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resumé 240 - references 240 - exercises 242

15 Spectral determinants 243

15.1 Spectral determinants for maps . . . . . . . . . . . . . . . . 243

15.2 Spectral determinant for flows . . . . . . . . . . . . . . . . . 245

15.3 Dynamical zeta functions . . . . . . . . . . . . . . . . . . . 247

15.4 False zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

15.5 Spectral determinants vs. dynamical zeta functions . . . . . 251

15.6 All too many eigenvalues? . . . . . . . . . . . . . . . . . . . 253
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resumé 379 - references 379 - exercises 381

22 Discrete symmetries 385
22.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
22.2 Discrete symmetries . . . . . . . . . . . . . . . . . . . . . . 390
22.3 Dynamics in the fundamental domain . . . . . . . . . . . . 392
22.4 Factorizations of dynamical zeta functions . . . . . . . . . . 396
22.5 C2 factorization . . . . . . . . . . . . . . . . . . . . . . . . . 398
22.6 C3v factorization: 3-disk game of pinball . . . . . . . . . . . 400
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Gábor Simon
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Chapter 1

Overture

If I have seen less far than other men it is because I
have stood behind giants.

Edoardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there
are holes large enough to steam a Eurostar train through them. Here
we learn about harmonic oscillators and Keplerian ellipses - but where is
the chapter on chaotic oscillators, the tumbling Hyperion? We have just
quantized hydrogen, where is the chapter on the classical 3-body problem
and its implications for quantization of helium? We have learned that an
instanton is a solution of field-theoretic equations of motion, but shouldn’t
a strongly nonlinear field theory have turbulent solutions? How are we to
think about systems where things fall apart; the center cannot hold; every
trajectory is unstable?

This chapter offers a quick survey of the main topics covered in the
book. We start out by making promises - we will right wrongs, no longer
shall you suffer the slings and arrows of outrageous Science of Perplexity.
We relegate a historical overview of the development of chaotic dynamics
to appendix A, and head straight to the starting line: A pinball game is
used to motivate and illustrate most of the concepts to be developed in
ChaosBook.

Throughout the book

indicates that the section requires a hearty stomach and is probably
best skipped on first reading

fast track points you where to skip to

tells you where to go for more depth on a particular topic

✎ indicates an exercise that might clarify a point in the text

1



2 CHAPTER 1. OVERTURE

indicates that a figure is still missing - you are urged to fetch it

This is a textbook, not a research monograph, and you should be able to
follow the thread of the argument without constant excursions to sources.
Hence there are no literature references in the text proper, all learned re-
marks and bibliographical pointers are relegated to the “Commentary” sec-
tion at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation
with science, we acquire a firmer hold over the vi-
cissitudes of life and meet them with greater calm,
but in reality we have done no more than to find a
way to escape from our sorrows.

Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuc-
cessful) crack at the 3-body problem, lunar dynamics. Nature is rich in
systems governed by simple deterministic laws whose asymptotic dynam-
ics are complex beyond belief, systems which are locally unstable (almost)
everywhere but globally recurrent. How do we describe their long term
dynamics?

The answer turns out to be that we have to evaluate a determinant, take
a logarithm. It would hardly merit a learned treatise, were it not for the fact
that this determinant that we are to compute is fashioned out of infinitely
many infinitely small pieces. The feel is of statistical mechanics, and that
is how the problem was solved; in the 1960’s the pieces were counted, and
in the 1970’s they were weighted and assembled in a fashion that in beauty
and in depth ranks along with thermodynamics, partition functions and
path integrals amongst the crown jewels of theoretical physics.

Then something happened that might be without parallel; this is an area
of science where the advent of cheap computation had actually subtracted
from our collective understanding. The computer pictures and numerical
plots of fractal science of the 1980’s have overshadowed the deep insights of
the 1970’s, and these pictures have since migrated into textbooks. Fractal
science posits that certain quantities (Lyapunov exponents, generalized di-
mensions, . . . ) can be estimated on a computer. While some of the numbers
so obtained are indeed mathematically sensible characterizations of fractals,
they are in no sense observable and measurable on the length-scales and
time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of na-
ture is circumstantial, in studies of probabilistically assembled fractal ag-
gregates we know of nothing better than contemplating such quantities.

intro - 10jul2006 ChaosBook.org/version11.8, Aug 30 2006



1.2. CHAOS AHEAD 3

In deterministic systems we can do much better. Chaotic dynamics is gen-
erated by the interplay of locally unstable motions, and the interweaving of
their global stable and unstable manifolds. These features are robust and
accessible in systems as noisy as slices of rat brains. Poincaré, the first to
understand deterministic chaos, already said as much (modulo rat brains).
Once the topology of chaotic dynamics is understood, a powerful theory
yields the macroscopically measurable consequences of chaotic dynamics,
such as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in ChaosBook. This book is a self-
contained graduate textbook on classical and quantum chaos. We teach you
how to evaluate a determinant, take a logarithm – stuff like that. Ideally,
this should take 100 pages or so. Well, we fail - so far we have not found
a way to traverse this material in less than a semester, or 200-300 page
subset of this text. Nothing can be done about that.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.

W.B. Yeats: The Second Coming

The study of chaotic dynamical systems is no recent fashion. It did not start
with the widespread use of the personal computer. Chaotic systems have
been studied for over 200 years. During this time many have contributed,
and the field followed no single line of development; rather one sees many
interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics seem
a stroke of luck: a few integrable problems, such as the harmonic oscillator
and the Kepler problem, though “non-generic”, have gotten us very far.
The success has lulled us into a habit of expecting simple solutions to sim-
ple equations - an expectation tempered for many by the recently acquired
ability to numerically scan the phase space of non-integrable dynamical
systems. The initial impression might be that all of our analytic tools have
failed us, and that the chaotic systems are amenable only to numerical and
statistical investigations. Nevertheless, a beautiful theory of deterministic
chaos, of predictive quality comparable to that of the traditional perturba-
tion expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are used as zeroth-
order approximations to physical systems, and weak nonlinearities are then
accounted for perturbatively. For strongly nonlinear, non-integrable sys-
tems such expansions fail completely; at asymptotic times the dynamics
exhibits amazingly rich structure which is not at all apparent in the inte-
grable approximations. However, hidden in this apparent chaos is a rigid
skeleton, a self-similar tree of cycles (periodic orbits) of increasing lengths.
The insight of the modern dynamical systems theory is that the zeroth-order
approximations to the harshly chaotic dynamics should be very different

ChaosBook.org/version11.8, Aug 30 2006 intro - 10jul2006



4 CHAPTER 1. OVERTURE

Figure 1.1: A physicist’s bare bones game of
pinball.

from those for the nearly integrable systems: a good starting approxima-
tion here is the linear stretching and folding of a baker’s map, rather than
the periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling
for how and why unstable cycles come about, we start by playing a game of
pinball. The reminder of the chapter is a quick tour through the material
covered in ChaosBook. Do not worry if you do not understand every detail
at the first reading – the intention is to give you a feeling for the main
themes of the book. Details will be filled out later. If you want to get
a particular point clarified right now, ☞ on the margin points at the
appropriate section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of the [Cvitanović et al. “Chaos: Clas-
sical and Quantum”] book. However, in order to un-
derstand the introduction you will first have to read
the rest of the book.

Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who
has tried pool, billiards or snooker – the game is about beating chaos –
so we start our story about what chaos is, and what to do about it, with
a game of pinball. This might seem a trifle, but the game of pinball is
to chaotic dynamics what a pendulum is to integrable systems: thinking
clearly about what “chaos” in a game of pinball is will help us tackle more
difficult problems, such as computing diffusion constants in deterministic
gases, or computing the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among
the pinball machine’s disks, and only high-school level Euclidean geometry
is needed to describe its trajectory. A physicist’s pinball game is the game of
pinball stripped to its bare essentials: three equidistantly placed reflecting
disks in a plane, figure 1.1. A physicist’s pinball is free, frictionless, point-
like, spin-less, perfectly elastic, and noiseless. Point-like pinballs are shot

intro - 10jul2006 ChaosBook.org/version11.8, Aug 30 2006



1.3. THE FUTURE AS IN A MIRROR 5

at the disks from random starting positions and angles; they spend some
time bouncing between the disks and then escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz
was confident that given the initial conditions one knew everything a deter-
ministic system would do far into the future. He wrote [1.1], anticipating
by a century and a half the oft-quoted Laplace’s “Given for one instant
an intelligence which could comprehend all the forces by which nature is
animated...”:

That everything is brought forth through an established destiny is
just as certain as that three times three is nine. [. . . ] If, for example,
one sphere meets another sphere in free space and if their sizes and
their paths and directions before collision are known, we can then
foretell and calculate how they will rebound and what course they will
take after the impact. Very simple laws are followed which also apply,
no matter how many spheres are taken or whether objects are taken
other than spheres. From this one sees then that everything proceeds
mathematically – that is, infallibly – in the whole wide world, so that
if someone could have a sufficient insight into the inner parts of things,
and in addition had remembrance and intelligence enough to consider
all the circumstances and to take them into account, he would be a
prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type
of physical system that we shall use here as a paradigm of “chaos”. His
claim is wrong in a deep and subtle way: a state of a physical system
can never be specified to infinite precision, there is no way to take all the
circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 What is “chaos”?

I accept chaos. I am not sure that it accepts me.

Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully
determined by its initial conditions, in contrast to a stochastic system,
for which the initial conditions determine the present state only partially,
due to noise, or other external circumstances beyond our control. For a
stochastic system, the present state reflects the past initial conditions plus
the particular realization of the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool
us into regarding it as a stochastic one; disentangling the deterministic from
the stochastic is the main challenge in many real-life settings, from stock
markets to palpitations of chicken hearts. So, what is “chaos”?

In a game of pinball, any two trajectories that start out very close to
each other separate exponentially with time, and in a finite (and in practice,

ChaosBook.org/version11.8, Aug 30 2006 intro - 10jul2006
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6 CHAPTER 1. OVERTURE

Figure 1.2: Sensitivity to initial conditions:
two pinballs that start out very close to each
other separate exponentially with time.

1


2


3


23132321


2313


a very small) number of bounces their separation δx(t) attains the magni-
tude of L, the characteristic linear extent of the whole system, figure 1.2.
This property of sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)|

where λ, the mean rate of separation of trajectories of the system, is called
the Lyapunov exponent. For any finite accuracy δx = |δx(0)| of the initial

☞ sect. 10.3
data, the dynamics is predictable only up to a finite Lyapunov time

TLyap ≈ − 1

λ
ln |δx/L| , (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that
rule the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One
could try to play 1- or 2-disk pinball game, but it would not be much of
a game; trajectories would only separate, never to meet again. What is
also needed is mixing, the coming together again and again of trajectories.
While locally the nearby trajectories separate, the interesting dynamics is
confined to a globally finite region of the phase space and thus the separated
trajectories are necessarily folded back and can re-approach each other
arbitrarily closely, infinitely many times. For the case at hand there are
2n topologically distinct n bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectories with n bounces
can be quantified as

N(n) ≈ ehn

☞ sect. 13.1

where the topological entropy h (h = ln 2 in the case at hand) is the growth
rate of the number of topologically distinct trajectories.

☞ sect. 20.1

The appellation “chaos” is a confusing misnomer, as in deterministic
dynamics there is no chaos in the everyday sense of the word; everything

intro - 10jul2006 ChaosBook.org/version11.8, Aug 30 2006
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(a) (b)

Figure 1.3: Dynamics of a chaotic dynamical system is (a) everywhere locally unsta-
ble (positive Lyapunov exponent) and (b) globally mixing (positive entropy). (A. Jo-
hansen)

proceeds mathematically – that is, as Baron Leibniz would have it, infalli-
bly. When a physicist says that a certain system exhibits “chaos”, he means
that the system obeys deterministic laws of evolution, but that the outcome
is highly sensitive to small uncertainties in the specification of the initial
state. The word “chaos” has in this context taken on a narrow technical
meaning. If a deterministic system is locally unstable (positive Lyapunov
exponent) and globally mixing (positive entropy) - figure 1.3 - it is said to
be chaotic.

While mathematically correct, the definition of chaos as “positive Lya-
punov + positive entropy” is useless in practice, as a measurement of these
quantities is intrinsically asymptotic and beyond reach for systems observed
in nature. More powerful is Poincaré’s vision of chaos as the interplay of
local instability (unstable periodic orbits) and global mixing (intertwining
of their stable and unstable manifolds). In a chaotic system any open ball
of initial conditions, no matter how small, will in finite time overlap with
any other finite region and in this sense spread over the extent of the entire
asymptotically accessible phase space. Once this is grasped, the focus of
theory shifts from attempting to predict individual trajectories (which is
impossible) to a description of the geometry of the space of possible out-
comes, and evaluation of averages over this space. How this is accomplished
is what ChaosBook is about.

A definition of “turbulence” is even harder to come by. Intuitively,
the word refers to irregular behavior of an infinite-dimensional dynamical
system described by deterministic equations of motion - say, a bucket of
boiling water described by the Navier-Stokes equations. But in practice the
word “turbulence” tends to refer to messy dynamics which we understand
poorly. As soon as a phenomenon is understood better, it is reclaimed and

☞ appendix B
renamed: “a route to chaos”, “spatiotemporal chaos”, and so on.

In ChaosBook we shall develop a theory of chaotic dynamics for low
dimensional attractors visualized as a succession of nearly periodic but un-
stable motions. In the same spirit, we shall think of turbulence in spatially
extended systems in terms of recurrent spatiotemporal patterns. Pictori-
ally, dynamics drives a given spatially extended system through a repertoire
of unstable patterns; as we watch a turbulent system evolve, every so often
we catch a glimpse of a familiar pattern:

ChaosBook.org/version11.8, Aug 30 2006 intro - 10jul2006
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=⇒ other swirls =⇒

For any finite spatial resolution, the system follows approximately for a
finite time a pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space
of such patterns. In ChaosBook we recast this image into mathematics.

1.3.2 When does “chaos” matter?

Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

W. Shakespeare, Hamlet

When should we be mindful of chaos? The solar system is “chaotic”,
yet we have no trouble keeping track of the annual motions of planets. The
rule of thumb is this; if the Lyapunov time (1.1) (the time by which a phase
space region initially comparable in size to the observational accuracy ex-
tends across the entire accessible phase space) is significantly shorter than
the observational time, you need to master the theory that will be devel-
oped here. That is why the main successes of the theory are in statistical
mechanics, quantum mechanics, and questions of long term stability in ce-
lestial mechanics.

In science popularizations too much has been made of the impact of
“chaos theory”, so a number of caveats are already needed at this point.

At present the theory is in practice applicable only to systems with a
low intrinsic dimension – the minimum number of coordinates necessary to
capture its essential dynamics. If the system is very turbulent (a descrip-
tion of its long time dynamics requires a space of high intrinsic dimension)
we are out of luck. Hence insights that the theory offers in elucidating
problems of fully developed turbulence, quantum field theory of strong in-
teractions and early cosmology have been modest at best. Even that is a
caveat with qualifications. There are applications – such as spatially ex-
tended (nonequilibrium) systems and statistical mechanics applications –
where the few important degrees of freedom can be isolated and studied

☞ chapter 23
profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to the
very noisy systems so important in the life sciences and in economics. Even
though we are often interested in phenomena taking place on time scales
much longer than the intrinsic time scale (neuronal interburst intervals, car-
diac pulses, etc.), disentangling “chaotic” motions from the environmental
noise has been very hard.

intro - 10jul2006 ChaosBook.org/version11.8, Aug 30 2006



1.4. A GAME OF PINBALL 9

1.4 A game of pinball

Formulas hamper the understanding.

S. Smale

We are now going to get down to the brasstacks. But first, a disclaimer:
If you understand most of the rest of this chapter on the first reading, you
either do not need this book, or you are delusional. If you do not understand
it, is not because the people who wrote it are so much smarter than you:
the most one can hope for at this stage is to give you a flavor of what lies
ahead. If a statement in this chapter mystifies/intrigues, fast forward to
a section indicated by ☞ on the margin, read only the parts that you
feel you need. Of course, we think that you need to learn ALL of it, or
otherwise we would not have written it in the first place.

Confronted with a potentially chaotic dynamical system, we analyze
it through a sequence of three distinct stages; I. diagnose, II. count, III.
measure. First we determine the intrinsic dimension of the system – the
minimum number of coordinates necessary to capture its essential dynam-
ics. If the system is very turbulent we are, at present, out of luck. We know
only how to deal with the transitional regime between regular motions and
chaotic dynamics in a few dimensions. That is still something; even an
infinite-dimensional system such as a burning flame front can turn out to
have a very few chaotic degrees of freedom. In this regime the chaotic dy-
namics is restricted to a space of low dimension, the number of relevant
parameters is small, and we can proceed to step II; we count and classify

☞ chapter 11

☞ chapter 13
all possible topologically distinct trajectories of the system into a hierarchy
whose successive layers require increased precision and patience on the part
of the observer. This we shall do in sect. 1.4.1. If successful, we can proceed
with step III: investigate the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III – measure – in sect. 1.5.

☞ chapter 18

With the game of pinball we are in luck – it is a low dimensional system,
free motion in a plane. The motion of a point particle is such that after a
collision with one disk it either continues to another disk or it escapes. If we
label the three disks by 1, 2 and 3, we can associate every trajectory with
an itinerary, a sequence of labels indicating the order in which the disks are
visited; for example, the two trajectories in figure 1.2 have itineraries 2313 ,
23132321 respectively. The itinerary is finite for a scattering trajectory,

coming in from infinity and escaping after a finite number of collisions,
infinite for a trapped trajectory, and infinitely repeating for a periodic orbit.
Parenthetically, in this subject the words “orbit” and “trajectory” refer to ✎ 1.1

page 30
one and the same thing.

Such labeling is the simplest example of symbolic dynamics. As the
particle cannot collide two times in succession with the same disk, any two
consecutive symbols must differ. This is an example of pruning, a rule
that forbids certain subsequences of symbols. Deriving pruning rules is in

ChaosBook.org/version11.8, Aug 30 2006 intro - 10jul2006



10 CHAPTER 1. OVERTURE

Figure 1.4: Binary labeling of the 3-disk pin-
ball trajectories; a bounce in which the trajec-
tory returns to the preceding disk is labeled 0,
and a bounce which results in continuation to
the third disk is labeled 1.

general a difficult problem, but with the game of pinball we are lucky -
there are no further pruning rules.

☞ chapter 12

The choice of symbols is in no sense unique. For example, as at each
bounce we can either proceed to the next disk or return to the previous
disk, the above 3-letter alphabet can be replaced by a binary {0, 1} alpha-
bet, figure 1.4. A clever choice of an alphabet will incorporate important
features of the dynamics, such as its symmetries.

☞ sect. 11.6

Suppose you wanted to play a good game of pinball, that is, get the
pinball to bounce as many times as you possibly can – what would be a
winning strategy? The simplest thing would be to try to aim the pinball so
it bounces many times between a pair of disks – if you managed to shoot
it so it starts out in the periodic orbit bouncing along the line connecting
two disk centers, it would stay there forever. Your game would be just as
good if you managed to get it to keep bouncing between the three disks
forever, or place it on any periodic orbit. The only rub is that any such
orbit is unstable, so you have to aim very accurately in order to stay close
to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important – they form the skeleton onto
which all trajectories trapped for long times cling.

☞ sect. 35.2

1.4.1 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum.
We shall refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated - some examples
are drawn in figure 1.5 - but it is rather hard to perceive the systematics
of orbits from their shapes. In mechanics a trajectory is fully and uniquely
specified by its position and momentum at a given instant, and no two
distinct phase space trajectories can intersect. Their projections onto ar-
bitrary subspaces, however, can and do intersect, in rather unilluminating
ways. In the pinball example the problem is that we are looking at the pro-
jections of a 4-dimensional phase space trajectories onto a 2-dimensional
subspace, the configuration space. A clearer picture of the dynamics is
obtained by constructing a phase space Poincaré section.

Suppose that the pinball has just bounced off disk 1. Depending on its
position and outgoing angle, it could proceed to either disk 2 or 3. Not much
happens in between the bounces – the ball just travels at constant velocity
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Figure 1.5: Some examples of 3-disk cycles:

(a) 12123 and 13132 are mapped into each
other by the flip across 1 axis. Similarly (b)
123 and 132 are related by flips, and (c) 1213,
1232 and 1323 by rotations. (d) The cycles
121212313 and 121212323 are related by ro-
taion and time reversal. These symmetries are
discussed in more detail in chapter 22. (from
ref. [1.2])

(a)

s1

φ1

s2

a

φ1

(b)

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

Figure 1.6: (a) The Poincaré section coordinates for the 3-disk game of pinball. (b)
Collision sequence (s1, p1) 7→ (s2, p2) 7→ (s3, p3) from the boundary of a disk to the
boundary of the next disk presented in the Poincaré section coordinates.

along a straight line – so we can reduce the four-dimensional flow to a two-
dimensional map f that takes the coordinates of the pinball from one disk
edge to another disk edge. Let us state this more precisely: the trajectory
just after the moment of impact is defined by marking sn, the arc-length
position of the nth bounce along the billiard wall, and pn = p sinφn the
momentum component parallel to the billiard wall at the point of impact,
figure 1.6. Such a section of a flow is called a Poincaré section, and the
particular choice of coordinates (due to Birkhoff) is particularly smart, as
it conserves the phase-space volume. In terms of the Poincaré section, the
dynamics is reduced to the return map P : (sn, pn) 7→ (sn+1, pn+1) from the
boundary of a disk to the boundary of the next disk. The explicit form of
this map is easily written down, but it is of no importance right now.

☞ sect. 6

Next, we mark in the Poincaré section those initial conditions which
do not escape in one bounce. There are two strips of survivors, as the
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Figure 1.7: (a) A trajectory starting out from
disk 1 can either hit another disk or escape. (b)
Hitting two disks in a sequence requires a much
sharper aim. The cones of initial conditions that
hit more and more consecutive disks are nested
within each other, as in figure 1.8.

(a)
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Figure 1.8: The 3-disk game of pinball Poincaré section, trajectories emanating from
the disk 1 with x0 = (arclength, parallel momentum) = (s0, p0) , disk radius : center
separation ratio a:R = 1:2.5. (a) Strips of initial points M12, M13 which reach disks
2, 3 in one bounce, respectively. (b) Strips of initial points M121, M131 M132 and
M123 which reach disks 1, 2, 3 in two bounces, respectively. The Poincaré sections
for trajectories originating on the other two disks are obtained by the appropriate
relabeling of the strips. (Y. Lan)

trajectories originating from one disk can hit either of the other two disks,
or escape without further ado. We label the two strips M0, M1. Embedded
within them there are four strips M00, M10, M01, M11 of initial conditions
that survive for two bounces, and so forth, see figures 1.7 and 1.8. Provided
that the disks are sufficiently separated, after n bounces the survivors are
divided into 2n distinct strips: the Mith strip consists of all points with
itinerary i = s1s2s3 . . . sn, s = {0, 1}. The unstable cycles as a skeleton
of chaos are almost visible here: each such patch contains a periodic point
s1s2s3 . . . sn with the basic block infinitely repeated. Periodic points are
skeletal in the sense that as we look further and further, the strips shrink
but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a
navigation chart through chaotic phase space. There exists a unique tra-
jectory for every admissible infinite length itinerary, and a unique itinerary
labels every trapped trajectory. For example, the only trajectory labeled
by 12 is the 2-cycle bouncing along the line connecting the centers of disks
1 and 2; any other trajectory starting out as 12 . . . either eventually escapes
or hits the 3rd disk.

1.4.2 Escape rate

☞ example 10.1

What is a good physical quantity to compute for the game of pinball? Such
system, for which almost any trajectory eventually leaves a finite region (the
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1.4. A GAME OF PINBALL 13

pinball table) never to return, is said to be open, or a repeller. The repeller
escape rate is an eminently measurable quantity. An example of such a
measurement would be an unstable molecular or nuclear state which can
be well approximated by a classical potential with the possibility of escape
in certain directions. In an experiment many projectiles are injected into
such a non-confining potential and their mean escape rate is measured, as in
figure 1.1. The numerical experiment might consist of injecting the pinball
between the disks in some random direction and asking how many times
the pinball bounces on the average before it escapes the region between the
disks. ✎ 1.2

page 30

For a theorist a good game of pinball consists in predicting accurately
the asymptotic lifetime (or the escape rate) of the pinball. We now show
how periodic orbit theory accomplishes this for us. Each step will be so
simple that you can follow even at the cursory pace of this overview, and
still the result is surprisingly elegant.

Consider figure 1.8 again. In each bounce the initial conditions get
thinned out, yielding twice as many thin strips as at the previous bounce.
The total area that remains at a given time is the sum of the areas of the
strips, so that the fraction of survivors after n bounces, or the survival
probability is given by

Γ̂1 =
|M0|
|M| +

|M1|
|M| , Γ̂2 =

|M00|
|M| +

|M10|
|M| +

|M01|
|M| +

|M11|
|M| ,

Γ̂n =
1

|M|

(n)∑

i

|Mi| , (1.2)

where i is a label of the ith strip, |M| is the initial area, and |Mi| is the
area of the ith strip of survivors. i = 01, 10, 11, . . . is a label, not a binary
number. Since at each bounce one routinely loses about the same fraction
of trajectories, one expects the sum (1.2) to fall off exponentially with n
and tend to the limit

Γ̂n+1/Γ̂n = e−γn → e−γ . (1.3)

The quantity γ is called the escape rate from the repeller.
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1.5 Chaos for cyclists

Étant données des équations ... et une solution parti-
culiére quelconque de ces équations, on peut toujours
trouver une solution périodique (dont la période peut,
il est vrai, étre trés longue), telle que la différence
entre les deux solutions soit aussi petite qu’on le
veut, pendant un temps aussi long qu’on le veut.
D’ailleurs, ce qui nous rend ces solutions périodiques
si précieuses, c’est qu’elles sont, pour ansi dire, la
seule bréche par où nous puissions esseyer de pénétrer
dans une place jusqu’ici réputée inabordable.

H. Poincaré, Les méthodes nouvelles de la méchanique
céleste

We shall now show that the escape rate γ can be extracted from a highly
convergent exact expansion by reformulating the sum (1.2) in terms of un-
stable periodic orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1,
center-center separation 6, velocity 1, you answer that the continuous time
escape rate is roughly γ = 0.4103384077693464893384613078192 . . ., you do
not need this book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

1.5.2 Size of a partition

Not only do the periodic points keep track of topological ordering of the
strips, but, as we shall now show, they also determine their size.

As a trajectory evolves, it carries along and distorts its infinitesimal
neighborhood. Let

x(t) = f t(x0)

denote the trajectory of an initial point x0 = x(0). Expanding f t(x0 + δx0)
tolinear order, the evolution of the distance to a neighboring trajectory
xi(t) + δxi(t) is given by the fundamental matrix:

δxi(t) =

d∑

j=1

Jt(x0)ijδx0j , Jt(x0)ij =
∂xi(t)

∂x0j
.

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this case d = 3. Evaluation
of a cycle fundamental matrix is a long exercise - here we just state the

☞ sect. 6.2
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1.5. CHAOS FOR CYCLISTS 15

result. The fundamental matrix describes the deformation of an infinites-
imal neighborhood of x(t) along the flow; its eigenvectors and eigenvalues
give the directions and the corresponding rates of expansion or contraction.
The trajectories that start out in an infinitesimal neighborhood are sepa-
rated along the unstable directions (those whose eigenvalues are greater
than unity in magnitude), approach each other along the stable directions
(those whose eigenvalues are less than unity in magnitude), and maintain
their distance along the marginal directions (those whose eigenvalues equal
unity in magnitude). In our game of pinball the beam of neighboring tra-
jectories is defocused along the unstable eigendirection of the fundamental
matrix M.

As the heights of the strips in figure 1.8 are effectively constant, we can
concentrate on their thickness. If the height is ≈ L, then the area of the
ith strip is Mi ≈ Lli for a strip of width li.

Each strip i in figure 1.8 contains a periodic point xi. The finer the
intervals, the smaller the variation in flow across them, so the contribution
from the strip of width li is well-approximated by the contraction around
the periodic point xi within the interval,

li = ai/|Λi| , (1.4)

where Λi is the unstable eigenvalue of the fundamental matrix Jt(xi) eval-
uated at the ith periodic point for t = Tp, the full period (due to the low
dimensionality, the Jacobian can have at most one unstable eigenvalue).
Only the magnitude of this eigenvalue matters, we can disregard its sign.
The prefactors ai reflect the overall size of the system and the particular dis-
tribution of starting values of x. As the asymptotic trajectories are strongly
mixed by bouncing chaotically around the repeller, we expect their distri-
bution to be insensitive to smooth variations in the distribution of initial
points.

☞ sect. 9.3

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors ai ≈ O(1) are overwhelmed by the exponential growth
of Λi, so we neglect them. If the hyperbolicity assumption is justified, we

☞ sect. 14.1.1
can replace |Mi| ≈ Lli in (1.2) by 1/|Λi| and consider the sum

Γn =

(n)∑

i

1/|Λi| ,

where the sum goes over all periodic points of period n. We now define a
generating function for sums over all periodic orbits of all lengths:

Γ(z) =

∞∑

n=1

Γnz
n . (1.5)
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16 CHAPTER 1. OVERTURE

Recall that for large n the nth level sum (1.2) tends to the limit Γn → e−nγ ,
so the escape rate γ is determined by the smallest z = eγ for which (1.5)
diverges:

Γ(z) ≈
∞∑

n=1

(ze−γ)
n

=
ze−γ

1 − ze−γ
. (1.6)

This is the property of Γ(z) that motivated its definition. Next, we devise
a formula for (1.5) expressing the escape rate in terms of periodic orbits:

Γ(z) =

∞∑

n=1

zn
(n)∑

i

|Λi|−1

=
z

|Λ0|
+

z

|Λ1|
+

z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.7)

For sufficiently small z this sum is convergent. The escape rate γ is now
☞ sect. 14.4

given by the leading pole of (1.6), rather than by a numerical extrapolation
of a sequence of γn extracted from (1.3). As any finite truncation n <
ntrunc of (1.7) is a polynomial in z, convergent for any z, finding this pole
requires that we know something about Γn for any n, and that might be a
tall order.

We could now proceed to estimate the location of the leading singularity
of Γ(z) from finite truncations of (1.7) by methods such as Padé approx-
imants. However, as we shall now show, it pays to first perform a simple
resummation that converts this divergence into a zero of a related function.

1.5.3 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Λrp.
A prime cycle p is a single traversal of the orbit; its label is a non-repeating
symbol string of np symbols. There is only one prime cycle for each cyclic
permutation class. For example, p = 0011 = 1001 = 1100 = 0110 is prime,
but 0101 = 01 is not. By the chain rule for derivatives the stability of a✎ 13.5

page 225

☞ sect. 4.4

cycle is the same everywhere along the orbit, so each prime cycle of length
np contributes np terms to the sum (1.7). Hence (1.7) can be rewritten as

Γ(z) =
∑

p

np

∞∑

r=1

(
znp

|Λp|

)r
=
∑

p

nptp
1 − tp

, tp =
znp

|Λp|
(1.8)

where the index p runs through all distinct prime cycles. Note that we
have resummed the contribution of the cycle p to all times, so truncating
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1.5. CHAOS FOR CYCLISTS 17

the summation up to given p is not a finite time n ≤ np approximation, but
an asymptotic, infinite time estimate based by approximating stabilities of
all cycles by a finite number of the shortest cycles and their repeats. The
npz

np factors in (1.8) suggest rewriting the sum as a derivative

Γ(z) = −z d
dz

∑

p

ln(1 − tp) .

Hence Γ(z) is a logarithmic derivative of the infinite product

1/ζ(z) =
∏

p

(1 − tp) , tp =
znp

|Λp|
. (1.9)

This function is called the dynamical zeta function, in analogy to the
Riemann zeta function, which motivates the choice of “zeta” in its definition
as 1/ζ(z). This is the prototype formula of periodic orbit theory. The zero
of 1/ζ(z) is a pole of Γ(z), and the problem of estimating the asymptotic
escape rates from finite n sums such as (1.2) is now reduced to a study of
the zeros of the dynamical zeta function (1.9). The escape rate is related
by (1.6) to a divergence of Γ(z), and Γ(z) diverges whenever 1/ζ(z) has a
zero.

☞ sect. 19.1

☞ sect. 15.4Easy, you say: “Zeros of (1.9) can be read off the formula, a zero

zp = |Λp|1/np

for each term in the product. What’s the problem?” Dead wrong!

1.5.4 Cycle expansions

How are formulas such as (1.9) used? We start by computing the lengths
and eigenvalues of the shortest cycles. This usually requires some numerical
work, such as the Newton’s method searches for periodic solutions; we shall
assume that the numerics are under control, and that all short cycles up
to given length have been found. In our pinball example this can be done

☞ chapter 17
by elementary geometrical optics. It is very important not to miss any
short cycles, as the calculation is as accurate as the shortest cycle dropped
– including cycles longer than the shortest omitted does not improve the
accuracy (unless exponentially many more cycles are included). The result
of such numerics is a table of the shortest cycles, their periods and their
stabilities.

☞ sect. 31.3

Now expand the infinite product (1.9), grouping together the terms of
the same total symbol string length

1/ζ = (1 − t0)(1 − t1)(1 − t10)(1 − t100) · · ·
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18 CHAPTER 1. OVERTURE

= 1 − t0 − t1 − [t10 − t1t0] − [(t100 − t10t0) + (t101 − t10t1)]

−[(t1000 − t0t100) + (t1110 − t1t110)

+(t1001 − t1t001 − t101t0 + t10t0t1)] − . . . (1.10)

The virtue of the expansion is that the sum of all terms of the same total
☞ chapter 18

length n (grouped in brackets above) is a number that is exponentially
smaller than a typical term in the sum, for geometrical reasons we explain
in the next section.

☞ sect. 18.1

The calculation is now straightforward. We substitute a finite set of the
eigenvalues and lengths of the shortest prime cycles into the cycle expansion
(1.10), and obtain a polynomial approximation to 1/ζ. We then vary z in
(1.9) and determine the escape rate γ by finding the smallest z = eγ for
which (1.10) vanishes.

1.5.5 Shadowing

When you actually start computing this escape rate, you will find out that
the convergence is very impressive: only three input numbers (the two fixed
points 0, 1 and the 2-cycle 10) already yield the pinball escape rate to 3-4
significant digits! We have omitted an infinity of unstable cycles; so why

☞ sect. 18.2.2
does approximating the dynamics by a finite number of the shortest cycle
eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a
consequence of the smoothness and analyticity of the underlying flow.
Intuitively, one can understand the convergence in terms of the geometrical
picture sketched in figure 1.9; the key observation is that the long orbits
are shadowed by sequences of shorter orbits.

A typical term in (1.10) is a difference of a long cycle {ab} minus its
shadowing approximation by shorter cycles {a} and {b}

tab − tatb = tab(1 − tatb/tab) = tab

(
1 −

∣∣∣∣
Λab

ΛaΛb

∣∣∣∣
)
, (1.11)

where a and b are symbol sequences of the two shorter cycles. If all orbits
are weighted equally (tp = znp), such combinations cancel exactly; if orbits
of similar symbolic dynamics have similar weights, the weights in such
combinations almost cancel.

This can be understood in the context of the pinball game as follows.
Consider orbits 0, 1 and 01. The first corresponds to bouncing between any
two disks while the second corresponds to bouncing successively around all
three, tracing out an equilateral triangle. The cycle 01 starts at one disk,
say disk 2. It then bounces from disk 3 back to disk 2 then bounces from disk
1 back to disk 2 and so on, so its itinerary is 2321. In terms of the bounce
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Figure 1.9: Approximation to (a) a smooth dynamics by (b) the skeleton of periodic
points, together with their linearized neighborhoods. Indicated are segments of two
1-cycles and a 2-cycle that alternates between the neighborhoods of the two 1-cycles,
shadowing first one of the two 1-cycles, and then the other.

types shown in figure 1.4, the trajectory is alternating between 0 and 1. The
incoming and outgoing angles when it executes these bounces are very close
to the corresponding angles for 0 and 1 cycles. Also the distances traversed
between bounces are similar so that the 2-cycle expanding eigenvalue Λ01

is close in magnitude to the product of the 1-cycle eigenvalues Λ0Λ1.

To understand this on a more general level, try to visualize the partition
of a chaotic dynamical system’s phase space in terms of cycle neighborhoods
as a tessellation of the dynamical system, with smooth flow approximated
by its periodic orbit skeleton, each “face” centered on a periodic point, and
the scale of the “face” determined by the linearization of the flow around
the periodic point, figure 1.9.

The orbits that follow the same symbolic dynamics, such as {ab} and
a “pseudo orbit” {a}{b}, lie close to each other in phase space; long shad-
owing pairs have to start out exponentially close to beat the exponential
growth in separation with time. If the weights associated with the orbits are
multiplicative along the flow (for example, by the chain rule for products
of derivatives) and the flow is smooth, the term in parenthesis in (1.11)
falls off exponentially with the cycle length, and therefore the curvature
expansions are expected to be highly convergent.

☞ chapter 16

1.6 Evolution

In physics, when we do not understand something, we
give it a name.

Matthias Neubert

The above derivation of the dynamical zeta function formula for the
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escape rate has one shortcoming; it estimates the fraction of survivors as
a function of the number of pinball bounces, but the physically interesting
quantity is the escape rate measured in units of continuous time. For con-
tinuous time flows, the escape rate (1.2) is generalized as follows. Define
a finite phase space region M such that a trajectory that exits M never
reenters. For example, any pinball that falls of the edge of a pinball table in
figure 1.1 is gone forever. Start with a uniform distribution of initial points.
The fraction of initial x whose trajectories remain within M at time t is
expected to decay exponentially

Γ(t) =

∫
M dxdy δ(y − f t(x))∫

M dx
→ e−γt .

The integral over x starts a trajectory at every x ∈ M. The integral over
y tests whether this trajectory is still in M at time t. The kernel of this
integral

Lt(y, x) = δ
(
y − f t(x)

)
(1.12)

is the Dirac delta function, as for a deterministic flow the initial point x
maps into a unique point y at time t. For discrete time, fn(x) is the nth
iterate of the map f . For continuous flows, f t(x) is the trajectory of the
initial point x, and it is appropriate to express the finite time kernel Lt in
terms of a generator of infinitesimal time translations

Lt = etA ,

☞ sect. 9.5

☞ chapter 28 very much in the way the quantum evolution is generated by the Hamil-
tonian H, the generator of infinitesimal time quantum transformations.

As the kernel L is the key to everything that follows, we shall give it a
name, and refer to it and its generalizations as the evolution operator for a
d-dimensional map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle
length (in the case at hand, as 2n). As we have already seen, this expo-
nential proliferation of cycles is not as dangerous as it might seem; as a
matter of fact, all our computations will be carried out in the n→ ∞ limit.
Though a quick look at chaotic dynamics might reveal it to be complex
beyond belief, it is still generated by a simple deterministic law, and with
some luck and insight, our labeling of possible motions will reflect this sim-
plicity. If the rule that gets us from one level of the classification hierarchy
to the next does not depend strongly on the level, the resulting hierarchy is
approximately self-similar. We now turn such approximate self-similarity to
our advantage, by turning it into an operation, the action of the evolution
operator, whose iteration encodes the self-similarity.
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Figure 1.10: The trace of an evolution operator is concentrated in tubes around
prime cycles, of length Tp and thickness 1/|Λp|r for the rth repetition of the prime
cycle p.

1.6.1 Trace formula

Recasting dynamics in terms of evolution operators changes everything.
So far our formulation has been heuristic, but in the evolution operator
formalism the escape rate and any other dynamical average are given by
exact formulas, extracted from the spectra of evolution operators. The key
tools are trace formulas and spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The
explicit expression (1.12) for Lt(x, y) enables us to evaluate the trace. Iden-
tify y with x and integrate x over the whole phase space. The result is an
expression for trLt as a sum over neighborhoods of prime cycles p and their
repetitions

☞ sect. 14.3

trLt =
∑

p

Tp

∞∑

r=1

δ(t− rTp)∣∣det
(
1− Mr

p

)∣∣ . (1.13)

This formula has a simple geometrical interpretation sketched in figure 1.10.
After the rth return to a Poincaré section, the initial tube Mp has been
stretched out along the expanding eigendirections, with the overlap with
the initial volume given by 1/

∣∣det
(
1 − Mr

p

)∣∣ → 1/|Λp|, the same weight
we obtained heuristically in sect. 1.5.1.

The “spiky” sum (1.13) is disquieting in the way reminiscent of the
Poisson resummation formulas of Fourier analysis; the left-hand side is the
smooth eigenvalue sum tr eAt =

∑
esαt, while the right-hand side equals

zero everywhere except for the set t = rTp. A Laplace transform smooths
the sum over Dirac delta functions in cycle periods and yields the trace
formula for the eigenspectrum s0, s1, · · · of the classical evolution operator:

∫ ∞

0+

dt e−st trLt = tr
1

s−A =
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∞∑

α=0

1

s− sα
=

∑

p

Tp

∞∑

r=1

er(β·Ap−sTp)

∣∣det
(
1− Mr

p

)∣∣ . (1.14)

The beauty of trace formulas lies in the fact that everything on the right-
☞ sect. 14.1

hand-side – prime cycles p, their periods Tp and the stability eigenvalues of
Mp – is an invariant property of the flow, independent of any coordinate
choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms
of traces, using the identities✎ 4.1

page 72

ln det (s−A) = tr ln(s−A)

d

ds
ln det (s−A) = tr

1

s−A , (1.15)

and integrating over s. In this way the spectral determinant of an evolution
operator becomes related to the traces that we have just computed:

☞ chapter 15

det (s−A) = exp

(
−
∑

p

∞∑

r=1

1

r

e−sTpr

∣∣det
(
1− Mr

p

)∣∣

)
. (1.16)

The 1/r factor is due to the s integration, leading to the replacement Tp →
Tp/rTp in the periodic orbit expansion (1.14).

The motivation for recasting the eigenvalue problem in this form is
sketched in figure 1.11; exponentiation improves analyticity and trades in a
divergence of the trace sum for a zero of the spectral determinant. In this

☞ sect. 15.5
way we have retaced the heuristic derivation of the divergent sum (1.6) and
the dynamical zeta function (1.9), but this time with no approximations:
formula (1.16) is exact. The computation of the zeros of det (s−A) proceeds
very much like the computations of sect. 1.5.4.

1.7 From chaos to statistical mechanics

While the above replacement of dynamics of individual trajectories by evo-
lution operators which propagate densities might feel like just another bit
of mathematical voodoo, actually something very radical has taken place.
Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the
fluid would forever remain a striated combination of pure white and pure
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Figure 1.11: Spectral determinant is prefer-
able to the trace as it vanishes smoothly at the
leading eigenvalue, while the trace formula di-
verges.

red; there would be no pink. What is more, if we reversed the stirring, we
would return to the perfect white/red separation. However, we know that
this cannot be true – in a very few turns of the stirring stick the thickness of
the layers goes from centimeters to Ångströms, and the result is irreversibly
pink.

Understanding the distinction between evolution of individual trajecto-
ries and the evolution of the densities of trajectories is key to understand-
ing statistical mechanics – this is the conceptual basis of the second law of
thermodynamics, and the origin of irreversibility of the arrow of time for
deterministic systems with time-reversible equations of motion: reversibil-
ity is attainable for distributions whose measure in the space of density
functions goes exponentially to zero with time.

By going to a description in terms of the asymptotic time evolution oper-
ators we give up tracking individual trajectories for long times, but instead
gain a very effective description of the asymptotic trajectory densities. This
will enable us, for example, to give exact formulas for transport coefficients
such as the diffusion constants without any probabilistic assumptions (such

☞ chapter 23
as the stosszahlansatz of Boltzmann).

A century ago it seemed reasonable to assume that statistical mechanics
applies only to systems with very many degrees of freedom. More recent
is the realization that much of statistical mechanics follows from chaotic
dynamics, and already at the level of a few degrees of freedom the evolution
of densities is irreversible. Furthermore, the theory that we shall develop
here generalizes notions of “measure” and “averaging” to systems far from
equilibrium, and transports us into regions hitherto inaccessible with the
tools of equilibrium statistical mechanics.

The concepts of equilibrium statistical mechanics do help us, however,
to understand the ways in which the simple-minded periodic orbit theory
falters. A non-hyperbolicity of the dynamics manifests itself in power-law
correlations and even “phase transitions”.

☞ chapter 21

1.8 A guide to the literature

But the power of instruction is seldom of much effi-
cacy, except in those happy dispositions where it is
almost superfluous.

Gibbon

This text aims to bridge the gap between the physics and mathematics
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dynamical systems literature. The intended audience is Henri Roux, the
perfect physics graduate student with a theoretical bent who does not be-
lieve anything he does not understand. As a complementary presentation
we recommend Gaspard’s monograph [1.4] which covers much of the same
ground in a highly readable and scholarly manner.

As far as the prerequisites are concerned - ChaosBook is not an intro-
duction to nonlinear dynamics. Nonlinear science requires a one semester
basic course (advanced undergraduate or first year graduate). A good start
is the textbook by Strogatz [1.5], an introduction to flows, fixed points,
manifolds, bifurcations. It is the most accessible introduction to nonlinear
dynamics - it starts out with differential equations, and its broadly chosen
examples and many exercises make it a favorite with students. It is not
strong on chaos. There the textbook of Alligood, Sauer and Yorke [1.6] is
preferable: an elegant introduction to maps, chaos, period doubling, sym-
bolic dynamics, fractals, dimensions - a good companion to ChaosBook. An
introduction more comfortable to physicists is the textbook by Ott [1.7],
with the baker’s map used to illustrate many key techniques in analysis of
chaotic systems. It is perhaps harder than the above two as the first book
on nonlinear dynamics. Sprott’s textbook [1.8] is a very useful compendium
of the ’70s and onward “chaos” literature which we, in the spirit of promises
made in sect. 1.1, tend to pass over in silence.

An introductory course should give students skills in qualitative and
numerical analysis of dynamical systems for short times (trajectories, fixed
points, bifurcations) and familiarize them with Cantor sets and symbolic
dynamics for chaotic systems. A good introduction to numerical experimen-
tation with physically realistic systems is Tufillaro, Abbott, and Reilly [1.9].
Korsch and Jodl [1.10] and Nusse and Yorke [1.11] also emphasize hands-on
approach to dynamics. With this, and a graduate level-exposure to statis-
tical mechanics, partial differential equations and quantum mechanics, the
stage is set for any of the one-semester advanced courses based on Chaos-
Book. The courses taught so far start out with the introductory chapters
on qualitative dynamics, symbolic dynamics and flows, and then continue
in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace
formulas, zeta functions, cycle expansions, Lyapunov exponents, billiards,
transport coefficients, thermodynamic formalism, period doubling, renor-
malization operators.

A graduate level introduction to statistical mechanics from the dynam-
ical point view is given by Dorfman [1.25]; the Gaspard monograph [1.4]
covers the same ground in more depth. Driebe monograph [1.26] offers a
nice introduction to the problem of irreversibility in dynamics. The role of
“chaos” in statistical mechanics is critically dissected by Bricmont in his
highly readable essay “Science of Chaos or Chaos in Science?” [1.27].

Spatiotemporal dynamical systems. Partial differential equations
for dissipative systems, weak amplitude expansions, normal forms, symme-
tries and bifurcations, pseudospectral methods, spatiotemporal chaos.

☞ chapter 25
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Quantum chaos. Semiclassical propagators, density of states, trace
formulas, semiclassical spectral determinants, billiards, semiclassical he-
lium, diffraction, creeping, tunneling, higher-order ~ corrections.

This book concentrates on periodic orbit theory. The role of unstable
periodic orbits was already fully appreciated by Poincaré [1.12, 1.13], who
noted that hidden in the apparent chaos is a rigid skeleton, a tree of cy-
cles (periodic orbits) of increasing lengths and self-similar structure, and
suggested that the cycles should be the key to chaotic dynamics. Periodic
orbits have been at core of much of the mathematical work on the the-
ory of the classical and quantum dynamical systems ever since. We refer
the reader to the reprint selection [1.14] for an overview of some of that
literature. This book offers a breach into a domain hitherto reputed un-
reachable, a domain traditionally traversed only by mathematical physicists
and pure mathematicians. What distinguishes it from pure mathematics
is the emphasis on computation and numerical convergence of methods of-
fered. A rigorous proof, the end of the story as far as a mathematician is
concerned, might state that in a given setting, for times in excess of 1032

years, turbulent dynamics settles onto an attractor of dimension less than
600. Such a theorem is of a little use for a physicist, especially if a numer-
ical experiment indicates that within the span of the best simulation the
dynamics seems to have settled on a (transient?) attractor of dimension
less than 3.

If you find ChaosBook not rigorous enough, you should turn to the
mathematics literature. The most extensive reference is the treatise by Ka-
tok and Hasselblatt [1.15], an impressive compendium of modern dynami-
cal systems theory. The fundamental papers in this field, all still valuable
reading, are Smale [1.16], Bowen [1.17] and Sinai [1.18]. Sinai’s paper is
prescient and offers a vision and a program that ties together dynamical
systems and statistical mechanics. It is written for readers versed in statis-
tical mechanics. Markov partitions were introduced by Sinai in ref. [1.19].
The classical text (though certainly not an easy read) on the subject of
dynamical zeta functions is Ruelle’s Statistical Mechanics, Thermodynamic
Formalism [1.20]. In Ruelle’s monograph transfer operator technique (or
the “Perron-Frobenius theory”) and Smale’s theory of hyperbolic flows are
applied to zeta functions and correlation functions. The status of the the-
ory from Ruelle’s point of view is compactly summarized in his 1995 Pisa
lectures [1.21]. Further excellent mathematical references on thermody-
namic formalism are Parry and Pollicott’s monograph [1.22] with emphasis
on the symbolic dynamics aspects of the formalism, and Baladi’s clear and
compact reviews of the theory dynamical zeta functions [1.23, 1.24].

If you were wandering while reading this introduction “what’s up with
rat brains?”, the answer is yes indeed, there is a line of research in neuronal
dynamics that focuses on possible unstable periodic states, described for
example in ref. [1.29, 1.30, 1.31, 1.32].
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A guide to exercises

God can afford to make mistakes. So can Dada!

Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to
develop intuition about chaotic dynamics is by computing, and the reader
is urged to try to work through the essential exercises. As not to fragment
the text, the exercises are indicated by text margin boxes such as the one on
this margin, and collected at the end of each chapter. The problems that✎ 18.2

page 325
you should do have underlined titles. The rest (smaller type) are optional.
Difficult problems are marked by any number of *** stars. If you solve
one of those, it is probably worth a publication. By the end of a (two-
semester) course you should have completed at least three small projects:
(a) compute everything for a one-dimensional repeller, (b) compute escape
rate for a 3-disk game of pinball, (c) compute a part of the quantum 3-disk
game of pinball, or the helium spectrum, or if you are interested in statistical
rather than the quantum mechanics, compute a transport coefficient. The
essential steps are:

• Dynamics

1. count prime cycles, exercise 1.1

2. pinball simulator, exercise 6.1, exercise 17.4

3. pinball stability, exercise 8.1, exercise 17.4

4. pinball periodic orbits, exercise 17.6, exercise 17.5

5. helium integrator, exercise 2.10, exercise 17.8

6. helium periodic orbits, exercise 34.4, exercise 17.9

• Averaging, numerical

1. pinball escape rate, exercise 10.3

2. Lyapunov exponent, exercise 20.2

• Averaging, periodic orbits

1. cycle expansions, exercise 18.1, exercise 18.2

2. pinball escape rate, exercise 18.4, exercise 18.5

3. cycle expansions for averages, exercise 18.1, exercise 19.3

4. cycle expansions for diffusion, exercise 23.1

5. desymmetrization exercise 22.1

6. semiclassical quantization exercise 32.3

7. ortho-, para-helium, lowest eigenenergies exercise 34.7

Solutions for some of the problems are given in appendix N. Often
going through a solution is more instructive than reading the chapter that
problem is supposed to illustrate.
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Résumé

The goal of this text is an exposition of the best of all possible theories of
deterministic chaos, and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how
small, will spread over the entire accessible phase space. Hence the theory
focuses on describing the geometry of the space of possible outcomes, and
evaluating averages over this space, rather than attempting the impossible:
precise prediction of individual trajectories. The dynamics of distributions
of trajectories is described in terms of evolution operators. In the evolution
operator formalism the dynamical averages are given by exact formulas,
extracted from the spectra of evolution operators. The key tools are trace
formulas and spectral determinants.

The theory of evaluation of the spectra of evolution operators presented
here is based on the observation that the motion in dynamical systems of
few degrees of freedom is often organized around a few fundamental cycles.
These short cycles capture the skeletal topology of the motion on a strange
attractor/repeller in the sense that any long orbit can approximately be
pieced together from the nearby periodic orbits of finite length. This notion
is made precise by approximating orbits by prime cycles, and evaluating
the associated curvatures. A curvature measures the deviation of a longer
cycle from its approximation by shorter cycles; smoothness and the local
instability of the flow implies exponential (or faster) fall-off for (almost)
all curvatures. Cycle expansions offer an efficient method for evaluating
classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the
hyperbolicity assumption, that is, the assumption of exponential shrinkage
of all strips of the pinball repeller. By dropping the ai prefactors in (1.4),
we have given up on any possibility of recovering the precise distribution
of starting x (which should anyhow be impossible due to the exponential
growth of errors), but in exchange we gain an effective description of the
asymptotic behavior of the system. The pleasant surprise of cycle expan-
sions (1.9) is that the infinite time behavior of an unstable system is as
easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of
cycles and their curvatures by a pinball game, but topics covered in Chaos-
Book – unstable flows, Poincaré sections, Smale horseshoes, symbolic dy-
namics, pruning, discrete symmetries, periodic orbits, averaging over chaotic
sets, evolution operators, dynamical zeta functions, spectral determinants,
cycle expansions, quantum trace formulas and zeta functions, and so on
to the semiclassical quantization of helium – should give the reader some
confidence in the general applicability of the theory. The formalism should
work for any average over any chaotic set which satisfies two conditions:

1. the weight associated with the observable under consideration is
multiplicative along the trajectory,

ChaosBook.org/version11.8, Aug 30 2006 intro - 10jul2006
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2. the set is organized in such a way that the nearby points in the
symbolic dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities char-
acterizing chaotic systems, such as the escape rates, Lyapunov exponents,
transport coefficients and quantum eigenvalues. One of the surprises is that
the quantum mechanics of classically chaotic systems is very much like the
classical mechanics of chaotic systems; both are described by nearly the
same zeta functions and cycle expansions, with the same dependence on
the topology of the classical flow.
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Paris 1990).

[1.23] V. Baladi, “Dynamical zeta functions”, in B. Branner and P. Hjorth, eds.,
Real and Complex Dynamical Systems (Kluwer, Dordrecht, 1995).

[1.24] V. Baladi, Positive Transfer Operators and Decay of Correlations (World
Scientific, Singapore 2000).

[1.25] R. Dorfman, From Molecular Chaos to Dynamical Chaos (Cambridge Univ.
Press, Cambridge 1998).

[1.26] D.J. Driebe, Fully Chaotic Map and Broken Time Symmetry (Kluwer, Dor-
drecht, 1999).

[1.27] J. Bricmont, “Science of Chaos or Chaos in Science?”, available on
www.ma.utexas.edu/mp arc/c/96/96-116.ps.gz

[1.28] V.I. Arnold, Mathematical Methods in Classical Mechanics (Springer-
Verlag, Berlin, 1978).

[1.29] S.J. Schiff, et al. “Controlling chaos in the brain”, Nature 370, 615 (1994).

[1.30] F. Moss, “Chaos under control”, Nature 370, 615 (1994).

[1.31] J. Glanz, Science 265, 1174 (1994).

[1.32] J. Glanz, “Mastering the Nonlinear Brain”, Science 227, 1758 (1997).

[1.33] Poul Martin Møller, En dansk Students Eventyr [The Adventures of a Dan-

ish Student] (Copenhagen 1824).

ChaosBook.org/version11.8, Aug 30 2006 refsIntro - 8oct2005

http://www.ma.utexas.edu/mp_arc/c/96/96-116.ps.gz


30 References

Exercises

Exercise 1.1 3-disk symbolic dynamics. As periodic trajectories will
turn out to be our main tool to breach deep into the realm of chaos, it pays
to start familiarizing oneself with them now by sketching and counting the few
shortest prime cycles (we return to this in sect. 13.4). Show that the 3-disk
pinball has 3 · 2n itineraries of length n. List periodic orbits of lengths 2, 3, 4,
5, · · ·. Verify that the shortest 3-disk prime cycles are 12, 13, 23, 123, 132,
1213, 1232, 1323, 12123, · · ·. Try to sketch them.

Exercise 1.2 Sensitivity to initial conditions. Assume that two pinball

trajectories start out parallel, but separated by 1 Ångström, and the disks are
of radius a = 1 cm and center-to-center separation R = 6 cm. Try to estimate
in how many bounces the separation will grow to the size of system (assuming
that the trajectories have been picked so they remain trapped for at least that
long). Estimate the Who’s Pinball Wizard’s typical score (number of bounces)
in a game without cheating, by hook or crook (by the end of chapter 18 you
should be in position to make very accurate estimates).
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Chapter 2

Go with the flow

Poetry is what is lost in translation.

Robert Frost

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

We start out with a recapitulation of the basic notions of dynamics. Our
aim is narrow; we keep the exposition focused on prerequisites to the appli-
cations to be developed in this text. We assume that the reader is familiar
with dynamics on the level of the introductory texts mentioned in sect. 1.8,
and concentrate here on developing intuition about what a dynamical sys-
tem can do. It will be a coarse brush sketch - a full description of all
possible behaviors of dynamical systems is beyond human ken. Anyway,
for a novice there is no shortcut through this lengthy detour; a sophisti-
cated traveler might prefer to skip this well-trodden territory and embark
upon the journey at chapter 9.

fast track:

chapter 9, p. 119

2.1 Dynamical systems

In a dynamical system we observe the world as a function of time. We
express our observations as numbers and record how they change with time;
given sufficiently detailed information and understanding of the underlying
natural laws, we see the future in the present as in a mirror. The motion of

☞ sect. 1.3
the planets against the celestial firmament provides an example. Against
the daily motion of the stars from East to West, the planets distinguish
themselves by moving among the fixed stars. Ancients discovered that by
knowing a sequence of planet’s positions - latitudes and longitudes - its
future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial
sphere suffices to completely specify the planet’s apparent motion. All

31



32 CHAPTER 2. GO WITH THE FLOW

possible values for positions and velocities of the planets form the phase
space of the system. More generally, a state of a physical system, at a given
instant in time, can be represented by a single point in an abstract space
called state space or phase space M. As the system changes, so does the
representative point in phase space. We refer to the evolution of such points
as dynamics, and the function f t which specifies where the representative
point is at time t as the evolution rule.

If there is a definite rule f that tells us how this representative point
moves in M, the system is said to be deterministic. For a deterministic
dynamical system, the evolution rule takes one point of the phase space
and maps it into exactly one point. However, this is not always possible.
For example, knowing the temperature today is not enough to predict the
temperature tomorrow; knowing the value of a stock today will not deter-
mine its value tomorrow. The phase space can be enlarged, in the hope that
in a sufficiently large phase space it is possible to determine an evolution
rule, so we imagine that knowing the state of the atmosphere, measured
over many points over the entire planet should be sufficient to determine
the temperature tomorrow. Even that is not quite true, and we are less
hopeful when it comes to stocks.

For a deterministic system almost every point has a unique future, so
trajectories cannot intersect. We say “almost” because there might exist a
set of measure zero (tips of wedges, cusps, etc.) for which a trajectory is
not defined. We may think such sets a nuisance, but it is quite the contrary

☞ chapter 12
- they will enable us to partition phase space, so that the dynamics can be
better understood.

Locally, the phase space M looks like R
d, meaning that d numbers are

sufficient to determine what will happen next. Globally, it may be a more
complicated manifold formed by patching together several pieces of R

d,
forming a torus, a cylinder, or some other geometric object. When we need
to stress that the dimension d of M is greater than one, we may refer to the
point x ∈ M as xi where i = 1, 2, 3, . . . , d. The evolution rule f t : M → M
tells us where a point x is in M after a time interval t. The pair (M, f)
constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is ex-
pressed mathematically by saying that the evolution rule f t can be dif-
ferentiated as many times as needed. Its action on a point x is sometimes
indicated by f(x, t) to remind us that f is really a function of two variables:
the time and a point in phase space. Note that time is relative rather than
absolute, so only the time interval is necessary. This follows from the fact
that a point in phase space completely determines all future evolution, and
it is not necessary to know anything else. The time parameter can be a real
variable (t ∈ R), in which case the evolution is called a flow, or an integer
(t ∈ Z), in which case the evolution advances in discrete steps in time,
given by iteration of a map. Actually, the evolution parameter need not
be the physical time; for example, a time-stationary solution of a partial
differential equation is parametrized by spatial variables. In such situations
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Figure 2.1: (a) A trajectory traced out by the evolution rule f t. Starting from the
phase space point x, after a time t, the point is at f t(x). (b) The evolution rule f tcan
be used to map a region Mi of the phase space into the region f t(Mi).

one talks of a “spatial profile” rather than a “flow”.

Nature provides us with innumerable dynamical systems. They man-
ifest themselves through their trajectories: given an initial point x0, the
evolution rule traces out a sequence of points x(t) = f t(x0), the trajectory
through the point x0 = x(0). A trajectory is parameterized by the time ✎ 2.1

page 42
t and thus belongs to (f t(x0), t) ∈ M× R. By extension, we can also talk
of the evolution of a region Mi of the phase space: just apply f t to every
point in Mi to obtain a new region f t(Mi), as in figure 2.1.

Because f t is a single-valued function, any point of the trajectory can
be used to label the trajectory. If we mark the trajectory by its inital point
x0, we are describing it in the Lagrangian coordinates. We can regard the
transport of the material point at t = 0 to its current point x(t) = f t(x0)
as a coordinate transformation from the Lagrangian coordinates to the
Eulerian coordinates.

The subset of points in M that belong to the (possibly infinite) tra-
jectory of a given point x0 is called the orbit of x0; we shall talk about
forward orbits, backward orbits, periodic orbits, etc.. For a flow, an orbit
is a smooth continuous curve; for a map, it is a sequence of points.

What are the possible trajectories? This is a grand question, and there
are many answers, chapters to follow offering some. Here is the first attempt
to classify all possible trajectories:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp(x) for a given minimum period Tp

aperiodic: f t(x) 6= f t
′
(x) for all t 6= t′ .

The ancients tried to make sense of all dynamics in terms of periodic
motions; epicycles, integrable systems. The embarassing truth is that for a
generic dynamical systems almost all motions are aperiodic. So we refine
the classification by dividing aperiodic motions into two subtypes: those
that wander off, and those that keep coming back.

A point x ∈ M is called a wandering point, if there exists an open

ChaosBook.org/version11.8, Aug 30 2006 flows - 25jun2006



34 CHAPTER 2. GO WITH THE FLOW

neighborhood M0 of x to which the trajectory never returns

f t(x) /∈ M0 for all t > tmin . (2.1)

In physics literature, the dynamics of such state is often referred to as
transient.

A periodic orbit (or a cycle) corresponds to a trajectory that returns
exactly to the initial point in a finite time. Periodic orbits form a very
small subset of the phase space, in the same sense that rational numbers
are a set of zero measure on the unit interval.

Periodic orbits and stationary points are the simplest examples of “non-
wandering” invariant sets preserved by dynamics. Dynamics can also pre-
serve higher-dimensional smooth compact invariant manifolds; most com-
monly encountered are the M -dimensional tori of Hamiltonian dynamics,
with notion of periodic motion generalized to quasiperiodic (superposition
of M incommesurate frequencies) motion on a smooth torus.

For times much longer than a typical “turnover” time, it makes sense
to relax the notion of exact (quasi)periodicity, and replace it by the notion
of recurrence. A point is recurrent or non-wandering if for any open neigh-
borhood M0 of x and any time tmin there exists a later time t, such that

f t(x) ∈ M0 . (2.2)

In other words, the trajectory of a non-wandering point reenters the neigh-
borhood M0 infinitely often. We shall denote by Ω the non–wandering set
of f , that is, the union of all the non-wandering points of M. The set
Ω, the non–wandering set of f , is the key to understanding the long-time
behavior of a dynamical system; all calculations undertaken here will be
carried out on non–wandering sets.

So much about individual trajectories. What about clouds of initial
points? If there exists a connected phase space volume that maps into
itself under forward evolution (and you can prove that by the method of
Lyapunov functionals, or several other methods available in the literature),
the flow is globally contracting onto a subset of M which we shall refer to
as the attractor. The attractor may be unique, or there can coexist any
number of distinct attracting sets, each with its own basin of attraction,
the set of all points that fall into the attractor under foward evolution.
The attractor can be a fixed point, a periodic orbit, aperiodic, or any
combination of the above. The most interesting case is that of an aperiodic
recurrent attractor, to which we shall refer loosely as a strange attractor.
We say ‘loosely’, as will soon become apparent that diagnosing and proving

☞ example 2.2
existence of a genuine, card-carrying strange attractor is a highly nontrivial
undertaking.
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Conversely, if we can enclose the non–wandering set Ω by a connected
phase space volume M0 and then show that almost all points within M0,
but not in Ω, eventually exit M0, we refer to the non–wandering set Ω as
a repeller. An example of a repeller is not hard to come by - the pinball
game of sect. 1.3 is a simple chaotic repeller.

It would seem, having said that the periodic points are so exceptional
that almost all non-wandering points are aperiodic, that we have given up
the ancients’ fixation on periodic motions. Nothing could be further from
truth. As longer and longer cycles approximate more and more accurately
finite segments of aperiodic trajectories, we shall establish control over non–
wandering sets by defining them as the closures of the union of all periodic
points.

Before we can work out an example of a non–wandering set and get a
better grip on what chaotic motion might look like, we need to ponder flows
in a little more depth.

2.2 Flows

There is no beauty without some strangeness.

William Blake

A flow is a continuous-time dynamical system. The evolution rule f t is
a family of mappings of M → M parameterized by t ∈ R. Because t
represents a time interval, any family of mappings that forms an evolution
rule must satisfy: ✎ 2.2

page 42

(a) f0(x) = x (in 0 time there is no motion)

(b) f t(f t
′
(x)) = f t+t

′
(x) (the evolution law is the same at all times)

(c) the mapping (x, t) 7→ f t(x) from M× R into M is continuous.

The family of mappings f t(x) thus forms a continuous (forward semi-)
group. Why “semi-”group? It may fail to form a group if the dynamics
is not reversible, and the rule f t(x) cannot be used to rerun the dynamics
backwards in time, with negative t; with no reversibility, we cannot define
the inverse f−t(f t(x)) = f0(x) = x , in which case the family of mappings
f t(x) does not form a group. In exceedingly many situations of interest -
for times beyond the Lyapunov time, for asymptotic attractors, for dissipa-
tive partial differential equations, for systems with noise, for non-invertible
maps - the dynamics cannot be run backwards in time, hence, the circum-
spect emphasis on semigroups. On the other hand, there are many settings
of physical interest, where dynamics is reversible (such as finite-dimensional
Hamiltonian flows), and where the family of evolution maps f t does form
a group.

ChaosBook.org/version11.8, Aug 30 2006 flows - 25jun2006



36 CHAPTER 2. GO WITH THE FLOW

For infinitesimal times, flows can be defined by differential equations.
We write a trajectory as

x(t+ τ) = f t+τ (x0) = f(f(x0, t), τ) (2.3)

and express the time derivative of a trajectory at point x(t),

dx

dτ

∣∣∣∣
τ=0

= ∂τf(f(x0, t), τ)|τ=0 = ẋ(t) . (2.4)

✎ 2.3
page 42 as the time derivative of the evolution rule, a vector evaluated at the same

point. By considering all possible trajectories, we obtain the vector ẋ(t) at
any point x ∈ M. This vector field is a (generalized) velocity field:

v(x) = ẋ(t) . (2.5)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar
procedures for obtaining a set of differential equations for the vector field
v(x) that describes the evolution of a mechanical system. Equations of
mechanics may appear different in form from (2.5), as they are often involve
higher time derivatives, but an equation that is second or higher order in
time can always be rewritten as a set of first order equations.

We are concerned here with a much larger world of general flows, me-
chanical or not, defined by a time-independent vector field (2.5). At each
point of the phase space a vector indicates the local direction in which the
orbit evolves. The length of the vector |v(x)| is proportional to the speed
at the point x, and the direction and length of v(x) changes from point to
point. When the phase space is a complicated manifold embedded in R

d,
one can no longer think of the vector field as being embedded in the phase
space. Instead, we have to imagine that each point x of phase space has a
different tangent plane TMx attached to it. The vector field lives in the
union of all these tangent planes, a space called the tangent bundle TM.

Example 2.1 A two-dimensional vector field v(x): A simple example of a flow
is afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15 y(t) + x(t) − x(t)3 (2.6)

plotted in figure 2.2. The velocity vectors are drawn superimposed over the configuration
coordinates (x(t), y(t)) of phase space M, but they belong to a different space, the
tangent bundle TM.

✎ 2.4
page 42

If v(xq) = 0 , (2.7)
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(a) (b)

Figure 2.2: (a) The two-dimensional vector field for the Duffing system (2.6),
together with a short trajectory segment. (b) The flow lines. Each “comet” represents
the same time interval of a trajectory, starting at the tail and ending at the head. The
longer the comet, the faster the flow in that region.

xq is an equilibrium point (also referred to as a stationary, fixed, critical,
stagnation point, zero of v, or steady state), and the trajectory remains
forever stuck at xq. Otherwise the trajectory passing through x0 at time
t = 0 can be obtained by integrating the equations (2.5):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.8)

We shall consider here only autonomous flows, that is, flows for which the
velocity field vi is stationary, not explicitly dependent on time. A non-
autonomous system

dy

dτ
= w(y, τ) , (2.9)

can always be converted into a system where time does not appear explicitly.
To do so, extend (“suspend”) phase space to be (d + 1)-dimensional by
defining x = {y, τ}, with a stationary vector field

v(x) =

[
w(y, τ)

1

]
. (2.10)

✎ 2.5
page 43The new flow ẋ = v(x) is autonomous, and the trajectory y(τ) can be read

off x(t) by ignoring the last component of x.

