= =

e

oy
Y
L,
W f
‘“‘-v.b ’Tn"' Ui
Mo SO0
i ks
i

T
L

Mz &*Tﬁﬁﬁ‘ﬂmﬂﬂgﬁ?ommIDTE”U7
1/
: 'f”L'J4fé;:?gg,’giﬂﬂﬂflﬂﬂfﬂlﬂﬂ]ﬂm ool

S .Wﬁﬂliﬁiﬂﬂfﬂﬂfg 7/l]0 0 7

PARAG K. LALA

PRINCIPLES OF MODERN
DIGITAL DESIGN

Parag K. Lala

Cary and Lois Patterson Chair of Electrical Engineering Texas
A&M University—Texarkana

EEEEEEEEEE

| GIWILEY :
12007 "

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION

Innodata
File Attachment
9780470125205.jpg

PRINCIPLES OF MODERN
DIGITAL DESIGN

BICENTENNIAL

1807

@WILEY
2007

BICENTENNIAL

BICENTENNIAL

TYINNILNGDIE

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey,
enabling the flow of information and understanding necessary to meet their needs
and fulfill their aspirations. Today, bold new technologies are changing the way
we live and learn. Wiley will be there, providing you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the
knowledge you need, when and where you need it!

s, P /B BT L2 ‘

WiLLiamM J. PESCE PETER BOOTH WILEY
PRESIDENT AND CHIEF EXECUTIVE OFFICER CHAIRMAN OF THE BOARD

PRINCIPLES OF MODERN
DIGITAL DESIGN

Parag K. Lala

Cary and Lois Patterson Chair of Electrical Engineering Texas
A&M University—Texarkana

EEEEEEEEEE

| GIWILEY :
12007 "

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of merchantability
or fitness for a particular purpose. No warranty may be created or extended by sales representatives or
written sales materials. The advice and strategies contained herein may not be suitable for your situation.
You should consult with a professional where appropriate. Neither the publisher nor author shall be liable
for any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Lala, Parag K., 1948—
Principles of modern digital design / by Parag K. Lala.
p. cm.
Includes index.
ISBN 978-0-470-07296-7 (cloth/cd)
1. Logic design. 2. Logic circuits—Design and construction. 3. Digital electronics. 1. Title
TK7868. L6L.3486 2007
621.39'5--dc22 2006032483

Printed in the United States of America

109 8 7 6 5 43 21

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To Mrs. Mithilesh Tiwari and Miss Shakuntala Tiwari for their love

“Full many a gem of purest ray serene,
The dark unfathomed caves of ocean bear:
Full many a flower is born to blush unseen,

And waste its sweetness on the desert air.”

Thomas Gray

CONTENTS

Preface xiii

1 Number Systems and Binary Codes 1

1.1 Introduction 1
1.2 Decimal Numbers 1
1.3 Binary Numbers 2
1.3.1 Basic Binary Arithmetic 5
1.4 Octal Numbers 8§
1.5 Hexadecimal Numbers 11
1.6 Signed Numbers 13
1.6.1 Diminished Radix Complement 14
1.6.2 Radix Complement 16
1.7 Floating-Point Numbers 19
1.8 Binary Encoding 20
1.8.1 Weighted Codes 20
1.8.2 Nonweighted Codes 22
Exercises 25

2 Fundamental Concepts of Digital Logic 29

2.1 Introduction 29
2.2 Sets 29
2.3 Relations 32
2.4 Partitions 34
2.5 Graphs 35
2.6 Boolean Algebra 37
2.7 Boolean Functions 41
2.8 Derivation and Classification of Boolean Functions 43
2.9 Canonical Forms of Boolean Functions 45
2.10 Logic Gates 48
Exercises 53

vii

viii CONTENTS

3 Combinational Logic Design

3.1
3.2
3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11
3.12

3.13

Introduction 59
Minimization of Boolean Expressions 60
Karnaugh Maps 63
3.3.1 Don’t Care Conditions 68
3.3.2 The Complementary Approach 70
Quine—McCluskey Method 73
3.4.1 Simplification of Boolean Function with Don’t Cares 78
Cubical Representation of Boolean Functions 79
3.5.1 Tautology 82
3.5.2 Complementation Using Shannon’s Expansion 84
Heuristic Minimization of Logic Circuits 85
3.6.1 Expand 85
3.6.2 Reduce 88
3.6.3 Irredundant 90
3.6.4 Espresso 92
Minimization of Multiple-Output Functions 95
NAND-NAND and NOR-NOR Logic 98
3.8.1 NAND-NAND Logic 98
3.8.2 NOR-NOR Logic 101
Multilevel Logic Design 102
3.9.1 Algebraic and Boolean Division 105
3.9.2 Kernels 106
Minimization of Multilevel Circuits Using Don’t Cares 109
3.10.1 Satisfiability Don’t Cares 110
3.10.2 Observability Don’t Cares 112
Combinational Logic Implementation Using EX-OR and AND Gates
Logic Circuit Design Using Multiplexers and Decoders 117
3.12.1 Multiplexers 117
3.12.2 Demultiplexers and Decoders 123
Arithmetic Circuits 125
3.13.1 Half-Adders 125
3.13.2 Full Adders 126
3.13.3 Carry-Lookahead Adders 129
3.13.4 Carry-Select Adder 130
3.13.5 Carry-Save Addition 130
3.13.6 BCD Adders 132
3.13.7 Half-Subtractors 133
3.13.8 Full Subtractors 135
3.13.9 Two’s Complement Subtractors 135
3.13.10 BCD Substractors 137

