DAC

Acronym for Digital-to-Analog Converter. A circuit that generates an analog signal
having amplitude proportional with the value of a binary number received as input.
See also: ADC, Resolution

Data Bus

The bus (physical connection between the CPU and other resources of a computer
system) that carries data. Note that some computer system can have more than one
data buses.
See also: Bus, Address bus, Architecture, Harvard, Von Neumann

Data direction register

A register, associated with an input/output port, used to configure each individual
line of the port as an input or output line.
See also: I/O line, I/O port

Data memory

Read/write memory area used to store variables in a computer system.
See also: Architecture, Memory, RAM, ROM

Differential communication

Technique of communication based on the use of two conductors to transmit each
digital signal, the logic levels being defined by the relative difference of potential
between the two conductors. The line driver of the transmitter controls the voltage
levels on the two conductors, so that the difference of potential between them is
positive for logic 1 and negative for logic 0.
See also: Current loop, RS232, RS422, RS485
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EEPROM

Acronym for Electrically Erasable Programmable Read Only Memory. A special type
of non-volatile memory that can be erased by exposing it, in certain conditions, to an
electrical voltage higher than the normal operating voltage.
See also: RAM, ROM, Flash memory

Flash memory

Type of erasable non-volatile memory, very similar to EEPROM. The main difference
between the two types is that EEPROM must be written one byte at a time, while the
flash memory allows writing of blocks of data, which leads to faster write operations.
See also: RAM, ROM, EEPROM

Framing error

Error condition, specific for asynchronous serial communications, occurring when
an invalid stop bit is detected.
See also: Asynchronous communication, Start bit, Stop bit.

Harvard

Computer architecture characterized by the presence of different buses for program
memory and data memory. This leads to higher processing speed.
See also: Von Neumann

I2C bus

Acronym for Inter IC bus. This type of bus consists of two signal conductors named
SDA (Serial Data) and SCL (Serial Clock) that interconnect at least two devices.
See also: Bus

Intel hex format

Special text file format, introduced by Intel Corporation, to encode the executable
code generated by cross-assemblers or cross-compilers. Unlike binary files, the Intel
hex files contain information about the address where the code must be loaded in
the program memory and special checksums for error detection when the file is
transmitted over serial communication lines.
See also: Motorola S file format
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Interrupt

A mechanism that allows an external event to temporarily put on hold the normal
execution of the program, forcing the execution of a specific subroutine. Once the
interrupt service subroutine completes, the main program continues from the point
where it was interrupted.
See also: Interrupt vector, Interrupt service routine

Interrupt service routine

The interrupt service routine (ISR) is a program sequence similar to a subroutine,
executed every time the associated interrupt occurs. Unlike “regular” subroutines, the
ISR ends with a special instruction called Return from Interrupt (RTI, RETI). The
starting address of the interrupt service routine is defined by the interrupt vector.
See also: Interrupt, Interrupt vector

Interrupt vector

Reserved memory area, associated with each interrupt source, that contains either the
address of the interrupt service routine, or a jump instruction to this routine.
See also: Interrupt, Interrupt service routine

Instruction

Basic element of a program, which encodes an elementary operation. A program is
a logic sequence of instructions. The CPU reads the code of each instruction from
the program memory, decodes and executes it, then fetches the next instruction in
sequence.
See also: Program memory

I/O line

Input/output line. A mechanism for a computer system to interact with the outside
world. An input line is used to sense the electrical level of an external signal, and an
output line modifies its electrical status as directed by the program. In many cases,
the I/O lines can be configured by the program to act as inputs or outputs.
See also: I/O port, Data direction register, Peripheral interface

I/O port

A group of I/O lines that can be accessed simultaneously. The number of lines of an
I/O port depends on the width of the data bus, i. e. the number of data bits that can be
transferred in a certain time on the data bus.
See also: I/O line, Data bus
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ISP

Acronym for In-System Programming. A technique to program the internal program
memory of some microcontrollers, by means of a specially designed interface.
See also: Program memory

Master–slave protocol

Communication protocol in which one MASTER device controls one or more SLAVE
devices.

MCU

Acronym for Microcontroller Unit. Designates a single-chip computer, a structure
that integrates a CPU, certain amounts of program memory and data memory, and
a number of peripheral interfaces, all in one chip.
See also: CPU, ROM, RAM, Memory, Architecture, Peripheral interface

Memory

A device designed to store data. The simplest memory cell is the D-type flip–flop.
In a microcontroller system, the memory is organized as an array of locations, each
having a distinct address. The number of bits of each location is determined by the
width of the data bus.
See also: Data memory, Program memory, RAM, ROM, Architecture

Memory map

A list showing how the addresses of an address space are assigned to resources.
See also: Address space, Architecture, Memory

Motorola S File format

Special text file format, introduced by Motorola, to encode the executable code
generated by cross-assemblers or cross-compilers.
One distinctive feature of these files is that all the lines in this type of file start with the
letter S. Unlike binary files, the Motorola S files contain information about the address
where the code must be loaded in the program memory, and special checksums for
error detection when the file is transmitted over serial communication lines.
See also: Intel hex file format

Network

A structure consisting in a number of devices interconnected in a way that allows
data exchange between them, according to a set of rules, known as communication
protocol.
See also: Protocol, Master–slave protocol
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Overrun error

In a communication system, this error occurs at the receiver when a new character is
received before the previous character has been handled.
See also: Framing error

Parity bit

Error detection technique consisting in adding an extra bit to each group of bits
transmitted, so that the group always has an odd or even number of 1’s. Usually the
parity is checked at the byte level.
See also: CRC, Framing error, Overrun error

Peripheral interface

A circuit designed to sense/drive a number of I/O lines in order to provide a computer
system with the capability to communicate with external equipment.
See also: I/O line, I/O port.

Prescaller

Programmable counter used by some peripheral interfaces to divide the system clock
to provide a variable frequency clock to the interface.
See also: Peripheral interface

Program memory

Non-volatile memory used to store program information. The program memory is
connected to the CPU through address and data buses.
See also: Memory, ROM, Flash memory, Address bus, Data bus, Architecture

Protocol

In a communication system or network, the protocol is a set of rules defining the
structure of the data packets transmitted, and the conditions of access to the commu-
nication bus for each device in the system.
See also: Master–slave protocol

PWM

Acronym for Pulse Width Modulation. Some microcontrollers contain a special in-
terface able to generate PWM signals with programmable frequency and duty cycle.
See also: Timer
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RAM

Acronym for Random Access Memory. Typical read/write memory used to store
variables (data memory). RAM memory is volatile, i. e. it loses its contents at power-
down.
See also: Memory, Data memory, ROM, EEPROM, Flash memory

Register

Memory location, identified by a unique address, associated with particular control
or status information regarding a peripheral interface or a part or function of the CPU.
See also: Memor, Peripheral interface

Resolution

The number of bits of an ADC or DAC circuit, which directly determines the number
of quantization levels of the analog signal; e. g. a 10-bit ADC can distinguish 210

values of amplitude of the analog input.
See also: ADC, DAC

ROM

Acronym for Read Only Memory. Non-volatile memory used to store program or
data constants.
See also: Memory, Data memory, Program memory, RAM, EEPROM, Flash memory.

RS232

Recommended Standard of EIA organization, for point-to-point serial communica-
tion, where signals are carried as single voltages, referred to a common ground. The
voltage levels associated with the logic levels 0 and 1 are as follows:

– For logic 0, the voltage on the communication line must be in the range +6 V to
15 V.

– For logic 1, the voltage must be in the range −6 V to −15 V.

See also: Differential communication, RS422, RS485

RS422

Recommended Standard for point-to-point differential communication, where two
conductors are used to transmit each digital signal, the logic levels being defined by
the relative difference of potential between the two conductors.
See also: Differential communication, RS485
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RS485

Recommended Standard for multipoint differential communication. RS485 allows up
to 32 transmitters to be connected to the same twisted pair of conductors. Therefore,
each RS485 transmitter must be able to be virtually disconnected from the bus, by
driving its output into a high-impedance status.
See also: Differential communication, RS422

SAR

Successive Approximation Register. Technique used by some ADC circuits to obtain
the digital value of the analog input, by successively comparing the analog input with
an analog value obtained by converting to analog the contents of the register that
stores the results of comparisons.
See also: ADC, DAC

SCI

Serial Communication Interface. Peripheral interface designed to allow asynchronous
serial communication between computer systems and peripheral equipment.
See also: Asynchronous communication, UART, Start bit, Stop bit, Framing error

S&H circuit

Acronym for sample & hold circuit. A circuit used by some ADC circuits to hold the
instantaneous values of the analog input, for the duration of the conversion process.
See also: ADC

SPI

Synchronous Peripheral Interface. Particular master–slave communication interface,
where the master device generates a common clock used by the transmitter and
receiver to serially shift data in both directions.
See also: Master–slave communication, Synchronous communication

Stack

A data structure having Last In First Out (LIFO) access type. In practice, in most
cases, the stack is a reserved area of the system RAM memory, addressed by a special
register, called the Stack Pointer (SP).
See also: Stack Pointer
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Stack pointer