Example 2.2 A flow with a strange attractor: The Duffing flow of figure 2.2 is
bit of a bore - every trajectory ends up in one of the two attractive equilibrium points.
Let’s construct a flow that does not die out, but exhibits a recurrent dynamics. Start
with a harmonic oscillator

ẋ = −y , ẏ = x . (2.11)

The solutions are Aeit, Ae−it, and the whole x-y plane rotates with constant angular
velocity θ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x+ ay , a > 0 . (2.12)
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Figure 2.3: A trajectory of the Rössler flow
at time t = 250. (G. Simon)
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The plane is still rotating with constant angular velocity, but trajectories are now spi-
raling out. In general, any flow in the plane either escapes, falls into an attracting
equilibrium point, or converges to a limit cycle - richer dynamics requires at least one
more dimension. In order to prevent the trajectory from escaping to ∞, kick it into 3rd
dimension when x reaches some value c by adding

ż = b+ z(x− c) , c > 0 . (2.13)

Now z shoots upwards exponentially, z ≃ e(x−c)t. In order to bring it back, start
decreasing x by modifing its evolution equation to

ẋ = −y − z .

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rössler system (for definitiveness we fix
the parameters a, b, c in what follows):

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c) , a = b = 0.2 , c = 5.7 . (2.14)

The system is as simple as they get - it would be linear, were it not for the sole bilinear✎ 2.8
page 43

term zx. Even for so “simple” a system the nature of long-time solutions is far from
obvious.

There are two repelling equilibrium points:

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )
(x+, y+, z+) = ( 5.6929, −28.464, 28.464 )

(2.15)

One is close to the origin by construction - the other, some distance away, must exist
because the equilibrium has a 2nd-order nonlinearity.

To see what other solutions look like we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.3. As
we shall show in sect. 4.1, for this flow any finite volume of initial conditions shrinks
with time, so the flow is contracting. Trajectories that start out sufficiently close to
the origin seem to converge to a strange attractor. We say “seem”, as there exists no✎ 3.5

page 56
proof that such an attractor is asymptotically aperiodic - it might well be that what we
see is but a long transient on a way to an attractive periodic orbit. For now, accept
that figure 2.3 and similar figures in what follows are examples of “strange attractors”.
(continued in exercise 2.8) (Rytis Paškauskas)
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fast track:

chapter 3, p. 45

2.3 Computing trajectories

On two occasions I have been asked [by members of
Parliament], ’Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come
out?’ I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

Charles Babbage

You have not learned dynamics unless you know how to integrate numeri-
cally whatever dynamical equations you face. Sooner or later, you need to
implement some finite time-step prescription for integration of the equa-
tions of motion (2.5). The simplest is the Euler integrator which advances
the trajectory by δτ × velocity at each time step:

xi → xi + vi(x)δτ . (2.16)

This might suffice to get you started, but as soon as you need higher nu-
merical accuracy, you will need something better. There are many excellent
reference texts and computer programs that can help you learn how to solve
differential equations numerically using sophisticated numerical tools, such
as pseudo-spectral methods or implicit methods. If a “sophisticated” in- ✎ 2.6

page 43
tegration routine takes days and gobbles up terabits of memory, you are
using brain-damaged high level software. Try writing a few lines of your
own Runge-Kutta code in some mundane everyday language. While you ✎ 2.7

page 43
absolutely need to master the requisite numerical methods, this is neither
the time nor the place to expound upon them; how you learn them is your
business. And if you have developed some nice routines for solving prob- ✎ 2.9

page 44
lems in this text or can point another student to some, let us know.

✎ 2.10
page 44

Commentary

Remark 2.1 Model ODE and PDE systems. The Duffing system (2.6) arises in

the study of electronic circuits. Rössler system was introduced in ref. [2.3] as a

simplified set of equations describing no particular physical system, but capturing

the essence of chaos in a simplest imaginable smooth flow. Otto Rössler, a man of

classical education, was inspired in this quest by that rarely cited grandfather of

chaos, Anaxagoras (456 B.C.). This, and references to earlier work can be found

in refs. [2.5, 2.7]. We recommend in particular the inimitable Abraham and Shaw

illustrated classic [2.6] for its beautiful sketches of the Rössler and many other

flows.
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Remark 2.2 Diagnosing chaos. In sect. 1.3.1 we have stated that a determinis-

tic system exhibits “chaos” if its dynamics is locally unstable (positive Lyapunov

exponent) and globally mixing (positive entropy). In sect. 10.3 we shall define Lya-

punov exponents, and discuss their evaluation, but already at this point it would

be handy to have a few quick numerical methods to diagnose chaotic dynamics.

Laskar’s frequency analysis method [2.11] is useful for extracting quasi-periodic and

weakly chaotic regions of phase space in Hamiltonian dynamics with many degrees

of freedom. For references to several other numerical methods, see ref. [2.12].

Remark 2.3 Dynamical systems software: J.D. Meiss [2.9] has many years main-

tained Sci.nonlinear FAQ which is now in part superseded by the SIAM Dynamical

Systems website www.dynamicalsystems.org. The website glossary contains most

of Meiss’s FAQ plus new ones, and a up-to-date software list [2.10], with links to

DSTool, xpp, AUTO, etc.. Springer on-line Encyclopaedia of Mathematics main-

tains links to Dynamical systems software packages on eom.springer.de/D/d130210.htm.

Résumé

Chaotic dynamics with a low-dimensional attractor can be visualized as
a succession of nearly periodic but unstable motions. In the same spirit,
turbulence in spatially extended systems can be described in terms of recur-
rent spatiotemporal patterns. Pictorially, dynamics drives a given spatially
extended system through a repertoire of unstable patterns; as we watch a
turbulent system evolve, every so often we catch a glimpse of a familiar
pattern. For any finite spatial resolution and finite time the system fol-
lows approximately a pattern belonging to a finite repertoire of possible
patterns, and the long-term dynamics can be thought of as a walk through
the space of such patterns. Recasting this image into mathematics is the
subject of this book.
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Exercises

The problems that you should do have underlined titles. The rest (smaller

type) are optional. Difficult problems are marked by any number of ***
stars.

Exercise 2.1 Trajectories do not intersect. A trajectory in the phase space
M is the set of points one gets by evolving x ∈ M forwards and backwards in time:

Cx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the same curve.

Exercise 2.2 Evolution as a group. The trajectory evolution f t is a one-
parameter (semi-)group where

f t+s = f t ◦ fs .

Show that it is a commutative (semi-)group.

In this case, the commutative character of the (semi-)group of evolution functions
comes from the commutative character of the time parameter under addition. Can
you think of any other (semi-)group replacing time?

Exercise 2.3 Almost ode’s.

(a) Consider the point x on R evolving according ẋ = eẋ . Is this an ordinary
differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ẋ = x(t+ 1) ?

Exercise 2.4 All equilibrium points are fixed points. Show that a point of
a vector field v where the velocity is zero is a fixed point of the dynamics f t.

Exercise 2.5 Gradient systems. Gradient systems (or “potential problems”)
are a simple class of dynamical systems for which the velocity field is given by the
gradient of an auxiliary function, the “potential” φ

ẋ = −∇φ(x)

where x ∈ Rd, and φ is a function from that space to the reals R.

(a) Show that the velocity of the particle is in the direction of most rapid decrease
of the function φ.

(b) Show that all extrema of φ are fixed points of the flow.
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(c) Show that it takes an infinite amount of time for the system to reach an equi-
librium point.

(d) Show that there are no periodic orbits in gradient systems.

Exercise 2.6 Runge-Kutta integration. Implement the fourth-order
Runge-Kutta integration formula (see, for example, ref. [2.8]) for ẋ = v(x):

xn+1 = xn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(δτ 5)

k1 = δτv(xn) , k2 = δτv(xn + k1/2)

k3 = δτv(xn + k2/2) , k4 = δτv(xn + k3) . (2.17)

If you already know your Runge-Kutta, program what you believe to be a better
numerical integration routine, and explain what is better about it.

Exercise 2.7 Rössler system. Use the result of exercise 2.6 or some
other integration routine to integrate numerically the Rössler system (2.14).
Does the result look like a “strange attractor”? If you happen to already know
what fractal dimensions are, argue (possibly on basis of numerical integration)
that this attractor is of dimension smaller than R

3 .

Exercise 2.8 Equilibria of the Rössler system.

(a) Find all equilibrium points (xq, yq, zq) of the Rössler system (2.14). How
many are there?

(b) Assume that b = a. Define parameters

ǫ = a/c
D = 1 − 4ǫ2

p± = (1 ±
√
D)/2

(2.18)

Express all the equilibria in terms of (c, ǫ,D, p±). Expand equilibria to
the first order in ǫ. Note that it makes sense because for a = b = 0.2,
c = 5.7 in (2.14), ǫ ≈ 0.035.

(continued as exercise 3.1)

(Rytis Paškauskas)

Exercise 2.9 Can you integrate me? Integrating equations numerically is
not for the faint of heart. It is not always possible to establish that a set of nonlinear
ordinary differential equations has a solution for all times and there are many cases were
the solution only exists for a limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .
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(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer this question?

(b) Let’s test the integrator you wrote in exercise 2.6. The equation ẍ = −x with
initial conditions x(0) = 2 and ẋ = 0 has as solution x(t) = e−t(1 + e2 t) . Can
your integrator reproduce this solution for the interval t ∈ [0, 10]? Check you
solution by plotting the error as compared to the exact result.

(c) Now we will try something a little harder. The equation is going to be third
order

...
x +0.6ẍ+ ẋ− |x| + 1 = 0 ,

which can be checked - numerically - to be chaotic. As initial conditions
we will always use ẍ(0) = ẋ(0) = x(0) = 0 . Can you reproduce the result
x(12) = 0.8462071873 (all digits are significant)? Even though the equation
being integrated is chaotic, the time intervals are not long enough for the expo-
nential separation of trajectories to be noticeble (the exponential growth factor
is ≈ 2.4).

(d) Determine the time interval for which the solution of ẋ = x2, x(0) = 1 exists.

Exercise 2.10 Classical collinear helium dynamics. In order to apply
periodic orbit theory to quantization of helium we shall need to compute clas-
sical periodic orbits of the helium system. In this exercise we commence their
evaluation for the collinear helium atom (5.6)

H =
1

2
p2
1 +

1

2
p2
2 −

Z

r1
− Z

r2
+

1

r1 + r2
.

The nuclear charge for helium is Z = 2. Colinear helium has only 3 degrees of
freedom and the dynamics can be visualized as a motion in the (r1, r2), ri ≥ 0
quadrant. In (r1, r2)-coordinates the potential is singular for ri → 0 nucleus-
electron collisions. These 2-body collisions can be regularized by rescaling the
coordinates, with details given in sect. 7.3. In the transformed coordinates
(x1, x2, p1, p2) the Hamiltonian equations of motion take the form

Ṗ1 = 2Q1

[
2 − P 2

2

8
−Q2

2(1 +
Q2

2

R4
)

]
; Q̇1 =

1

4
P1Q

2
2

Ṗ2 = 2Q2

[
2 − P 2

1

8
−Q2

1(1 +
Q2

1

R4
)

]
; Q̇2 =

1

4
P2Q

2
1 . (2.19)

where R = (Q2
1 +Q2

2)
1/2.

(a) Integrate the equations of motion by the fourth order Runge-Kutta com-
puter routine of exercise 2.6 (or whatever integration routine you like).
A convenient way to visualize the 3-d phase space orbit is by projecting
it onto the 2-dimensional (r1(t), r2(t)) plane.

(Gregor Tanner, Per Rosenqvist)
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Chapter 3

Do it again

(R. Mainieri and P. Cvitanović)

The time parameter in the sect. 2.1 definition of a dynamical system can
be either continuous or discrete. Discrete time dynamical systems arise
naturally from flows; one can observe the flow at fixed time intervals (by
strobing it), or one can record the coordinates of the flow when a special
event happens (the Poincaré section method). This triggering event can
be as simple as vanishing of one of the coordinates, or as complicated as
the flow cutting through a curved hypersurface.

3.1 Poincaré sections

Successive trajectory intersections with a Poincaré section, a d-dimensional
hypersurface or a set of hypersurfaces P embedded in the (d+1)-dimensional
phase space M, define the Poincaré return map P (x), a d-dimensional map
of form

x′ = P (x) = f τ(x)(x) , x′, x ∈ P . (3.1)

(For economy of notation, the maps of this chapter will be taken to be d-
dimensional, the associated flows (d+1)-dimensional). Here the first return
function τ(x) - sometimes referred to as the ceiling function - is the time
of flight to the next section for a trajectory starting at x. The choice of
the section hypersurface P is altogether arbitrary. It is rarely possible to
define a single section that cuts across all trajectories. In practice one often
needs only a local section - a finite hypersurface of codimension 1 volume
intersected by a ray of trajectories near to the trajectory of interest. The
hypersurface can be specified implicitly through a function U(x) that is
zero whenever a point x is on the Poincaré section,

x ∈ P iff U(x) . (3.2)

45
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The gradient of U(x) evaluated at x ∈ P serves a two-fold function.
First, the flow should pierce the hypersurface P, rather than being tangent
to it. A nearby point x + δx is in the hypersurface P if U(x + δx) = 0.
A nearby point on the trajectory is given by δx = vδt, so a traversal is
ensured by the transversality condition

(v · ∂U) =
d+1∑

j=1

vj(x)∂jU(x) 6= 0 , ∂jU(x) =
d

dxj
U(x) , x ∈ P .(3.3)

Second, the gradient ∂jU defines the orientation of the hypersurface P. The
flow is oriented as well, and a periodic orbit can pierce P twice, traversing
it in either direction. Hence the definition of Poincaré return map P (x)
needs to be supplemented with the orientation condition

xn+1 = P (xn) , U(xn+1) = U(xn) = 0 , n ∈ Z
+

d+1∑

j=1

vj(xn)∂jU(xn) > 0 . (3.4)

In this way the continus time t flow f t(x) is reduced to a discrete time n
sequence xn of successive oriented trajectory traversals of P.

With a sufficiently clever choice of a Poincaré section or a set of sections,
any orbit of interest intersects a section. Depending on the application, one
might need to convert the discrete time n back to the continuous flow time.
This is accomplished by adding up the first return function times τ(xn),
with the accumulated flight time given by

tn+1 = tn + τ(xn) , t0 = 0 , xn ∈ P . (3.5)

Other quantities integrated along the trajectory can be defined in a sim-
ilar manner, and will need to be evaluated in the process of evaluating
dynamical averages.

☞ chapter 10

A few examples may help visualize this.

Example 3.1 Hyperplane P: The simplest choice of a Poincaré section is a
plane specified by a point (located at the tip of the vector r0) and a direction vector a
perpendicular to the plane. A point x is in this plane if it satisfies the condition

U(x) = (x − r0) · a = 0 . (3.6)

Consider a circular periodic orbit centered at r0, but not lying in P . It pierces the
hyperplane twice; the (v · a) > 0 traversal orientation condition (3.4) ensures that the
first return time is the full period of the cycle.
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Figure 3.1: (Right:) a sequence of Poincaré sections of the Rössler strange attractor,
defined by planes through the z axis, oriented at angles (a) −60o (b) 0o, (c) 60o, (d)
120o, in the x-y plane. (Left:) side and x-y plane view of a typical trajectory with
Poincaré sections superimposed. (Rytis Paškauskas)

Example 3.2 Pendulum: The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.2. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a
piece of paper. The next example offers a better illustration of the utility
of visualization of dynamics by means of Poincaré sections.

Example 3.3 Rössler flow: Consider figure 2.3, a typical trajectory of the 3-
dimensional Rössler flow (2.14). It wraps around the z axis, so a good choice for a
Poincaré section is a plane passing through the z axis. A sequence of such Poincaré
sections placed radially at increasing angles with respect to the x axis, figure 3.1,
illustrates the “stretch & fold” action of the Rössler flow. To orient yourself, compare
this with figure 2.3, and note the different z-axis scales. Figure 3.1 assembles these
sections into a series of snapshots of the flow. A line segment [A,B], traversing the
width of the attractor, starts out close to the x-y plane, and after the stretching (a) →
(b) followed by the folding (c) → (d), the folded segment returns close to the x-y plane
strongly compressed. In one Poincaré return the [A,B] interval is stretched, folded and
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Figure 3.2: Return maps for the Rn → Rn+1 radial distance Poincaré sections of
figure 3.1. (Rytis Paškauskas)

mapped onto itself, so the flow is expanding. It is also mixing, as in one Poincaré return
the point C from the interior of the attractor is mapped into the outer edge, while the
edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return map
(3.1), as in figure 3.2. Cases (a) and (d) are examples of nice 1-to-1 return maps.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projections of
a 2-dimensional return map (Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace
Rn → Rn+1. (continued in exercise 3.1)

fast track:

sect. 3.3, p. 50

The above examples illustrate why a Poincaré section gives a more in-
formative snapshot of the flow than the full flow portrait. For example,
while the full flow portrait of the Rössler flow figure 2.3 gives us no sense
of the thickness of the attractor, we see clearly in the Rössler Poincaré
sections figure 3.1 that even though the return map is 2-d → 2-d, the flow
contraction is so strong that for all practical purposes it renders the return
map 1-dimensional.

3.2 Constructing a Poincaré section

For almost any flow of physical interest a Poincaré section is not
available in analytic form. We describe here a numerical method for deter-
mining a Poincaré section.

☞ remark 3.1

Consider the system (2.5) of ordinary differential equations in the vector
variable x = (x1, x2, . . . , xd)

dxi
dt

= vi(x, t) , (3.7)

where the flow velocity v is a vector function of the position in phase space
x and the time t. In general v cannot be integrated analytically and we
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will have to resort to numerical integration to determine the trajectories of
the system. Our task is to determine the points at which the numerically
integrated trajectory traverses a given hypersurface. The hypersurface will
be specified implicitly through a function U(x) that is zero whenever a
point x is on the Poincaré section, such as the hyperplane (3.6).

If we use a tiny step size in our numerical integrator, we can observe
the value of U as we integrate; its sign will change as the trajectory crosses
the hypersurface. The problem with this method is that we have to use a
very small integration time step. In order to actually land on the Poincaré
section one might try to interpolate the intersection point from the two
trajectory points on either side of the hypersurface. However, there is a
better way.

Let ta be the time just before U changes sign, and tb the time just after
it changes sign. The method for landing exactly on the Poincaré section
will be to convert one of the space coordinates into an integration variable
for the part of the trajectory between ta and tb. Using

dxk
dx1

dx1

dt
=
dxk
dx1

v1(x, t) = vk(x, t) (3.8)

we can rewrite the equations of motion (3.7) as

dt

dx1
=

1

v1
, · · · , dxd

dx1
=
vd
v1
. (3.9)

Now we use x1 as the “time” in the integration routine and integrate it from
x1(ta) to the value of x1 on the hypersurface, which can be found from the
hypersurface intersection condition (3.6). The quantity x1 need not be
perpendicular to the Poincaré section; any xi can be chosen as the integra-
tion variable, privided the xi-axis is not parallel to the Poincaré section at
the trajectory intersection point. If the section crossing is transverse (see
(3.3)), v1 cannot vanish in the short segment bracketed by the integration
step preceeding the section, and the point on the Poincaré section.

Example 3.4 Rössler flow. Poincaré sections of figure 3.1 are defined by the fixing
angle U(x) = θ − θ0 = 0. Convert Rössler equation (2.14) to cylindrical coordinates:

ṙ = υr = −z cos θ + arcsin2 θ

θ̇ = υθ = 1 +
z

r
sin θ +

a

2
sin 2θ

ż = υz = b+ z(r cos θ − c) (3.10)

For parameter values (2.14) θ increases monotonically. Integrate

dr

dθ
= υr/υθ ,

dt

dθ
= 1/υθ ,

dz

dθ
= υz/υθ (3.11)

to θ = θ0, and then continue integration in (x,y,z) coordinates. (Radford Mitchell, Jr)
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3.3 Maps

Though we have motivated discrete time dynamics by considering sections
of a continuous flow, there are many settings in which dynamics is inher-
ently discrete, and naturally described by repeated iterations of the same
map

f : M → M ,

or sequences of consecutive applications of a finite set of maps,

{fA, fB, . . . fZ} : M → M , (3.12)

for example maps relating different sections among a set of Poincaré sec-
tions. The discrete “time” is then an integer, the number of applications of
a map. As writing out formulas involving repeated applications of a set of
maps explicitly can be awkward, we streamline the notation by denoting a
map composition by “◦”

fZ(· · · fB(fA(x))) · · ·) = fZ ◦ · · · fB ◦ fA(x) , (3.13)

and the nth iterate of map f by

fn(x) = f ◦ fn−1(x) = f
(
fn−1(x)

)
, f0(x) = x .

☞ sect. 2.1

The trajectory of x is the set of points

{
x, f(x), f2(x), . . . , fn(x)

}
,

and the orbit of x is the subset of all points of M that can be reached by
iterations of f .

The functional form of such Poincaré return maps P as figure 3.2 can
be approximated by tabulating the results of integration of the flow from
x to the first Poincaré section return for many x ∈ P, and constructing
a function that interpolates through these points. If we find a good ap-
proximation to P (x), we can get rid of numerical integration altogether, by
replacing the continuous time trajectory f t(x) by iteration of the Poincaré
return map P (x). Constructing accurate P (x) for a given flow can be tricky,
but we can already learn much from approximate Poincaré return maps.
Multinomial approximations

Pk(x) = ak +

d+1∑

j=1

bkjxj +

d+1∑

i,j=1

ckijxixj + . . . , x ∈ P (3.14)
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to Poincaré return maps




x1,n+1

x2,n+1

. . .
xd,n+1


 =




P1(xn)
P2(xn)
. . .

Pd(xn)


 , xn, xn+1 ∈ P

motivate the study of model mappings of the plane, such as the Hénon
map.

Example 3.5 Hénon map: The map

xn+1 = 1 − ax2
n + byn

yn+1 = xn (3.15)

is a nonlinear 2-dimensional map most frequently employed in testing various hunches
about chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence
relation

xn+1 = 1 − ax2
n + bxn−1 . (3.16)

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the “stretch & fold” dynamics
of return maps such as Rössler’s, figure 3.1. It can be obtained by a truncation of a
polynomial approximation (3.14) to a Poincaré return map to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.3), is obtained by picking an arbitrary starting point and iterating
(3.15) on a computer. We plot here the dynamics in the (xn, xn+1) plane, rather than
in the (xn, yn) plane, because we think of the Hénon map as a model return map
xn → xn+1. As we shall soon see, periodic orbits will be key to understanding the✎ 3.4

page 55
long-time dynamics, so we also plot a typical periodic orbit of such a system, in this case
an unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 31.1 , and the cycle point labels 0111010, 1110100, · · · in sect. 12.2.

Example 3.6 Lozi map: Another example frequently employed is the Lozi map, a
linear, “tent map” version of the Hénon map given by

xn+1 = 1 − a|xn| + byn

yn+1 = xn . (3.17)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very
helpful tool for developing intuition about the topology of a large class of maps of the
“stretch & fold” type.

What we get by iterating such maps is - at least qualitatively - not
unlike what we get from Poincaré section of flows such as the Rössler flow
figures 3.2 and ?? For an arbitrary initial point this process might converge
to a stable limit cycle, to a strange attractor, to a false attractor (due to
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Figure 3.3: The strange attractor and an un-
stable period 7 cycle of the Hénon map (3.15)
with a = 1.4, b = 0.3. The periodic points
in the cycle are connected to guide the eye.
(K.T. Hansen [1.3])
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roundoff errors), or diverge. In other words, mindless iteration is essentially
uncontrollable, and we will need to resort to more thoughtful explorations.
As we shall explain in due course below, strategies for systematic explo- ✎ 3.5

page 56
ration rely on stable/unstable manifolds, periodic points, saddle-straddle
methods and so on.

Example 3.7 Parabola: One iteration of the Hénon map stretches and folds a
region of the (x, y) plane centered around the origin. The parameter a controls the
amount of stretching, while the parameter b controls the thickness of the folded image
through the “1-step memory” term bxn−1 in (3.16). In figure 3.3 the parameter b is
rather large, b = 0.3, so the attractor is rather thick, with the transverse fractal structure
clearly visible. For vanishingly small b the Hénon map reduces to the 1-dimensional
quadratic map

xn+1 = 1 − ax2
n . (3.18)

✎ 3.6
page 56 By setting b = 0 we lose determinism, as on reals the inverse of map (3.18) has two

preimages {x+
n−1, x

−
n−1} for most xn. If Bourbaki is your native dialect: the Hénon map

is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still, this
1-dimensional approximation is very instructive.

As we shall see in sect. 11.3.1, an understanding of 1-dimensional dynamics
is indeed the essential prerequisite to unravelling the qualitative dynam-
ics of many higher-dimensional dynamical systems. For this reason many
expositions of the theory of dynamical systems commence with a study
of 1-dimensional maps. We prefer to stick to flows, as that is where the
physics is.

☞ appendix I.4

Commentary

Remark 3.1 Determining a Poincaré section. The idea of changing the integra-

tion variable from time to one of the coordinates, although simple, avoids the

alternative of having to interpolate the numerical solution to determine the inter-

section. The trick described in sect. 3.2 is due to Hénon [3.4, 3.5, 3.6].
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Remark 3.2 Hénon, Lozi maps. The Hénon map is of no particular physical
import in and of itself - its significace lies in the fact that it is a minimal normal
form for modeling flows near a saddle-node bifurcation, and that it is a prototype
of the stretching and folding dynamics that leads to deterministic chaos. It is
generic in the sense that it can exhibit arbitrarily complicated symbolic dynam-
ics and mixtures of hyperbolic and non–hyperbolic behaviors. Its construction
was motivated by the best known early example of “deterministic chaos”, the
Lorenz equation [2.1]. Y. Pomeau’s studies of the Lorenz attractor on an ana-
log computer, and his insights into its stretching and folding dynamics motivated
Hénon [3.1] to introduce the Hénon map in 1976. Hénon’s and Lorenz’s original
papers can be found in reprint collections refs. [3.2, 3.3]. They are a pleasure to
read, and are still the best introduction to the physics motivating such models.
A detailed description of the dynamics of the Hénon map is given by Mira and
coworkers [3.7], as well as very many other authors.

The Lozi map [3.9] is particularly convenient in investigating the symbolic dy-

namics of 2-d mappings. Both the Lorenz and Lozi systems are uniformly smooth

systems with singularities. The continuity of measure for the Lozi map was proven

by M. Misiurewicz [3.10], and the existence of the SRB measure was established

by L.-S. Young.
☞ sect. 9.1

Résumé

In recurrent dynamics a trajectory exits a region in phase space and then
reenters it infinitely often, with a finite mean return time. If the orbit is
periodic, it returns after a full period. So, on average, nothing much really
happens along the trajectory – what is important is behavior of neighboring
trajectories transverse to the flow. This observation motivates a replaca-
ment of the continuous time flow by iterative mapping, the Poincaré return
map.

The visualization of strange attractors is greatly facilitated by a felic-
itous choice of Poincaré sections, and the reduction of flows to Poincaré
return maps. This observation motivates in turn the study of discrete-time
dynamical systems generated by iterations of maps.

A particularly natural application of the Poincaré section method is
the reduction of a billiard flow to a boundary-to-boundary return map,
described in chapter 6 below. As we shall show in chapter 7, further sim-
plification of a Poincaré return map, or any nonlinear map, can be attained
through rectifying these maps locally by means of smooth conjugacies.
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Exercises

Exercise 3.1 Poincaré sections of the Rössler flow. (continuation of
exercise 2.8) Calculate numerically a Poincaré section (or several Poincaré sec-
tions) of the Rössler flow. As the Rössler flow phase space is 3-dimensional,
the flow maps onto a 2-dimensional Poincaré section. Do you see that in your
numerical results? How good an approximation would a replacement of the re-
turn map for this section by a 1-dimensional map be? More precisely, estimate
the thickness of the strange attractor. (continued as exercise 4.3)

(Rytis Paškauskas)

Exercise 3.2 Arbitrary Poincaré sections. We will generalize the construction
of Poincaré sections so that they can have any shape, as specified by the equation
U(x) = 0.

(a) Start by modifying your integrator so that you can change the coordinates once
you get near the Poincaré section. You can do this easily by writing the equations
as

dxk

ds
= κfk , (3.19)

with dt/ds = κ, and choosing κ to be 1 or 1/f1. This allows one to switch
between t and x1 as the integration “time.”

(b) Introduce an extra dimension xn+1 into your system and set

xn+1 = U(x) . (3.20)

How can this be used to find a Poincaré section?

Exercise 3.3 Classical collinear helium dynamics. (continuation of ex-
ercise 2.10)

Make a Poincaré surface of section by plotting (r1, p1) whenever r2 = 0:
Note that for r2 = 0, p2 is already determined by (5.6). Compare your results
with figure 34.3(b).

(Gregor Tanner, Per Rosenqvist)

Exercise 3.4 Hénon map fixed points. Show that the two fixed points
(x0, x0), (x1, x1) of the Hénon map (3.15) are given by

x0 =
−(1 − b) −

√
(1 − b)2 + 4a

2a
,

x1 =
−(1 − b) +

√
(1 − b)2 + 4a

2a
. (3.21)

Exercise 3.5 How strange is the Hénon attractor?
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(a) Iterate numerically some 100,000 times or so the Hénon map

[
x′

y′

]
=

[
1 − ax2 + y
bx

]

for a = 1.4, b = 0.3 . Would you describe the result as a “strange
attractor”? Why?

(b) Now check how robust the Hénon attractor is by iterating a slightly
different Hénon map, with a = 1.39945219, b = 0.3. Keep at it until
the “strange” attracttor vanishes like the smile of the Chesire cat. What
replaces it? Would you describe the result as a “strange attractor”?
Do you still have confidence in your own claim for the part (a) of this
exercise?

Exercise 3.6 Fixed points of maps. A continuous function F is a contraction
of the unit interval if it maps the interval inside itself.

(a) Use the continuity of F to show that a one-dimensional contraction F of the
interval [0, 1] has at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of F is always smaller than
one, |F ′| < 1. Is the composition of uniform contractions a contraction? Is it
uniform?
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Chapter 4

Local stability

(R. Mainieri and P. Cvitanović)

So far we have concentrated on description of the trajectory of a single
initial point. Our next task is to define and determine the size of a neigh-
borhood of x(t). We shall do this by assuming that the flow is locally smooth,
and describe the local geometry of the neighborood by studying the flow
linearized around x(t). Nearby points aligned along the stable (contract-
ing) directions remain in the neighborhood of the trajectory x(t) = f t(x0);
the ones to keep an eye on are the points which leave the neighborhood
along the unstable directions. As we shall demonstrate in chapter 14, in
hyperbolic systems what matters are the expanding directions. The repre-
cussion are far-reaching: As long as the number of unstable directions is
finite, the same theory applies to finite-dimensional ODEs, phase-space
volume preserving Hamiltonian flows, and dissipative, volume contracting
infinite-dimensional PDEs.

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and dis-
torts neighborhoods, as sketched in figure 2.1(b). The deformation of an
infinitesimal neighborhood is best understood by considering a trajectory
originating near x0 = x(0) with an initial infinitesimal displacement δx(0),
and letting the flow transport the displacement δx(t) along the trajectory
x(x0, t) = f t(x0). The system of linear equations of variations for the dis-
placement of the infinitesimally close neighbor x+ δx follows from the flow
equations (2.5) by Taylor expanding to linear order

ẋi + ˙δxi = vi(x+ δx) ≈ vi(x) +
∑

j

∂vi
∂xj

δxj .
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The infinitesimal displacement δx is thus transported along the trajectory
x(x0, t), with time variation given by

d

dt
δxi(x0, t) =

∑

j

∂vi(x)

∂xj

∣∣∣∣
x=x(x0,t)

δxj(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point x0

and the time t, we shall often abbreviate the notation to x(x0, t) → x(t) →
x, δxi(x0, t) → δxi(t) → δx in what follows. Taken together, the set of
equations

ẋi = vi(x) , ˙δxi =
∑

j

Aij(x)δxj (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by
adjoining the d-dimensional tangent space δx ∈ TxM to every point x ∈ M
in the d-dimensional phase space M ⊂ R

d. The stability matrix

Aij(x) =
∂vi(x)

∂xj
(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighbor-
hood of x(t) by the flow.

Example 4.1 Rössler flow, linearized: For the Rössler flow (2.14) the stability
matrix is

A =

(
0 −1 −1
1 a 0
z 0 x− c

)
. (4.4)

Taylor expanding a finite time flow to linear order,

f ti (x0 + δx) = f ti (x0) +
∑

j

∂f ti (x0)

∂x0j
δxj + · · · , (4.5)

one finds that the linearized neighborhood is transported by

δx(t) = Jt(x0)δx(0) , Jtij(x0) =
∂xi(t)

∂xj

∣∣∣∣
x=x0

. (4.6)

(derivative notation Jt(x0) → Df t(x0) is frequently employed in the lit-
erature.) This Jacobian matrix has inherited name fundamental solution
matrix or simply fundamental matrix from the theory of linear ODEs. It
describes the deformation of an infinitesimal neighborhood at finite time t
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Figure 4.1: Fundamental matrix maps an in-
finitesimal spherical neighborhood of x0 into an
ellipsoidal neighborhood time t later.
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t

in the co-moving frame of x(t), that is, transformation of the initial point
Lagrangian coordinate frame into the current, Eulerian coordinate frame.

As this is a deformation in the linear approximation, one can think of
it as a linear deformation of an infinitesimal sphere enveloping x0 into an
ellipsoid around x(t), described by the eigenvectors and eigenvalues of the
fundamental matrix of the linearized flow, figure 4.1. Nearby trajectories
separate along the unstable directions, approach each other along the sta-
ble directions, and change their distance along the marginal directions at a
rate slower than exponential. In the literature adjectives neutral or indif-
ferent are often used instead of “marginal”, (attracting) stable directions
are sometimes called “asymptotically stable”, the (neutrally) stable direc-
tions “stable”, and so on: but all one is saying is that the eigenvalues of
the fundamental matrix have maginitude smaller, equal, or larger than 1.

One of the eigendirections is what one might expect, the direction of
the flow itself. To see that, consider two initial points along a trajectory
separated by infinitesimal flight time δt: δx(0) = f δt(x0) − x0 = v(x0)δt.
By the semigroup property of the flow, f t+δt = f δt+t. Expanding both
sides of f t(f δt(x0)) = f δt(f t(x0)), keeping the leading term in δt, and
using the definition of the fundamental matrix (4.6), we observe that Jt(x0)
transports the velocity vector at x0 to the velocity vector at x(t) at time t:

v(x(t)) = Jt(x0) v(x0) . (4.7)

In nomenclature of page 58, the fundamental matrix maps the initial, La-
grangian coordinate frame into the current, Eulerian coordinate frame.

The velocity at point x(t) in general does not point in the same direction
as the velocity at point x0, so this is not an eigenvalue condition for Jt;
the fundamental matrix computed for an arbitrary segment of an arbitrary
trajectory has no invariant meaning.

As the eigenvalues of finite time Jt have invariant meaning only for
periodic orbits, we postpone their interpretation to chapter 8. However,
already at this stage we see that if the orbit is periodic, x(Tp) = x(0), at
any point along cycle p the velocity v is an eigenvector of the fundamental
matrix Jp = JTp with a unit eigenvalue,

Jp(x) v(x) = v(x) , x ∈ p . (4.8)
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Figure 4.2: For a periodic orbit, any
two points along the cycle are mapped into
themselves after one cycle period T, hence
δx(x(0)) = v(x(0))δt is mapped into itself by
the cycle fundamental matrix.

δ  x
x(T) = x(0)

Two successive points along the cycle separated by δx(0) have the same
separation after a completed period δx(Tp) = δx(0), hence eigenvalue 1
(see figure 4.2).

As we started by assuming that we know the equations of motion, from
(4.3) we also know stability matrix A, the instantaneous rate of shear of an
infinitesimal neighborhood δxi(t) of the trajectory x(t). What we do not
know is the finite time deformation matrix Jt. Our next task is to relate
the stability matrix A to fundamental matrix Jt.

We are interested in smooth, differentiable flows. If a flow is smooth,
in a sufficiently small neighborhood it is essentially linear. Hence the next
section, which might seem an embarrassment (what is a section on linear
flows doing in a book on nonlinear dynamics?), offers a firm stepping stone
on the way to understanding nonlinear flows. If you know your eigenvalues
and eigenvectors, you may prefer to fast forward here.

fast track:

sect. 4.3, p. 64

4.2 Linear flows

Diagonalizing the matrix: that’s the key to the whole
thing.

Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields. Described by linear differential
equations which can be solved explicitly, with solutions that are good for all
times. The phase space for linear differential equations is M = R

d, and the
equations of motion (2.5) are written in terms of a vector x and a constant
stability matrix A as

ẋ = v(x) = Ax . (4.9)

Solving this equation means finding the phase space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

stability - 10aug2006 ChaosBook.org/version11.8, Aug 30 2006
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passing through the point x0.

If x(t) is a solution with x(0) = x0 and y(t) another solution with
y(0) = y0, then the linear combination ax(t) + by(t) with a, b ∈ R is also a
solution, but now starting at the point ax0 + by0. At any instant in time,
the space of solutions is a d-dimensional vector space, which means that
one can find a basis of d linearly independent solutions. How do we solve
the linear differential equation (4.9)? If instead of a matrix equation we
have a scalar one, ẋ = ax , with a a real number, then the solution is

x(t) = etax(0) . (4.10)

In order to solve the matrix case, it is helpful to rederive the solution (4.10)
by studying what happens for a short time step δt. If at time t = 0 the
position is x(0), then

x(δt) − x(0)

δt
= ax(0) , (4.11)

which we iterate m times to obtain the Euler’s formula for compounding
interest

x(t) ≈
(

1 +
t

m
a

)m
x(0) . (4.12)

The term in parentheses acts on the initial condition x(0) and evolves it
to x(t) by taking m small time steps δt = t/m. As m → ∞, the term in
parentheses converges to eta. Consider now the matrix version of equation
(4.11):

x(δt) − x(0)

δt
= Ax(0) . (4.13)

A representative point x is now a vector in R
d acted on by the matrix A, as

in (4.9). Denoting by 1 the identity matrix, and repeating the steps (4.11)
and (4.12) we obtain Euler’s formula for the exponential of a matrix

x(t) = lim
m→∞

(
1 +

t

m
A

)m
x(0) = etAx(0) . (4.14)

We will use this expression as the definition of the exponential of a matrix.

How do we compute the exponential (4.14)?

in depth:

appendix K.2, p. 725

fast track:

sect. 4.3, p. 64
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Example 4.2 Stability matrix eigenvalues, diagonal case: Should we be so lucky
that A happens to be a diagonal matrix AD with real eigenvalues (λ1, λ2, . . . , λd), the
exponential is simply

Jt = etAD =




etλ1 · · · 0
. . .

0 · · · etλd


 . (4.15)

Throughout this text the symbol Λk will always denote the kth eigenvalue
(in literature sometimes referred to as the multiplier) of the finite time fun-
damental matrix Jt. Symbol λk will be reserved for the kth characteristic
exponent characteristic value, sometimes the same thing as the Lyapunov
exponent), and θk for kth phase, ,

Λk = et(λk+iθk) , Λk = Λk(x0, t) , λk = λk(x0, t) , θk = θk(x0, t) .(4.16)

Example 4.3 Fundamental matrix eigenvalues, diagonalizable case: Suppose
next that A is diagonalizable and that U is the matrix that brings it to its diagonal
form AD = U−1AU. The transformation U is a linear coordinate transformation
which rotates, skews, and possibly flips the coordinate axis of the vector space. Then
J can also be brought to a diagonal form by inserting factors 1 = UU−1 between the
steps of the product (4.14):✎ 4.2

page 72 Jt = etA = UetADU−1 . (4.17)

In either example, the action of both A and J is very simple; the axes of
orthogonal coordinate system where A is diagonal are also the eigendirec-
tions of both A and Jt, and under the flow the neighborhood is deformed
by a multiplication by an eigenvalue factor for each coordinate axis.

As A has only real entries, it will in general have either real eigenvalues,
or complex conjugate pairs of eigenvalues. That is not surprising, but also
the corresponding eigenvectors can be either real or complex. All coordi-
nates used in defining the flow are real numbers, so what is the meaning of
a complex eigenvector?

Example 4.4 Complex eigenvalues: To develop some intuition about that, let us
work out the behavior for the simplest nontrivial case, the case where

A =

(
A11 A12

A21 A22

)
. (4.18)

The eigenvalues λ1, λ2 of A are the roots

λ1,2 =
1

2

(
trA±

√
(trA)2 − 4 detA

)
(4.19)

of the characteristic equation

det (A − z1) = (λ1 − z)(λ2 − z) = 0 , (4.20)∣∣∣∣
∣∣∣∣
A11 − z A12

A21 A22 − z

∣∣∣∣
∣∣∣∣ = z2 − (A11 +A22) z + (A11A22 −A12A21) .
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The qualitative behavior of eA for real eigenvalues λ1, λ2 ∈ R will differ from the case
that they form a complex conjugate pair,

λ1 = λ+ iθ , λ2 = λ∗1 = λ− iθ .

These two possibilities are refined further into sub-cases depending on the signs of the
real part. The matrix might have only one eigenvector, or two linearly independent
eigenvectors, which may or may not be orthogonal. Along each of these directions the
motion is of the form xk exp(tλk). If the exponent λk is positive, then the component
xk will grow; if the exponent λk is negative, it will shrink.

We sketch the full set of possibilities in figure 4.3(a), and work out in
detail the case when A can be brought to the diagonal form, and the case
of degenerate eigenvalues.

Example 4.5 Complex eigenvalues, diagonal: If A can be brought to the diagonal
form, the solution (4.14) to the differential equation (4.9) can be written either as

(
x1(t)
x2(t)

)
=

(
etλ1 0
0 etλ2

)(
x1(0)
x2(0)

)
, (4.21)

or

(
x1(t)
x2(t)

)
= etλ

(
eitθ 0
0 e−itθ

)(
x1(0)
x2(0)

)
. (4.22)

In the case λ1 > 0, λ2 < 0, x1 grows exponentially with time, and x2 contracts
exponentially. This behavior, called a saddle, is sketched in figure 4.3(b), as are the
remaining possibilities: in/out nodes, inward/outward spirals, and the center. Spirals
arise from taking a real part of the action of Jt on a complex eigenvector. The
magnitude of |x(t)| diverges exponentially when λ > 0, and contracts toward 0 when
the λ < 0, whereas the imaginary phase θ controls its oscillations.

In general Jt is neither diagonal, nor diagonalizable, nor constant along
the trajectory. Still, any matrix, including Jt, can be expressed in the
singular value decomposition form

J = UDVT

where D is diagonal, and U, V are orthogonal matrices. The diagonal
elements Λ1, Λ2, . . ., Λd of D are the eigenvalues.

Under the action of the flow an infinitesimally small ball of initial points
is deformed into an ellipsoid: Λi is the relative stretching of the ith principal
axis of the ellipsoid, the columns of the matrix V are the principal axes
ei of stretching in the Lagrangian coordinate frame, and the orthogonal
matrix U gives the orientation of the ellipse in the Eulerian coordinates.

Now that we have some feeling for the qualitative behavior of eigenvec-
tors and eigenvalues, we are ready to return to the general case: nonlinear
flows.
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(a)
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Figure 4.3: (a) Qualitatively distinct types of exponents of a [2×2] fundamental
matrix. (b) Streamlines for several typical 2-dimensional flows: saddle (hyperbolic), in
node (attracting), center (elliptic), in spiral.

4.3 Stability of flows

How do you determine the eigenvalues of the finite time local deformation Jt

for a general nonlinear smooth flow? The fundamental matrix is computed
by integrating the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = Jt(x0)δx(x0, 0) . (4.23)

The equations of variations are linear, so we should be able to integrate
them - but in order to make sense of the answer, we derive it step by step.

4.3.1 Stability of equilibria

For a start, consider the case where xq is an equilibrium point (2.7). Ex-
panding around the equilibrium point xq, using the fact that the matrix
A = A(xq) in (4.2) is constant, and integrating,

f t(x) = xq + eAt(x− xq) + · · · , (4.24)

we verify that the simple formula (4.14) applies also to the fundamental
matrix of an equilibrium point,

Jt(xq) = eAt , A = A(xq) . (4.25)

Example 4.6 Stability of equilibria of the Rössler flow. The Rösler system
(2.14) has two equilibrium points

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )
(x+, y+, z+) = ( 5.6929, −28.4648, 28.4648 )

✎ 2.8
page 43
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Figure 4.4: Two trajec-
tories of the Rössler flow
initiated in the neighbor-
hood of the “+” or “outer”
equilibrium point (2.15).
(R. Paškauskas) xy

z

 0

 20

 40

-40
-20

 0

Together with their exponents (eigenvalues of the stability matrix) the two equilibria
now yield quite detailed information about the flow. Figure 4.4 shows two trajectories
which start in the neighborhood of the “+” equilibrium point. Trajectories to the right
of the outer equilibrium point “+” escape, and those to the left spiral toward the inner
equilibrium point “−”, where they seem to wander chaoticaly for all times. The stable
manifold of outer equilibrium point thus serves as a attraction basin boundary. Consider
now the linearized exponents of the two equilibria ✎ 2.8

page 43(λ−1 , λ
−
2 ± i θ−2 ) = (−5.686, 0.0970 ± i 0.9951 )

(λ+
1 , λ

+
2 ± i θ+2 ) = ( 0.1929, −4.596× 10−6 ± i 5.428 )

(4.26)

Outer equilibrium: The λ+
2 ± i θ+2 complex eigenvalue pair implies that that neigh-

borhood of the outer equilibrium point rotates with angular period T+ ≈
∣∣2π/θ+2

∣∣ =
1.1575. The multiplier by which a trajectory that starts near the “+” equilibrium point
contracts in the stable manifold plane is the excrutiatingly slow Λ+

2 ≈ exp(λ+
2 T+) =

0.9999947 per rotation. For each period the point of the stable manifold moves away
along the unstable eigendirection by factor Λ+

1 ≈ exp(λ+
1 T+) = 1.2497. Hence the

slow spiraling on both sides of the “+” equilibrium point.

Inner equilibrium: The λ−2 ± i θ−2 complex eigenvalue pair tells us that neighbor-
hood of the “−” equilibrium point rotates with angular period T− ≈

∣∣2π/θ−2
∣∣ = 6.313,

slightly faster than the harmonic oscillator estimate in (2.11). The multiplier by which
a trajectory that starts near the “−” equilibrium point spirals away per one rota-
tion is Λradial ≈ exp(λ−2 T−) = 1.84. The λ−1 eigenvalue is essentially the z ex-
pansion correcting parameter c introduced in (2.13). For each Poincaré section re-
turn, the trajectory is contracted into the stable manifold by the amazing factor of
Λ1 ≈ exp(λ−1 T−) = 10−15.6 (!).

Suppose you start with a 1 mm interval pointing in the Λ1 eigendirection. After
one Poincaré return the interval is of order of 10−4 fermi, the furthest we will get into
subnuclear structure in this book. Of course, from the mathematical point of view, the
flow is reversible, and the Poincaré return map is invertible. (Rytis Paškauskas)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary trajectory x(t). The
exponential of a constant matrix can be defined either by its Taylor series
expansion, or in terms of the Euler limit (4.14):

☞ appendix K.1

etA =
∞∑

k=0

tk

k!
Ak (4.27)
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= lim
m→∞

(
1 +

t

m
A

)m
. (4.28)

Taylor expanding is fine if A is a constant matrix. However, only the
second, tax-accountant’s discrete step definition of an exponential is ap-
propriate for the task at hand, as for a dynamical system the local rate of
neighborhood distortion A(x) depends on where we are along the trajec-
tory. The linearized neighborhood is multiplicatively deformed along the
flow, and the m discrete time step approximation to Jt is therefore given
by a generalization of the Euler product (4.28):

Jt = lim
m→∞

1∏

n=m

(1 + δtA(xn)) = lim
m→∞

1∏

n=m

eδtA(xn) (4.29)

= lim
m→∞

eδtA(xn)eδtA(xm−1) · · · eδtA(x2)eδtA(x1) ,

where δt = (t− t0)/m, and xn = x(t0 + nδt). Slightly perverse indexing of
the products indicates that in our convention the successive infinitesimal
deformation are applied by multiplying from the left. The two formulas
for Jt agree to leading order in δt, and the m→ ∞ limit of this procedure
is the integral

☞ appendix D

Jtij(x0) =
[
Te

R t
0 dτA(x(τ))

]
ij
, (4.30)

where T stands for time-ordered integration, defined as the continuum limit
of the successive left multiplications (4.29). This formula for J is the main

☞ appendix H.1
result of this chapter.

It is evident from the time-ordered product structure (4.29) that the
fundamental matrices are multiplicative along the flow,

Jt+t
′
(x) = Jt

′
(x′)Jt(x), where x′ = f t(x) . (4.31)

The formula (4.29) is a matrix generalization of the crude Euler integrator
(2.16) and is neither smart not accurate. Much better numerical accuracy
is obtained by the following observation: To linear order in δt,

Jt+δt − Jt = δtAJt +O
(
(δt)2

)
,

so the fundamental matrix itself satisfies the linearized equation (4.1)

d

dt
Jt(x) = A(x)Jt(x) , initial condition J0(x) = 1 . (4.32)

Given a numerical routine for integrating the equations of motion, evalua-
tion of the fundamental matrix requires minimal additional programming
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effort; one simply extends the d-dimensional integration routine and inte-
grates concurrently with f t(x) the d2 elements of Jt(x).

The qualifier “simply” is perhaps too glib. Integration will work for
short finite times, but for exponentially unstable flows one quickly runs
into numerical over- and/or underflow problems, so further thought will
have to go into implementating this calculation.

in depth:

sect. 10.3, p. 146

4.4 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under
the iteration of a map follows from Taylor expanding the iterated mapping
at discrete time n to linear order, as in (4.5). The linearized neighborhood
is transported by the fundamental matrix evaluated at a discrete set of
times n = 1, 2, . . .,

Mn
ij(x0) =

∂fni (x)

∂xj

∣∣∣∣
x=x0

. (4.33)

We shall refer to this Jacobian matrix as the monodromy matrix, in order
to include the case where the map is a Poincaré return map for a flow. As
the simplest example, consider a 1-dimensional map. The chain rule yields
the stability of the nth iterate

Λ(x0)n =
d

dx
fn(x0) =

n−1∏

m=0

f ′(xm) , xm = fm(x0) . (4.34)

The 1-step product formula for the stability of the nth iterate of a d-
dimensional map

Mn(x0) = M(xn−1) · · ·M(x1)M(x0) ,

M(x)kl =
∂

∂xl
fk(x) , xm = fm(x0) (4.35)

follows from the chain rule for matrix derivatives

∂

∂xi
fj(f(x)) =

d∑

k=1

∂

∂yk
fj(y)

∣∣∣∣
y=f(x)

∂

∂xi
fk(x) .

If you prefer to think of a discrete time dynamics as a sequence of Poincaré
section returns, then (4.35) follows from (4.31): fundamental matrices are
multiplicative along the flow. ✎ 10.1

page 154
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Example 4.7 Hénon map monodromy matrix: For the Hénon map (3.15) the
monodromy matrix for the nth iterate of the map is

Mn(x0) =

1∏

m=n

(
−2axm b

1 0

)
, xm = fm

1 (x0, y0) . (4.36)

The determinant of the Hénon one time step monodromy matrix (4.36) is constant,

detM = Λ1Λ2 = −b (4.37)

so in this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

fast track:

chapter 5, p. 73

4.4.1 Stability of Poincaré return maps

(R. Paškauskas and P. Cvitanović)

We now relate the linear stability of the Poincaré return map P :
P → P defined in sect. 3.1 to the stability of the continuous time flow in
the full phase space.

The hypersurface P can be specified implicitly through a function U(x)
that is zero whenever a point x is on the Poincaré section. A nearby point
x+ δx is in the hypersurface P if U(x + δx) = 0, and the same is true for
variations around the first return point x′ = x(τ), so expanding U(x′) to
linear order in δx leads to the condition

d+1∑

i=1

∂U(x′)
∂xi

dx′i
dxj

∣∣∣∣
P

= 0 . (4.38)

In what follows Ui is the gradient of U defined in (3.3), unprimed quantities
refer to the starting point x = x0 ∈ P, v = v(x0), and the primed quantities
to the first return: x′ = x(τ), v′ = v(x′), U ′ = U(x′). For brevity we shall
also denote the full phase space fundamental matrix at the first return by
J = Jτ (x0). Both the first return x′ and the time of flight to the next
Poincaré section τ(x) depend on the starting point x, so the fundamental
matrix

Ĵ(x)ij =
dx′i
dxj

∣∣∣∣
P

(4.39)
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Figure 4.5: If x(t) intersects the Poincaré
section P at time τ , the nearby x(t) + δx(t)
trajectory intersects it time τ+δt later. As (U ′ ·
v′δt) = −(U ′ · J δx), the difference in arrival
times is given by δt = −(U ′ · J δx)/(U ′ · v′).
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x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δx(t)

Jδ

U’

with both initial and the final variation constrained to the Poincaré section
hypersurface P is related to the continuous flow fundamental matrix by

dx′i
dxj

∣∣∣∣
P

=
∂x′i
∂xj

+
dx′i
τ

τ

dxj
= Jij + v′i

dτ

dxj
.

The return time variation dτ/dx, figure 4.5, is eliminated by substituting
this expression into the constraint (4.38),

0 = ∂iU
′ Jij + (v′ · ∂U ′)

dτ

dxj
,

yielding the projection of the full space (d + 1)-dimensional fundamental
matrix to the Poincaré map d-dimensional fundamental matrix:

Ĵij =

(
δik −

v′i ∂kU
′

(v′ · ∂U ′)

)
Jkj . (4.40)

Substituting (4.7) we verify that the initial velocity v(x) is a zero-eigenvector
of Ĵ

Ĵv = 0 , (4.41)

so the Poincaré section eliminates variations parallel to v, and Ĵ is a rank
d matrix, that is, one less than the dimension of the continuous time flow.

Commentary

Remark 4.1 Linear flows. The theory of linear flows and their stability is only

sketched in sect. 4.2. They are presented at length in many textbooks. We liked

the discussion in chapter 1 of Perko [4.1] and chapters 3 and 5 of Glendinning [4.2].

The nomenclature is a bit confusing. Sometimes A, the stability matrix (4.3) which

describes the instantaneous shear of the trajectory point x(x0, t) is refered to as

the “fundamental matrix”, a particularly unfortunate usage when one considers

linearized stability of an equilibrium point (4.25). What Jacobi had in mind in his

1841 fundamental paper [4.3] on the determinants today known as “jacobians” were

transformations between different coordinate frames. In this book fundamental

matrix Jt always refers to (4.6), the linearized deformation after a finite time t,

either for a continuous time flow, or a discrete time mapping.
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Résumé

A neighborhood of a trajectory deforms as it is transported by a flow.
In the linear approximation, the stability matrix A describes the shear-
ing/compression/expansion of an infinitesimal neighborhood in an infini-
tesimal time step. The deformation after a finite time t is described by the
fundamental matrix

Jt(x0) = Te
R t
0 dτA(x(τ)) ,

where T stands for the time-ordered integration, defined multiplicatively
along the trajectory. For discrete time maps this is multiplication by time
step fundamental matrix M along the n points x0, x1, x2, . . ., xn−1 on the
trajectory of x0,

Mn(x0) = M(xn−1)M(xn−2) · · ·M(x1)M(x0) ,

with M(x) the single time step fundamental matrix. In this book Λk de-
notes the kth eigenvalue of the finite time fundamental matrix Jt, and λk
the kth exponent

|Λ| = etλ , Λ± = et(λ±iθ) .

For a complex stability eigenvalue the conjugate eigenvalue pair describes
rotational motion in the plane defined by the corresponding pair of eigen-
vectors, with period T = 2π/θ.

The eigenvalues and eigendirections of the fundamental matrix describe
the deformation of an initial infinitesimal sphere of neighboring trajecto-
ries into an ellipsoid a finite time t later. Nearby trajectories separate
exponentially along unstable directions, approach each other along stable
directions, and change slowly (algebraically) their distance along marginal
directions. The fundamental matrix Jt is in general neither symmetric, nor
diagonalizable by a rotation, nor do its (left or right) eigenvectors define
an orthonormal coordinate frame. Furthermore, although the fundamen-
tal matrices are multiplicative along the flow, in dimensions higher than
one their eigenvalues in general are not. This lack of multiplicativity has

☞ appendix H.1
important repercussions for both classical and quantum dynamics.

References

[4.1] L. Perko, Differential Equations and Dynamical Systems (Springer-Verlag,
New York 1991).

[4.2] P. Glendinning, Stability, Instability, and Chaos (Cambridge Univ. Press,
Cambridge 1994).

refsStability - 18aug2006 ChaosBook.org/version11.8, Aug 30 2006



References 71

[4.3] C. G. J. Jacobi, “De functionibus alternantibus earumque divisione per pro-
ductum e differentiis elementorum conflatum,” in Collected Works, Vol. 22,
439; J. Reine Angew. Math. (Crelle) (1841).

[4.4] J.-L. Thiffeault, Physica D 172, 139 (2002); nlin.CD/0101012

ChaosBook.org/version11.8, Aug 30 2006 refsStability - 18aug2006

http://arXiv.org/abs/nlin.CD/0101012


72 References

Exercises

Exercise 4.1 Trace-log of a matrix. Prove that

det M = etr lnM .

for an arbitrary finite dimensional matrix M .

Exercise 4.2 Stability, diagonal case. Verify the relation (4.17)

Jt = etA = U−1etADU , where AD = UAU−1 .

Exercise 4.3 Topology of the Rössler flow. (continuation of exer-
cise 3.1)

(a) Show that equation |det (A−λ1)| = 0 for Rössler system in the notation
of exercise 2.18 can be written as

λ3 + λ2c (p∓ − ǫ) + λ(p±/ǫ+ 1 − c2ǫp∓) ∓ c
√
D = 0 (4.42)

(b) Solve (4.42) for eigenvalues λ± for each equilibrium point as an expansion
in powers of ǫ. Derive

λ−1 = −c+ ǫc/(c2 + 1) + o(ǫ)
λ−2 = ǫc3/[2(c2 + 1)] + o(ǫ2)
θ−2 = 1 + ǫ/[2(c2 + 1)] + o(ǫ)
λ+

1 = cǫ(1 − ǫ) + o(ǫ3)
λ+

2 = −ǫ5c2/2 + o(ǫ6)

θ+
2 =

√
1 + 1/ǫ (1 + o(ǫ))

(4.43)

Compare with exact eigenvalues. What are dynamical implications of the
extravagant value of λ−1 ?

(continued as exercise 4.3) (Rytis Paškauskas)

Exercise 4.4 A contracting baker’s map. Consider a contracting (or “dis-
sipative”) baker’s map, acting on a unit square [0, 1]2 = [0, 1] × [0, 1], defined by

(
xn+1

yn+1

)
=

(
xn/3
2yn

)
yn ≤ 1/2

(
xn+1

yn+1

)
=

(
xn/3 + 1/2

2yn − 1

)
yn > 1/2

This map shrinks strips by a factor of 1/3 in the x-direction, and then stretches (and
folds) them by a factor of 2 in the y-direction.

By how much does the phase space volume contract fo one iteration of the map?
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Chapter 5

Newtonian dynamics

You might think that the strangeness of contracting flows, flows such as
the Rössler flow of figure 2.3 is of concern only to chemists; real physicists
do Hamiltonians, right? Not at all - while it is easier to visualize aperiodic
dynamics when a flow is contracting onto a lower-dimensional attracting
set, there are plenty examples of chaotic flows that do preserve the full
symplectic invariance of Hamiltonian dynamics. The truth is, the whole
story started with Poincaré’s restricted 3-body problem, a realization that
chaos rules also in general (non-Hamiltonian) flows came much later.

Here we briefly review parts of classical dynamics that we will need
later on; symplectic invariance, canononical transformations, and stabil-
ity of Hamiltonian flows. We discuss billiard dynamics in some detail in
chapter 6.

5.1 Hamiltonian flows

(P. Cvitanović and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by a Hamiltonian
☞ appendix C

H(q, p) together with the Hamilton’s equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (5.1)

with the 2D phase space coordinates x split into the configuration space
coordinates and the conjugate momenta of a Hamiltonian system with D
degrees of freedom (dof):

☞ sect. 28.1.1

x = (q,p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (5.2)
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74 CHAPTER 5. NEWTONIAN DYNAMICS

Figure 5.1: Phase plane of the unforced, un-
damped Duffing oscillator. The trajectories lie
on level sets of the Hamiltonian (5.4). −2 −1 0 1 2

−1

0

1

q

p

The energy, or the value of the Hamiltonian function at the phase space
point x = (q,p) is constant along the trajectory x(t),

d

dt
H(q(t),p(t)) =

∂H

∂qi
q̇i(t) +

∂H

∂pi
ṗi(t)

=
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi
= 0 , (5.3)

so the trajectories lie on surfaces of constant energy, or level sets of the
Hamiltonian {(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is
basically the whole story.

Example 5.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.6), the system can be written in Hamiltonian
form with the Hamiltonian

H(q, p) =
p2

2
− q2

2
+
q4

4
. (5.4)

This is a 1-dof Hamiltonian system, with a 2-dimensional phase space, the plane (q, p).
The Hamilton’s equations (5.1) are

q̇ = p , ṗ = q − q3 . (5.5)

For 1-dof systems, the “surfaces” of constant energy (5.3) are simply curves in the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 5.1.

Thus all 1-dof systems are integrable, in the sense that the entire phase
plane is foliated by curves of constant energy, either periodic – as is the
case for the harmonic oscillator (a “bound state”) – or open (a “scattering

☞ example 7.1
trajectory”). Add one more degree of freedom, and chaos breaks loose.

Example 5.2 Collinear helium: In chapter 34, we shall apply the periodic orbit
theory to the quantization of helium. In particular, we will study collinear helium, a
doubly charged nucleus with two electrons arranged on a line, an electron on each side
of the nucleus. The Hamiltonian for this system is

☞ chapter 34

H =
1

2
p2
1 +

1

2
p2
2 −

2

r1
− 2

r2
+

1

r1 + r2
. (5.6)
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5.2. STABILITY OF HAMILTONIAN FLOWS 75

Figure 5.2: A typical collinear helium trajec-
tory in the r1 – r2 plane; the trajectory enters
along the r1-axis and then, like almost every
other trajectory, after a few bounces escapes to
infinity, in this case along the r2-axis.
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Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1, r2), ri ≥ 0 quadrant, figure 5.2. It looks
messy, and, indeed, it will turn out to be no less chaotic than a pinball bouncing
between three disks. As always, a Poincaré section will be more informative than this
rather arbitrary projection of the flow.

5.2 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance
of equations of motion can affect the dynamics. In the case at hand, the
symplectic invariance will reduce the number of independent stability eigen-
values by a factor of 2 or 4.

5.2.1 Canonical transformations

The equations of motion for a time-independent, D-dof Hamiltonian (5.1)
can be written

ẋi = ωijHj(x) , ω =

(
0 I
−I 0

)
, Hj(x) =

∂

∂xj
H(x) , (5.7)

where x = (q,p) ∈ M is a phase space point, Hk = ∂kH is the column
vector of partial derivatives of H, I is the [D×D] unit matrix, and ω the
[2D×2D] symplectic the form

ωT = −ω , ω2 = −1 . (5.8)

The linearized motion in the vicinity x+ δx of a phase space trajectory
x(t) = (q(t),p(t)) is described by the fundamental matrix (4.23). For
Hamiltonian flows the stability matrix (4.32) takes form

d

dt
Mt(x) = A(x)Mt(x) , Aij(x) = ωikHkj(x) , (5.9)
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76 CHAPTER 5. NEWTONIAN DYNAMICS

where the matrix of second derivatives Hkn = ∂k∂nH is called the Hessian
matrix. From the symmetry of Hkn it follows that

ATω + ωA = 0 . (5.10)

This is the defining property for infinitesimal generators of symplectic (or
canonical) transformations, transformations which leave the symplectic form
ω invariant.

More explicitely: just as the rotation group O(d) is the Lie group of
all matrix transformations which preserve a bilinear symmetric invariant
x2 = xiδijxj, that is, the length squared, the symplectic group Sp(2D)
is defined as the Lie group of all matrix transformations x′ = Mx which
preserve a bilinear antisymmetric invariant xiωijyj. The symplectic Lie
algebra sp(2D) follows by writing M = exp(δtA) and linearizing M = 1 +
δtA. This yields (5.10) as the defining property of infinitesimal symplectic
transformations.

Consider now a smooth nonlinear change of variables of form y = h(x),
and the Hamiltonian as the function of the new phase space variables,
K(x) = H(h(x)). Rewriting (5.7) as a function of y and employing the
chain rule we find

∂K(x) = (∂h)T ∂H(h(x)) = (∂h)T (−ω ẏ)
= −(∂h)T ω (∂h) ẋ , (5.11)

where (∂h)kn = ∂hk/∂xn. Consider the case that ∂h, the linearization of h,
is a symplectic transformation, that is, a map that preserves the symplectic
form,

(∂h)T ω (∂h) = ω . (5.12)

In that case K(x) also induces a Hamiltonian flow ẋi = ωijKj(x), and
h is called a canonical transformation. We care about canonical transfor-
mations for two reasons. First (and this is a dark art), if the canonical

☞ example 7.1
transformation h is very cleverly chosen, the flow in new coordinates might
be considerably simpler than the original flow. Second, Hamiltonian flows
themselves are a prime example of canonical transformations.

Example 5.3 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (5.10) that d

dt

(
MTωM

)
= 0, and since at the initial time M0(x0) = 1, M is

a symplectic transformation MTωM = ω. This equality is valid for all times, so a
Hamiltonian flow f t(x) is a canonical transformation, with the linearization ∂xf

t(x) a
symplectic transformation (5.12):

MTωM = ω . (5.13)
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(a)

complex saddle saddle−center

degenerate saddle

(2)(2)

real saddle

generic center degenerate center

(2)

(2)

(b)

complex saddle saddle−center

degenerate saddle

(2) (2)

real saddle

generic center degenerate center

(2)

(2)

Figure 5.3: (a) Stability exponents of a Hamiltonian equilibrium point, 2-dof. (b)
Stability of a symplectic map in R

4.

For notational brevity here we have suppressed the dependence on time and the initial
point, M = Mt(x0). By elementary properties of determinants it follows from (5.13)
that Hamiltonian flows are phase space volume preserving:

detM = 1 . (5.14)

5.2.2 Stability of equilibria of Hamiltonian flows

☞ sect. 4.3.1

For an equilibrium point xq the stability matrix A is constant. Its eigen-
values describe the linear stability of the equilibrium point. In the case of
Hamiltonian flows, from (5.10) it follows that the characteristic polynomial
of A for an equilibrium xq satisfies

det (A− λ1) = det (ω−1(A− λ1)ω) = det (−ωAω − λ1)

= − det (AT + λ1) = − det (A+ λ1) . (5.15)

A is the matrix (5.10) with real matrix elements, so its eigenvalues (the ✎ 5.3
page 83

stability exponents of (4.25)) are either real or come in complex pairs. Sym-
plectic invariance implies in addition that if λ is an eigenvalue, then −λ,
λ∗ and −λ∗ are also eigenvalues. Distinct symmetry classes of the stabil-
ity exponents of an equilibrium point in a 2-dof system are displayed in
figure 5.3(a). It is worth noting that while the linear stability of equilib-
ria in a Hamiltonian system always respects this symmetry, the nonlinear
stability can be completely different.

5.3 Symplectic maps

A stability eigenvalue Λ = Λ(x0, t) associated to a trajectory is an eigen-
value of the fundamental matrix M. The transpose MT and the inverse
M−1 are related by

M−1 = −ωMTω , (5.16)
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78 CHAPTER 5. NEWTONIAN DYNAMICS

so the characteristic polynomial satisfies

det (M − Λ1) = det (MT − Λ1) = det (−ωMTω − Λ1)

= det (M−1 − Λ1) = det (M−1) det (1 − ΛM)

= Λ2D det (M − Λ−11) . (5.17)

Hence if Λ is an eigenvalue of M, so are 1/Λ, Λ∗ and 1/Λ∗. Real (non-✎ 6.6
page 94

marginal, |Λ| 6= 1) eigenvalues always come paired as Λ, 1/Λ. The Liouville
conservation of phase space volumes (5.14) is an immediate consequence of
this pairing up of eigenvalues. The complex eigenvalues come in pairs Λ, Λ∗,
|Λ| = 1, or in loxodromic quartets Λ, 1/Λ, Λ∗ and 1/Λ∗. These possibilities
are illustrated in figure 5.3(b).

Example 5.4 2-dimensional symplectic maps: In the 2-dimensional case the
eigenvalues (8.2) depend only on trMt

Λ1,2 =
1

2

(
trMt ±

√
(trMt − 2)(trMt + 2)

)
. (5.18)

The trajectory is elliptic if the stability residue |trMt|−2 ≤ 0, with complex eigenvalues
Λ1 = eiθt, Λ2 = Λ∗

1 = e−iθt. If |trMt| − 2 > 0, λ is real, and the trajectory is either

hyperbolic Λ1 = eλt , Λ2 = e−λt , or (5.19)

inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (5.20)

Example 5.5 Hamiltonian Hénon map, reversibility: By (4.37) the Hénon
map (3.15) for b = −1 value is the simplest 2-d orientation preserving area-preserving
map, often studied to better understand topology and symmetries of Poincaré sections
of 2 dof Hamiltonian flows. We find it convenient to multiply (3.16) by a and absorb
the a factor into x in order to bring the Hénon map for the b = −1 parameter value
into the form

xi+1 + xi−1 = a− x2
i , i = 1, ..., np , (5.21)

The 2-dimensional Hénon map for b = −1 parameter value

xn+1 = a− x2
n − yn

yn+1 = xn . (5.22)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = fn(x) − x (periodic points) are real.
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5.3.1 Poincaré invariants

Let C a region in the phase space and V (0) its volume. Denoting the
flow of the Hamiltonian system by f t(x), the volume of C after a time t is
V (t) = f t(C), and using (5.14) we derive the Liouville theorem:

V (t) =

∫

ft(C)
dx =

∫

C

∥∥∥∥
∂f t(x′)
∂x

∥∥∥∥ dx
′

∫

C
det (M)dx′ =

∫

C
dx′ = V (0) , (5.23)

Hamiltonian flows preserve phase-space volumes.