59

114

CONTENTS

3.13.11 Multiplication 138
3.13.12 Comparator 140
3.14 Combinational Circuit Design Using PLDs 141
3.14.1 PROM 142
3.142 PLA 144
3.143 PAL 146
Exercises 150
References 155

4 Fundamentals of Synchronous Sequential Circuits

5

4.1 Introduction 157
4.2 Synchronous and Asynchronous Operation 158
4.3 Latches 159
4.4 Flip-Flops 162
4.4.1 D Flip-Flop 163
4.4.2 JK Flip-Flop 165
443 T Flip-Flop 167
4.5 Timing in Synchronous Sequential Circuits 168
4.6 State Tables and State Diagrams 170
4.7 Mealy and Moore Models 172
4.8 Analysis of Synchronous Sequential Circuits 175
Exercises 177
References 180

VHDL in Digital Design

5.1 Introduction 181
5.2 Entity and Architecture 182
5.2.1 Entity 182
5.2.2 Architecture 184
5.3 Lexical Elements in VHDL 185
5.4 Data Types 187
5.5 Operators 189
5.6 Concurrent and Sequential Statements 192
5.7 Architecture Description 194
5.8 Structural Description 196
5.9 Behavioral Description 199
5.10 RTL Description 200
Exercises 202

ix

157

181

X CONTENTS

6 Combinational Logic Design Using VHDL 205

6.1 Introduction 205
6.2 Concurrent Assignment Statements 206
6.2.1 Direct Signal Assignment 206
6.2.2 Conditional Signal Assignment 207
6.2.3 Selected Conditional Signal Assignment 211
6.3 Sequential Assignment Statements 214
6.3.1 Process 214
6.3.2 If—Then Statement 216
6.3.3 Case Statement 220
6.3.4 If Versus Case Statements 223
6.4 Loops 225
6.4.1 For Loop 225
6.4.2 While Loop 229
6.5 For—Generate statement 230
Exercises 233

7 Synchronous Sequential Circuit Design 235

7.1 Introduction 235
7.2 Problem Specification 236
7.3 State Minimization 239
7.3.1 Partitioning Approach 239
7.3.2 Implication Table 242
7.4 Minimization of Incompletely Specified Sequential Circuits 244
7.5 Derivation of Flip-Flop Next State Expressions 249
7.6 State Assignment 257
7.6.1 State Assignment Based on Decomposition 261
7.6.2 Fan-out and Fan-in Oriented State Assignment Techniques 265
7.6.3 State Assignment Based on 1-Hot Code 271
7.6.4 State Assignment Using m-out-of-n Code 271
7.7 Sequential PAL Devices 273
Exercises 286
References 290