A register used to address the stack. The stack pointer points to the top of the stack.
Depending on the implementation, the top of the stack can be defined as the first
empty location in the stack, or as the most recently pushed data.
See also: Stack

Start bit

In asynchronous serial communication, before the actual data transmission begins,
the transmission line is pulled to the polarity opposite to the polarity of the idle
line, for a duration of a bit time. This technique is destined to provide a means to
synchronize the receiver.
See also: Asynchronous communication, Stop bit

Stop bit

In asynchronous serial communication, after the transmission of the data bits and any
parity bit, the polarity of the transmission line is returned to the polarity of the idle
line for the duration of a bit time.
See also: Asynchronous communication, Start bit

Synchronous communication

Communication technique that requires a common clock signal for the transmitter
and receiver(s) in order to coordinate (synchronize) their activity.
See also: Asynchronous communication, SCI, SPI

UART

Acronym for Universal Asynchronous Receiver Transmitter. Interface circuit for
asynchronous communication.
See also: Asynchronous communication, SCI

Von Neumann

Computer architecture characterized by common address and data buses for program
memory and data memory.
See also: Architecture, Harvard
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Bit 7 6 5 4 3 2 1 Bit 0

PORTA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0
PORTG PG7 PG6 PG5 PG4 PG3 PG2 PG1 PG0
DDRG DDG7 DDG6 DDG5 DDG4 DDG3 DDG2 DDG1 DDG0
PORTB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PO
PORTF PF7 PF6 PF5 PF4 PF3 PF2 PF1 PO
PORTC PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0
DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0
PORTD 0 0 PD5 PD4 PD3 PD2 PD1 PO
DDRD 0 0 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0
PORTE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PO
CFORC FOC1 FOC2 FOC3 FOC4 FOC5 0 0 0
OC1M OC1M7 OC1M6 OC1M5 OC1M4 OC1M3 0 0 0
OC1D OC1D7 OC1D6 OC1D5 OC1D4 OC1D3 0 0 0
TCNTH Bit 15 14 13 12 11 10 9 Bit 8
TCNTL Bit 7 6 5 4 3 2 1 Bit 0
TIC1H Bit 15 14 13 12 11 10 9 Bit 8
TIC1L Bit 7 6 5 4 3 2 1 Bit 0
TIC2H Bit 15 14 13 12 11 10 9 Bit 8
TIC2L Bit 7 6 5 4 3 2 1 Bit 0
TIC3H Bit 15 14 13 12 11 10 9 Bit 8
TIC3L Bit 7 6 5 4 3 2 1 Bit 0
TOC1H Bit 15 14 13 12 11 10 9 Bit 8
TOC1L Bit 7 6 5 4 3 2 1 Bit 0
TOC2H Bit 15 14 13 12 11 10 9 Bit 8
TOC2L Bit 7 6 5 4 3 2 1 Bit 0
TOC3H Bit 15 14 13 12 11 10 9 Bit 8
TOC3L Bit 7 6 5 4 3 2 1 Bit 0
TOC4H Bit 15 14 13 12 11 10 9 Bit 8
TOC4L Bit 7 6 5 4 3 2 1 Bit 0
TI4/O5H Bit 15 14 13 12 11 10 9 Bit 8
TI4/O5L Bit 7 6 5 4 3 2 1 Bit 0
TCTL1 OM2 OL2 OM3 OL3 OM4 OL4 OM5 OM5
TCTL2 EDG4B EDG4A EDG1B EDG1A EDG2B EDG2A EDG3B EDG3A
TMSK1 OC1I OC2I OC3I OC4I I4/O5 IC1I IC2I IC3I
TFLG1 OC1F OC2F OC3F OC4F I4/O5F IC1F IC2F IC3F
TMSK2 TOI RTII PAOVI PAII 0 0 PR1 PR0
TFLG2 TOF RTIF PAOVF PAIF 0 0 0 0
PACTL 0 PAEN PAMOD PEDGE 0 I4/O5 RTR1 RTR0
PACNT Bit 7 6 5 4 3 2 1 Bit0
SPCH Bit 7 6 5 4 3 2 1 Bit0
SPSR SPIE SPE DWOM MSTR CPOL CPHA SPR1 CPO
SPDR SPIF WCOL 0 MODF 0 0 0 Bit0
BAUD Bit 7 6 5 4 3 2 1 Bit0
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Bit 7 6 5 4 3 2 1 Bit 0

SCCR1 TCLR 0 SCP1 SCP0 RCKB SCR2 SCR1 SCR0
SCCR2 R8 T8 0 M WAKE 0 0 0
SCSR TIE TCIE RIE ILIE TE RE RWU SBK
SCDR TDRE TC RDRF IDLE OR NF FE 0
ADCTL Bit 7 6 5 4 3 2 1 Bit0
ADR1 CCF 0 SCAN MULT CD CC CB CA
ADR2 Bit 7 6 5 4 3 2 1 Bit0
ADR3 Bit 7 6 5 4 3 2 1 Bit0
ADR4 Bit 7 6 5 4 3 2 1 Bit0
BROT 0 0 0 PTCON BPRT3 BPRT2 BPRT1 BPRT0
OPT2 GWOM CWOM CLK4X 0 0 0 0 0
OPTION ADPU CSEL IRQE DLY CME FCME CR1 CR0
COPRST Bit 7 6 5 4 3 2 1 Bit O
PPROG ODD EVEN 0 BYTE ROW ERASE EELAT EEPGM
HPRIO RBOOT SMOD MDA IRV PSEL3 PSEL2 PSEL1 PSEL0
INIT RAM3 RAM2 RAM1 RAM0 REG3 REG2 REG1 REG0
TEST1 TILOP 0 OCCR CBYP DISR FCM FCOP 0
CONFIG EE3‘ EE2 EE1 EEO 1 NOCOP 1 EEON
CSSTRH IO1SA IO1SB IO2SA IO2SB GSTHA GSTHB PSTHA PSTHB
CSCTL IO1EN IO1PL IO2EN IO2PL GCSPR PCSEN PSIZA PSIZB
CSGADR GA15 GA14 GA13 GA12 GA11 GA10 0 0
CSGSIZ IO1AV IO2AV 0 GNPOL GAVLD GSIZA GSIZB GSIZC

Note

The register block of 68HC11F1 is located by default in the address range $1000–
$105F. The whole block can be relocated by writing the control bits [REG3–REG0]
in the INIT register. Consult the data sheets for details on the registers of other HC11
family members.
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Mnemonic Operation Description Flags

ABA Add Accumulators A + B → A H,N,Z,V,C
ABX Add B to X IX + (00 : B) → IX
ABY Add B to Y IY + (00 : B) → IY
ADCA (opr) Add with Carry to A A + M + C → A H,N,Z,V,C
ADCB (opr) Add with Carry to B B + M + C → B H,N,Z,V,C
ADDA (opr) Add Memory to A A + M → A H,N,Z,V,C
ADDB (opr) Add Memory toB B + M → B H,N,Z,V,C
ADDD (opr) Add 16-Bit to D D + (M : M + 1) → D N,Z,V,C
ANDA (opr) AND A with Memory A ∩ M → A N,Z,V
ANDB (opr) AND B with Memory B ∩ M → B N,Z,V
ASL (opr) Arithmetic Shift Left C ← b7 ← b6 . . . b0 ← 0 N,Z,V,C
ASLA Arithmetic Shift Left A C ← b7 ← b6 . . . b0 ← 0 N,Z,V,C
ASLB Arithmetic Shift Left B C ← b7 ← b6 . . . b0 ← 0 N,Z,V,C
ASLD Arithmetic Shift Left D C ← b15 ← b14 . . . b0 ← 0 N,Z,V,C
ASR Arithmetic Shift Right b7 → b7 → . . . b0 → C N,Z,V,C
ASRA Arithmetic Shift Right A b7 → b7 → b6 → . . . N,Z,V,C

→ b0 → C
ASRB Arithmetic Shift Right B b7 → b7 → b6 → . . . N,Z,V,C

→ b0 → C
BCC (rel) Branch if Carry Clear Branch if C = 0
BCLR (opr) Clear Bit(s) M ∩ (mm) → M N,Z,V
(msk)
BCS (rel) Branch if Carry Set Branch if C = 1
BEQ (rel) Branch if = Zero Branch if Z = 1
BGE (rel) Branch if >= Zero Branch if N ⊕ V = 0
BGT (rel) Branch if > Zero Branch if Z ∪ (N ⊕ V) = 0
BHI (rel) Branch if Higher Branch if C ∪ Z = 0
BHS (rel) Branch if Higher or Same Branch if C = 0
BITA (opr) Bit(s)Test A with Memory A ∩ M N,Z,V
BITB (opr) Bit(s)Test B with Memory B ∩ M N,Z,V
BLE (rel) Branch if <= Zero Branch if Z ∪ (N ⊕ V) = 1
BLO (rel) Branch if Lower Branch if C = 1
BLS (rel) Branch if Lower or Same Branch if C ∪ Z = 1
BLT (rel) Branch if < Zero Branch if N ⊕ V = 1
BMI (rel) Branch if Minus Branch if N = 1
BNE (rel) Branch if not = Zero Branch if Z = 0
BPL (rel) Branch if Plus Branch if N = 0
BRA (rel) Branch Always Branch if 1 = 1
BRCLR(opr) Branch if Bit(s) Clear Branch if M ∩ mm = 0
(msk) (rel)
BRN (rel) Branch Never Branch if 1 = 0
BRSET(opr) Branch if Bit(s) Set Branch if (M) ∩ mm = 1
(msk) (rel)
BSET (opr) Set Bit(s) M ∪ mm → M N,Z,V
(msk)
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Mnemonic Operation Description Flags

