

PRINCIPLES OF MODERN
DIGITAL DESIGN

Parag K. Lala
Cary and Lois Patterson Chair of Electrical Engineering Texas

A&M University–Texarkana

Innodata
File Attachment
9780470125205.jpg

PRINCIPLES OF MODERN
DIGITAL DESIGN

PRINCIPLES OF MODERN
DIGITAL DESIGN

Parag K. Lala
Cary and Lois Patterson Chair of Electrical Engineering Texas

A&M University–Texarkana

Copyright # 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted

under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written

permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the

Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)

750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be

addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of merchantability

or fitness for a particular purpose. No warranty may be created or extended by sales representatives or

written sales materials. The advice and strategies contained herein may not be suitable for your situation.

You should consult with a professional where appropriate. Neither the publisher nor author shall be liable

for any loss of profit or any other commercial damages, including but not limited to special, incidental,

consequential, or other damages.

For general information on our other products and services or for technical support, please contact our

Customer Care Department within the United States at (800) 762-2974, outside the United States at

(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Lala, Parag K., 1948–

Principles of modern digital design / by Parag K. Lala.

p. cm.

Includes index.

ISBN 978-0-470-07296-7 (cloth/cd)

1. Logic design. 2. Logic circuits—Design and construction. 3. Digital electronics. I. Title

TK7868. L6L3486 2007

621.3905--dc22 2006032483

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To Mrs. Mithilesh Tiwari and Miss Shakuntala Tiwari for their love

“Full many a gem of purest ray serene,

The dark unfathomed caves of ocean bear:

Full many a flower is born to blush unseen,

And waste its sweetness on the desert air.”

Thomas Gray

CONTENTS

Preface xiii

1 Number Systems and Binary Codes 1

1.1 Introduction 1

1.2 Decimal Numbers 1

1.3 Binary Numbers 2

1.3.1 Basic Binary Arithmetic 5

1.4 Octal Numbers 8

1.5 Hexadecimal Numbers 11

1.6 Signed Numbers 13

1.6.1 Diminished Radix Complement 14

1.6.2 Radix Complement 16

1.7 Floating-Point Numbers 19

1.8 Binary Encoding 20

1.8.1 Weighted Codes 20

1.8.2 Nonweighted Codes 22

Exercises 25

2 Fundamental Concepts of Digital Logic 29

2.1 Introduction 29

2.2 Sets 29

2.3 Relations 32

2.4 Partitions 34

2.5 Graphs 35

2.6 Boolean Algebra 37

2.7 Boolean Functions 41

2.8 Derivation and Classification of Boolean Functions 43

2.9 Canonical Forms of Boolean Functions 45

2.10 Logic Gates 48

Exercises 53

vii

3 Combinational Logic Design 59

3.1 Introduction 59

3.2 Minimization of Boolean Expressions 60

3.3 Karnaugh Maps 63

3.3.1 Don’t Care Conditions 68

3.3.2 The Complementary Approach 70

3.4 Quine–MCCluskey Method 73

3.4.1 Simplification of Boolean Function with Don’t Cares 78

3.5 Cubical Representation of Boolean Functions 79

3.5.1 Tautology 82

3.5.2 Complementation Using Shannon’s Expansion 84

3.6 Heuristic Minimization of Logic Circuits 85

3.6.1 Expand 85

3.6.2 Reduce 88

3.6.3 Irredundant 90

3.6.4 Espresso 92

3.7 Minimization of Multiple-Output Functions 95

3.8 NAND–NAND and NOR–NOR Logic 98

3.8.1 NAND–NAND Logic 98

3.8.2 NOR–NOR Logic 101

3.9 Multilevel Logic Design 102

3.9.1 Algebraic and Boolean Division 105

3.9.2 Kernels 106

3.10 Minimization of Multilevel Circuits Using Don’t Cares 109

3.10.1 Satisfiability Don’t Cares 110

3.10.2 Observability Don’t Cares 112

3.11 Combinational Logic Implementation Using EX-OR and AND Gates 114

3.12 Logic Circuit Design Using Multiplexers and Decoders 117

3.12.1 Multiplexers 117

3.12.2 Demultiplexers and Decoders 123

3.13 Arithmetic Circuits 125

3.13.1 Half-Adders 125

3.13.2 Full Adders 126

3.13.3 Carry-Lookahead Adders 129

3.13.4 Carry-Select Adder 130

3.13.5 Carry-Save Addition 130

3.13.6 BCD Adders 132

3.13.7 Half-Subtractors 133

3.13.8 Full Subtractors 135

3.13.9 Two’s Complement Subtractors 135

3.13.10 BCD Substractors 137

viii CONTENTS

3.13.11 Multiplication 138

3.13.12 Comparator 140

3.14 Combinational Circuit Design Using PLDs 141

3.14.1 PROM 142

3.14.2 PLA 144

3.14.3 PAL 146

Exercises 150

References 155

4 Fundamentals of Synchronous Sequential Circuits 157

4.1 Introduction 157

4.2 Synchronous and Asynchronous Operation 158

4.3 Latches 159

4.4 Flip-Flops 162

4.4.1 D Flip-Flop 163

4.4.2 JK Flip-Flop 165

4.4.3 T Flip-Flop 167

4.5 Timing in Synchronous Sequential Circuits 168

4.6 State Tables and State Diagrams 170

4.7 Mealy and Moore Models 172

4.8 Analysis of Synchronous Sequential Circuits 175

Exercises 177

References 180

5 VHDL in Digital Design 181

5.1 Introduction 181

5.2 Entity and Architecture 182

5.2.1 Entity 182

5.2.2 Architecture 184

5.3 Lexical Elements in VHDL 185

5.4 Data Types 187

5.5 Operators 189

5.6 Concurrent and Sequential Statements 192

5.7 Architecture Description 194

5.8 Structural Description 196

5.9 Behavioral Description 199

5.10 RTL Description 200

Exercises 202

CONTENTS ix

6 Combinational Logic Design Using VHDL 205

6.1 Introduction 205

6.2 Concurrent Assignment Statements 206

6.2.1 Direct Signal Assignment 206

6.2.2 Conditional Signal Assignment 207

6.2.3 Selected Conditional Signal Assignment 211

6.3 Sequential Assignment Statements 214

6.3.1 Process 214

6.3.2 If–Then Statement 216

6.3.3 Case Statement 220

6.3.4 If Versus Case Statements 223

6.4 Loops 225

6.4.1 For Loop 225

6.4.2 While Loop 229

6.5 For–Generate statement 230

Exercises 233

7 Synchronous Sequential Circuit Design 235

7.1 Introduction 235

7.2 Problem Specification 236

7.3 State Minimization 239

7.3.1 Partitioning Approach 239

7.3.2 Implication Table 242

7.4 Minimization of Incompletely Specified Sequential Circuits 244

7.5 Derivation of Flip-Flop Next State Expressions 249

7.6 State Assignment 257

7.6.1 State Assignment Based on Decomposition 261

7.6.2 Fan-out and Fan-in Oriented State Assignment Techniques 265

7.6.3 State Assignment Based on 1-Hot Code 271

7.6.4 State Assignment Using m-out-of-n Code 271

7.7 Sequential PAL Devices 273

Exercises 286

References 290

8 Counter Design 291

8.1 Introduction 291

8.2 Ripple (Asynchronous) Counters 291

8.3 Asynchronous Up–Down Counters 294

8.4 Synchronous Counters 295

8.5 Gray Code Counters 300

8.6 Shift Register Counters 302

x CONTENTS

8.7 Ring Counters 307

8.8 Johnson Counters 310

Exercises 313

References 313

9 Sequential Circuit Design Using VHDL 315

9.1 Introduction 315

9.2 D Latch 315

9.3 Flip-Flops and Registers 316

9.3.1 D Flip-Flop 316

9.3.2 T and JK Flip-Flops 318

9.3.3 Synchronous and Asynchronous Reset 320

9.3.4 Synchronous and Asynchronous Preset 322

9.3.5 Registers 322

9.4 Shift Registers 324

9.4.1 Bidirectional Shift Register 326

9.4.2 Universal Shift Register 327

9.4.3 Barrel Shifter 327

9.4.4 Linear Feedback Shift Registers 329

9.5 Counters 332

9.5.1 Decade Counter 334

9.5.2 Gray Code Counter 335

9.5.3 Ring Counter 336

9.5.4 Johnson Counter 337

9.6 State Machines 338

9.6.1 Moore-Type State Machines 338

9.6.2 Mealy-Type State Machines 341

9.6.3 VHDL Codes for State Machines Using Enumerated Types 342

9.6.4 Mealy Machine in VHDL 345

9.6.5 User-Defined State Encoding 351

9.6.6 1-Hot Encoding 355

9.7 Case Studies 356

Exercises 368

References 371

10 Asynchronous Sequential Circuits 373

10.1 Introduction 373

10.2 Flow Table 374

10.3 Reduction of Primitive Flow Tables 377

10.4 State Assignment 379

CONTENTS xi

10.4.1 Races and Cycles 379

10.4.2 Critical Race-Free State Assignment 381

10.5 Excitation and Output Functions 387

10.6 Hazards 390

10.6.1 Function Hazards 391

10.6.2 Logic Hazards 393

10.6.3 Essential Hazards 396

Exercises 398

References 401

Appendix: CMOS Logic 403

A.1 Transmission Gates 405

A.2 Clocked CMOS Circuits 407

A.3 CMOS Domino Logic 408

Index 411

xii CONTENTS

PREFACE

This book covers allmajor topics needed in amodern digital design course. A number of good

textbooks in digital design are currently available. Some of these introduceVHDLbefore stu-

dents get a good grasp of the fundamentals of digital design. VHDL is a language that is used

to describe the function of digital circuits/systems. In the author’s opinion, students benefit

more from VHDL only when they can appreciate the advantages of using it in digital

design. In this book, VHDL is introduced only after a thorough coverage of combinational

circuit design and a discussion of the fundamental concepts of sequential circuits.

The complexity of modern digital systems is such that they have to be designed using

computer-aided design (CAD) synthesis and minimization tools. The techniques used in

some of the CAD tools, for example computer-aided minimization, multilevel logic

design, and state assignment are inadequately covered or not covered at all in current

undergraduate text books. In this book, the basic concepts of some of these important tech-

niques are introduced in appropriate chapters. The material has been discussed in a tutorial

form, although the nature of certain topics makes an abstract discussion unavoidable. The

objective is not to achieve understanding at the expense of avoiding necessary theory, but

to clarify the theory with illustrative examples in order to establish the theoretical basis for

practical implementations.

The book is subdivided into ten chapters.

Chapter 1 provides coverage of number representations and considers various number

formats. It also discusses binary arithmetic operations such as addition, subtraction,

multiplication, and division.

Chapter 2 provides a comprehensive coverage of a miscellany of basic topics in discrete

mathematics required for understanding material presented in later chapters. Also, the

operations of various gates used to construct logic circuits are discussed.

Chapter 3 provides an in-depth coverage of combinational logic circuit analysis, mini-

mization, and design techniques. The representation of Boolean functions using cubes is

explained and the concept of tautology is discussed. The principles of heuristic minimiz-

ation, different types of don’t cares and multilevel logic synthesis is explained with

many examples. A detailed coverage of all types of arithmetic circuits including BCD

addition/subtraction algorithms and carry-save addition techniques is provided. Multipli-

cation and division are thoroughly discussed. Combinational logic implementation using

Programmable Logic Devices (PLDs) is also covered.

Chapter 4 presents the basic concepts of sequential circuits. The operation of memory

elements is analyzed. The use of state diagrams and state tables to represent the behavior

of sequential circuits is discussed. Also, the distinction between synchronous and asyn-

chronous operation of sequential circuits is clarified.

It is quite routine in the electronics industry to use a hardware description language such

as VHDL to describe the function of digital circuits. Chapter 5 introduces the language in

sufficient detail so that readers can write VHDL code for representing digital circuits.

xiii

Several examples are given to clarify different ways of representing digital circuit using

VHDL. This chapter is not meant to be an exhaustive guide toVHDL; a number of excellent

books that deal exclusively with VHDL have been published in recent years.

Chapter 6 builds on the previous chapter and focuses on VHDL code for computer-

aided synthesis of combinational logic circuits. Certain features of the VHDL that result

in more efficient code for combinational logic circuits are presented. All these are illus-

trated with complete VHDL codes that have been compiled and synthesized using

Altera Corporation’s Quartus II software package.

Chapter 7 provides a clear picture of how sequential circuits are designed using funda-

mental building blocks (e.g., latches and flip-flops) rather than presenting a rigorous math-

ematical structure of such circuits. Algorithms that are used in some of the currently

popular computer-aided state assignment techniques are discussed. A good coverage of

partition algebra for deriving state assignment has been included. A detailed discussion

of sequential circuit implementation using PLDs is also presented.

Chapter 8 provides comprehensive coverage of counters. Counters are important in

many digital applications. Several design examples and illustrations are provided to

clarify the design of various types of counters.

Chapter 9 presents VHDL coding of sequential circuits. The coding style for sequential

circuits is different from that of combinational circuits. Combinational circuits are usually

coded using concurrent VHDL statements whereas sequential circuits use mainly sequen-

tial VHDL statements. Many examples of VHDL coding of sequential circuits are

included; these codes have been compiled and synthesized using Quartus II.

Chapter 10 covers design principles for traditional fundamental mode non-synchronous

sequential circuits. The concepts of race and hazard are clarified with examples, and state

assignment techniques to avoid these are also discussed.

All modern digital systems are implemented using CMOS technology. A short intro-

duction to CMOS logic is provided in Appendix A.

A Quartus II CD ROM from Altera Corporation is included in the book. All the

examples in the book have been compiled and synthesized using this state-of-the-art

and user-friendly software package.

This book is primarily intended as a college text for a two-semester course in logic design

for students in electrical/computer engineering and computer science degree programs,

or in electrical/computer technology. It does not require any previous knowledge of

electronics; only some general mathematical ability is assumed.

In the first (introductory) course the following sequence of chapters may be covered:

Chapter 1, Chapter 2, Chapter 3 (3.1 to 3.4, 3.8, 3.12 to 3.14), Chapter 4, Chapter 7

(Sections 7.1–7.5), Chapter 8.

In the second (more advanced) course the suggested sequence of chapters is: Chapter 3

(Sections 3.5 to 3.7, 3.9 to 3.11), Chapter 5, Chapter 6, Chapter 7 (Section 7.6), Chapter 9

and Chapter 10.

Although the book is meant to be used for a two-semester course sequence, certain

sections can be omitted to fit the material in a typical one-semester course. Individual

instructors may select chapters at their discretion to suit the needs of a particular digital

design course they are teaching.

This book should also be extremely useful for practicing engineers who took logic

design courses five or more years ago, to update their knowledge. Electrical engineers

who are not logic designers by training but wish to become one, can use this book for

self-study.

xiv PREFACE

I am grateful to Dr. Karen Panetta of the Department of Electrical and Computer Engin-

eering, Tufts University for her constructive review and suggestions, and for permitting

me to use problems from her laboratory curriculum in VHDL.

I would also like to thank my former students in several universities who took digital

design courses I taught over the years. I made references to class projects of some of them

in appropriate sections of the book.

I am greatly indebted to my wife, Meena, for her patience. She has been a constant

source of support throughout the writing of the book. Finally I would like to thank my

children Nupur and Kunal for their quiet encouragement and for being who they are.

PARAG K. LALA

PREFACE xv

1 Number Systems and Binary Codes

1.1 INTRODUCTION

In conventional arithmetic, a number system based on ten units (0 to 9) is used. However,

arithmetic and logic circuits used in computers and other digital systems operate with only

0’s and 1’s because it is very difficult to design circuits that require ten distinct states. The

number system with the basic symbols 0 and 1 is called binary. Although digital systems

use binary numbers for their internal operations, communication with the external world

has to be done in decimal systems. In order to simplify the communication, every decimal

number may be represented by a unique sequence of binary digits; this is known as binary

encoding. In this chapter we discuss number systems in general and the binary system in

particular. In addition, we consider the octal and hexadecimal number systems and fixed-

and floating-point representation of numbers. The chapter ends with a discussion on

weighted and nonweighted binary encoding of decimal digits.

1.2 DECIMAL NUMBERS

The invention of decimal number systems has been the most important factor in the devel-

opment of science and technology. The term decimal comes from the Latin word for “ten.”

The decimal number system uses positional number representation, which means that the

value of each digit is determined by its position in a number.

The base (also called radix) of a number system is the number of symbols that the

system contains. The decimal system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; in

other words it has a base of 10. Each position in the decimal system is 10 times more

significant than the previous position. For example, consider the four-digit number 2725:

Notice that the 2 in the 103 position has a different value than the 2 in the 101 position. The

value of a decimal number is determined by multiplying each digit of the number by the

1

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

value of the position in which the digit appears and then adding the products. Thus the

number 2725 is interpreted as

2� 1000þ 7� 100þ 2� 10þ 5� 1 ¼ 2000þ 700þ 20þ 5

that is, two thousand seven hundred twenty-five. In this case, 5 is the least significant digit

(LSD) and the leftmost 2 is the most significant digit (MSD).

In general, in a number system with a base or radix r, the digits used are from 0 to r2 1.

The number can be represented as

N ¼ anr
n þ an�1r

n�1 þ � � � þ a1r
1 þ a0r

0 (1:1)

where, for n ¼ 0, 1, 2, 3, . . . ,

r ¼ base or radix of the number system

a ¼ number of digits having values between 0 and r � 1

Thus, for the number 2725, a3 ¼ 2, a2 ¼ 7, a1 ¼ 2, and a0 ¼ 5. Equation (1.1) is valid

for all integers. For numbers between 0 and 1 (i.e., fractions), the following equation holds:

N ¼ a�1r
�1 þ a�2r

�2 þ � � � þ a�nþ1r
�nþ1 þ a�nr

�n (1:2)

Thus for the decimal fraction 0.8125,

N ¼ 0:8000þ 0:0100þ 0:0020þ 0:0005

¼ 8� 10�1 þ 2� 10�2 þ 1� 10�3 þ 8� 10�4

¼ a�1 � 10�1 þ a�2 � 10�2 þ a�3 � 10�3 þ a�4 � 10�4

where

a�1 ¼ 8

a�2 ¼ 1

a�3 ¼ 2

a�1 ¼ 5

1.3 BINARY NUMBERS

The binary numbers has a radix of 2. As r ¼ 2, only two digits are needed, and these are 0

and 1. A binary digit, 0 or 1, is called a bit. Like the decimal system, binary is a positional

system, except that each bit position corresponds to a power of 2 instead of a power of 10.

In digital systems, the binary number system and other number systems closely related to it

are used almost exclusively. However, people are accustomed to using the decimal number

system; hence digital systems must often provide conversion between decimal and binary

numbers. The decimal value of a binary number can be formed by multiplying each power

of 2 by either 1 or 0, and adding the values together.

2 NUMBER SYSTEMS AND BINARY CODES

Example 1.1 Let us find the decimal equivalent of the binary number 101010.

N ¼ 101010

¼ 1� 25 þ 0� 24 þ 1� 23 þ 0� 22 þ 1� 21 þ 0� 20 (using Eq: (1:1))

¼ 32þ 0þ 8þ 0þ 2þ 0

¼ 42

An alternative method of converting from binary to decimal begins with the leftmost bit

and works down to the rightmost bit. It starts with a sum of 0. At each step the current

sum is multiplied by 2, and the next digit to the right is added to it.

Example 1.2 The conversion of 11010101 to decimal would use the following steps:

The reverse process, the conversion of decimal to binary, may be made by first decom-

posing the given decimal number into two numbers—one corresponding to the positional

value just lower than the original decimal number and a remainder. Then the remainder is

decomposed into two numbers: a positional value just equal to or lower than itself and a

new remainder. The process is repeated until the remainder is 0. The binary number is

derived by recording 1 in the positions corresponding to the numbers whose summation

equals the decimal value.

Example 1.3 Let us consider the conversion of decimal number 426 to binary:

426 ¼ 256þ 170

¼ 256þ 128þ 42

¼ 256þ 128þ 32þ 10

¼ 256þ 128þ 32þ 8þ 2

28 27 25 23 21

Thus 42610 ¼ 1101010102 (the subscript indicates the value of the radix).

1.3 BINARY NUMBERS 3

An alternative method for converting a decimal number to binary is based on successive

division of the decimal number by the radix number 2. The remainders of the divisions,

when written in reverse order (with the first remainder on the right), yield the binary equiv-

alent to the decimal number. The process is illustrated below by converting 35310 to

binary,

353

2
¼ 176, remainder 1

176

2
¼ 88, remainder 0

88

2
¼ 44, remainder 0

44

2
¼ 22, remainder 0

22

2
¼ 11, remainder 0

11

2
¼ 5, remainder 1

5

2
¼ 2, remainder 1

2

2
¼ 1, remainder 0

1

2
¼ 0, remainder 1

Thus 35310 ¼ 1011000012.

So far we have only considered whole numbers. Fractional numbers may be converted

in a similar manner.

Example 1.4 Let us convert the fractional binary number 0.101011 to decimal. Using

Eq. (1.2), we find

N ¼ 0:101011

¼ 1� 2�1 þ 0� 2�2 þ 1� 2�3 þ 0� 2�4 þ 1� 2�5 þ 1� 2�6

where a21 ¼ 1, a22 ¼ 0, a23 ¼ 1, a24 ¼ 0, a25 ¼ 1, a26 ¼ 1.

Thus

N ¼ 0:101011

¼ 1

2
þ 1

8
þ 1

32
þ 1

64
¼ 0:671875

A decimal fraction can be converted to binary by successively multiplying it by 2; the

integral (whole number) part of each product, 0 or 1, is retained as the binary fraction.

4 NUMBER SYSTEMS AND BINARY CODES

Example 1.5 Derive the binary equivalent of the decimal fraction 0.203125. Successive

multiplication of the fraction by 2 results in

0:203125

a�1 ¼ 0

2

0:406250

a�2 ¼ 0

2

0:812500

a�3 ¼ 1

2

0:625000

a�4 ¼ 1

2

0:250000

a�5 ¼ 0

2

0:500000

a�6 ¼ 1

2

0:000000

Thus the binary equivalent of 0.20312510 is 0.0011012. The multiplication by 2 is con-

tinued until the decimal number is exhausted (as in the example) or the desired accuracy

is achieved. Accuracy suffers considerably if the conversion process is stopped too

soon. For example, if we stop after the fourth step, then we are assuming 0.0011 is

approximately equal to 0.20315, whereas it is actually equal to 0.1875, an error of

about 7.7%.

1.3.1 Basic Binary Arithmetic

Arithmetic operations using binary numbers are far simpler than the corresponding

operations using decimal numbers due to the very elementary rules of addition and

multiplication. The rules of binary addition are

0þ 0 ¼ 0

0þ 1 ¼ 1

1þ 0 ¼ 1

1þ 1 ¼ 0 (carry 1)

As in decimal addition, the least significant bits of the addend and the augend are added

first. The result is the sum, possibly including a carry. The carry bit is added to the sum

of the digits of the next column. The process continues until the bits of the most significant

column are summed.

Example 1.6 Let us consider the addition of the decimal numbers 27 and 28 in binary.

Decimal Binary

27 11011 Addend

þ 28 þ 11100 Augend

55 110111 Sum

11000 Carry

1.3 BINARY NUMBERS 5

To verify that the sum is correct, we convert 110111 to decimal:

1� 25 þ 1� 24 þ 0� 23 þ 1� 22 þ 1� 21 þ 1� 20

¼ 32þ 16þ 0þ 4þ 2þ 1

¼ 55

Example 1.7 Let us add �11 to �19 in binary. Since the addend and the augend are

negative, the sum will be negative.

Decimal Binary

19 10011

11 01011

30 11110 Sum

00011 Carry

In all digital systems, the circuitry used for performing binary addition handles two

numbers at a time. When more than two numbers have to be added, the first two are

added, then the resulting sum is added to the third number, and so on.

Binary subtraction is carried out by following the same method as in the decimal

system. Each digit in the subtrahend is deducted from the corresponding digit in the

minuend to obtain the difference. When the minuend digit is less than the subtrahend

digit, then the radix number (i.e., 2) is added to the minuend, and a borrow 1 is added

to the next subtrahend digit. The rules applied to the binary subtraction are

0� 0 ¼ 0

0� 1 ¼ 1 (borrow 1)

1� 0 ¼ 1

1� 1 ¼ 0

Example 1.8 Let us consider the subtraction of 2110 from 2710 in binary:

Decimal Binary

27 11011 Minuend

� 21 � 10101 Subtrahend

6 00110 Difference

00100 Borrow

It can easily be verified that the difference 001102 corresponds to decimal 6.

Example 1.9 Let us subtract 2210 from 1710. In this case, the subtrahend is greater than

the minuend. Therefore the result will be negative.

Decimal Binary

17 10001

� 22 � 10110

� 5 � 00101 Difference

00001 Borrow

6 NUMBER SYSTEMS AND BINARY CODES

Binary multiplication is performed in the same way as decimal multiplication, by mul-

tiplying, then shifting one place to the left, and finally adding the partial products. Since

the multiplier can only be 0 or 1, the partial product is either zero or equal to the multi-

plicand. The rules of multiplication are

0 · 0 ¼ 0

0 · 1 ¼ 0

1 · 0 ¼ 0

1 · 1 ¼ 1

Example 1.10 Let us consider the multiplication of the decimal numbers 67 by 13 in

binary:

Decimal Binary

67 1000011 Multiplicand

� 13 1101 Multiplier

871 1000011 First partial product

0000000 Second partial product

1000011 Third partial product

1000011 Fourth partial product

1101100111 Final product

Example 1.11 Let us multiply 13.5 by 3.25.

Decimal Binary

13:5 1101:10 Multiplicand

� 3:25 11:01 Multiplier

43:875 110110 First partial product

000000 Second partial product

110110 Third partial product

110110 Fourth partial product

101011:1110 Final product

The decimal equivalent of the final product is 43þ 0.50þ 0.25þ 0.125 ¼ 43.875.

The process of binary division is very similar to standard decimal division. However,

division is simpler in binary because when one checks to see how many times the divisor

fits into the dividend, there are only two possibilities, 0 or 1.

Example 1.12 Let us consider the division of 101110 (4610) by 111 (710)

0001 Quotient

Divisor 111 j 101110 Dividend

0111

100

Since the divisor, 111, is greater than the first three bits of the dividend, the first three

quotient bits are 0. The divisor is less than the first four bits of the dividend; therefore

1.3 BINARY NUMBERS 7

the division is possible, and the fourth quotient bit is 1. The difference is less than the

divisor, so we bring down the net bit of the dividend:

00011

111 j 101110
0111

1001

111

10

The difference is less than the divisor, so the next bit of the dividend is brought down:

000110

111 j 101110
0111

1001

111

100 Remainder

In this case the dividend is less than the divisor; hence the next quotient bit is 0 and the

division is complete. The decimal conversion yields 46/7 ¼ 6 with remainder 4, which

is correct.

The methods we discussed to perform addition, subtraction, multiplication, and division

are equivalents of the same operations in decimal. In digital systems, all arithmetic operations

are carried out in modified forms; in fact, they use only addition as their basic operation.

1.4 OCTAL NUMBERS

Digital systems operate only on binary numbers. Since binary numbers are often very long,

two shorthand notations, octal and hexadecimal, are used for representing large binary

numbers. The octal number system uses a base or radix of 8; thus it has digits from 0 to

r2 1, or 82 1, or 7. As in the decimal and binary systems, the positional value of each

digit in a sequence of numbers is definitely fixed. Each position in an octal number is a

power of 8, and each position is 8 times more significant than the previous position.

The number 3758 in the octal system therefore means

3� 82 þ 7� 81 þ 5� 80 ¼ 192þ 56þ 5

¼ 25310

Example 1.13 Let us determine the decimal equivalent of the octal number 14.3.

14:3g ¼ 1� 81 þ 4� 80 þ 3� 8�1

¼ 8þ 4þ 0:375

¼ 12:375

The method for converting a decimal number to an octal number is similar to that used

for converting a decimal number to binary (Section 1.2), except that the decimal number is

successively divided by 8 rather than 2.

8 NUMBER SYSTEMS AND BINARY CODES

Example 1.14 Let us determine the octal equivalent of the decimal number 278.

278

8
¼ 34, remainder 6

34

8
¼ 4, remainder 2

4

8
¼ 0, remainder 4

Thus 27810 ¼ 4268.

Decimal fractions can be converted to octal by progressively multiplying by 8; the inte-

gral part of each product is retained as the octal fraction. For example, 0.65110 is converted

to octal as follows:

0:651
8

5 0:208
8

1 0:664
8

5 0:312
8

2 0:496
8

3 0:968
etc.

According to Eq. (1.2), a21 ¼ 5, a22 ¼ 1, a23 ¼ 5, a24 ¼ 2, and a25 ¼ 3; hence

0.65110 ¼ 0.515238. More octal digits will result in more accuracy.

A useful relationship exists between binary and octal numbers. The number of bits

required to represent an octal digit is three. For example, octal 7 can be represented by

binary 111. Thus, if each octal digit is written as a group of three bits, the octal number

is converted into a binary number.

Example 1.15 The octal number 3248 can be converted to a binary number as follows:

3 2 4

011 010 100

Hence 3248 ¼ 110101002; the most significant 0 is dropped because it is meaningless, just

as 012310 is the same as 12310.

The conversion from binary to octal is also straightforward. The binary number is parti-

tioned into groups of three starting with the least significant digit. Each group of three

binary digits is then replaced by an appropriate decimal digit between 0 and 7 (Table 1.1).

1.4 OCTAL NUMBERS 9

Example 1.16 Let us convert 1100111010012 to octal:

110|{z}
6

011|{z}
3

101|{z}
5

001|{z}
1

The octal representation of the binary number is 63518. If the leftmost group of a

partitioned binary number does not have three digits, it is padded on the left with 0’s.

For example, 1101010 would be divided as

001|{z}
1

101|{z}
5

010|{z}
2

The octal equivalent of the binary number is 1528. In case of a binary fraction, if the bits

cannot be grouped into 3-bit segments, the 0’s are added on the right to complete groups of

three. Thus 110111.1011 can be written

110|{z}
6

111|{z}
7

� 101|{z}
5

100|{z}
4

As shown in the previous section, the binary equivalent of a decimal number can be

obtained by successively dividing the number by 2 and using the remainders as the

answer, the first remainder being the lowest significant bit, and so on. A large number

of divisions by 2 are required to convert from decimal to binary if the decimal number

is large. It is often more convenient to convert from decimal to octal and then replace

each digit in octal in terms of three digits in binary. For example, let us convert 52310
to binary by going through octal.

523

8
¼ 65, remainder 3

65

8
¼ 8, remainder 1

8

8
¼ 1, remainder 0

1

8
¼ 0, remainder 1

TABLE 1.1 Binary to Octal Conversion

Binary Octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

10 NUMBER SYSTEMS AND BINARY CODES

Thus

(523)10 ¼ (1 0 1 3)8

¼ (001 000 001 011)2

It can be verified that the decimal equivalent of 0010000010112 is 52310:

1� 29 þ 1� 23 þ 1� 21 þ 1� 20 ¼ 512þ 8þ 2þ 1

¼ 52310

Addition and subtraction operations using octal numbers are very much similar to that

use in decimal systems. In octal addition, a carry is generated when the sum exceeds

710. For example,

1538

þ 3278

5028

3þ 7 ¼ 1010 ¼ 2þ 1 carry first column

5þ 2þ 1 carry ¼ 0þ 1 carry second column

1þ 3þ 1 carry ¼ 5 third column

In octal subtraction, a borrow requires that 810 be added to the minuend digit and a 110 be

added to the left adjacent subtrahend digit.

6708

� 1258

5438

0� 5 ¼ (8� 5þ 1 borrow)10 ¼ 3þ 1 borrow first column

7� (2þ 1 borrow) ¼ 7� 3 ¼ 4 second column

6� 1 ¼ 5 third column

1.5 HEXADECIMAL NUMBERS

The hexadecimal numbering system has a base 16; that is, there are 16 symbols. The

decimal digits 0 to 9 are used as the first ten digits as in the decimal system, followed

by the letters A, B, C, D, E, and F, which represent the values 10, 11, 12, 13, 14, and

15, respectively. Table 1.2 shows the relationship between decimal, binary, octal, and hex-

adecimal number systems. The conversion of a binary number to a hexadecimal number

consists of partitioning the binary numbers into groups of 4 bits, and representing each

group with its hexadecimal equivalent.

1.5 HEXADECIMAL NUMBERS 11

Example 1.17 The binary number 1010011011110001 is grouped as

1010 0110 1111 0001

which is shown here in hexadecimal:

A6F1H

The conversion from hexadecimal to binary is straightforward. Each hexadecimal digit is

replaced by the corresponding 4-bit equivalent from Table 1.2. For example, the binary

equivalent of 4AC2H is

4 A C 2

0100 1010 1110 0010

Thus 4AC2H ¼ 01001010111000102.

Sometimes it is necessary to convert a hexadecimal number to decimal. Each position

in a hexadecimal number is 16 times more significant than the previous position. Thus the

decimal equivalent for 1A2DH is

1� 163 þ A� 162 þ 2� 161 þ D� 160

¼ 1� 163 þ 10� 162 þ 2� 161 þ 13� 160

¼ 6701

Hexadecimal numbers are often used in describing the data in a computer memory. A com-

puter memory stores a large number of words, each of which is a standard size collection

TABLE 1.2 Number Equivalents

Decimal Binary Octal Hexadecimal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

12 NUMBER SYSTEMS AND BINARY CODES

of bits. An 8-bit word is known as a byte. A hexadecimal digit may be considered as half of

a byte. Two hexadecimal digits constitute one byte, the rightmost 4 bits corresponding to

half a byte, and the leftmost 4 bits corresponding to the other half of the byte. Often a half-

byte is called a nibble.

Hexadecimal addition and subtraction are performed as for any other positional number

system.

Example 1.18 Let us find the sum of 688H and 679H.

688H

679H

D01H

8þ 9 ¼ 1710 ¼ 1þ 1 carry first column

8þ 7þ 1 carry ¼ 1610 ¼ 0þ 1 carry second column

6þ 6þ 1 carry ¼ 1310 ¼ D third column

Hexadecimal subtraction requires the same need to carry digits from left to right as in octal

and decimal.

Example 1.19 Let us compute 2A5H – 11BH as shown:

2A5H

11BH

18AH

5� B ¼ (21� 11þ 1 borrow)10 ¼ 10þ 1 borrow

¼ Aþ 1 borrow first column

A� (1þ 1 borrow) ¼ (10� 2)10 ¼ 8 second column

2� 1 ¼ 1 third column

1.6 SIGNED NUMBERS

So far, the number representations we considered have not carried sign information. Such

unsigned numbers have a magnitude significance only. Normally a prefixþ or 2 may be

placed to the left of the magnitude to indicate whether a number is positive or negative.

This type of representation, known as sign-magnitude representation, is used in the

decimal system. In binary systems, an additional bit known as sign bit, is added to the

left of the most significant bit to define the sign of a number. A 1 is used to represent2 and

a 0 to represent þ. Table 1.3 shown 3-bit numbers in terms of signed and unsigned

equivalents. Notice that there are two representations of the number 0, namely, þ0 and

–0. The range of integers that can be expressed in a group of three bits is from

–(222 1) ¼ 23 to þ(22 – 1) ¼ þ3, with one bit being reserved to denote the sign.

1.6 SIGNED NUMBERS 13

Although the sign-magnitude representation is convenient for computing the negative

of a number, a problem occurs when two numbers of opposite signs have to be added. To

illustrate, let us find the sum of þ210 and 2610.

þ210 ¼ 0010

�610 ¼ 1110

10000

The addition produced a sum that has 5 bits, exceeding the capability of the number system

(sign þ3 bits); this results in an overflow. Also, the sum is wrong; it should be 24 (i.e.,

1100) instead of 0.

An alternative representation of negative numbers, known as the complement form,

simplifies the computations involving signed numbers. The complement representation

enjoys the advantage that no sign computation is necessary. There are two types of comp-

lement representations: diminished radix complement and radix complement.

1.6.1 Diminished Radix Complement

In the decimal system (r ¼ 10) the complement of a number is determined by subtracting

the number from (r2 1), that is, 9. Hence the process is called finding the 9’s

complement. For example,

9’s complement of 5 (9� 5) ¼ 4

9’s complement of 63 (99� 63) ¼ 36

9’s complement of 110 (999� 110) ¼ 889

In binary notation (r ¼ 2), the diminished radix complement is known as the 1’s comp-

lement. A positive number in 1’s complement is represented in the same way as in sign-

magnitude representation. The 1’s complement representation of a negative number x is

derived by subtracting the binary value of x from the binary representation of (2n2 1),

where n is the number of bits in the binary value of x.

TABLE 1.3 Signed and Unsigned Binary Numbers

Decimal Equivalent

Binary Signed Unsigned

000 þ0 0

001 þ1 1

010 þ2 2

011 þ3 3

100 20 4

101 21 5

110 22 6

111 23 7

14 NUMBER SYSTEMS AND BINARY CODES

Example 1.20 Let us compute the 1’s complement form of � 43. The binary value of

43 ¼ 00101011. Since n ¼ 8, the binary representation of 282 1 is

28 ¼ 100000000

�1

28 � 1 ¼ 11111111

Hence the 1’s complement form of 243 is

28 � 1 ¼ 11111111

�43 ¼�00101011

11010100

Notice that the 1’s complement form of243 is a number that has a 0 in every position that

þ43 has a 1, and vice versa. Thus the 1’s complement of any binary number can be

obtained by complementing each bit in the number.

A 0 in the most significant bit indicates a positive number. The sign bit is not comple-

mented when negative numbers are represented in 1’s complement form. For example, the

1’s complement form of 225 will be represented as follows:

�25 ¼ 111001 (sign-magnitude form)

¼ 100110 (1’s complement form)

Table 1.4 shows the comparison of 3-bit unsigned, signed, and 1’s complement values.

The advantage of using 1’s complement numbers is that they permit us to perform subtrac-

tion by actually using the addition operation. It means that, in digital systems, addition and

subtraction can be carried out by using the same circuitry.

The addition operation for two 1’s complement numbers consists of the following steps:

(i) Add the two numbers including the sign bits.

(ii) If a carry bit is produced by the leftmost bits (i.e., the sign bits), add it to the result.

This is called end-around carry.

TABLE 1.4 Comparison of 3-Bit Signed, Unsigned, and

1’s Complement Values

Decimal Equivalent

Binary Unsigned Sign-Magnitude 1’s Complement

000 0 þ0 þ0

001 1 þ1 þ1

010 2 þ2 þ2

011 3 þ3 þ3

100 4 20 23

101 5 21 22

110 6 22 21

111 7 23 20

1.6 SIGNED NUMBERS 15

Example 1.21 Let us add 27 to 25:

The result is a negative number. By complementing the magnitude bits we get

11100, that is,�12

Thus the sum of 27 and 25 is 212, which is correct.

The subtraction operation for two 1’s complement numbers can be carried out as

follows:

(i) Derive the 1’s complement of the subtrahend and add it to the minuend.

(ii) If a carry bit is produced by the leftmost bits (i.e., the sign bits), add it to the result.

Example 1.22 Let us subtract þ21 from þ35:

The sign is correct, and the decimal equivalent þ14 is also correct.

The 1’s complement number system has the advantage that addition and subtraction are

actually one operation. Unfortunately, there is still a dual representation for 0. With 3-bit

numbers, for example, 000 is positive zero and 111 is negative zero.

1.6.2 Radix Complement

In the decimal system, the radix complement is the 10’s complement. The 10’s comp-

lement of a number is the difference between 10 and the number. For example,

10’s complement of 5, 10� 5 ¼ 5

10’s complement of 27, 100� 27 ¼ 73

10’s complement of 48, 100� 48 ¼ 52

In binary number system, the radix complement is called the 2’s complement. The 2’s

16 NUMBER SYSTEMS AND BINARY CODES

complement representation of a positive number is the same as in sign-magnitude

form. The 2’s complement representation of a negative number is obtained by comple-

menting the sign-magnitude representation of the corresponding positive number and

adding a 1 to the least significant position. In other words, the 2’s complement form of

a negative number can be obtained by adding 1 to the 1’s complement representation of

the number.

Example 1.23 Let us compute the 2’s complement representation of �43:

þ43 ¼ 0101011 (sign-magnitude form)

¼ 1010100 (1’s complement form)

þ1 (add 1)

1010101 2’s complement form

Table 1.5 shows the comparisons of four representations of 3-bit binary numbers. The

bit positions in a 2’s complement number have the same weight as in a conventional

binary number except that the weight of the sign bit is negative. For example, the 2’s

complement number 1000011 can be converted to decimal in the same manner as a

binary number:

�26 þ 21 þ 20 ¼ �64þ 2þ 1

¼ �61

A distinct advantage of 2’s complement form is that, unlike 1’s complement form,

there is a unique representation of 0 as can be seen in Table 1.5. Moreover, addition

and subtraction can be treated as the same operation as in 1’s complement; however,

the carry bit can be ignored and the result is always in correct 2’s complement notation.

Thus addition and subtraction are easier in 2’s complement than in 1’s complement.

An overflow occurs when two 2’s complement numbers are added, if the carry-in bit

into the sign bit is different from the carry-out bit from the sign bit. For example, the

TABLE 1.5 Various Representations of 3-Bit Binary Numbers

Decimal Equivalent

Binary Unsigned Signed 1’s Complement 2’s Complement

000 0 þ0 þ0 þ0

001 1 þ1 þ1 þ1

010 2 þ2 þ2 þ2

011 3 þ3 þ3 þ3

100 4 20 23 24

101 5 21 22 23

110 6 22 21 22

111 7 23 20 21

1.6 SIGNED NUMBERS 17

following addition will result in an overflow:

0 Carry-in

101010 (�22)

101001 (�23)

1010011

Carry-out

Hence the result is invalid.

Example 1.24 Let us derive the following using 2’s complement representation:

(i) þ13 (ii) �15 (iii) �9 (iv) �5

�7 �6 þ6 �1

1 Carry-in

(i) þ13 01101

�7 11001

þ6 100110

Carry-out

Since the carry-in is equal to the carry-out, there is no overflow; the carry-out bit can be

ignored. The sign bit is positive. Thus the result is þ6.

0 Carry-in

(ii) �15 10001

�6 11010

101011

Carry-out

The carry-out bit is not equal to the carry-in bit. Thus there is an overflow and the result is

invalid.
0 Carry-in

(iii) �9 10111

þ6 00110

�3 011101

Carry-out

There is no overflow, and the sign bit is negative. The decimal equivalent of the result is

224þ 23þ 22þ 20 ¼ 23.

1 Carry-in

(iv) �5 1011

�1 1111

�6 11010

Carry-out

There is no overflow, and the sign bit is negative. The result, as expected, is

223þ 21 ¼ 26.

An important advantage of 2’s complement numbers is that they can be sign-extended

without changing their values. For example, if the 2’s complement number 101101 is

18 NUMBER SYSTEMS AND BINARY CODES

shifted right (i.e., the number becomes 1101101), the decimal value of the original and the

shifted number remains the same (219 in this case).

1.7 FLOATING-POINT NUMBERS

Thus far, we have been dealing mainly with fixed-point numbers in out discussion. The

word fixed refers to the fact that the radix point is placed at a fixed place in each

number, usually either to the left of the most significant digit or to the right of the least sig-

nificant digit. With such a representation, the number is always either a fraction or an

integer. The main difficulty of fixed-point arithmetic is that the range of numbers that

could be represented is limited. Figure 1.1 illustrates the fixed-point representation of a

signed four-digit decimal number; the range of numbers that can be represented using

this configuration is 9999. In order to satisfy this limited range, scaling has to be used.

For example, to addþ50.73 toþ40.24 we have to multiply both numbers by 100 before

addition and then adjust the sum, keeping in mind that there should be a decimal point two

places from the right. The scale factor in this example is 100.

An alternative representation of numbers, known as the floating-point format, may be

employed to eliminate the scaling factor problem. In a floating-point number, the radix

point is not placed at a fixed place; instead, it “floats” to various places in a number so

that more digits can be assigned to the left or to the right of the point. More digits on

the left of the radix point permit the representation of larger numbers, whereas more

digits on the right of the radix point result in more digits for the fraction. Numbers in float-

ing point format consist of two parts—a fraction and an exponent; they can be expressed in

the form

fraction� radixexponent

The fraction is often referred to as the mantissa and can be represented in sign-magnitude,

diminished radix complement, or radix complement form. For example, the decimal

number 236,000 can be written 0.236 � 106. In a similar manner, very small numbers

may be represented using negative exponents. For example, 0.00000012 may be written

0.12 � 1026. By adjusting the magnitude of the exponent, the range of numbers

covered can be considerably enlarged. Leading 0’s in a floating-point number may be

removed by shifting the mantissa to the left and decreasing the exponent accordingly;

this process is known as normalization and floating-point numbers without leading 0’s

are called normalized. For example, the normalized of floating-point number

0.00312 � 105 is 0.312 � 103. Similarly, a binary fraction such as 0.001 � 24 would be

normalized to 0.1 � 22.

FIGURE 1.1 Fixed-point number representation.

1.7 FLOATING-POINT NUMBERS 19

1.8 BINARY ENCODING

In Section 1.1 it was shown how decimal numbers can be represented by equivalent binary

numbers. Since there are ten decimal numbers (0, 1, . . . , 9), the minimum number of bits

required to represent a decimal number is four, giving 16 (¼24) possible combinations, of

which only ten are used. Binary codes are divided into two groups—weighted and

nonweighted.

1.8.1 Weighted Codes

In a weighted code each binary digit is assigned a weight w; the sum of the weights of the I

bits is equal to the decimal number represented by the four-bit combination. In other

words, if dj (i ¼ 0 , . . . , 3) are the digit values and wj (i ¼ 0 , . . . , 3) are the corresponding
weights, then the decimal equivalent of a 4-bit binary number is given by

d3w3 þ d2w2 þ d1w1 þ d0w0

If the weight assigned to each binary digit is exactly the same as that associated with each

digit of a binary number (i.e., w0 ¼ 28 ¼ 1, w1 ¼ 21 ¼ 2, w2 ¼ 22 ¼ 4, and w3 ¼ 23 ¼ 8),

then the code is called the BCD (binary-coded decimal) code. The BCD code differs from

the conventional binary number representation in that, in the BCD code, each decimal digit

is binary coded. For example, the decimal number 15 in conventional binary number

representation is

1111

whereas in the BCD code, 15 is represented by

0001 0101

1 5

the decimal digits 1 and 5 each being binary coded.

Several forms of weighted codes are possible, since the codes depend on the weight

assigned to the binary digits. Table 1.6 shows the decimal digits and their weighted

TABLE 1.6 Weighted Binary Codes

Decimal Number 8421 7421 4221 8421

0 0000 0000 0000 0000

1 0001 0001 0001 0111

2 0010 0010 0010 0110

3 0011 0011 0011 0101

4 0100 0100 1000 0100

5 0101 0101 0111 1011

6 0110 0110 1100 1010

7 0111 1000 1101 1001

8 1000 1001 1110 1000

9 1001 1010 1111 1111

20 NUMBER SYSTEMS AND BINARY CODES

code equivalents. The 7421 code has fourteen 1’s in its representation, which is the

minimum number of 1’s possible. However, if we represent decimal 7 by 0111 instead

of 1000, the 7421 code will have sixteen 1’ instead of fourteen. In the 4221 code, the

sum of the weights is exactly 9(¼4þ 2þ 2þ 1). Codes whose weights add up to 9

have the property that the 9’s complement of a number (i.e., 92 N, where N is the

number) represented in the code can be obtained simply by taking the 1’s complement

of its coded representation. For example, in the 4221 code shown in Table 1.6, the

decimal number 7 is equivalent to the code word 1101; the 9’s complement of 7 is 2

(¼92 7), and the corresponding code word is 0010, which is the 1’ complement of

1101. Codes having this property are known as self-complementing codes. Similarly,

the 8421 is also a self-complementing code.

Among the weighted codes, the BCD code is by far the most widely used. It is useful in

applications where output information has to be displayed in decimal. The addition

process in BCD is the same as in simple binary as long as the sum is decimal 9 or less.

For example,

Decimal BCD

6 0110

þ3 þ0011

9 1001

However, if the sum exceeds decimal 9, the result has to be adjusted by adding decimal 6

(0110) to it. For example, let us add 5 to 7:

Decimal BCD

7 0111

þ5 þ0101

12 1100 12 (not a legal BCD number)

þ0110 Add 6

0001|ffl{zffl}
1

0010|ffl{zffl}
2

As another example, let us add 9 to 7:

Decimal BCD

9 1001

þ7 þ0111

16 0001|ffl{zffl}
1

0000|ffl{zffl}
0

Although the result consists of two valid BCD numbers, the sum is incorrect. It has to be

corrected by adding 6 (0110). This is required when there is a carry from the most signifi-

cant bit of a BCD number to the next higher BCD number. Thus the correct result is

0001 0000

þ 0110

0001|ffl{zffl}
1

0110|ffl{zffl}
6

Other arithmetic operations in BCD can also be performed.

1.8 BINARY ENCODING 21

1.8.2 Nonweighted Codes

In the nonweighted codes there are no specific weights associated with the digits, as was

the case with weighted codes. A typical nonweighted code is the excess-3 code. It is gen-

erated by adding 3 to a decimal number and then converting the result to a 4-bit binary

number. For example, to encode the decimal number 6 to excess-3 code, we first add 3

to 6. The resulting sum, 9, is then represented in binary (i.e., 1001). Table 1.7 lists the

excess-3 code representations of the decimal digits.

Excess-3 code is a self-complementing code and is useful in arithmetic operations. For

example, consider the addition of two decimal digits whose sum will result in a number

greater than 9. If we use BCD code, no carry bit will be generated. On the other hand,

if excess-3 code is used, there will be a natural carry to the next higher digit; however,

the sum has to be adjusted by adding 3 to it. For example, let us add 6 to 7:

Decimal Excess-3

7 1010

þ6 1001

13 10011

Carry 00110011 Add 3 to both sum

0100|ffl{zffl}
1

0110|ffl{zffl}
3

and carry bit

In excess-3 code, if we add two decimal digits whose sum is 9 or less, then the sum should

be adjusted by subtracting 3 from it. For example,

Decimal Excess-3

6 1001

þ2 þ0101

8 1110

0011 Subtract 3

1011|ffl{zffl}
8

TABLE 1.7 Excess-3 Code

Decimal Excess-3

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

22 NUMBER SYSTEMS AND BINARY CODES

For subtraction in excess-3 code, the difference should be adjusted by adding 3 to it. For

example,

Decimal Excess-3

17 0100 1010

�11 0100 0100

6 0000 0110

0011 Add 3

1001|ffl{zffl}
6

Another code that uses four unweighted binary digits to represent decimal numbers is

the cyclic code. Cyclic codes have the unique feature that the successive codewords differ

only in one bit position. Table 1.8 shows an example of such a code.

One type of cyclic code is the reflected code, also known as theGray code. A 4-bit Gray

code is shown in Table 1.9. Notice that in Table 1.9, except for the most significant bit

TABLE 1.8 Cyclic Code

Decimal Cyclic

0 0000

1 0001

2 0011

3 0010

4 0110

5 0100

6 1100

7 1110

8 1010

9 1000

TABLE 1.9 Gray Code

Decimal Binary Gray

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

1.8 BINARY ENCODING 23

position, all columns are “reflected” about the midpoint; in the most significant bit

position, the top half is all 0’s and the bottom half all 1’s.

A decimal number can be converted to Gray code by first converting it to binary. The

binary number is converted to the Gray code by performing a modulo-2 sum of each digit

(starting with the least significant digit) with its adjacent digit. For example, if the binary

representation of a decimal number is

b3 b2 b1 b0

then the corresponding Gray code word, G3G2G1G0, is

G3 ¼ b3

G2 ¼ b3 � b2

G1 ¼ b2 � b1

G0 ¼ b1 � b0

where � indicates exclusive-OR operation (i.e., modulo-2 addition), according to the

following rules:

0� 0 ¼ 0

0� 1 ¼ 1

1� 0 ¼ 1

1� 1 ¼ 0

As an example let us convert decimal 14 to Gray code.

Decimal Binary

b3 b2 bl b0
14 1 1 1 0

Therefore

G3 ¼ b3 ¼ 1

G2 ¼ b3 � b2 ¼ 1� 1 ¼ 0

G1 ¼ b2 � b1 ¼ 1� 1 ¼ 0

G0 ¼ b1 � b0 ¼ 1� 0 ¼ 1

Thus the Gray code word for decimal 14 is

G3 G2 G1 G0

1 0 0 1

The conversion of a Gray code word to its decimal equivalent is done by following this

sequence in reverse. In other words, the Gray code word is converted to binary and

24 NUMBER SYSTEMS AND BINARY CODES

then the resulting binary number is converted to decimal. To illustrate, let us convert 1110

from Gray to decimal:

G3 G2 G1 G0

1 1 1 0

b3 ¼ G3 ¼ 1

G2 ¼ b3 � b2

[b2 ¼ G2 � b3 (since G2 � b3 ¼ b3 � b2 � b3)

¼ 1� 1 (since G2 ¼ 1 and b3 ¼ 1)

¼ 0

G1 ¼ b2 � b1

[b1 ¼ G1 � b2

¼ 1� 0

¼ 1

G0 ¼ b1 � b0

[b0 ¼ 1

Thus the binary equivalent of the Gray code word 1110 is 1011, which is equal to decimal

11. The first ten codewords of the Gray code shown in Table 1.9 can be utilized as reflected

BCD code if desired. The middle ten codewords can be used as reflected excess-3 code.

EXERCISES

1. Convert the following decimal numbers to binary:

a. 623

b. 73.17

c. 53.45

d. 2.575

2. Convert the following binary numbers to decimal:

a. 10110110

b. 110000101

c. 100.1101

d. 1.001101

3. Convert the following binary numbers to hexadecimal and octal:

a. 100101010011

b. 001011101111

c. 1011.111010101101

d. 1111.100000011110

4. Convert the following octal numbers to binary and hexadecimal.

a. 1026

EXERCISES 25

b. 7456

c. 5566

d. 236.2345

5. Convert the following hexadecimal numbers to binary and octal:

a. EF69

b. 98AB5

c. DAC.IBA

d. FF.EE

6. Perform the addition of the following binary numbers:

a: 100011 b: 10110110 c: 10110011
1101 11100011 1101010

7. Perform the following subtractions, where each of the numbers is in binary form:

a: 101101 b: 1010001 c: 10000110

111110 1001111 1110001

8. Add the following pairs of numbers, where each number is in hexadecimal form:

a: ABCD b: 129A c: EF23
75EF AB22 C89

9. Repeat Exercise 8 using subtraction instead of addition.

10. Add the following pairs of numbers, where each number is in octal form:

a: 7521 b: 62354 c: 3567

4370 3256 2750

11. Repeat Exercise 10 using subtraction instead of addition.

12. Derive the 6-bit sign-magnitude, 1’s complement, and 2’s complement of the fol-

lowing decimal numbers:

a. þ22

b. 231

c. þ17

d. 21

13. Find the sum of the following pairs of decimal numbers assuming 8-bit 1’s comple-

ment representation of the numbers:

a. þ61þ (223)

b. 256þ (255)

c. þ28þ (þ27)

d. 248þ (þ35)

26 NUMBER SYSTEMS AND BINARY CODES

14. Repeat Exercise 13 assuming 2’s complement representation of the decimal numbers.

15. Assume that X is the 2’s complement of an n-bit binary number Y. Prove that the 2’s

complement of X is Y.

16. Find the floating-point representation of the following numbers:

a. (326.245)10

b. (101100.100110)2

c. (264.462)8

17. Normalize the following floating-point numbers:

a. 0.000612 � 106

b. 0.0000101 � 24

18. Encode each of the ten decimal digits using the weighted binary codes.

a. 4, 4, 1, 22

b. 7, 4, 2, 21

19. Given the following weighted codes determine whether any of these is

self-complementing.

a. (8, 4, 23, 22)

b. (7, 5, 3, 26)

c. (6, 2, 2, 1)

20. Represent the decimal numbers 535 and 637 in

a. BCD code

b. Excess-3 code

Add the resulting numbers so that the sum in each case is appropriately encoded.

21. Subtract 423 from 721, assuming the numbers are represented in excess-3 code.

22. Determine two forms for a cyclic code other than the one shown in Table 1.8.

23. Assign a binary code, using the minimum number of bits, to encode the 26 letters in

the alphabet.

EXERCISES 27

2 Fundamental Concepts of
Digital Logic

2.1 INTRODUCTION

The objective of this chapter is to familiarize readers with the basic concepts of set theory,

relations, graphs, and Boolean algebra. These are necessary to understand material pre-

sented in later chapters. Boolean algebra is used for the analysis and design of electrical

switching circuits (popularly known as digital logic circuits). We are mainly interested

in the application of Boolean algebra in constructing digital circuits using elements

called gates.

2.2 SETS

A set is a collection of objects. The objects comprising a set must have at least one prop-

erty in common—for example, all male students in a class, all integers less than 15 but

greater than 5, or inputs to a logic circuit. A set that has a finite number of elements is

described by listing the elements of the set between brackets. Thus the set of all positive

integers less than 15 but greater than 5 can be written

{6, 7, 8, 9, 10, 11, 12, 13, 14}

The order in which the elements of a set are listed is not important. This set can also be

represented as follows:

{9, 10, 6, 7, 14, 13, 8, 11, 12}

In general, uppercase letters are used to represent a set and lowercase letters are used to

represent the numbers (or elements) of a set.

If a is an element of a set S, we represent that fact by writing

a [S

On the other hand, if a is not an element of S, we can indicate that by writing

a � S

For example, if S ¼ f5, 7, 8, 9g, then 5 [S, 7 [S, 8 [S, and 9 [S, but 6 � S.

29

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

A set may have only one element; it is then called a singleton. For example, f6g is the
set with 6 as its only element. There is also a set that contains no element; it is known as the

empty or null set and is denoted by 1.

A set may also be defined in terms of some property that all members of the set are

required to have. Thus the set A ¼ f2, 4, 6, 8, 10g may be defined as

A ¼ {xjx is an even positive integer not greater than 10}

In general, a set of objects that share common properties may be represented as

{xjx possesses certain properties}

Sets with an infinite number of members are specified in this way, for example,

B ¼ {xjx is an even number}

A set P is a subset of a setQ if every element of P is also an element inQ. This may also

be defined as P is included in Q and is represented with a new symbol:

P # Q

For example, the set fx, yg is a subset of the set fa, b, x, yg but is not a subset of the set fx, c,
d, eg. Note that every set is a subset of itself and the null set is a subset of every set. If P is a

subset of Q and there is at least one element in Q that is not in P, then P is said to be a

proper subset of Q. For example, the set fa, bg is a proper subset of the set fx, y, a, bg.
The notation P # Q is used to denote that P is a proper subset of Q.

When two sets P and Q contain exactly the same elements (in whatever order), they are

equal. For example, the two sets P ¼ fw, x, y, zg and Q ¼ fx, y, w, zg are equal. One may

also say that two sets are equal if P # Q and Q # P. The collection of all subsets of a set A

is itself a set, called the power set of A, and is denoted by P(A). For example, if A ¼ fx,
y, zg, then P(A) consists of the following subsets of A:

1, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}

Sets can be combined by various operations to form new sets. These operations are ana-

logous to such familiar operations as addition on numbers. One such operation is union.

The union of two sets P and Q, denoted by P < Q, is the set consisting of all elements

that belong to either P or Q (or both). For example, if

P ¼ {d, c, e, f } Q ¼ {b, c, a, f }

then

P< Q ¼ {a, b, c, d, e, f }

30 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

The intersection of two sets P and Q, denoted by P > Q, is the set that contains those

elements that are common to both sets. For example, if

P ¼ {a, c, e, g} Q ¼ {c, e, i, k}

then

P> Q ¼ {c, e}

Two sets are disjoint if they have no element in common; that is, their intersection is

empty. For example, if

B ¼ {b, e, f , r, s} C ¼ {a, t, u, v}

then

B> C ¼ 1

In other words, there are no elements that belong to both P and Q.

If P and Q are two sets, then the complement of Q with respect to P, denoted by P2Q,

is the set of elements that belong to P but not to Q. For example, if

P ¼ {u, w, x} and Q ¼ {w, x, y, z}

then

P� Q ¼ {u} and Q� P ¼ {y, z}

Certain properties of the set operations follow easily from their definitions. For

example, if P, Q, and R are sets, the following laws hold.

Commutative Law

1. P < Q ¼ Q < P

2. P > Q ¼ Q > P

Associative Law

3. P < (Q < R) ¼ (P < Q) < R

4. P > (Q > R) ¼ (P > Q) > R

Distributive Law

5. P > (Q < R) ¼ (P > Q) < (P > R)

6. P < (Q > R) ¼ (P < Q) > (P < R)

Absorption Law

7. P > (P < Q) ¼ P

8. P < (P > Q) ¼ P

2.2 SETS 31

Idempotent Law

9. P < P ¼ P

10. P > P ¼ P

DeMorgan’s Law

11. P2 (Q < R) ¼ (P2Q) > (P2 R)

12. P2 (Q > R) ¼ (P2Q) < (P2 R)

2.3 RELATIONS

A relation is used to express some association that may exist between certain objects. For

example, among a group of students, two students may be considered to be related if they

have common last names. This section discusses the concept of binary relation and the

different properties such a relation may possess. To formally define a binary relation it

is helpful first to define ordered pairs of elements. An ordered pair of elements is a pair

of elements arranged in a prescribed order. The notation (a, b) is used to denote the

ordered pair in which the first element is a and the second element is b. The order of

elements in an ordered pair is important. Thus the ordered pair (a, b) is not the same as

the ordered pair (b, a). Besides, the two elements of an ordered pair need not be distinct.

Thus (a, a) is a valid ordered pair. Two ordered pairs (a, b) and (c, d) are equal only when

a ¼ c and b ¼ d.

The Cartesian product of two sets A and B, denoted by A � B, is the set of all ordered

pairs (a, b) with a [A and b [B. For example, if A ¼ fa, bg and B ¼ f1, 2, 3, 4g, then
A � B ¼ f(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), (b, 3), (b, 4)g. A binary relation from

A to B is a subset of A � B. For example, f(a, 1), (a, 4), (b, 2), (b, 3)g is a binary relation

on A ¼ fa, bg and B ¼ f1, 2, 3, 4g. A binary relation can be represented in graphical form

as shown in Figure 2.1, where the points on the left-hand side are the elements in A, the

points on the right-hand side are the elements on B, and an arrow indicates that the corre-

sponding element in A is related to the corresponding element in B.

The points used to represent the elements in sets A and B are known as vertices of the

graph in Figure 2.1, and the directed lines a ! 1, a ! 4, b ! 2, and b ! 3 are called the

edges of the graph. Thus it is possible to represent any relation with a directed graph. For

example, if A ¼ f0, 1, 2g and we consider the relation “not equal to” on set A and itself,

FIGURE 2.1 Graphical form of the relation f(a, 1), (a, 4), (b, 2), (b, 3)g.

32 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

then the directed graph representation of the relation can be derived directly from the

Cartesian product of A with itself:

A� A ¼ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}

Figure 2.2 shows the resulting directed graph. Note the absence of the loop from a

node to itself; this is because it is not possible for an element in A not to be equal to

itself.

In general, in many applications we encounter only binary relations on a set and itself,

rather than relations from one set to a different set. The remainder of this section deals with

the properties that these relations satisfy. A relation R on a set A (i.e., R # A � A) is reflex-

ive if (a, a) is in R for every a in A. In other words, in a reflexive relation every element in

A is related to itself.

For example, let A ¼ f1, 2, 3, 4g and let R ¼ f(1, 1), (2, 4), (3, 3), (4, 1), (4, 4)g. R is not

a reflexive relation, since (2, 2) does not belong to R.

Note that all ordered pairs (a, a) must belong to R in order for R to be reflexive.

A relation that is not reflexive is called irreflexive. As another example, let A be a set

of triangles and let the relation R on A be “a is similar to b.” The relation is reflexive,

since every triangle is similar to itself.

A relation R on a set is symmetric if (a, b) [R whenever (b, a) [R; that is, if a is

related to b, then b is also related to a. For example, let A ¼ f1, 2, 3, 4g and let

R ¼ f(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)g. R is not a symmetric relation, since

(2, 3) [R but (3, 2) � R:

On the other hand, if A is a set of people and the relation R on A is defined as

R ¼ {(x, y) [A� Ajx is a cousin of y}

then R is symmetric, because if x is a cousin of y, y is a cousin of x.

FIGURE 2.2 Directed graph representation of the relation “not equal to” on set A ¼ f0, 1, 2g and
itself.

2.3 RELATIONS 33

A relation R on a set A is antisymmetric if

(a, b) [R and (b, a) [R implies a ¼ b

In other words, if a = b, then a may be related to b or b may be related to a, but not both.

For example, if A is a set of people, then the relation

{(a, b) [A� Aja is the father of b}

is antisymmetric because the reverse (i.e., b is the father of a) is not true. As a further

example, let N be the set of natural numbers and let R be the relation on N defined by

“x divides y.” The relation R is antisymmetric, since x divides y and y divides x, which

implies x ¼ y.

A relation R on a set A is transitive if

(a, b) [R and (b, c) [R implies (a, c) [R

In other words, if a is related to b and b is related to c, then a is related to c. For example, let R

be the relation “perpendicular to” on the set of lines fa, b, cg in a plane.R is not transitive, since

if a, b, c are lines such that “a is perpendicular to b” and “b is perpendicular to c,” then a is not

perpendicular to c; in fact, a is parallel to c.On the other hand, ifR is the relation “less than or

equal to” on the set of integersA ¼ f4, 6, 8g, thenR ¼ f(4, 6), (6, 8), (4, 8), (6, 6)g is transitive.
A relation R on a set A is called an equivalence relation if

(i) R is reflexive; that is, for every a [A, (a, a) [R.

(ii) R is symmetric; that is, (a, b) [R implies (b, a) [R.

(iii) R is transitive; that is, (a, b) [R and (b, c) [R implies (a, c) [R.

For example, the relation “working in the same office” on a set of employees in a given

company is an equivalence relation (assuming that no employee works in more than one

office).

1. It is reflexive, because each employee works in the same office as himself/herself.

2. It is symmetric, because if a works in the same office as b, then certainly b works in

the same office as a.

3. It is transitive, because if a works in the same office as b, and b works in the same

office as c then a works in the same office as c.

2.4 PARTITIONS

A partition, denoted by P, on any set A is a collection of nonempty subsets A1, A2, . . . , Ak

of A such that their set union is A. In other words,

P ¼ (A1, A2, . . . , Ak)

such that

(i) A1 < A2 < . . . , Ak ¼ A.

(ii) Ai < Aj ¼ 1 if i = j.

The subsets Aj are called blocks of the partition.

34 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

For example, let A ¼ fs, t, u, v, w, x, y, zg. Let us consider the following subsets of A:

A1 ¼ {s, t, w, x} A2 ¼ {u, v, y, z} A3 ¼ fs, w, xg
Then (A1, A3) is not a partition, since A1 > A3 = 1. Also, A2 > A3 is not a partition, since

it does not belong to either A2 or A3. The collection (A1, A2) is a partition of A. The partition

in which each block has a single member of a set A is known as the null partition, denoted

as P(0). The partition in which elements of a set are in a single block is known as the unity

partition, denoted as P(I).

For example, let A ¼ fw, x, y, zg; then
P(0) ¼ {(w), (x), (y), (z)} and P(I) ¼ {(w, x, y, z)}

It is evident that an equivalence relation on a set A induces a partition on A, since every two

elements in a block are related. The blocks in the partition are called the equivalence

classes. Conversely, a partition of a nonempty set A induces an equivalence relation on

A; two elements are related if they belong to the same block of the partition.

For example, let A ¼ fa, b, c, d, eg and P1 be a partition on A, where

P1 ¼ {(a, c, e), (b, d)}

The equivalence classes of the elements of A are the given blocks of the partition, that is,

(a, c, e) and (b, d). Let R be an equivalence relation that induces the preceding partition.

From the equivalence class (a, c, e) and the fact that R is an equivalence relation, we find

that

(a, a), (a, c), (a, e), (c, c), (c, a), (c, e), (e, e), (e, a), (e, c) [R

Similarly, equivalence class (b, d) [R.

2.5 GRAPHS

A graph consists of a set of points called nodes or vertices and a set of interconnecting line

segments called arcs or edges. If the edges in a graph have directions (orientation), then

the graph is directed, otherwise it is nondirected.

An example of a directed graph, also known as a digraph, is shown in Figure 2.3a. Here

the vertices are represented by points and there is a directed edge heading from A to C,

A toD,D to C, and C to B. If there is a directed edge from vertex u to vertex v, u is adjacent

to v. Thus in Figure 2.3a, A is adjacent to C, C is adjacent to B, and so on.

All connections in a directed graph can be described by the connection matrix of the

directed graph. The connection matrix T is a square matrix of dimension n, where n is

equal to the number of vertices in the directed graph. The entry tij at the intersection of

row i and column j is 1 if there is an edge from node i to node j; otherwise, tij is 0. The

connection matrix for the directed graph of Figure 2.3a is shown in Figure 2.3b.

In a directed graph, a path is a sequence of edges such that the terminal vertex of an

edge coincides with the initial vertex of the following edge. For example, in Figure 2.4

ADCB is a path. A path with the same initial and final vertices is known as a cycle. In

Figure 2.4, ACDA is a cycle. A directed graph without cycles is said to be acyclic.

2.5 GRAPHS 35

The in-degree of a vertex in a directed graph is the number of edges terminating in the

vertex. For example, in Figure 2.4 the in-degree of vertex C is 2, the in-degree of vertex D

is 1, and so on. The number of edges leaving a vertex is called its out-degree. For example,

the out-degree of vertex D is 1. An acyclic graph in which one vertex has an in-degree of 0

and all other vertices have an in-degree of 1 is called a tree. The vertex with in-degree 0 is

called the root of the tree. The vertices with out-degree 0 are called the leaves of the tree.

The edges in a tree are known as branches. Figure 2.5 shows a tree in which vertex A has

FIGURE 2.3 (a) Directed graph and (b) connection matrix.

FIGURE 2.4 A directed graph.

FIGURE 2.5 A tree.

36 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

an in-degree of 0, and vertices B, C, F,G, andH have an out-degree of 0. Thus A is the root

of the tree, and B, C, F,G, and H are its leaves. Note that vertices D and E are not leaves of

the tree because they have an out-degree of 1 and 3, respectively.

2.6 BOOLEAN ALGEBRA

Boolean algebra may be defined for a set A (which could be finite or infinite) in terms of

two binary operationsþ and .. The symbolsþ and . are called the inclusive OR and AND,

respectively; they should not be confused with the addition and multiplication operations

in conventional algebra. The operations in Boolean algebra are based on the following

axioms or postulates, known as Huntington’s postulates:

Postulate 1. If x, y [A, then

xþ y [A; x � y [A

This is called the closure property.

Postulate 2. If x, y [A, then

xþ y ¼ yþ x; x � y ¼ y � x
that is,þ and . operations are commutative.

Postulate 3. If x, y, z [A, then

xþ (y � z) ¼ (xþ y) � (xþ z)

x � (yþ z) ¼ (x � y)þ (x � z)
that is,þ and . operations are distributive.

Postulate 4. Identity elements, denoted as 0 and 1, must exist such that xþ 0 ¼ x and

x . 1 ¼ x for all elements of A.

Postulate 5. For every element x in A there exists an element �x, called the complement of

x, such that

xþ �x ¼ 1 x � �x ¼ 0

Note that the basic postulates are grouped in paris. One postulate can be obtained from

the other by simply interchanging all OR and AND operations, and the identity

elements 0 and 1. This property is known as duality. For example,

xþ (y � z) ¼ (xþ y) � (xþ z)

#
x � (yþ z) ¼ (x � y) þ (x � z)

Several theorems used for the manipulation of Boolean expressions are given below:

Theorem 1. The identity elements 0 and 1 are unique

Theorem 2. The Idempotent Laws

ðiÞ xþ x ¼ x

ðiiÞ x � x ¼ x

2.6 BOOLEAN ALGEBRA 37

Theorem 3.

ðiÞ xþ 1 ¼ x

ðiiÞ x � 0 ¼ 0

Theorem 4. The Absorption Laws

ðiÞ xþ xy ¼ x

ðiiÞ x(xþ y) ¼ x

Theorem 5. Every element in set A has a unique complement

Theorem 6. Involution Theorem

(�x) ¼ x

Theorem 7.

ðiÞ xþ �xy ¼ xþ y

ðiiÞ x ð�xþ yÞ ¼ xy

Theorem 8. DeMorgan’s Theorem

ðiÞ (xþ y) ¼ �x � �y
ðiiÞ xy ¼ �xþ �y

We shall prove part i of DeMorgan’s theorem. By definition of the complement

(Postulate 5) and its uniqueness (Theorem 5) it is obvious that

(xþ y)þ �x�y ¼ 1 and (xþ y) �x�y ¼ 0

(xþ y)þ �x�y ¼ ½(xþ y)þ �x� ½(xþ y)þ �y� (by Postulate 3)

¼ ½ yþ (xþ �x)� ½xþ (yþ �y)� (by associativity)

¼ ½ yþ 1� ½xþ 1� (by Postulate 5)

¼ 1 � 1 (by Theorem 3)

¼ 1

(xþ y) �x�y ¼ �x �y (xþ y) (by commutativity)

¼ �x�y � xþ �x�y � y (by distributivity)

¼ �y (�xx)þ �x (�yy) (by associativity)

¼ �y (x�x)þ �x (y�y) (by commutavity)

¼ �y � 0þ �x � 0 (by Postulate 5)

¼ 0

Since (xþ y)þ x̄ȳ ¼ 1 and (xþ y) . x̄ȳ ¼ 0, by Postulate 5 (xþ y) ¼ �x�y.

38 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

We may generalize to include more than two elements:

(i) aþ bþ � � � þ z ¼ �a�b � � � �z:
(ii) ab � � � z ¼ �aþ �bþ � � � þ �z:

Example 2.1 Let us complement the following expression using Theorem 8

aþ b (�cþ u�v)

aþ b(�cþ u�v) ¼ �a � b(�cþ u�v)

¼ �a(�bþ (�cþ u�v))

¼ �a(�bþ �c(u�v))

¼ �a(�bþ c(�uþ v))

It can be seen from the example that the complement of an expression can be obtained by

replacing þ (OR) with . (AND) and vice versa, and replacing each element by its

complement.

Theorem 9. Consensus

(i) xyþ x̄zþ yz ¼ xyþ x̄z.

(ii) (xþ y) (x̄þ z) (yþ z) ¼ (xþ y) (x̄þ z).