8 Counter Design 291

8.1 Introduction 291

8.2 Ripple (Asynchronous) Counters 291
8.3 Asynchronous Up—Down Counters 294
8.4 Synchronous Counters 295

8.5 Gray Code Counters 300

8.6 Shift Register Counters 302

10

8.7
8.8

CONTENTS

Ring Counters 307
Johnson Counters 310

Exercises 313
References 313

Sequential Circuit Design Using VHDL

9.1
9.2
9.3

9.4

9.5

9.6

9.7

Introduction 315

D Latch 315

Flip-Flops and Registers 316

9.3.1 D Flip-Flop 316

9.3.2 T and JK Flip-Flops 318

9.3.3 Synchronous and Asynchronous Reset 320
9.3.4 Synchronous and Asynchronous Preset 322
9.3.5 Registers 322

Shift Registers 324

9.4.1 Bidirectional Shift Register 326
9.4.2 Universal Shift Register 327

9.4.3 Barrel Shifter 327

9.4.4 Linear Feedback Shift Registers 329
Counters 332

9.5.1 Decade Counter 334

9.5.2 Gray Code Counter 335

9.5.3 Ring Counter 336

9.5.4 Johnson Counter 337

State Machines 338

9.6.1 Moore-Type State Machines 338
9.6.2 Mealy-Type State Machines 341

9.6.3 VHDL Codes for State Machines Using Enumerated Types 342

9.6.4 Mealy Machine in VHDL 345
9.6.5 User-Defined State Encoding 351
9.6.6 1-Hot Encoding 355

Case Studies 356

Exercises 368
References 371

Asynchronous Sequential Circuits

10.1
10.2
10.3
10.4

Introduction 373

Flow Table 374

Reduction of Primitive Flow Tables 377
State Assignment 379

xi

315

373

xii CONTENTS

10.4.1 Races and Cycles 379
10.4.2 Critical Race-Free State Assignment 381
10.5 Excitation and Output Functions 387
10.6 Hazards 390
10.6.1 Function Hazards 391
10.6.2 Logic Hazards 393
10.6.3 Essential Hazards 396
Exercises 398
References 401

Appendix: CMOS Logic 403

A.1 Transmission Gates 405
A.2 Clocked CMOS Circuits 407
A3 CMOS Domino Logic 408

Index 411

PREFACE

This book covers all major topics needed in a modern digital design course. A number of good
textbooks in digital design are currently available. Some of these introduce VHDL before stu-
dents get a good grasp of the fundamentals of digital design. VHDL is a language that is used
to describe the function of digital circuits/systems. In the author’s opinion, students benefit
more from VHDL only when they can appreciate the advantages of using it in digital
design. In this book, VHDL is introduced only after a thorough coverage of combinational
circuit design and a discussion of the fundamental concepts of sequential circuits.

The complexity of modern digital systems is such that they have to be designed using
computer-aided design (CAD) synthesis and minimization tools. The techniques used in
some of the CAD tools, for example computer-aided minimization, multilevel logic
design, and state assignment are inadequately covered or not covered at all in current
undergraduate text books. In this book, the basic concepts of some of these important tech-
niques are introduced in appropriate chapters. The material has been discussed in a tutorial
form, although the nature of certain topics makes an abstract discussion unavoidable. The
objective is not to achieve understanding at the expense of avoiding necessary theory, but
to clarify the theory with illustrative examples in order to establish the theoretical basis for
practical implementations.

The book is subdivided into ten chapters.

Chapter 1 provides coverage of number representations and considers various number
formats. It also discusses binary arithmetic operations such as addition, subtraction,
multiplication, and division.

Chapter 2 provides a comprehensive coverage of a miscellany of basic topics in discrete
mathematics required for understanding material presented in later chapters. Also, the
operations of various gates used to construct logic circuits are discussed.

Chapter 3 provides an in-depth coverage of combinational logic circuit analysis, mini-
mization, and design techniques. The representation of Boolean functions using cubes is
explained and the concept of tautology is discussed. The principles of heuristic minimiz-
ation, different types of don’t cares and multilevel logic synthesis is explained with
many examples. A detailed coverage of all types of arithmetic circuits including BCD
addition/subtraction algorithms and carry-save addition techniques is provided. Multipli-
cation and division are thoroughly discussed. Combinational logic implementation using
Programmable Logic Devices (PLDs) is also covered.

Chapter 4 presents the basic concepts of sequential circuits. The operation of memory
elements is analyzed. The use of state diagrams and state tables to represent the behavior
of sequential circuits is discussed. Also, the distinction between synchronous and asyn-
chronous operation of sequential circuits is clarified.

It is quite routine in the electronics industry to use a hardware description language such
as VHDL to describe the function of digital circuits. Chapter 5 introduces the language in
sufficient detail so that readers can write VHDL code for representing digital circuits.

xiii

Xiv PREFACE

Several examples are given to clarify different ways of representing digital circuit using
VHDL. This chapter is not meant to be an exhaustive guide to VHDL; a number of excellent
books that deal exclusively with VHDL have been published in recent years.

Chapter 6 builds on the previous chapter and focuses on VHDL code for computer-
aided synthesis of combinational logic circuits. Certain features of the VHDL that result
in more efficient code for combinational logic circuits are presented. All these are illus-
trated with complete VHDL codes that have been compiled and synthesized using
Altera Corporation’s Quartus II software package.

Chapter 7 provides a clear picture of how sequential circuits are designed using funda-
mental building blocks (e.g., latches and flip-flops) rather than presenting a rigorous math-
ematical structure of such circuits. Algorithms that are used in some of the currently
popular computer-aided state assignment techniques are discussed. A good coverage of
partition algebra for deriving state assignment has been included. A detailed discussion
of sequential circuit implementation using PLDs is also presented.

Chapter 8 provides comprehensive coverage of counters. Counters are important in
many digital applications. Several design examples and illustrations are provided to
clarify the design of various types of counters.