BSR (rel) Branch to Subroutine
BVC (rel) Branch if Overflow Clear Branch if V = 0
BVS (rel) Branch if Overflow Set Branch if V = 1
CBA Compare A to B A − B N,Z,V,C
CLC Clear Carry Bit 0 → C C
CLI Clear Interrupt Mask 0 → I I
CLR (opr) Clear Memory Byte 0 → M N,Z,V,C
CLRA Clear Accumulator A 0 → A N,Z,V,C
CLRB Clear Accumulator B 0 → B N,Z,V,C
CLV Clear Overflow Flag 0 → V V
CMPA (opr) Compare A to Memory A − M N,Z,V,C
CMPB (opr) Compare B to Memory B − M N,Z,V,C
COM (opr) One’s Complement Memory Byte $FF − M → M N,Z,V,C
COMA Ones Complement A $FF − A → A N,Z,V,C
COMB Ones Complement B $FF − B → B N,Z,V,C
CPD (opr) Compare D to Memory 16-Bit D − (M : M + 1) N,Z,V,C
CPX (opr) Compare X to Memory 16-Bit IX − (M : M + 1) N,Z,V,C
CPY (opr) Compare Y to Memory 16-Bit IY − (M : M + 1) N,Z,V,C
DAA Decimal Adjust A Adjust Sum to BCD N,Z,V,C
DEC (opr) Decrement Memory Byte M − 1 → M N,Z,V
DECA Decrement Accumulator A A − 1 → A N,Z,V
DECB Decrement Accumulator B B − 1 → B N,Z,V
DES Decrement Stack Pointer SP − 1 → SP
DEX Decrement Index Register X IX − 1 → IX Z
DEY Decrement Index Register Y IY − 1 → IY Z
EORA (opr) Exclusive OR A with Memory A ⊕ M → A N,Z,V
EORB (opr) Exclusive OR B with Memory B ⊕ M → B N,Z,V
FDIV Fractional Divide 16 by 16 D / IX → IX; r → D Z,V,C
IDIV Integer Divide 16 by 16 D / IX → IX; r → D Z,V,C
INC (opr) Increment Memory Byte M + 1 → M N,Z,V
INCA Increment Accumulator A A + 1 → A N,Z,V
INCB Increment Accumulator B B + 1 → B N,Z,V
INS Increment Stack Pointer SP + 1 → SP
INX Increment Index Register X IX + 1 → X Z
INY Increment Index Register Y IY+1 → Y X
JMP(opr) Unconditional Jump
JSR(opr) Jump to subroutine
LDAA(opr) Load Accumulator A M → A N,Z,V
LDAB(opr) Load Accumulator B M → B N,Z,V
LDD(opr) Load Double Accumulator D M → A, M + 1 → B N,Z,V
LDS(opr) Load Stack Pointer (M : M + 1) → SP N,Z,V
LDX(opr) Load Index Register X (M : M + 1) → IX N,Z,V
LDY(opr) Load Index Register Y (M : M + 1) → IY N,Z,V
LSL(opr) Logical shift left C ← b7 ← b6 . . . b0 ← 0 N,Z,V,C
LSLA Logical shit left A C ← b7 ← b6 . . . b0 ← 0 N,Z,V,C
LSLB Logical shift left B C ← b7 ← b6 . . . b0 ← 0 N,Z,V,C
LSLD Logical shift left Double C ← b15 ← . . . ← b0 ← 0 N,Z,V,C
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Mnemonic Operation Description Flags

LSR(opr) Logical shift right 0 → b7 → b6 . . . b0 → C N,Z,V,C
LSRA Logical shift right A 0 → b7 → b6 . . . b0 → C N,Z,V,C
LSRB Logical shift right B 0 → b7 → b6 . . . b0 → C N,Z,V,C
LSRD Logical shift right Double 0 → b15 → . . . → b0 → C N,Z,V,C
MUL Multiply A by B A × B → D C
NEG(opr) Tow’s complement memory byte 0 − M → M N,Z,V,C
NEGA Tow’s complement A 0 − A → A N,Z,V,C
NEGB Tow’s complement B 0 − B → B N,Z,V,C
NOP No operation No operation
ORAA (opr) OR Accumulator A A ∪ M → A N,Z,V
ORAB (opr) OR Accumulator B B ∪ M → B N,Z,V
PSHA Push A onto Stack A → Stk, SP = SP − 1
PSHB Push B onto Stack B → Stk, SP = SP − 1
PSHX Push X onto Stack(Lo First) IX → Stk, SP = SP − 2
PSHY Push Y onto Stack(Lo First) IY → Stk, SP = SP − 2
PULA Pull A from Stack SP = SP + 1, A ← Stk
PULB Pull B from Stack SP = SP + 1, B ← Stk
PULX Pull X from Stack (Hi First) SP = SP + 2, IX ← Stk
PULY Pull Y from Stack (Hi First) SP = SP + 2, IY ← Stk
ROL (opr) Rotate Left Memory b0 ← C ← b7 ← b6 N,Z,V,C

. . . ← b0
ROLA Rotate Left A b0 ← C ← b7 ← b6 N,Z,V,C

. . . ← b0
ROLB Rotate Left B b0 ← C ← b7 ← b6 N,Z,V,C

. . . ← b0
ROR (opr) Rotate Right Memory b7 → b6 . . . b0 → C → b7 N,Z,V,C
RORA Rotate Right A b7 → b6 . . . b0 → C → b7 N,Z,V,C
RORB Rotate Right B b7 → b6 . . . b0 → C → b7 N,Z,V,C
RTI Return from Interrupt N,Z,V,C
RTS Return from Subroutine
SBA Subtract B from A A − B → A N,Z,V,C
SBCA (opr) Subtract with Carry from A A − M − C → A N,Z,V,C
SBCB (opr) Subtract with Carry from B B − M − C → B N,Z,V,C
SEC Set Carry 1 → C C
SEI Set Interrupt Mask 1 → I I
SEV Set Overflow Flag 1 → V V
STAA (opr) Store Accumulator A A → M N,Z,V
STAB (opr) Store Accumulator B B → M N,Z,V
STD (opr) Store Accumulator D A → M, B → M + 1 N,Z,V
STOP Stop Internal Clocks
STS (opr) Store Stack Pointer SP → M : M + 1 N,Z,V
STX (opr) Store Index Register X IX → M : M + 1 N,Z,V
STY (opr) Store Index Register Y IY → M : M + 1 N,Z,V
SUBA (opr) Subtract Memory from A A − M → A N,Z,V,C
SUBB (opr) Subtract Memory from B B − M → B N,Z,V,C
SUBD (opr) Subtract Memory from D D − (M : M + 1) → D N,Z,V,C
SWI Software Interrupt I
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Mnemonic Operation Description Flags

TAB Transfer A to B A → B N,Z,V
TAP Transfer A to CC Register A → CCR All
TBA Transfer B to A B → A N,Z,V
TEST TEST (Only in Test Modes) Address Bus Counts
TPA Transfer CC Register to A CCR → A
TST (opr) Test for Zero or Minus M − 0 N,Z,V,C
TSTA Test A for Zero or Minus A − 0 N,Z,V,C
TSTB Test B for Zero or Minus B − 0 N,Z,V,C
TSX Transfer Stack Pointer to X SP + 1 → IX
TSY Transfer Stack Pointer to Y SP + 1 → IY
TXS Transfer X to Stack Pointer IX − 1 → SP
TYS Transfer Y to Stack Pointer IY − 1 → SP
WAI Wait for Interrupt Stack Regs & WAIT
XGDX Exchange D with X IX → D, D → IX
XGDY Exchange D with Y IY → D, D → IY



A.4 An Example of Expanded Structure with HC11

The example presented below is an illustration of a typical structure with 68HC11E9
operating in expanded multiplexed mode (MODA = 1, MODB = 1).

Figure A4.1 shows the microcontroller and the bus demultiplexer, implemented
with the latch 74LS573, controlled by the Address Strobe (AS) signal. Note that the
unused MCU pins are not represented in this figure.
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Fig. A4.1. MCU 68HC11E9 and the bus demultiplexer

Figure A4.2 shows the external memory circuits and the address decoder. The
external ROM is an 8-kilobyte, 2764 EPROM (ICx), selected with CSE000H. ICy
is a 6264 8-kilobyte RAM selected with CS2000H. Besides chip select, the 6264
circuit requires an additional control signal for the OE (Output Enable) input. This is
OERAM, obtained by inverting the signal R/W\ with the gate IC7A.
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Fig. A4.2. External memory and address decoder
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Fig. A4.3. External I/O ports

Two additional selection signals CS4000H and CS6000H are used to control the
external input and output ports, shown in Fig. A4.3.