Proof:

xyþ �xzþ yz ¼ xyþ �xzþ 1 � yz ðby Postulate 4Þ
¼ xyþ �xzþ ðxþ �xÞyz ðby Postulate 5Þ
¼ xyþ �xzþ xyzþ �xyz ðby Postulate 3Þ
¼ ðxyþ xyzÞ þ ð�xzþ �xzyÞ
¼ xyþ �xz ðby Theorem 4Þ

Example 2.2 Let us simplify the following expression using Theorem 9

(�xþ y) wzþ x�yvþ vwz

Assume xȳ ¼ a and wz ¼ b. Then

(�xþ y) wzþ x�yvþ vwz ¼ �abþ avþ bv

¼ �abþ av (by Theorem 9i)

¼ (�xþ y) wzþ x�yv (by replacing the values of a and b)

Theorem 10.

(i) xyþ xȳz ¼ xyþ xz.

(ii) (xþ y) (xþ ȳþ z) ¼ (xþ y) (xþ z).

2.6 BOOLEAN ALGEBRA 39

Proof:

xyþ x�yz ¼ x(yþ �yz) (by Postulate 3)

¼ x(yþ z) (by Theorem 7i)

¼ xyþ xz (by Postulate 3)

Example 2.3 The following expression can be represented in a simplified form using

Theorem 10.

(aþ �b) (aþ bþ c) ¼ (aþ �b) (aþ c)

¼ aþ �bc (by Postulate 3)

Theorem 11.

(i) xyþ x̄z ¼ (xþ z) (x̄þ y).

(ii) (xþ y)(x̄þ z) ¼ xzþ xy.

Proof:

xyþ �xz ¼ (xyþ �x)(xyþ z) (by Postulate 3)

¼ (xþ �x)(yþ �x)(xþ z)(yþ z) (by Postulate 3)

¼ 1 � (�xþ y)(xþ z)(yþ z) (by Postulate 5)

¼ (�xþ y)(xþ z)(yþ z) (by Postulate 4)

¼ (�xþ y)(xþ z) (by Theorem 9ii)

Example 2.4 Let us show the application of Theorem 11 in changing the form of the

following Boolean expression.

(�abþ ac)(aþ �b)(�aþ �c)

¼ (�aþ c)(aþ b)(aþ �b)(�aþ �c) (by Theorem 11i)

¼ (�aþ c)(�aþ �c)(aþ b)(aþ �b) (by Postulate 2)

¼ (�aþ c � �c)(aþ b � �b) (by Postulate 3)

¼ (�aþ 0)(aþ 0) (by Postulate 5)

¼ �a � a (by Postulate 5)

¼ 0

The postulates and theorems of Boolean algebra presented here relate to elements of a

finite set A. If the set A is restricted to contain just two elements 0 and 1, then Boolean

algebra is useful in the analysis and design of digital circuits. The two elements 0 and 1

are not binary numbers; they are just two symbols that are used to represent data in

digital circuits. Two-valued Boolean algebra is often referred to as switching algebra.

Henceforth, we shall use Boolean algebra for the set {0, 1} unless otherwise specified.

40 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

2.7 BOOLEAN FUNCTIONS

In Boolean algebra, symbols are used to represent statements or propositions that may

be true or false. These statements or propositions are connected together by operations

AND, OR, and NOT. If 0 is used to denote a false statement and 1 is used to denote

a true statement, then the AND (.) combination of two statements can be written as

follows:

0 � 0 ¼ 0

0 � 1 ¼ 0

1 � 0 ¼ 0

1 � 1 ¼ 1

In tabular form it can be represented as

� 0 1

0 0 0

1 0 1

The AND combination of two statements is known as the product of the statements.

The OR (þ) combination of two statements can be written as follows:

0þ 0 ¼ 0

0þ 1 ¼ 1

1þ 0 ¼ 1

1þ 1 ¼ 1

In tabular form it can be represented as

þ 0 1

0 0 1

1 1 1

The OR combination of two statements is known as the sum of the statements.

The NOT operation of a statement is true if and only if the statement is false. The NOT

operation on a statement can be stated as follows:

�0 ¼ 1

�1 ¼ 0

The NOT operation is also known as complementation.

A Boolean function f(x1, x2, x3, . . . , xn) is a function of n individual statements x1,

x2, x3, . . ., xn combined by AND, OR, and NOT operations. The statements x1, x2,

x3, . . . , xn are also known as Boolean variables and can be either true or false. In other

words, each statement represents either the element 0 or 1 of the Boolean algebra.

2.7 BOOLEAN FUNCTIONS 41

For example,

f (x, y, z) ¼ xyþ �xzþ �y�z

is a function of three Boolean variables x, y, and z. In this function if x ¼ 0, y ¼ 0, and

z ¼ 1, then f ¼ 1, as verified below:

f (0, 0, 1) ¼ 0 � 0þ �0 � 1þ �0 � �1
¼ 0 � 0þ 1 � 1þ 1 � 0
¼ 0þ 1

¼ 1

A Boolean function of n variables may also be described by a truth table. Since each of

the Boolean variables can independently assume either a true (1) or a false (0) value, there

are 2n combinations of values for n variables. For each combination of values, a function

can have a value of either 0 or 1. A truth table displays the value of a function for all poss-

ible 2n combinations of its variables. The truth table for the function f (x, y, z) ¼ xyþ x̄zþ
ȳz̄ is shown in Table 2.1.

It should be noted that a truth table describes only one Boolean function, although this

function may be expressed in a number of ways.

The complement function f̄(x1, x2, . . . , xn) of a Boolean function f(x1, x2, . . . , xn) has a
value 1 whenever the value of f is 0 and a value 0 when f ¼ 1. The truth table of a function

can be used to derive the complement of the function by complementing each entry in

column f. For example, by replacing each entry in the column f of Table 2.1 by its

complement, we get the truth table of Table 2.2. It is the truth table for the function

TABLE 2.1 Truth Table for f (x, y, z) ¼ xyþ x̄zþ ȳ z̄

x y z f(x, y, z)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

TABLE 2.2 Truth Table for f ðx; y; zÞ ¼ xyþ x̄ zþ ȳz̄

x y z f (x, y, z)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

42 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

f(x, y, z) ¼ x̄yz̄þ xȳz, which is the complement of the function f(x, y, z) ¼ xyþ x̄zþ ȳz̄.

This can be proved by deriving the complement of the function f (x, y, z) ¼ xyþ x̄zþ ȳz̄

using DeMorgan’s theorem:

f (x, y, z) ¼ xyþ �xzþ �y�z

¼ (xy) � (�xz) � (�y�z)
¼ (�xþ �y)(xþ �z)(yþ z)

¼ (�xxþ �x�zþ �yxþ �y�z)(yþ z)

¼ (0þ �x�zþ �yxþ �y�z)(yþ z)

¼ (�x�zþ �yxþ �y�z)(yþ z)

¼ �x�zyþ �yxyþ �y�zyþ �x�zzþ �yxzþ �y�zz

¼ �xy�zþ x�yyþ y�y�zþ �x�zzþ x�yzþ �y�zz

¼ �xy�zþ x � 0þ 0 � �zþ �x � 0þ x�yzþ �y � 0
¼ �xy�zþ 0þ 0þ 0þ x�yzþ 0

¼ �xy�zþ x�yz

2.8 DERIVATION AND CLASSIFICATION OF BOOLEAN FUNCTIONS

The behavior of a digital circuit is usually specified in plain English. Therefore this

specification must be formulated into a truth table format before the circuit can actually

be designed. As an example, let us consider the behavior of a circuit.

A circuit for controlling the lighting of a room is to be designed. The lights may be

switched on or off from any of three switch points. Let the three on/off switches be X,

Y, and Z and the light on or off condition be represented f ¼ 1 or 0, respectively. The

desired circuit is shown as a box in Figure 2.6. From the word description it is possible

to tabulate the output condition (i.e., light on or off) for each combination of switch

inputs. This is shown in Table 2.3.

Note that if the light is already on, turning on a switch will turn the light off. The

truth table may be used to derive the Boolean function by extracting from the table

those combination of XYZ that make Z ¼ 1 (i.e., turn the light on). Thus

f (X, Y ,Z) ¼ �X �YZ þ �XY �Z þ X �Y �Z þ XYZ

A Boolean function in this form is known as a sum of products. A product term is a

Boolean product (i.e., AND) of complemented or uncomplemented variables. As can be

FIGURE 2.6 Lighting circuit to be designed.

2.8 DERIVATION AND CLASSIFICATION OF BOOLEAN FUNCTIONS 43

seen, the above function is the sum (OR) of the products of the variables X, Y, and Z.

The following expression is another example of the sum-of-products form of a Boolean

function:

f (A,B,C,D) ¼ AB �C �Dþ A �BCDþ �ABC �Dþ �A �BC �D

This function has four variables and four product terms.

The product-of-sums form of a Boolean function can be derived from the truth table by

extracting those combinations of input variables that produce an output of logic 0. For

example, in Table 2.3, the product terms XYZ, �XYZ,X �YZ, and XYZ̄ make the output

f ¼ 0 (i.e., do not turn the light on). Thus

f (X,Y , Z) ¼ �X �Y �Z þ �XYZ þ X �YZ þ XY �Z

By applying DeMorgan’s theorem we obtain

f (X, Y , Z) ¼ �X �Y �Z þ �XYZ þ X �YZ þ XY �Z

f (X, Y , Z) ¼ �X �Y �Z � �XYZ � X �YZ � XY �Z

¼ (X þ Y þ Z)(X þ �Y þ �Z)(�X þ Y þ �Z)(�X þ �Y þ Z)

the product-of-sums form of the Boolean function for the lighting circuit.

Either the sum-of-products or the product-of-sums form may be used to represent a

Boolean function. A product-of-sums form of a Boolean function can be obtained from

its sum-of-products form by using the following steps:

Step 1. Derive the dual of the sum-of-products expression.

Step 2. Convert the resulting product-of-sums expression into a sum-of-products expression.

Step 3. Derive the dual of the sum-of-products expression to obtain the product-of-sums

expression.

Let us convert the following sum-of-products expression into the product-of-sums form

using the above procedure:

f (X, Y , Z) ¼ XY þ X �Z þ YZ

TABLE 2.3 Truth Table for the Lighting Circuit

(Switch On 5 1; Switch Off 5 0)

X Y Z f (X, Y, Z)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

44 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

The dual of the given expression is

(X þ Y) (X þ �Z) (Y þ Z)

The corresponding sum-of-products expression is

XY þ XZ þ Y �Z

The dual of this expression is the desired product of sums:

(X þ Y)(X þ Z)(Y þ �Z)

2.9 CANONICAL FORMS OF BOOLEAN FUNCTIONS

For any Boolean function, either sum of products or product of sums, there exists a stan-

dard or canonical form. In these two alternative forms, every variable appears, in either

complemented or uncomplemented form, in each product term or sum term. A product

that has this property is known as a minterm, whereas a sum term possessing this property

is known as a maxterm.

A Boolean function composed completely of minterms is said to be in canonical

sum-of-products form. For example,

f (X, Y , Z) ¼ �X �YZ þ �XY �Z þ X �YZ þ XYZ (2:1)

is a canonical function of three variables. Every product term in this expression contains

all the variables in the function. A variable v and its complement �v in an expression are

known as literals. Note that although v and �v are not two different variables, they are

considered to be different literals.

If a Boolean function is composed completely of maxterms, then it is said to be in

canonical product-of-sums form. For example,

f (X,Y , Z) ¼ (X þ Y þ Z) (X þ �Y þ �Z) (�X þ Y þ �Z) (�X þ �Y þ Z) (2:2)

is a canonical function of three variables with four maxterms.

For a Boolean function of n variables, there are 2n minterms and 2n maxterms. For

example, minterms and maxterms for the three-variable Boolean function f (X,Y , Z) are

Minterms Maxterms

�X �Y �Z X þ Y þ Z
�X �YZ X þ Y þ �Z
�XY �Z X þ �Y þ Z
�XYZ X þ �Y þ �Z
X �Y �Z �X þ Y þ Z

X �YZ �X þ Y þ �Z
XY �Z �X þ �Y þ Z

XYZ �X þ �Y þ �Z

2.9 CANONICAL FORMS OF BOOLEAN FUNCTIONS 45

From this minterm/maxterm list we note that the complement of any minterm is a

maxterm and vice versa.
In order to simplify the notation for minterms, they are usually coded in decimal

numbers. This is done by assigning 0 to a complemented variable and 1 to an uncomple-

mented variable, which results in the binary representation of a minterm. The correspond-

ing decimal number d is derived, and the minterm is represented by md. For example, the

minterm X �Y �Z may be written 100 (¼4); hence the minterm can be denoted bym4. Thus the

Boolean function represented by Eq. (2.1) may be written

f (X, Y ,Z) ¼ m1 þ m2 þ m5 þ m7

This equation can be written in the minterm list form

f (X, Y , Z) ¼
X

m(1, 2, 5, 7)

The notation for maxterms is also simplified by coding them in decimal numbers.

However, in this case, 0 is assigned to an uncomplemented variable and 1 to a complemen-

ted variable. The maxterms are denoted by Md, where d is the decimal equivalent of the

binary number. Thus the Boolean function represented by Eq. (2.2) may be written

f (X, Y , Z) ¼ M0 �M3 �M5 �M6

The above equation can be written in the maxterm list form:

f (X, Y ,Z) ¼
Y

M(0, 3, 5, 6)

As an example, let us derive the minterm list and the maxterm list for the Boolean

function specified by the following truth table:

X Y Z f (X, Y, Z)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

The sum-of-products form of the function is

f (X, Y ,Z) ¼ XYZ
111

þ XY �Z
110

þ X �Y �Z
100

þ �XY �Z
010

þ �X �YZ
001

¼ m7 þ m6 þ m4 þ m2 þ m1

¼
X

m(1, 2, 4, 6, 7)

46 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

The product-of-sums form of the function is

f (X,Y , Z) ¼ �X �Y �Z þ �XYZ þ X �YZ

¼ �X �Y �Z � �XYZ � X �YZ

¼ X
0
þ Y

0
þ Z

0

� �
X
0
þ �Y

1
þ �Z

1

� �
�X
1
þ Y

0
þ �Z

1

� �
Maxterm code

¼ M0 �M3 �M5

¼
Y

M(0, 3, 5)

It can be seen from the example that the minterm and maxterm list of a Boolean function

can be written directly from the truth table by inspection. The minterm list is the sum-

mation of all minterms for which the function has a value 1, whereas the maxterm

list is the product of all decimal integers that are missing from the minterm list. Thus

the conversion from one canonical form to the other is straightforward.

The following function is expressed in sum-of-products form:

f (X, Y , Z) ¼
X

m(1, 3, 6, 7)

Its conversion to product-of-sums form results in

f (X, Y ,Z) ¼
Y

M(0, 2, 4, 5)

A noncanonical Boolean function can be expanded to canonical form through repeated use

of Postulate 5 (Section 2.6). Let us expand the following noncanonical sum-of-products

form of the Boolean function:

f (X, Y ,Z) ¼ XY þ X �Z þ YZ

¼ XY(Z þ �Z)þ X(Y þ �Y) �Z þ (X þ �X)YZ

¼ XYZ þ XY �Z þ XY �Z þ X �Y �Z þ XYZ þ �XYZ

Since by Theorem 2, xþ x ¼ x, the duplicated terms can be deleted from the expression.

Hence

f (X,Y , Z) ¼ XYZ
111

þ XY �Z
110

þ X �Y �Z
100

þ �XYZ
011

¼ m7 þ m6 þ m4 þ m3

¼
X

m(3, 4, 6, 7)

Similarly, the following noncanonical product-of-sums form of the Boolean function may

be expanded into the canonical form:

f (X, Y ,Z) ¼ (X þ Y) (�X þ Z)

In the first sum term Z is missing, and in the second Y is missing. Since by Theorem 2

2.9 CANONICAL FORMS OF BOOLEAN FUNCTIONS 47

x . x̄ ¼ 0, we introduce ZZ̄ ¼ 0 and YȲ ¼ 0 in the first and second sum terms, respectively.

Hence

f (X, Y ,Z) ¼ (X þ Y þ Z �Z)(�X þ Y �Y þ Z)

¼ X
0
þ Y

0
þ Z

0

� �
X
0
þ Y

0
þ �Z

1

� �
�X
1
þ Y

0
þ Z

0

� �
�X
1
þ �Y

1
þ Z

0

� �

¼ M0 �M1 �M4 �M6

¼
Y

M(0, 1, 4, 6)

The canonical sum-of-products and product-of-sums forms of a Boolean function are

unique. This property can be used to determine whether two noncanonical forms of a

Boolean function are equal or not.

As an example, let us determine whether or not the following Boolean expressions are

equal:

f (X,Y , Z) ¼ XY þ YZ þ �XZ þ �X �Y (2:3)

f (X,Y , Z) ¼ XY þ �X �Y þ �XYZ (2:4)

We can expand Eq. (2.3) to its canonical form:

f (X, Y ,Z) ¼ XY(Z þ �Z)þ (X þ �X)YZ þ �X(Y þ �Y)Z þ �X �Y(Z þ �ZÞ
¼ XYZ þ XY �Z þ XYZ þ �XYZ þ �XYZ þ �X �YZ þ �X �YZ þ �X �Y �Z

¼ XYZ þ XY �Z þ �XYZ þ �X �YZ þ �X �Y �Z

Next, we expand Eq. (2.4) to its canonical form:

f (X,Y , Z) ¼ XY þ �X �Y þ �XYZ

¼ XY(Z þ �Z)þ �X �Y(Z þ �Z)þ �XYZ

¼ XYZ þ XY �Z þ �X �YZ þ �X �Y �Z þ �XYZ

Since the canonical forms of both Eqs. (2.3) and (2.4) are identical, they represent the same

Boolean function.

2.10 LOGIC GATES

The circuit elements used to realize Boolean functions are known as logic gates. There are

AND, OR, and NOT (inverter) gates corresponding to AND, OR, and NOT operations,

respectively.

AND The AND gate produces a 1 output if and only if all outputs are 1’s. For example,

the circuit in Figure 2.7 requires that both switches X and Y, which are normally open, must

be closed before the light (L) comes on. In terms of Boolean algebra, a closed switch may

correspond to a 1 and an open switch to a 0. Similarly, the light off and on conditions may

be represented by 0 and 1, respectively. Thus the truth table for the AND gate is as shown

in Table 2.4.

48 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

The AND circuit is symbolized as

The AND gate shown above has a fan-in of two (i.e., two inputs). However, it is possible

for an AND gate to have more than two inputs; all inputs must be 1 for the output to

be 1. Under any other condition the output will be 0.

OR The OR gate produces a 1 output if at least one of the inputs is 1. This is represented

by switches in parallel, as shown in Figure 2.8. The truth table corresponding to the OR

circuit is shown in Table 2.5.

FIGURE 2.7 AND circuit.

TABLE 2.4 Truth Table for AND Circuit

X Y L

0 0 0

0 1 0

1 0 0

1 1 1

FIGURE 2.8 OR circuit.

2.10 LOGIC GATES 49

The symbolic representation for an OR gate is

Again, the OR gate shown above has two inputs; theoretically, an OR gate can have any

number of inputs. In such a gate the output will be 0 only if all the inputs are 0; otherwise

the output will be 1.

NOT The NOT gate produces an output of 1 when the input is 0, and an output of 0 when

the input is 1. The circuit representation of the NOT gate is shown in Figure 2.9. If the

switch X is closed, the light remains on. In terms of Boolean algebra this means if

X ¼ 0, f ¼ 1). When the switch is operated (i.e., X ¼ 1) the circuit is broken, causing

the light to be off (i.e., f ¼ 0). The truth table of the NOT circuit is shown in

Table 2.6. The NOT gate is also known as an inverter and is represented by the following

symbol:

TABLE 2.5 Truth Table for OR Circuit

X Y L

0 0 0

0 1 1

1 0 1

1 1 1

FIGURE 2.9 NOT circuit.

TABLE 2.6 Truth Table for NOT Circuit

X L

0 1

1 0

50 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

The three basic gates give rise to two further compound gates: the NOR gate and the

NAND gate. A NOR gate is formed by combining a NOT gate with an OR gate

(Fig. 2.10). The truth table for the NOR gate is shown in Table 2.7. It can be seen from

the truth table that if a 1 appears at any input, the output will be 0. The output is 1 if

and only if both inputs are 0 (i.e., L ¼ XY). Thus a NOR gate may also be formed by

combining two NOT gates with an AND gate as shown in Figure 2.11.

A NAND gate is formed by combining a NOT gate with an AND gate (Fig. 2.12). The

truth table for the NAND gate is shown in Table 2.8. It can be seen from the truth table that

the output of the NAND gate will be 1 if at least one of the inputs is 0. The output is 0 if and

only if the inputs are 1; that is,

L ¼ X � Y

By DeMorgan’s law,

L ¼ �X þ �Y

Thus a NAND gate may also be formed by combining two NOT gates with an OR gate, as

shown in Figure 2.13.

So far we have discussed five logic gates: OR, AND, NOT, NOR, and NAND. These

gates can be used to design any digital circuit. Two additional types of gates are also

frequently used in digital circuit design; they are exclusive-OR (EX-OR) and exclusive-

NOR (EX-NOR) gates.

FIGURE 2.10 NOR gate.

TABLE 2.7 Truth Table for NOR Gate

X Y L

0 0 1

0 1 0

1 0 0

1 1 0

FIGURE 2.11 Alternative form of NOR gate.

2.10 LOGIC GATES 51

The EX-OR gate produces a 1 output when either of the inputs is 1, but not both. This is

different from the traditional OR gate, which produces a 1 output when either one or both

of the inputs are 1. The truth table for an EX-OR gate is shown in Table 2.9.

In order to distinguish an EX-OR from the conventional or inclusive OR, a different

symbol (�) is used for an EX-OR operation.

The Boolean function corresponding to the truth table for the EX-OR gate is

f (X, Y) ¼ �XY þ X �Y ¼ X�Y

thus an EX-OR gate can be formed from a combination of AND, OR, and NOT gates as

shown in Figure 2.14.

The EX-OR gate is symbolized as

FIGURE 2.12 NAND gate.

TABLE 2.8 Truth Table for NAND Gate

X Y L

0 0 1

0 1 1

1 0 1

1 1 0

FIGURE 2.13 Alternative form of NAND gate.

TABLE 2.9 Truth Table for EX-OR Gate

X Y L

0 0 0

0 1 1

1 0 1

1 1 0

52 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

An EX-NOR gate can be formed by combining a NOT gate with an EX-OR gate

(Fig. 2.15). The truth table for an EX-NOR gate is shown in Table 2.10. It can be seen

from the truth table that the output of the EX-NOR gate is 1 only when both the inputs

are either 0 or 1. For this reason an EX-NOR gate is also known as an equivalence or

coincidence gate. It is represented by �.

EXERCISES

1. Let S ¼ {a, b, c}. What are the subsets of S?

2. Consider the following sets: W ¼ fa, b, cg, Y ¼ fa, bg, and Z ¼ fcg.
a. Which of these sets are subsets of others or of themselves?

b. How many proper subsets does each set have?

FIGURE 2.15 EX-NOR gate.

TABLE 2.10 Truth Table for EX-NOR Gate

X Y L

0 0 1

0 1 0

1 0 0

1 1 1

FIGURE 2.14 EX-OR gate.

EXERCISES 53

3. Write a specification by properties for each of the following sets:

a. f4, 8, 12, 16, . . .g
b. f3, 4, 7, 8, 11, 12, 15, 16, 19, 20, . . .g
c. f3, 13, 23, 33, . . .g

4. Let W ¼ fw, x, yg, X ¼ fy, dg, and Y ¼ fy, e, f g. Determine the following:

a. W < (X > Y)

b. W > X > Y

c. W2 X

5. Describe in words the following sets:

a. fx j x is oddly divisible by 3 and 25 , xg
b. fx j x2 – x – 6 ¼ 0g
c. f5, 6, (2, 3)g

6. If A # B, what is B < A? What is A > B?

7. If C and D are disjoint, what is C > D? What is C2D?

8. Determine which of the properties reflexive, transitive, and symmetric apply to the

following relations between integers x and y.

a. x � y

b. x , y

c. x ¼ y

9. Let S ¼ f 1, 2, 3, 4, . . . ,14, 15g, and let a R bmean a ¼ bmod n, where n is a positive

integer.

a. Prove R is an equivalent relation on S.

b. List the equivalence classes into which R partitions S.

10. Let S ¼ f1, 2, 3, 4, 5, 6, 7, 8, 9, 10g and let

P1 ¼ f1, 2, 3, 4g P2 ¼ f5, 6, 7g
P3 ¼ f4, 5, 7, 9g P4 ¼ f4, 8, 10g
P5 ¼ f8, 9, 10g P6 ¼ f1, 2, 3, 6, 8, 10g

Which of the following are partitions of S?

a. fP1, P2, P5g
b. fP1, P3, P5g
c. fP3, P6g
d. fP4, P3, P2g

11. Let P1 ¼ (1, 2)(4, 5)(6, 7)(3, 8, 9) and P2 ¼ (4, 5, 7)(1, 2)(3, 9)(8). Find

a. P1þ P2

b. P1
. P2

12. Let A ¼ the set of people belonging to a sports club. Let a R b if and only if a and b

play tennis; let a S b if and only if a and b play golf. Determine R > S. (R and S are

relations.)

54 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

13. In the directed graph shown below, identify the following:

a. The set of vertices

b. The set of arcs

14. Find the number of distinct cycles of length 3 in the following graph. Are there any

cycles of length 4 and length 5?

15. The set of vertices (V) and the set of edges (E) for three separate graphs are given

below. In each case determine if the graph is a tree, and if it is, find the root.

G1: V ¼ {a, b, c, d, e, f } E ¼ {a� d, b� c ,c� a, d � e}

G2: V ¼ {a, b, c, d, e, f } E ¼ {a� b, c� e, f � a, f � c, f � d}

G3: V ¼ {a, b, c, d, e, f } E ¼ {b� a, b� c, c� d, d � e, d � f }

16. Simplify the following expressions using the postulates and theorems of Boolean

algebra.

a. abþ �acþ �ab�c

b. (aþ �c)þ abcþ ac �d þ cd

c. (�a(bþ �c))(aþ �bþ �c)(abc)

d. (aþ b)(aþ c)b

e. �a �b(acþ �b)þ (aþ b)(a�b �cþ �abc)

17. Derive the dual of the following Boolean functions:

a. f (a, b, c) ¼ �a �bcþ b�cþ ac

b. f (a, b, c, d) ¼ (�a �cþ d)(abþ �c)(�bþ d)

c. f (a, b, c, d, e) ¼ (a�cþ bd þ e)(�aþ de)(aþ �d �e)(bþ �c)

EXERCISES 55

18. Prove that the complement of the EX-OR function is equal to its dual.

19. Find the complements of the following Boolean functions:

a. f (a, b, c) ¼ ab�cþ a�bcþ �ac

b. f (a, b, c) ¼ ab� c� �b �c

c. f (a, b, c, d) ¼ (b�cþ �ad)(�b �d þ ac)(abþ cd)

20. Represent each of the following circuits using AND, OR and NOT gates. Derive the

truth table for each of the following circuits.

56 FUNDAMENTAL CONCEPTS OF DIGITAL LOGIC

21. Derive the truth tables for the following gates:

a. 3-input NAND

b. 3-input NOR

22. A 3-input EX-OR gate can be formed as shown:

Derive the truth table for the gate.

23. A 4-input AOI (AND–OR–INVERT) gate is shown:

Derive the truth table for the gate.

24. Prove that the NAND function can be implemented as shown:

EXERCISES 57

3 Combinational Logic Design

3.1 INTRODUCTION

Logic circuits are classified into two categories: combinational and sequential. In a

combinational logic circuit the output is a function of the present input only. It does not

depend on the past values of the inputs. If the output is a function of past inputs

(memory) as well as the present inputs, then the circuit is known as a sequential logic

circuit. This chapter focuses on combinational circuit design.

The main objective of combinational circuit design is to construct a circuit utilizing the

minimum number of gates and inputs from the behavioral specification of the circuit. The

first step in the design process is to construct a truth table of the circuit from its specifica-

tion. The sum-of-products or product-of-sums form of the Boolean expression is then

derived from the truth table and simplified where possible. The simplified expression is

then implemented into the actual circuit by using appropriate gates.

Let us consider the design of a combinational circuit to meet the following specifica-

tion. “The circuit has four inputs and one output. The output will be 1 if any two or

more inputs are 1; otherwise the output will be 0.” We begin by constructing the truth

table that shows all the possible input combinations and the resulting output

(Table 3.1). It is assumed that A, B, C, and D are the four inputs to the circuit and Z is

the output. Writing down those input combinations that produce an output of 1, we

obtain the canonical sum-of-products Boolean expression for the circuit:

Z ¼ �A �BCDþ �AB �CDþ �ABC �Dþ �ABCDþ A �BC �Dþ A �B �CD

þ A �BCDþ ABC �Dþ AB �C �Dþ ABCDþ AB �CD

The next step in the design process is to simplify the sum-of-products expression (if

possible). The expression can be rewritten in the following form, introducing certain

redundant terms (underlined):

Z ¼ �A �BCDþ �ABCDþ A �BCDþ ABCDþ AB �C �Dþ AB �CDþ ABCD

þ ABC �Dþ �AB �CDþ AB �CDþ �ABCDþ ABCDþ A �B �CDþ A �BCD

þ AB �CDþ ABCDþ �ABC �Dþ �ABCDþ ABC �Dþ ABCDþ A �BC �D

þ A �BCDþ ABC �Dþ ABCD

59

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

Z ¼ (�A �Bþ �ABþ A �Bþ AB)CDþ AB(�C �Dþ �CDþ CDþ C �D)þ BD(�A �C

þ A �C þ �AC þ AC)þ AD(�B �C þ �BC þ B �C þ BC)þ BC(�A �D

þ �ADþ A �Dþ AD)þ AC(�B �Dþ �BDþ B �Dþ BD)

¼ CDþ ABþ BDþ ADþ BC þ AC

Note that the inclusion of redundant terms does not affect the expression, since by

Theorem 2 (Chapter 2) of Boolean algebra, xþ x ¼ x.

As can be seen from the final expression, these additional terms helped considerably in

simplifying the original Boolean expression. It can be implemented in AND and OR gates

to give the required combinational logic circuit as shown in Figure 3.1.

3.2 MINIMIZATION OF BOOLEAN EXPRESSIONS

The formal specification of combinational logic circuits leads to canonical Boolean

expressions. In most cases, these expressions must be simplified in order to reduce the

number of gates required to implement the corresponding circuits. There are two steps

that may be used to simplify a Boolean expression:

Step 1. Reduce the number of terms in the expression.

Step 2. Reduce the number of literals in the expression.

The first step corresponds to the reduction of the number of gates; the second step corre-

sponds to the reduction of inputs to the gates in the resulting combinational logic circuit.

TABLE 3.1 A Truth Table

Input Output

A B C D Z

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

60 COMBINATIONAL LOGIC DESIGN

As an illustration, let us consider the minimization of the following Boolean

expression:

Z ¼ ABDþ AB �Dþ �AC þ �ABC þ ABC

The expression has 5 product terms and 14 literals. Direct implementation of the

expression would require 5 AND gates and 1 OR gate, assuming that the complemented

variables are already available. Figure 3.2a shows the direct implementation of the

expression.

FIGURE 3.2 Circuit implementation of sum-of-products expression.

FIGURE 3.1 Implementation of the Boolean expression Z ¼ CDþ ABþ BDþ ADþ BCþ AC.

3.2 MINIMIZATION OF BOOLEAN EXPRESSIONS 61

The expression can be simplified in the following way:

Z ¼ ABDþ AB �Dþ �AC þ �ABC þ ABC

¼ AB(Dþ �D)þ �AC(1þ B)þ ABC

¼ ABþ �AC þ ABC (by Postulate 5 and Theorem 3, Chapter 2)

¼ AB(1þ C)þ �AC

¼ ABþ �AC

The minimized expression has two product terms and four literals. The variableD has been

found to be redundant and has been eliminated. The minimized circuit is shown in

Figure 3.2b.

So far we have considered the minimization of the sum-of-products form of the

Boolean expression. The product-of-sums expressions can be minimized in a similar

manner. For example, let us minimize the following expression:

Z ¼ (Aþ Bþ C)(Aþ �Bþ C)(Aþ �Bþ �C)(�Aþ �Bþ �C)

We first take the complement of the product-of-sums expression,

Z ¼ (Aþ Bþ C)(Aþ �Bþ C)(Aþ �Bþ �C)(�Aþ �Bþ �C)

¼ �A �B �C þ �AB �C þ �ABC þ ABC

¼ �A �C(�Bþ B)þ (�Aþ A)BC

¼ �A �C þ BC

The next step is to take the complement of the resulting sum-of-products expression,

�Z ¼ �A �C þ BC

Z ¼ �A �C � BC
¼ (Aþ C)(�Bþ �C)

Thus

Z ¼ (Aþ Bþ C)(Aþ �Bþ C)(Aþ �Bþ �C)(�Aþ �Bþ �C)

¼ (Aþ C)(�Bþ �C)

The original product-of-sums expression had 4 sum terms and 12 literals, whereas the

minimized expression has 2 sum terms and 4 literals. Figure 3.3a and 3.3b show the

implementations of the original and minimized expressions, respectively.

Sometimes the dual of an expression provides and easier way of minimizing a

product-of-sums expression. The expression to be minimized is first converted to its

62 COMBINATIONAL LOGIC DESIGN

dual. The dual expression is minimized and then converted to its dual. For example, the

Boolean expression

Z ¼ (�Aþ B)(�Aþ C)(�Bþ �C)

can be minimized by simplifying its dual expression,

Zd ¼ �ABþ �AC þ �B �C

¼ �A(Bþ C)þ �B �C

The dual of Zd is

Z ¼ (�Aþ BC)(�Bþ �C)

¼ �A �Bþ �A �C þ BC � �Bþ BC � �C
¼ �A �Bþ �A �C

¼ �A(�Bþ �C)

3.3 KARNAUGH MAPS

Boolean expressions can be graphically depicted and simplified with the use of Karnaugh

maps. In a Karnaugh map 2n possible minterms of an n-variable Boolean function are rep-

resented by means of separate squares or cells on the map. For example, the Karnaugh map

of two variables A and B will consist of 22 squares—one for each possible combination of

A and B as shown in Figure 3.4. Each square of the Karnaugh map is designated by a

decimal number written on the right-hand upper corner of the square. The decimal

number corresponds to the minterm number of the Boolean function.

For a Boolean function of n variables, the Karnaugh map is a 2n/2 � 2n/2 square array if

n is even. Thus if n ¼ 2, the Karnaugh map is a 2 � 2 array as shown in Figure 3.4. If n is

FIGURE 3.3 Circuit implementation of product-of-sums expression.

3.3 KARNAUGH MAPS 63

odd, the Karnaugh map is a 2(n21)/2 � 2(nþ1)/2 rectangular array. Thus for a three-variable

function, the Karnaugh map is a 2 � 4 array is shown in Figure 3.5. Figure 3.6 shows the

Karnaugh map for a four-variable Boolean function, which contains 16 squares.

Boolean expressions may be plotted on Karnaugh maps if they are expressed in cano-

nical form. For example, the following Boolean expression may be represented by the

Karnaugh map shown in Figure 3.7.

Z(A,B,C) ¼ A �B �C þ �ABC þ A �BC þ �AB �C

Note that 1’s are entered in cells 4, 3, 5, and 2, which correspond to the minterms

A �B �C, �ABC, A �BC, and �AB �C respectively; 0’s are entered in all other cells.

FIGURE 3.5 Karnaugh map for a three-variable Boolean function.

FIGURE 3.6 Karnaugh map for a four-variable Boolean function.

FIGURE 3.4 Karnaugh map for a two-variable Boolean function.

FIGURE 3.7 Karnaugh map for Z ¼ AB̄C̄þ ĀBCþ AB̄Cþ ĀBC̄.

64 COMBINATIONAL LOGIC DESIGN

A further simplification is frequently made on Karnaugh maps by representing zeros by

blank squares. Thus, a blank square means that the corresponding minterm is not included

in the Boolean function. For example, the function

Z(A,B,C,D) ¼ �A �B �C �Dþ �A �BC �Dþ �A �BCDþ �AB �CDþ A �B �CDþ A �BCD

¼ Sm(0,2,3,5,9,11)

can be plotted on a Karnaugh map as shown in Figure 3.8.

The main feature of a Karnaugh map is that each square on the map is logically adjacent

to the square that is physically adjacent to it. In other words, minterms corresponding to

physically adjacent squares differ by a single variable. For example, in Figure 3.8 squares

9 and 11 are physically adjacent; square 9 represents minterm A �B �CD and square 11 rep-

resents A �BCD, which are the same except in variable C. It should be noted that the first

and last rows and the first and last columns in a Karnaugh map are also logically adjacent.

For example square 3 (minterm �A �BCD) and square 11 (minterm A �BCD) are logically adja-
cent; similarly, square 0 (minterm �A �B �C �D) and square 2 (minterm �A �BC �D) are also adjacent.

Boolean functions on the Karnaugh maps can be simplified by using the property of

adjacency. Thus, two minterms that are similar in all but one of their variables an be

replaced by their common factor.

Example 3.1 The Boolean functions represented by the Karnaugh map of Figure 3.8 can

be reduced to

Z(A,B,C,D) ¼ �A �B �Dþ �BCDþ A �BDþ �AB �CD

Five of the six minterms that make up Z combine into three pairs:

m0 þ m2 ¼ �A �B �C �Dþ �A �BC �D ¼ �A �B �D

m3 þ m11 ¼ �A �BCDþ A �BCD ¼ �BCD

m9 þ m11 ¼ A �B �CDþ A �BCD ¼ A �BD

Minterm 5 cannot be combined with any other minterm. Note that minterm 11 has been

combined with two separate minterms, 3 and 9; this is possible because of Theorem 2

FIGURE 3.8 Karnaugh map for Z ¼ Sm(0, 2, 3, 5, 9, 11).

3.3 KARNAUGH MAPS 65

(Chapter 2). Thus a cell may be used in as many pairings as desired. The paintings of the

minterms in the Karnaugh map for Z are shown by the loops in Figure 3.9. These loops

indicate which two minterms have been combined to produce a simple term. As can be

seen in Figure 3.9, when combining two minterms within a loop, the variable that

changes from 0 to 1, or vice versa, is eliminated from the minterms. Thus if we

combine minterms 3 and 11, the variable A is eliminated because it changes from 0 to

1. Similarly, when we combine minterms 9 and 11, the variable C is eliminated, and com-

bining minterms 0 and 2 eliminates the variable C. In other words, the variables that are

constant for a loop define the product term corresponding to the loop.

So far, we have considered only the grouping of two cells that are adjacent, either

vertically or horizontally. Large numbers of cells can also be grouped, provided the

number of cells in the group is a power of 2 (i.e., 4 cells, 8 cells, etc.). In fact, the

larger the group of cells, the fewer will be the number of literals in the resulting

product term. To illustrate, let us plot the four-variable Boolean function f(A, B, C,

D) ¼ Sm(0, 2, 5, 7, 8, 10, 13, 15) on the Karnaugh map (Fig. 3.10).

There are two groups, each containing four cells on the map, as shown by the loops in

Figure 3.11. We have enclosed the terms �AB �CD; �ABCD, AB �CD, and ABCD; these

combine to form �ABD(C þ �C) and ABD(�C þ C), the results of which may then be combined

to give BD(�Aþ A) ¼ BD. Now, grouping terms 0 and 8 together and terms 2 and 10 together

eliminated the variable A from each pair. As can be seen in the map (Fig. 3.11), these four

terms reduce to the two terms �B �C �D and �BC �D. These two terms, which represent combined

minterms 0 and 8, and 2 and 10, respectively, can be grouped to eliminated the variable C,

FIGURE 3.9 Looping of adjacent squares.

FIGURE 3.10 Karnaugh map for f ¼ Sm(0, 2, 5, 7, 8, 10, 13, 15).

66 COMBINATIONAL LOGIC DESIGN

thus reducing the four terms to one terms, �B �D. Note that four terms have been combined to

eliminate two liberals. Thus the reduced form of the above Boolean function is

f (A,B,C,D) ¼ BDþ �B �D

Example 3.2 Simplify the following four-variable function:

f (A,B,C,D) ¼ Sm(0, 1, 4, 5, 7, 8, 9, 12, 13, 15)

The Karnaugh map for the function is shown in Figure 3.12. The reduced form of the

function can be derived directly from the Karnaugh map:

f (A,B,C,D) ¼ �C þ BD

In four-variable Karnaugh maps, the top and bottom rows are logically adjacent and

so are the left and right columns. We saw one example of grouping four cells that were

not physically adjacent (Fig. 3.11). Figure 3.13 shows a few more left–right column,

top–bottom row adjacencies.

FIGURE 3.11 Looping of squares.

FIGURE 3.12 Karnaugh map for the logic function of Example 3.2.

3.3 KARNAUGH MAPS 67

3.3.1 Don’t Care Conditions

In certain Boolean functions it is not possible to specify the output for some input combi-

nations. It means that these particular input combinations have no relevant effect on the

output. These input combinations or conditions are called don’t care conditions, and the

minterms corresponding to these input combinations are called don’t care terms. Functions

that include don’t care terms are said to be incompletely specified functions. The don’t care

minterms are labeled d instead of m.

Example 3.3 Let us consider the following function,

f (A,B,C) ¼ Sm(0, 4, 7)þ d(1, 2, 6)

where 1, 2, and 6 are the don’t care terms. Since the don’t care combinations cannot occur,

the output corresponding to these input combinations can be assigned either 0 or 1 at will.

It is often possible to utilize the don’t care terms to aid in the simplification of Boolean

functions. For example, the Karnaugh map resulting from the above Boolean function is

as shown in Figure 3.14a. Note that the simplified function

f (A,B,C)þ �C þ AB

FIGURE 3.13 Examples of adjacencies in Karnaugh maps.

68 COMBINATIONAL LOGIC DESIGN

is obtained by grouping minterms 0 and 4 with don’t cares 2 and 6, and grouping minterm

7 with don’t care 6. Don’t care 2 is not used.

If the don’t care terms are not included in the minimization, only minterms 0 and 4 can

be grouped, as shown in Figure 3.14b. In that case, the function simplifies to

f (A,B,C) ¼ �B �C þ ABC

which contains more literals than the simplified function obtained by considering the don’t

care terms.

The best way to utilize don’t cares in minimizing Boolean functions is to assume don’t

cares to be 1 if that results in grouping a larger number of cells on the map than would be

possible otherwise. In other words, only those don’t cares that aid in the simplification of a

function are taken into consideration.

Example 3.4 Let us minimize the following Boolean function using a Karnaugh map:

f (A,B,C,D) ¼ Sm(0, 1, 5, 7, 8, 9, 12, 14, 15)þ d(3, 11, 13)

The Karnaugh map is shown in Figure 3.15. From this the minimized function is given by

f (A,B,C;D) ¼ Dþ ABþ �B �C

Again, it is emphasized that while considering don’t care terms on Karnaugh maps, it is

not necessary to use all the terms (or even one term), unless their inclusion in a group

would assist the minimization process.

FIGURE 3.14 (a) Minimization using don’t cares, and (b) minimization without using don’t cares.

FIGURE 3.15 Karnaugh map for the function in Example 3.4.

3.3 KARNAUGH MAPS 69

3.3.2 The Complementary Approach

Sometimes it is more convenient to group the 0’s on a Karnaugh map rather than the 1’s.

The resultant sum of products is the complement of the desired expression. This sum of

products is then complemented by using DeMorgan’s theorem, which results in a

minimum product-of-sums expression. This is known as the complementary approach.

Example 3.5 Let us consider the three-variable Karnaugh map shown in Figure 3.16.

The grouping of 0’s yields the function

f (A,B,C) ¼ A �C þ �BC

Hence f ¼ �f ¼ A �C þ �BC ¼ (�Aþ C)(Bþ �C):

Occasionally the complement function gives a better minimization.

Example 3.6 The minimized form of the Boolean function

f (A,B,C;D) ¼ Sm(0, 1, 2, 4, 5, 6, 8, 9, 10)

is f ¼ �A �C þ �B �C þ �A �Dþ �B �D; this is derived from the Karnaugh map of Figure 3.17a.

The complement function is derived by grouping the 0’s in the Karnaugh map (Fig. 3.17b).

Thus the complement function is

�f ¼ ABþ CD

FIGURE 3.16 Karnaugh map for a three-variable function.

FIGURE 3.17 (a) Groupings of ones, (b) groupings of zeroes.

70 COMBINATIONAL LOGIC DESIGN

Inverting the complement function, we find

�f ¼ f ¼ ABþ CD ¼ (�Aþ �B)(�C þ �D)

The implementation of the minimized sum-of-products and the product-of-sums functions

are shown in Figure 3.18a and 3.18b, respectively. The product-of-sums form gives a

simpler solution in this case. Thus both the simplified sum-of-products and the

product-of-sums forms for a given function must be examined before a decision can be

made as to which form will be cheaper to implement.

The complementary approach may also be utilized to expand a general product-of-sums

function to canonical form. Let us illustrate this by obtaining the canonical

product-of-sums form for the function

f (A,B,C) ¼ (Aþ C)(Aþ Bþ �C)(�Aþ B)

The complement of the function is

�f ¼ �A �C þ �A �BC þ A �B

which leads to the Karnaugh map shown in Figure 3.19. The canonical form of �f is

�f ¼ �A �B �C þ �A �BC þ �AB �C þ A �B �C þ A �BC

FIGURE 3.18 Examples of adjacencies in Karnaugh.

FIGURE 3.19 Examples of adjacencies in Karnaugh.

3.3 KARNAUGH MAPS 71

Thus the canonical product-of-sums form for f is

f ¼ �f ¼ �A �B �C þ A �B �C þ �A �BC þ A �BC þ �AB �C

¼ (Aþ Bþ C)(�Aþ Bþ C)(Aþ Bþ �C)(�Aþ Bþ �C)(Aþ �Bþ C)

A Karnaugh map with four input variables is quite straightforward. With five or more vari-

ables, however, the map becomes complicated and the adjacencies are difficult to recog-

nize. However, it is possible to minimize a five-variable Boolean function with a

four-variable Karnaugh map.

Example 3.7 Let us minimize the Boolean function

f (A,B,C,D,E) ¼ Sm(4, 5, 10, 11, 15, 18, 20, 24, 26, 30, 31)

þ d(9, 12, 14, 16, 19, 21, 25)

The Karnaugh map for the function is shown in Figure 3.20. The five variables are divided

between two four-variable maps. Note that the difference between the A ¼ 0 map and the

A ¼ 1 map is that for A ¼ 0, the entry in cell B �CDE is 1, whereas the corresponding entry

is 0 in the A ¼ 1 map. In addition, the entries in cells �B �C �D �E, �B �CD �E, and B �C �D �E in the

FIGURE 3.20 Examples of adjacencies in Karnaugh.

FIGURE 3.21 Equivalent Karnaugh map for Figure 3.20a and 3.20b.

72 COMBINATIONAL LOGIC DESIGN

A ¼ 1 map are –, 1, and 1, respectively, whereas the corresponding entries in the A ¼ 0

map are 0’s. Thus the four-variable Karnaugh map with �A in cells B �CDE and A in

cells �B �CD �E and B �C �D �E shown in Figure 3.21 is equivalent to the maps of Figure 3.20.

The map is then reduced in two steps.

Step 1. Group all terms employing 1’s and –’s. The letter variable terms are ignored at

this step. Figure 3.22 shown the relevant groupings on the map of Figure 3.21.

Step 2. Group the letter variable(s) with the adjacent 1’s and –’s. The resulting terms are

then ORed with the terms derived in step 1 to obtain the minimized function (shown in

Figure 3.23).

3.4 QUINE–MCCLUSKEY METHOD

The Karnaugh map approach is not suitable for minimizing Boolean functions having

more than six variables. For functions with a large number of variables, a tabular

method known as the Quine–McCluskey method is much more effective. The method

consists of two steps:

1. Generation of all prime implicants.

2. Selection of a minimum subset of prime implications, which will represent the orig-

inal function.

FIGURE 3.23 f (A, B, C, D, E) ¼ AC̄Ēþ B̄CD̄þ BCDþ ĀBD.

FIGURE 3.22 f(A, B, C, D, E) ¼ B̄CD̄þ BCD.

3.4 QUINE–MCCLUSKEY METHOD 73

A prime implicant is a product term that cannot be combined with any other product term

to generate a term with fewer literals than the original term.

As an example, consider a Boolean function

f (A,B,C) ¼ ABC þ AB �C þ A �BC þ �ABC þ �A �B �C

which after minimization becomes

f (A,B,C) ¼ ABþ BC þ AC þ �A �B �C

The product terms AB, BC, AC, and �A �B �C are all prime implicants because none of them

can be ombined with any other term in the function to yield a term with fewer literals.

A prime implicants is called an essential prime implicant if it covers at least one

minterm that is not covered by any other prime implicant of the function.

Example 3.8 Let us minimize the following Boolean function:

f (A,B,C,D) ¼ Sm(1, 4, 5, 10, 12, 13, 14, 15)

The Karnaugh map for the function is shown in Figure 3.24.

The prime implicants for the function are B �C, AB, �A �CD, and AC �D. The minimized

function is

f (A, B, C, D) ¼ �A �CDþ B �C þ ABþ AC �D

The prime implicant �A �C �D is an essential prime implicant because it covers minterm
�A �B �CD, which is not covered by any other prime implicant. Similarly, only AC �D covers

minterm A �BC �D, B �C covers �AB �C �D, and AB covers ABCD; in other words, AC �D, B �C,
and AB are also essential prime implicants.

The Quine–McCluskey method for minimization can be formulated as follows:

Step 1. Tabulate all the minterms of the function by their binary representations.

Step 2. Arrange the minterms into groups according to the number of 1’s in their binary

representation. For example, if the first group consists of minterms with n 1’s, the

FIGURE 3.24 Examples of adjacencies in Karnaugh.

74 COMBINATIONAL LOGIC DESIGN

second group will consist of minterms with (nþ 1) 1’s and so on. Lines are drawn

between different group to simplify identification.

Step 3. Compare each minterm in a group with each of the minterms in the group below it.

If the compared pair is adjacent (i.e., if they differ by one variable only), they are com-

bined to form a new term. The new term has a dash in the position of the eliminated

variable. Both combining terms are checked off in the original list indicating that

they are not prime implicatnts.

Step 4. Repeat the above step for all groups of minterms in the list. This results in a new

list of terms with dashes in place of eliminated variables.

Step 5. Compare terms in the new list in search for further combinations. This is done by

following step 3. In this case a pair of terms can be combined only if they have dashes in

the same positions. As before, a term is checked off if it is combined with another. This

step is repeated until no new list can be formed. All terms that remain unchecked are

prime implications.

Step 6. Select a minimal subset of prime implicants that cover all the terms of the original

Boolean function.

Example 3.9 Let usminimize the followingBoolean function using theQuine–McCluskey

procedure:

f (A,B,C,D,E) ¼ Sm(0, 1, 2, 9, 11, 12, 13, 27, 28, 29)

The minterms are first tabulated according to step 1.

Minterm A B C D E

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 0

9 0 1 0 0 1

11 0 1 0 1 1

12 0 1 1 0 0

13 0 1 1 0 1

27 1 1 0 1 1

28 1 1 1 0 0

29 1 1 1 0 1

The minterms are then grouped according to the number of 1’s contained in each term, as

specified in step 2. This results in list 1 of Figure 3.25. In list 1, terms of group 1 are com-

bined with those of group 2, terms of group 2 are combined with those of group 3, and so

on, using step 3. For example, 0(00000) is adjacent to 1(00001). So they are combined to

form 0000– which is the first term in list 2. Both combined terms are checked off in

list 1. Since 0(00000) is also adjacent to 2(00010) they are combined to form the term

000–0, which is also entered in list 2. A line is then drawn under the two terms in list

2 in order to identify them as a distinct group.

The next step is to compare the two terms in group 2 of list 1 with the two terms in

group 3. Only terms 1(00001) and 9(01001) combine to give 0–001; all other terms

3.4 QUINE–MCCLUSKEY METHOD 75

differ in more than one variable and therefore do not combine. As a result, the second

group of list 2 contains only one combination. The two terms in group 3 are now compared

with the three terms in group 4. Terms 9(01001) and 11(01011) combine to give 010–1,

terms 9(01001) and 13(01101) combine to give 01–01, terms 12(01100) and 13(01101)

combine to give 0110–, and terms 12(01100) and 28(11100) combine to give –1100.

Thus the third group of list 2 contains four terms. Finally, the three terms in group 4 of

list 1 are compared with the two terms in group 5. Terms 13(01101) and 29(11101)

combine to give –1101, terms 11(01011) and 27(11011) combine to give –1011, and

terms 28(11100) and 29(11101) combine to give 1110–. Therefore the fourth group of

list 2 contains three terms.

The process of combining terms in adjacent groups is continued for list 2. This results in

list 3. It can be seen in Figure 3.25 that certain terms cannot be combined further in list

2. These correspond to the prime implicants of the Boolean function and are labeled

PI1, . . . , PI7.
The final step of the Quine–McCluskey proedure is to find a minimal subset of the

prime implicants which can be used to realize the original function. The complete set

of prime implicants for the given function can be derived from Figure 3.25; are

(BC �D, �A �B �C �D, �A �B �C �E, �A �C �DE, �AB �DE, �AB �CE, B �CDE)

In order to select the smallest number of prime implicants that account for all the original

minterms, a prime implicant chart is formed as shown in Figure 3.26. A prime implicant

FIGURE 3.25 Determination of prime implicants.

FIGURE 3.26 Prime implicant chart.

76 COMBINATIONAL LOGIC DESIGN

chart has a column for each of the original minterms and a row for each prime implicant.

For each prime implicant row, an X is placed in the columns of those minterms that are

accounted for by the prime implicant. For example, in Figure 3.26 prime implicant PI1,

comprising minterms 12, 13, 28, and 29, has X’s in columns 12, 13, 28, and 29. To

choose a minimum subset of prime implicants, it is first necessary to identify the essential

prime implicants. A column with a single X indicates that the prime implicant row is the

only one covering the minterm corresponding to the column; therefore the prime implicant

is essential and must be included in the minimized function. Figure 3.26 has three essential

prime implicants, and they are identified by asterisks. The minterms covered by the essen-

tial prime implicants are marked with asterisks.

The next step is to select additional prime implicants that can cover the remaining

column terms. This is usually done by forming a reduced prime implicant chart that con-

tains only the minterms that have not been covered by the essential prime implicants.

Figure 3.27 shows the reduced prime implicant chart derived from Figure 3.26.

Prime implicant PI4 covers the minterms 1 and 9. Therefore the minimum sum-

of-products equivalent to the original function is

f (A,B,C,D,E) ¼ PI1 þ PI3 þ PI4 þ PI7

¼ �110�þ 000� 0þ 0� 001þ�1011

¼ BC �Dþ �A �B �C �E þ �A �C �DE þ B �CDE

For some functions, the prime implicant chart may not contain any essential prime

implicants. In other words, in every column of a prime implicant chart there are two or

more X’s. Such a chart is said to be cyclic.

Example 3.10 The following Boolean function has a cyclic prime implicant chart:

f (A,B,C) ¼ Sm(1, 2, 3, 4, 5, 6)

The prime implicants of the function can be derived as shown in Figure 3.28. The resulting

prime implicant chart as shown in Figure 3.29 is cyclic; all columns have two X’s. As can

FIGURE 3.27 Examples of adjacencies in Karnaugh.

FIGURE 3.28 Derivation of prime implicants.

3.4 QUINE–MCCLUSKEY METHOD 77

be seen, there is no simple way to select the minimum number of prime implicants from

the cyclic chart. We can proceed by selecting prime implicant PI1, which covers minterms

1 and 3. After crossing out row PI1 and columns 1 and 3, we see that PI4 and PI5 cover the

remaining columns (Fig. 3.30). Thus the minimum sum-of-products form of the given

Boolean function is

f (A,B,C) ¼ PI1 þ PI4 þ PI5

¼ �AC þ B �C þ A �B

This is not a unique minimum sum of products for the function. For example,

f (A,B,C) ¼ PI6 þ PI2 þ PI3

¼ A �C þ �BC þ �AB

is also a minimal form of the original function. It can be verified from the Karnaugh map of

the function (Fig. 3.31) that these are the minimum sum-of-products forms. Note that each

minterm in the Karnaugh map can be grouped within two different loops, which ndicates

that two different prime implicants can over the same minterm.

3.4.1 Simplification of Boolean Function with Don’t Cares

The Quine–McClusky procedure for minimizing Boolean functions containing don’t care

minterms is similar to the conventional procedure in that all the terms, including don’t

cares, are used to produce the complete set of prime implicants. However, don’t care

terms are not listed as column headings in the prime implicant chart because they need

not be included in the final expression.

FIGURE 3.29 Prime implicant chart.

FIGURE 3.30 Examples of adjacencies in Karnaugh.

78 COMBINATIONAL LOGIC DESIGN

Example 3.11 Let us minimize the following Boolean function:

f (A,B,C,D) ¼ Sm(3, 7, 9, 14)þ d(1, 4, 6, 11)

Both the minterms and don’t cares are listed in the minimizing table and combined in the

manner discussed previously.

A prime implicant chart is then obtained that contains only the minterms.

It can be seen from the chart that PI1 and PI5 are essential prime implicants. Since only

minterm 7 is not covered by the essential prime implicants, a reduced prime implicant

chart is not required. Thus a minimal form of the Boolean function is

f (A,B,C,D) ¼ PI1 þ PI3 þ PI5 ¼ �BDþ �ACDþ BC �D

3.5 CUBICAL REPRESENTATION OF BOOLEAN FUNCTIONS

A variable or its complement in a Boolean expression is known as a literal. A cube is a

product of literals. A sum-of-products Boolean expression can be represented by a list

of cubes, one cube for each product term in the expression. In such a representation the

cubes are part of the ON-set of the function; each cube in the set produces a logic “1”

for the function. For example, the Boolean expression

f (a, b, c) ¼ �abþ a�bcþ �a�c

FIGURE 3.31 Examples of adjacencies in Karnaugh.

3.5 CUBICAL REPRESENTATION OF BOOLEAN FUNCTIONS 79

can be represented by the ON-set

{�ab, a�bc, �a�c}

Since three variables in the function can produce up to eight product terms, cubes that are

not in the ON-set belong either to the OFF-set or the DC (don’t care)-set. The cubes in the

OFF-set produce a logic “0” for the function. For example, the OFF-set for the above func-

tion is

{a�b�c, �a�bc}

Cube that are not in either the ON-set or the OFF-set belong to the DC-set. Thus the DC-set

for the above function is

{ab}

A cube is an implicant of a function if it does not contain any member of the OFF-set of the

function; the names cubes and implicants are often used interchangeably to define a func-

tion. An implicant is prime if it is not contained in any other implicant in the function.

Similarly, a prime cube is not contained by any other cube of the function.

A cube that is the product of all the variables in a function is a minterm. For example,

a�bc in the above ON-set is a minterm.

An n-variable Boolean function can be represented by an n-dimensional graph. The

graphs for 2- and 3-variable functions are shown in Figure 3.32a and 3.32b, respectively.

Each vertex in a graph corresponds to a minterm of the function and an edge connecting

two minterms indicates that they are adjacent, like two adjacent cells in a Karnaugh map.

Figure 3.32c shows the graph for the above 3-variable function; the minterms correspond-

ing to the function are identified as shaded circles in the graph. The edges in bold indicate

that the minterms connected by the edges can be reduced to smaller implicants. Thus min-

terms �abc and �ab�c are reduced to �ab, and minterms �ab�c and �a�b�c are reduced to �a�c. Minterm

a�bc cannot be reduced.

A cover of a function is a set of cubes, none of which is contained by any cube in the

OFF-set of the function. Thus a possible cover of the above function is

{ac, bc, �a�c}

The number of cubes in a cover is known as the size or cardinality of the cover.

A cover is irredundant or minimal if the removal of a cube from the corresponding set

results in a set that is no longer a cover.

A cover is prime if it contains only prime cubes. A cover is minimum if there is no other

cover that has fewer cubes.

Cubes are usually expressed by replacing each literal with a 2-bit code; the code to be

assigned to a literal (l) is determined based on its value as given below:

Literal l Code

0 10

1 01

– (don’t care) 11

w (void) 00

80 COMBINATIONAL LOGIC DESIGN

This is known as positional cube notation (PCN) of a cube. If 00 is present in a cube, the

cube is removed from the cover of the function.

To illustrate, let us derive the PCN of the cubes belonging to the following cover

of a function {�ac, a�bc, b�c}. In cube �ac, a ¼ 0, b ¼ �, and c ¼ 1; thus the PCN of the

cube is

10 11 01

The PCN for the remaining cubes in the cover can be determined in a similar manner; thus

the PCN for the cover is

10 11 01 �ac
01 10 01 a�bc
11 01 10 bc

FIGURE 3.32 (a) Two-dimensional graph, (b) three-dimensional graph, and (c) implementation

of f (a, b, c) ¼ ābþ ab̄cþ āc̄.

3.5 CUBICAL REPRESENTATION OF BOOLEAN FUNCTIONS 81

For example, let us consider the following function:

f (a, b, c) ¼ �abþ �b�cþ c

The three implicants in the function are represented in PCN as follows [1]:

�ab 10 01 11
�b�c 11 10 10

c 11 11 01

The PCN representation of cubes simplifies Boolean operations on them. For example, the

intersection (>) of two cubes is obtained by taking bit-by-bit AND of the two cubes. The

resulting cube contains only the common minterms in both cubes. The pairwise intersec-

tions of the above cubes are as follows:

�ab> �b�c ¼ 10 01 11> 11 10 10 ¼ 10 00 10 ¼ 0w 0 void

�ab> c ¼ 10 01 11> 11 11 01 ¼ 10 01 01 ¼ 011

�b�c> c ¼ 11 10 10> 11 11 01 ¼ 11 10 00 ¼ x0w void

Note that the intersections resulted in only a single valid cube.

The supercube of two cubes includes only those literals that are in both cubes; it is gen-

erated by taking bit-by-bit OR of the two cubes. For example, the supercube corresponding

to cubes ab and b�c is 01 01 11 > 11 01 10 ¼ 11 01 11. The supercube of a set of cubes is

derived in a similar manner.

3.5.1 Tautology

Tautology checking is utilized in all currently used computer-aided logic optimization

techniques to determine whether a cube is contained in the cover of a function. A function

is a tautology if the OFF-set of the function is empty. In other words, the output(s) of the

function is 1 for all inputs. For example, the following function is a tautology:

f (a, b, c) ¼ bcþ acþ �a�bþ �c

whereas

f (a, b, c) ¼ acþ bcþ ab

is not a tautology because the function produces 1 only for abc ¼ 111, 110, 101, and 011.

An efficient approach for checking whether a function is a tautology, without applying

all possible inputs, is based on determining whether the cofactors of the function with

respect to a variable and its complement are a tautology [1]. The cofactor of a function

f with respect to a variable x, denoted as fx, is obtained by replacing x by a “1.” Thus

for the function

f (a, b, c) ¼ �a�cþ abþ �bc

82 COMBINATIONAL LOGIC DESIGN

the cofactor of f with respect to variable a is

fa ¼ 0 � �cþ 1 � bþ b�c ¼ bþ b�c ¼ bþ c

Similarly, the cofactor of f with respect to ā is obtained by replacing a with a “0”; thus

f�a ¼ 1 � �cþ 0 � bþ �bc ¼ �cþ �bc ¼ �bþ �c

Note that a function f can be represented using the cofactors of the function derived using

variable x and its complement:

f ¼ xfx þ �xf�x

This representation is known as Shannon’s expansion of a function with respect to a

variable.

The cofactors of a function with respect to a cube are obtained by sequentially deriving

the cofactors of the function with respect to each literal in the cube. For example, the

cofactor of the above three-variable function with respect to cube ab̄ is

fa ¼ bþ c

fa�b ¼ c

If the cofactors of a function with respect to any variable and its complement are a

tautology, then the function itself is a tautology. This can be verified from Shannon’s

expansion. If both fx and fx̄ in the expansion are 1, then

f ¼ xþ �x ¼ 1

In other words, function f is a tautology.

A set of rules is utilized to determine whether the cover of a function represented in

PCN form is a tautology or not.

Rule 1. If the cover contains a row of all 1’s, it is a tautology.

Rule 2. If there is a column in the cover that is all 1’s or all 0’s, it is not a tautology.

Rule 3. If two columns corresponding to a variable have both 0’s and 1’s and the remain-

ing columns are all 1’s, the cover is a tautology.

To illustrate, let us determine whether the following function is a tautology:

f (a, b, c, d) ¼ aþ �bd þ �abþ �a �d

The cover of the function using PCN is

01 11 11 11

11 10 11 01

10 01 11 11

10 11 11 10

None of the above rules are directly applicable to the cover. Since variable a affects more

cubes than the other two variables, the cofactors of the function with respect to a and ā are

3.5 CUBICAL REPRESENTATION OF BOOLEAN FUNCTIONS 83

derived to check whether they are a tautology. The cofactor of f with respect to a (i.e., fa)

has only one row—11 11 11 11—which by Rule 1 is a tautology.

The cofactor of f with respect to ā (i.e., fā) is

11 10 11 01

11 01 11 11

11 11 11 10

None of the above rules are directly applicable to fā. The cofactors of fāwith respect to b are

derived next; fāb has only one row, 11 11 11 11, which is a tautology. The cofactor of fāb̄ is

11 11 11 01

11 11 11 10

which by Rule 3 is a tautology. Since both fāb and fāb̄ are tautologies, fā is also a tautology.

Thus both fa and fā are tautologies; hence f is a tautology.

Tautology checking can also be used to determine whether a particular cube is con-

tained in the cover of a function. This is true if the cofactor of the function with respect

to the cube is a tautology. For example, let us consider the function

f (a, b, c) ¼ �acþ a�cþ ab

To determine whether cube bc is contained in the function, fbc is derived:

10 11 11

01 11 11

which by Rule 3 is a tautology; hence bc is contained in the function.

3.5.2 Complementation Using Shannon’s Expansion

Shannon’s expansion of a function f with respect to a variable x of the function is given by

f ¼ xfx þ �xf�x

The complement of the expression is

�f ¼ x�fx þ �x�f �x

Notice that f . f̄ ¼ 0 and fþ f̄ ¼ 1, which proves that f̄ is the complement of f.

The procedure to derive the complement of a function f using Shannon’s expansion

consists of the following steps:

Step 1. Derive the cofactor of f with respect to a variable (x).

Step 2. Derive the cofactor of fx with respect to another variable (y) and its complement

(ȳ); continue this step with other variables until the results are single cubes or a constant

(1 or 0).

Step 3. Compute the complements of the single cubes and form f̄x.

Step 4. Repeat steps 1–3 using variable x̄ and form fx̄.

Step 5. Combine the results of step 3 to get the complement of f.

84 COMBINATIONAL LOGIC DESIGN

To illustrate, let us derive the complement of the following function:

f (a, b, c) ¼ a�bþ bcþ �ab�c

The cofactor of f with respect to a is

fa ¼ �bþ c

The next step is to derive fab and fab̄:

fab ¼ c and fa�b ¼ 1

The complement of fab and fab̄ are

�fab ¼ �c and �fa�b ¼ 0

Therefore f̄a ¼ 1 when a ¼ 1, b ¼ 1, and c ¼ 0.

Next, the complement of fā is computed. The cofactor of f with respect to ā

f�a ¼ b

Thus the complement of fā is b̄. In other words, f̄ā is 1 when a ¼ 0 and b ¼ 0.

Combining the results for f̄a and fā, the complement of function f is

�f ¼ ab�cþ �a�b

Note that the selection of a variable to derive the initial cofactor can be arbitrary;

subsequent cofactors can also be derived using randomly selected variables of the

function.

3.6 HEURISTIC MINIMIZATION OF LOGIC CIRCUITS

A major problem with the Quine–McCluskey technique is that all prime implicants for a

function have to be computed. This becomes computationally very expensive for a func-

tion with a large number of inputs. Heuristic minimization techniques apply several oper-

ators to minimize a function, thus avoiding the cost of generating all prime implicants.

ESPRESSO utilizes such heuristics. However, the resulting minimized functions may

not necessarily be minimal. The primary operators used in ESPRESSO are EXPAND,

REDUCE, and IRREDUNDANT [1].

3.6.1 EXPAND

The EXPAND operator aims to maximize the size of cubes in a cover. The bigger a cube

the more minterms it covers, thereby making them redundant. The expansion of a cube

involves removing a literal from a cube. To illustrate, let us consider cube abc̄ in

3.6 HEURISTIC MINIMIZATION OF LOGIC CIRCUITS 85

Figure 3.33a. If literal c̄ is removed (i.e., made a don’t care in the cube), the resulting cube

ab covers minterms abc̄ and abc in the ON-set as shown in Figure 3.33b. If literal b is

removed from cube ab, the resulting literal a covers minterms abc̄, abc, ab̄c̄, and ab̄c as

shown in Figure 3.33c. However, if instead of literal b, literal a is removed from cube

ab, the resulting literal a covers minterms ābc̄, abc̄, and abc from the ON-set and

minterm ābc from the OFF-set as shown in Figure 3.33d; hence ab cannot be expanded

by eliminating literal a.

The order of expansion of cubes in a function is prioritized in terms of their weights

from low to high. A cube with a lower weight covers fewer minterms than one with a

FIGURE 3.33 (a) Cube abc̄, (b) cube ab, (c) literal a, and (d) literal b.

86 COMBINATIONAL LOGIC DESIGN

higher weight. For example, cube ab̄c has lower weight than cube ac. It should be clear

that a higher weight cube has more don’t cares than a lower weight cube, as can be

seen from the positional cube notation of ab̄c and ac:

ab̄c 01 10 01

ac 01 11 01

The weight of a cube is determined using the following steps:

Step 1. Arrange the ON-set of the function as a matrix.

Step 2. Add up the 1’s in each column of the matrix and form a sum vector.

Step 3. Transpose the sum vector and multiply the ON-set matrix with the vector; this

provides the weight of each cube.

The derivation of the weight is illustrated using the following ON-set:

10 11 01

11 01 10

01 11 10

�������

�������

Sum vector 22 23 21
� 	

The DC set for the function is assumed to be fāb̄c̄, ābcg.
The multiplication of the ON-set matrix by the transposed sum vector results in the

following:

10 11 01

11 01 10

01 11 10

������
������ 	

2

2

2

3

2

1

¼
1 	 2þ 0 	 2þ 1 	 2þ 1 	 3þ 0 	 2þ 1 	 1 ¼ 8

1 	 2þ 1 	 2þ 0 	 2þ 1 	 3þ 1 	 2þ 0 	 1 ¼ 9

0 	 2þ 1 	 2þ 1 	 2þ 1 	 3þ 1 	 2þ 0 	 1 ¼ 9

Since cube 10 11 01 has the lowest weight, it is expanded first. The expansion of a cube is

performed by changing the 0-bit in the two-bit representation of a literal to a 1; this is done

from left to right for simplicity. Thus changing the 0 in the second column of 10 11 01

yields

11 11 01

This cube in addition to covering minterm āb̄c from the ON-set and ābc from the DC-set

covers minterms abc and ab̄c from the OFF-set; hence the expanded cube 11 11 01 is

invalid.

3.6 HEURISTIC MINIMIZATION OF LOGIC CIRCUITS 87

Changing column 5 rather than column 2 in the cube 10 11 01 yields

10 11 11

which covers minterms ābc̄ and āb̄c from the ON-set and minterms āb̄c̄ and ābc from the

DC-set. Thus the expanded cube 10 11 11 is valid and the original ON-set can be updated to

10 11 11

11 01 10

01 11 10

The weights of rows in the set are computed as discussed previously. The first row has

weight 11, whereas both the second and third rows have weight 10. The cube corresponding

to the second row (i.e., 11 01 10) is expanded first. Changing the 0 in the third column of the

cube to a 1 yields

11 11 10

This cube covers minterms from the ON-set and the DC-set but not any from the OFF-set, and

therefore is valid. On the other hand, changing the 0 in the sixth column of cube 11 01 10 to a 1

will result in a cube that will cover a minterm (abc) from the OFF-set. Thus only the expanded

cube 11 11 10 is valid. Note that this cube also covers cube 01 11 10 in the ON-set. Thus the

expanded ON-set for the original function is

10 11 11

11 11 10

3.6.2 REDUCE

The REDUCE operator decreases the size of each cube in the ON-set of a function so that

any later expansion may lead to another ON-set with fewer cubes in it. The following steps

are needed by the reduce operation:

Step 1. Compute the weights of the cubes in EXPAND operation.

Step 2. Select cubes one at a time in the high to low weight order (cubes with high weights

cover more minterms as explained previously).

Step 3. Intersect the selected cube with the complements of the rest of the cubes in the

ON-set.

Step 4. Include the resulting cube in the modified ON-set. If more than one cube is

generated, they are replaced by a supercube containing all these cubes.

The function of the REDUCE operator is illustrated by applying it to the following

function:

f ¼ �a�cþ �cd þ bd

88 COMBINATIONAL LOGIC DESIGN

Therefore the ON-set (i.e., the cover of the function) is

10 11 10 11 C1

11 11 10 01 C2

11 01 11 01 C3

which is prime.

The vector corresponding to the number of 1’s in the columns of the above matrix is

[32 23 31 13] and weights for cubes C1, C2, and C3 are 15, 16, and 15, respectively.

Cube C2 has higher weight than cube C1 and C3. Therefore C2 is reduced first. The

cubes in the OFF-set derived without including C2 in the ON-set will be

01 11 10 10

11 10 01 01

11 11 10 01

11 11 01 10

The intersection of C2 with the OFF-set yields the following cubes:

01 � 11þ 11 � 11þ 10 � 10þ 10 � 01 ¼ f

11 � 11þ 10 � 11þ 01 � 10þ 01 � 01 ¼ f

11 � 11þ 11 � 11þ 10 � 10þ 01 � 01 ¼ 11 11 10 01

11 � 11þ 11 � 11þ 01 � 10þ 10 � 01 ¼ f

As can be seen above, the intersection results in cube C2 itself; thus there is no change in

the ON-set.

Either C1 or C3 can be selected next because both have equal weights. The intersection

of C1 with the OFF-set (derived without including C1 in the ON-set) is obtained in a

similar manner as for C2:

01 � 10þ 11 � 11þ 10 � 10þ 11 � 11 ¼ f

10 � 10þ 11 � 11þ 10 � 10þ 01 � 11 ¼ 10 11 10 01

11 � 10þ 10 � 11þ 01 � 10þ 11 � 01 ¼ f

11 � 10þ 01 � 11þ 01 � 10þ 10 � 11 ¼ f

The resulting cube 10 11 10 01 (āc̄d) replaces C1 in the ON-set.

Finally, the intersection of C3 with the OFF-set (derived without including C3 in the

ON-set) is obtained:

01 � 11þ 11 � 01þ 10 � 11þ 10 � 01 ¼ f

11 � 11þ 11 � 01þ 01 � 11þ 11 � 01 ¼ 11 01 01 01

Therefore cube C3 can replaced by the new cube bcd.