The symplectic structure of Hamilton’s equations buys us much more
than the “incompressibility,” or the phase space volume conservation. Con-
sider the symplectic product of two infinitesimal vectors

(δx, δx̂) = δxTωδx̂ = δpiδq̂i − δqiδp̂i

=

D∑

i=1

{oriented area in the (qi, pi) plane} . (5.24)

Time t later we have

(δx′, δx̂′) = δxTMTωMδx̂ = δxTωδx̂ .

This has the following geometrical meaning. We imagine there is a reference
phase space point. We then define two other points infinitesimally close so
that the vectors δx and δx̂ describe their displacements relative to the
reference point. Under the dynamics, the three points are mapped to three
new points which are still infinitesimally close to one another. The meaning
of the above expression is that the area of the parallelopiped spanned by
the three final points is the same as that spanned by the inital points. The
integral (Stokes theorem) version of this infinitesimal area invariance states
that for Hamiltonian flows the D oriented areas Vi bounded by D loops
ΩVi, one per each (qi, pi) plane, are separately conserved:

∫

V
dp ∧ dq =

∮

ΩV
p · dq = invariant . (5.25)

Morally a Hamiltonian flow is really D-dimensional, even though its phase
space is 2D-dimensional. Hence for Hamiltonian flows one emphasizes D,
the number of the degrees of freedom.

in depth:

appendix C.1, p. 655
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Commentary

In theory there is no difference between theory and
practice. In practice there is.

Yogi Berra

Remark 5.1 Hamiltonian dynamics literature.

If you are reading this book, in theory you already know everything that is

in this chapter. In practice you do not. Try this: Put your right hand on your

heart and say: “I understand why nature preferes symplectic geometry”. Honest?

We make an attempt in sect. 28.1. Out there there are about 2 centuries of accu-

mulated literature on Hamilton, Lagrange, Jacobi etc. formulation of mechanics,

some of it excellent. In context of what we will need here, we make a very subjec-

tive recommendation - we enjoyed reading Percival and Richards [7.10] and Ozorio

de Almeida [7.11].

Remark 5.2 Symplectic. The term symplectic - Greek for twining or plaiting

together - was introduced into mathematics by Hermann Weyl. “Canonical” lin-

eage is church-doctrinal: Greek “kanon”, referring to a reed used for measurement,

came to mean in Latin a rule or a standard.

Remark 5.3 The sign convention of ω. The overall sign of ω, the symplectic
invariant in (5.7), is set by the convention that the Hamilton’s principal function

(for energy conserving flows) is given by R(q, q′, t) =
∫ q′

q
pidqi−Et. With this sign

convention the action along a classical path is minimal, and the kinetic energy of
a free particle is positive.

Remark 5.4 Symmetries of the symbol square. For a more detailed discussion
of symmetry lines see refs. [17.4, 3.7, 12.46].
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Exercises

Exercise 5.1 Complex nonlinear Schrödinger equation. Consider the
complex nonlinear Schrödinger equation in one spatial dimension [5.1]:

i
∂φ

∂t
+
∂2φ

∂x2
+ βφ|φ|2 = 0, β 6= 0.

(a) Show that the function ψ : R → C defining the traveling wave solution
φ(x, t) = ψ(x − ct) for c > 0 satisfies a second-order complex differential
equation equivalent to a Hamiltonian system in R4 relative to the noncanonical
symplectic form whose matrix is given by

wc =




0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0


 .

(b) Analyze the equilibria of the resulting Hamiltonian system in R4 and determine
their linear stability properties.

(c) Let ψ(s) = eics/2a(s) for a real function a(s) and determine a second order
equation for a(s). Show that the resulting equation is Hamiltonian and has
heteroclinic orbits for β < 0. Find them.

(d) Find “soliton” solutions for the complex nonlinear Schrödinger equation.

(Luz V. Vela-Arevalo)

Exercise 5.2 When is a linear transformation canonical?

(a) Let A be a n × n invertible matrix. Show that the map φ : R
2n → R

2n given
by (q,p) 7→ (Aq, (A−1)Tp) is a canonical transformation.

(b) If R is a rotation in R3, show that the map (q,p) 7→ (Rq,Rp) is a canonical
transformation.

(Luz V. Vela-Arevalo)

Exercise 5.3 Cherry’s example. What follows [5.2] is mostly a reading
exercise, about a Hamiltonian system that is linearly stable but nonlinearly unstable.
Consider the Hamiltonian system on R4 given by

H =
1

2
(q21 + p2

1) − (q22 + p2
2) +

1

2
p2(p

2
1 − q21) − q1q2p1.

(a) Show that this system has an equilibrium at the origin, which is linearly stable.
(The linearized system consists of two uncoupled oscillators with frequencies in
ratios 2:1).
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(b) Convince yourself that the following is a family of solutions parametrized by a
constant τ :

q1 = −
√

2
cos(t− τ)

t− τ
, q2 =

cos 2(t− τ)

t− τ
,

p1 =
√

2
sin(t− τ)

t− τ
, p2 =

sin 2(t− τ)

t− τ
.

These solutions clearly blow up in finite time; however they start at t = 0 at
a distance

√
3/τ from the origin, so by choosing τ large, we can find solutions

starting arbitrarily close to the origin, yet going to infinity in a finite time, so
the origin is nonlinearly unstable.

(Luz V. Vela-Arevalo)
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Chapter 6

Billiards

We owe it to a book to withhold judgment until we
reach page 100.

Henrietta McNutt, George Johnson’s seventh-grade
English teacher

The dynamics that we have the best intuitive grasp on, and find easiest
to grapple with both numerically and conceptually, is the dynamics of bil-
liards. For billiards, discrete time is altogether natural; a particle moving
through a billiard suffers a sequence of instantaneous kicks, and executes
simple motion inbetween, so there is no need to contrive a Poincaré section.
We have already used this system in sect. 1.3 as the intuitively most ac-
cessible example of chaos. Here we define billiard dynamics more precisely,
anticipating the applications to come.

6.1 Billiard dynamics

A billiard is defined by a connected region Q ⊂ R
D, with boundary ∂Q ⊂

R
D−1 separating Q from its complement R

D \Q. The region Q can consist
of one compact, finite volume component (in which case the billiard phase
space is bounded, as for the stadium billiard figure 6.1), or can be infinite
in extent, with its complement R

D \Q consisting of one or several finite or
infinite volume components (in which case the phase space is open, as for
the 3-disk pinball game figure 1.1). In what follows we shall most often
restrict our attention to planar billiards. A point particle of mass m and
momentum pn = mvn moves freely within the billiard, along a straight line,
until it encounters the boundary. There it reflects specularly (specular =
mirrorlike), with no change in the tangential component of momentum,
and instantaneous reversal of the momentum component normal to the
boundary,

p
′
= p− 2(p · n̂)n̂ , (6.1)
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Figure 6.1: The stadium billiard is a 2-dimensional domain bounded by two semi-
circles of radius d = 1 connected by two straight walls of length 2a. At the points
where the straight walls meet the semi-circles, the curvature of the border changes
discontinuously; these are the only singular points of the flow. The length a is the
only parameter.
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Figure 6.2: (a) A planar billiard trajectory is fixed by specifying the perimeter length
parametrized by s and the outgoing trajectory angle φ, both measured counterclock-
wise with respect to the outward normal n̂. (b) The Birkhoff phase space coordinate
pair (s, p) fully specifies the trajectory, where p = |p| sinφ is the momentum compo-
nent tangential to the boundary (and we set |p| = 1 whenever convenient).

with n̂ the unit vector normal to the boundary ∂Q at the collision point.
The angle of incidence equals the angle of reflection, as illustrated in fig-
ure 6.2. A billiard is a Hamiltonian system with a 2D-dimensional phase
space x = (q, p) and potential V (q) = 0 for q ∈ Q, V (q) = ∞ for q ∈ ∂Q.

A billiard flow has a natural Poincaré section defined by Birkhoff coor-
dinates sn, the arc length position of the nth bounce measured along the
billiard boundary, and pn = |p| sinφn, the momentum component parallel
to the boundary, where φn is the angle between the outgoing trajectory and
the normal to the boundary. We measure both the arc length s, and the
parallel momentum p counterclockwise relative to the outward normal (see
figure 6.2 as well as figure 1.6 (a)). In D = 2, the Poincaré section is a cylin-
der (topologically an annulus), figure 6.3, where the parallel momentum p
ranges for −|p| to |p|, and the s coordinate is cyclic along each connected
component of ∂Q. The volume in the full phase space is preserved by
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Figure 6.3: In D = 2 the billiard Poincaré
section is a cylinder, with the parallel momen-
tum p ranging over p ∈ {−1, 1}, and with the s
coordinate is cyclic along each connected com-
ponent of ∂Q. The rectangle figure 6.2 (b)
is such cylinder unfolded, with periodic bound-
ary conditions glueing together the left and the
right edge of the rectangle.
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the Liouville theorem (5.23). The Birkhoff coordinates x = (s, p) ∈ P, are
the natural choice, because with them the the Poincaré return map pre-
serves the phase space volume in the (s, p) parametrized Poincaré section
(a perfectly good coordinate set (s, φ) does not do that). ✎ 6.6

page 94

☞ sect. 6.2
Without loss of generality we set m = |v| = |p| = 1. Poincaré section

condition eliminates one dimension, and the energy conservation |p| = 1
eliminates another, so the Poincaré section return map P is (2D − 2)-
dimensional.

The dynamics is given by the Poincaré return map

P : (sn, pn) 7→ (sn+1, pn+1) (6.2)

from the nth collision to the (n + 1)st collision. The discrete time
dynamics map P is equivalent to the Hamiltonian flow (5.1) in the sense
that both describe the same full trajectory. Let tn denate the instant of
nth collision. Then the position of the pinball ∈ Q at time tn + τ ≤ tn+1 is
given by 2D− 2 Poincaré section coordinates (sn, pn) ∈ P together with τ ,
the distance reached by the pinball along the nth section of its trajectory.

Example 6.1 3-disk game of pinball: In case of bounces off a circular disk, the
position coordinate s = rθ is given by angle θ ∈ [0, 2π]. For example, for the 3-disk
game of pinball of figure 1.4 and figure 1.6 we have two types of collisions: ✎ 6.1

page 93
P0 :

{
φ′ = −φ+ 2 arcsinp

p′ = −p+ a
R sinφ′

back-reflection (6.3)

P1 :

{
φ′ = φ− 2 arcsinp+ 2π/3

p′ = p− a
R sinφ′

reflect to 3rd disk . (6.4)

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more than
high-school geometry is required. There is no need to compute arcsin’s either - one
only needs to compute a square root per each reflection, and the simulations can be
very fast. ✎ 6.2

page 93Trajectory of the pinball in the 3-disk billiard is generated by a series of P0’s
and P1’s. At each step on has to check whether the trajectory intersects the desired
disk (and no disk inbetween). With minor modifications, the above formulas are valid
for any smooth billiard as long as we replace a by the local curvature of the boundary
at the point of collision.
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6.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard
systems. Infinitesimal equations of variations (4.2) do not apply, but the
multiplicative structure (4.31) of the finite-time fundamental matrices does.
As they are more physical than most maps studied by dynamicists, let us
work out the billiard stability in some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However,
one dimension can be eliminated by energy conservation, and the other by
the fact that the magnitude of the velocity is constant. We shall now show
how going to a local frame of motion leads to a [2×2] fundamental matrix.

Consider a 2-dimensional billiard with phase space coordinates x =
(q1, q2, p1, p2). Let tk be the instant of the kth collision of the pinball with
the billiard boundary, and t±k = tk±ǫ, ǫ positive and infinitesimal. With the
mass and the velocity equal to 1, the momentum direction can be specified
by angle θ: x = (q1, q2, sin θ, cos θ). Now parametrize the 2-d neighborhood
of a trajectory segment by δx = (δz, δθ), where

δz = δq1 cos θ − δq2 sin θ , (6.5)

δθ is the variation in the direction of the pinball motion. Due to energy
conservation, there is no need to keep track of δq‖, variation along the flow,
as that remains constant. (δq1, δq2) is the coordinate variation transverse
to the kth segment of the flow. From the Hamilton’s equations of motion
for a free particle, dqi/dt = pi, dpi/dt = 0, we obtain the equations of
motion (4.1) for the linearized neighborhood

d

dt
δθ = 0,

d

dt
δz = δθ . (6.6)

Let δθk = δθ(t+k ) and δzk = δz(t+k ) be the local coordinates immediately
after the kth collision, and δθ−k = δθ(t−k ), δz−k = δz(t−k ) immediately before.
Integrating the free flight from t+k−1 to t−k we obtain

δz−k = δzk−1 + τkδθk−1 , τk = tk − tk−1

δθ−k = δθk−1 , (6.7)

and the stability matrix (4.30) for the kth free flight segment is

MT (xk) =

(
1 τk
0 1

)
. (6.8)

At incidence angle φk (the angle between the outgoing particle and the
outgoing normal to the billiard edge), the incoming transverse variation δz−k
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Figure 6.4: Defocusing of a beam of nearby
trajectories at a billiard collision. (A. Wirzba)

ϕθ

projects onto an arc on the billiard boundary of length δz−k / cosφk. The
corresponding incidence angle variation δφk = δz−k /ρk cosφk, ρk = local
radius of curvature, increases the angular spread to

δzk = −δz−k
δθk = − δθ−k − 2

ρk cosφk
δz−k , (6.9)

so the fundamental matrix associated with the reflection is

MR(xk) = −
(

1 0
rk 1

)
, rk =

2

ρk cosφk
. (6.10)

The full fundamental matrix for np consecutive bounces describes a beam
of trajectories defocused by MT along the free flight (the τk terms below)
and defocused/refocused at reflections by MR (the rk terms below)

Mp = (−1)np

1∏

k=np

(
1 τk
0 1

)(
1 0
rk 1

)
, (6.11)

✎ 6.4
page 94where τk is the flight time of the kth free-flight segment of the orbit, rk =

2/ρk cosφk is the defocusing due to the kth reflection, and ρk is the radius
of curvature of the billiard boundary at the kth scattering point (for our
3-disk game of pinball, ρ = 1). As the billiard dynamics is phase space
volume preserving, detM = 1, and the eigenvalues are given by (5.18).

This is still another example of the fundamental matrix chain rule (4.35)
for discrete time systems, rather similar to the Hénon map stability (4.36).
Stability of every flight segment or reflection taken alone is a shear with
two unit eigenvalues,

detMT = det

(
1 τk
0 1

)
, detMR = det

(
1 0
rk 1

)
, (6.12)

but acting in concert in the intervowen sequence (6.11) they can lead to
a hyperbolic deformation of the infinitesimal neighborhood of a billiard
trajectory. ✎ 8.1

page 118
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As a concrete application, consider the 3-disk pinball system of sect. 1.3.
Analytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles
follow from elementary geometrical considerations. Longer cycles require✎ 8.2

page 118

✎ 6.3
page 93

numerical evaluation by methods such as those described in chapter 17.

☞ chapter 17 Commentary

Remark 6.1 Billiards. The 3-disk game of pinball is to chaotic dynamics what
a pendulum is to integrable systems; the simplest physical example that captures
the essence of chaos. Another contender for the title of the “harmonic oscillator
of chaos” is the baker’s map which is used as the red thread through Ott’s in-
troduction to chaotic dynamics [1.7]. The baker’s map is the simplest reversible
dynamical system which is hyperbolic and has positive entropy. We will not have
much use for the baker’s map here, as due to its piecewise linearity it is so non-
generic that it misses all of the subtleties of cycle expansions curvature corrections
that will be central to this treatise.

☞ chapter 18

That the 3-disk game of pinball is a quintessential example of deterministic
chaos appears to have been first noted by B. Eckhardt [6.1]. The model was studied
in depth classically, semiclassically and quantum mechanically by P. Gaspard and
S.A. Rice [6.2], and used by P. Cvitanović and B. Eckhardt [6.3] to demonstrate ap-
plicability of cycle expansions to quantum mechanical problems. It has been used
to study the higher order ~ corrections to the Gutzwiller quantization by P. Gas-
pard and D. Alonso Ramirez [6.4], construct semiclassical evolution operators and
entire spectral determinants by P. Cvitanović and G. Vattay [6.5], and incorporate
the diffraction effects into the periodic orbit theory by G. Vattay, A. Wirzba and
P.E. Rosenqvist [6.6]. The full quantum mechanics and semiclassics of scattering
systems is developed here in the 3-disk scattering context in chapter 32. Gaspard’s
monograph [1.4], which we warmly recommend, utilizies the 3-disk system in much
more depth than will be attained here. For further links check ChaosBook.org.

A pinball game does miss a number of important aspects of chaotic dynamics:
generic bifurcations in smooth flows, the interplay between regions of stability and
regions of chaos, intermittency phenomena, and the renormalization theory of the
“border of order” between these regions. To study these we shall have to face up
to much harder challenge, dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smooth potentials. The game
of pinball may be thought of as the infinite potential wall limit of a smooth po-
tential, and pinball symbolic dynamics can serve as a covering symbolic dynamics
in smooth potentials. One may start with the infinite wall limit and adiabati-
cally relax an unstable cycle onto the corresponding one for the potential under
investigation. If things go well, the cycle will remain unstable and isolated, no

☞ sect. 31.1
new orbits (unaccounted for by the pinball symbolic dynamics) will be born, and
the lost orbits will be accounted for by a set of pruning rules. The validity of
this adiabatic approach has to be checked carefully in each application, as things
can easily go wrong; for example, near a bifurcation the same naive symbol string
assignments can refer to a whole island of distinct periodic orbits.

Remark 6.2 Further reading. The chapter 1 of Gaspard monograph [1.4] is
recommended reading if you are interested in Hamiltonian flows, and billiards
in particular. A. Wirzba has generalized the stability analysis of sect. 6.2 to
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scattering off 3-dimensional spheres (follow the links in ChaosBook.org/extras).
A clear discussion of linear stability for the general d-dimensional case is given in
Gaspard [1.4], sect. 1.4.

Résumé

A particulary natural application of the Poincaré section method is the
reduction of a billiard flow to a boundary-to-boundary return map.
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Exercises

Exercise 6.1 A pinball simulator. Implement the disk → disk maps
to compute a trajectory of a pinball for a given starting point, and a given
R:a = (center-to-center distance):(disk radius) ratio for a 3-disk system. As
this requires only computation of intersections of lines and circles together
with specular reflections, implementation should be within reach of a high-
school student. Please start working on this program now; it will be continually
expanded in chapters to come, incorporating the Jacobian calculations, Newton
root–finding, and so on.

Fast code will use elementary geometry (only one
√· · · per iteration, rest

are multiplications) and eschew trigonometric functions. Provide a graphic
display of the trajectories and of the Poincaré section iterates. To be able to
compare with the numerical results of coming chapters, work with R:a = 6
and/or 2.5 values. Draw the correct versions of figure 1.8 or figure 11.4 for
R:a = 2.5 and/or 6.

Exercise 6.2 Trapped orbits. Shoot 100,000 trajectories from one of the
disks, and trace out the strips of figure 1.8 for various R:a by color coding
the initial points in the Poincaré section by the number of bounces preceeding
their escape. Try also R:a = 6:1, though that might be too thin and require
some magnification. The initial conditions can be randomly chosen, but need
not - actually a clearer picture is obtained by systematic scan through regions
of interest.

Exercise 6.3 Pinball stability. Add to your exercise 6.1 pinball simulator
a routine that computes the the [2×2] Jacobian matrix. To be able to compare
with the numerical results of coming chapters, work with R:a = 6 and/or 2.5
values.

Exercise 6.4 Stadium billiard. Consider the Bunimovich stadium [6.8, 6.9]
defined in figure 6.1. The fundamental matrix associated with the reflection is given by
(6.10). Here we take ρk = −1 for the semicircle sections of the boundary, and cosφk

remains constant for all bounces in a rotation sequence. The time of flight between
two semicircle bounces is τk = 2 cosφk. The fundamental matrix of one semicircle
reflection folowed by the flight to the next bounce is

J = (−1)

(
1 2 cosφk

0 1

)(
1 0

−2/ cosφk 1

)
= (−1)

(
−3 2 cosφk

2/ cosφk 1

)
.

A shift must always be followed by k = 1, 2, 3, · · · bounces along a semicircle, hence
the natural symbolic dynamics for this problem is n-ary, with the corresponding fun-
damental matrix given by shear (ie. the eigenvalues remain equal to 1 throughout the
whole rotation), and k bounces inside a circle lead to

Jk = (−1)k

(
−2k − 1 2k cosφ
2k/ cosφ 2k − 1

)
. (6.13)
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The fundamental matrix of a cycle p of length np is given by

Jp = (−1)
P

nk

np∏

k=1

(
1 τk
0 1

)(
1 0

nkrk 1

)
. (6.14)

Adopt your pinball simulator to the Bunimovich stadium.

Exercise 6.5 A test of your pinball simulator. Test your exercise 6.3
pinball simulator by computing numerically cycle stabilities by tracking dis-
tances to nearby orbits. Compare your result with the exact analytic formulas
of exercise 8.1 and 8.2.

Exercise 6.6 Birkhoff coordinates. Prove that the Birkhoff coordinates are

phase-space volume preserving. Hint: compute the determinant of (6.11).
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Chapter 7

Get straight

A Hamiltonian system is said to be “integrable” if one can find a change
of coordinates to an action-angle coordinate frame where the phase space
dynamics is described by motion on circles, one circle for each degree of
freedom. In the same spirit, a natural description of a hyperbolic, unstable
flow would be attained if one found a change of coordinates into a frame
where the stable/unstable manifolds are straight lines, and the flow is along
hyperbolas. Achieving this globally for anything but a handful of contrived
examples is too much to hope for. Still, as we shall now show, we can make
some headway on straightening out the flow locally.

Even though such nonlinear coordinate transformations are very im-
portant, especially in celestial mechanics, we shall not necessarily use them
much in what follows, so you can safely skip this chapter on the first read-
ing. Except, perhaps, you might want to convince yourself that cycle sta-
bilities are indeed metric invariants of flows (sect. 8.5), and you might like
transformations that turn a Keplerian ellipse into a harmonic oscillator
(example 7.2) and regularize the 2-body Coulomb collisions (sect. 7.3) in
classical helium.

fast track:

chapter 9, p. 119

7.1 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are
not always expressed in the most convenient way. In order to simplify a
given problem, one may stretch, rotate, bend and mix the coordinates, but
in doing so, the vector field will also change. The vector field lives in a
(hyper)plane tangent to phase space and changing the coordinates of phase
space affects the coordinates of the tangent space as well, in a way that we
will now describe.
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Denote by h the conjugation function which maps the coordinates of the
initial phase space M into the reparametrized phase space M′ = h(M),
with a point x ∈ M related to a point y ∈ M′ by

y = h(x) = (y1(x), y2(x), . . . , yd(x) .

The change of coordinates must be one-to-one and span both M and M′,
so given any point y we can go back to x = h−1(y). For smooth flows the
reparametrized dynamics should support the same number of derivatives
as the initial one. If h is a (piecewise) analytic function, we refer to h as a
smooth conjugacy.

The evolution rule gt(y0) on M′ can be computed from the evolution
rule f t(x0) on M by taking the initial point y0 ∈ M′, going back to M,
evolving, and then mapping the final point x(t) back to M′:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (7.1)

Here “◦” stands for functional composition h ◦ f(x) = h(f(x)), so (7.1) is
a shorthand for y(t) = h(f t(h−1(y0))).

The vector field ẋ = v(x) in M, locally tangent to the flow f t, is related
to the flow by differentiation (2.4) along the trajectory. The vector field
ẏ = w(y) in M′, locally tangent to gt follows by the chain rule:

w(y) =
dgt

dt
(y)

∣∣∣∣
t=0

=
d

dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣
t=0

= h′(h−1(y))v(h−1(y)) = h′(x)v(x) . (7.2)

With the indices reinstated, this stands for✎ 7.1
page 106

wi(y) =
∂hi(x)

∂xj
vj(x) , yi = hi(x) . (7.3)

Imagine that the phase space is a rubber sheet with the flow lines drawn
on it. A coordinate change h corresponds to pulling and tugging on the
rubber sheet smoothly, without cutting, glueing, or self-intersections of
the distorted rubber sheet. Trajectories that are closed loops in M will
remain closed loops in the new manifold M′, but their shapes will change.
Globally h deforms the rubber sheet in a highly nonlinear manner, but
locally it simply rescales and shears the tangent field by ∂jhi, hence the
simple transformation law (7.2) for the velocity fields.

The time itself is a parametrization of points along flow lines, and it can
also be reparametrized, s = s(t), with the attendent modification of (7.2).
An example is the 2-body collision regularization of the helium Hamiltonian
(5.6), to be undertaken in sect. 7.3 below.
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7.2 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth conju-
gacies is to use it to pick out the simplest possible representative of an
equivalence class. In general and globally these are just words, as we have
no clue how to pick such “canonical” representative, but for smooth flows
we can always do it localy and for sufficiently short time, by appealing to
the rectification theorem, a fundamental theorem of ordinary differential
equations. The theorem assures us that there exists a solution (at least
for a short time interval) and what the solution looks like. The rectifica-
tion theorem holds in the neighborhood of points of the vector field v(x)
that are not singular, that is, everywhere except for the equilibrium points
(2.7), and points at which v is infinite. According to the theorem, in a small
neighborhood of a non-singular point there exists a change of coordinates
y = h(x) such that ẋ = v(x) in the new, canonical coordinates takes form

ẏ1 = ẏ2 = · · · = ẏd−1 = 0
ẏ1 = d ,

(7.4)

with unit velocity flow along y1, and no flow along any of the remaining
directions. This is an example of a one-parameter Lie group of transforma-
tions, with finite time τ action

y′i = yi , i = 1, 2, . . . , d− 1

y′d = yd + τ .

Example 7.1 Harmonic oscillator, rectified: As a simple example of global
rectification of a flow consider the harmonic oscillator

q̇ = p , ṗ = −q . (7.5)

The trajectories x(t) = (q(t), p(t)) just go around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates y = (r, θ):

h−1 :

{
q = h−1

1 (r, θ) = r cos θ
p = h−1

2 (r, θ) = r sin θ
. (7.6)

The fundamental matrix of the transformation is

h′ =

[
cos θ sin θ

− sin θ

r
−cos θ

r

]
(7.7)

resulting in (7.2) of rectified form ✎ 8.3
page 118ṙ = 0 , θ̇ = −1 . (7.8)

In the new coordinates the radial coordinate r is constant, and the angular coordinate
θ wraps around a cylinder with constant angular velocity. There is a subtle point in
this change of coordinates: the domain of the map h−1 is not the plane R

2, but rather
the plane minus the origin. We had mapped a plane into a cylinder, and coordinate
transformations should not change the topology of the space in which the dynamics takes
place; the coordinate transformation is not defined on the equilibrium point x = (0, 0),
or r = 0.
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Figure 7.1: Coordinates for the helium three
body problem in the plane.
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7.3 Classical dynamics of collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and
other curious but rather idealized dynamical systems. If you have become
impatient and started wondering what good are the methods learned so far
in solving real life physical problems, good news are here. We will apply
here concepts of nonlinear dynamics to nothing less than the helium, a
dreaded three-body Coulomb problem.

Can we really jump from three static disks directly to three charged par-
ticles moving under the influence of their mutually attracting or repelling
forces? It turns out, we can, but we have to do it with care. The full
problem is indeed not accessible in all its detail, but we are able to analyze
a somewhat simpler subsystem – collinear helium. This system plays an
important role in the classical and quantum dynamics of the full three-body
problem.

The classical helium system consists of two electrons of mass me and
charge −e moving about a positively charged nucleus of mass mhe and
charge +2e.

The helium electron-nucleus mass ratio mhe/me = 1836 is so large that
we may work in the infinite nucleus mass approximation mhe = ∞, fixing
the nucleus at the origin. Finite nucleus mass effects can be taken into ac-
count without any substantial difficulty. We are now left with two electrons
moving in three spatial dimensions around the origin. The total angular
momentum of the combined electron system is still conserved. In the spe-
cial case of angular momentum L = 0, the electrons move in a fixed plane
containing the nucleus. The three body problem can then be written in
terms of three independent coordinates only, the electron-nucleus distances
r1 and r2 and the inter-electron angle Θ, see figure 7.1.✎ 34.2

page 600
This looks like something we can lay our hands on; the problem has

been reduced to three degrees of freedom, six phase space coordinates in
all, and the total energy is conserved. But let us go one step further; the
electrons are attracted by the nucleus but repelled by each other. They
will tend to stay as far away from each other as possible, preferably on
opposite sides of the nucleus. It is thus worth having a closer look at the
situation where the three particles are all on a line with the nucleus being
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Figure 7.2: Collinear helium, with the two
electrons on opposite sides of the nucleus.

He
++

e e

r r

- -

1 2

somewhere between the two electrons. If we, in addition, let the electrons
have momenta pointing towards the nucleus as in figure 7.2, then there is no
force acting on the electrons perpendicular to the common interparticle axis.
That is, if we start the classical system on the dynamical subspace Θ = π,
d
dtΘ = 0, the three particles will remain in this collinear configuration for
all times.

7.3.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It
is a system of two degrees of freedom with the Hamiltonian

H =
1

2me

(
p2
1 + p2

2

)
− 2e2

r1
− 2e2

r2
+

e2

r1 + r2
= E , (7.9)

where E is the total energy. As the dynamics is restricted to the fixed
energy shell, the four phase space coordinates are not independent; the
energy shell dependence can be made explicit by writing (r1, r2, p1, p2) →
(r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on the energy
E. A simple analysis of potential versus kinetic energy tells us that if
the energy is positive both electrons can escape to ri → ∞, i = 1, 2.
More interestingly, a single electron can still escape even if E is negative,
carrying away an unlimited amount of kinetic energy, as the total energy
of the remaining inner electron has no lower bound. Not only that, but
one electron will escape eventually for almost all starting conditions. The
overall dynamics thus depends critically on whether E > 0 or E < 0. But
how does the dynamics change otherwise with varying energy? Fortunately,
not at all. Helium dynamics remains invariant under a change of energy up
to a simple scaling transformation; a solution of the equations of motion at
a fixed energy E0 = −1 can be transformed into a solution at an arbitrary
energy E < 0 by scaling the coordinates as

ri(E) =
e2

(−E)
ri, pi(E) =

√
−meE pi, i = 1, 2 ,

together with a time transformation t(E) = e2m
1/2
e (−E)−3/2 t. We include

the electron mass and charge in the scaling transformation in order to obtain
a non–dimensionalized Hamiltonian of the form

H =
p2
1

2
+
p2
2

2
− 2

r1
− 2

r2
+

1

r1 + r2
= −1 . (7.10)
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The case of negative energies chosen here is the most interesting one for us.
It exhibits chaos, unstable periodic orbits and is responsible for the bound
states and resonances of the quantum problem treated in sect. 34.5.

7.3.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian (7.10).
Whenever two bodies come close to each other, accelerations become large,
numerical routines require lots of small steps, and numerical precision suf-
fers. No numerical routine will get us through the singularity itself, and in
collinear helium electrons have no option but to collide with the nucleus.
Hence a regularization of the differential equations of motions is a necessary
prerequisite to any numerical work on such problems, both in celestial me-
chanics (where a spaceship executes close approaches both at the start and
its destiantion) and in quantum mechanics (where much of semiclassical
physics is dominated by returning classical orbits that probe the quantum
wave function at the nucleus).

There is a fundamental difference between two–body collisions r1 = 0
or r2 = 0, and the triple collision r1 = r2 = 0. Two–body collisions can
be regularized, with the singularities in equations of motion removed by
a suitable coordinate transformation together with a time transformation
preserving the Hamiltonian structure of the equations. Such regularization
is not possible for the triple collision, and solutions of the differential equa-
tions can not be continued through the singularity at the origin. As we
shall see, the chaos in collinear helium originates from this singularity of
triple collisions.

A regularization of the two–body collisions is achieved by means of the
Kustaanheimo–Stiefel (KS) transformation, which consists of a coordinate
dependent time transformation which stretches the time scale near the ori-
gin, and a canonical transformation of the phase space coordinates. In
order to motivate the method, we apply it first to the 1-dimensional Kepler
problem

☞ remark 34.1

H =
1

2
p2 − 2

x
= E . (7.11)

Example 7.2 Keplerian ellipse, rectified: To warm up, consider the E = 0 case,
starting at x = 0 at t = 0. Even though the equations of motion are singular at the
intial point, we can immediately integrate

1

2
ẋ2 − 2

x
= 0

by means of separation of variables

√
xdx =

√
2dt , x = (3t)

2
3 , (7.12)
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and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of
which the passage through the origin is smooth.

A time transformation dt = f(q, p)dτ for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = f(q, p)(H(q, p) − E). For the 1–
dimensional Coulomb problem with (7.11) we choose the time transformation dt = xdτ
which lifts the |x| → 0 singularity in (7.11) and leads to a new Hamiltonian

H =
1

2
xp2 − 2 − Ex = 0. (7.13)

The solution (7.12) is now parametrized by the fictitous time dτ through a pair of
equations

x = τ2 , t =
1

3
τ3 .

The equations of motion are, however, still singular as x→ 0:

d2x

dτ2
= − 1

2x

dx

dτ
+ xE .

Appearance of the square root in (7.12) now suggests a canonical transformation of
form

x = Q2 , p =
P

2Q
(7.14)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

H(Q,P ) =
1

8
P 2 − EQ2 = 2, (7.15)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idea is that
one seeks a higher-dimensional generalization of the “square root removal”
trick (7.14), by introducing a new vector Q with property r = |Q|2 . In this
simple 1-dimensional example the KS transformation can be implemented
by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
(7.16)

and reparametrization of time by dτ = dt/r1r2. The singular behavior in ✎ 34.1
page 600

the original momenta at r1 or r2 = 0 is again compensated by stretching
the time scale at these points. The Hamiltonian structure of the equations
of motions with respect to the new time τ is conserved, if we consider the
Hamiltonian

Hko =
1

8
(Q2

2P
2
1 +Q2

1P
2
2 ) − 2R2

12 +Q2
1Q

2
2(−E + 1/R2

12) = 0 (7.17)
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Figure 7.3: (a) A typical trajectory in the r1 – r2 plane; the trajectory enters here
along the r1 axis and escapes to infinity along the r2 axis; (b) Poincaré map (r2=0)
for collinear helium. Strong chaos prevails for small r1 near the nucleus.

with R12 = (Q2
1 + Q2

2)
1/2, and we will take E = −1 in what follows. The

equations of motion now have the form

Ṗ1 = 2Q1

[
2 − P 2

2

8
−Q2

2

(
1 +

Q2
2

R4
12

)]
; Q̇1 =

1

4
P1Q

2
2 (7.18)

Ṗ2 = 2Q2

[
2 − P 2

1

8
−Q2

1

(
1 +

Q2
1

R4
12

)]
; Q̇2 =

1

4
P2Q

2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 = 0 no
longer pose a problem to a numerical integration routine. The equations
(7.18) are singular only at the triple collision R12 = 0, that is, when both
electrons hit the nucleus at the same time.

The new coordinates and the Hamiltonian (7.17) are very useful when
calculating trajectories for collinear helium; they are, however, less intuitive
as a visualization of the three-body dynamics. We will therefore refer to
the old coordinates r1, r2 when discussing the dynamics and the periodic
orbits.

To summarize, we have brought a 3-body problem into a form where
the 2-body collisions have been transformed away, and the phase space
trajectories computable numerically. To appreciate the full beauty of what
has been attained, you have to fast-forward to chapter 34; we are already
“almost” ready to quantize helium by semiclassical methods.

fast track:

chapter 8, p. 107

7.4 Rectification of maps

In sect. 7.2 we had argued that nonlinear coordinate transformations
can be profitably employed to simplify the representation of a flow. We
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shall now apply the same idea to nonlinear maps, and determine a smooth
nonlinear change of coordinates that flattens out the vicinity of a fixed point
and makes the map linear in an open neighborhood. In its simplest form
the idea can be implemented only for an isolated nondegenerate fixed point
(otherwise are needed in the normal form expansion around the point),
and only in a finite neigborhood of a point, as the conjugating function in
general has a finite radius of convergence. In sect. 8.4 we will extend the
method to periodic orbits.

7.4.1 Rectification of a fixed point in one dimension

✎ 7.2
page 106Consider a 1-dimensional map xn+1 = f(xn) with a fixed point at x = 0,

with stability Λ = f ′(0). If |Λ| 6= 1, one can determine term-by-term the
power series for a smooth conjugation h(x) centered at the fixed point,
h(0) = 0, that flattens out the neighborhood of the fixed point

f(x) = h−1(Λh(x)) (7.19)

and replaces the nonlinear map f(x) by a linear map yn+1 = Λyn.

To compute the conjugation h we use the functional equation h−1(Λx) =
f(h−1(x)) and the expansions

f(x) = Λx+ x2f2 + x3f3 + . . .

h−1(x) = x+ x2h2 + x3h3 + . . . . (7.20)

Equating the coefficients of xk on both sides of the functional equation
yields hk order by order as a function of f2, f3, . . .. If h(x) is a conjugation,
so is any scaling h(bx) of the function for a real number b. Hence the value
of h′(0) is not determined by the functional equation (7.19); it is convenient
to set h′(0) = 1.

The algebra is not particularly illuminating and best left to computers.
In any case, for the time being we will not use much beyond the first, linear
term in these expansions.

Here we assume Λ 6= 1. If the fixed point has first k−1 derivatives
vanishing, the conjugacy is to the kth normal form.

In several dimensions, Λ is replaced by the Jacobian matrix, and one
has to check that the eigenvalues M are non-resonant, that is, there is no
integer linear relation between the stability exponents (8.4).

Commentary

Remark 7.1 Rectification of flows. See Section 2.2.5 of ref. [7.12] for a peda-

gogical introduction to smooth coordinate reparametrizations. Explicit examples
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of transformations into cannonical coordinates for a group of scalings and a group

of rotations are worked out.

Remark 7.2 Rectification of maps. The methods outlined above are standard
in the analysis of fixed points and construction of normal forms for bifurcations,
see for example ref. [1.15, 7.2, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 3.8]. The geometry
underlying such methods is pretty, and we enjoyed reading, for example, Percival
and Richards [7.10], chaps. 2 and 4 of Ozorio de Almeida’s monograph [7.11], and,
as always, Arnol’d [7.1].

Recursive formulas for evaluation of derivatives needed to evaluate (7.20) are

given, for example, in Appendix A of ref. [9.5].

Résumé

Dynamics (M, f) is invariant under the group of all smooth conjugacies

(M, f) → (M′, g) = (h(M), h ◦ f ◦ h−1) .

This invariance can be used to (i) find a simplified representation for the
flow and (ii) identify a set of invariants, numbers computed within a par-
ticular choice of (M, f), but invariant under all M → h(M) smooth con-
jugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system
of D degrees of freedom is fully foliated by D-tori. In the same spirit, for
a uniformly hyperbolic, chaotic dynamical system one would like to change
into a coordinate frame where the stable/unstable manifolds form a set of
transversally interesecting hyper-planes, with the flow everywhere locally
hyperbolic. That cannot be achieved in general: Fully globally integrable
and fully globally chaotic flows are a very small subset of all possible flows,
a “set of measure zero” in the world of all dynamical systems.

What we really care about is developping invariant notions of what a
given dynamical system is. The totality of smooth one-to-one nonlinear co-
ordinate transformations h which map all trajectories of a given dynamical
system (M, f t) onto all trajectories of dynamical systems (M′, gt) gives us
a huge equivalence class, much larger than the equivalence classes familiar
from the theory of linear transformations, such as the rotation group O(d)
or the Galilean group of all rotations and translations in R

d. In the theory
of Lie groups, the full invariant specification of an object is given by a finite
set of Casimir invariants. What a good full set of invariants for a group of
general nonlinear smooth conjugacies might be is not known, but the set of
all periodic orbits and their stability eigenvalues will turn out to be a good
start.
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Exercises

Exercise 7.1 Coordinate transformations. Changing coordinates is con-
ceptually simple, but can become confusing when carried out in detail. The difficulty
arises from confusing functional relationships, such as x(t) = h−1(y(t)) with numer-
ical relationships, such as w(y) = h′(x)v(x). Working through an example will clear
this up.

(a) The differential equation in the M space is ẋ = {2x1, x2} and the change of
coordinates from M to M′ is h(x1, x2) = {2x1 + x2, x1 − x2}. Solve for x(t).
Find h−1.

(b) Show that in the transformed space M′, the differential equation is

d

dt

[
y1
y2

]
=

1

3

[
5y1 + 2y2
y1 + 4y2

]
. (7.21)

Solve this system. Does it match the solution in the M space?

Exercise 7.2 Linearization for maps. Let f : C → C be a map from the
complex numbers into themselves, with a fixed point at the origin and analytic there.
By manipulating power series, find the first few terms of the map h that conjugates f
to αz, that is,

f(z) = h−1(αh(z)) .

There are conditions on the derivative of f at the origin to assure that the conjugation
is always possible. Can you formulate these conditions by examining the series?

(difficulty: medium)
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Chapter 8

Cycle stability

Topological features of a dynamical system – singularities, periodic orbits,
and the ways in which the orbits intertwine – are invariant under a general
continuous change of coordinates. Surprisingly, there exist quantities that
depend on the notion of metric distance between points, but nevertheless
do not change value under a smooth change of coordinates. Local quantities
such as the eigenvalues of equilibria and periodic orbits, and global quan-
tities such as Lyapunov exponents, metric entropy, and fractal dimensions
are examples of properties of dynamical systems independent of coordinate
choice.

We now turn to the first, local class of such invariants, linear stability
of periodic orbits of flows and maps. This will give us metric information
about local dynamics. If you already know that the eigenvalues of periodic
orbits are invariants of a flow, you can skip this chapter.

fast track:

chapter 9, p. 119

8.1 Stability of periodic orbits

As noted on page 34, a trajectory can be stationary, periodic or aperiodic.
For chaotic systems almost all trajectories are aperiodic – nevertheless,
stationary and periodic orbits will turn out to be the key to unraveling
chaotic dynamics. Here we note a few of the properties that makes them
so precious to a theorist.

An obvious virtue of periodic orbits is that they are topological invari-
ants: a fixed point remains a fixed point for any choice of coordinates,
and similarly a periodic orbit remains periodic in any representation of the
dynamics. Any re-parametrization of a dynamical system that preserves
its topology has to preserve topological relations between periodic orbits,
such as their relative inter-windings and knots. So the mere existence of
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Figure 8.1: For a prime cycle p, fundamen-
tal matrix Jp returns an infinitesimal spherical
neighborhood of x0 ∈ p stretched into an el-
lipsoid, with overlap ratio along the eigenvec-
tor ei of Jp(x) given by the eigenvalue Λp,i.
These ratios are invariant under smooth non-
linear reparametrizations of phase space coor-
dinates, and are intrinsic property of cycle p.
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periodic orbits suffices to partially organize the spatial layout of a non–
wandering set. No less important, as we shall now show, is the fact that
cycle eigenvalues are metric invariants: they determine the relative sizes of
neighborhoods in a non–wandering set.

To prove this, we start by noting that due to the multiplicative structure
(4.31) of fundamental matrices, the fundamental matrix for the rth repeat
of a prime cycle p of period Tp is

JrTp(x) = JTp(f (r−1)Tp(x)) · · · JTp(fTp(x))JTp(x) = (Jp(x))
r , (8.1)

where Jp(x) = JTp(x) is the fundamental matrix for a single traversal of
the prime cycle p, x ∈ p is any point on the cycle, and f rTp(x) = x as f t(x)
returns to x every multiple of the period Tp. Hence, it suffices to restrict
our considerations to the stability of prime cycles.

8.1.1 Fundamental matrix eigenvalues and exponents

We sort the Floquet multipliers Λp,1, Λp,2, . . ., Λp,d of the [d×d] fundamental
matrix Jp evaluated on the p-cycle into sets {e,m, c}

expanding: {Λp}e = {Λp,j : |Λp,j| > 1}
marginal: {Λp}m = {Λp,j : |Λp,j| = 1} (8.2)

contracting: {Λp}c = {Λp,j : |Λp,j| < 1} .

and denote by Λp (no jth eigenvalue index) the product of expanding eigen-
values

Λp =
∏

e

Λp,e . (8.3)

As Jp is a real matrix, complex eigenvalues always come in complex con-
jugate pairs, Λp,i+1 = Λ∗

p,i, so the product of expanding eigenvalues Λp is
always real.

invariants - 3aug2005 ChaosBook.org/version11.8, Aug 30 2006



8.1. STABILITY OF PERIODIC ORBITS 109

Cycle Floquet exponents are the stretching/contraction rates per unit
time

λp,i =
1

Tp
ln |Λp,i| . (8.4)

This definition is motivated by the form of the Floquet exponents for the
linear dynamical systems, for example (4.15), as well as the fact that ex-
ponents so defined can be interpreted as Lyapunov exponents (10.32) eval-
uated on the prime cycle p. As in the three cases of (8.2), we sort the
Floquet exponents into three sets

☞ sect. 10.3

expanding: {λp}e = {λp,i : λp,i > 0}
marginal: {λp}m = {λp,i : λp,i = 0}

contracting: {λp}c = {λp,i : λp,i < 0} . (8.5)

A periodic orbit p of a d-dimensional flow or a map is stable if all its
Floquet exponents (other than the vanishing longitudinal exponent, to be
explained in sect. 8.2.1 below) are strictly negative, |λp,i| < 0. The region of
system parameter values for which a periodic orbit p is stable is called the
stability window of p. The set Mp of initial points that are asymptotically
attracted to p as t → +∞ (for a fixed set of system parameter values) is
called the basin of attraction of p.

If all Floquet exponents (other than the vanishing longitudinal expo-
nent) of all periodic orbits of a flow are strictly bounded away from zero,
|λi| ≥ λmin > 0, the flow is said to be hyperbolic. Otherwise the flow is
said to be nonhyperbolic. In particular, if all |λi| = 0, the orbit is said to
be elliptic. Such orbits proliferate in Hamiltonian flows.

☞ sect. 5.3

We often do care about the sign of Λp,i and, if Λp,i is complex, its phase

Λp,j = ±eTp(λp,j±iθp,j) . (8.6)

☞ sect. 5.2

Keeping track of this by case-by-case enumeration is a self-inflicted, unnec-
essary nuisance, followed in much of the literature. To avoid this, almost all
of our formulas will be stated in terms of the Floquet multipliers Λj rather
than in the terms of the overall signs, Floquet exponents λj and phases θj.

Example 8.1 1-dimensional maps: The simplest example of cycle stability is
afforded by 1-dimensional maps. The stability of a prime cycle p follows from the chain
rule (4.34) for stability of the npth iterate of the map

Λp =
d

dx0
fnp(x0) =

np−1∏

m=0

f ′(xm) , xm = fm(x0) . (8.7)
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110 CHAPTER 8. CYCLE STABILITY

Λp is a property of the cycle, not the initial point, as taking any periodic point in the
p cycle as the initial point yields the same result.

A critical point xc is a value of x for which the mapping f(x) has vanishing
derivative, f ′(xc) = 0. For future reference we note that a periodic orbit of a 1-
dimensional map is stable if

|Λp| =
∣∣f ′(xnp)f ′(xnp−1) · · · f ′(x2)f

′(x1)
∣∣ < 1 ,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope of the nth iterate fn(x) evaluated on

a periodic point x (fixed point of the nth iterate) lies between −1 and 1. If |Λp| > 1,
p-cycle is unstable.

Example 8.2 Stability of cycles for maps: No matter what method we had
used to determine the unstable cycles, the theory to be developed here requires that
their Floquet multipliers be evaluated as well. For maps a fundamental matrix is easily
evaluated by picking any cycle point as a starting point, running once around a prime
cycle, and multiplying the individual cycle point fundamental matrices according to
(4.35). For example, the fundamental matrix Mp for a Hénon map (3.15) prime cycle
p of length np is given by (4.36),

Mp(x0) =

1∏

m=n

(
−2axm b

1 0

)
, xm ∈ p ,

and the fundamental matrix Mp for a 2-dimensional billiard prime cycle p of length np

Mp = (−1)np

1∏

k=np

(
1 τk
0 1

)(
1 0
rk 1

)

follows from (6.11).

8.2 Cycle stabilities are cycle invariants

The 1-dimensional map cycle stability Λp is a product of derivatives over
all points around the cycle, and is therefore independent of which periodic
point is chosen as the initial one. In higher dimensions the form of the
fundamental matrix Jp(x0) in (8.1) does depend on the choice of coordinates
and the initial point x0 ∈ p. Nevertheless, as we shall now show, the
cycle stability eigenvalues are intrinsic property of a cycle also for multi-
dimensional flows. Consider the ith eigenvalue, eigenvector pair (Λp,i, ei)
computed from Jp evaluated at a cycle point,

Jp(x)ei(x) = Λp,iei(x) , x ∈ p . (8.8)

Consider another point on the cycle at time t later, x′ = f t(x) whose
fundamental matrix is Jp(x

′). By the group property (4.31), JTp+t = Jt+Tp ,
and the fundamental matrix at x′ can be written either as

JTp+t(x) = JTp(x′)Jt(x) = Jp(x
′)Jt(x) , or Jt+Tp(x) = Jt(x)Jp(x) .
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8.2. CYCLE STABILITIES ARE CYCLE INVARIANTS 111

Multiplying (8.8) by Jt(x), we find that the fundamental matrix evaluated
at x′ has the same eigenvalue,

Jp(x
′)ei(x

′) = Λp,iei(x
′) , ei(x

′) = Jt(x)ei(x) , (8.9)

but with the eigenvector ei transported along the flow x → x′ to ei(x
′) =

Jt(x)ei(x). Hence, Jp evaluated anywhere along the cycle has the same set
of Floquet multipliers {Λp,1,Λp,2, · · ·Λp,d}. As quantities such as trJp(x),
detJp(x) depend only on the eigenvalues of Jp(x) and not on the starting
point x, in expressions such as det

(
1− Mr

p(x)
)

we may omit reference to
any particular cycle point x:

det
(
1− Mr

p

)
= det

(
1 −Mr

p(x)
)

for any x ∈ p . (8.10)

We postpone the proof that the cycle Floquet multipliers are smooth con-
jugacy invariants of the flow to sect. 8.5.

8.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either an invariance of the
flow (which one should immediately exploit to simplify the problem), or a
non-hyperbolicity of a flow (a source of much pain, hard to avoid).

☞ chapter 21

✎ 8.3
page 118Example 8.3 A periodic orbit of a continuous flow has a marginal eigenvalue:

As Jt(x) transports the velocity field v(x) by (4.7), after a complete period

Jp(x)v(x) = v(x) , (8.11)

so a periodic orbit of a flow always has an eigenvector e‖(x) = v(x) parallel to the local
velocity field with the unit eigenvalue

Λp,‖ = 1 . (8.12)

✎ 7.2
page 106The continuous invariance that gives rise to this marginal eigenvalues is the invariance

of a cycle under a translation of its points along the cycle: two points on the cycle
(see figure 4.2) initially distance δx apart, x′(0) − x(0) = δx(0), are separated by
the exactly same δx after a full period Tp. As we shall see in sect. 8.3, this marginal
stability direction can be eliminated by cutting the cycle by a Poincaré section and
eliminating the continuous flow fundamental matrix in favor of the fundamental matrix
of the Poincaré return map.

If the flow is governed by a time-independent Hamiltonian, the energy is
conserved, and that leads to an additional marginal eigenvalue (remember,
by symplectic invariance (5.17) real eigenvalues come in pairs).
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112 CHAPTER 8. CYCLE STABILITY

8.3 Stability of Poincaré map cycles

(R. Paškauskas and P. Cvitanović)

If a continuous flow periodic orbit p pierces the Poincaré section P
once, the section point is a fixed point of the Poincaré return map P with
stability (4.40)

Ĵij =

(
δik −

vi Uk
(v · U)

)
Jkj , (8.13)

with all primes dropped, as the initial and the final points coincide, x′ =
fTp(x) = x. If the periodic orbit p pierces the set of Poincaré sections P n
times, the same observation applies to the nth iterate of P .

We have already established in (4.41) that the velocity v(x) is a zero-
eigenvector of the Poincaré section fundamental matrix, Ĵv = 0. Consider
next (Λp,α, eα), the full phase space αth (eigenvalue, eigenvector) pair (8.8),
evaluated at a cycle point on a Poincaré section,

J(x)eα(x) = Λαeα(x) , x ∈ P . (8.14)

Multiplying (8.13) by eα and inserting (8.14), we find that the Poincaré
section fundamental matrix Ĵ has the same eigenvalue as the full phase
space fundamental matrix,

Ĵ(x)êα(x) = Λαêα(x) , x ∈ P . (8.15)

where êα is a projection of the full phase space eigenvector onto the Poincaré
section:

(êα)i =

(
δik −

vi Uk
(v · U)

)
(eα)k . (8.16)

Hence, Ĵp evaluated on any Poincaré section point along the cycle p has
the same set of stability eigenvalues {Λp,1,Λp,2, · · ·Λp,d} as the full phase
space fundamental matrix Jp.

8.4 Rectification of a 1-dimensional periodic orbit

In sect. 7.4.1 we have constructed the conjugation function for a fixed
point. Here we turn to the problem of constructing it for periodic orbits.
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Each point around the cycle has a differently distorted neighborhood, with
differing second and higher order derivatives, so we need to compute a
different conjugation function ha at each cycle point xa. We expand the
map f around each cycle point along the cycle,

ya(φ) = fa(φ) − xa+1 = φfa,1 + φ2fa,2 + . . .

where xa is a point on the cycle, fa(φ) = f(xa+φ) is centered on the periodic
orbit, and the index k in fa,k refers to the kth order in the expansion (7.20).

For a periodic orbit the conjugation formula (7.19) generalizes to

fa(φ) = h−1
a+1(f

′
a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functions ha are obtained in the same way
as before, by equating coefficients of the expansion (7.20), and assuming
that the cycle stability Λ =

∏n−1
a=0 f

′(xa) is not marginal, |Λ| 6= 1. The
explicit expressions for ha in terms of f are obtained by iterating around
the whole cycle,

fn(xa + φ) = h−1
a (Λha(φ)) + xa . (8.17)

evaluated at each cycle point a. Again we have the freedom to set h′a(0) = 1
☞ remark 7.2

for all a.

8.4.1 Repeats of cycles

We have traded in our initial nonlinear map f for a (locally) linear map
Λy and an equally complicated conjugation function h. What is gained
by rewriting the map f in terms of the conjugacy function h? Once the
neighborhood of a fixed point is linearized, the repeats of it are trivialized;
from the conjugation formula (7.20) one can compute the derivatives of a
function composed with itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for arbitrary repeats; the
answer will depend on the conjugacy function h(x) computed for a single
repeat, and all the dependence on the repeat number will be carried by
factors polynomial in Λr, a considerable simplification. The beauty of the
idea is difficult to gauge at this stage - an appreciation only sets in when
one starts computing perturbative corrections, be it in celestial mechanics
(where the method was born), be it the quantum or stochastic corrections
to “semiclassical” approximations.
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8.5 Smooth conjugacies and cycle stability

In sect. 8.2 we have established that for a given flow the cycle stability eigen-
values are intrinsic to a given cycle, independent of the staring point along
the cycle. Now we can prove a much stronger statement; cycle stability
eigenvalues are metric invariants of the flow, the same in any representa-
tion of the dynamical system.

That the cycle stability eigenvalues are an invariant property of the
given dynamical system follows from elementary considerations of sect. 7.1:
If the same dynamics is given by a map f in x coordinates, and a map g in
the y = h(x) coordinates, then f and g (or any other good representation)
are related by (7.2), a reparametrization and a coordinate transformation
g = h ◦ f ◦ h−1. As both f and g are arbitrary representations of the
dynamical system, the explicit form of the conjugacy h is of no interest,
only the properties invariant under any transformation h are of general
import. Furthermore, a good representation should not mutilate the data;
h must be a smooth conjugacy which maps nearby cycle points of f into
nearby cycle points of g. This smoothness guarantees that the cycles are
not only topological invariants, but that their linearized neighborhoods are
also metrically invariant. For a fixed point f(x) = x of a 1-dimensional
map this follows from the chain rule for derivatives,

g′(y) = h′(f ◦ h−1(y))f ′(h−1(y))
1

h′(x)

= h′(x)f ′(x)
1

h′(x)
= f ′(x) , (8.18)

and the generalization to the stability eigenvalues of periodic orbits of d-
dimensional flows is immediate.

As stability of a flow can always be rewritten as stability of a Poincaré
section return map, we find that the stability eigenvalues of any cycle, for a
flow or a map in arbitrary dimension, is a metric invariant of the dynamical
system.✎ 7.2

page 106

in depth:

appendix C.1, p. 655

8.6 Neighborhood of a cycle

☞ sect. 10.3

☞ remark 10.3 The Jacobian of the flow (or the sum of stability exponents) is easily eval-
uated.

Consider detJt(x0) =
∏d
i=1 Λi(x0, t), the product of the stability eigen-

values. We shall refer to this determinant as the Jacobian of the flow.✎ 4.1
page 72

invariants - 3aug2005 ChaosBook.org/version11.8, Aug 30 2006



8.6. NEIGHBORHOOD OF A CYCLE 115

By means of the time-ordered product (4.29) and the identity ln det M =
tr lnM the Jacobian is given by

detJt(x0) = exp

[∫ t

0
dτ trA(x(τ))

]
= exp

[∫ t

0
dτ ∂ivi(x(τ))

]
. (8.19)

(Here, as elsewhere in this book, a repeated index implies summation.) As
the divergence ∂ivi is a scalar quantity, the integral in the exponent needs
no time ordering. All we need to do is evaluate the time average

〈∂ivi〉t =
1

t

∫ t

0
dτ

d∑

i=1

Aii(x(τ))

=
1

t
ln

∣∣∣∣∣

d∏

i=1

Λi(x0, t)

∣∣∣∣∣ =
d∑

i=1

λi(x0, t) (8.20)

along the trajectory. If the flow is not singular (for example, the trajectory
does not run head-on into the Coulomb 1/r singularity), the stability matrix
elements are bounded everywhere, |Aij| < M , and so is the trace

∑
iAii.

The time integral in (8.20) grows at most linearly with t, hence 〈∂ivi〉t is
bounded for all times, and numerical estimates of the t→ ∞ limit of 〈∂ivi〉
are not marred by any blowups.

Even if we were to insist on extracting 〈∂ivi〉 from (4.29) by first mul-
tiplying stability matrices along the flow, and then taking the logarithm,
we can avoid exponential blowups in Jt by using the multiplicative struc-
ture (4.31), detJt

′+t(x0) = detJt
′
(x′) detJt(x0) to restart with J0(x′) = 1

whenever the eigenvalues of Jt(x0) start getting out of hand. In numerical
☞ sect. 10.3

evaluations of Lyapunov exponents, λi = limt→∞ λi(x0, t), the sum rule
(8.20) can serve as a helpful check on the accuracy of the computation.

The divergence ∂ivi is an important characterization of the flow - it
describes the behavior of a phase space volume in the infinitesimal neigh-
borhood of the trajectory. If ∂ivi < 0, the flow is locally contracting, and the
trajectory might be falling into an attractor. If ∂ivi = 0, the flow preserves
phase space volume and det Jt = 1. A flow with this property is called in-
compressible. An important class of such flows are the Hamiltonian flows
considered in sect. 5.2.

But before we can get to that, Henri Roux, the perfect student always
on alert, pipes up. He does not like our definition of the fundamental matrix
in terms of the time-ordered exponential (4.30). Depending on the signs

☞ sect. 27.2
of stability eigenvalues, the left hand side of (8.19) can be either positive
or negative. But the right hand side is an exponential of a real number,
and that can only be positive. What gives? As we shall see much later
on in this text, in discussion of topological indices arising in semiclassical
quantization, this is not at all a dumb question.

in depth:

appendix K.1, p. 723
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8.6.1 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood
of x(t), and that is why we care about the stability eigenvalues, and es-
pecially the unstable (expanding) ones. Nearby points aligned along the
stable (contracting) directions remain in the neighborhood of the trajec-
tory x(t) = f t(x0); the ones to keep an eye on are the points which
leave the neighborhood along the unstable directions. The sub-volume
|Mi| =

∏e
i ∆xi of the set of points which get no further away from f t(x0)

than L, the typical size of the system, is fixed by the condition that
∆xiΛi = O(L) in each expanding direction i. Hence the neighborhood
size scales as ∝ 1/|Λp| where Λp is the product of expanding eigenvalues
(8.3) only; contracting ones play a secondary role. So secondary that even
infinitely many of them will not matter.

So the physically important information is carried by the expanding
sub-volume, not the total volume computed so easily in (8.20). That is
also the reason why the dissipative and the Hamiltonian chaotic flows are
much more alike than one would have naively expected for “compressible”
vs. “incompressible” flows. In hyperbolic systems what matters are the
expanding directions. Whether the contracting eigenvalues are inverses of
the expanding ones or not is of secondary importance. As long as the
number of unstable directions is finite, the same theory applies both to the
finite-dimensional ODEs and infinite-dimensional PDEs.

Résumé

Periodic orbits play a central role in any invariant characterization of the
dynamics, because (a) their existence and inter-relations are a topological,
coordinate-independent property of the dynamics, and (b) their stability
eigenvalues form an infinite set of metric invariants: The stability eigenval-
ues of a periodic orbit remain invariant under any smooth nonlinear change
of coordinates f → h ◦ f ◦ h−1 .

We shall show in chapter 11 that extending their local stability eigendi-
rections into stable and unstable manifolds yields important global infor-
mation about the topological organization of phase space.

The physically important information is carried by the unstable man-
ifold, and the expanding sub-volume characterized by the product of ex-
panding eigenvalues of Jp. In hyperbolic systems what matters are the
expanding directions. As long as the number of unstable directions is fi-
nite, the theory can be applied to flows of arbitrarily high dimension.
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Exercises

Exercise 8.1 Fundamental domain fixed points. Use the formula (6.11)
for billiard fundamental matrix to compute the periods Tp and the expanding
eigenvalues Λp of the fundamental domain 0 (the 2-cycle of the complete 3-disk
space) and 1 (the 3-cycle of the complete 3-disk space) fixed points:

Tp Λp

0: R− 2 R− 1 +R
√

1 − 2/R

1: R−
√

3 − 2R√
3

+ 1 − 2R√
3

√
1 −

√
3/R

(8.21)

We have set the disk radius to a = 1.

Exercise 8.2 Fundamental domain 2-cycle. Verify that for the 10-cycle the
cycle length and the trace of the fundamental matrix are given by

L10 = 2

√
R2 −

√
3R+ 1 − 2,

trJ10 = 2L10 + 2 +
1

2

L10(L10 + 2)2√
3R/2 − 1

. (8.22)

The 10-cycle is drawn in figure 11.6. The unstable eigenvalue Λ10 follows from (4.19).

Exercise 8.3 A limit cycle with analytic stability exponent There are only
two examples of flows for which the stability eigenvalues can be evaluated analytically.
One example is the 2-d flow

q̇ = p+ q(1 − q2 − p2) , ṗ = −q + p(1 − q2 − p2) . (8.23)

Determine all periodic solutions of this flow, and determine analytically their stability
exponents. Hint: go to polar coordinates (q, p) = (r cos θ, r sin θ).

G. Bard Ermentrout
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Chapter 9

Transporting densities

Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

W. Shakespeare: The Winter’s Tale

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2, 3, 5 and 6 we learned how to track an individual trajectory,
and saw that such a trajectory can be very complicated. In chapter 4 we
studied a small neighborhood of a trajectory and learned that such neigh-
borhood can grow exponentially with time, making the concept of tracking
an individual trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly
convoluted, the density of these points might evolve in a manner that is
relatively smooth. The evolution of the density of representative points is
for this reason (and other that will emerge in due course) of great interest.
So are the behaviors of other properties carried by the evolving swarm of
representative points.

We shall now show that the global evolution of the density of represen-
tative points is conveniently formulated in terms of evolution operators.

9.1 Measures

Do I then measure, O my God, and know not what I
measure?

St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system
is that of measure, which we denote by dµ(x) = ρ(x)dx. An intuitive way
to define and construct a physically meaningful measure is by a process
of coarse-graining. Consider a sequence 1, 2, ..., n, ... of increasingly
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(a)

0

1

2

(b)

01

12

22

02

00

20

21

11
10

Figure 9.1: (a) First level of partitioning: A coarse partition of M into regions M0,
M1, and M2. (b) n = 2 level of partitioning: A refinement of the above partition,
with each region Mi subdivided into Mi0, Mi1, and Mi2.

refined partitions of phase space, figure 9.1, into regions Mi defined by the
characteristic function

χi(x) =

{
1 if x ∈ Mi ,
0 otherwise .

(9.1)

A coarse-grained measure is obtained by assigning the “mass”, or the frac-
tion of trajectories contained in the ith region Mi ⊂ M at the nth level of
partitioning of the phase space:

∆µi =

∫

M
dµ(x)χi(x) =

∫

Mi

dµ(x) =

∫

Mi

dx ρ(x) . (9.2)

The function ρ(x) = ρ(x, t) denotes the density of representative points in
phase space at time t. This density can be (and in chaotic dynamics, often
is) an arbitrarily ugly function, and it may display remarkable singularities;
for instance, there may exist directions along which the measure is singular
with respect to the Lebesgue measure. As our intent is to sprinkle phase
space with a finite number of initial points (repeat an experiment a finite
number of times), we shall assume that the measure can be normalized

(n)∑

i

∆µi = 1 , (9.3)

where the sum is over subregions i at the nth level of partitioning. The
infinitesimal measure dxρ(x) can be thought of as an infinitely refined par-
tition limit of ∆µi = |Mi|ρ(xi) , xi ∈ Mi, with normalization

∫

M
dx ρ(x) = 1 . (9.4)

So far, any arbitrary sequence of partitions will do. What are intelligent
ways of partitioning phase space? We postpone the answer to chapter 11,
after we have developed some intuition about how the dynamics transports
densities.

☞ chapter 11
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9.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with
time. Consider a swarm of representative points making up the measure
contained in a region Mi at time t = 0. As the flow evolves, this region
is carried into f t(Mi), as in figure 2.1(b). No trajectory is created or
destroyed, so the conservation of representative points requires that

∫

ft(Mi)
dx ρ(x, t) =

∫

Mi

dx0 ρ(x0, 0) .

If the flow is invertible and the transformation x0 = f−t(x) is single-valued,
we can transform the integration variable in the expression on the left to

∫

Mi

dx0 ρ(f
t(x0), t)

∣∣detMt(x0)
∣∣ .

We conclude that the density changes with time as the inverse of the Jaco-
bian (8.19)

ρ(x, t) =
ρ(x0, 0)

|detMt(x0)|
, x = f t(x0) , (9.5)

which makes sense: the density varies inversely to the infinitesimal volume
occupied by the trajectories of the flow.

The manner in which a flow transports densities may be recast into the
language of operators, by writing

ρ(x, t) = Ltρ(x) =

∫

M
dx0 δ

(
x− f t(x0)

)
ρ(x0, 0) . (9.6)

Let us check this formula. Integrating Dirac delta functions is easy:
∫
M dx δ(x) =

1 if 0 ∈ M, zero otherwise. The integral over a one-dimensional Dirac delta
function picks up the Jacobian of its argument evaluated at all of its zeros:

∫
dx δ(h(x)) =

∑

{x:h(x)=0}

1

|h′(x)| , (9.7)

and in d dimensions the denominator is replaced by ✎ 9.1
page 133∫

dx δ(h(x)) =
∑

{x:h(x)=0}

1∣∣∣det ∂h(x)
∂x

∣∣∣
. (9.8)
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Figure 9.2: A piecewise-linear skew “Ulam
tent” map (9.11) (Λ0 = 4/3, Λ1 = −4). 0.2 0.4 0.6 0.8 1
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Now you can check that (9.6) is just a rewrite of (9.5): ✎ 9.2
page 133

Ltρ(x) =
∑

x0=f−t(x)

ρ(x0)

|f t′(x0)|
(1-dimensional)

=
∑

x0=f−t(x)

ρ(x0)

|detMt(x0)|
(d-dimensional) . (9.9)

For a deterministic, invertible flow x has only one preimage x0; allowing
for multiple preimages also takes account of noninvertible mappings such
as the “stretch & fold” maps of the interval, to be discussed briefly in the
next example, and in more detail in sect. 11.3.1.

We shall refer to the kernel of (9.6) as the Perron-Frobenius operator:

✎ 9.3
page 133

Lt(x, y) = δ
(
x− f t(y)

)
. (9.10)

☞ example 16.7

If you do not like the word “kernel” you might prefer to think of Lt(x, y)
as a matrix with indices x, y. The Perron-Frobenius operator assembles

☞ remark 15.4
the density ρ(x, t) at time t by going back in time to the density ρ(x0, 0)
at time t = 0.

in depth:

appendix D, p. 659

Example 9.1 Perron-Frobenius operator for a piecewise-linear map: Assume
the expanding 1-d map f(x) of figure 9.2, a piecewise-linear 2–branch map with slopes
Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 :✎ 9.7

page 135

f(x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (1 − x) , x ∈ M1 = (1/Λ0, 1] .
(9.11)

Both f(M0) and f(M1) map onto the entire unit interval M = [0, 1]. Assume a
piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0

ρ1 if x ∈ M1
. (9.12)
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As can be easily checked using (9.9), the Perron-Frobenius operator acts on this piece-
wise constant function as a [2×2] “transfer” matrix with matrix elements✎ 9.1

page 133

✎ 9.5
page 134

(
ρ0

ρ1

)
→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

)(
ρ0

ρ1

)
, (9.13)

stretching both ρ0 and ρ1 over the whole unit interval Λ. In this example the density is
constant after one iteration, so L has only a unit eigenvalue es0 = 1/|Λ0| + 1/|Λ1| =
1, with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are,
respectively, the fractions of phase space taken up by the |M0|, |M1| intervals. This
simple explicit matrix representation of the Perron-Frobenius operator is a consequence
of the piecewise linearity of f , and the restriction of the densities ρ to the space of
piecewise constant functions. The example gives a flavor of the enterprise upon which
we are about to embark in this book, but the full story is much subtler: in general, there
will exist no such finite-dimensional representation for the Perron-Frobenius operator.
(Continued in example 10.1.)

