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Chapter 1

Overture

If T have seen less far than other men it is because I
have stood behind giants.

Edoardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there
are holes large enough to steam a Eurostar train through them. Here
we learn about harmonic oscillators and Keplerian ellipses - but where is
the chapter on chaotic oscillators, the tumbling Hyperion? We have just
quantized hydrogen, where is the chapter on the classical 3-body problem
and its implications for quantization of helium? We have learned that an
instanton is a solution of field-theoretic equations of motion, but shouldn’t
a strongly nonlinear field theory have turbulent solutions? How are we to
think about systems where things fall apart; the center cannot hold; every
trajectory is unstable?

This chapter offers a quick survey of the main topics covered in the
book. We start out by making promises - we will right wrongs, no longer
shall you suffer the slings and arrows of outrageous Science of Perplexity.
We relegate a historical overview of the development of chaotic dynamics
to appendix A, and head straight to the starting line: A pinball game is
used to motivate and illustrate most of the concepts to be developed in
ChaosBook.

Throughout the book

y

J indicates that the section requires a hearty stomach and is probably
best skipped on first reading

W fast track points you where to skip to

3 tells you where to go for more depth on a particular topic

|:| indicates an exercise that might clarify a point in the text

1



2 CHAPTER 1. OVERTURE

% indicates that a figure is still missing - you are urged to fetch it

This is a textbook, not a research monograph, and you should be able to
follow the thread of the argument without constant excursions to sources.
Hence there are no literature references in the text proper, all learned re-
marks and bibliographical pointers are relegated to the “Commentary” sec-
tion at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation
with science, we acquire a firmer hold over the vi-
cissitudes of life and meet them with greater calm,
but in reality we have done no more than to find a
way to escape from our sorrows.

Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuc-
cessful) crack at the 3-body problem, lunar dynamics. Nature is rich in
systems governed by simple deterministic laws whose asymptotic dynam-
ics are complex beyond belief, systems which are locally unstable (almost)
everywhere but globally recurrent. How do we describe their long term
dynamics?

The answer turns out to be that we have to evaluate a determinant, take
a logarithm. It would hardly merit a learned treatise, were it not for the fact
that this determinant that we are to compute is fashioned out of infinitely
many infinitely small pieces. The feel is of statistical mechanics, and that
is how the problem was solved; in the 1960’s the pieces were counted, and
in the 1970’s they were weighted and assembled in a fashion that in beauty
and in depth ranks along with thermodynamics, partition functions and
path integrals amongst the crown jewels of theoretical physics.

Then something happened that might be without parallel; this is an area
of science where the advent of cheap computation had actually subtracted
from our collective understanding. The computer pictures and numerical
plots of fractal science of the 1980’s have overshadowed the deep insights of
the 1970’s, and these pictures have since migrated into textbooks. Fractal
science posits that certain quantities (Lyapunov exponents, generalized di-
mensions, ...) can be estimated on a computer. While some of the numbers
so obtained are indeed mathematically sensible characterizations of fractals,
they are in no sense observable and measurable on the length-scales and
time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of na-
ture is circumstantial, in studies of probabilistically assembled fractal ag-
gregates we know of nothing better than contemplating such quantities.
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In deterministic systems we can do much better. Chaotic dynamics is gen-
erated by the interplay of locally unstable motions, and the interweaving of
their global stable and unstable manifolds. These features are robust and
accessible in systems as noisy as slices of rat brains. Poincaré, the first to
understand deterministic chaos, already said as much (modulo rat brains).
Once the topology of chaotic dynamics is understood, a powerful theory
yields the macroscopically measurable consequences of chaotic dynamics,
such as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in ChaosBook. This book is a self-
contained graduate textbook on classical and quantum chaos. We teach you
how to evaluate a determinant, take a logarithm — stuff like that. Ideally,
this should take 100 pages or so. Well, we fail - so far we have not found
a way to traverse this material in less than a semester, or 200-300 page
subset of this text. Nothing can be done about that.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
W.B. Yeats: The Second Coming

The study of chaotic dynamical systems is no recent fashion. It did not start
with the widespread use of the personal computer. Chaotic systems have
been studied for over 200 years. During this time many have contributed,
and the field followed no single line of development; rather one sees many
interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics seem
a stroke of luck: a few integrable problems, such as the harmonic oscillator
and the Kepler problem, though “non-generic”, have gotten us very far.
The success has lulled us into a habit of expecting simple solutions to sim-
ple equations - an expectation tempered for many by the recently acquired
ability to numerically scan the phase space of non-integrable dynamical
systems. The initial impression might be that all of our analytic tools have
failed us, and that the chaotic systems are amenable only to numerical and
statistical investigations. Nevertheless, a beautiful theory of deterministic
chaos, of predictive quality comparable to that of the traditional perturba-
tion expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are used as zeroth-
order approximations to physical systems, and weak nonlinearities are then
accounted for perturbatively. For strongly nonlinear, non-integrable sys-
tems such expansions fail completely; at asymptotic times the dynamics
exhibits amazingly rich structure which is not at all apparent in the inte-
grable approximations. However, hidden in this apparent chaos is a rigid
skeleton, a self-similar tree of cycles (periodic orbits) of increasing lengths.
The insight of the modern dynamical systems theory is that the zeroth-order
approximations to the harshly chaotic dynamics should be very different
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Figure 1.1: A physicist's bare bones game of
pinball.

from those for the nearly integrable systems: a good starting approxima-
tion here is the linear stretching and folding of a baker’s map, rather than
the periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling
for how and why unstable cycles come about, we start by playing a game of
pinball. The reminder of the chapter is a quick tour through the material
covered in ChaosBook. Do not worry if you do not understand every detail
at the first reading — the intention is to give you a feeling for the main
themes of the book. Details will be filled out later. If you want to get
a particular point clarified right now, D on the margin points at the
appropriate section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of the [Cvitanovié et al. “Chaos: Clas-
sical and Quantum”] book. However, in order to un-
derstand the introduction you will first have to read
the rest of the book.

Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who
has tried pool, billiards or snooker — the game is about beating chaos —
so we start our story about what chaos is, and what to do about it, with
a game of pinball. This might seem a trifle, but the game of pinball is
to chaotic dynamics what a pendulum is to integrable systems: thinking
clearly about what “chaos” in a game of pinball is will help us tackle more
difficult problems, such as computing diffusion constants in deterministic
gases, or computing the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among
the pinball machine’s disks, and only high-school level Euclidean geometry
is needed to describe its trajectory. A physicist’s pinball game is the game of
pinball stripped to its bare essentials: three equidistantly placed reflecting
disks in a plane, figure 1.1. A physicist’s pinball is free, frictionless, point-
like, spin-less, perfectly elastic, and noiseless. Point-like pinballs are shot
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at the disks from random starting positions and angles; they spend some
time bouncing between the disks and then escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz
was confident that given the initial conditions one knew everything a deter-
ministic system would do far into the future. He wrote [1.1], anticipating
by a century and a half the oft-quoted Laplace’s “Given for one instant
an intelligence which could comprehend all the forces by which nature is
animated...”:

That everything is brought forth through an established destiny is
just as certain as that three times three is nine. [...] If, for example,
one sphere meets another sphere in free space and if their sizes and
their paths and directions before collision are known, we can then
foretell and calculate how they will rebound and what course they will
take after the impact. Very simple laws are followed which also apply,
no matter how many spheres are taken or whether objects are taken
other than spheres. From this one sees then that everything proceeds
mathematically — that is, infallibly — in the whole wide world, so that
if someone could have a sufficient insight into the inner parts of things,
and in addition had remembrance and intelligence enough to consider
all the circumstances and to take them into account, he would be a
prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type
of physical system that we shall use here as a paradigm of “chaos”. His
claim is wrong in a deep and subtle way: a state of a physical system
can never be specified to infinite precision, there is no way to take all the
circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 What is “chaos”?

I accept chaos. I am not sure that it accepts me.
Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully
determined by its initial conditions, in contrast to a stochastic system,
for which the initial conditions determine the present state only partially,
due to noise, or other external circumstances beyond our control. For a
stochastic system, the present state reflects the past initial conditions plus
the particular realization of the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool
us into regarding it as a stochastic one; disentangling the deterministic from
the stochastic is the main challenge in many real-life settings, from stock
markets to palpitations of chicken hearts. So, what is “chaos”?

In a game of pinball, any two trajectories that start out very close to
each other separate exponentially with time, and in a finite (and in practice,
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Figure 1.2: Sensitivity to initial conditions:
two pinballs that start out very close to each
other separate exponentially with time. 2313

a very small) number of bounces their separation dx(¢) attains the magni-
tude of L, the characteristic linear extent of the whole system, figure 1.2.
This property of sensitivity to initial conditions can be quantified as

|5%(t)| ~ €[3%(0)]

where A, the mean rate of separation of trajectories of the system, is called
|:| et 103 the Lyapunov exponent. For any finite accuracy dz = |0x(0)| of the initial
o data, the dynamics is predictable only up to a finite Lyapunov time

1
Tiyap = —Xln |0z /L], (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that
rule the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One
could try to play 1- or 2-disk pinball game, but it would not be much of
a game; trajectories would only separate, never to meet again. What is
also needed is mizing, the coming together again and again of trajectories.
While locally the nearby trajectories separate, the interesting dynamics is
confined to a globally finite region of the phase space and thus the separated
trajectories are necessarily folded back and can re-approach each other
arbitrarily closely, infinitely many times. For the case at hand there are
2" topologically distinct n bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectories with n bounces
can be quantified as

N(n)~ e

|:| sect. 13.1
where the topological entropy h (h = 1n2 in the case at hand) is the growth
|:| sect. 20.1 rate of the number of topologically distinct trajectories.

The appellation “chaos” is a confusing misnomer, as in deterministic
dynamics there is no chaos in the everyday sense of the word; everything
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Figure 1.3: Dynamics of a chaotic dynamical system is (a) everywhere locally unsta-

ble (positive Lyapunov exponent) and (b) globally mixing (positive entropy).
hansen)

proceeds mathematically — that is, as Baron Leibniz would have it, infalli-
bly. When a physicist says that a certain system exhibits “chaos”, he means
that the system obeys deterministic laws of evolution, but that the outcome
is highly sensitive to small uncertainties in the specification of the initial
state. The word “chaos” has in this context taken on a narrow technical
meaning. If a deterministic system is locally unstable (positive Lyapunov
exponent) and globally mixing (positive entropy) - figure 1.3 - it is said to
be chaotic.

While mathematically correct, the definition of chaos as “positive Lya-
punov + positive entropy” is useless in practice, as a measurement of these
quantities is intrinsically asymptotic and beyond reach for systems observed
in nature. More powerful is Poincaré’s vision of chaos as the interplay of
local instability (unstable periodic orbits) and global mixing (intertwining
of their stable and unstable manifolds). In a chaotic system any open ball
of initial conditions, no matter how small, will in finite time overlap with
any other finite region and in this sense spread over the extent of the entire
asymptotically accessible phase space. Once this is grasped, the focus of
theory shifts from attempting to predict individual trajectories (which is
impossible) to a description of the geometry of the space of possible out-
comes, and evaluation of averages over this space. How this is accomplished
is what ChaosBook is about.

A definition of “turbulence” is even harder to come by. Intuitively,
the word refers to irregular behavior of an infinite-dimensional dynamical
system described by deterministic equations of motion - say, a bucket of
boiling water described by the Navier-Stokes equations. But in practice the
word “turbulence” tends to refer to messy dynamics which we understand
poorly. As soon as a phenomenon is understood better, it is reclaimed and
renamed: “a route to chaos”, “spatiotemporal chaos”, and so on.