3.6 HEURISTIC MINIMIZATION OF LOGIC CIRCUITS 89

Thus the original ON-set after the reduce operation becomes

10 11 10 01

11 11 10 01

11 01 01 01

Note that the cardinality of the reduced ON-set (i.e., the cover) is the same as the original

cover of the function. However, the cover is not prime.

3.6.3 IRREDUNDANT

The IRREDUNDANT operator removes redundant implicants from the cover of a function

to reduce the cardinality of the cover. A cover is composed of three subsets of implicants:

relatively essential prime implicants (RE), partially redundant prime implicants (RP), and

totally redundant prime implicants (RT).

RE’s cover minterms of a function that are not covered by any other prime

implicants in this cover (same as essential prime implicants discussed in Section 3.4).

All implicants in an RT are covered by the RE. RP’s are those that are not included in

either RP’s or RT’s. For example, in the following cover of the function f(a,b,c) ¼ abþ
ācþ ac̄þ bc

01 01 11 C1 (ab)

10 11 01 C2 (�ac)

01 11 10 C3 (a�c)

11 01 01 C4 (bc)

C2 and C3 are relatively essential, and C1 and C4 are partially redundant; there are no

totally redundant prime implicants.

The objective of the IRREDUNDANT operator is to determine which of the partially

redundant prime implicants can be removed from the cover. The remaining partially

redundant prime implicants together with relatively essential prime implicants will be

the cover of the function with minimum cardinality (i.e., fewest number of cubes in the

cover). It can be seen from the Karnaugh map of the function in Figure 3.34 that prime

implicant C4 can be eliminated from the cover.

FIGURE 3.34 Karnaugh map f(a, b, c) ¼ abþ ācþ ac̄þ bc.

90 COMBINATIONAL LOGIC DESIGN

In CAD-based techniques for logic minimization (e.g., ESPRESSO), a modification of

the tautology check is used to determine whether an implicant a from the partially redun-

dant subset is contained in the following set S [1], where

S ¼ {relatively essential set of prime implicants}< {partially redundant

set of prime implicants}< {don’t care set of the function}� {a}

A cube x is contained in a set of cubes C (i.e., C covers x) if and only if Cx (cofactor of C

with respect to x) is a tautology. Thus if Sa is a tautology then a is covered by S. This is

illustrated by using the cover of the function considered in the previous section for the

REDUCE operator:

01 01 11 C1 partially redundant

10 11 01 C2 relatively essential

01 11 10 C3 relatively essential

11 01 01 C4 partially redundant

If C1 is considered first, then S becomes fC1, C2, C3, C4g2 fC1g; note that this function

does not have a don’t care set. Thus S becomes

10 11 01 C2

01 11 10 C3

11 01 01 C4

The corresponding logic expression for S is

S ¼ �acþ a�cþ bc

then the cofactor of S with respect to C1(¼ab) is

Sab ¼ �cþ c

which in PCN is

11 11 10

11 11 01

Since Sab depends only on a single variable (c) and there is no column of all 0’s in Sab, Sab
is a tautology. In other words, C1 is covered by S and can be removed from the cover of the

function.

Next, cube C4 is considered for possible elimination from the cover. Then S becomes

01 01 11 C1

10 11 01 C2

01 11 10 C3

3.6 HEURISTIC MINIMIZATION OF LOGIC CIRCUITS 91

and the corresponding logic expression is

S ¼ abþ �acþ a�c

The cofactor of S with respect to C4 (¼bc) is

Sbc ¼ �aþ a

Thus Sbc in PCN is

10 11 11

01 11 11

which is also a tautology; hence C4 can be removed from the cover of the func-

tion. Thus either cube C1 or cube C4 can be removed from the cover of the func-

tion; the resulting irredundant covers of the function as shown below have a

cardinality of 3:

10 11 01 01 01 11

01 11 10 or 10 11 01

11 01 01 01 11 10

3.6.4 ESPRESSO

ESPRESSO performs the minimization of a Boolean function specified in terms of its

ON-set, OFF-set, and DC-set. The implicants in the ON-set represent the initial unopti-

mized cover of the function. By successively applying REDUCE, EXPAND, and IRRE-

DUNDANT operators in a loop, ESPRESSO finds the near-minimum cover of the

function.

To illustrate, let us consider the optimization of the following function using

ESPRESSO:

f (a, b, c, d) ¼ �b �d þ a�cd þ bcd þ �ac �d þ bc �d

Figure 3.35 shows the Karnaugh map of the four-variable function.

The PCN representation of the cover of the function is

11 10 11 10 a

01 11 10 01 b

11 01 01 01 c

10 11 01 10 g

11 01 01 10 d

It is not possible to reduce cubes a, b, c, or g because in each case the intersection of

the cube with the complement of the cover without the cube results in two cubes.

However, the intersection of cube d with the complement of the cover without d results

92 COMBINATIONAL LOGIC DESIGN

in 01 01 01 10 (abcd̄). Thus the new cover is

11 10 11 10 a

01 11 10 01 b

11 01 01 01 c

10 11 01 10 g

01 01 01 10 d

Figure 3.36 shows the Karnaugh map of the function after the REDUCTION step.

FIGURE 3.35 Karnaugh map for the original function.

FIGURE 3.36 Karnaugh map after REDUCTION step.

3.6 HEURISTIC MINIMIZATION OF LOGIC CIRCUITS 93

Next, the EXPAND operation is used to determine whether the cubes in the cover can

be expanded. The weights of the cubes are determined as discussed previously and are as

follows:

a 19

b 15

c 17

g 17

d 15

The lightest cubes are b and d. Cube b is expanded first, but the expansion is not valid.

Next, d is expanded by raising literal a first followed by literal b; the resulting cube is

11 11 01 10 (cd̄), which covers cube g. Cube c is expanded next to (11 01 01 11) by

raising literal d. Cube a cannot be raised with respect to b̄ or d̄; hence it cannot be

expanded. The reduced and expanded cover for the function becomes

11 10 11 10

01 11 10 01

11 01 01 11

11 11 01 10

Figure 3.37 shows the Karnaugh map of the function after the EXPAND step.

The IRREUNDANT operation is used next. The relatively essential redundant set of

implicants in the cover is

{11 10 11 10, 11 01 01 11, 01 11 10 01}

The implicant 11 11 01 10 is totally redundant and can be removed from the cover; there

are no partially redundant implicants in the cover.

Figure 3.38 shows the Karnaugh map after the IRREDUNDANT step.

FIGURE 3.37 Karnaugh map after EXPAND step.

94 COMBINATIONAL LOGIC DESIGN

Further iteration of the REDUCE–EXPAND–IRREDUNDANT does not reduce the

size of the cover. Thus the minimized function is

f (a, b, c, d) ¼ �b �d þ bcþ a�cd

3.7 MINIMIZATION OF MULTIPLE-OUTPUT FUNCTIONS

Multiple-input/multiple-output combinational logic blocks are frequently used in

complex logic systems, for example, VLSI (very large scale integrated) chips. The area

occupied by such combinational logic blocks has a significant impact on the VLSI

design objective of putting the maximum amount of logic in the minimum possible area.

In minimizing multiple-output functions, instead of considering individual single-

output functions, the emphasis is on deriving product terms that can be shared among

the functions. This results in a circuit having fewer gates than if each function is mini-

mized independently. For example, if the following two functions are individually

minimized, the resulting circuit will be as shown in Figure 3.39a:

f1 ¼ ab�c �d þ ab�cd þ abcd þ a�bcd

f2 ¼ ab�c �d þ ab�cd þ abcd þ a�bcd þ a�b�c �d þ a�b�cd

However, if the functions are minimized as shown in Figure 3.39b, one product term (i.e.,

acd) can be shared among the functions, resulting in a circuit with one fewer gate.

As is clear from this example, the determination of shared product terms from among

many Boolean functions is an extremely complicated task. This can only be done effi-

ciently by using a computer-aided minimization technique. For example, the two-level

minimizer ESPRESSO, in general, identifies the shared terms reasonably well.

FIGURE 3.38 Karnaugh map after IRREDUNDANT step.

3.7 MINIMIZATION OF MULTIPLE-OUTPUT FUNCTIONS 95

Example 3.12 Let us consider the following functions:

f1 ¼ Sm(0, 2, 4, 5, 9, 10, 11, 13, 15) (3:1)

f2 ¼ Sm(2, 5, 10, 11, 12, 13, 14, 15) (3:2)

f3 ¼ Sm(0, 2, 3, 4, 9, 11, 13, 14, 15) (3:3)

FIGURE 3.39 (a) Individual minimization of f1 and f2 and (b) sharing of a product term between

f1 and f2.

96 COMBINATIONAL LOGIC DESIGN

The Karnaugh maps for the functions are shown in Figure 3.40. Individual minimization

of the functions results in the following shared terms:

Term Functions

āc̄d̄ f1, f3

bc̄d f1, f2

ac f2, f3

b̄cd̄ f1, f2

There are 12 product terms in the original expressions, out of which 4 can be shared. The

expression can be rewritten as follows:

f1 ¼ W þ X þ ad þ Z

f2 ¼ abþ X þ Y þ Z

f3 ¼ W þ �a�bcþ Y þ abd

FIGURE 3.40 Karnaugh maps for functions f1, f2, and f3.

3.7 MINIMIZATION OF MULTIPLE-OUTPUT FUNCTIONS 97

where W ¼ āc̄d̄, X ¼ bc̄d, Y ¼ ac, and Z ¼ b̄cd̄.

f1 ¼ �cf3 þ df2 þ �bf2

f2 ¼ b�cd þ �bc �d þ acþ ab

f3 ¼ �a�c �d þ �a�bcþ f2bcþ ad

There are 27 literals in these equations, which can be further reduced to 23 by using factor-

ing. The resulting circuit is shown in Figure 3.41.

3.8 NAND–NAND AND NOR–NOR LOGIC

So far, we have discussed various ways of simplifying Boolean functions. A simplified sum-

of-products function can be implemented by AND–OR logic, and a simplified product-

of-sums function can be implemented by OR–AND logic. This section shows that any

logic function can be implemented using only one type of gate—either the NAND or the

NORgate. This has the advantage of standardizing the components required to realize a circuit.

3.8.1 NAND–NAND Logic

All Boolean functions in sum-of-products form can be realized by a two-level logic invol-

ving only NAND gates. Consider the following Boolean function in sum-of-products form:

f (A,B,C) ¼ �A �BC þ �AB �C þ �ABC þ A �BC þ AB �C

FIGURE 3.41 Multilevel implementation of the simplified expressions.

98 COMBINATIONAL LOGIC DESIGN

The first step in the design is to minimize the function. This can be done by algebraic

manipulation:

f (A,B,C) ¼ �A �BC þ �AB �C þ �ABC þ A �BC þ AB �C

¼ �AC(�Bþ B)þ (�Aþ A)B �C þ (�Aþ A) �BC

¼ �AC þ B �C þ �BC

The minimized function can be realized directly in AND–OR logic as shown in Figure 3.42.

The NAND–NAND form of the function can be derived directly from the AND–OR form as

illustrated in Figure 3.43. First, two inverter gates in series are inserted at each input of theOR

gate (Fig. 3.43a). The output of the circuit remains unchanged in spite of the incorporation of

the inverter gates because the output of each AND gate is inverted twice. Then the first level

inverter gates are combined with the AND gates to form NAND gates. The second level

inverter gates are combined with the OR gate to form a NAND gate (since by DeMorgan’s

theorem i1 þ i2 þ i3 ¼ �i1 þ �i2 þ �i3) as shown in Figure 3.43b.

Thus any Boolean function in sum-of-products form can be implemented by two levels

of NAND gates. However, it should be noted that such an implementation is based on the

assumption that double-rail inputs are available. Double-rail inputs to a circuit indicate

that each variable and its complement can be used as inputs to the circuit. If the

FIGURE 3.43 NAND–NAND implementation of f.

FIGURE 3.42 AND–OR logic implementation of f.

3.8 NAND–NAND AND NOR–NOR LOGIC 99

complements of the variables are not available, the circuit inputs are single-rail. Any

Boolean function can be realized with three-level NAND gates using only single-rail

inputs. For example, the circuit of Figure 3.42 can be implemented in three-level

NAND gates as shown in Figure 3.44.

The two-level NAND implementation of a sum-of-products Boolean function can be

obtained by using the following steps in sequence:

Step 1. Take the complement of the minimized expression.

Step 2. Take the complement of the complemented expression. Eliminate the OR operator

from the resulting expression by applying DeMorgan’s theorem.

Example 3.13 Let us implement the following function using two-level NAND

logic:

f (A,B,C,D) ¼ Sm(2, 3, 4, 6, 9, 11, 12, 13)

The minimal form of the given function can be derived from its Karnaugh map:

Hence

�f ¼ B �C �Dþ A �CDþ �BCDþ �AC �D

FIGURE 3.44 Three-level NAND gate representation of the circuit of Figure 3.42.

100 COMBINATIONAL LOGIC DESIGN

The complement of the expression for f̄ is then derived:

�f ¼ B �C �Dþ A �CDþ �BCDþ �AC �D

[f ¼ B �C �D � A �CD � �BCD � �AC �D

The NAND–NAND realization of the above expression is shown in Figure 3.45.

3.8.2 NOR–NOR Logic

All Boolean functions expressed in product-of-sums form can be implemented using

two-level NOR logic. Let us assume we have the OR–AND implementation of the

Boolean function f(A, B, C) ¼ (Aþ C)(Aþ B̄)(Āþ C). Figure 3.46 shows the OR–

AND implementation. The OR–AND circuit can be converted to the circuit of

Figure 3.47a by inserting a cascade of two inverters at each input of the AND gate.

Then a NOR–NOR realization of the circuit can be obtained as shown in Figure 3.47b.

The NOR–NOR implementation of a Boolean function expressed in sum-of-products

form can be obtained by the following two steps:

Step 1. Derive the complementary sum-of-products version of the original expression.

Step 2. Take the complement of this complemented sum-of-products expression. Elimin-

ate the AND operators from the resulting expression by using DeMorgan’s theorem.

FIGURE 3.46 OR–AND logic implementation.

FIGURE 3.45 NAND–NAND realization of f ¼ Sm(2, 3, 4, 6, 9, 11, 12, 13).

3.8 NAND–NAND AND NOR–NOR LOGIC 101

Example 3.14 Let us implement the following Boolean function in NOR–NOR logic:

f (A,B,C,D) ¼ �ABþ �AC þ A �CDþ A �BD

The complementary sum-of-products expression, f̄, can be obtained from the Karnaugh

map of the function by grouping the 0’s.

f ¼ A �Dþ �A �B �C þ ABC

¼ (�Aþ D)þ (Aþ Bþ C)þ (�Aþ �Bþ �C)

The resulting NOR–NOR logic circuit is shown in Figure 3.48.

3.9 MULTILEVEL LOGIC DESIGN

Multilevel logic, as the name implies, uses more than two levels of logic to implement a

function. Two-level implementation of a function is often difficult to implement at the gate

FIGURE 3.47 Conversion from OR–AND to NOR–NOR logic.

102 COMBINATIONAL LOGIC DESIGN

level because of the fan-in restrictions. For example, two-level implementation of the

following minimized function,

f (u, v,w, x, y, z) ¼ �u�v �w�y�zþ �u �wxyzþ u�vwx�yzþ uv �wx�yþ �u�vw�xy

þ �u�x�y�zþ �v �w�x�z
(3:4)

will require seven AND gates (one with fan-in of 6, four with fan-in of 5, and two with

fan-in of 4), and one OR gate with fan-in of 7. However, by increasing the number of

levels in the circuit, the fan-in of the gates can be reduced.

The starting point of the multilevel implementation of a function is the minimized two-

level representation of the function. Several operations are used to manipulate this

two-level representation; these include decomposition, extraction, substitution, collapsing,

and factoring.

Decomposition is the process of representing a single expression as a collection of

several subfunctions. For example, the decomposition of the function

f ¼ ad þ bd þ �a�bcþ bc �d þ bce

will result in the following subfunctions:

f ¼ dY þ c �Y þ X(�d þ e)

X ¼ bc

Y ¼ aþ b

In general, the decomposition increases the number of levels of a logic circuit while

decreasing the fan-in of the gates used to implement the circuit.

The extraction operation creates some intermediate node variables for a given set

of functions. These node variables together with the original variables are then used

to re-express the given function. The extraction operation applied to the following

functions

z1 ¼ aeþ beþ c

z2 ¼ af þ bf þ d

FIGURE 3.48 NOR–NOR implementation of f(A, B, C, D) ¼ ĀBþ ĀCþ AC̄Dþ AB̄D.

3.9 MULTILEVEL LOGIC DESIGN 103

will yield

z1 ¼ Xeþ c

z2 ¼ Xf þ d

X ¼ aþ b

where X is a fan-out node.

The substitution process is used to determine whether a given function can be expressed

as a function of its original inputs and other functions. As an example, let us consider the

functions

X ¼ abþ bd þ acþ cd

Y ¼ bþ c

Substituting Y in X produces

X ¼ Y(aþ d)

This is in fact an example of algebraic substitution since (bþ c) is an algebraic divisor

of X. If the expression is multiplied out, the resulting expression will be identical to the

original form.

Another type of substitution is the Boolean substitution, which creates logic functions

by using Boolean division. Thus the original and substituted expressions may not have the

same form but they are logically equivalent. For example, algebraic substitution does not

simplify the following functions:

X ¼ bþ acþ �a�b

Y ¼ bþ c

However, by using Boolean substitution X can be rewritten

X ¼ (bþ c)(aþ b)þ �a�b

The inverse operation of substitution is known as collapsing or flattening. For example, if

X ¼ Y(cþ d)þ e

Y ¼ aþ b

then collapsing Y into X results in

X ¼ acþ bcþ ad þ bd þ e

Y ¼ aþ b

Thus if Y is an internal node in the circuit, it can be removed.

104 COMBINATIONAL LOGIC DESIGN

Factoring is the conversion of a function in the sum-of-products form to a form with

parentheses and having a minimum number of literals. A straightforward approach for

deriving the factored form of a function from its given two-level representation is to

select a literal that is common to the maximum number of product terms. This results

in partitioning of the product terms into two sets—one set contains the product terms

having the literal, the other contains the rest of the product terms. If the literal is factored

out from the first set, a new two-level expression results, which is then ANDed with the

literal. Similarly, the second set of product terms is evaluated for a common literal.

This process is repeated for the newly generated two-level expressions until they cannot

be factored any further. The resulting expression is a multilevel representation of the orig-

inal two-level form. By using this approach, the factored version of the two-level

expression, Eg. (3.4), is derived:

f (u, v,w, x, y, z) ¼ �y½�u�z(�v �wþ �x)þ ux(�vwzþ v �w)� þ �uy(�wxzþ �vw�x)þ �v �w�x�z . . . (3:5)

Note that the original two-level expression has 34 literals, whereas the factored form has

25 literals. As can be seen from the factored expression, such a representation of a Boolean

function automatically leads to the multilevel realization of the function.

In general, a factored-form representation of a two-level function is not unique. For

example, the preceding six-variable function can also be represented in the factored

form as

f (u, v,w, x, y, z) ¼ �z½�u�y(�w�vþ �x)þ �v �w�x� þ xz(�u �wyþ �uvwy)þ uv �wx�yþ �u�vw�xy

which has 28 literals. Obviously, only the factored form with the fewest number of liter-

als has to be selected in order to guarantee a minimal multilevel implementation.

3.9.1 Algebraic and Boolean Division

Let us assume two Boolean expressions f and g. If there is an operation that generates

expressions h and r such that f ¼ ghþ r, where gh is an algebraic product (i.e., g and h

have no common variable), then this operation is called an algebraic division. For

example, if f ¼ wyþ xyþ yz and g ¼ wþ x, a polynomial division will yield

f ¼ ghþ r ¼ y(wþ x)þ yz

Note that this factored-form representation is algebraically equivalent to the original sum-

of-products expression. In other words, if the algebraic factor is expanded, exactly the

same set of terms as in f will be obtained.

Another form of division used in factoring Boolean expressions uses the identities of

Boolean algebra (e.g., xx̄ ¼ 0, xx ¼ x, and xþ x̄ ¼ 1 for variable x). Thus if in the

expression f ¼ ghþ r, gh is a Boolean product (i.e., g and h have one or more common

variable(s)), then the division of f by g is called a Boolean division. For example, if f ¼
abdþ bcdþ ācþ b̄d̄ and g ¼ aþ c, the use of Boolean division will yield

f ¼ ghþ r ¼ (bd þ �a)(aþ c)þ �b �d

3.9 MULTILEVEL LOGIC DESIGN 105

whereas algebraic division will produce

f ¼ ghþ r ¼ bd(aþ c)þ �acþ �b �d

3.9.2 Kernels

The quotient resulting from an algebraic division of an expression f by a cube c

(i.e., f/c) is the kernel k of f, if there are at least two cubes in the quotient and the

cubes do not have any common literal. The cube divisor c used to obtain the kernel is

called its cokernel. Different cokernels may produce the same kernel, therefore the coker-

nel of a kernel is not unique. If a kernel has no kernels except itself, it is said to be a level-0

kernel. A kernel is of level n if it has at least one level-(n–1) kernel but no kernel, except

itself, of level n or greater.

Example 3.15 Let us consider the Boolean expression

f (a, b, c, d) ¼ �a�cd þ �abcþ abd þ ab�cþ bcd

The quotient of f and the cube a is

f =a ¼ bd þ b�c

but since literal b is common to both cubes, f/a is not a kernel of f.

The quotient of f and the cube c̄ is

f =c ¼ �ad þ ab

It has two cubes and no common literal; hence it is a kernel. The cokernel of f/c̄ is c̄. The
kernels and the corresponding cokernels of the function are represented by the tree shown

below, where the leaves of the tree are kernels and the branches are the corresponding coker-

nels. Note that all of these kernels are of level 0.

If the original expression is rewritten as

f ¼ b½a(�cþ d)þ c(�aþ d)� þ �c(�ad þ ab)

then b(aþ c)þ āc̄ is kernel of level 1 corresponding to the cokernel d because it contains a

level-0 kernel (aþ c).

As mentioned preciously, the cokernel of a kernel is not unique. For example,

f ¼ ad þ bd þ acþ bc

has a kernel (aþ b) obtained by using cokernels c and d.

106 COMBINATIONAL LOGIC DESIGN

Kernels can be used to derive common subexpressions in two Boolean expressions.

(The intersection of two kernels k1 and k2 is defined as the set of cubes present in both

k1 and k2.) If there is a kernel intersection of more than one cube, then two Boolean

expressions will have common subexpressions of more than one cube.

Example 3.16 Let us consider two Boolean expressions

f1 ¼ abcþ a�cgþ �bdf þ cde

f2 ¼ �ab �d þ bc�eþ �bdeþ �b�gþ �c�eg

The kernels of f1 and f2 are shown in Table 3.2

The kernels of expression f1 are intersected with those of expression f2 to find terms that

are identical between pairs of kernels. For example, kernel abþ de in f1 intersects with

deþ ḡ in f2 have a common terms de. Note that f1 and f2 have a common kernel

bcþ c̄g corresponding to different cokernels a and ē.

The selection of the kernel intersection (i.e., a common subexpression) that, once sub-

stituted in the given Boolean expression, will result in the minimum number of literals can

be considered as a rectangular covering problem [2]. Let us explain the rectangular cover-

ing formulation through the above Boolean expressions. The expressions are rewritten

below, with each cube being uniquely identified by an integer.

f1 ¼ abc

1
þ a�cg

2
þ

�bdf

3
þ cde

4

f2 ¼ �ab �d

5
þ bc�e

6
þ

�bde

7
þ

�bg

8
þ �c�eg

9

First we form the cokernel cube matrix for the set of expressions. Such a matrix shows all

the kernels simultaneously and allows the detection of kernel intersections. A row in the

matrix corresponds to a kernel, whose cokernel is the label for that row. Each column corre-

sponds to a cube,which is the label for that column.The integer identifier of the cube, resulting

from the product of the cokernel for row i and the cube for column j, is entered in position

(i, j) of the matrix. As can be seen from Table 3.2, the unique cubes from all the kernels of

the given equations are bc, c̄g, ab, de, b̄f, ce, ād̄ , cē, and ḡ; these are the labels of the

columns of the matrix. There are six kernels; the corresponding cokernels are the labels of

the rows of the matrix. Thus the cokernel matrix for the given expressions is as shown in

Table 3.3.

TABLE 3.2 Kernels of f1 and f2

Expression Cokernel Kernel

f1 a bc þ c̄g

f1 c ab þ de

f1 d b̄ f þ ce

f2 b ād̄ þ cē

f2 b̄ de þ ḡ

f2 ē bc þ c̄g

3.9 MULTILEVEL LOGIC DESIGN 107

A rectangle (R, C), where R and C are sets of rows and columns, respectively, is a sub-

matrix of the cokernel cube matrix such that for each row ri [R and each column cj [C,

the entry (ri, cj) of the cokernel matrix is nonzero. A rectangle that has more than one row

indicates a kernel intersection between the kernels corresponding to the rows in the rec-

tangle. The columns in the rectangle identify the cubes of the kernel intersection. For

example, in Table 3.3 the rectangle fR(1, 6), C(1, 2)g indicates intersection between the

kernels corresponding to rows 1 and 6. The intersection between these two kernels gener-

ates a common subexpression (bcþ c̄g). A rectangle having more than one column will

identify a kernel intersection of more than one cube.

A set of rectangles form a rectangular cover of a matrix B, if an integer (i.e., a nonzero

entry) inB is covered by at least one rectangle from the set. Once an integer is covered, it is

not necessary to cover the same integer by any other rectangle; all other appearances

of the integer in the matrix can be considered as don’t cares. A covering for the above

cokernel cube matrix is

{R(1, 6),C(1, 2)}, {R(3),C(5, 6)}, {R(4),C(7)}, {R(5),C(4, 9)}

TABLE 3.3 Co-kernel Matrix for Expressions f1 and f2

1 2 3 4 5 6 7 8 9

bc c̄g ab de b̄f ce ād̄ cē ḡ

1 a 1 2 0 0 0 0 0 0 0

2 c 0 0 1 4 0 0 0 0 0

3 d 0 0 0 0 3 4 0 0 0

4 b 0 0 0 0 0 0 5 6 0

5 b̄ 0 0 0 7 0 0 0 0 8

6 ē 6 9 0 0 0 0 0 0 0

FIGURE 3.49 Multilevel implementation.

108 COMBINATIONAL LOGIC DESIGN

The implementation resulting from this covering is shown in Figure 3.49. The corre-

sponding Boolean expressions are

f1 ¼ aX þ dY

f2 ¼ �eX þ �bZ þ �ab �d

X ¼ bcþ �cg

Y ¼ �bf þ ce

Z ¼ deþ �g

This implementation has 22 literals, compared to 26 literals in the original expressions.

With larger subexpressions, the reduction in the number of literals is significantly higher.

3.10 MINIMIZATION OF MULTILEVEL CIRCUITS USING
DON’T CARES

Previously, we considered don’t care conditions arising in two-level logic circuits and

showed how these can be used to minimize logic. In multilevel logic circuits, don’t

care inputs (and outputs) may occur because of circuit structure [1, 2]. For example, if

in a multilevel circuit a logic block is the input of another logic block, and the first

block does not produce all possible output patterns, then the second block does not

receive all input combinations. To illustrate, let us consider the circuit of Figure 3.50a.

Truth tables of the first and the second logic block are shown in Figure 3.50b and 3.50c

respectively. As can be seen from Figure 3.50c, the second block does not receive input

combination 00. Thus bp ¼ 00 can be considered a don’t care input pattern for the

second block. We shall see later in this section that such don’t cares can be used for opti-

mizing multilevel circuits.

FIGURE 3.50 Derivation of don’t cares.

3.10 MINIMIZATION OF MULTILEVEL CIRCUITS USING DON’T CARES 109

Don’t cares in multilevel circuits can in general be categorized into two types: Satisfi-

abilty don’t cares (SDCs) and observability don’t cares (ODCs).

3.10.1 Satisfiability Don’t Cares

Satisfiability don’t cares are input combinations that cannot legally occur at the inputs of

an internal block driven by another block in a circuit. In other words, these are input com-

binations that do not satisfy the function of the driving block. For example, the input

pattern bp ¼ 10 to the second logic block in Figure 3.51 is an SDC because p must be

1 if b is 1. Formally, if an internal block of a circuit does not receive certain input patterns

because they are not produced by the output of another block that is driving the internal

block, these input patterns are known as SDCs. To illustrate, let us consider the circuit

of Figure 3.51. Any input pattern to the first block that does not satisfy the function of

the block (i.e., p ¼ aþ b) is an SDC. For example, it is easy to see that if a ¼ 1, p

cannot be 0. Similarly, p cannot be 0 if b ¼ 1, and also when a ¼ 0 and b ¼ 0 p must

be 0 not 1. Thus the SDC set for the circuit of Figure 3.51 is

a b p

1 0 0

1 1 0

0 1 0

0 0 1

Let us consider how SDCs can be used in further minimization of an already minimized

circuit. Figure 3.52 shows a two-level circuit that implements the function

p ¼ (aþ b)

q ¼ (bc)

f ¼ p�bþ �p�cþ qc

Any input/output patterns that do not satisfy p ¼ (aþ b) are SDCs generated by node p;

thus the SDC for node p identified as SDCp is

SDCp ¼ p� (aþ b)

Similarly,

SDCq ¼ q� (bc)

FIGURE 3.51 A circuit with an SDC.

110 COMBINATIONAL LOGIC DESIGN

Once the SDCs are derived for each output driving a logic block, the sum of these is quan-

tified to eliminate input variable(s) not used by the driven logic block. The universal

quantification of a function f(x1, x2, . . . , xi, . . . , xn) with respect to a variable xi is

f (x1, x2, . . . , xi, . . . , xn) ¼ f�x1 � fxi

where fx̄i and fxi are cofactors of the function f with respect to x̄i and xi, respectively. Thus

the universal quantification of a function, also called the consensus of the function Cxi (f),

derives the component of the function that does not depend on variable xi. In other words,

universal quantification of a function with respect to a variable removes the variable from

the support of the function. The support of a function is the set of variables on which the

function depends.

The support of the function for the second-level logic block in Figure 3.52 does not

include variable a. Thus this variable is eliminated from the sum of SDCp and SDCq by

deriving the universal quantification of the sum function with respect to variable a.

S ¼ SDCp þ SDCq ¼ (p� (aþ b))þ (q� (bc))

¼ �p�a�bþ paþ pbþ �q�bþ �q�cþ qbc

The universal quantification of S with respect to variable a is

VaS ¼ S�a � Sa ¼ pbþ �q�bþ qbcþ �q�c

Note that the terms in VaS are the SDCs for the second-level logic block and can be used to

minimize the function f. The minimized function is

f ¼ �p�cþ q

The number of literals in f is reduced from 7 to 3.

The universal quantification of a function with respect to more than one variable can be

derived as

Vxy(f) ¼ Vy(Vx(f)) ¼ f�x�y � f�xy � fx�y � fxy

FIGURE 3.52 Circuit with SDCs.

3.10 MINIMIZATION OF MULTILEVEL CIRCUITS USING DON’T CARES 111

For example, the universal quantification of function S above with respect to variables

a and b are

Vab(S) ¼ Vb(Va(S)) ¼ f�a�b � f�ab � fa�b � fab
¼ p�qþ �q�c

3.10.2 Observability Don’t Cares

The observability don’t cares of an internal block in a circuit are any input pattern that

masks the output of the block; that is, it cannot be observed at the circuit output. In

other words, the output of the circuit for this input pattern is independent of the block.

For example, in the circuit of Figure 3.53 when

b ¼ 1 and c ¼ 1, f ¼ 1

that is, block p has no effect on output f. Thus bc is an ODC for block p.

Similarly, when a ¼ 1 and d ¼ 1, the circuit output is insensitive to q. Therefore the

ODC for block q is ad.

The input patterns that make an internal block output x of a circuit not observable at a

circuit output f may be derived from the Boolean difference of f with respect to x. The

Boolean difference of a function f(x1, x2, . . . , xi, . . . , xn) ¼ f(X) with respect to one of

its inputs xi is defined as

df (x1, x2, . . . , xi, . . . , xn)=dxi ¼ df (X)=dxi ¼ f�x1 (X)� fxi (X)

In other words, the Boolean difference of a function with respect to a variable xi is the

EX-OR of the cofactors of the function with respect to x̄i and xi. If a function is sensitive to

an internal node xi (i.e., fx̄i (X) = fxi (X)) then df (X)/dxi ¼ 1. Thus the observability don’t

care for node xi is

ODCxi ¼ (df (X)=dxi)

For example, the Boolean difference of the function f(a, b, c) ¼ ācþ ab with respect to

a is

df =da ¼ fa¼0(�acþ ab)� fa¼1(�acþ ab)

¼ c� b

Therefore ODCa ¼ (df =da) ¼ (c� b) ¼ �b�cþ bc.

FIGURE 3.53 Circuit with observability don’t cares.

112 COMBINATIONAL LOGIC DESIGN

In Figure 3.53 since f ¼ pþ q the Boolean difference of f with respect to p is

df =dp ¼ (0þ q)� (1þ q)

¼ q� 1 ¼ �q ¼ bc ¼ �bþ �c

Either b ¼ 0 or c ¼ 0 will allow node p to be observable at output f. Thus (df =dp) ¼
(�bþ �c) ¼ bc; that is, b ¼ 1 and c ¼ 1 is the pattern that will make p unobservable at

output f, and thus is an ODC for p. Similarly, (df =dq) ¼ (pþ 0)� (pþ 1) ¼ �p ¼
(ad) ¼ �aþ �d; thus (df =dq) ¼ ad is an ODC for node q.

Let us consider another example to clarify the concept of observability don’t cares and

to illustrate how these can be used to minimize a function. Figure 3.54 shows the multi-

level implementation of the circuit based on the following expressions:

p ¼ �bcþ ab

q ¼ (pc)

r ¼ (aþ c)

f ¼ qþ r

For multilevel circuits the Boolean difference of a function can be derived by taking the

individual Boolean difference of each node with respect to the output of its preceding

node, and then the Boolean differences are concatenated. For example, if the preceding

node of node z is y, and the preceding node of y is x, then

(dz=dx) ¼ (dz=dy) � (dy=dx)

The Boolean difference of f with respect to p is

(df =dp) ¼ (df =dq) � (dq=dp)

FIGURE 3.54 A four-level circuit.

3.10 MINIMIZATION OF MULTILEVEL CIRCUITS USING DON’T CARES 113

Therefore the observability don’t care for node p is

ODCp ¼ (df =dp)

¼ ½(df =dq) � (dq=dp)�

Since f ¼ qþ r and q ¼ (pc),

df =dq ¼ �r and dq=dp ¼ c

Therefore

ODCp ¼ (�r � c) ¼ r þ �c ¼ �a�cþ �c ¼ �c

Since c̄ is a don’t care for node p, it may be used for possible minimization of the function

of p as shown in the Karnaugh map of Figure 3.55a. Thus node p in Figure 3.54 can be

replaced by (b̄þ a) as shown in Figure 3.55b.

3.11 COMBINATIONAL LOGIC IMPLEMENTATION USING

EX-OR AND AND GATES

An EX-OR gate can be constructed from AND, OR, and inverter gates (Chapter 2).

However, the Boolean expression for the EX-OR function can be manipulated

FIGURE 3.55 Minimization using (a) ODCs and (b) ODCp.

114 COMBINATIONAL LOGIC DESIGN

algebraically into another form, which can be implemented using four two-input NAND

gates:

f (A,B) ¼ A� B ¼ �ABþ A �B

¼ �ABþ B �Bþ A �Bþ A �A

¼ B(�Aþ �B)þ A(�Aþ �B)

¼ (B(�Aþ �B)þ A(�Aþ �B))

¼ B(�Aþ �B) � A(�Aþ �B)

¼ B � AB � A � AB

Figure 3.56 shows the implementation of the EX-OR gate.

There are several rules associated with EX-OR operation. Table 3.4 lists some of these.

EX-OR gates can be cascaded as shown in Figure 3.57 to generate the parity bit of an

input pattern applied to the circuit. The output expression for the circuit is

f (A,B,C,D) ¼ A� B� C � D

FIGURE 3.56 EX-OR gate.

TABLE 3.4 Rules for EX-OR Operation

X � X ¼ 0

X � X̄ ¼ 1

1 � X ¼ X̄

Xþ Y ¼ X � Y � XY ¼ X � X̄Y

X(Y � Z) ¼ XY � XZ

FIGURE 3.57 EX-OR circuit of four variables.

3.11 COMBINATIONAL LOGIC IMPLEMENTATION USING EX-OR AND AND GATES 115

The output of the circuit is 0 if all inputs are 0 or if the number of inputs at 1 is even; the

output is 1 if the number of inputs at 1 is odd. For example, if A ¼ 0, B ¼ 1, C ¼ 0 and

D ¼ 1, the output is 0 because an even number of inputs are 1. On the other hand, if

A ¼ 1, B ¼ 1, C ¼ 0 andD ¼ 1, the output will be 1 because an odd number of inputs are 1.

An EX-OR gate can also be used as a programmable inverter as shown in Figure 3.58.

If the control input E is 0, data on theD line is transferred to the output. However, if E ¼ 1,

the output of the gate is the inverse of the data input. This particular arrangement is widely

used in field-programmable devices to control polarity of output signals.

It is also possible to realize arbitrary combinational functions using AND and EX-OR

gates. However, in order to do that, it is first necessary to express the function in a cano-

nical form using AND and EX-OR. For example, a canonical sum-of-products expression

of two variables

f (A,B) ¼ a0 �A �Bþ a1 �ABþ a2A �Bþ a3AB, where a1 ¼ 0 or 1

can also be represented as

f (A,B) ¼ a0 �A �B� a1 �AB� a2A �B� a3AB

The OR operators can be replaced by EX-OR because at any time only one minterm in a

sum-of-products expression can take the value of 1. The third line of Table 3.4 shows that

the complemented variables can be replaced: Ā ¼ 1 � A, B̄ ¼ 1 � B. Hence

f (A,B) ¼ a0(1� A)(1� B)� a1(1� A)B� a2A(1� B)� a3AB

¼ a0(1� A� B� AB)� a1(B� AB)� a2(A� AB)� a3AB

¼ a0 � (a0 � a2)A� (a0 � a1)B� (a0 � a1 � a2 � a3)AB

A combinational function expressed as the EX-OR of the products of uncomplemented

variables is said to be in Reed–Muller canonical form. Thus the above expression

represents the Reed–Muller form of two-variable functions. It can be rewritten

f (A,B) ¼ c0 � c1A� c2B� c3AB

FIGURE 3.58 Programmable inverter.

116 COMBINATIONAL LOGIC DESIGN

where c0 ¼ a0, c1 ¼ a0 � a2, c2 ¼ a0 � a1, and c3 ¼ a0 � a1 � a2 � a3. In general,

any combinational function of n variables can be expressed in Reed–Muller canonical form:

f (x1, x2, . . . , xn) ¼ c0 � c1x1 � c2x2 þ � � � þ cnxnCnþ1 x1x2

� cnþ2 x1x3 � � � � � c2n�1 x1x2 � � � xn

As an example, let us derive the Reed–Muller form of the combinational function

f (A,B,C) ¼ A �Bþ B(�Aþ C)

¼ A �B� B(�Aþ C)� A �BB(�Aþ C) (by line 4, Table 3.4)

¼ A �B� B(�Aþ C)� 0

¼ A �B� B(�A� C � �AC) (by line 4)

¼ A(1� B)� B½1� A� C � (1� A)C� (by line 3)

¼ A� AB� B� AB� BC � BC � ABC (by line 5)

¼ A� B� ABC

A direct implementation of the function is shown in Figure 3.59.

It has been shown that circuits realized using AND and EX-OR gates alone are easy

to test.

3.12 LOGIC CIRCUIT DESIGN USING MULTIPLEXERS

AND DECODERS

3.12.1 Multiplexers

Multiplexers are typically described as data selectors and are frequently used in digital

systems. In a standard multiplexing application, digital signals are connected to the multi-

plexer’s input lines (I0, I1, I2,. . .) and binary control signals are fed to the select lines

(S0, S1, . . .). Figure 3.60a shows the block diagram of a 4-to-l multiplexer (i.e., a multi-

plexer having four input lines—I0, I1, I2, and I3—and one output line, Z). It also has

two select lines (S0 and S1) and an enable line Ē. The signals on the select lines specify

which of the four input lines will be gated to the output. For example, if the select lines

are S0S1 ¼ 00, the output is I0; similarly, the select inputs 01, 10, and 11 give outputs

I1, I2, and I3, respectively. In order for the multiplexers to operate at all, the Ē line must

be set to logic 0; otherwise, the multiplexer output will be 0 regardless of all other

input combinations. The operation of the multiplexer can be described by the function

FIGURE 3.59 Reed–Muller implementation.

3.12 LOGIC CIRCUIT DESIGN USING MULTIPLEXERS AND DECODERS 117

FIGURE 3.60 (a) Block diagram, (b) function table, and (c) logic diagram.

118 COMBINATIONAL LOGIC DESIGN

table of Figure 3.60b. The implementation of the multiplexer circuit using AND and OR

gates and inverters is shown in Figure 3.60c.

A multiplexer of any size can be formed by combining several multiplexers in a tree

form. Figure 3.61 shows the implementation of a 32-to-l multiplexer by interconnecting

eight 4-to-l multiplexers and a single 8-to-l multiplexer. It is assumed that the enable

lines of all the multiplexers are connected to ground (i.e., they are at logic 0). By replacing

all 4-to-l multiplexers with their 8-to-l counterparts, the circuit of Figure 3.61 can be con-

verted to a 64-input multiplexer circuit without adding any additional delay.

Multiplexers are often used to implement combinational logic functions. For example, a

4-to-l multiplexer can be used to generate any of the possible functions of three variables.

FIGURE 3.61 Configuration of 32-to-1 multiplexer.

3.12 LOGIC CIRCUIT DESIGN USING MULTIPLEXERS AND DECODERS 119

Let us consider the following function of three variables, which is to be implemented with

a 4-to-1 multiplexer:

f (A,B,C) ¼ BC þ �ABþ A �B �C

The truth table for the function is first derived as shown in Figure 3.62a. Two of three vari-

ables (e.g., B and C) are arbitrarily chosen to feed the two select lines of the 4-to-1 multi-

plexer; the remaining variable A or its complement is to be connected to the input lines I0,

I1, I2, and I3. The truth table shows that when B and C are 0, the output has the same value

as variable A. Hence A must be connected to I0. When B ¼ 0 and C ¼ 1, the truth table

indicates that the output f will be 0 irrespective of the variable A. It means that I1 must

be connected to ground (i.e., to 0). For B ¼ 1 and C ¼ 0, the output f is the complement

of A (i.e., f ¼ 1 when A ¼ 0 and f ¼ 0 when A ¼ 1). This means that Ā must be

connected to I2. Finally, when B ¼ 1 and C ¼ 1 the output f will be 1 irrespective of

the variable A. Hence input line I3 must be connected to 1 (i.e., supply line VCC).

Figure 3.62b shows the appropriate input connection to the 4-to-1 multiplexer.

In general, any n-variable function, f (x1, x2, . . . , xn), can be implemented with a multi-

plexer that has (n2 1) select lines and 2n21 input lines. This results from the fact that the

function can be expanded with respect to any (n2 1) of the n variables:

f (x1, x2, . . . , xn�2, xn�1, xn) ¼ �x1 �x2 � � � �xn�2 �xn�1 f (0, 0, . . . , 0, 0, xn)

þ �x1 �x2 � � � �xn�2 �xn�1 f (0, 0, . . . , 0, 1, xn)

þ �x1 �x2 � � � �xn�2 �xn�1 f (0, 0, . . . , 1, 0, xn)

þ �x1 �x2 � � � xn�2xn�1 f (0, 0, . . . , 1, 1, xn)

þ � � � þ x1x2 � � � xn�2xn�1 f (1, 1, . . . 1, 1, xn)

In this expression each of the f(i1, i2, . . . , in21, xn), where ij ¼ 0 or 1, indicates the

value of f when x1, x2, . . . , xn21 in f are substituted with i1, i2 . . . , in21. The equation

describes a 2n21-to-1 multiplexer, where the expanding variables x1, x2, . . . , xn21 are

connected to the (n2 1) select lines, and the quantity that represents the function

FIGURE 3.62 (a) Truth table and (b) multiplexer implementation of f(A, B, C) ¼ BCþ
ĀBþ AB̄C̄.

120 COMBINATIONAL LOGIC DESIGN

f (i1, i2, . . . , in21, xn) is connected to the input line Ik (where k is the decimal equivalent of

i1, i2, . . . , in21).

As an example, let us implement the following function of five variables:

f (A,B,C,D,E) ¼ �A �B �C þ A �B �C �Dþ �A �CDþ AB �CDþ AE þ �BC �E þ �CE

Since n ¼ 5, the function can be realized with a 16-to-1 multiplexer. We expand the

function with respect to A, B, C, and D:

f (A,B,C,D,E) ¼ �A �B �C �Df0 þ �A �B �CDf1 þ �A �BC �Df2 þ �A �BCDf3 þ � � � þ ABCDf15

where f0 ¼ f (0, 0, 0, 0, E) ¼ 1, f1 ¼ f (0, 0, 0, 1, E) ¼ 1, f2 ¼ f (0, 0, 1, 0, E) ¼ Ē, f3 ¼ Ē,

f4 ¼ E, f5 ¼ 1, f6 ¼ 0, f7 ¼ 0, f8 ¼ 1, f9 ¼ E, f10 ¼ 1, f11 ¼ 1, f12 ¼ E, f13 ¼ 1, f14 ¼ E,

and f15 ¼ E. Figure 3.63 shows the implementation of the above expression, where A,

B, C, and D are control inputs and E is the multiplexed variable. The information obtained

by expanding the function about A, B, C, and D can also be derived by representing it in a

tabular form as shown in Table 3.5.

FIGURE 3.63 Multiplexer implementation of the function f(A, B, C, D, E) ¼ ĀB̄C̄þ AB̄C̄D̄þ
ĀC̄Dþ ABC̄Dþ AEþ B̄CĒþ C̄E.

3.12 LOGIC CIRCUIT DESIGN USING MULTIPLEXERS AND DECODERS 121

T
A
B
L
E
3
.5

S
el
ec
ti
o
n
o
f
C
o
n
tr
o
l
In
p
u
ts

a
n
d
th
e
M
u
lt
ip
le
x
ed

V
a
ri
a
b
le

L
Ā
B̄
C̄
D̄

Ā
B̄
C̄
D

Ā
B̄
C
D

Ā
B̄
C
D

Ā
B
C̄
D

Ā
B
C̄
D

Ā
B
C
D

Ā
B
C
D

A
B̄
C̄
D̄

A
B̄
C̄
D

A
B̄
C
D̄

A
B̄
C
D

A
B
C̄
D̄

A
B
C̄
D

A
B
C
D̄

A
B
C
D

0
1

1
1

1
0

1
0

0
1

0
1

1
0

1
0

0

1
1

1
0

0
1

1
0

0
1

1
1

1
1

1
1

1

f(
i 1
¼

A
,

i 2
¼

B
,

i 3
¼

C
,

i 4
¼

D
,
E
)

1
1

Ē
Ē

E
1

0
0

1
E

1
1

E
1

E
E

122

3.12.2 Demultiplexers and Decoders

A demultiplexer performs the function opposite to that of a multiplexer. It is used to route

data on a single input to one of several outputs, which is determined by the choice of

signals on the address lines. Figure 3.64a shows the block diagram of a demultiplexer

with four output lines (D0, D1, D2, and D3), one input line (I), and two address lines

(A0, A1). The operation of the demultiplexer can be described by the function table

shown in Figure 3.64b. The implementation of the demultiplexer using NAND gates

and inverters is shown in Figure 3.64c.

A decoder produces a unique output corresponding to each input pattern. If the input

line in Figure 3.64 is set to logic 0 (i.e., I ¼ 0), the 1-to-4 demultiplexer will act as a

decoder. For example, A0 ¼ 0, A1 ¼ 0 will give an output of 0 on line D0; lines D1, D2,

and D3 will be at logic 1. Similarly, A0 ¼ 0, A1 ¼ 1 will give an output of 0 on line D1;

A0 ¼ 1, A1 ¼ 0 will give an output of 0 on line D2; and A0 ¼ 1, A1 ¼ 1 will give an

output of 0 on line D3. Thus the 1-to-4 demultiplexer can function as a 2-to-4 decoder,

allowing each of the four possible combinations of the input signals A0 and A1 to

appear on the selected output line.

A decoder of any size can be made up by interconnecting several small decoders. For

example, a 6-to-64 decoder can be constructed from four 4-to-16 decoders and a 2-to-4

FIGURE 3.64 Demultiplexer: (a) block diagram, (b) function table, and (c) circuit diagram.

3.12 LOGIC CIRCUIT DESIGN USING MULTIPLEXERS AND DECODERS 123

decoder as shown in Figure 3.65. The 2-to-4 decoder enables one of the four 4-to-16 deco-

ders, depending on the address bits A0 and A1. Address bits A2, A3, A4, and A5 determine

which output of the enabled 4-to-16 decoder goes low. We thus have one of the 64 outputs

going low, as selected by the 6-bit address.

Like a multiplexer, a decoder can also be used to implement any arbitrary Boolean

functions. As indicated in the previous section, a decoder generates all the product

FIGURE 3.65 (a) A 6-to-64 decoding circuit. (b) Implementation of f1 ¼ ABþ ĀB̄C̄ and

f2 ¼ ĀBþ AB̄ using a 3-to-8 decoder and NAND gates.

124 COMBINATIONAL LOGIC DESIGN

terms of its input variables. Thus by connecting the outputs of the decoder corresponding

to the canonical sum-of-products expression to an output NAND gate, any Boolean func-

tion can be realized.

Let us implement the following functions using a 3-to-8 decoder:

f1(A,B,C) ¼ ABþ �A �B �C

f2(A,B,C) ¼ �ABþ A �B

First of all, the functions must be expressed in canonical form,

f1(A,B,C) ¼ ABC|ffl{zffl}
7

þ AB �C|ffl{zffl}
6

þ �A �B �C|ffl{zffl}
0

f2(A,B,C) ¼ �ABC|ffl{zffl}
3

þ �AB �C|ffl{zffl}
2

þ A �B �C|ffl{zffl}
4

þ A �BC|ffl{zffl}
5

The input variables A, B, and C are connected to address inputs of the decoder; the outputs

of the decoder corresponding to the minterms of the given functions are then fed to the

inputs of the two NAND gates. The resulting circuit is shown in Figure 3.65b.

3.13 ARITHMETIC CIRCUITS

Arithmetic operations are frequently performed in digital computers and other digital

systems. In this section we deal with the design of adders, subtractors, and multipliers.

3.13.1 Half-Adders

A half-adder is a combinational logic circuit that accepts two binary digits and generates a

sum bit and a carry-out bit. Table 3.6 shows the truth table of the half-adder circuit. Columns

ai and bi correspond to the sum and the carry-out bit, respectively. The Boolean expressions

FIGURE 3.65 (Continued).

3.13 ARITHMETIC CIRCUITS 125

for the sum and the carry-out can be derived directly from the truth table and are as follows:

si ¼ �aibi � ai �bi

¼ ai � bi

ci ¼ aibi

The NAND–NAND implementation of the sum and the carry-out is shown in Figure 3.66.

3.13.2 Full Adders

The limitation of a half-adder is that it cannot accept a carry-in bit; the carry-in bit

represents the carry-out of the previous low-order bit position. Thus a half-adder can be

used only for the two least significant digits when adding two multibit binary numbers,

since there can be no possibility of a propagated carry to this stage. In multibit addition,

a carry bit from a previous stage must be taken into account, which gives rise to the neces-

sity for designing a full adder. A full adder can accept two operands bits, ai and bi, and

a carry-in bit ci from previous stage; it produces a sum bit si and a carry-out bit c0.

Table 3.7 shows the truth table for a full adder circuit. As can be seen from the truth

table, sum bit si is 1 if there is an odd number of 1’s at the inputs of the full adder,

whereas the carry-out c0 is 1 if there are two or more 1’s at the inputs. The sum and

carry out bits will be 0 otherwise. The Boolean expressions for si and c0 obtained from

the truth table are as follows:

si ¼ �ai �bici þ �aibi �ci þ ai �bi �ci þ aibici

c0 ¼ �aibici þ ai �bici þ aibi �ci þ aibici

FIGURE 3.66 Half-adder circuit.

TABLE 3.6 Truth Table for Half-Adder

ai bi si ci

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

126 COMBINATIONAL LOGIC DESIGN

These expressions are plotted on the Karnaugh maps shown in Figure 3.67. The

expression for si cannot be reduced. The expression for c0 reduces to

c0 ¼ aibi þ bici þ aici

The expressions for si and c0 can be rewritten as follows:

si ¼ �ai �bi �ci þ �aibici þ aibi �ci þ ai �bici

¼ (ai þ bi þ ci)þ (ai þ �bi þ �ci)þ (�ai þ �bi þ ci)þ (�ai þ bi þ �ci)

c0 ¼ �ai �ci þ �bi �ci þ �ai �bi

¼ (ai þ ci)þ (bi þ ci)þ (ai þ bi)

The implementation of the expression for si and c0 using NOR gates is shown in

Figure 3.68. It is also possible to implement the full adder by combining two half-adders

with some NAND gates as shown in Figure 3.69.

A multibit adder can be constructed by cascading full adders such that the carry-out

from the ith full adder is connected to the carry-in of the (iþ 1)th adder. The number

of adders required is equal to the bit length of the binary numbers to be added.

Figure 3.70 shows a 4-bit adder. Since the least significant adder FA0, cannot have a

carry-in, it can be replaced by a half-adder if desired, although in practice a full adder

TABLE 3.7 Truth Table for a Full Adder

ai bi ci si c0

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

FIGURE 3.67 Karnaugh maps for si and c0.

3.13 ARITHMETIC CIRCUITS 127

with the carry-in connected to the ground is used. It can be seen from Figure 3.70 that the

sum bit S3 can have a steady value only when its carry-in signal C2 has a steady value;

similarly, S2 has to wait for C1 and S1 has to wait for C0. In other words, the carry

signals must ripple through all the full adders before the outputs stabilize to the correct

values; hence such an adder is often called a ripple adder. For example, if the following

addition is to be performed the carry-out generated from the least significant stage of the

a3 a2 a1 a0

b3 b2 b1 b0

0 1 0 1

0 0 1 1

1 1 1 0

1 0 0 0

Carry-in

FIGURE 3.68 Implementation of the full adder using NOR gates.

FIGURE 3.69 Full adder constructed from half-adders.

128 COMBINATIONAL LOGIC DESIGN

adder propagates through the successive stages and produces a carry-in into the most sig-

nificant stage of the adder. The time required to perform addition in a ripple adder depends

on the time needed for the propagation of carry signals through the individual stages of the

adder. Thus ripple carry addition is not instantaneous. The greater the number of stages in a

ripple carry adder the longer is the carry propagation time, and consequently the slower

the adder.

3.13.3 Carry-Lookahead Adders

The long carry propagation time of the ripple adder can be overcome by an alternative

implementation of the carry generation circuit known as carry-lookahead.

Let us consider the 4-bit adder of Figure 3.70 to understand the principle of carry-

lookahead. We can write the following equations for the carry-outs:

c0 ¼ a0b0 (3:6)

c1 ¼ a1b1 þ (a1 � b1)c0 (3:7)

Substituting Eq. (3.6) into Eq. (3.7), we get

c1 ¼ a1b1 þ (a1 � b1)a0b0 (3:8)

In a similar manner, we can write

c2 ¼ a2b2 þ (a2 � b2)c1 (3:9)

By utilizing Eqs. (3.8, 3.9) becomes

c2 ¼ a2b2 þ (a2 � b2)½a1b1 þ (a1 � b1)a0b0�
¼ a2b2 þ (a2 � b2)a1b1 þ (a2 � b2)(a1 � b1)a0b0 (3:10)

Finally, we can write

cout ¼ a3b3 þ (a3 � b3)c2 (3:11)

FIGURE 3.70 A 4-bit ripple carry adder.

3.13 ARITHMETIC CIRCUITS 129

which with Eq. (3.10) becomes

cout ¼ a3b3 þ (a3 � b3)½a2b2 þ (a2 � b2)a1b1 þ (a2 � b2)(a1 � b1)a0b0�
¼ a3b3 þ (a3 � b3)a2b2 þ (a3 � b3)(a2 � b2)a1b1

þ (a3 � b3)(a2 � b2)(a1 � b1)a0b0 (3:12)

Next, we define Pi and Gi as the carry-propagate and carry-generate signals for the ith

stage of the adder, where

Pi ¼ ai � bi (3:13)

Gi ¼ aibi (3:14)

Pi indicates that if ai ¼ 0, bi ¼ 1 or ai ¼ 1, bi ¼ 0, then the carry-in to the ith stage will be

propagated to the next stage, Gi indicates that a carry-out will be generated from the ith

stage when both ai and bi are 1, regardless of the carry-input to this stage.

Substituting Eqs. (3.13) and (3.14) in Eqs. (3.6), (3.8), (3.10) and (3.12), we get

c0 ¼ G0

c1 ¼ G1 þ G0P1

c2 ¼ G2 þ G1P2 þ G0P2P1

cout ¼ G3 þ G2P3 þ G1P3P2 þ G0P3P2P1

Figure 3.71 shows the implementation of a 4-bit carry-lookahead adder.

The propagation delay of the carry in the circuit of Figure 3.71 is independent of the

number of bit pairs to be added and equal to the propagation delay of the two-level carry-

lookahead circuit. In principle, the circuit of Figure 3.71 can be extended to a large number

of bit pairs; however, the complexity of the carry-generation equations for large number of

stages makes it impractical.

3.13.4 Carry-Select Adder

The carry-select adder is one of the faster type of adders. Figure 3.72 shows the block diagram

of a 4-bit carry-select adder. The adder consists of two independent units. Each unit

implements the addition operation in parallel. The first unit implements the addition assuming

a carry-in of “0,” generating the sum and carry-out bit. The second unit performs the same

operation assuming “1” as the carry-in. The carry-out generated from each full adder is

used as the new carry-in for the successive bit. The resultant sum is multiplexed by the

“actual carry-in” coming in from the previous state. If the actual carry-in is “0” then

the sum multiplexed from the first unit is selected; alternatively, if the carry-in is “1” then

the sum from the second unit is selected. The main difference between a carry-select adder

and a ripple carry adder is that in ripple carry adder the carry has to ripple through four full

adders, but in the case of a carry-select adder the carry has to pass through a singlemultiplexer.

3.13.5 Carry-Save Addition

In a ripple carry or carry-lookahead adder, m2 1 additions are required to add m numbers;

each addition except the first uses the accumulated sum and a new number. Thus the

total time for addition is (m2 1)td, where td is the time required to do each addition. In

a carry-save addition the carry-out of a full adder is not connected to the carry-in of the

130 COMBINATIONAL LOGIC DESIGN

more significant adder; instead, the sum outputs and the carry-outs of the full adders are

stored as sum tuple S and carry tuple C, respectively. The final sum is obtained by

adding S and C using a carry-propagate adder. Let us illustrate the carry-save addition

by adding three 4-bit numbers:

A 1 1 0 0 ¼ 12

B 0 1 0 1 ¼ 5

C 1 0 1 1 ¼ 11

S 0 0 1 0

C 1 1 0 1

Sum 1 1 1 0 0 28

FIGURE 3.71 A 4-bit adder circuit with carry-lookahead.

3.13 ARITHMETIC CIRCUITS 131

Note that the carry bits are shifted left to correspond to normal carry-propagation in con-

ventional adders. Figure 3.73a shows the circuit for generating S andC for the above addition.

Thus a carry-save adder reduces three input tuples into two tuples, which constitute a set of

sum bits and a set of carry bits. Figure 3.73b shows the symbol for a carry-save full adder.

3.13.6 BCD Adders

It is often more convenient to perform arithmetic operations directly with decimal

numbers, especially if the results of the operations are to be displayed directly in

FIGURE 3.72 Carry-select adder.

FIGURE 3.73 (a) Carry and some generations, (b) symbol.

132 COMBINATIONAL LOGIC DESIGN

decimal form. Each decimal digit is usually represented by 4-bit 8-4-2-1 BCD code;

thus six combinations of the 4-bit code are not valid. When two BCD digits are added,

the sum has a value in the range of 0 to 18. If the sum exceeds 9, an adjustment has to

be made to the resulting invalid combination. This adjustment is made by adding

decimal 6 (i.e., 01102) to the result, which generates a valid sum as well as a carry-in to

the next-higher-order digit.

Table 3.8 shows the 20 possible sum digits that may result from the addition of two

BCD digits and a carry-in. Whenever the sum digit is greater than 9 or the carry bit bc
is 1 for the unadjusted sum, the sum digit is adjust by adding 6 to it. Consequently, a

logic circuit that detects the condition for the adjustment and produces a carry-out C

must be used. Such a circuit can be expressed by the following Boolean function:

C ¼ bc þ b8b4 þ b8b2

When C ¼ 1, it is necessary to add the correction 0110 to the sum bits b8b4b2b1 and to

generate a carry for the next stage. The implementation of one stage of a BCD adder is

shown is Figure 3.74.

3.13.7 Half-Subtractors

The half-subtractor circuit is used to implement a 1-bit binary subtraction. Figure 3.75a

shows the truth table of a half-subtractor used to subtract Y (subtrahend) from X

TABLE 3.8 Derivation of BCD Sum Digit

BCD Sum (Without Adjustment) BCD Sum (with Adjustment)

Decimal bc b8 b4 b2 b1 C S8 S4 S2 S1

0 0 0 0 0 0

adjustment not necessary

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

4 0 0 1 0 0

5 0 0 1 0 1

6 0 0 1 1 0

7 0 0 1 1 1

8 0 1 0 0 0

9 0 1 0 0 1

10 0 1 0 1 0 1 0 0 0 0

11 0 1 0 1 1 1 0 0 0 1

12 0 1 1 0 0 1 0 0 1 0

13 0 1 1 0 1 1 0 0 1 1

14 0 1 1 1 0 1 0 1 0 0

15 0 1 1 1 1 1 0 1 0 1

16 1 0 0 0 0 1 0 1 1 0

17 1 0 0 0 1 1 0 1 1 1

18 1 0 0 1 0 1 1 0 0 0

19 1 0 0 1 1 1 1 0 0 1

3.13 ARITHMETIC CIRCUITS 133

FIGURE 3.74 A single-stage 4-bit BCD adder.

FIGURE 3.75 (a) Truth table for half-subtractor and (b) half-subtractor circuit.

134 COMBINATIONAL LOGIC DESIGN

(minuend) and generate difference bitD and the borrow bit B. The Boolean expressions for

the D and B outputs are derived from the truth table and are given by

D ¼ �XY þ X �Y

¼ X � Y

B ¼ �XY

The implementation of the above expressions are shown in Figure 3.75b.

3.13.8 Full Subtractors

A full subtractor has three inputs X (minuend), Y (subtrahend), and Z (the previous

borrow). The outputs of the full subtractor are the difference bit D and the output

borrow B. The truth table of a full subtractor is shown in Figure 3.76a. The output bit

D is obtained from the subtraction, a12 (biþ ci). The output bit B is 0 if ai
 bi provided

ci ¼ 0. If ci ¼ 1, output bit B is 1 of and only if ai � bi. The simplified Boolean

expressions for outputs B and D are derived from their Karnaugh map plots as shown

in Figure 3.76b.

The simplified expressions are

Di ¼ �ai �bici þ �aibi �ci þ ai �bi �ci þ aibici

Bi ¼ �aici þ �aibi þ bici

The implementations of the expressions for D and B are shown in Figure 3.76c. Note that

the expression for the output Di is identical to the expression for Si in the full adder circuit.

Furthermore, the expression for Bi is similar to the carry-out expression C0 in the full

adder, except that the input variable ai is complemented. Thus a full adder can be used

to perform the function of subtraction as well, by applying the complement of input ai
to the circuit that generates the carry output.

3.13.9 Two’s Complement Subtractors

All modern digital systems use 2’s complement number systems. Subtraction in 2’s comp-

lement is performed by 2’s complementing the subtrahend and adding it to the minuend;

any carry-out is ignored. If the sign bit of the resulting number is 0, the numerical part of

the number is expressed in magnitude form. However, if the sign bit of the resulting

number is 1, the numerical part of the number must be changed to 2’s complement in

order to get the correct magnitude.

A circuit of a 4-bit 2’s complement subtractor is shown in Figure 3.77. The inverters are

used to produce the 1’s complement of the subtrahend, which is then added to the

minuend. The carry-in of the low-order full adder is held at logic 1, which adds 1 in

order to implement 2’s complementation.

Let us use the circuit shown in Figure 3.77 to subtract Y ¼ þ9(010012) from

X ¼ þ7(001112). The outputs of the inverter will be 10110. Then 00111 is added to

3.13 ARITHMETIC CIRCUITS 135

01001 along with carry-in ¼ 1:

00111

10110

1

11110

The 2’s complement of the magnitude part gives the difference

0001þ 1 ¼ 0010 (210)

Thus the correct result is –2.

FIGURE 3.76 (a) Truth table for a full subtractor, (b) Karnaugh maps for outputs B and D, and

(c) logic implementation for a full subtractor.

136 COMBINATIONAL LOGIC DESIGN

As another example, let us subtract Y ¼ –6(110102) from X ¼ þ3(000112) using

Figure 3.77. The output of the inverter (i.e., 00101) is added to 00011 assuming the

carry-in input is at 1:

00011

00101

1

01001

Since the result is positive, it is not necessary to take the 2’s complement of the magnitude

part. Thus, the result of the subtraction is þ9.

3.13.10 BCD Substractors

Substraction of two decimal digits can be carried out by using the BCD adder. The 9’s

complement of the subtrahend is added to the minuend to find the difference. Thus in

addition to the BCD adder, a small amount of circuitry is required in BCD substraction.

The 9’s complement of a BCD digit can be obtained by subtracting the digit from

9. Table 3.9 shows the 9’s complement representation for the BCD digits. It can be

FIGURE 3.77 Two’s complement subtractor circuit.

TABLE 3.9 The 9’s Complement of BCD Digits

BCD 9’s Complement

Decimal Number b8 b4 b2 b1 f8 f4 f2 f1

0 0 0 0 0 1 0 0 1

1 0 0 0 1 1 0 0 0

2 0 0 1 0 0 1 1 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 0 1

5 0 1 0 1 0 1 0 0

6 0 1 1 0 0 0 1 1

7 0 1 1 1 0 0 1 0

8 1 0 0 0 0 0 0 1

9 1 0 0 1 0 0 0 0

3.13 ARITHMETIC CIRCUITS 137

seen from Table 3.9 that a combinational circuit defined by the following Boolean

expressions is required to derive the 9’s complement of a BCD digit.

f1 ¼ �b1

f2 ¼ b2

f4 ¼ b2 � b4

f8 ¼ �b2 �b4 �b8

The logic diagram of the 9’s complement circuit is shown in Figure 3.78. In practice, the

BCD subtraction can also be used as a BCD adder by incorporating a mode control imput

M to the 9’s complement circuit such that

M ¼ 0 Add operation

M ¼ 1 Substract operation

The expression for the 9’s complementer circuit are then modified as follows:

f1 ¼ M � b1

f2 ¼ b2

f4 ¼ Mb4 þM(b2 � b4)

f8 ¼ Mb8 þM � �b2 �b4 �b8

Figure 3.79 shows one stage of the BCD adder/subtractor circuit.

3.13.11 Multiplication

Multiplication schemed used in digital systems are quite similar to pencil-and-paper mul-

tiplication. An array of partial products is found first, and these are then added to generate

the product. Figure 3.80 shows a simple numerical example of the multiplication. As

shown in the diagram, the first partial product is formed by multiplying 1110 by 0, the

second partial product is formed by multiplying 1110 by 1, and so on. The multiplication

of two bits produces a 1 if both bits are 1; otherwise it produces a 0. The summation of the

partial products is accomplished by using full adders. In general, the multiplication of an

FIGURE 3.78 Circuit for a 9’s complementer.

138 COMBINATIONAL LOGIC DESIGN

FIGURE 3.79 One stage of a BCD adder/subtractor unit.

FIGURE 3.80 Binary multiplication example.

FIGURE 3.81 (a) A 4-bit by 3-bit multiplier circuit. (b) Multiplication of 6 by 5.

3.13 ARITHMETIC CIRCUITS 139

m-bit multiplicand X(¼xm21 . . . x1 x0) by an n-bit multiplier Y(¼yn21 . . . y1 y0) results in
an (mþ n)-bit product. Each of the mn 1-bit products xiyj may be generated by a 2-input

AND gate; these products are then added by an array of full address. Figure 3.81a shows a

4-bit by 3-bit multiplier circuit.

Let us multiply x3x2x1x0 ¼ 0110(610) by y2y1y0 ¼ 101(510) using the multiplier circuit

of Figure 3.81a. The outputs of the AND gates and the full adders in the multiplier circuit

corresponding to the applied input values are recorded in Figure 3.81b. Note that the

outputs of the AND gates form the partial products and the outputs of the full adders

form the partial sum during the multiplication process. The final output pattern is p6 p5
p4 p3 p2 p1 p0 ¼ 0011110 (i.e., 3010), which is the expected result. One of the problems

in performing multiplication using this scheme is that when many partial products are

to be added, it becomes difficult to handle the carries generated during the summation

of partial products.

3.13.12 Comparator

A comparator is used to determine the relative magnitudes of two binary numbers. It com-

pares two n-bit binary numbers and produces three possible results at the outputs.

Figure 3.82a shows the result of comparing two 1-bit numbers A and B. It is seen from

FIGURE 3.81 (Continued)

140 COMBINATIONAL LOGIC DESIGN

the truth table that the specified conditions are satisfied by the following Boolean

expressions:

f1 ¼ A �B

f2 ¼ �AB

f3 ¼ �A �Bþ AB

These expressions can be realized using NAND gates as shown in Figure 3.82b. The

Boolean expressions for the 1-bit comparator can be expanded to n-bit operands.

3.14 COMBINATIONAL CIRCUIT DESIGN USING PLDs

Programmable logic devices, popularly known as PLDs, have a general architecture that a

user can customize by inducing physical changes in select parts. Thus these devices can be

configured to be application specific by utilizing their user programmable features. The

actual programming of such devices can be done by a piece of equipment called a PLD

programmer. The process takes only a few seconds.

Most PLDs consist of an AND array followed by an OR array. The inputs to a PLD

enter the AND array through the buffers, which generate both the true and the complement

of the input signals. Each gate in the AND array generates a minterm of the input variables;

a minterm is known as a product line in the programmable logic device nomenclature. The

device outputs are produced by summing the product terms in the array of OR gates.

Figure 3.83 shown the generic structure of a PLD with two inputs and two outputs. As

can be seen from the diagram, there are programmable connections between the input lines

and the product lines, as well as between product lines and sum lines; such connections are

known as crosspoints.

FIGURE 3.82 Comparator.

3.14 COMBINATIONAL CIRCUIT DESIGN USING PLDs 141

In PLDs manufactured using bipolar technology, the crosspoints are implemented using

fuses, which break open when current flowing through then exceeds a certain limit.

A major drawback of PLDs based on bipolar technology is that the programming of the

fuses is irreversible (i.e., a device cannot be reprogrammed). On the other hand, PLDs

manufactured using CMOS technology use memory cells as crosspoints. These cells are

reprogrammable; hence the function of an already programmed device can be altered

by merely changing the contents of the memory cells.

The AND–OR structured programmable logic devices can be grouped into three basic

types:

Programmable read-only memory (PROM)

Programmable logic array (PLA)

Programmable array logic (PAL)

In a PROM, the AND array is fixed and the OR array is programmable. In a PLA, both

arrays are programmable. A PAL device is the mirror image of the PROM its AND

array is programmable, while the OR array is fixed.

3.14.1 PROM

Traditionally, PROM devices have been used to store software in micorprocessor-based

systems. However, they can also be used to implement logic functions. The major advan-

tage of PROM-based logic functions is that there is no need to employ any of the conven-

tional minimization techniques. The input variables in a combinational function are used

as inputs to a PROM with the required output values being stored in the location corre-

sponding to the input combination. It will be obvious that a PROM can be used for realiz-

ing multioutput combinational circuits, each bit in the PROM output corresponding to a

particular output value of the combinational circuit.

To illustrate, we implement a three-output combinational function of four variables

(w, x, y, z). A 1 programmed in the PROM represents the presence of minterm in the func-

tion, and a 0 its absence. Thus the input combination 1001 applied to the PROM wil be

interpreted as the minterm wx̄ȳz; in the output of the OR gate driven by the minterm,

FIGURE 3.83 Generic PLD structure.

142 COMBINATIONAL LOGIC DESIGN

the 1’s correspond to functions containing that minterm and 0’s corresponding to functions

that do not.

f1(w, x, y, z) ¼ �wx�yzþ �w�xyzþ wxyzþ �w�x�y�z

f2(w, x, y, z) ¼ w�xy�zþ wxyzþ �wx�yz

f3(w, x, y, z) ¼ �wxy�zþ w�x�yz

These functions can be implemented by programming a PROM as shown:

w x y z f1 f2 f3

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 1 0 0

0 1 0 0 0 0 0

0 1 0 1 1 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 0 1 0 0 1

1 0 1 0 0 1 0

1 0 1 1 0 0 0

1 1 0 0 0 0 0

1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 1 1 1 0

Note that in employing PROM devices to implement logic function, the minterms are

programmed directly from the truth table for each of the functions; the minimization

process is bypassed, since this does not result in any savings. In fact, if an expression is

already reduced it must be expanded to its canomical form in order to property specify

the PROM program.

Let us implement a multiplier of two 2-bit numbers a1a0 and b1b0 using a PROM. Since

the multiplier uses two 2-bit numbers, a PROMwith 4 inputs is needed. The product of two

such numbers will also contain 4(¼2þ 2) bits, so the PROM will require 4 output lines.

Each address to the PROM will consist of 4 bits, and the content corresponding to the

address will be a 4-bit number that is the product of the first and the second halves of

the address bits. The program table for the PROM is

b1 b0 a1 a0 o8 o4 o2 o1

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1

3.14 COMBINATIONAL CIRCUIT DESIGN USING PLDs 143

b1 b0 a1 a0 o8 o4 o2 o1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

3.14.2 PLA

The PLA structure offers a high level of flexibility because both the AND array ad the OR

array are programmable. Since the AND array is programmable, PLAs do not suffer from

the limitation of PROM devices that the AND array must provide all possible input com-

binations. Since both the arrays are user programmable, it is possible for an OR gate to

access any number of product terms. Moreover, all OR gates can access the same

product term(s) simultaneously. In other words, product sharing does not require any

additional resources in a PLA architecture.