To a student with a practical bent the example suggests a strategy for
constructing evolution operators for smooth maps, as limits of partitions
of phase space into regions Mi, with a piecewise-linear approximations fi
to the dynamics in each region, but that would be too naive; much of
the physically interesting spectrum would be missed. As we shall see, the

☞ chapter 16
choice of function space for ρ is crucial, and the physically motivated choice
is a space of smooth functions, rather than the space of piecewise constant
functions.

9.3 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (9.14)

Conversely, if such a density exists, the transformation f t(x) is said to
be measure-preserving. As we are given deterministic dynamics and our
goal is the computation of asymptotic averages of observables, our task
is to identify interesting invariant measures for a given f t(x). Invariant
measures remain unaffected by dynamics, so they are fixed points (in the
infinite-dimensional function space of ρ densities) of the Perron-Frobenius
operator (9.10), with the unit eigenvalue: ✎ 9.3

page 133

Ltρ(x) =

∫

M
dy δ(x− f t(y))ρ(y) = ρ(x). (9.15)

In general, depending on the choice of f t(x) and the function space for ρ(x),
there may be no, one, or many solutions of the eigenfunction condition
(9.15). For instance, a singular measure dµ(x) = δ(x− xq)dx concentrated
on an equilibrium point xq = f t(xq), or any linear combination of such
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measures, each concentrated on a different equilibrium point, is stationary.
There are thus infinitely many stationary measures that can be constructed.
Almost all of them are unnatural in the sense that the slightest perturbation
will destroy them.

From a physical point of view, there is no way to prepare initial densities
which are singular, so it makes sense to concentrate on measures which
are limits of transformations experienced by an initial smooth distribution
ρ(x) under the action of f , rather than as a limit computed from a single
trajectory,

ρ0(x) = lim
t→∞

∫

M
dy δ(x− f t(y))ρ(y, 0) ,

∫

M
dy ρ(y, 0) = 1 . (9.16)

Intuitively, the “natural” measure (or measures) should be the least sensi-
tive to facts of life, such as noise (no matter how weak).

9.3.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory
gives us useful insight into the foundation of statis-
tical mechanics?
Yang: I don’t think so.

Kerson Huang, C.N. Yang interview

The natural or equilibrium measure can be defined as the limit

ρx0
(y) =





limt→∞
1
t

∫ t
0 dτ δ(y − f τ (x0)) flows

limn→∞
1
n

∑n−1
k=0 δ

(
y − fk(x0)

)
maps ,

(9.17)

✎ 9.8
page 135

✎ 9.9
page 135

where x0 is a generic inital point. Staring at an average over infinitely
many Dirac deltas is not a prospect we cherish. Generated by the action of
f , the natural measure satisfies the stationarity condition (9.15) and is thus
invariant by construction. From a computational point of view, the natural
measure is the visitation frequency defined by coarse-graining, integrating
(9.17) over the Mi region

∆µi = lim
t→∞

ti
t
, (9.18)

where ti is the accumulated time that a trajectory of total duration t spends
in the Mi region, with the initial point x0 picked from some smooth density
ρ(x).

Let a = a(x) be any observable. In the mathematical literature a(x)
is a function belonging to some function space, for instance the space of
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integrable functions L1, that associates to each point in phase space a
number or a set of numbers. In physical applications the observable a(x)
is necessarily a smooth function. The observable reports on some property
of the dynamical system. Several examples will be given in sect. 10.1.

The space average of the observable a with respect to a measure ρ is
given by the d-dimensional integral over the phase space M:

〈a〉ρ =
1

|ρM|

∫

M
dx ρ(x)a(x)

|ρM| =

∫

M
dx ρ(x) = mass in M . (9.19)

For now we assume that the phase space M has a finite dimension and a
finite volume. By definition, 〈a〉ρ is a function(al) of ρ.

Inserting the right-hand-side of (9.17) into (9.19), we see that the nat-
ural measure corresponds to a time average of the observable a along a
trajectory of the initial point x0,

ax0 = lim
t→∞

1

t

∫ t

0
dτ a(f τ (x0)) . (9.20)

☞ appendix A

Analysis of the above asymptotic time limit is the central problem of
ergodic theory. The Birkhoff ergodic theorem asserts that if a natural
measure ρ exists, the limit a(x0) for the time average (9.20) exists for all
initial x0. As we shall not rely on this result in what follows we forgo
a proof here. Furthermore, if the dynamical system is ergodic, the time
average over almost any trajectory tends to the space average

lim
t→∞

1

t

∫ t

0
dτ a(f τ (x0)) = 〈a〉 (9.21)

for “almost all” initial x0. By “almost all” we mean that the time average
is independent of the initial point apart from a set of ρ-measure zero.

For future reference, we note a further property that is stronger than er-
godicity: if the space average of a product of any two variables decorrelates
with time,

lim
t→∞

〈
a(x)b(f t(x))

〉
= 〈a〉 〈b〉 , (9.22)

☞ sect. 19.4

the dynamical system is said to be mixing.

Example 9.2 The Hénon attractor natural measure: A numerical calculation
of the natural measure (9.18) for the Hénon attractor (3.15) is given by the histogram
in figure 9.3. The phase space is partitioned into many equal-size areas Mi, and the
coarse grained measure (9.18) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area Mi. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.
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Figure 9.3: Natural measure (9.18) for the
Hénon map (3.15) strange attractor at para-
meter values (a, b) = (1.4, 0.3). See figure 3.3
for a sketch of the attractor without the natural
measure binning. (Courtesy of J.-P. Eckmann) -0.4
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If an invariant measure is quite singular (for instance a Dirac δ concen-
trated on a fixed point or a cycle), its existence is most likely of limited
physical import. No smooth inital density will converge to this measure
if the dynamics is unstable. In practice the average (9.17) is problematic
and often hard to control, as generic dynamical systems are neither uni-
formly hyperbolic nor structurally stable: it is not known whether even
the simplest model of a strange attractor, the Hénon attractor, is a strange
attractor or merely a long stable cycle.✎ 10.1

page 154

9.3.2 Determinism vs. stochasticity

While dynamics can lead to very singular ρ’s, in any physical setting we
cannot do better than to measure it averaged over some region Mi; the
coarse-graining is not an approximation but a physical necessity. One is
free to think of a measure as a probability density, as long as one keeps in
mind the distinction between deterministic and stochastic flows. In deter-
ministic evolution the evolution kernels are not probabilistic; the density of
trajectories is transported deterministically. What this distinction means

☞ chapter 15
will became apparent later: for deterministic flows our trace and determi-
nant formulas will be exact, while for quantum and stochastic flows they
will only be the leading saddlepoint (stationary phase, steepest descent)
approximations.

☞ chapter 28

Clearly, while deceptively easy to define, measures spell trouble. The
good news is that if you hang on, you will never need to compute them, at
least not in this book. How so? The evolution operators to which we next
turn, and the trace and determinant formulas to which they will lead us,
will assign the correct weights to desired averages without recourse to any
explicit computation of the coarse-grained measure ∆ρi.

9.4 Density evolution for infinitesimal times

Consider the evolution of a smooth density ρ(x) = ρ(x, 0) under an infini-
tesimal step δτ , by expanding the action of Lδτ to linear order in δτ :

Lδτρ(y) =

∫

M
dx δ

(
y − f δτ (x)

)
ρ(x)
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=

∫

M
dx δ(y − x− δτv(x)) ρ(x)

=
ρ(y − δτv(y))∣∣∣det
(
1 + δτ ∂v(y)∂x

)∣∣∣
=

ρ(y) − δτ
∑d

i=1 vi(y)∂iρ(y)

1 + δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ ) = ρ(x, 0) − δτ

d∑

i=1

∂

∂xi
(vi(x)ρ(x, 0)) . (9.23)

Here we have used the infinitesimal form of the flow (2.5), the Dirac delta ✎ 4.1
page 72

Jacobian (9.9), and the ln det = tr ln relation. Moving ρ(y, 0) to the left
hand side and dividing by δτ , we discover that the rate of the deformation of
ρ under the infinitesimal action of the Perron-Frobenius operator is nothing
but the continuity equation for the density:

∂tρ+ ∂ · (ρv) = 0 . (9.24)

The family of Perron-Frobenius operators operators
{
Lt
}
t∈R+

forms a semi-

group parametrized by time

(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

From (9.23), time evolution by an infinitesimal step δτ is generated by

Aρ(x) = + lim
δτ→0+

1

δτ

(
Lδτ − I

)
ρ(x) = −∂i(vi(x)ρ(x)) . (9.25)

We shall refer to

A = −∂ · v +
d∑

i

vi(x)∂i (9.26)

as the time evolution (semigroup) generator. If the flow is finite-dimensional
and invertible, A is a generator of a full-fledged group. The left hand side
of (9.25) is the definition of time derivative, so the evolution equation for
ρ(x) is

(
∂

∂t
−A

)
ρ(x) = 0 . (9.27)

☞ appendix D.2

The finite time Perron-Frobenius operator (9.10) can be formally ex-
pressed by exponentiating the time evolution generator A as

Lt = etA . (9.28)
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The generator A is reminiscent of the generator of translations. Indeed, for
a constant velocity field dynamical evolution is nothing but a translation
by (time× velocity): ✎ 9.10

page 135

e−tv
∂

∂xa(x) = a(x− tv) . (9.29)

As we will not need to implement a computational formula for general etA in
what follows, we relegate making sense of such operators to appendix D.2.

☞ appendix D.2

9.4.1 Resolvent of L

Here we limit ourselves to a brief remark about the notion of the “spectrum”
of a linear operator.

The Perron-Frobenius operator L acts multiplicatively in time, so it
is reasonable to suppose that there exist constants M > 0, β ≥ 0 such
that ||Lt|| ≤ Metβ for all t ≥ 0. What does that mean? The operator
norm is defined in the same spirit in which one defines matrix norms (see
appendix K.2): We are assuming that no value of Ltρ(x) grows faster than
exponentially for any choice of function ρ(x), so that the fastest possible
growth can be bounded by etβ , a reasonable expectation in the light of the
simplest example studied so far, the exact escape rate (10.20). If that is

☞ appendix K.2
so, multiplying Lt by e−tβ we construct a new operator e−tβLt = et(A−β)

which decays exponentially for large t, ||et(A−β)|| ≤M . We say that e−tβLt
is an element of a bounded semigroup with generator A − βI. Given this
bound, it follows by the Laplace transform

∫ ∞

0
dt e−stLt =

1

s−A , Re s > β , (9.30)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to
☞ sect. K.2

cause separation into constituents)

∣∣∣∣
∣∣∣∣

1

s−A

∣∣∣∣
∣∣∣∣ ≤

∫ ∞

0
dt e−stMetβ =

M

s− β
.

If one is interested in the spectrum of L, as we will be, the resolvent operator
is a natural object to study. The main lesson of this brief aside is that for
continuous time flows, the Laplace transform is the tool that brings down
the generator in (9.28) into the resolvent form (9.30) and enables us to
study its spectrum.

in depth:

appendix D.2, p. 661
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9.5 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow
defined by the Hamilton’s equations of motion (5.1). A reader versed in
quantum mechanics will have observed by now that with replacement A →
− i

~
Ĥ , where Ĥ is the quantum Hamiltonian operator, (9.27) looks rather

like the time dependent Schrödinger equation, so this is probably the right
moment to figure out what all this means in the case of Hamiltonian flows.

The Hamilton’s evolution equations (5.1) for any time-independent quan-
tity Q = Q(q, p) are given by

dQ

dt
=
∂Q

∂qi

dqi
dt

+
∂Q

∂pi

dpi
dt

=
∂H

∂pi

∂Q

∂qi
− ∂Q

∂pi

∂H

∂qi
. (9.31)

As equations with this structure arise frequently for symplectic flows, it is
convenient to introduce a notation for them, the Poisson bracket

{A,B} =
∂A

∂pi

∂B

∂qi
− ∂A

∂qi

∂B

∂pi
. (9.32)

In terms of Poisson brackets the time evolution equation (9.31) takes the
compact form

dQ

dt
= {H,Q} . (9.33)

The full phase space flow velocity is ẋ = (q̇, ṗ), where the dot signifies
time derivative for fixed initial point.

The discussion of sect. 9.4 applies to any deterministic flow. If the
density itself is a material invariant, combining

∂tI + v · ∂I = 0 .

and (9.24) we conclude that ∂ivi = 0 and detMt(x0) = 1. An exam-
ple of such incompressible flow is the Hamiltonian flow of sect. 5.2. For
incompressible flows the continuity equation (9.24) becomes a statement
of conservation of the phase space volume (see sect. 5.2), or the Liouville
theorem

∂tρ+ vi∂iρ = 0 . (9.34)

Hamilton’s equations (5.1) imply that the flow is incompressible, ∂ivi =
0, so for Hamiltonian flows the equation for ρ reduces to the continuity
equation for the phase-space density:

☞ appendix D
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∂tρ+ ∂i(ρvi) = 0 . (9.35)

Consider the evolution of the phase space density ρ of an ensemble of
noninteracting particles; the particles are conserved, so

d

dt
ρ(q, p, t) =

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ(q, p, t) = 0 .

Inserting Hamilton’s equations (5.1) we obtain the Liouville equation, a
special case of (9.27):

∂

∂t
ρ(q, p, t) = −Aρ(q, p, t) = {H, ρ(q, p, t)} , (9.36)

where { , } is the Poisson bracket (9.32). The generator of the flow (9.26)
is now the generator of infinitesimal symplectic transformations,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
=
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
. (9.37)

For separable Hamiltonians of form H = p2/2m + V (q), the equations of
motion are

q̇i =
pi
m
, ṗi = −∂V (q)

∂qi
. (9.38)

and the action of the generator

A = −pi
m

∂

∂qi
+ ∂iV (q)

∂

∂pi
. (9.39)

✎ 9.11
page 135 can be interpreted as a translation (9.29) in configuration space, followed

by acceleration by force ∂V (q) in the momentum space.

This special case of the time evolution generator (9.26) for the case of
symplectic flows is called the Liouville operator. You might have encoun-
tered it in statistical mechanics, while discussing what ergodicity means
for 1023 hard balls. Here its action will be very tangible; we shall apply
the evolution operator to systems as small as 1 or 2 hard balls and to our
surprise learn that that suffices to alredy get a bit of a grip on foundations
of the classical nonequilibrium statistical mechanics.

in depth:

sect. D.2, p. 661
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Commentary

Remark 9.1 Ergodic theory: An overview of ergodic theory is outside the scope

of this book: the interested reader may find it useful to consult ref. [9.1]. The

existence of time average (9.20) is the basic result of ergodic theory, known as the

Birkhoff theorem, see for example refs. [9.1, 1.15], or the statement of theorem

7.3.1 in ref. [9.8]. The natural measure (9.18) (more carefully defined than in the

above sketch) is often referred to as the SRB or Sinai-Ruelle-Bowen measure [1.18,

1.17, 1.20].

Remark 9.2 Time evolution as a Lie group: Time evolution of sect. 9.4 is an

example of a 1-parameter Lie group. Consult, for example, chapter 2. of ref. [9.9]

for a clear and pedagogical introduction to Lie groups of transformations. For a

discussion of the bounded semigroups of page 128 see, for example, Marsden and

Hughes [9.2].

Remark 9.3 The sign convention of the Poisson bracket: The Poisson bracket is

antisymmetric in its arguments and there is a freedom to define it with either sign

convention. When such freedom exists, it is certain that both conventions are in

use and this is no exception. In some texts [1.4, 9.3] you will see the right hand

side of (9.32) defined as {B,A} so that (9.33) is dQ
dt = {Q,H}. Other equally

reputable texts [25.2] employ the convention used here. Landau and Lifshitz [9.4]

denote a Poisson bracket by [A,B], notation that we reserve here for the quantum-

mechanical commutator. As long as one is consistent, there should be no problem.

Résumé

In physically realistic settings the initial state of a system can be specified
only to a finite precision. If the dynamics is chaotic, it is not possible to
calculate accurately the long time trajectory of a given initial point. De-
pending on the desired precision, and given a deterministic law of evolution,
the state of the system can then be tracked for a finite time.

The study of long-time dynamics thus requires trading in the evolution
of a single phase space point for the evolution of a measure, or the density
of representative points in phase space, acted upon by an evolution oper-
ator. Essentially this means trading in nonlinear dynamical equations on
finite dimensional spaces x = (x1, x2 · · · xd) for linear equations on infinite
dimensional vector spaces of density functions ρ(x). The most physical
of stationary measures is the natural measure, a measure robust under
perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the no-
tion of an individual deterministic trajectory loses meaning, is much shorter
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than the observation time, the “sharp” observables are those dual to time,
the eigenvalues of evolution operators. This is very much the same situation
as in quantum mechanics; as atomic time scales are so short, what is mea-
sured is the energy, the quantum-mechanical observable dual to the time.
For long times the dynamics is described in terms of stationary measures,
that is, fixed points of certain evolution operators. Both in classical and
quantum mechanics one has a choice of implementing dynamical evolution
on densities (“Schrödinger picture”, sect. 9.4) or on observables (“Heisen-
berg picture”, sect. 10.2 and chapter 14).

In what follows we shall find the second formulation more convenient,
but the alternative is worth keeping in mind when posing and solving in-
variant density problems. However, as classical evolution operators are not
unitary, their eigenstates can be quite singular and difficult to work with.
In what follows we shall learn how to avoid dealing with these eigenstates
altogether. As a matter of fact, what follows will be a labor of radical
deconstruction; after having argued so strenuously here that only smooth
measures are “natural”, we shall merrily proceed to erect the whole edifice
of our theory on periodic orbits, that is, objects that are δ-functions in
phase space. The trick is that each comes with an interval, its neighbor-
hood – cycle points only serve to pin these intervals, just as the millimeter
marks on a measuring rod partition continuum into intervals.
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Exercises

Exercise 9.1 Integrating over Dirac delta functions. Let us verify a
few of the properties of the delta function and check (9.9), as well as the
formulas (9.7) and (9.8) to be used later.

(a) If f : R
d → R

d, show that

∫

Rd

dx δ (f(x)) =
∑

x∈f−1(0)

1

|det ∂xf |
.

(b) The delta function can be approximated by a sequence of Gaussians

∫
dx δ(x)f(x) = lim

σ→0

∫
dx

e−
x2

2σ√
2πσ

f(x) .

Use this approximation to see whether the formal expression

∫

R

dx δ(x2)

makes sense.

Exercise 9.2 Derivatives of Dirac delta functions. Consider δ(k)(x) =
∂k

∂xk δ(x) .

(a) Using integration by parts, determine the value of
∫

R

dx δ′(y) .

where y = f(x) − x.

(b)

∫
dx δ(2) (y) =

∑

{x:y(x)=0}

1

|y′|

{
3
(y′′)2

(y′)4
− y′′′

(y′)3

}
. (9.40)

(c)

∫
dx b(x)δ(2)(y) =

∑

{x:y(x)=0}

1

|y′|

{
b′′

(y′)2
− b′y′′

(y′)3
+ b

(
3
(y′′)2

(y′)4
− y′′′

(y′)3

)}
.(9.41)

These formulas are useful for computing effects of weak noise on deterministic dynam-

ics [9.5].

Exercise 9.3 Lt generates a semigroup. Check that the Perron-Frobenius
operator has the semigroup property,

∫

M
dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) , t1, t2 ≥ 0 . (9.42)

As the flows in which we tend to be interested are invertible, the L’s that we
will use often do form a group, with t1, t2 ∈ R.
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Exercise 9.4 Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of the fraction of trajectories
remaining trapped in the interval [0, 1] for the tent map

f(x) = a(1 − 2|x− 0.5|)

for several values of a.

(b) Determine analytically the a dependence of the escape rate γ(a).

(c) Compare your results for (a) and (b).

Exercise 9.5 Invariant measure. We will compute the invariant measure
for two different piecewise linear maps.

α
0
 1
 0
 1


(a) Verify the matrix L representation (10.19).

(b) The maximum value of the first map is 1. Compute an invariant measure
for this map.

(c) Compute the leading eigenvalue of L for this map.

(d) For this map there is an infinite number of invariant measures, but only
one of them will be found when one carries out a numerical simulation.
Determine that measure, and explain why your choice is the natural
measure for this map.

(e) In the second map the maximum occurs at α = (3−
√

5)/2 and the slopes
are ±(

√
5 + 1)/2. Find the natural measure for this map. Show that it

is piecewise linear and that the ratio of its two values is (
√

5 + 1)/2.

(medium difficulty)

Exercise 9.6 Escape rate for a flow conserving map. Adjust Λ0, Λ1 in

(10.17) so that the gap between the intervals M0, M1 vanishes. Show that the escape

rate equals zero in this situation.

Exercise 9.7 Eigenvalues of the Perron-Frobenius operator for the skew
Ulam tent map. Show that for the skew Ulam tent map
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0


Λ1


f(x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (1 − x) , x ∈ M1 = (1/Λ0, 1] .
(9.43)

the eigenvalues are available analytically, compute the first few.

Exercise 9.8 “Kissing disks”∗ (continuation of exercises 6.1 and 6.2). Close

off the escape by setting R = 2, and look in real time at the density of the Poincaré

section iterates for a trajectory with a randomly chosen initial condition. Does it

look uniform? Should it be uniform? (Hint - phase space volumes are preserved for

Hamiltonian flows by the Liouville theorem). Do you notice the trajectories that loiter

near special regions of phase space for long times? These exemplify “intermittency”,

a bit of unpleasantness to which we shall return in chapter 21.

Exercise 9.9 Invariant measure for the Gauss map. Consider the Gauss
map (we shall need this map in chapter 24):

f(x) =

{
1
x −

[
1
x

]
x 6= 0

0 x = 0

where [ ] denotes the integer part.

(a) Verify that the density

ρ(x) =
1

log 2

1

1 + x

is an invariant measure for the map.

(b) Is it the natural measure?

Exercise 9.10 A as a generator of translations. Verify that for a constant
velocity field the evolution generator A in (9.29) is the generator of translations,

etv ∂
∂x a(x) = a(x+ tv) .

Exercise 9.11 Incompressible flows. Show that (9.9) implies that ρ0(x) = 1

is an eigenfunction of a volume-preserving flow with eigenvalue s0 = 0. In particular,

this implies that the natural measure of hyperbolic and mixing Hamiltonian flows is

uniform. Compare this results with the numerical experiment of exercise 9.8.
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Chapter 10

Averaging

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

Walt Whitman,
Leaves of Grass: Song of the Universal

We start by discussing the necessity of studying the averages of observ-
ables in chaotic dynamics, and then cast the formulas for averages in a
multiplicative form that motivates the introduction of evolution operators
and further formal developments to come. The main result is that any
dynamical average measurable in a chaotic system can be extracted from
the spectrum of an appropriately constructed evolution operator. In order
to keep our toes closer to the ground, in sect. 10.3 we try out the formal-
ism on the first quantitative diagnosis that a system’s got chaos, Lyapunov
exponents.

10.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely speci-
fied initial condition, no matter how precise, will fill out the entire accessible
phase space. Hence for chaotic dynamics one cannot follow individual tra-
jectories for a long time; what is attainable is a description of the geometry
of the set of possible outcomes, and evaluation of long time averages. Exam-
ples of such averages are transport coefficients for chaotic dynamical flows,
such as escape rate, mean drift and diffusion rate; power spectra; and a
host of mathematical constructs such as generalized dimensions, entropies
and Lyapunov exponents. Here we outline how such averages are evaluated
within the evolution operator framework. The key idea is to replace the
expectation values of observables by the expectation values of generating
functionals. This associates an evolution operator with a given observable,
and relates the expectation value of the observable to the leading eigenvalue
of the evolution operator.
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10.1.1 Time averages

Let a = a(x) be any observable, a function that associates to each point in
phase space a number, a vector, or a tensor. The observable reports on a
property of the dynamical system. It is a device, such as a thermometer or
laser Doppler velocitometer. The device itself does not change during the
measurement. The velocity field ai(x) = vi(x) is an example of a vector
observable; the length of this vector, or perhaps a temperature measured in
an experiment at instant τ are examples of scalar observables. We define the
integrated observable At as the time integral of the observable a evaluated
along the trajectory of the initial point x0,

At(x0) =

∫ t

0
dτ a(f τ (x0)) . (10.1)

If the dynamics is given by an iterated mapping and the time is discrete,
t→ n, the integrated observable is given by

An(x0) =

n−1∑

k=0

a(fk(x0)) (10.2)

(we suppress possible vectorial indices for the time being). For example,
if the observable is the velocity, ai(x) = vi(x), its time integral Ati(x0) is
the trajectory Ati(x0) = xi(t). Another familiar example, for Hamiltonian
flows, is the action associated with a trajectory x(t) = [q(t), p(t)] passing
through a phase space point x0 = [q(0), p(0)] (this function will be the key
to the semiclassical quantization of chapter 30):

At(x0) =

∫ t

0
dτ q̇(τ) · p(τ) . (10.3)

The time average of the observable along a trajectory is defined by

a(x0) = lim
t→∞

1

t
At(x0) . (10.4)

If a does not behave too wildly as a function of time – for example, if ai(x)
is the Chicago temperature, bounded between −80oF and +130oF for all
times – At(x0) is expected to grow not faster than t, and the limit (10.4)
exists. For an example of a time average - the Lyapunov exponent - see
sect. 10.3.

The time average depends on the trajectory, but not on the initial point
on that trajectory: if we start at a later phase space point fT (x0) we get a
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couple of extra finite contributions that vanish in the t→ ∞ limit:

a(fT (x0)) = lim
t→∞

1

t

∫ t+T

T
dτ a(f τ (x0))

= a(x0) − lim
t→∞

1

t

(∫ T

0
dτ a(f τ (x0)) −

∫ t+T

t
dτ a(f τ (x0))

)

= a(x0) .

The integrated observable At(x0) and the time average a(x0) take a
particularly simple form when evaluated on a periodic orbit. Define ✎ 4.4

page 72

flows: Ap = apTp =

∫ Tp

0
a (f τ (x0)) dτ , x0 ∈ p

maps: = apnp =

np−1∑

i=0

a
(
f i(x0)

)
, (10.5)

where p is a prime cycle, Tp is its period, and np is its discrete time period
in the case of iterated map dynamics. Ap is a loop integral of the observable
along a single parcourse of a prime cycle p, so it is an intrinsic property of
the cycle, independent of the starting point x0 ∈ p. (If the observable a is
not a scalar but a vector or matrix we might have to be more careful in
defining an average which is independent of the starting point on the cycle).
If the trajectory retraces itself r times, we just obtain Ap repeated r times.
Evaluation of the asymptotic time average (10.4) requires therefore only a
single traversal of the cycle:

ap = Ap/Tp . (10.6)

However, a(x0) is in general a wild function of x0; for a hyperbolic
system ergodic with respect to a smooth measure, it takes the same value
〈a〉 for almost all initial x0, but a different value (10.6) on any periodic orbit,
that is, on a dense set of points (figure 10.1(b)). For example, for an open
system such as the Sinai gas of sect. 23.1 (an infinite 2-dimensional periodic

☞ chapter 23
array of scattering disks) the phase space is dense with initial points that
correspond to periodic runaway trajectories. The mean distance squared
traversed by any such trajectory grows as x(t)2 ∼ t2, and its contribution to
the diffusion rate D ≈ x(t)2/t, (10.4) evaluated with a(x) = x(t)2, diverges.
Seemingly there is a paradox; even though intuition says the typical motion
should be diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by robust av-
eraging, that is, averaging also over the initial x, and worrying about the
measure of the “pathological” trajectories.
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(a)

x

M (b)

Figure 10.1: (a) A typical chaotic trajectory explores the phase space with the long
time visitation frequency building up the natural measure ρ0(x). (b) time average
evaluated along an atypical trajectory such as a periodic orbit fails to explore the
entire accessible phase space. (A. Johansen)

10.1.2 Space averages

The space average of a quantity a that may depend on the point x of phase
space M and on the time t is given by the d-dimensional integral over the
d coordinates of the dynamical system:

〈a〉(t) =
1

|M|

∫

M
dx a(x(t))

|M| =

∫

M
dx = volume of M . (10.7)

The space M is assumed to have finite dimension and volume (open systems
like the 3-disk game of pinball are discussed in sect. 10.1.3).

What is it we really do in experiments? We cannot measure the time
average (10.4), as there is no way to prepare a single initial condition with
infinite precision. The best we can do is to prepare some initial density
ρ(x) perhaps concentrated on some small (but always finite) neighborhood
ρ(x) = ρ(x, 0), so one should abandon the uniform space average (10.7),
and consider instead

〈a〉ρ(t) =
1

|M|

∫

M
dx ρ(x)a(x(t)) . (10.8)

We do not bother to lug the initial ρ(x) around, as for the ergodic and
mixing systems that we shall consider here any smooth initial density will
tend to the asymptotic natural measure t→ ∞ limit ρ(x, t) → ρ0(x), so we
can just as well take the initial ρ(x) = const. . The worst we can do is to
start out with ρ(x) = const., as in (10.7); so let us take this case and define
the expectation value 〈a〉 of an observable a to be the asymptotic time and
space average over the phase space M

〈a〉 = lim
t→∞

1

|M|

∫

M
dx

1

t

∫ t

0
dτ a(f τ (x)) . (10.9)
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We use the same 〈· · ·〉 notation as for the space average (10.7), and distin-
guish the two by the presence of the time variable in the argument: if the
quantity 〈a〉(t) being averaged depends on time, then it is a space average,
if it does not, it is the expectation value 〈a〉.

The expectation value is a space average of time averages, with every
x ∈ M used as a starting point of a time average. The advantage of
averaging over space is that it smears over the starting points which were
problematic for the time average (like the periodic points). While easy to
define, the expectation value 〈a〉 turns out not to be particularly tractable
in practice. Here comes a simple idea that is the basis of all that follows:
Such averages are more conveniently studied by investigating instead of 〈a〉
the space averages of form

〈
eβ·A

t
〉

=
1

|M|

∫

M
dx eβ·A

t(x). (10.10)

In the present context β is an auxiliary variable of no particular physical
significance. In most applications β is a scalar, but if the observable is a
d-dimensional vector ai(x) ∈ R

d, then β is a conjugate vector β ∈ R
d; if

the observable is a d× d tensor, β is also a rank-2 tensor, and so on. Here
we will mostly limit the considerations to scalar values of β.

If the limit a(x0) for the time average (10.4) exists for “almost all”
initial x0 and the system is ergodic and mixing (in the sense of sect. 1.3.1),
we expect the time average along almost all trajectories to tend to the
same value a, and the integrated observable At to tend to ta. The space
average (10.10) is an integral over exponentials, and such integral also grows
exponentially with time. So as t → ∞ we would expect the space average
of
〈
exp(β ·At)

〉
itself to grow exponentially with time

〈
eβ·A

t
〉
∝ ets(β) ,

and its rate of growth to go to a limit

s(β) = lim
t→∞

1

t
ln
〈
eβ·A

t
〉
. (10.11)

Now we understand one reason for why it is smarter to compute
〈
exp(β · At)

〉

rather than 〈a〉: the expectation value of the observable (10.9) and the mo-
ments of the integrated observable (10.1) can be computed by evaluating
the derivatives of s(β)

∂s

∂β

∣∣∣∣
β=0

= lim
t→∞

1

t

〈
At
〉

= 〈a〉 ,

∂2s

∂β2

∣∣∣∣
β=0

= lim
t→∞

1

t

(〈
AtAt

〉
−
〈
At
〉 〈
At
〉)

= lim
t→∞

1

t

〈
(At − t 〈a〉)2

〉
,

(10.12)
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and so forth. We have written out the formulas for a scalar observable;✎ 10.2
page 154

the vector case is worked out in the exercise 10.2. If we can compute the
function s(β), we have the desired expectation value without having to
estimate any infinite time limits from finite time data.

Suppose we could evaluate s(β) and its derivatives. What are such
formulas good for? A typical application is to the problem of describing a
particle scattering elastically off a 2-dimensional triangular array of disks.
If the disks are sufficiently large to block any infinite length free flights, the
particle will diffuse chaotically, and the transport coefficient of interest is
the diffusion constant given by

〈
x(t)2

〉
≈ 4Dt. In contrast to D estimated

numerically from trajectories x(t) for finite but large t, the above formulas
yield the asymptotic D without any extrapolations to the t → ∞ limit. For
example, for ai = vi and zero mean drift 〈vi〉 = 0, the diffusion constant is
given by the curvature of s(β) at β = 0,

D = lim
t→∞

1

2dt

〈
x(t)2

〉
=

1

2d

d∑

i=1

∂2s

∂β2
i

∣∣∣∣
β=0

, (10.13)

☞ sect. 23.1

so if we can evaluate derivatives of s(β), we can compute transport coef-
ficients that characterize deterministic diffusion. As we shall see in chap-
ter 23, periodic orbit theory yields an explicit closed form expression for
D.

fast track:

sect. 10.2, p. 144

10.1.3 Averaging in open systems

If the M is a compact region or set of regions to which the dynamics
is confined for all times, (10.9) is a sensible definition of the expectation
value. However, if the trajectories can exit M without ever returning,

∫

M
dy δ(y − f t(x0)) = 0 for t > texit , x0 ∈ M ,

we might be in trouble. In particular, for a repeller the trajectory f t(x0)
will eventually leave the region M, unless the initial point x0 is on the
repeller, so the identity

∫

M
dy δ(y−f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set(10.14)

might apply only to a fractal subset of initial points a set of zero Lebesgue
measure. Clearly, for open systems we need to modify the definition of the
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Figure 10.2: A piecewise-linear repeller
(10.17): All trajectories that land in the gap be-
tween the f0 and f1 branches escape (Λ0 = 4,
Λ1 = −2).

0 0.5 1

x

0

0.5

1

f(x)

expectation value to restrict it to the dynamics on the non–wandering set,
the set of trajectories which are confined for all times.

Note by M a phase space region that encloses all interesting initial
points, say the 3-disk Poincaré section constructed from the disk boundaries
and all possible incidence angles, and denote by |M| the volume of M.
The volume of the phase space containing all trajectories which start out
within the phase space region M and recur within that region at the time
t

|M(t)| =

∫

M
dxdy δ

(
y − f t(x)

)
∼ |M|e−γt (10.15)

is expected to decrease exponentially, with the escape rate γ. The integral
☞ sect. 1.4.2

over x takes care of all possible initial points; the integral over y checks
whether their trajectories are still within M by the time t. For example,

☞ sect. 19.1
any trajectory that falls off the pinball table in figure 1.1 is gone for good.

The non–wandering set can be very difficult object to describe; but for
any finite time we can construct a normalized measure from the finite-time
covering volume (10.15), by redefining the space average (10.10) as

〈
eβ·A

t
〉

=

∫

M
dx

1

|M(t)|e
β·At(x) ∼ 1

|M|

∫

M
dx eβ·A

t(x)+γt . (10.16)

in order to compensate for the exponential decrease of the number of sur-
viving trajectories in an open system with the exponentially growing factor
eγt. What does this mean? Once we have computed γ we can replenish the
density lost to escaping trajectories, by pumping in eγt in such a way that
the overall measure is correctly normalized at all times, 〈1〉 = 1.

Example 10.1 A piecewise-linear example: (continuation of example 9.1)
What is gained by reformulating the dynamics in terms of “operators”? We start by
considering a simple example in which the operator is a [2 × 2] matrix. Assume the
expanding 1-d map f(x) of figure 10.2, a piecewise-linear 2–branch repeller with slopes
Λ0 > 1 and Λ1 < −1 :

f(x) =

{
f0 = Λ0x if x ∈ M0 = [0, 1/Λ0]

f1 = Λ1(x− 1) if x ∈ M1 = [1 + 1/Λ1, 1]
. (10.17)
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Both f(M0) and f(M1) map onto the entire unit interval M = [0, 1]. Assume a
piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0

ρ1 if x ∈ M1
. (10.18)

There is no need to define ρ(x) in the gap between M0 and M1, as any point that
lands in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game:
f is the simplest model for the pinball escape, figure 1.7, with f0 and f1 modelling its
two strips of survivors.

As can be easily checked using (9.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2×2] “transfer” matrix with matrix elements✎ 9.1

page 133

✎ 9.5
page 134

(
ρ0

ρ1

)
→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

)(
ρ0

ρ1

)
, (10.19)

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density
at every iteration. In this example the density is constant after one iteration, so L has
only one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1|, with constant density eigenvector
ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|
intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each
iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (10.20)

Voila! Here is the rationale for introducing operators – in one time step we have
solved the problem of evaluating escape rates at infinite time. This simple explicit
matrix representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f , and the restriction of the densities ρ to the space of piecewise constant
functions. The example gives a flavor of the enterprise upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator.

We now turn to the problem of evaluating
〈
eβ·A

t
〉
.

10.2 Evolution operators

The above simple shift of focus, from studying 〈a〉 to studying
〈
exp

(
β ·At

)〉

is the key to all that follows. Make the dependence on the flow explicit by
rewriting this quantity as

〈
eβ·A

t
〉

=
1

|M|

∫

M
dx

∫

M
dy δ

(
y − f t(x)

)
eβ·A

t(x) . (10.21)

Here δ
(
y − f t(x)

)
is the Dirac delta function: for a deterministic flow an

initial point x maps into a unique point y at time t. Formally, all we have
done above is to insert the identity

1 =

∫

M
dy δ

(
y − f t(x)

)
, (10.22)
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Figure 10.3: Space averaging pieces together
the time average computed along the t → ∞
trajectory of figure 10.1 by a space average
over infinitely many short t trajectory segments
starting at all initial points at once. (A. Jo-
hansen) M M

into (10.10) to make explicit the fact that we are averaging only over the
trajectories that remain in M for all times. However, having made this
substitution we have replaced the study of individual trajectories f t(x) by
the study of the evolution of density of the totality of initial conditions.
Instead of trying to extract a temporal average from an arbitrarily long
trajectory which explores the phase space ergodically, we can now probe
the entire phase space with short (and controllable) finite time pieces of
trajectories originating from every point in M.

As a matter of fact (and that is why we went to the trouble of defining
the generator (9.26) of infinitesimal transformations of densities) infini-
tesimally short time evolution can suffice to determine the spectrum and
eigenvalues of Lt.

We shall refer to the kernel of Lt = etA in the phase-space representation
(10.21) as the evolution operator

Lt(y, x) = δ
(
y − f t(x)

)
eβ·A

t(x) . (10.23)

The evolution operator acts on scalar functions φ(x) as

Ltφ(y) =

∫

M
dx δ

(
y − f t(x)

)
eβ·A

t(x)φ(x) . (10.24)

In terms of the evolution operator, the expectation value of the generating
function (10.21) is given by

〈
eβ·A

t
〉

=
〈
Ltι
〉
,

where the initial density ι(x) is the constant function that always returns
1.

The evolution operator is different for different observables, as its defin-
ition depends on the choice of the integrated observable At in the exponen-
tial. Its job is deliver to us the expectation value of a, but before showing
that it accomplishes that, we need to verify the semigroup property of evo-
lution operators.
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By its definition, the integral over the observable a is additive along the
trajectory

x(t1+t2)


x(0)
 = x(0)

x(t1)


+

x(t1+t2)


x(t1)


At1+t2(x0) =

∫ t1

0
dτ a(x(τ)) +

∫ t1+t2

t1

dτ a(x(τ))

= At1(x0) + At2(f t1(x0)) .

✎ 9.3
page 133 If At(x) is additive along the trajectory, the evolution operator generates a

semigroup
☞ sect. 9.4

Lt1+t2(y, x) =

∫

M
dz Lt2(y, z)Lt1(z, x) , (10.25)

as is easily checked by substitution

Lt2Lt1a(x) =

∫

M
dy δ(x − f t2(y))eβ·A

t2 (y)(Lt1a)(y) = Lt1+t2a(x) .

This semigroup property is the main reason why (10.21) is preferable to
(10.9) as a starting point for evaluation of dynamical averages: it recasts
averaging in form of operators multiplicative along the flow.

10.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

Let us apply the newly acquired tools to the fundamental diagnostics in this
subject: Is a given system “chaotic”? And if so, how chaotic? If all points
in a neighborhood of a trajectory converge toward the same trajectory, the
attractor is a fixed point or a limit cycle. However, if the attractor is

☞ sect. 1.3.1
strange, two trajectories

x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx(0)) (10.26)

that start out very close to each other separate exponentially with time,
and in a finite time their separation attains the size of the accessible phase
space. This sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)| (10.27)

where λ, the mean rate of separation of trajectories of the system, is called
the Lyapunov exponent.

average - 4jul2005 ChaosBook.org/version11.8, Aug 30 2006



10.3. LYAPUNOV EXPONENTS 147

10.3.1 Lyapunov exponent as a time average

We can start out with a small δx and try to estimate λ from (10.27),
but now that we have quantified the notion of linear stability in chapter 4
and defined the dynamical time averages in sect. 10.1.1, we can do better.
The problem with measuring the growth rate of the distance between two
points is that as the points separate, the measurement is less and less a
local measurement. In study of experimental time series this might be the
only option, but if we have the equations of motion, a better way is to
measure the growth rate of vectors transverse to a given orbit.

The mean growth rate of the distance |δx(t)|/|δx(0)| between neighbor-
ing trajectories (10.27) is given by the Lyapunov exponent

λ = lim
t→∞

1

t
ln |δx(t)|/|δx(0)| (10.28)

(For notational brevity we shall often suppress the dependence of quantities
such as λ = λ(x0), δx(t) = δx(x0, t) on the initial point x0 and the time t).
For infinitesimal δx we know the δxi(t)/δxj(0) ratio exactly, as this is by
definition the fundamental matrix (4.30)

lim
δx→0

δxi(t)

δxj(0)
=
∂xi(t)

∂xj(0)
= Mt

ij(x0) ,

so the leading Lyapunov exponent can be computed from the linear ap-
proximation (4.23)

λ = lim
t→∞

1

t
ln

∣∣Mt(x0)δx(0)
∣∣

|δx(0)| = lim
t→∞

1

2t
ln
∣∣∣n̂T (Mt)TMtn̂

∣∣∣ . (10.29)

In this formula the scale of the initial separation drops out, only its orien-
tation given by the unit vector n̂ = δx/|δx| matters. The eigenvalues of M
are either real or come in complex conjugate pairs. As M is in general not
symmetric and not diagonalizable, it is more convenient to work with the
symmetric and diagonalizable matrix M = (Mt)TMt, with real positive
eigenvalues {|Λ1|2 ≥ . . . ≥ |Λd|2}, and a complete orthonormal set of eigen-
vectors of {u1, . . . , ud}. Expanding the initial orientation n̂ =

∑
(n̂ · ui)ui

in the Mui = |Λi|ui eigenbasis, we have

n̂TMn̂ =

d∑

i=1

(n̂·ui)2|Λi|2 = (n̂·u1)
2e2λ1t

(
1 +O(e−2(λ1−λ2)t)

)
, (10.30)

where tλi = ln |Λi(x0, t)|, and we assume that λ1 > λ2 ≥ λ3 · · ·. For long
times the largest Lyapunov exponent dominates exponentially (10.29), pro-
vided the orientation n̂ of the initial separation was not chosen perpendicu-
lar to the dominant expanding eigendirection u1. The Lyapunov exponent
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Figure 10.4: A numerical estimate of the
leading Lyapunov exponent for the Rössler sys-
tem (2.14) from the dominant expanding eigen-
value formula (10.29). The leading Lyapunov
exponent λ ≈ 0.09 is positive, so numerics sup-
ports the hypothesis that the Rössler attractor
is strange. (J. Mathiesen)
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is the time average

λ(x0) = lim
t→∞

1

t

{
ln |n̂ · u1| + ln |Λ1(x0, t)| +O(e−2(λ1−λ2)t)

}

= lim
t→∞

1

t
ln |Λ1(x0, t)| , (10.31)

where Λ1(x0, t) is the leading eigenvalue of Mt(x0). By choosing the initial
displacement such that n̂ is normal to the first (i-1) eigendirections we can
define not only the leading, but all Lyapunov exponents as well:

λi(x0) = lim
t→∞

1

t
ln |Λi(x0, t)| , i = 1, 2, · · · , d . (10.32)

The leading Lyapunov exponent now follows from the fundamental ma-
trix by numerical integration of (4.32). The equations can be integrated
accurately for a finite time, hence the infinite time limit of (10.29) can be
only estimated from plots of 1

2 ln |n̂TMn̂| as function of time, such as
the figure 10.4 for the Rössler system (2.14). As the local expansion and
contraction rates vary along the flow, the temporal dependence exhibits
small and large humps. The sudden fall to a low level is caused by a close
passage to a folding point of the attractor, an illustration of why numerical
evaluation of the Lyapunov exponents, and proving the very existence of a
strange attractor is a very difficult problem. The approximately monotone
part of the curve can be used (at your own peril) to estimate the leading
Lyapunov exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate
the Lyapunov exponent by using the definition (10.31) directly. First of
all, the phase space is dense with atypical trajectories; for example, if x0

happened to lie on a periodic orbit p, λ would be simply ln |Λp|/Tp, a
local property of cycle p, not a global property of the dynamical system.
Furthermore, even if x0 happens to be a “generic” phase space point, it
is still not obvious that ln |Λ(x0, t)|/t should be converging to anything in
particular. In a Hamiltonian system with coexisting elliptic islands and
chaotic regions, a chaotic trajectory gets every so often captured in the
neighborhood of an elliptic island and can stay there for arbitrarily long
time; as there the orbit is nearly stable, during such episode ln |Λ(x0, t)|/t
can dip arbitrarily close to 0+. For phase space volume non-preserving flows
the trajectory can traverse locally contracting regions, and ln |Λ(x0, t)|/t
can occasionally go negative; even worse, one never knows whether the
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asymptotic attractor is periodic or “strange”, so any finite estimate of λ
might be dead wrong. ✎ 10.1

page 154

10.3.2 Evolution operator evaluation of Lyapunov exponents

A cure to these problems was offered in sect. 10.2. We shall now replace time
averaging along a single trajectory by action of a multiplicative evolution
operator on the entire phase space, and extract the Lyapunov exponent
from its leading eigenvalue. If the chaotic motion fills the whole phase
space, we are indeed computing the asymptotic Lyapunov exponent. If the
chaotic motion is transient, leading eventually to some long attractive cycle,
our Lyapunov exponent, computed on nonwandering set, will characterize
the chaotic transient; this is actually what any experiment would measure,
as even very small amount of external noise will suffice to destabilize a long
stable cycle with a minute immediate basin of attraction.

Due to the chain rule (4.35) for the derivative of an iterated map, the
stability of a 1-d mapping is multiplicative along the flow, so the integral
(10.1) of the observable a(x) = ln |f ′(x)|, the local trajectory divergence
rate, evaluated along the trajectory of x0 is additive:

An(x0) = ln
∣∣fn′(x0)

∣∣ =

n−1∑

k=0

ln
∣∣f ′(xk)

∣∣ . (10.33)

The Lyapunov exponent is then the expectation value (10.9) given by a
spatial integral (10.8) weighted by the natural measure

λ =
〈
ln |f ′(x)|

〉
=

∫

M
dx ρ0(x) ln |f ′(x)| . (10.34)

The associated (discrete time) evolution operator (10.23) is

L(y, x) = δ(y − f (x)) eβ ln |f ′(x)| . (10.35)

☞ appendix H.1

Here we have restricted our considerations to 1 − d maps, as for higher-
dimensional flows only the fundamental matrices are multiplicative, not
the individual eigenvalues. Construction of the evolution operator for eval-
uation of the Lyapunov spectra in the general case requires more cleverness
than warranted at this stage in the narrative: an extension of the evolution
equations to a flow in the tangent space.

in depth:

appendix H.1, p. 689
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All that remains is to determine the value of the Lyapunov exponent

λ =
〈
ln |f ′(x)|

〉
=
∂s(β)

∂β

∣∣∣∣
β=1

= s′(1) (10.36)

from (10.12), the derivative of the leading eigenvalue s0(β) of the evolution
operator (10.35).

☞ example 18.1

The only question is: how?

10.4 Why not just run it on a computer?

(R. Artuso and P. Cvitanović)

All of the insight gained in this chapter and the preceding one was
nothing but an elegant way of thinking of the evolution operator, L, as a
matrix (this point of view will be further elaborated in chapter 16). There
are many textbook methods of approximating an operator L by sequences of
finite matrix approximations L, but in what follows the great achievement
will be that we shall avoid constructing any matrix approximation to L
altogether. Why a new method? Why not just run it on a computer, as
many do with such relish in diagonalizing quantum Hamiltonians?

The simplest possible way of introducing a phase space discretization,
figure 10.5, is to partition the phase space M with a non-overlapping col-
lection of sets Mi, i = 1, . . . , N , and to consider densities (9.2) that are
locally constant on each Mi:

ρ(x) =
N∑

i=1

ρi
χi(x)

|Mi|

where χi(x) is the characteristic function (9.1) of the set Mi. The density
ρi at a given instant is related to the densities at the previous step in time
by the action of the Perron-Frobenius operator, as in (9.6):

ρ′j =

∫

M
dy χj(y)ρ

′(y) =

∫

M
dx dy χj(y) δ(y − f(x)) ρ(x)

=

N∑

i=1

ρi
|Mi ∩ f−1(Mj)|

|Mi|
.

In this way

Lij =
|Mi ∩ f−1(Mj)|

|Mi|
, ρ′ = ρL (10.37)
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Figure 10.5: Phase space discretization ap-
proach to computing averages.

is a matrix approximation to the Perron-Frobenius operator, and its lead-
ing left eigenvector is a piecewise constant approximation to the invariant
measure. It is an old idea of Ulam that such an approximation for the
Perron-Frobenius operator is a meaningful one.

The problem with such phase space discretization approaches is that
they are blind, the grid knows not what parts of the phase space are more
or less important. This observation motivates the next step in developing
the theory of long-time dynamics of chaotic systems: in chapter 11 we
shall exploit the intrinsic topology of the flow to give us both an invariant
partition of the phase space and a measure of the partition volumes, in the
spirit of figure 1.9.

Furthermore, a piecewise constant ρ belongs to an unphysical function
space, and with such approximations one is plagued by numerical artifacts
such as spurious eigenvalues. In chapter 16 we shall employ a more refined
approach to extracting spectra, by expanding the initial and final densities
ρ, ρ′ in some basis ϕ0, ϕ1, ϕ2, · · · (orthogonal polynomials, let us say), and
replacing L(y, x) by its ϕα basis representation Lαβ = 〈ϕα|L|ϕβ〉. The art
is then the subtle art of finding a “good” basis for which finite truncations
of Lαβ give accurate estimates of the eigenvalues of L.

☞ chapter 16

Regardless of how sophisticated the choice of basis might be, the basic
problem cannot be avoided - as illustrated by the natural measure for the
Hénon map (3.15) sketched in figure 9.3, eigenfunctions of L are compli-
cated, singular functions concentrated on fractal sets, and in general cannot
be represented by a nice basis set of smooth functions. We shall resort to
matrix representations of L and the ϕα basis approach only insofar this
helps us prove that the spectrum that we compute is indeed the correct
one, and that finite periodic orbit truncations do converge.

in depth:

chapter 1, p. 1
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Commentary

Remark 10.1 “Pressure”. The quantity 〈exp(β · At)〉 is called a “partition func-

tion” by Ruelle [15.1]. Mathematicians decorate it with considerably more Greek

and Gothic letters than is the case in this treatise. Ruelle [15.2] and Bowen [10.1]

had given name “pressure” P (a) to s(β) (where a is the observable introduced

here in sect. 10.1.1), defined by the “large system” limit (10.11). As we shall

apply the theory also to computation of the physical gas pressure exerted on the

walls of a container by a bouncing particle, we prefer to s(β) as simply the leading

eigenvalue of the evolution operator introduced in sect. 9.4. The “convexity” prop-

erties such as P (a) ≤ P (|a|) will be pretty obvious consequence of the definition

(10.11). In the case that L is the Perron-Frobenius operator (9.10), the eigenvalues

{s0(β), s1(β), · · ·} are called the Ruelle-Pollicott resonances [10.2, 10.3, 10.4], with

the leading one, s(β) = s0(β) being the one of main physical interest. In order

to aid the reader in digesting the mathematics literature, we shall try to point out

the notational correspondences whenever appropriate. The rigorous formalism is

replete with lims, sups, infs, Ω-sets which are not really essential to understanding

the physical applications of the theory, and are avoided in this presentation.

Remark 10.2 Microcanonical ensemble. In statistical mechanics the space aver-
age (10.7) performed over the Hamiltonian system constant energy surface invari-
ant measure ρ(x)dx = dqdp δ(H(q, p)−E) of volume |M| =

∫
Mdqdp δ(H(q, p)−E)

〈a(t)〉 =
1

|M|

∫

M
dqdp δ(H(q, p) − E)a(q, p, t) (10.38)

is called the microcanonical ensemble average.

Remark 10.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of
Oseledec [10.5] states that the limit (10.32) exists for almost all points x0 and all
tangent vectors n̂. There are at most d distinct values of λ as we let n̂ range over
the tangent space. These are the Lyapunov exponents [10.6] λi(x0).

There is much literature on numerical computation of the Lyapunov exponents,

see for example refs. [4.4, 10.12, 10.13, 10.14].

Résumé

The expectation value 〈a〉 of an observable a(x) measuredAt(x) =
∫ t
0 dτa(x(τ))

and averaged along the flow x→ f t(x) is given by the derivative ∂s/∂β of
the leading eigenvalue ets(β) of the corresponding evolution operator Lt.

Using the Perron-Frobenius operator (9.10) whose leading eigenfunc-
tion, the natural measure, once computed, yields expectation value (9.19)
of any observable a(x) a separate evolution operator L has to be constructed
for each and every observable. However, by the time the scaffolding is re-

☞ chapter 18
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moved both L’s and their eigenfunctions will be gone, and only the formulas
for expectation value of observables will remain.

The next question is: how do we evaluate the eigenvalues of L? We
saw in example 10.1, in the case of piecewise-linear dynamical systems,
that these operators reduce to finite matrices, but for generic smooth flows,
they are infinite-dimensional linear operators, and finding smart ways of
computing their eigenvalues requires some thought. In chapter 11 we take
the first step, and replace the ad hoc partitioning (10.37) by the intrinsic,
topologically invariant partitioning. In chapter 13 we apply this information
to our first application of the evolution operator formalism, evaluation of
the topological entropy, the growth rate of the number of topologically
distinct orbits. This small victory will then be refashioned in chapters 14
and 15 into a systematic method for computing eigenvalues of evolution
operators in terms of periodic orbits.
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Exercises

Exercise 10.1 How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent by iterating the Hénon map

[
x′

y′

]
=

[
1 − ax2 + y
bx

]

for a = 1.4, b = 0.3.

(b) Now check how robust is the Lyapunov exponent for the Hénon attractor?
Evaluate numerically the Lyapunov exponent by iterating the Hénon map
for a = 1.39945219, b = 0.3. How much do you trust now your result
for the part (a) of this exercise?

Exercise 10.2 Expectation value of a vector observable and its moments.
Check and extend the expectation value formulas (10.12) by evaluating the
derivatives of s(β) up to 4-th order for the space average

〈
exp(β ·At)

〉
with

ai a vector quantity:

(a)

∂s

∂βi

∣∣∣∣
β=0

= lim
t→∞

1

t

〈
Ati
〉

= 〈ai〉 , (10.39)

(b)

∂2s

∂βi∂βj

∣∣∣∣
β=0

= lim
t→∞

1

t

(〈
AtiA

t
j

〉
−
〈
Ati
〉 〈
Atj
〉)

= lim
t→∞

1

t

〈
(Ati − t 〈ai〉)(Atj − t 〈aj〉)

〉
. (10.40)

Note that the formalism is cmart: it automatically yields the variance
from the mean, rather than simply the 2nd moment

〈
a2
〉
.

(c) compute the third derivative of s(β).

(d) compute the fourth derivative assuming that the mean in (10.39) van-
ishes, 〈ai〉 = 0. The 4-th order moment formula

K(t) =

〈
x4(t)

〉

〈x2(t)〉2
− 3 (10.41)

that you have derived is known as kurtosis: it measures a deviation
from what the 4-th order moment would be were the distribution a pure
Gaussian (see (23.22) for a concrete example). If the observable is a
vector, the kurtosis is given by

K(t) =

∑
ij [〈AiAiAjAj〉 + 2 (〈AiAj〉 〈AjAi〉 − 〈AiAi〉 〈AjAj〉)]

(
∑

i 〈AiAi〉)2
(10.42)
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Exercise 10.3 Pinball escape rate from numerical simulation∗. Es-
timate the escape rate for R : a = 6 3-disk pinball by shooting 100,000
randomly initiated pinballs into the 3-disk system and plotting the logarithm of
the number of trapped orbits as function of time. For comparison, a numerical
simulation of ref. [6.2] yields γ = .410 . . ..
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Chapter 11

Qualitative dynamics, for
pedestrians

The classification of the constituents of a chaos, noth-
ing less is here essayed.

Herman Melville, Moby Dick, chapter 32

In this chapter we begin to learn how to use qualitative properties of a flow
in order to partition the phase space in a topologically invariant way, and
name topologically distinct orbits. This will enable us – in chapter 13 – to
count the distinct orbits, and in the process touch upon all the main themes
of this book, going the whole distance from diagnosing chaotic dynamics to
computing zeta functions.

We start by a simple physical example, symbolic dynamics of a 3-disk
game of pinball, and then show that also for smooth flows the qualitative
dynamics of stretching and folding flows enables us to partition the phase
space and assign symbolic dynamics itineraries to trajectories. Here we
illustrate the method on a 1−d approximation to Rössler flow. In chapter 13
we turn this topological dynamics into a multiplicative operation on the
phase space partitions by means of transition matrices/Markov graphs, the
simplest examples of evolution operators. Deceptively simple, this subject
can get very difficult very quickly, so in this chapter we do the first pass, at
a pedestrian level, postponing the discussion of higher-dimensional, cyclist
level issues to chapter 12.

Even though by inclination you might only care about the serious stuff,
like Rydberg atoms or mesoscopic devices, and resent wasting time on
things formal, this chapter and chapter 13 are good for you. Read them.

11.1 Qualitative dynamics

(R. Mainieri and P. Cvitanović)
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Figure 11.1: A trajectory with itinerary
021012.
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What can a flow do to the phase space points? This is a very difficult
question to answer because we have assumed very little about the evolution
function f t; continuity, and differentiability a sufficient number of times.
Trying to make sense of this question is one of the basic concerns in the
study of dynamical systems. One of the first answers was inspired by the
motion of the planets: they appear to repeat their motion through the
firmament. Motivated by this observation, the first attempts to describe
dynamical systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to
observe is recurrence. A recurrence of a point x0 of a dynamical system is
a return of that point to a neighborhood of where it started. How close
the point x0 must return is up to us: we can choose a volume of any size
and shape, and call it the neighborhood M0, as long as it encloses x0. For
chaotic dynamical systems, the evolution might bring the point back to the
starting neighborhood infinitely often. That is, the set

{
y ∈ M0 : y = f t(x0), t > t0

}
(11.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This
suggests another way of describing how points move in phase space, which
turns out to be the important first step on the way to a theory of dynamical
systems: qualitative, topological dynamics, or, as it is usually called, sym-
bolic dynamics. As the subject can get quite technical, a summary of the
basic notions and definitions of symbolic dynamics is relegated to sect. 11.6;
check that section whenever you run into obscure symbolic dynamics jar-
gon.

We start by cutting up the phase space up into regions MA,MB , . . . ,MZ .
This can be done in many ways, not all equally clever. Any such division
of the phase space into topologically distinct regions is a partition, and we
associate with each region (sometimes referred to as a state) a symbol s
from an N -letter alphabet or state set A = {A,B,C, · · · , Z}. As the dy-
namics moves the point through the phase space, different regions will be
visited. The visitation sequence - forthwith referred to as the itinerary -
can be represented by the letters of the alphabet A. If, as in the example
sketched in figure 11.1, the phase space is divided into three regions M0,
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Figure 11.2: Two pinballs that start out very
close to each other exhibit the same qualitative
dynamics 2313 for the first three bounces, but
due to the exponentially growing separation of
trajectories with time, follow different itineraries
thereafter: one escapes after 2313 , the other
one escapes after 23132321 .

1


2


3


23132321


2313


M1, and M2, the “letters” are the integers {0, 1, 2}, and the itinerary for
the trajectory sketched in the figure is 0 7→ 2 7→ 1 7→ 0 7→ 1 7→ 2 7→ · · ·.

If there is no way to reach partition Mi from partition Mj , and con-
versely, partition Mj from partition Mi, the phase space consists of at
least two disconnected pieces, and we can analyze it piece by piece. An
interesting partition should be dynamically connected, that is, one should
be able to go from any region Mi to any other region Mj in a finite number
of steps. A dynamical system with such partition is said to be metrically
indecomposable.

In general one also encounters transient regions - regions to which the
dynamics does not return to once they are exited. Hence we have to dis-
tinguish between (for us uninteresting) wandering trajectories that never
return to the initial neighborhood, and the non–wandering set (2.2) of the
recurrent trajectories.

The allowed transitions between the regions of a partition are encoded
in the [N×N ]-dimensional transition matrix whose elements take values

Tij =

{
1 if a transition Mj → Mi is possible
0 otherwise .

(11.2)

The transition matrix encodes the topological dynamics as an invariant law
of motion, with the allowed transitions at any instant independent of the
trajectory history, requiring no memory.

Example 11.1 Complete N -ary dynamics: All transition matrix entries equal
unity (one can reach any region from any other region in one step):

Tc =




1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


 . (11.3)

Further examples of transition matrices, such as the 3-disk transition matrix (11.5) and
the 1-step memory sparse matrix (11.15), are peppered throughout the text.
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Figure 11.3: The 3-disk game of pinball Poincaré section, trajectories emanating
from the disk 1 with x0 = (arclength, parallel momentum) = (s0, p0) , disk radius : cen-
ter separation ratio a:R = 1:2.5. (a) Strips of initial points M12, M13 which reach
disks 2, 3 in one bounce, respectively. (b) Strips of initial points M121, M131 M132

and M123 which reach disks 1, 2, 3 in two bounces, respectively. (Y. Lan)

However, knowing that a point from Mi reaches Mj in one step is
not quite good enough. We would be happier if we knew that any point
in Mi reaches Mj ; otherwise we have to subpartition Mi into the points
which land in Mj , and those which do not, and often we will find ourselves
partitioning ad infinitum.

Such considerations motivate the notion of a Markov partition, a parti-
tion for which no memory of preceding steps is required to fix the transitions
allowed in the next step. Dynamically, finite Markov partitions can be gen-
erated by expanding d-dimensional iterated mappings f : M → M, if M
can be divided into N regions {M0,M1, . . . ,MN−1} such that in one step
points from an initial region Mi either fully cover a region Mj , or miss it
altogether,

either Mj ∩ f(Mi) = ∅ or Mj ⊂ f(Mi) . (11.4)

Let us illustrate what this means by our favorite example, the game of
pinball.

Example 11.2 3-disk symbolic dynamics: Consider the motion of a free point
particle in a plane with 3 elastically reflecting convex disks. After a collision with a disk
a particle either continues to another disk or escapes, and any trajectory can be labeled
by the disk sequence. For example, if we label the three disks by 1, 2 and 3, the two
trajectories in figure 11.2 have itineraries 2313 , 23132321 respectively. The 3-disk✎ 1.1

page 30
prime cycles given in figures 1.5 and 11.6 are further examples of such itineraries.

At each bounce a cone of initially nearby trajectories defocuses (see figure 1.7),
and in order to attain a desired longer and longer itinerary of bounces the initial point
x0 = (s0, p0) has to be specified with a larger and larger precision, and lie within
initial phase space strips drawn in figure 11.3. Similarly, it is intuitively clear that
as we go backward in time (in this case, simply reverse the velocity vector), we also
need increasingly precise specification of x0 = (s0, p0) in order to follow a given past
itinerary. Another way to look at the survivors after two bounces is to plot Ms1.s2 ,
the intersection of M.s2 with the strips Ms1. obtained by time reversal (the velocity

knead - 5may2006 ChaosBook.org/version11.8, Aug 30 2006



11.1. QUALITATIVE DYNAMICS 161

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

si
nØ

1

0

−1
−2.5

S
0 2.5

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

12 13

Figure 11.4: The Poincaré section of the phase space for the binary labeled pinball.
For definitiveness, this set is generated by starting from disk 1, preceded by disk 2.
Indicated are the fixed points 0, 1 and the 2-cycle periodic points 01, 10, together
with strips which survive 1, 2, . . . bounces. Iteration corresponds to the decimal point
shift; for example, all points in the rectangle [01.01] map into the rectangle [010.1] in
one iteration. See also figure 11.6 (b).

changes sign sinφ → − sinφ). Ms1.s2 , figure 11.4, is a “rectangle” of nearby
trajectories which have arrived from the disk s1 and are heading for the disk s2.

We see that a finite length trajectory is not uniquely specified by its
finite itinerary, but an isolated unstable cycle is: its itinerary is an in-
finitely repeating block of symbols. More generally, for hyperbolic flows
the intersection of the future and past itineraries, the bi-infinite itinerary
S-.S+ = · · · s−2s−1s0.s1s2s3 · · · specifies a unique trajectory. This is intu-
itively clear for our 3-disk game of pinball, and is stated more formally in
the definition (11.4) of a Markov partition. The definition requires that the
dynamics be expanding forward in time in order to ensure that the cone
of trajectories with a given itinerary becomes sharper and sharper as the
number of specified symbols is increased.

Example 11.3 Pruning rules for a 3-disk alphabet: As the disks are convex,
there can be no two consecutive reflections off the same disk, hence the covering sym-
bolic dynamics consists of all sequences which include no symbol repetitions 11 , 22 ,
33 . This is a finite set of finite length pruning rules, hence, the dynamics is a subshift

of finite type (see (11.24) for definition), with the transition matrix (11.2) given by

T =




0 1 1
1 0 1
1 1 0


 . (11.5)

For convex disks the separation between nearby trajectories increases at every reflection,
implying that the stability matrix has an expanding eigenvalue. By the Liouville phase-
space volume conservation (5.23), the other transverse eigenvalue is contracting. This
example demonstrates that finite Markov partitions can be constructed for hyperbolic
dynamical systems which are expanding in some directions, contracting in others.
Further examples are the 1-dimensional expanding mapping sketched in figure 11.8,
and more examples are worked out in sect. 23.2.

Determining whether the symbolic dynamics is complete (as is the case
for sufficiently separated disks), pruned (for example, for touching or over-
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162 CHAPTER 11. QUALITATIVE DYNAMICS, FOR PEDESTRIANS

Figure 11.5: Binary labeling of the 3-disk
pinball trajectories; a bounce in which the tra-
jectory returns to the preceding disk is labeled
0, and a bounce which results in continuation
to the third disk is labeled 1.

lapping disks), or only a first coarse graining of the topology (as, for ex-
ample, for smooth potentials with islands of stability) requires case-by-case
investigation, a discussion we postpone to sect. 11.4 and chapter 12. For the
time being we assume that the disks are sufficiently separated that there is
no additional pruning beyond the prohibition of self-bounces.

fast track:

sect. 11.3, p. 164

11.2 A brief detour; recoding, symmetries, tilings

Though a useful tool, Markov partitioning is not without drawbacks.
One glaring shortcoming is that Markov partitions are not unique: any of
many different partitions might do the job. The 3-disk system offers a
simple illustration of different Markov partitioning strategies for the same
dynamical system.

The A = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique,
nor necessarily the smartest one - before proceeding it pays to exploit the
symmetries of the pinball in order to obtain a more efficient description. In
chapter 22 we shall be handsomely rewarded for our labors.

As the three disks are equidistantly spaced, our game of pinball has a
sixfold symmetry. For instance, the cycles 12, 23, and 13 are related to
each other by rotation by ±2π/3 or, equivalently, by a relabeling of the
disks. Further examples of such symmetries are shown in figure 1.5. The
disk labels are arbitrary; what is important is how a trajectory evolves as
it hits subsequent disks, not what label the starting disk had. We exploit
this symmetry by recoding, in this case replacing the absolute disk labels by
relative symbols, indicating the type of the collision. For the 3-disk game✎ 11.1

page 180
of pinball there are two topologically distinct kinds of collisions, figure 11.5:

✎ 11.2
page 180

si =

{
0 : pinball returns to the disk it came from
1 : pinball continues to the third disk .

(11.6)

This binary symbolic dynamics has two immediate advantages over the
ternary one; the prohibition of self-bounces is automatic, and the coding
utilizes the symmetry of the 3-disk pinball game in elegant manner. If the
disks are sufficiently far apart there are no further restrictions on symbols,
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np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

Table 11.1: Prime cycles for the binary symbolic dynamics up to length 9.

the symbolic dynamics is complete, and all binary sequences are admissible
itineraries. As this type of symbolic dynamics pops up frequently, we list
the shortest binary prime cycles in table 11.1. ✎ 11.3

page 180

Example 11.4 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (11.6) fixes the subsequent binary symbols.
Here we list an arbitrary ternanry itinerary, and the corresponding binary sequence:

ternary : 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3

binary : · 1 0 1 0 1 1 0 1 0 1 1 0 1 0 (11.7)

The first 2 disks initialize the trajectory and its direction; 3 7→ 1 7→ 2 7→ · · ·. Due
to the 3-disk symmetry the six 3-disk sequences initialized by 12, 13, 21, 23, 31, 32
respectively have the same weights, the same size partitions, and are coded by a single
binary sequence. For periodic orbits, the equivalent ternary cycles reduce to binary
cycles of 1/3, 1/2 or the same length. How this works is best understood by inspection
of table 11.2, figure 11.6 and figure 22.3.