In ChaosBook we shall develop a theory of chaotic dynamics for low
dimensional attractors visualized as a succession of nearly periodic but un-
stable motions. In the same spirit, we shall think of turbulence in spatially
extended systems in terms of recurrent spatiotemporal patterns. Pictori-
ally, dynamics drives a given spatially extended system through a repertoire
of unstable patterns; as we watch a turbulent system evolve, every so often
we catch a glimpse of a familiar pattern:
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For any finite spatial resolution, the system follows approximately for a
finite time a pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space
of such patterns. In ChaosBook we recast this image into mathematics.

1.3.2 When does “chaos” matter?

Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

W. Shakespeare, Hamlet

When should we be mindful of chaos? The solar system is “chaotic”,
yet we have no trouble keeping track of the annual motions of planets. The
rule of thumb is this; if the Lyapunov time (1.1) (the time by which a phase
space region initially comparable in size to the observational accuracy ex-
tends across the entire accessible phase space) is significantly shorter than
the observational time, you need to master the theory that will be devel-
oped here. That is why the main successes of the theory are in statistical
mechanics, quantum mechanics, and questions of long term stability in ce-
lestial mechanics.

In science popularizations too much has been made of the impact of
“chaos theory”, so a number of caveats are already needed at this point.

At present the theory is in practice applicable only to systems with a
low intrinsic dimension — the minimum number of coordinates necessary to
capture its essential dynamics. If the system is very turbulent (a descrip-
tion of its long time dynamics requires a space of high intrinsic dimension)
we are out of luck. Hence insights that the theory offers in elucidating
problems of fully developed turbulence, quantum field theory of strong in-
teractions and early cosmology have been modest at best. Even that is a
caveat with qualifications. There are applications — such as spatially ex-
tended (nonequilibrium) systems and statistical mechanics applications —
where the few important degrees of freedom can be isolated and studied
profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to the
very noisy systems so important in the life sciences and in economics. Even
though we are often interested in phenomena taking place on time scales
much longer than the intrinsic time scale (neuronal interburst intervals, car-
diac pulses, etc.), disentangling “chaotic” motions from the environmental
noise has been very hard.
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1.4 A game of pinball

Formulas hamper the understanding.
S. Smale

We are now going to get down to the brasstacks. But first, a disclaimer:
If you understand most of the rest of this chapter on the first reading, you
either do not need this book, or you are delusional. If you do not understand
it, is not because the people who wrote it are so much smarter than you:
the most one can hope for at this stage is to give you a flavor of what lies
ahead. If a statement in this chapter mystifies/intrigues, fast forward to
a section indicated by D on the margin, read only the parts that you
feel you need. Of course, we think that you need to learn ALL of it, or
otherwise we would not have written it in the first place.

Confronted with a potentially chaotic dynamical system, we analyze
it through a sequence of three distinct stages; I. diagnose, II. count, III.
measure. First we determine the intrinsic dimension of the system — the
minimum number of coordinates necessary to capture its essential dynam-
ics. If the system is very turbulent we are, at present, out of luck. We know
only how to deal with the transitional regime between regular motions and
chaotic dynamics in a few dimensions. That is still something; even an
infinite-dimensional system such as a burning flame front can turn out to
have a very few chaotic degrees of freedom. In this regime the chaotic dy-
namics is restricted to a space of low dimension, the number of relevant
parameters is small, and we can proceed to step II; we count and classify
all possible topologically distinct trajectories of the system into a hierarchy
whose successive layers require increased precision and patience on the part
of the observer. This we shall do in sect. 1.4.1. If successful, we can proceed
with step III: investigate the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III — measure — in sect. 1.5.

With the game of pinball we are in luck — it is a low dimensional system,
free motion in a plane. The motion of a point particle is such that after a
collision with one disk it either continues to another disk or it escapes. If we
label the three disks by 1, 2 and 3, we can associate every trajectory with
an itinerary, a sequence of labels indicating the order in which the disks are
visited; for example, the two trajectories in figure 1.2 have itineraries 2313_,
23132321 _ respectively. The itinerary is finite for a scattering trajectory,
coming in from infinity and escaping after a finite number of collisions,
infinite for a trapped trajectory, and infinitely repeating for a periodic orbit.
Parenthetically, in this subject the words “orbit” and “trajectory” refer to
one and the same thing.

Such labeling is the simplest example of symbolic dynamics. As the
particle cannot collide two times in succession with the same disk, any two
consecutive symbols must differ. This is an example of pruning, a rule
that forbids certain subsequences of symbols. Deriving pruning rules is in
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Figure 1.4: Binary labeling of the 3-disk pin-

ball trajectories; a bounce in which the trajec- W@
tory returns to the preceding disk is labeled 0,

and a bounce which results in continuation to @
the third disk is labeled 1.

general a difficult problem, but with the game of pinball we are lucky -
there are no further pruning rules.

The choice of symbols is in no sense unique. For example, as at each
bounce we can either proceed to the next disk or return to the previous
disk, the above 3-letter alphabet can be replaced by a binary {0, 1} alpha-
bet, figure 1.4. A clever choice of an alphabet will incorporate important
features of the dynamics, such as its symmetries.

Suppose you wanted to play a good game of pinball, that is, get the
pinball to bounce as many times as you possibly can — what would be a
winning strategy? The simplest thing would be to try to aim the pinball so
it bounces many times between a pair of disks — if you managed to shoot
it so it starts out in the periodic orbit bouncing along the line connecting
two disk centers, it would stay there forever. Your game would be just as
good if you managed to get it to keep bouncing between the three disks
forever, or place it on any periodic orbit. The only rub is that any such
orbit is unstable, so you have to aim very accurately in order to stay close
to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important — they form the skeleton onto
which all trajectories trapped for long times cling.