Chapter 9 presents VHDL coding of sequential circuits. The coding style for sequential
circuits is different from that of combinational circuits. Combinational circuits are usually
coded using concurrent VHDL statements whereas sequential circuits use mainly sequen-
tial VHDL statements. Many examples of VHDL coding of sequential circuits are
included; these codes have been compiled and synthesized using Quartus II.

Chapter 10 covers design principles for traditional fundamental mode non-synchronous
sequential circuits. The concepts of race and hazard are clarified with examples, and state
assignment techniques to avoid these are also discussed.

All modern digital systems are implemented using CMOS technology. A short intro-
duction to CMOS logic is provided in Appendix A.

A Quartus II CD ROM from Altera Corporation is included in the book. All the
examples in the book have been compiled and synthesized using this state-of-the-art
and user-friendly software package.

This book is primarily intended as a college text for a two-semester course in logic design
for students in electrical /computer engineering and computer science degree programs,
or in electrical /computer technology. It does not require any previous knowledge of
electronics; only some general mathematical ability is assumed.

In the first (introductory) course the following sequence of chapters may be covered:
Chapter 1, Chapter 2, Chapter 3 (3.1 to 3.4, 3.8, 3.12 to 3.14), Chapter 4, Chapter 7
(Sections 7.1-7.5), Chapter 8.

In the second (more advanced) course the suggested sequence of chapters is: Chapter 3
(Sections 3.5 to 3.7, 3.9 to 3.11), Chapter 5, Chapter 6, Chapter 7 (Section 7.6), Chapter 9
and Chapter 10.

Although the book is meant to be used for a two-semester course sequence, certain
sections can be omitted to fit the material in a typical one-semester course. Individual
instructors may select chapters at their discretion to suit the needs of a particular digital
design course they are teaching.

This book should also be extremely useful for practicing engineers who took logic
design courses five or more years ago, to update their knowledge. Electrical engineers
who are not logic designers by training but wish to become one, can use this book for
self-study.

PREFACE XV

I am grateful to Dr. Karen Panetta of the Department of Electrical and Computer Engin-
eering, Tufts University for her constructive review and suggestions, and for permitting
me to use problems from her laboratory curriculum in VHDL.

I would also like to thank my former students in several universities who took digital
design courses I taught over the years. I made references to class projects of some of them
in appropriate sections of the book.

I am greatly indebted to my wife, Meena, for her patience. She has been a constant
source of support throughout the writing of the book. Finally I would like to thank my
children Nupur and Kunal for their quiet encouragement and for being who they are.

PARAG K. LALA

1 Number Systems and Binary Codes

1.1 INTRODUCTION

In conventional arithmetic, a number system based on ten units (0 to 9) is used. However,
arithmetic and logic circuits used in computers and other digital systems operate with only
0’s and 1’s because it is very difficult to design circuits that require ten distinct states. The
number system with the basic symbols 0 and 1 is called binary. Although digital systems
use binary numbers for their internal operations, communication with the external world
has to be done in decimal systems. In order to simplify the communication, every decimal
number may be represented by a unique sequence of binary digits; this is known as binary
encoding. In this chapter we discuss number systems in general and the binary system in
particular. In addition, we consider the octal and hexadecimal number systems and fixed-
and floating-point representation of numbers. The chapter ends with a discussion on
weighted and nonweighted binary encoding of decimal digits.

1.2 DECIMAL NUMBERS

The invention of decimal number systems has been the most important factor in the devel-
opment of science and technology. The term decimal comes from the Latin word for “ten.”
The decimal number system uses positional number representation, which means that the
value of each digit is determined by its position in a number.

The base (also called radix) of a number system is the number of symbols that the
system contains. The decimal system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; in
other words it has a base of 10. Each position in the decimal system is 10 times more
significant than the previous position. For example, consider the four-digit number 2725:

2 7 2 5

103 position 102 10! 10° position

Notice that the 2 in the 10? position has a different value than the 2 in the 10" position. The
value of a decimal number is determined by multiplying each digit of the number by the

Principles of Modern Digital Design, by Parag K. Lala
Copyright © 2007 John Wiley & Sons, Inc.

2 NUMBER SYSTEMS AND BINARY CODES

value of the position in which the digit appears and then adding the products. Thus the
number 2725 is interpreted as

2x 100047 x 100+2 x 10+ 5 x 1 =2000 + 700 + 20 + 5

that is, two thousand seven hundred twenty-five. In this case, 5 is the least significant digit
(LSD) and the leftmost 2 is the most significant digit (MSD).