A.5 Using HC11 in Bootstrap Mode

If the input lines MODA and MODB are grounded during RESET, HC11 enters
a special operating mode, called bootstrap. In bootstrap mode, the microcontroller
executes a program, called bootloader, located in a small ROM, invisible in the
memory map in normal modes.

The bootloader allows user programs to be loaded into the MCU RAM, via the
serial communication interface SCI, and, when the transmission completes, the user
program is automatically launched.

In principle, the user program loaded this way can use any of the MCU resources,
but the most common use of the bootstrap mode is for writing the CONFIG register
and EEPROM constants. Some members of the HC11 family have internal EPROM
or OTPROM (One Time Programmable ROM), which can also be programmed in
bootstrap mode.

The first action of the bootloader is to send a break (a long zero) character on
the serial line. If the answer of the host is another break, then the bootloader passes
the control to a program located in the EEPROM, by executing an unconditional
jump to the first address of the EEPROM. If the host sends a $FF, this is used by
the bootloader of 68HC11E9 to determine the baud rate, by selecting one of the two
possible baud rates (1200 or 7812 baud). Note that other versions of HC11 allow
different baud rates. See the specific data sheets for details.

Once the baud rate is selected, the bootloader starts receiving the binary characters
from the serial line, echoes each received character to the host, and stores them in
RAM. If the end of RAM is reached, or no character is received for four character
times, the bootloader abandons the communication process and executes a jump to
the first address of RAM, passing control to the user program.

A complete description of the HC11 bootloader is available in the Motorola
application note AN1060, available on the internet.

The development board described in Chap. 9 is provided with two jumpers (JP2,
JP3) that control the MODA, MODB inputs and allow the MCU to enter the special
bootstrap operating mode. To facilitate testing this operating mode, the accompanying
CD contains a small utility program, called BLT11.EXE (Bootloader terminal for
HC11).

BLT11 does not require any installation procedure, and may be run from the CD-
ROM. It allows the user to select the COM port to use, configures it for 1200 baud,
loads a binary at the user’s choice and sends its contents to the selected communication
port, preceded by $FF.

The binary characters echoed by the MCU are displayed in the terminal window
as pairs of two hex digits separated by a space. When the download completes, the
user program is automatically launched. This program waits for a character from the
SCI and compares it to CR ($0D) and SP (Space $20). If SP is detected, the program
reads the current value of the CONFIG register and sends it to the host through the
SCI. If CR is detected, the program writes the constant NEWCFG in CONFIG, and
sends it to the host to acknowledge the operation.

Below is the full listing of a program that modifies the CONFIG register.
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TITLE PROGRAMMING THE CONFIG REGISTER
INCLUDE 68HC11F1.DEF

NEWCFG EQU $0F
*EEPGM EQU $01
*EELAT EQU $02
*ERASE EQU $04
BYTE EQU $20
ENDRAM EQU $1FF ;valid for E9 too
CR EQU $0D
SP EQU $20

CODE ;no ORG!!
START LDS #ENDRAM ;init SP

LDAA SCSR ;clear SCI flags if any
LDAA SCDR
CLR BPROT

REC05 LDAA SCSR ;wait a character from SCI
ANDA #$20
BEQ REC05

REC10 LDAA SCDR ;get character
CMPA #CR
BEQ E2W ;if CR write new value
CMPA #SP
BEQ SENDC ;if SP send current value
BRA REC05 ;endless loop

E2W LDY #CONFIG
BSR E2BE ;erase it first
LDAB #EELAT
STAB PPROG
LDAA #NEWCFG
STAA CONFIG ;latch the address
ORAB #EEPGM
STAB PPROG
BSR DLY10 ;wait about 10ms

SENDC LDAA SCSR
ANDA #$80 ;transmit complete?
BEQ SENDC
LDAA CONFIG
STAA SCDR
BRA REC05 ;back to start

*LOCAL SUBROUTINES
E2BE LDAB #$16 ;BYTE=1,ERASE=1,EELAT=1

STAB PPROG
STAB 0,Y ;latch address
LDAB #$17 ;make EEPGM=1
STAB PPROG ;start Vpp (charge pump)
BSR DLY10
CLR PPROG ;stop Vpp and return to read
RTS

DLY10 LDX #$3000
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DLOOP DEX
BNE DLOOP
CLR PPROG
RTS
END

Remember that the EEPROM cells that form the CONFIG register are doubled by
a RAM-type register for read operations, which is loaded only once, at RESET. Any
new value written to the CONFIG register becomes visible after the next RESET.

Important note. Do not clear the bit NOCOP in the CONFIG register unless
you really want to enable the watchdog. Also note that some HC11 versions have
a special bit in CONFIG, called NOSEC. Clearing this bit enables a security
feature, which prevents the MCU from entering the bootstrap operating mode.
You may not be able to erase the CONFIG register again.



A.6 The Registers of AT90S8535

Bit 7 6 5 4 3 2 1 Bit0

SREG I T H S V N Z C
SPH – – – – – SP10 SP9 SP8
SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0
GIMSK INT1 INT0
GIFR INTF1 INTF0
TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 TOIEO
TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 TOV0
MCUCR SE SM1 SM0 ISC11 ISC10 ISC01 ISC00
MCUCSR EXTRF PORF
TCCR0 CS02 CS01 CS00
TCNT0 Timer/Counter0 (8 Bits)
TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 PWM11 PWM10
TCCR1B ICNC1 ICES1 CTC1 CS12 CS11 CS10
TCNT1H Timer/Counter1 – Counter Register High Byte
TCNT1L Timer/Counter1 – Counter Register Low Byte
OCR1AH Timer/Counter1 – Output Compare Register A High Byte
OCR1AL Timer/Counter1 – Output Compare Register A Low Byte
OCR1BH Timer/Counter1 – Output Compare Register B High Byte
OCR1BL Timer/Counter1 – Output Compare Register B Low Byte
ICR1H Timer/Counter1 – Input Capture Register High Byte
ICR1L Timer/Counter1 – Input Capture Register Low Byte
TCCR2 PWM2 COM21 COM20 WGM21 CS22 CS21 CS20
TCNT2 Timer/Counter2 (8 Bits)
OCR2 Timer/Counter2 Output Compare Register
ASSR – – – – AS2 TCN2UB OCR2UB TCR2UB
WDTCR – – – WDTOE WDE WDP2 WDP1 WDP0
UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL
EEARH – – – – – – – EEAR8
EEARL EEPROM Address Register Low Byte
EEDR EEPROM Data Register
EECR – – – – EERIE EEMWE EEWE EERE
PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0
DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0
PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0
PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0
DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0
PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0
PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0
DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0
PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0
PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0
DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0
PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0
SPDR SPI Data Register
SPSR SPIF WCOL – – – – – SPI2X
SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0
UDR USART I/O Data Register
USR RXC TXC UDRE FE OR
UCR RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8
UBRR USART Baud Rate Register Low Byte
ACSR ACD ACO ACI ACIE ACIC ACIS1 AC IS0
ADMUX MUX2 MUX1 MUX0
ADCSR ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0
ADCH ADC Data Register High Byte
ADCL ADC Data Register Low Byte
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Arithmetic and Logic Instructions

Mnemonic Description Operation Flags

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H
ADC Rd, Rr Add with Carry two Registers Rd ←Rd + Rr + C Z,C,N,V,H
ADIW Rdl.K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S
SUB Rd, Rr Subtract two Registers Rd ← Rd − Rr Z,C,N,V,H
SUBI Rd, K Subtract Constant from Register Rd ← Rd − K Z,C,N,V,H
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd − Rr − C Z,C,N,V,H
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd − K − C Z,C,N,V,H
SBIW Rdl.K Subtract Immediate from Word Rdh:Rdl←Rdh:Rdl −,K Z,C,N,V,S
AND Rd, Rr Logical AND Registers Rd ← Rd · Rr Z,N,V
ANDI Rd,K Logical AND Register and Constant Rd ← Rd · K Z,N,V
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V
EOR Rd, Rr Exclusive OR Reqisters Rd ← Rd 0 Rr Z,N,V
COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V
NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V
CBR Rd,K Clear Bit(s) in Register Rd ← Rd (0Xff − K) Z,N,V
INC Rd Increment Rd ← Rd + 1 Z,N,V
DEC Rd Decrement Rd ← Rd − 1 Z,N,V
TST Rd Test for Zero or Minus Rd ← Rd · Rd Z,N,V
CLR Rd Clear Register Rd ← Rd 0 Rd Z,N,V
SER Rd Set Register Rd ← 0xFF None