In PLAs every connection is made through a fuse at every intersection point the unde-

sired connection can be removed later by blowing the fuses. Alternatively the desired con-

nections can be made during the chip fabrication according to a particular interconnection

pattern; these types of PLAs are mostly embedded in VLSI chips.

PLAs are configured by the number of inputs(I), outputs(O), and product terms(P):

I � P � O. Figure 3.84 shows the logic diagram of a 4 � 8 � 4 PLA. The inputs are

each internally buffered and also inverted so as to provide true or complemented

values. Product terms are formed by appropriate ANDing of any combination of input

variables and their complements. Each of the OR gates can provide a sum of any or all

of the product terms. In addition, each output function can be individually programmed

true or complement. This is accomplished by an EX-OR gate on each output, one input

of which is connected to the ground via a fuse so that the sum-of-products function is

not inverted (Fig. 3.85). If the fuse is blown, this input is forced to be at logic 1, thus pro-

viding the complement of the sum-of-products function. The programmable inversion has

the added advantage in that if the complement of a sum-of-products function is simpler to

realize than the original output function, then the complemented function may be

programmed into the AND array and an inversion of it obtained at the output.

As an example, let us consider the implementation of the following Boolean

expressions using a PLA:

f1(w, x, y, z) ¼ �wxyzþ w�y�zþ �xyz

f2(w, x, y, z) ¼ wþ xþ y

f3(w, x, y, z) ¼ �wxþ w�xþ �yzþ y�z

144 COMBINATIONAL LOGIC DESIGN

Expression f2 can be rewritten

f2(w, x, y, z) ¼ �w�x�y

which required only a single product term. Figure 3.86 shows the appropriately pro-

grammed logic diagram for the PLA.

A major problem in the PLA implementation of a combinational logic circuit is to

ensure that the number of product terms in the Boolean expressions for the circuit will

not exceed the number of product terms available in the PLA. Therefore minimization

of multioutput Boolean functions is extremely important in the PLA implementation of

combinational circuits.

To illustrate, let us consider the truth table of a circuit shown in Table 3.10. This circuit

has 5 inputs and outputs. By using the two-level minimizer ESPRESSO, the following

FIGURE 3.84 Logic diagram of a 4 � 8 � 4 PLA.

FIGURE 3.85 Programmable output polarity.

3.14 COMBINATIONAL CIRCUIT DESIGN USING PLDs 145

equations are obtained:

W ¼ abdeþ abcd þ bcdeþ acdeþ abce

X ¼ a�b�c �d�eþ �a�b�c �deþ �ab�c �d�eþ �a�b�cd�eþ �a�bc �d�eþ a�bc �deþ ab�cd�eþ �ab�cde

þ a�bcd�eþ �abc �deþ �abcd�eþ abcdeþ ab�c �deþ a�b�cdeþ abc �d�eþ �a�bcde

Y ¼ a�b �deþ ab�c �deþ a�b�cdeþ ab�c�eþ �a�cdeþ a�bd�eþ a�bc�eþ �ac �deþ �ab �de

þ abc �d�eþ �a�bcdeþ �acd�eþ �abd�eþ �abc�e

Output expressions X and Y have four shared product terms, abc̄d̄e, ab̄c̄de, abcd̄ē, and

āb̄cde. Thus the total number of unique product terms needed to implement the circuit is

31. Note that multioutput minimization often leads to sharing of product terms, which may

not obvious from the truth table. In general, determining whether a design will fit in a

particular PLD required sophisticated software capability.

3.14.3 PAL

The basic PAL architecture is exactly opposite to that of a PROM. It is comprised of

a programmable AND array and a fixed OR array. The programmability in the AND

array removes one of the main deficiencies in PROM devices—that the AND plane

must be large enough to produce product terms corresponding to all possible input

combinations. Thus, as in PLAs, only the desired input combinations have to be

programmed. Moreover, logic minimization techniques can be employed to further

reduce the required number of product terms. However, since the OR array is not pro-

grammable, only a fixed number of product terms, typically eight, can drive a specific

OR gate.

FIGURE 3.86 Logic diagram of the programmed PLA.

146 COMBINATIONAL LOGIC DESIGN

PAL devices with active high outputs can implement AND–OR logic, and the devices

with active-low outputs can implement AND–NOR logic. Figure 3.87a and 3.87b show

the logic for a cell from an active-high and an active-low PAL, respectively. Any combina-

tional function represented by NAND–NAND, OR–NAND, or NOR–OR logic can be

replaced by a PAL with active-high output. Similarly, a function in NAND–AND.

OR–AND, or NOR–NOR form can be realized by a PAL with active-low outputs.

Let us illustrate the application of combinational PAL devices in logic design by using

such a device to implement a circuit with four inputs (a, b, c, d) and two outputs (X, Y) [3].

One output (X) is high when the majority of the inputs are high and low at other times. The

remaining output (Y) is high only during a tie (i.e., when two inputs are high and two are

low). Table 3.11 shows the truth table for the circuit.

TABLE 3.10 A Truth Table for Circuit rd53, anMCNC (Microelectronics

Center of North Carolina) Benchmark Circuit

Input Output

a b c d e W X Y

1 – 1 1 1 1 – –

1 1 – 1 1 1 – –

1 1 1 1 – 1 – –

1 1 1 – 1 1 – –

– 1 1 1 1 1 – –

0 1 – 0 1 – – 1

– 0 1 1 0 – – 1

0 0 1 – 1 – – 1

1 – 0 0 1 – – 1

1 – 1 0 0 – – 1

1 1 0 – 0 – – 1

0 1 1 – 0 – – 1

1 0 0 1 – – – 1

0 – 0 1 1 – – 1

– 1 0 1 0 – – 1

– 0 1 0 1 – – 1

0 1 1 1 0 – 1 –

0 0 0 1 0 – 1 –

0 1 0 0 0 – 1 –

1 1 1 1 1 – 1 –

0 0 1 0 0 – 1 –

0 0 1 1 1 – 1 –

1 1 1 0 0 – 1 –

1 1 0 1 0 – 1 –

0 1 1 0 1 – 1 –

0 1 0 1 1 – 1 –

1 0 1 1 0 – 1 –

1 0 0 0 0 – 1 –

1 1 0 0 1 – 1 –

0 0 0 0 1 – 1 –

1 0 1 0 1 – 1 –

1 0 0 1 1 – 1 –

3.14 COMBINATIONAL CIRCUIT DESIGN USING PLDs 147

The output expression for X and Y can be minimized using Karnaugh maps as shown in

Figure 3.88. From the Karnaugh map for X we get

X ¼ abd þ abcþ bcd þ acd (3:15)

The expression for X can also be represented as

X ¼ �c �d þ �a�bþ �b�cd þ �ac �d þ �bc �d þ �a�cd (3:16)

FIGURE 3.87 Structure of active-low/active-high output PAL devices.

TABLE 3.11 Truth Table for 4-Input and 3-Output Circuit

Input Output

a b c d X Y

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 1 0

1 0 0 0 0 0

1 0 0 1 0 1

1 0 1 0 0 1

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 1 1 0

1 1 1 0 1 0

1 1 1 1 1 0

148 COMBINATIONAL LOGIC DESIGN

FIGURE 3.88 Karnaugh maps for output expressions X and Y.

FIGURE 3.89 (a) Active-high PAL and (b) active-low PAL.

3.14 COMBINATIONAL CIRCUIT DESIGN USING PLDs 149

Similarly,

Y ¼ �a�bcd þ �ab�cd þ �abc �d þ ab�c �d þ a�b�cd þ a�bc �d (3:17)

and also

Y ¼ �a�b�cþ �a�bc �d þ �ab�c �d þ �abcd þ ab�cd þ acd þ abc �d þ a�b�c �d (3:18)

Figure 3.89a and 3.89b shows the implementation of the expressions using an active-high

and active-low device, respectively.

EXERCISES

1. Derive the truth tables for the following functions:

a. f(a, b, c) ¼ acþ abþ bc

b. f(a, b, c, d) ¼ (ac̄þ bd̄)(ābc̄þ ad̄)

c. f(a, b, c, d) ¼ a � b � cþ āc̄d̄

2. Derive the minterm and the maxterm list form of the Boolean functions specified by

the following truth tables:

a. a b c f(a, b, c)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

a b c d f (a, b, c, d)

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 0 0 0 1

1 1 0 0 1

1 0 1 1 1

All other combinations 0

3. Derive the product-of-sums form of the following sum-or-products Boolean

expressions:

a. f(a, b, c) ¼ āb̄c̄þ ab̄cþ abc̄þ ābc

b. f(a, b, c, d) ¼ acþ adþ abþ cd̄

c. f(a, b, c, d) ¼ āb̄c̄þ ab̄cdþ ac̄

4. Derive the canonical product-of-sums form of the following functions:

a. f(a, b, c) ¼ (aþ b̄)þ (āþ c̄)(bþ c)

b. f(a, b, c, d) ¼ (aþ b̄þ d)(bþ c̄þ d̄)(āþ cþ d̄)(bþ cþ d)

c. f(a, b, c, d, e) ¼ (aþ b̄þ cþ ē)(bþ c̄þ dþ ē)(āþ cþ d̄þ e)

b.

150 COMBINATIONAL LOGIC DESIGN

5. Derive the canonical sum-of-products form of the following functions:

a. f(a, b, c, d) ¼ acd̄þ ab̄cþ b̄cdþ ādþ ab

b. f (a, b, c, d) ¼ ābþ ac̄þ ad

c. f(a, b, c, d, e) ¼ ābcēþ bd̄eþ abdēþ ābc̄eþ āde

6. Minimize the following functions using Karnaugh maps:

a. f(a, b, c, d) ¼ āb̄c̄d̄þ abc̄d̄þ ab̄c̄d̄þ abcdþ āb̄cd̄þ ab̄cd̄þ ābcd̄

b. f(a, b, c, d) ¼ Sm(1, 3, 4, 6, 9, 11, 13, 15)

c. f(a, b, c, d) ¼ Q
M(3, 6, 7, 9, 11, 12, 13, 14, 15)

d. f(a, b, c, d, e) ¼ Sm(4, 8, 10, 15, 17, 20, 22, 26)þ d(2, 3, 12, 21, 27)

7. Derive the set of prime implicants for the following functions using the Quine–

McCluskey method. In each case identify the essential prime implicants if there are

any.

a. f(a, b, c, d) ¼ Sm(0, 1, 2, 3, 7, 9, 12, 13, 14, 15, 22, 23, 29, 31)

b. f(a, b, c, d) ¼ Sm(5, 6, 7, 10, 14, 15)þ d(9, 11)

c. f(a, b, c, d) ¼ Sm(1, 7, 9, 11, 13, 21, 24, 25, 30, 31)þ d(0, 2, 6, 8, 15, 17, 22, 28, 29)

8. The prime implicant chart for two Boolean functions are shown in (a) and (b). Obtain

the minimal sum-of-products expression for each case.

a. 0 4 5 6 11 13 15

PI1 ¼ āc̄ X X X

PI2 ¼ c̄d X X

PI3 ¼ b̄d X

PI4 ¼ ad X X X

PI5 ¼ ābd̄ X X

b.
0 1 4 5 6 7 9 11 15

PI1 ¼ āc̄ X X X X

PI2 ¼ āb X X X X

PI3 ¼ ac X X

PI4 ¼ bc X X X

PI5 ¼ ab̄d X X

9. Implement the function f (w, x, y, z) ¼ (wþ x̄)(wþ x̄þ ȳ)(yþ z̄) using NOR–NOR

logic.

10. Design a combinational circuit to generate the parity bit for digits coded in BCD

code. The circuit should also have an additional output that produces an error

signal if a non-BCD digit is input to the circuit. Realize the circuit using

NAND–NAND logic.

EXERCIESES 151

11. Determine the Boolean function for the circuit shown. Obtain an equivalent circuit

with fewer NOR gates. (Assume only 2-input or 3-input NOR gates.)

12. Assuming you have any number of 8-to-1 multiplexers and a single 4-to-1 multi-

plexer, design a 32-to-1 multiplexer.

13. Show how two 2-to-1 multiplexers can be used to implement a half-adder.

14. Implement each of the following functions using an appropriate multiplexer:

a. f (w, x, y, z) ¼ Sm(3, 5, 7, 9, 10, 11, 13)

b. f (w, x, y, z) ¼ wȳz̄þ x̄z

c. f (t, w, x, y, z) ¼ w̄þ txyþ wx̄zþ t̄ȳz̄

15. Design a multioutput circuit whose input is BCD data and whose outputs

w: detects numbers that are divisible by 3

and

x: detects numbers greater than or equal to 4

Implement the circuit using an appropriate decoder.

16. A combinational circuit has six inputs xi (i ¼ 1, . . . , 6) and six outputs zi
(i ¼ 1, . . . , 6). An output zj is to be 1 if and only if xj is 1 and each xi ¼ 0 for all

i , j. Implement the circuit using decoder(s) and the minimum number of gates.

17. A combinational circuit is to be designed to control a seven-segment display of deci-

mal digits. The inputs to the circuit are BCD codes. The seven outputs correspond to

the segments that are activated to display a given decimal digit.

a. Develop a truth table for the circuit.

b. Derive simplified sum-of-products and product-of-sums expressions.

c. Implement the expressions using either NAND or NOR gates as appropriate.

152 COMBINATIONAL LOGIC DESIGN

18. Given the following Boolean expression,

f (A,B,C) ¼ AB �C þ �ABC þ A �BC þ �A �BC

a. Develop an equivalent expression using NAND functions only, and draw the logic

diagram.

b. Develop an equivalent expression using NOR functions only, and draw the logic

diagram.

19. A certain “democratic” country is ruled by a family of four members (A, B, C, and D).

A has 35 votes, B has 40 votes, C has 15 votes, and D has 10 votes. Any decision taken

by the family is based on its receiving at least 60% of the total number of votes.

Design a circuit that will produce an output of 1 if a certain motion is approved by

the family.

20. In a digital system a circuit is required to compare two 3-bit binary numbers, X ¼ x2x1
x0 and Y ¼ y2y1y0, and generate separate outputs corresponding to the conditions X ¼
Y, X . Y, and X , Y. Implement the circuit using NAND gates only.

21. A 6-to-64 decoder is to be implemented using 3-to-8 decoders only. Show the block

diagram of the 6-to-64 decoder.

22. Design a combinational circuit to generate a parity (even) bit for digits coded in 5421

code. Provide an error output if the input to the circuit is not a 5421 code.

23. Implement the following functions using NAND gates having a maximum fan-in of

three.

a. f(A, B, C, D) ¼ Sm(0, 1, 3, 7, 8, 12)þ d(5, 10, 13, 14)

b. f(A, B, C, D) ¼ AB(CþD)þ CD(Aþ B)

24. Implement the following function using NOR gates having a maximum fan-in of three.

a. f(A, B, C, D, E) ¼ Ā(B̄þ CþDE)(B̄þ CDþ ĀE)

b. f(A, B, C, D) ¼ ĀBþ B̄CDþ AB̄D̄

25. Find the reduced cover for the following function using EXPAND, REDUCE, and

IRREDUNDANT operations.

f (A,B,C,D) ¼ A �C þ �A �B �C þ BC þ AC �D

26. Derive the cofactors of the function in Exercise 25 with respect A, B̄, and BC̄.

27. Prove the following:

a. A � B ¼ A � B � AB

b. A� (B� C) ¼ (A� B� C)

28. It is required to design lighting for a room such that the lights may be switched on or

off from any one of three switch points. Implement the circuit using the minimum

number of EX-OR gates.

EXERCIESES 153

29. Derive the kernels and cokernels of the following function:

F(a, b, c, d, e, f , g) ¼ adf þ aef þ bdf þ bef þ cdf þ cef þ g

30. Using the rectangular covering approach discussed in the text, extract all common

cubes from the following expressions, and also determine how theses cubes can be

utilized to minimize the number of literals in the expressions.

a. W ¼ beþ efþ abþ dfþ ad

b. X ¼ acþ afþ efþ ab

c. Y ¼ aefþ acþ bdeþ cde

31. Implement the logic circuit represented by the following Boolean functions in a multi-

level form	:

f1(a, b, c, d, e, t, g) ¼ acþ adeþ bcþ bde

f2(a, b, c, d, e, t, g) ¼ afgþ bfgþ efg

32. Find all the satisfiablity don’t cares in the following circuit:

33. Find the observability don’t cares for nodes X and Y in the following circuit:

34. A combinational circuit that generates the square of all the combinations of a 3-bit

binary number is to be implemented using a PLA. Show the program table for imple-

menting the circuit using the format shown in the text.

35. Implement the following Boolean functions using a PROM:

a. f1(w, x, y, z) ¼ wxyþ wx̄ȳ

b. f2(w, x, y, z) ¼ w̄þ x̄þ yþ z

c. f3(w, x, y, z) ¼ wþ x̄þ ȳzþ wz

	MCNC (Microelectronics Center of North Carolina), Technical Report TR87-15.

154 COMBINATIONAL LOGIC DESIGN

d. f4(w, x, y, z) ¼ wyzþ wȳz̄þ x̄yzþ w̄xz

36. Design an 8-bit ripple carry adder using the 1’s complement form to represent negative

numbers.

37. Design a circuit capable of adding two 4-bit numbers such that its output is the mod-5

sum of the inputs.

38. Using the principle of carry-save addition, multiply the following pairs:

a. 11011 and 10010.

b. 1010111 and 1100110.

39. Design a 24-bit adder that uses six 4-bit adder circuits, carry-lookahead circuits, and

additional logic to generate C8 and C16 from carry-in, carry-generate, and carry-pro-

pagate variables.

40. Prove that if two 2’s complement numbers are added, the overflow bit is the EX-OR of

the carry-in and carry-out of the most significant bit.

41. Show how a 4-bit adder can be used to convert 5-bit BCD representation of decimal

numbers 0 to 19 to 5-bit binary numbers.

42. Design a circuit, using full adders only, to multiply a 4-bit number by decimal 10.

43. Show how an 8-bit number (X7
... X0) can be multiplied by a 4-bit number (X3

. . . X0)

using four 2-bit multipliers and 6-bit adders.

REFERENCES

1. Giovanni De Michelli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, New York,

1995.

2. Gary Hachtel and Fabio Somenzi, Logic Synthesis and Verification Algorithms, Kluwer Publish-

ers, Norwell, MA, 1996.

3. F. Cave and D. Terrel, Digital Technology with Microprocessors, Reston Publishers, 1981.

REFERENCES 155

4 Fundamentals of Synchronous
Sequential Circuits

4.1 INTRODUCTION

Combinational logic refers to circuits whose output is strictly dependent on the present

value of the inputs. Once the input values are changed, the information regarding the pre-

vious inputs is lost; in other words, combinational logic circuits have no memory. In many

applications, information regarding input values at a certain instant of time is needed at

some future time. Circuits whose output depends not only on the present values of the

input but also on the past values of the inputs are known as sequential logic circuits.

The mathematical model of a sequential circuit is usually referred to as a sequential

machine or a finite state machine.

A general model of a sequential circuit is shown in Figure 4.1. As can be seen in

the diagram, sequential circuits are basically combinational circuits with the additional

property of memory (to remember past inputs). The combinational part of the circuit

receives two sets of input signals: primary (coming from the circuit environment) and

secondary (coming from the memory). The particular combination of secondary input

variables at a given time is called the present state of the circuit; the secondary input

variables are also known as state variables. If there are m secondary input variables in

a sequential circuit, then the circuit can be in anyone of 2m different present states.

FIGURE 4.1 General model of a sequential logic circuit.

157

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

The outputs of the combinational part of the circuit are divided into two sets. The

primary outputs are available to control operations in the circuit environment, whereas

the secondary outputs are used to specify the next state to be assumed by the memory.

The number of secondary output variables, often called the excitation variables,

depends on the type of memory element used.

4.2 SYNCHRONOUS AND ASYNCHRONOUS OPERATION

Sequential logic circuits can be categorized into two classes: synchronous and asyn-

chronous. In synchronous circuits internal states change at discrete instants of time un-

der the control of a synchronizing pulse, called the clock. The clock is generally some

form of square wave as illustrated in Figure 4.2. The on-time is defined as the time the

wave is in the 1 state; the off-time is defined as the time the wave is in the 0 state. The

duty cycle is defined as

Duty cycle ¼ (On-time)

(Period)
(expressed as a percentage)

State transitions in synchronous sequential circuits are made to take place at times when

the clock is making a transition from 0 to l or from 1 to 0. The 0-to-1 transition is called

the positive edge or the rising edge of the clock signal, whereas the 1-to-0 transition is

called the negative edge or the falling edge of the clock signal (as shown in Fig. 4.2).

Between successive clock pulses there is no change in the information stored in

memory. Synchronous sequential circuits are also known as clocked sequential circuits.

In asynchronous sequential circuits the transition from one state to another is initiated

by the change in the primary inputs; there is no external synchronization. Since state tran-

sitions do not have to occur at specific instants of time, asynchronous circuits can operate

at their own speed. The memory portion of asynchronous circuits is usually implemented

by feedback among logic gates. Thus asynchronous circuits can be regarded as combina-

tional circuits with feedback. Because of the difference in the delays through various

signal paths, such circuits can give rise to transient conditions during the change of

FIGURE 4.2 Clock signal.

158 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

inputs or state variables. Hence such circuits have to be designed in a special way in order

to ensure that their operations are not affected by transient conditions.

4.3 LATCHES

As can be seen from Figure 4.1, the memory unit is an essential part of a sequential circuit.

This unit usually consists of a series of latches. A latch is a logic circuit with two outputs,

which are the complement of each other. A basic latch can be constructed by cross-

coupling two NOR gates as shown in Figure 4.3. The two inputs are labeled Set and

Reset. The outputs Q and Q̄ are always the complement of each other during normal oper-

ation. Let us assume both inputs are at 0 initially, output Q is at 1, and output Q̄ is at 0.

Thus the output of gate G1 is at 1. Since the output of gate G1 is fed back to the input

of gate G2, the output of G2 will be 0. The circuit is therefore stable with Q at 1 and Q̄

at 0, as was originally assumed.

If the Reset input is now taken to 1, the output of Gl will change to 0. Both the inputs of

G2 are at 0, so its output will change to 1. The circuit is now stable with Q ¼ 0 and Q̄ ¼ 1.

The circuit remains in this stable state even if the Reset input is changed back to 0. If the

Set input is now taken to 1, the output of G2 (i.e., Q̄) will be at 0. Since both inputs of G1

are now at 0, its output (i.e., Q) will be at 1. The circuit remains stable with Q̄ ¼ 1 and

Q ¼ 0 even when the Set input returns to 0.

The input combination Set ¼ 1 and Reset ¼ 1 is not allowed because both Q and Q̄ go

to 0 in this case, which violates the condition that Q̄ and Q should be complements of each

other. Furthermore, when the Set and Reset inputs are returned to 0, an ambiguous situ-

ation arises. For example, if the propagation delay of G1 is lower than that of G2, then

the output of G1 (i.e., Q) will change to 1 first. This in turn will make the output of G2

(i.e., Q̄) ¼ 0. On the other hand, if the output of G2 changes to 1 first, then the output

of G1 will be forced to 0. In other words, it is impossible to predict the output. Therefore

the Set ¼ 1 and Reset ¼ 1 combination is avoided during operation of this type of latch.

The behavior of the latch circuit can be represented by the truth table of Figure 4.4a. The

cross-coupled NOR latch is generally known as an SR (Set–Reset) latch. The logic symbol

used to represent the SR latch is shown in Figure 4.4b.

An SR latch can also be constructed by cross-coupling NAND gates as shown in

Figure 4.5a. The circuit operates in the same manner as the NOR latch, but it does have

a few subtle differences. Unlike the NOR latch, the NAND latch inputs are normally 1

and must be changed to 0 to change the output. An ambiguous output results when both

the Set and the Reset inputs are at 0. Figure 4.5b shows the truth table of the NAND

latch. The logic symbol for the NAND latch is shown in Figure 4.5c; the circles denote

that the latch responds to 0 on its inputs (i.e., it has active-low inputs).

FIGURE 4.3 Cross-coupled NOR flip-flop.

4.3 LATCHES 159

In many applications a latch has to be set or reset in synchronization with a control

signal. Figure 4.6a shows how the NAND latch of Figure 4.5a has been modified to

incorporate a control input, which is usually driven by a clock. The resulting circuit is

known as a gated latch or clocked latch. As long as the control is at 0 in Figure 4.6a,

the outputs of gates G3 and G4 will be 1 and the latch will not change state. When the

enable input changes to 1, the set and reset inputs affect the latch. Thus if Set ¼ 1 and

Reset ¼ 0, the output of G3 is 0 and that of G4 is 1, Q goes to 1, and Q̄ goes to 0. If

Set ¼ 0 and Reset ¼ 1, Q goes to 0. The truth table for the latch is constructed as

shown in Figure 4.6b. Note that Ql is the present state of the latch, and Qtþ1 is the next

state. The next state of the latch depends on the present state of the latch and the

present value of the input. These types of latches are often called transparent because

the output changes (after the latch propagation delay) as the inputs change, if the enable

FIGURE 4.4 (a) Truth tabe for NOR latch and (b) logic symbol.

FIGURE 4.5 (a) NAND latch, (b) truth table, and (c) logic symbol for NAND latch.

160 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

input is high. The gated NOR latch and its truth table are shown in Figure 4.7a and 4.7b,

respectively.

It is possible for SR latches to have more than two inputs. Figure 4.8 represents an SR

latch constructed from two 3-input NOR gates. The Q output will be 1 if any of the Set

inputs is at 1 and the Reset inputs are at 0. The Q output goes to 0 if any of the Reset

inputs is at 1 and all the Set inputs are at 0. As before, Set and Reset inputs are not sim-

ultaneously allowed to be at 1. A normal SR latch can be converted to another type of latch,

known as a D latch, by generating Reset ¼ Set (using an additional inverter).

FIGURE 4.7 (a) Gated NOR latch with enable input and (b) truth table.

FIGURE 4.8 Three-input NOR SR latch.

FIGURE 4.6 (a) Gated NAND latch with enable input and (b) truth table.

4.3 LATCHES 161

Figure 4.9a shows a D latch constructed from an SR NAND latch. As can be seen from

the truth table of the latch (Fig. 4.9b), the output Q follows the D input if the control line is

at 1. With the control line at 0, Q holds the value of D prior to the l-to-0 transition of the

control line. The D latch has the advantage over the SR latch that no input combination

produces ambiguous output, so no input has to be avoided.

4.4 FLIP-FLOPS

A flip-flop, like a gated latch, possesses two stable states, but unlike a gated latch, tran-

sitions in a flip-flop are activated by the edge rather than the level of the clock pulse on

the control input. Figure 4.10a shows timing diagrams for a D latch and a D flip-flop.

A flip-flop is often called a bistable element because when its Q output is at logic 1,

the Q̄ output is at logic 0 or vice versa. However, it is also possible for a flip-flop to

be in a metastable state. Metastability implies that the output of a flip-flop is undefined

(i.e., neither 0 nor 1) for a certain period of time. This phenomenon occurs if the data

input to a flip-flop does not satisfy the specified setup time and hold time with respect

to the clock.

The setup time is the period of time the data must be stable at the input of a flip-flop

before the flip-flop is triggered by the clock edge. The period of time the data must

remain stable after the flip-flop has been triggered is known as the hold time.

Figure 4.10b illustrates the meaning of setup time and hold time. In order to guarantee

that valid data is produced at the output of a flip-flop after a maximum clock-to-output

delay time (i.e., the time from the rising edge of the clock to the time valid data is available

on the output), the input data must not violate the specified setup and hold times. Other-

wise, the output will be in a metastable state for a time greater than the maximum

clock-to-output delay time. The indeterminate logic value produced by a flip-flop while

it is in a metastable state can result in unpredictable circuit behavior.

FIGURE 4.9 (a) D latch and (b) truth table.

162 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

4.4.1 D Flip-Flop

The input data to a D flip-flop is transferred to the output and held there on a 0 ! 1 tran-

sition of the clock pulse (see Fig. 4.10a). In other words, the D flip-flop is triggered on the

positive edge of the clock pulse. A positive edge-triggered D flip-flop can be implemented

by modifying the NAND latch configuration as shown in Figure 4.11a. In addition to theD

input, the flip-flop has a pair of direct clock-independent (asynchronous) inputs, Reset and

Set. When the Reset input is at logic 0, the Q output of the flip-flop goes to 0. On the other

hand, when the Set input is at logic 0, the Q output goes to 1. The Set and Reset inputs are

not allowed to be at 0 simultaneously because this will make both Q and Q̄ outputs of the

FIGURE 4.10 (a) Timing diagram for D latch and D flip-flop and (b) setup and bold times for D

flip-flops.

4.4 FLIP-FLOPS 163

flip-flop go to 1; in other words, the condition that Q must always be the complement of Q̄

in a flip-flop is violated.

Figure 4.11b shows the timing diagram of the D flip-flop. As can be seen from the

diagram, the D flip-flop transfers the input value at D to the Q output on the positive edge

of the clock pulse only when both Set and Reset inputs are at 1. Table 4.1 summarizes the

operation of the D flip-flop. The logic symbol for the D flip-flop is shown in Figure 4.12a.

The small circles on the Set and Reset inputs mean that when the Set input is driven to 0

the flip-flop is preset to 1, and when the Reset input is at 0 the flip-flop is reset to 0. The

characteristics of the D flip-flop can be represented by the following equation (Fig. 4.12b).

Qtþ1 ¼ Dt

In other words, the next state of a D flip-flop corresponds to the data input applied at time

t and is independent of the present state of the flip-flop.

FIGURE 4.11 (a) D flip-flop and (b) timing diagram of D flip-flop.

164 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

4.4.2 JK Flip-Flop

The JK flip-flop has similar functions to an SR latch, with J equivalent to Set and K equiv-

alent to Reset. In addition, if both J and K are set to 1, the outputs complement when the

flip-flop is clocked. Thus a JK flip-flop does not have any invalid input combinations.

Figure 4.13a shows the implementation of a positive-edge-triggered JK flip-flop. The

analysis of the circuit operation is similar to that of the D flip-flop. The logic symbol

and the function table for the flip-flop are shown in Figure 4.l3a and 4.13b, respectively.

The characteristic equation for the JK flip-flop can be derived from its truth table (see

Fig. 4.l3c) and is given by

Qtþl ¼ Jt �Qt þ �KtQt

The characteristic equation indicates that a JK flip-flop can also be implemented using a D

flip-flop. This is shown in Figure 4.14. The JK flip-flops are often used in place of SR

latches, as these devices are not commonly available as commercial parts. Figure 4.15a

shows the proper connections of a JK flip-flop in order to operate as an SR latch.

TABLE 4.1 Function Table of the D Flip-Flop

Set Reset D Clock Q Q̄

0 1 – – 1 0

1 0 – – 0 1

0 0 – – 1 1

1 1 0 0 ! 1 0 1

1 1 1 0 ! 1 1 0

FIGURE 4.12 (a) Logic symbol for D flip-flop and (b) Karnaugh map for deriving characteristic

equation.

4.4 FLIP-FLOPS 165

FIGURE 4.13 (a) Logic symbol for JK flip-flop, (b) truth table, and (c) Karnaugh map for deriving

characteristic equation.

FIGURE 4.14 A JK flip-flop constructed from a D flip-flop.

166 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

A JK flip-flop can also operate as a D flip-flop; the configuration used to achieve this is

shown in Figure 4.15b. In this case J ¼ D and K ¼ D̄; thus from the JK flip-flop charac-

teristic equation,

Qtþ1 ¼ Dt
�Qt þ �DtQt ¼ Dt

4.4.3 T Flip-Flop

The T flip-flop, known as a toggle or trigger flip-flop, has a single input line. The symbol for

the T flip-flop is shown in Figure 4.16a. If T ¼ 1 when the clock pulse changes from 0 to 1,

FIGURE 4.16 (a) T flip-flop, (b) truth table, and (c) Karnaugh map for deriving characteristic

equation.

FIGURE 4.15 (a) JK flip-flop as an SR latch and (b) D flip-flop.

4.4 FLIP-FLOPS 167

the flip-flop assumes the complement of its present state; if T ¼ 0, the flip-flop does not

change state. The function table of the flip-flop is shown in Figure 4.16b. The characteristic

equation for the flip-flop can be derived from its function table, as shown in Figure 4.16c.

Qtþ1 ¼ Qt
�T þ �QtT

Thus a T flip-flop can be considered as a single-input version of a JK flip-flop. A JK

flip-flop can be configured as shown in Figure 4.17 to operate as a T flip-flop. Alternatively,

a T flip-flop can also be derived from a D flip-flop (Fig. 4.18). The D input is driven by an

exclusive-OR gate, which in turn is fed by the Q output of the flip-flop and the T input line,

as dictated by the characteristic equation of the T flip-flop.

4.5 TIMING IN SYNCHRONOUS SEQUENTIAL CIRCUITS

As mentioned previously, in a synchronous sequential circuit the state transition (i.e., the

change in the outputs of the flip-flops) occurs in synchronization with a pulse. In

positive-edge-triggered flip-flops, the delay between the positive-going transition on the

clock input and the changes on the outputs is specified as propagation delay, tpd.

Usually the delays are different for the two possible directions of output change and are

specified as:

tpLH: The delay between the transition midpoint of the clock signal and the transition

midpoint of the output, where the output is changing from low to high. This delay

is also referred to as rise delay.

tpHL: The delay between the transition midpoint of the clock signal and the transition

mid-point of the output, where the output is changing from high to low. This

delay is also referred to as fall delay.

FIGURE 4.18 A T flip-flop constructed from a D flip-flop.

FIGURE 4.17 A T flip-flop constructed from a JK flip-flop.

168 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

Figure 4.19 illustrates these propagation delays. The values of tpLH and tpHL are gener-

ally not the same. The manufacturers’ data sheets usually specify typical and maximum

values; the minimum value must obviously be nonzero.

The clock frequency fmax, which determines the maximum speed at which a synchro-

nous sequential circuit can reliably operate, is related to the minimum clock period Tmin by

fmax ¼ 1

Tmin

where

Tmin ¼ minimum setup time for flip-flops

þminimum hold time for flip-flops

þmaximum gate propagation delay

þmaximum flip-flop propagation delay

Figure 4.20 shows a very simple synchronous sequential circuit, designed using two-

level NAND gates and two flip-flops. Assuming the gates have propagation delays of

4 ns, the propagation delay of the flip-flops is 10 ns, their setup time is 3 ns, and the

hold time is 1 ns, we first determine Tmin:

Tmin ¼ 3þ 1þ 2� 4þ 10 ¼ 22 ns

Thus the maximum clock frequency is

fmax ¼ 1

22� 10�9
¼ 45:5 MHz

One additional consideration that has to be taken into account in sequential circuits is

the clock skew. So far, we have assumed that all the flip-flops in the circuit are triggered

FIGURE 4.19 Flip-flop propagation delay.

4.5 TIMING IN SYNCHRONOUS SEQUENTIAL CIRCUITS 169

simultaneously. However, in a large circuit this assumption is rarely true, so it is more rea-

listic to assume that the clock signal appears at the clock inputs of the various flip-flops at

different times. This is due to the delays in the conducting paths between the clock gen-

erator and the flip-flops as well as the delay variations between different clock buffers.

Hence the flip-flops are triggered at different times, resulting in incorrect circuit operation.

For example, in the circuit of Figure 4.20, FF1 drives FF2 through two gates with delay tg
(¼ 8 ns by previous assumption). If the clock signal arrives at FF2 later than FF1, this

delay must be less than

Dtmax ¼ tpd(FF1 þ tg þ ts(FF2)

¼ 10þ 8þ 3 ¼ 21 ns

for the circuit to operate properly. If the clock pulse arrives later than Dtmax, then the new

state of FFl will be clocked into FF2.

4.6 STATE TABLES AND STATE DIAGRAMS

In Section 4.1 we examined a general model for sequential circuits. In this model the effect

of all previous inputs on the outputs is represented by a state of the circuit. Thus the output

of the circuit at any time depends on its current state and the input; these also determine the

next state of the circuit. The relationship that exists among primary input variables, present

state variables, next state variables, and output variables can be specified by either the state

table or the state diagram. In the state table representation of a sequential circuit, the

columns of the table correspond to the primary inputs and the rows correspond to

the present state of the circuit. The entries in the table are the next state and the output

associated with each combination of inputs and present states. As an example, consider

the sequential circuit of Figure 4.21. It has one input x, one output z, and two state variables

FIGURE 4.20 A sequential circuit.

170 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

y1y2 (thus having four possible present states 00, 01, 10, 11). The behavior of the circuit is

determined by the following equations:

Z ¼ xy1

Y1 ¼ �xþ y1

Y2 ¼ x�y2 þ �x�y1

These equations can be used to form the state table.

Suppose the present state (i.e., y1y2) ¼ 00 and input x ¼ 0. Under these conditions, we

get Z ¼ 0, Y1 ¼ 1, and Y2 ¼ 1. Thus the next state of the circuit Y1Y2 ¼ 11, and this will be

the present state after the clock pulse has been applied. The output of the circuit corre-

sponding to the present state y1y2 ¼ 00 and x ¼ 1 is Z ¼ 0. This data is entered into the

state table as shown in Figure 4.22a. Normally each combination of present state variables

is replaced by a letter; Figure 4.22b is derived from Figure 4.22a by replacing states 00, 01,

11, and 10 by A, B, C, and D, respectively. The output and the next state entries corre-

sponding to other present states and the input are derived in a similar manner. In

general, an m-input, n-state machine will have n rows and one column for each of the

2m combinations of inputs. The next state and output corresponding to a present state

and an input combination are entered at their intersection in the table.

A sequential circuit can also be represented by a state diagram (also known as a state

transition graph). A state diagram is a directed graph with each node corresponding to

a state in the circuit and each edge representing a state transition. The input that causes

a state transition and the output that corresponds to the present state/input combination

are given beside each edge. A slash separates the input from the output. The state

diagram for the sequential circuit of Figure 4.22 is shown in Figure 4.23; states 00, 01,

FIGURE 4.21 A state table.

4.6 STATE TABLES AND STATE DIAGRAMS 171

11, and 10 are denoted by the letters A, B, C, and D, respectively. For example, the edge

from B to A and the associated label 1/0 indicate that if B is the present state and the input

is 1, then the next state is A and the output is 0.

Both state tables and state diagrams can be used to define the operation of sequential

circuits; they provide exactly the same information. However, in general, state diagrams

are used to represent the overall circuit operation, whereas the state table is employed

for the actual circuit design.

4.7 MEALY AND MOORE MODELS

So far, we have considered sequential circuits in which the output at any time depends on

the present state and the input, and these also determine the next state. This particular

FIGURE 4.22 (a) Binary representation of states and (b) state table.

FIGURE 4.23 State diagram.

172 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

model of sequential circuits is known as the Mealy model (Fig. 4.1). In an alternative

model, called the Moore model, the next state depends on the present state and

the input, but the output depends only on the present state. Figure 4.24 illustrates the

Moore model of the sequential circuit.

In the state table representation of Moore-type sequential circuits, the rows of the table

correspond to present states and the columns to input combinations as in Mealy-type cir-

cuits. The entries in the table for the input/present state combinations are the next states

associated with each combination of inputs and present states; there is a separate output

column with the entry corresponding to each row (i.e., present state) in the table. An

example of such a table is shown in Figure 4.25a. The state diagram for the circuit is

shown in Figure 4.25b. Since each state has a unique output, the output can be associated

with the state. Thus the state and the output are labeled within the node, separated by a

slash. An edge corresponds to a state transition, and the input causing a transition is

given beside the edge.

A sequential circuit can be represented either by a Moore model or by a Mealy model,

and conversion from one model to the other is always possible. Let us first consider the

conversion of the Mealy model of a sequential circuit to an equivalent Moore model

[1]. If in the Mealy-type circuit, a next state entry S is always associated with the same

FIGURE 4.24 Moore model.

FIGURE 4.25 (a) State table and (b) state diagram.

4.7 MEALY AND MOORE MODELS 173

output Z, then S will be associated with the output Z in the state table of the equivalent

Moore-type circuit.

As an example, let us consider the state table of aMealy-type sequential circuit shown in

Figure 4.26. The next state entries B, D, and E are always associated with outputs 0, 0, and

1, respectively. Hence in the equivalent Moore-type circuit shown in Figure 4.27, B is

associated with an output of 0, D with 0, and E with 1.

If a state S is the next state entry for several states in theMealy-type circuit and is associ-

ated with n different outputs, then in the state table of the equivalent Moore-type circuit,

state S is replaced by n different states. The next state entries corresponding to each of

these new states are identical to the next state entries for S in the Mealy-type circuit.

For instance, A as a next state entry is associated with both outputs 0 and 1 in

Figure 4.26. Hence A is replaced by the two states A,0 and A,1 in Figure 4.27—A,0

being associated with output 0 and A,1 being associated with output 1. The next state

entries for both A,0 and A,1 are B when x ¼ 0, and A,1 when x ¼ 1. The reason for A,1

being the next state entry when x ¼ 1 is because in Figure 4.26, the next state for A

when x ¼ 1 is A and the associated output entry is 1. Similarly, state C in Figure 4.26

is replaced by two states C,0 and C,1 in Figure 4.27.

Let us now illustrate the conversion of a Moore-type circuit to an equivalent Mealy-type

circuit. The state table of a Moore-type circuit is shown in Figure 4.28. In converting a

Moore-type circuit to a Mealy-type circuit, if a state S is associated with an output Z, then

the output associated with the next state S in the state table of the Mealy-type circuit will

be Z. The state table of a Mealy-type circuit is derived from Figure 4.28 as shown in

Figure 4.29.

FIGURE 4.26 A Mealy-type sequential circuit.

FIGURE 4.27 State table of equivalent Moore-type circuit.

174 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

4.8 ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

In the previous section, we discussed several models for sequential circuits. Such circuits

are used to perform many different functions. This section covers the analysis of these cir-

cuits. As will be seen, the analysis of the behavior of such circuits identifies the processes

that are required to synthesize them. We shall consider the sequential circuit shown in

Figure 4.30. The circuit has one input x and one output z. Two JK flip-flops are used as

memory elements that define the four possible states of the circuit, y1y2 ¼ 00, 01, 10, or

11. The equations that describe the circuit’s operation, known as the control equations,

can be derived directly from Figure 4.30.

J1 ¼ xþ y2 J2 ¼ xy1

K1 ¼ xþ �y2 K2 ¼ �x

z ¼ y1 � y2

FIGURE 4.29 State table of the equivalent Mealy-type circuit.

FIGURE 4.28 A Moore-type circuit.

4.8 ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUITS 175

The characteristic equation for JK flip-flops was derived in Section 4.4. It is repeated here:

Qtþ1 ¼ J �Qt þ �KQt

where Qt and Qtþ1 are, respectively, the present state and the next state of a flip-flop. By

substituting J1, K1 and J2, K2 in this equation, the next state functions of the two flip-flops

are obtained:

(y1)tþ1 ¼ (xþ y2)�y1 þ (xþ �y2)y1

¼ x�y1 þ �y1y2 þ �xy1y2

¼ x�y1 þ �xy2

(y2)tþ1 ¼ xy1 �y2 þ �xy2

¼ xy1 �y2 þ xy2

¼ xy1 þ xy2

It is now possible to construct a table (Table 4.2) that gives the next state values of the

flip-flops for given present state values and for a given input. This form of the state table is

known as a transition table. The two output columns of the table result from the interpret-

ation of the output equation z ¼ y1 . y2. Thus the output of the circuit is 1 when the present

state of the circuit is y1y2 ¼ 11, irrespective of the input value. Replacing y1y2 ¼ 00, 01,

10, 11 by A, B, C, and D, respectively, we can derive the state table (Table 4.3) of the

circuit from its transition table.

The state diagram of the circuit can be derived from its state table and is shown in

Figure 4.31.

FIGURE 4.30 A sequential circuit.

TABLE 4.2 Transition Table for the Circuit of Figure 4.30

Present State Input Output

y1 y2 x ¼ 0 x ¼ 1 z (when x ¼ 0) z (when x ¼ 1)

0 0 00 10 0 0

0 1 10 11 0 0

1 0 00 01 0 0

1 1 10 01 1 1

Next state

176 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

EXERCISES

1. A D flip-flop is connected as shown. Determine the output of the flip-flop for ten clock

pulses assuming it has initially been reset. What function does this configuration

perform?

2. Modify a JK flip-flop such that when both J and K inputs are at logic 0, the flip-flop is

reset.

3. Modify a T flip-flop such that it functions as a JK flip-flop.

FIGURE 4.31 State diagram of the circuit of Figure 4.30.

TABLE 4.3 State Table of the Circuit of Figure 4.30

Input

Present State x ¼ 0 x ¼ 1

A A,0 C,0

B C,0 D,0

C A,0 B,0

D C,1 B,1

EXERCISES 177

4. Assume aD flip-flop with separate set (S) and reset (R) inputs. How can this flip-flop be

configured such that its output will be set to logic 1, when both S and R inputs are high

simultaneously?

5. Modify a T flip-flop such that it functions as a D flip-flop.

6. A sequential circuit uses two D flip-flops as memory elements. The behavior of the

circuit is described by the following equations:

Y1 ¼ y1 þ �xy2

Y2 ¼ x�y1 þ �xy2

z ¼ �xy1y2 þ x�y1 �y2

Draw the state diagram of the circuit.

7. Derive the transition table for the following circuit:

8. For the circuit shown, fill in the values for the J and K inputs, and the output values in

the table.

178 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

9. Derive the state tables for the following circuits:

10. Convert the following state tables for Mealy-type sequential circuits into those of

Moore-type circuits.

x ¼ 0 x ¼ 1 z

y1, y2 J1, K1 J2, K2 J1, K1 J2, K2 x ¼ 0, y ¼ 1

00

01

11

10

EXERCISES 179

11. Convert the following state tables for Moore-type sequential circuits into those of

Mealy-type circuits.

REFERENCE

1. C. L. Sheng, Introduction to Switching Logic, International Text Book Co., Canada, 1972.

x ¼ 0 x ¼ 1

A B,0 A,0

B B,0 C,0

C D,0 A,0

D B,0 C,1

x ¼ 0 x ¼ 1

A B,0 C,1

B A,0 E,0

C E,1 D,0

D B,1 A,1

E C,0 D,1

x ¼ 0 x ¼ 1 z

A B A 1

B B C 0

C D A 1

D B C 0

x ¼ 0 x ¼ 1 z

A B A 0

B D C 1

C B C 1

D A E 0

E E D 0

180 FUNDAMENTALS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

5 VHDL in Digital Design

5.1 INTRODUCTION

The dramatic increase in the logic density of silicon chips has made it possible to implement

digital systems with multimillion gates on a single chip. The complexity of such systems

makes it impractical to use traditional design descriptions (e.g., logic schematics) to

provide a complete and accurate description of a design. Currently, all complex digital

designs are expressed using a hardware description language (HDL). An HDL, unlike

traditional programming languages such as C or Cþþ, can describe functions that are inher-

ently parallel. A major advantage of an HDL is that it provides a better and more concise

documentation of a design than gate-level schematics. Two very popular HDLs are

VHDL and VERILOG.

In this text we use VHDL. VHDL is an acronym for VHSIC hardware description

language; VHSIC in turn is an acronym for very high speed integrated circuit. The devel-

opment of VHDL was funded by the U.S. Department of Defense (DoD) in the early

1980s. The syntax of VHDL is similar to that of programming language ADA; however,

it has some significant differences from ADA. We present the important concepts of

VHDL, especially the ones that are used in digital circuit design.

VHDL can provide unambiguous representation of a design at different levels of

abstraction as shown in Figure 5.1. Modern CAD (computer-aided design) tools can gene-

rate gate-level implementation of a design from its VHDL description.

A behavioral VHDL description of a circuit describes the function of the circuit in

terms of its inputs using the types of statements used in a high-level programming

language. The objective is to describe the correct operation of a circuit to be designed

without being concerned with redundant details. This description does not specify how

the function is actually implemented; thus the same description may result in several

implementations of a circuit.

The register transfer level (RTL) description of a circuit specifies the flow of data from

an input or a register to another register or the output of the circuit through combinational

logic blocks. The RTL description is also known as data flow description.

The structural level description specifies what components a circuit is composed of and

how these components are interconnected. This is similar to the logic schematic diagram

of a circuit.

The architectural descriptions are discussed in more detail later in the chapter.

181

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

5.2 ENTITY AND ARCHITECTURE

A circuit block in VHDL is considered a “black box.” An entity declaration identifies the

external view of the black box, while its inside is unknown. A description of the

implementation of the content of the black box is called its architecture. Thus in VHDL

an architecture is always associated with an entity, as shown in Figure 5.2.

5.2.1 Entity

As indicated earlier, an entity defines the inputs and outputs of a VHDL module. For

example, if the module is a 2-input NAND gate, the entity declaration identifies the

inputs and the output of the module. The architecture describes the internal operation of

the module.

The relation between the NAND gate and its entity is shown in Figure 5.3.

FIGURE 5.1 Different VHDL abstractions.

FIGURE 5.2 Entity–architecture pair.

182 VHDL IN DIGITAL DESIGN

The name of an entity is selected by the user. An input or an output signal in an entity

declaration is known as a port. Each port must have a mode that can be one of the

following:

In An input to the entity

Out An output of the entity

Buffer An output of the entity that can also used for internal feedback

and has limited fanouts

Inout Can be used as both an input and an output (i.e., can operate

in tristate mode)

Figure 5.4 illustrates the operation of the buffer and the inout ports. An inout signal can be

used internally by the entity, whereas the signal on the out port cannot be.

All signals in VHDL must have a type. The most commonly used types are

std_logic for single-bit signals, and std_logic_vector for multibit signals.

The term std_logic indicates that an input or output signal can take several different

values in addition to 0 or 1. We discuss std_logic later in this chapter.

FIGURE 5.3 Two-input NAND gate and its entity.

FIGURE 5.4 Inout and buffer ports.

5.2 ENTITY AND ARCHITECTURE 183

5.2.2 Architecture

An architecture describes how the design entity outputs are related to the design entity

inputs. An architecture can be given any name (without violating VHDL syntax) but

the name after of must match the entity name. An entity can have several optional archi-

tectures. Figure 5.5 shows an architecture for the entity of Figure 5.3. The primitive logic

operators such as and, or, and so on are part of a library (library IEEE), which is declared
before the entity in all VHDL code descriptions of circuits.

It should be obvious that describing the operation of a complex circuit is significantly

more difficult than describing its entity. Let us illustrate different ways of describing the

architecture of a circuit by using a 2-to-1 multiplexer shown in Figure 5.6 as an entity.

The entity for the multiplexer is

library ieee;
use ieee.std_logic_1164.all;

entity multiplexer is
port (a,b: in std_logic;
s: in std_logic;
f: out std_logic);
end multiplexer;

FIGURE 5.5 Architecture of the entity my_nand_gate.

FIGURE 5.6 A 2-to-1 multiplexer.

184 VHDL IN DIGITAL DESIGN

One way of describing the architecture is based on the behavioral model of the

multiplexer:

architecture behavior of multiplexer is
begin
process (a,b,s)
begin
if s=‘0’ then
f<=a;
else
f<=b;
end if;
end process;
end behavior;

The process block is used only in the behavioral description and is discussed in Section

5.6. The second approach is to use the RTL (register transfer language) description as

given below. The RTL description defines the Boolean expression corresponding to an

entity function using only the input signals at the input ports of the entity.

architecture rtl of multiplexer is
begin
f<=(not s and a) or (s and b);
end rtl;

Finally, the architectural description based on the structural model of the multiplexer is

architecture structural of multiplexer is
signal t1,t2: std_logic;
begin
t1<=not s and a;
t2<=s and b;
f<=t1 or t2;
end structural;

It should be mentioned here that the structural description specifies the function of each gate

in the multiplexer separately. The outputs of the AND gates are defined as internal signals

t1 and t2, which are then used as inputs by the OR gate to produce circuit output f.
Note that the structural description is based on an implementation of the Boolean

expression for the multiplexer whereas in the RTL description the Boolean expression

itself was specified without consideration of its implementation.

5.3 LEXICAL ELEMENTS IN VHDL

VHDL like most programming languages has several types of lexical elements:

Numbers

Characters and strings

5.3 LEXICAL ELEMENTS IN VHDL 185

Identifiers

Comments

Operators

Reserved words

Numbers A wide range of number representation can be used in VHDL; the decimal

number system is the default. If a base different from 10 is used to represent a number,

then the base number is written first followed by the hash (#) sign, the actual number,

and another # sign. For example, 2#0111# indicates 0111(base 2), which is equal to 7

in base 10. The hexadecimal representation of 7 is 16#7#. The readability of a large

number can be improved by inserting underscores in the number provided there is no

underscore at the beginning or at the end of the number. For example, the binary represen-

tation of decimal number 863 can be written 2#1101_0111_11#.

Characters and Strings A character is enclosed in single quotation marks, for example,

‘0’, ‘1’, and ‘a’. A string of characters is enclosed in double quotation marks, for example,

“VLSI,” “10010110” (indicates a binary string), and X “96” (X indicates a hexadecimal

string).

Identifiers Identifiers are user-defined words that are used as variables, constants, and

signal names and also as the names of ports, design entities, architectures, or similar

objects. Basic identifiers are chosen according to the following rules:

. An identifier is case-insensitive. For example, the exclusive-OR operation can be

identified as EX-OR or ex-or.

. The first character can only be a letter not a number or an underscore (_). For

example, Clk1 is a valid identifier but 1_clk and _clk1 are not.

. The last letter cannot be an underscore. Thus clk_ is not a valid identifier.

. Two consecutive underscores cannot be included in an identifier. For example clk_ _1

is an invalid identifier.

Comments All statements in VHDL code are terminated with a semicolon (;). Comments

are indicated with a “– –” (two consecutive dashes); the carriage return terminates a

comment

c <= a and b; – – this is an example of an AND operation

Note that VHDL is indifferent to spaces and tabs in the source code.

Data Objects Any item that stores data is known as an object in VHDL. The VHDL

objects include signals, variables, and constants. A signal like a wire in a circuit is used

to connect different design units. It cannot be assigned any initial value. The signal assign-

ment operator is “<=”.

signal a: std_logic bit;

186 VHDL IN DIGITAL DESIGN

A constant, on the other hand, is assigned a value that cannot be changed. The constant

assignment operator is “:=”. For example,

constant k: integer:=12;
constant bitcount: std_logic: =‘0’;

The first line indicates k is a constant and is assigned a value of 12. In the second line

bitcount is a constant and is set to logic 0. Note that a single bit must be within

single quotes; multiple bits, on the other hand, are considered as a string and must be

within double quotes as shown in the following declaration:

constant bytecount: std_logic:="0101";

This indicates bytecount is a constant and is set to 0101.

A variable in VHDL is similar to variables used in conventional programming

languages. It is assigned a temporary value when it is declared and is replaced

with other values during the execution of the code. Variables are assigned values using

the:= operator as in constants. For example,

variable x: integer:=0;

indicates that x is a variable and is initialized to 0. Variables must always be declared

within a process block; we discuss it in more detail in Chapter 9.

This assignment does not clarify the number of bits to be used to represent variable x.

As a result, the VHDL compiler will produce an inefficient realization of the circuit from

the code containing the assignment statement. However, if the statement is changed to

variable x: integer range 0 to 15;

the VHDL compiler will know that x can have any integer value in the range of 0 to 15 and

thus is to be represented by 4 bits.

5.4 DATA TYPES

Each VHDL object must be assigned a specific data type; it indicates the common charac-

teristic of the set of values the object holds. A variety of predefined types are available in

VHDL, for example, bit, boolean, and std_logic. The bit type takes values ‘0’ and ‘1’

whereas the boolean type can have values true and false. They are defined as follows:

signal a: bit:=‘1’;
variable a: boolean:= true;

Note that type bit is not the same as type boolean. The following example illustrates the

difference:

if (a) then ––––– implies a is boolean type
if (a=‘1’) then ––––– indicates a is bit type

5.4 DATA TYPES 187

A separate notation, bit_vector, is used to indicate whether a signal has multiple com-

ponent lines (e.g., a bus in digital circuits). A bit_vector is an array with each element

being of type bit. For example,

signal inbus: bit_vector (0 to 7);

The std_logic (standard logic) type was introduced in IEEE Standard 1164. It allows a

signal to have other values in addition to 0 and 1 as shown below:

‘U’ Uninitialized

‘X’ Unknown

‘Z’ High impedance

‘W’ Weak unknown

‘L’ Weak zero

‘H’ Weak one

‘–’ Don’t care

This simplifies evaluation of the VHDL model of a circuit for unintended behavior when it

receives inputs other than 0 or 1.

The vector for std_logic type is std_logic_vector. The component elements

in a std_logic_vector are specified by the keywords to and downto as illustrated

below:

w: in std_logic_vector (0 to 15);
w: in std_logic_vector (15 downto 0);
y: out std_logic_vector (0 to 15);
y: out std_logic_vector (15 downto 0);

The first line indicates that w is an input bus with 16 signals and the signals are identified

in an ascending order: w(0), w(1), . . . , w(15). In the second line the bus signals are

identified in a descending order: (w15), w(14), . . . , w(0).
In order to use std_logic type signals the following two statements must be inserted

before the entity declaration of a VHDL model:

library ieee;
use ieee_std_logic_1164. all;

The ieee_std_logic_1164 is a package that is compiled into a library called ieee.

The integer type is used to represent a signed integer using 32 bits; the most significant bit

is used for indicating the sign of the integer. Thus the integers in VHDL have a default

range of (2231þ 1) to (þ231 21). However, it is possible to constrain the range of an

integer type object. For example,

variable x: integer range -63 to 63;

VHDL also allows generation of a unique enumerated type by explicitly listing all its poss-

ible values. These values are listed in an ascending order and each value in the list has

188 VHDL IN DIGITAL DESIGN

associated with it a positive position number starting with 0 for the leftmost value. For

example,

type color is (red, green, yellow, blue);

In this example, the position numbers for values red, green, yellow, and blue are 0, 1,

2, and 3, respectively, and an expression like yellow , blue is valid. An enumerated

type is usually used to represent the various states of a state machine while describing

it in VHDL. For example, a 5-state machine can use an enumerated type as shown

below:

type state is (s1, s2, s3, s4, s5);

5.5 OPERATORS

The VHDL language supports several classes of operators: logical, relational, shift,

unary, multiplying, and miscellaneous. Operators are chained to define complex

expressions.

Logic Operators The logical operators are used to define logical operations on bit-type

signals and variables. Parentheses are normally required to correctly represent Boolean

expressions when logic operators NAND and NOR are used because they do not obey

the associative law of Boolean algebra. For example, the Boolean expression

f ¼ ab þ cd if written

f<=a nand b nand c nand d

will not be correct although it is a valid expression; it will result in the Boolean expression

f ¼ �acþ �bcþ �d

The correct representation is

f<=(a nand b) nand (c nand d)

Thus it is desirable that parentheses be used when in doubt to avoid changing the meaning

of the code.

Relational Operator The relational operators compare values of similar type objects

and produce a true (logic 1) or a false (logic 0) output. They are in general used with

if–then–else statements. As an example, let us assume X, Y, Z are register type and W
is a counter-type object. Suppose X, Y, and W have been assigned values 31, 63, and 31,

respectively; then

If X = Y then Z = 1 else Z = 0; results in Z = FALSE
If (X /= Y) then Z =1 else Z = 0; results in Z = TRUE

5.5 OPERATORS 189

Similarly for

X<Y Z = TRUE
X<=Y Z = TRUE
X>Y Z = FALSE
X>=Y Z = FALSE
W = X ILLEGAL (because W and X are not the same base type)

Shift Operators Shifting is performed on bit vectors and can be one of the following

types: logical shift, arithmetic shift, and rotate as shown in Table 5.1. In logical left

(right) shift, zeros are fed into the right (left) end of the operand and the shifted

operand bits on the left (right) are lost. For example, the shift operation

variable test: standard logic bit_vector:="10011001";
test ssl 2;

will result in the number “01100100”. The shift operation

variable test: standard logic bit_vector:="10011001";
test ssr 2;

will result in the number “00100110”.

In an arithmetic left shift, zeros are fed in from the right and all shifted operand bits on

the left are lost. As an example, the arithmetic left shift operation

variable test: standard logic bit_vector:="10011001";
test sla 2;

will result in the number “01100100”.

In an arithmetic right shift the empty bit positions are filled with copies of the most sig-

nificant (sign) bit and the shifted bits on the right are lost. This is needed for sign extension

when working with signed numbers. Figure 5.7 illustrates arithmetic right shift. As an

example, let us consider the arithmetic right shift by 3 bits on the data 10011100:

variable test: standard logic bit_vector:="10011100"
test sra 3;

This shift results in the number “11110011”.

In the rotate left (right) operation, the left most (right most) bit of the operand is fed to

the right (left) end of the operand. For example, the operation

TABLE 5.1 Shift and Rotate Operators

Operator Function

ssl Shift left logical

ssr Shift right logical

sla Shift left arithmetic

sra Shift right arithmetic

rol Rotate left

ror Rotate right

190 VHDL IN DIGITAL DESIGN

variable test: standard logic bit_vector:="10011001";
test ror 2;

will result in the number “01100110” and

variable test: standard logic bit_vector:="10011001";
test rol 2;

will result in the number “01100110”.

Addition Operators The arithmetic and concatenation operators are collectively known

as addition operators. The arithmetic operators are defined for integer type operands:

þ Addition of two integers

2 Subtraction of an integer from another

The following example shows the addition and subtraction operation on two integers:

signal w, x, y, z: integer range 0 to 2;
y<=w+x;
z<=w-x;

The concatenation operator (&) produces one-dimensional arrays by combining other

operands of types bit, bit_vector, or string as well as constant bit(s). The

length of the new array is equal to the sum of the lengths of component operands.

The following example illustrates the concatenation operation:

Signal w: standard_logic vector (3 down to 0);
Signal x: standard_logic vector (6 down to 0);
Signal y: standard_logic vector (2 down to 0);
Signal a, b, c, d: standard_logic bit;
x<=‘1’ & y & w;
y<=a & b & c;
w<="00" & y(2);

Multiplying Operators The * (multiplication) and / (division) operators are valid for all
numeric type operands. The operators mod (modulus) and rem (remainder) are valid only

for integers. Both give the remainder on division. The only difference is X rem Y has the

FIGURE 5.7 Arithmetic right shift.

5.5 OPERATORS 191

sign of X, whereas X mod Y has the sign of Y as given below:

X rem Y ¼ X� int (X=Y)	Y (int is the integer corresponding to the quotient)

XmodY ¼ X� int (X=Y)	Y if X and Y have the same sign

¼ X� d(jX=Yj)e	Y otherwise

For example, if X ¼ 211 and Y = 3 then (211) rem 3 ¼ 22 and (211) mod3 ¼ 1.

Division, mod and rem operators are usually not supported by current logic synthesis

tools. The following example shows the multiplication of a vector by another vector

and the multiplication of a vector by an integer.

signal x, y: unsigned (0 to 2);
signal w: unsigned (0 to 5);
w<=x * y;
w<=y * 2;

Miscellaneous Operators These include operators abs, not, and exponentiation (). The
abs and exponentiation operators are applicable to any integer operands . The not operator

can be applied only to a bit or a boolean type operand. The following examples illustrate

the application of the operators:

variable x,y,z: integer:=4;
signal m, n, p: standard_logic bit;
y:=2**x; --y gets the value 16.
z:=abs ((y)*(-3)); --z gets the value 12.
m<=n or not p;

Reserved Words Certain words in VHDL have special meaning and cannot be used as

identifiers in the VHDL code. These words are known as keywords or reserved words

and are listed below:

abs access after alias all and architecture array assert attribute

begin block body buffer bus

case component configuration constant

disconnect downto

else elsif end entity exit

file for function

generate generic guarded

if in inout is

label library linkage loop

5.6 CONCURRENT AND SEQUENTIAL STATEMENTS

As in a conventional programming language, a VHDL statement within an architecture

body represents a certain action. However, unlike in a conventional programming

192 VHDL IN DIGITAL DESIGN

language where all statements in a source code are executed sequentially (i.e., one at a time

in the order they appear to complete the specified task), signal assignment statements

within an architectural body are concurrent. A concurrent statement is executed if there

is a change in the value of any of signals on its right side; thus the order of appearance

of these statements has no relevance to their execution. Concurrent statements are used

mainly to describe combinational logic circuits.

The operation of the logic circuit of Figure 5.8 can be represented using the following

VHDL code; the architecture uses three concurrent statements (9, 10, and 11) to define the

outputs of the circuit:

1. library ieee;
2. use ieee.std_logic_1164.all;
3. entity combcircuit is
4. port (w, x, y, z : in std_logic;
5. f1, f2, f3 : out std_logic);
6. end combcircuit;
7. architecture logicfunc of combcircuit is
8. begin
9. f1<=(w and x and y) or (not w and not x and y);
10. f2<=not w or not x or y or z;
11. f3<=w or not x or (not y and z) or (w and z);
12. end logicfunc;

Astatementwith the symbol “ ,¼ ” is used to specify aBooleanoperation and is knownas

the signal assignment statement. The signal on the left of the , ¼ symbol is determined by

logical (or arithmetic) operation on the right side of the symbol. The three concurrent

statements used in the VHDL code for Figure 5.8 perform Boolean operations on the input

FIGURE 5.8 An example circuit.

5.6 CONCURRENT AND SEQUENTIAL STATEMENTS 193

signals at the input ports of the entity and transfer the result to the signals on the left. There

is no significance to the order in which the three assignments have been made. This is a

unique feature of VHDL and is not available in traditional programming languages. The

concurrent statements imitate the simultaneous computation of outputs of the hardware

components used to implement the VHDL entity.

All statements in a VHDL description are considered to be concurrent unless they are

part of a process block. All statements inside a process block are sequential. Sequential

statements are executed one after the other in the order they appear within a process;

thus the order of statements is critical. Sequential statements can be used to describe

both combinational and sequential logic circuits. A VHDL architecture can have multiple

process blocks, each one of which is considered to be a single concurrent statement.

The process block is discussed in detail in Chapter 6.

5.7 ARCHITECTURE DESCRIPTION

An architecture body as indicated previously describes the function of an entity. One may

consider the entity part as a black box—the inputs and outputs of the box are specified but

its internal details are unknown. The entity is split from the architecture in order to separ-

ate the input/output specification from the functional details of the architecture. So as a

design becomes more detailed, an engineer can keep the same entities but upgrade and/
or substitute the more detailed architecture version.

An entity may have more than one architecture with varied levels of detail in functional

description as shown in Figure 5.9.

FIGURE 5.9 Entity with multiple architectures.

FIGURE 5.10 Block diagram of a 2-bit comparator.

194 VHDL IN DIGITAL DESIGN

To illustrate, let us consider the architectural description of a 2-bit comparator.

The block diagram of the comparator is shown in Figure 5.10. The input pairs to the

comparator block are (x1, x0) and (y1, y0); the output z is 1 when the input pairs

match, otherwise it is 0. The VHDL code of the comparator circuit is given below.

Since each input is 2 bits rather than a single bit, the input data is represented as

vectors in the entity declaration:

library ieee;
use ieee.std_logic_1164. all;

entity comparator is
port(x: in std_logic_vector (1 downto 0);
y: in std_logic_vector (1 downto 0);
z: out std_logic);
end comparator;
architecture behavior of comparator is
begin
z<=‘1’ when (x = y) else ‘0’;
end behavior;

The architectural body is based on the behavioral model in this example.

An alternative architectural description of the entity 2-bit comparator is

library ieee
use ieee.std_logic_1164. all;

entity comparator is
port(x: in std_logic_vector (1 downto 0);

y: in std_logic_vector (1 downto 0);
z: out std_logic);

end comparator;

architecture structure of comparator is
signal t1, t0: std_logic;
begin
t1<=x(1) xnor y(1);
t0<=x(0) xnor y(0);
z<=t1 and t0;
end structure;

In this description two intermediate nodes t1 and t0 are created using a signal statement.

The outputs of the nodes are connected to the inputs of an AND gate to generate output

z. The signal statement is placed in an architecture body between the architecture and

the begin statement. Each concurrent statement in an architecture body is mapped into a

logic block during the synthesis process. The three concurrent statements used in the archi-

tectural description of the 2-bit comparator result in the schematic shown in Figure 5.11.

Note that the first architecture description was based on the functional behavior of the

comparator. The second architecture description, on the other hand, used purely the circuit

structure of the comparator. In the following sections, VHDL architecture descriptions for

5.7 ARCHITECTURE DESCRIPTION 195

circuits at the structural level, the behavioral level, and the register transfer level are

discussed in more detail.

5.8 STRUCTURAL DESCRIPTION

The structural description of a system specifies how the building blocks of the system,

referred to as components, are connected. The system behavior or functionality can

only be determined from the behavior of the individual components of which the

system is composed. Components are declared before the begin statement of the architec-

ture. As an example, let us consider the majority voter circuit shown in Figure 5.12; in a

majority voter circuit the output is 1 if at least two of the inputs are 1. Each component of

the same type has been uniquely labeled in the circuit; the three 2-input AND gates in the

circuit are labeled as AND_2 and the 3-input OR gate is labeled as OR_3. This allows one

to uniquely identify multiple copies of the same component in a circuit. The internal

signals (i.e., the outputs of the AND gates) are also uniquely labeled as t1, t2 and t3.

As can be seen in Figure 5.12 the outputs of the AND gates are connected to signals t1,

t2, and t3, and the inputs of the OR gate are also connected to t1, t2, and t3.

The VHDL structural description of the majority voter circuit is shown below. There is

a component declaration statement identified by keyword component, corresponding to

FIGURE 5.11 Two-bit comparator circuit.

FIGURE 5.12 A majority voter circuit.

196 VHDL IN DIGITAL DESIGN

each component type used in the circuit. The component declarations are done before the

begin keyword of the architecture body. Each component declaration statement contains a

name of the component and its input and output ports; a component declaration statement

is terminated by end component.

The components used in an architecture may be those that are part of a library or pre-

viously defined as part of a design and stored in the same directory as the VHDL compiler.

Once a component has been declared, it can be used as many times as required. In the

VHDL description of the majority voter there are two component statements correspond-

ing to the two types of components used (e.g., AND_2 and OR_3). The VHDL codes

for these components are stored in the same directory as Altera Quartus II software so

that they can be used as components in other designs.

The component declarations are followed by a signal statement. The signal statement

identifies all the signals that are used for interconnecting the declared components. The

signal statement in the VHDL description declares three signals t1, t2, and t3. Note that

the components and signals are declared before their interconnections.

A VHDL description of the majority voter circuit is

library ieee;
use ieee.std_logic_1164.all;

entity majority_voter is
port (X, Y, Z: in std_logic;
M: out std_logic);

end majority_voter;

architecture structure of majority_voter is
component AND_2
port(x,y: in std_logic;
f:out std_logic);
end component;
component OR_3
port(w,x,y:in std_logic;
f:out std_logic);
end component;

signal t1, t2, t3: std_logic;
begin
C1: AND_2 port map (X, Y, t1);
C2: AND_2 port map (X, Z, t2);
C3: AND_2 port map (Y, Z, t3);
C4: OR_3 port map (t1, t2, t3, M);
end structure;

The VHDL codes for the AND_2 and OR_3 components are also stored in the same

directory as the code for the majority voter. The codes are as follows:

library ieee; library ieee;
use ieee.std_logic_1164.all; use ieee.std_logic_1164.all;
entity AND_2 is entity OR_3 is
port (x, y: in std_logic; port (w,x,y: in std_logic;

Component declarations

Signal declaration

5.8 STRUCTURAL DESCRIPTION 197

f: out std_logic); f: out std_logic);
end AND_2; end OR_3;
architecture behavior of
AND_2 is

architecture behavior of
OR_3 is

begin begin
f<=x and y; f<=(w or x or y);
end behavior; end behavior;

The declared components in the architecture of the majority voter are then instantiated

after the keyword begin in the architecture body. The VHDL compiler looks for the

instantiated components by their names in the same directory where the source code

of the file that used the components is stored . A component instantiation (placement)

statement contains a unique label that identifies a particular component in the circuit fol-

lowed by the actual component name and the keyword port map. The port map describes

how input and output ports of a component instance are associated with input and output

ports of the component. In the above VHDL code the component instances C1, C2, and

C3 correspond directly with the AND_2 gates and the component instance C4 corre-

sponds with the OR_3 gate. The first port in instance C1 is connected to X, the

second port is connected to Y, and the third port is connected to signal t1. A comparison

with the AND_2 component declaration shows that the first and second ports are input

ports and are called x and y, respectively, whereas the third port is an output port

called f. The component instantiation statement indicates the connection of input port

x of the AND_2 gate to X, the connection of input port y to Y, and the connection of

output port f to signal t1. Thus the ports of an instantiation statement are associated

with the corresponding ports of the component; this method of association is known

as positional association.

The drawback of the positional association in port mapping is that the ports in a com-

ponent instantiation statement must be specified in the same order as in the component

declaration. For example, if the order of two ports in instance C1 are inadvertently

reversed as

C1: AND_2 port map (X,t1,Y);

then signal t1 will be connected to the input y of the AND_2 gate and Y will be the output

of the gate!

An alternate method of port mapping called the named association allows explicit

association of the port maps of a component instantiation with the port names of the com-

ponent declaration statement, and also their orders are not important. For example, the

component instantiation statement C1 can be written

C1: AND_2 port map (x =>X,f =>t1,y =>Y);

In port mappings based on the named association, the port names of a component are

written on the left side of the => operator, and the port names of a component instance

are written on the right side of the operator. Note that the mapping of the ports are not

in any particular order.

198 VHDL IN DIGITAL DESIGN

5.9 BEHAVIORAL DESCRIPTION

As indicated earlier, a behavioral description specifies the function of a system in terms of

operations on its inputs without any reference to the actual implementation of the function.

It is usually used at the early stage of the design process when emphasis is more on under-

standing how a circuit functions rather than on its structural implementation. The advan-

tage of the behavioral description over its structural counterpart is that in general it leads to

several implementations of the behavior, thus providing designers with a number of

options to choose from based on other design constraints.

The structural description of the majority voter shown in Figure 5.12 is composed of

four primitive components and their interconnections. The behavioral module, on the other

hand, is concerned only with describing the actual function of the circuit as shown below:

library ieee;
use ieee.std_logic_1164.all;

entity majority_voter is
port (X, Y, Z: in std_logic;
M: out std_logic);

end majority_voter;

architecture behavior of majority_voter is
begin
process(x, y, z)
begin
if (X =‘1’ and Y = ‘1’) then
M<=‘1’;
elsif (X =‘0’ and Y:=‘0’) then
M<=‘0’;
elsif Z = ‘1’ then
M<=‘1’;
else M<=‘0’;
end if;
end process;
end behavior;

As can be seen, the entity part is identical to that in the structural description. The archi-

tecture part, however, uses a process statement that includes if–else statements as in a

procedural language, to describe the majority voter function. Figure 5.13 shows the

function simulation of the VHDL code.