In general, in a number system with a base or radix r, the digits used are from 0 to r — 1.
The number can be represented as

N=a;r" +a,_1r" "+ - F+ar" +ayr’ (1.1)
where, forn=0,1,2,3, ...,

r = base or radix of the number system

a = number of digits having values between 0 and r — 1

Thus, for the number 2725, a3 =2, a, =7, a; = 2, and ay = 5. Equation (1.1) is valid
for all integers. For numbers between 0 and 1 (i.e., fractions), the following equation holds:

N=a_ir''+a 24 Far ™ +a_r™ (1.2)
Thus for the decimal fraction 0.8125,
N = 0.8000 + 0.0100 + 0.0020 + 0.0005

=8x 107" 4+2x1024+1x 103 +8x 1074
=a_ 1 x107" +a_, x 1072 +a_3 X 107 +a_y x 107

where
a_| = 8
a_n, = 1
a_3 = 2
a1 = 5

1.3 BINARY NUMBERS

The binary numbers has a radix of 2. As r = 2, only two digits are needed, and these are 0
and 1. A binary digit, O or 1, is called a bit. Like the decimal system, binary is a positional
system, except that each bit position corresponds to a power of 2 instead of a power of 10.
In digital systems, the binary number system and other number systems closely related to it
are used almost exclusively. However, people are accustomed to using the decimal number
system; hence digital systems must often provide conversion between decimal and binary
numbers. The decimal value of a binary number can be formed by multiplying each power
of 2 by either 1 or 0, and adding the values together.

1.3 BINARY NUMBERS 3

Example 1.1 Let us find the decimal equivalent of the binary number 101010.
N =101010
=1x24+0x2*+1x224+0x2°+1x2"+0x2° (using Eq. (1.1))
=324+04+84+0+2+0
=42

An alternative method of converting from binary to decimal begins with the leftmost bit
and works down to the rightmost bit. It starts with a sum of 0. At each step the current
sum is multiplied by 2, and the next digit to the right is added to it.

Example 1.2 The conversion of 11010101 to decimal would use the following steps:

110101 01 Sam

> 2x(0)+1=1

> 2x(1)+1=3
> 2X(B)+0=6
> 2X(6)+1=13

> 2x(13)+0=26
> 2x(26)+1=53
> 2x(53)+0=106

L L 2x(106)+1=213

The reverse process, the conversion of decimal to binary, may be made by first decom-
posing the given decimal number into two numbers—one corresponding to the positional
value just lower than the original decimal number and a remainder. Then the remainder is
decomposed into two numbers: a positional value just equal to or lower than itself and a
new remainder. The process is repeated until the remainder is 0. The binary number is
derived by recording 1 in the positions corresponding to the numbers whose summation
equals the decimal value.

Example 1.3 Let us consider the conversion of decimal number 426 to binary:

426 =256 + 170
=256+ 128 442
=256+ 128 +32+ 10
=256+ 128 +324 8+2

o1

28 27 2 2% 2!

Thus 426;9 = 110101010, (the subscript indicates the value of the radix).

4 NUMBER SYSTEMS AND BINARY CODES

An alternative method for converting a decimal number to binary is based on successive
division of the decimal number by the radix number 2. The remainders of the divisions,
when written in reverse order (with the first remainder on the right), yield the binary equiv-

alent to the decimal number. The process is illustrated below by converting 353, to
binary,

? = 176, remainder 1
& = 88, remainder 0
8—28 = 44, remainder 0
44 .

> = 22, remainder 0
% = 11, remainder O
11

— = 5, remainder 1
2

5 .

3 = 2, remainder 1

2 .

3 = 1, remainder 0

1 .

5 = 0, remainder 1

Thus 353;9 = 101100001,.

So far we have only considered whole numbers. Fractional numbers may be converted
in a similar manner.

Example 1.4 Let us convert the fractional binary number 0.101011 to decimal. Using
Eq. (1.2), we find

N =0.101011

=Ix240x2 241 x2340x2*+1x27+1x27°

wherea_1=1,a>,=0,a3=1,a4=0,a_5=1,a_¢=1.
Thus
N =0.101011
1 1 1

1
=S+ g+ 35+ g = 0671875

A decimal fraction can be converted to binary by successively multiplying it by 2; the
integral (whole number) part of each product, O or 1, is retained as the binary fraction.

1.3 BINARY NUMBERS 5

Example 1.5 Derive the binary equivalent of the decimal fraction 0.203125. Successive
multiplication of the fraction by 2 results in

0.203125
2

a_; =0 0.406250
2

a_, =0 0.812500
2

a_z =1 0.625000
2

a_4 =1 0.250000
2

a_s =0 0.500000
2

a_e =1 0.000000

Thus the binary equivalent of 0.203125,, is 0.001101,. The multiplication by 2 is con-
tinued until the decimal number is exhausted (as in the example) or the desired accuracy
is achieved. Accuracy suffers considerably if the conversion process is stopped too
soon. For example, if we stop after the fourth step, then we are assuming 0.0011 is
approximately equal to 0.20315, whereas it is actually equal to 0.1875, an error of
about 7.7%.