Branch Instructions

Mnemonic Description Operation Flags

RJMP k Relative Jump PC ← PC + k + 1 None
IJMP Indirect Jump to (Z) PC ← Z None
RCALL k Relative Subroutine Call PC ← PC + k + 1 None
ICALL Indirect Call to (Z) PC ← Z None
RET Subroutine Return PC ← STACK None
RETI Interrupt Return PC ← STACK I
CPSE Rd,Rr Compare, Skip if Equal If(Rd = r)PC ← PC + 2 or 3 None
CP Rd,Rr Compare Rd − Rr Z,N,V,C,H
CPC Rd,Rr Compare with Carry Rd − Rr − C Z,N,V,C,H
CPI Rd,K Compare Register with Immediate Rd − K Z,N,V,C,H
SBRC Rr, b Skip if Bit in Reqister Cleared If(Rr(b) = 0)PC ← PC + 2 or 3 None
SBRS Rr, b Skip if Bit in Registeris Set if(Rr(b) = 1)PC ← PC + 2 or 3 None
SBIC P,b Skip if Bit in I/O Register Cleared if(P(b) = 0)PC ← PC + 2 or 3 None
SBIS P,b Skip if Bit in I/O Register is Set if (P(b) = 1)PC ← PC + 2 or 3 None
BRBS s,k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None
BRBC s,k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None
BREQ K Branch if Equal if (Z = 1) then PC ← PC + k + 1 None
BRNE K Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None
BRCS K Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None
BRCC K Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None
BRSH K Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None
BRLO K Branch if Lower if (C = 1) then PC ← PC + k + 1 None
BRMI K Branch if Minus if (N = 1) then PC ← PC + k + 1 None
BRPL K Branch if Plus if (N = 0) then PC ← PC + k + 1 None



226 Appendices

Mnemonic Description Operation Flags

BRGE K Branch if Greater or Equal, Signed if (N 0 V = 0) then PC ← PC + k + 1 None
BRLT K Branch if Less Than Zero, Signed if (N 0 V = 1) then PC ← PC + k + 1 None
BRHS K Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None
BRHC K Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None
BRTS K Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None
BRTC K Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None
BRVS K Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None
BRID k Branch if Interrupt Disabled if (l = 0) then PC ← PC + k + 1 None

Data Transfer Instructions

Mnemonic Description Operation Flags

MOV Rd, Rr Move Between Registers Rd ← Rr None
LDI Rd, K Load Immediate Rd ← K None
LD Rd, X Load Indirect Rd ← (X) None
LD Rd, X + Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None
LD Rd,−X Load Indirect and Pre-Dec. X← X − 1, Rd ← (X) None
LD Rd, Y Load Indirect Rd ← (Y) None
LD Rd, Y + Load Indirect and Post-Inc. Rd ← (Y), Y← Y + 1 None
LD Rd,−Y Load Indirect and Pre-Dec. Y←Y − 1,Rd ← (Y) None
LDD Rd,Y + q Load Indirect with Displacement Rd ← (Y + q) None
LD Rd, Z Load Indirect Rd ← (Z) None
LD Rd, Z + Load Indirect and Post-Inc. Rd ← (Z),Z ← Z + 1 None
LD Rd,−Z Load Indirect and Pre-Dec. Z ← Z − 1,Rd ← (Z) None
LDD Rd, Z + q Load Indirect with Displacement Rd ← (Z + q) None
LDS Rd, k Load Direct from SRAM Rd ← (k) None
ST X,Rr Store indirect (X) ← Rr None
ST X + , Rr Store indirect and Post-Inc (X) ← Rr, X ← X + 1 None
ST −X, Rr Store indirect and Pre-Dec X ← X − 1,(X) ← Rr None
ST Y, Rr Store indirect (Y) ← Rr None
ST Y + , Rr Store indirect and Post-Inc (Y) ← Rr, Y ← Y + 1 None
ST −Y, Rr Store indirect and Pre-Dec Y ← Y − 1,(Y) ← Rr None
STD Y + q,Rr Store indirect with Displacement (Y + q) ← Rr None
ST Z, Rr Store indirect (Z) ← Rr None
ST Z + , Rr Store indirect and Post-Inc (Z) ← Rr, Z ← Z + 1 None
ST −Z, Rr Store indirect and Pre-Dec Z ← Z − 1,(Z) ← Rr None
STD Z + q,Rr Store indirect with Displacement (Z + q)← Rr None
STS k, Rr Store Direct to SRAM (k) ← Rr None
LPM Load Program Memory R0 ← (Z) None
IN Rd, P In Port RdˆP None
OUT P,Rr Out Port P ← Rr None
PUSH Rr Push Register on Stack STACK ← Rr None
POP Rd Pop Register from Stack Rd ← STACK None
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Bit and Bit-test Instructions

Mnemonic Description Operation Flags

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None
LSL Rd Logical Shift Left Rd(n + 1) ← Rd(n),Rd(0) ← 0 Z,C,N,V
LSR Rd Logical Shift Right Rd(n) ← Rd(n + 1), Rd(7) ← 0 Z,C,N,V
ROL Rd Rotate Left Through Carry Rd(0) ← C,Rd(n + 1) ← Rd(n),C ← Rd(7) Z,C,N,V
ROR Rd Rotate Right Through Carry Rd(7) ← C,Rd(n) ← Rd(n + 1),C ← Rd(0) Z,C,N,V
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n + 1),n = 0..6 Z,C,N,V
SWAP Rd Swap Nibbles Rd(3-0) ← Rd(7–4),Rd(7-4) ← Rd(3–0) None
BSET s Flag Set SREG(s) ← 1 SREG(s)
BCLR s Flaq Clear SREG(s) ← 0 SREG(s)
BST Rr, b Bit Store from Register to T T ← Rr(b) T
BLD Rd, b Bit load from T to Register Rd(b) ← T None
SEC Set Carry C ← 1 C
CLC Clear Carry C ← O C
SEN Set Negative Flag N ← 1 N
CLN Clear Negative Flag N ← O N
SEZ Set Zero Flag Z ← 1 Z
CLZ Clear Zero Flag Z ← O Z
SEI Global Interrupt Enable l ← 1 I
CLI Global Interrupt Disable l ← 0 I
SES Set Signed Test Flag S ← 1 S
CLS Clear Signed Test Flag S ← O S
SEV Set V V ← 1 V
CLV Clear V V ← O V
SET Set T in SREG T ← 1 T
CLT Clear T in SREG T ← O T
SEH Set Half Carry Flag in SREG H ← 1 H
CLH Clear Half Carry Flag in SREG H ← O H

Special Instructions

Mnemonic Description Operation Flags

NOP No Operation None
SLEEP Sleep None
WDR Watchdog Reset None



A.8 AT90S8515 Operating with External RAM

Some AVR microcontrollers can allocate some of the I/O lines to extend the bus
of the data memory for connecting external memory or other RAM-like external
devices. Figure A8.1 presents an example of implementation of the external bus for
the microcontroller AT90S8515.
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Fig. A8.1. AT90S8515 operating with external bus for data memory

In this example, the external memory is a 32K×8 62256 circuit, selected directly
with the address line A15, which makes it visible in the address range $0000–$7FFF
in the address space of the data memory.

The control signals for the external bus are generated by the MCU. ALE (Address
Latch Enable) is active HIGH, and strobes the lower half of the address into the
external address latch IC1 (74LS573), while RD\ (Read) and WR\ (Write) are active
LOW and indicate the direction of the data transfer on the external bus. They are
directly connected to the control inputs OE\ and WR\ of the external RAM circuit
IC2.
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The internal flash and EEPROM memory of many of the AVR microcontrollers can
be programmed “in system”, without removing the circuit from its socket, through
the ISP (In-System Programming) interface. At the hardware level, the ISP interface
uses the SPI lines MOSI, MISO and SCK to transfer data between the host and the
device to be programmed. The ISP interface takes control of the SPI lines when the
RESET input of the MCU is LOW.

Atmel Corporation offers a free software utility, called AVRISP, which allows the
use of a personal computer to program the AVR microcontrollers through the ISP.
Although the data transfer through the ISP is serial, the ISP interface is connected to
the parallel port of the PC by means of a cable adapter. One possible implementation
of the ISP cable adapter for the parallel port is presented in Fig. A9.1.

X1
(male)

ISP Connector
(female)

BRST
BMOSI
BSCK
ENA

ENB

BMISO

CableMOSI  1
RST     2
SCK    3
MISO  4
VCC    5
GND    6

13
12
11
10
9
8
7
6
5
4
3
2
1

25
24
23
22
21
20
19
18
17
16
15
14

SV1

9

10

8
IC1C

IC1A
2

1

3

IC1B4

5 6

12 11

13 IC1D

74HC125

GND

Fig. A9.1. Schematic of the cable adapter between the parallel port of PC and the ISP

Figure A9.2 shows the layout of the PCB for this circuit. Note that the circuit is
powered through the ISP cable.

For the ISP to operate, the MCU must be powered, and an external crystal must be
present, for the oscillator. The XTAL frequency must be at least twice the frequency
of the data transmission clock SCK.