FIGURE 5.13 Functional simulation of the behavioral description.

5.9 BEHAVIORAL DESCRIPTION 199

The behavioral description of the majority voter function is not unique and also it does

not provide any glimpse of the structure of the circuit. For example, this behavioral

description can be implemented using three AND gates and an OR gate as shown in

Figure 5.12. It can also result in several alternate implementations as shown in

Figure 5.14. The circuit in Figure 5.14b was generated by Altera’s Quartus II software.

5.10 RTL DESCRIPTION

A system is described at the RTL level in terms of the transfer of information between

memory elements in the system; the behavior of combinational logic blocks driving the

memory elements are specified by Boolean functions. Figure 5.15 illustrates the concept

FIGURE 5.14 Alternative implementations of the majority voter circuit.

FIGURE 5.15 Concept of RTL description.

200 VHDL IN DIGITAL DESIGN

of the register transfer model. It is based on the principle of synchronous sequential circuit

operation; combinational logic blocks are used as next state logic that drives the registers

(memory elements) and also for generating the circuit output(s). The application of a clock

pulse results in the modification of the data content of a register and the transfer of the

modified data to another register. Thus the operation of a sequential circuit is synchronized

with a clock and is explicitly defined at each clock cycle. (Chapters 4 and 7 deal with

concepts and design of sequential circuits, respectively.)

In RTL descriptions the modeling of registers is done at the functional level. Thus RTL

descriptions may be considered a form of behavioral description. On the other hand, the

combinational logic blocks are described at the structural level; hence RTL descriptions

are implicitly structural. The Boolean expressions for the combinational blocks use only

input signals at the ports of the circuit entity and are represented by concurrent signal

assignments.

As an example, the VHDL code for the majority voter circuit of Figure 5.12 at the RTL

level is

library ieee;
use ieee.std_logic_1164.all;
entity majority_voter is
port (X, Y, Z: in std_logic;

M: out std_logic;
end majority_voter;

architecture regtransfer of majority_voter is
begin

M<=(X and Y) or (X and Z) or (Y and Z);
end regtransfer;

Another example of the VHDL description at the RTL level is given below for a

circuit with three inputs a, b, and c, and three outputs w, x, and y. Output w is 1 if

any one of the inputs is 0, x is 1 if any two inputs are 0, and y is 1 if all three inputs are 0.

library ieee;
use ieee.std_logic_1164.all;
entity zerocount is
port (a,b,c: in std_logic;

w,x,y: out std_logic);
end zerocount;

architecture rtl of zerocount is
begin
w<=not (a xor b xor c) and (a or b or c);
x<=(a xor b xor c) and (not (a and b and c));
y<=not (a or b or c);
end rtl;

Note that the VHDL description uses three concurrent statements in the architecture.

The simulation results of the circuit are shown in Figure 5.16. The circuit implementation

from the code is generated by the Quartus II software and is shown in Figure 5.17.

5.10 RTL DESCRIPTION 201

EXERCISES

1. A circuit to compare two 4-bit numbers (A3–0 and B3–0) is to be designed. The status

of the comparison is available on the outputs Equal, Not_equal, Less_than, and

Greater_than. Write the entity of the circuit.

2. Write the entity of the circuit shown below.

3. Describe the architecture of the comparator circuit of Figure 5.1 at the behavioral level.

FIGURE 5.16 Simulation results from the RTL description of zero counting circuit.

FIGURE 5.17 Circuit for counting the number of 0’s in the inputs.

202 VHDL IN DIGITAL DESIGN

4. Write the entity of a circuit represented as a black box:

A is 8-bit input bus

enb is the output enable signal

sel is a 2-bit select input

B is an 8-bit bidirectional bus

C is a 9-bit output bus that also feeds back to the input of the circuit

d is a tristate output

5. Describe the architecture of the following circuit in VHDL at the structural level:

6. Write the entity and the architecture for the following circuit; each box in the circuit is a

2-to-1 multiplexer.

7. Write the VHDL code to specify a circuit that generates the square of a 3-bit number.

8. Write the VHDL code for a full adder.

9. Use the full adder of Exercise 3 to describe a 2-bit adder.

EXERCISES 203

10. A circuit receives binary numbers corresponding to 0 and 4 inclusive and displays the

following patterns:

Describe the circuit in VHDL assuming NAND–NAND logic is to be used to

implement the circuit.

11. A combinational circuit is to be designed to generate a parity bit for input digits in

BCD code. The circuit also has an additional output that produces an error signal if

a non-BCD digit is input to the circuit. The circuit is to be realized using NAND–

NAND logic. Write the VHDL code for the circuit at the structural level.

12. A computing system consists of four processors, P1, P2, P3, and P4, and four blocks of

memories, M1, M2, M3, and M4. Processor P1 is allowed to use memory blocks M1

and M4 only. Memory block M2 can be used only by P2 and P3. Processor P3 can use

all blocks of memories. All processors can use block M4. The circuit produces an

active high output only if a processor uses an appropriate memory block. Write the

entity and the architecture for the circuit.

204 VHDL IN DIGITAL DESIGN

6 Combinational Logic Design
Using VHDL

6.1 INTRODUCTION

Combinational logic circuits are described in VHDL using concurrent signal assignment

statements or process statements. All concurrent signal statements used to describe a

circuit are executed simultaneously. The following example shows the VHDL code for

a circuit function:

library ieee;
use ieee.std_logic_1164.all;

entity example1 is
port (x,y: in std_logic;

f1,f2: out std_logic);
end example1;

architecture simple of example1 is
begin
f1 <= not x and not y;
f2 <= x or y;
end simple;

The architecture part of the code has two concurrent signal assignment statements f1 and

f2. Both outputs f1 and f2 will change simultaneously as soon as either x or y signal on

the right side of the assignment operator "<= " changes value; thus the order of the

assignment statements has no significance. Note that the signal assignment operator is

not represented by "=" as in a conventional programming language.

When the VHDL description composed of concurrent assignment statements is trans-

lated by a logic synthesis program, the hardware implementation may not necessarily

be in the form of gates defined in the concurrent statements; it is determined based on

the target device architecture.

205

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

6.2 CONCURRENT ASSIGNMENT STATEMENTS

Concurrent assignment statements can be in one of four categories:

. Instantiations

. Direct assignment

. Conditional assignments

. Selected assignments

Instantiations were discussed previously in Chapter 5.

6.2.1 Direct Signal Assignment

The concurrent signal assignments used in the VHDL code of the above example are of

the direct type. They are used to specify Boolean expressions. A second example of

direct concurrent signal assignment is shown by writing the VHDL code for the

Boolean expression

f (a; b; c; d) ¼ ab�cþ �bc �d þ ad

The VHDL code is

library ieee;
use ieee.std_logic_1164.all;

entity example2 is
port (a,b,c,d: in std_logic;
f: out std_logic);
end example2;

architecture simple of example2 is
signal s1,s2,s3: std_logic;
begin
s1 <= a and b and not c;
s2 <= not b and c and not d;
s3 <= a and d;
f <= s1 or s2 or s3;

end simple;

Three internal signals of type std_logic called s1, s2, and s3 are declared. Note

that signal statements are similar to port statements in the VHDL entity part, except that

there is no mode declaration for internal signals. They are like wires in electronic circuits

and are used to connect different components of a design. As in an electronic circuit,

signals can be single bits (e.g., a clock or a reset) or they can be buses of a specified

width. All signals must be declared with both a name and a data type.

In this example s1, s2, and s3 are ‘‘wires’’ that connect AND gates corresponding to

product terms abc̄, b̄cd̄, and ad, respectively, to the OR gate that drives output f as shown

in Figure 6.1. All four concurrent assignment statements are executed simultaneously.

206 COMBINATIONAL LOGIC DESIGN USING VHDL

It should be mentioned that the inclusion of signal statements is a matter of choice, not a

definite requirement. The functionally equivalent code for the architecture part of

example2 in RTL coding style is

architecture simple of example2 is

begin

f <= (a and b and not c) or (not b and c and not d) or (b and d);

end simple;

6.2.2 Conditional Signal Assignment

A conditional signal assignment statement, also known as a when–else statement, has more

than one expression associated with it, each of which corresponds to a condition. The

syntax of a when–else statement is as follows:

signal_name <= expression_w when condition1 else
expression_x when condition2 else
expression_y when condition3 else
expression_z;

However, there is only one signal assignment operator (<=) in a conditional signal assign-
ment. When a conditional signal assignment statement is executed, each condition is tested

in order as it appears in the statement, that is, condition1 first, then condition2,
and so on. The first condition that is satisfied has the evaluated value of the associated

expression assigned to the target signal on the left of the signal assignment operator.

For example, if condition2 is satisfied expression_x is evaluated and its value

assigned to the target signal. If none of the conditions are satisfied the value of the final

expression is assigned to the target signal. Alternatively, if two or more conditions are

satisfied only the first condition is assigned to the target signal; the rest are ignored.

Note that instead of an expression a predetermined bit or vector can be associated with

FIGURE 6.1 Example of signals as wires.

6.2 CONCURRENT ASSIGNMENT STATEMENTS 207

a particular condition. The following example illustrates the use of a conditional assign-

ment statement expression:

library ieee;
use ieee.std_logic_1164.all;

entity example3 is
port (a,b,c: in std_logic;
f: out std_logic);
end example3;

architecture simple of example3 is
begin
f <= (b xnor c) when a = ‘1’ else

(b and c);
end simple;

In the above example, if a is at logic 1 expression (b� c) is evaluated and assigned to f,

otherwise f is set to b and c. The corresponding circuit is shown Figure 6.2, as illustrated

by this example, conditional signal assignment statements are always synthesized into

combinational logic.

FIGURE 6.2 Circuit corresponding to VHDL code of example3.

FIGURE 6.3 A 4-to-1 multiplexer.

208 COMBINATIONAL LOGIC DESIGN USING VHDL

Next, we consider more conventional use of conditional signal statements, for example,

specifying operations of multiplexers and decoders. The VHDL code for a 4-to-1

multiplexer shown in Figure 6.3 is

1 library ieee;
2 use ieee.std_logic_1164.all;

3 entity multiplexer is
4 port (sel:in std_logic_vector(0 to 1);
5 In0,In1,In2,In3: in std_logic;
6 f: out std_logic);
7 end multiplexer;

8 architecture simple of multiplexer is
9 begin
10 f <= In0 when sel = "00" else
11 In1 when sel = "01" else
12 In2 when sel = "10" else
13 In3 when sel = "11" else
14 ‘0’;
15 end simple;

Any time the values of the sel bits change the condition statement is executed. Line ‘0’ in
code indicates that for all other possible conditions of sel bits the output will be 0. Note

that each standard_logic bit can have 9 values, thus for two bits there are 81 (¼9 � 9)

combinations. A functionally equivalent code could be obtained by replacing lines 13

and 14 by just In3. However, the code given above is more informative.

The final else (line 13) clause followed by the last statement containing ‘0’ (line 14) is
included to avoid impliedmemory at the output circuit synthesized from the code. Recall that

each bit defined as standard_logic type can have nine possible values including 0 and 1. Thus

if the selected control bits in the multiplexer code are neither of the specified four conditions,

the output of the multiplexer will retain its old value (implied memory), thus inadvertently

resulting in the creation of a latch at the output of the multiplexer as shown in Figure 6.4.

This behavior can sometimes also be used to create a latch when one is needed.

FIGURE 6.4 Implied memory at the multiplexer output.

6.2 CONCURRENT ASSIGNMENT STATEMENTS 209

As another example of the use of conditional signal assignment in VHDL, let us specify

the operation of a 2-out-of-4 decoder shown in Figure 6.5.

The VHDL code for the 2-out-of-4 decoder of Figure 6.5 is

library ieee;
use ieee.std_logic_1164.all;

entity decoder is
port (sel: in std_logic_vector(0 to 1);
enb: in std_logic;
f: out std_logic_vector (3 downto 0));
end decoder;

architecture simple of decoder is
begin
f <= (others => ‘0’)when enb = ‘0’ else
"0001" when sel = "00" else
"0010" when sel = "01" else
"0100" when sel = "10" else
"1000" when sel = "11";

end simple;

The first statement in the architecture part of the VHDL code is used to set the outputs

of the decoder to all 0’s when enb input is at logic 0. As was shown previously in Chapter

3, the enb input of a decoder is used to interconnect smaller size decoders in order to form

a larger decoder.

The conditions specified in when–else statements have implied priority. This should be

clear from the VHDL code for a 4-to-2 bit priority encoder shown below in which the order

of priority is emphasized by the order of the when–else statements; the condition "11" in
first statement has the highest priority and "00" in the last one has the lowest priority.

library ieee;
use ieee.std_logic_1164.all;

entity priority_encoder is
port (w: in std_logic_vector(3 downto 0);

FIGURE 6.5 A 2-out of-4 decoder.

210 COMBINATIONAL LOGIC DESIGN USING VHDL

y: out std_logic_vector(1 downto 0);
f: out std_logic);
end priority_encoder;

architecture behavior of priority_encoder is
begin
y <= "11" when w(3)=‘1’ else

"10" when w(2)= ‘1’ else
"01" when w(1)=‘1’ else
"00";

f <= ‘0’ when w = "0000" else ‘1’;
end behavior;

Thus when–else statements allow specifying conditions that have certain priority in an

appropriate order. Figure 6.6 shows the generation of the priority encoder circuit from

the VHDL code by the Quartus II software.

6.2.3 Selected Conditional Signal Assignment

Selected conditional signal assignment statements in with–select–when form are similar

to conditional signal assignments except that no priority is implied by the order of the

statements. The syntax of a with–select statement is

with condition select
signal_name <= expression1 when value1;

<= expression2 when value2;
<= expression3 when value3;
<= expression4 when others;

FIGURE 6.6 A 4-to-2 priority encoder generated from the VHDL code using when–else

statements.

6.2 CONCURRENT ASSIGNMENT STATEMENTS 211

The with . . . select part of a selected conditional signal assignment statement evaluates the

condition and compares the result with each choice value. All possible values of the con-

dition must be covered by the set of when clauses. The when clause with the matching

choice value has its associated expression assigned to the target signal on the left of the

assignment operator (<=).

Like conditional signal assignment statements, select signal assignments are also

converted into combinational logic by a synthesis program.

library ieee;
use ieee.std_logic_1164.all;

entity mux8to1 is
port (In0,In1,In2,In3,In4,In5,In6,In7: in std_logic;

s:in std_logic_vector(2 downto 0);
f:out std_logic);

end mux8to1;

architecture behavior of mux8to1 is
begin
with s select
f <= In0 when "000",

In1 when "001",
In2 when "010",
In3 when "011",
In4 when "100",
In5 when "101",
In6 when "110",
In7 when others;

end behavior

This code for an 8-to-1 multiplexer is in general similar to the code that used when–else

statements. However, the when others clause must be used to cover all unwanted

combinations of s bits. The simulation result of the VHDL code of the multiplexer is

shown Figure 6.7.

The input conditions to a multiplexer have no implied priority; thus either conditional

or select signal assignment statements can be used to describe a multiplexer. However, if

the conditions have priorities then the VHDL code using with–select–when statements will

FIGURE 6.7 Simulation results of 8-to-1 multiplexer.

212 COMBINATIONAL LOGIC DESIGN USING VHDL

be less efficient than the code using when–else statements. For example, the VHDL code

for the priority encoder using a with–select–when statement is

library ieee;
use ieee.std_logic_1164.all;

entity priority_encoder1 is
port (w: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0);
f: out std_logic);
end priority_encoder1;

architecture behavior of priority_encoder1 is
begin
with w select
y <= "11" when "1000",

"11" when "1001",
"11" when "1010",
"11" when "1011",
"11" when "1100",
"11" when "1101",
"11" when "1110",
"11" when "1111",
"10" when "0100",

FIGURE 6.8 A 4-to-2 priority encoder generated from the VHDL code using with–select–when

statements.

6.2 CONCURRENT ASSIGNMENT STATEMENTS 213

"10" when "0101",
"10" when "0110",
"10" when "0111",
"01" when "0010",
"01" when "0011",
"00" when others;

f <= ‘0’ when w = "0000" else ‘1’;
end behavior;

Note that all possible conditions have been specified to avoid implied priority. As a result,

this version produces less efficient code and in general requires more logic for implement-

ing the priority encoder. The encoding circuit in this case requires a 4-bit comparator and

two 4-to-1 multiplexers, whereas the circuit in Figure 6.8 used a 4-bit comparator and three

2-to-1 multiplexers.

6.3 SEQUENTIAL ASSIGNMENT STATEMENTS

Concurrent assignment statements used in VHDL code for describing combinational logic

circuits are executed in parallel: that is, each statement operates independently of all other

statements. In fact, this is the way the circuit represented by the VHDL code works. It is

also possible to specify combinational logic functions using sequential statements; this

resembles coding using a conventional programming language. The VHDL code (of a

circuit) composed of sequential statements provides behavioral information of the

circuit in terms of its inputs and outputs; the actual hardware structure of the circuit is

determined by the logic synthesis tool that uses the VHDL code.

6.3.1 Process

All sequential statements must be grouped inside a process. They are executed in

sequence; any change in the order in which they appear in the process affects the intended

function of the code. A signal within a process may be assigned different values during the

execution of the process; however, the last value assigned to the signal before the end of

the process is the one it retains.

A process itself is considered a concurrent statement even though all its component

statements are sequential in nature. The architecture of a VHDL program may have

several processes as well as other concurrent statements, all of which are executed in par-

allel. The syntax of a process is

[label] process (sensitivity list);
declaration statements
begin
sequential statement 1
sequential statement 2

.

.

.

sequential statement n
end process;

214 COMBINATIONAL LOGIC DESIGN USING VHDL

The label to identify a process is optional. If several processes are used in a VHDL

program, the process name can identify the operation performed by a specific

process. The list of signals in parentheses immediately following the keyword process in

the process definition is known as the sensitivity list. A process is activated (i.e., the state-

ments within the process are executed) if any signal in its sensitivity list changes value;

otherwise the process remains suspended. It should be mentioned here that a process

can also be defined without a sensitivity list; in that case the process must include a

wait statement before other sequential statements to prevent continuous execution of

the process. Later in the section we discuss processes without sensitivity lists.

As an example, let us specify the Boolean expression f (a, b, c) = ab � c using the

following process:

library ieee;
use ieee.std_logic_1164.all;

entity example is
port (a,b,c: in std_logic;
f:out std_logic);
end example;

architecture behavior of example is
signal x: std_logic;
begin

process (a,b,c)
begin
x <= a and b;
f <= x xor c;

end process;

end behavior;

Input signals a, b, and c are included in the sensitivity list of the process because the

output may get affected if one of these changes value. A signal assignment statement is

used to declare x as a signal bit. This process can be defined using a concurrent signal

assignment statement:

f <= (a and b) xor c;

This statement can indeed be considered as a concise description of the above process. If

any of the signals on the right-hand side of the expression assignment operator changes,

the statement will be executed just as the process statement is activated if a signal in its

sensitivity list changes its value.

A VHDL process can also use variable(s) as in conventional programming languages. A

variable assignment statement must be declared inside a process just before the keyword

begin in the process statement. A signal assignment statement, on the other hand, is

declared inside the architecture before the keyword begin. The variable declaration state-

ment is the same as its signal declaration counterpart except the keyword variable is used

6.3 SEQUENTIAL ASSIGNMENT STATEMENTS 215

instead of signal. The above VHDL code is repeated below with appropriate changes; the

entity part is skipped because there are no changes to be made in it.

architecture behavior of example is
signal x:std_logic;
begin
process (a,b,c)
variable y: std_logic;
begin
y:= a and b;
y:= y xor c;
x <= y;
end process;
f <= x;
end behavior;

Both a signal assignment statement and a variable assignment statement are used.

The signal and the variable declared are x and y, respectively. Variable y is first assigned

the value of a and b. Then the xor of y and c is computed, and y is updated with

the new value. The value of a variable is valid only inside a process; therefore y is trans-

ferred to signal x before exiting the process. The value of signal x is then assigned to

output f. Note that VHDL statements outside a process are considered concurrent, not

sequential.

A VHDL architecture may have several processes active at the same time. These pro-

cesses communicate with each other through internal signals. An internal signal generated

by one processor is included in the sensitivity list of another one, thus activating that

process when the signal changes value.

There are four sequential statements that, like concurrent assignment statements, trans-

fer values to target signals on the left side of the assignment operator. These are

1. If

2. Case

3. Loop

4. For generate

Only these statements can be used inside a process; concurrent assignment statements

when and with cannot be used inside a process.

6.3.2 If–Then Statement

An if–then statement evaluates each condition in a sequence of conditions in the order in

which they are presented, until one of the conditions is satisfied or until they are exhausted.

A condition must of course evaluate to true or false. The statement(s) associated with the

satisfied condition is executed and the rest of the conditions are ignored.

The syntax of an if statement is

If condition 1 then
Statement(s) executed if condition 1 is true

216 COMBINATIONAL LOGIC DESIGN USING VHDL

else
Statement(s) executed if condition 1 is false
end if;

.

.

.

.

If condition n then
Statement(s) executed if condition n is true
else
Statement(s) executed if condition n is false
end if;

To illustrate, the architecture part of the VHDL code for a 2-to-1 multiplexer (Fig. 6.9)

using the if–then statement is as follows:

if (s=‘1’) then
f <= In0;

else
f <= In1;

end if;

If condition s=1 is satisfied In0 is transferred to output f of the multiplexer, and the

second condition s=0 is ignored. On the other hand, if s=0, the second condition not

the first is satisfied and f gets the value of In1.
The else clause in an if statement is optional. However, the absence of the

clause will result in the creation of a latch at the output of the multiplexer as discussed

previously.

FIGURE 6.9 Block diagram of 2-to-1 multiplexer.

6.3 SEQUENTIAL ASSIGNMENT STATEMENTS 217

As another example, let us specify the VHDL code of an n-bit comparator:

library ieee;
use ieee.std_logic_1164.all;

entity comparator is
generic(n: natural:=4);

port(X: in std_logic_vector(n-1 downto 0);
Y: in std_logic_vector(n-1 downto 0);
less: out std_logic;
equal: out std_logic;
greater: out std_logic);

end comparator;

architecture behavior of comparator is
begin
process(X,Y)
begin
if (X>Y) then
less <= ‘0’;
equal <= ‘0’;
greater <= ‘1’;

elsif (X=Y) then
less <= ‘0’;
equal <= ‘1’;
greater <= ‘0’;

else
less <= ‘1’;
equal <= ‘0’;
greater <= ‘0’;

end if;
end process;
end behavior;

Any number of if statements can be combined to form nested if. In nested if the else part

of one statement is combined with the if part of the following if statement to form the

elsif clause; note that elsif is one word (not else if). The syntax of nested if is

If condition 1 then
Statement(s) executed if condition1 is true
elsif condition 2 then
Statement(s) executed if condition1 is true

.

.

.

elsif condition n then
Statement(s) executed if condition n is true

Statement(s) executed if none of conditions are true
end if;

218 COMBINATIONAL LOGIC DESIGN USING VHDL

To illustrate, the 4-to-1 multiplexer shown in Figure 6.3 is described using nested if

statements:

library ieee;
use ieee.std_logic_1164.all;

entity multiplexer is
port (in0,in1,in2,in3: in std_logic;
s0,s1: in std_logic;
f: out std_logic);
end multiplexer;

architecture behavior of multiplexer is
begin
process (s0,s1,in0,in1,in2,in3)
begin
if ((not s1 and not s0)= ’1’) then
f <= in0;
elsif ((not s1 and s0)= ’1’) then
f <= in1;
elsif ((s1 and not s0)= ’1’) then
f <= in2;
else
f <= In3;

end if;
end process;
end behavior;

The circuit structure resulting from nested if statements can have long signal paths from

the input to the output of the circuit, thereby increasing the signal propagation delay of

the circuit. The logic equations for the multiplexer circuit derived by the Quartus II

system from the above VHDL code are

L2=s0.s1+s̄0.(s1.in2+s̄1.in0)
L3=s0. (L2.in3+L2̄. in1+s0̄ .L2)
f=L3

The resulting circuit will have multiple logic levels. Note that the VHDL code

does not result in a single standard sum-of-products expression for the multiplexer;

that is,

f=s1.s0.in3+s1.s̄0.in2+s̄1.s0.in1+s̄0.s̄1.in0

From the syntax of an if statement it should be clear that conditions in an if statement have

implied priority. Condition 1 has the highest priority because it is evaluated first, and if it is

true all the remaining conditions are skipped. Condition 2 is evaluated only if condition 1

is false, and condition n is evaluated only if all previous n � 1 conditions are false. Thus

condition n has the lowest priority. This property of if statements can be utilized in

6.3 SEQUENTIAL ASSIGNMENT STATEMENTS 219

designing priority encoder circuits. The VHDL code for a 4-to-2-priority encoder circuit

using an if statement is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity priorityencoder is
port (w: in std_logic_vector(3 downto 0);
y: out std_logic_vector(1 downto 0);
z: out std_logic);
end priorityencoder;

architecture behavior of priorityencoder is
begin
process(w)
begin
if w(3)=‘1’
then y <= "11";
elsif w(2)=‘1’

then y <= "10";
elsif w(1) =‘1’

then y <= "01";
else y <= "00";

end if;
end process;
z <= ‘0’ when w = "0000" else ‘1’;

end behavior;

6.3.3 Case Statement

A case statement is an alternative to an if statement. However, unlike in an if statement a

case statement does not have an implied priority of conditions. It is in fact equivalent to a

selected conditional signal assignment (i.e., with–select statement). The only difference

is that a with–select statement is a concurrent statement whereas a case is a sequential

statement and therefore must be inside a process. The syntax of a case statement is

case expression is
when choice1 => sequential statements;
when choice2 => sequential statements;

.

.

.

when others => sequential statements;
end case;

The expression associated with the case part is evaluated to a value that is either an integer,

a standard logic vector, or an enumerated type. This value is compared with each choice

of value; all possible choices of value must be covered by the set of when clauses.

220 COMBINATIONAL LOGIC DESIGN USING VHDL

The statements associated with the when clause that has the matching choice value are then

executed. The when others statement must be included if all possible choices are not

covered by the when clauses. All choices should be unique so that only one of them

matches the value evaluated from the expression.

To illustrate, let us write the VHDL code for the following Boolean expression:

f (a; b; c) ¼ Sm (1; 2; 4; 7)

The code is

library ieee;
use ieee.std_logic_1164.all;

entity circuit1 is
port (a,b,c: in std_logic;
f: out std_logic);
end circuit1;
architecture comb1 of circuit1 is
begin
process(a,b,c)
begin
case std_logic_vector’(a,b,c) is
when "001" => f <= ‘1’;
when "010" => f <= ‘1’;
when "100" => f <= ‘1’;
when "111" => f <= ‘1’;
when others => f <= ‘0’;
end case;
end process;
end comb1;

In this code inputs a, b, and c are converted into a standard logic vector (a, b, c); this
vector represents the expression part in the case statement. The choice in each of the

four when clauses corresponds to four minterms in the on-set of the given function.

The when others statement covers all possible combination of inputs a, b, and c that

generate 0 at output f. The Boolean expression of the function derived by the Quartus

II system is:

p2 = b . c̄
p3 = b̄ . c;
f = a xor (p2 + p3)

The case statement in the above VHDL code can be written in a more concise form as

case std_logic_vector (a,b,c)is
when "001"|"010"|"100"|"111" => f <= ‘1’;
when others = > f <= ‘0’;
end case;

6.3 SEQUENTIAL ASSIGNMENT STATEMENTS 221

Another example of the VHDL code for a 4-to-1 multiplexer using a case statement is

as follows:

library ieee;
use ieee.std_logic_1164.all;

entity mux1 is
port (in0,in1,in2,in3: in std_logic;
sel:in std_logic_vector (1 downto 0);
f: out std_logic);

end mux1;
architecture comb1 of mux1 is
begin
process(sel,in0,in1,in2,in3)
begin
case sel is
when "00" => f <= in0;
when "01" => f <= in1;
when "10" => f <= in2;
when "11" => f <= in3;
end case;
end process;
end comb1;

This code does not use the when others statement because all possible choices of sel
value have been used.

It should be clear from the above that a case statement requires an alternative choice for

every value of the expression. In certain cases, however, no action is required for a par-

ticular value; a null statement is used to specify no action. To illustrate, let us consider

the following code that describes a circuit in which vector temp is incremented or

decremented if the sel bits are 01 or 10, respectively; in all other cases no operation is

performed. The case statement in the code uses a null statement to represent this:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity test is
port (reg: out std_logic_vector (2 downto 0);

sel:in std_logic_vector (1 downto 0);
temp: in std_logic_vector (2 downto 0));

end test;

architecture behavior of test is
begin
process(sel,temp)
begin
case sel is

222 COMBINATIONAL LOGIC DESIGN USING VHDL

when "01" => reg <= temp +1;
when "10" => reg <= temp -1;
when others => null;
end case;
end process;
end behavior;

6.3.4 If Versus Case Statements

As explained earlier, the key difference between an if and a case statement is that the

former can contain more than one condition whereas in the later a single expression is

evaluated against multiple mutually exclusive conditions. In general, the VHDL descrip-

tion of a circuit using a case statement results in more efficient hardware than an if-based

description. This is illustrated by specifying the function of a 4-bit ALU in VHDL; the

modes of operation of the ALU are as follows:

Mode Function

00 Add

01 Subtract (2’s complement addition)

10 AND

11 OR

The VHDL code for the ALU using if statements is as follows:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ALU1 is
generic(n: natural:=4);
port(A,B : in std_logic_vector((n-1)downto 0);

mode: in std_logic_vector(1 downto 0);
Cout: out std_logic;
C : out std_logic_vector((n-1) downto 0));

end ALU1;

architecture behavior of ALU1 is
signal D: std_logic_vector(n downto 0);
begin

process(A,B,mode)
begin

D <=(others => ‘0’);
If mode = "00" then
D <= ‘0’&A+ B;
end if;
if mode ="01" then

6.3 SEQUENTIAL ASSIGNMENT STATEMENTS 223

D <= ‘0’&A + not B+1;
end if;
if mode ="10" then
D <= ‘0’&A and B;
end if;
if mode ="11" then
D <= ‘0’&A or B;
end if;

end process;
C <= D(n-1 downto 0);
Cout <= D(n);

end behavior;

The result of each operation is transferred to an n-bit vector D declared as a signal; this

is needed so that D(n) can hold the carry-out bit generated during the addition of two

(n � 1)-bit vectors. A ‘0’ is concatenated with vector A to make it n-bit. After the

process is executed, the least significant (n � 1) bits of D are transferred to C, which pro-

vides the final result. The most significant bit of D is transferred to Cout, which will be 1 if
a carry-out of 1 is generated during the addition or the subtraction operation. The logic

implementation of the ALU obtained from the VHDL description by the Quartus II

system is shown in Figure 6.10a.

The ALU can also be specified using a case statement as below; since the entity part is

the same as in the previous case, only the architecture part is shown:

architecture behavior of ALU is
signal D: std_logic_vector (n downto 0);
begin

process(A,B,mode)
begin
D <= (others => ’0’);
case mode is
when "00" =>
D <= ‘0’&A+B;
when "01" =>
D <= ‘0’&A + not B + 1;
when "10" =>
D <= ‘0’&A and B;
when others =>
D <= ‘0’&A or B;
end case;

end process;
C <= D(n-1 downto 0);
Cout <= D(n);

end behavior;

Figure 6.10b shows the Quartus-generated logic implementation of the ALU. Note that the

if-based ALU circuit is significantly more complex than the case-based implementation

and will be slower.

224 COMBINATIONAL LOGIC DESIGN USING VHDL

6.4 LOOPS

Loops are used to specify repeated execution of one or a sequence of statements; the state-

ments must be inside a process. Two variants of loops in VHDL are the for loop and the

while loop.

6.4.1 For Loop

The for loop allows a fixed number of iterations of a set of statements. The syntax is as

follows:

label: for identifier in range loop
statement(s) to be repeated

end loop;

FIGURE 6.10 (a) Implementation of the if-based ALU code and (b) implementation of the case-

based ALU code.

6.4 LOOPS 225

The label for a loop is optional. The in range part of the for loop defines the

number of times the statement(s) in the loop are to be repeated. It is defined in the

same format as a logic vector. The identifier is a variable that is automatically

created and is assigned a value of the range each time the statements in the loop are

executed.

To illustrate, let us write the VHDL code for a circuit that counts the number of 1’s

in an n-bit register and stores the binary equivalent of the number in an m-bit register,

where

m ¼ dlog2 ne

FIGURE 6.10 (Continued).

226 COMBINATIONAL LOGIC DESIGN USING VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity circuit3 is
generic (n:integer:=7; m:integer:=3);
port (a: in std_logic_vector (n-1 downto 0);

b: out std_logic_vector(m-1 downto 0));
end circuit3;

architecture comb1 of circuit3 is
signal s: integer;
begin

process(a)
variable p: integer;
begin
p:= 0;
for i in (n-1)downto 0 loop
if a(i)= ‘0’ then
p:= p + 1;
end if;
end loop;
s <= p;
end process;
b <= conv_std_logic_vector(s,m);
end comb1;

The process in the code uses a local variable (p) that is initialized to 0 when the process

starts. When entering the loop, i is initialized to the first value in the range (6). In the first

iteration of the loop, a(6) is checked for a 0, and the result is added to p, and i is decre-

mented. In the second iteration, a(5) is checked for a 0 again and the result, once more,

is added to p and i is decremented again. This sequence repeats until i=0. After the last
iteration, p will hold an integer value that equals the number of 0’s in vector a.
For example, if a holds the vector 1000101, the codes resulting from each iteration of

the loop will be

i=6 a(6)=1 p:=0
i=5 a(5)=0 p:=1
i=4 a(4)=0 p:=2
i=3 a(3)=0 p:=3
i=2 a(2)=1 p:=3
i=1 a(1)=0 p:=4
i=0 a(0)=1 p:=4

The value of a variable is not valid outside a process, therefore p is transferred to s,which
was declared as an integer type signal before the process started. Note that a signal is

6.4 LOOPS 227

declared in an architecture body just before the keyword begin, whereas a variable is

declared inside a process also just prior to begin. The binary equivalent of integer p
is obtained by converting it into a vector of length m; this is done by using the function

conv_std_logic_vector(s,m). This function converts integer s into an m-bit
vector. The VHDL compiler will accept the function as a valid statement only if the

use.ieee_std_arith.all package is specified before the entity declaration.

As an example of the use of a for loop statement, the VHDL code for a 4 � 4 multiplier

is given below. It also shows the use of variables inside a process. The code uses the

shift-add algorithm for multiplication.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity multiply is
port(multiplicand, multiplier:in std_logic_vector(3 downto 0);

result: out std_logic_vector(7 downto 0));
end multiply;

architecture behavior of multiply is
signal zeros: std_logic_vector (3 downto 0);
begin
zeros <= (others => ’0’);

process(multiplicand,multiplier)
variable P: std_logic_vector(7 downto 0);
variable multiplicand_reg: std_logic_vector (7 downto 0);
begin
multiplicand_reg:= zeros & multiplicand;
P:= (others => ‘0’);
for i in 1 to 4 loop
if multiplier(i-1)=‘1’ then
P:= P + multiplicand_reg;
end if;
multiplicand_reg (7 downto 0):= multiplicand_reg(6 downto 0)&‘0’;

end loop;
result <= P;
end process;
end behavior;

Both the multiplier and the multiplicand are declared as 4-bit vectors and the result is

transferred to an 8-bit vector. The signal zeros is a 4-bit vector; it is initialized with

all 0’s. The process has the multiplier and the multiplicand in its sensitivity list. Two

variables P and multiplicand_reg are used in the process statement. P is initialized

with all 0’s. The first 4 bits of multiplicand_reg are initialized with 0’s and the next

4 bits with the value of the multiplicand. The for-loop statement has the range of 1 to

4. During each iteration, a bit of the multiplier starting from the least significant bit is

228 COMBINATIONAL LOGIC DESIGN USING VHDL

checked to determinewhether it is 0 or 1. If it is a 1, the multiplicand_reg is added to P
and the old value of P is replaced with this. Bits 6–0 of variable multiplicand_reg are

concatenated with a 0 and the result replaces the old value of multiplicand_reg; note
this is equivalent to shifting the value of multiplicand_reg to the left. If a bit of the

multiplier is 0 during an iteration, multiplicand_reg is not added to P but

multiplicand_reg is shifted to the left.When the loop is completed, variableP contains

the multiplication result and it is transferred to output vector result. Note that since P is a

variable its value must be transferred to the output or to a signal before the end of the process;

the value of a variable is not available outside the process.

Figure 6.11 shows the simulation results of the 4 � 4 multiplier code for different

combinations of multiplier and multiplicand values.

6.4.2 While Loop

The while loop unlike the for loop does not specify the number of iterations but rather the

condition in the form of a Boolean expression which if evaluated to be true allows repeated

execution of the statement(s) in the loop, otherwise the loop terminates. The condition is

tested every time before the start of an iteration; the iteration is skipped if the condition is

false. The label is optional. The syntax of while loop is

label: while condition loop
statement(s)
end loop label;

As an example, let us consider the following VHDL code, which generates the EX-OR

of two 8-bit binary numbers:

library ieee;
use ieee.std_logic_1164.all;

entity circuit4 is
port (a: in std_logic_vector (7 downto 0);

b: in std_logic_vector(7 downto 0);
c: out std_logic_vector(7 downto 0));

end circuit4;
architecture comb1 of circuit4 is

FIGURE 6.11 Simulation results for the multiplier.

6.4 LOOPS 229

begin
process(a,b)
variable p: std_logic;
variable i:integer;
begin
i:=0;

while i<8 loop
p:= a(i) xor b(i);
c(i) <= p;
i:=i+1;
end loop;

end process;
end comb1;

In general, a while loop cannot be synthesized in hardware and is used only in testbenches.

A testbench is a VHDL source file that contains a group of input vectors to exercise a

particular VHDL code and check its correct operation.

6.5 FOR–GENERATE STATEMENT

In certain cases it is possible to implement a design as a regular structure of identical

components. In the VHDL code of such a design the component to be used is defined

once, and then it is repeatedly instantiated. The replication of component instantiation

statements over a specified range is done by using the for–generate statement. The for–

generate statement can in fact be used for the replication of any concurrent statement(s).

The syntax of for–generate statement is as follows:

label: for variable in range generate
begin
concurrent statement(s)

end generate;

The label must be used with a for–generate statement.

We illustrate the use of the for–generate statement by describing the VHDL code for a

6-to-64 decoder implemented using 3-to-8 decoders only. The 3-to-8 decoders are con-

structed from 2-to-4 decoders. The 2-to-4 decoder is specified first, which is then used

as a component for the 3-to-8 decoder, the 3-to-8 decoder in turn is used as a component

in specifying the 6-to-64 decoder.

The VHDL code for the 2-to-4 decoder is

library ieee;
use ieee.std_logic_1164.all;

entity decoder2_4 is
port (w: in std_logic_vector(1 downto 0);

230 COMBINATIONAL LOGIC DESIGN USING VHDL

en : in std_logic;
y : out std_logic_vector(3 downto 0));

end decoder2_4;
architecture behavior of decoder2_4 is
begin
process (w,en)
begin
if en=‘0’ then
y <= (others => ‘0’);
elsif w="11" then
y <= "1000";

elsif w="10" then
y <= "0100";

elsif w="01" then
y <= "0010";
else
y <= "0001";
end if;
end process;
end behavior;

The decoder is then used as a component in the code for the 3-to-8 decoder:

library ieee;

use ieee.std_logic_1164.all;

entity decoder3_8 is

port (w: in std_logic_vector(2 downto 0);

en: in std_logic;

y: out std_logic_vector(7 downto 0));

end decoder3_8;

architecture structure of decoder3_8 is

signal en1,en2: std_logic;

component decoder2_4

port (w: in std_logic_vector(1 downto 0);

en: in std_logic;

y: out std_logic_vector(3 downto 0));

end component;

begin

en1 <= not w(2) and en;

en2 <= w(2) and en;

decoder1: decoder2_4 port map (w(1 downto 0), en1, y (3 downto 0));

decoder2: decoder2_4 port map (w(1 downto 0), en2, y (7 downto 4));

end structure;

The circuit structure of the 3-to-8 decoder as derived from the VHDL description by the

Quartus software is shown in Figure 6.12.

6.5 FOR–GENERATE STATEMENT 231

Next, the 3-to-8 decoder is used as a component to specify the VHDL code of the

6-to-64 decoder:

library ieee;

use ieee.std_logic_1164.all;

entity decoder6_64 is

port (w: in std_logic_vector(5 downto 0);

en : in std_logic;

y : out std_logic_vector(63 downto 0));

end decoder6_64;

architecture structure of decoder6_64 is

signal m: std_logic_vector(7 downto 0);

component decoder3_8

port (w: in std_logic_vector(2 downto 0);

en : in std_logic;

y : out std_logic_vector(7 downto 0));

end component;

begin

G1: for i in 0 to 7 generate

dec_right: decoder3_8 port map (w(2 downto 0),m(i),y((8*i+7) downto 8*i));

end generate;

dec_left: decoder3_8 port map (w(5 downto 3), en, m);

end structure;

Note that the for–generate statement in the above code is in fact a compact representation

of the following group of statements, each of which instantiates a 3-to-8 decoder:

decoder3_8 port map (w(2 downto 0),m(0),y(7 downto 0));
decoder3_8 port map (w(2 downto 0),m(1),y(15 downto 8));
decoder3_8 port map (w(2 downto 0),m(2),y(23 downto 16));
decoder3_8 port map (w(2 downto 0),m(3),y(31 downto 24));
decoder3_8 port map (w(2 downto 0),m(4),y(39 downto 32));
decoder3_8 port map (w(2 downto 0),m(5),y(47 downto 40));

FIGURE 6.12 A 3-to-8 decoder generated from the VHDL code.

232 COMBINATIONAL LOGIC DESIGN USING VHDL

decoder3_8 port map (w(2 downto 0),m(6),y(55 downto 48));
decoder3_8 port map (w(2 downto 0),m(7),y(63 downto 56));

The circuit configuration of the 6-to-64 decoder is produced from the VHDL code by the

Quartus software and is shown in Figure 6.13. There are eight decoders on the right side of

the diagram created by the for–generate statement; the separate port map statement in the

code generated the decoder on the left.

EXERCISES

1. Implement a circuit that will compare two 3-bit binary numbers, X = x2x1x0 and

Y = y2y1y0, and generate separate outputs corresponding to the conditions X = Y, X < Y,

FIGURE 6.13 A 6-to-64 decoder generated from the VHDL code.

EXERCISES 233

X > Y. The circuit is implemented using NAND gates only. Write the VHDL code for

the circuit using a for–generate statement.

2. Write the VHDL code for an 8-bit two’s complement adder=subtractor circuit, which
functions as an adder when a select input x is set at logic 0, and as a subtrator when x is

set at logic 1.

3. Write the VHDL code for the following function using a selected signal assignment

statement:

f (a; b; c; d) ¼
X

m(0; 5; 9; 11; 13; 15)

4. Write the VHDL code for a BCD to seven-segment decoder circuit using a selected

signal assignment statement.

5. Write the VHDL code for a 2-bit subtractor.

6. Using the subtractor designed in Exercise 5 as a component, write the VHDL code for

a 4-bit subtractor employing a for–generate statement.

7. Write the VHDL description for the 5421 code to BCD encoder using a conditional

signal assignment statement.

8. Repeat Exercise 7 using if–then–else statements.

9. The circuit for a digital combinational lock is to be designed. There are four inputs to

the clock—A, B, C, and D. The desired combinations that open the lock are:

(i) Inputs A and D are 0, and B and C are 1.

(ii) Inputs A, C, and D are 1, and B is 0.

(iii) Inputs A, B, and C are 1, and D is 0.

(iv) Inputs A, B, C, and D are all 1’s.

Write the VHDL code to describe the circuit for the lock.

10. A combinational circuit is to be designed to generate the quotient from the division of

any number from 49 to 63 by 7. Write the VHDL code for the circuit.

11. Write the VHDL code to describe a circuit that converts BCD digits to 2-out-of-5

code. (A 2-out-of-5 code is a weighted code in which any 2 bits out of the 5 bits are

1’s; the remaining bits are 0’s.)

12. A circuit is to be designed to derive the greatest common divisor (GCD) of two

numbers, each of which is less than or equal to 63. Write the VHDL code to describe

the circuit.

13. Write the VHDL code for an 8-bit carry-select adder at the behavioral level.

14. A combinational logic circuit is to be designed to verify the account number a cus-

tomer enters into an automated teller machine (ATM) with the customer’s account

number stored in the bank system. It receives two inputs—compa_en (a signal that

enables the logic) and account_entered (a 20-bit vector). The output ac of the circuit is

asserted if the account number is verified to be correct. Write the VHDL code for the

circuit.

234 COMBINATIONAL LOGIC DESIGN USING VHDL

7 Synchronous Sequential
Circuit Design

7.1 INTRODUCTION

The analysis of a synchronous sequential circuit in Section 4.8 identified the major steps

required for synthesizing such circuits; these steps have to be executed in sequence as

shown in Figure 7.1. This chapter discusses each step individually and demonstrates

that collectively these steps constitute a design procedure for implementing arbitrary syn-

chronous sequential circuits. Henceforth, unless indicated otherwise, a sequential circuit

will mean a synchronous sequential circuit.

The purpose of the first step in Figure 7.1 is to provide a precise definition of the intended

behavior of the circuit to be designed. This definition should not constrain the means by

which the circuit achieves the desired behavior, but it should completely define the external

characteristics of the circuit such that it is possible to verify the circuit’s behavior from its

specification. In other words, the specification should define a black box, whose behavior

is known but whose internal construction is unknown.

In the second step of the design process, the specification of the circuit is expressed in

terms of the states of the circuit. No formal procedure is available that can be used to

derive state diagrams or tables. In fact, this step may be considered as the most difficult

part of the design process, and only with experience can a logic designer acquire the

skill to describe the state-to-state behavior of a sequential circuit. The third step is gener-

ally known as state minimization and consists of removing the equivalent states (if there

are any) from the state table derived in the second step. This results in a state table with

fewer states, which often leads to the simplification of the logic needed to realize the

state table.

In the fourth step a unique binary code is assigned to each state; this is known as state

assignment. The problem is to assign codes to different states such that more economic

logic realization than that obtained by arbitrary assignment can be achieved. In the fifth

step, the type of flip-flops to be used is decided and the Boolean logic expressions

(known as excitation or next state expressions) are derived for the flip-flops from the tran-

sition table. This table is also used to derive the output logic expressions. Finally, the logic

diagram of the sequential circuit is drawn using the chosen flip-flops and the logic

expressions derived in the fifth step. In the following sections we shall examine each of

these steps in detail.

235

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

7.2 PROBLEM SPECIFICATION

As mentioned before, the development of state diagrams/state tables from the original

specification of a circuit is mainly an intuitive process and is heavily dependent on past

experience. Either a Moore model or a Mealy model can be used to represent a sequential

circuit; however, in practice the Mealy model is often preferred because it is more general.

As an example, let us derive the state diagram for a synchronous sequential circuit

required to recognize the 4-bit sequence 1101 and to produce an output 1 whenever the

sequence occurs in a continuous serial input. For example, if the input sequence is

010110110101, the output sequence is 000000100100. We assume an initial state A,

where the circuit waits to receive the first input symbol.

At this state the circuit can receive either a 1 or 0. There is no change in state if 0 is

received (indicated by a self-loop). If a 1 is applied, the circuit goes to a new state, B,

with an output 0:

If a 1 is received when the circuit is in state B (i.e., the sequence 11), the circuit changes to

state C; on the other hand, a 0 input takes the circuit back to state A:

FIGURE 7.1 Design procedure for sequential circuits.

236 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

When in state C, if a 1 is received the circuit remains in the same state. The circuit moves

to a new state, D, if a 0 is applied (i.e., the sequence is 110).

The next input symbol will be the fourth bit of the 4-bit sequence; therefore the circuit

must decide whether or not the sequence is the one to be recognized. If a 1 is applied,

the sequence is correct and the circuit changes to B, giving the required output.

However, if a 0 is received when the circuit is in state D, it returns to state A to await

the start of another sequence. This completes the derivation of the state diagram for the

sequential circuit. Figure 7.2 shows the state diagram.

It is now possible to construct a state table with the aid of this state diagram. Table 7.1

shows the resulting state table.

We next derive the state diagram and the state table for a sequential circuit that has a

single input x and a single output z. It examines incoming serial data in consecutive

sequences of 4 bits. The output of the circuit is 1 if and only if an input sequence is a

2-out-of-4 code word (i.e., there are exactly two l’s in a 4-bit sequence).

FIGURE 7.2 State diagram for 1101 sequence detector.

TABLE 7.1 State Table for the 1101 Sequence Detector

Input

Present State x ¼ 0 x ¼ 1

A A,0 B,0

B A,0 C,0

C D,0 C,0

D A,0 B,1

Next state, Output

7.2 PROBLEM SPECIFICATION 237

Assume the initial state isA. Since the circuit has only a single serial input, each state in the

state diagram will have two transition edges, one corresponding to input 0 and the other cor-

responding to input 1. Besides, an input sequence consists of 4 bits, so wemust go back to the

initial state after 4 bits have been examined. Figure 7.3 shows the complete state diagram for

the desired circuit. The information in the diagram is transferred to the state table (Table 7.2).

As can be seen from Figure 7.3, each combination of 4 bits has been taken into con-

sideration while deriving the state diagram. This has produced quite a few redundant

states in the state diagram/state table. A state is redundant if its function can be served

by another state in the circuit. In the following section, various techniques available for

determining redundant states are considered.

FIGURE 7.3 State diagram for a 2-out-of-4 code detector.

TABLE 7.2 State Table for 2-out-of-4 Detector

Input

Present State x ¼ 0 x ¼ 1

A B,0 C,0

B D,0 E,0

C F,0 G,0

D H,0 I,0

E J,0 K,0

F L,0 M,0

G N,0 P,0

H A,0 A,0

I A,0 A,1

J A,0 A,1

K A,1 A,0

L A,0 A,1

M A,1 A,0

N A,1 A,0

P A,0 A,0

238 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

7.3 STATE MINIMIZATION

The number of states in a sequential circuit has a significant impact on its physical

implementation. It is therefore desirable to know when two or more states play identical

roles (i.e., are equivalent in all respects). State minimization eliminates the equivalent

states from the state transition graph of a sequential circuit and transforms it into

another one with no redundant states; the function of the original sequential circuit

remains unchanged. This process corresponds to the minimization of logic functions in

combinational circuit design.

Let us first consider an intuitive approach for state minimization. Table 7.3 shows the

state table of an arbitrary sequential circuit. It can be seen from the table that present states

B and D both have the same next states, A (when x ¼ 0) and E (when x ¼ 1). They also

produce the same outputs 0 (when x ¼ 0) and 1 (when x ¼ 1). It can be reasoned that if

the next states are the same, the outputs produced to any subsequent inputs will also be

the same. Thus one of the states, B or D, can be removed from the state table. For

example, if we remove row D from Table 7.3 and replace all D’s by B’s in the

columns, the state table is modified as in Table 7.4. It is apparent from Table 7.4 that

states A and E are equivalent. Replacing E’s by A’s results in the reduced table shown

in Table 7.5. The removal of the equivalent states has reduced the number of states in

the circuit from five to three. Note that in the original state table (Table 7.3) states A

and E are not equivalent, because the next states for A and E when x ¼ 1 were different.

Thus two states are equivalent even if their next states are not the same provided the next

states are equivalent. Two states are defined as equivalent if and only if for every input

sequence the circuit produces the same output sequence irrespective of which one of the

two states is the starting state, and their next states are also equivalent. State equivalence

is a mathematical equivalence relationship. Thus if states A and B are equivalent

and states B and C are equivalent, then A is equivalent to C; the three states form a

set of equivalent states. If no two states in a circuit are equivalent, then the circuit

is reduced.

7.3.1 Partitioning Approach

The equivalent sets of states in a sequential circuit can be determined by using a procedure

based on partitioning. The first step is to partition the set of states of a circuit into a number

of blocks so that all states in a block have identical output for each possible input. Let us

consider, for example, Table 7.6. The output produced for each of the states A, C, and E is

TABLE 7.3 A State Table

Input

Present State x ¼ 0 x ¼ 1

A A,0 B,0

B A,0 E,1

C D,1 C,1

D A,0 E,1

E A,0 D,0

7.3 STATE MINIMIZATION 239

0 for both x ¼ 0 and x ¼ 1. The outputs associated with the inputs 0 and 1 are, respect-

ively, 1 and 0 for each of the states B, D, and F. Hence the first partition P1 for the

circuit is P1 ¼ (ACE)(BDF).

The next step of the procedure is to derive a partition P2 by placing two states in the

same block if for each input value their next states lie in a common block of P1. In the

example of Table 7.6 the next states for A, C, and E (i.e., states in the first block of P1)

corresponding to x ¼ 0 are B, A, and B, respectively. Since A and B are in different

blocks of P1, partition P2 must separate C from A and E. For x ¼ 1 the next states A, C,

and E lie in the same block. In the second block of P1, the next states for B, D, and F

with x ¼ 0 belong to the same block of P1. However, for x ¼ 1 the next state of F lies

in a different block of P1 than the next states of B and D. Hence the block (BDF) is

split into blocks (F)(BD). Thus partition P2 is

P2 ¼ (C)(AE)(F)(BD)

TABLE 7.4 State D Removed

Input

Present State x ¼ 0 x ¼ 1

A A,0 B,0

B A,0 E,1

C B,1 C,1

E A,0 B,0

TABLE 7.5 State E Removed

Input

Present State x ¼ 0 x ¼ 1

A A,0 B,0

B A,0 A,1

C B,1 C,1

TABLE 7.6 A State Table

Input

Present State x ¼ 0 x ¼ 1

A B,0 A,0

B D,1 D,0

C A,0 C,0

D B,1 F,0

E B,0 E,0

F D,1 E,0

Next state, Output

240 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Partition P3 can be formed in a similar manner. The next states for A and E lie in the

same blocks of P2 for both x ¼ 0 and x ¼ 1, so block (AE) cannot be separated.

However, the next states for B and D with x ¼ 1 lie in different blocks of P2, so block

(BD) must be split into blocks (B)(D). Therefore

P3 ¼ (C)(AE)(F)(B)(D)

The next partition, P4, is derived from P3 in the same way and is given by

P4 ¼ (C)(AE)(F)(B)(D)

Since P3 and P4 are identical, all subsequent partitions P5, P7, . . . will also be identical to

P3. Therefore if a partition Pkþ1 is identical to its predecessor partition Pk, the partitioning

process is terminated, and partition Pk is said to be an equivalence partition. All states

belonging to a block in the equivalence partition are equivalent. For the example under

consideration, P3 is the equivalence partition and states A and E are equivalent. The orig-

inal state table (Table 7.6) can be reduced by eliminating row E and replacing each E by an

A (Table 7.7).

As a second example let us consider the state table of a circuit shown in Table 7.8. Since

outputs for states A, F, and G are 0 and 1 for x ¼ 0 and x ¼ 1, respectively, these states are

grouped in one block of the first partition P1. The outputs are 1 irrespective of the input

TABLE 7.7 Minimized State Table

Input

Present State x ¼ 0 x ¼ l

A B,0 A,0

B D,1 D,0

C A,0 C,0

D B,1 F,0

F D,1 A,0

Next state, Output

TABLE 7.8 A State Table

Input

Present State x ¼ 0 x ¼ 1

A F,0 D,1

B C,1 F,1

C F,1 B,1

D E,1 G,1

E A,1 D,1

F G,0 B,1

G A,0 D,1

Next state, Output

7.3 STATE MINIMIZATION 241

value when the states are B, C, D, and E; therefore they are included in the other block of

P1. Thus the first partition P1 is

P1 ¼ (AFG)(BCDE)

The next states for A, F, and G belong to the same block in P1 for both inputs; therefore

A, F, and G cannot be split. On the other hand, the next states for B, C, D, and E belong to

different blocks; hence they need to be separated. The next states for B and D belong to

identical blocks for both inputs; this is also true for C and E. Thus partition P2 is

P2 ¼ (AFG)(BD)(CE)

The third partition P3 is derived in a similar manner and is identical to P2:

P3 ¼ (AFG)(BD)(CE)

Thus no further partitioning is possible and P3 is the equivalence partition. Assuming

(AFG) ¼ X, (BD) ¼ Y, and (CE) ¼ Z, the minimized state table is as shown in Table 7.9.

7.3.2 Implication Table

A more formal method for finding equivalent states in a sequential circuit is based on

deriving an implication table that shows the necessary conditions or implications that

exist between all possible equivalent pairs of states. We shall consider the state table of

Table 7.6 to explain the method.

The first step is to form a table with the rows consisting of all but the first state and the

columns consisting of all states except the last. The resulting table has as many cells as

there are permissible state pairs. Figure 7.4a shows the implication table for our

example. Next, we consider whether a state pair in the implication table is equivalent or

not; a state pair cannot possibly be equivalent if the states have different outputs. A

cross (X) is placed in a cell of the implication table if the corresponding state pair has dif-

fering outputs (Fig. 7.4b). The nonequivalent state pairs are called incompatibles. The

vacant cells must now be completed.

Each vacant cell is filled with the required state pairs whose equivalence implies the

equivalence of the state pair that defines the vacant cell. For example, consider the cell

corresponding to the state pair AC. We enter into AC the state pair AB, which must be

equivalent in order for A and C to be equivalent (Fig. 7.4c). A check (
p
) is inserted in a

cell if the corresponding state pair is equivalent. For example, in Figure 7.4c the cell

defined by the state pair AE has a check, indicating that the states A and E are equivalent.

When the table is completed it is examined column by column, starting from the extreme

right-hand column, to determine whether any other cells should be crossed out.

TABLE 7.9 Minimized State Table

Input

Present State x ¼ 0 x ¼ 1

X X,0 Y,1

Y Z,1 X,1

Z X,1 Y,1

Next state, Output

242 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

In Figure 7.4c the first cell to be considered is the one defined byD and F; it contains the

pair BD and EF. Since the cell defined by E and F was already crossed out, it follows that

any state pair whose equivalence is implied by the equivalence of E and F must also be

crossed out. Hence the cell corresponding to D and F is crossed out (Fig. 7.4d). The pro-

cedure is repeated until no further cells can be crossed out. The state pairs corresponding to

the cells that have not been crossed out are the equivalent states. The only equivalent state

pair in Figure 7.4d is AE. Thus the equivalence partition P is

P ¼ (AE)(B)(C)(D)(F)

Note that this equivalence partition is identical to the one derived earlier by partitioning.

As another example, let us consider the application of the implication table in deriving the

equivalence partition for the state table shown in Figure 7.5a. The corresponding implication

table is shown in Figure 7.5b. As can be seen from Figure 7.5b, the equivalence partition is

P ¼ (CD)(EF)(EG)(FG)(A)(B)(H)

By using the transitivity relationship, the state pairs (EF), (EG), and (FG) can be grouped into

a set of states (EFG). Thus

P ¼ (CD)(EFG)(A)(B)(H)

Assigning (CD) ¼ a, (EFG) ¼ b, (A) ¼ g, (B) ¼ d, and (H) ¼ v, the reduced state table can
be derived as shown in Figure 7.5c.

FIGURE 7.4 (a) Implication table, (b) identification of state pairs with different outputs,

(c) possible equivalent state pairs, and (d) equivalent state pairs.

7.3 STATE MINIMIZATION 243

7.4 MINIMIZATION OF INCOMPLETELY SPECIFIED

SEQUENTIAL CIRCUITS

State tables of completely specified sequential circuits do not contain don’t cares. In other

words, all next state and/or output entries are specified. However, in practice it is very

likely that some input combinations will not be applied to a sequential circuit, so next

FIGURE 7.5 (a) A state table, (b) implication table, and (c) minimized state table.

244 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

states and outputs corresponding to these inputs are of no consequence. A sequential circuit

is incompletely specified if the next state and/or the output of the circuit for an input and a
current state are not specified; hence the corresponding entries in the state table of the

circuit are don’t cares. A don’t care entry in an incompletely specified state table is

usually denoted by a dash (–). As in completely specified sequential circuits, reduction

of states in an incompletely specified state table is needed for efficient implementation

of the corresponding sequential circuit.

One approach to reducing the number of states in an incompletely specified sequential

circuit will be to specify entries for the unspecified next states and outputs such that some

of the states become equivalent. This is illustrated using the state table of Figure 7.6a.

In the first column the don’t care output can be set either to a 0 or to a 1. Thus two sep-

arate incompletely specified state tables result if the don’t care output is replaced with a

fixed value; these state tables are shown in Figure 7.6b and 7.6c.

The don’t care state in the second column of both state tables in Figure 7.6b and 7.6c

can be one of the three states in the circuit—that is, A, B, or C. Thus three fully specified

state tables can be generated from each of the state tables of Figure 7.6b and 7.6c, respect-

ively. The resulting tables are shown in Figure 7.7.

Using the partitioning approach discussed in the previous section, the first partition P1

for each of the state tables of Figure 7.7 is

s1 P1 ¼ (AC)(B)

s2 P1 ¼ (AB)(C)

s3 P1 ¼ (AC)(B)

s4 P1 ¼ (B)(AC)

s5 P1 ¼ (B)(AC)

s6 P1 ¼ (A)(BC)

FIGURE 7.6 (a) An incompletely specified state table, (b) don’t care output replacedwith 0, and (c)

don’t care output replaced with 1.

7.4 MINIMIZATION OF INCOMPLETELY SPECIFIED SEQUENTIAL CIRCUITS 245

The second partition P2 derived from P1 shown below indicates that only in state table s1, s3
and s4 states are A andC equivalent. Thus in s1, s3, and s4 the number of states can be reduced

from three to two.

s1 P2 ¼ (AC)(B)

s2 P1 ¼ (A)(B)(C)

s3 P1 ¼ (AC)(B)

s4 P1 ¼ (AC)(B)

s5 P1 ¼ (A)(B)(C)

s6 P1 ¼ (A)(B)(C)

It should be clear from the above example that considerable trial and error is required to deter-

mine the best way to fill in the unspecified entries. This will be unfeasible if the number of

don’t cares is large.

We shall consider a systematic procedure in this section to minimize the number of

states in an incompletely specified state table [1]. The procedure is based on the

concept of compatibility. Two states Si and Sj are said to be compatible if in response

to an applicable input sequence, the same output sequence is produced irrespective of

whether Si or Sj is the initial state; if Si and Sj are not compatible, then they are said to

be incompatible. An applicable input sequence always leads to a specified next state for

each bit of the sequence. For example, in the incompletely specified table (Table 7.10),

FIGURE 7.7 Completely specified state tables derived from Figure 7.6a.

246 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

the output sequences produced in response to the input sequence 1100 for starting states B

and D are the same when both are specified:

Input 1 1 0 0

State B ! B ! B ! C ! D

Output 0 0 1 0

State D ! B ! B ! C ! D

Output � 0 1 0

A set of states for which every pair of states is compatible is called a compatibility

class. A maximal compatible is a compatibility class that is not a subset of any other com-

patibility class. For Table 7.10, fADg is not a maximal compatible because it is a proper

subset of fABDg, whereas fABDg is a maximal compatible. The implication table

(discussed in Section 7.3) can be used to determine all pairs of compatible states in an

incompletely specified state table. Figure 7.8 shows the implication table for the state

table shown in Table 7.10. From the implication table the compatible pairs are

(AB)(AC)(AD)(AE)(BD)(CD)(CE)

The maximal compatibles are found by combining these state pairs into larger groups

using the following procedure [1]:

Step 1. List the pairwise compatibles, if any, for the rightmost column of the implication

table. If the rightmost column does not have a compatible pair, then move to the next

TABLE 7.10 An Incompletely Specified State Table

Input

Present State x ¼ 0 x ¼ 1

A A,– —

B C,1 B,0

C D,0 –,1

D — B,–

E A,0 C,1

Next state, Output

FIGURE 7.8 Implication table.

7.4 MINIMIZATION OF INCOMPLETELY SPECIFIED SEQUENTIAL CIRCUITS 247

column on the left and check whether it has a compatible pair. Continue this process

until a column containing a compatible pair is found.

Step 2. Proceed to the next column on the left. If the state to which this column corre-

sponds is compatible with all members of a previously determined compatible class,

then add this state to the class, thereby forming a larger class. If the state to which

this column corresponds is compatible only with a subset of the compatible class,

then form a new class consisting of the subset and this state. Finally, list all the compa-

tible pairs that are not included in an already formed compatible class.

Step 3. Repeat step 2 until all columns in the implication table have been considered. The

compatibility classes remaining are the set of maximal compatibles.

Applying this procedure to the implication table of Figure 7.8 yields the following

sequence of compatibility classes:

Column D ()

Column C (CD)(CE)

Column B (CD)(CE)(BD)

Column D (CD)(CE)(BD)(AB)(AC)(AD)(AE)

Thus there are three maximal compatibles— C0
1 ¼ fABDg, C0

2 ¼ fACDg, and C0
3 ¼ fACEg.

Note that the sets of maximal compatibles are similar to the blocks of an equivalence par-

tition of a completely specified state table. However, the blocks of an equivalence partition

are disjoint, whereas the maximal compatibles are not necessarily so, because they can

have common states. In order to determine the reduced table for an incompletely specified

machine we must select a set of maximal compatibles that satisfy the covering and closure

conditions:

1. A set of maximal compatibles covers an incompletely specified sequential circuit if

each state of the circuit is contained in at least one of the maximal compatibles.

2. A set of maximal compatibles is closed if for every compatible contained in the set,

the next states corresponding to the states in the compatible for all possible input

combinations are also contained in a maximal compatible of the set.

The maximal compatibles derived here cover all the states of Table 7.10. Maximum

compatible C0
1 covers states A, B, and D, and C0

3 covers states A, C, and E. The resulting

set fC0
1 C0

3g covers all the states and also satisfies the closure conditions as shown in

Table 7.11. The incompletely specified state table can therefore be reduced to a table

with two states corresponding to C0
1 and C

0
3. Denoting C0

1 and C
0
3 by a and b, respectively,

the reduced state table is shown in Table 7.12.

TABLE 7.11 Verification of the Closure Condition

Input

Present State x ¼ 0 x ¼ 1

C0
1 ¼ fABDg C0

3,1 C0
1,0

C0
3 ¼ fACEg C0

1,0 C0
3,1

Next state, Output

248 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

7.5 DERIVATION OF FLIP-FLOP NEXT STATE EXPRESSIONS

Once the reduced state table has been obtained, the next step in the design process is to

encode the states in binary form. This is known as state assignment. A state assignment

must allocate a unique binary combination to each state. In order to obtain a distinct

binary combination for each state of an n-state circuit, we need s secondary input variables

such that

s ¼ dlog2 ne (i:e:, s
 log2 n)

Each secondary variable is generated by a flip-flop. Thus the number of flip-flops required

to implement an n-state sequential circuit is dlog2 ne.
The flip-flops in a sequential circuit are excited to take on the various states in proper

sequence as required by the state table of the circuit. Suppose the current content (the

present state) of a D flip-flop is 0. To change the content of the flip-flop from 0 to 1, its

input must be set to 1. In other words, the D flip-flop must be excited to 1 in order to

make a transition from the present state 0 to the next state 1. The present-state to next-state

transition input requirement of any flip-flop can be derived from its excitation table

(Table 7.13). For example, if the present state of a JK flip-flop is 0 and it has to be

changed to 1, then the J input should be set to 1, while the K input can be either 0 or 1,

that is, a don’t care (–), because it does not affect the next state of the flip-flop. As we

shall see shortly, the information contained in the excitation table is necessary to obtain

the next state expression for each flip-flop used in a circuit.

To illustrate, let us derive the next state expressions for the sequence detector circuit of

Section 7.2; the state table for the circuit is repeated in Table 7.14. First, we select the state

assignment. The manner in which the binary combinations are assigned to the states of a

circuit has a considerable impact on the complexity of the combinational logic necessary

to implement the next state expressions. We will consider some general rules for finding

TABLE 7.12 Minimized State Table

Input

Present State x ¼ 0 x ¼ 1

a b,1 a, 0
b a,0 b,1

Next state, Output

TABLE 7.13 Excitation Table for Flip-Flops

Present State Next State D Flip-Flop
JK Flip-Flop

T Flip-Flop

Qt Q tþl D J K T

0 0 0 0 – 0

0 1 1 1 – 1

1 0 0 – 1 1

1 1 1 – 0 0

7.5 DERIVATION OF FLIP-FLOP NEXT STATE EXPRESSIONS 249

reasonably good state assignments. The state assignment for the sequence detector circuit

is arbitrarily chosen as follows:

A ¼ 00

B ¼ 01

C ¼ 10

D ¼ 11

Since there are four states A, B, C, and D, a minimum of two state variables is required to

represent them; consequently, two flip-flops are needed.

We may choose any type of flip-flop to implement the memory portion of a sequential

circuit. Let us use D flip-flops for this example. Before we can derive the excitation

equations for the D flip-flops, the transition table corresponding to the state assignment

has to be derived from the state table. The entries in the transition table (Table 7.15) rep-

resent the next states of the D flip-flops for each combination of present state and input

value. Since the next state value of a D flip-flop is the same as the excitation input, the

transition table entries in effect specify the required excitation of the D flip-flops. Kar-

naugh maps can now be plotted for each of the flip-flop excitation inputs. These are

shown in Figure 7.9a and 7.9b; the positions of rows 10 and 11 are swapped in these

maps in order to satisfy the requirements of a Karnaugh map. The Karnaugh map for

output Z is shown in Figure 7.9c. Hence the next state and the output expressions

needed to implement the sequence detector circuit are as follows:

D1 ¼ y1 �y2 þ x�y1y2

D2 ¼ �xy1 �y2 þ xy1y2 þ x�y1 �y2

Z ¼ xy1y2

The logic diagram for the complete design is shown in Figure 7.10.

TABLE 7.14 Reduced State Table

Input

Present State x ¼ 0 x ¼ 1

A A,0 B,0

B A,0 C,0

C D,0 C,0

D A,0 B,1

Next state, Output

TABLE 7.15 Transition Table Derived from the

Reduced State Table of Table 7.14

Present State
Input

y1y2 x ¼ 0 x ¼ 1

A ! 00 00,0 01,0

B ! 01 00,0 10,0

C ! 10 11,0 10,0

D ! 11 00,0 01,1

250 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

As another example of the derivation of next state and output expressions for sequential

circuits, let us consider the sequential circuit specified in Table 7.16. We will use JK

flip-flops to realize the circuit. By choosing the state assignment

A ¼ 00

B ¼ 01

C ¼ 10

D ¼ 11

the transition table shown in Table 7.17 is obtained.

FIGURE 7.9 (a) Karnaughmap forD1, (b) Karnaughmap forD2, and (c) Karnaughmap for outputZ.

FIGURE 7.10 Logic diagram of the sequence detector circuit.

TABLE 7.16 A State Table

Input

x1 x2

Present State 00 01 l0 11

A C,0 D,0 A,1 D,0

B C,1 D,0 A,1 D,1

C A,0 B,0 A,1 B,0

D A,1 B,0 A,1 B,1

Next state, Output

7.5 DERIVATION OF FLIP-FLOP NEXT STATE EXPRESSIONS 251

Next, we derive the next state expressions for the two flip-flops from the Karnaugh

maps of their J and K inputs (Fig. 7.11); the Karnaugh maps are formed from the transition

table of the circuit by using the excitation table of JK flip-flops. The Karnaugh map for the

output function is shown in Figure 7.12.

The next state expressions for the flip-flops and the output expressions for the

sequential circuit are derived from the Karnaugh maps of Figure 7.11 and Figure 7.12,

respectively:

J1 ¼ �x1 þ x2 K1 ¼ 1

J2 ¼ x2 K2 ¼ �x2

Z ¼ x1y2 þ x1 �x2 þ �x2y2

The actual implementation of the circuit is shown in Figure 7.13.

TABLE 7.17 Transition Table

Input

x1 x2

Present State 00 01 l0 11

00 10,0 11,0 00,1 11,0

01 10,1 11,0 00,1 11,1

10 00,0 01,0 00,1 01,0

11 00,1 01,0 00,1 01,1

FIGURE 7.11 Karnaugh maps for JK flip-flop realization.

252 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

The Karnaugh maps for T flip-flop realization of this sequential circuit can be derived

from Table 7.17; these are shown in Figure 7.14. The output map remains the same as

shown in Figure 7.12. The next state and the output expressions are as follows:

T1 ¼ �x1 þ x2 þ y1

T2 ¼ �x2y2 þ x2 �y2

Z ¼ x1y2 þ x1 �x2 þ �x2y2

The corresponding circuit is shown in Figure 7.15.

As we saw in the previous examples, a sequential circuit with n states requires dlog2 ne
flip-flops. However, there are occasions when the number of states in a sequential circuit is

fewer than themaximumnumber that can be specifiedwith d log2 ne. For example, a sequen-

tial circuit with five states requires three flip-flops, but three flip-flops can specify up to eight

states, so there are three unused or invalid states in the circuit. Normally, when power is

turned on, the flip-flops in a sequential circuit can settle in any state, including one of the

invalid states. In that case it is necessary to ensure that the circuit goes to a valid or specified

state with the fewest number of clock pulses (a circuit changes state only after the appli-

cation of a clock pulse). Once the circuit goes to a valid state, it can continue to operate

as required.

FIGURE 7.12 Karnaugh map for output Z.

FIGURE 7.13 Realization of the sequential circuit specified in Table 7.16.

7.5 DERIVATION OF FLIP-FLOP NEXT STATE EXPRESSIONS 253

To illustrate, let us design the sequential circuit specified by Table 7.18. The circuit has

six states, so three flip-flops will be needed to implement the circuit. However, three flip-

flops can specify eight states, so there are two invalid states in the circuit. In order to make

sure the circuit is transferred to a valid state (i.e., A, B, . . . , F) from an invalid state with

FIGURE 7.14 Karnaugh maps for T flip-flop realization.

FIGURE 7.15 T flip-flop implementation.

TABLE 7.18 State Table of a Sequential Circuit

Input

Present State x ¼ 0 x ¼ 1

A A,0 B,0

B B,0 C,0

C C,0 D,0

D D,0 E,0

E E,0 F,0

F F,0 A,1

254 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

one clock pulse, it will be necessary to augment the state table as shown in Table 7.19.