1.4.1 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum.
We shall refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated - some examples
are drawn in figure 1.5 - but it is rather hard to perceive the systematics
of orbits from their shapes. In mechanics a trajectory is fully and uniquely
specified by its position and momentum at a given instant, and no two
distinct phase space trajectories can intersect. Their projections onto ar-
bitrary subspaces, however, can and do intersect, in rather unilluminating
ways. In the pinball example the problem is that we are looking at the pro-
jections of a 4-dimensional phase space trajectories onto a 2-dimensional
subspace, the configuration space. A clearer picture of the dynamics is
obtained by constructing a phase space Poincaré section.

Suppose that the pinball has just bounced off disk 1. Depending on its
position and outgoing angle, it could proceed to either disk 2 or 3. Not much

happens in between the bounces — the ball just travels at constant velocity
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Figure 1.5: Some examples of 3-disk cycles:
(a) 12123 and 13132 are mapped into each
other by the flip across 1 axis. Similarly (b)
123 and 132 are related by flips, and (c) 1213,
1232 and 1323 by rotations. (d) The cycles

cl

2
121212313 and 121212323 are related by ro- 2
taion and time reversal. These symmetries are  d) 1 1
discussed in more detail in chapter 22. (from 3 3
ref. [1.2]) 121212313 121212323
psin @ ‘51*‘1).
S, \
psin @, 14
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Figure 1.6: (a) The Poincaré section coordinates for the 3-disk game of pinball. (b)
Collision sequence (s1,p1) — (s2,p2) — (s3,ps) from the boundary of a disk to the

boundary of the next disk presented in the Poincaré section coordinates.

along a straight line — so we can reduce the four-dimensional flow to a two-
dimensional map f that takes the coordinates of the pinball from one disk
edge to another disk edge. Let us state this more precisely: the trajectory
just after the moment of impact is defined by marking s,,, the arc-length
position of the nth bounce along the billiard wall, and p, = psin ¢, the
momentum component parallel to the billiard wall at the point of impact,
figure 1.6. Such a section of a flow is called a Poincaré section, and the
particular choice of coordinates (due to Birkhoff) is particularly smart, as
it conserves the phase-space volume. In terms of the Poincaré section, the
dynamics is reduced to the return map P : (Sy,pn) — (Spt+1,Pn+1) from the
boundary of a disk to the boundary of the next disk. The explicit form of
this map is easily written down, but it is of no importance right now.

Next, we mark in the Poincaré section those initial conditions which
do not escape in one bounce. There are two strips of survivors, as the
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Figure 1.7: (a) A trajectory starting out from
disk 1 can either hit another disk or escape. (b)
Hitting two disks in a sequence requires a much
sharper aim. The cones of initial conditions that
hit more and more consecutive disks are nested
within each other, as in figure 1.8.

1 1
23| \131
2o 2o
n ]
1213\ |132
-1 -1
-2. 0 2. _ c
(a) 5 o (b) 2.5 (S) 2.F

Figure 1.8: The 3-disk game of pinball Poincaré section, trajectories emanating from
the disk 1 with xzy = (arclength, parallel momentum) = (sg,po) , disk radius : center
separation ratio a:R = 1:2.5. (a) Strips of initial points Mja, M3 which reach disks
2, 3 in one bounce, respectively. (b) Strips of initial points My21, M131 Mi32 and
M 23 which reach disks 1, 2, 3 in two bounces, respectively. The Poincaré sections
for trajectories originating on the other two disks are obtained by the appropriate

relabeling of the strips. (Y. Lan)

trajectories originating from one disk can hit either of the other two disks,
or escape without further ado. We label the two strips Mg, M;. Embedded
within them there are four strips Mg, Mg, Mo1, M1 of initial conditions
that survive for two bounces, and so forth, see figures 1.7 and 1.8. Provided
that the disks are sufficiently separated, after n bounces the survivors are
divided into 2" distinct strips: the M,th strip consists of all points with
itinerary ¢ = s$18283...8,, s = {0,1}. The unstable cycles as a skeleton
of chaos are almost visible here: each such patch contains a periodic point
515283 ... 5, with the basic block infinitely repeated. Periodic points are
skeletal in the sense that as we look further and further, the strips shrink
but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a
navigation chart through chaotic phase space. There exists a unique tra-
jectory for every admissible infinite length itinerary, and a unique itinerary
labels every trapped trajectory. For example, the only trajectory labeled
by 12 is the 2-cycle bouncing along the line connecting the centers of disks
1 and 2; any other trajectory starting out as 12... either eventually escapes
or hits the 3rd disk.

1.4.2 Escape rate

What is a good physical quantity to compute for the game of pinball? Such
system, for which almost any trajectory eventually leaves a finite region (the
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pinball table) never to return, is said to be open, or a repeller. The repeller
escape rate is an eminently measurable quantity. An example of such a
measurement would be an unstable molecular or nuclear state which can
be well approximated by a classical potential with the possibility of escape
in certain directions. In an experiment many projectiles are injected into
such a non-confining potential and their mean escape rate is measured, as in
figure 1.1. The numerical experiment might consist of injecting the pinball
between the disks in some random direction and asking how many times
the pinball bounces on the average before it escapes the region between the
disks.

For a theorist a good game of pinball consists in predicting accurately
the asymptotic lifetime (or the escape rate) of the pinball. We now show
how periodic orbit theory accomplishes this for us. Each step will be so
simple that you can follow even at the cursory pace of this overview, and
still the result is surprisingly elegant.