11425

X1

SV11 6

IC1

Fig. A9.2. Layout of the PCB for the ISP cable adapter
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The ISP protocol requires that 4-byte data packets be transferred through on the
interface for each command. For example, the command consisting of the series of
bytes [$AC, $53, xx, xx] (xx are “don’t care” bytes) instructs the MCU to enter
programming mode. During the transmission of the third byte, the MCU echoes the
value $53 received as the second byte of the packet to acknowledge the command.

The command to read a byte from the program memory has the following struc-
ture:

0010 H000 xxxx aaaa bbbb bbbb oooo oooo

H indicates which byte of the location of program memory specified by the bits
aaaabbbbbbbb must be read. H = 1 addresses the most significant byte, H = 0 refers
to the least significant byte. During the transmission of the fourth byte – oooooooo –
the MCU returns the value read from the specified address of the flash memory.

The full list of commands of the ISP protocol is presented in Table A9.3.
To prevent unintentional programming of the flash or EEPROM memory while

using the SPI interface, a special protection mechanism, called “lock bits”, has been
provided. Lock bits are non-volatile bits, accessible only in programming mode,
that inhibit further access to the EEPROM or flash memory in programming mode.
AT90S8535 has two lock bits, LB1 and LB2, with the functions listed in Table A9.2.

Table A9.1. Functions of the lock bits of AT90S8535

Lock bits Protection type

LB1 LB2
1 1 No memory lock features enabled
0 1 Further programming of Flash and EEPROM disabled
0 0 Verify is also disabled

Once programmed with 0, the lock bits can only be brought to the erase value 1
through a chip erase operation.

Fuse bits are non-volatile control bits similar to the lock bits but with different
functions. There are two fuse bits named SPIEN and FSTRT.

SPIEN – Serial Programming Enable. Its default value is 0 (enabled). This bit
cannot be modified through ISP.

FSTRT – Short Start-up Time determines the duration of the internal RESET
pulse, so that the external oscillator can settle. The operation of the watchdog timer
is also delayed with a programmable number of cycles, as shown in Table A9.3.

When any of the lock bits is programmed (i.e. have the value 0) the access to the
fuse bits is inhibited. Therefore, the fuse bits must be programmed first.

The ISP command Chip Erase brings the lock bits to the erased value (1) but
does not affect the fuse bits.
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Table A9.2. The effect of the fuse bit FSTRT for AT80S8535

FSTRT Internal RESET duration Number of WDT cycles
at VCC = 5 V

Programmed 1.1 ms 1 K
Unprogrammed 16.0 ms 16 K

The signature bytes are three special read-only bytes that indicate the manu-
facturer, the size of the program memory and the device type. They are used by
programmers to identify the devices. See the specific data sheets for the values of the
signature bytes. When both the lock bits are programmed (0) the signature bytes are
no longer accessible through the ISP interface.

Table A9.3. List of the ISP protocol commands

Command Command format

Programming Enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx
Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx
Read Program Memory 0010 H000 xxxx aaaa bbbb bbbb oooo oooo
Write Program Memory 0100 H000 xxxx aaaa bbbb bbbb dddd dddd
Read EEPROM Memory 1010 0000 xxxx xxxa bbbb bbbb oooo oooo
Write EEPROM Memory 1100 0000 xxxx xxxa bbbb bbbb dddd dddd
Read Lock and Fuse Bits 0101 1000 xxxx xxxx xxxx xxxx 12Sx xxxF
Write Lock Bits 1010 1100 1111 1211 xxxx xxxx xxxx xxxx
Read Signature Byte 0011 0000 xxxx xxxx xxxx xxbb oooo oooo
Write FSTRT Fuse 1010 1100 1011 111F xxxx xxxx xxxx xxxx

Legend:
a = address high bits; b = address low bits; H = 0 – low byte, 1 – high byte; o = data out;
d = data in; x = don’t care bit; 1 = lock bit 1; 2 = lock bit 2; F = FSTRT fuse; S = SPIEN fuse
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ACC A.7 A.6 A.5 A.4 A.3 A.2 A.1 A.0
B B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0
PSW CY AC F0 RS1 RS0 OV – P
SP Stack Pointer
DPH Data pointer – high byte
DPL Data pointer – low byte
P0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0
P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0
IP – – PT2 PS PT1 PX1 PT0 PX0
IE EA – ET2 ES ET1 EX1 ET0 EX0
TMOD GATE C/T M1 M0 GATE C/T M1 M0
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
TH0 Timer0 data – high byte
TL0 Timer0 data – low byte
TH1 Timer1 data – high byte
TL1 Timer1 data – low byte
SCON SM0 SM1 SM2 REN TB8 RB8 TI RI
SBUF Serial data buffer
PCON SMOD – – – GF1 GF0 PD IDL
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Arithmetic Instructions

Mnemonic Operation Description Flags

ADD A,Rn Add register to Accumulator A ← A + Rn C,OV,AC
ADD A.direct Add direct byte to Accumulator A ← A + direct C,OV,AC
ADD A,@Ri Add indirect RAM to Accumulator A ← A + (Ri ) C,OV,AC
ADD A,#data Add immediate data to Accumulator A ← A + data C,OV,AC
ADDC A,Rn Add register to Accumulator with Carry A ← A + Rn + C C,OV,AC
ADDC A.direct Add direct byte to Accumulator with Carry A ← A + direct + C C,OV,AC
ADDC A,@Ri Add indirect RAM to Accumulator with Carry A ← A + (Ri )+ C C,OV,AC
ADDC A,#data Add immediate data to Acc with Carry 2 A ← A + data + C C,OV,AC
SUBB A,Rn Subtract Register from Acc with borrow A ← A − Rn− C C,OV,AC
SUBB A.direct Subtract direct byte from Acc with borrow A ← A − direct − C C,OV,AC
SUBB A,@Ri Subtract indirect RAM from Acc with borrow A ← A − (Ri )− C C,OV,AC
SUBB A,#data Substract immediate data from Acc with borrow A ← A − data − C C,OV,AC
INC A Increment Accumulator A ← A + 1
INC Rn Increment register Rn ← Rn + 1
INC Direct Increment direct byte direct ← direct + 1
INC @Ri Increment direct RAM (Ri ) ← (Ri ) + 1
DEC A Decrement Accumulator A ← A − 1
DEC Rn Decrement Register Rn ← Rn − 1
DEC Direct Decrement direct byte direct ← direct − 1
DEC @Ri Decrement indirect RAM (Ri ) ← (Ri ) − 1
INC DPTR Increment Data Pointer DPTR ← DPTR + 1
MUL AB Multiply A by B A0−7,B15−8 ← AxB C,OV
DIV AB Divide A by B A0−7,B15−8 ← A / B C,OV
DA A Decimal Adjust Accumulator *see datasheet C

Logic Instructions

Mnemonic Operation Description Flags

ANL A,Rn AND Register to Accumulator A ← A Λ Rn

ANL A.direct AND direct byte to Accumulator A ← A Λ direct
ANL A,@Ri AND indirect RAM to Accumulator A ← A Λ (Ri )
ANL A,#data AND immediate data to Accumulator A ← A Λ data
ANL direct.A AND Accumulator to direct byte direct ← direct Λ A
ANL direct,#data AND immediate data to direct byte direct ← direct Λ data
ORL A,Rn OR register to Accumulator A ← AV Rn

ORL A.direct OR direct byte to Accumulator A ← A V Rn
ORL A,@Ri OR indirect RAM to Accumulator A ← A V (Ri )
ORL A,#data OR immediate data to Accumulator A ← A V data
ORL direct.A OR Accumulator to direct byte direct ← direct V A
ORL direct,#data OR immediate data to direct byte direct ← direct V data
XRL A,Rn Exclusive-OR register to Accumulator A ← A V Rn

XRL A.direct Exclusive-OR direct byte to Accumulator A ← A V Rn

XRL A,@Ri Exclusive-OR indirect RAM to Acc A ← A V (Ri )
XRL A,#data Exclusive-OR immediate data to Accr A ← A V data
XRL direct.A Exclusive-OR Accumulator to direct byte direct ← direct V A
XRL direct,#data Exclusive-OR immediate data to direct byte direct ← direct V data
CLR A Clear Accumulator A ← 0
CPL A Complement Accumulator A ← A V $FF
RL A Rotate Accumulator Left A0 ← A7An+1 ← AnA1 ← A0
RLC A Rotate Acc. Left through the Carry A0 ← C,An+1 ← An ,C ← A7 C
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Mnemonic Operation Description Flags

RR A Rotate Accumulator Right A7 ← A0An ← An+1A6 ← A7
RRC A Rotate Acc. Right through the Carry A7 ← C,An ← An+1,C ← A0 C
SWAP A Swap nibbles within the Accumulator A3−0 ↔ A7−4

Data Transfer Instructions

Mnemonic Operation Description Flags

MOV A,Rn Move register to ccumulator A ← Rn

MOV A.direct Move direct byte to accumulator A ← direct
MOV A,@Ri Move indirect RAM to Accumulator A ← (Ri )