1.3.1 Basic Binary Arithmetic

Arithmetic operations using binary numbers are far simpler than the corresponding
operations using decimal numbers due to the very elementary rules of addition and
multiplication. The rules of binary addition are

0+0=0
0+1=1
1+0=1

14+1=0 (carry 1)

As in decimal addition, the least significant bits of the addend and the augend are added
first. The result is the sum, possibly including a carry. The carry bit is added to the sum
of the digits of the next column. The process continues until the bits of the most significant
column are summed.

Example 1.6 Let us consider the addition of the decimal numbers 27 and 28 in binary.

Decimal Binary
27 11011 Addend
+28 + 11100 Augend
55 110111 Sum

11000 Carry

6 NUMBER SYSTEMS AND BINARY CODES

To verify that the sum is correct, we convert 110111 to decimal:
Ix2+1x240x22+1x22+1x2'+1x2°
=32416+0+4+2+1
=55

Example 1.7 Let us add —11 to —19 in binary. Since the addend and the augend are
negative, the sum will be negative.

Decimal Binary
19 10011
11 01011
30 11110 Sum
00011 Carry

In all digital systems, the circuitry used for performing binary addition handles two
numbers at a time. When more than two numbers have to be added, the first two are
added, then the resulting sum is added to the third number, and so on.

Binary subtraction is carried out by following the same method as in the decimal
system. Each digit in the subtrahend is deducted from the corresponding digit in the
minuend to obtain the difference. When the minuend digit is less than the subtrahend
digit, then the radix number (i.e., 2) is added to the minuend, and a borrow 1 is added
to the next subtrahend digit. The rules applied to the binary subtraction are

0-0=0
0—1=1 (borrow 1)
1-0=1
1-1=0

Example 1.8 Let us consider the subtraction of 21y from 27, in binary:

Decimal Binary
27 11011 Minuend
—21 — 10101 Subtrahend
6 00110 Difference

00100 Borrow

It can easily be verified that the difference 00110, corresponds to decimal 6.

Example 1.9 Let us subtract 22, from 17,,. In this case, the subtrahend is greater than
the minuend. Therefore the result will be negative.

Decimal Binary

17 10001

—22 — 10110
-5 — 00101 Difference

00001 Borrow

1.3 BINARY NUMBERS 7

Binary multiplication is performed in the same way as decimal multiplication, by mul-
tiplying, then shifting one place to the left, and finally adding the partial products. Since
the multiplier can only be 0 or 1, the partial product is either zero or equal to the multi-
plicand. The rules of multiplication are

0-0=0
0-1=0
1:0=0
1-1=1
Example 1.10 Let us consider the multiplication of the decimal numbers 67 by 13 in
binary:
Decimal Binary
67 1000011 Multiplicand
x 13 1101 Multiplier
871 1000011 First partial product
0000000 Second partial product
1000011 Third partial product
1000011 Fourth partial product
1101100111 Final product

Example 1.11 Let us multiply 13.5 by 3.25.

Decimal Binary
13.5 1101.10 Multiplicand
x 3.25 11.01 Multiplier
43.875 110110 First partial product
000000 Second partial product
110110 Third partial product
110110 Fourth partial product

101011.1110

Final product

The decimal equivalent of the final product is 43 + 0.50 + 0.25 4 0.125 = 43.875.
The process of binary division is very similar to standard decimal division. However,
division is simpler in binary because when one checks to see how many times the divisor

fits into the dividend, there are only two possibilities, O or 1.

Example 1.12 Let us consider the division of 101110 (46,¢) by 111 (7;¢)

0001 Quotient

Divisor 111 | 101110 Dividend
0111
100

Since the divisor, 111, is greater than the first three bits of the dividend, the first three
quotient bits are 0. The divisor is less than the first four bits of the dividend; therefore

8 NUMBER SYSTEMS AND BINARY CODES

the division is possible, and the fourth quotient bit is 1. The difference is less than the
divisor, so we bring down the net bit of the dividend:

00011
111 101110
0111
1001
111
10

The difference is less than the divisor, so the next bit of the dividend is brought down:

000110
111 101110
0111
1001
111
100 Remainder

In this case the dividend is less than the divisor; hence the next quotient bit is 0 and the
division is complete. The decimal conversion yields 46/7 = 6 with remainder 4, which
is correct.

The methods we discussed to perform addition, subtraction, multiplication, and division
are equivalents of the same operations in decimal. In digital systems, all arithmetic operations
are carried out in modified forms; in fact, they use only addition as their basic operation.