Consider figure 1.8 again. In each bounce the initial conditions get
thinned out, yielding twice as many thin strips as at the previous bounce.
The total area that remains at a given time is the sum of the areas of the
strips, so that the fraction of survivors after n bounces, or the survival
probability is given by

p, o Mol | [M] f, — Mool Mo | [Mar] | [Mu]
M| M MMM M

) L o

r, = — S My, 1.2
M ZZ: [ Mil (1.2)

where i is a label of the ith strip, |M] is the initial area, and |M;| is the
area of the ith strip of survivors. ¢ = 01,10, 11,... is a label, not a binary
number. Since at each bounce one routinely loses about the same fraction
of trajectories, one expects the sum (1.2) to fall off exponentially with n
and tend to the limit

o1/ =e M = e, (1.3)

The quantity ~ is called the escape rate from the repeller.
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1.5 Chaos for cyclists

Etant données des équations ... et une solution parti-
culiére quelconque de ces équations, on peut toujours
trouver une solution périodique (dont la période peut,
il est vrai, étre trés longue), telle que la différence
entre les deux solutions soit aussi petite qu’on le
veut, pendant un temps aussi long qu’on le veut.
D’ailleurs, ce qui nous rend ces solutions périodiques
si précieuses, c’est qu’elles sont, pour ansi dire, la
seule bréche par olt nous puissions esseyer de pénétrer
dans une place jusqu’ici réputée inabordable.

H. Poincaré, Les méthodes nouvelles de la méchanique
céleste

We shall now show that the escape rate « can be extracted from a highly
convergent ezact expansion by reformulating the sum (1.2) in terms of un-
stable periodic orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1,
center-center separation 6, velocity 1, you answer that the continuous time
escape rate is roughly v = 0.4103384077693464893384613078192.. . ., you do
not need this book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?
1.5.2 Size of a partition

Not only do the periodic points keep track of topological ordering of the
strips, but, as we shall now show, they also determine their size.

As a trajectory evolves, it carries along and distorts its infinitesimal
neighborhood. Let

z(t) = f'(zo)

denote the trajectory of an initial point zg = z(0). Expanding f*(xq + dz0)
tolinear order, the evolution of the distance to a neighboring trajectory
xi(t) 4+ 0x;(t) is given by the fundamental matrix:

d

5ZL'Z(75) = ZJt(:EQ)ijél‘oj s Jt($0)ij =
j=1

8:17@(15)
8!17(]]' '

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this case d = 3. Evaluation
of a cycle fundamental matrix is a long exercise - here we just state the
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result. The fundamental matrix describes the deformation of an infinites-
imal neighborhood of z(t) along the flow; its eigenvectors and eigenvalues
give the directions and the corresponding rates of expansion or contraction.
The trajectories that start out in an infinitesimal neighborhood are sepa-
rated along the unstable directions (those whose eigenvalues are greater
than unity in magnitude), approach each other along the stable directions
(those whose eigenvalues are less than unity in magnitude), and maintain
their distance along the marginal directions (those whose eigenvalues equal
unity in magnitude). In our game of pinball the beam of neighboring tra-
jectories is defocused along the unstable eigendirection of the fundamental
matrix M.

As the heights of the strips in figure 1.8 are effectively constant, we can
concentrate on their thickness. If the height is ~ L, then the area of the
1th strip is M; = LI; for a strip of width ;.

Fach strip ¢ in figure 1.8 contains a periodic point x;. The finer the
intervals, the smaller the variation in flow across them, so the contribution
from the strip of width [; is well-approximated by the contraction around
the periodic point z; within the interval,

li = ai/|Aq] (1.4)

where A; is the unstable eigenvalue of the fundamental matrix J*(z;) eval-
uated at the ith periodic point for ¢ = T),, the full period (due to the low
dimensionality, the Jacobian can have at most one unstable eigenvalue).
Only the magnitude of this eigenvalue matters, we can disregard its sign.
The prefactors a; reflect the overall size of the system and the particular dis-
tribution of starting values of x. As the asymptotic trajectories are strongly
mixed by bouncing chaotically around the repeller, we expect their distri-
bution to be insensitive to smooth variations in the distribution of initial
points.

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors a; ~ O(1) are overwhelmed by the exponential growth
of A;, so we neglect them. If the hyperbolicity assumption is justified, we
can replace |[M;| ~ Ll; in (1.2) by 1/|A;| and consider the sum

(n)

)

where the sum goes over all periodic points of period n. We now define a
generating function for sums over all periodic orbits of all lengths:

[(z) =) Tp". (1.5)
n=1
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Recall that for large n the nth level sum (1.2) tends to the limit '), — ™7,
so the escape rate « is determined by the smallest z = €7 for which (1.5)
diverges:

ze 7

I(z) ~ Z (ze")"' = ———— (1.6)
n=1

1—ze 7’

This is the property of I'(z) that motivated its definition. Next, we devise
a formula for (1.5) expressing the escape rate in terms of periodic orbits:

00 (n)
T(z) = Y 2"> AT
n=1 i

N z + z + Z2 + Z2 + Z2 + Z2
Aol [A1]  [Aoo|  [Aor|  [Aro]  [Aax]
23 23 Zs 23

+ + + + +... 1.7
|Aoool ~ [Aoo1|  [Aoto|  [A1ool .7

For sufficiently small z this sum is convergent. The escape rate ~ is now
given by the leading pole of (1.6), rather than by a numerical extrapolation
of a sequence of =, extracted from (1.3). As any finite truncation n <
Nirunc Of (1.7) is a polynomial in z, convergent for any z, finding this pole
requires that we know something about I';, for any n, and that might be a
tall order.

We could now proceed to estimate the location of the leading singularity
of T'(z) from finite truncations of (1.7) by methods such as Padé approx-
imants. However, as we shall now show, it pays to first perform a simple
resummation that converts this divergence into a zero of a related function.

1.5.3 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Aj.
A prime cycle p is a single traversal of the orbit; its label is a non-repeating
symbol string of n, symbols. There is only one prime cycle for each cyclic
permutation class. For example, p = 0011 = 1001 = 1100 = 0110 is prime,
but 0101 = 01 is not. By the chain rule for derivatives the stability of a
cycle is the same everywhere along the orbit, so each prime cycle of length
n, contributes n, terms to the sum (1.7). Hence (1.7) can be rewritten as

2Mp p

_ - ' _ Nptp _ 7
0 =Tny () ~X e eofy 09
P r=1 P

where the index p runs through all distinct prime cycles. Note that we
have resummed the contribution of the cycle p to all times, so truncating
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the summation up to given p is not a finite time n < n, approximation, but
an asymptotic, infinite time estimate based by approximating stabilities of
all cycles by a finite number of the shortest cycles and their repeats. The
npz" factors in (1.8) suggest rewriting the sum as a derivative

I'(z) = _Zdiz Zln(l —tp).