MOV A,#data Move immediate data to Accumulator A ← data
MOV Rn ,A Move Accumulator to register Rn ← A
MOV Rn ,direct Move direct byte to register Rn ← direct
MOV Rn ,#data Move immediate data to register Rn ← data
MOV direct,A Move Accumulator to direct byte direct ← A
MOV direct, Rn Move register to direct byte direct ← Rn

MOV direct.direct Move direct byte to direct direct ← direct
MOV direct,@Ri Move indirect RAM to direct byte direct ← (Ri )
MOV direct,#data Move immediate data to direct byte direct ← data
MOV @Ri ,A Move Accumulator to indirect RAM (Ri ) ← A
MOV @Ri ,direct Move direct byte to indirect RAM (Ri )← direct
MOV @Ri ,#data Move immediate data to indirect RAM (Ri )← data
MOV DPTR,#data16 Load Data Pointer with a 16-bit constant DPTR ← data16
MOVC A,@A + DPTR Move Code byte relative to DPTR to Acc A ← (A + DPTR)
MOVC A,@A + PC Move Code byte relative to PC to Acc A ← (A + PC)
MOVX A,@Ri Move External RAM (8-bit addr) to Acc A ← (Ri )

MOVX A,@DPTR Move Exernal RAM (16-bit addr) to Acc A ← (DPTR)
MOVX @Ri ,A Move Acc to External RAM (8-bit addr) (Ri )← A
MOVX @DPTR,A Move Acc to External RAM (16-bit addr) (DPTR) ← A
PUSH Direct Push direct byte onto stack STACK ← direct
POP Direct Pop direct byte from stack direct ← STACK
XCH A,Rn Exchange register with Accumulator A ↔ Rn

XCH A.direct Exchange direct byte with Acc A ↔ direct
XCH A,@R, Exchange indirect RAM with Acc A↔(Ri)
XCHD A,@R, Exchange low-order Digit indirect RAM with Acc A3−0↔(Ri3−0)

Bit Manipulation Instructions

Mnemonic Operation Description Flags

CLR C Clear Carry C ← 0 C
CLR Bit Clear direct bit bit ← 0
SETB C Set Carry C ← 1 C
SETB Bit Set direct bit bit ← 1
CPL C Complement Carry C ← 1 − C C
CPL Bit Complement direct bit bit ← 1 − bit
ANL C,bit AND direct bit to CARRY C ← C Λ bit C
ANL C,/bit AND complement of direct bit to Carry C ← C Λ /bit C
ORL C.bit OR direct bit to Carry C ← C V bit C
ORL C,/bit OR complement of direct bit to Carry C ← C V /bit C
MOV C.bit Move direct bit to Carry C ← bit C
MOV bit.C Move Carry to direct bit bit ← C C
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Branch Instructions

Mnemonic Operation Description Flags

JC rel Jump if Carry is set If C = 1
PC = PC + rel

JNC rel Jump if Carry not set If C = 0
PC = PC + rel

JB bit.rel Jump if direct Bit is set If bit = 1
PC = PC + rel

JNB bit.rel Jump if direct Bit is Not set If bit = 0 PC = PC + rel
JBC bit.rel Jump if direct Bit is set and clear bit If bit = 1

PC = PC + rel,bit ← 0
ACALL addr 11 Absolute Subroutine Call PC = PC + 2

SP = SP + 1
(SP) ← PC7−0
SP = SP + 1
(SP) ← PC15−8
PC10−0 ← ADDR11

LCALL addr 16 Long Subroutine Call PC = PC + 2
SP = SP + 1
(SP) ← PC7−0
SP = SP + 1
(SP) ← PC15−8
PC15−0 ← ADDR16

RET Return from Subroutine PC15−8 ← (SP)
SP = SP − 1
PC7−0 ← (SP)
SP = SP + 1

RETI Return from interrupt PC15−8 ← (SP)
SP = SP − 1
PC7−0 ← (SP)
SP = SP + 1
EA ← 1

AJMP addr11 Absolute Jump PC = PC + 2
PC10−0 ← addr11

LJMP addr16 Long Jump PC15−0 ← addr16
SJMP rel Short Jump (relative addr) PC = PC + 2

PC ← PC + rel
JMP @A + DPTR Jump indirect relative to the DPTR PC ← A + DPTR
JZ rel Jump if Accumulator is Zero if A = 0

PC = PC + 2
PC ← PC + rel

JNZ rel Jump if Accumulator is Not Zero if A 
= 0
PC = PC + 2
PC ← PC + rel

CJNE A,direct,rel Compare direct byte to Acc and Jump if A 
= direct
if Not Equal PC = PC + 2

PC ← PC + rel C
CJNE A,#data,rel Compare immediate to Acc and Jump if A 
= data

if Not Equal PC = PC + 2
PC ← PC + rel C

CJNE Rn ,#data,rel Compare immediate to register and Jump if Rn 
= data
if Not Equal PC = PC + 2

PC ← PC + rel C
CJNE @Ri ,#data,rel Compare immediate to indirect and Jump if (RI ) 
= data

if Not Equal PC = PC + 2
PC ← PC + rel C
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Mnemonic Operation Description Flags

DJNZ Rn ,rel Decrement register and Jump if Not Zero PC = PC + 2
Rn ← Rn − 1
if Rn 
= 0
PC = PC + rel

DJNZ direct,rel Decrement direct byte and Jump if Not Zero PC = PC + 2
direct ← direct −1
if direct 
= 0
PC = PC + rel

Index n may take values in the range [0,7]. Index i may take values in the range [0,1].



A.12 An Example of 8051 Operating with External Bus

Figure A12.1 shows an example of a typical structure of 8051 operating with an
external bus.
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Fig. A12.1. 8051 operating with external bus

The EA\ signal is grounded, which means that the MCU ignores the internal
program memory, if any.
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The waveforms of the signals involved in the process of programming the internal
memory of 8051 are shown in Fig. A13.1.

ADDRESS

DATA

ALE/PROG

EA/VPP

H

L

Programming cycle Read cycle

DATA IN DATA OUT

P2.6, P2.7, P3.6, P3.7 P2.6, P2.7, P3.6, P3.7

VPP

Fig. A13.1. Waveforms for the signals involved in programming 8051 memory

The information in this section concerns those versions of 8051 microcontrollers
that have internal EPROM or flash memory. Both EPROM (87C51) and flash (89C51)
versions are programmable following the same principles. Only the value of the
programming voltage Vpp differs. Note that any attempt to program the internal
memory using inappropriate Vpp may cause permanent damage to the chip. See the
specific data sheets for the exact requirements for Vpp.

Table A13.1 presents the status of the control signals for each particular operation.
Besides these signals, during any program/verify operations, RST must be HIGH and
PSEN\ must be LOW.

Table A13.1. Status of the control signals for program/read memory operations

Mode MCU Pins

ALE/PROG EA/VPP P2.6 P2.7 P3.6 P3.7
READ MEMORY H H L L H H
WRITE MEMORY H-L-H VPP L H H H
READ SIGNATURE H H L L L L
ERASE MEMORY∗1 H-L-H∗2 VPP H L L L
WRITE LOCK BIT1 H-L-H VPP H H H H
WRITE LOCK BIT2 H-L-H VPP H H L L
WRITE LOCK BIT3 H-L-H VPP H L H L

Legend:
∗1 – Only applicable for flash versions (89xxx series).
∗2 – Chip erase operations require 10 ms PROG pulse. H-L-H indicates a neagative pulse of

100 s, except the ERASE MEMORY operation, where this pulse must be 10 ms wide.
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The signature bytes are two to four data bytes, read from addresses specific for
each device. For example, AT89C51 reports three signature bytes, read from the
addresses 30h, 31h, 32h. The first signature byte indicates the manufacturer (1Eh for
Atmel Corporation), the second byte identifies the device (51h for AT89C51), and
the third signature byte indicates the value of the programming voltage Vpp (FFh for
12 V, 05h for 5 V).

The lock bits are non-volatile control bits, accessible only in programming mode,
similar to those described in Appendix A9 for AVR microcontrollers. The effect of
programming the lock bits of AT89C51 is described in Table A13.2.

Table A13.2. The effect of the lock bits for AT89C51

Lock bits status Protection type

LB1 LB2 LB3
U U U No program lock features
P U U The EA line is sampled and latched on reset, and further

programming of the Flash is disabled.
MOVC instructions executed from external program
memory are disabled.

P P U Same as above, but verify operations are also disabled
P P P Same as above, but program execution from external

memory is also disabled.

Legend
U – Unprogrammed bit (1)
P – Programmed bit (0)

See the accompanying CD for details on how to build a programmer for 8051
microcontrollers.



A.14 SPI Seven-Segment Display Units

This section presents schematics and suggestions on how to use two types of seven-
segment display units, both designed to be connected to the SPI interface of a micro-
controller.

The first implementation, presented in Fig. A14.1, is multiplexed, i. e. at a certain
time moment only one digit is displayed. The software must refresh the data perma-
nently, by switching the active digit fast enough so that the human eye integrates the
successive images into a single, complete perception.