The 3-disk game of pinball is tiled by six copies of the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes
acting as reflecting mirrors, see figure 11.6 (b). Every global 3-disk trajec-
tory has a corresponding fundamental domain mirror trajectory obtained
by replacing every crossing of a symmetry axis by a reflection. Depending
on the symmetry of the global trajectory, a repeating binary symbols block
corresponds either to the full periodic orbit or to an irreducible segment
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(a) (b)

Figure 11.6: The 3-disk game of pinball with the disk radius : center separation ratio

a:R = 1:2.5. (a) The three disks, with 12, 123 and 121232313 cycles indicated. (b)
The fundamental domain, that is, the small 1/6th wedge indicated in (a), consisting
of a section of a disk, two segments of symmetry axes acting as straight mirror walls,
and an escape gap. The above cycles restricted to the fundamental domain are now
the two fixed points 0, 1, and the 100 cycle.

(examples are shown in figure 11.6 and table 11.2). An irreducible segment
corresponds to a periodic orbit in the fundamental domain. Table 11.2 lists
some of the shortest binary periodic orbits, together with the correspond-
ing full 3-disk symbol sequences and orbit symmetries. For a number✎ 11.5

page 180
of reasons that will be elucidated in chapter 22, life is much simpler in
the fundamental domain than in the full system, so whenever possible our
computations will be carried out in the fundamental domain.

Inspecting the figure 11.3 we see that the relative ordering of regions
with differing finite itineraries is a qualitative, topological property of the
flow, so it makes sense to define a simple “canonical” representative par-
tition which in a simple manner exhibits spatial ordering common to an
entire class of topologically similar nonlinear flows.

in depth:

chapter 22, p. 385

11.3 Stretch and fold

Symbolic dynamics forN -disk game of pinball is so straightforward that one
may altogether fail to see the connection between the topology of hyperbolic
flows and their symbolic dynamics. This is brought out more clearly by
the 1-dimensional visualization of “stretch & fold” flows to which we turn
now.

Suppose concentrations of certain chemical reactants worry you, or the
variations in the Chicago temperature, humidity, pressure and winds affect
your mood. All such properties vary within some fixed range, and so do
their rates of change. Even if we are studying an open system such as the
3-disk pinball game, we tend to be interested in a finite region around the
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p̃ p gp̃

0 1 2 σ12

1 1 2 3 C3

01 12 13 σ23

001 121 232 313 C3

011 121 323 σ13

0001 1212 1313 σ23

0011 1212 3131 2323 C2
3

0111 1213 2123 σ12

00001 12121 2323231313 C3

00011 12121 32323 σ13

00101 12123 21213 σ12

00111 12123 e
01011 12131 2321231323 C3

01111 12132 13123 σ23

p̃ p gp̃

000001 121212131313 σ23

000011 121212313131232323 C2
3

000101 121213 e
000111 121213212123 σ12

001011 121232131323 σ23

001101 121231323213 σ13

001111 121231232312313123 C3

010111 121312313231232123 C2
3

011111 121321323123 σ13

0000001 121212123232323131313 C3

0000011 12121213232323 σ13

0000101 12121232121213 σ12

0000111 1212123 e
· · · · · · · · ·

Table 11.2: C3v correspondence between the binary labeled fundamental domain
prime cycles p̃ and the full 3-disk ternary labeled cycles p, together with the C3v

transformation that maps the end point of the p̃ cycle into the irreducible segment
of the p cycle, see sect. 22.2.2. Breaks in the ternary sequences mark repeats of the
irreducible segment. The degeneracy of p cycle is mp = 6np̃/np. The shortest pair of
the fundamental domain cycles related by time reversal (but no spatial symmetry) are
the 6-cycles 001011 and 001101.

disks and ignore the escapees. So a typical dynamical system that we care
about is bounded. If the price for keeping going is high - for example, we
try to stir up some tar, and observe it come to a dead stop the moment we
cease our labors - the dynamics tends to settle into a simple limiting state.
However, as the resistance to change decreases - the tar is heated up and
we are more vigorous in our stirring - the dynamics becomes unstable.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded back.

At this juncture we show how this works on the simplest example: uni-
modal mappings of the interval. The erudite reader should skim through
this chapter and then take a more demanding path, via the Smale horse-
shoes of chapter 12. Unimodal maps are easier, but physically less mo-
tivated. The Smale horseshoes are the high road, more complicated, but
the right tool to generalize what we learned from the 3-disk dynamics, and
begin analysis of general dynamical systems. It is up to you - unimodal
maps suffice to get quickly to the heart of this treatise.

11.3.1 Temporal ordering: itineraries

In this section we learn how to name (and, in chapter 13, how to count)
periodic orbits for the simplest, and nevertheless very instructive case, for
1-dimensional maps of an interval.

Suppose that the compression of the folded interval in figure 11.7 is so
fierce that we can neglect the thickness of the attractor. For example, the
Rössler flow (2.14) is volume contracting, and an interval transverse to the
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(a)

a

a
a

a

a

b

b

b

b

b

b
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f(x)
f(b)

f(c)
f(a)

stretch

foldsquash

a

c (b)

Figure 11.7: (a) A recurrent flow that stretches and folds. (b) The “stretch & fold”
return map on the Poincaré section.

attractor is stretched, folded and pressed back into a nearly 1-dimensional
interval, typically compressed transversally by a factor of ≈ 1013 in one
Poincaré section return. In such cases it makes sense to approximate the
return map of a “stretch & fold” flow by a 1-dimensional map.

The simplest mapping of this type is unimodal; interval is stretched
and folded only once, with at most two points mapping into a point in
the refolded interval. A unimodal map f (x) is a 1-dimensional function
R → R defined on an interval M ∈ R with a monotonically increasing (or
decreasing) branch, a critical point (or interval) xc for which f(xc) attains
the maximum (minimum) value, followed by a monotonically decreasing
(increasing) branch. Uni-modal means that the map is a one-humped map
with one critical point within interval M. A multi-modal map has several
critical points within interval M.

Example 11.5 Complete tent map, logistic map: The simplest examples of
unimodal maps are the complete tent map, figure 11.8 (a),

f (γ) = 1 − 2|γ − 1/2| , (11.8)

and the quadratic map (sometimes also called the logistic map)

xt+1 = 1 − ax2
t , (11.9)

with the one critical point at xc = 0. Furthe example is the repelling unimodal map
of figure 11.8 (b).

Such dynamical systems are irreversible (the inverse of f is double-valued), but,
as we shall show in sect. 12.2, they may nevertheless serve as effective descriptions of
invertible 2-dimensional hyperbolic flows.
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(a) (b)

Figure 11.8: (a) The complete tent map together with intervals that follow the
indicated itinerary for n steps. (b) A unimodal repeller with the remaining intervals
after 1, 2 and 3 iterations. Intervals marked s1s2 · · · sn are unions of all points that
do not escape in n iterations, and follow the itinerary S+ = s1s2 · · · sn. Note that the
spatial ordering does not respect the binary ordering; for example x00 < x01 < x11 <
x10. Also indicated: the fixed points x0, x1, the 2-cycle 01, and the 3-cycle 011.

For the unimodal maps of figure 11.8 a Markov partition of the unit interval M
is given by the two intervals {M0,M1}. We refer to (11.8) as the “complete” tent
map because its symbolic dynamics is complete binary: as both f (M0) and f (M1)
fully cover M0 and M1, the corresponding transition matrix is a [2×2] matrix with
all entries equal to 1, as in (11.3). As binary symbolic dynamics pops up frequently in
applications, we list the shortest binary prime cycles in table 11.1. ✎ 11.3

page 180

The critical value denotes either the maximum or the minimum value
of f (x) on the defining interval; we assume here that it is a maximum,
f(xc) ≥ f (x) for all x ∈ M. The critical value f(xc) belongs neither to the
left nor to the right partition Mi, and is denoted by its own symbol s = C.
As we shall see, its preimages serve as partition boundary points.

The trajectory x1, x2, x3, . . . of the initial point x0 is given by the it-
eration xn+1 = f (xn) . Iterating f and checking whether the point lands
to the left or to the right of xc generates a temporally ordered topological
itinerary (11.17) for a given trajectory,

sn =

{
1 if xn > xc
0 if xn < xc

. (11.10)

We shall refer to S+(x0) = .s1s2s3 · · · as the future itinerary. Our next
task is to answer the reverse problem: given an itinerary, what is the cor-
responding spatial ordering of points that belong to a given trajectory?
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11.3.2 Spatial ordering, 1-d maps

Suppose you have succeeded in constructing a covering symbolic dynamics,
such as for a well-separated 3-disk system. Now start moving the disks
toward each other. At some critical separation a disk will start blocking
families of trajectories traversing the other two disks. The order in which
trajectories disappear is determined by their relative ordering in space;
the ones closest to the intervening disk will be pruned first. Determin-
ing inadmissible itineraries requires that we relate the spatial ordering of
trajectories to their time ordered itineraries.✎ 12.9

page 202
The easiest point of departure is to start out by working out this rela-

tion for the symbolic dynamics of 1-dimensional mappings. As it appears
impossible to present this material without getting bogged down in a sea
of 0’s, 1’s and subscripted subscripts, we announce the main result before
embarking upon its derivation:

The admissibility criterion stated in sect. 11.4 eliminates all itineraries
that cannot occur for a given unimodal map.

The tent map (11.8) consists of two straight segments joined at x = 1/2.
The symbol sn defined in (11.10) equals 0 if the function increases, and 1 if
the function decreases. The piecewise linearity of the map makes it possible
to analytically determine an initial point given its itinerary, a property that
we now use to define a topological coordinatization common to all unimodal
maps.

Here we have to face the fundamental problem of pedagogy: combina-
torics cannot be taught. The best one can do is to state the answer, and
then hope that you will figure it out by yourself. Once you figure it out, feel
free to complain that the way the rule is stated here is incomprehensible.
The tent map point γ(S+) with future itinerary S+ is given by converting
the sequence of sn’s into a binary number by the following algorithm:

wn+1 =

{
wn if sn = 0
1 −wn if sn = 1

, w1 = s1

γ(S+) = 0.w1w2w3 . . . =

∞∑

n=1

wn/2
n. (11.11)

This follows by inspection from the binary tree of figure 11.9.✎ 11.6
page 181

Example 11.6 Converting γ to S+: γ whose itinerary is S+ = 0110000 · · · is
given by the binary number γ = .010000 · · ·. Conversely, the itinerary of γ = .01 is
s1 = 0, f (γ) = .1 → s2 = 1, f2(γ) = f (.1) = 1 → s3 = 1, etc..

We shall refer to γ(S+) as the (future) topological coordinate. wt’s are
the digits in the binary expansion of the starting point γ for the complete
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Figure 11.9: Alternating binary tree relates
the itinerary labeling of the unimodal map fig-
ure 11.8 intervals to their spatial ordering. Dot-
ted line stands for 0, full line for 1; the binary
sub-tree whose root is a full line (symbol 1) re-
verses the orientation, due to the orientation
reversing fold in figures 11.7 and 11.8.

000

0 1

00 01 11 10

001 011 010 110 111 101 100

tent map (11.8). In the left half-interval the map f (x) acts by multiplica-
tion by 2, while in the right half-interval the map acts as a flip as well as
multiplication by 2, reversing the ordering, and generating in the process
the sequence of sn’s from the binary digits wn.

The mapping x0 → S+(x0) → γ0 = γ(S+) is a topological
conjugacy which maps the trajectory of an initial point x0 under iteration
of a given unimodal map to that initial point γ for which the trajectory of
the “canonical” unimodal map (11.8) has the same itinerary. The virtue of
this conjugacy is that it preserves the ordering for any unimodal map in
the sense that if x > x, then γ > γ.

11.4 Kneading theory

(K.T. Hansen and P. Cvitanović)

The main motivation for being mindful of spatial ordering of temporal
itineraries is that this spatial ordering provides us with criteria that sep-
arate inadmissible orbits from those realizable by the dynamics. For 1-
dimensional mappings the kneading theory provides such criterion of ad-
missibility.

If the parameter in the quadratic map (11.9) is a > 2, then the iterates
of the critical point xc diverge for n→ ∞. As long as a ≥ 2, any sequence
S+ composed of letters si = {0, 1} is admissible, and any value of 0 ≤ γ < 1
corresponds to an admissible orbit in the non–wandering set of the map.
The corresponding repeller is a complete binary labeled Cantor set, the
n→ ∞ limit of the nth level covering intervals sketched in figure 11.8.

For a < 2 only a subset of the points in the interval γ ∈ [0, 1] corresponds
to admissible orbits. The forbidden symbolic values are determined by
observing that the largest xn value in an orbit x1 → x2 → x3 → . . . has to
be smaller than or equal to the image of the critical point, the critical value
f (xc). Let K = S+(xc) be the itinerary of the critical point xc, denoted the
kneading sequence of the map. The corresponding topological coordinate is
called the kneading value

κ = γ(K) = γ(S+(xc)). (11.12)
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Figure 11.10: The “dike” map obtained by
slicing of a top portion of the tent map fig-
ure 11.8 (a). Any orbit that visits the primary
pruning interval (κ, 1] is inadmissible. The ad-
missible orbits form the Cantor set obtained
by removing from the unit interval the primary
pruning interval and all its iterates. Any admis-
sible orbit has the same topological coordinate
and itinerary as the corresponding tent map fig-
ure 11.8 (a) orbit.

A map with the same kneading sequence K as f (x), such as the dike map
figure 11.10, is obtained by slicing off all γ (S+(x0)) > κ,

f (γ) =





f0(γ) = 2γ γ ∈ I0 = [0, κ/2)
fc(γ) = κ γ ∈ Ic = [κ/2, 1 − κ/2]
f1(γ) = 2(1 − γ) γ ∈ I1 = [1 − κ/2, 1]

. (11.13)

The dike map is the complete tent map figure 11.8 (a) with the top sliced
off. It is convenient for coding the symbolic dynamics, as those γ values
that survive the pruning are the same as for the complete tent map fig-
ure 11.8 (a), and are easily converted into admissible itineraries by (11.11).

If γ(S+) > γ(K), the point x whose itinerary is S+ would exceed the
critical value, x > f (xc), and hence cannot be an admissible orbit. Let

γ̂(S+) = sup
m
γ(σm(S+)) (11.14)

be the maximal value, the highest topological coordinate reached by the
orbit x1 → x2 → x3 → . . .. We shall call the interval (κ, 1] the primary
pruned interval. The orbit S+ is inadmissible if γ of any shifted sequence
of S+ falls into this interval.

Criterion of admissibility: Let κ be the kneading value of the critical
point, and γ̂(S+) be the maximal value of the orbit S+. Then the orbit S+

is admissible if and only if γ̂(S+) ≤ κ.

While a unimodal map may depend on many arbitrarily chosen parame-
ters, its dynamics determines the unique kneading value κ. We shall call κ
the topological parameter of the map. Unlike the parameters of the original
dynamical system, the topological parameter has no reason to be either
smooth or continuous. The jumps in κ as a function of the map parameter
such as a in (11.9) correspond to inadmissible values of the topological pa-
rameter. Each jump in κ corresponds to a stability window associated with
a stable cycle of a smooth unimodal map. For the quadratic map (11.9) κ
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increases monotonically with the parameter a, but for a general unimodal
map such monotonicity need not hold.

For further details of unimodal dynamics, the reader is referred to ap-
pendix E.1. As we shall see in sect. 12.4, for higher dimensional maps and
flows there is no single parameter that orders dynamics monotonically; as
a matter of fact, there is an infinity of parameters that need adjustment
for a given symbolic dynamics. This difficult subject is beyond our current
ambition horizon.

11.5 Markov graphs

11.5.1 Finite memory

In the complete N -ary symbolic dynamics case (see example (11.3)) the
choice of the next symbol requires no memory of the previous ones. How-
ever, any further refinement of the partition requires finite memory.

For example, for the binary labeled repeller with complete binary sym-
bolic dynamics, we might chose to partition the phase space into four re-
gions {M00,M01,M10,M11}, a 1-step refinement of the initial partition
{M0,M1}. Such partitions are drawn in figure 11.4, as well as figure 1.8.
Topologically f acts as a left shift (12.7), and its action on the rectangle
[.01] is to move the decimal point to the right, to [0.1], forget the past, [.1],
and land in either of the two rectangles {[.10], [.11]}. Filling in the ma-
trix elements for the other three initial states we obtain the 1-step memory
transition matrix acting on the 4-state vector ✎ 11.8

page 181

φ′ = Tφ =




T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11

0 T11,01 0 T11,11







φ00

φ01

φ10

φ11


 . (11.15)

By the same token, for M -step memory the only nonvanishing matrix ele-
ments are of the form Ts1s2...sM+1,s0s1...sM

, sM+1 ∈ {0, 1}. This is a sparse
matrix, as the only non vanishing entries in the m = s0s1 . . . sM column
of Tdm are in the rows d = s1 . . . sM0 and d = s1 . . . sM1. If we increase ✎ 13.1

page 224
the number of steps remembered, the transition matrix grows big quickly,
as the N -ary dynamics with M -step memory requires an [NM+1 ×NM+1]
matrix. Since the matrix is very sparse, it pays to find a compact represen-
tation for T . Such representation is afforded by Markov graphs, which are
not only compact, but also give us an intuitive picture of the topological
dynamics.

Construction of a good Markov graph is, like combinatorics, unexplain-
able. The only way to learn is by some diagrammatic gymnastics, so we
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(a)

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

B

A

C

GFED

(b)

A=B=C

Figure 11.11: (a) The self-similarity of the complete binary symbolic dynamics
represented by a binary tree (b) identification of nodes B = A, C = A leads to the
finite 1-node, 2-links Markov graph. All admissible itineraries are generated as walks
on this finite Markov graph.

(b) (a)

Figure 11.12: (a) The 2-step memory Markov graph, links version obtained by
identifying nodes A = D = E = F = G in figure 11.11(a). Links of this graph
correspond to the matrix entries in the transition matrix (11.15). (b) the 2-step
memory Markov graph, node version.
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work our way through a sequence of exercises in lieu of plethora of baffling
definitions. ✎ 13.4

page 224

✎ 13.1
page 224

To start with, what do finite graphs have to do with infinitely long
trajectories? To understand the main idea, let us construct a graph that
enumerates all possible itineraries for the case of complete binary symbolic
dynamics.

Mark a dot “·” on a piece of paper. Draw two short lines out of the
dot, end each with a dot. The full line will signify that the first symbol
in an itinerary is “1”, and the dotted line will signifying “0”. Repeat the
procedure for each of the two new dots, and then for the four dots, and
so on. The result is the binary tree of figure 11.11(a). Starting at the top
node, the tree enumerates exhaustively all distinct finite itineraries

{0, 1}, {00, 01, 10, 11}, {000, 001, 010, · · ·}, · · · .

The M = 4 nodes in figure 11.11(a) correspond to the 16 distinct binary
strings of length 4, and so on. By habit we have drawn the tree as the
alternating binary tree of figure 11.9, but that has no significance as far
as enumeration of itineraries is concerned - an ordinary binary tree would
serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of
paper. On the other hand, we are not doing much - at each node we
are turning either left or right. Hence all nodes are equivalent, and can
be identified. To say it in other words, the tree is self-similar; the trees
originating in nodes B and C are themselves copies of the entire tree. The
result of identifying B = A, C = A is a single node, 2-link Markov graph of
figure 11.11(b): any itinerary generated by the binary tree figure 11.11(a),
no matter how long, corresponds to a walk on this graph.

This is the most compact encoding of the complete binary symbolic
dynamics. Any number of more complicated Markov graphs can do the
job as well, and might be sometimes preferable. For example, identifying
the trees originating in D, E, F and G with the entire tree leads to the 2-
step memory Markov graph of figure 11.12a. The corresponding transition
matrix is given by (11.15).

in depth:

chapter 12, p. 183

fast track:

chapter 13, p. 203

11.6 Symbolic dynamics, basic notions

In this section we collect the basic notions and definitions of symbolic dy-
namics. The reader might prefer to skim through this material on first
reading, return to it later as the need arises.
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(b)

BA=C=E

Figure 11.13: (a) The self-similarity of the 00 pruned binary tree: trees originating
from nodes C and E are the same as the entire tree. (b) Identification of nodes
A = C = E leads to the finite 2-node, 3-links Markov graph; as 0 is always followed
by 1, the walks on this graph generate only the admissible itineraries.

Shifts. We associate with every initial point x0 ∈ M the future itinerary, a
sequence of symbols S+(x0) = s1s2s3 · · · which indicates the order in which
the regions are visited. If the trajectory x1, x2, x3, . . . of the initial point x0

is generated by

xn+1 = f(xn) , (11.16)

then the itinerary is given by the symbol sequence

sn = s if xn ∈ Ms . (11.17)

Similarly, the past itinerary S-(x0) = · · · s−2s−1s0 describes the history of
x0, the order in which the regions were visited before arriving to the point
x0. To each point x0 in the dynamical space we thus associate a bi-infinite
itinerary

S(x0) = (sk)k∈Z = S-.S+ = · · · s−2s−1s0.s1s2s3 · · · . (11.18)

The itinerary will be finite for a scattering trajectory, entering and then es-
caping M after a finite time, infinite for a trapped trajectory, and infinitely
repeating for a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters
of the alphabet A is called the full shift

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (11.19)

The jargon is not thrilling, but this is how professional dynamicists talk to
each other. We will stick to plain English to the extent possible.
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We refer to this set of all conceivable itineraries as the covering symbolic
dynamics. The name shift is descriptive of the way the dynamics acts on
these sequences. As is clear from the definition (11.17), a forward iteration
x → x′ = f(x) shifts the entire itinerary to the left through the “decimal
point”. This operation, denoted by the shift operator σ,

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (11.20)

demoting the current partition label s1 from the future S+ to the “has
been” itinerary S-. The inverse shift σ−1 shifts the entire itinerary one
step to the right.

A finite sequence b = sksk+1 · · · sk+nb−1 of symbols from A is called a
block of length nb. A phase space trajectory is periodic if it returns to its
initial point after a finite time; in the shift space the trajectory is periodic
if its itinerary is an infinitely repeating block p∞. We shall refer to the set
of periodic points that belong to a given periodic orbit as a cycle

p = s1s2 · · · snp = {xs1s2···snp
, xs2···snps1, · · · , xsnps1···snp−1} . (11.21)

By its definition, a cycle is invariant under cyclic permutations of the sym-
bols in the repeating block. A bar over a finite block of symbols denotes
a periodic itinerary with infinitely repeating basic block; we shall omit the
bar whenever it is clear from the context that the trajectory is periodic.
Each cycle point is labeled by the first np steps of its future itinerary. For
example, the 2nd cycle point is labeled by

xs2···snps1 = xs2···snps1·s2···snps1 .

A prime cycle p of length np is a single traversal of the orbit; its label is a
block of np symbols that cannot be written as a repeat of a shorter block
(in literature such cycle is sometimes called primitive; we shall refer to it
as “prime” throughout this text).

Partitions. A partition is called generating if every infinite symbol se-
quence corresponds to a distinct point in the phase space. Finite Markov
partition (11.4) is an example. Constructing a generating partition for a
given system is a difficult problem. In examples to follow we shall con-
centrate on cases which allow finite partitions, but in practice almost any
generating partition of interest is infinite.

A mapping f : M → M together with a partition A induces topological
dynamics (Σ, σ), where the subshift

Σ = {(sk)k∈Z} , (11.22)

is the set of all admissible infinite itineraries, and σ : Σ → Σ is the shift
operator (11.20). The designation “subshift” comes form the fact that
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Σ ⊂ AZ is the subset of the full shift (11.19). One of our principal tasks in
developing symbolic dynamics of dynamical systems that occur in nature
will be to determine Σ, the set of all bi-infinite itineraries S that are actually
realized by the given dynamical system.

A partition too coarse, coarser than, for example, a Markov partition,
would assign the same symbol sequence to distinct dynamical trajectories.
To avoid that, we often find it convenient to work with partitions finer than
strictly necessary. Ideally the dynamics in the refined partition assigns a
unique infinite itinerary · · · s−2s−1s0.s1s2s3 · · · to each distinct trajectory,
but there might exist full shift symbol sequences (11.19) which are not
realized as trajectories; such sequences are called inadmissible, and we say
that the symbolic dynamics is pruned. The word is suggested by “pruning”
of branches corresponding to forbidden sequences for symbolic dynamics
organized hierarchically into a tree structure, as explained in sect. 11.5.

Pruning. If the dynamics is pruned, the alphabet must be supplemented
by a grammar, a set of pruning rules. After the inadmissible sequences have
been pruned, it is often convenient to parse the symbolic strings into words
of variable length - this is called coding. Suppose that the grammar can be
stated as a finite number of pruning rules, each forbidding a block of finite
length,

G = {b1, b2, · · · bk} , (11.23)

where a pruning block b is a sequence of symbols b = s1s2 · · · snb
, s ∈ A,

of finite length nb. In this case we can always construct a finite Markov
partition (11.4) by replacing finite length words of the original partition by
letters of a new alphabet. In particular, if the longest forbidden block is of
length M + 1, we say that the symbolic dynamics is a shift of finite type
with M -step memory. In that case we can recode the symbolic dynamics
in terms of a new alphabet, with each new letter given by an admissible
block of at most length M . In the new alphabet the grammar rules are
implemented by setting Tij = 0 in (11.3) for forbidden transitions.

A topological dynamical system (Σ, σ) for which all admissible itineraries
are generated by a finite transition matrix

Σ =
{
(sk)k∈Z : Tsksk+1

= 1 for all k
}

(11.24)

is called a subshift of finite type. Such systems are particularly easy to han-
dle; the topology can be converted into symbolic dynamics by representing
the transition matrix by a finite directed Markov graph, a convenient visu-
alization of topological dynamics.

Markov graphs. A Markov graph describes compactly the ways in which
the phase-space regions map into each other, accounts for finite memory
effects in dynamics, and generates the totality of admissible trajectories as
the set of all possible walks along its links.
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(a) T =

(
1 1
1 0

)
(b)




0
 1
a


b


c


Figure 11.14: (a) The transition matrix for a simple subshift on two-state partition
A = {0, 1}, with grammar G given by a single pruning block b = 11 (consecutive
repeat of symbol 1 is inadmissible): the state M0 maps both onto M0 and M1,
but the state M1 maps only onto M0. (b) The corresponding finite 2-node, 3-links
Markov graph, with nodes coding the symbols. All admissible itineraries are generated
as walks on this finite Markov graph.

A Markov graph consists of a set of nodes (or vertices, or states), one
for each state in the alphabet A = {A,B,C, · · · , Z}, connected by a set of
directed links (edges, arcs). Node i is connected by a directed link to
node j whenever the transition matrix element (11.2) takes value Tij = 1.
There might be a set of links connecting two nodes, or links that originate
and terminate on the same node. Two graphs are isomorphic if one can
be obtained from the other by relabeling links and nodes; for us they are
one and the same graph. As we are interested in recurrent dynamics, we
restrict our attention to irreducible or strongly connected graphs, that is,
graphs for which there is a path from any node to any other node.

The simplest example is given in figure 11.14.

in depth:

chapter 12, p. 183

Commentary

Remark 11.1 Symbolic dynamics, history and good taste. For a brief history of
symbolic dynamics, from J. Hadamard in 1898 onward, see Notes to chapter 1 of
Kitchens monograph [11.1], a very clear and enjoyable mathematical introduction
to topics discussed here. Finite Markov graphs or finite automata are discussed in
refs. [11.2, 11.3, 11.4, 11.5]. They belong to the category of regular languages. A
good hands-on introduction to symbolic dynamics is given in ref. [11.6].

The binary labeling of the once-folding map periodic points was introduced

by Myrberg [11.7] for one-dimensional maps, and its utility to two-dimensional

maps has been emphasized in refs. [3.7, 3.11]. For one-dimensional maps it is now

customary to use the R-L notation of Metropolis, Stein and Stein [11.8, 11.9],

indicating that the point xn lies either to the left or to the right of the critical

point in figure 11.8. The symbolic dynamics of such mappings has been extensively

studied by means of the Smale horseshoes, see for example ref. [11.10]. Using letters

rather than numerals in symbol dynamics alphabets probably reflects good taste.

We prefer numerals for their computational convenience, as they speed up the

implementation of conversions into the topological coordinates (δ, γ) introduced in

sect. 12.3.1. The alternating binary ordering of figure 11.9 is related to the Gray

codes of computer science [2.8].
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Remark 11.2 Inflating Markov graphs. In the above examples the symbolic

dynamics has been encoded by labeling links in the Markov graph. Alternatively

one can encode the dynamics by labeling the nodes, as in figure 11.12, where the 4

nodes refer to 4 Markov partition regions {M00,M01,M10,M11}, and the 8 links

to the 8 non-zero entries in the 2-step memory transition matrix (11.15).

Résumé

In chapters 14 and 15 we will establish that spectra of evolution operators
can be extracted from periodic orbit sums:

∑
(spectral eigenvalues) =

∑
(periodic orbits) .

In order to implement this theory we need to know what periodic orbits
can exist, and the symbolic dynamics developed above and in chapter 12 is
an invaluable tool toward this end.

fast track:

chapter 13, p. 203
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Exercises

Exercise 11.1 Binary symbolic dynamics. Verify that the shortest prime
binary cycles of the unimodal repeller of figure 11.8 are 0, 1, 01, 001, 011, · · ·.
Compare with table 11.1. Try to sketch them in the graph of the unimodal
function f(x); compare ordering of the periodic points with figure 11.9. The
point is that while overlayed on each other the longer cycles look like a hopeless
jumble, the cycle points are clearly and logically ordered by the alternating
binary tree.

Exercise 11.2 3-disk fundamental domain symbolic dynamics. Try
to sketch 0, 1, 01, 001, 011, · · ·. in the fundamental domain, figure 11.6, and
interpret the symbols {0, 1} by relating them to topologically distinct types of
collisions. Compare with table 11.2. Then try to sketch the location of periodic
points in the Poincaré section of the billiard flow. The point of this exercise is
that while in the configuration space longer cycles look like a hopeless jumble,
in the Poincaré section they are clearly and logically ordered. The Poincaré
section is always to be preferred to projections of a flow onto the configuration
space coordinates, or any other subset of phase space coordinates which does
not respect the topological organization of the flow.

Exercise 11.3 Generating prime cycles. Write a program that generates all

binary prime cycles up to given finite length.

Exercise 11.4 A contracting baker’s map. Consider a contracting (or
“dissipative”) baker’s defined in exercise 4.4.

The symbolic dynamics encoding of trajectories is realized via symbols 0 (y ≤ 1/2)
and 1 (y > 1/2). Consider the observable a(x, y) = x. Verify that for any periodic
orbit p (ǫ1 . . . ǫnp), ǫi ∈ {0, 1}

Ap =
3

4

np∑

j=1

δj,1 .

Exercise 11.5 Reduction of 3-disk symbolic dynamics to binary.

(a) Verify that the 3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.}, · · ·,
correspond to the fundamental domain cycles 0, 1, 01, 001, 011, · · ·
respectively.

(b) Check the reduction for short cycles in table 11.2 by drawing them both
in the full 3-disk system and in the fundamental domain, as in figure 11.6.

(c) Optional: Can you see how the group elements listed in table 11.2 relate
irreducible segments to the fundamental domain periodic orbits?
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Exercise 11.6 Unimodal map symbolic dynamics. Show that the tent map

point γ(S+) with future itinerary S+ is given by converting the sequence of sn’s into

a binary number by the algorithm (11.11). This follows by inspection from the binary

tree of figure 11.9.

Exercise 11.7 “Golden mean” pruned map. Consider a symmetrical
tent map on the unit interval such that its highest point belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the absolute value Λ for the slope (the two different slopes ±Λ just
differ by a sign) where the maximum at 1/2 is part of a period three
orbit, as in the figure.

(b) Show that no orbit of this map can visit the region x > (1+
√

5)/4 more
than once. Verify that once an orbit exceeds x > (

√
5 − 1)/4, it does

not reenter the region x < (
√

5 − 1)/4.

(c) If an orbit is in the interval (
√

5 − 1)/4 < x < 1/2, where will it be on
the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2 we use the symbol 0
and for x > 1/2 we use the symbol 1, show that no periodic orbit will
have the substring 00 in it.

(e) On the second thought, is there a periodic orbit that violates the above
00 pruning rule?

For continuation, see exercise 13.6 and exercise 13.8. See also exercise 13.7
and exercise 13.9.

Exercise 11.8 Binary 3-step transition matrix. Construct [8×8] binary 3-step

transition matrix analogous to the 2-step transition matrix (11.15). Convince yourself

that the number of terms of contributing to trT n is independent of the memory length,

and that this [2m×2m] trace is well defined in the infinite memory limit m→ ∞.
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Chapter 12

Qualitative dynamics, for
cyclists

I.1. Introduction to conjugacy problems for
diffeomorphisms. This is a survey article on the
area of global analysis defined by differentiable dy-
namical systems or equivalently the action (differ-
entiable) of a Lie group G on a manifold M . Here
Diff(M) is the group of all diffeomorphisms of M and
a diffeomorphism is a differentiable map with a dif-
ferentiable inverse. (. . .) Our problem is to study the
global structure, that is, all of the orbits of M .

Stephen Smale, Differentiable Dynamical Systems

In sects. 9.1 and 11.1 we introduced the concept of partitioning the phase
space, in any way you please. In chapter 8 we established that stability
eigenvalues of periodic orbits are invariants of a given flow. The invariance
of stabilities of a periodic orbit is a local property of the flow.

For the Rössler flow of example 3.3, we have learned that the attractor
is very thin, but otherwise the return maps that we found were disquiet-
ing – figure 3.2 did not appear to be a one-to-one map. This apparent
loss of invertibility is an artifact of projection of higher-dimensional return
maps onto lower-dimensional subspaces. As the choice of lower-dimensional
subspace is arbitrary, the resulting snapshots of return maps look rather
arbitrary, too. Other projections might look even less suggestive.

Such observations beg a question: Does there exist a “natural”, in-
trinsically optimal coordinate system in which we should plot of a return
map?

As we shall now argue (see also sect. 17.1), the answer is yes: The in-
trinsic coordinates are given by the stable/unstable manifolds, and a return
map should be plotted as a map from the unstable manifold back onto the
immediate neighborhood of the unstable manifold.

In this chapter we show that every equilibrium point and every peri-
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184 CHAPTER 12. QUALITATIVE DYNAMICS, FOR CYCLISTS

odic orbit carries with it stable and unstable manifolds which provide a
topologically invariant global foliation of the phase space. This qualitative
dynamics of stretching and mixing enables us to partition the phase space
and assign symbolic dynamics itineraries to trajectories.

Given an itinerary, the topology of stretching and folding fixes the rel-
ative spatial ordering of trajectories, and separates the admissible and in-
admissible itineraries. The level is distinctly cyclist, in distincition to the
pedestrian tempo of the preceeding chapter. Skip this chapter unless you
really need to get into nitty-gritty details of symbolic dynamics.

fast track:

chapter 13, p. 203

12.1 Going global: Stable/unstable manifolds

A neighborhood of a trajectory deforms as it is transported by the flow. In
the linear approximation, the stability matrix A describes this shearing of
an infinitesimal neighborhood in an infinitesimal time step. The shearing
after finite time is described by the fundamental matrix Mt. Its eigenvalues
and eigendirections describe deformation of an initial infinitesimal sphere of
neighboring trajectories into an ellipsoid time t later. Nearby trajectories
separate exponentially along the unstable directions, approach each other
along the stable directions, and maintain their distance along the marginal
directions.

The fixed or periodic point x∗ stability matrix Mp(x
∗) eigenvectors

(8.9) form a rectilinear coordinate frame in which the flow into, out of, or
encircling the fixed point is linear in the sense of sect. 4.2. These eigendirec-
tions are numerically continued into global curvilinear invariant manifolds
as follows.

The global continuations of the local stable, unstable eigendirections
are called the stable, respectively unstable manifolds. They consist of all
points which march into the fixed point forward, respectively backward in
time

W s =
{
x ∈ M : f t(x) − x∗ → 0 as t→ ∞

}

W u =
{
x ∈ M : f−t(x) − x∗ → 0 as t→ ∞

}
. (12.1)

The stable/unstable manifolds of a flow are rather hard to visualize, so as
long as we are not worried about a global property such as the number
of times they wind around a periodic trajectory before completing a par-
course, we might just as well look at their Poincaré section return maps.
Stable, unstable manifolds for maps are defined by

W s = {x ∈ P : fn(x) − x∗ → 0 as n→ ∞}
W u =

{
x ∈ P : f−n(x) − x∗ → 0 as n→ ∞

}
. (12.2)
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For n → ∞ any finite segment of W s, respectively W u converges to the
linearized map eigenvector e(e), respectively e(c). In this sense each eigen-
vector defines a (curvilinear) axis of the stable, respectively unstable man-
ifold.

Conversely, we can use an arbitrarily small segment of a fixed point
eigenvector to construct a finite segment of the associated manifold. Precise
construction depends on the type of the eigenvalue(s).

Expanding real and positive eigendirection. Consider ith ex-
panding eigenvalue, eigenvector pair (Λi, ei) computed from J evaluated at
a cycle point,

J(x)ei(x) = Λiei(x) , x ∈ p , Λi > 1 . (12.3)

Take an infinitesimal eigenvector ǫ ei(x), ǫ ≪ 1, and its image Jp(x)ǫ ei(x) =
Λiǫ ei(x) . Sprinkle the interval |Λi − 1|ǫ with a large number of points xm,
equidistantly spaced on logarithmic scale ln |Λi − 1| + ln ǫ . The successive
images of these points f(xj), f

2(xj), · · ·, fm(xj) trace out the curvilinear
unstable manifold in direction ei. Repeat for −ǫ ei(x).

Contractiong real, positive eigendirection. Reverse the action of
the map backwards in time. This turns a contracting direction into an
expanding one, tracing out the curvilinear stable manifold in continuation
of ǫ ej.

Expanding/contracting real negative eigendirection. As above,
but every even iterate f2(xj), f

4(xj), f
6(xj) continues in the direction ei,

every odd one in the direction −ei.

Complex eigenvalue pair. Construct an orthonormal pair of eigen-
vectors spanning the plane {ǫ ej , ǫ ej+1}. Iteration of the annulus between
an infinitesimal circle and its image by J spans the spiralling/circle unstable
manifold of the complex eigenvalue pair {Λi,Λi+1 = Λ∗

i }.

12.2 Horseshoes

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded back. An example is a 3-
dimensional invertible flow sketched in figure 11.7 which returns an area of
a Poincaré section of the flow stretched and folded into a “horseshoe”, such
that the initial area is intersected at most twice. Run backwards, the flow
generates the backward horseshoe which intersects the forward horseshoe
at most 4 times, and so forth. Such flows exist, and are easily constructed
- an example is the Rössler system , discussed in example 3.3. ✎ 12.1

page 199
Now we shall construct an example of a locally unstable but globally

bounded mapping which returns an initial area stretched and folded into
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186 CHAPTER 12. QUALITATIVE DYNAMICS, FOR CYCLISTS

a “horseshoe”, such that the initial area is intersected at most twice. We
shall refer to such mappings with at most 2n transverse self-intersections
at the nth iteration as the once-folding maps.

As an example is afforded by the 2-dimensional Hénon map✎ 3.4
page 55

xn+1 = 1 − ax2
n + byn

yn+1 = xn . (12.4)

The Hénon map models qualitatively the Poincaré section return map of
figure 11.7. For b = 0 the Hénon map reduces to the parabola (11.9), and,
as shown in sects. 3.3 and 31.1, for b 6= 0 it is kind of a fattened parabola;
by construction, it takes a rectangular initial area and returns it bent as a
horseshoe.

For definitiveness, fix the parameter values to a = 6, b = 0.9. The map
is quadratic, so it has 2 fixed points x0 = f (x0), x1 = f (x1) indicated in
figure 12.1 (a). For the parameter values at hand, they are both unstable.
If you start with a small ball of initial points centered around x1, and
iterate the map, the ball will be stretched and squashed along the line W u

1 .
Similarly, a small ball of initial points centered around the other fixed

point x0 iterated backward in time,

xn−1 = yn

yn−1 = −1

b
(1 − ay2

n − xn) , (12.5)

traces out the line W s
0 . W s

0 is the stable manifold of x0 fixed point, and
W u

1 is the unstable manifold of x1 fixed point, defined in sect. 12.1. Their
intersections enclose the crosshatched region M. . Any point outside W u

1

border of M. escapes to infinity forward in time, while any point outside
W s

0 border escapes to infinity backwards in time. In this way the unstable
- stable manifolds define topologically, invariant and optimal M. initial
region; all orbits that stay confined for all times are confined to M. .

Iterated one step forward, the region M. is stretched and folded into a
smale horseshoe drawn in figure 12.1 (b). The horseshoe fattened parabolla
shape is the consequence og the quadratic form x2 in (12.4). Parameter
a controls the amount of stretching, while the parameter b controls the
amount of compression of the folded horseshoe. The case a = 6, b = 0.9
considered here corresponds to strong stretching and weak compression.
Label the two forward intersections f (M.) ∩M. by Ms., with s ∈ {0, 1},
figure 12.1 (b). The horseshoe consists of the two strips M0.,M1. , and the
bent segment that lies entirely outside the W u

1 line. As all points in this
segment escape to infinity under forward iteration, this region can safely
be cut out and thrown away.

Iterated one step backwards, the region M. is again stretched and folded
into a horseshoe, figure 12.1 (c). As stability and instability are inter-
changed under time reversal, this horseshoe is transverse to the forward
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(a)

s

0

u

1W

W

1

0

(b) (c)

Figure 12.1: The Hénon map for a = 6, b = .9. (a) The fixed points 0, 1, and the
segments of the W s

0 stable manifold, Wu
1 unstable manifold that enclose the initial

(crosshatched) region M.. (b) The forward horseshoe f (M.). (c) The backward
horseshoe f−1(M.). Iteration yields a complete Smale horseshoe, with every forward
fold intersecting every backward fold.

one. Again the points in the horseshoe bend wonder off to infinity as
n → −∞, and we are left with the two (backward) strips M.0,M.1 . Iter-
ating two steps forward we obtain the four strips M11.,M01.,M00.,M10.,
and iterating backwards we obtain the four strips M.00,M.01,M.11,M.10

transverse to the forward ones just as for 3-disk pinball game figure 11.3.
Iterating three steps forward we get an 8 strips, and so on ad infinitum.

What is the significance of the subscript .011 which labels the M.011

backward strip? The two strips M.0,M.1 partition the phase space into
two regions labeled by the two-letter alphabet A = {0, 1}. S+ = .011
is the future itinerary for all x ∈ M.011. Likewise, for the forward strips
all x ∈ Ms−m···s−1s0. have the past itinerary S- = s−m · · · s−1s0 . Which
partition we use to present pictorially the regions that do not escape in m
iterations is a matter of taste, as the backward strips are the preimages of
the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non–wandering set (2.2) of M., is the union of all points whose
forward and backward trajectories remain trapped for all time. given by
the intersections of all images and preimages of M:

Ω =

{
x : x ∈ lim

m,n→∞
fm(M.)

⋂
f−n(M.)

}
. (12.6)

ChaosBook.org/version11.8, Aug 30 2006 smale - 5jun2005
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Two important properties of the Smale horseshoe are that it has a
complete binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold fn(M) intersects
transversally every backward fold f−m(M), so a unique bi-infinite binary
sequence can be associated to every element of the non–wandering set. A
point x ∈ Ω is labeled by the intersection of its past and future itineraries
S(x) = · · · s−2s−1s0.s1s2 · · ·, where sn = s if fn(x) ∈ M.s , s ∈ {0, 1}
and n ∈ Z. For sufficiently separated disks, the 3-disk game of pinball
figure 11.3, is another example of a complete Smale horseshoe; in this case
the “folding” region of the horseshoe is cut out of the picture by allowing
the pinballs that fly between the disks to fall off the table and escape.

The system is said to be structurally stable if all intersections of for-
ward and backward iterates of M remain transverse for sufficiently small
perturbations f → f + δ of the flow, for example, for slight displacements
of the disks, or sufficiently small variations of the Hénon map parameters
a, b while structural stability is exceedingly desirable, it is also exceedingly
rare. About this, more later.

12.3 Spatial ordering

Consider a system for which you have succeeded in constructing a covering
symbolic dynamics, such as a well-separated 3-disk system. Now start
moving the disks toward each other. At some critical separation a disk
will start blocking families of trajectories traversing the other two disks.
The order in which trajectories disappear is determined by their relative
ordering in space; the ones closest to the intervening disk will be pruned
first. Determining inadmissible itineraries requires that we relate the spatial
ordering of trajectories to their time ordered itineraries.✎ 12.9

page 202
So far we have rules that, given a phase space partition, generate a

temporally ordered itinerary for a given trajectory. Our next task is the
reverse: given a set of itineraries, what is the spatial ordering of corre-
sponding points along the trajectories? In answering this question we will
be aided by Smale’s visualization of the relation between the topology of a
flow and its symbolic dynamics by means of “horseshoes”.

12.3.1 Symbol square

For a better visualization of 2-dimensional non–wandering sets, fatten the
intersection regions until they completely cover a unit square, as in fig-
ure 12.2. We shall refer to such a “map” of the topology of a given
“stretch & fold” dynamical system as the symbol square. The symbol
square is a topologically accurate representation of the non–wandering set
and serves as a street map for labeling its pieces. Finite memory of m steps
and finite foresight of n steps partitions the symbol square into rectangles
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Figure 12.2: Kneading Danish Pastry: symbol square representation of an orientation
reversing once-folding map obtained by fattening the Smale horseshoe intersections of
figure 12.1 into a unit square. In the symbol square the dynamics maps rectangles
into rectangles by a decimal point shift.

[s−m+1 · · · s0.s1s2 · · · sn]. In the binary dynamics symbol square the size of
such rectangle is 2−m × 2−n; it corresponds to a region of the dynamical
phase space which contains all points that share common n future and m
past symbols. This region maps in a nontrivial way in the phase space, ✎ 12.2

page 199
but in the symbol square its dynamics is exceedingly simple; all of its points
are mapped by the decimal point shift (11.20)

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (12.7)

For example, the square [01.01] gets mapped into the rectangle σ[01.01] =
[010.1]. ✎ 12.3

page 199
As the horseshoe mapping is a simple repetitive operation, we expect

a simple relation between the symbolic dynamics labeling of the horseshoe
strips, and their relative placement. The symbol square points γ(S+) with ✎ 12.4

page 200
future itinerary S+ are constructed by converting the sequence of sn’s into
a binary number by the algorithm (11.11). This follows by inspection from
figure 12.2. In order to understand this relation between the topology of
horseshoes and their symbolic dynamics, it might be helpful to backtrace to
sect. 11.3.2 and work through and understand first the symbolic dynamics
of one-dimensional unimodal mappings.

Under backward iteration the roles of 0 and 1 symbols are interchanged;
M−1

0 has the same orientation as M, while M−1
1 has the opposite orien-

tation. We assign to an orientation preserving once-folding map the past ✎ 12.5
page 201
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topological coordinate δ = δ(S-) by the algorithm:

wn−1 =

{
wn if sn = 0
1 − wn if sn = 1

, w0 = s0

δ(S-) = 0.w0w−1w−2 . . . =

∞∑

n=1

w1−n/2
n . (12.8)

Such formulas are best derived by quiet contemplation of the action of a
folding map, in the same way we derived the future topological coordinate
(11.11).

The coordinate pair (δ, γ) maps a point (x, y) in the phase space Cantor
set of figure 12.1 into a point in the symbol square of figure 12.2, preserving
the topological ordering; (δ, γ) serves as a topologically faithful represen-
tation of the non–wandering set of any once-folding map, and aids us in
partitioning the set and ordering the partitions for any flow of this type.

12.4 Pruning

The complexity of this figure will be striking, and I
shall not even try to draw it.

H. Poincaré, on his discovery of homoclinic tangles,
Les méthodes nouvelles de la méchanique céleste

In general, not all possible itineraries are realized as physical trajec-
tories. Trying to get from “here” to “there” we might find that a short
path is excluded by some obstacle, such as a disk that blocks the path, or
a potential ridge. To count correctly, we need to prune the inadmissible
trajectories, that is, specify the grammar of the admissible itineraries.

While the complete Smale horseshoe dynamics discussed so far is rather
straightforward, we had to get through it in order to be able to approach a
situation that resembles more the real life: adjust the parameters of a once-
folding map so that the intersection of the backward and forward folds is
still transverse, but no longer complete, as in figure 13.2 (a). The utility of
the symbol square lies in the fact that the surviving, admissible itineraries
still maintain the same relative spatial ordering as for the complete case.

In the example of figure 13.2 (a) the rectangles [10.1], [11.1] have been
pruned, and consequently any trajectory containing blocks b1 = 101, b2 =
111 is pruned. We refer to the border of this primary pruned region as the
pruning front; another example of a pruning front is drawn in figure 13.2 (d).
We call it a “front” as it can be visualized as a border between admissible
and inadmissible; any trajectory whose periodic point would fall to the right
of the front in figure 13.2 is inadmissible, that is, pruned. The pruning front
is a complete description of the symbolic dynamics of once-folding maps.
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For now we need this only as a concrete illustration of how pruning rules
arise.

In the example at hand there are total of two forbidden blocks 101, 111,
so the symbol dynamics is a subshift of finite type (11.24). For now we con-
centrate on this kind of pruning because it is particularly clean and simple.
Unfortunately, for a generic dynamical system a subshift of finite type is
the exception rather than the rule. Only some repelling sets (like our
game of pinball) and a few purely mathematical constructs (called Anosov
flows) are structurally stable - for most systems of interest an infinitesimal
perturbation of the flow destroys and/or creates an infinity of trajectories,
and specification of the grammar requires determination of pruning blocks
of arbitrary length. The repercussions are dramatic and counterintuitive;
for example, due to the lack of structural stability the transport coefficients
such as the deterministic diffusion constant of sect. 23.2 are emphatically
not smooth functions of the system parameters. This generic lack of struc-
tural stability is what makes nonlinear dynamics so hard.

The conceptually simpler finite subshift Smale horseshoes suffice to mo-
tivate most of the key concepts that we shall need for time being.

12.4.1 Converting pruning blocks into Markov graphs

The complete binary symbolic dynamics is too simple to be illuminating,
so we turn next to the simplest example of pruned symbolic dynamics, the
finite subshift obtained by prohibition of repeats of one of the symbols, let us
say 00 . This situation arises, for example, in studies of the circle maps, ✎ 13.7

page 225
where this kind of symbolic dynamics describes “golden mean” rotations
(we shall return to this example in chapter 24). Now the admissible ✎ 13.9

page 226
itineraries are enumerated by the pruned binary tree of figure 11.13 (a), or
the corresponding Markov graph figure 11.13 (b). We recognize this as the
Markov graph example of figure 11.14.

So we can already see the main ingradients of a general algorithm: (1)
Markov graph encodes self-similarities of the tree of all itineraries, and (2)
if we have a pruning block of length M , we need to descend M levels before
we can start identifying the self-similar sub-trees.

Suppose now that, by hook or crook, you have been so lucky fishing for
pruning rules that you now know the grammar (11.23) in terms of a finite
set of pruning blocks G = {b1, b2, · · · bk}, of lengths nbm ≤ M . Our task is
to generate all admissible itineraries. What to do?

A Markov graph algorithm.

1. Starting with the root of the tree, delineate all branches that corre-
spond to all pruning blocks; implement the pruning by removing the
last node in each pruning block.
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2. Label all nodes internal to pruning blocks by the itinerary connecting
the root point to the internal node. Why? So far we have pruned
forbidden branches by looking nb steps into future for all pruning
blocks. into future for pruning block b = [.10010]. However, the
blocks with a right combination of past and future [1.0110], [10.110],
[101.10] and [1011.0] are also pruned. In other words, any node whose
near past coincides with the begining of a pruning block is potentially
dangerous - a branch further down the tree might get pruned.

3. Add to each internal node all remaining branches allowed by the al-
phabet, and label them. Why? Each one of them is the beginning
point of an infinite tree, a tree that should be similar to another one
originating closer to the root of the whole tree.

4. Pick one of the free external nodes closest to the root of the entire
tree, forget the most distant symbol in its past. Does the truncated
itinerary correspond to an internal node? If yes, identify the two
nodes. If not, forget the next symbol in the past, repeat. If no such
truncated past corresponds to any internal node, identify with the
root of the tree.

This is a little bit abstract, so let’s say the free external node in
question is [1010.]. Three time steps back the past is [010.]. That
is not dangerous, as no pruning block in this example starts with 0.
Now forget the third step in the past: [10.] is dangerous, as that is
the start of the pruning block [10.110]. Hence the free external node
[1010.] should be identified with the internal node [10.].

5. Repeat until all free nodes have been tied back into the internal nodes.

6. Clean up: check whether every node can be reached from every other
node. Remove the transient nodes, that is, the nodes to which dy-
namics never returns.

7. The result is a Markov diagram. There is no guarantee that this is the
smartest, most compact Markov diagram possible for given pruning
(if you have a better algorithm, teach us), but walks around it do
generate all admissible itineraries, and nothing else.

Heavy pruning.

We complete this training by examples by implementing the pruning of
figure 13.2 (d). The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (12.9)

Blocks 01101, 10110 contain the forbidden block 101, so they are redundant
as pruning rules. Draw the pruning tree as a section of a binary tree with
0 and 1 branches and label each internal node by the sequence of 0’s and
1’s connecting it to the root of the tree (figure 13.3 (a). These nodes
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are the potentially dangerous nodes - beginnings of blocks that might end
up pruned. Add the side branches to those nodes (figure 13.3 (b). As
we continue down such branches we have to check whether the pruning
imposes constraints on the sequences so generated: we do this by knocking
off the leading bits and checking whether the shortened strings coincide
with any of the internal pruning tree nodes: 00 → 0; 110 → 10; 011 → 11;
0101 → 101 (pruned); 1000 → 00 → 00 → 0; 10011 → 0011 → 011 → 11;
01000 → 0.

As in the previous two examples, the trees originating in identified nodes
are identical, so the tree is “self-similar”. Now connect the side branches
to the corresponding nodes, figure 13.3 (d). Nodes “.” and 1 are transient
nodes; no sequence returns to them, and as you are interested here only in
infinitely recurrent sequences, delete them. The result is the finite Markov
graph of figure 13.3 (d); the admissible bi-infinite symbol sequences are
generated as all possible walks along this graph.

Commentary

Remark 12.1 Smale horseshoe. S. Smale understood clearly that the crucial

ingredient in the description of a chaotic flow is the topology of its non–wandering

set, and he provided us with the simplest visualization of such sets as intersections

of Smale horseshoes. In retrospect, much of the material covered here can already

be found in Smale’s fundamental paper [1.16], but a physicist who has run into

a chaotic time series in his laboratory might not know that he is investigating the

action (differentiable) of a Lie group G on a manifold M , and that the Lefschetz

trace formula is the way to go. If you find yourself mystified by Smale’s article

abstract about “the action (differentiable) of a Lie group G on a manifold M”,

quoted on page 185, rereading chapter 9 might help; for example, the Liouville

operators form a Lie group (of symplectic, or canonical transformations) acting

on the manifold (p, q).

Remark 12.2 Kneading theory. The admissible itineraries are studied in refs. [12.14,

11.8, 11.10, 11.11], as well as many others. We follow here the Milnor-Thurston ex-

position [12.15]. They study the topological zeta function for piecewise monotone

maps of the interval, and show that for the finite subshift case it can be expressed

in terms of a finite dimensional kneading determinant. As the kneading determi-

nant is essentially the topological zeta function that we introduce in (13.4), we

shall not discuss it here. Baladi and Ruelle have reworked this theory in a series

of papers [12.17, 12.18, 12.19] and in ref. [12.20] replaced it by a power series ma-

nipulation. The kneading theory is covered here in P. Dahlqvist’s appendix E.1.

Remark 12.3 Pruning fronts. The notion of a pruning front was introduced

in ref. [12.21], and developed by K.T. Hansen for a number of dynamical systems

in his Ph.D. thesis [1.3] and a series of papers [12.27]-[12.31]. Detailed studies of

pruning fronts are carried out in refs. [12.22, 12.23, 12.52]; ref. [31.5] is the most
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detailed study carried out so far. The rigorous theory of pruning fronts has been

developed by Y. Ishii [12.24, 12.25] for the Lozi map, and A. de Carvalho [12.26]

in a very general setting.

Remark 12.4 The unbearable growth of Markov graphs. A construction of finite
Markov partitions is described in refs. [12.56, 12.57], as well as in the innumerably
many other references.

If two regions in a Markov partition are not disjoint but share a boundary, the
boundary trajectories require special treatment in order to avoid overcounting,
see sect. 22.3.1. If the image of a trial partition region cuts across only a part
of another trial region and thus violates the Markov partition condition (11.4), a
further refinement of the partition is needed to distinguish distinct trajectories -
figure 13.2 is an example of such refinements.

The finite Markov graph construction sketched above is not necessarily the

minimal one; for example, the Markov graph of figure 13.3 does not generate only

the “fundamental” cycles (see chapter 18), but shadowed cycles as well, such as

t00011 in (13.17). For methods of reduction to a minimal graph, consult refs. [11.5,

12.51, 12.53]. Furthermore, when one implements the time reversed dynamics

by the same algorithm, one usually gets a graph of very different topology even

though both graphs generate the same admissible sequences, and have the same

determinant. The algorithm described here makes some sense for 1-d dynamics,

but is unnatural for 2-d maps whose dynamics it treats as one-dimensional. In

practice, generic pruning grows longer and longer, and more plentiful pruning rules.

For generic flows the refinements might never stop, and almost always we might

have to deal with infinite Markov partitions, such as those that will be discussed

in sect. 13.6. Not only do the Markov graphs get more and more unwieldy, they

have the unpleasant property that every time we add a new rule, the graph has

to be constructed from scratch, and it might look very different form the previous

one, even though it leads to a minute modification of the topological entropy. The

most determined effort to construct such graphs may be the one of ref. [12.22].

Still, this seems to be the best technology available, unless the reader alerts us to

something superior.

Résumé

Given a partition A of the phase space M, a dynamical system (M, f)
induces topological dynamics (Σ, σ) on the space Σ of all admissible bi–
infinite itineraries. The itinerary describes the time evolution of an orbit,
while (for 2-d hyperbolic maps) the symbol square describes the spatial
ordering of points along the orbit. The rule that everything to one side of
the pruning front is forbidden might (in hindsight) seem obvious, but if you
have ever tried to work out symbolic dynamics of some “generic” dynamical
system, you should be struck by its simplicity: instead of pruning a Cantor
set embedded within some larger Cantor set, the pruning front cleanly cuts
out a compact region in the symbol square and that is all - there are no
additional pruning rules.
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The symbol square is a useful tool in transforming topological pruning
into pruning rules for inadmissible sequences; those are implemented by
constructing transition matrices and/or Markov graphs. These matrices
are the simplest examples of evolution operators prerequisite to developing
a theory of averaging over chaotic flows.

Importance of symbolic dynamics is often grossly unappreciated; as we
shall see in chapters 16 and 18, coupled with uniform hyperbolicity, the
existence of a finite grammar is the crucial prerequisite for construction of
zeta functions with nice analyticity properties.
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type, in preparation.

[12.32] Fa-Geng Xie and Bai-Lin Hao, “Counting the number of periods in one-
dimensional maps with multiple critical points”, Physica A 202, 237 (1994).

[12.33] M. Benedicks and L. Carleson, Ann. of Math., 122, 1 (1985).

[12.34] M. Benedicks and L. Carleson, IXth Int. Congr. on Mathematical Physics,
B. Simon et al., eds., p.489, (Adam Hilger, Bristol, 1989).

[12.35] M. Benedicks and L. Carleson, Ann. of Math. 133, 73 (1991).

[12.36] G. D’Alessandro and A. Politi, “Hierarchical approach to complexity ...”,
Phys. Rev. Lett. 64, 1609 (1990).

refsSmale - 8mar2005 ChaosBook.org/version11.8, Aug 30 2006



References 197

[12.37] F. Christiansen and A. Politi, “A generating partition for the standard
map”, Phys. Rev. E. 51, 3811 (1995); chao-dyn/9411005

[12.38] F. Christiansen and A. Politi, “Symbolic encoding in symplectic maps”,
Nonlinearity 9, 1623 (1996).

[12.39] F. Christiansen and A. Politi, “Guidelines for the construction of a gener-
ating partition in the standard map”, Physica D 109, 32 (1997).

[12.40] T. Hall, “Fat one-dimensional representatives of pseudo-Anosov isotopy
classes with minimal periodic orbit structure”, Nonlinearity 7, 367 (1994).
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Exercises

Exercise 12.1 A Smale horseshoe. The Hénon map

[
x′

y′

]
=

[
1 − ax2 + y
bx

]
(12.10)

maps the (x, y) plane into itself - it was constructed by Hénon [3.1] in order to mimic
the Poincaré section of once-folding map induced by a flow like the one sketched in
figure 11.7. For definitivness fix the parameters to a = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that its nth iterate by the Hénon map
intersects the rectangle 2n times.

b) Construct the inverse of the (12.10).

c) Iterate the rectangle back in the time; how many intersections are there between
the n forward and m backward iterates of the rectangle?

d) Use the above information about the intersections to guess the (x, y) coordinates
for the two fixed points, a 2-cycle point, and points on the two distinct 3-cycles
from table 11.1. The exact cycle points are computed in exercise 17.11.

Exercise 12.2 Kneading Danish pastry. Write down the (x, y) → (x, y)
mapping that implements the baker’s map of figure 12.2, together with the
inverse mapping. Sketch a few rectangles in symbol square and their forward
and backward images. (Hint: the mapping is very much like the tent map
(11.8)).

Exercise 12.3 Kneading Danish without flipping. The baker’s map of

figure 12.2 includes a flip - a map of this type is called an orientation reversing once-

folding map. Write down the (x, y) → (x, y) mapping that implements an orientation

preserving baker’s map (no flip; Jacobian determinant = 1). Sketch and label the first

few foldings of the symbol square.

Exercise 12.4 Fix this manuscript. Check whether the layers of the
baker’s map of figure 12.2 are indeed ordered as the branches of the alternating
binary tree of figure 11.9. (They might not be - we have not rechecked them).
Draw the correct binary trees that order both the future and past itineraries.

For once-folding maps there are four topologically distinct ways of laying
out the stretched and folded image of the starting region,

(a) orientation preserving: stretch, fold upward, as in figure 12.3

(b) orientation preserving: stretch, fold downward, as in figure 13.2

(c) orientation reversing: stretch, fold upward, flip, as in figure 12.4

(d) orientation reversing: stretch, fold downward, flip, as in figure 12.2,
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Figure 12.3: A complete Smale horseshoe iterated forwards and backwards, orien-
tation preserving case: function f maps the dashed border square M into the vertical
horseshoe, while the inverse map f−1 maps it into the horizontal horseshoe. a) One
iteration, b) two iterations, c) three iterations. The non–wandering set is contained
within the intersection of the forward and backward iterates (crosshatched). (from
K.T. Hansen [1.3])
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Figure 12.4: An orientation reversing Smale horseshoe map. Function
f = {stretch,fold,flip} maps the dashed border square M into the vertical horseshoe,
while the inverse map f−1 maps it into the horizontal horseshoe. a) one iteration, b)
two iterations, c) the non–wandering set cover by 16 rectangles, each labeled by the
2 past and the 2 future steps. (from K.T. Hansen [1.3])

with the corresponding four distinct binary-labeled symbol squares. For n-fold
“stretch & fold” flows the labeling would be nary. The intersection M0 for the
orientation preserving Smale horseshoe, figure 12.3a, is oriented the same way
as M, while M1 is oriented opposite to M. Brief contemplation of figure 12.2
indicates that the forward iteration strips are ordered relative to each other as
the branches of the alternating binary tree in figure 11.9.

Check the labeling for all four cases.

Exercise 12.5 Orientation reversing once-folding map. By adding a
reflection around the vertical axis to the horseshoe map g we get the orientation
reversing map g̃ shown in figure 12.4. Q̃0 and Q̃1 are oriented as Q0 and Q1, so the
definition of the future topological coordinate γ is identical to the γ for the orientation
preserving horseshoe. The inverse intersections Q̃−1

0 and Q̃−1
1 are oriented so that

Q̃−1
0 is opposite to Q, while Q̃−1

1 has the same orientation as Q. Check that the past
topological coordinate δ is given by

wn−1 =

{
1 − wn if sn = 0
wn if sn = 1

, w0 = s0

δ(x) = 0.w0w−1w−2 . . . =
∞∑

n=1

w1−n/2
n . (12.11)
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Exercise 12.6 Infinite symbolic dynamics. Let σ be a function that returns
zero or one for every infinite binary string: σ : {0, 1}N → {0, 1}. Its value is represented
by σ(ǫ1, ǫ2, . . .) where the ǫi are either 0 or 1. We will now define an operator T that
acts on observables on the space of binary strings. A function a is an observable if it
has bounded variation, that is, if

‖a‖ = sup
{ǫi}

|a(ǫ1, ǫ2, . . .)| <∞ .

For these functions

T a(ǫ1, ǫ2, . . .) = a(0, ǫ1, ǫ2, . . .)σ(0, ǫ1, ǫ2, . . .) + a(1, ǫ1, ǫ2, . . .)σ(1, ǫ1, ǫ2, . . .) .

(a) (easy) Consider a finite version Tn of the operator T :

Tna(ǫ1, ǫ2, . . . , ǫ1,n) =

a(0, ǫ1, ǫ2, . . . , ǫn−1)σ(0, ǫ1, ǫ2, . . . , ǫn−1) +

a(1, ǫ1, ǫ2, . . . , ǫn−1)σ(1, ǫ1, ǫ2, . . . , ǫn−1) .

Show that Tn is a 2n × 2n matrix. Show that its trace is bounded by a number
independent of n.

(b) (medium) With the operator norm induced by the function norm, show that T
is a bounded operator.

(c) (hard) Show that T is not trace class. (Hint: check if T is compact “trace
class” is defined in appendix K.)

Exercise 12.7 Time reversability.∗∗ Hamiltonian flows are time reversible.

Does that mean that their Markov graphs are symmetric in all node → node links,

their transition matrices are adjacency matrices, symmetric and diagonalizable, and

that they have only real eigenvalues?

Exercise 12.8 Alphabet {0,1}, prune only the fixed point 0 . This is
equivalent to the infinite alphabet {1, 2, 3, 4, . . .} unrestricted symbolic dynamics. The
prime cycles are labeled by all non-repeating sequences of integers, ordered lexically:
tn, n > 0; tmn, tmmn, . . . , n > m > 0; tmnr, r > n > m > 0, . . . (see sect. 21.3).
Now the number of fundamental cycles is infinite as well:

1/ζ = 1 −
∑

n>0

tn −
∑

n>m>0

(tmn − tntm)

−
∑

n>m>0

(tmmn − tmtmn) −
∑

n>m>0

(tmnn − tmntn) (12.12)

−
∑

r>n>m>0

(tmnr + tmrn − tmntr − tmrtn − tmtnr + tmtntr) · · ·(12.13)

As shown in sect. 21.3, this grammar plays an important role in description of fixed

points of marginal stability.
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Exercise 12.9 3-disk pruning (Not easy) Show that for 3-disk game of pinball
the pruning of orbits starts at R : a = 2.04821419 . . ..

(Kai T. Hansen)

Exercise 12.10 Alphabet {0,1}, prune 1000 , 00100 , 01100 . This
example is motivated by the pruning front description of the symbolic dynamics for
the Hénon-type maps.

step 1. 1000 prunes all cycles with a 000 subsequence with the exception of
the fixed point 0; hence we factor out (1−t0) explicitly, and prune 000 from the rest.
This means that x0 is an isolated fixed point - no cycle stays in its vicinity for more
than 2 iterations. In the notation of sect. 12.4.1, the alphabet is {1, 2, 3; 0}, and the
remaining pruning rules have to be rewritten in terms of symbols 2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 . This means that the
3-cycle 3 = 100 is pruned and no long cycles stay close enough to it for a single 100
repeat. As in example 1?!, prohibition of 33 is implemented by dropping the symbol
“3” and extending the alphabet by the allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 , 13 13 , where 13 = 13,
23 = 23 are now used as single letters. Pruning of the repetitions 13 13 (the 4-cycle
13 = 1100 is pruned) yields the

result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary dynamics. The other
remaining possible blocks 213 , 2313 are forbidden by the rules of step 3. The cycle
expansion is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (12.14)

for unrestricted 4-letter alphabet {1, 2, 23, 113}.

exerSmale - 20sep2003 ChaosBook.org/version11.8, Aug 30 2006



Chapter 13

Counting

That which is crooked cannot be made straight: and
that which is wanting cannot be numbered.

Ecclestiastes 1.15

We are now in a position to develop our first prototypical application of peri-
odic orbit theory: cycle counting. This is the simplest illustration of the rai-
son d’etre of periodic orbit theory; we shall develop a duality transformation
that relates local information - in this case the next admissible symbol in a
symbol sequence - to global averages, in this case the mean rate of growth
of the number of admissible itineraries with increasing itinerary length. We
shall transform the topological dynamics of chapter 11 into a multiplicative
operation by means of transition matrices/Markov graphs, and show that
the nth power of a transition matrix counts all itineraries of length n. The
asymptotic growth rate of the number of admissible itineraries is therefore
given by the leading eigenvalue of the transition matrix; the leading eigen-
value is turn, given by the leading zero of the characteristic determinant of
the transition matrix, which is - in this context - called the topological zeta
function. For flows with finite Markov graphs this determinant is a finite
polynomial which can be read off the Markov graph.

The method goes well beyond the problem at hand, and forms the core
of the entire treatise, making tangible a rather abstract notion of “spectral
determinants” yet to come.