Hence I'(z) is a logarithmic derivative of the infinite product

1/¢(z) = H (L —1tp), tp = A (1.9)

p

This function is called the dynamical zeta function, in analogy to the
Riemann zeta function, which motivates the choice of “zeta” in its definition
as 1/((z). This is the prototype formula of periodic orbit theory. The zero
of 1/¢(z) is a pole of I'(z), and the problem of estimating the asymptotic
escape rates from finite n sums such as (1.2) is now reduced to a study of
the zeros of the dynamical zeta function (1.9). The escape rate is related
by (1.6) to a divergence of I'(z), and I'(z) diverges whenever 1/((z) has a
Zero.

Easy, you say: “Zeros of (1.9) can be read off the formula, a zero
2 = Ay

for each term in the product. What’s the problem?” Dead wrong!

1.5.4 Cycle expansions

How are formulas such as (1.9) used? We start by computing the lengths
and eigenvalues of the shortest cycles. This usually requires some numerical
work, such as the Newton’s method searches for periodic solutions; we shall
assume that the numerics are under control, and that all short cycles up
to given length have been found. In our pinball example this can be done
by elementary geometrical optics. It is very important not to miss any
short cycles, as the calculation is as accurate as the shortest cycle dropped
— including cycles longer than the shortest omitted does not improve the
accuracy (unless exponentially many more cycles are included). The result
of such numerics is a table of the shortest cycles, their periods and their
stabilities.

Now expand the infinite product (1.9), grouping together the terms of
the same total symbol string length

1/¢ = (1 —to)(1—t1)(1 —t10)(1 — ti00) -
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= 1—to—t1 — [tio — tito] — [(t100 — t10to) + (t101 — t10t1)]
—[(t1000 — tot100) + (t1110 — t1t110)
+(t1001 — t1toor — tio1to + tiotot1)] — - .. (1.10)

The virtue of the expansion is that the sum of all terms of the same total
length n (grouped in brackets above) is a number that is exponentially
smaller than a typical term in the sum, for geometrical reasons we explain
in the next section.

The calculation is now straightforward. We substitute a finite set of the
eigenvalues and lengths of the shortest prime cycles into the cycle expansion
(1.10), and obtain a polynomial approximation to 1/{. We then vary z in
(1.9) and determine the escape rate v by finding the smallest z = ¢ for
which (1.10) vanishes.

1.5.5 Shadowing

When you actually start computing this escape rate, you will find out that
the convergence is very impressive: only three input numbers (the two fixed
points 0, T and the 2-cycle 10) already yield the pinball escape rate to 3-4
significant digits! We have omitted an infinity of unstable cycles; so why
does approximating the dynamics by a finite number of the shortest cycle
eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a
consequence of the smoothness and analyticity of the underlying flow.
Intuitively, one can understand the convergence in terms of the geometrical
picture sketched in figure 1.9; the key observation is that the long orbits
are shadowed by sequences of shorter orbits.

A typical term in (1.10) is a difference of a long cycle {ab} minus its
shadowing approximation by shorter cycles {a} and {b}

Aab
A A,

tab — tats = tap(1 — tats/tap) = tap (1 - ‘

> , (1.11)

where a and b are symbol sequences of the two shorter cycles. If all orbits
are weighted equally (¢, = 2"?), such combinations cancel exactly; if orbits
of similar symbolic dynamics have similar weights, the weights in such
combinations almost cancel.

This can be understood in the context of the pinball game as follows.
Consider orbits 0, 1 and 01. The first corresponds to bouncing between any
two disks while the second corresponds to bouncing successively around all
three, tracing out an equilateral triangle. The cycle 01 starts at one disk,
say disk 2. It then bounces from disk 3 back to disk 2 then bounces from disk
1 back to disk 2 and so on, so its itinerary is 2321. In terms of the bounce
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fixed point

Figure 1.9: Approximation to (a) a smooth dynamics by (b) the skeleton of periodic
points, together with their linearized neighborhoods. Indicated are segments of two
1-cycles and a 2-cycle that alternates between the neighborhoods of the two 1-cycles,

shadowing first one of the two 1-cycles, and then the other.

types shown in figure 1.4, the trajectory is alternating between 0 and 1. The
incoming and outgoing angles when it executes these bounces are very close
to the corresponding angles for 0 and 1 cycles. Also the distances traversed
between bounces are similar so that the 2-cycle expanding eigenvalue Agy
is close in magnitude to the product of the 1-cycle eigenvalues AgA;.

To understand this on a more general level, try to visualize the partition
of a chaotic dynamical system’s phase space in terms of cycle neighborhoods
as a tessellation of the dynamical system, with smooth flow approximated
by its periodic orbit skeleton, each “face” centered on a periodic point, and
the scale of the “face” determined by the linearization of the flow around
the periodic point, figure 1.9.

The orbits that follow the same symbolic dynamics, such as {ab} and
a “pseudo orbit” {a}{b}, lie close to each other in phase space; long shad-
owing pairs have to start out exponentially close to beat the exponential
growth in separation with time. If the weights associated with the orbits are
multiplicative along the flow (for example, by the chain rule for products
of derivatives) and the flow is smooth, the term in parenthesis in (1.11)
falls off exponentially with the cycle length, and therefore the curvature
expansions are expected to be highly convergent.