The SPI interface of the MCU is brought to the connector SV1. An additional
connector SV2 has been provided so that the ISP interface can be used without the
need to remove the display unit.
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Fig. A14.1. Schematic of a multiplexed seven-segment display

Data from the SPI is received in the shift register 4094 (IC1) and must be prepared
by the software as follows:

• The least significant four bits of each byte contain the BCD value of the digit to
be displayed.

• The next three bits contain the address of the active digit.
• The most significant bit, if set to 1, activates the decimal point of the corresponding

display digit.

4094 receives the serial data sent by the MCU through the MOSI line and shifts it into
the internal shift register with the clock SCK. When the serial transfer completes, the
software must generate a positive pulse on the LD line so that the data received this
way is presented on the output lines Q1–Q8. The SPI must be programmed to send
data with the most significant bit first.
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IC3
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D4

IC4

D3D2
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Fig. A14.2. PCB layout for the circuit presented in Fig. 14.1

BCD data is directly applied to the input of the 7447 decoder IC2, while the digit
address is decoded by the 74138 circuit IC3 and activates one of the four common
anodes of the display, by means of the inverting driver UDN2585 (IC4). The transistor
T1 activates the decimal point of the active digit if the most significant bit of the byte
in IC1 is set to 1.

Figure A14.2 shows the component layout of the PCB for this display unit.
Another approach for displaying four seven-segment digits with a SPI display is

presented in Fig. A14.3.
This time, two data bytes are received in two 4094 registers. The contents of the

4094 registers are interpreted as four BCD digits and applied to 4×7447 circuits,
which directly drive the display units.
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Fig. A14.3. Non-multiplexed seven-segment display unit
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IC5 RN3

IC1

C1
RN1 RN2

RN4 IC6

IC4IC3IC2

SV1
SV2

D1 D2 D3 D4

Fig. A14.4. PCB layout for the circuit presented in Fig. A14.3

Note that in this case the two 4094 registers are concatenated, which means that
the software must send two bytes of data over the SPI interface. The two bytes must
contain four BCD digits (the least significant digit is sent first), followed by a single
pulse on LD, which is common for both registers.

This display unit maintains the data indefinitely and there is no need to refresh
the information displayed.

The non-multiplexed display requires simpler software, but, for a larger number
of digits, the cost of the hardware is higher. Besides that, this solution has the
disadvantage that it cannot dynamically change by software the position of the decimal
point.

T he PCB layout for this circuit is shown in Fig. A14.4. For all the projects
that require a display unit, use the cable described in Fig. A14.5 between the
development board and the display, regardless of the type of display (multiplexed
or non-multiplexed) used.

1 2

9 10

1 2

9 10

Fig. A14.5. Layout of the cable for connecting the display unit



A.15 Description of the Software Utility ASMEDIT

Some users, familiar with the Windows™ environment, might find it difficult to
work with MS-DOS™ type applications, which must be invoked from the command
line in a DOS window. Since most freeware assemblers available, including those
recommended in this book for HC11 and 8051, are DOS applications, we wrote
a small utility program called ASMEDIT.EXE with the following features:

• It contains a simple built-in text editor, which allows the user to create assembler
source files, save them to disk, or open existing files for editing.

• The user can choose an assembler, define command line options and switches, if
required, then invoke the assembler and run it on the selected source file. When
the assembly process completes, ASMEDIT brings the list file generated by the
assembler in the main window for viewing.

• ASMEDIT also contains a built-in terminal program capable of using one of the
computer’s COM ports to communicate with the development boards described
in this book through the RS232 interface.

The main window presented by ASMEDIT when launched is shown in Fig. A15.1.
The following pull-down menus are available:

Fig. A15.1. Snapshot of the main window of ASMEDIT

File. This menu presents options for Open, Save, Save as, and Create New source
file. If you select the option Open file, ASMEDIT filters only files with the extensions
.ASM and .A51.

View. This menu allows the user to select the active window between the source
file and the list file. It is also possible to adjust the font size.

Assembler. This pull down menu has only two menu options: Assemble, which
runs the assembler for the selected source file, and Select assembler. The dialog
window presented in this case is shown in Fig. A15.2. Select the desired executable
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file by clicking the Browse button, then fill in the command line options, and switches,
according to the syntax required by the assembler. Make sure that the assembler is
set to generate a list file. For example, the case of the assembler ASHC11 by Peter
Gargano, referred in Chap. 9, requires the switch ––LIST to generate the list file.

Terminal. This pull-down menu displays a list of options concerning the built-
in terminal of ASMEDIT. The user can select the communication port (default is
COM2), set the communication speed and clear the terminal window. In addition to
this, the terminal menu contains two options that are useful when using the 8051
development board described in Chap. 11. If the option Send is activated, ASMEDIT
looks in the folder where the active source file is located for a file with the same name
and the extension .HEX, loads the file and sends it to the development board. The
option Send&Go automatically launches a G<aaaa> command to the board, when
download completes, where <aaaa> is the starting address of the program, extracted
from the HEX file.

Fig. A15.2. Snapshot of the menu option Select Assembler

The output files generated by the assembler are placed in the same folder as the
specified source file. If the source file uses the INCLUDE directive, the include
files must be present in the same folder, or the full path where they are located
must be indicated in the source file, e. g.

INCLUDE C:\ASHC11\INCLUDE\68HC11F1.DEF



B.1 Contents of the Accompanying CD

The main purpose of the accompanying CD is to allow the reader to save the time
needed for typing the many software examples and exercises presented in the book.
In addition to this, the fact that a freeware version of the Eagle layout editor is
available for download at the CadSoft web site encouraged us to include on the CD
the schematics and the PCB design for all the projects presented.

On several occasions, testing the projects in the book required special software
utilities, which are also included on the CD.

The CD follows the structure of the book, each chapter in the book has a corre-
sponding folder on the CD, and the subfolders Examples, Exercises, Schematics, and
Utils. See Fig. B1.1 for an image of how the CD is organized.

To assemble and test the examples, copy the source files (.ASM) from the CD into
the working directory for the selected microcontroller, e. g. C:\ASHC11\WORKor
C:\ASM51\WORK, remove the read-only attributes so that they can be edited, then
run the appropriate assembler.

If the Eagle layout editor is installed, the schematic files (.SCH) and the PCB
design files (.BRD) can be opened simply by clicking on the file name. In case you
choose not to install Eagle, the CD also contains a high-resolution bitmap version of
the schematics presented in the book.

The software utilities included on the CD are described in the book. They do
not require any installation procedure; just copy the files into a folder on your hard

Fig. B1.1. Structure of the accompanying CD
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drive and click on the program’s name to run it. All the utilities included need
VB40032.DLL. This file is not included. If you don’t have it already, try a search
on Google with this keyword to locate and download it, then copy it into your
WINDOWS\SYSTEMdirectory.

All the software included or recommended in this book has been tested on several
computers under Windows98™ and Windows XP™. We don’t know whether or not
it works on other operating systems.



B.2 Recommended Readings and Web References

The information in this book is not intended to replace the data sheets for the mi-
crocontrollers presented herein. It is strongly recommended that you consult the data
sheets and the application notes referred to in the book, and to download and install
the software applications and utilities referred to for each microcontroller discussed,
in order to be able to test the software examples presented.

Below is a list of the internet web sites that offer technical documentation and
software for the study of the microcontrollers discussed in this book.

The best source for documentation about Motorola 68HC11 microcontrollers is
the official web site of the manufacturer at www.freescale.com. For in-depth under-
standing of the information in this book, download and consult the data sheets for
68HC11E9, 68HC11F1 and the application note AN1060 that contains information
about the special bootstrap operating mode.

The freeware assembler recommended for HC11 can be downloaded from
http://www.techedge.com.au/utils/ashc11.htm . It is called ASHC11 and was cre-
ated by Peter Gargano.

For other HC11 related internet resources, visit the web page of Roger Schaefer,
at http://www.ezl.com/~rsch/.

Atmel Corporation has an excellent web site at www.atmel.com, offering tech-
nical data and software applications to support their products. Download the data
sheets for the AVR microcontrollers AT90S8515/8535, and the software applications
AVRStudio, and AVR ISP.

Also visit www.avrfreaks.com for further information about AVR microcon-
trollers.

Good-quality 8051 documentation can be found on the Atmel web site that offers
information about their series of microcontrollers with the 8051 architecture.

The freeware 8051 assembler referred to in Chap. 11 can be found at http://plit.de/
asem-51/ and was created by W. Heinz.

Technical information about all types of memory devices is available at www.atmel
.com. For other peripheral devices such as A/D and D/A converters visit www.maxim-
ic.com.

All the schematics and printed circuit boards presented in this book were drawn
with the CAD software Eagle™ layout editor, from CadSoft. A freeware version of
this software is available for download at www.cadsoft.de. The CD accompanying
this book contains the schematics and the PCB design for all the projects described
in the book, therefore it is important to download and install the Eagle layout editor
in order to be able to edit the existing projects, and use them as starting points for
new projects.
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