The choice of next states for the invalid states G and H are arbitrary in this case; in prac-

tice, the next states are selected such that a minimal increase in the circuitry is needed to

implement the augmented state table as compared to the original state table. The state

assignment for the circuit is arbitrarily chosen as follows:

A ¼ 000

B ¼ 001

C ¼ 010

D ¼ 011

E ¼ 100

F ¼ 101

G ¼ 110

H ¼ 111

The resulting transition table is shown in Table 7.20. The Karnaugh maps for a

JK flip-flop realization of the circuit are shown in Figure 7.16. The output map is

TABLE 7.19 Augmented State Table

Input

Present State x ¼ 0 x ¼ 1

Valid states

A A,0 B,0

B B,0 C,0

C C,0 D,0

D D,0 E,0

E E,0 F,0

F F,0 A,1

Invalid states G E,– B,–

H D,– A,–

8>>>>>><
>>>>>>:n

TABLE 7.20 Transition Table

Present State
Input

y1y2y3 x ¼ 0 x ¼ 1

000 000,0 001,0

001 001,0 010,0

010 010,0 011,0

011 011,0 100,0

100 100,0 101,0

101 101,0 000,1

110 100,– 001,–

111 011,– 000,–

7.5 DERIVATION OF FLIP-FLOP NEXT STATE EXPRESSIONS 255

FIGURE 7.16 Karnaugh maps for JK flip-flop realization.

FIGURE 7.17 Karnaugh map for output Z.

256 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

shown in Figure 7.17. The next state and output expressions are obtained from

Figures 7.16 and 7.17, respectively, and are

J1 ¼ xy2y3 K1 ¼ xy2 þ xy3 þ y2y3
J2 ¼ x�y1y3 K2 ¼ xy3 þ y1 �y3
J3 ¼ x K3 ¼ x

Z ¼ xy1y3

The circuit implementation is shown in Figure 7.18.

7.6 STATE ASSIGNMENT

So far in all the design problems we have considered, an arbitrary state assignment has

been adopted. For example, in the 1101 sequence detector circuit designed in

Figure 7.10 the state assignment selected was

A ¼ 00, B ¼ 01, C ¼ 10, D ¼ 11

However, a different state assignment may be chosen, and this will lead to a different set of

design equations. For example, if we choose the assignment

A ¼ 00, B ¼ 11, C ¼ 01, D ¼ 10

then the design equations can be derived as shown in Figure 7.19 and are given by

D1 ¼ x�y2 þ �x�y1y2

D2 ¼ x

Z ¼ xy1 �y2

Alternatively, the state assignment

A ¼ 00, B ¼ 10, C ¼ 11, D ¼ 01

FIGURE 7.18 Implementation of Table 7.18.

7.6 STATE ASSIGNMENT 257

will result in the following next state and output expressions (derived as shown in

Fig. 7.20)

D1 ¼ x

D2 ¼ y1y2 þ xy1

Z ¼ x�y1y2

Either of these assignments will lead to a simpler circuit for the 1101 sequence detector

circuit than that obtained by choosing the arbitrary assignment that led to the circuit of

Figure 7.10. This can be seen from Table 7.21, which shows a comparison of the

number of gates required to implement the circuit for each of the three assignments. In

fact, the third assignment turns out to be the best; as we shall see later, this is not just

good luck!

As we saw in the preceding example, the criterion for a good state assignment is that it

should result in simpler next state and output expressions. The problem associated with

state assignment, therefore, is to select the state variables such that the complexity of

the combinational logic required to control the memory elements of the sequential

circuit is minimized. However, the number of possible state assignment increases very

rapidly with the number of states of the sequential circuit. If a circuit has n states,

s ¼ d log2 ne state variables are needed for an assignment; thus 2s combinations of state

variables are available. The first state of the circuit can be allocated any one of the 2s com-

binations, the second state can be allocated any one of the remaining 2s21 combinations,

and so on.

FIGURE 7.19 (a) Transition table, (b) Karnaugh map for D1, (c) Karnaugh map for D2, and (d)

Karnaugh map for Z.

258 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Hence the nth state of the circuit can be assigned any one of the 2s2 nþ 1 combinations

of state variables. Thus there are

2s� (2s � 1) � � � � � (2s � nþ 1) ¼ 2s!=(2s � n)!

ways of assigning 2s combinations of state variables to the n states. The state variables can

be permuted in s! ways. In addition, each state variable can be complemented, so the set of

state variables s can be complemented in 2s ways. Therefore the number of unique state

assignments is

(2s!=(2s � n)!)�(1=s! 2s) ¼ (2s � 1)!=(2s � n)!s!

Table 7.22 shows the number of state assignments for different values of n. Thus even for a

circuit with six states, the number of possible state assignments to be considered is 420,

and it rapidly rises to more than ten million for a circuit with nine states! Since the

number of possible state assignments grows profusely with the number of internal

states, it is almost impossible to try all possible assignments in order to select the

one that leads to the simplest design equations. However, rather than using exhaustive

evaluation, one may follow two simple rules that often result in good state assignments:

Rule 1. Assign adjacent codes (i.e., differing in one bit) to states with the same next

state in a column. Assign adjacent codes to states that are the next states of the same

present state.

FIGURE 7.20 (a) Transition table, (b) Karnaugh map for D1, (c) Karnaugh map for D2, and (d)

Karnaugh map for Z.

7.6 STATE ASSIGNMENT 259

T
A
B
L
E
7
.2
1

G
a
te

C
o
m
p
a
ri
so
n
fo
r
T
h
re
e
S
ta
te

A
ss
ig
n
m
en
ts

N
u
m
b
er

S
ta
te

A
ss
ig
n
m
en
t

N
u
m
b
er

o
f

2
-I
n
p
u
t
A
N
D
s

N
u
m
b
er

o
f

3
-I
n
p
u
t
A
N
D
s

N
u
m
b
er

o
f

In
v
er
te
rs

N
u
m
b
er

o
f

2
-I
n
p
u
t
O
R
s

N
u
m
b
er

o
f

3
-I
n
p
u
t
O
R
s

T
o
ta
l
N
u
m
b
er
o
f

G
at
es

1
A
¼

0
0
,

B
¼

0
1
,

C
¼

1
0
,

D
¼

1
1

1
4

1
1

1
8

2
A
¼

0
0
,

B
¼

1
1
,

C
¼

0
1
,

D
¼

1
0

1
2

1
1

0
5

3
A
¼

0
0
,

B
¼

1
0
,

C
¼

1
1
,

D
¼

0
1

2
1

0
1

0
4

260

Rule 2. Assign adjacent codes to states that are the next states of the same present state. If

there is any conflict in the adjacencies obtained by using these rules, the adjacencies

obtained from the first rule take precedence.

Let us apply the rules for state assignment to the four-state sequential circuit specified

by Table 7.14. Using the first rule, states A and B should be given adjacent assignments

because both of them go to state A for x ¼ 0. Similarly, state pairs (B,D), (A,D), and

(B,C) should be given adjacent assignments; the pair (A,D) appears twice. The application

of the second rule shows that A and B should be given adjacent assignments because they

are the next states of the present state A. For similar reasons state pairs (A,C) and (C,D)

should be adjacent, with (A,B) appearing twice.

The plotting of the three state assignments for the sequential circuit (Table 7.14) on two-

variable Karnaugh maps is illustrated in Figure 7.21. It can be seen from the Karnaugh map

for assignment III that it satisfies most of the adjacencies and hence produces a better result

than the other assignments. It should be noted that although assignment II satisfies the same

number of adjacencies as assignment III, it does not fulfill the adjacency requirement for

the state pair (A,B) as determined by rule 1.

7.6.1 State Assignment Based on Decomposition

An alternative way of obtaining good state assignments for sequential circuits is to decom-

pose a circuit into smaller subcircuits so that each subcircuit is a function of a small subset

TABLE 7.22 Number of State Assignments

n s

Number of

State

Assignments

2 1 1

3 2 3

4 2 3

5 3 140

7 3 420

8 3 840

9 4 10,810,800

10 4 75,775,700

FIGURE 7.21 Comparison of state assignments.

7.6 STATE ASSIGNMENT 261

of the present state variables. This can be done by partitioning the states of a sequential

circuit such that each next state variable depends on as few present state variables as poss-

ible (reduced dependency), thus considerably simplifying the next state equations for the

flip-flops in the subcircuits.

A sequential circuit can have a state assignment with reduced dependency if there exists

a partition with substitution property on the states of the circuit [1]. As defined in Chapter 1,

a partition P on a set of elements S is a collection of disjoint subsets of S such that their set

union is S. The subsets of P are called the blocks of S. A partition P on a set of states S of a

sequential circuit is said to have the substitution property (SP) if any two states belonging

to a block of P, under the same input combinations, move to next states that again belong

to a common block of P. This common block may or may not be the same block containing

the two original states.

For example, the following partitions on the states of the sequential circuit described by

Table 7.23 have substitution properties

P1 ¼ (ABF)(CDE)

P2 ¼ (AF)(CE)(BD)

The partitions with substitution properties for a given sequential circuit can be determined as

follows:

1. Identify any two distinct states S1 and S2.

2. Identify the pairs of states S1K and S2K to which S1 and S2 move if we apply the Kth

input, K ¼ 1, 2, . . . , m.

3. To this set of states, add those pairs that can be identified by the transitive law: that

is, if Si and Sj are identified and Sj and Sk are also identified, then we have to identify

Si and Sk.

4. Repeat the process, looking up the identifications induced by the new pairs.

If after x steps, the (xþ 1)st step does not yield any new identifications, a partition Pwith the

substitution property is obtained on the set of states of the circuit. If a nontrivial partition with

the substitution property does not exist, then the process stops after identifying all states of

the circuit. For a machine with n states, it is necessary to try n(n2 1)/2 distinct pairs of states
before deciding whether or not a partition with the substitution property exists.

TABLE 7.23 A State Table

Input

Present State x ¼ 0 x ¼ 1

A C,0 A,1

B D,1 F,1

C A,0 B,0

D B,1 F,0

E F,0 B,0

F E,0 F,1

Next state, Output

262 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Let us apply the procedure for obtaining all partitions with the substitution property to

the sequential circuit specified by Table 7.24. For this circuit we must consider 5(52 1)/
2 ¼ 10 distinct pairs of states in order to determine all partitions with the substitution prop-

erty. We start with the state pair (A,B). From Table 7.24 we see that when x ¼ 0, both

states A and B go to state B. The x ¼ 1 column entries show that when x ¼ 1, A goes to

D and B goes to E. Since the pairs of states (A,B) and (D,E) are disjoint, it is not necessary

to add any new state pairs because of the transitive law. This step may be represented as

(A,B) ! (B,B)(D,E)

Here the arrow signifies “implies” or “requires.” Note that requirements such as (B,B) (i.e.,

B must be in the same block as B) are always satisfied and need not require further

consideration.

Since the pairs of states (A,B) and (D,E) are disjoint, it is not necessary to add new state

pairs because of the transitive law. States D and E have to be identified next. From the

state table we see that D and E go to C when x ¼ 0 and go to A when x ¼ 1:

(A,B) ! (D,E) ! (A,A)(C,C)

Since there are no more state pairs to be identified, the process is complete and we get the

following partition:

(A,B) ! (D,E) ! (A,A)(C,C) ;; (A,B)(D,E)(C) ;; P1

Continuing in the same manner for the other state pairs, we obtain the following partitions:

(A,C) ! (B,B)(D,D) ;; (A,C)(B)(D)(E) ;; P2

(A,D) ! (B,C) ! (D,E) ;; (A,D,E)(B,C) ;; P3

(A,E) ! (B,C)(A,D) ! (D,E) ;; (A,D,E)(B,C) ;; P4

(B,C) ! (D,E) ! (C,C)(A,A) ;; (A)(B,C)(D,E) ;; P5

(B,D) ! (B,C)(A,E) ! (D,E)(A,D) ;; (A,B,C,D,E) ;; P(I)

(B,E) ! (B,C)(A,E) ! (D,E)(A,D) ;; (A,B,C,D,E) ;; P(I)

(C,D) ! (B,C)(A,D) ! (D,E) ;; (A,B,C,D,E) ;; P(I)

(C,D) ! (B,C)(A,D) ! (D,E) ;; (A,B,C,D,E) ;; P(I)

(D,E) ! (C,C)(A,A) ;; (A)(C)(D,E)(B) ;; P7

TABLE 7.24 A State Table

Input

Present State x ¼ 0 x ¼ 1

A B,0 D,1

B B,1 E,0

C B,0 D,0

D C,1 A,0

E C,0 A,1

Next state, Output

7.6 STATE ASSIGNMENT 263

The sum of P1 and P2 yield a new partition P7 with substitution property

P1 þ P2 ¼ (A,B,C)(D,E) ;; P7

A sequential circuit with n states and a binary variable assignment of length s (¼dlog2 ne) can
be split into two parts such that the first k variables 1 � k � s, and the last (s2 k) variables

can be computed independently, if and only if there exist two nontrivial partitions Pa and

Pb with the substitution property that satisfies the following conditions:

(i) Pa � Pb ¼ P(0)

(ii) dlog2 #(Pa)e þ dlog2 #(Pb)e ¼ s

where #Pi denotes the number of blocks or subsets in Pi. The sequential circuit under con-

sideration has five states, so we need 3 bits to represent these states. Partitions P1 and P2

(and also P2 and P3) satisfy the first condition. However, only the partition pair P2 and P3

satisfies the second condition,

s ¼ dlog2 #(P2)e þ dlog2 #(P3)e
¼ dlog2 4e þ dlog2 2e
¼ 2þ 1 ¼ 3

Therefore the assignment is made such that

(a) The secondary variables y1 and y2 distinguish the blocks of P2.

(b) The secondary variable y3 distinguishes the blocks of P3.

P2

Blocks y1y2
(A,C) 00

(B) 01

(D) 10

(E) 11

����������
P3

Blocks y3
(A,D,E) 0

(B,C) 1

������

The transition table for the composite sequential circuit is shown in Table 7.25. By

utilizing the don’t care conditions resulting from the three unused binary combinations

TABLE 7.25 Transition Table

Present State
Input

y1 y2 y3 x ¼ 0 x ¼ 1

A ! 000 011,0 100,1

B ! 011 011,1 110,0

C ! 001 011,0 100,0

D ! 100 001,1 000,0

E ! 110 001,0 000,1

Next state, Output

264 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

010, 101, and 111, the simplified design equations for the D flip-flop implementation of

the circuit are as follows:

D1 ¼ x�y1

D2 ¼ �x�y1 þ �y1y2

D3 ¼ x

Z ¼ �x�y1y2 þ �xy1 �y2 þ xy1y2 þ x�y1 �y3

It can be seen that the dependence of the next state variables on present state variables is

reduced because of the choice of partition pairs. D1 is dependent on y1 alone, D2 is

dependent on both y1 and y2, and D3 is not dependent on any of the present state

variables.

7.6.2 Fan-Out and Fan-In Oriented State Assignment Techniques

Over the years several techniques have been developed to automate the state encoding

process. Two such techniques, MUSTANG and JEDI, are utilized extensively in current

computer-aided logic synthesis tools. These techniques lead to a multilevel logic

implementation; the number of literals in the next state and output logic expressions

after logic optimization is considered as the measure of the quality of the design. Both

techniques compute weight for each state in a state diagram. The weight for a pair of

states estimates the affinity of the states to each other and indicates the adjacency of the

binary codes that can be assigned to these states (the smaller the Hamming distance

between two binary codes the more adjacent they are).

Both MUSTANG and JEDI use two distinct algorithms to assign weights to a state pair:

fan-out oriented algorithm and fan-in oriented algorithm. These algorithms assign codes

with minimum Hamming distance to a pair of states that have strong attraction between

them. The attraction between a pair of states is calculated quantitatively from the attraction

graph of a sequential circuit. The attraction graph is a weighted undirected graph that is

derived from the state transition graph of a sequential circuit. The attraction between a

pair of states is computed differently in fan-out and fan-in oriented algorithms.

Fan-Out Oriented Algorithm In this algorithm the state transition matrix is derived

from a given state transition graph. The rows in the matrix correspond to the present

states and the columns to the next states. Each entry in the matrix is the total number of

edges from a present state (row) to a next state (column). This is illustrated by applying

it to the state transition graph of Figure 7.22. The state transition matrix for the state tran-

sition graph is shown in Table 7.26.

For example, there is one transition from state A to itself (i.e., self-loop); thus the entry

in row A and column A is 1 in Table 7.26. Similarly, there is only one transition from state

A to state B in Figure 7.22; hence the entry in row A and column B is also 1. However, there

are no transitions from A to states C or D; thus entries in row A and columns C and D are

0’s. The entries in other rows and columns are derived in a similar manner. Each state is

represented by its corresponding row vector: for example A, B, C, andD are represented by

vectors 1100, 1010, 0011, and 1100, respectively. Note that A and D are represented by

identical vectors because their next states are the same.

Next, the output matrix is derived from the state transition graph. The output matrix has

a row for each present state and a column for each output. An entry in the matrix is a

7.6 STATE ASSIGNMENT 265

nonnegative integer that indicates the number of edges going out of a state (row) with a 1

output. The output matrix for the state transition graph of Figure 7.22 is shown in

Table 7.27.

Let SV(X) be the row vector for state X in the state transition matrix, ZV (X) be the row

vector for X in the output matrix, and Nb be the bits needed to encode each state. Then the

attraction between states X and Y is given by

w(X,Y) ¼ Nb � SV (X) � SV (Y)þ ZV (X) � ZV (Y)

FIGURE 7.22 State transition graph.

TABLE 7.26 State Transition Matrix for Figure. 7.22

Next States

Present States A B C D

A 1 1 0 0

B 1 0 1 0

C 0 0 1 1

D 1 1 0 0

TABLE 7.27 Output Matrix

Z ¼ 1

A 0

B 0

C 0

D 1

266 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Thus for the state transition graph of Figure 7.22, the attraction between state pairs is given

by

w(A,B) ¼ 2 � (1100) � (1010)þ (0) � (0) ¼ 2

w(A,D) ¼ 2 � (1100) � (1100)þ (0) � (1) ¼ 4

w(B,C) ¼ 2 � (1010) � (0011)þ (0) � (0) ¼ 2

w(B,D) ¼ 2 � (1010) � (1100)þ (0) � (1) ¼ 2

w(C,D) ¼ 2 � (0011) � (1100)þ (0) � (1) ¼ 0

Hence the attraction graph is as shown in Figure 7.23.

Fan-In Oriented Algorithm As in fan-out oriented algorithm, the state transition matrix

is derived from the state transition graph. However, instead of the output matrix, an input

matrix is used. In addition, the entries in the matrices are determined differently.

In the state transition matrix used in the fan-in oriented algorithm each row corresponds

to a next state and each column represents a current state. An entry in the matrix is the

number of edges entering a next state (row) from a current state (column). Thus the

state transition matrix for the state diagram of Figure 7.22 is

Current state

Next state A B C D

A 1 1 0 1

B 1 0 0 1

C 0 1 1 0

D 0 0 1 0

FIGURE 7.23 Attraction graph for Figure 7.22.

7.6 STATE ASSIGNMENT 267

The input matrix has as many rows as there are states in the state transition graph and a

column for each output value. Each entry in the matrix is the number of edges entering

a state (row) with the input value in a column. The input matrix for the state transition

graph of Figure 7.22 is

Input

0 1

A 2 1

B 0 2

C 0 2

D 0 1

The attraction between a pair of states is computed using the state transition and input

matrices, and the number of bits needed to encode the states. Let Nb be the number of

bits needed for state encoding, SV (X) be the row vector in the state transition matrix

for state X, and Iv(X) be the vector in the input matrix for state X. Then the attraction

between a pair of states X and Y is

w(X,Y) ¼ Nb � SV (X) � SV (Y)þ IV (X) � IV (Y)
Thus for the state transition graph of Figure 7.22 the attraction between state pairs is

given by

w(A,B) ¼ 2 � (1101) � (1001)þ (2, 1) � (0, 2) ¼ 6

w(A,D) ¼ 2 � (1101) � (0010)þ (2, 1) � (0, 1) ¼ 1

w(B,C) ¼ 2 � (1001) � (0110)þ (0, 2) � (0, 2) ¼ 4

w(B,D) ¼ 2 � (1001) � (0010)þ (0, 2) � (0, 1) ¼ 2

w(C,D) ¼ 2 � (0110) � (0010)þ (0, 2) � (0, 1) ¼ 4

The resulting attraction graph is shown in Figure 7.24.

Code Assignment An attraction graph is used to assign Nb-bit codes to states. The

assignment procedure is as follows:

(i) Find the Nb edges with highest weights for each node and take their sum.

(ii) Select the node with the largest total weight and assign the all 0 code to the node.

(iii) Assign adjacent codes to the Nb neighboring nodes that have the highest weights.

For the attraction graph produced by the fan-out algorithm, Nb ¼ 2 since 2 bits are

needed to encode the states. The sum of two (Nb ¼ 2) edges with highest weights is

assigned to each node as shown in Figure 7.25. Both nodes A and D have the highest

weight (i.e., 7), thus either can be assigned 00. Assuming A has been assigned 00, its

268 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

two neighboring states are assigned 01 and 10, respectively. The remaining 2-bit code (i.e.,

11) is assigned to node C. Thus the state encodings are

y1 y2
A ¼ 0 0

B ¼ 0 1

C ¼ 1 1

D ¼ 1 0

The resulting next state and output expressions as shown below require nine literals:

Y1 ¼ �xy1y2 þ xy2

Y2 ¼ x

Z ¼ xy1 �y2

FIGURE 7.24 Attraction graph.

FIGURE 7.25 Nodes with computed weight.

7.6 STATE ASSIGNMENT 269

If the states are encoded in an arbitrary manner (e.g., A ¼ 00, B ¼ 01,C ¼ 10, andD ¼ 11),

then the number of literals in the resulting next state and output equations will be 17.

The application of the coding procedure to the attraction graph produced by the fan-in

algorithm results in the diagram of Figure 7.26.

Since B has the highest weight it is assigned 00. A and C are assigned codes adjacent to

00 (i.e., 01 and 10), andD is assigned 11. Thus the state codes for the circuit resulting from

the fan-in algorithm are

Y1 ¼ �xy1 �y2 þ x�y2

Y2 ¼ �x

Z ¼ xy1y2

The total number of literals in these equations is also nine as in the case of the fan-out

algorithm.

FIGURE 7.26 Fan-in attraction graph with computed node weights.

FIGURE 7.27 State transition diagram of a sequential circuit.

270 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

7.6.3 State Assignment Based on 1-Hot Code

One straightforward approach for encoding the states of a sequential circuit is to assign a

1-out-of-n code to each state, where n is the number of states in the circuit. In such an n-bit

codeword only one bit is 1 (hot), and the rest of the bits are 0’s. The state assignment based

on 1-out-of-n code is also known as 1-hot encoding. Let us illustrate the 1-hot encoding for

the sequential circuit shown in Figure 7.27. It is a Mealy-type sequential circuit and has

three inputs (p, c, f) and two outputs (z0, z1). The states are assigned codes as follows:

y0 y1 y2 y3 y4 y5 y6

s0 1 0 0 0 0 0 0

s1 0 1 0 0 0 0 0

s2 0 0 1 0 0 0 0

s3 0 0 0 0 1 0 0

s4 0 0 0 0 0 1 0

s5 0 0 0 0 0 0 1

s6 0 0 0 1 0 0 0

The minimized next state and output expressions corresponding to this assignment are

Y0 ¼ py1y2y4y5 þ py3

Y1 ¼ py0

Y2 ¼ cf y5 þ py2 þ cy1

Y3 ¼ cy0y2y3y4y6 þ py3

Y4 ¼ p(y2 þ y4)

Y5 ¼ py4

Y6 ¼ cfy5 þ py6

z0 ¼ py3 þ py2 þ Y1 þ Y3 þ Y5

z1 ¼ y4Y4 þ y3Y0 þ y3Y0 þ cy6 þ Y2

The main disadvantage of 1-hot encoding is that the resulting sequential circuit uses sig-

nificantly more flip-flops than the minimum number required. On the other hand, the advan-

tage of this approach is that a state can be identified without encoding, and the next state and

output logic expressions are relatively straightforward. However, the complexity of the

circuit depends on how the 1-hot codewords are assigned to the states; this is not a trivial task.

7.6.4 State Assignment Using m-out-of-n Code

An alternative for encoding the states of a sequential machine is to use m-out-of-n code.

An m-out-of-n code has m 1’s and (m2 n) 0’s, with a Hamming distance of 2d (d ¼ 1,

2, . . . , bn/2c) between codewords. Let us consider how to select the m and n values for

representing the states of a sequential circuit. The n represents the number of flip-flops

required. Note that unlike in 1-hot encoding, where the number of flip-flops is equal to

the number of states in the sequential circuit, in the m-out-of-n encoding the minimum

value of n is selected such that together with a properly chosen value of m, the number

of codewords will be sufficient to uniquely represent each state. Table 7.28 shows the

values of n and m needed for encoding different numbers of states.

7.6 STATE ASSIGNMENT 271

Let us implement the sequential circuit of Table 7.29 using m-out-of-n codes for state

assignment. There are seven states in the circuit, so we can select m ¼ 2 and n ¼ 5 (i.e.,

2-out-of-5 code). Since there are 10 possible codewords, we arbitrarily choose seven of

these for state encoding:

State y0 y1 y2 y3 y4
A 1 1 0 0 0

B 1 0 0 1 0

C 0 1 1 0 0

D 0 1 0 1 0

E 1 0 0 0 1

F 1 0 1 0 0

G 0 1 0 0 1

The next expressions resulting from the above assignment are

Yo ¼ �Y1Y4 þ �y1 �Y2 þ �Y1Y2 þ int

int ¼ x�y0 �y2

Y1 ¼ �y1 �Y3
�Y4 þ �y1 �y3 �Y3 þ xY4 þ y1Y3

Y2 ¼ �xy1 �y2 �y4 þ x�y1y3 þ int

Y3 ¼ x�y1 �y3 þ xy0y1

TABLE 7.28 Selection of n and m Values

Number of

States n m

4–7 4 2

7–10 5 2

11–20 6 3

21–35 7 3

37–70 8 4

71–127 9 4

TABLE 7.29 A State Table

x ¼ 0 x ¼ 1

A F,100 D,100

B E,100 C,100

C E,100 G,100

D F,100 F,010

E A,010 B,010

F A,001 B,001

G E,100 F,010

272 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Y4 ¼ �y0 �y3 intþ x�y0intþ �x�y1y3

z0 ¼ �xY0 �Y1 þ xY1 þ Y4

z1 ¼ �y1y4 þ int

z2 ¼ �y1y2

The advantage of using m-out-of-n-code for state assignment is that if there is a fault in the

next state logic, the circuit may move to an erroneous state, which will be identified by a

noncodeword. If a dedicated circuit is incorporated to check whether the outputs of the

memory elements are codewords, then an erroneous state can easily be detected. It is

also possible to encode the outputs of a sequential circuit using m-out-of-n code such

that if a noncodeword output is produced, a fault is assumed to be present in the output

logic and/or in the next state logic.

7.7 SEQUENTIAL PAL DEVICES

The PLDs considered in Chapter 3 are combinational devices: their outputs at any instant

of time are functions of their inputs at that instant. Although it is possible to implement

sequential logic circuits using these devices with memory elements, this results in an

increase in the number of packages. Therefore the incorporation of memory elements

within PLDs has a significant advantage in that a sequential circuit may be implemented

using a single package. PAL types are often generic. The same basic PAL is manufactured

by many different companies—Altera, Lattice (Vantis), Cypress, and others.

A number of PAL devices categorized as SPLDs (simple programmable logic devices)

are currently available for implementing sequential circuits (e.g., PAL16R8, PAL22V10).

The R8 in device PAL16R8 indicates that it has eight built-in D flip-flops. Each output

pin in the device has eight product terms associated with it. The seven product terms in a

group drive an OR gate, while a dedicated product term controls the enable input of an

inverting tristate buffer. When this product term is activated, the output is enabled and

the sum of the product terms is gated to the output. On the other hand, if the product

term is not activated, the tristate buffer remains in the high-impedance state and the

output pin can be used as an input.

As an example, let us implement the following 3-bit random sequence generator using a

PAL16R8:

7.7 SEQUENTIAL PAL DEVICES 273

Since there are 3 bits in a state, three D flip-flops of PAL16R8 have to be used. The next

state expressions for the flip-flops are

q2�D ¼ rst þ �q2q1q0 þ �q1 �q0 þ q2 �q1

q1�D ¼ rst þ �q0

q0�D ¼ rst þ �q2 �q0 þ q2q0

Figure 7.28 shows the partial structure of PAL16R8 with the above expressions pro-

grammed on the chip.

FIGURE 7.28 Programmed PAL16R8.

FIGURE 7.29 Programmable output.

274 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

The output polarity of many modern PAL devices can be programmed to be active high

or active low. Figure 7.29 shows how the output polarity is programmed using an EX-OR

gate. If the fuse at the input of the EX-OR gate is intact, the input remains connected to the

ground as in Figure 7.29a, and the signal at the other input is directly transferred to

the output of the EX-OR gate. On the hand, if the fuse is blown as in Figure 7.29b the

input is considered to be high and the EX-OR gate functions like an inverter.

PAL22V10 PAL22V10 is one of the most popular PAL devices Figure 7.30 shows the

logic diagram of the device. It has 12 dedicated inputs, with one input also acting as a

FIGURE 7.30 PAL22V10 structure.

7.7 SEQUENTIAL PAL DEVICES 275

clock input. In addition, it has 10 I/O lines that can be configured either as inputs or

outputs. It employs a variable product term distribution that allocates from 8 to 16

product terms to each output.

Each output pin is driven by a macrocell. Figure 7.31 shows the logic diagram of a

macrocell. When fuse 1s blown, the selection inputs s1 of both multiplexers are set to

logic 1. Similarly, the s0 input of the 2-to-1 multiplexer is set to logic 1 when fuse 2 is

blown. If both fuses remain intact, the select inputs of both multiplexers remain at logic 0.

The macrocell operates in four different modes depending on the status of the fuses 1

and 2:

Mode 1: s1s0 ¼ 00 (fuse 1 intact, fuse 2 intact). The output of the D flip-flop is trans-

ferred to the macrocell and is also fed back to the AND array. However, because

of the presence of the inverter at the output of the 4-to-1 multiplexer, only the

complement of the registered output is available.

Mode 2: s1s0 ¼ 01 (fuse 1 intact, fuse 2 blown). The complement output of the D flip-

flop is transferred to the output of the macrocell via the inverter, thus generating the

true registered output. The macrocell output is also internally fed back to the AND

array.

Mode 3: s1s0 ¼ 10 (fuse 1 blown, fuse 2 intact). The inverted value of the OR gate is

available at the output of the macrocell, and is also fed back to the AND array.

Mode 4: s1s0 ¼ 11 (fuse 1 blown, fuse 2 blown). The output of the OR gate is available

at the output of the macrocell, and is also fed back to the AND array.

Note that the tristate inverter at the macrocell output has to be enabled by the dedicated

AND gate to make the output available; otherwise the I/O pin acts as an additional input if

fuse 1 is blown.

All 10 D flip-flops in a 22V10 share an asynchronous reset (AR) product term and a

synchronous preset (SP) product term. When the preset term is activated, all the D flip-

flops in the device are loaded with logic 1’s on the positive edge of the clock pulse. If

the reset product term is enabled, the flip-flops are loaded with logic 0’s independent of

the clock. It is not possible, however, to individually preset and reset a flip-flop.

FIGURE 7.31 Logic diagram of a macrocell.

276 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

It should be clear from the operating modes of PAL22V10 that it can be programmed to

implement arbitrary state machines. A desired state is first preloaded in the flip-flops of the

device.

As an example, the sequential circuit specified by the state transition graph of Figure 7.32

is implemented using the device. The next state equations of the circuit are derived assuming

the following state assignment:

y2 y1 y0
A 1 0 0

B 1 0 1

C 0 1 0

D 1 1 0

E 1 1 1

F 0 0 1

G 0 0 0

The next state expressions are

Y0 ¼ �Py0 �y2 þ �P�y0y2 þ �CFy0y1

Y1 ¼ �y0y1 þ �C �Fy1 þ �Fy2 �y1y0

Y2 ¼ P�y0 þ P�y3 þ �y0y3

These are mapped onto a PAL22V10 as shown in Figure 7.33.

FIGURE 7.32 A state transition graph [2].

7.7 SEQUENTIAL PAL DEVICES 277

Complex PLDs In the past all PLDs were manufactured using fuse-based TTL (transis-

tor transistor logic) technology. A drawback of fuse-based programmable logic devices is

that they cannot be reprogrammed. Thus they are not suitable in applications requiring

alteration of logic functions or in situations where a new logic design has to be modified

several times before a satisfactory design is obtained. This, in addition to high power con-

sumption in TTL devices, has resulted in a gradual shift to CMOS (complementary metal

on silicon) technology (see Appendix). CMOS PLDs consume significantly less power

than TTL devices. Modern CMOS PLDs include many PAL-like blocks that are intercon-

nected by a programmable switch matrix; these devices are popularly known as complex

PLDs (CPLDs).

One significant advantage of CMOS devices is that they use EPROM cells or EEPROM

cells instead of fuses as programmable connections. A fuse takes up a large amount of

silicon area whereas the EPROM and EEPROM cells are significantly smaller than

fuses; thus more functions can be packed onto a smaller device. The devices based on

EPROM cells are known as EPLDs (erasable programmable logic devices), and those

based on EEPROM cells are referred to as EEPLDs (electrically erasable programmable

logic devices).

EPLDs Altera Corp. developed the first EPLDs in the form of the MAX family of chips.

Since then, many other companies have marketed EPLDs. There are three series of chips in

the MAX family—MAX 5000, MAX 7000, and MAX 9000. The 7000 series is widely

used; the 9000 series is similar to the 7000 series but the chips have higher capacity.

All chips in the MAX family have a programmable AND/fixed OR structure, whose

output feeds a macrocell (Fig. 7.34a). The output multiplexer in Figure 7.34a allows

the selection of the output OR gate, the flip-flop, or their complements. The feedback

FIGURE 7.33 A section of programmed 22V10.

278 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

multiplexer allows feedback from the output of the OR gate, the output of the flip-flop, or

directly from the I/O pin. If the output of the flip-flop is not made available on the I/O pin,

the flip-flop is considered to be buried and the I/O pin cannot be used. Similarly, if the I/O
pin is used as an input pin, the flip-flop cannot be used. In other words, the macrocell of

Figure 7.34a allows only a single feedback into the AND array.

Certain EPLD allow dual feedback paths into the AND array (Fig. 7.34b). One feed-

back path comes directly from the I/O pin, and the other comes from the internal logic.

Basically, dual feedback is achieved by eliminating the feedback multiplexer of

Figure 7.34a. If the tristate buffer in Figure 7.34b is disabled, the internal logic

becomes isolated from the I/O pin, thus allowing the internal flip-flop to be buried and

the I/O pin to be used as an input line.

Figure 7.35 shows the architecture of the MAX 7000 series chips. It is composed of an

array of blocks known as logic array blocks (LABs). The inputs and outputs of a LAB can

be connected to any other LAB via a global bus called the programmable interconnect

array (PIA). The PIA is fed by all dedicated inputs, I/O pins, and macrocells. All chips

in the MAX family have eight dedicated input lines.

FIGURE 7.34 (a) An EPLD Macrocell and (b) dual feedback loop.

7.7 SEQUENTIAL PAL DEVICES 279

Each LAB has 17 macrocells, 17 expander product terms, and an I/O block as shown in

Figure 7.36. The expander product terms can be shared by all other macrocells in a LAB.

Figure 7.37 shows the macrocell structure. The flip-flop in a macrocell can be configured

as a D, JK, SR, or T type flip-flop as well as a conventional latch. In addition, each flip-flop

has individually programmable clock, clock enable, clear, and preset functions. The OR

gate in each macrocell of a MAX 7000 series LAB can be fed by up to five dedicated

product terms within the macrocell and can also use any or all sixteen extra product

terms in the same LAB; note that most PAL devices do not allow implementation of func-

tions exceeding eight product terms. The chip with fewest number of LABs in MAX 7000

is EPM7032. It has 2 LABs, 32 macrocells, and 37 I/O pins.

Let us illustrate the implementation of a sequential circuit to be used for controlling the

operation of a washing machine; the circuit is implemented using an Altera MAX 7032

device. The block diagram of the controller is shown in Figure 7.38. The washing

machine goes through the following sequence operations	:

1. The washing machine is filled with water. The temperature of the water (cold or hot)

is selected by an input (hc). The machine moves to the next state when it is full.

2. A timer is set to a specified time and the machine agitates until the time is complete.

3. The water drains from the machine. When it is empty the machine moves to the next

step.

4. The machine is filled with cold water. It moves to the next step when it is full.

5. The timer is set and the machine agitates until the selected time is complete.

6. The water drains from the machine. When it is empty the machine moves to the next

step.

7. The timer is set and the washer spins the tub to dry the clothes until the specified

time is completed.

FIGURE 7.35 Block diagram of MAX 7000 series chips.

	VHDL class project report of Jessie Weaver.

280 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

FIGURE 7.36 Logic array block (LAB).

FIGURE 7.37 Macrocell.

7.7 SEQUENTIAL PAL DEVICES 281

8. The machine is ready to start when it is signaled to do so by activating the S (Start/
Stop) input.

9. The machine can be interrupted at any of the steps 1 to 8 by applying the reset signal.

If there is water in the machine it is drained in this state.

A Moore-type sequential circuit with nine states with each state corresponding to one

step of the above operations can be used for this purpose. Although states 2 and 5 and

states 3 and 7 seem to perform identical operations, the correct order of operations requires

states 2 and 5 (as well as states 3 and 7) to be included to determine if it is the first or the

second time to agitate (drain); otherwise additional circuits will be needed to distinguish

between the two. The state diagram of the Moore-type sequential circuit is shown in

Figure 7.39.

The inputs and outputs of the machine are as follows:

Inputs: hc temperature of the water: 0 ¼ cold, 1 ¼ hot

s start/stop: 0 ¼ start, 1 ¼ stop

f 0 ¼ not full, 1 ¼ full

e 0 ¼ not empty, 1 ¼ empty

t 0 ¼ timer not done, 1 ¼ timer done

Output: Fill 0 ¼ drain water out of washer, 1 ¼ direct water into washer

Lag 0 ¼ start timer and agitate wash, 1 ¼ don’t agitate

Spin 0 ¼ start timer and spin wash, 1 ¼ don’t spin

Hh select water temperature; 0 ¼ cold, 1 ¼ hot

Pump 0 ¼ pump on, 1 ¼ pump off

As it would be clear from the architecture of the MAX 7000 series chips, the mapping

of Boolean expressions onto one of these chips can only be done by using an appropriate

FIGURE 7.38 Block diagram of the washing machine controller circuit.

282 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

computer-aided design tool. The compilation of the VHDL code for the above sequential

circuit by using Altera’s Quartus II software provides the state assignment, the correspond-

ing next state expressions, and the resources needed—that is, number of macrocells and

expanded product terms used, identification of macrocells utilized, as well as interconnec-

tions among them—to implement the circuit on a selected MAX 7000 series chip. Assum-

ing an EPM7032 chip is used for the implementation, the state assignment and the

corresponding next state expressions generated by Quartus II are shown in Figure 7.40a

and 7.40b, respectively. (Note that A1L9, A1L7, and A1L8 are the EX-OR of expanded

FIGURE 7.39 The state transition graph of the Moore-type sequential circuit as shown in

Figure 7.38.

7.7 SEQUENTIAL PAL DEVICES 283

FIGURE 7.40 (a) State assignment. (b) Next state and output expressions.

284 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

product terms needed to implement the next state expressions for Q0, Q1, and Q2, respect-

ively. # stands for the EX-OR operation.)

The implementation of these expressions needs 12 macrocells (4 for next state

expressions, 5 for output expressions, and 3 for expanded product terms). Thus one out

of the two LABs in EPM7032 is utilized in implementing the state machine.

FIGURE 7.40 (Continued).

7.7 SEQUENTIAL PAL DEVICES 285

EXERCISES

1. Find a minimal state table for each of the sequential circuits specified:

Input

Present State x ¼ 0 x ¼ 1

A B,0 F,1

B D,0 D,0

C C,0 F,0

D A,1 A,0

E D,0 D,0

F D,0 B,0

(a)

2. For the state tale shown below, find the output and state sequences corresponding to the

input sequence: 01010110 assuming that the circuit starts in state A.

Input

Present State x ¼ 0 x ¼ 1

A D,0 A,0

B D,1 A,0

C C,0 B,0

D C,0 A,0

3. The state diagram of a sequential circuit is shown below. Implement the circuit

using D flip-flops as memory elements. Assume the following state assignment:

A ¼ 000, B ¼ 001, C ¼ 010, D ¼ 011, E ¼ 100, F ¼ 101.

4. Implement the state diagram of Exercise 3 using JK flip-flops as memory elements.

Input

Present State x ¼ 0 x ¼ 1

A C,0 E,0

B H,0 G,1

C B,0 A,0

D E,1 H,0

E E,1 C,0

F H,0 D,1

G A,1 H,0

H D,0 F,1

(b)

286 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

5. A synchronous sequential circuit with two inputs x1 and x2 and an output z is to

be designed. The output z is to be 1 whenever both x1 and x2 receive identical groups

of five input bits. Each input bit is synchronized with a clock pulse applied to the clock

input. Show the minimized state table for the circuit and implement it using D flip-

flops as memory elements.

6. A synchronous sequential circuit has one input x and one output z. the output is 1

whenever the input sequence is 0110 (e.g., if the input sequence is 000110110,

the output sequence would be 000001001). Construct the state diagram for the circuit,

and implement it using JK flip-flops as memory elements.

7. A synchronous sequential circuit is to be used for generating the parity of a continuous

stream of binary digits. The output of the circuit produces a logic 1 if the number of

1’s received at the input is even; otherwise the output is at logic 0. Implement the

circuit using JK flip-flops as memory elements.

8. A synchronous sequential circuit is to be used to detect errors in a message using

2-out-of-4 code. The sequential circuit receives a coded message serially and pro-

duces an output of 1 whenever an illegal message is received. Develop a state diagram

to meet this specification, and implement the circuit using D flip-flops.

9. Implement the sequential circuit of Exercise 3 using an m-out-of-n code.

10. A sequential circuit having a single input and a single output is to be designed

according to the following specification. The output is to be at logic 0 unless an

input sequence 0010 is received (e.g., if the input sequence is 0100100100, the

output sequence will be 0000001001). Construct a minimum row state table for a

circuit.

11. Find a minimum row state table for each of the incompletely specified sequential

circuits specified by the following state tables:

Input

Present

State
x ¼ 0 x ¼ 1

A B,1 H,1

B A,0 G,0

C – ,0 F,–

D D,0 – ,1

E C,0 D,–

F A,– C,0

G – ,– B,–

H G,0 E,–

(a)

Input ¼ x1x2

Present

State
00 01 11 10

A C,1 –,– G,1 E,1

B –,– E,0 –,– –,–

C F,1 F,0 –,1 –,–

D –,– –,0 –,– B,1

E F,0 –,– D,– A,0

F –,– C,0 C,– B,0

G F,0 – ,0 – ,1 B,–

(b)

EXERCISES 287

Input

Present State I1 I2 I3

A A,0 B,1 E,1

B B,0 A,1 F,1

C A,1 D,0 E,0

D F,0 C,1 A,0

E A,0 D,1 E,1

F B,0 D,1 F,1

(c)

12. Find a minimum row state table for each of the sequential circuits whose states are

given below by using the partitioning method.

Input

Present State x ¼ 0 x ¼ 1

A A,0 E,1

B E,1 C,0

C A,1 D,1

D F,0 G,1

E B,1 C,0

F F,0 E,1

Next state, Output

(a)

13. A one-input, four-state (A, B, C, and D) sequential circuit produces the output

sequence Z corresponding to an input sequence I as shown:

I 1 1 0 1 0 0 1 0 1 1 0 0 1 0

Z 1 0 0 0 1 1 1 0 1 0 0 1 0 0

If the circuit output response and the next state for the input sequence 01 are as follows

01

A 00 C

B 01 B

C 10 A

D 11 B

Input

Present State x ¼ 0 x ¼ 1

A B,0 C,1

B A,1 E,0

C F,1 C,0

D D,0 C,1

E A,1 B,0

F B,0 D,1

Next state, Output

(b)

288 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

fill in the rest of the entries (state, output) in the state table circuit:

x ¼ 0 x ¼ 1

A C,0 –,1

B A,– –,0

C –,– C,–

D A,– –,0

14. Implement the state table of the circuit given below using 1-hot state encoding:

Input

Present State x ¼ 0 x ¼ 1

A A,0 E,1

B E,1 C,0

C A,1 D,1

D F,0 G,1

E B,1 C,0

F F,0 E,1

Next state, Output

15. Derive the state encoding for the circuit specified by the following state table using

fan-in oriented algorithm:

Input

Present State x ¼ 0 x ¼ 1

A B,0 C,1

B A,1 E,0

C F,1 C,1

D D,0 C,1

E A,1 B,0

F B,0 D,1

Next state, Output

16. Derive the state encoding for the circuit specified by the following state table using

fan-out oriented algorithm:

Input

Present State x ¼ 0 x ¼ 1

A B,0 A,1

B D,1 A,1

C B,0 D,0

D D,0 C,1

E E,1 E,1

F A,0 B,0

Next state, Output

EXERCISES 289

17. Design a sequential circuit that produces an output of 1 after it has received an input

sequence 1101 or 011. Derive the design equations for the circuit assuming D flip-

flops as memory elements. Use the principle of partitioning for generating the state

assignments.

18. Minimize the following incompletely specified sequential circuits if possible; implement

the circuits using D flip-flops as memory elements.

Input

Present State x ¼ 0 x ¼ 1

A E,0 A,0

B D,0 B,0

C E,1 C,–

D A,0 A,1

E A,– B,–

(a)

19. A sequential circuit is to be used to identify possible noncodewords produced by a

3-out-of-6 code generator circuit. The sequential circuit will examine the output of

the code generator circuit 1 bit at a time. After all 6 bits have been examined, the

circuit produces an output of 1 if it detects a noncodeword; otherwise an output of

0 is produced. Derive the excitation and the output expressions for the circuit assum-

ing it will be implemented using a PAL22V10 device.

20. A sequential circuit is to be designed to monitor the status of a chemical experiment.

Every 10 s the circuit receives an input pattern between 0001 and 1111. If the input

pattern received is 0111, the experiment is assumed to be continuing perfectly; the

input patterns 0110 and 1000 are also considered satisfactory. However, if the

circuit receives any other binary pattern twice consecutively, the experiment must

be stopped. Derive a state diagram of the sequential circuit and a complete logic

diagram using JK flip-flops as memory elements.

REFERENCES

1. Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, New York, 1978.

2. P. K. Lala, Digital System Design Using PLDs, Prentice Hall, Englewood Cliffs, NJ, 1990.

Input

Present State x ¼ 0 x ¼ 1

A C,1 –,–

B B,– E,–

C A,1 D,1

D F,0 G,0

E G,– –,–

F –,– C,0

G A,1 B,–

(b)

290 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

8 Counter Design

8.1 INTRODUCTION

Counters are frequently used in computers and other digital systems. Since a counter

circuit must remember its past states, it has to possess memory. Thus the sequential

logic design principles discussed in Chapter 7 can be utilized in designing counter

circuits. Like all other sequential logic circuits, counter circuits can be classified into

two categories—synchronous and asynchronous.

In synchronous counters all memory elements are simultaneously triggered by a clock,

whereas in asynchronous counters the output of each memory element activates the next

memory element.

Many types of counters are used in practice. In some cases they count in pure binary; in

other cases the count may differ considerably from straight binary (e.g., decade or BCD

counters). This chapter examines the construction and operation of the most important

types of counters.

8.2 RIPPLE (ASYNCHRONOUS) COUNTERS

In a ripple counter there is no clock or source of synchronizing pulses; however, the state

changes still occur due to pulses at clock inputs of the flip-flops. Figure 8.1a shows a 3-bit

ripple counter constructed from JK flip-flops. It is assumed that the flip-flops change state

on the negative-going (falling) edge of the pulses appearing at their clock inputs. The

counter is first cleared by applying a reset pulse; thus counting begins from 000. A

timing diagram representing the sequence of logic states through which flip-flops A, B,

and C go in counting from 0 to 7 is shown in Figure 8.1b. As can be seen in

Figure 8.1a, the normal output of flip-flop C acts as the clock pulse of flip-flop B. Simi-

larly, the output of flip-flop B is used as the clock pulse source for flip-flop A. The

input (i.e., the count pulses) is applied only to the clock input of flip-flop C. Note that

the J and K inputs of all the flip-flops are tied to logic 1.

The first negative-going pulse at the clock input of flip-flop C changes its output to

1. Thus the counter shows an output of 001. Since the output of flip-flop C is 1, the

clock input of flip-flop B is also 1. When the second negative-going pulse occurs at

the clock input of flip-flop C, its output makes a transition from 1 to 0. This negative-

going transition Q at the clock input of flip-flop B changes its output from 0 to 1.

291

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

Hence the output of the counter is now 010. On the third negative-going pulse at the

clock input of flip-flop C, its output changes from 0 to 1. This positive-going transition

cannot change the output of flip-flop B. Therefore after the third negative-going pulse,

the counter output is 011. It continues to operate in this manner until the count value

111 is reached.

The next negative-going input pulse at the clock input of flip-flop C will change its

output from 1 to 0. This transition in the output of C will cause the output of flip-flop B

to change from 1 to 0, which in turn will change the output of flip-flop A to 0. In other

words, the counter is reset to 000 after eight pulses and is ready to begin counting again

as subsequent input pulses are applied at the clock input of flip-flop C. Thus any

change in the output of flip-flop C moves through the counter like a ripple on water,

hence the name “ripple counter.”

An alternative way of implementing a 3-bit ripple counter is shown in Figure 8.2. This

is implementation uses T flip-flops. The T flip-flops are triggered on the positive-going

(rising) edge of the pulses appearing at their clock inputs.

FIGURE 8.1 (a) A 3-bit ripple counter and (b) timing diagram.

292 COUNTER DESIGN

The 3-bit ripple counter circuit has eight (¼23) different states, each one corresponding

to a count value. Similarly, a counter with n flip-flops can have 2n states. The number of

states in a counter is known as its mod (modulo) number. Thus a 3-bit counter is a mod-8

counter. Similarly, a 6-bit counter is a mod-64 counter (i.e., it has 64 distinct states,

000000 through 111111). A mod-n counter may also be described as a divide-by-n

counter, in the sense that the most significant flip-flop produces one pulse for every n

pulses at the clock input of the least significant flip-flop. Thus the counter of

Figure 8.1a is a divide-by-8 counter.

The ripple counter poses a problem when there is a large number of flip-flops. In such a

case, the most significant flip-flop cannot change state until the propagation delay times of

all other flip-flops have elapsed. For example, if each flip-flop in a 6-bit ripple counter has

a propagation delay of 10 ns, it will take 60 ns when changing from a count of 31

(0111111) to a count of 32 (100000).

Since the states of the flip-flops in a ripple counter do not change simultaneously, unde-

sirable transient states may be produced during the change from one valid state to another.

For example, in going from state 011 to 100, the counter of Figure 8.1a generates two tran-

sient states 010 and 000:

counter state 011

#
counter state 010 (filp-flopC changes)

#
counter state 000 (filp-flopB changes)

#
counter state 100 (filp-flopA changes)

Such transient states in a counter may have undesirable effects on other parts of a digital

system, so they must be guarded against.

It is also possible to design a ripple counter such that it will only count up to a value less

than the maximum possible. For example, the 3-bit ripple counter can count up to 7 (111)

before resetting to 0 (000). By adding NAND gate to the counter circuit, it may be made to

reset for every fifth pulse—that is, when the count is 5 (101), as shown in Figure 8.3. The

inputs to the NAND gate are the outputs flip-flops A and B, so the output of the NAND gate

will go to 0 whenever the outputs of flip-flops A and B are 1. This happens only when the

counter makes a transition from state 101 to state 110. This makes the output of the NAND

gate go to 0, which in turn clears the flip-flops within a few nanoseconds. Thus the counter

FIGURE 8.2 Three-bit ripple counter implemented with T flip-flops.

8.2 RIPPLE (ASYNCHRONOUS) COUNTERS 293

essentially counts up to 101 and then resets to 000 (i.e., it is a mod-6 counter). In a similar

manner, counters with any other modulus can be designed by using a NAND gate to detect

the appropriate state for resetting the counter. For example, using a NAND gate with

inputs A and C, a 4-bit counter can be reset to 0000 when the count value 1010 is

reached (Fig. 8.4). In other words, the normal count will be from 0000 to 1001, resulting

in a mod-10 counter, also known as a decade counter.

8.3 ASYNCHRONOUS UP–DOWN COUNTERS

In certain applications a counter must be able to count both up and down. Figure 8.5 shows

the circuit for a 3-bit up–down counter. It counts up or down depending on the status of the

control signals UP and DOWN. When the UP input is at 1 and DOWN input is at 0, the

NAND network between flip-flops B and C will gate the noninverted output of flip-flop

C into the clock input of flip-flop B. Similarly, the noninverted output of flip-flops B

will be gated through the other NAND network into the clock input of flip-flop A. Thus

the counter will count up. When the control input UP is at 0 and DOWN is at 1, the

inverted outputs of flip-flop C and flip-flop B are gated into the clock inputs of flip-flops

FIGURE 8.3 Mod-6 counter.

FIGURE 8.4 Decade counter.

294 COUNTER DESIGN

B and A, respectively. If the flip-flops are initially reset to 0’s, then the counter will go

through the following sequence as input pulses are applied:

An asynchronous up–down counter is slower than an up counter or a down counter

because of the additional propagation delay introduced by the NAND networks.

8.4 SYNCHRONOUS COUNTERS

In asynchronous counters counter the state of a flip-flop changes only when a transition

occurs at the output of its preceding flip-flop. Since each flip-flop has a propagation

delay, the time required by an asynchronous counter to complete its response to

an input sequence is of the order of the sum of the propagation delays of the flip-flops

in the counter. If the total propagation delay of the counter is greater than or equal to

the period of the input pulse, then the counter does not function properly. Thus the

maximum frequency at which the input pulse can be applied to a ripple counter has to

be lowered if the number of flip-flops in the counter is large.

In synchronous counters, the clock inputs of all the flip-flops are connected together and

are triggered by the input pulses. Thus all the flip-flops change state simultaneously (i.e., in

parallel). Figure 8.6a shows the circuit of a 3-bit synchronous counter. The J and K inputs

of flip-flop C are connected to logic 1. The B flip-flop has its J and K inputs connected to

the output of flip-flop C, and the J and K inputs of flip-flop A are connected to the output of

FIGURE 8.5 A 3-bit up–down counter.

8.4 SYNCHRONOUS COUNTERS 295

an AND gate that is fed by the outputs of flip-flops B and C. Assuming that the outputs of

all the flip-flops are initially reset to 0, the rising edge of the first clock pulse will change

the output of flip-flop C to 1. This will result in a 1 at the J and K inputs of flip-flop B.

The rising edge of the second clock pulse will cause flip-flop B to change its output

from 0 to 1 and flip-flop C to change its output from 1 to 0. On the positive edge of the

third clock pulse, the output of flip-flop C will change again, from 0 to 1. Therefore

both the inputs of the AND gate will be at 1 at the end of the third clock pulse. The positive

edge of the fourth clock pulse will cause flip-flop C to change its output again; flip-flop B

will change at the same time because its J and K inputs are at 1. Flip-flop A will also

change state on the positive edge of the fourth clock pulse because its J and K inputs

are at 1 due to the AND gate. The count sequence for the 3-bit counter is shown in

Figure 8.6b.

The most important advantage of this synchronous counter is that there is no cumulative

time delay because all the flip-flops are triggered in parallel. Thus the maximum operating

frequency for this counter will be significantly higher than that for the corresponding

ripple counter. For example, if the propagation delay of each flip-flop is 20 ns and that

of the AND gate is 10 ns, the minimum clock period for the 3-bit synchronous counter

is flip-flop propagation delayþAND-gate propagation delay ¼ 20þ 10 ¼ 30 ns,

whereas the minimum clock period for the 3-bit ripple counter (Fig. 8.1) is 3 � flip-flop

propagation delay ¼ 3 � 20 ¼ 60 ns. The 3-bit synchronous counter we considered is

an up counter; its circuit can be modified slightly so that it can perform as a down

counter (Fig. 8.7a). The corresponding count sequence is shown in Figure 8.7b.

FIGURE 8.6 (a) A 3-bit synchronous counter and (b) the count sequence.

296 COUNTER DESIGN

Synchronous counters can be designed using the techniques employed for designing

synchronous sequential circuits (Chapter 6). The first step in the design is to list the

required count sequence in a two-column transition table; the first column represents

the present state of the counter, and the second column gives the next state of the

counter. The counter moves from a present state to the corresponding next state after a

clock pulse has been applied.

Example 8.1 Let us design a mod-5 counter using JK flip-flops. Figure 8.8 shows the

transition table for the mod-5 counter circuit. Since there are five unique states, we need 3

FIGURE 8.7 (a) A 3-bit synchronous down counter and (b) the count sequence.

FIGURE 8.8 State table for mod-5 synchronous counter.

8.4 SYNCHRONOUS COUNTERS 297

(¼log25) flip-flops to implement the counter circuit. Next, we form the excitation map for

the J and K inputs of each flip-flop in the circuit, as shown in Figure 8.9. The resulting

input equations for the flip-flops are:

JA ¼ BC KA ¼ 1

JB ¼ C KB ¼ C

JC ¼ �A KC ¼ 1

Implementation of the counter is shown in Figure 8.10.

In many applications it is necessary to determine whether a counter has reached a par-

ticular count value before a certain operation is started. Thus a decoder circuit has to be

used to indicate the presence of the desired count value. For example, we can connect a

4-to-10 decoder at the output of the binary decade counter to convert its output to a

FIGURE 8.9 Excitation maps for the JK flip-flops in a mod-5 counter.

FIGURE 8.10 Mod-5 counter circuit using JK flip-flops.

298 COUNTER DESIGN

decimal representation (Fig. 8.11). The decoder output in turn can be used to drive a

display device to indicate the decimal number corresponding to the binary count.

In the counter design technique we considered, all redundant states (i.e., states for

which no next states are specified) are used as don’t care terms. One very important

point in the design of counters (or any sequential circuit) is the starting state of the

counter when power is turned on. If the counter circuit starts in a redundant state, it

must be ensured that the counter eventually returns to one of the states in the count

sequence; a counter having this property is known as self-starting counter.

Unless it is important that a counter go to a particular valid state from a redundant state,

it is usually possible to simplify counter logic using the redundant states and to ensure that

it is self-starting. For example, in the mod-5 counter circuit of Figure 8.8 there are three

redundant states:

A B C

1 0 1

1 1 0

1 1 1

By specifying a valid next state for each of the redundant states, the counter can be made

self-starting. The next states for the redundant states are selected such that there is a

reduction in the number of gates required for implementing the excitation equations for

the flip-flops. The complete state diagram of the mod-5 counter is shown in

Figure 8.12. If the counter starts in one of the redundant states, the next clock pulse

will transfer it to one of the valid states and it will continue to count properly. The exci-

tation maps for the D flip-flop implementation of the self-starting counter are shown in

Figure 8.13a, and the corresponding circuit is shown in Figure 8.13b.

FIGURE 8.11 Conversion of the binary outputs of a counter to decimal form.

FIGURE 8.12 State diagram for the self-starting mod-5 counter.

8.4 SYNCHRONOUS COUNTERS 299

8.5 GRAY CODE COUNTERS

In a Gray code, only one bit changes in going from one code combination to another. Thus

a Gray code counter can be used to eliminate the problem of momentary false count values

that results from a binary counter, where more than one bit is required to change states

during a transition.

Example 8.2 Let us design a 4-bit Gray code counter using JK flip-flops. The transition

table for the counter is shown in Figure 8.14.

FIGURE 8.13 (a) Excitation maps and (b) self-starting mod-5 counter.

FIGURE 8.14 Transition table for 4-bit Gray code counter.

300 COUNTER DESIGN

The excitation maps for the A, B, C, and D flip-flops are plotted in Figure 8.15a. The

simplified functions for the J and K inputs are obtained from these maps; they are

JA ¼ B �C �D KA ¼ �B �C �D

JB ¼ �AC �D KB ¼ AC �D

JC ¼ �A �BDþ ABD KC ¼ �ABDþ A �BD

JD ¼ �AB �C þ AB �C þ �ABC þ A �BC KD ¼ �AB �C þ A �B �C þ �A �BC þ ABC

The implementation of the counter is shown in Figure 8.15b.

FIGURE 8.15 (a) Excitation maps and (b) 4-bit Gray code counter.

8.5 GRAY CODE COUNTERS 301

8.6 SHIFT REGISTER COUNTERS

A counter is constructed from a serial in/parallel out shift register by connecting the

output of the individual flip-flops to a large network and connecting the output of

that network to the input of the shift register (Fig. 8.16) so that it cycles through some

predetermined number of states. For example, in the case of a 3-bit shift register the

sequence is

Such a counter may be considered to be a mod-7 counter; it is also known as a nonbinary

counter because the sequence of states does not form a consecutive sequence of binary

coded numbers. The design of shift register counters can be simplified considerably by

using a state sequence tree [1]. The state sequence tree shows how many possible

sequences of different lengths can be obtained from a shift register of a given length.

The derivation of the state sequence tree starts with the all 0’s state of the shift register

FIGURE 8.15 (Continued).

302 COUNTER DESIGN

at the root of the tree. The effect of a 0 and a 1 on the counter is recorded as shown:

Since the result of shifting in a 0 does not change the state, the left side of the tree need not

be considered any further. The effect of shifting in a 0 or a 1 while the shift register is

in state 001 is shown next:

Since there are two new states, the next level of the tree should be

This process is continued for each branch of the tree until a newly derived state already

exists in the path from the root to this node of the tree (i.e., a state repeats itself).

Figure 8.17 shows the complete state sequence tree for the 3-bit shift register. A shift

counter of mod m, where m is less than or equal to the total number of possible states

in the shift register, can be constructed by selecting the desired sequence of states from

the sequence tree.

As an example, let us design a mod-6 counter using a 3-bit shift register. It can be seen

from the state sequence tree for the shift register (Fig. 8.17) that there are three different

FIGURE 8.16 Shift regsister counter.

8.6 SHIFT REGISTER COUNTERS 303

ways of achieving a state sequence of length 6:

In each of these three state sequences the unused states are underlined. Looking at the

first state sequence, we see that if the present content of the shift register is 001 (¼ĀB̄C), it

must change to 010 (ĀBC̄) after a clock pulse. In other words, when the shift register con-

tains 001, the input to it must be a 0. Similarly, when the preset content is 010, the shift

input must be 1 so that after the next clock pulse its content is 101. Thus the shift input

must be equal to the lowest significant bit of the next state to which the shift register

should move after the clock pulse is applied. Referring to Figure 8.16, we can see that

the output of the feedback network is fed to shift input. The appropriate feedback

network for the three state sequences can be designed by using Karnaugh maps

(Fig. 8.18). The minimal Boolean expressions for implementing the feedback networks

FIGURE 8.17 State sequence for a 3-bit shift register.

304 COUNTER DESIGN

are derived as follows:

Sequence I: DC ¼ �A �C þ A �B

Sequence II: DC ¼ A �C þ �A �B

Sequence III: DC ¼ �A

State 111 will produce a “lock up” in sequence 1(i.e., it will result in a 1 output from the

feedback network, hence locking the shift register in state 111, from which it will not

“return” to the main counting sequence). Hence the don’t care term corresponding to

state 111 in the Karnaugh map is ignored. For similar reasons, state 111 is not considered

while minimizing the feedback expression for sequence II. The implementations of the

counters based on state sequences I, II, and III are shown in Figure 8.19.

The design of shift counters based on a state sequence tree is not practicable using shift

registers with more than four stages. However, a three-stage shift counter may be com-

bined with a four-stage shift counter to form a composite counter having a state sequence

length (i.e., mod number) higher than what is possible using either of the individual

FIGURE 8.18 Karnaugh maps for feedback logic networks.

FIGURE 8.19 Implementations of (a) sequence I, (b) sequence II, and (c) sequence III.

8.6 SHIFT REGISTER COUNTERS 305

counters. The sequence length of the composite counter is equal to the smallest number

that is divisible by the sequence length of each of the individual counters. If the sequence

FIGURE 8.19 (Continued).

FIGURE 8.20 Mod-40 counter.

306 COUNTER DESIGN

lengths have no common factors, then the sequence length of the composite counter is

equal to their product.

For example, a mod-5 (three-stage) counter can be combined with a mod-8 (four-stage)

counter to form a mod-40 counter, but a combination of a mod-5 and a mod-10 counter

will give only a sequence length of 10, not 50. Figure 8.20 shows the implementation

of a mod-40 counter based on a mod-5 and a mod-8 counter.

It is assumed that each counter produces a logic 1 output when it reaches its maximum

count value. Thus the counter circuit of Figure 8.20 gives a 1 output when the mod-5 and

mod-8 counters have settled in states 100 and 1000, respectively, indicating that the count

sequence has been completed.

8.7 RING COUNTERS

A ring counter is basically a circulating shift register in which the output of the most

significant stage is fed back to the input of the least significant stage. Figure 8.21 is a

ring counter constructed from D flip-flops. The output of each stage is shifted into the

next stage on the positive edge of a clock pulse. The “reset” signal clears all the flip-flops

except the first one. Because flip-flop 1 is preset by a logic 1 on the reset line, the initial

content of the counter is

A B C D

0 0 0 1

The first positive clock edge shifts the output of flip-flop 4 into flip-flop 1 and the outputs

of flip-flops 1, 2, and 3 into flip-flops 2, 3, and 4, respectively. Therefore the state of

counter becomes

A B C D

0 0 1 0

FIGURE 8.21 A 4-bit ring counter.

8.7 RING COUNTERS 307

The second clock pulse changes the state to

A B C D

0 1 0 0

At the end of the third clock pulse the counter state becomes

A B C D

1 0 0 0

On the fourth clock pulse the 1 output from flip-flop 4 is transferred into flip-flop 1, thus

A B C D

0 0 0 1

which is, of course, the initial state of the counter. Since the count sequence has four

distinct states, the counter can be considered as a mod-4 counter. Thus the 4-bit ring

counter includes only 4 of the 16 states that are posible using four flip-flops. Since an

n-bit ring counter uses only n of its 2n possible states, leaving 2n2 n states unused, it

makes very inefficient use of flip-flops. For example, a decimal ring counter has only

10 counting states but requires 10 flip-flops, whereas a binary counter having 10 flip-flops

will have 1024 (¼210) states and can count up to 1023. The major advantage of ring

counter over a binary counter is that it is self-decoding (i.e., no extra decoding circuit is

needed to determine what state the counter is in). Each state is uniquely identified by a

logic 1 at the output of the corresponding flip-flop. On the other hand, in an n-bit

binary counter (except for a few count values) more than one flip-flop is on at a particular

count, so additional gates are needed to generate a decoding signal for each state.

The ring counter technique can be utilized effectively to implement synchronous

sequential circuits. A major problem in the realization of sequential circuits is the assign-

ment of binary codes to the internal states of the circuit in order to reduce the complexity

of circuits required (see Chapter 7). By assigning on flip-flop to one internal state, it is

possible to simplify the combinational logic required to realize the complete sequential

circuit. When the circuit is in a particular state, the flip-flop corresponding to that state

is set to logic 1 and all other flip-flops remain reset.

Example 8.3 Let us design the sequential circuit described by the following state table:

Input

Present State x ¼ 0 x ¼ 1 Output

A F C 0

B D C 1

C A D 0

D A E 1

E C F 0

F C G 1

G B G 0

Next Stage

Since the sequential circuit has seven states, a 7-bit ring counter is required. Let us assume

that states A, B, C,D, E, F andG correspond to flip-flops 1, 2, 3, 4, 5, 6, and 7, respectively,

in the ring counter. State A is the next state for both state C and state D when input x ¼ 0.

308 COUNTER DESIGN

Therefore whenever either flip-flop 3 or flip-flop 4 is set (i.e., the ring counter state is

0000100 or 0001000) and x ¼ 0, flip-flop 1 should receive a logic 1 input signal,

causing the counter to move to state 0000001. Assuming JK flip-flops are used to

implement the ring counter, the excitation equations for flip-flop 1 are

J1 ¼ �xC þ �xD

K1 ¼ 1

In other words, flip-flop 1 is set to logic 1 only if the counter is in state C orD; otherwise, it

is reset. The excitation equations for the other flip-flops may be derived in a similar manner

and are given by

J2 ¼ �xG K2 ¼ 1

J3 ¼ �xE þ �xF þ xAþ xB K3 ¼ 1

J4 ¼ �xBþ xC K4 ¼ 1

J5 ¼ xD K5 ¼ 1

J6 ¼ �xAþ xE K6 ¼ 1

The counter should move to state G whenever the present state is F and the input x ¼ 1;

hence the excitation equation for the J input of flip-flop 7 is

J7 ¼ xF

Furthermore, whenever the counter is in state G and x ¼ 1, it should remain in stage G;

therefore flip-flop 7 should not be reset for this input/state combination. Thus the

excitation equation for the K input is

K7 ¼ �x

The output signal Z can be written

Z ¼ Bþ Dþ F

The logic diagram of the complete sequential circuit is shown in Figure 8.22.

FIGURE 8.22 Implementation of seven-stage sequential circuit.

8.7 RING COUNTERS 309

8.8 JOHNSON COUNTERS

Johnson counters are a variation of standard ring counters, with the inverted output of the

last stage fed back to the input of the first stage. They are also known as twisted ring

counters. An n-stage Johnson counter yields a count sequence of length 2n, so it may

be considered to be a mod-2n counter. Figure 8.23a shows a 4-bit Johnson counter. The

state sequence for the counter, assuming that initially all the flip-flops are reset to 0, is

given in Figure 8.23b. At any count step only one flip-flop changes state, so in a

Johnson counter a state can be decoded using a 2-input AND gate regardless of the

number of flip-flops in the counter. For example, the combination A ¼ 0 and D ¼ 0

occurs only in one state (i.e., the first state of the count sequence shown in

Figure 8.23b). Hence an AND gate with inputs Ā and D̄ can be used to decode this

state. The decoding function for each state of the 4-bit Johnson counter is shown in

Figure 8.23b. Note that for exactly the same number of flip-flops a Johnson counter has

twice the mod number of a ring counter. However, a Johnson counter requires

decoding gates, whereas a ring counter does not. In general, an n-bit Johnson counter pro-

vides state sequences of even length, 2n. However, it is possible to achieve count

sequences of odd length, 2n2 1, by using a 2-input gate for the feedback. A 4-bit pseudo-

Johnson counter of this type and its count sequence are shown in Figure 8.24a and b,

respectively.

Both the ring and Johnson counters must initially be forced into a valid state in the

count sequence because they operate on a subset of the available number of states.

Since a master reset signal is usually provided, this is usually not a problem; in the case

of the ring counter, one of the flip-flops must be preset while the others are being reset.

An alternative way to force these counters to a valid state is to use appropriate feedback

logic. In the 3-bit Johnson counter shown in Figure 8.25a, the nonvalid states are 010 and

101. If the counter starts in one of these states, it will cycle through them indefinitely. The

incorporation of feed back logic, Ā (B̄þ C), will make the counter self-correcting within

two clock cycles (Fig. 8.25b).

Another apparent disadvantage of Johnson-type counters is that they are not very effi-

cient for high count cycles. A mod-32 Johnson counter, for example, requires 16 flip-flops,

whereas only 5 are required for a binary counter. However, by cascading a mod-4 and a

mod-8 Johnson counter, it is possible to reduce the number of flip-flops to only 6. This

arrangement is shown in Figure 8.26 The clock signal is applied to the mod-8 counter

via the AND gate, which allows the clock signal to pass through only when the mod-4

FIGURE 8.23 (a) A 4-bit Johnson counter and (b) the count sequence and state decoder for a 4-bit

Johnson counter.

310 COUNTER DESIGN

FIGURE 8.23 (Continued).

FIGURE 8.24 (a) A 4-bit pseudo-Johnson counter and (b) the count sequence.

8.8 JOHNSON COUNTERS 311

counter is in state EF ¼ 10 (i.e., in the final state of its count sequence). The count

sequence for the mod-32 counter is

FIGURE 8.25 (a) A 3-bit Johnson counter and (b) a 3-bit self-correcting Johnson counter.

FIGURE 8.26 Mod-32 Johnson counter.

312 COUNTER DESIGN

EXERCISES

1. Design a random counter to count the sequence 8, 1, 2, 0, 4, 6, 3, 5, 9, 7. Use D

flip-flops.

2. Construct an 8-bit binary counter using T flip-flops as memory elements.

3. Design a ripple counter to count in excess-3 code.

4. Design a counter that can count either in mod-8 pure binary or in mod-8 Gray code,

depending on a control signal being 1 or 0, respectively.

5. Implement a self-correcting counter that repeatedly generates the sequence 001, 110,

101, 010, 011. Use D flip-flops as memory elements.

6. Design a mod-12 counter using a shift register and appropriate feedback logic.

7. Implement a 4-bit ring counter using JK flip-flops, and show its count sequence.

8. Design a circuit that receives serially the output of the 4-bit ring counter in Exercise 7

and produces an output of 1 if the counter produces an illegal output combination.

9. Construct a 5-bit ring counter using D flip-flops. Combine the counter with a single D

flip-flop to produce a decade counter.

10. In many applications binary ripple counters are found to be very slow. One possible

approach to speed up counting is to use synchronous binary counters with carry-

lookahead. Such a counter can be designed by generating a single carry-lookahead

signal for each counter stage from the output of the previous stage. Derive the design

equation for a 4-bit binary counter with carry-lookahead.

11. Counters are used in many designs to derive lower-frequency clock signals from the

original clock signal. Show how a Johnson counter can be used to generate decoded

signals of mod-2, mod-3, and mod-6 from an incoming clock signal.

12. As discussed in the text, an n-bit Johnson counter is a mod-2n counter. Show how a

4-bit Johnson counter can be converted into a mod-7 (i.e., odd modulo) counter by

adding simple feed-back logic.

REFERENCE

1. J. Muth, “Designing shift counters,” Semiconductors, 4, 11–13 (1970).

REFERENCE 313

9 Sequential Circuit Design
Using VHDL

9.1 INTRODUCTION

The VHDL model of a circuit can be described at several levels (discussed in Chapter 5).

Sequential circuits are typically modeled in VHDL at the behavioral level. A behavioral

VHDL model of a sequential circuit focuses only on the functionality of the circuit.

The actual structure of the sequential circuit is derived from the behavioral VHDL code

by using a computer-aided logic design tool. The key to the behavioral level modeling

is the process statement. As discussed in Chapter 6 a process can be considered as a soft-

ware program that is executed in a sequential manner from top to bottom. Therefore the

order of the statements in a process is important; all the statements are assumed to be exe-

cuted with zero delay. All processes used in the architecture part of the VHDL model of a

sequential circuit are executed concurrently, although the statements within a process are

executed sequentially. In this chapter we describe memory elements as well as various

sequential circuits using VHDL process statements.

9.2 D LATCH

A D latch is a level-sensitive device, that is, when the enable input of a latch is at logic 1, the

input to the latch is copied to its output. The schematic symbol of a D latch is shown in

Figure 9.1.

FIGURE 9.1 D latch.