1.4 OCTAL NUMBERS

Digital systems operate only on binary numbers. Since binary numbers are often very long,
two shorthand notations, octal and hexadecimal, are used for representing large binary
numbers. The octal number system uses a base or radix of 8; thus it has digits from 0 to
r—1,or 8 — 1, or 7. As in the decimal and binary systems, the positional value of each
digit in a sequence of numbers is definitely fixed. Each position in an octal number is a
power of 8, and each position is 8 times more significant than the previous position.
The number 375 in the octal system therefore means

3x8+7x8 +5%x8 =192+56+5
=253

Example 1.13 Let us determine the decimal equivalent of the octal number 14.3.

143, =1x8" +4x8" +3x8"!
=8+4+0.375
= 12.375

The method for converting a decimal number to an octal number is similar to that used
for converting a decimal number to binary (Section 1.2), except that the decimal number is
successively divided by 8 rather than 2.

1.4 OCTAL NUMBERS 9

Example 1.14 Let us determine the octal equivalent of the decimal number 278.

%8 = 34, remainder 6
4

% = 4, remainder 2
4 .
3 = 0, remainder 4

Thus 27810 = 4263

Decimal fractions can be converted to octal by progressively multiplying by 8; the inte-
gral part of each product is retained as the octal fraction. For example, 0.651 is converted
to octal as follows:

0.651
__ 8
5 0.208
_ 8
1 0.664
__ 8
5 0.312
_ 8
2 0.496
_ 8
3 0.968
etc.

According to Eq. (1.2), a_; =5, a_»=1, a_3=15, a_4=2, and a_s = 3; hence
0.651;p = 0.515234. More octal digits will result in more accuracy.

A useful relationship exists between binary and octal numbers. The number of bits
required to represent an octal digit is three. For example, octal 7 can be represented by
binary 111. Thus, if each octal digit is written as a group of three bits, the octal number
is converted into a binary number.

Example 1.15 The octal number 324 can be converted to a binary number as follows:

3 2 4

|

011 010 100

Hence 3245 = 11010100,; the most significant 0 is dropped because it is meaningless, just
as 0123, is the same as 123,

The conversion from binary to octal is also straightforward. The binary number is parti-
tioned into groups of three starting with the least significant digit. Each group of three
binary digits is then replaced by an appropriate decimal digit between 0 and 7 (Table 1.1).

10 NUMBER SYSTEMS AND BINARY CODES

TABLE 1.1 Binary to Octal Conversion

Binary Octal

000 0
001
010
011
100
101
110
111

~N NN RN =

Example 1.16 Let us convert 110011101001, to octal:

110 011 101 001
—_— = == =~
6 3 5 1
The octal representation of the binary number is 6351g. If the leftmost group of a
partitioned binary number does not have three digits, it is padded on the left with O’s.
For example, 1101010 would be divided as

001 101 010
—_— —— =~
1 5 2

The octal equivalent of the binary number is 152g. In case of a binary fraction, if the bits
cannot be grouped into 3-bit segments, the 0’s are added on the right to complete groups of
three. Thus 110111.1011 can be written

110 111 101 100
—_— = =~ =~
6 7 5 4
As shown in the previous section, the binary equivalent of a decimal number can be
obtained by successively dividing the number by 2 and using the remainders as the
answer, the first remainder being the lowest significant bit, and so on. A large number
of divisions by 2 are required to convert from decimal to binary if the decimal number
is large. It is often more convenient to convert from decimal to octal and then replace
each digit in octal in terms of three digits in binary. For example, let us convert 523,
to binary by going through octal.

5

[\
W

= 65, remainder 3

o
()

= 8, remainder 1

= 1, remainder O

= 0, remainder 1

ool — oo| 00 °°‘

1.5 HEXADECIMAL NUMBERS 11

Thus

(52)=(1 0 1 3

AR AR AR
= (001 000 001 O11),

It can be verified that the decimal equivalent of 0010000010115 is 523:

Ix22+1x2+1x2'+1x2°=512+8+2+1
=523

Addition and subtraction operations using octal numbers are very much similar to that
use in decimal systems. In octal addition, a carry is generated when the sum exceeds
710- For example,

1535
+327,
5024

34+7=1010 =2+ 1 carry «— first column
542+ 1carry =0+ 1 carry «— second column
1 4+3+ 1 carry =5 «— third column

In octal subtraction, a borrow requires that 8¢ be added to the minuend digit and a 1o be
added to the left adjacent subtrahend digit.

670s
— 1254
5435

0—5=(8—5+4 1borrow);, = 3 + 1 borrow «— first column
7 — (24 1 borrow) =7 — 3 = 4 «— second column
6 — 1 =5 «— third column

1.5 HEXADECIMAL NUMBERS

The hexadecimal numbering system has a base 16; that is, there are 16 symbols. The
decimal digits 0 to 9 are used as the first ten digits as in the decimal system, followed
by the letters A, B, C, D, E, and F, which represent the values 10, 11, 12, 13, 14, and
15, respectively. Table 1.2 shows the relationship between decimal, binary, octal, and hex-
adecimal number systems. The conversion of a binary number to a hexadecimal number
consists of partitioning the binary numbers into groups of 4 bits, and representing each
group with its hexadecimal equivalent.