1.6 Evolution

In physics, when we do not understand something, we
give it a name.
Matthias Neubert

The above derivation of the dynamical zeta function formula for the
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escape rate has one shortcoming; it estimates the fraction of survivors as
a function of the number of pinball bounces, but the physically interesting
quantity is the escape rate measured in units of continuous time. For con-
tinuous time flows, the escape rate (1.2) is generalized as follows. Define
a finite phase space region M such that a trajectory that exits M never
reenters. For example, any pinball that falls of the edge of a pinball table in
figure 1.1 is gone forever. Start with a uniform distribution of initial points.
The fraction of initial = whose trajectories remain within M at time ¢ is
expected to decay exponentially

_ Jmdwdy 5(y — f'(x))
S d

— e,

I'(t)

The integral over x starts a trajectory at every x € M. The integral over
y tests whether this trajectory is still in M at time t. The kernel of this
integral

Li(y,z) =6y — f'(2)) (1.12)

is the Dirac delta function, as for a deterministic flow the initial point x
maps into a unique point y at time t. For discrete time, f"(x) is the nth
iterate of the map f. For continuous flows, f!(x) is the trajectory of the
initial point =, and it is appropriate to express the finite time kernel £! in
terms of a generator of infinitesimal time translations

ﬁt — CtA,

very much in the way the quantum evolution is generated by the Hamil-
tonian H, the generator of infinitesimal time quantum transformations.

As the kernel L is the key to everything that follows, we shall give it a
name, and refer to it and its generalizations as the evolution operator for a
d-dimensional map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle
length (in the case at hand, as 2). As we have already seen, this expo-
nential proliferation of cycles is not as dangerous as it might seem; as a
matter of fact, all our computations will be carried out in the n — oo limit.
Though a quick look at chaotic dynamics might reveal it to be complex
beyond belief, it is still generated by a simple deterministic law, and with
some luck and insight, our labeling of possible motions will reflect this sim-
plicity. If the rule that gets us from one level of the classification hierarchy
to the next does not depend strongly on the level, the resulting hierarchy is
approximately self-similar. We now turn such approximate self-similarity to
our advantage, by turning it into an operation, the action of the evolution
operator, whose iteration encodes the self-similarity.
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Figure 1.10: The trace of an evolution operator is concentrated in tubes around
prime cycles, of length T}, and thickness 1/|A,|" for the rth repetition of the prime

cycle p.

1.6.1 Trace formula

Recasting dynamics in terms of evolution operators changes everything.
So far our formulation has been heuristic, but in the evolution operator
formalism the escape rate and any other dynamical average are given by
exact formulas, extracted from the spectra of evolution operators. The key
tools are trace formulas and spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The
explicit expression (1.12) for L!(x,y) enables us to evaluate the trace. Iden-
tify y with x and integrate x over the whole phase space. The result is an
expression for tr £! as a sum over neighborhoods of prime cycles p and their
repetitions

¢ = (t—1T)
trL! = ;Tp; et (LM (1.13)

This formula has a simple geometrical interpretation sketched in figure 1.10.
After the rth return to a Poincaré section, the initial tube M, has been
stretched out along the expanding eigendirections, with the overlap with
the initial volume given by 1/ |det (1 — MZ)| — 1/|A,|, the same weight
we obtained heuristically in sect. 1.5.1.

The “spiky” sum (1.13) is disquieting in the way reminiscent of the
Poisson resummation formulas of Fourier analysis; the left-hand side is the
smooth eigenvalue sum tret = 3" e%?, while the right-hand side equals
zero everywhere except for the set ¢ = r7},. A Laplace transform smooths
the sum over Dirac delta functions in cycle periods and yields the trace

formula for the eigenspectrum sg, s1, - - - of the classical evolution operator:
o 1
dte sttr £ = tr =
04 S — A
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r(B-Ap—sTp)

o0 1 00
az::os_sa - Ep: 2:1 det (1 — M) |’ (1.14)

The beauty of trace formulas lies in the fact that everything on the right-
hand-side — prime cycles p, their periods 7}, and the stability eigenvalues of
M,, - is an invariant property of the flow, independent of any coordinate
choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms
of traces, using the identities

Indet (s —A) = trln(s—A)

d 1
Elndet(s—A) = trs—A’

(1.15)

and integrating over s. In this way the spectral determinant of an evolution
operator becomes related to the traces that we have just computed:

sTpr
det (s — A —eXp< ZZ m) . (1.16)

p r=1

The 1/r factor is due to the s integration, leading to the replacement T;, —
T, /7T, in the periodic orbit expansion (1.14).

The motivation for recasting the eigenvalue problem in this form is
sketched in figure 1.11; exponentiation improves analyticity and trades in a
divergence of the trace sum for a zero of the spectral determinant. In this
way we have retaced the heuristic derivation of the divergent sum (1.6) and
the dynamical zeta function (1.9), but this time with no approximations:
formula (1.16) is ezact. The computation of the zeros of det (s—.A) proceeds
very much like the computations of sect. 1.5.4.

1.7 From chaos to statistical mechanics

While the above replacement of dynamics of individual trajectories by evo-
lution operators which propagate densities might feel like just another bit
of mathematical voodoo, actually something very radical has taken place.
Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the
fluid would forever remain a striated combination of pure white and pure
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Figure 1.11: Spectral determinant is prefer- deh-as) ( )
S

able to the trace as it vanishes smoothly at the -
leading eigenvalue, while the trace formula di- y
verges. RN

red; there would be no pink. What is more, if we reversed the stirring, we
would return to the perfect white/red separation. However, we know that
this cannot be true — in a very few turns of the stirring stick the thickness of
the layers goes from centimeters to Angstroms, and the result is irreversibly
pink.

Understanding the distinction between evolution of individual trajecto-
ries and the evolution of the densities of trajectories is key to understand-
ing statistical mechanics — this is the conceptual basis of the second law of
thermodynamics, and the origin of irreversibility of the arrow of time for
deterministic systems with time-reversible equations of motion: reversibil-
ity is attainable for distributions whose measure in the space of density
functions goes exponentially to zero with time.

By going to a description in terms of the asymptotic time evolution oper-
ators we give up tracking individual trajectories for long times, but instead
gain a very effective description of the asymptotic trajectory densities. This
will enable us, for example, to give exact formulas for transport coefficients
such as the diffusion constants without any probabilistic assumptions (such
as the stosszahlansatz of Boltzmann).