315

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

A behavioral level VHDL code of a D latch is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity d_latch is
port (Enb, D: in std_logic;

Q, Qbar: out std_logic);
end entity d_latch;

architecture behavior of d_latch is
begin
p1: process (Enb, D)
begin
if Enb = ‘1’ then
Q <= D;
Qbar <= not D;

end if;
end process;
end behavior;

Note that both inputs D and Enb are in the sensitivity list of the process. Thus the process

is entered or activated (i.e., the statements within the process are executed) starting from the

first one, each time either Enb or D changes value. If the Enb signal changes to logic 1 then

D is copied to Q, and Qbar (Q) takes the complement value of D. On the other hand, if the

Enb signal changes to logic 0 then D cannot be copied to Q, and the latch retains its old

value. Similarly, if signal D changes the process is also activated, and Q and Qbar (Q)

changes its value provided the Enb signal is at logic 1; otherwise, Q and Q retain their

old values. The timing diagram shown in Figure 9.2 illustrates the operation of the D latch.

It should be mentioned that a process in the VHDL code does not require a label, but a

label (e.g., p1 for the process statement in the code for D latch) can increase the

understandability of the VHDL code especially if more than one process is used in

the architecture body of the code.

9.3 FLIP-FLOPS AND REGISTERS

9.3.1 D Flip-Flop

Synchronous or clocked sequential circuits use edge-triggered flip-flops as memory

elements as discussed in Chapter 7. All changes in states of synchronous circuits occur

on the edge of the clock signal used. There are several ways in which changes in a

FIGURE 9.2 D latch timing diagram.

316 SEQUENTIAL CIRCUIT DESIGN USING VHDL

clock edge can be represented in VHDL code. To illustrate, the VHDL model of a positive

edge-triggered D flip-flop is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity D_FF is
port (D, clk: in std_logic;

Q: out std_logic);
end entity D_FF;

architecture behavior of D_FF is
begin

process (clk)
begin

if clk’ event and clk = ‘1’ then
Q <= D;

end if;
end process;

end behavior;

The sensitivity list of the process contains only the clk (clock) signal since the output of a

D flip-flop can change output only ifclk is applied. Theclk’ event and clk = ’1’
condition in the if–then statement indicates that the clk signal has changed its value and

become equal to 1. Thus the condition refers to a rising (i.e., 0-to-1) edge on the clock and

is used to denote the output change in a positive-edge triggered D flip-flop. The D input is

copied to the Q output of the flip-flop on the rising edge. Figure 9.3 shows the timing

diagram of the D flip-flop.

A negative-edge triggered flip-flop can be specified by changing the condition in the if

statement to clk’ event and clk =‘0’.
An alternative representation of the positive-edge triggered D flip-flop is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity D_FF is
port (D, clk: in std_logic;

Q: out std_logic);
end entity D_FF;

architecture behavior of D_FF is
begin

process
begin

FIGURE 9.3 D flip-flop timing diagram.

9.3 FLIP-FLOPS AND REGISTERS 317

wait until clk= ‘1’;
Q <= D;

end process;
end behavior;

In this description the wait until clk = ’1’ statement models the

positive-edge trigger of the clock. The process does not require a sensitivity list in

this case, the wait until clk = ’1’ statement automatically implies that the

flip-flop is triggered on the rising edge of the clock. Similarly, a negative-edge triggered

flip-flop can be described by changing clk = ’1’ in the wait until statement to

clk =’0’.
Either a wait until clk = ’1’ or an if clk’ event and clk = ’1’

statement can be used to define a clock edge; however, the latter is preferred because it

is recognized by most computer-aided logic design tools.

9.3.2 T and JK Flip-Flops

A T flip-flop and a JK flip-flop change their current states on a clock edge if their inputs

change. In both of these flip-flops the state can be defined as a variable or a signal. The

VHDL descriptions for these flip-flops are as follows:

library ieee;
use ieee.std_logic_1164.all;

entity T_FF is
port (T, clk, reset: in std_logic;
Q, Qbar: out std_logic);
end T_FF;

architecture behavior of T_FF is
signal temp: std_logic;
begin
process (clk, reset) is
begin
if (reset = ‘1’) then
temp <= ‘0’;
elsif (clk’event and clk = ‘1’) then
if T = ‘1’ then
temp <= not temp;
end if;
end if;

end process;
Q <= temp;
Qbar <= not temp;
end behavior;

The right side of "<=" of an assignment statement in a process can be considered as

an input and the left side as an output of a D flip-flop, and the input is transferred to the

output when the clock signal is activated. Thus only the last values on the right side of

318 SEQUENTIAL CIRCUIT DESIGN USING VHDL

the assignment statements before the clock signal is activated are the valid outputs gener-

ated at the end of the process statement. The timing diagram of the T flip-flop is given in

Figure 9.4.

The VHDL description for the JK flip is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity JK_FF is
port (J, K, clk, Reset: in std_logic;
Q, Qbar: out std_logic);
end JK_FF;

architecture behavior of JK_FF is
signal temp: std_logic;
begin
process (clk, Reset) is

begin
if (Reset = ‘1’) then

temp <= ‘0’;
elsif (clk’event and clk = ‘1’) then

if (J = ‘1’ and K = ‘1’) then
temp <= not temp;
elsif (J = ‘1’ and K = ‘0’) then
temp <= ‘1’;
elsif (J =‘0’ and K = ‘1’) then
temp <= ‘0’;
else
temp <= temp;

end if;
end if;

end process;
Q <= temp;
Qbar <= not temp;
end behavior;

The timing diagram of the JK flip-flop is given in Figure 9.5.

FIGURE 9.4 Timing diagram of the T flip-flop.

9.3 FLIP-FLOPS AND REGISTERS 319

9.3.3 Synchronous and Asynchronous Reset

The outputs of flip-flops in a circuit can take either a 0 or 1 value when power is applied to

the circuit. The flip-flop outputs can be forced to an all 0 state by applying a reset signal to

the circuit. A reset is synchronous if it becomes activated only after the flip-flop is clocked.

The VHDL code for a D flip-flop with synchronous reset is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity D_FF is
port (D, Clk, Reset: in std_logic;

Q: out std_logic);
end D_FF;

architecture behavior of D_FF is
begin

process (clk)
begin

if clk’ event and clk = ‘1’ then
if reset= ‘1’ then

Q <= ‘0’;
else

Q <= D;
end if;

end if;
end process;

end behavior;

Note that the reset input is not included in the sensitivity list because the output of the

flip-flop changes value only on a clock transition. Figure 9.6 shows the timing diagram

of a synchronous reset flip-flop.

FIGURE 9.5 Timing diagram of JK flip-flop.

FIGURE 9.6 Timing diagram of a synchronous reset D flip-flop.

320 SEQUENTIAL CIRCUIT DESIGN USING VHDL

In an asynchronous reset the flip-flop output is affected by both the reset signal and the

clock. Therefore the process statement in the VHDL description of the D flip-flop with

asynchronous reset must include both reset and clock signals in its sensitivity list:

library ieee;
use ieee.std_logic_1164.all;

entity DFF is
port (D, clk, reset: in std_logic;

Q: out std_logic);
end DFF;

architecture behavior of DFF is
begin

process (clk, reset)
begin

if reset = ‘1’ then
Q <= ‘0’;

elsif clk’ event and clk = ‘1’ then
Q <= D;

end if;
end process;

end behavior;

In the code above it is assumed that flip-flop output Q becomes 0 when the reset signal is

active-high. If the reset signal is active-low the architecture part of the VHDL code for the

D flip-flop has to be modified:

architecture behavior of DFF is
begin

process (clk, reset)
begin

if reset = ‘0’ then
Q <= ‘0’;

elsif clk’ event and clk = ‘1’ then
Q <= D;

end if;
end process;

end behavior;

The timing diagram of the flip-flop with active-low asynchronous reset is shown in

Figure 9.7.

FIGURE 9.7 D flip-flop with active-low asynchronous reset.

9.3 FLIP-FLOPS AND REGISTERS 321

9.3.4 Synchronous and Asynchronous Preset

A preset signal sets the output of a flip-flop to logic 1. If the preset is asynchronous the

output changes value irrespective of the status of the clock; on the other hand, for the syn-

chronous preset the change in the output happens in conjunction with the clock signal. The

code for a D flip-flop with asynchronous reset and synchronous preset is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity SRDFF is
port (D, clk, preset, reset: in std_logic;

Q: out std_logic);
end SRDFF;

architecture behavior of SRDFF is
begin
process (clk, reset)
begin
if reset = ‘1’ then

Q <= ‘0’;
elsif clk’ event and clk = ‘1’ then
if preset= ‘1’ then

Q <= ‘1’;
else

Q <= D;
end if;

end if;
end process;

end behavior;

The timing diagram of the flip-flop is shown in Figure 9.8.

9.3.5 Registers

An n-bit register is formed by cascading n flip-flops. The VHDL code for a 4-bit register is

as follows:

library ieee;
use ieee.std_logic_1164.all;

FIGURE 9.8 Timing diagram of synchronous preset and asynchronous reset D flip-flop.

322 SEQUENTIAL CIRCUIT DESIGN USING VHDL

entity reg_4 is
port (reset, clk: in std_logic;

D: in std_logic_vector (3 downto 0);
Q: out std_logic_vector (3 downto 0));

end entity reg_4;

architecture behavior of reg_4 is
begin

process (reset,clk)
begin

if reset = ‘1’ then
Q <= "0000";

elsif clk’ event and clk = ‘1’ then
Q <= D;

end if;
end process;

end behavior;

Both D and Q are defined to be 4-bit data. The sensitivity list of the process statement

includes both reset and clk. As discussed earlier this indicates register Q is reset asyn-

chronously; thus when the reset signal is active-high Q is assigned "0000" (i.e., all 4

bits of the register are assigned 0’s). For a register of arbitrary length a more efficient way

to define that all bits of a register are to be reset to 0’s is to assign

(others => ‘0’);

to the register. For example, if Q is a 64-bit wide register the statement to reset Q is

Q <= (others => ‘0’);

An n-bit register can be formed by defining D and Q as

D: in std_logic_vector (n-1 downto 0);
Q: out std_logic_vector (n-1 downto 0)

and adding the statement

generic (n: integer:= value);

in the entity description of the register; the parameter value is an integer. For example, a

32-bit register can be formed by setting parameter value to 32 in the generic statement as

follows:

entity register is
generic (n: integer:= 32);
port (reset, clk: in std_logic;

D: in std_logic_vector (n-1 downto 0);
Q: out std_logic_vector (n-1 downto 0));

end register;

9.3 FLIP-FLOPS AND REGISTERS 323

architecture behavior of register is
begin

process (reset, clk)
begin

if reset = ‘1’ then
Q <= (others => ‘0’);

elsif clk’ event and clk = ‘1’ then
Q <= D;

end if;
end process;

end behavior;

The above VHDL code for an n (¼32)-bit register can be used to describe a register of any

size by changing the value of parameter n. The statement Q <= (others => ‘0’)
indicates that all the bits in vector Q are reset to 0. The syntax others => is typically

used to assign ‘0’, ‘1’, ‘X’, or ‘Z’ to a vector of arbitrary length. For example, this

syntax is used in the code for an 8-bit tri state buffer to indicate the outputs of the buffer are

in a high impedance (Z) state when the enable signal is not asserted:

library ieee;
use ieee.std_logic_1164.all;

entity trireg is
generic (n: integer:= 8);

port (D: in std_logic_vector (0 to n-1);
enb: in std_logic;

Q: out std_logic_vector (0 to n-1));
end trireg;

architecture behavior of trireg is
begin
process(enb, D)
begin

if enb = ‘1’ then
Q <= D;

else
Q <= (others => ‘Z’);

end if;
end process;
end behavior;

9.4 SHIFT REGISTERS

Several forms of shift registers have been considered in Chapter 7. The VHDL code for a

parallel load and serial in/serial out 4-bit left-to-right shift register is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity ltorshiftreg is
port (R: in std_logic_vector(3 downto 0);

324 SEQUENTIAL CIRCUIT DESIGN USING VHDL

clk, lin, load: in std_logic;
D: buffer std_logic_vector (3 downto 0));
end ltorshiftreg;

architecture behavior of ltorshiftreg is
begin
process (clk)
begin
if clk’ event and clk = ‘1’ then

if load = ‘1’ then
D <= R;

else
D(0) <= D(1);
D(1) <= D(2);
D(2) <= D(3);
D(3) <= lin;

end if;
end if;

end process;
end behavior;

External data is loaded into the shift register when the load signal is 1; this is a synchro-

nous load since data is stored only on a clock edge after the load signal is set at 1. The

above code can be modified to form a right-to-left shift register:

library ieee;
use ieee.std_logic_1164.all;

entity rtolshiftreg is
port (R: in std_logic_vector(3 downto 0);
clk, lin, load: in std_logic;
D: buffer std_logic_vector (3 downto 0));

end rtolshiftreg;

architecture behavior of rtolshiftreg is
begin
process (clk)
begin
if clk’ event and clk = ‘1’ then
if load = ‘1’ then

D <= R;
else

D(3) <= rin;
D(2) <= D(3);
D(1) <= D(2);
D(0) <= D(1);

end if;
end if;
end process;

end behavior;

9.4 SHIFT REGISTERS 325

9.4.1 Bidirectional Shift Register

In a left-to-right shift register each left-shift operation (i.e., a shift toward the most signifi-

cant bit) in effect multiplies the stored data by 2. On the other hand, each right-shift

operation in a right-to-left shift register (i.e., a shift toward the least significant bit)

divides the stored number by 2. It is also possible to design a serial shift register that

can perform both operations. Such a shift register is known as a bidirectional or reversible

shift register in which the data can be shifted either left or right. The VHDL code for an

n-bit bidirectional shift register is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity bishift is
generic(n: natural := 8);
port(clk, dL, dR: in std_logic;
dir,load: in std_logic;
data: in std_logic_vector(0 to n-1);
Q: out std_logic_vector(0 to n-1));
end bishift;

architecture behavior of bishift is
signal reg: std_logic_vector (0 to n-1);
begin
process(clk)
begin
if clk’ event and clk = ‘1’ then

If load = ‘1’ then
reg <= data;
else
if dir = ‘0’ then reg <= (dR & reg (0 to (n-2)));
else
reg <= (reg (1 to (n-1))& dL);
end if;
end if;

end if;
end process;
Q <= reg;
end behavior;

In this code the shift direction is determined by control input dir:

dir ¼ 0 shift right

¼ 1 shift left

The right shift operation is done by concatenating the leftmost input dR and the lowest

(n21) bits. Similarly, the left shift operation is done by concatenating the rightmost

input dL and the upper (n21) bits. Notice that reg is declared as an 8-bit signal.

326 SEQUENTIAL CIRCUIT DESIGN USING VHDL

9.4.2 Universal Shift Register

A more general shift register, known as a universal shift register, can shift data from

right-to-left and left-to-right, can hold the current data, and can load data in parallel.

The modes of operation of universal shift register are selected as shown in Table 9.1.

The behavioral-level VHDL code for an n-bit universal shift register is shown below; it

is assumed n ¼ 8.

library ieee;
use ieee.std_logic_1164.all;

entity unishift is
generic(n: natural:= 8);
port(clk, dL, dR, rst: in std_logic;
s: in std_logic_vector (1 downto 0);
data: in std_logic_vector (n-1 downto 0);
Q: out std_logic_vector (n-1 downto 0));
end unishift;

architecture behavior of unishift is
signal reg: std_logic_vector (n-1 downto 0)
begin
process(clk, rst)
begin
if (rst = ‘0’) then
reg <= (others => ‘0’);

elsif clk’ event and clk = ‘1’ then
if (s = "01") then reg <= (dL & reg ((n-1) downto 1));

elsif (s = "10") then reg <= (reg ((n-2) downto 0)& dR);
elsif (s = "11") then reg <= data;
end if;

end if;
end process;
Q <= reg;
end behavior;

9.4.3 Barrel Shifter

A barrel shifter allows shifting or rotating of data by multiple bits in one clock cycle; the

number of data bits that can be shifted is specified via the control inputs. For an n-bit data

the length of control bits is log2n. The shifted-in bits are all 0’s and shifted-out bits are lost.

TABLE 9.1 Function Modes of a Universal Shift Register

s1 s0 Operation

0 0 Hold data

0 1 Shift right

1 0 Shift left

1 1 Load data

9.4 SHIFT REGISTERS 327

The VHDL code for a 4-bit left-to-right barrel shift register is given below. The length

of the control bits is 2 and is identified by the 2-bit vector (s1s0) in the code. The number of

bits shifted in one operation is selected by the control bits s1 and s0 as shown in Table 9.2.

library ieee;
use ieee.std_logic_1164.all;

entity barrelshift is
port(clk,load: in std_logic;
s: in std_logic_vector (1 downto 0);
data: in std_logic_vector(7 downto 0);
Q: buffer std_logic_vector(7 downto 0));
end barrelshift;

architecture behavior of barrelshift is
begin
process (clk,load)
begin

if load = ‘1’ then
Q <= data;
elsif (clk’ event and clk = ‘1’) then
case s is

when "00" => Q <= Q;
when "01" => Q <= Q(6 downto 0)& ‘0’;
when "10" => Q <= Q(5 downto 0)& "00";
when "11" => Q <= Q(4 downto 0)& "000";

end case;
end if;
end process;

end behavior;

Note that Q has been declared as a buffer std_logic vector. Therefore a signal

statement defining a new register for storing the results produced during the execution of

the process statement is not necessary. In the code for the universal shift register this was

necessary because Q was declared as an out std_logic vector. It should also be

pointed out when others is not strictly necessary in this code for logic synthesis

since all of the 2-bit Boolean combinations of s in the case statement are listed.

However, as indicated earlier in Chapter 6 if all possible values of the expression in the

case statement are not covered, when others must be used to specify output

values for all left-over input combinations; otherwise either unintended latches or

feedback paths in the resulting circuit will be introduced.

TABLE 9.2 Modes of Operation of 4-Bit Barrel Shifter

s1 s0 Number of Bits Shifted

0 0 No shift

0 1 1 bit

1 0 2 bits

1 1 3 bits

328 SEQUENTIAL CIRCUIT DESIGN USING VHDL

9.4.4 Linear Feedback Shift Registers

Linear feedback shift registers (LFSR) are used to generate pseudo-random numbers that

can be high quality audio noise and also test patterns in logic circuit testing. A linear feed

back shift register is formed by connecting the outputs of a selected number of stages in a

shift register to its input through an EX-OR network. Since the feedback path involves

only EX-OR operation (i.e., mod-2 addition of the chosen stages of the shift register), it

is said to be a linear feedback shift register (LFSR). The output of any stage in an

LFSR is a function of the initial state of the bits in the register and of the outputs of the

states that are fed back. Thus the selection of feedback paths is crucial in constructing

an LFSR that performs as required.

An n-bit LFSR may be represented by a polynomial that is irreducible and primitive. A

polynomial that cannot be factored is called irreducible. For example, the polynomials

f(x) = x3 þ x þ 1 and g(x) = x3 þ 1 are irreducible polynomials of degree 3; the degree

of a polynomial is the largest superscript in the polynomial. A polynomial p(x) of

degree n is primitive if the remainders generated from the divisions of all polynomials

with degree c(�2n�1) by p(x) correspond to all possible nonzero polynomials of degree

less than n. For example, the division of x, x2, x3, . . . , x7 by polynomial g(x) results in

the same three remainders 1, x, and x2 repeatedly. On the other hand, if we divide x, x2,

x3, x4, x5, x6, x7 by polynomial f(x), the remainders obtained are x, x2, x þ 1, x2 þ x,

x2 þ x þ 1, x2 þ 1, and 1, respectively. In other words, the division of all polynomials

of degree 1 to 7 by f(x) results in all seven nonzero polynomials of degree less than

3. Thus although both polynomials f(x) and g(x) are irreducible, only f(x) is primitive.

If an LFSR is implemented using f(x) it will repeatedly generate seven binary patterns

in sequence. In general, if the polynomial used to construct an LFSR is of degree n, then

the LFSR will generate all possible 2n� 1 nonzero binary patterns in sequence; this

sequence is termed the maximal length sequence of the LFSR.

Figure 9.9 shows the general representation of an LFSR based on the primitive

polynomial

a(x) ¼ xn þ an�1x
n�1 þ � � � þ a2x

2 þ a1xþ a0 (9:1)

The feedback connections needed to implement an LFSR can be derived directly from the

chosen primitive polynomial. To illustrate, let us consider the following polynomial of

FIGURE 9.9 General representation of an LFSR.

9.4 SHIFT REGISTERS 329

degree 4:

x4 þ xþ 1

This can be rewritten in the form of expression (9.1):

a(x) ¼ 1 � x4 þ 0 � x3 þ 0 � x1 þ 1 � xþ 1 � x0

If the coefficient of xi is 1, there is feedback from stage i, whereas if the coefficient is 0, the

output of stage i is not connected to the EX-OR network. Figure 9.10a and 9.10b show the

four-stage LFSR constructed by using the above polynomial and the corresponding

maximal length sequence, respectively.

It is possible to construct LFSRs from certain shift registers by using feedback paths

from only two stages; a partial list of such registers is given in Table 9.3 [2]. All of

these LFSRs produce maximal length sequences.

FIGURE 9.10 (a) A 4-bit LFSR and (b) maximal length sequence.

330 SEQUENTIAL CIRCUIT DESIGN USING VHDL

The VHDL code of a LFSR of four stages is given below. Table 9.3 shows that by using

feedback paths from only two stages a LFSR can provide maximal length sequences. The

seed value for the LFSR is declared as a constant; any pattern except all 0’s can be the

seed or the starting pattern. An all 0 pattern is not used because it will lock the LFSR in that

state. The LFSR goes through a sequence of 15 states and after that the sequence repeats

itself. By changing the seed the LFSR can be made to go through a different sequence of

15 states.

library ieee;
use ieee.std_logic_1164.all;

entity lfsr is
port (clk, load: in std_logic;
d: buffer std_logic_vector (4 downto 1));
end lfsr;

architecture behavior of lfsr is
constant seed: std_logic_vector (4 downto 1):= "0010";
begin

process (clk, load)
variable feedback: std_logic;

begin
if load = ‘1’ then

d <= seed;
elsif (clk’ event and clk = ‘1’) then
feedback:= d(4) xor d(1);
d <= d(3 downto 1)& feedback;
end if;

end process;
end behavior;

TABLE 9.3 Maximal Length LFSRs with Two Feedback Paths

Number of

Stages

Stages from Which Feedback

Paths are Derived

(Corresponding Polynomial)

Length of

Sequence

7 1, 7 (x7þ xþ 1) 127

or 3, 7 (x7þ x3þ 1)

9 4, 9 (x9þ x4þ 1) 511

10 3, 10 (x10þ x3þ 1) 1,023

11 2, 11 (x11þ x2þ 1) 2,047

15 1, 15 (x15þ x4þ 1) 32,767

or 4, 15 (x15þ x4þ 1)

or 7, 15 (x15þ x7þ 1)

17 3, 17 (x17þ x3þ 1) 131,071

or 5, 17 (x17þ x5þ 1)

or 6, 17 (x17þ x6þ 1)

18 7, 18 (x18þ x7þ 1) 262,143

20 3, 20 (x20þ x3þ 1) 1,048,575

9.4 SHIFT REGISTERS 331

The simulation results of the LFSR obtained by assuming seed value 0010 are shown in

Figure 9.11. The implementation of the LFSR is shown in Figure 9.12.

9.5 COUNTERS

A variety of counters are also utilized in digital systems; in Chapter 8 many types of coun-

ters were discussed. The VHDL code for a 4-bit up counter is as follows:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity upcounter is
port (clk, reset: in std_logic;
Q: out std_logic_vector (3 downto 0));
end upcounter;

architecture behavior of upcounter is
signal count: std_logic_vector (3 downto 0);
begin

process (clk, reset)
begin

if reset = ‘1’ then
count <= (others => ‘0’);

elsif clk’ event and clk = ‘1’ then
count <= count + 1;

end if;
end process;
Q <= count;
end behavior;

FIGURE 9.12 A 4-bit LFSR.

FIGURE 9.11 Simulation results of the 4-bit LFSR.

332 SEQUENTIAL CIRCUIT DESIGN USING VHDL

The library declaration use ieee.std logic unsigned.all in this description

allows the use of std_logic vector signals as unsigned binary numbers that can

be incremented or decremented as required. The signal statement is not necessary if Q
is declared as buffer std_logic vector. Note that the elsif statement does

not include an else clause because the count retains its previous value if the clock is

not activated. The simulation results of the 4-bit up counter are shown in Figure 9.13.

A down counter can be described in a similar manner simply by changing the statement

count <= count + 1 to count <= count-1. The VHDL description of a generic

up/down counter with parallel load capability is as follows:

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

entity udcounter is
generic(n: integer: =16);
port (clk, reset, updn, load: in std_logic;
R: in std_logic_vector (n-1 downto 0));
Q: buffer std_logic_vector (n-1 downto 0));
end udcounter;

architecture behavior of udcounter is
begin

process (clk, reset)
begin

if reset=‘1’ then
Q <= (others => ‘0’);

elsif clock’ event and clk=‘1’ then
if load= ‘1’ then

Q <= R;
elsif updn = ‘0’ then

Q <= Q+1;
else

Q <= Q-1;
end if;

end if;
end process;

end behavior;

FIGURE 9.13 Simulation results of 4-bit up counter.

9.5 COUNTERS 333

Parallel data R and count value Q in the VHDL representation of a counter can be

represented as integers instead of logic vectors. As an example, the code for a mod-6

up–down counter is

entity udcounter is
port (clock, reset, updn, load: in std_logic;
R: in integer range 0 to 5;
Q: buffer integer range 0 to 5);
end udcounter;

architecture behavior of udcounter is
begin

process (clk, reset)
begin

if reset = ‘1’ then
Q <= 0;

elsif clk’ event and clk = ‘1’ then
if load = ‘1’ then

Q <= R;
elsif updn = ‘0’ then

if Q=6 then
then Q <= 0;

else Q <= Q+1;
end if;

else
if Q = 0 then

then Q <= 6;
else Q <= Q-1;

end if;
end if;

end if;
end if;

end if;
end process;

end behavior;

9.5.1 Decade Counter

The decade counter counts up to 9 starting from 0 and then automatically resets to 0; the

count is incremented on each clock edge. The counter can be forced to an all 0 state by

making the reset line high. The VHDL code for the decade counter is as follows:

library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity decade_counter is
port(clk: in std_logic;

reset: in std_logic;
q: out std_logic_vector(3 downto 0));

end decade_counter;

334 SEQUENTIAL CIRCUIT DESIGN USING VHDL

architecture behavior of decade_counter is
signal temp: std_logic_vector(3 downto 0);
begin
process(clk, reset)

begin
if reset = ‘1’ then
temp <= (others => ‘0’);
elsif (clk’event and clk = ‘1’) then
if temp < 9 then
temp <= temp + ‘1’;
else
temp <= ‘‘0000’’;

end if;
end if;
end process;
q <= temp;
end behavior;

The simulation results of the decade counter are shown in Figure 9.14.

9.5.2 Gray Code Counter

A Gray code has the property that any two codewords are adjacent (i.e., differ by only 1

bit) (see Chapter 1). An n-bit Gray code counter has 2n states; only one of the state bits

changes during the transition from a present state to a next state. The VHDL code for a

4-bit Gray code counter is given below. The counter is basically a 4-bit up counter with

its outputs converted to a Gray code. The counter can be loaded with an initial value (0

to 15) when the load signal is set to 0. The loaded value is converted to a Gray codeword

before the counting process starts.

library ieee;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity graycounter is
port (reset, clk, load: in std_logic;

D: in std_logic_vector(3 downto 0);
Q: buffer std_logic_vector(3 downto 0);
gray: out std_logic_vector(3 downto 0));

end graycounter;

FIGURE 9.14 Simulation results of the decade counter.

9.5 COUNTERS 335

architecture behavior of graycounter is
begin
process (reset, load, clk)
begin

if (reset = ‘1’) then
Q <= (others => ‘0’);
elsif (load = ‘0’) then
Q <= D;
elsif clk’event and clk = ‘1’ then
Q <= Q+1;
end if;

end process;
gray(3) <= Q(3);
gray(2) <= Q(2) xor Q(3);
gray(1) <= Q(2) xor Q(1);
gray(0) <= Q(1) xor Q(0);
end behavior;

The code uses an ieee.std_logic_unsigned.all statement, which allows

arithmetic operations on unsigned numbers in the code. The simulation results of the

4-bit Gray code counter are shown in Figure 9.15. The number 1011 is loaded into

the counter first, which is converted into 1110 before the counting sequence begins.

The binary equivalent of each Gray code count value is also shown in the diagram.

9.5.3 Ring Counter

A ring counter has as many states as the number of flip-flops in it. A VHDL description of

an n-bit ring counter with n set to 4 is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity ringcounter is
generic (n: integer: = 4);
port (start,clk: in std_logic;

Q: buffer std_logic_vector(0 to n-1));
end ringcounter;

FIGURE 9.15 Simulation results of 4-bit Gray code counter.

336 SEQUENTIAL CIRCUIT DESIGN USING VHDL

architecture behavior of ringcounter is
begin
process (clk,start)
begin
if start = ‘1’ then
Q(0) <= ‘1’;
Q(1 to n-1) <= (others => ‘0’);
elsif (clk’event and clk = ‘1’) then
shift: for i in 1 to n-1 loop
Q(i) <= Q(i-1);
end loop;
Q(0) <= Q(n-1);
end if;

end process;
end behavior;

Note that this code uses a for loop statement. As indicated in Chapter 6, a for loop state-

ment repeats a sequence of statements for an explicitly stated number of times; a loop label

is optional but is recommended to clarify the function of the loop. The statement inside the

loop, shift, in the above code transfers the content of register Q left to right and is iter-

ated n� 1(¼3) times. The simulation results of the 4-bit ring counter are shown in

Figure 9.16.

9.5.4 Johnson Counter

The VHDL specification for a Johnson counter can be obtained by setting the left most bit

of the Q register to 1 and the remaining bits to 0, thereby making 1000 as the staring state

of the counter. The VHDL description for an n-bit Johnson counter is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity johncount is
generic (n: integer: = 4);
port (clk, reset: in std_logic;

Q: buffer std_logic_vector(0 to n-1));
end johncount;

architecture behavior of johncount is
begin

process (clk, reset)

FIGURE 9.16 Functional simulation of 4-bit ring counter.

9.5 COUNTERS 337

begin
if reset = ‘1’ then

Q <= (others => ‘0’);
elsif (clk’ event and clk = ‘1’) then

shift: for i in 1 to n-1 loop
Q(0) <= not Q(n-1);

Q(1 to n-1) <= Q(0 to n-2);
end loop;
end if;
end process;
end behavior;

Note that the first statement within the for loop transfers the value of the most significant

bit of the counter to the least significant bit. This statement can also be put just after the

end loop clause. The simulation results of the 4-bit Johnson counter are given in

Figure 9.17.

9.6 STATE MACHINES

State machines or sequential circuits can be either Moore type or Mealy type (see

Chapter 7). In a Moore machine the output is a function of the present state only; therefore

the output can change only on a clock transition (Fig. 9.18a). In a Mealy machine, on

the other hand, the output is a function of the current state as well as the current input

and may change if the input changes. Thus the output in a Mealy machine unlike in a

Moore machine can change even if the clock signal does not change (Fig. 9.18b).

9.6.1 Moore-Type State Machines

Wewill consider VHDL code generation for Moore-type state machines first. As discussed

in Chapter 7, the state register holds the present state of the state machine. The output of

the state register drives the output logic block and is also fed back to the input of the next

state logic block. A straightforward implementation of the Moore state machine will be to

map each block in Figure 9.18a into a process. To illustrate, let us consider the state

machine shown in Figure 9.19.

The EX-OR gate is the next state logic; it can be represented by process p1. The D flip-

flop is the state register and state transitions in the flip-flop are described by process p2.
The output logic consists of an inverter and can be represented by process p3. Note that n
(the output of EX-OR) and q (the state bit) are internal outputs and are defined as type

FIGURE 9.17 Function simulation of 4-bit Johnson counter.

338 SEQUENTIAL CIRCUIT DESIGN USING VHDL

signals in the VHDL code. The VHDL code of the state machine composed of three pro-

cesses is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity moore3 is
port (m, clk: in std_logic;

r: out std_logic);
end moore3;

architecture fsm1 of moore3 is
signal n, q: std_logic;
begin
p1: process(m, q)

begin
n <= m xor q;
end process;

FIGURE 9.18 Models of (a) Moore state machine and (b) Mealy state machine.

FIGURE 9.19 A Moore-type state machine.

9.6 STATE MACHINES 339

p2: process
begin
wait until clk = ‘1’;
q <= n;
end process;

p3: process(q)
begin
r <= not q;
end process;

end fsm1;

Note that at the end process p2 the state bit may change its value, which in turn activates

processes p1 and p3, thereby changing the value at the input of the state register as well as
changing the output value.

A more efficient VHDL code could be obtained by using two processes. One of these

sets the current state of the register based on the signal value computed by the next state

logic; this process is activated by the clock signal. An asynchronous reset signal may also

be used in this process to set the current state; however, this is an option not a requirement.

The other process determines the next state value from the current state and the inputs and

also computes the output; this process is sensitive to current state values and inputs. The

VHDL code for the circuit of Figure 9.19 using two processes is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity moore2 is
port (m,clk: in std_logic;
r: out std_logic);
end moore2;

architecture moorearch of moore2 is
signal q:std_logic;

begin
p1: process(q)

begin
r <= not q;
end process;

p2: process
begin
wait until clk = ‘1’;
q <= q xor m;
end process;

end moorearch;

The VHDL code for a Moore-type state machine can also be described by using a single

process. For example, theVHDL code for Figure 9.19 that uses a single process is as follows:

library ieee;
use ieee.std_logic_1164.all;

340 SEQUENTIAL CIRCUIT DESIGN USING VHDL

entity moorex is
port (m,clk: in std_logic;
r: out std_logic);

end moorex;

architecture fsm1 of moorex is
signal q:std_logic;
begin
p1: process(clk)
begin
if (clk’event and clk = ‘1’) then
q <= q xor m;
end if;
end process;
r <= q;

end fsm1;

Note that in addition to the process the code has a concurrent statement (included at the

end of the process) to compute the output.

9.6.2 Mealy-Type State Machines

A Mealy-type state machine can always be specified by two processes. One process

describes the next state logic and the state register, and the other one describes the

output logic. To illustrate, let us consider the state machine shown in Figure 9.20. The

VHDL code for the machine is given below; process p1 describes the next state

logic and the clocking of the state register, while process p2 specifies the output logic.

An asynchronous reset signal is used in process p1.

library ieee;
use ieee.std_logic_1164.all;

entity mealy1 is
port (m, reset, clk: in std_logic;
r: out std_logic);
end mealy1;
architecture mealyarch of mealy1 is
signal n, q: std_logic;

FIGURE 9.20 A Mealy-type state machine.

9.6 STATE MACHINES 341

begin
p1: process(reset, clk)
begin
if reset = ‘1’ then
q <= ‘0’;
elsif (clk’event and clk = ‘1’) then
q <= not (q xor m);
end if;
end process p1;
p2: process(m,q)
begin
r <= q xor m;
end process p2;
end mealyarch;

9.6.3 VHDL Codes for State Machines Using Enumerated Types

State machines are in general coded in VHDL directly from their state diagram or state

table representations. The VHDL code is then converted into a circuit structure by a

CAD system such as Quartus II. In order to specify a state diagram (or state table) in

VHDL the states in the diagram are declared as enumeration type data; an enumeration

type provides a means for defining a unique data type. For example, the states in the

Moore-type state machine shown in Figure 9.21 could be declared an enumerated type

(state_type) as follows:

Type state_type (A,B,C)

The VHDL code for the Moore-type machine is as follows:

library ieee;
use ieee.std_logic_1164.all;

FIGURE 9.21 State diagram of a Moore-type state machine.

342 SEQUENTIAL CIRCUIT DESIGN USING VHDL

entity moorep is
port (x, reset, clk: in std_logic;
y: out std_logic);
end moorep;

architecture moorearch of moorep is
type state_type is (A,B,C);
signal PS,NS: state_type;
begin

p1: process(clk, reset)
begin

if reset = ‘1’ then
PS <= A;
elsif (clk’event and clk = ‘1’) then
PS <= NS;
end if;

end process p1;

p2: process(PS,x)
begin
case PS is

when A =>
if (x = ‘0’) then NS <= B;
else NS <= C;
end if;
when B =>
if (x = ‘0’) then NS <= A;
else NS <= B;
end if;
when C =>
if (x = ‘0’) then NS <= C;
else NS <= A;
end if;

end case;
end process p2;

y <= ‘1’ when PS = C else ‘0’;
end moorearch;

The VHDL code consists of two processes. The first process as discussed previously speci-

fies that the next state (NS) value is transferred to present state (PS) on the positive edge of

the clock signal. It also indicates that if reset signal is set to 1, A becomes the present state.

The second process uses a case statement to determine the next state value from a

present state and the value of input x. Initially the first element in state_type is con-

sidered to be the present state. The subsequent state transitions occur as specified in the

case statement. A word of caution, if the state transitions are not correctly presented

in the case statement, the synthesis tool will produce a circuit structure that is different

from what is intended; the VHDL compiler will not be able detect such human errors.

The output of the machine is written as a separate concurrent statement outside the pro-

cesses. It defines the output (y) to be 1 only when the circuit is in state A. Recall that a

9.6 STATE MACHINES 343

process itself is a concurrent statement; thus the architecture body of the VHDL code for

the Moore-type machine consists of three concurrent statements.

The Quartus II compiler allows selection of state encoding from the following: auto,

minimal bits, 1-hot, and user-encoded. If the minimal bits option is selected, the assign-

ment will be ‘‘00’’ for the first state (A), ‘‘01’’ for the second state (B) and ‘‘10’’ for the

third state (C). The encoding of states using the other options will be discussed later in

the chapter.

As indicated earlier, a Moore-type machine can also be described using a single process

instead of two. The VHDL code for the Moore-type machine of Figure 9.21 that uses a

single process is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity moore5 is
port (x, reset, clk: in std_logic;
y: out std_logic);
end moore5;

architecture moorearch of moore5 is
type state_type is (A,B,C);
signal CS: state_type;
begin

p1: process(clk, reset)
begin
if reset = ‘1’ then
CS <= A;
elsif (clk’event and clk = ‘1’) then
case CS is

when A =>
if (x = ‘0’) then CS <= B;
else CS <= C;
end if;
when B =>
if (x = ‘0’) then CS <= A;
else CS <= B;
end if;
when C =>
if (x = ‘0’) then CS <= C;
else CS <= A;
end if;
end case;
end if;

end process p1;
y <= ‘1’ when CS = C else ‘0’;
end moorearch;

In this code the signal CS represents the present state. As in the code using two processes, the

statemachine initially starts at stateA. Thecase statement then determines the next state based

344 SEQUENTIAL CIRCUIT DESIGN USING VHDL

on the present state and the input value. The next state value is transferred to present state CS
only at the endof theprocess.Theoutput is determinedbasedon thepresent state of themachine.

9.6.4 Mealy Machine in VHDL

As indicated earlier a Mealy machine can be specified in VHDL using two processes.

Figure 9.22 shows the state diagram of a state machine that produces an output of 1

when it receives the sequence 110. The VHDL code for the state machine is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity mealy3 is
port (x, reset, clk: in std_logic;
z: out std_logic);
end mealy3;

architecture mealyarch of mealy3 is
type state_type is (A,B,C);
signal PS: state_type;
begin

p1: process(clk, reset)
begin
if reset = ‘1’ then
PS <= A;
elsif (clk’event and clk = ‘1’)then
case PS is

when A =>
if (x = ‘0’) then PS <= A;
else PS <= B;
end if;
when B =>
if (x = ‘0’) then PS <= A;

FIGURE 9.22 Sequence (110) detector circuit.

9.6 STATE MACHINES 345

else PS <= C;
end if;
when C =>
if (x = ‘0’) then PS <= A;
else PS <= C;
end if;
end case;
end if;

end process p1;

p2: process(PS,x)
begin
case PS is
when A =>
if (x = ‘0’) then z <= ‘0’;
else z <= ‘1’;
end if;
when B =>
z <= ‘0’;
when C =>
if (x = ‘0’) then z <= ‘1’;
else z <= ‘0’;
end if;
end case;
end process p2;

end mealyarch;

Process p1 deals with the state transitions. As in the case of the Moore machine the states

of the circuit are defined as state_type. Signal PS represents the state of the circuit.

Process p2 is used to define the output changes in the circuit with change in input x.
Note that the output changes are specified in a separate process because in a Mealy

machine the output can change when the input does because the output is a function of

the input and the current state. If the output is made part of process p1 then both

state and output changes can happen only when the clock signal makes a transition,

thus implying that the output is registered, which is not true for Mealy machines.

As an additional example, let us describe the state machine shown in Figure 9.23 in

VHDL code:

library ieee;
use ieee.std_logic_1164.all;

entity mealy3a is
port (clk, resetn : in std_logic;

a, b, c, d : in std_logic;
z : out std_logic_vector(1 downto 0));

end mealy3a;

architecture behavior of mealy3a is
type state_type is(K, L, M, N, P, Q, R, S, T);
signal PS : state_type;

346 SEQUENTIAL CIRCUIT DESIGN USING VHDL

begin
process (resetn, clk)
begin

if resetn = ‘0’ then
PS <= K;

elsif (clk’event and clk = ‘1’)then
case PS is

when K =>
if c = ‘0’ then PS <= K;
elsif (c = ‘1’ and d = ‘1’) then PS <= L;
elsif (a = ‘1’ and c = ‘1’ and d = ‘0’)
then PS <= S;

end if;
when L =>

if (a = ‘0’ and b = ‘0’ and d = ‘0’)
then PS <= L;

elsif d = ‘1’ then PS <= M;
elsif (b = ‘1’ and c = ‘1’ and d = ‘0’)
then PS <= R;

elsif a = ‘1’ then PS <= K;
end if;

FIGURE 9.23 A state machine.

9.6 STATE MACHINES 347

when M =>
if a = ‘0’ then PS <= M;
elsif (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

PS <= N;
end if;

when N =>
if a = ‘0’ then PS <= N;
elsif (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

PS <= P;
end if;

when P =>
if a = ‘0’ then PS <= P;
elsif (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

PS <= Q;
end if;

when Q =>
if a = ‘0’ then PS <= Q;
elsif (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

PS <= S;
end if;

when R =>
if a = ‘0’ then PS <= R;
elsif (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

PS <= Q;
end if;

when S =>
if a = ‘0’ then PS <= S;
elsif (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

PS <= L;
end if;

when T =>
if a = ‘0’ and b = ‘0’then PS <= T;
elsif b = ‘1’ and d = ‘1’ then PS <= P;
end if;

when others =>
PS <= K;

end case;
end if;

end process;

process (PS,a,b,c,d)
begin

348 SEQUENTIAL CIRCUIT DESIGN USING VHDL

case PS is
when K =>

if (a = ‘1’ and c = ‘1’ and d = ‘0’) then
Z <= ‘‘10’’;
elsif c = ‘0’ then
z <= ‘‘00’’;
end if;

when M =>
if (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

z <= ‘‘00’’;
elsif a = ‘0’ then
z <= ‘‘10’’;
end if;

when N =>
if (a = ‘1’ and b = ‘1’and c = ‘1’
and d = ‘1’) then

z <= ‘‘00’’;
elsif a = ‘0’ then
z <= ‘‘01’’;
end if;

when P =>
if (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

z <= ‘‘00’’;
elsif a = ‘0’ then
z <= ‘‘01’’;
end if;

when Q =>
if (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

z <= ‘‘00’’;
elsif a = ‘0’ then
z <= ‘‘01’’;
end if;

when R =>
if (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then
z <= ‘‘00’’;
elsif a = ‘0’ then
z <= ‘‘10’’;
end if;

when S =>
if (a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’) then

z <= ‘‘00’’;
elsif a = ‘0’ then
z <= ‘‘01’’;

9.6 STATE MACHINES 349

end if;
when T =>

if (a = ‘1’ and c = ‘1’ and d = ‘0’) then
z <= ‘‘00’’;
elsif (b = ‘1’ and d = ‘1’) then
z <= ‘‘10’’;
elsif (a = ‘0’ and b = ‘0’) then
z <= ‘‘01’’;
end if;

when L =>
if a = ‘1’ then
z <= ‘‘10’’;
elsif (b = ‘1’ and c = ‘1’ and d = ‘0’)
then

z <= ‘‘01’’;
elsif d = ‘1’ then
z <= ‘‘00’’;
end if;

when others =>
z <= ‘‘00’’;

end case;
end process;

end behavior;

In a Mealy machine the output logic can be defined using signal assignment statements

instead of using a process statement. For example, the output logic in the above code can

be specified as follows:

Z <= ‘‘00’’ when (PS = K and c = ‘1’ and d = ‘1’) else
‘‘10’’ when (PS = K and c = ‘0’) else
‘‘01’’ when (PS = K and a = ‘1’ and c = ‘1’ and
d = ‘0’) else

‘‘10’’ when (PS = L and a = ‘1’) else
‘‘00’’ when (PS = L and d = ‘1’) else
‘‘01’’ when (PS = L and b = ‘1’ and c = ‘1’ and
d = ‘0’) else

‘‘00’’ when (PS = M and a = ‘1’ and b = ‘1’ and
c = ‘1’ and d = ‘1’)

else
‘‘10’’ when (PS = M and a = ‘0’) else

‘‘00’’ when (PS = N and a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’)

else
‘‘01’’ when (PS = N and a = ‘0’) else

‘‘00’’ when (PS = P and a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’)

350 SEQUENTIAL CIRCUIT DESIGN USING VHDL

else
‘‘01’’ when (PS = P and a = ‘0’) else

‘‘00’’ when (PS = Q and a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’)

else
‘‘01’’ when (PS = Q and a = ‘0’) else

‘‘00’’ when (PS = R and a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’)

else
‘‘10’’ when (PS = R and a = ‘0’) else

‘‘00’’ when (PS = S and a = ‘1’ and b = ‘1’ and c = ‘1’
and d = ‘1’)

else
‘‘01’’ when (PS = S and a = ‘0’) else

‘‘00’’ when (PS = T and a = ‘1’ and c = ‘1’ and
d = ‘0’) else

‘‘01’’ when (PS = T and a = ‘0’ and b = ‘0’) else
‘‘10’’ when (PS = T and b = ‘1’ and d = ‘1’) else
‘‘11’’;

9.6.5 User-Defined State Encoding

The VHDL code for the state machines discussed previously assumed state assignment

using minimum bits. It is also possible to choose user-defined bits or 1-hot encoding for

states. Let us illustrate first user-defined state assignment for the state machine specified

by the state diagram of Figure 9.24. The state codes can be derived by using a formal

state assignment technique (discussed earlier in Chapter 7).

An enumeration type data, state_type, is defined by specifying the list of all states

it can take. Each enumerated element in state_type can be directly assigned a unique

FIGURE 9.24 A state machine.

9.6 STATE MACHINES 351

value using the attribute enum_encoding. This attribute must be declared in the archi-

tecture part of the VHDL code after the state_type declaration statement as follows:

attribute enum_encoding:string;

This declaration indicates that the enum_encoding is a string literal, that is, a sequence

of characters within double quotes. Next, the enum_encoding is used to assign unique

code to each symbolic state declared in the state_type statement. To illustrate, the use

of enum_encoding to assign codes to a state machine with three states is as follows:

type state_type is (A,B,C);
attribute enum_encoding: string;
attribute enum_encoding of state_type: type is ‘‘10 11 00’’;

This will assign patterns 10, 11, and 00 to states A, B, and C, respectively, that is, in the

order in which the patterns are presented in the string. Each code in the string must be sep-

arated from its adjacent code(s). For a large number of states the corresponding codes can

be concatenated so that the string can be represented along multiple lines.

The VHDL description of the circuit of Figure 9.24 that employs user-defined state

assignment is given below; it uses the state codes (Table 9.4) derived by using the state

assignment technique JEDI. The codes for the states are as follows:

library ieee;
use ieee.std_logic_1164.all;

entity mealy4 is
port (clk, resetn : in std_logic;

p, c, f : in std_logic;
z : out std_logic_vector(1 downto 0));

end mealy4;

architecture behavior of mealy4 is
type state_type is(S, T,U,V,W,X,Y);
attribute enum_encoding: string;
attribute enum_encoding of state_type: type is ‘‘101 111
000 100 010 011 001’’;

signal PS: state type;
begin

TABLE 9.4 State Codes for the Machine of Figure 9.24

y0 y1 y2

S 1 0 1

T 1 1 1

U 0 0 0

V 1 0 0

W 0 1 0

X 0 1 1

Y 0 0 1

352 SEQUENTIAL CIRCUIT DESIGN USING VHDL

process (resetn, clk)
begin

if resetn = ‘0’ then
PS <= S;

elsif (clk’event and clk = ‘1’)then
case PS is

when S =>
if p = ‘1’ then PS <= S;
else PS <= T;
end if;

when T =>
if c = ‘0’ then PS <= U;
else PS <= Y;
end if;

when U =>
if p = ‘0’ then PS <= U;
else PS <= V;
end if;

when V =>
if p = ‘0’ then PS <= W;
else PS <= V;
end if;

when W =>
if (c = ‘0’ and f = ‘0’)then PS <= U;
elsif (f = ‘1’ and c = ‘0’)then PS <= X;
elsif c = ‘1’ then PS <= y;
end if;

when X =>
if p = ‘0’ then PS <= X;
else PS <= S;
end if;

when Y =>
if p = ‘0’ then PS <= Y;
else PS <= S;
end if;

end case;
end if;

end process;

process (PS, p, c, f)
begin
z <= ‘‘00’’;
case PS is

when S =>
if p = ‘1’ then
z <= ‘‘01’’;
else
z <= ‘‘10’’;

9.6 STATE MACHINES 353

end if;
when T =>

if c = ‘0’ then
z <= ‘‘01’’;
else
z <= ‘‘10’’;
end if;

when U =>
if p = ‘1’ then
z <= ‘‘10’’;
else
z <= ‘‘01’’;
end if;

when V =>
if p = ‘1’ then
z <= ‘‘01’’;
else
z <= ‘‘10’’;
end if;

when W =>
if c = ‘0’ and f = ‘0’ then
z <= ‘‘01’’;
elsif c = ‘0’ and f = ‘1’ then
z <= ‘‘00’’;
elsif c = ‘1’ then
z <= ‘‘11’’;
end if;

when X =>
if p = ‘1’ then
z <= ‘‘01’’;
else
z <= ‘‘00’’;
end if;

when Y =>
if p = ‘1’ then
z <= ‘‘10’’;
else
z <= ‘‘11’’;
end if;

end case;
end process;

end behavior;

A drawback of the enum_encoding attribute is that not all CAD-based state machine

design tools use this for state encoding. An alternative approach for user-defined state

encoding that is acceptable to any CAD tool for logic synthesis is to represent each

symbolic state as a constant.

354 SEQUENTIAL CIRCUIT DESIGN USING VHDL

The VHDL code for the circuit of Figure 9.24 that uses constants for state encoding can

be obtained by eliminating the following part of the code from the architecture part that

uses the enum_encoding attribute:

type state_type is (S,T,U,V,W,X,Y);
attribute enum_encoding: string;
attribute enum_encoding of state_type: type is ‘‘101 111
000 100 010 011 001’’;
signal PS: state_type;

Instead the following is used:

signal PS: std_logic_vector(2 downto 0);
constant S: std_logic_vector(2 downto 0): = ‘‘101’’;
constant T: std_logic_vector(2 downto 0): = ‘‘111’’;
constant U: std_logic_vector(2 downto 0): = ‘‘000’’;
constant V: std_logic_vector(2 downto 0): = ‘‘100’’;
constant W: std_logic_vector(2 downto 0): = ‘‘010’’;
constant X: std_logic_vector(2 downto 0): = ‘‘011’’;
constant Y: std_logic_vector(2 downto 0): = ‘‘001’’;

Since each state is encoded using 3 bits, a 3-bit vector is needed to represent a state. A con-

stant is used to identify a unique value of the vector (i.e., a state). The syntax for a constant is

constant Name: DataType:= Expression;

It uses the operator ‘‘:=’’, and the expression is a bit string literal in this example.

9.6.6 1-Hot Encoding

In general, the use of minimum number of bits for state encoding results in more complex

next state and output expressions. The use of more bits for state encoding, on the other

hand, leads to more but simpler expressions. Current Filed Programmable Gate Arrays

(FPGAs) have more flip-flops available for use compared to Complex Programmable

Logic Devices (CPLDs). Thus for implementing large state machines on FPGAs, the

use of n flip-flops for n states as required in 1-hot encoding is a feasible strategy.

The 1-hot encoding of states in VHDL can be specified by making the following simple

changes to user-defined encoding using constants (shown in the previous example):

architecture behavior of mealy7 is
signal PS: std_logic_vector(6 downto 0);
constant S: std_logic_vector(6 downto 0): = ‘‘1000000’’;
constant T: std_logic_vector(6 downto 0): = ‘‘0100000’’;
constant U: std_logic_vector(6 downto 0): = ‘‘0010000’’;
constant V: std_logic_vector(6 downto 0): = ‘‘0001000’’;
constant W: std_logic_vector(6 downto 0): = ‘‘0000100’’;
constant X: std_logic_vector(6 downto 0): = ‘‘0000010’’;
constant Y: std_logic_vector(6 downto 0): = ‘‘0000001’’;

The Quartus II CAD system has four options for selecting state codes: auto, minimal

bits, 1-hot, and user-encoded. The auto option chooses codes that may not be minimal,

9.6 STATE MACHINES 355

whereas the minimal assigns minimum number of bits to encode states. The user-encoded

option allows the use of enum_encoding or constants to define states as shown in previous

examples. The 1-hot option instead of setting a single bit to 1 sets two bits to 1’s and all

other bits to 0’s, and also the starting state is set to all 0’s. However, each state can be

identified by the value of a single bit as in the case of 1-hot code.

The VHDL description for the state machine of Figure 9.24 with 1-hot option can be

obtained by just replacing the following line in the architecture description based on the

enum_encoding attribute:

attribute enum_encoding of state_type: type is ‘‘101 111 000
100 010 011 001’’;

with

attribute enum_encoding of state_type: type is ’’one-hot’’;

The state codes used by the Quartus II CAD system for the state machine are:

S 0 0 0 0 0 0 0

T 0 0 0 0 0 1 1

U 0 0 0 0 1 0 1

V 0 0 0 1 0 0 1

W 0 0 1 0 0 0 1

X 0 1 0 0 0 0 1

Y 1 0 0 0 0 0 1

9.7 CASE STUDIES

Case Study 1: Dice Game Controller
We specify the VHLD code for the controller of the dice game ‘‘craps.’’ The controller part

of a digital system is a state machine that controls the data path. The game is played based

on the following rules:

1. A player throws two dice obtaining a number between 2 and 12.

2. He/she wins if the number is 7 or 11.

3. Any number other than 7 or 11 is the player’s point and is recorded.

4. The player throws the two dice again.

5. If the number is 7 or 11, he=she loses.

6. If the number is equal to the recorded value of the first two throws, he/she wins.

7. If the conditions of steps 5 and 6 are not satisfied, the game is continued to step 4.

A Moore machine having six states as shown in Figure 9.25 can be used as a control-

ler.* The tasks of the controller at each state are as follows:

S0 Simulate the first throw of the dice

S1 Compare the number with 7 or 11; prepare to store value in register

*VHDL class project report of James Rohrbach.

356 SEQUENTIAL CIRCUIT DESIGN USING VHDL

S2 WIN (a halt state)

S3 Simulate further throw of dice

S4 Compare number with 7 or 11, and with the number stored in the register

S5 LOSE (a wait state)

The output at each state is represented by a 4-bit vector. The first bit of the vector is 1 for

WIN, the second bit is 1 if LOSE, a 1 at the third bit stores the count value (new value) in a

register, and a 1 at the fourth bit indicates the dice are to be rolled again.

We assume the following:

A single button (RP) is provided in order for the user to simulate the throw (Roll) of dice.

A counter is used to generate a ‘‘random’’ number from 2 to 12. The clock for the counter

(FC) is separate from the clock (clk) that drives the state machine. FC is assumed to be

fast enough so that the operator cannot intentionally influence the number generated.

FIGURE 9.25 State diagram for the dice game controller.

9.7 CASE STUDIES 357

The states in which the win/lose status are determined contain self-loops that cause the

state machine to remain in that state until the user throws the dice again.

An asynchronous reset (Reset) input is provided to reset the state machine to state S0 so

that the player can restart the game from any state; also a Roll again output signal is pro-

duced at states S1 and S4 to allow re-roll of the dice.

The VHDL code for the controller is given below. It uses eight processes to describe the

state machine controller. Process p1 defines the operation of the counter. Process p2 speci-

fies when the roll of the dice is to be started or stopped. Process p3 checks the counter output

to determinewhether they are 7 or 11. Processp4 stores the count value. Processp5 checks if

the stored count value is equal to the new count value. Process p6 specifies the next state of

the state machine based on the inputs it receives. Process p7 defines the outputs produced at

each state. Process p8 specifies the next state when the clock or the reset signal is applied.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Dice_Game is
port(clk, FC, RP, Reset: in std_logic;

Win, Lose: out std_logic;
StoredValue, NewValue: buffer std_logic_vector
(3 downto 0);

C: out std_logic_vector (3 downto 0));
end Dice_Game;

architecture behavior of Dice_Game is
type State_type is (S0,S1,S2,S3,S4,S5);
signal y_present, y_next: State_type;
signal Equal, SevenOrEleven, Roll, ReRoll, StoreNew:
std_logic;

signal NV, SV, Count: std_logic_vector(3 downto 0);
begin
p1: process(FC, Reset)
begin

if Reset = ‘1’ then
Count <= "0010";

elsif (FC’ event and FC = ‘1’) then
if Count = "1100" then
Count <= "0010";
else
Count <= Count + ‘1’;
end if;

end if;
end process;

p2: process(RP, ReRoll, Reset)
begin

if Reset = ‘1’ or ReRoll = ‘1’ then
Roll <= ‘0’;

elsif (RP’event and RP = ‘1’) then

358 SEQUENTIAL CIRCUIT DESIGN USING VHDL

Roll <= ‘1’;
end if;

end process;

p3: process(RP, Reset)
begin

if Reset = ‘1’ then
SevenOrEleven <= ‘0’;
NV <= "0000";

elsif (RP’Event and RP = ‘1’) then
if (Count = "0111" or Count = "1011") then
SevenOrEleven <= ‘1’;
else
SevenOrEleven <= ‘0’;

end if;
NV <= Count;
end if;

end process;

p4: process(StoreNew, NV, Reset)
begin

if Reset = ‘1’ then
SV <= "0000";

elsif (StoreNew’event and StoreNew = ‘1’) then
SV <= NV;

end if;
end process;

p5: process(SV, NV)
begin

if SV = NV then
Equal <= ‘1’;

else
Equal <= ‘0’;

end if;
end process;

p6: process(Roll, Equal, SevenOrEleven, y_present)
begin

case y_present is
when S0 =>

if Roll = ‘1’ then
y_next <= S1;
else
y_next <= S0;
end if;

when S1 =>
if SevenOrEleven = ‘1’ then
y_next <= S2;
else
y_next <= S3;
end if;

9.7 CASE STUDIES 359

when S2 =>
if Roll = ‘1’ then
y_next <= S1;
else
y_next <= S2;
end if;

when S3 =>
if Roll = ‘1’ then
y_next <= S4;
else
y_next <= S3;
end if;

when S4 =>
if Equal = ‘1’ then
y_next <= S2;
elsif SevenOrEleven = ‘1’ then
y_next <= S5;
else
y_next <= S3;
end if;

when S5 =>
if Roll = ‘1’ then
y_next <= S1;
else
y_next <= S5;
end if;

end case;
end process;

p7: process(y_present)
begin

case y_present is
when S0 =>

Win <= ‘0’;
Lose <= ‘0’;
StoreNew <= ‘0’;
ReRoll <= ‘0’;

when S1 =>
Win <= ‘0’;
Lose <= ‘0’;
StoreNew <= ‘1’;
ReRoll <= ‘1’;

when S2 =>
Win <= ‘1’;
Lose <= ‘0’;
StoreNew <= ‘0’;
ReRoll <= ‘0’;

360 SEQUENTIAL CIRCUIT DESIGN USING VHDL

when S3 =>
Win <= ‘0’;
Lose <= ‘0’;
StoreNew <= ‘0’;
ReRoll <= ‘0’;

when S4 =>
Win <= ‘0’;
Lose <= ‘0’;
StoreNew <= ‘0’;
ReRoll <= ‘1’;

when S5 =>
Win <= ‘0’;
Lose <= ‘1’;
StoreNew <= ‘0’;
ReRoll <= ‘0’;

end case;
end process;

p8: process(clk, Reset)
begin

if Reset = ‘1’ then
y_present <= S0;

elsif(clk’Event and clk = ‘1’) then
y_present <= y_next;

end if;
end process;

C <= Count;
StoredValue <= SV;
NewValue <= NV;

end behavior;

The simulation results of the controller are shown in Figure 9.26.

FIGURE 9.26 Simulation results of the dice game controller.

9.7 CASE STUDIES 361

Case Study 2: UART Controller

The receiver part of a UART (universal asynchronous receiver/transmitter) receives serial

data from a system, converting the data to parallel. It also checks the parity of the parallel

data and stores the data if it is correct; otherwise, it indicates parity error [1]:

1. Control module

2. Receiving register/shift register

3. Storage register

4. Shift pulse generator

5. Parity

The control module is the most important part of the receiver. It determines when

the receiving register, which is a shift register, is to be filled with data, when it is to be

reset, and when the parity check is to be done. The block diagram of the state machine

is shown in Figure 9.27.

The controller has seven states as shown in Figure 9.28.*

A Reset state

B Prepare to receive data

C Start counter, reset shift register

D Receive data until the shift register is full

E Check parity

F Load data into storage register

G Indicate parity error in the shift register data

The controller has four inputs:

reset Makes the controller stay at reset state when 1

start Starts the counting operation

regfull When 0 indicates the shift register is full

paritychk When 0 indicates parity error

FIGURE 9.27 UART receiver controller.

	VHDL class project report of Tianyu Liu.

362 SEQUENTIAL CIRCUIT DESIGN USING VHDL

The controller also has four outputs:

count Count up

resetreg Reset the shift register

parityerror Indicates parity error when 0

loadstoreg Load the storage register

The VHDL description of the controller is given below; the controller is identified as

UART in the code:

library ieee;
use ieee.std_logic_1164.all;

entity UART is
port(clk: in std_logic;

reset, start, paritychk, regfull: in std_logic;
count, parityerror, resetreg, loadstoreg: out
std_logic);

end UART;

FIGURE 9.28 Controller state diagram.

9.7 CASE STUDIES 363

architecture behavior of UART is
signal y_present, y_next: std_logic_vector(2 downto 0);
constant A: std_logic_vector(2 downto 0):= ‘‘000’’;
constant B: std_logic_vector(2 downto 0):= ‘‘001’’;
constant C: std_logic_vector(2 downto 0):= ‘‘011’’;
constant D: std_logic_vector(2 downto 0):= ‘‘010’’;
constant E: std_logic_vector(2 downto 0):= ‘‘110’’;
constant F: std_logic_vector(2 downto 0):= ‘‘111’’;
constant G: std_logic_vector(2 downto 0):= ‘‘100’’;

begin
process(y_present, reset, start, paritychk, regfull)
begin

case y_present is
when A =>

if reset = ‘1’ then y_next <= A;
else y_next <= B;
end if;

when B =>
if start = ‘0’ then y_next <= B;
else y_next <= C;
end if;

when C =>
y_next <= D;

when D =>
if regfull = ‘0’ then y_next <= D;
else y_next <= E;
end if;

when E =>
if paritychk = ‘0’ then y_next <= G;
else y_next <= F;
end if;

when F =>
y_next <= A;

when G =>
if reset = ‘0’ then y_next <= G;
else y_next <= A;
end if;

when others =>
y_next <= A;

end case;
end process;

process (clk, reset)
begin

if reset = ‘1’ then
y_present <= A;

elsif (clk’event and clk = ‘1’) then
y_present <= y_next;

end if;
end process;

364 SEQUENTIAL CIRCUIT DESIGN USING VHDL

process (y_present)
begin

if y_present = C then
count <= ‘1’;
resetreg <= ‘1’;
loadstoreg <= ‘0’;
parityerror <= ‘0’;

elsif y_present = D then
count <= ‘1’;
resetreg <= ‘0’;
loadstoreg <= ‘0’;
parityerror <= ‘0’;

elsif y_present = F then
count <= ‘0’;
resetreg <= ‘0’;
loadstoreg <= ‘1’;
parityerror <= ‘0’;

elsif y_present = G then
count <= ‘0’;
resetreg <= ‘0’;
loadstoreg <= ‘0’;
parityerror <= ‘1’;

else
count <= ‘0’;
resetreg <= ‘0’;
loadstoreg <= ‘0’;
parityerror <= ‘0’;

end if;
end process;
end behavior;

The simulation results of the controller are shown in Figure 9.29.

Case Study 3: Controller for an Automatic Bank Teller

A controller for an automatic bank teller is to be designed.* It dispenses cash if a customer

enters a correct account number and a correct amount is designated. The controller must be

able to prompt the customer to enter his/her account number and the amount he/she wants

to withdraw via a keyboard. These numbers must be compared first to check their validity;

hence a comparator circuit must be associated with the keyboard. The comparator receives

inputs from the keyboard and the controller; its outputs are fed as inputs to the controller.

The controller activates a cash dispenser if the amount is correct. A clear switch must also

be included so that a new customer can use the teller to start a new transaction even if the

last transaction was not completed.

Specification of the Bank Teller The controller has five inputs and one output. The inputs are

key_entered A 20-bit number

strobea Account number

	VHDL class project report of Yucong Tao.

9.7 CASE STUDIES 365

strobeab Cash amount

clr Asynchronous reset

clk Clock signal

The output is

display_state Controls the screen display to direct the customer

A block diagram of the bank teller is shown in Figure 9.30. The teller is further parti-

tioned into four components:

A state machine

An account verifier

An amount checker

A cash dispenser

The state machine shown in Figure 9.31 has five inputs: ac (account checked), am
(amount checked), ad (cash dispensed), clk (clock), and clr (reset). The state

machine controls user display by providing a display_state signal, and a dis_en
(dispenser enable) signal for the cash dispenser. The asynchronous clear signal clr
resets the state machine in terms of both internal state and outputs.

FIGURE 9.29 Simulation results of UART controller.

FIGURE 9.30 Bock diagram of the automatic bank teller.

366 SEQUENTIAL CIRCUIT DESIGN USING VHDL

The state machine is Moore-type and has four states s0, s1, s2, and s3; s0 is the initial
state with both outputs display_state and dis_en unasserted. Once input ac is

asserted the machine moves to state s1 at the next rising edge of the clock. In state s1,
display_state is asserted and dis_en remains low. Upon receiving am, the

machine moves to state s2 where display_state remains low but dis_en is

asserted. On the next clock edge the machine is forced to state s3. The machine

remains at s3 until ad is asserted, then it moves back to s0.
The VHDL code for the state machine is as follows:

library IEEE;
use ieee.std_logic_1164.all;

entity ctl is port(
ac, am, ad, clk, clr: in std_logic;
display_state, dis_en: out std_logic);
end ctl;

architecture state_machine of ctl is
type statetype is (s0, s1, s2, s3);
signal PS, NS: statetype;
begin
p1: process (PS, ac, am, ad)
begin
case PS is
when s0 => display_state <= ‘0’; dis_en <= ‘0’;
if ac = ‘1’ then
NS <= s1;
else
NS <= s0;
end if;
when s1 => display_state <= ‘1’; dis_en <= ‘0’;
if am = ‘1’ then
NS <= s2;

FIGURE 9.31 State diagram of automatic bank teller.

9.7 CASE STUDIES 367

else
NS <= s1;
end if;
when s2 => display_state <= ‘0’; dis_en <= ‘1’;
NS <= s3;
when s3 => display_state <= ‘0’; dis_en <= ‘0’;
if ad = ‘1’ then
NS <= s0;
else
NS <= s3;
end if;
end case;
end process;

p2: process (clr, clk)
begin
if clr = ‘1’ then
PS <= s0;
dis_en <= ‘0’;
display_state <= ‘0’;
elsif (clk’event and clk = ‘1’) then
PS <= NS;
end if;
end process;
end state_machine;

The simulation results of the automatic bank teller controller are given in Figure 9.32.

EXERCISES

1. Write the VHDL code for a JK flip-flop that is set-dominant when a control signal c is

0, and reset-dominant when c is 1. (In a set-dominant JK flip-flop, the output of the

flip-flop becomes 1 when J = K = 1; in a reset-dominant JK flip-flop, the output

becomes 0 when J = K = 1).

2. A four-stage shift register is to be used to generate two sequences of length 7 and 15. A

sequence of length 7 is generated when a control signal c is set to 1; when c is set to 0,

a sequence of length 15 is generated. Write the VHDL code for the circuit.

FIGURE 9.32 Simulation results of the controller for the automatic bank teller.

368 SEQUENTIAL CIRCUIT DESIGN USING VHDL

3. The shift register implementation of a sequential circuit is shown below. Write the

VHDL code to specify the function of the circuit.

4. Describe a pseudorandom sequence generator based on the following polynomial

using VHDL:

f (x) ¼ x5 þ x3 þ 1

5. Write the VHDL code for a random counter that goes through the sequence

8 ! 1 ! 2 ! 0 ! 4 ! 6 ! 3 ! 5 ! 9 ! 7

6. Write the VHDL code for a counter that can count either in mod-8 binary or Gray code

depending on a control signal being 0 or 1, respectively.

7. Write the VHDL code for an 8-bit Johnson counter assuming 01110000 as the initial

state.

8. As discussed in the text, an n-bit Johnson counter is a mod-2n counter. Write the

VHDL code for a mod-7 counter constructed from a 4-bit Johnson counter.

9. Write the VHDL code for the state machine shown below:

10. Write the VHDL code for the following state machine using the state assignment A =

111, B = 001, C = 101, D = 011, E = 000, F = 110, and G = 010:

EXERCISES 369

11. A sequential circuit produces an output of 1 if and only if it receives an input sequence

that contains only two groups of 0’s. For example, the circuit will produce an output of

1 if the input sequence is 11001111 but will generate an output of 0 if the input

sequence is 11001101. Write the VHDL code for the circuit using m-out-of-n state

encoding.

12. A sequential circuit has six states (A, B, C, D, E, F), five inputs (s, t, u, v, w), and three

outputs (l, m, n). The circuit is specified below using if–then–else statements.

Each state shows the outputs associated with the state and the state transitions.

Write the VHDL specification of the circuit using a case statement.

State A: 1 = 0, m = 0, n = 0
IF s = 1 THEN B ELSE A;

State B: 1 = 0, m = 0, n = 0;
IF z1 = 1 THEN C {z1 = (u + v̄)t̄; z2 = ūvt̄}
ELSE IF z2 = 1 THEN B
ELSE IF t = 1 THEN A
ELSE B;

State C: 1 = 0, m = 0, n = 0;
IF z1 = 1 THEN C
ELSE IF z2 = 1 THEN D
ELSE IF t = 1 THEN A
ELSE C;

State D: 1 = 0, m = 0, n = 0;
IF z1 = 1 THEN E

370 SEQUENTIAL CIRCUIT DESIGN USING VHDL

ELSE IF z2 = 1 THEN D
ELSE IF t = 1 THEN A
ELSE D;

State E: 1 = 1, m = 0, n = 1 {z3 = wt̄; z4 = w̄t̄}
IF z3 = 1 THEN E
ELSE IF z4 = 1 THEN F
ELSE IF t = 1 THEN A
ELSE E;

State F: 1 = 0, m = 1, n = 0;
IF t = 1 THEN A
ELSE F;

13. A single-input and single-output state machine produces an output of 1 and remains at

1 when at least two 0’s and two 1’s have occurred at the input regardless of the order

of occurrence. Write the VHDL code for the circuit.

14. Write the VHDL code for the following state machine using 1-hot code to encode the

states:

15. A sequential circuit produces an output of 1 if and only if it receives an input sequence

that contains only one group of 0’s. For example, the circuit will produce an output of

1 if the input sequence is 11001111, but will generate an output of 0 if the input

sequence is 11001101. Write the VHDL code for the circuit using k-out-of-2k state

encoding.

REFERENCES

1. D. Comer, Digital Logic and State Machine Design, 2nd ed., John Wiley & Sons, Hoboken, NY,

1990.

2. S. Golomb, Shift Register Sequences, Holden Day, 1967.

REFERENCES 371

10 Asynchronous Sequential Circuits

10.1 INTRODUCTION

In Chapter 7 we considered clocked (synchronous) sequential circuits; asynchronous

circuits do not use clocks. If an input variable is changed in an asynchronous circuit,

the circuit goes through a sequence of unstable states before settling down to a stable

state. On the other hand, a synchronous circuit moves from one stable state to another

without passing through any unstable states. To illustrate the concept of unstable states,

let us consider the SR latch circuit shown in Figure 10.1. When S ¼ 0 and R ¼ 1, the

output Q of the circuit is set to 0, and Q̄ ¼ 1; this is a stable state because the feedback

signals have no effect on the output of the latch. If R is changed to 0, the circuit still

remains in the stable condition because there is no change in the output. Now if S is

changed to 1, Q̄ changes to 0; however, before Q changes to 1, there is a momentary

delay during which there is an unstable state Q ¼ 0, Q̄ ¼ 0 with inputs S ¼ 1 and

R ¼ 0. At the end of the delay, the circuit will assume the stable state Q ¼ 1, Q̄ ¼ 0.

Thus an unstable state is said to exist in an asynchronous circuit if the next state at any

instant of time after an input has been changed is not equal to the present state. We

assume that an asynchronous circuit will eventually assume a stable state, provided the

duration of the inputs is longer than the period of time the unstable state or states exist.

If an input to an asynchronous circuit is changed only when it is in a stable state, never

when it is unstable, then the circuit is said to be operating in fundamental mode. The

simultaneous change of more than one input variable is avoided in asynchronous circuits

because this often leads to serious timing problems.

Figure 10.2 shows the model of asynchronous circuits. Unlike synchronous circuits,

these do not require separate memory elements; the propagation delays associated with

the feedback paths from the outputs to the inputs provide the memory required for

FIGURE 10.1 SR latch constructed from NOR gates.

373

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

sequential operation. Although the delay elements shown in Figure 10.2 can be considered

to have the same role as D flip-flops in synchronous circuits, the delays cannot be assumed

to be of equal magnitude. The internal state of an asynchronous circuit is represented by

the state variable yi, and the next state variables are denoted by Yi (i ¼ 1, n).