13.1 Counting itineraries

In the 3-disk system the number of admissible trajectories doubles with
every iterate: there are Kn = 3 · 2n distinct itineraries of length n. If disks
are too close and some part of trajectories is pruned, this is only an upper
bound and explicit formulas might be hard to discover, but we still might

be able to establish a lower exponential bound of the form Kn ≥ Cenĥ.

Bounded exponentially by 3en ln 2 ≥ Kn ≥ Cenĥ the number of trajectories

203
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must grow exponentially as a function of the itinerary length, with rate
given by the topological entropy:

h = lim
n→∞

1

n
lnKn . (13.1)

We shall now relate this quantity to the leading, with rateriven eigenvalue
of the transition matrix.

The transition matrix element Tij ∈ {0, 1} in (11.2) indicates whether
the transition from the starting partition j into partition i in one step is
allowed or not, and the (i, j) element of the transition matrix iterated n
times is✎ 13.1

page 224

(T n)ij =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . . Tkn−1,j

receives a contribution 1 from every admissible sequence of transitions, so
(T n)ij is the number of admissible n symbol itineraries starting with j and
ending with i.

Example 13.1 3-disk itinerary counting.

The (T 2)13 = 1 element of T 2 for the 3-disk transition matrix (11.5)




0 1 1
1 0 1
1 1 0




2

=




2 1 1
1 2 1
1 1 2


 . (13.2)

corresponds to 3 → 2 → 1, the only 2-step path from 3 to 1, while (T 2)33 = 2 counts
the two itineraries 313 and 323.

The total number of admissible itineraries of n symbols is

Kn =
∑

ij

(T n)ij = ( 1, 1, . . . , 1 ) T n




1
1
...
1


 . (13.3)

We can also count the number of prime cycles and pruned periodic
points, but in order not to break up the flow of the main argument, we rel-
egate these pretty results to sects. 13.5.2 and 13.7. Recommended reading
if you ever have to compute lots of cycles.

The matrix T has non-negative integer entries. A matrix M is said
to be Perron-Frobenius if some power k of M has strictly positive entries,
(Mk)rs > 0. In the case of the transition matrix T this means that every
partition eventually reaches all of the partitions, that is, the partition is
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13.1. COUNTING ITINERARIES 205

dynamically transitive or indecomposable, as assumed in (2.2). The no-
tion of transitivity is crucial in ergodic theory: a mapping is transitive if
it has a dense orbit. This notion is inherited by the shift operation once
we introduce a symbolic dynamics. If that is not the case, phase space
decomposes into disconnected pieces, each of which can be analyzed sep-
arately by a separate indecomposable Markov graph. Hence it suffices to
restrict our considerations to transition matrices of Perron-Frobenius type.

A finite [N × N ] matrix T has eigenvalues Tϕα = λαϕα and (right)
eigenvectors {ϕ0, ϕ1, · · · , ϕM−1}. Expressing the initial vector in (13.3) in
this basis (which might be incomplete, M ≤ N),

T n




1
1
...
1


 = T n

N−1∑

α=0

bαϕα =

N−1∑

α=0

bαλ
n
αϕα ,

and contracting with ( 1, 1, . . . , 1 ), we obtain

Kn =

N−1∑

α=0

cαλ
n
α .

✎ 13.2
page 224The constants cα depend on the choice of initial and final partitions: In

this example we are sandwiching T n between the vector ( 1, 1, . . . , 1 ) and
its transpose, but any other pair of vectors would do, as long as they are
not orthogonal to the leading eigenvector ϕ0.

The Perron theorem states that a Perron-Frobenius matrix has a non-
degenerate positive real eigenvalue λ0 > 1 (with a positive eigenvector)
which exceeds the moduli of all other eigenvalues. Therefore as n increases,
the sum is dominated by the leading eigenvalue of the transition matrix,
λ0 > |Reλα|, α = 1, 2, · · · , N − 1, and the topological entropy (13.1) is
given by

h = lim
n→∞

1

n
ln c0λ

n
0

[
1 +

c1
c0

(
λ1

λ0

)n
+ · · ·

]

= lnλ0 + lim
n→∞

[
ln c0
n

+
1

n

c1
c0

(
λ1

λ0

)n
+ · · ·

]

= lnλ0 . (13.4)

What have we learned? The transition matrix T is a one-step short time
operator, advancing the trajectory from a partition to the next admissible
partition. Its eigenvalues describe the rate of growth of the total number
of trajectories at the asymptotic times. Instead of painstakingly counting
K1,K2,K3, . . . and estimating (13.1) from a slope of a log-linear plot, we
have the exact topological entropy if we can compute the leading eigenvalue
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of the transition matrix T . This is reminiscent of the way the free energy
is computed from transfer matrix for one-dimensional lattice models with
finite range interactions. Historically, it is analogy with statistical mechan-
ics that led to introduction of evolution operator methods into the theory
of chaotic systems, theory that will be developed further in chapter 20.

13.2 Topological trace formula

There are two standard ways of getting at eigenvalues of a matrix - by evalu-
ating the trace trT n =

∑
λnα, or by evaluating the determinant det (1−zT ).

We start by evaluating the trace of transition matrices.

Consider an M -step memory transition matrix, like the 1-step memory
example (11.15). The trace of the transition matrix counts the number of
partitions that map into themselves. In the binary case the trace picks up
only two contributions on the diagonal, T0···0,0···0 +T1···1,1···1, no matter how
much memory we assume. . We can even take infinite memory M → ∞,✎ 11.8

page 181
in which case the contributing partitions are shrunk to the fixed points,
trT = T0,0 + T1,1.

More generally, each closed walk through n concatenated entries of T
contributes to trT n a product of the matrix entries along the walk. Each
step in such a walk shifts the symbolic string by one symbol; the trace
ensures that the walk closes on a periodic string c. Define tc to be the
local trace, the product of matrix elements along a cycle c, each term
being multiplied by a book keeping variable z. zntrT n is then the sum
of tc for all cycles of length n. For example, for an [8×8] transition✎ 11.8

page 181
matrix Ts1s2s3,s0s1s2 version of (11.15), or any refined partition [2n×2n]
transition matrix, n arbitrarily large, the periodic point 100 contributes
t100 = z3T100,010T010,001T001,100 to z3trT 3. This product is manifestly cycli-
cally symmetric, t100 = t010 = t001, and so a prime cycle p of length np
contributes np times, once for each periodic point along its orbit. For the
binary labeled non–wandering set the first few traces are given by (consult
tables 11.1 and 13.1)

z tr T = t0 + t1,

z2trT 2 = t20 + t21 + 2t10,

z3trT 3 = t30 + t31 + 3t100 + 3t101,

z4trT 4 = t40 + t41 + 2t210 + 4t1000 + 4t1001 + 4t1011. (13.5)

For complete binary symbolic dynamics tp = znp for every binary prime
cycle p; if there is pruning tp = znp if p is admissible cycle and tp = 0
otherwise. Hence trT n counts the number of admissible periodic points of
period n. In general, the nth order trace (13.5) picks up contributions
from all repeats of prime cycles, with each cycle contributing np periodic
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n Nn # of prime cycles of length np

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

Table 13.1: The total numbers of periodic points Nn of period n for binary symbolic
dynamics. The numbers of prime cycles contributing illustrates the preponderance of
long prime cycles of length n over the repeats of shorter cycles of lengths np, n = rnp.
Further listings of binary prime cycles are given in tables 11.1 and 13.2. (L. Rondoni)

points, so the total number of periodic points of period n is given by

znNn = zntr T n =
∑

np|n
npt

n/np
p =

∑

p

np

∞∑

r=1

δn,nprt
r
p . (13.6)

Here m|n means that m is a divisor of n, and (taking z = 1) tp = 1 if the
cycle is admissible, and tp = 0 otherwise.

In order to get rid of the awkward divisibility constraint n = npr in the
above sum, we introduce the generating function for numbers of periodic
points

∞∑

n=1

znNn = tr
zT

1 − zT
. (13.7)

Substituting (13.6) into the left hand side, and replacing the right hand
side by the eigenvalue sum trT n =

∑
λnα, we obtain our first example of a

trace formula, the topological trace formula

∑

α=0

zλα
1 − zλα

=
∑

p

nptp
1 − tp

. (13.8)

A trace formula relates the spectrum of eigenvalues of an operator - in
this case the transition matrix - to the spectrum of periodic orbits of the
dynamical system. The zn sum in (13.7) is a discrete version of the Laplace
transform (see chapter 14), and the resolvent on the left hand side is the
antecedent of the more sophisticated trace formulas (14.9), (14.20) and
(30.3). We shall now use this result to compute the spectral determinant
of the transition matrix.
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13.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of an
[M ×M ] transition matrix

det (1 − zT ) =
M−1∏

α=0

(1 − zλα) . (13.9)

We could now proceed to diagonalize T on a computer, and get this over
with. It pays, however to dissect det (1−zT ) with some care; understanding
this computation in detail will be the key to understanding the cycle ex-
pansion computations of chapter 18 for arbitrary dynamical averages. For
T a finite matrix, (13.9) is just the characteristic equation for T . However,
we shall be able to compute this object even when the dimension of T and
other such operators goes to ∞, and for that reason we prefer to refer to
(13.9) loosely as the “spectral determinant”.

There are various definitions of the determinant of a matrix; they mostly
reduce to the statement that the determinant is a certain sum over all
possible permutation cycles composed of the traces trT k, in the spirit of
the determinant–trace relation (1.15):✎ 4.1

page 72

det (1 − zT ) = exp (tr ln(1 − zT )) = exp

(
−
∑

n=1

zn

n
trT n

)

= 1 − z trT − z2

2

(
(tr T )2 − tr (T 2)

)
− . . . (13.10)

This is sometimes called a cumulant expansion. Formally, the right hand is
an infinite sum over powers of zn. If T is an [M×M ] finite matrix, then the
characteristic polynomial is at most of orderM . In that case the coefficients
of zn, n > M must vanish exactly.

We now proceed to relate the determinant in (13.10) to the correspond-
ing Markov graph of chapter 11: to this end we start by the usual algebra
textbook expression for a determinant as the sum of products of all permu-
tations

det (1−zT ) =
∑

{π}
(−1)π (1−zT )1,π1(1−zT )2,π2 · · · (1−zT )M,πM

(13.11)

where T is a [M×M ] matrix, {π} denotes the set of permutations of M
symbols, πk is what k is permuted into by the permutation π, and (−1)π =
±1 is the parity of permutation π. The right hand side of (13.11) yields a
polynomial of order M in z: a contribution of order n in z picks up M − n
unit factors along the diagonal, the remaining matrix elements yielding

(−z)n(−1)π̃Tη1,π̃η1
· · ·Tηn,π̃ηn

(13.12)
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where π̃ is the permutation of the subset of n distinct symbols η1 . . . ηn
indexing T matrix elements. As in (13.5), we refer to any combination
tc = Tη1η2Tη2η3 · · ·Tηkη1 , for a given itinerary η1η2 · · · , ηk , as the local trace
associated with a closed loop c on the Markov graph. Each term of form
(13.12) may be factored in terms of local traces tc1tc2 · · · tck , that is loops
on the Markov graph. These loops are non-intersecting, as each node may
only be reached by one link, and they are indeed loops, as if a node is
reached by a link, it has to be the starting point of another single link, as
each ηj must appear exactly once as a row and column index.

So the general structure is clear, a little more thinking is only required
to get the sign of a generic contribution. We consider only the case of
loops of length 1 and 2, and leave to the reader the task of generalizing the
result by induction. Consider first a term in which only loops of unit length
appear on (13.12), that is, only the diagonal elements of T are picked up.
We have k = n loops and an even permutation π̃ so the sign is given by
(−1)k, k being the number of loops. Now take the case in which we have i
single loops and j loops of length n = 2j+ i. The parity of the permutation
gives (−1)j and the first factor in (13.12) gives (−1)n = (−1)2j+i. So once
again these terms combine into (−1)k, where k = i + j is the number of
loops. We may summarize our findings as follows: ✎ 13.3

page 224

The characteristic polynomial of a transition matrix/Markov graph
is given by the sum of all possible partitions π of the graph into
products of non-intersecting loops, with each loop trace tp carrying
a minus sign:

det (1 − zT ) =

f∑

k=0

∑′

π

(−1)ktp1 · · · tpk
(13.13)

Any self-intersecting loop is shadowed by a product of two loops that share
the intersection point. As both the long loop tab and its shadow tatb in
the case at hand carry the same weight zna+nb , the cancellation is exact,
and the loop expansion (13.13) is finite, with f the maximal number of
non-intersecting loops.

We refer to the set of all non-self-intersecting loops {tp1, tp2 , · · · tpf
} as

the fundamental cycles. This is not a very good definition, as the Markov
graphs are not unique – the most we know is that for a given finite-grammar
language, there exist Markov graph(s) with the minimal number of loops.
Regardless of how cleverly a Markov graph is constructed, it is always true
that for any finite Markov graph the number of fundamental cycles f is
finite. If you know a better way to define the “fundamental cycles”, let us
know.

fast track:

sect. 13.4, p. 211
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Figure 13.1: The golden mean pruning rule
Markov graph, see also figure 11.13.

1 0

13.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of traces is most easily
grasped by working through a few examples. The complete binary dynamics
Markov graph of figure 11.11(b) is a little bit too simple, but let us start
humbly.

Example 13.2 Topological polynomial for complete binary dynamics: There
are only two non-intersecting loops, yielding

det (1 − zT ) = 1 − t0 − t1 = 1 − 2z . (13.14)

The leading (and only) zero of this characteristic polynomial yields the topological
entropy eh = 2. As we know that there are Kn = 2n binary strings of length N , we
are not surprised by this result.

Similarly, for complete symbolic dynamics of N symbols the Markov graph
has one node and N links, yielding

det (1 − zT ) = 1 −Nz , (13.15)

whence the topological entropy h = lnN .

Example 13.3 Golden mean pruning: A more interesting example is the “golden
mean” pruning of figure 13.1. There is only one grammar rule, that a repeat of symbol
0 is forbidden. The non-intersecting loops are of length 1 and 2, so the topological✎ 13.4

page 224
polynomial is given by

det (1 − zT ) = 1 − t1 − t01 = 1 − z − z2 . (13.16)

The leading root of this polynomial is the golden mean, so the entropy (13.4) is the

logarithm of the golden mean, h = ln 1+
√

5
2 .

Example 13.4 Nontrivial pruning: The non-self-intersecting loops of the Markov
graph of figure 13.3(d) are indicated in figure 13.3(e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1 − zT ) = 1 − t0 − t0011 − t0001 − t00011

+t0t0011 + t0011t0001 . (13.17)

With tp = znp , where np is the length of the p-cycle, the smallest root of✎ 13.10
page 226
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Figure 13.2: (a) An incomplete Smale horseshoe: the inner forward fold does not
intersect the two rightmost backward folds. (b) The primary pruned region in the
symbol square and the corresponding forbidden binary blocks. (c) An incomplete
Smale horseshoe which illustrates (d) the monotonicity of the pruning front: the thick
line which delineates the left border of the primary pruned region is monotone on
each half of the symbol square. The backward folding in figures (a) and (c) is only
schematic - in invertible mappings there are further missing intersections, all obtained
by the forward and backward iterations of the primary pruned region.

0 = 1 − z − 2z4 + z8 (13.18)

yields the topological entropy h = − ln z, z = 0.658779 . . ., h = 0.417367 . . ., signifi-
cantly smaller than the entropy of the covering symbolic dynamics, the complete binary
shift h = ln 2 = 0.693 . . .

in depth:

sect. O.1, p. 829

13.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the Markov
graph is infinite? If we are never sure that looking further into future
will reveal no further forbidden blocks? There is still a way to define the
determinant, and this idea is central to the whole treatise: the determinant
is then defined by its cumulant expansion (13.10) ✎ 4.1

page 72

det (1 − zT ) = 1 −
∞∑

n=1

ĉnz
n . (13.19)

For finite dimensional matrices the expansion is a finite polynomial, and
(13.19) is an identity; however, for infinite dimensional operators the cu-
mulant expansion coefficients ĉn define the determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary
transition matrix. In order to obtain an expression for the spectral det-
erminant (13.9) in terms of cycles, substitute (13.6) into (13.19) and sum
over the repeats of prime cycles using ln(1 − x) =

∑
xr /r ,

det (1 − zT ) = exp

(
−
∑

p

∞∑

r=1

trp
r

)
=
∏

p

(1 − tp) , (13.20)
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Figure 13.3: Conversion of the pruning front of figure 13.2d into a finite Markov
graph. (a) Starting with the start node “.”, delineate all pruning blocks on the binary
tree. A solid line stands for “1” and a dashed line for “0”. Ends of forbidden strings
are marked with ×. Label all internal nodes by reading the bits connecting “.”, the
base of the tree, to the node. (b) Indicate all admissible starting blocks by arrows.
(c) Drop recursively the leading bits in the admissible blocks; if the truncated string
corresponds to an internal node in (a), connect them. (d) Delete the transient, non-
circulating nodes; all admissible sequences are generated as walks on this finite Markov
graph. (e) Identify all distinct loops and construct the determinant (13.17).
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where for the topological entropy the weight assigned to a prime cycle p of
length np is tp = znp if the cycle is admissible, or tp = 0 if it is pruned.
This determinant is called the topological or the Artin-Mazur zeta function,
conventionally denoted by

1/ζtop =
∏

p

(1 − znp) = 1 −
∑

n=1

ĉnz
n . (13.21)

Counting cycles amounts to giving each admissible prime cycle p weight
tp = znp and expanding the Euler product (13.21) as a power series in z.
As the precise expression for coefficients ĉn in terms of local traces tp is
more general than the current application to counting, we shall postpone
its derivation to chapter 18.

The topological entropy h can now be determined from the leading zero
z = e−h of the topological zeta function. For a finite [M×M ] transition
matrix, the number of terms in the characteristic equation (13.13) is finite,
and we refer to this expansion as the topological polynomial of order ≤M .
The power of defining a determinant by the cumulant expansion is that it

works even when the partition is infinite, M → ∞; an example is given in
sect. 13.6, and many more later on.

fast track:

sect. 13.6, p. 218

13.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (14.20)
to the problem of deriving the topological zeta functions for flows. The
time-weighted density of prime cycles of period t is

Γ(t) =
∑

p

∑

r=1

Tpδ(t− rTp) . (13.22)

As in (14.18), a Laplace transform smooths the sum over Dirac delta
spikes and yields the topological trace formula

∑

p

∑

r=1

Tp

∫ ∞

0+

dt e−st δ(t − rTp) =
∑

p

Tp

∞∑

r=1

e−sTpr (13.23)

and the topological zeta function for flows:

1/ζtop(s) =
∏

p

(
1 − e−sTp

)
, (13.24)
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related to the trace formula by

∑

p

Tp

∞∑

r=1

e−sTpr = − ∂

∂s
ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta
function (13.21) for maps; its leading zero s = −h yields the topological
entropy for a flow.

13.5 Counting cycles

In what follows we shall occasionally need to compute all cycles up to
topological length n, so it is handy to know their exact number.

13.5.1 Counting periodic points

Nn, the number of periodic points of period n can be computed from (13.19)
and (13.7) as a logarithmic derivative of the topological zeta function

∑

n=1

Nnz
n = tr

(
−z d

dz
ln(1 − zT )

)
= −z d

dz
ln det (1 − zT )

=
−z d

dz1/ζtop

1/ζtop
. (13.25)

We see that the trace formula (13.8) diverges at z → e−h, as the denomi-
nator has a simple zero there.

Example 13.5 Complete N -ary dynamics:

As a check of formula (13.19) in the finite grammar context, consider the
complete N -ary dynamics (11.3) for which the number of periodic points of period n
is simply trT n

c = Nn. Substituting

∞∑

n=1

zn

n
trT n

c =

∞∑

n=1

(zN)n

n
= ln(1 − zN) ,

into (13.19) we verify (13.15). The logarithmic derivative formula (13.25) in this case
does not buy us much either, we recover

∑

n=1

Nnz
n =

Nz

1 −Nz
.
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Example 13.6 Nontrivial pruned dynamics: Consider the pruning of figure 13.3(e).
Substituting (13.18) we obtain

∑

n=1

Nnz
n =

z + 8z4 − 8z8

1 − z − 2z4 + z8
. (13.26)

Now the topological zeta function is not merely a tool for extracting the asymptotic
growth of Nn; it actually yields the exact and not entirely trivial recursion relation for
the numbers of periodic points: N1 = N2 = N3 = 1, Nn = 2n+ 1 for n = 4, 5, 6, 7, 8,
and Nn = Nn−1 + 2Nn−4 −Nn−8 for n > 8.

13.5.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to
evaluate the number of prime cycles Mn for a dynamical system whose
symbolic dynamics is built from N symbols. The problem of finding Mn is
classical in combinatorics (counting necklaces made out of n beads out of N
different kinds) and is easily solved. There are Nn possible distinct strings
of length n composed of N letters. TheseNn strings include all Md prime d-
cycles whose period d equals or divides n. A prime cycle is a non-repeating
symbol string: for example, p = 011 = 101 = 110 = . . . 011011 . . . is prime,
but 0101 = 010101 . . . = 01 is not. A prime d-cycle contributes d strings
to the sum of all possible strings, one for each cyclic permutation. The
total number of possible periodic symbol sequences of length n is therefore
related to the number of prime cycles by

Nn =
∑

d|n
dMd , (13.27)

where Nn equals trT n. The number of prime cycles can be computed
recursively

Mn =
1

n


Nn −

d<n∑

d|n
dMd


 ,

or by the Möbius inversion formula ✎ 13.11
page 226

Mn = n−1
∑

d|n
µ
(n
d

)
Nd . (13.28)

where the Möbius function µ(1) = 1, µ(n) = 0 if n has a squared factor,
and µ(p1p2 . . . pk) = (−1)k if all prime factors are different. ✎ 13.12

page 227
We list the number of prime cycles up to length 10 for 2-, 3- and 4-

letter complete symbolic dynamics in table 13.2. The number of prime
cycles follows by Möbius inversion (13.28).

ChaosBook.org/version11.8, Aug 30 2006 count - 30aug2006



216 CHAPTER 13. COUNTING

n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 −N)/5 6 48 204
6 (N6 −N3 −N2 +N)/6 9 116 670
7 (N7 −N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 −N5 −N2 +N)/10 99 5880 104754

Table 13.2: Number of prime cycles for various alphabets and grammars up to length
10. The first column gives the cycle length, the second the formula (13.28) for the
number of prime cycles for complete N -symbol dynamics, columns three through five
give the numbers for N = 2, 3 and 4.

Example 13.7 Counting N -disk periodic points: A simple example of
pruning is the exclusion of “self-bounces” in the N -disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by Nn = trT n.
The pruning of self-bounces eliminates the diagonal entries, TN−disk = Tc − 1, so the
number of the N -disk periodic points is

Nn = trT n
N−disk = (N − 1)n + (−1)n(N − 1) (13.29)

(here Tc is the complete symbolic dynamics transition matrix (11.3)). For the N -disk
pruned case (13.29) Möbius inversion (13.28) yields

MN−disk
n =

1

n

∑

d|n
µ
(n
d

)
(N − 1)d +

N − 1

n

∑

d|n
µ
(n
d

)
(−1)d

= M (N−1)
n for n > 2 . (13.30)

There are no fixed points, MN−disk
1 = 0. The number of periodic points of period

2 is N2 − N , hence there are MN−disk
2 = N(N − 1)/2 prime cycles of length 2; for

lengths n > 2, the number of prime cycles is the same as for the complete (N − 1)-ary
dynamics of table 13.2.

Example 13.8 Pruning individual cycles: Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (eq (13.30)). To obtain the topological zeta function, just divide out the
binary 1- and 2-cycles (1−zt0)(1−zt1)(1−z2t01) and multiply with the correct 3-disk
2-cycles (1 − z2t12)(1 − z2t13)(1 − z2t23):✎ 13.15

page 228

✎ 13.16
page 228

1/ζ3−disk = (1 − 2z)
(1 − z2)3

(1 − z)2(1 − z2)

= (1 − 2z)(1 + z)2 = 1 − 3z2 − 2z3 . (13.31)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (22.25).
As we shall see in chapter 22, symmetries lead to factorizations of topological polyno-
mials and topological zeta functions.
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n Mn Nn Sn mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123 + 121213213) + 6·121231323
+ 6·(121231213 + 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 13.3: List of the 3-disk prime cycles up to length 10. Here n is the cycle
length, Mn the number of prime cycles, Nn the number of periodic points and Sn the
number of distinct prime cycles under the C3v symmetry (see chapter 22 for further
details). Column 3 also indicates the splitting of Nn into contributions from orbits
of lengths that divide n. The prefactors in the fifth column indicate the degeneracy
mp of the cycle; for example, 3·12 stands for the three prime cycles 12, 13 and 23
related by 2π/3 rotations. Among symmetry related cycles, a representative p̂ which is
lexically lowest was chosen. The cycles of length 9 grouped by parenthesis are related
by time reversal symmetry, but not by any other C3v transformation.

n Mn Nn Sn mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108

Table 13.4: List of the 4-disk prime cycles up to length 8. The meaning of the
symbols is the same as in table 13.3. Orbits related by time reversal symmetry (but
no other symmetry) already appear at cycle length 5. List of the cycles of length 7
and 8 has been omitted.
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Figure 13.4: (a) The logarithm of the difference between the leading zero of the
finite polynomial approximations to topological zeta function and our best estimate,
as a function of the length for the quadratic map A = 3.8. (b) The 90 zeroes of the
characteristic polynomial for the quadratic map A = 3.8 approximated by symbolic
strings up to length 90. (from ref. [1.3])

Example 13.9 Alphabet {a, cbk; b}: (continuation of exercise 13.17) In the✎ 13.17
page 228

cycle counting case, the dynamics in terms of a → z, cbk → z
1−z is a complete binary

dynamics with the explicit fixed point factor (1 − tb) = (1 − z):

1/ζtop = (1 − z)

(
1 − z − z

1 − z

)
= 1 − 3z + z2 .

✎ 13.20
page 229

13.6 Topological zeta function for an infinite par-
tition

(K.T. Hansen and P. Cvitanović)

Now consider an example of a dynamical system which (as far as we
know - there is no proof) has an infinite partition, or an infinity of longer
and longer pruning rules. Take the 1-d quadratic map

f(x) = Ax(1 − x)

with A = 3.8. It is easy to check numerically that the itinerary or the
“kneading sequence” of the critical point x = 1/2 is

K = 1011011110110111101011110111110 . . .

where the symbolic dynamics is defined by the partition of figure 11.8.
How this kneading sequence is converted into a series of pruning rules is a
dark art, relegated to appendix E.1 For the moment it suffices to state the
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result, to give you a feeling for what a “typical” infinite partition topolo-
gical zeta function looks like. Approximating the dynamics by a Markov
graph corresponding to a repeller of the period 29 attractive cycle close to
the A = 3.8 strange attractor (or, much easier, following the algorithm of
appendix E.1) yields a Markov graph with 29 nodes and the characteristic
polynomial

1/ζ
(29)
top = 1 − z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11 − z12 − z13 + z14 − z15 + z16 − z17 − z18 + z19 + z20

−z21 + z22 − z23 + z24 + z25 − z26 + z27 − z28 . (13.32)

The smallest real root of this approximate topological zeta function is

z = 0.62616120 . . . (13.33)

Constructing finite Markov graphs of increasing length corresponding to
A → 3.8 we find polynomials with better and better estimates for the
topological entropy. For the closest stable period 90 orbit we obtain our
best estimate of the topological entropy of the repeller:

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (13.34)

Figure 13.4 illustrates the convergence of the truncation approximations to
the topological zeta function as a plot of the logarithm of the difference
between the zero of a polynomial and our best estimate (13.34), plotted
as a function of the length of the stable periodic orbit. The error of the
estimate (13.33) is expected to be of order z29 ≈ e−14 because going from
length 28 to a longer truncation yields typically combinations of loops with
29 and more nodes giving terms ±z29 and of higher order in the polynomial.
Hence the convergence is exponential, with exponent of −0.47 = −h, the
topological entropy itself.

In figure 13.4(b) we plot the zeroes of the polynomial approximation
to the topological zeta function obtained by accounting for all forbidden
strings of length 90 or less. The leading zero giving the topological entropy
is the point closest to the origin. Most of the other zeroes are close to
the unit circle; we conclude that for infinite Markov partitions the topo-
logical zeta function has a unit circle as the radius of convergence. The
convergence is controlled by the ratio of the leading to the next-to-leading
eigenvalues, which is in this case indeed λ1/λ0 = 1/eh = e−h.

13.7 Shadowing

The topological zeta function is a pretty function, but the infinite product
(13.20) should make you pause. For finite transfer matrices the left hand
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side is a determinant of a finite matrix, therefore a finite polynomial; so
why is the right hand side an infinite product over the infinitely many prime
periodic orbits of all periods?

The way in which this infinite product rearranges itself into a finite
polynomial is instructive, and crucial for all that follows. You can already
take a peek at the full cycle expansion (18.5) of chapter 18; all cycles beyond
the fundamental t0 and t1 appear in the shadowing combinations such as

ts1s2···sn − ts1s2···smtsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly,
if we are counting cycles as we do here, or if the dynamics is piecewise
linear, as in exercise 15.2. As we have already argued in sect. 1.5.5 and
appendix J.1.2, for nice hyperbolic flows whose symbolic dynamics is a
subshift of finite type, the shadowing combinations almost cancel, and the
spectral determinant is dominated by the fundamental cycles from (13.13),
with longer cycles contributing only small “curvature” corrections.

These exact or nearly exact cancellations depend on the flow being
smooth and the symbolic dynamics being a subshift of finite type. If the
dynamics requires infinite Markov partition with pruning rules for longer
and longer blocks, most of the shadowing combinations still cancel, but the
few corresponding to the forbidden blocks do not, leading to a finite radius
of convergence for the spectral determinant as in figure 13.4(b).

One striking aspect of the pruned cycle expansion (13.32) compared
to the trace formulas such as (13.7) is that coefficients are not growing
exponentially - indeed they all remain of order 1, so instead having a radius
of convergence e−h, in the example at hand the topological zeta function has
the unit circle as the radius of convergence. In other words, exponentiating
the spectral problem from a trace formula to a spectral determinant as in
(13.19) increases the analyticity domain: the pole in the trace (13.8) at
z = e−h is promoted to a smooth zero of the spectral determinant with a
larger radius of convergence.

A detailed discussion of the radius of convergence is given in appen-
dix E.1.

The very sensitive dependence of spectral determinants on whether the
symbolic dynamics is or is not a subshift of finite type is the bad news that
we should announce already now. If the system is generic and not struc-
turally stable (see sect. 12.2), a smooth parameter variation is in no sense a
smooth variation of topological dynamics - infinities of periodic orbits are
created or destroyed, Markov graphs go from being finite to infinite and
back. That will imply that the global averages that we intend to compute
are generically nowhere differentiable functions of the system parameters,
and averaging over families of dynamical systems can be a highly nontrivial
enterprise; a simple illustration is the parameter dependence of the diffusion
constant computed in a remark in chapter 23.
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You might well ask: What is wrong with computing the entropy from
(13.1)? Does all this theory buy us anything? An answer: If we count
Kn level by level, we ignore the self-similarity of the pruned tree - examine
for example figure 11.13, or the cycle expansion of (13.26) - and the finite
estimates of hn = lnKn/n converge nonuniformly to h, and on top of that
with a slow rate of convergence, |h − hn| ≈ O(1/n) as in (13.4). The
determinant (13.9) is much smarter, as by construction it encodes the self-
similarity of the dynamics, and yields the asymptotic value of h with no
need for any finite n extrapolations.

So, the main lesson of learning how to count well, a lesson that will be
affirmed over and over, is that while the trace formulas are a conceptually
essential step in deriving and understanding periodic orbit theory, the spec-
tral determinant is the right object to use in actual computations. Instead
of resumming all of the exponentially many periodic points required by trace
formulas at each level of truncation, spectral determinants incorporate only
the small incremental corrections to what is already known - and that makes
them more convergent and economical to use.

Commentary

Remark 13.1 “Entropy”. The ease with which the topological entropy can
be motivated obscures the fact that our definition does not lead to an invariant
characterization of the dynamics, as the choice of symbolic dynamics is largely
arbitrary: the same caveat applies to other entropies to be discussed in chapter 20,
and to get proper invariants one needs to evaluate a supremum over all possible
partitions. The key mathematical point that eliminates the need of such search
is the existence of generators, that is, partitions that under dynamics are able to
probe the whole phase space on arbitrarily small scales: more precisely a generator
is a finite partition Ω = ω1 . . . ωN , with the following property: take M the
subalgebra of the phase space generated by Ω, and consider the partition built
upon all possible intersections of sets φk(βi), where φ is dynamical evolution, βi

is an element of M and k takes all possible integer values (positive as well as
negative), then the closure of such a partition coincides with the algebra of all
measurable sets. For a thorough (and readable) discussion of generators and how
they allow a computation of the Kolmogorov entropy, see ref. [13.1] and chapter 20.

Remark 13.2 Perron-Frobenius matrices. For a proof of Perron theorem on the

leading eigenvalue see ref. [1.15]. Sect. A4.1 of ref. [13.2] offers a clear discussion

of the spectrum of the transition matrix.

Remark 13.3 Determinant of a graph. Many textbooks offer derivations of the

loop expansions of characteristic polynomials for transition matrices and their

Markov graphs, see for example refs. [13.3, 13.4, 13.5].

Remark 13.4 T is not trace class. Note to the erudite reader: the transition

matrix T (in the infinite partition limit (13.19)) is not trace class in the sense of

appendix K. Still the trace is well defined in the n→ ∞ limit.
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Remark 13.5 Artin-Mazur zeta functions. Motivated by A. Weil’s zeta function

for the Frobenius map [13.6], Artin and Mazur [15.13] introduced the zeta function

(13.21) that counts periodic points for diffeomorphisms (see also ref. [13.7] for their

evaluation for maps of the interval). Smale [13.8] conjectured rationality of the

zeta functions for Axiom A diffeomorphisms, later proved by Guckenheimer [13.9]

and Manning [13.10]. See remark 15.4 on page 255 for more zeta function history.

Remark 13.6 Ordering periodic orbit expansions. In sect. 18.5 we will introduce

an alternative way of hierarchically organizing cumulant expansions, in which the

order is dictated by stability rather than cycle length: such a procedure may be

better suited to perform computations when the symbolic dynamics is not well

understood.

Résumé

What have we accomplished? We have related the number of topologically
distinct paths from “this region” to “that region” in a chaotic system to
the leading eigenvalue of the transition matrix T . The eigenspectrum of T
is given by a certain sum over traces trT n, and in this way the periodic
orbit theory has entered the arena, already at the level of the topological
dynamics, the crudest description of dynamics.

The main result of this chapter is the cycle expansion (13.21) of the top-
ological zeta function (that is, the spectral determinant of the transition
matrix):

1/ζtop(z) = 1 −
∑

k=1

ĉkz
k .

For subshifts of finite type, the transition matrix is finite, and the topolo-
gical zeta function is a finite polynomial evaluated by the loop expansion
(13.13) of det (1− zT ). For infinite grammars the topological zeta function
is defined by its cycle expansion. The topological entropy h is given by the
smallest zero z = e−h. This expression for the entropy is exact; in contrast
to the definition (13.1), no n→ ∞ extrapolations of lnKn/n are required.

Historically, these topological zeta functions were the inspiration for ap-
plying the transfer matrix methods of statistical mechanics to the problem
of computation of dynamical averages for chaotic flows. The key result
was the dynamical zeta functionto be derived in chapter 14, A weighted
generalization of the topological zeta function.

Contrary to claims one sometimes encounters in the literature, “expo-
nential proliferation of trajectories” is not the problem; what limits the
convergence of cycle expansions is the proliferation of the grammar rules,
or the “algorithmic complexity”, as illustrated by sect. 13.6, and figure 13.4
in particular.
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Exercises

Exercise 13.1 A transition matrix for 3-disk pinball.

a) Draw the Markov graph corresponding to the 3-disk ternary symbolic dy-
namics, and write down the corresponding transition matrix correspond-
ing to the graph. Show that iteration of the transition matrix results in
two coupled linear difference equations, - one for the diagonal and one
for the off diagonal elements. (Hint: relate trT n to tr T n−1 + . . ..)

b) Solve the above difference equation and obtain the number of periodic
orbits of length n. Compare with table 13.3.

c) Find the eigenvalues of the transition matrix T for the 3-disk system with
ternary symbolic dynamics and calculate the topological entropy. Com-
pare this to the topological entropy obtained from the binary symbolic
dynamics {0, 1}.

Exercise 13.2 Sum of Aij is like a trace. Let A be a matrix with eigen-
values λk. Show that

Γn =
∑

i,j

[An]ij =
∑

k

ckλ
n
k .

(a) Use this to show that ln |trAn| and ln |Γn| have the same asymptotic
behavior as n→ ∞, that is, their ratio converges to one.

(b) Do eigenvalues λk need to be distinct, λk 6= λl for k 6= l?

Exercise 13.3 Loop expansions. Prove by induction the sign rule in the
determinant expansion (13.13):

det (1 − zT) =
∑

k≥0

∑

p1+···+pk

(−1)ktp1tp2 · · · tpk
.

Exercise 13.4 Transition matrix and cycle counting. Suppose you are
given the Markov graph




0
 1
a


b


c


This diagram can be encoded by a matrix T , where the entry Tij means that
there is a link connecting node i to node j. The value of the entry is the weight
of the link.
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a) Walks on the graph are given the weight that is the product of the weights
of all links crossed by the walk. Convince yourself that the transition
matrix for this graph is:

T =

[
a b
c 0

]
.

b) Enumerate all the walks of length three on the Markov graph. Now
compute T 3 and look at the entries. Is there any relation between the
terms in T 3 and all the walks?

c) Show that T nij is the number of walks from point i to point j in n steps.
(Hint: one might use the method of induction.)

d) Try to estimate the number N(n) of walks of length n for this simple
Markov graph.

e) The topological entropy h measures the rate of exponential growth of the
total number of walks N(n) as a function of n. What is the topological
entropy for this Markov graph?

Exercise 13.5 3-disk prime cycle counting. A prime cycle p of length np is
a single traversal of the orbit; its label is a non-repeating symbol string of np symbols.
For example, 12 is prime, but 2121 is not, since it is 21 = 12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime cycles of length 2, 3, 4, 5,

6, · · ·.

Exercise 13.6 “Golden mean” pruned map. Continuation of exercise 11.7:
Show that the total number of periodic orbits of length n for the “golden mean”
tent map is

(1 +
√

5)n + (1 −
√

5)n

2n
.

For continuation, see exercise 13.8. See also exercise 13.9.

Exercise 13.7 Alphabet {0,1}, prune 00 . The Markov diagram fig-
ure 11.13(b) implements this pruning rule. The pruning rule implies that “0” must
always be bracketed by “1”s; in terms of a new symbol 2 = 10, the dynamics becomes
unrestricted symbolic dynamics with with binary alphabet {1,2}. The cycle expansion
(13.13) becomes

1/ζ = (1 − t1)(1 − t2)(1 − t12)(1 − t112) . . .

= 1 − t1 − t2 − (t12 − t1t2) − (t112 − t12t1) − (t122 − t12t2) . . .(13.35)

In the original binary alphabet this corresponds to:

1/ζ = 1 − t1 − t10 − (t110 − t1t10)

−(t1110 − t110t1) − (t11010 − t110t10) . . . (13.36)

This symbolic dynamics describes, for example, circle maps with the golden mean

winding number, see chapter 24. For unimodal maps this symbolic dynamics is realized

by the tent map of exercise 13.6.
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Figure 13.5: (a) A unimodal map for which the critical point maps into the right
hand fixed point in three iterations, and (b) the corresponding Markov graph (Kai T.
Hansen).

Exercise 13.8 Spectrum of the “golden mean” pruned map. (medium
- Exercise 13.6 continued)

(a) Determine an expression for trLn, the trace of powers of the Perron-
Frobenius operator (9.10) for the tent map of exercise 13.6.

(b) Show that the spectral determinant for the Perron-Frobenius operator is

det (1−zL) =
∏

k even

(
1 − z

Λk+1
− z2

Λ2k+2

) ∏

k odd

(
1 +

z

Λk+1
+

z2

Λ2k+2

)
.(13.37)

Exercise 13.9 A unimodal map example. Consider a unimodal map of
figure 13.5(a) for which the critical point maps into the right hand fixed point in three
iterations, S+ = 1001. Show that the admissible itineraries are generated by the
Markov graph figure 13.5(b).

(Kai T. Hansen)

Exercise 13.10 Glitches in shadowing.∗∗ Note that the combination t00011
minus the “shadow” t0t0011 in (13.17) cancels exactly, and does not contribute to the

topological polynomial (13.18). Are you able to construct a smaller Markov graph

than figure 13.3(e)?

Exercise 13.11 Whence Möbius function? To understand where the Möbius
function comes from consider the function

f(n) =
∑

d|n
g(d) (13.38)

where d|n stands for sum over all divisors d of n. Invert recursively this infinite tower
of equations and derive the Möbius inversion formula

g(n) =
∑

d|n
µ(n/d)f(d) (13.39)
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Exercise 13.12 Counting prime binary cycles. In order to get com-
fortable with Möbius inversion reproduce the results of the second column of
table 13.2.

Write a program that determines the number of prime cycles of length n.
You might want to have this program later on to be sure that you have missed
no 3-pinball prime cycles.

Exercise 13.13 Counting subsets of cycles. The techniques developed above
can be generalized to counting subsets of cycles. Consider the simplest example of a
dynamical system with a complete binary tree, a repeller map (11.8) with two straight
branches, which we label 0 and 1. Every cycle weight for such map factorizes, with
a factor t0 for each 0, and factor t1 for each 1 in its symbol string. Prove that the
transition matrix traces (13.5) collapse to tr(T k) = (t0 + t1)

k, and 1/ζ is simply

∏

p

(1 − tp) = 1 − t0 − t1 (13.40)

Substituting (13.40) into the identity

∏

p

(1 + tp) =
∏

p

1 − tp
2

1 − tp

we obtain

∏

p

(1 + tp) =
1 − t20 − t21
1 − t0 − t1

= 1 + t0 + t1 +
2t0t1

1 − t0 − t1

= 1 + t0 + t1 +

∞∑

n=2

n−1∑

k=1

2

(
n− 2

k − 1

)
tk0t

n−k
1 . (13.41)

Hence for n ≥ 2 the number of terms in the cumulant expansion with k 0’s and n− k
1’s in their symbol sequences is 2

(
n−2
k−1

)
.

In order to count the number of prime cycles in each such subset we denote with
Mn,k (n = 1, 2, . . . ; k = {0, 1} for n = 1; k = 1, . . . , n− 1 for n ≥ 2) the number
of prime n-cycles whose labels contain k zeros. Show that

M1,0 = M1,1 = 1

nMn,k =
∑

m
∣∣n

k

µ(m)

(
n/m

k/m

)
, n ≥ 2 , k = 1, . . . , n− 1

where the sum is over all m which divide both n and k.

Exercise 13.14 Logarithmic periodicity of lnNn
∗. Plot lnNn − nh for

a system with a nontrivial finite Markov graph. Do you see any periodicity? If yes,

why?
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Exercise 13.15 4-disk pinball topological polynomial. Show that the 4-
disk pinball topological polynomial (the pruning affects only the fixed points and the
2-cycles) is given by

1/ζ4−disk = (1 − 3z)
(1 − z2)6

(1 − z)3(1 − z2)3

= (1 − 3z)(1 + z)3 = 1 − 6z2 − 8z3 − 3z4 . (13.42)

Exercise 13.16 N -disk pinball topological polynominal. Show that for an
N -disk pinball, the topological polynominal is given by

1/ζN−disk = (1 − (N − 1)z)
(1 − z2)N(N−1)/2

(1 − z)N−1(1 − z2)(N−1)(N−2)/2

= (1 − (N − 1)z) (1 + z)N−1 . (13.43)

The topological polynomial has a root z−1 = N − 1, as we already know it should

from (13.29) or (13.15). We shall see in sect. 22.4 that the other roots reflect the

symmetry factorizations of zeta functions.

Exercise 13.17 Alphabet {a, b, c}, prune ab . The pruning rule implies that
any string of “b”s must be preceeded by a “c”; so one possible alphabet is {a, cbk; b},
k=0,1,2. . .. As the rule does not prune the fixed point b, it is explicitly included in the
list. The cycle expansion (13.13) becomes

1/ζ = (1 − ta)(1 − tb)(1 − tc)(1 − tcb)(1 − tac)(1 − tcbb) . . .

= 1 − ta − tb − tc + tatb − (tcb − tctb) − (tac − tatc) − (tcbb − tcbtb) . . .

The effect of the ab pruning is essentially to unbalance the 2 cycle curvature tab−tatb;
the remainder of the cycle expansion retains the curvature form.

Exercise 13.18 Alphabet {0,1}, prune n repeats. of “0” 000 . . .00 .

This is equivalent to the n symbol alphabet {1, 2, . . ., n} unrestricted symbolic
dynamics, with symbols corresponding to the possible 10. . .00 block lengths: 2=10,
3=100, . . ., n=100. . .00. The cycle expansion (13.13) becomes

1/ζ = 1 − t1 − t2 . . .− tn − (t12 − t1t2) . . .− (t1n − t1tn) . . . . (13.44)

Exercise 13.19 Alphabet {0,1}, prune 1000 , 00100 , 01100 .

Show that the topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (13.45)

with the unrestricted 4-letter alphabet {1, 2, 23, 113}. Here 2, 3, refer to 10, 100

respectively, as in exercise 13.18.
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Exercise 13.20 Alphabet {0,1}, prune 1000 , 00100 , 01100 , 10011 .
The first three pruning rules were incorporated in the preceeding exercise.

(a) Show that the last pruning rule 10011 leads (in a way similar to exercise 13.19)
to the alphabet {21k, 23, 21k113; 1, 0}, and the cycle expansion

1/ζ = (1 − t0)(1 − t1 − t2 − t23 + t1t23 − t2113) (13.46)

Note that this says that 1, 23, 2, 2113 are the fundamental cycles; not all cycles up
to length 7 are needed, only 2113.

(b) Show that the topological polynomial is

1/ζtop = (1 − z)(1 − z − z2 − z5 + z6 − z7) (13.47)

and check that it yields the exact value of the entropy h = 0.522737642 . . ..
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Chapter 14

Trace formulas

The trace formula is not a formula, it is an idea.

Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages
require global information. How can we use a local description of a flow
to learn something about the global behavior? We have given a quick
sketch of this program in sects. 1.5 and 1.6; now we redo the same material
in greater depth. In chapter 10 we have related global averages to the
eigenvalues of appropriate evolution operators. Traces of evolution oper-
ators can be evaluated as integrals over Dirac delta functions, and in this
way the spectra of evolution operators become related to periodic orbits. If
there is one idea that one should learn about chaotic dynamics, it happens
in this chapter, and it is this: there is a fundamental local ↔ global duality
which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics
on well-tiled manifolds, Selberg traces and zetas; and for generic nonlinear
dynamical systems the duality is embodied in the trace formulas that we
will now introduce. These objects are to dynamics what partition functions
are to statistical mechanics.

14.1 Trace of an evolution operator

Our extraction of the spectrum of L commences with the evaluation of the
trace. To compute an expectation value using (10.21) we have to integrate
over all the values of the kernel Lt(x, y). If Lt were a matrix we would
be computing a weighted sum of its eigenvalues which is dominated by the
leading eigenvalue as t → ∞. As the trace of Lt is also dominated by the
leading eigenvalue as t→ ∞, we might just as well look at the trace ✎ 13.2
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trLt =

∫
dxLt(x, x) =

∫
dx δ

(
x− f t(x)

)
eβ·A

t(x) . (14.1)

Assume that L has a spectrum of discrete eigenvalues s0, s1, s2, · · · ordered
so that Re sα ≥ Re sα+1. We ignore for the time being the question of
what function space the eigenfunctions belong to, as we shall compute the
eigenvalue spectrum without constructing any explicit eigenfunctions.

By definition, the trace is the sum over eigenvalues (for the time being
we choose not to worry about convergence of such sums),

trLt =

∞∑

α=0

esαt . (14.2)

On the other hand, we have learned in sect. 9.2 how to evaluate the delta-
function integral (14.1).

As the case of discrete time mappings is somewhat simpler, we first
derive the trace formula for maps, and then for flows. The final formula
(14.20) covers both cases.

14.1.1 Hyperbolicity assumption

According to (9.8) the trace (14.1) picks up a contribution whenever x −
fn(x) = 0, that is, whenever x belongs to a periodic orbit. For reasons
which we will explain in sect. 14.3, it is wisest to start by focusing on
discrete time systems. The contribution of an isolated prime cycle p of
period np for a map f can be evaluated by restricting the integration to an
infinitesimal open neighborhood Mp around the cycle,

tr pLnp =

∫

Mp

dx δ(x− fnp(x)) =
np∣∣det

(
1 −Mp

)∣∣ = np

d∏

i=1

1

|1 − Λp,i|
(14.3)

(in (9.9) and here we set the observable eAp = 1 for the time being). Peri-
odic orbit fundamental matrix Mp is also known as the monodromy matrix
(from Greek mono- = alone, single, and dromo = run, racecourse), and
its eigenvalues Λp,1, Λp,2, . . ., Λp,d as the Floquet multipliers. We sort the
eigenvalues Λp,1, Λp,2, . . ., Λp,d of the p-cycle [d×d] fundamental matrix
Mp into expanding, marginal and contracting sets {e,m, c}, as in (8.2).
As the integral (14.3) can be carried out only if Mp has no eigenvalue of
unit magnitude, we assume that no eigenvalue is marginal (we shall show in
sect. 14.3 that the longitudinal Λp,d+1 = 1 eigenvalue for flows can be elimi-
nated by restricting the consideration to the transverse fundamental matrix
Mp), and factorize the trace (14.3) into a product over the expanding and
the contracting eigenvalues

∣∣det
(
1− Mp

)∣∣−1
=

1

|Λp|
∏

e

1

1 − 1/Λp,e

∏

c

1

1 − Λp,c
, (14.4)
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where Λp =
∏
e Λp,e is the product of expanding eigenvalues. Both Λp,c and

1/Λp,e are smaller than 1 in absolute value, and as they are either real or
come in complex conjugate pairs we are allowed to drop the absolute value
brackets | · · · | in the above products.

The hyperbolicity assumption requires that the stabilities of all cycles
included in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding |Λp,e| > 1

|Λp,c| < e−λcTp any p, any contracting |Λp,c| < 1 , (14.5)

where λe, λc > 0 are strictly positive bounds on the expanding, contracting
cycle Lyapunov exponents. If a dynamical system satisfies the hyperbolicity
assumption (for example, the well separated 3-disk system clearly does), the
Lt spectrum will be relatively easy to control. If the expansion/contraction
is slower than exponential, let us say |Λp,i| ∼ Tp

2, the system may exhibit
“phase transitions”, and the analysis is much harder - we shall discuss this
in chapter 21.

Elliptic stability, with a pair of purely imaginary exponents Λm = e±iθ

is excluded by the hyperbolicity assumption. While the contribution of a
single repeat

does not make (14.3) diverge, for a generic θ repeats cos(rθ) behave badly
and by ergodicity 1− cos(rθ) < ǫ is arbitrary small infinitely often. Elliptic
case will require a separate treatment.

It follows from (14.4) that for long times, t = rTp → ∞, only the
product of expanding eigenvalues matters,

∣∣det
(
1− Mr

p

)∣∣ → |Λp|r. We
shall use this fact to motivate the construction of dynamical zeta functions
in sect. 15.3. However, for evaluation of the full spectrum the exact cycle
weight (14.3) has to be kept.

14.2 A trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points
have stability eigenvalues |Λp,i| 6= 1 strictly bounded away from unity, the
trace Ln is given by the sum over all periodic points i of period n:

trLn =

∫
dxLn(x, x) =

∑

xi∈Fixfn

eβ·Ai

|det (1 − Mn(xi))|
. (14.6)

Here Fix fn = {x : fn(x) = x} is the set of all periodic points of period n,
and Ai is the observable (10.5) evaluated over n discrete time steps along
the cycle to which the periodic point xi belongs. The weight follows from
the properties of the Dirac delta function (9.8) by taking the determinant
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of ∂i(xj − fn(x)j). If a trajectory retraces itself r times, its fundamental
matrix is Mr

p, where Mp is the [d×d] fundamental matrix (4.6) evaluated
along a single traversal of the prime cycle p. As we saw in (10.5), the
integrated observable An is additive along the cycle: If a prime cycle p
trajectory retraces itself r times, n = rnp, we obtain Ap repeated r times,
Ai = An(xi) = rAp, xi ∈ p.

A prime cycle is a single traversal of the orbit, and its label is a non-
repeating symbol string. There is only one prime cycle for each cyclic
permutation class. For example, the four cycle points 0011 = 1001 = 1100

☞ chapter 11
= 0110 belong to the same prime cycle p = 0011 of length 4. As both the
stability of a cycle and the weight Ap are the same everywhere along the
orbit, each prime cycle of length np contributes np terms to the sum, one
for each cycle point. Hence (14.6) can be rewritten as a sum over all prime
cycles and their repeats

trLn =
∑

p

np

∞∑

r=1

erβ·Ap

∣∣det
(
1 − Mr

p

)∣∣δn,npr , (14.7)

with the Kronecker delta δn,npr projecting out the periodic contributions of
total period n. This constraint is awkward, and will be more awkward still
for the continuous time flows, where it would yield a series of Dirac delta
spikes. In both cases a Laplace transform rids us of the time periodicity
constraint.

We define the trace formula for maps to be the sum

∞∑

n=1

zntrLn = tr
zL

1 − zL =
∑

p

np

∞∑

r=1

znprerβ·Ap

∣∣det
(
1− Mr

p

)∣∣ . (14.8)

Such discrete time Laplace transform of trLn is usually referred to as a
“generating function”. Expressing the trace as in (14.2), in terms of the
sum of the eigenvalues of L, we obtain the trace formula for maps:

∞∑

α=0

zesα

1 − zesα
=
∑

p

np

∞∑

r=1

znpr erβ·Ap

∣∣det
(
1 − Mr

p

)∣∣ . (14.9)

This is our second example of the duality between the spectrum of eigen-
values and the spectrum of periodic orbits, announced in the introduction
to this chapter.

fast track:

sect. 14.3, p. 235

Example 14.1 A trace formula for transfer operators:
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For a piecewise-linear map (10.17), we can explicitly evaluate the trace formula.
By the piecewise linearity and the chain rule Λp = Λn0

0 Λn1
1 , where the cycle p contains

n0 symbols 0 and n1 symbols 1, the trace (14.6) reduces to

trLn =

n∑

m=0

(
n

m

)
1

|1 − Λm
0 Λn−m

1 | =

∞∑

k=0

(
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

)n

. (14.10)

The eigenvalues are simply

esk =
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

. (14.11)

For k = 0 this is in agreement with the explicit transfer matrix (10.19) eigenval-
ues (10.20).The alert reader should experience anxiety at this point. Is it not true that
we have already written down explicitly the transfer operator in (10.19), and that it is
clear by inspection that it has only one eigenvalue es0 = 1/|Λ0|+1/|Λ1|? The example
at hand is one of the simplest illustrations of necessity of defining the space that the
operator acts on in order to define the spectrum. The transfer operator (10.19) is
the correct operator on the space of functions piecewise constant on the two defining
intervals {M0,M1}; on this space the operator indeed has only the eigenvalue es0 . As
we shall see in example 16.1, the full spectrum (14.11) corresponds to the action of the
transfer operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (10.17)
follows from (14.8)

tr
zL

1 − zL =
z
(

1
|Λ0−1| + 1

|Λ1−1|

)

1 − z
(

1
|Λ0−1| + 1

|Λ1−1|

) , (14.12)

verifying the trace formula (14.9).

14.3 A trace formula for flows

Amazing! I did not understand a single word.

Fritz Haake

(R. Artuso and P. Cvitanović)

14.3.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself exactly at each
cycle period, the eigenvalue of the fundamental matrix corresponding to the
eigenvector along the flow necessarily equals unity for all periodic orbits.
Hence for flows the trace integral trLt requires a separate treatment for the

☞ example 8.3
longitudinal direction. To evaluate the contribution of an isolated prime
cycle p of period Tp, restrict the integration to an infinitesimally thin tube
Mp enveloping the cycle (see figure 1.10), and consider a local coordinate
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system with a longitudinal coordinate dx‖ along the direction of the flow,
and d− 1 transverse coordinates x⊥ ,

tr pLt =

∫

Mp

dx⊥dx‖ δ
(
x⊥ − f t⊥(x)

)
δ
(
x‖ − f t(x‖)

)
. (14.13)

(we set β = 0 in the exp(β · At) weight for the time being). Let, and let
pick up a point on the prime cycle p.

v(x‖) =

(
d∑

i=1

vi(x)
2

)1/2

(14.14)

be the magnitude of the tangential velocity at any point x = (x‖, 0, · · · , 0)
on the cycle p. The velocity v(x) must be strictly positive, as otherwise the
orbit would stagnate for infinite time at v(x) = 0 points, and that would
get us nowhere. We parametrized both the longitudinal coordinate x‖ by
the flight time

x‖(τ) =

∫ τ

0
dσ v(σ)

∣∣∣∣
modLp

where v(σ) = v(x‖(σ)), and Lp is the length of the circuit on which the peri-
odic orbit lies (for the time being the mod operation in the above definition
is redundant, as τ ∈ [0, Tp]). With this parametrization

(
f t‖(x) − x‖

)
=

∫ t+τ

τ
dσ v(σ)

∣∣∣∣
modLp

the integral along the longitudinal coordinate can be written as

∫ Lp

0
dx‖ δ

(
x‖ − f t‖(x)

)
=

∫ Tp

0
dτ v(τ) δ

(∫ t+τ

τ
dσ v(σ)

∣∣∣∣
modLp

)
.(14.15)

The zeroes of the argument of the delta function do not depend on τ , as v
is positive, so we may rewrite (14.15) as

∫ Lp

0
dx‖ δ

(
x‖ − f t‖(x)

)
=

∞∑

r=1

δ(t− rTp)

∫ Tp

0
dτ v(τ)

1

v(τ + t)
,

having used (9.7). The r sum starts from r=1, as we are considering strictly
positive times. Now we use another elementary property of delta functions,

h(x)δ(x − x0) = h(x0)δ(x − x0).
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The velocities cancel, and we get

∮

p
dx‖ δ

(
x‖ − f t(x‖)

)
= Tp

∞∑

r=1

δ(t− rTp) . (14.16)

The prime period arises also for repeated orbits, because the space integra-
tion (14.15) sweeps the periodic orbit in phase space: This observation will
also be important for the derivation of the semiclassical trace formula in
chapter 30.

For the remaining transverse integration variables the fundamental ma-
trix is defined in a reduced Poincaré surface of section P of constant x‖.
Linearization of the periodic flow transverse to the orbit yields

∫

P
dx⊥δ

(
x⊥ − f

rTp

⊥ (x)
)

=
1∣∣det

(
1 −Mr

p

)∣∣ , (14.17)

where Mp is the p-cycle [d×d] transverse fundamental matrix, and as in
(14.5) we have to assume hyperbolicity, that is, that the magnitudes of all
transverse eigenvalues are bounded away from unity.

Substituting (14.16), (14.17) into (14.13), we obtain an expression for
trLt as a sum over all prime cycles p and their repetitions

trLt =
∑

p

Tp

∞∑

r=1

erβ·Ap

∣∣det
(
1− Mr

p

)∣∣δ(t− rTp) . (14.18)

A trace formula follows by taking a Laplace transform. This is a delicate
step, since the evolution operator becomes the identity in the t→ 0+ limit.
In order to make sense of the trace we regularize the Laplace transform by
a lower cutoff ǫ smaller than the period of any periodic orbit, and write

∫ ∞

ǫ
dt e−st trLt = tr

e−(s−A)ǫ

s−A =

∞∑

α=0

e−(s−sα)ǫ

s− sα

=
∑

p

Tp

∞∑

r=1

er(β·Ap−sTp)

∣∣det
(
1− Mr

p

)∣∣ , (14.19)

where A is the generator of the semigroup of dynamical evolution, sect. 9.4.

The classical trace formula for flows is the ǫ → 0 limit of the above
expression:

∞∑

α=0

1

s− sα
=
∑

p

Tp

∞∑

r=1

er(β·Ap−sTp)

∣∣det
(
1− Mr

p

)∣∣ . (14.20)
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✎ 14.1
page 242If you are worried about the convergence of the resolvent sum, keep the ε

regularization. This formula is still another example of the duality between
the (local) cycles and (global) eigenvalues. If Tp takes only integer values,
we can replace e−s → z throughout, so the trace formula for maps (14.9)
is a special case of the trace formula for flows. The relation between the
continuous and discrete time cases can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (14.21)

We could now proceed to estimate the location of the leading singularity
of tr (s − A)−1 by extrapolating finite cycle length truncations of (14.20)
by methods such as Padé approximants. However, it pays to first perform
a simple resummation which converts this divergence of a trace into a zero
of a spectral determinant. We shall do this in sect. 15.2, but first a brief
refresher of how all this relates to the formula for escape rate (1.7) offered
in the introduction might help digest the material.

fast track:

sect. 15, p. 243

14.4 An asymptotic trace formula

In order to illuminate the manipulations of sect. 14.2 and relate
them to something we already possess intuition about, we now rederive
the heuristic sum of sect. 1.5.1 from the exact trace formula (14.9). The
Laplace transforms (14.9) or (14.20) are designed to capture the time → ∞
asymptotic behavior of the trace sums. By the hyperbolicity assumption
(14.5), for t = Tpr large the cycle weight approaches

∣∣det
(
1 − Mr

p

)∣∣→ |Λp|r , (14.22)

where Λp is the product of the expanding eigenvalues of Mp. Denote the
corresponding approximation to the nth trace (14.6) by

Γn =

(n)∑

i

1

|Λi|
, (14.23)

and denote the approximate trace formula obtained by replacing the cy-
cle weights

∣∣det
(
1− Mr

p

)∣∣ by |Λp|r in (14.9) by Γ(z). Equivalently, think
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of this as a replacement of the evolution operator (10.23) by a transfer
operator (as in example 14.1). For concreteness consider a dynamical sys-
tem whose symbolic dynamics is complete binary, for example the 3-disk
system figure 1.4. In this case distinct periodic points that contribute to
the nth periodic points sum (14.7) are labeled by all admissible itineraries
composed of sequences of letters si ∈ {0, 1}:

Γ(z) =

∞∑

n=1

znΓn =

∞∑

n=1

zn
∑

xi∈Fixfn

eβ·A
n(xi)

|Λi|

= z

{
eβ·A0

|Λ0|
+
eβ·A1

|Λ1|

}
+ z2

{
e2β·A0

|Λ0|2
+
eβ·A01

|Λ01|
+
eβ·A10

|Λ10|
+
e2β·A1

|Λ1|2
}

+z3

{
e3β·A0

|Λ0|3
+
eβ·A001

|Λ001|
+
eβ·A010

|Λ010|
+
eβ·A100

|Λ100|
+ . . .

}
(14.24)

Both the cycle averages Ai and the stabilities Λi are the same for all points
xi ∈ p in a cycle p. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp
1 − tp

, tp = znpeβ·Ap/|Λp| . (14.25)

This is precisely our initial heuristic estimate (1.8). Note that we could not
perform such sum over r in the exact trace formula (14.9) as

∣∣det
(
1 − Mr

p

)∣∣ 6=∣∣det
(
1− Mp

)∣∣r; the correct way to resum the exact trace formulas is to
first expand the factors 1/|1 − Λp,i|, as we shall do in (15.9).

☞ sect. 15.2

If the weights eβA
n(x) are multiplicative along the flow, and the flow is

hyperbolic, for given β the magnitude of each |eβAn(xi)/Λi| term is bounded
by some constant Mn. The total number of cycles grows as 2n (or as ehn,
h = topological entropy, in general), and the sum is convergent for z
sufficiently small, |z| < 1/2M . For large n the nth level sum (14.6) tends
to the leading Ln eigenvalue ens0 . Summing this asymptotic estimate level
by level

Γ(z) ≈
∞∑

n=1

(zes0)n =
zes0

1 − zes0
(14.26)

we see that we should be able to determine s0 by determining the smallest
value of z = e−s0 for which the cycle expansion (14.25) diverges.

If one is interested only in the leading eigenvalue of L, it suffices to
consider the approximate trace Γ(z). We will use this fact in sect. 15.3
to motivate the introduction of dynamical zeta functions (15.14), and in
sect. 15.5 we shall give the exact relation between the exact and the ap-
proximate trace formulas.
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Commentary

Remark 14.1 Who’s dunne it? Continuous time flow traces weighted by cycle

periods were introduced by Bowen [14.1] who treated them as Poincaré section

suspensions weighted by the “time ceiling” function (3.5). They were used by

Parry and Pollicott [14.2]. The derivation presented here [14.3] paralleles closely

to the derivation of the Gutzwiller semiclassical trace formula, chapters 28 and

30.

Remark 14.2 Flat and sharp traces. In the above formal derivation of trace

formulas we cared very little whether our sums were well posed. In the Fredholm

theory traces like (14.1) require compact operators with continuous function ker-

nels. This is not the case for our Dirac delta evolution operators: nevertheless,

there is a large class of dynamical systems for which our results may be shown

to be perfectly legal. In the mathematical literature expressions like (14.6) are

called flat traces (see the review [14.4] and chapter 16). Other names for traces

appear as well: for instance, in the context of 1−d mappings, sharp traces refer

to generalizations of (14.6) where contributions of periodic points are weighted by

the Lefschetz sign ±1, reflecting whether the periodic point sits on a branch of nth

iterate of the map which crosses the diagonal starting from below or starting from

above [15.12]. Such traces are connected to the theory of kneading invariants (see

ref. [14.4] and references therein). Traces weighted by ±1 sign of the derivative of

the fixed point have been used to study the period doubling repeller, leading to

high precision estimates of the Feigenbaum constant δ, refs. [14.5, 18.6, 14.6].

Résumé

The description of a chaotic dynamical system in terms of cycles can be vi-
sualized as a tessellation of the dynamical system, figure 1.9, with a smooth
flow approximated by its periodic orbit skeleton, each region Mi centered
on a periodic point xi of the topological length n, and the size of the region
determined by the linearization of the flow around the periodic point. The
integral over such topologically partitioned phase space yields the classical
trace formula

∞∑

α=0

1

s− sα
=
∑

p

Tp

∞∑

r=1

er(β·Ap−sTp)

∣∣det
(
1 − Mr

p

)∣∣ .

Now that we have a trace formula, we might ask for what is it good?
As itstands, it is little more than a scary divergent formula which relates
the unspeakable infinity of global eigenvalues to the unthinkable infinity
of local unstable cycles. However, it is a good stepping stone on the way
to construction of spectral determinants (to which we turn next), and a
first hint that when the going is good, the theory might turn out to be
convergent beyond our wildest dreams (chapter 16). In order to implement
such formulas, we will have to determine “all” prime cycles. This task we
postpone to chapters 12 and 17.
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Exercises

Exercise 14.1 t → 0+ regularization of eigenvalue sums∗∗. In taking

the Laplace transform (14.20) we have ignored the t → 0+ divergence, as we do not

know how to regularize the delta function kernel in this limit. In the quantum (or heat

kernel) case this limit gives rise to the Weyl or Thomas-Fermi mean eigenvalue spacing

(see sect. 30.1.1). Regularize the divergent sum in (14.20) following (for example) the

prescription of appendix K.6 and assign to such volume term some interesting role in

the theory of classical resonance spectra. E-mail the solution to the authors.

Exercise 14.2 General weights. (easy) Let f t be a flow and Lt the
operator

Ltg(x) =

∫
dy δ(x− f t(y))w(t, y)g(y)

where w is a weight function. In this problem we will try and determine some
of the properties w must satisfy.

(a) Compute LsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t+ s, x) .

(b) Restrict t and s to be integers and show that the most general form of
w is

w(n, x) = g(x)g(f(x))g(f2(x)) · · · g(fn−1(x)) ,

for some g that can be multiplied. Could g be a function from R
n1 7→

R
n2? (ni ∈ N.)
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Chapter 15

Spectral determinants

“It seems very pretty,” she said when she had finished
it, “but it’s rather hard to understand!” (You see
she didn’t like to confess, even to herself, that she
couldn’t make it out at all.) “Somehow it seems to
fill my head with ideas — only I don’t exactly know
what they are!”

Lewis Carroll, Through the Looking Glass

The problem with the trace formulas (14.9), (14.20) and (14.25) is that they
diverge at z = e−s0, respectively s = s0, that is, precisely where one would
like to use them. While this does not prevent numerical estimation of some
“thermodynamic” averages for iterated mappings, in the case of the Gutz-
willer trace formula of chapter 30 this leads to a perplexing observation

☞ chapter 30
that crude estimates of the radius of convergence seem to put the entire
physical spectrum out of reach. We shall now cure this problem by thinking,

☞ chapter 16
at no extra computational cost; while traces and determinats are formally
equivalent, determinants are the tool of choice when it comes to computing
spectra. The idea is illustrated by figure 1.11: Determinants tend to have
larger analyticity domains because if trL/(1 − zL) = − d

dz ln det (1 − zL)
diverges at a particular value of z, then det (1− zL) might have an isolated
zero there, and a zero of a function is easier to determine numerically than
its poles.