A century ago it seemed reasonable to assume that statistical mechanics
applies only to systems with very many degrees of freedom. More recent
is the realization that much of statistical mechanics follows from chaotic
dynamics, and already at the level of a few degrees of freedom the evolution
of densities is irreversible. Furthermore, the theory that we shall develop
here generalizes notions of “measure” and “averaging” to systems far from
equilibrium, and transports us into regions hitherto inaccessible with the
tools of equilibrium statistical mechanics.

The concepts of equilibrium statistical mechanics do help us, however,
to understand the ways in which the simple-minded periodic orbit theory
falters. A non-hyperbolicity of the dynamics manifests itself in power-law
correlations and even “phase transitions”.

1.8 A guide to the literature

But the power of instruction is seldom of much effi-
cacy, except in those happy dispositions where it is
almost superfluous.

Gibbon

This text aims to bridge the gap between the physics and mathematics
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dynamical systems literature. The intended audience is Henri Roux, the
perfect physics graduate student with a theoretical bent who does not be-
lieve anything he does not understand. As a complementary presentation
we recommend Gaspard’s monograph [1.4] which covers much of the same
ground in a highly readable and scholarly manner.

As far as the prerequisites are concerned - ChaosBook is not an intro-
duction to nonlinear dynamics. Nonlinear science requires a one semester
basic course (advanced undergraduate or first year graduate). A good start
is the textbook by Strogatz [1.5], an introduction to flows, fixed points,
manifolds, bifurcations. It is the most accessible introduction to nonlinear
dynamics - it starts out with differential equations, and its broadly chosen
examples and many exercises make it a favorite with students. It is not
strong on chaos. There the textbook of Alligood, Sauer and Yorke [1.0] is
preferable: an elegant introduction to maps, chaos, period doubling, sym-
bolic dynamics, fractals, dimensions - a good companion to ChaosBook. An
introduction more comfortable to physicists is the textbook by Ott [1.7],
with the baker’s map used to illustrate many key techniques in analysis of
chaotic systems. It is perhaps harder than the above two as the first book
on nonlinear dynamics. Sprott’s textbook [1.8] is a very useful compendium
of the 70s and onward “chaos” literature which we, in the spirit of promises
made in sect. 1.1, tend to pass over in silence.

An introductory course should give students skills in qualitative and
numerical analysis of dynamical systems for short times (trajectories, fixed
points, bifurcations) and familiarize them with Cantor sets and symbolic
dynamics for chaotic systems. A good introduction to numerical experimen-
tation with physically realistic systems is Tufillaro, Abbott, and Reilly [1.9].
Korsch and Jodl [1.10] and Nusse and Yorke [1.11] also emphasize hands-on
approach to dynamics. With this, and a graduate level-exposure to statis-
tical mechanics, partial differential equations and quantum mechanics, the
stage is set for any of the one-semester advanced courses based on Chaos-
Book. The courses taught so far start out with the introductory chapters
on qualitative dynamics, symbolic dynamics and flows, and then continue
in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace
formulas, zeta functions, cycle expansions, Lyapunov exponents, billiards,
transport coefficients, thermodynamic formalism, period doubling, renor-
malization operators.

A graduate level introduction to statistical mechanics from the dynam-
ical point view is given by Dorfman [1.25]; the Gaspard monograph [1.4]
covers the same ground in more depth. Driebe monograph [1.26] offers a
nice introduction to the problem of irreversibility in dynamics. The role of
“chaos” in statistical mechanics is critically dissected by Bricmont in his
highly readable essay “Science of Chaos or Chaos in Science?” [1.27].

Spatiotemporal dynamical systems. Partial differential equations
for dissipative systems, weak amplitude expansions, normal forms, symme-
tries and bifurcations, pseudospectral methods, spatiotemporal chaos.
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Quantum chaos. Semiclassical propagators, density of states, trace
formulas, semiclassical spectral determinants, billiards, semiclassical he-
lium, diffraction, creeping, tunneling, higher-order & corrections.

This book concentrates on periodic orbit theory. The role of unstable
periodic orbits was already fully appreciated by Poincaré [1.12, 1.13], who
noted that hidden in the apparent chaos is a rigid skeleton, a tree of cy-
cles (periodic orbits) of increasing lengths and self-similar structure, and
suggested that the cycles should be the key to chaotic dynamics. Periodic
orbits have been at core of much of the mathematical work on the the-
ory of the classical and quantum dynamical systems ever since. We refer
the reader to the reprint selection [1.14] for an overview of some of that
literature. This book offers a breach into a domain hitherto reputed un-
reachable, a domain traditionally traversed only by mathematical physicists
and pure mathematicians. What distinguishes it from pure mathematics
is the emphasis on computation and numerical convergence of methods of-
fered. A rigorous proof, the end of the story as far as a mathematician is
concerned, might state that in a given setting, for times in excess of 1032
years, turbulent dynamics settles onto an attractor of dimension less than
600. Such a theorem is of a little use for a physicist, especially if a numer-
ical experiment indicates that within the span of the best simulation the
dynamics seems to have settled on a (transient?) attractor of dimension
less than 3.

If you find ChaosBook not rigorous enough, you should turn to the
mathematics literature. The most extensive reference is the treatise by Ka-
tok and Hasselblatt [1.15], an impressive compendium of modern dynami-
cal systems theory. The fundamental papers in this field, all still valuable
reading, are Smale [1.16], Bowen [1.17] and Sinai [1.18]. Sinai’s paper is
prescient and offers a vision and a program that ties together dynamical
systems and statistical mechanics. It is written for readers versed in statis-
tical mechanics. Markov partitions were introduced by Sinai in ref. [1.19].
The classical text (though certainly not an easy read) on the subject of
dynamical zeta functions is Ruelle’s Statistical Mec