10.2 FLOW TABLE

As in the design of synchronous sequential circuits, the first step in the design of asyn-

chronous circuits is to specify the circuit operation in a formal manner. A conventional

way of describing the operation of a fundamental mode circuit is to use a flow table. The

flow table is very similar to the state table in that it specifies all possible modes of circuit

operation. As an example, we construct the flow table of a sequential circuit that has two

inputs x1x2 and one output Z; the circuit produces an output of 1 only if the input

sequence x1x2 ¼ 10, 11, 01 is received in that order. All other sequences produce an

output of 0. Initially the inputs are x1 ¼ 0, x2 ¼ 0, and the circuit is in a state designated

asWS0 , where the circle around S0 indicates that it is stable. Thus the first row of the flow

table is S0 and the entry in column x1x2 ¼ 00 is WS0 . The output of an asynchronous

circuit is associated with a stable state; hence the output entry 0 is recorded on the

right ofWS0 .

If the input combination is now changed to x1x2 ¼ 10, the circuit enters the stable state

WS1 . To show that the change from WS0 to WS1 was caused by the input combination

x1x2 ¼ 10, the uncircled stateWS1 is entered in column 10 of the first row. This indicated

that the transition fromWS0 toWS1 was via an unstable state. If the input x2 is changed to

1 while the circuit is inWS0 ., the circuit would enter another stable stateWS2 via the unstable

FIGURE 10.2 Model of asynchronous sequential circuits.

374 ASYNCHRONOUS SEQUENTIAL CIRCUITS

state S2. The output of the circuit corresponding to both stable statesWS1 andWS2 is 0. The

dash in column 11 indicates that the double input change x1x2 ¼ 00 to 11 is not allowed.

Starting in the second row, an input change from x1x2 ¼ 10 to 00 will cause the circuit to

return to the initial stateWS0 . On the other hand, if the input changes from x1x2 ¼ 10 to 11,

the circuit will enter another stable stateWS3 .

If input x1 changes from 1 to 0 while the circuit is inWS3 , the desired input sequence is

complete, and the circuit moves toWS4 with the output Z ¼ 1.

10.2 FLOW TABLE 375

Starting inWS2 , if x2 changes from 1 to 0, the circuit is reset to state S0. If x1 is changed

from 0 to 1, the circuit cannot go to WS3 because this will indicate that the circuit has

received the input sequence (10, 11). So a new stateWS5 , is included;WS5 has a 0 output

associated with it.

The change in x2 from 1 to 0 when the circuit is in stateWS3 must take it toWS1 , since
WS1 corresponds to the first two symbols of the desired input sequence.

Starting fromWS4 , if the inputs change to 00 it is not possible to get Z ¼ 1 without reset-

ting the circuit toWS0 . The change from x1x2 ¼ 01 to 11 cannot move the circuit to S3;

however, the circuit can be taken to stateWS5 .
Finally, fromWS5 , if the inputs change to 01, the circuit cannot move toWS4 because it is

allowed to produce Z ¼ 1 only after it resets and receives the proper input sequence. Hence

it must move toWS3 . On the other hand, if x1x2 changes to 10, the circuit can go toWS1 since

this starts the desired sequence over again. The complete flow table is shown in

Figure 10.3; dashes have been entered wherever input changes are not allowed.

It should be noted that although the primate flow table of Figure 10.3 looks like that

of a Mealy model, it could have been represented in the Moore model form by adding

a column of outputs such that each row has an output the same as that associated with

the stable next state. The Moore model version of the primitive table is shown in

Figure 10.4.

Note that the flow table constructed for the sequence detector has exactly one stable

state per row. Such a table is called a primitive flow table. In a primitive flow table a

change of an input corresponds to a change between columns without any row change.

If the state in the new column is uncircled (i.e., unstable), a row change takes place,

with the new row corresponding to the next state for the circuit. One important distinc-

tion between synchronous and asynchronous circuits is that in an asynchronous circuit

the state changes depend on the input changes, whereas in synchronous circuits it is the

clock pulse rather than the input changes that triggers the state changes.

FIGURE 10.3 Flow table for the (10, 11, 01) detector.

376 ASYNCHRONOUS SEQUENTIAL CIRCUITS

10.3 REDUCTION OF PRIMITIVE FLOW TABLES

In general, a primitive flow table constructed from a circuit specification contains redundant

states that must be eliminated in order to reduce the hardware required for the circuit

implementation. Since each row in a primitive flow table is identified with a unique

stable state, the elimination of redundant states results in the reduction of rows in the

table. The reduction process is analogous to that of the incompletely specified synchronous

circuit; recall that the unspecified entries in a flow table are due to the constraint that only one

input variable can change at a time. Thus two rows in a primitive flow table can bemerged if

the next state entries in each column corresponding to these rows are the same if both are

specified. If two next state entries are the same, with one stable and the other unstable,

then after merging the resultant entry is stable. There is no conflict of outputs when two

rows aremerged, because the outputs are only associatedwith stable states and two different

stable states in the same column are notmerged. Since the problem of eliminating redundant

states in asynchronous circuits is identical to that encountered in incompletely specified

synchronous circuits, the technique of Section 7.6 may be employed.

Example 10.1 Let us reduce the primitive flow table of Figure 10.5. The implication

table corresponding to the flow table is shown in Figure 10.6. Note that a stable state

Ww and an unstable state x are compatible ifWw is compatible withWx . An unstable

state y is compatible with another unstable state z if Wy is compatible with Wz . It is

seen from Figure 10.6 that the compatible pairs (i.e., the rows) that can be merged are

(S0, S5)(S1, S6)(S3, S4)

Row S2 cannot be merged with any other rows. Thus the reduced flow table is

x1x2

State 00 01 11 10

(S0, S5) WS0 , 0 WS5 , 1 — S1
(S1, S6) S2 WS6 , 1 — WS1 ,1
(S3, S4) WS4 , 1 S6 — WS3 , 1
(S2) WS2 , 1 S5 — S3

FIGURE 10.4 Moore-type flow table for the (10, 11, 01) detector.

10.3 REDUCTION OF PRIMITIVE FLOW TABLES 377

By replacing the rows in the reduced flow table as A, B, C, and D, the following equivalent

flow table can be obtained:

x1x2

00 01 11 10

A WA , 0 WA , 1 — B

B D WB , 1 — WB , 1

C WC , 1 B — WC , 1

D WD , 1 A — C

FIGURE 10.5 A primitive flow table.

FIGURE 10.6 Implication table for Figure 10.5.

378 ASYNCHRONOUS SEQUENTIAL CIRCUITS

10.4 STATE ASSIGNMENT

This process is also similar to that described for synchronous sequential circuits. However,

while the criterion for the selection of unique binary codes for the states in synchronous

circuits was that it should result in a minimum hardware implementation, there is a

more important requirement for asynchronous circuits. The assignment of secondary vari-

ables in asynchronous circuits must be such that only one variable can change during the

transition of the circuit from one stable state to another.

10.4.1 Races and Cycles

A race condition results in a fundamental model circuit if more than one secondary variable

is allowed to change during a state transition. The condition arises due to the unequal delays

in different feedback paths in the circuit. To illustrate, let us consider the flow table shown

in Figure 10.7a. By assigning secondary variables A ¼ 00, B ¼ 01, C ¼ 11, and D ¼ 10,

the excitation table shown in Figure 10.7b results. Assume that the circuit is in stateW00
and both inputs x1 and x2 are equal to 0. Now if input x2 changes to 1, an unstable condition

develops in which the present secondary variables y1y2 ¼ 00, but the input combination

FIGURE 10.7 (a) Flow table for an asynchronous circuit and (b) excitation table.

10.4 STATE ASSIGNMENT 379

x1x2 ¼ 01 requires that the next stable state should beW11 . However, due to the unknown

delays in the feedback paths, y1y2 can change fromW00 toW11 in three different ways:

1. Both y1 and y2 change simultaneously, giving a correct transition toW11 .

2. y1 changes before y2; the circuit will go to state 10 first, followed by transitions to 01

and then toW01 .

3. y2 changes before y1; the circuit goes to stateW01 .

Thus if either y1 or y2 changes before the other, an incorrect transition to stateW01 will

take place. Such a situation, in which the circuit may reach an incorrect stable state when-

ever two or more state variables change, is referred to as a critical race. As we shall see

later, the state assignment in asynchronous circuits can be made in such a way that critical

races are eliminated from the circuit.

Not all races are critical. A race is referred to as noncritical if the circuit reaches the

correct stable state irrespective of the order in which the state variables change.

Example 10.2 Let us assume that the circuit specified by Figure 10.8 is in state y1y2 ¼ 00

and x1 ¼ 0 and x2 ¼ 0. Now if the input x2 is changed to 1, the circuit must move toW11 . If

both y1 and y2 change simultaneously, the desired stable state will be reached. If either y1 or

y2 changes first, the circuit will move to 10 or 01, respectively. However, irrespective

of which variable changes first, the circuit always reaches the correct stable stateW11 .

Let us now assume that the circuit of Figure 10.8 is in stateW11 with x1x2 ¼ 01. If the

input state changes to 00, the circuit will enter unstable state 01 and then move to the stable

stateW00 , as indicated in the flow table by an arrow leading from one unstable state to

another. The absence of an arrow from an unstable state indicates that it is directed to

its corresponding stable state. When a circuit goes through a sequence of unstable states

before terminating in the desired stable state, it is said to have a cycle. It is important

that a cycle terminate in a stable state; otherwise, the circuit will sequence through the

unstable states indefinitely until the next change of input variable.

Example 10.3 Let us consider the circuit specified by Figure 10.8, and assume that it is

in stateW00 with input x1x2 ¼ 00. If input x1 is now changed to 1, the circuit makes a

transition to 10. From 10 the circuit moves to 11, from 11 to 01, and then back to 00,

FIGURE 10.8 Excitation table of an asynchronous sequential circuit.

380 ASYNCHRONOUS SEQUENTIAL CIRCUITS

without any further change of input. The circuit will go through the unstable states

indefinitely until the next change of an input.

10.4.2 Critical Race-Free State Assignment

Critical races can be avoided by assigning binary codes to the states in such a way that

when a transition occurs from one state to another, only one secondary variable should

change its value. In other words the principle of fundamental mode operation is extended

to the state variables as well.

Example 10.4 Let us consider the reduced flow table of Figure 10.9. This is a

three-row flow table; hence it requires at least two secondary variables for unique state

assignment. An examination of the flow table reveals that there is a direct transition

between rows:

A and C (column 10)

B and A (column 01)

B and C (column 10)

C and A (column 00)

C and B (column 11)

This information is summarized in the transition diagram shown in Figure 10.10. Each

node in the diagram represents a state of the flow table. A directed line connects two

nodes if transitions may occur between the corresponding states.

As mentioned previously, critical races can be avoided if only one state variable is

allowed to change when a transition is made from one state to another. An arbitrary state

assignment is shown in the transition diagram. However, inspection of it reveals that both

the state variables y1 and y2 must change during the transition from B to A, resulting in a

critical race. It is in fact impossible to assign state variables so that only one variable

during a transition.

FIGURE 10.9 A three-state flow table.

FIGURE 10.10 Transition diagram of Figure 10.9.

10.4 STATE ASSIGNMENT 381

However, two state variables can define four states, which implies that there is a fourth

or “spare” combination of secondary variables that has not been used. Figure 10.11 shows

how this spare combination is utilized to overcome the critical race. If the circuit is in B

under the input condition x1x2 ¼ 00, and a change to x1x2 ¼ 01 occurs, the circuit must go

to the desired state A via the “spare” stateD. This is achieved by directing the state variable

changes to y1y2 ¼ 10 ! 11 ! 01.

Thus a critical race-free assignment for a three-row flow table can be achieved by incor-

porating an additional row in the flow table. This row is employed to generate a path

between two stable states, transitions between which would otherwise result in a critical

race. The unspecified next state entries in the modified flow table corresponding to the

spare state must not be assigned the same state variable combination as the spare state,

otherwise an undesired stable state will be created in the fourth row.

A critical race-free state assignment is not always possible for a four-row table using

two state variables.

Example 10.5 Let us consider the flow table shown in Figure 10.12. The corresponding

transition diagram is shown in Figure 10.13. The transitions in the diagonal directions

(e.g., D to B and C to A) indicate that no matter how the two state variables are

assigned, it is not possible to satisfy the requirement that only a single variable should

change during a transition. Therefore a critical race-free assignment can only be

achieved by using three state variables. The race-free assignment can be obtained from

the Karnaugh map of three variables, as shown in Figure 10.14a. Since in a Karnaugh map

adjacent cells differ by a single bit, two states allocated to adjacent cells will have adjacent

state assignments. There are 8
4

� � ¼ 70 different ways of allocating the states to the cells in

FIGURE 10.11 Critical race-free assignment with an extra state for Figure 10.9.

FIGURE 10.12 A four-row flow table.

382 ASYNCHRONOUS SEQUENTIAL CIRCUITS

Figure 10.14a. Analysis shows that these combinations fall into six different patterns [1]. One

such pattern is shown in Figure 10.14a. In this case the state assignment is such that A is

adjacent to B and B is adjacent to C and D. However, for a critical race-free assignment, A

should be adjacent to C as should C to D. Thus the transition from C to A must be made

through the spare state E. Similarly, the transition from C to D must be made via the spare

state F. Hence two additional states must be included in the flow table; the transition

diagram of the modified flow table is shown in Figure 10.14b. The modified flow table and

the critical race-free assignment are shown in Figure 10.15a and 10.15b, respectively.

FIGURE 10.13 Transition diagram for Figure 10.12.

FIGURE 10.14 (a) Karnaugh map for selecting race-free assignment and (b) race-free transition

diagram.

FIGURE 10.15 (a) Modified flow diagram for Figure 10.12 and (b) critical race-free state

assignment.

10.4 STATE ASSIGNMENT 383

The critical race-free state assignment method considered here requires adding

additional rows to the flow table. An alternative method for eliminating critical races

assigns two combinations of state variables to each row of the flow table.

Example 10.6 Let us consider the flow table shown in Figure 10.12. Each row of the

flow table is replaced with two rows as shown in Figure 10.16. For example, row A in

Figure 10.12 is replaced by rows A1 and A2, and the stable state in each column of row

A is entered in both rows A1 and A2. The unstable next states in each row are selected

such that they are adjacent to the present state. The assignments can be obtained from

the Karnaugh map as shown in Figure 10.17. The two rows corresponding to each row

of the original flow table are assigned binary combinations that are complements of

each other. Thus A1 and A2 corresponding to row A are assigned y1y2y3 ¼ 000 and 111,

respectively. In Figure 10.12, a transition from WA under the input change

x1x2 ¼ 00 ! 10 is directed toWB Since the transition should change one variable only,

B1 is entered in the first row, and B2 in the second row of column 10 in Figure 10.17;

as can be seen in Figure 10.17, A1 is adjacent to B1 and A2 is adjacent to B2.

FIGURE 10.16 Modified flow table diagram of Figure 10.12.

FIGURE 10.17 Multiple state assignment.

384 ASYNCHRONOUS SEQUENTIAL CIRCUITS

Note that this method also utilizes the spare states, each state being replaced by a pair,

one of which is not used in the original flow table. However, the behavior of the circuit

remains unchanged irrespective of which state in a pair the circuit is in.

The major drawback of some state assignments is that the transition from one state to

another in general requires a sequence of state variable changes. This has a detrimental

effect on the circuit as far as speed is concerned. Significant improvement in speed can

be achieved if the state assignments are made such that all the required state variable

changes during a transition are completed simultaneously. Such assignments are known

as single transition time assignments or one-shot assignments.

We consider one such method for critical race-free state assignment [2]. Let

us assume a flow table with C columns and let column Ci (1 � i � C) have xi
stable states. For example, an asynchronous circuit with 2 inputs will have 4 (¼22)

columns. The procedure for the single transition time assignment consists of the follow-

ing steps:

Step 1. Assign a unique combination to each stable state in a column Ci using dxie number

of variables.

Step 2. If the next state in column Ci corresponding to a present state is not the same as the

present state itself (i.e., the present state is unstable), it is assigned the same combi-

nation of variables as the next state.

Step 3. If a column covers another column, delete the covered column. Column Ci is said

to cover another column Cj if Ci has a 1 in every row in which Cj has a 1 whenever Cj

is specified. Note that Ci also covers Cj even if the complement of Ci covers Cj.

These steps are repeated for each column of the flow table.

Example 10.7 Let us illustrate the above procedure by applying it to the flow table

shown in Figure 10.18a. The column x1x2 ¼ 00 has three stable states—S0, S2, and S4—

so 2 (¼ log2 d3e) state variables y0 and y1 are needed to assign a unique combination to

each of these states. The next state corresponding S1 to S2, so S1 is assigned y0y1 ¼ 01,

the combination corresponding to S2. Similarly, S3 is assigned y0y1 ¼ 10.

Column 01 has two stable states and hence requires only a single state variable y2 to

distinguish between them. Unstable states S0, S2, and S4 are assigned y2 ¼ 0, 1, 0,

respectively. Columns 11 and 10 have three stable states each and hence require two

variables, y3/y4 and y5/y6, respectively. The complete state assignment table is shown

in Figure 10.18b. The variable y5 is deleted because it is covered by both y0 and y3.

Since y0 is identical to y3 (i.e., they cover each other), one of them could be deleted;

we delete y3. Similarly, y4 (identical to y1) and y6 (identical to y2) are also deleted. This

results in the three-variable assignment show in Figure 10.18c.

To prove that the state assignment of Figure 10.18c is indeed critical race-free, let us

consider the state transition in each input column of the flow table. In column

x1x2 ¼ 00 there are two transitions: S1 ! S2 and S3 ! S4.

For S1 ! S2, y0y1 ¼ 01; only y2 changes value during transition. Similarly, for

S3 ! S4, y0y1 ¼ 10 and y2 changes value. Thus there will be no critical races during

these transitions.

In column x1x2 ¼ 01 there are three transitions, S0 ! S1, S2 ! S3, and S4 ! S1.

Since only y1 changes during the S0 ! S1 transition, no critical races will occur.

10.4 STATE ASSIGNMENT 385

For the S2 ! S3 and S4 ! S1 transitions, two state variables (y0 and y1) need to change.

Since none of the intermediate unstable states (000 or 110 in the case of S4 ! S1 and 001

or 111 in the case of S2 ! S3) will lead to an erroneous stable state, there is no critical

race in the transition.

Similarly, it can be shown that the transitions in columns x1x2 ¼ 11 and 10 are also

critical race-free.

FIGURE 10.18 (a) Flow table, (b) state assignment, and (c) reduction of state variables.

386 ASYNCHRONOUS SEQUENTIAL CIRCUITS

10.5 EXCITATION AND OUTPUT FUNCTIONS

Once the state assignment to a flow table has been made, the next step is to derive the

excitation and output equations to implement the circuit. As mentioned earlier, an

asynchronous circuit can be realized as a combinational circuit with feedback.

Example 10.8 Let us implement the circuit specified by the flow table of Figure 10.11.

By replacing the states in Figure 10.11 with the binary assignment, the excitation table of

Figure 10.19a results. The output table, Figure 10.19b, is derived by using the following rules:

(i) Assign 0 (1) to the output associated with an unstable state if it is a transient state

between two stable states, both of which have outputs 0 (1) associated with them.

(ii) Assign a don’t care value to the output associated with an unstable state if it is a

transient state between two stable states that have different output values.

In order to implement the asynchronous circuit as a combinational circuit with feedback,

the logic equations for the state variables and the output variable are derived from the

Karnaugh map of functions Y1, Y2, and Z. Figure 10.20 shows the Karnaugh maps for

Y1, Y2, and Z. The logic equations derived in Figure 10.20 are implemented as shown in

Figure 10.21.

Asynchronous circuits can be implemented by using SR latches instead of feedback.

The operation of the SR NOR latch was discussed in Chapter 4 (Section 4.3); the truth

table of the latch is as follows:

S R Q Q̄

1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

FIGURE 10.19 (a) Excitation table and (b) output table.

10.5 EXCITATION AND OUTPUT FUNCTIONS 387

FIGURE 10.20 Karnaugh maps for the excitation and output functions.

FIGURE 10.21 Realization of the asynchronous circuit.

388 ASYNCHRONOUS SEQUENTIAL CIRCUITS

The Karnaugh maps for an SR latch realization of the flow table of Figure 10.11 are

derived from Figure 10.19; these are shown in Figure 10.22. The implementation of the

excitation and output equations is shown in Figure 10.23.

FIGURE 10.22 Karnaugh maps for SR latch realization.

10.5 EXCITATION AND OUTPUT FUNCTIONS 389

10.6 HAZARDS

As discussed earlier, in asynchronous circuits all input variable and state variable changes

are restricted so that only one variable can change at a time. Even then it is still possible to

have erroneous outputs at times, because a variable and its complement may not change at

exactly the same instant. For example, let us consider the circuit shown in Figure 10.24.

Assume the inputs x1 and x2 are both initially at 1, which will cause the output Z to go

to 1. If x1 changes from 1 to 0, x̄1 also changes value, from 0 to 1, but this change does

not occur at exactly the same time because of the propagation delay of the inverter. As

a result, the output of the inverter will be 0 for a finite period of time, keeping the

output of the AND gate at 0. Moreover, since x1 ¼ 0, the output of the other AND gate

will also be 0, thus locking the output of the circuit at 0. Note that if the propagation

delay of the inverter is ignored, the output of the circuit should remain at 1 when the

inputs are changed from x1x2 ¼ 11 to 01. This phenomenon in which the relative differ-

ences in delays associated with circuit elements (and interconnections) cause incorrect

output is known as a hazard.

Hazards may also occur in combinational circuits, although not with such serious con-

sequences as in asynchronous circuits. Figure 10.25 illustrates the occurrence of a hazard.

If the circuit receives inputs x1x2x3 ¼ 100, the output of the circuit is at 0. If the inputs are

FIGURE 10.23 Implementation of the flow diagram of Figure 10.11.

FIGURE 10.24 An asynchronous sequential circuit with a hazard.

390 ASYNCHRONOUS SEQUENTIAL CIRCUITS

changed to x1x2x3 ¼ 110, the output should remain at 0; however, since the inverter fed by

x2 cannot change its output instantaneously from 1 to 0, the output of the top OR gate will

be at 1. The output of the bottom OR gate will also be at 1 due to input x2, so the circuit

output momentarily goes to 1 while the inverter output is changing from 1 to 0.

There are three types of hazards: static, dynamic, and essential. Static and dynamic hazards

may be present in combinational as well as in asynchronous circuits. Essential hazards,

however, originate only in fundamental mode asynchronous circuits (see Section 10.5).

Static hazards occur when a change in a single input variable may cause a momentary

change in the output that is supposed to remain constant during the change. This is often

referred to as glitch. If the outputs before and after the change of an input variable are both

1, with a transient 0 in between, then the hazard is qualified as a static-1 hazard. Similarly,

if the outputs before and after the change of an input variable are both 0, with a transient 1

in between, then the hazard is known as a static-0 hazard. The type of hazard we came

across in Figure 10.25 was a static-0 hazard.

Dynamic hazards occur when the output is supposed to change due to a change in an

input variable and it changes three or more times instead of only once before settling

down to the proper value. Thus an output required to change from 0 ! 1 will go

through the sequence 0 ! 1 ! 0 ! 1 due to a dynamic hazard.

Hazards can be classified into two categories: logic hazards and function hazards.

Function hazards occur when more than one input variable in a circuit changes,

whereas logic hazards arise because of how a circuit is realized.

10.6.1 Function Hazards

Function hazards may happen if multiple input variable changes are allowed. To illus-

trate function hazards, let us consider the Karnaugh map for a four-variable function,

shown in Figure 10.26. Assume that initially the input combination is x1x2x3x4 ¼ 1001,

FIGURE 10.25 Combinational circuit with a hazard.

FIGURE 10.26 Karnaugh map with function hazards.

10.6 HAZARDS 391

and hence the corresponding output is 1. If inputs x3 and x4 are changed to 1 and 0,

respectively the output will remain at 1, provided both x3 and x4 changed simul-

taneously; note that the output is also 1 for x1x2x3x4 ¼ 1010. However, if x3 and x4
do not change at the same time, the input combination could be either 1011 or 1000,

depending on whether x3 or x4 changed first. In any case this will result in a transient

0 output. The change of input combination from 1111 to 0011 will also result in a

transient 0 output.

Function hazards can also be of either static or dynamic type. The change of two input

variables as discussed earlier resulted in function static-0 hazard. A function dynamic

hazard happens when three input variables change (e.g., from x1x2x3x4 ¼ 0100 to

1001). In this case x1, x2, and x4 are changing. Figure 10.27 shows the diagram

formed by assuming a single input variable change at a time. For example, x1 may

change before x2 and x4; in that case the input combination will correspond to

1100, the leftmost entry in level 1. It is also possible that x2 or x4 may change first,

as indicated by the middle and right entries respectively, in level 1. The entries in

level 2 correspond to the second input variable change and are derived from level

1. Finally, the input variable change in level 2 completes the transition from the input

combination 0100 to 1001.

As can be verified from Figure 10.26, only for the combination 1100 in level 1

is the output 1; for all other combinations the output is 0. The output is 0 for all

input combinations in level 2. After the third variable change, the desired input com-

bination x1x2x3x4 ¼ 1001 results, which produces an output of 1. Thus the transition

from 0100 to 1001 via 1100 and 1000 (or 1101) results in the output of

0 ! 1 ! 0 ! 1; in other words, the output shows dynamic hazard if the input vari-

able x1 changes before x2 or x4. In general, function hazards cannot be completely

eliminated by modifying the circuit, hence the constraint of one input variable

change at a time. However, because of the unpredictable nature of inputs, this restric-

tion is not always applicable.

FIGURE 10.27 Transition from x1x2x3x4 ¼ 0100 to 1001 (the underscore indicates that the

corresponding input variable has changed).

392 ASYNCHRONOUS SEQUENTIAL CIRCUITS

10.6.2 Logic Hazards

Logic hazards depend on the realization of a function and can happen even if a

single input variable is allowed to change at a time. Such hazards can be either static or

dynamic.

Static Logic Hazards The characteristic of static logic hazards is that during an input

variable change, there is a momentary change in the output, which is required to stay

unchanged. Such hazards can be located from the Karnaugh map of a function. To illus-

trate, let us consider the function

f (x1, x2, x3, x4) ¼ (x1 þ x4)(x2 þ �x4)þ �x1 �x2x3

The Karnaugh map for the function is shown in Figure 10.28. Let the input combination at

a particular time be x1x2x3x4 ¼ 0111. The change in x̄2 from 1 to 0 makes the input

combination 0011. Note that the transition from 0111 to 0011 involves changing the

prime implicant from PI2 to PI3. Although the output for both input combinations 0111

and 0011 is 1, during the transition period x̄2 (the only variable that is changing) may

not be equal to 1, thus resulting in a static-1 hazard. Similarly, a change in the input com-

bination from 1101 to 1100 will also give rise to a static-1 hazard. Thus a static hazard can

exist when an input variable change causes a movement between two minterms not

covered by the same prime implicant, as indicated by the arrows in the Karnaugh map.

FIGURE 10.28 Karnaugh map for f (x1, x2, x3, x4) ¼ (x1þ x̄4)(x2þ x̄4)þ x̄1x̄2x̄3.

FIGURE 10.29 Karnaugh map for f(x1, x2, x3, x4) ¼ (x1þ x3)(x2þ x3)þ (x̄2þ x̄3).

10.6 HAZARDS 393

Let us now consider how static-0 hazards can be located from the Karnaugh map of a

function. Figure 10.29 shows the Karnaugh map for the function

f (x1, x2, x3, x4) ¼ (x1 þ x3)(x2 þ x3)(�x2 þ �x3)

A static-0 hazard exists if x1x2x3x4 changes from 0101 to 0111; this is because the cor-

responding cells in that Karnaugh map are not covered by the same prime implicant.

Application of Three-Valued Logic in Hazard Detection Three-valued (ternary) logic is

based on the assumption that when a logic variable changes from 0 to 1 or vice versa, it

goes through a transition period where its value may be interpreted as either a 0 or

1. This indeterminate value may be represented by the symbol x, indicating the fact that

the value is unknown. The truth tables for the AND, OR, and NOT functions, based on

three-valued logic, can be written as follows, where a and b are inputs and Z is the output:

AND OR NOT

a b Z a b Z a Z

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

0 x 0 0 x x x x

1 0 0 1 0 1

1 1 1 1 1 1

1 x x 1 x 1

x 0 0 x 0 x

x 1 x x 1 1

x x x x x x

It has been shown that a static logic hazard exists in a combinational circuit for the input

change

Ir ¼ (II , . . . , IP, IPþ1, . . . , In)

to

Itþ1 ¼ (I1 . . . , IP, IPþ1, . . . , In)

if the output value corresponding to the input combination It or Itþ1 is the same and during

the transition from It to Itþ1 the output is indeterminate (i.e., x) [3]. Note that both single

and multiple input changes are allowed.

Example 10.9 Let us analyze the circuit of Figure 10.30a to determine whether or not it

contains a static hazard for the input change x1x2x3 ¼ 010 to 011. This is accomplished by

evaluating the entire circuit using the ternary function of each gate in the circuit.

Figure 10.30b shows the output values of each gate in response to the input change.

The x at the output of G5 indicates the existence of a hazard for the given input transition.

394 ASYNCHRONOUS SEQUENTIAL CIRCUITS

Static hazards can be eliminated by grouping the midterms that cause the hazard, into

one prime implicant. For example, in Figure 10.30 the two minterms in question can be

combined to form the prime implicant x1x2. An AND gate corresponding to the prime

implicant is incorporated into the circuit to make it free of static hazards, as shown in

Figure 10.31.

Dynamic Logic Hazards These hazards give rise to multiple transitions at an output.

They result because of the existence of at least three different paths, each with different

delay time, along which the change in a single input variable can propagate through the

circuit. To illustrate, let us consider the circuit shown in Figure 10.32a; the corresponding

Karnaugh map is shown in Figure 10.32b.

FIGURE 10.30 (a) Circuit with a static-1 hazard and (b) individual gate outputs.

FIGURE 10.31 Hazard-free realization of Figure 10.30a.

FIGURE 10.32 (a) Circuit with a dynamic hazard and (b) Karnaugh map for the circuit function.

10.6 HAZARDS 395

It can be observed from the Karnaugh map that there are no static hazards in the circuit.

However, a change in x3 can cause a dynamic hazard, because there are three different

paths through the circuit for the variable x3. Assume that the initial input combination

for the circuit is x1x2x3x4 ¼ 0110, and let x3 change to 0. The three paths from x3 to the

output are

(i) Via gates G1, G5, and G7

(ii) Via gates G2, G5, and G7

(iii) Via gates G4, G6, and G7

If G4 changes first from 0 to 1, then the output changes from 0 to 1. Next, if G1

changes from 1 to 0, the output goes from 1 to 0. Finally, G2 changes from 0 to 1,

which makes the output settle at 1. Thus as a result of the change in the input from

0110 to 0100, the output has changed 0 ! 1 ! 0 ! 1, which indicates the existence

of a dynamic hazard.

Dynamic hazards cannot be eliminated by adding redundant gates as in the case

of static hazards. They can be overcome only by implementing the function in a differ-

ent way.

10.6.3 Essential Hazards

Essential hazards are peculiar to asynchronous sequential circuits. This type of hazard

happens if the changes in an input variable propagates through the circuit via two or

more paths that have unequal delays. Such a hazard can cause the circuit to terminate

in an incorrect stable state.

To illustrate, let us consider the circuit shown in Figure 10.33. The excitation table for

the circuit is as follows:

x1, x2

y1y2 00 01 11 10

00 W00 W00 01 W00
01 — 00 W01 11

11 W11 W11 10 W11
10 — 11 W10 00

Let us assume that initially x1 ¼ 1, x2 ¼ 0, y1 ¼ 0, and y2 ¼ 0. Thus Y1 ¼ 0 and Y2 ¼ 0,

and the circuit is in stable state 00. Now let x2 change from 0 to 1, and assume that the

inverter that produces x̄2 has a propagation delay that is larger than the delays of other

gates in the circuit including the feedback delay. The sequences of changes resulting

from the change of x2 from 0 to 1 are as follows:

(i) x2 is changed from 0 to 1.

(ii) Y2 changes from 0 to 1, which in turn changes y2 to 1. Thus the circuit moves to

state 01.

396 ASYNCHRONOUS SEQUENTIAL CIRCUITS

(iii) Since the output of the inverter generating x̄2 has not changed its value (i.e., its

output is still at 1), Y1 changes from 0 to 1 and Y2 remains 1. Thus the circuit

comes to state 11 (i.e., y1y2 ¼ 11).

(iv) Assuming that the output of the inverter generating x̄2 has now changed from 1 to

0, Y2 changes from 1 to 0 whereas Y1 remains 1. The circuit now moves to the

stable state 10. Thus the circuit terminates in the stable state 10 after passing

through two unstable states as shown:

y1y2

W00
#
01

#
11

#
W10

However, if the changes of x1 from 0 to 1 and the change of x2 from 0 to 1 occurred at the

same time, then the circuit would have moved from 00 to 01, as can be seen in the exci-

tation table of the circuit.

The circuit has some additional essential hazards. These happen if x2 is changed while

the circuit is in 01, 11, and 10. The essential hazards cannot be eliminated by circuit modi-

fications, as in the case of static hazards. The only way they can be avoided is to insert

delay elements in the feedback paths from the next state variables. This ensures that the

change in the state variables is not fed back until the change of the input variable has

been completed.

FIGURE 10.33 Circuit with essential hazards.

10.6 HAZARDS 397

EXERCISES

1. An asynchronous sequential circuit has two inputs, x1 and x2, and an output Z. Input x2
is driven by a noise-free switch. The circuit is to be designed such that a pulse on input

x1 occurring after x2 has been pressed is transmitted to Z. Derive the excitation and

output equations for the circuit.

2. The flow table of an asynchronous sequential circuit is shown below. Identify all the

races that will occur if the circuit is implemented from the state table. Determine

whether the races will be critical or noncritical. Derive a race-free state assignment

for the circuit.

Present State �x1 �x2 �x1x2 x1x2 x1 �x2

A A A D B

B D B C B

C A A C C

D D C D C

3. Derive a race-free state assignment for the flow table shown below. Implement a circuit

corresponding to the flow table using this state assignment. Use NAND gates only.

Present State �x1 �x2 �x1x2 x1x2 x1 �x2

A A , 0 A , 0 B, 0 A , 0

B –,– C B , 0 A

C C , 1 C , 1 C , 1 D

D A –,– C D , 1

4. Find all the races in the following table and indicate if they are critical or not.

y1y2 �x1 �x2 �x1x2 x1x2 x1 �x2

00 00 11 00 11

01 11 01 11 11

10 00 10 11 11

11 11 11 00 11

Find a state assignment that is critical race-free.

5. A circuit with three inputs (x1, x2, and x3) and four outputs (Z1, Z2, Z3, and Z4) is to be

designed. Z1 takes on the value 1 if input x1 is changed first, followed by x2 and then x3.

Z2 takes on the value 1 if x2 is changed first, followed by x1. If the order of change is x3
first followed by x1 and then x2, output Z3 assumes the value 1. For any other order of

input change, output Z4 takes on the value 1, otherwise it remains at 0.

a. Find a minimum row flow table and a state assignment.

b. Implement the circuit using NAND gates only.

398 ASYNCHRONOUS SEQUENTIAL CIRCUITS

6. A circuit for implementing a combinational lock is to be designed. The circuit has two

inputs, x1 and x2, and an output Z. The lock opens (Z ¼ 1) if there is a sequence of

four consecutive changes with x2 set at 1. Find a minimum row flow table for the

circuit.

7. A sequential circuit has two inputs (x1 and x2) and one output (z). The output becomes 1

whenever x1 changes from 0 to 1, and becomes 0 wherever x2 changes from 1 to 0. Find

a minimum row flow table for the circuit.

8. The excitation and the output equations for a two-input (x1, x2) and one output (Z)

asynchronous sequential circuit are as follows:

Y1 ¼ (x1 þ x2)y1 þ �x1 �x2y2

Y2 ¼ (x1 þ x2)�y1 þ �x1 �x2y2

Z ¼ y1 þ y2

Derive the flow table for the circuit.

9. Reduce the primitive flow table shown below using the approach discussed in Section

10.2.

Present State �x1 �x2 �x1x2 x1x2 x1 �x2

A A,0 –,– –,– B

B C –,– –,– B,1

C C,1 F –,– D

D E –,– –,– D,1

E E,1 G –,– –,–

F A F,0 –,– –,–

G C G,1 –,– –,–

10. The primitive flow table of an asynchronous sequential circuit is shown below.

Present State �x1 �x2 �x1x2 x1x2 x1 �x2

A A,1 B –,– C

B E B,0 D –,–

C A –,– F C,1

D –,– G D,1 H

E E,0 B –,– C

F –,– G F,0 H

G E G,1 D –,–

H A –,– F H,0

Reduce the flow table using the approach discussed in Section 10.2. Also, device the

logic diagram of circuit.

EXERCISES 399

11. Determine a one-shot state assignment for each of the following flow tables assuming

fundamental mode operation:

12. Determine whether the following circuit has a static hazard or not. If there is, specify

the input condition that creates the hazard.

13. Find all the static hazards in the Karnaugh map of a four-variable function. Implement

the circuit such that these hazards will be eliminated.

14. Find a static hazard-free realization of the following function:

f (a, b, c, d) ¼ Sm(2, 3, 6, 7, 10, 11, 13, 15)

400 ASYNCHRONOUS SEQUENTIAL CIRCUITS

15. A dynamic hazard occurs in the following circuit when the output changes from 1 to

0. Specify the values of the input variables before and after the occurrence of the

hazard. Assume that the inverters in the circuit are much slower than the other

gates in the circuit.

REFERENCES

1. M. P. Marcus, Switching Circuits for Engineers, Prentice-Hall, Englewood Cliffs, NJ, 1975.

2. C. L. Liu, “A state variable assignment procedure for asynchronous sequential circuits,”

Jour. ACM, April 1963, pp. 209–215.

3. E. B. Eichelberger, “Hazard detection in combinational and sequential switching circuits,” IBM

Jour. Res. and Dev., March 1965, pp. 90–99.

REFERENCES 401

Appendix: CMOS Logic

CMOS technology is increasingly being used to design high-density chips. The notable

advantages of CMOS are low power consumption and high noise immunity (noise

immunity is the maximum noise voltage that can be tolerated). There are several ways

to process CMOS circuits, each offering its own special advantage. The basic problem

is to create both n-channel and p-channel transistors on a single silicon substrate.

Figure A.1 shows the structure of a CMOS inverter. A p-channel transistor is created

in an n-type substrate in the normal way; however, an n-channel transistor requires an

island of p-type material. The source and the substrate of the p-channel transistor are

connected to VDD, whereas the source and the substrate of the n-channel transistor

are connected to ground. Vin is applied to the gates of both transistors simultaneously.

Note that both the transistors are enhancement-mode transistors and the p-channel

transistor is employed as the load element. The schematic circuit representation of the

inverter is shown in Figure A.2.

When Vin is high, the n-channel transistor conducts and the p-channel transistor

becomes nonconductive. When Vin is low, the p-channel transistor becomes conductive

and the n-channel transistor does not conduct. Because only one transistor conducts at

any given time, there is little current flow from VDD to ground through the transistors

and power consumption is low. It should be noted that both the transistors are partially

ON during the switching operation itself; however, this happens for only a fraction of the

FIGURE A.1 Physical structure of a CMOS inverter.

403

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

operating interval, so the current flow is in the microampere range. The transfer curve

(i.e., the plot of Vout against Vin) of the inverter is illustrated in Figure A.3.

The basic CMOS NAND and NOR gates are shown in Figure A.4a and A.4b. A low

input voltage on input A in the NAND circuit turns transistor T1 ON and turns transistor

T3 OFF. Because no current can flow through T3, the output voltage approaches VDD. Simi-

larly, a low input voltage on input B results in a high output voltage. Only when there are

high input voltages on both inputs A and B does the current flow from VDD to ground and

the output goes low.

The CMOS NOR circuit (Fig. A.4b) is implemented by configuring the p-channel tran-

sistors in series and the n-channel transistors in parallel. A high input voltage on either

input causes one of the p-channel transistors to be OFF and one of the n-channel transistors

to be ON, resulting in a low output voltage. Only if both the input voltages are low do

both the p-channel transistors turn ON, with both n-channel transistors OFF, to provide

a high output.

FIGURE A.2 Circuit symbol for CMOS inverter.

FIGURE A.3 CMOS transfer curve.

404 APPENDIX: CMOS LOGIC

A.1 TRANSMISSION GATES

One of the important advantages of CMOS circuits is that they enable the construction of a

nearly perfect switch—the transmission gate. It consists of a p-channel transistor con-

nected in parallel with an n-channel transistor as shown in Figure A.5a. The transistor

sources are connected to the input and their drains are connected to the output. A

control voltage C is applied to the gate of the n-channel transistor, and its inverted

value C̄ is applied to the gate of the p-channel transistor.

When C is at logic 0, both transistors are nonconducting; thus the output is disconnected

from the input. On the other hand, if C is at logic 1; the p-channel transistor transfers a high

input voltage to the output, whereas the n-channel transistor transfers a low input voltage

to the output. Thus as long as the control voltage C is high, the input is transmitted to the

output. A symbol for the transmission gate is shown in Figure A.5b. It should be understood

FIGURE A.4 (a) NAND circuit and (b) NOR circuit.

FIGURE A.5 (a) Transmission gate and (b) symbol.

A.1 TRANSMISSION GATES 405

that the transmission gate can transfer signals in both directions, although one end is arbi-

trarily labeled input and the other output. The behavior of the transmission gate is summar-

ized in Figure A.6. It can be seen from Figure A.6 that the transmission gate is a tristate

device. In other words, it has three possible outputs—open circuit, low, and high.

However, it only has two logic levels, since open circuit really means high impedance

and is not a logic level.

Figure A.7 illustrates a typical application of transmission gates. The outputs of four

transmission gates are tied together to a common line, Z. It is desired to transmit the

signals A, B, C, and D one at a time to line Z. This can be accomplished by making

the control input of only one transmission gate at a time high while keeping the other

three low. The particular transmission gate to be used can be selected by applying the

appropriate input to the 2-to-4 decoder.

FIGURE A.6 Input–output relationship of the transmission gate.

FIGURE A.7 Four signals connected to a common line using transmission gates.

406 APPENDIX: CMOS LOGIC

A.2 CLOCKED CMOS CIRCUITS

The discussion of CMOS technology has so far concentrated on fully complementary circuits

in which each gate consists of a pair of nMOS and pMOS transistors. The problem with the

fully complementary approach is that for complex circuits a significant amount of chip area is

wasted. This area penalty can be avoided by using clocked CMOS logic. Figure A.8 illus-

trates such a circuit. The basic feature of all clocked CMOS circuits is that the output

node is precharged to VDD when the clock is 0. The inputs of the circuit can be changed

only during the precharge phase. When the clock goes to 1, the path to VDD is opened and

the path to ground is closed. Therefore, depending on the input conditions, the output will

either remain high or will be pulled down during this phase, which is known as the evaluate

phase. For example, in Figure A.9, the output Z is precharged to 1 during the time when the

clock ¼ 0. During the evaluate phase, the output Z will be pulled to ground if the function

[(Aþ C)BþD(Eþ F)] ¼ 1; otherwise, it will remain at 1.

FIGURE A.8 Tristate output of an inverting buffer.

FIGURE A.9 Clocked CMOS logic.

A.2 CLOCKED CMOS CIRCUITS 407

The advantage of a clocked CMOS circuit is that it uses only an n-network, together

with a p-transistor and an n-transistor. This results in the reduction of the load capacitance,

with a consequent increase in speed. However, there are several disadvantages associated

with dynamic CMOS circuits (e.g., the inputs must be changed during the precharge phase,

and multiple stages cannot be cascaded to realize a function).

A.3 CMOS DOMINO LOGIC

The CMOS domino circuits and the clocked CMOS circuits have some common charac-

teristics. Figure A.10 illustrates a domino circuit. When the clock signal is 0, transistor T1

FIGURE A.10 A domino logic network.

FIGURE A.11 Two-stage CMOS domino circuit.

408 APPENDIX: CMOS LOGIC

is switched ON and transistor T7 is switched OFF. Alternatively, T1 is OFF and T7 is ON

when the clock signal is 1. Thus, as in clocked CMOS logic, the output is precharged high

if the path to ground is open and the precharge is stopped if the path to ground is closed.

The output of the clocked CMOS stage is connected to a static CMOS buffer, which feeds

all subsequent logic stages. During the precharge phase the dynamic stage has a high

output, so the output of the buffer will be 0. This means that all transistors in the sub-

sequent logic stages will be turned OFF during the precharge phase. In addition, the

clocked part of the circuit can only make a high-to-low transition during the evaluate

phase; therefore the buffer output can only change from low to high. As a result, the

output of the circuit will be hazard-free and cannot change again until the next precharge

phase. Many circuits, such as the one in Figure A.10 may be cascaded to realize a function

in which data is transferred from one stage to another like a series of falling dominos;

hence the name domino logic. Figure A.11 represents a two-stage domino CMOS

circuit. During the precharge phase nodes 1 and 3 are high, and nodes 2 and 4 (output

node) are low. Let us assume that the inputs are A ¼ 1, B ¼ 1, C ¼ 0, and D ¼ 1.

During the evaluate phase, node 1 goes low, which makes node 2 go high. Since one of

the inputs to the second stage of the circuit (input D) is high, node 3 is pulled low,

causing node 4 to go high.

Domino CMOS circuits provide significant speed enhancement and savings in chip

area. One limitation of this structure is that each stage of the circuit must be buffered.

A.3 CMOS DOMINO LOGIC 409

INDEX

Absorption law, 31, 38

Acyclic graph, 35

tree, 36

Addition operators, in VHDL (VHSIC

hardware description language), 192

Algebraic division, 105

AND gate, 48–49

Antisymmetric, 34

Applicable input sequence, 246

Architecture, description of

behavioral model, 185

structural model, 185

2-to-1 multiplier, 184–185

VHDL (VHSIC hardware description

language), 194–196

Arcs, 35

Arithmetic circuits, 125–141

BCD adders, 132–133

BCD subtractors, 137–138

carry save addition, 130–132

carry select, 130

carry-lookahead adders, 129

carry-save, 130

comparator, 140–141

full adders, 126–129

full subtractors, 135

half subtractors, 133–135

hall-adders, 125

multiplication, 138–140

two’s complement subtractors,

135–137

Arithmetic operations, 5–8

Associative law, 31

Asynchronous counter design,

291–295

ripple, 291–294

up-down, 294–295

Asynchronous operation, 158–159

Asynchronous preset, 320, 322

Asynchronous sequential circuits,

373–397

excitation functions, 387–389

flow table, 374–376

hazards, 390–397

output functions, 387–389

state assignment, 379–387

Barrel shifter, 327–328

Base, 1

BCD adders, 132–133

BCD code, 20

BCD subtractors, 137–138

Behavioral description,

functional simulation, of VHDL (VHSIC

hardware description language), 199

VHDL (VHSIC hardware description

language), 199

Behavioral VHDL, 181

Binary arithmetic operations, 5–8

Binary coded decimal. See BCD

Binary codes, 1–24

binary encoding, 1, 20–25

Binary encoding, 1

non-weighted codes, 22–25

Binary numbers, 2–8

arithmetic operations, 5–8

borrow, 6

hexadecimal, 8–11

minuend, 6

octal numbers, 8–11

signed and unsigned, 14

subtrahend, 6

Binary

hexadecimal to, conversion of, 12

octal from, conversion of, 10

Bistable element, 162

Block diagram, 2-to-1 multiplexer, 217

Blocks, 34

411

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

Boolean algebra, 37–40

Huntington’s postulates, 37

theorems for, 37–40

Absorption Laws, 38

consensus, 39

DeMorgan’s theorem, 38–39

Idempotent Laws, 37

Involution Theorem, 38

two valued, 40

Boolean difference, 112–113

Boolean division, 105–106

Boolean expressions, minimization, 60–63

Boolean functions, 41–43

canonical forms, 45

classification, 43–45

complementation, 41

cubical representation, 79–85

DeMorgan’s Theorem, 43

derivation, 43–45

product, 41

shared product determination, 95

sum of products, 43

sum, 41

symbols, use of, 41

truth table, 42–43

variables, 41

Boolean substitution, 104

Boolean variables, 41

Branches, 36

Buffer ports, operation of, 183

Buffer, definition of, 183

Byte, 13

nibble, 13

Canonical forms, 45

canonical sum of products form, 45–48

maxterm, 45

minterm, 45

Canonical sum of product forms, 45–48

Cardinality, 80

Carry lookahead adders, 129–130

Carry save adder, 130

Carry save addition, 130–132

Carry select adder, 130

Cartesian products, 32

antisymmetric, 34

equivalence relation, 34

symmetric, 33

transitive, 34

Case statements, 220–223

Characters, as lexical elements, 186

Circulating shift register, 307

Classification, 43–45

Clock, 158

Clocked CMOS circuits, 407–408

Clocked sequential circuits, 158

Closure conditions, 248

Closure property, 37

CMOS logic, 403–409

clocked circuits, 407–408

domino, 408–409

transmission gates, 405–406

Code assignments, 268–270

Cofactors, 82

Coincidence gate, 53

Cokernel cube matrix, 107

rectangle, 108

rectangular cover, 108

Collapsing, inverse operation of substitution

and, 103, 104

Combinational circuit design, programmable

logic devices, 141–150

Combinational logic design, 50–150,

205–233

2-out-of-4 decoder, 210

4-to-1 multiplexer, 208

implied memory, 209

4-to-2 priority encoder, 211

arithmetic circuits, 125–141

Boolean expressions, minimization of,

60–63

Boolean functions, cubical representation,

79–85

circuit function example, 205

concurrent assignment statements, 206–214

conditional assignments, 207–211

direct signal assignment, 206–207

for loop, 225–229

for–generate statement, 230–233

implementation of, 114–117

Karnaugh maps, 63–73

logic circuit design, 117–125

heuristic minimization of, 85–95

loops, 225–230

multilevel, 102–109

multiple output functions, 95–98

NAND–NAND logic, 98–101

NOR–NOR logic, 101–102

Quine–McCluskey method, 73–79

selected conditional signal assignment,

211–214

sequential assignment statements, 214–224

truth table, 60

while loops, 229–230

412 INDEX

Combinational logic implementation, EX-OR

AND AND gate, 114–117

Comments, as lexical elements, 186

Commutative law, 31

Comparator, 140–141

Compatibility class, 247

Complement form, 14

Complement, 37

Complementary approach, 70–73

Complementation, 41, 84–85

Complex PLDs, 278

Component instantiation statement,

definition of, 198, 206

Concurrent assignment statements, in

combinational logic design, 206–214

Concurrent statements, in VHDL (VHSIC

hardware description language),

192–194

Conditional assignments, combinational

logic design, 207–211

Connection matrix, 35

Consensus, 39

Control equations, 175–176

Control inputs, multiplexers and, 122

Counter design, 291–312

asynchronous, 291–295

gray code, 300–302

Johnson counters, 310–313

ring, 307–309

shift register, 302–307

synchronous, 291, 295

Counters, 332–338

decade, 334–335

gray code, 335–336

Johnson, 337–338

ring, 336–337

Cover, 80

cardinality, 80

irredundant, 80

minimal, 80

size, 80

Covering conditions, 248

Critical race free state assignment, 381–386

Critical races, 380

Crosspoints, fuses, 141

Cube, 79

cover, 80

implicant, 80

intersection, 82

minterm, 80

positional cube notation, 81

supercube, 82

Cubical representation, 79–85

literal, 79

tautology, 82–84

Cyclic code, 23

reflected, 23–25

D flip flops, 163–164, 316–318

D latch, 315–316

level sensitive device, 315

Data flow description, 181. See also RTL

description

Data objects, as lexical elements,

186–187

Data types, VHDL (VHSIC hardware

description language), 187–189

bit, 187

Boolean, 187

Decade counters, 334–335

Decimal numbers, 1–2

Decoders, 123–125

Decomposition process, 103

Decomposition, 261–265

reduced dependency, 262

substitution property, 262

DeMorgan’s law, 32

DeMorgan’s Theorem, 38–39

Demultiplexers, 123–125

Derivation, 43–45

Digital logic

Boolean

algebra, 37–40

functions, 41–43

concepts of, 29–53

graphs, 35–37

logic gates, 48–53

partitions, 34–35

relations, 32–34

sets, 29–32

Digraph, 35

Diminished radix complement, 14–16

1’s complement, 14

end-around carry, 15

Direct signal assignments, combinational

logic design, 206

Directed graph, 35

digraph, 35

acyclic, 35

in-degree, 36

out-degree, 36

path, 35

path, cycle, 35

Disjoint, 31

INDEX 413

Distributive law, 31

Division operators, in VHDL (VHSIC

hardware description language), 192

Domino CMOS logic, 408–409

Don’t care conditions, 63, 78–79

incompletely specified, 68

Don’t cares

multilevel circuit minimization and,

109–114

observability, 110, 112–114

satisfiability, 110–112

Double rail inputs, 99

Duality, 37

Dynamic logic hazards, 395–396

Edges, 35

EHDl abstractions, examples of, 182

Empty sets, 30

Encoding binary numbers, 20–26

weighted codes, 20–22

End around carry, 15

Entity-architecture pair, in VHDL, 182

Enumerated type data, VHDL codes and,

342–345

EPLDs, 278–285

Equivalence classes, 35

Equivalence gate, 53

Equivalence partition, 241

Equivalence relation, 34

ESPRESSO, 91, 92–95

Karnaugh map, 92–95

Essential hazards, 396–397

Essential prime implicant, 74

Excess-e code, 22

Excitation functions, 387–389

Excitation variables, 158

Exclusive NOR, EX–OR, 51–53

Exclusive OR, 51

EX–NOR gate, 51–53

coincidence, 53

equivalence, 53

EX–OR AND AND gate, 114–117

parity bit, 115

programmable inverter, 116

Reed–Muller canonical form,

116–117

rules for operation, 115

EX–OR gate, 51–53

EXPAND, 85–88

Extraction process, 103–104

Factoring process, 103, 105

Fall delay, 168

Fan out oriented algorithm, 265–267

Fan-in oriented algorithm, 265, 267–268

Finite state machine. See Synchronous

sequential circuits

Flattening, inverse operation of substitution

and, 104

Flip flops, 162–168, 316–324

asynchronous preset, 320, 322

bistable element, 162

D, 316–318

hold time, 162

JK, 318–320

metastable state, 162

next state expression, 249–257

transition table, 250

setup time, 162

synchronous present, 320, 322

T, 318–319

types

D, 163–164

JK, 165–167

T, 167–168

Floating point numbers

mantissa, 19

normalization, 19

Flow table, primitive, 376, 377–378

For loop, in combinational logic design,

225–229

For–generate statement, in combinational

logic design, 230–233

Full adders, 126–129

ripple, 128

truth table, 127

Full subtractors, 135

Function hazards, 391–392

Fuses, 141

Gated latches, 160

Graphs, 35–37

arcs, 35

connection matrix, 35

directed, 35

edges, 35

nodes, 35

nondirected, 35

vertices, 35

Gray code, 23–25

counters, 300–302, 335–336

Half adders, 125–126

Half subtractors, 133–135

Hardware description language

(HDL), 181

414 INDEX

Hazards, 390–397

essential, 396–397

function, 391–392

logic, 393–396

HDL (hardware description

language), 181

Heuristic minimization, logic circuits and,

85–95

Hexadecimal, 8–13

binary from, conversion of, 12

byte, 13

nibble, 13

Hold time, 162

Huntington’s postulates, 37

closure property, 37

complement, 37

duality, 37

Idempotent Laws, 32, 37

If versus case statements, 223–224

If– then statements, 216–220

Implicant, 80

prime, 80

Implication table, 242–244

incompatibles, 242

Incompatibles, 242

Incompletely specified, 68

Incompletely specified sequential circuits

applicable input sequence, 246

closure conditions, 248

compatibility class, 247

covering conditions, 248

minimization of, 244–249

In-degree, 36

Intersection, 31, 82

Inverse operation of substitution, 104

Involution Theorem, 38

Irredundant, 80, 90–92

partially redundant prime implicants,

90–92

relatively essential prime implicants, 90

totally redundant prime implicants,

90–92

JK flip flop, 165–167, 318–320

Johnson counter, 310–313, 337–338

Karnaugh map, 63–73, 92–95

complementary approach, 70–73

don’t care conditions, 63

Kernels, 106–109

cokernel cube matrix, 107

rectangular covering problem, 107

Latches, 159–162

gated, 160

reset input, 159

set input, 159

SR latch, 159

transparent, 160

Leaves, 36

Level sensitive device, 315

Lexical elements, in VHDL descriptions,

185–187

LFSR. See Linear feedback shift registers

Linear feedback shift registers (LFSR),

329–332

maximal length sequence, 329

Literal, 79

Literal, cube, 79

Logic circuit design, 117–125

mutiplexers, 117–122

Logic circuits, heuristic minimization of,

85–95

ESPRESSO, 91, 92–95

EXPAND, 85–88

IRREDUNDANT, 90–92

REDUCE, 88–90

Logic design circuit

decoders, 123–125

demultiplexers, 123–125

Logic design

combinational, 59–150

sequential, 59

Logic gates, 48–53

AND, 48

exclusive-NOR, 51

exclusive-OR, 51

NAND, 51

NOR, 51

NOT, 50–51

OR, 48–49

truth tables, 48–53

Logic hazards, 393–396

dynamic, 395–396

static, 393–394

three-valued, 394

Logic operations, in VHDL (VHSIC

hardware description language), 189

Loop statement, 337

Loops, in combinational logic design,

225–230

Majority voter circuit, 196

alternate description of, 200

VHDL description of, 197

Mantissa, 19

INDEX 415

Maximal length sequence, 329

Mealy machine, VHDL and, 345–351

Mealy models, 172–175

Mealy type state machines, 341–342

Metastable state, 162

Minimal, 80

Minimization, Boolean expressions and,

60–63

Minimized two-level representation, 103

decomposition, 103

extraction, 103–104

factoring, 103, 105

substitution, 103, 104

Minterm, 45, 80

Minuend, 6

Moore models, 172–175

Moore type state machines, 338–341

M-out-of-n code, 271–273

Multilevel circuits, minimization of, don’t

cares, 109–114

Multilevel logic design, 102–109

algebraic division, 105

Boolean division, 105–106

kernels, 106–109

minimized two-level representation, 103

Multiple architectural description, of VHDL

(VHSIC hardware description language),

194–196

Multiple output functions, minimization of,

95–98

Multiplexers, 117–122

control inputs, 122

Multiplication, 138–140

Multiplying operators, in VHDL (VHSIC

hardware description language),

191–192

NAND gate, 51

entity and, 183

NAND–NAND logic, 98–101

double rail inputs, 99

single rail inputs, 100

Nodes, 35

Nonbinary counter, 302

Noncritical races, 380

Nondirected graph, 35

Nonweighted codes

cyclic code, 23

excess-3, 22

NOR gate, 51

Normalization, 19

NOR–NOR logic, 101–102

NOT gate, 50–51

Null partitions, 35

Number systems, 1–24

base, 1

decimal numbers, 1–2

floating point, 19

radix, 1

signed, 13–19

Numbers, as lexical elements, 186

Observability don’t cares, 110,

112–114

Boolean difference, 112–113

Octal numbers, 8–11

Octal, binary to, conversion, 10

1 hot encoding, 355–356

1’s complement, 14

Operators, in VHDL (VHSIC hardware

description language), 189–192

OR gate, 48–49

Out degree, 36

Output functions, 387–389

Overflow, 14, 18

PAL, 142, 146–150

devices, sequential, 273–286

PAL22V10 device, 275–277

Parity bit, 115

Partially redundant prime implicants,

90–92

Partitioning approach, 239–242

equivalence partition, 241

Partitions, 34–35

blocks, 34

equivalence classes, 35

null, 35

unity, 35

Path, cycle, 35

PLA (programmable logic array), 142,

144–146

PLD (programmable logic devices),

crosspoints, 141

PLD, PAL, 142, 146–150

PLD, PLA, 142, 144–146

PLD, PROM, 142–143

Port, definition of, 183

Positional association, definition of, 198

Positional cube notation, 81

Power sets, 30

Preset, 322

Primary signal, synchronous sequential

circuits and, 157

416 INDEX

Prime implicants, 74

chart, 76–77

essential, 74

partially redundant, 90–92

relatively essential, 90–92

totally redundant, 90–92

Prime, 80

Primitive flow table, 376, 377–378

reduction of, 377–379

Process statement, 315

Product, 41

Programmable inverter, 116

Programmable logic devices (PLD), 141–150

PROM (programmable read only memory),

142–143

Propagation delay, 168

fall, 168

rise, 168

Quine–McCluskey method, 73–79

don’t care conditions, 78–79

prime implicant, 74

Races, 379–381

critical, 380

noncritical, 380

Radix, 1

complement, 16–19

2’s complment, 17

overflow, 18

sign-extended, 19

Rectangle, 108

Rectangular cover, 108

problem, 107

REDUCE, 88–90

Reduced dependency, 262

Reed–Muller canonical form, 116–117

Reflected code (Gray code), 23–25

Register transfer level (RTL) description, 181

Registers, 322–324

barrel shifter, 327–328

linear feedback, 329–332

shift, 324–332

universal shift, 327

Relational operators, in VHDL (VHSIC

hardware description language),

189–190

Relations, 32–34

Cartesian products, 32

Relatively essential prime implicants, 90

Reserved words, in VHDL (VHSIC hardware

description language), 192

Reset input, 159

Resets, 320–321

Ring counters, 307–309, 336–337

circulating shift register, 307

loop statement, 337

Ripple adder, 128

Ripple asynchronous counter design,

291–294

Rise delay, 168

RTL (register transfer level) description,

181, 200–202

concept of, 200

Satisfiability don’t cares (SDCs), 110–112

SDCs. See Satisfiability don’t cares

Secondary signal

excitation variables, 158

present stat and, 157

synchronous sequential circuits and, 157

Selected conditional signal assignment, in

combinational logic design, 211–214

Self complementing codes, 21

Self-starting counter, 299

Sequential assignment statements

combinational logic design, 214–224

case statement, 220–223

if versus case statements, 223–224

if–then statements, 216–220

process, 214–216

Sequential circuit design, VHDL, 315–368

Sequential logic design, 59

Sequential machine. See synchronous

sequential circuits

Sequential PAL devices, 273–286

complex PLDs, 278

EPLDs, 278–285

PAL22V10, 275–277

Sequential statements, in VHDL (VHSIC

hardware description language),

192–194

Set input, 159

Set-reset latch. See SR latch

Sets, 30

definition of, 30

disjoint, 31

empty, 30

intersection, 31

power, 30

properties of, 31

absorption law, 31

associative law, 31

commutative law, 31

INDEX 417

Sets (Continued)

DeMorgan’s law, 32

distributive law, 31

idempotent law, 32

singleton, 30

union, 30

Setup time, 162

Shannon’s expansion, 83, 84–85

complementation, 84–85

Shared product, determination of, 95

Shift and rotate operator

functions, 190

Shift operators, in VHDL (VHSIC hardware

description language), 190–191

Shift register counters, 302–307

nonbinary, 302

state sequence tree, 302

Shift registers, 324–332

bidirectional, 326

Sign magnitude representation, 13–14

complement, 14

overflow, 14

Signals as wires, example of, 207

Signed binary numbers, 14

Signed numbers, 13–19

diminished radix complement, 14–16

radix complement, 16–19

sign-magnitude representation, 13–14

Sign-extended, 19

Simulation results, 8-to-1 multiplexer, 212

Single rail inputs, 100

Singleton, 30

Size, 80

SR latch (set-reset latch), 159

State assignment, 235, 249, 257–273,

379–387

code, 268–270

critical race free state assignment,

381–386

decomposition, 261–265

fan out oriented algorithm, 265–267

fan-in oriented algorithm, 265, 267–271

m-out-of-n code, 271–273

number of, 260

races and cycles, 379–381

State diagram, 170–172

state transition graph, 171–172

State machines, 338–356

enumerated types and, VHDL codes,

342–345

Mealy-type, 341–342

Moore-type, 338–341

1-hot encoding, 355

user defined state encoding, 351–355

State minimization, 235, 239–244

implication table, 242

incompletely specified sequential circuits,

244–249

partitioning approach, 239–242

State sequence tree, 302

State tables, 170–172

State transition graph, 171–172

Static logic hazards, 393–395

Strings, as lexical elements, 186

Structural description, definition of, 196

Substitution process, 103, 104

Boolean, 104

inverse operation of, 104

collapsing, 103, 104

flattening, 104

Substitution property, 262

Subtrahend, 6

Sum of products, 43

Sum, 41

Supercube, 82

Switching algebra, 40

Symbols, Boolean functions and, 41

Symmetric, 33

Synchronizing pulse, clock, 158

Synchronous counter design, 295–300

self-starting counter, 299

Synchronous logic circuits, 158–159

asynchronous operation, 158–159

flip-flops, 162–168

latches, 159–162

synchronizing pulse, 158

Synchronous preset, 322

Synchronous reset, 320

Synchronous sequential circuit design,

235–290

flip-flop next state expressions, 249–257

intended behavior, 235

PAL devices, 273–286

problem specification, 236–239

specifications of, 235

state assignment, 235, 249, 257–273

state minimization of, 235, 239

Synchronous sequential circuits, 157–177

analysis, 175–177

control equations, 175–176

transition table, 176–177

clocked sequential circuits, 158

finite state machine, 157

Mealy models, 172–175

418 INDEX

Moore models, 172–175

primary signal, 157

secondary, 157

sequential machine, 157

state

diagram, 170–172

tables, 170–172

synchronous logic circuits, 158–159

timing, 168–170

propagation delay, 168

T flip flops, 167–168, 318–319

Tautology, 82–84

cofactors, 82

Shannon’s expansion, 83

Three valued logic hazards, 394

Timing, synchronous sequential circuits

and, 168–170

Transaction table, 250

Transition table, 176–177

Transitive, 34

Transmission gates, 405–406

Transparent latches

Tree, 36

branches, 36

leaves, 36

Truth table, 48–53, 60

full adders and, 127

Two level representation, minimized, 103

Two valued Boolean algebra, 40

switching, 40

Two’s complement, 17

subtractors, 135–137

Two-input NAND gate and entity, 183

Union, 30

Unity partitions, 35

Universal shift registers, 327

Unsigned binary numbers, 14

Up-down asynchronous counter design,

294–295

User defined state encoding, 351–355

Variables, 41

Vertices, 35

Very high speed integrated circuit (VHSIC), 181

VHDL (VHSIC hardware description

language), 181–204

addition operators, 192

architecture, 184

description, 194–196

behavioral, 181

description, 199

functional simulation, 199

combinational logic design

See Combinational logic design

concurrent and sequential statements,

192–194

data types, 187–189

bit, 187

boolean, 187

enumerated types, 188

definition of, 181

development of, 181

division operators, 192

entity, 182–183

lexical elements, 185–187

characters, 186

comments, 186

data objects, 186–187

numbers, 186

strings, 186

logic operators, 189

miscellaneous operators, 192

multiple architecture description,

194–196

multiplying operators, 191–192

operators, 189–192

relational operators, 189–190

reserved words, 192

RTL description, 200–202

shift operators, 190–191

structural description, 196

VHDL circuit models, 315

case studies, 356–368

counters, 332–338

D latch, 315–316

flip flops, 316–324

process statement, 315

registers, 322–324

shift registers, 324–332

state machines, 338–356

Mealy machine and, 345–351

VHSIC (very high speed integrated

circuit), 181

VHSIC hardware description language

(VHDL). See VHDL

Weighted codes, 20–22

BCD code, 20

self-complementing, 21

While loops, 229–230

INDEX 419

	PRINCIPLES OF MODERN DIGITAL DESIGN
	CONTENTS
	Preface
	1 Number Systems and Binary Codes
	1.1 Introduction
	1.2 Decimal Numbers
	1.3 Binary Numbers
	1.3.1 Basic Binary Arithmetic

	1.4 Octal Numbers
	1.5 Hexadecimal Numbers
	1.6 Signed Numbers
	1.6.1 Diminished Radix Complement
	1.6.2 Radix Complement

	1.7 Floating-Point Numbers
	1.8 Binary Encoding
	1.8.1 Weighted Codes
	1.8.2 Nonweighted Codes

	Exercises

	2 Fundamental Concepts of Digital Logic
	2.1 Introduction
	2.2 Sets
	2.3 Relations
	2.4 Partitions
	2.5 Graphs
	2.6 Boolean Algebra
	2.7 Boolean Functions
	2.8 Derivation and Classification of Boolean Functions
	2.9 Canonical Forms of Boolean Functions
	2.10 Logic Gates
	Exercises

	3 Combinational Logic Design
	3.1 Introduction
	3.2 Minimization of Boolean Expressions
	3.3 Karnaugh Maps
	3.3.1 Don’t Care Conditions
	3.3.2 The Complementary Approach

	3.4 Quine–MCCluskey Method
	3.4.1 Simplification of Boolean Function with Don’t Cares

	3.5 Cubical Representation of Boolean Functions
	3.5.1 Tautology
	3.5.2 Complementation Using Shannon’s Expansion

	3.6 Heuristic Minimization of Logic Circuits
	3.6.1 Expand
	3.6.2 Reduce
	3.6.3 Irredundant
	3.6.4 Espresso

	3.7 Minimization of Multiple-Output Functions
	3.8 NAND–NAND and NOR–NOR Logic
	3.8.1 NAND–NAND Logic
	3.8.2 NOR–NOR Logic

	3.9 Multilevel Logic Design
	3.9.1 Algebraic and Boolean Division
	3.9.2 Kernels

	3.10 Minimization of Multilevel Circuits Using Don’t Cares
	3.10.1 Satisfiability Don’t Cares
	3.10.2 Observability Don’t Cares

	3.11 Combinational Logic Implementation Using EX-OR and AND Gates
	3.12 Logic Circuit Design Using Multiplexers and Decoders
	3.12.1 Multiplexers
	3.12.2 Demultiplexers and Decoders

	3.13 Arithmetic Circuits
	3.13.1 Half-Adders
	3.13.2 Full Adders
	3.13.3 Carry-Lookahead Adders
	3.13.4 Carry-Select Adder
	3.13.5 Carry-Save Addition
	3.13.6 BCD Adders
	3.13.7 Half-Subtractors
	3.13.8 Full Subtractors
	3.13.9 Two’s Complement Subtractors
	3.13.10 BCD Substractors
	3.13.11 Multiplication
	3.13.12 Comparator

	3.14 Combinational Circuit Design Using PLDs
	3.14.1 PROM
	3.14.2 PLA
	3.14.3 PAL

	Exercises
	References

	4 Fundamentals of Synchronous Sequential Circuits
	4.1 Introduction
	4.2 Synchronous and Asynchronous Operation
	4.3 Latches
	4.4 Flip-Flops
	4.4.1 D Flip-Flop
	4.4.2 JK Flip-Flop
	4.4.3 T Flip-Flop

	4.5 Timing in Synchronous Sequential Circuits
	4.6 State Tables and State Diagrams
	4.7 Mealy and Moore Models
	4.8 Analysis of Synchronous Sequential Circuits
	Exercises
	References

	5 VHDL in Digital Design
	5.1 Introduction
	5.2 Entity and Architecture
	5.2.1 Entity
	5.2.2 Architecture

	5.3 Lexical Elements in VHDL
	5.4 Data Types
	5.5 Operators
	5.6 Concurrent and Sequential Statements
	5.7 Architecture Description
	5.8 Structural Description
	5.9 Behavioral Description
	5.10 RTL Description
	Exercises

	6 Combinational Logic Design Using VHDL
	6.1 Introduction
	6.2 Concurrent Assignment Statements
	6.2.1 Direct Signal Assignment
	6.2.2 Conditional Signal Assignment
	6.2.3 Selected Conditional Signal Assignment

	6.3 Sequential Assignment Statements
	6.3.1 Process
	6.3.2 If–Then Statement
	6.3.3 Case Statement
	6.3.4 If Versus Case Statements

	6.4 Loops
	6.4.1 For Loop
	6.4.2 While Loop

	6.5 For–Generate statement
	Exercises

	7 Synchronous Sequential Circuit Design
	7.1 Introduction
	7.2 Problem Specification
	7.3 State Minimization
	7.3.1 Partitioning Approach
	7.3.2 Implication Table

	7.4 Minimization of Incompletely Specified Sequential Circuits
	7.5 Derivation of Flip-Flop Next State Expressions
	7.6 State Assignment
	7.6.1 State Assignment Based on Decomposition
	7.6.2 Fan-out and Fan-in Oriented State Assignment Techniques
	7.6.3 State Assignment Based on 1-Hot Code
	7.6.4 State Assignment Using m-out-of-n Code

	7.7 Sequential PAL Devices
	Exercises
	References

	8 Counter Design
	8.1 Introduction
	8.2 Ripple (Asynchronous) Counters
	8.3 Asynchronous Up–Down Counters
	8.4 Synchronous Counters
	8.5 Gray Code Counters
	8.6 Shift Register Counters
	8.7 Ring Counters
	8.8 Johnson Counters
	Exercises
	References

	9 Sequential Circuit Design Using VHDL
	9.1 Introduction
	9.2 D Latch
	9.3 Flip-Flops and Registers
	9.3.1 D Flip-Flop
	9.3.2 T and JK Flip-Flops
	9.3.3 Synchronous and Asynchronous Reset
	9.3.4 Synchronous and Asynchronous Preset
	9.3.5 Registers

	9.4 Shift Registers
	9.4.1 Bidirectional Shift Register
	9.4.2 Universal Shift Register
	9.4.3 Barrel Shifter
	9.4.4 Linear Feedback Shift Registers

	9.5 Counters
	9.5.1 Decade Counter
	9.5.2 Gray Code Counter
	9.5.3 Ring Counter
	9.5.4 Johnson Counter

	9.6 State Machines
	9.6.1 Moore-Type State Machines
	9.6.2 Mealy-Type State Machines
	9.6.3 VHDL Codes for State Machines Using Enumerated Types
	9.6.4 Mealy Machine in VHDL
	9.6.5 User-Defined State Encoding
	9.6.6 1-Hot Encoding

	9.7 Case Studies
	Exercises
	References

	10 Asynchronous Sequential Circuits
	10.1 Introduction
	10.2 Flow Table
	10.3 Reduction of Primitive Flow Tables
	10.4 State Assignment
	10.4.1 Races and Cycles
	10.4.2 Critical Race-Free State Assignment

	10.5 Excitation and Output Functions
	10.6 Hazards
	10.6.1 Function Hazards
	10.6.2 Logic Hazards
	10.6.3 Essential Hazards

	Exercises
	References

	Appendix: CMOS Logic
	A.1 Transmission Gates
	A.2 Clocked CMOS Circuits
	A.3 CMOS Domino Logic

	Index