15.1 Spectral determinants for maps

The eigenvalues zk of a linear operator are given by the zeros of the deter-
minant

det (1 − zL) =
∏

k

(1 − z/zk) . (15.1)

For finite matrices this is the characteristic determinant; for operators this
is the Hadamard representation of the spectral determinant (sparing the
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244 CHAPTER 15. SPECTRAL DETERMINANTS

reader from pondering possible regularization factors). Consider first the
☞ appendix K

case of maps, for which the evolution operator advances the densities by
integer steps in time. In this case we can use the formal matrix identity✎ 4.1

page 72

ln det (1 −M) = tr ln(1 −M) = −
∞∑

n=1

1

n
trMn , (15.2)

to relate the spectral determinant of an evolution operator for a map to its
traces (14.7), and hence to periodic orbits:

det (1 − zL) = exp

(
−

∞∑

n

zn

n
trLn

)

= exp

(
−
∑

p

∞∑

r=1

1

r

znprerβ·Ap

∣∣det
(
1 − Mr

p

)∣∣

)
. (15.3)

Going the other way, the trace formula (14.9) can be recovered from the
spectral determinant by taking a derivative

tr
zL

1 − zL = −z d
dz

ln det (1 − zL) . (15.4)

fast track:

sect. 15.2, p. 245

Example 15.1 Spectral determinants of transfer operators:

For a piecewise-linear map (10.17) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (14.10)
into (15.3):

det (1 − zL) =

∞∏

k=0

(
1 − t0

Λk
0

− t1

Λk
1

)
, (15.5)

where ts = z/|Λs|. The eigenvalues are necessarily the same as in (14.11), which we
already determined from the trace formula (14.9).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (15.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov parititions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra.
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15.2. SPECTRAL DETERMINANT FOR FLOWS 245

15.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for
diffeomorphisms seems quite remote for flows. How-
ever we will mention a wild idea in this direction. [· · ·]
define l(γ) to be the minimal period of γ [· · ·] then de-
fine formally (another zeta function!) Z(s) to be the
infinite product

Z(s) =
∏

γ∈Γ

∞∏

k=0

(
1 − [exp l(γ)]

−s−k
)
.

Stephen Smale, Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows by analogy
to (15.3)

det (s−A) = exp

(
−
∑

p

∞∑

r=1

1

r

er(β·Ap−sTp)

∣∣det
(
1− Mr

p

)∣∣

)
, (15.6)

and then check that the trace formula (14.20) is the logarithmic derivative
of the spectral determinant

tr
1

s−A =
d

ds
ln det (s−A) . (15.7)

With z set to z = e−s as in (14.21), the spectral determinant (15.6)
has the same form for both maps and flows. We refer to (15.6) as spectral
determinant, as the spectrum of the operator A is given by the zeros of

det (s−A) = 0 . (15.8)

We now note that the r sum in (15.6) is close in form to the expansion of
a logarithm. This observation enables us to recast the spectral determinant
into an infinite product over periodic orbits as follows:

Let Mp be the p-cycle [d×d] transverse fundamental matrix, with eigen-
values Λp,1, Λp,2, . . ., Λp,d. Expanding the expanding eigenvalue factors
1/(1 − 1/Λp,e) and the contracting eigenvalue factors 1/(1 − Λp,c) in (14.4)
as geometric series, substituting back into (15.6), and resumming the log-
arithms, we find that the spectral determinant is formally given by the
infinite product

det (s−A) =
∞∏

k1=0

· · ·
∞∏

lc=0

1

ζk1···lc
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246 CHAPTER 15. SPECTRAL DETERMINANTS

1/ζk1···lc =
∏

p

(
1 − tp

Λl1p,e+1Λ
l2
p,e+2 · · ·Λlcp,d

Λk1p,1Λ
k2
p,2 · · ·Λke

p,e

)
(15.9)

tp = tp(z, s, β) =
1

|Λp|
eβ·Ap−sTpznp . (15.10)

In such formulas tp is a weight associated with the p cycle (letter t refers
to the “local trace” evaluated along the p cycle trajectory), and the in-
dex p runs through all distinct prime cycles. When convenient, we inserts
the znp factor into cycle weights, as a formal parameter which keeps track
of the topological cycle lengths. These factors will assists us in expand-

☞ chapter 18
ing zeta functions and determinants, eventually we shall set z = 1. The
subscripts e, c indicate that there are e expanding eigenvalues, and c con-
tracting eigenvalues. The observable whose average we wish to compute
contributes through the At(x) term in the p cycle multiplicative weight
eβ·Ap . By its definition (10.1), the weight for maps is a product along the
cycle points

eAp =

np−1∏

j=0

ea(f
j (xp)) ,

and the weight for flows is an exponential of the integral (10.5) along the
cycle

eAp = exp

(∫ Tp

0
a(x(τ))dτ

)
.

This formula is correct for scalar weighting functions; more general matrix
valued weights require a time-ordering prescription as in the fundamental
matrix of sect. 4.1.

Example 15.2 Expanding 1-d map: For expanding 1-d mappings the
spectral determinant (15.9) takes the form

det (1 − zL) =
∏

p

∞∏

k=0

(
1 − tp/Λ

k
p

)
, tp =

eβAp

|Λp|
znp . (15.11)

Example 15.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of
freedom Hamiltonian flows the energy conservation eliminates on phase-space variable,
and restriction to a Poincaré section eliminates the marginal logitudinal eigenvalue Λ =
1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalue Λ, |Λ| > 1, and one contracting transverse eigenvalue
1/Λ. The weight in (14.4) is expanded as follows:

1∣∣det
(
1− Mr

p

)∣∣ =
1

|Λ|r(1 − 1/Λr
p)

2
=

1

|Λ|r
∞∑

k=0

k + 1

Λkr
p

. (15.12)
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15.3. DYNAMICAL ZETA FUNCTIONS 247

The spectral determinant exponent can be resummed,

−
∞∑

r=1

1

r

e(βAp−sTp)r

∣∣det
(
1 − Mr

p

)∣∣ =

∞∑

k=0

(k + 1) log

(
1 − eβAp−sTp

|Λp|Λk
p

)
,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

det (s−A) =
∏

p

∞∏

k=0

(
1 − tp/Λ

k
p

)k+1
. (15.13)

✎ 16.4
page 286

Now we are finally poised to deal with the problem posed at the begin-
ning of chapter 14; how do we actually evaluate the averages introduced
in sect. 10.1? The eigenvalues of the dynamical averaging evolution oper-
ator are given by the values of s for which the spectral determinant (15.6)
of the evolution operator (10.23) vanishes. If we can compute the leading
eigenvalue s0(β) and its derivatives, we are done. Unfortunately, the infi-
nite product formula (15.9) is no more than a shorthand notation for the
periodic orbit weights contributing to the spectral determinant; more work
will be needed to bring such formulas into a tractable form. This shall be
accomplished in chapter 18, but here it is natural to introduce still another
variant of a determinant, the dynamical zeta function.

15.3 Dynamical zeta functions

It follows from sect. 14.1.1 that if one is interested only in the leading eigen-
value of Lt, the size of the p cycle neighborhood can be approximated by
1/|Λp|r, the dominant term in the rTp = t→ ∞ limit, where Λp =

∏
e Λp,e

is the product of the expanding eigenvalues of the fundamental matrix Mp.
With this replacement the spectral determinant (15.6) is replaced by the
dynamical zeta function

1/ζ = exp

(
−
∑

p

∞∑

r=1

1

r
trp

)
(15.14)

that we have already derived heuristically in sect. 1.5.3. Resumming the
logarithms using

∑
r t
r
p/r = − ln(1− tp) we obtain the Euler product repre-

sentation of the dynamical zeta function:

1/ζ =
∏

p

(1 − tp) . (15.15)

In order to simplify the notation, we usually omit the explicit dependence
of 1/ζ, tp on z, s, β whenever the dependence is clear from the context.
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248 CHAPTER 15. SPECTRAL DETERMINANTS

The approximate trace formula (14.25) plays the same role vis-à-vis the
dynamical zeta function (15.7)

Γ(s) =
d

ds
ln ζ−1 =

∑

p

Tptp
1 − tp

, (15.16)

as the exact trace formula (14.20) plays vis-à-vis the spectral determinant
(15.6). The heuristically derived dynamical zeta function of sect. 1.5.3 now
re-emerges as the 1/ζ0···0(z) part of the exact spectral determinant; other
factors in the infinite product (15.9) affect the non-leading eigenvalues of
L.

In summary, the dynamical zeta function (15.15) associated with the
flow f t(x) is defined as the product over all prime cycles p. The quanti-
ties, Tp, np and Λp, denote the period, topological length and product of
the expanding stability eigenvalues of prime cycle p, Ap is the integrated
observable a(x) evaluated on a single traversal of cycle p (see (10.5)), s is
a variable dual to the time t, z is dual to the discrete “topological” time n,
and tp(z, s, β) denotes the local trace over the cycle p. We have included
the factor znp in the definition of the cycle weight in order to keep track of
the number of times a cycle traverses the surface of section. The dynamical
zeta function is useful because the term

1/ζ(s) = 0 (15.17)

when s = s0, Here s0 is the leading eigenvalue of Lt = etA, which is often
all that is necessary for application of this equation. The above argument
completes our derivation of the trace and determinant formulas for classical
chaotic flows. In chapters that follow we shall make these formulas tangible
by working out a series of simple examples.

The remainder of this chapter offers examples of zeta functions.

fast track:

chapter 18, p. 305

15.3.1 A contour integral formulation

The following observation is sometimes useful, in particular for zeta
functions with richer analytic structure than just zeros and poles, as in
the case of intermittency (chapter 21): Γn , the trace sum (14.23), can be
expressed in terms of the dynamical zeta function (15.15)

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)
. (15.18)
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15.3. DYNAMICAL ZETA FUNCTIONS 249

Figure 15.1: The survival probability Γn can
be split into contributions from poles (x) and
zeros (o) between the small and the large circle
and a contribution from the large circle.

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

as a contour integral

Γn =
1

2πi

∮

γ−r
z−n

(
d

dz
log ζ−1(z)

)
dz , (15.19)

✎ 15.6
page 259where a small contour γ−r encircles the origin in negative (clockwise) direc-

tion. If the contour is small enough, that is, it lies inside the unit circle
|z| = 1, we may write the logarithmic derivative of ζ−1(z) as a convergent
sum over all periodic orbits. Integrals and sums can be interchanged, the
integrals can be solved term by term, and the trace formula (14.23) is re-
covered. For hyperbolic maps, cycle expansions or other techniques provide

☞ chapter 18
an analytical continuation of the dynamical zeta function beyond the lead-
ing zero; we may therefore deform the original contour into a larger circle
with radius R which encircles both poles and zeros of ζ−1(z), as depicted
in figure 15.1. Residue calculus turns this into a sum over the zeros zα and
poles zβ of the dynamical zeta function, that is

Γn =
zeros∑

|zα|<R

1

znα
−

poles∑

|zβ |<R

1

znβ
+

1

2πi

∮

γ−R

dz z−n
d

dz
log ζ−1, (15.20)

where the last term gives a contribution from a large circle γ−R . It would be
a miracle if you still remebered this, but in sect. 1.4.2 we interpreted Γn as
fraction of survivors after n bounces, and defined the escape rate γ as the
rate of the find exponential decay of Γn. We now see that this exponential
decay is dominated by the leading zero or pole of ζ−1(z).

15.3.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the
topological zeta function (13.21) to a function that assigns different weights

☞ chapter 13
to different cycles:

ζ(z) = exp

∞∑

n=1

zn

n


 ∑

xi∈Fixfn

tr

n−1∏

j=0

g(f j(xi))


 .
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250 CHAPTER 15. SPECTRAL DETERMINANTS

✎ 14.2
page 242 Here we sum over all periodic points xi of period n, and g(x) is any (ma-

trix valued) weighting function, where the weight evaluated multiplicatively
along the trajectory of xi.

By the chain rule (4.34) the stability of any n-cycle of a 1-d map is given
by Λp =

∏n
j=1 f

′(xi), so the 1-d map cycle stability is the simplest example
of a multiplicative cycle weight g(xi) = 1/|f ′(xi)|, and indeed - via the
Perron-Frobenius evolution operator (9.9) - the historical motivation for
Ruelle’s more abstract construction.

In particular, for a piecewise-linear map with a finite Markov partition
such as the map of example 9.1, the dynamical zeta function is given by a
finite polynomial, a straightforward generalization of the topological tran-
sition matrix determinant (11.2). As explained in sect. 13.3, for a finite
[N×N ] dimensional matrix the determinant is given by

∏

p

(1 − tp) =

N∑

n=1

zncn ,

where cn is given by the sum over all non-self-intersecting closed paths of
length n together with products of all non-intersecting closed paths of total
length n.

Example 15.4 A piecewise linear repeller: Due to piecewise linearity, the sta-
bility of any n-cycle of the piecewise linear repeller (10.17) factorizes as Λs1s2...sn =
Λm

0 Λn−m
1 , where m is the total number of times the letter sj = 0 appears in the p

symbol sequence, so the traces in the sum (14.25) take the particularly simple form

trT n = Γn =

(
1

|Λ0|
+

1

|Λ1|

)n

.

The dynamical zeta function (15.14) evaluated by resumming the traces,✎ 15.2
page 258

1/ζ(z) = 1 − z/|Λ0| − z/|Λ1| , (15.21)

is indeed the determinant det (1−zT ) of the transfer operator (10.19), which is almost
as simple as the topological zeta function (13.25).

☞ sect. 11.6

More generally, piecewise-linear approximations to dynamical systems
yield polynomial or rational polynomial cycle expansions, provided that the
symbolic dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so dreaded by quan-
tum chaologians is a bogus anxiety; we are dealing with exponentially many
cycles of increasing length and instability, but all that really matters in this
example are the stabilities of the two fixed points. Clearly the information
carried by the infinity of longer cycles is highly redundant; we shall learn
in chapter 18 how to exploit this redundancy systematically.

det - 19apr2005 ChaosBook.org/version11.8, Aug 30 2006
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15.4 False zeros

Compare (15.21) with the Euler product (15.15). For simplicity consider
two equal scales, |Λ0| = |Λ1| = eλ. Our task is to determine the leading
zero z = eγ of the Euler product. It is a novice error to assume that the
infinite Euler product (15.15) vanishes whenever one of its factors vanishes.
If that were true, each factor (1 − znp/|Λp|) would yield

0 = 1 − enp(γ−λp), (15.22)

so the escape rate γ would equal the stability exponent of a repulsive cycle,
one eigenvalue γ = γp for each prime cycle p. This is false! The exponen-
tially growing number of cycles with growing period conspires to shift the
zeros of the infinite product. The correct formula follows from (15.21)

0 = 1 − eγ−λ+h , h = ln 2. (15.23)

This particular formula for the escape rate is a special case of a general
relation between escape rates, Lyapunov exponents and entropies that is
not yet included into this book. Physically this means that the escape
induced by the repulsion by each unstable fixed point is diminished by the
rate of backscatter from other repelling regions, that is, the entropy h;
the positive entropy of orbits shifts the “false zeros” z = eλp of the Euler
product (15.15) to the true zero z = eλ−h.

15.5 Spectral determinants vs. dynamical zeta

functions

In sect. 15.3 we derived the dynamical zeta function as an approximation
to the spectral determinant. Here we relate dynamical zeta functions to
spectral determinants exactly, by showing that a dynamical zeta function
can be expressed as a ratio of products of spectral determinants.

The elementary identity for d-dimensional matrices

1 =
1

det (1 − M)

d∑

k=0

(−1)ktr
(
∧kM

)
, (15.24)

inserted into the exponential representation (15.14) of the dynamical zeta
function, relates the dynamical zeta function to weighted spectral determin-
ants.
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252 CHAPTER 15. SPECTRAL DETERMINANTS

Example 15.5 Dynamical zeta function in terms of determinants, 1-d maps:
For 1-d maps the identity

1 =
1

(1 − 1/Λ)
− 1

Λ

1

(1 − 1/Λ)

substituted into (15.14) yields an expression for the dynamical zeta function for 1-d
maps as a ratio of two spectral determinants

1/ζ =
det (1 − zL)

det (1 − zL(1))
(15.25)

where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we shall see in
chapter 16, this establishes that for nice hyperbolic flows 1/ζ is meromorphic, with poles
given by the zeros of det (1 − zL(1)). The dynamical zeta function and the spectral
determinant have the same zeros, although in exceptional circumstances some zeros of
det (1 − zL(1)) might be cancelled by coincident zeros of det (1 − zL(1)). Hence even
though we have derived the dynamical zeta function in sect. 15.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

Example 15.6 Dynamical zeta function in terms of determinants, 2-d Hamil-
tonian maps: For 2-dimensional Hamiltonian flows the above identity yields

1

|Λ| =
1

|Λ|(1 − 1/Λ)2
(1 − 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1 − zL) det (1 − zL(2))

det (1 − zL(1))
. (15.26)

This establishes that for nice 2-d hyperbolic flows the dynamical zeta function is mero-
morphic.

Example 15.7 Dynamical zeta functions for 2-d Hamiltonian flows: The
relation (15.26) is not particularly useful for our purposes. Instead we insert the identity

1 =
1

(1 − 1/Λ)2
− 2

Λ

1

(1 − 1/Λ)2
+

1

Λ2

1

(1 − 1/Λ)2

into the exponential representation (15.14) of 1/ζk, and obtain

1/ζk =
det (1 − zL(k))det (1 − zL(k+2))

det (1 − zL(k+1))2
. (15.27)

Even though we have no guarantee that det (1 − zL(k)) are entire, we do know that
the upper bound on the leading zeros of det (1−zL(k+1)) lies strictly below the leading
zeros of det (1 − zL(k)), and therefore we expect that for 2-dimensional Hamiltonian
flows the dynamical zeta function 1/ζk generically has a double leading pole coinciding
with the leading zero of the det (1 − zL(k+1)) spectral determinant. This might fail if
the poles and leading eigenvalues come in wrong order, but we have not encountered
such situations in our numerical investigations. This result can also be stated as follows:
the theorem establishes that the spectral determinant (15.13) is entire, and also implies
that the poles in 1/ζk must have the right multiplicities to cancel in the det (1− zL) =∏

1/ζk+1
k product.
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Figure 15.2: (a) A game of pinball consisting of two disks of equal size in a plane,
with its only periodic orbit (A. Wirzba). (b) The classical resonances α = {k, n} for
a 2-disk game of pinball, equation (15.28).

15.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral
determinant (15.13) tell us? Consider one of the simplest conceivable
hyperbolic flows: the game of pinball of figure 15.2 (a) consisting of two
disks of equal size in a plane. There is only one periodic orbit, with the
period T and expanding eigenvalue Λ given by elementary considerations
(see exercise 8.1), and the resonances det (sα −A) = 0, α = {k, n} plotted
in figure 15.2 (b):

sα = −(k+1)λ+n
2πi

T
, n ∈ Z , k ∈ Z+ , multiplicity k+1, (15.28)

can be read off the spectral determinant (15.13) for a single unstable cycle:

det (s−A) =

∞∏

k=0

(
1 − e−sT/|Λ|Λk

)k+1
. (15.29)

In the above λ = ln |Λ|/T is the cycle Lyapunov exponent. For an open
system, the real part of the eigenvalue sα gives the decay rate of αth eigen-
state, and the imaginary part gives the “node number” of the eigenstate.
The negative real part of sα indicates that the resonance is unstable, and
the decay rate in this simple case (zero entropy) equals the cycle Lyapunov
exponent.

Rapidly decaying eigenstates with large negative Re sα are not a prob-
lem, but as there are eigenvalues arbitrarily far in the imaginary direction,
this might seem like all too many eigenvalues. However, they are necessary
- we can check this by explicit computation of the right hand side of (14.20),
the trace formula for flows:

∞∑

α=0

esαt =
∞∑

k=0

∞∑

n=−∞
(k + 1)e(k+1)λt+i2πnt/T
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=

∞∑

k=0

(k + 1)

(
1

|Λ|Λk
)t/T ∞∑

n=−∞
ei2πn/T

=
∞∑

k=0

k + 1

|Λ|rΛkr
∞∑

r=−∞
δ(r − t/T)

= T
∞∑

r=−∞

δ(t− rT)

|Λ|(1 − 1/Λr)2
. (15.30)

Hence, the two sides of the trace formula (14.20) are verified. The for-
mula is fine for t > 0; for t → 0+, however, sides are divergent and need
regularization.

The reason why such sums do not occur for maps is that for discrete
time we work with the variable z = es, so an infinite strip along Im s maps
into an annulus in the complex z plane, and the Dirac delta sum in the
above is replaced by the Kronecker delta sum in (14.7). In the case at
hand there is only one time scale T, and we could just as well replace s by
the variable z = e−sT . In general, a continuous time flow has an infinity
of irrationally related cycle periods, and the resonance arrays are more
irregular, cf. figure 18.1.

Commentary

Remark 15.1 Piecewise monotone maps. A partial list of cases for which the

transfer operator is well defined: the expanding Hölder case, weighted subshifts of

finite type, expanding differentiable case, see Bowen [1.17]: expanding holomorphic

case, see Ruelle [16.9]; piecewise monotone maps of the interval, see Hofbauer and

Keller [15.15] and Baladi and Keller [15.18].

Remark 15.2 Smale’s wild idea. Smale’s wild idea quoted on page 245 was

technically wrong because 1) the Selberg zeta function yields the spectrum of a

quantum mechanical Laplacian rather than the classical resonances, 2) the spectral

determinant weights are different from what Smale conjectured, as the individual

cycle weights also depend on the stability of the cycle, 3) the formula is not di-

mensionally correct, as k is an integer and s represents inverse time. Only for

spaces of constant negative curvature do all cycles have the same Lyapunov ex-

ponent λ = ln |Λp|/Tp. In this case, one can normalize time so that λ = 1, and

the factors e−sTp/Λk
p in (15.9) simplify to s−(s+k)Tp , as intuited in Smale’s quote

on page 245 (where l(γ) is the cycle period denoted here by Tp). Nevertheless,

Smale’s intuition was remarkably on the target.

Remark 15.3 Is this a generalization of the Fourier analysis? Fourier analysis is

a theory of the space ↔ eigenfunction duality for dynamics on a circle. The way

in which periodic orbit theory generalizes Fourier analysis to nonlinear flows is

discussed in ref. [15.4], a very readable introduction to the Selberg Zeta function.
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Remark 15.4 Zeta functions, antecedents. For a function to be deserving of
the appellation “zeta function”, one expects it to have an Euler product repre-
sentation (15.15), and perhaps also satisfy a functional equation. Various kinds
of zeta functions are reviewed in refs. [15.8, 15.9, 15.10]. Historical antecedents of
the dynamical zeta function are the fixed-point counting functions introduced by
Weil [15.11], Lefschetz [15.12] and Artin and Mazur [15.13], and the determinants
of transfer operators of statistical mechanics [1.18].

In his review article Smale [1.16] already intuited, by analogy to the Selberg
Zeta function, that the spectral determinant is the right generalization for con-
tinuous time flows. In dynamical systems theory, dynamical zeta functions arise
naturally only for piecewise linear mappings; for smooth flows the natural object
for the study of classical and quantal spectra are the spectral determinants. Ru-
elle derived the relation (15.3) between spectral determinants and dynamical zeta
functions, but since he was motivated by the Artin-Mazur zeta function (13.21)
and the statistical mechanics analogy, he did not consider the spectral determinant
to be a more natural object than the dynamical zeta function. This has been put
right in papers on “flat traces” [12.20, 16.23].

The nomenclature has not settled down yet; what we call evolution operators
here is elsewhere called transfer operators [1.20], Perron-Frobenius operators [15.6]
and/or Ruelle-Araki operators.

Here we refer to kernels such as (10.23) as evolution operators. We follow Ru-

elle in usage of the term “dynamical zeta function”, but elsewhere in the literature

the function (15.15) is often called the Ruelle zeta function. Ruelle [1.21] points out

that the corresponding transfer operator T was never considered by either Perron

or Frobenius; a more appropriate designation would be the Ruelle-Araki operator.

Determinants similar to or identical with our spectral determinants are sometimes

called Selberg Zetas, Selberg-Smale zetas [1.4], functional determinants, Fredholm

determinants, or even - to maximize confusion - dynamical zeta functions [15.14].

A Fredholm determinant is a notion that applies only to trace class operators - as

we consider here a somewhat wider class of operators, we prefer to refer to their

determinants loosely as “spectral determinants”.

Résumé

The eigenvalues of evolution operators are given by the zeros of correspond-
ing determinants, and one way to evaluate determinants is to expand them
in terms of traces, using the matrix identity log det = tr log. Traces of evo-
lution operators can be evaluated as integrals over Dirac delta functions,
and in this way the spectra of evolution operators are related to periodic
orbits. The spectral problem is now recast into a problem of determining
zeros of either the spectral determinant

det (s−A) = exp

(
−
∑

p

∞∑

r=1

1

r

e(β·Ap−sTp)r

∣∣det
(
1− Mr

p

)∣∣

)
,
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or the leading zeros of the dynamical zeta function

1/ζ =
∏

p

(1 − tp) , tp =
1

|Λp|
eβ·Ap−sTp .

The spectral determinant is the tool of choice in actual calculations, as
it has superior convergence properties (this will be discussed in chapter 16
and is illustrated, for example, by table 18.2). In practice both spectral
determinants and dynamical zeta functions are preferable to trace formulas
because they yield the eigenvalues more readily; the main difference is that
while a trace diverges at an eigenvalue and requires extrapolation methods,
determinants vanish at s corresponding to an eigenvalue sα, and are analytic
in s in an open neighborhood of sα.

The critical step in the derivation of the periodic orbit formulas for
spectral determinants and dynamical zeta functions is the hyperbolicity
assumption (14.5) that no cycle stability eigenvalue is marginal, |Λp,i| 6= 1.
By dropping the prefactors in (1.4), we have given up on any possibility
of recovering the precise distribution of the initial x (return to the past is
rendered moot by the chaotic mixing and the exponential growth of errors),
but in exchange we gain an effective description of the asymptotic behavior
of the system. The pleasant surprise (to be demonstrated in chapter 18)
is that the infinite time behavior of an unstable system turns out to be as
easy to determine as its short time behavior.
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Exercises

Exercise 15.1 Escape rate for a 1-d repeller, numerically. Consider
the quadratic map

f(x) = Ax(1 − x) (15.31)

on the unit interval. The trajectory of a point starting in the unit interval
either stays in the interval forever or after some iterate leaves the interval and
diverges to minus infinity. Estimate numerically the escape rate (19.8), the rate
of exponential decay of the measure of points remaining in the unit interval,
for either A = 9/2 or A = 6. Remember to compare your numerical estimate
with the solution of the continuation of this exercise, exercise 18.2.

Exercise 15.2 Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta function

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)
,

for the piecewise-linear map (10.17) with the left branch slope Λ0, the
right branch slope Λ1.

x


f(x)


Λ0
 Λ1


x


f(x)


s10
s00


s01
 s11


(b) What if there are four different slopes s00, s01, s10, and s11 instead of
just two, with the preimages of the gap adjusted so that junctions of
branches s00, s01 and s11, s10 map in the gap in one iteration? What
would the dynamical zeta function be?

Exercise 15.3 Dynamical zeta functions from Markov graphs. Extend

sect. 13.3 to evaluation of dynamical zeta functions for piecewise linear maps with

finite Markov graphs. This generalizes the results of exercise 15.2.

Exercise 15.4 Zeros of infinite products. Determination of the quantities of
interest by periodic orbits involves working with infinite product formulas.
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(a) Consider the infinite product

F (z) =

∞∏

k=0

(1 + fk(z))

where the functions fk are “sufficiently nice.” This infinite product can be
converted into an infinite sum by the use of a logarithm. Use the properties of
infinite sums to develop a sensible definition of infinite products.

(b) If z∗ is a root of the function F , show that the infinite product diverges when
evaluated at z∗.

(c) How does one compute a root of a function represented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet {0, 1}. Apply your definition of
F (z) to the infinite product

F (z) =
∏

p

(1 − znp

Λnp
)

(e) Are the roots of the factors in the above product the zeros of F (z)?

(Per Rosenqvist)

Exercise 15.5 Dynamical zeta functions as ratios of spectral determinants.
(medium) Show that the zeta function

1/ζ(z) = exp

(
−
∑

p

∑

r=1

1

r

znp

|Λp|r

)

can be written as the ratio 1/ζ(z) = det (1 − zL(0))/det (1 − zL(1)) ,

where det (1 − zL(s)) =
∏
p

∏∞
k=0(1 − znp/|Λp|Λk+sp ).

Exercise 15.6 Contour integral for survival probability. Perform explicitly

the contour integral appearing in (15.19).

Exercise 15.7 Dynamical zeta function for maps. In this problem we
will compare the dynamical zeta function and the spectral determinant. Compute the
exact dynamical zeta function for the skew Ulam tent map (9.43)

1/ζ(z) =
∏

p∈P

(
1 − znp

|Λp|

)
.

What are its roots? Do they agree with those computed in exercise 9.7?

Exercise 15.8 Dynamical zeta functions for Hamiltonian maps. Starting
from

1/ζ(s) = exp

(
−
∑

p

∞∑

r=1

1

r
trp

)
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for a 2-dimensional Hamiltonian map. Using the equality

1 =
1

(1 − 1/Λ)2
(1 − 2/Λ + 1/Λ2) ,

show that

1/ζ = det (1 − L) det (1 − L(2))/det (1 − L(1))
2 .

In this expression det (1 − zL(k)) is the expansion one gets by replacing tp → tp/Λ
k
p

in the spectral determinant.

Exercise 15.9 Riemann ζ function. The Riemann ζ function is defined as
the sum

ζ(s) =

∞∑

n=1

1

ns
, s ∈ C .

(a) Use factorization into primes to derive the Euler product representation

ζ(s) =
∏

p

1

1 − p−s
.

The dynamical zeta function exercise 15.15 is called a “zeta” function because
it shares the form of the Euler product representation with the Riemann zeta
function.

(b) (Not trivial:) For which complex values of s is the Riemann zeta sum conver-
gent?

(c) Are the zeros of the terms in the product, s = − ln p, also the zeros of the
Riemann ζ function? If not, why not?

Exercise 15.10 Finite truncations. (easy) Suppose we have a one-dimensional
system with complete binary dynamics, where the stability of each orbit is given
by a simple multiplicative rule:

Λp = Λ
np,0

0 Λ
np,1

1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example, Λ00101 = Λ3
0Λ

2
1.

(a) Compute the dynamical zeta function for this system; perhaps by creating
a transfer matrix analogous to (10.19), with the right weights.

(b) Compute the finite p truncations of the cycle expansion, that is take the
product only over the p up to given length with np ≤ N , and expand as
a series in z

∏

p

(
1 − znp

|Λp|

)
.

Do they agree? If not, how does the disagreement depend on the trun-
cation length N?
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Chapter 16

Why does it work?

Bloch: “Space is the field of linear operators.” Heisen-
berg: “Nonsense, space is blue and birds fly through
it.”
Felix Bloch, Heisenberg and the early days of quantum
mechanics

(R. Artuso, H.H. Rugh and P. Cvitanović)

As we shall see, the trace formulas and spectral determinants work well,
sometimes very well. The question is: Why? The heuristic manipulations
of chapters 14 and 7 were naive and reckless, as we are facing infinite-
dimensional vector spaces and singular integral kernels.

We now outline the key ingredients of proofs that put the trace and
determinant formulas on solid footing. This requires taking a closer look
at the evolution operators from a mathematical point of view, since up
to now we have talked about eigenvalues without any reference to what
kind of a function space the corresponding eigenfunctions belong to. We
shall restrict our considerations to the spectral properties of the Perron-
Frobenius operator for maps, as proofs for more general evolution operators
follow along the same lines. What we refer to as a “the set of eigenvalues”
acquires meaning only within a precisely specified functional setting: this
sets the stage for a discussion of the analyticity properties of spectral det-
erminants. In example 16.1 we compute explicitly the eigenspectrum for
the three analytically tractable piecewise linear examples. In sect. 16.3 we
review the basic facts of the classical Fredholm theory of integral equations.
The program is sketched in sect. 16.4, motivated by an explicit study of
eigenspectrum of the Bernoulli shift map, and in sect. 16.5 generalized to
piecewise real-analytic hyperbolic maps acting on appropriate densities. We
show on a very simple example that the spectrum is quite sensitive to the
regularity properties of the functions considered.

For expanding and hyperbolic finite-subshift maps analyticity leads to a
very strong result; not only do the determinants have better analyticity
properties than the trace formulas, but the spectral determinants are sin-
gled out as entire functions in the complex s plane.

☞ remark 16.1
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The goal of this chapter is not to provide an exhaustive review of the
rigorous theory of the Perron-Frobenius operators and their spectral deter-
minants, but rather to give you a feeling for how our heuristic considerations
can be put on a firm basis. The mathematics underpinning the theory is
both hard and profound.

If you are primarily interested in applications of the periodic orbit the-
ory, you should skip this chapter on the first reading.

fast track:

chapter 17, p. 287

16.1 Linear maps: exact spectra

We start gently; in example 16.1 we work out the exact eigenvalues and
eigenfunctions of the Perron-Frobenius operator for the simplest example
of unstable, expanding dynamics, a linear 1-d map with one unstable fixed
point. Ref. [16.6] shows that this can be carried over to d-dimensions.
Not only that, but in example 16.5 we compute the exact spectrum for
the simplest example of a dynamical system with an infinity of unstable
periodic orbits, the Bernoulli shift.

Example 16.1 The simplest eigenspectrum - a single fixed point: In order to
get some feeling for the determinants defined so formally in sect. 15.2, let us work out
a trivial example: a repeller with only one expanding linear branch

f(x) = Λx , |Λ| > 1 ,

and only one fixed point x∗ = 0. The action of the Perron-Frobenius operator (9.10)
is

Lφ(y) =

∫
dx δ(y − Λx)φ(x) =

1

|Λ|φ(y/Λ) . (16.1)

From this one immediately gets that the monomials yk are eigenfunctions:

Lyk =
1

|Λ|Λk
yk , k = 0, 1, 2, . . . (16.2)

What are these eigenfunctions? Think of eigenfunctions of the Schrödinger
equation: k labels the kth eigenfunction xk in the same spirit in which
the number of nodes labels the kth quantum-mechanical eigenfunction. A
quantum-mechanical amplitude with more nodes has more variability, hence
a higher kinetic energy. Analogously, for a Perron-Frobenius operator, a
higher k eigenvalue 1/|Λ|Λk is getting exponentially smaller because densi-
ties that vary more rapidly decay more rapidly under the expanding action
of the map.
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Example 16.2 The trace formula for a single fixed point: The eigenvalues
Λ−k−1 fall off exponentially with k, so the trace of L is a convergent sum

trL =
1

|Λ|

∞∑

k=0

Λ−k =
1

|Λ|(1 − Λ−1)
=

1

|f(0)′ − 1| ,

in agreement with (14.6). A similar result follows for powers of L, yielding the single-
fixed point version of the trace formula for maps (14.9):

∞∑

k=0

zesk

1 − zesk
=

∞∑

r=1

zr

|1 − Λr| , esk =
1

|Λ|Λk
. (16.3)

The left hand side of (16.3) is a meromorphic function, with the leading
zero at z = |Λ|.

Example 16.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio

h(z) =
z − a

z − b

with a, b real and positive and a < b. Within the spectral radius |z| < b the function h
can be represented by the power series

h(z) =

∞∑

k=0

σkz
k ,

where σ0 = a/b, and the higher order coefficients are given by σj = (a − b)/bj+1.
Consider now the truncation of order N of the power series

hN (z) =

N∑

k=0

σkz
k =

a

b
+
z(a− b)(1 − zN/bN )

b2(1 − z/b)
.

Let ẑN be the solution of the truncated series hN (ẑN) = 0. To estimate the distance
between a and ẑN it is sufficient to calculate hN (a). It is of order (a/b)N+1, so finite
order estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pole (the lead-
ing eigenvalue of L) from a finite truncation of a trace formula converges
exponentially, and (2) the non-leading eigenvalues of L lie outside of the ra-
dius of convergence of the trace formula and cannot be computed by means
of such cycle expansion. However, as we shall now see, the whole spectrum
is reachable at no extra effort, by computing it from a determinant rather
than a trace.
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Example 16.4 The spectral determinant for a single fixed point: The spectral
determinant (15.3) follows from the trace formulas of example 16.2:

det (1 − zL) =

∞∏

k=0

(
1 − z

|Λ|Λk

)
=

∞∑

n=0

(−t)nQn , t =
z

|Λ| , (16.4)

where the cummulants Qn are given explicitly by the Euler formula ✎ 16.3
page 286

Qn =
1

1 − Λ−1

Λ−1

1 − Λ−2
· · · Λ−n+1

1 − Λ−n
. (16.5)

(If you cannot figure out how to derive this formula, the solutions on p. 802 offer several
proofs.)

The main lesson to glean from this simple example is that the cum-
mulants Qn decay asymptotically faster than exponentially, as Λ−n(n−1)/2.
For example, if we approximate series such as (16.4) by the first 10 terms,
the error in the estimate of the leading zero is ≈ 1/Λ50!

So far all is well for a rather boring example, a dynamical system with a
single repelling fixed point. What about chaos? Systems where the number
of unstable cycles increases exponentially with their length? We now turn
to the simplest example of a dynamical system with an infinity of unstable
periodic orbits.

Example 16.5 Bernoulli shift: Consider next the Bernoulli shift map

x 7→ 2x (mod 1) , x ∈ [0, 1] . (16.6)

The associated Perron-Frobenius operator (9.9) assambles ρ(y) from its two preimages

Lρ(y) =
1

2
ρ
(y

2

)
+

1

2
ρ

(
y + 1

2

)
. (16.7)

For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials Bn(x). These polynomials
are generated by the Taylor expansion of the generating function

G(x, t) =
text

et − 1
=

∞∑

k=0

Bk(x)
tk

k!
, B0(x) = 1 , B1(x) = x− 1

2
, . . .

The Perron-Frobenius operator (16.7) acts on the generating function G as

LG(x, t) =
1

2

(
text/2

et − 1
+
tet/2ext/2

et − 1

)
=

t

2

ext/2

et/2 − 1
=

∞∑

k=1

Bk(x)
(t/2)k

k!
,

hence each Bk(x) is an eigenfunction of L with eigenvalue 1/2k.

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2n branches
the above calculations carry over, yielding the same trace (2n − 1)−1 for every cycle on
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length n. Without further ado we substitute everything back and obtain the determi-
nant,

det (1 − zL) = exp

(
−
∑

n=1

zn

n

2n

2n − 1

)
=
∏

k=0

(
1 − z

2k

)
, (16.8)

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, . . .,
1/2n, . . . .

The Bernoulli map spectrum looks reminiscent of the single fixed-point
spectrum (16.2), with the difference that the leading eigenvalue here is
1, rather than 1/|Λ|. The difference is significant: the single fixed-point
map is a repeller, with escape rate (1.6) given by the L leading eigenvalue
γ = ln |Λ|, while there is no escape in the case of the Bernoulli map. As
already noted in discussion of the relation (15.23), for bound systems the
local expansion rate (here ln |Λ| = ln 2) is balanced by the entropy (here
ln 2, the log of the number of preimages Fs), yielding zero escape rate.

So far we have demonstrated that our periodic orbit formulas are correct
for two piecewise linear maps in 1 dimension, one with a single fixed point,
and one with a full binary shift chaotic dynamics. For a single fixed point,
eigenfunctions are monomials in x. For the chaotic example, they are or-
thogonal polynomials on the unit interval. What about higher dimensions?
We check our formulas on a 2-d hyperbolic map next.

Example 16.6 The simplest of 2-d maps - a single hyperbolic fixed point: We
start by considering a very simple linear hyperbolic map with a single hyperbolic fixed
point,

f(x) = (f1(x1, x2), f2(x1, x2)) = (Λsx1,Λux2) , 0 < |Λs| < 1 , |Λu| > 1 .

The Perron-Frobenius operator (9.10) acts on the 2-d density functions as

Lρ(x1, x2) =
1

|ΛsΛu|
ρ(x1/Λs, x2/Λu) (16.9)

What are good eigenfunctions? Cribbing the 1-d eigenfunctions for the stable, contract-
ing x1 direction from example 16.1 is not a good idea, as under the iteration of L the
high terms in a Taylor expansion of ρ(x1, x2) in the x1 variable would get multiplied
by exponentially exploding eigenvalues 1/Λk

s . This makes sense, as in the contracting
directions hyperbolic dynamics crunches up initial densities, instead of smoothing them.
So we guess instead that the eigenfunctions are of form

ϕk1k2(x1, x2) = xk2
2 /x

k1+1
1 , k1, k2 = 0, 1, 2, . . . , (16.10)

a mixture of the Laurent series in the contraction x1 direction, and the Taylor series in
the expanding direction, the x2 variable. The action of Perron-Frobenius operator on
this set of basis functions

Lϕk1k2(x1, x2) =
σ

|Λu|
Λk1

s

Λk2
u

ϕk1k2(x1, x2) , σ = Λs/|Λs|
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is smoothing, with the higher k1, k2 eigenvectors decaying exponentially faster, by
Λk1

s /Λ
k2+1
u factor in the eigenvalue. One verifies by an explicit calculation (undoing

the geometric series expansions to lead to (15.9)) that the trace of L indeed equals
1/|det (1 − M)| = 1/|(1 − Λu)(1 − Λs)| , from which it follows that all our trace
and spectral determinant formulas apply. The argument applies to any hyperbolic map
linearized around the fixed point of form f(x1...., xd) = (Λ1x1,Λ2x2, . . . ,Λdxd).

So far we have checked the trace and spectral determinant formulas
derived heuristically in chapters 14 and 15, but only for the case of 1- and
2-d linear maps. But for infinite-dimensional vector spaces this game is
fraught with dangers, and we have already been mislead by piecewise linear
examples into spectral confusions: contrast the spectra of example 9.1 and
example 10.1 with the spectrum computed in example 14.1.

We show next that the above results do carry over to a sizable class of
piecewise analytic expanding maps.

16.2 Evolution operator in a matrix representa-
tion

The standard, and for numerical purposes sometimes very effective way to
look at operators is through their matrix representations. Evolution oper-
ators are moving density functions defined over some phase space, and as
in general we can implement this only numerically, the temptation is to
discretize the phase space as in sect. 10.4. The problem with such phase
space discretization approaches that they sometimes yield plainly wrong
spectra (compare example 10.1 with the result of example 14.1), so we
have to think through carefully what is it that we really measure.

An expanding map f (x) takes an initial smooth density φn(x), defined
on a subinterval, stretches it out and overlays it over a larger interval,
resulting in a new, smoother density φn+1(x). Repetition of this process
smoothes the initial density, so it is natural to represent densities φn(x) by
their Taylor series. Expand

φn(y) =
∞∑

k=0

φ(k)
n (0)

yk

k!
, φn+1(y)k =

∞∑

ℓ=0

φ
(ℓ)
n+1(0)

yℓ

ℓ!
,

φ
(ℓ)
n+1(0) =

∫
dx δ(ℓ)(y − f(x))φn(x)

∣∣∣
y=0

, x = f−1(0) ,

and substitute the two Taylor series into (9.6):

φn+1(y) = (Lφn) (y) =

∫

M
dx δ(y − f (x))φn(x) .
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The matrix elements follow by evaluating the integral

Lℓk =
∂ℓ

∂yℓ

∫
dxL(y, x)

xk

k!

∣∣∣∣
y=0

. (16.11)

we obtain a matrix representation of the evolution operator

∫
dxL(y, x)

xk

k!
=
∑

k′

yk
′

k′!
Lk′k , k, k′ = 0, 1, 2, . . .

which maps the xk component of the density of trajectories φn(x) into the
yk

′
component of the density φn+1(y) one time step later, with y = f (x).

We already have some practice with evaluating derivatives δ(ℓ)(y) = ∂ℓ

∂yℓ δ(y)
from sect. 9.2. This yields a representation of the evolution operator cen-
tered on the fixed point, evaluated recursively in terms of derivatives of the
map f :

(L)ℓk =

∫
dx δ(ℓ)(x − f(x))

xk

k!

∣∣∣∣
x=f(x)

(16.12)

=
1

|f ′|

(
d

dx

1

f ′(x)

)ℓ xk
k!

∣∣∣∣∣
x=f(x)

.

The matrix elements vanish for ℓ < k, so L is a lower triangular matrix.
The diagonal and the successive off-diagonal matrix elements are easily
evaluated iteratively by computer algebra

Lkk =
1

|Λ|Λk , Lk+1,k = − (k + 2)!f ′′

2k!|Λ|Λk+2
, · · · .

For chaotic systems the map is expanding, |Λ| > 1. Hence the diagonal
terms drop off exponentially, as 1/|Λ|k+1, the terms below the diagonal
fall off even faster, and truncating L to a finite matrix introduces only
exponentially small errors.

The trace formula (16.3) takes now a matrix form

tr
zL

1 − zL = tr
L

1 − zL
. (16.13)

In order to illustrate how this works, we work out a few examples.

In example 16.7 we show that these results carry over to any analytic
single-branch 1-d repeller. Further examples motivate the steps that lead
to a proof that spectral determinants for general analytic 1-dimensional
expanding maps, and - in sect. 16.5, for 2-dimensional hyperbolic mappings
- are also entire functions.
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Figure 16.1: A nonlinear one-branch repeller
with a single fixed point w∗.

0 0.5 1
w

0

0.5

1

f(w)

w *

Example 16.7 Perron-Frobenius operator in a matrix representation: As in
example 16.1, we start with a map with a single fixed point, but this time with a
nonlinear piecewise analytic map f with a nonlinear inverse F = f−1, sign of the
derivative σ = σ(F ′) = F ′/|F ′| , and the Perron-Frobenius operator acting on densities
analytic in an open domain enclosing the fixed point x = w∗,

Lφ(y) =

∫
dx δ(y − f(x))φ(x) = σ F ′(y) φ(F (y)) .

Assume that F is a contraction of the unit disk in the complex plane, that is,

|F (z)| < θ < 1 and |F ′(z)| < C <∞ for |z| < 1 , (16.14)

and expand φ in a polynomial basis with the Cauchy integral formula

φ(z) =

∞∑

n=0

znφn =

∮
dw

2πi

φ(w)

w − z
, φn =

∮
dw

2πi

φ(w)

wn+1

Combining this with (16.22), we see that in this basis Perron-Frobenius operator L is
represented by the matrix

Lφ(w) =
∑

m,n

wmLmnφn , Lmn =

∮
dw

2πi

σ F ′(w)(F (w))n

wm+1
. (16.15)

Taking the trace and summing we get:

tr L =
∑

n≥0

Lnn =

∮
dw

2πi

σ F ′(w)

w − F (w)
.

This integral has but one simple pole at the unique fixed point w∗ = F (w∗) = f(w∗).
Hence✎ 16.6

page 286
tr L =

σ F ′(w∗)

1 − F ′(w∗)
=

1

|f ′(w∗) − 1| .

This super-exponential decay of cummulants Qk ensures that for a re-
peller consisting of a single repelling point the spectral determinant (16.4)
is entire in the complex z plane.

In retrospect, the matrix representation method for solving the den-
sity evolution problems is eminently sensible — after all, that is the way
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one solves a close relative to classical density evolution equations, the
Schrödinger equation. When available, matrix representations for L en-
able us to compute many more orders of cumulant expansions of spectral
determinants and many more eigenvalues of evolution operators than the
cycle expensions approach.

Now, if the spectral determinant is entire, formulas such as (15.25)
imply that the dynamical zeta function is a meromorphic function. The
practical import of this observation is that it guarantees that finite order
estimates of zeroes of dynamical zeta functions and spectral determinants
converge exponentially, or - in cases such as (16.4) - super-exponentially to
the exact values, and so the cycle expansions to be discussed in chapter 18
represent a true perturbative approach to chaotic dynamics.

Before turning to specifics we summarize a few facts about classical
theory of integral equations, something you might prefer to skip on first
reading. The purpose of this exercise is to understand that the Fredholm
theory, a theory that works so well for the Hilbert spaces of quantum me-
chanics does not necessarily work for deterministic dynamics - the ergodic
theory is much harder.

fast track:

sect. 16.4, p. 271

16.3 Classical Fredholm theory

He who would valiant be
’Gainst all disaster
Let him in constancy
Follow the Master.

John Bunyan, Pilgrim’s Progress

The Perron-Frobenius operator

Lφ(x) =

∫
dy δ(x− f(y))φ(y)

has the same appearance as a classical Fredholm integral operator

Kϕ(x) =

∫

M
dyK(x, y)ϕ(y) , (16.16)

and one is tempted to resort to, classical Fredholm theory in order to estab-
lish analyticity properties of spectral determinants. This path to enlighten-
ment is blocked by the singular nature of the kernel, which is a distribution,
whereas the standard theory of integral equations usually concerns itself
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with regular kernels K(x, y) ∈ L2(M2). Here we briefly recall some steps
of Fredholm theory, before working out the example of example 16.5.

The general form of Fredholm integral equations of the second kind is

ϕ(x) =

∫

M
dyK(x, y)ϕ(y) + ξ(x) (16.17)

where ξ(x) is a given function in L2(M) and the kernel K(x, y) ∈ L2(M2)
(Hilbert-Schmidt condition). The natural object to study is then the linear
integral operator (16.16), acting on the Hilbert space L2(M): the funda-
mental property that follows from the L2(Q) nature of the kernel is that
such an operator is compact, that is close to a finite rank operator (see ap-
pendix K). A compact operator has the property that for every δ > 0 only
a finite number of linearly independent eigenvectors exist corresponding to
eigenvalues whose absolute value exceeds δ, so we immediately realize (fig-
ure 16.4) that much work is needed to bring Perron-Frobenius operators
into this picture.

We rewrite (16.17) in the form

T ϕ = ξ , T = 11 −K . (16.18)

The Fredholm alternative is now applied to this situation as follows: the
equation T ϕ = ξ has a unique solution for every ξ ∈ L2(M) or there exists
a non-zero solution of T ϕ0 = 0, with an eigenvector of K corresponding to
the eigenvalue 1. The theory remains the same if instead of T we consider
the operator Tλ = 11− λK with λ 6= 0. As K is a compact operator there is
at most a denumerable set of λ for which the second part of the Fredholm
alternative holds: apart from this set the inverse operator ( 11−λT )−1 exists
and is bounded (in the operator sense). When λ is sufficiently small we may
look for a perturbative expression for such an inverse, as a geometric series

( 11 − λK)−1 = 11 + λK + λ2K2 + · · · = 11 + λW , (16.19)

where Kn is a compact integral operator with kernel

Kn(x, y) =

∫

Mn−1

dz1 . . . dzn−1 K(x, z1) · · · K(zn−1, y) ,

and W is also compact, as it is given by the convergent sum of compact
operators. The problem with (16.19) is that the series has a finite radius of
convergence, while apart from a denumerable set of λ’s the inverse operator
is well defined. A fundamental result in the theory of integral equations
consists in rewriting the resolving kernel W as a ratio of two analytic func-
tions of λ

W(x, y) =
D(x, y;λ)

D(λ)
.
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If we introduce the notation

K
(
x1 . . . xn
y1 . . . yn

)
=

∣∣∣∣∣∣

K(x1, y1) . . . K(x1, yn)
. . . . . . . . .

K(xn, y1) . . . K(xn, yn)

∣∣∣∣∣∣

we may write the explicit expressions

D(λ) = 1 +

∞∑

n=1

(−1)n
λn

n!

∫

Mn

dz1 . . . dznK
(
z1 . . . zn
z1 . . . zn

)

= exp

(
−

∞∑

m=1

λm

m
trKm

)
(16.20)

D(x, y;λ) = K
(
x
y

)
+

∞∑

n=1

(−λ)n

n!

∫

Mn

dz1 . . . dznK
(
x z1 . . . zn
y z1 . . . zn

)

The quantity D(λ) is known as the Fredholm determinant (see (15.24) and
appendix K): it is an entire analytic function of λ, and D(λ) = 0 if and
only if 1/λ is an eigenvalue of K.

Worth emphasizing again: the Fredholm theory is based on the com-
pactness of the integral operator, that is, on the functional properties (sum-
mability) of its kernel. As the Perron-Frobenius operator is not compact,
there is a bit of wishful thinking involved here.

16.4 Analyticity of spectral determinants

They savored the strange warm glow of being much
more ignorant than ordinary people, who were only
ignorant of ordinary things.

Terry Pratchett

Spaces of functions integrable L1, or square-integrable L2 on interval
[0, 1] are mapped into themselves by the Perron-Frobenius operator, and in
both cases the constant function φ0 ≡ 1 is an eigenfunction with eigenvalue
1. If we focus our attention on L1 we also have a family of L1 eigenfunctions,

φθ(y) =
∑

k 6=0

exp(2πiky)
1

|k|θ (16.21)

with complex eigenvalue 2−θ, parametrized by complex θ with Re θ > 0.
By varying θ one realizes that such eigenvalues fill out the entire unit disk.
Such essential spectrum, the case k = 0 of figure 16.4, hides all fine details
of the spectrum.
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What’s going on? Spaces L1 and L2 contain arbitrarily ugly functions,
allowing any singularity as long as it is (square) integrable - and there is
no way that expanding dynamics can smooth a kinky function with a non-
differentiable singularity, let’s say a discontinuous step, and that is why
the eigenspectrum is dense rather than discrete. Mathematicians love to
wallow in this kind of muck, but there is no way to prepare a nowhere
differentiable L1 initial density in a laboratory. The only thing we can
prepare and measure are piecewise smooth (real-analytic) density functions.

For a bounded linear operator A on a Banach space Ω, the spectral
radius is the smallest positive number ρspec such that the spectrum is inside
the disk of radius ρspec, while the essential spectral radius is the smallest
positive number ρess such that outside the disk of radius ρess the spectrum
consists only of isolated eigenvalues of finite multiplicity (see figure 16.4).

✎ 16.5
page 286

We may shrink the essential spectrum by letting the Perron-Frobenius
operator act on a space of smoother functions, exactly as in the one-branch
repeller case of sect. 16.1. We thus consider a smaller space, C

k+α, the
space of k times differentiable functions whose k’th derivatives are Hölder
continuous with an exponent 0 < α ≤ 1: the expansion property guarantees
that such a space is mapped into itself by the Perron-Frobenius operator.
In the strip 0 < Re θ < k+α most φθ will cease to be eigenfunctions in the
space C

k+α; the function φn survives only for integer valued θ = n. In this
way we arrive at a finite set of isolated eigenvalues 1, 2−1, · · · , 2−k, and an
essential spectral radius ρess = 2−(k+α).

We follow a simpler path and restrict the function space even further,
namely to a space of analytic functions, that is, functions for which the
Taylor expansion is convergent at each point of the interval [0, 1]. With
this choice things turn out easy and elegant. To be more specific, let φ be
a holomorphic and bounded function on the disk D = B(0, R) of radius
R > 0 centered at the origin. Our Perron-Frobenius operator preserves the
space of such functions provided (1 +R)/2 < R so all we need is to choose
R > 1. If Fs , s ∈ {0, 1}, denotes the s inverse branch of the Bernoulli shift
(16.6), the corresponding action of the Perron-Frobenius operator is given
by Lsh(y) = σ F ′

s(y) h ◦ Fs(y), using the Cauchy integral formula along
the ∂D boundary contour:

Lsh(y) = σ

∮
dw

2πi
∂D
h(w)F ′

s(y)

w − Fs(y)
. (16.22)

For reasons that will be made clear later we have introduced a sign σ =
±1 of the given real branch |F ′(y)| = σ F ′(y). For both branches of the
Bernoulli shift s = 1, but in general one is not allowed to take absolute
values as this could destroy analyticity. In the above formula one may also
replace the domain D by any domain containing [0, 1] such that the inverse
branches maps the closure ofD into the interior ofD. Why? simply because
the kernel remains non-singular under this condition, that is, w−F (y) 6= 0

converg - 15aug2006 ChaosBook.org/version11.8, Aug 30 2006



16.4. ANALYTICITY OF SPECTRAL DETERMINANTS 273

whenever w ∈ ∂D and y ∈ Cl D. The problem is now reduced to the
standard theory for Fredholm determinants, sect. 16.3. The integral kernel
is no longer singular, traces and determinants are well-defined, and we can
evaluate the trace of LF by means of the Cauchy contour integral formula:

tr LF =

∮
dw

2πi

σF ′(w)

w − F (w)
.

Elementary complex analysis shows that since F maps the closure of D
into its own interior, F has a unique (real-valued) fixed point x∗ with a
multiplier strictly smaller than one in absolute value. Residue calculus ✎ 16.6

page 286
therefore yields

tr LF =
σF ′(x∗)

1 − F ′(x∗)
=

1

|f ′(x∗) − 1| ,

justifying our previous ad hoc calculations of traces using Dirac delta func-
tions.

Example 16.8 Perron-Frobenius operator in a matrix representation: As in
example 16.1, we start with a map with a single fixed point, but this time with a
nonlinear piecewise analytic map f with a nonlinear inverse F = f−1, sign of the
derivative σ = σ(F ′) = F ′/|F ′|

Lφ(z) =

∫
dx δ(z − f(x))φ(x) = σ F ′(z) φ(F (z)) .

Assume that F is a contraction of the unit disk, that is,

|F (z)| < θ < 1 and |F ′(z)| < C <∞ for |z| < 1 , (16.23)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑

n≥0

znφn =

∮
dw

2πi

φ(w)

w − z
, φn =

∮
dw

2πi

φ(w)

wn+1

Combining this with (16.22), we see that in this basis L is represented by the matrix

Lφ(w) =
∑

m,n

wmLmnφn , Lmn =

∮
dw

2πi

σ F ′(w)(F (w))n

wm+1
. (16.24)

Taking the trace and summing we get:

tr L =
∑

n≥0

Lnn =

∮
dw

2πi

σ F ′(w)

w − F (w)
.

This integral has but one simple pole at the unique fixed point w∗ = F (w∗) = f(w∗).
Hence ✎ 16.6

page 286
tr L =

σ F ′(w∗)

1 − F ′(w∗)
=

1

|f ′(w∗) − 1| .
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We worked out a very specific example, yet our conclusions can be
generalized, provided a number of restrictive requirements are met by the
dynamical system under investigation:

1) the evolution operator is multiplicative along the flow,
2) the symbolic dynamics is a finite subshift,
3) all cycle eigenvalues are hyperbolic (exponentially bounded in
magnitude away from 1),
4) the map (or the flow) is real analytic, that is, it has a piecewise
analytic continuation to a complex extension of the phase space.

These assumptions are romantic expectations not satisfied by the dy-
namical systems that we actually desire to understand. Still, they are not
devoid of physical interest; for example, nice repellers like our 3-disk game
of pinball do satisfy the above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a
finite matrix in an appropriate basis; properties 3 and 4 enable us to bound
the size of the matrix elements and control the eigenvalues. To see what
can go wrong, consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the following
weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(
y − f t(x)

)
,

where Λt(x) is an eigenvalue of the fundamental matrix transverse to the
flow. Semiclassical quantum mechanics suggest operators of this form with
β = 1/2, (see chapter 30). The problem with such operators arises from the
fact that when considering the fundamental matrices Jab = JaJb for two
successive trajectory segments a and b, the corresponding eigenvalues are in
general not multiplicative, Λab 6= ΛaΛb (unless a, b are iterates of the same
prime cycle p, so JaJb = Jra+rb

p ). Consequently, this evolution operator
is not multiplicative along the trajectory. The theorems require that the
evolution be represented as a matrix in an appropriate polynomial basis,
and thus cannot be applied to non-multiplicative kernels, that is, kernels
that do not satisfy the semi-group property Lt′Lt = Lt′+t. The cure for
this problem in this particular case is given in appendix H.1.

Property 2 is violated by the 1-d tent map (see figure 16.2 (a))

f(x) = α(1 − |1 − 2x|) , 1/2 < α < 1 .

All cycle eigenvalues are hyperbolic, but in general the critical point xc =
1/2 is not a pre-periodic point, so there is no finite Markov partition and
the symbolic dynamics does not have a finite grammar (see sect. 12.4 for
definitions). In practice; this means that while the leading eigenvalue of L
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(a)

0 0.5 1
x

0

0.5

1

f(x)

(b)

0 0.5 1
x

0

0.5

1

f(x)

I I0 1

Figure 16.2: (a) A (hyperbolic) tent map without a finite Markov partition. (b) A
Markov map with a marginal fixed point.

might be computable, the rest of the spectrum is very hard to control; as
the parameter α is varied, the non-leading zeros of the spectral determinant
move wildly about.

Property 3 is violated by the map (see figure 16.2 (b))

f(x) =

{
x+ 2x2 , x ∈ I0 = [0, 1

2 ]
2 − 2x , x ∈ I1 = [12 , 1]

.

Here the interval [0, 1] has a Markov partition into two subintervals I0 and
I1, and f is monotone on each. However, the fixed point at x = 0 has
marginal stability Λ0 = 1, and violates condition 3. This type of map is
called “intermittent” and necessitates much extra work. The problem is
that the dynamics in the neighborhood of a marginal fixed point is very
slow, with correlations decaying as power laws rather than exponentially.
We will discuss such flows in chapter 21.

Property 4 is required as the heuristic approach of chapter 14 faces two
major hurdles:

1. The trace (14.7) is not well defined because the integral kernel is
singular.

2. The existence and properties of eigenvalues are by no means clear.

Actually property 4 is quite restrictive, but we need it in the present ap-
proach, so that the Banach space of analytic functions in a disk is preserved
by the Perron-Frobenius operator.

In attempting to generalize the results, we encounter several problems.
First, in higher dimensions life is not as simple. Multi-dimensional residue
calculus is at our disposal but in general requires that we find poly-domains
(direct product of domains in each coordinate) and this need not be the
case. Second, and perhaps somewhat surprisingly, the ‘counting of periodic
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orbits’ presents a difficult problem. For example, instead of the Bernoulli
shift consider the doubling map of the circle, x 7→ 2x mod 1, x ∈ R/Z.
Compared to the shift on the interval [0, 1] the only difference is that the
endpoints 0 and 1 are now glued together. Because these endpoints are
fixed points of the map, the number of cycles of length n decreases by 1.
The determinant becomes:

det(1 − zL) = exp

(
−
∑

n=1

zn

n

2n − 1

2n − 1

)
= 1 − z. (16.25)

The value z = 1 still comes from the constant eigenfunction, but the
Bernoulli polynomials no longer contribute to the spectrum (as they are
not periodic). Proofs of these facts, however, are difficult if one sticks to
the space of analytic functions.

Third, our Cauchy formulas a priori work only when considering purely
expanding maps. When stable and unstable directions co-exist we have to
resort to stranger function spaces, as shown in the next section.

16.5 Hyperbolic maps

I can give you a definion of a Banach space, but I do
not know what that means.

Federico Bonnetto, Banach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the following paradox: If f
is an area-preserving hyperbolic and real-analytic map of, for example,
a 2-dimensional torus then the Perron-Frobenius operator is unitary on
the space of L2 functions, and its spectrum is confined to the unit circle.
On the other hand, when we compute determinants we find eigenvalues
scattered around inside the unit disk. Thinking back to the Bernoulli shift
example 16.5 one would like to imagine these eigenvalues as popping up
from the L2 spectrum by shrinking the function space. Shrinking the space,
however, can only make the spectrum smaller so this is obviously not what
happens. Instead one needs to introduce a ‘mixed’ function space where
in the unstable direction one resorts to analytic functions, as before, but
in the stable direction one instead considers a ‘dual space’ of distributions
on analytic functions. Such a space is neither included in nor includes L2

and we have thus resolved the paradox. However, it still remains to be seen
how traces and determinants are calculated.

The linear hyperbolic fixed point example 16.6 is somewhat misleading,
as we have made explicit use of a map that acts independently along the
stable and unstable directions. For a more general hyperbolic map, there is
no way to implement such direct product structure, and the whole argument
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falls apart. Her comes an idea; use the analyticity of the map to rewrite
the Perron-Frobenius operator acting as follows (where σ denotes the sign
of the derivative in the unstable direction):

Lh(z1, z2) =

∮ ∮
σ h(w1, w2)

(z1 − f1(w1, w2)(f2(w1, w2) − z2)

dw1

2πi

dw2

2πi
. (16.26)

Here the function φ should belong to a space of functions analytic respec-
tively outside a disk and inside a disk in the first and the second coordinates;
with the additional property that the function decays to zero as the first co-
ordinate tends to infinity. The contour integrals are along the boundaries
of these disks. It is an exercise in multi-dimensional residue calculus to
verify that for the above linear example this expression reduces to (16.9).
Such operators form the building blocks in the calculation of traces and
determinants. One can prove the following:

Theorem: The spectral determinant for 2-d hyperbolic analytic maps is
entire.

☞ remark 16.8

The proof, apart from the Markov property that is the same as for
the purely expanding case, relies heavily on analyticity of the map in the
explicit construction of the function space. The idea is to view the hyper-
bolicity as a cross product of a contracting map in forward time and another
contracting map in backward time. In this case the Markov property in-
troduced above has to be elaborated a bit. Instead of dividing the phase
space into intervals, one divides it into rectangles. The rectangles should
be viewed as a direct product of intervals (say horizontal and vertical),
such that the forward map is contracting in, for example, the horizontal
direction, while the inverse map is contracting in the vertical direction. For
Axiom A systems (see remark 16.8) one may choose coordinate axes close
to the stable/unstable manifolds of the map. With the phase space divided
into N rectangles {M1,M2, . . . ,MN}, Mi = Ihi × Ivi one needs a complex
extension Dh

i × Dv
i , with which the hyperbolicity condition (which simul-

taneously guarantees the Markov property) can be formulated as follows:

Analytic hyperbolic property: Either f(Mi)∩Int(Mj) = ∅, or for each

pair wh ∈ Cl(Dh
i ), zv ∈ Cl(Dv

j ) there exist unique analytic functions of

wh, zv : wv = wv(wh, zv) ∈ Int(Dv
i ), zh = zh(wh, zv) ∈ Int(Dh

j ), such that

f(wh, wv) = (zh, zv). Furthermore, if wh ∈ Ihi and zv ∈ Ivj , then wv ∈ Ivi
and zh ∈ Ihj (see figure 16.3).

In plain English, this means for the iterated map that one replaces the
coordinates zh, zv at time n by the contracting pair zh, wv , where wv is the
contracting coordinate at time n+ 1 for the ‘partial’ inverse map.

In two dimensions the operator in (16.26) acts on functions analytic
outside Dh

i in the horizontal direction (and tending to zero at infinity) and
inside Dv

i in the vertical direction. The contour integrals are precisely along
the boundaries of these domains.
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Figure 16.3: For an analytic hyperbolic map, specifying the contracting coordinate
wh at the initial rectangle and the expanding coordinate zv at the image rectangle
defines a unique trajectory between the two rectangles. In particular, wv and zh (not
shown) are uniquely specified.

A map f satisfying the above condition is called analytic hyperbolic and
the theorem states that the associated spectral determinant is entire, and
that the trace formula (14.7) is correct.

Examples of analytic hyperbolic maps are provided by small analytic
perturbations of the cat map, the 3-disk repeller, and the 2-d baker’s map.

16.6 The physics of eigenvalues and eigenfunc-

tions

We appreciate by now that any honest attempt to look at the spec-
tral properties of the Perron-Frobenius operator involves hard mathematics,
but the effort is rewarded by the fact that we are finally able to control the
analyticity properties of dynamical zeta functions and spectral determin-
ants, and thus substantiate the claim that these objects provide a powerful
and well-founded perturbation theory.

Often (see chapter 10) physically important part of the spectrum is just
the leading eigenvalue, which gives us the escape rate from a repeller, or, for
a general evolution operator, formulas for expectation values of observables
and their higher moments. Also the eigenfunction associated to the leading
eigenvalue has a physical interpretation (see chapter 9): it is the density of
the natural measures, with singular measures ruled out by the proper choice
of the function space. This conclusion is in accord with the generalized
Perron-Frobenius theorem for evolution operators. In the finite dimensional
setting, such a theorem is formulated as follows:

☞ remark 16.7

• Perron-Frobenius theorem: Let Lij be a nonnegative matrix, such
that some n exists for which (Ln)ij > 0 ∀i, j: then

1. The maximal modulus eigenvalue is non-degenerate real, and
positive
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2. The corresponding eigenvector (defined up to a constant) has
nonnegative coordinates

We may ask what physical information is contained in eigenvalues beyond
the leading one: suppose that we have a probability conserving system (so
that the dominant eigenvalue is 1), for which the essential spectral radius
satisfies 0 < ρess < θ < 1 on some Banach space B. Denote by P the
projection corresponding to the part of the spectrum inside a disk of radius
θ. We denote by λ1, λ2 . . . , λM the eigenvalues outside of this disk, ordered
by the size of their absolute value, with λ1 = 1. Then we have the following
decomposition

Lϕ =

M∑

i=1

λiψiLiψ
∗
i ϕ + PLϕ (16.27)

when Li are (finite) matrices in Jordan canomical form (L0 = 0 is a [1×1]
matrix, as λ0 is simple, due to the Perron-Frobenius theorem), whereas ψi
is a row vector whose elements form a basis on the eigenspace corresponding
to λi, and ψ∗

i is a column vector of elements of B∗ (the dual space of linear
functionals over B) spanning the eigenspace of L∗ corresponding to λi. For
iterates of the Perron-Frobenius operator, (16.27) becomes

Lnϕ =

M∑

i=1

λni ψiL
n
i ψ

∗
i ϕ + PLnϕ . (16.28)

If we now consider, for example, correlation between initial ϕ evolved n
steps and final ξ,

〈ξ|Ln|ϕ〉 =

∫

M
dy ξ(y) (Lnϕ) (y) =

∫

M
dw (ξ ◦ fn)(w)ϕ(w) , (16.29)

it follows that

〈ξ|Ln|ϕ〉 = λn1ω1(ξ, ϕ) +
L∑

i=2

λni ω
(n)
i (ξ, ϕ) + O(θn) , (16.30)

where

ω
(n)
i (ξ, ϕ) =

∫

M
dy ξ(y)ψiL

n
i ψ

∗
i ϕ .

The eigenvalues beyond the leading one provide two pieces of informa-
tion: they rule the convergence of expressions containing high powers of
the evolution operator to leading order (the λ1 contribution). Moreover ✎ 16.7

page 286
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if ω1(ξ, ϕ) = 0 then (16.29) defines a correlation function: as each term
in (16.30) vanishes exponentially in the n → ∞ limit, the eigenvalues
λ2, . . . , λM determine the exponential decay of correlations for our dynam-
ical system. The prefactors ω depend on the choice of functions, whereas
the exponential decay rates (given by logarithms of λi) do not: the corre-
lation spectrum is thus a universal property of the dynamics (once we fix
the overall functional space on which the Perron-Frobenius operator acts).