12 NUMBER SYSTEMS AND BINARY CODES

TABLE 1.2 Number Equivalents

Decimal Binary Octal Hexadecimal
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Example 1.17 The binary number 1010011011110001 is grouped as
1010 0110 1111 0001

which is shown here in hexadecimal:

A6F1y

The conversion from hexadecimal to binary is straightforward. Each hexadecimal digit is
replaced by the corresponding 4-bit equivalent from Table 1.2. For example, the binary
equivalent of 4AC2y is

4 A C 2

L

0100 1010 1110 0010
Thus 4AC2y = 0100101011100010,.

Sometimes it is necessary to convert a hexadecimal number to decimal. Each position
in a hexadecimal number is 16 times more significant than the previous position. Thus the
decimal equivalent for 1A2Dy is

Ix162+Ax16°+2x16' +D x 16°
=1x16+10x 16> +2 x 16" + 13 x 16°
= 6701

Hexadecimal numbers are often used in describing the data in a computer memory. A com-
puter memory stores a large number of words, each of which is a standard size collection

1.6 SIGNED NUMBERS 13

of bits. An 8-bit word is known as a byte. A hexadecimal digit may be considered as half of
a byte. Two hexadecimal digits constitute one byte, the rightmost 4 bits corresponding to
half a byte, and the leftmost 4 bits corresponding to the other half of the byte. Often a half-

byte is called a nibble.
Hexadecimal addition and subtraction are performed as for any other positional number

system.

Example 1.18 Let us find the sum of 688y and 679.

688y
679
D01y

84+9=17,p=1+41 carry «— first column
8+ 7+ 1carry =160 =0+ 1 carry «— second column
646+ 1 carry = 13;) = D «— third column

Hexadecimal subtraction requires the same need to carry digits from left to right as in octal
and decimal.

Example 1.19 Let us compute 2A5y — 11By as shown:

2A5k
11By
18Ay

5—B = (21— 11+ 1borrow);, = 10 4 1 borrow
= A + 1 borrow «— first column
A — (1 + 1 borrow) = (10 — 2);; = 8 «— second column

2 —1 =1 «— third column

1.6 SIGNED NUMBERS

So far, the number representations we considered have not carried sign information. Such
unsigned numbers have a magnitude significance only. Normally a prefix + or — may be
placed to the left of the magnitude to indicate whether a number is positive or negative.
This type of representation, known as sign-magnitude representation, is used in the
decimal system. In binary systems, an additional bit known as sign bit, is added to the
left of the most significant bit to define the sign of a number. A 1 is used to represent — and
a 0 to represent +. Table 1.3 shown 3-bit numbers in terms of signed and unsigned
equivalents. Notice that there are two representations of the number 0, namely, 40 and
—0. The range of integers that can be expressed in a group of three bits is from
~(2% = 1)= -3 to +(2°> — 1) = 43, with one bit being reserved to denote the sign.

14 NUMBER SYSTEMS AND BINARY CODES

TABLE 1.3 Signed and Unsigned Binary Numbers

Decimal Equivalent

Binary Signed Unsigned
000 +0 0
001 +1 1
010 +2 2
011 +3 3
100 -0 4
101 -1 5
110 -2 6
111 -3 7

Although the sign-magnitude representation is convenient for computing the negative
of a number, a problem occurs when two numbers of opposite signs have to be added. To
illustrate, let us find the sum of +2,¢ and — 6.

+20 = 0010
—650=1110
10000

The addition produced a sum that has 5 bits, exceeding the capability of the number system
(sign +3 bits); this results in an overflow. Also, the sum is wrong; it should be —4 (i.e.,
1100) instead of 0.

An alternative representation of negative numbers, known as the complement form,
simplifies the computations involving signed numbers. The complement representation
enjoys the advantage that no sign computation is necessary. There are two types of comp-
lement representations: diminished radix complement and radix complement.

1.6.1 Diminished Radix Complement

In the decimal system (r = 10) the complement of a number is determined by subtracting
the number from (r — 1), that is, 9. Hence the process is called finding the 9’s
complement. For example,

9’s complement of 5 (9—-5)=4
9’s complement of 63 (99 — 63) = 36
9’s complement of 110 (999 — 110) = 889

In binary notation (r = 2), the diminished radix complement is known as the /’s comp-
lement. A positive number in 1’s complement is represented in the same way as in sign-
magnitude represent