Example 16.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift
example (16.6) on the space of analytic functions on a disk: apart from the origin
we have only simple eigenvalues λk = 2−k, k = 0, 1, . . .. The eigenvalue λ0 = 1
corresponds to probability conservation: the corresponding eigenfunction B0(x) = 1
indicates that the natural measure has a constant density over the unit interval. If we
now take any analytic function η(x) with zero average (with respect to the Lebesgue
measure), it follows that ω1(η, η) = 0, and from (16.30) the asymptotic decay of the
correlation function is (unless also ω1(η, η) = 0)

Cη,η(n) ∼ exp(−n log 2) . (16.31)

Thus, − logλ1 gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be treated
exactly, as for analytic functions we can employ the Euler-MacLaurin summation formula

η(z) =

∫ 1

0

dw η(w) +
∞∑

m=1

η(m−1)(1) − η(m−1)(0)

m!
Bm(z) . (16.32)

As we are considering functions with zero average, we have from (16.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

Cη,η(n) =
∞∑

m=1

(2−m)n(η(m)(1) − η(m)(0))

m!

∫ 1

0

dz η(z)Bm(z) .

The decomposition (16.32) is also useful in realizing that the linear functionals ψ∗
i are

singular objects: if we write it as

η(z) =

∞∑

m=0

Bm(z)ψ∗
m[η] ,

we see that these functionals are of the form

ψ∗
i [ε] =

∫ 1

0

dwΨi(w)ε(w) ,

where

Ψi(w) =
(−1)i−1

i!

(
δ(i−1)(w − 1) − δ(i−1)(w)

)
, (16.33)

when i ≥ 1 and Ψ0(w) = 1. This representation is only meaningful when the function
ε is analytic in neighborhoods of w,w − 1.
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Figure 16.4: Spectrum of the Perron-

Frobenius operator acting on the space of Ck+α

Hölder-continuous functions: only k isolated
eigenvalues remain between the spectral radius,
and the essential spectral radius which bounds
the “essential”, continuous spectrum.

essential spectrum

isolated eigenvaluespectral radius

16.7 Troubles ahead

The above discussion confirms that for a series of examples of increasing
generality formal manipulations with traces and determinants are justified:
the Perron-Frobenius operator has isolated eigenvalues, the trace formulas
are explicitly verified, and the spectral determinant is an entire function
whose zeroes yield the eigenvalues. Real life is harder, as we may appre-
ciate through the following considerations:

• Our discussion tacitly assumed something that is physically entirely
reasonable: our evolution operator is acting on the space of ana-
lytic functions, that is, we are allowed to represent the initial density
ρ(x) by its Taylor expansions in the neighborhoods of periodic points.
This is however far from being the only possible choice: mathemati- ✎ 16.1

page 286
cians often work with the function space C

k+α, that is, the space of k
times differentiable functions whose k’th derivatives are Hölder con-
tinuous with an exponent 0 < α ≤ 1: then every yη with Re η > k is
an eigenfunction of the Perron-Frobenius operator and we have

Lyη =
1

|Λ|Λη y
η , η ∈ C .

This spectrum differs markedly from the analytic case: only a small
number of isolated eigenvalues remain, enclosed between the spectral
radius and a smaller disk of radius 1/|Λ|k+1, see figure 16.4. In lit-
erature the radius of this disk is called the essential spectral radius.

In sect. 16.4 we discussed this point further, with the aid of a less
trivial 1-dimensional example. The physical point of view is comple-
mentary to the standard setting of ergodic theory, where many chaotic
properties of a dynamical system are encoded by the presence of a
continuous spectrum, used to prove asymptotic decay of correlations
in the space of L2 square-integrable functions. ✎ 16.2

page 286• A deceptively innocent assumption is hidden beneath many features
discussed so far: that (16.1) maps a given function space into itself.
This is strictly related to the expanding property of the map: if f(x)
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is smooth in a domain D then f(x/Λ) is smooth on a larger domain,
provided |Λ| > 1. This is not obviously the case for hyperbolic sys-
tems in higher dimensions, and, as we saw in sect. 16.5, extensions of
the results obtained for expanding maps are highly nontrivial.

• It is not at all clear that the above analysis of a simple one-branch,
one fixed point repeller can be extended to dynamical systems with
a Cantor set of periodic points: we showed this in sect. 16.4.

Commentary

Remark 16.1 Surveys of rigorous theory. We recommend the references listed
in sect. 1.8 for an introduction to the mathematical literature on this subject. For
a physicist, Driebe’s monograph [1.26] might be the most accessible introduction
into mathematics discussed briefley in this chapter. There are a number of reviews
of the mathematical approach to dynamical zeta functions and spectral deter-
minants, with pointers to the original references, such as refs. [16.1, 16.2]. An
alternative approach to spectral properties of the Perron-Frobenius operator is
given in ref. [16.3].

Ergodic theory, as presented by Sinai [16.14] and others, tempts one to describe

the densities on which the evolution operator acts in terms of either integrable or

square-integrable functions. For our purposes, as we have already seen, this space

is not suitable. An introduction to ergodic theory is given by Sinai, Kornfeld and

Fomin [16.15]; more advanced old-fashioned presentations are Walters [16.12] and

Denker, Grillenberger and Sigmund [16.16]; and a more formal one is given by

Peterson [16.17].

Remark 16.2 Fredholm theory. Our brief summary of Fredholm theory is based

on the exposition of ref. [16.4]. A technical introduction of the theory from an

operator point of view is given in ref. [16.5]. The theory is presented in a more

general form in ref. [16.6].

Remark 16.3 Bernoulli shift. For a more detailed discussion, consult chaper 3

of ref. [1.26]. The extension of Fredholm theory to the case or Bernoulli shift

on C
k+α (in which the Perron-Frobenius operator is not compact – technically

it is only quasi-compact. That is, the essential spectral radius is strictly smaller

than the spectral radius) has been given by Ruelle [16.7]: a concise and readable

statement of the results is contained in ref. [16.8].

Remark 16.4 Hyperbolic dynamics. When dealing with hyperbolic systems one

might try to reduce to the expanding case by projecting the dynamics along the

unstable directions. As mentioned in the text this can be quite involved technically,

as such unstable foliations are not characterized by strong smoothness properties.

For such an approach, see ref. [16.3].
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Remark 16.5 Spectral determinants for smooth flows. The theorem on page 277

also applies to hyperbolic analytic maps in d dimensions and smooth hyperbolic

analytic flows in (d + 1) dimensions, provided that the flow can be reduced to a

piecewise analytic map by a suspension on a Poincaré section, complemented by an

analytic “ceiling” function (3.5) that accounts for a variation in the section return

times. For example, if we take as the ceiling function g(x) = esT (x), where T (x)

is the next Poincaré section time for a trajectory staring at x, we reproduce the

flow spectral determinant (15.13). Proofs are beyond the scope of this chapter.

Remark 16.6 Explicit diagonalization. For 1-d repellers a diagonalization of

an explicit truncated Lmn matrix evaluated in a judiciously chosen basis may

yield many more eigenvalues than a cycle expansion (see refs. [16.10, 16.11]). The

reasons why one persists in using periodic orbit theory are partially aesthetic and

partially pragmatic. The explicit calculation of Lmn demands an explicit choice of

a basis and is thus non-invariant, in contrast to cycle expansions which utilize only

the invariant information of the flow. In addition, we usually do not know how

to construct Lmn for a realistic high-dimanensional flow, such as the hyperbolic

3-disk game of pinball flow of sect. 1.3, whereas periodic orbit theory is true in

higher dimensions and straightforward to apply.

Remark 16.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius the-

orem may be found in ref. [16.12]. For positive transfer operators, this theorem

has been generalized by Ruelle [16.13].

Remark 16.8 Axiom A systems. The proofs in sect. 16.5 follow the thesis

work of H.H. Rugh [16.9, 16.18, 16.19]. For a mathematical introduction to the

subject, consult the excellent review by V. Baladi [16.1]. It would take us too far

afield to give and explain the definition of Axiom A systems (see refs. [1.16, 1.17]).

Axiom A implies, however, the existence of a Markov partition of the phase space

from which the properties 2 and 3 assumed on page 265 follow.

Remark 16.9 Exponential mixing speed of the Bernoulli shift. We see from (16.31)

that for the Bernoulli shift the exponential decay rate of correlations coincides with

the Lyapunov exponent: while such an identity holds for a number of systems, it

is by no means a general result, and there exist explicit counterexamples.

Remark 16.10 Left eigenfunctions. We shall never use an explicit form of left

eigenfunctions, corresponding to highly singular kernels like (16.33). Many details

have been elaborated in a number of papers, such as ref. [16.20], with a daring

physical interpretation.

Remark 16.11 Ulam’s idea. The approximation of Perron-Frobenius operator

defined by (10.37) has been shown to reproduce the spectrum for expanding maps,

once finer and finer Markov partitions are used [16.21]. The subtle point of choos-

ing a phase space partitioning for a “generic case” is discussed in ref. [16.22].
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Résumé

Examples of analytic eigenfunctions for 1-d maps are seductive, and make
the problem of evaluating ergodic averages appears easy; just integrate over
the desired observable weightes by the natural measure, right? No, generic
natural measure sits on a fractal set and is singular everywhere. The point
of this book is that you never need to construct the natural measure, cycle
expansions will do that job.

A theory of evaluation of dynamical averages by means of trace formulas
and spectral determinants requires a deep understanding of their analyticity
and convergence. We work here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)

2. exact spectrum for a locally analytic map, matix representation

3. rigorous proof of existence of dicrete spectrum for 2-d hyperbolic maps

In the case of especially well-behaved “Axiom A” systems, where both
the symbolic dynamics and hyperbolicity are under control, it is possible
to treat traces and determinants in a rigorous fashion, and strong results
about the analyticity properties of dynamical zeta functions and spectral
determinants outlined above follow.

Most systems of interest are not of the “axiom A” category; they are nei-
ther purely hyperbolic nor (as we have seen in chapters 11 and 12 ) do they
have finite grammar. The importance of symbolic dynamics is generally
grossly unappreciated; the crucial ingredient for nice analyticity properties
of zeta functions is the existence of a finite grammar (coupled with uni-
form hyperbolicity). The dynamical systems which are really interesting
- for example, smooth bounded Hamiltonian potentials - are presumably
never fully chaotic, and the central question remains: How do we attack
this problem in a systematic and controllable fashion?
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Exercises

Exercise 16.1 What space does L act on? Show that (16.2) is a complete

basis on the space of analytic functions on a disk (and thus that we found the complete

set of eigenvalues).

Exercise 16.2 What space does L act on? What can be said about the

spectrum of (16.1) on L1[0, 1]? Compare the result with figure 16.4.

Exercise 16.3 Euler formula. Derive the Euler formula (16.5)

∞∏

k=0

(1 + tuk) = 1 +
t

1 − u
+

t2u

(1 − u)(1 − u2)
+

t3u3

(1 − u)(1 − u2)(1 − u3)
· · ·

=

∞∑

k=0

tk
u

k(k−1)
2

(1 − u) · · · (1 − uk)
, |u| < 1. (16.34)

Exercise 16.4 2-d product expansion∗∗. We conjecture that the expansion
corresponding to (16.34) is in this case

∞∏

k=0

(1 + tuk)k+1 =

∞∑

k=0

Fk(u)

(1 − u)2(1 − u2)2 · · · (1 − uk)2
tk

= 1 +
1

(1 − u)2
t+

2u

(1 − u)2(1 − u2)2
t2

+
u2(1 + 4u+ u2)

(1 − u)2(1 − u2)2(1 − u3)2
t3 + · · · (16.35)

Fk(u) is a polynomial in u, and the coefficients fall off asymptotically as Cn ≈ un3/2

.

Verify; if you have a proof to all orders, e-mail it to the authors. (See also solu-

tion 16.3).

Exercise 16.5 Bernoulli shift on L spaces. Check that the family (16.21) be-

longs to L1([0, 1]). What can be said about the essential spectral radius on L2([0, 1])?

A useful reference is [16.24].

Exercise 16.6 Cauchy integrals. Rework all complex analysis steps used in

the Bernoulli shift example on analytic functions on a disk.

Exercise 16.7 Escape rate. Consider the escape rate from a strange repeller:

find a choice of trial functions ξ and ϕ such that (16.29) gives the fraction on particles

surviving after n iterations, if their initial density distribution is ρ0(x). Discuss the

behavior of such an expression in the long time limit.
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Chapter 17

Fixed points, and how to get
them

(F. Christiansen)

Having set up the dynamical context, now we turn to the key and
unavoidable piece of numerics in this subject; search for the solutions (x, T),
x ∈ R

d, T ∈ R of the periodic orbit condition

f t+T(x) = f t(x) , T > 0 (17.1)

for a given flow or mapping.

We know from chapter 14 that cycles are the necessary ingredient for
evaluation of spectra of evolution operators. In chapter 11 we have devel-
oped a qualitative theory of how these cycles are laid out topologically.

This chapter is intended as a hands-on guide to extraction of periodic
orbits, and should be skipped on first reading - you can return to it whenever
the need for finding actual cycles arises. Sadly, searching for periodic orbits
will never become as popular as a week on Côte d’Azur, or publishing yet
another log-log plot in Phys. Rev. Letters. A serious cyclist might want to

☞ chapter 31
also learn about the variational methods to find cycles, chapter 31. They
are particularly useful when little is understood about the topology of a
flow, such as in high-dimensional periodic orbit searches.

fast track:

chapter 18, p. 305

A prime cycle p of period Tp is a single traversal of the periodic orbit,
so our task will be to find a cycle point x ∈ p and the shortest time Tp
for which (17.1) has a solution. A cycle point of a flow f t which crosses a
Poincaré section np times is a fixed point of the Pnp iterate of the Poincaré
section return map P , hence we shall refer to all cycles as “fixed points” in
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this chapter. By cyclic invariance, stability eigenvalues and the period of
☞ sect. 8.2

the cycle are independent of the choice of the initial point, so it will suffice
to solve (17.1) at a single cycle point.

If the cycle is an attracting limit cycle with a sizable basin of attraction,
it can be found by integrating the flow for sufficiently long time. If the
cycle is unstable, simple integration forward in time will not reveal it, and
methods to be described here need to be deployed. In essence, any method
for finding a cycle is based on devising a new dynamical system which
possesses the same cycle, but for which this cycle is attractive. Beyond
that, there is a great freedom in constructing such systems, and many
different methods are used in practice.

Due to the exponential divergence of nearby trajectories in chaotic dy-
namical systems, fixed point searches based on direct solution of the fixed-
point condition (17.1) as an initial value problem can be numerically very
unstable. Methods that start with initial guesses for a number of points

☞ chapter 31
along the cycle, such as the multipoint shooting method described here
in sect. 17.3, and the variational) methods of chapter 31, are considerably
more robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding
of the topology of the flow: a preliminary step to any serious periodic orbit
calculation is preparation of a list of all distinct admissible prime periodic
symbol sequences, such as the list given in table 11.1. The relations between
the temporal symbol sequences and the spatial layout of the topologically
distinct regions of the phase space discussed in chapters 11 and 12 should
enable us to guess location of a series of periodic points along a cycle.
Armed with such informed guess we proceed to improve it by methods
such as the Newton-Raphson iteration; we illustrate this by considering
1-dimensional and d-dimensional maps.

17.1 Where are the cycles?

Ergodic exploration of recurrences that we turn to now sometimes performs
admirably well in getting us started.

In the the Rössler flow example we sketched the attractors by running
a long chaotic trajectory, and noted that the attractors are very thin, but
otherwise the return maps that we plotted were disquieting – figure 3.2
did not appear to be a 1-to-1 map. In this section we show how to use
such information to approximately locate cycles. In the remainder of this
chapter and in chapter 31 we shall learn how to turn such guesses into
highly accurate cycles.

Example 17.1 Rössler attractor (G. Simon and P. Cvitanović)

Run a long simulation of the Rössler flow f t, plot a Poincaré section, as in figure 3.1,
and extract the corresponding Poincaré return map P , as in figure 3.2. Luck is with us;
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Figure 17.1: (a) y → P1(y, z) return map for x = 0, y > 0 Poincaré section of

the Rössler flow figure 2.3. (b) The 1-cycle found by taking the fixed point yk+n =
yk together with the fixed point of the z → z return map (not shown) an initial
guess (0, y(0), z(0)) for the Newton-Raphson search. (c) yk+3 = P 3

1 (yk, zk), the
third iterate of Poincaré return map (3.1) together with the corresponding plot for
zk+3 = P 3

2 (yk, zk), is used to pick starting guesses for the Newton-Raphson searches
for the two 3-cycles: (d) the 001 cycle, and (e) the 011 cycle. (G. Simon)

the figure 17.1(a) return map y → P1(y, z) looks much like a parabola, so we take the
unimodal map symbolic dynamics, sect. 11.3.1, as our guess for the covering dynamics.
Strictly speaking, the attractor is “fractal”, but for all practical purposes the return map
is 1-dimensional; your printer will need a resolution better than 1014 dots per inch to
start resolving its structure.

Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0
Poincaré section of the Rössler flow figure 2.3 are fixed points (y, z) = Pn(y, z) of the
nth Poincaré return map.

Using the fixed point yk+1 = yk in figure 17.1(a) together with the simultaneous
fixed point of the z → P1(y, z) return map (not shown) as a starting guess (0, y(0), z(0))
for the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find
the cycle figure 17.1(b) with the Poincaré section point (0, yp, zp), period Tp, expanding,
marginal, contracting stability eigenvalues (Λp,e,Λp,m,Λp,c), and Lyapunov exponents
(λp,e, λp,m, λp,c):

1-cycle: (x, y, z) = (0, 6.09176832, 1.2997319)

T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1 + 10−14,−1.29 × 10−14)

(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44) . (17.2)

The Newton-Raphson method that we used is described in sect. 17.5. ✎ 17.7
page 301As an example of a search for longer cycles, we use yk+3 = P 3

1 (yk, zk), the
third iterate of Poincaré return map (3.1) plotted in figure 17.1(c), together with a
corresponding plot for zk+3 = f3(yk, zk), to pick starting guesses for the Newton-
Raphson searches for the two 3-cycles plotted in figure 17.1(d), (e). For a listing of the
short cycles of the Rössler flow, consult table 17.1.

The numerical evidence suggests (but a proof is lacking) that all cycles that com-
prise the strange attractor of the Rössler system are hyperbolic, each with an expanding
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Figure 17.2: The inverse time path to the 01-
cycle of the logistic map f(x)=4x(1-x) from an
initial guess of x=0.2. At each inverse iteration
we chose the 0, respectively 1 branch.
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eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a marginal eigenvalue
|Λm| = 1 corresponding to displacements along the direction of the flow.

For the Rössler system the contracting eigenvalues turn out to be insanely
contracting, a factor of e−32 per one par-course of the attractor, so their numerical
determination is quite difficult. Fortunately, they are irrelevant; for all practical purposes
the strange attractor of the Rössler system is 1-dimensional, a very good realization of
a horseshoe template.

17.2 One-dimensional mappings

17.2.1 Inverse iteration

Let us first consider a very simple method to find unstable cycles of a 1-
dimensional map such as the logistic map. Unstable cycles of 1-d maps
are attracting cycles of the inverse map. The inverse map is not single
valued, so at each backward iteration we have a choice of branch to make.
By choosing branch according to the symbolic dynamics of the cycle we are
trying to find, we will automatically converge to the desired cycle. The rate
of convergence is given by the stability of the cycle, that is, the convergence
is exponentially fast. Figure 17.2 shows such path to the 01-cycle of the
logistic map.✎ 17.11

page 302
The method of inverse iteration is fine for finding cycles for 1-d maps and

some 2-d systems such as the repeller of exercise 17.11. It is not particularly
fast, especially if the inverse map is not known analytically. However, it
completely fails for higher dimensional systems where we have both stable
and unstable directions. Inverse iteration will exchange these, but we will
still be left with both stable and unstable directions. The best strategy is
to directly attack the problem of finding solutions of fT (x) = x.

17.2.2 Newton’s method

Newton’s method for determining a zero x∗ of a function F (x) of one vari-
able is based on a linearization around a starting guess x0:

F (x) ≈ F (x0) + F ′(x0)(x− x0). (17.3)
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Figure 17.3: Convergence of Newton’s
method (♦) vs. inverse iteration (+). The error
after n iterations searching for the 01-cycle of
the logistic map f(x) = 4x(1 − x) with an ini-
tial starting guess of x1 = 0.2, x2 = 0.8. y-axis
is log10 of the error. The difference between the
exponential convergence of the inverse iteration
method and the super-exponential convergence
of Newton’s method is dramatic.
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An approximate solution x1 of F (x) = 0 is

x1 = x0 − F (x0)/F
′(x0). (17.4)

The approximate solution can then be used as a new starting guess in an
iterative process. A fixed point of a map f is a solution to F (x) = x−f(x) =
0. We determine x by iterating

xm = g(xm−1) = xm−1 − F (xm−1)/F
′(xm−1)

= xm−1 −
1

1 − f ′(xm−1)
(xm−1 − f(xm−1)) . (17.5)

Provided that the fixed point is not marginally stable, f ′(x) 6= 1 at the
fixed point x, a fixed point of f is a super-stable fixed point of the Newton-
Raphson map g, g′(x) = 0, and with a sufficiently good initial guess, the
Newton-Raphson iteration will converge super-exponentially fast.

To illustrate the efficiency of the Newton’s method we compare it to
the inverse iteration method in figure 17.3. Newton’s method wins hands
down: the number of significant digits of the accuracy of x estimate doubles
with each iteration.

In order to avoid jumping too far from the desired x∗ (see figure 17.4),
one often initiates the search by the damped Newton’s method,

∆xm = xm+1 − xm = − F (xm)

F ′(xm)
∆τ , 0 < ∆τ ≤ 1 ,

takes small ∆τ steps at the beginning, reinstating to the full ∆τ = 1 jumps
only when sufficiently close to the desired x∗.

17.3 Multipoint shooting method

Periodic orbits of length n are fixed points of fn so in principle we could
use the simple Newton’s method described above to find them. However,
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Figure 17.4: Newton method: bad initial

guess x(b) leads to the Newton estimate x(b+1)

far away from the desired zero of F (x). Se-
quence · · · , x(m), x(m+1), · · ·, starting with a
good guess converges super-exponentially to
x∗. The method diverges if it iterates into the
basin of attraction of a local minimum xc.
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this is not an optimal strategy. fn will be a highly oscillating function with
perhaps as many as 2n or more closely spaced fixed points, and finding a
specific periodic point, for example one with a given symbolic sequence,
requires a very good starting guess. For binary symbolic dynamics we must
expect to improve the accuracy of our initial guesses by at least a factor of
2n to find orbits of length n. A better alternative is the multipoint shooting
method. While it might very hard to give a precise initial point guess
for a long periodic orbit, if our guesses are informed by a good phase-space
partition, a rough guess for each point along the desired trajectory might
suffice, as for the individual short trajectory segments the errors have no
time to explode exponentially.

A cycle of length n is a zero of the n-dimensional vector function F :

F (x) = F




x1

x2

·
xn


 =




x1 − f(xn)
x2 − f(x1)

· · ·
xn − f(xn−1)


 .

The relations between the temporal symbol sequences and the spatial lay-
out of the topologically distinct regions of the phase space discussed in
chapter 11 enable us to guess location of a series of periodic points along a
cycle. Armed with such informed initial guesses we can initiate a Newton-
Raphson iteration. The iteration in the Newton’s method now takes the
form of

d

dx
F (x)(x′ − x) = −F (x), (17.6)

where d
dxF (x) is an [n× n] matrix:

d
dxF (x) =




1 −f ′(xn)
−f ′(x1) 1

· · · 1
· · · 1

−f ′(xn−1) 1


 .(17.7)

This matrix can easily be inverted numerically by first eliminating the el-
ements below the diagonal. This creates non-zero elements in the nth
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column. We eliminate these and are done. Let us take it step by step for a
period 3 cycle. Initially the setup for the Newton step looks like this:




1 0 −f ′(x3)
−f ′(x1) 1 0

0 −f ′(x2) 1






δ1
δ2
δ3


 =




−F1

−F2

−F3


 , (17.8)

where δi = x′i − xi is the correction of our guess for a solution and where
Fi = xi−f(xi−1). First we eliminate the below diagonal elements by adding
f ′(x1) times the first row to the second row, then adding f ′(x2) times the
second row to the third row. We then have




1 0 −f ′(x3)
0 1 −f ′(x1)f

′(x3)
0 0 1 − f ′(x2)f

′(x1)f
′(x3)






δ1
δ2
δ3


 =




−F1

−F2 − f ′(x1)F1

−F3 − f ′(x2)F2 − f ′(x2)f
′(x1)F1




. (17.9)

The next step is to invert the last element in the diagonal, that is, divide
the third row by 1 − f ′(x2)f

′(x1)f
′(x3). It is clear that if this element is

zero at the periodic orbit this step might lead to problems. In many cases
this will just mean a slower convergence, but it might throw the Newton
iteration completely off. We note that f ′(x2)f

′(x1)f
′(x3) is the stability of

the cycle (when the Newton iteration has converged) and that this therefore
is not a good method to find marginally stable cycles. We now have




1 0 −f ′(x3)
0 1 −f ′(x1)f

′(x3)
0 0 1






δ1
δ2
δ3


 =




−F1

−F2 − f ′(x1)F1
−F3−f ′(x2)F2−f ′(x2)f ′(x1)F1

1−f ′(x2)f ′(x1)f ′(x3)




. (17.10)

Finally we add f ′(x3) times the third row to the first row and f ′(x1)f
′(x3)

times the third row to the second row. On the left hand side the matrix
is now the unit matrix, on the right hand side we have the corrections to
our initial guess for the cycle, that is, we have gone through one step of the
Newton iteration scheme.

When one sets up the Newton iteration on the computer it is not nec-
essary to write the left hand side as a matrix. All one needs is a vector
containing the f ′(xi)’s, a vector containing the n’th column, that is the
cumulative product of the f ′(xi)’s and a vector containing the right hand
side. After the iteration the vector containing the right hand side should
be the correction to the initial guess. ✎ 17.1
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17.4 d-dimensional mappings

(F. Christiansen)

Armed with symbolic dynamics informed initial guesses we can
utilize the Newton-Raphson iteration in d-dimensions as well.

17.4.1 Newton’s method for d-dimensional mappings

Newton’s method for 1-dimensional mappings is easily extended to higher
dimensions. In this case f ′(xi) is a [d × d] matrix. d

dxF (x) is then an
[nd × nd] matrix. In each of the steps that we went through above we
are then manipulating d rows of the left hand side matrix. (Remember
that matrices do not commute - always multiply from the left.) In the
inversion of the n’th element of the diagonal we are inverting a [d×d] matrix
(1−∏ f ′(xi)) which can be done if none of the eigenvalues of

∏
f ′(xi) equals

1, that is, the cycle must not have any marginally stable directions.

Some d-dimensional mappings (such as the Hénon map (3.15)) can be
written as 1-dimensional time delay mappings of the form

f(xi) = f(xi−1, xi−2, . . . , xi−d). (17.11)

In this case d
dxF (x) is an [n×n] matrix as in the case of usual 1-dimensional

maps but with non-zero matrix elements on d off-diagonals. In the elimi-
nation of these off-diagonal elements the last d columns of the matrix will
become non-zero and in the final cleaning of the diagonal we will need to
invert a [d × d] matrix. In this respect, nothing is gained numerically by
looking at such maps as 1-dimensional time delay maps.

17.5 Flows

(F. Christiansen)

Further complications arise for flows due to the fact that for a periodic or-
bit the stability eigenvalue corresponding to the flow direction of necessity
equals unity; the separation of any two points along a cycle remains un-
changed after a completion of the cycle. More unit eigenvalues can arise if

☞ sect. 8.2.1
the flow satisfies conservation laws, such as the energy invariance for Hamil-
tonian systems. We now show how such problems are solved by increasing
the number of fixed point conditions.

cycles - 25sep2005 ChaosBook.org/version11.8, Aug 30 2006



17.5. FLOWS 295

17.5.1 Newton’s method for flows

A flow is equivalent to a mapping in the sense that one can reduce the flow
to a mapping on the Poincaré surface of section. An autonomous flow (2.5)
is given as

ẋ = v(x), (17.12)

The corresponding fundamental matrix M (4.30) is obtained by integrating
the linearized equation (4.32)

Ṁ = AM , Aij(x) =
∂vi(x)

∂xj

along the trajectory. The flow and the corresponding fundamental matrix
are integrated simultaneously, by the same numerical routine. Integrating
an initial condition on the Poincaré surface until a later crossing of the
same and linearizing around the flow we can write

f(x′) ≈ f(x) + M(x′ − x). (17.13)

Notice here, that, even though all of x′, x and f(x) are on the Poincaré
surface, f(x′) is usually not. The reason for this is that M corresponds to a
specific integration time and has no explicit relation to the arbitrary choice
of Poincaré section. This will become important in the extended Newton’s
method described below.

To find a fixed point of the flow near a starting guess x we must solve
the linearized equation

(1 − M)(x′ − x) = −(x− f(x)) = −F (x) (17.14)

where f(x) corresponds to integrating from one intersection of the Poincaré
surface to another and M is integrated accordingly. Here we run into
problems with the direction along the flow, since - as shown in sect. 8.2.1
- this corresponds to a unit eigenvector of M. The matrix (1 − M) does
therefore not have full rank. A related problem is that the solution x′ of
(17.14) is not guaranteed to be in the Poincaré surface of section. The two
problems are solved simultaneously by adding a small vector along the flow
plus an extra equation demanding that x be in the Poincaré surface. Let
us for the sake of simplicity assume that the Poincaré surface is a (hyper)-
plane, that is, it is given by the linear equation

(x− x0) · a = 0, (17.15)
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where a is a vector normal to the Poincaré section and x0 is any point in
the Poincaré section. (17.14) then becomes

(
1 − M v(x)
a 0

)(
x′ − x
δT

)
=

(
−F (x)

0

)
. (17.16)

The last row in this equation ensures that x will be in the surface of section,
and the addition of v(x)δT, a small vector along the direction of the flow,
ensures that such an x can be found at least if x is sufficiently close to a
solution, that is, to a fixed point of f .

To illustrate this little trick let us take a particularly simple exam-
ple; consider a 3-d flow with the (x, y, 0)-plane as Poincaré section. Let
all trajectories cross the Poincaré section perpendicularly, that is, with
v = (0, 0, vz), which means that the marginally stable direction is also per-
pendicular to the Poincaré section. Furthermore, let the unstable direction
be parallel to the x-axis and the stable direction be parallel to the y-axis.
In this case the Newton setup looks as follows




1 − Λ 0 0 0
0 1 − Λs 0 0
0 0 0 vz
0 0 1 0







δx
δy
δz
δt


 =




−Fx
−Fy
−Fz

0


 . (17.17)

If you consider only the upper-left [3 × 3] matrix (which is what we would
have without the extra constraints that we have introduced) then this ma-
trix is clearly not invertible and the equation does not have a unique so-
lution. However, the full [4×4] matrix is invertible, as det (·) = vzdet (1 −
M⊥), where M⊥ is the monodromy matrix for a surface of section trans-
verse to the orbit, see for ex. (30.2).

For periodic orbits (17.16) generalizes in the same way as (17.7), but
with n additional equations – one for each point on the Poincaré surface.
The Newton setup looks like this




1 −Jn
−J1 1

· · · 1
· · · 1

−Jn−1 1

v1
. . .

vn

a
. . .

a

0
. . .

0







δ1
δ2
·
·
δn
δt1
·
δtn




=




−F1

−F2

·
·

−Fn
0
.
0




.

Solving this equation resembles the corresponding task for maps. However,
in the process we will need to invert an [(d+ 1)n× (d+ 1)n] matrix rather
than a [d× d] matrix. The task changes with the length of the cycle.

This method can be extended to take care of the same kind of problems
if other eigenvalues of the fundamental matrix equal 1. This happens if the
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flow has an invariant of motion, the most obvious example being energy
conservation in Hamiltonian systems. In this case we add an extra equation
for x to be on the energy shell plus and extra variable corresponding to
adding a small vector along the gradient of the Hamiltonian. We then
have to solve

(
1 − M v(x) ∇H(x)
a 0 0

)


x′ − x
δt
δE


 =




−(x− f(x))
0
0


 (17.18)

simultaneously with

H(x′) −H(x) = 0. (17.19)

This last equation is nonlinear. It is often best to treat this separately
in the sense that we really solve this equation in each Newton step. This
might mean putting in an additional Newton routine to solve the single
step of (17.18) and (17.19) together. One might be tempted to linearize
(17.19) and put it into (17.18) to do the two different Newton routines
simultaneously, but this will not guarantee a solution on the energy shell.
In fact, it may not even be possible to find any solution of the combined
linearized equations, if the initial guess is not very good.

17.5.2 Newton’s method with optimal surface of section

(F. Christiansen)

In some systems it might be hard to find a good starting guess
for a fixed point, something that could happen if the topology and/or the
symbolic dynamics of the flow is not well understood. By changing the
Poincaré section one might get a better initial guess in the sense that x and
f(x) are closer together. In figure 17.5 there is an illustration of this. The
figure shows a Poincaré section, y = 0, an initial guess x, the corresponding
f(x) and pieces of the trajectory near these two points.

If the Newton iteration does not converge for the initial guess x we
might have to work very hard to find a better guess, particularly if this is
in a high-dimensional system (high-dimensional might in this context mean
a Hamiltonian system with 3 degrees of freedom.) But clearly we could
easily have a much better guess by simply shifting the Poincaré section to
y = 0.7 where the distance x − f(x) would be much smaller. Naturally,
one cannot see by eye the best surface in higher dimensional systems. The
way to proceed is as follows: We want to have a minimal distance between
our initial guess x and the image of this f(x). We therefore integrate the
flow looking for a minimum in the distance d(t) = |f t(x) − x|. d(t) is now
a minimum with respect to variations in f t(x), but not necessarily with
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Figure 17.5: Illustration of the optimal Poincaré surface. The original surface y = 0
yields a large distance x − f(x) for the Newton iteration. A much better choice is
y = 0.7.

respect to x. We therefore integrate x either forward or backward in time.
Doing this we minimize d with respect to x, but now it is no longer minimal
with respect to f t(x). We therefore repeat the steps, alternating between
correcting x and f t(x). In most cases this process converges quite rapidly.
The result is a trajectory for which the vector (f(x) − x) connecting the
two end points is perpendicular to the flow at both points. We can now
choose to define a Poincaré surface of section as the hyper-plane that goes
through x and is normal to the flow at x. In other words the surface of
section is determined by

(x′ − x) · v(x) = 0. (17.20)

Note that f(x) lies on this surface. This surface of section is optimal in
the sense that a close return on the surface is really a local minimum of
the distance between x and f t(x). But more importantly, the part of the
stability matrix that describes linearization perpendicular to the flow is
exactly the stability of the flow in the surface of section when f(x) is close
to x. In this method, the Poincaré surface changes with each iteration of the
Newton scheme. Should we later want to put the fixed point on a specific
Poincaré surface it will only be a matter of moving along the trajectory.

Commentary

Remark 17.1 Piece-wise linear maps. The Lozi map (3.17) is linear, and 100,000’s

of cycles can be easily computed by [2x2] matrix multiplication and inversion.

Résumé

There is no general computational algorithm that is guaranteed to find all
solutions (up to a given period Tmax) to the periodic orbit condition

f t+T(x) = f t(x) , T > 0
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for a general flow or mapping. Due to the exponential divergence of nearby
trajectories in chaotic dynamical systems, direct solution of the periodic
orbit condition can be numerically very unstable.

A prerequisite for a systematic and complete cycle search is a good
(but hard to come by) understanding of the topology of the flow. Usually
one starts by - possibly analytic - determination of the equilibria of the
flow. Their locations, stabilities, stability eigenvectors and invariant man-
ifolds offer skeletal information about the topology of the flow. Next step
is numerical long-time evolution of “typical” trajectories of the dynamical
system under investigation. Such numerical experiments build up the “nat-
ural measure”, and reveal regions most frequently visited. The periodic

☞ sect. 9.3.1
orbit searches can then be initialized by taking nearly recurring orbit seg-
ments and deforming them into a closed orbits. With a sufficiently good
initial guess the Newton-Raphson formula (17.16)

(
1 − M v(x)
a 0

)(
δx
δT

)
=

(
f(x) − x

0

)

yields improved estimate x′ = x + δx, T ′ = T + δT. Iteration then yields
the period T and the location of a periodic point xp in the Poincaré surface
(xp − x0) · a = 0, where a is a vector normal to the Poincaré section at x0.

The problem one faces with high-dimensional flows is that their topology
is hard to visualize, and that even with a decent starting guess for a point
on a periodic orbit, methods like the Newton-Raphson method are likely to
fail. Methods that start with initial guesses for a number of points along the

☞ chapter 31
cycle, such as the multipoint shooting method of sect. 17.3, are more robust.
The relaxation (or variational) methods take this strategy to its logical
extreme, and start by a guess of not a few points along a periodic orbit,
but a guess of the entire orbit. As these methods are intimately related to
variational principles and path integrals, we postpone their introduction to
chapter 31.
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Exercises

Exercise 17.1 Cycles of the Ulam map. Test your cycle-searching routines
by computing a bunch of short cycles and their stabilities for the Ulam map

f(x) = 4x(1 − x) . (17.21)

Exercise 17.2 Cycles stabilities for the Ulam map, exact. In exercise 17.1

you should have observed that the numerical results for the cycle stability eigenvalues

(4.34) are exceptionally simple: the stability eigenvalue of the x0 = 0 fixed point is 4,

while the eigenvalue of any other n-cycle is ±2n. Prove this. (Hint: the Ulam map

can be conjugated to the tent map (11.8). This problem is perhaps too hard, but give

it a try - the answer is in many introductory books on nolinear dynamics.)

Exercise 17.3 Stability of billiard cycles. Compute stabilities of few simple
cycles.

(a) A simple scattering billiard is the two-disk billiard. It consists of a disk of radius
one centered at the origin and another disk of unit radius located at L+2. Find
all periodic orbits for this system and compute their stabilities. (You might have
done this already in exercise 1.2; at least now you will be able to see where you
went wrong when you knew nothing about cycles and their extraction.)

(b) Find all periodic orbits and stabilities for a billiard ball bouncing between the
diagonal y = x and one of the hyperbola branches y = 1/x.

Exercise 17.4 Cycle stability. Add to the pinball simulator of exercise 6.1
a routine that evaluates the expanding eigenvalue for a given cycle.

Exercise 17.5 Pinball cycles. Determine the stability and length of all
fundamental domain prime cycles of the binary symbol string lengths up to 5
(or longer) for R : a = 6 3-disk pinball.

Exercise 17.6 Newton-Raphson method. Implement the Newton-Raphson
method in 2-d and apply it to determination of pinball cycles.

Exercise 17.7 Rössler system cycles. (continuation of exercise 2.7, and

exercise 3.1) Determine all cycles up to 5 Poincaré sections returns for the Rössler

system (2.14), as well as their stabilities. (Hint: implement (17.16), the multipoint

shooting methods for flows; you can cross-check your shortest cycles against the ones

listed in table 17.1.)
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np p yp zp Λe

1 1 6.091768319056803 1.299731937639821 -2.4039535318268
2 01 3.915804049621049 3.692833386542665 -3.5120069815161
3 001 2.278281031720258 7.416480984019008 -2.3419235232340

011 2.932877559129124 5.670805943881501 5.3449081538885
4 0111 3.466758713211455 4.506217531477667 -16.6967406980700
5 01011 4.162798782914948 3.303903338609633 -23.1995830097831

01111 3.278914359770783 4.890452922955567 36.8863297988981
6 001011 2.122093931936202 7.886172854283211 -6.8576654190825

010111 4.059210605826523 3.462265228606606 61.6490940089068
011111 3.361494458061049 4.718206217035575 -92.0825560711089

7 0101011 3.842769382372052 3.815493592299824 77.7611048852412
0110111 3.025956697151134 5.451444475664179 -95.1838846735358
0101111 4.102255295518855 3.395643547170646 -142.2379888163439
0111111 3.327986189581191 4.787462810306583 218.0283602810993

Table 17.1: The Rössler system (2.14): The itinerary p, a periodic point xp =
(0, yp, zp) and the expanding eigenvalue Λp for all cycles up to the topological length
7. (Joachim Mathiesen)

Exercise 17.8 Cycle stability, helium. Add to the helium integrator of
exercise 2.10 a routine that evaluates the expanding eigenvalue for a given
cycle.

Exercise 17.9 Colinear helium cycles. Determine the stability and length
of all fundamental domain prime cycles up to symbol sequence length 5 or
longer for collinear helium of figure 34.5.

Exercise 17.10 Uniqueness of unstable cycles∗∗∗. Prove that there exists

only one 3-disk prime cycle for a given finite admissible prime cycle symbol string.

Hints: look at the Poincaré section mappings; can you show that there is exponential

contraction to a unique periodic point with a given itinerary? Exercise 31.1 might be

helpful in this effort.

Exercise 17.11 Inverse iteration method for a Hamiltonian repeller.
Consider the Hénon map (3.15) for area-preserving (“Hamiltonian”) parameter value
b = −1. The coordinates of a periodic orbit of length np satisfy the equation

xp,i+1 + xp,i−1 = 1 − ax2
p,i , i = 1, ..., np , (17.22)

with the periodic boundary condition xp,0 = xp,np . Verify that the itineraries and the
stabilities of the short periodic orbits for the Hénon repeller (17.22) at a = 6 are as
listed in table 17.2.

Hint: you can use any cycle-searching routine you wish, but for the complete
repeller case (all binary sequences are realized), the cycles can be evaluated simply by
inverse iteration, using the inverse of (17.22)

x′′p,i = Sp,i

√
1 − x′p,i+1 − x′p,i−1

a
, i = 1, ..., np .

Here Sp,i are the signs of the corresponding cycle point coordinates, Sp,i = xp,i/|xp,i|.

(G. Vattay)
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p Λp

∑
xp,i

0 0.71516752438×101 -0.6076252185107
1 -0.29528463259×101 0.2742918851774
10 -0.98989794855×101 0.3333333333333
100 -0.13190727397×103 -0.2060113295833
110 0.55896964996×102 0.5393446629166
1000 -0.10443010730×104 -0.8164965809277
1100 0.57799826989×104 0.0000000000000
1110 -0.10368832509×103 0.8164965809277
10000 -0.76065343718×104 -1.4260322065792
11000 0.44455240007×104 -0.6066540777738
10100 0.77020248597×103 0.1513755016405
11100 -0.71068835616×103 0.2484632276044
11010 -0.58949885284×103 0.8706954728949
11110 0.39099424812×103 1.0954854155465
100000 -0.54574527060×105 -2.0341342556665
110000 0.32222060985×105 -1.2152504370215
101000 0.51376165109×104 -0.4506624359329
111000 -0.47846146631×104 -0.3660254037844
110100 -0.63939998436×104 0.3333333333333
101100 -0.63939998436×104 0.3333333333333
111100 0.39019387269×104 0.5485837703548
111010 0.10949094597×104 1.1514633582661
111110 -0.10433841694×104 1.3660254037844

Table 17.2: All periodic orbits up to 6 bounces for the Hamiltonian Hénon mapping
(17.22) with a = 6. Listed are the cycle itinerary, its expanding eigenvalue Λp, and its
“center of mass”. The “center of mass” is listed because it turns out the “center of
mass” is often a simple rational or a quadratic irrational.

Exercise 17.12 “Center of mass” puzzle∗∗. Why is the “center of mass”,

listed in table 17.2, a simple rational every so often?
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Chapter 18

Cycle expansions

Recycle... It’s the Law!

Poster, New York City Department of Sanitation

The Euler product representations of spectral determinants (15.9) and dyn-
amical zeta functions (15.15) are really only a shorthand notation - the zeros
of the individual factors are not the zeros of the zeta function, and conver-
gence of such objects is far from obvious. Now we shall give meaning to
the dynamical zeta functions and spectral determinants by expanding them
as cycle expansions, series representations ordered by increasing topological
cycle length, with products in (15.9), (15.15) expanded as sums over pseudo-
cycles, products of tp’s. The zeros of correctly truncated cycle expansions
yield the desired eigenvalues, and the expectation values of observables are
given by the cycle averaging formulas obtained from the partial derivatives
of dynamical zeta functions (or spectral determinants).

18.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (15.15) evaluated? We start by
computing the lengths and stability eigenvalues of the shortest cycles. This
always requires numerical work, such as the Newton’s method searches for
periodic solutions; we shall assume that the numerics is under control, and
that all short cycles up to a given (topological) length have been found. Ex-
amples of the data required for application of periodic orbit formulas are the
lists of cycles given in tables 31.3 and 17.2. It is important not to miss any
short cycles, as the calculation is as accurate as the shortest cycle dropped
- including cycles longer than the shortest omitted does not improve the
accuracy (more precisely, improves it, but painfully slowly).

Expand the dynamical zeta function (15.15) as a formal power series,

1/ζ =
∏

p

(1 − tp) = 1 −
∑′

{p1p2...pk}
(−1)k+1tp1tp2 . . . tpk

(18.1)
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where the prime on the sum indicates that the sum is over all distinct non-
repeating combinations of prime cycles. As we shall frequently use such
sums, let us denote by tπ = (−1)k+1tp1tp2 . . . tpk

an element of the set of
all distinct products of the prime cycle weights tp. The formal power series
(18.1) is now compactly written as

1/ζ = 1 −
∑′

π

tπ . (18.2)

For k > 1, tπ are weights of pseudocycles; they are sequences of shorter
cycles that shadow a cycle with the symbol sequence p1p2 . . . pk along seg-
ments p1, p2, . . ., pk.

∑′ denotes the restricted sum, for which any given
prime cycle p contributes at most once to a given pseudocycle weight tπ.

The pseudocycle weight

tπ = (−1)k+1 1

|Λπ|
eβAπ−sTπznπ . (18.3)

depends on the pseudocycle topological length nπ, integrated observable
Aπ, period Tπ, and stability Λπ indexorbit!periodic

nπ = np1 + . . .+ npk
, Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . .+Apk
, Λπ = Λp1Λp2 · · ·Λpk

. (18.4)

Throughout this text, the terms “periodic orbit” and “cycle” are used in-
terchangeably; while “periodic orbit” is more precise, “cycle” (which has
many other uses in mathematics) is easier on the ear than “pseudo-periodic-
orbit.” While in Soviet times acronyms were a rage, we shy away from
acronyms such as UPOs (Unstable Periodic Orbits).

18.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described by a
complete binary symbolic dynamics. In this case the Euler product (15.15)
is given by

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011)

(1 − t0001)(1 − t0011)(1 − t0111)(1 − t00001)(1 − t00011)

(1 − t00101)(1 − t00111)(1 − t01011)(1 − t01111) . . .

(see table 11.1), and the first few terms of the expansion (18.2) ordered by
increasing total pseudocycle length are:

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .

+t0t1 + t0t01 + t01t1 + t0t001 + t0t011 + t001t1 + t011t1

−t0t01t1 − . . .
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We refer to such series representation of a dynamical zeta function or a
spectral determinant, expanded as a sum over pseudocycles, and ordered
by increasing cycle length and instability, as a cycle expansion.

The next step is the key step: regroup the terms into the dominant
fundamental contributions tf and the decreasing curvature corrections ĉn,
each ĉn split into prime cycles p of length np=n grouped together with
pseudocycles whose full itineraries build up the itinerary of p. For the
binary case this regrouping is given by

1/ζ = 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]

−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)] − . . .

= 1 −
∑

f

tf −
∑

n

ĉn . (18.5)

All terms in this expansion up to length np = 6 are given in table 18.1.
We refer to such regrouped series as curvature expansions. .

Such separation into “fundamental” and “curvature” parts of cycle ex-
pansions is possible only for dynamical systems whose symbolic dynamics
has finite grammar. The fundamental cycles t0, t1 have no shorter approx-
imants; they are the “building blocks” of the dynamics in the sense that
all longer orbits can be approximately pieced together from them. The
fundamental part of a cycle expansion is given by the sum of the products
of all non-intersecting loops of the associated Markov graph. The terms

☞ sect. 13.3

☞ sect. 18.4
grouped in brackets are the curvature corrections; the terms grouped in
parenthesis are combinations of longer cycles and corresponding sequences
of “shadowing” pseudocycles. If all orbits are weighted equally (tp = znp),
such combinations cancel exactly, and the dynamical zeta function reduces
to the topological polynomial (13.21). If the flow is continuous and smooth,
orbits of similar symbolic dynamics will traverse the same neighborhoods
and will have similar weights, and the weights in such combinations will
almost cancel. The utility of cycle expansions of dynamical zeta functions
and spectral determinants, lies precisely in this organization into nearly
cancelling combinations: cycle expansions are dominated by short cycles,
with long cycles giving exponentially decaying corrections.

In the case where we know of no finite grammar symbolic dynamics
that would help us organize the cycles, the best thing to use is a stability
cutoff which we shall discuss in sect. 18.5. The idea is to truncate the
cycle expansion by including only the pseudocycles such that |Λp1 · · ·Λpk

| ≤
Λmax, with the cutoff Λmax equal to or greater than the most unstable Λp
in the data set.
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- t0
- t1
- t10 + t1t0
- t100 + t10t0
- t101 + t10t1
- t1000 + t100t0
- t1001 + t100t1 + t101t0 - t1t10t0
- t1011 + t101t1
- t10000 + t1000t0
- t10001 + t1001t0 + t1000t1 - t0t100t1
- t10010 + t100t10
- t10101 + t101t10
- t10011 + t1011t0 + t1001t1 - t0t101t1
- t10111 + t1011t1
- t100000 + t10000t0
- t100001 + t10001t0 + t10000t1 - t0t1000t1
- t100010 + t10010t0 + t1000t10 - t0t100t10
- t100011 + t10011t0 + t10001t1 - t0t1001t1
- t100101 - t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 - t0t10t101 - t1t10t100
- t101110 + t10110t1 + t1011t10 - t1t101t10
- t100111 + t10011t1 + t10111t0 - t0t1011t1
- t101111 + t10111t1

Table 18.1: The binary curvature expansion (18.5) up to length 6, listed in such way
that the sum of terms along the pth horizontal line is the curvature ĉp associated with
a prime cycle p, or a combination of prime cycles such as the t100101 + t100110 pair.

18.2 Construction of cycle expansions

18.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numerically by
first computing the weights tp = tp(β, s) of all prime cycles p of topological
length np ≤ N for given fixed β and s. Denote by subscript (i) the ith
prime cycle computed, ordered by the topological length n(i) ≤ n(i+1). The
dynamical zeta function 1/ζN truncated to the np ≤ N cycles is computed
recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)(1 − t(i)z
n(i)) ,

and truncating the expansion at each step to a finite polynomial in zn,
n ≤ N . The result is the Nth order polynomial approximation

1/ζN = 1 −
N∑

n=1

ĉnz
n . (18.6)

In other words, a cycle expansion is a Taylor expansion in the dummy
variable z raised to the topological cycle length. If both the number of
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cycles and their individual weights grow not faster than exponentially with
the cycle length, and we multiply the weight of each cycle p by a factor znp ,
the cycle expansion converges for sufficiently small |z|.

If the dynamics is given by iterated mapping, the leading zero of (18.6)
as function of z yields the leading eigenvalue of the appropriate evolution
operator. For continuous time flows, z is a dummy variable that we set to
z = 1, and the leading eigenvalue of the evolution operator is given by the
leading zero of (18.6) as function of s.

18.2.2 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight,

det (1 − Mp1p2) 6= det (1− Mp1) det (1− Mp2) ,

the cycle expansions for the spectral determinant (15.9) are somewhat less
transparent than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectral determinant
by computing recursively the trace formula (14.9) truncated to all prime
cycles p and their repeats such that npr ≤ N :

tr
zL

1 − zL

∣∣∣∣
(i)

= tr
zL

1 − zL

∣∣∣∣
(i−1)

+ n(i)

n(i)r≤N∑

r=1

e(β·A(i)−sT(i))r

∣∣∣
∏(

1 − Λr(i),j

)∣∣∣
zn(i)r

tr
zL

1 − zL

∣∣∣∣
N

=

N∑

n=1

Cnz
n , Cn = trLn . (18.7)

This is done numerically: the periodic orbit data set consists of the list
of the cycle periods Tp, the cycle stability eigenvalues Λp,1,Λp,2, . . . ,Λp,d,
and the cycle averages of the observable Ap for all prime cycles p such that
np ≤ N . The coefficient of znpr is then evaluated numerically for the given
(β, s) parameter values. Now that we have an expansion for the trace
formula (14.8) as a power series, we compute the Nth order approximation
to the spectral determinant (15.3),

det (1 − zL)|N = 1 −
N∑

n=1

Qnz
n , Qn = nth cumulant , (18.8)

as follows. The logarithmic derivative relation (15.4) yields

(
tr

zL
1 − zL

)
det (1 − zL) = −z d

dz
det (1 − zL)

(C1z + C2z
2 + · · ·)(1 −Q1z −Q2z

2 − · · ·) = Q1z + 2Q2z
2 + 3Q3z

3 · · ·
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so the nth order term of the spectral determinant cycle (or in this case, the
cumulant) expansion is given recursively by the trace formula expansion
coefficients

Qn =
1

n
(Cn − Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (18.9)

Given the trace formula (18.7) truncated to zN , we now also have the spec-
tral determinant truncated to zN .

The same program can also be reused to compute the dynamical zeta

function cycle expansion (18.6), by replacing
∏(

1 − Λr(i),j

)
in (18.7) by

the product of expanding eigenvalues Λ(i) =
∏
e Λ(i),e (see sect. 15.3).

The calculation of the leading eigenvalue of a given continuous flow
evolution operator is now straightforward. After the prime cycles and the
pseudocycles have been grouped into subsets of equal topological length,
the dummy variable can be set equal to z = 1. With z = 1, expansion (18.8)
is the cycle expansion for (15.6), the spectral determinant det (s−A) . We
vary s in cycle weights, and determine the eigenvalue sα by finding s = sα
for which (18.8) vanishes. As an example, the convergence of a leading
eigenvalue for a nice hyperbolic system is illustrated in table 18.2 by the
listing of pinball escape rate γ estimates computed from truncations of
(18.5) and (18.8) to different maximal cycle lengths.

The pleasant surprise is that the coefficients in these cycle expansions
can be proven to fall off exponentially or even faster, due to analyticity of

☞ chapter 16
det (s − A) or 1/ζ(s) for s values well beyond those for which the corre-
sponding trace formula diverges.

18.2.3 Newton algorithm for determination of the evolution
operator eigenvalues

The cycle expansions of spectral determinants yield the eigenvalues
of the evolution operator beyond the leading one. A convenient way to
search for these is by plotting either the absolute magnitude ln |det (s−A)|
or the phase of spectral determinants and dynamical zeta functions as func-
tions of the complex variable s. The eye is guided to the zeros of spectral
determinants and dynamical zeta functions by means of complex s plane
contour plots, with different intervals of the absolute value of the function
under investigation assigned different colors; zeros emerge as centers of el-
liptic neighborhoods of rapidly changing colors. Detailed scans of the whole
area of the complex s plane under investigation and searches for the zeros
of spectral determinants, figure 18.1, reveal complicated patterns of reso-
nances even for something so simple as the 3-disk game of pinball. With
a good starting guess (such as a location of a zero suggested by the com-
plex s scan of figure 18.1), a zero 1/ζ(s) = 0 can now be easily determined
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R:a N . det (s−A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192

1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606

Table 18.2: 3-disk repeller escape rates computed from the cycle expansions of the
spectral determinant (15.6) and the dynamical zeta function (15.15), as function of the
maximal cycle length N . The first column indicates the disk-disk center separation to
disk radius ratio R:a, the second column gives the maximal cycle length used, and the
third the estimate of the classical escape rate from the fundamental domain spectral
determinant cycle expansion. As for larger disk-disk separations the dynamics is more
uniform, the convergence is better for R:a = 6 than for R:a = 3. For comparison,
the fourth column lists a few estimates from from the fundamental domain dynamical
zeta function cycle expansion (18.5), and the fifth from the full 3-disk cycle expansion
(18.33). The convergence of the fundamental domain dynamical zeta function is
significantly slower than the convergence of the corresponding spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta function has still poorer convergence.
(P.E. Rosenqvist.)

Figure 18.1: Examples of the complex s plane scans: contour plots of the logarithm
of the absolute values of (a) 1/ζ(s), (b) spectral determinant det (s−A) for the 3-disk
system, separation a : R = 6, A1 subspace are evaluated numerically. The eigenvalues
of the evolution operator L are given by the centers of elliptic neighborhoods of the
rapidly narrowing rings. While the dynamical zeta function is analytic on a strip
Im s ≥ −1, the spectral determinant is entire and reveals further families of zeros.
(P.E. Rosenqvist)
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Figure 18.2: The eigenvalue condition is sat-
isfied on the curve F = 0 the (β, s) plane. The
expectation value of the observable (10.12) is
given by the slope of the curve.

s

β F(  ,s(  ))=0 lineβ β

__ds
dβ

by standard numerical methods, such as the iterative Newton algorithm
(17.4), with the mth Newton estimate given by

sm+1 = sm −
(
ζ(sm)

∂

∂s
ζ−1(sm)

)−1

= sm − 1/ζ(sm)

〈T〉ζ
. (18.10)

The dominator 〈T〉ζ required for the Newton iteration is given below, by
the cycle expansion (18.19). We need to evaluate it anyhow, as 〈T〉ζ enters
our cycle averaging formulas.

18.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that we have given so
far - the level sum (19.18), the dynamical zeta function (18.2), the spectral
determinant (18.8):

1 =

(n)∑

i

ti , ti = ti(β, s(β)) , ni = n , (18.11)

0 = 1 −
∑′

π

tπ , tπ = tπ(z, β, s(β)) (18.12)

0 = 1 −
∞∑

n=1

Qn , Qn = Qn(β, s(β)) , (18.13)

is an implicit equation for the eigenvalue s = s(β) of form F (β, s(β)) = 0.
The eigenvalue s = s(β) as a function of β is sketched in figure 18.2; the
eigenvalue condition is satisfied on the curve F = 0. The cycle averaging
formulas for the slope and the curvature of s(β) are obtained as in (10.12)
by taking derivatives of the eigenvalue condition. Evaluated along F = 0,
the first derivative leads to

0 =
d

dβ
F (β, s(β))
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=
∂F

∂β
+

ds

dβ

∂F

∂s

∣∣∣∣
s=s(β)

=⇒ ds

dβ
= −∂F

∂β
/
∂F

∂s
, (18.14)

and the second derivative of F (β, s(β)) = 0 yields

d2s

dβ2
= −

[
∂2F

∂β2
+ 2

ds

dβ

∂2F

∂β∂s
+

(
ds

dβ

)2 ∂2F

∂s2

]
/
∂F

∂s
. (18.15)

Denoting by

〈A〉F = − ∂F

∂β

∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F

∂s

∣∣∣∣
β,s=s(β)

,

〈
(A− 〈A〉)2

〉
F

=
∂2F

∂β2

∣∣∣∣
β,s=s(β)

(18.16)

respectively the mean cycle expectation value of A, the mean cycle period,
and the second derivative of F computed for F (β, s(β)) = 0, we obtain the
cycle averaging formulas for the expectation value of the observable (10.12),
and its variance:

〈a〉 =
〈A〉F
〈T〉F

(18.17)

〈
(a− 〈a〉)2

〉
=

1

〈T〉F
〈
(A− 〈A〉)2

〉
F
. (18.18)

These formulas are the central result of the periodic orbit theory. As
we shall now show, for each choice of the eigenvalue condition function
F (β, s) in (19.18), (18.2) and (18.8), the above quantities have explicit
cycle expansions.

18.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (18.12), the cycle averaging for-
mulas (18.14), (18.18) require evaluation of the derivatives of dynamical
zeta function at a given eigenvalue. Substituting the cycle expansion (18.2)
for dynamical zeta function we obtain

〈A〉ζ := − ∂

∂β

1

ζ
=
∑′

Aπtπ (18.19)

〈T〉ζ :=
∂

∂s

1

ζ
=
∑′

Tπtπ , 〈n〉ζ := −z ∂
∂z

1

ζ
=
∑′

nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function average
over prime cycles, Aπ, Tπ, and nπ are evaluated on pseudocycles (18.4), and
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pseudocycle weights tπ = tπ(z, β, s(β)) are evaluated at the eigenvalue s(β).
In most applications β = 0, and s(β) of interest is typically the leading
eigenvalue s0 = s0(0) of the evolution generator A.

For bounded flows the leading eigenvalue (the escape rate) vanishes,
s(0) = 0, the exponent βAπ−sTπ in (18.3) vanishes, so the cycle expansions
take a simple form

〈A〉ζ =
∑′

π

(−1)k+1Ap1 +Ap2 · · · +Apk

|Λp1 · · ·Λpk
| , (18.20)

and similarly for 〈T〉ζ , 〈n〉ζ . For example, for the complete binary symbolic
dynamics the mean cycle period 〈T〉ζ is given by

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(
T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)
(18.21)

+

(
T001

|Λ001|
− T01 + T0

|Λ01Λ0|

)
+

(
T011

|Λ011|
− T01 + T1

|Λ01Λ1|

)
+ . . . .

Note that the cycle expansions for averages are grouped into the same
shadowing combinations as the dynamical zeta function cycle expansion
(18.5), with nearby pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observable
〈a〉 follow by substitution into (18.18). Assuming zero mean drift 〈a〉 = 0,
the cycle expansion (18.8) for the variance

〈
(A− 〈A〉)2

〉
ζ

is given by

〈
A2
〉
ζ

=
∑′

(−1)k+1 (Ap1 +Ap2 · · · +Apk
)2

|Λp1 · · ·Λpk
| . (18.22)

18.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple
structure, with the shadowing apparent already by a term-by-term inspec-
tion of table 18.2. For “nice” hyperbolic systems the shadowing ensures
exponential convergence of the dynamical zeta function cycle expansions.
This, however, is not the best achievable convergence. As has been ex-
plained in chapter 16, for such systems the spectral determinant constructed
from the same cycle data base is entire, and its cycle expansion converges
faster than exponentially. In practice, the best convergence is attained
by the spectral determinant cycle expansion (18.13) and its derivatives.
The ∂/∂s, ∂/∂β derivatives are in this case computed recursively, by tak-
ing derivatives of the spectral determinant cycle expansion contributions
(18.9) and (18.7).
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The cycle averaging formulas are exact, and highly convergent for nice
hyperbolic dynamical systems. An example of its utility is the cycle expan-
sion formula for the Lyapunov exponent of example 18.1. Further applica-
tions of cycle expansions will be discussed in chapter 19.

18.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow, in
continuous time, and sometimes it might be easier to compute it in discrete
time, from a Poincaré return map. Return times (3.1) might vary wildly,
and it is not at all clear that the continuous and discrete time averages are
related in any simple way. The relationship turns on to be both elegantly
simple, and totally general.

The mean cycle period 〈T〉ζ fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or the average first return
time. For example, if we have evaluated a billiard expectation value 〈a〉
in terms of continuous time, and would like to also have the corresponding
average 〈a〉dscr measured in discrete time, given by the number of reflections
off billiard walls, the two averages are related by

〈a〉dscr = 〈a〉 〈T〉ζ / 〈n〉ζ , (18.23)

where 〈n〉ζ is the average of the number of bounces np along the cycle p.

Example 18.1 Cycle expansion formula for Lyapunov exponents:

In sect. 10.3 we defined the Lyapunov exponent for a 1-d mapping, related it
to the leading eigenvalue of an evolution operator and promised to evaluate it. Now we
are finally in position to deliver on our promise.

The cycle averaging formula (18.20) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

λ =
1

〈n〉ζ
∑′

(−1)k+1 log |Λp1 | + · · · + log |Λpk
|

|Λp1 · · ·Λpk
| . (18.24)

For a repeller, the 1/|Λp| weights are replaced by normalized measure (19.10) exp(γnp)/|Λp|,
where γ is the escape rate.

We mention here without proof that for 2-d Hamiltonian flows such as our
game of pinball there is only one expanding eigenvalue and (18.24) applies
as it stands.

in depth:

chapter H.1, p. 689
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18.4 Cycle expansions for finite alphabets

A finite Markov graph like the one given in figure 13.3(d) is a com-
pact encoding of the transition or the Markov matrix for a given subshift.
It is a sparse matrix, and the associated determinant (13.17) can be written
down by inspection: it is the sum of all possible partitions of the graph into
products of non-intersecting loops, with each loop carrying a minus sign:

det (1−T ) = 1− t0 − t0011 − t0001 − t00011 + t0t0011 + t0011t0001(18.25)

The simplest application of this determinant is to the evaluation of the
topological entropy; if we set tp = znp , where np is the length of the p-
cycle, the determinant reduces to the topological polynomial (13.18).

The determinant (18.25) is exact for the finite graph figure 13.3(e),
as well as for the associated finite-dimensional transfer operator of exam-
ple 10.1. For the associated (infinite dimensional) evolution operator, it is
the beginning of the cycle expansion of the corresponding dynamical zeta
function:

1/ζ = 1 − t0 − t0011 − t0001 + t0001t0011

−(t00011 − t0t0011 + . . . curvatures) . . . (18.26)

The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (18.5);
they are not shadowed by any combinations of shorter cycles, and are the
basic building blocks of the dynamics. All other cycles appear together
with their shadows (for example, the t00011 − t0t0011 combination) and
yield exponentially small corrections for hyperbolic systems.

For the cycle counting purposes both tab and the pseudocycle combina-
tion ta+b = tatb in (18.2) have the same weight zna+nb , so all curvature com-
binations tab − tatb vanish exactly, and the topological polynomial (13.21)
offers a quick way of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functions reduce to poly-
nomials, we are assured that there are just a few fundamental cycles and
that all long cycles can be grouped into curvature combinations. For ex-
ample, the fundamental cycles in exercise 11.5 are the three 2-cycles which
bounce back and forth between two disks and the two 3-cycles which visit
every disk. It is only after these fundamental cycles have been included that
a cycle expansion is expected to start converging smoothly, that is, only for
n larger than the lengths of the fundamental cycles are the curvatures ĉn
(in expansion (18.5)), a measure of the deviations between long orbits and
their short cycle approximants, expected to fall off rapidly with n.
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18.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is
not even the first chance.

John Wilkins

(C.P. Dettmann and P. Cvitanović)

Most dynamical systems of interest have no finite grammar, so at any
order in z a cycle expansion may contain unmatched terms which do not
fit neatly into the almost cancelling curvature corrections. Similarly, for
intermittent systems that we shall discuss in chapter 21, curvature correc-
tions are in general not small, so again the cycle expansions may converge
slowly. For such systems schemes which collect the pseudocycle terms ac-
cording to some criterion other than the topology of the flow may converge
more quickly than expansions based on the topological length.

All chaotic systems exhibit some degree of shadowing, and a good trun-
cation criterion should do its best to respect the shadowing at least approx-
imately. If a long cycle is shadowed by two or more shorter cycles and the
flow is smooth, the period and the action will be additive in sense that the
period of the longer cycle is approximately the sum of the shorter cycle pe-
riods. Similarly, stability is multiplicative, so shadowing is approximately
preserved by including all terms with pseudocycle stability

|Λp1 · · ·Λpk
| ≤ Λmax (18.27)

and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which approximately
respect shadowing are truncations by the pseudocycle period (or action)
and the stability ordering that we shall discuss here. In these schemes a
dynamical zeta function or a spectral determinant is expanded keeping all
terms for which the period, action or stability for a combination of cycles
(pseudocycle) is less than a given cutoff.

The two settings in which the stability ordering may be preferable to
the ordering by topological cycle length are the cases of bad grammar and
of intermittency.

18.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the phase space
generates the “optimal” symbolic dynamics. Stability ordering does not
require understanding dynamics in such detail: if you can find the cycles,
you can use stability ordered cycle expansions. Stability truncation is thus
easier to implement for a generic dynamical system than the curvature
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expansions (18.5) which rely on finite subshift approximations to a given
flow.

Cycles can be detected numerically by searching a long trajectory for
near recurrences. The long trajectory method for detecting cycles preferen-
tially finds the least unstable cycles, regardless of their topological length.
Another practical advantage of the method (in contrast to Newton method
searches) is that it only finds cycles in a given connected ergodic component
of phase space, ignoring isolated cycles or other ergodic regions elsewhere
in the phase space.

Why should stability ordered cycle expansion of a dynamical zeta func-
tion converge better than the rude trace formula (19.9)? The argument
has essentially already been laid out in sect. 13.7: in truncations that re-
spect shadowing most of the pseudocycles appear in shadowing combina-
tions and nearly cancel, while only the relatively small subset affected by
the longer and longer pruning rules is not shadowed. So the error is typ-
ically of the order of 1/Λ, smaller by factor ehT than the trace formula
(19.9) error, where h is the entropy and T typical cycle length for cycles of
stability Λ.

18.5.2 Smoothing

The breaking of exact shadowing cancellations deserves further
comment. Partial shadowing which may be present can be (partially) re-
stored by smoothing the stability ordered cycle expansions by replacing
the 1/Λ weigth for each term with pseudocycle stability Λ = Λp1 · · ·Λpk

by
f(Λ)/Λ. Here, f(Λ) is a monotonically decreasing function from f(0) = 1
to f(Λmax) = 0. No smoothing corresponds to a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudo-
cycles of stability Λ separated by ∆Λ, and whose contribution is of opposite
signs. Ignoring possible weighting factors the magnitude of the resulting
term is of order 1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing there is
an extra term of the form f ′(Λ)∆Λ/Λ, which we want to minimise. A rea-
sonable guess might be to keep f ′(Λ)/Λ constant and as small as possible,
that is

f(Λ) = 1 −
(

Λ

Λmax

)2

The results of a stability ordered expansion (18.27) should always be
tested for robustness by varying the cutoff Λmax. If this introduces signifi-
cant variations, smoothing is probably necessary.
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18.5.3 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a
cycle expansion than short but highly unstable cycles. In such situation
truncation by length may require an exponentially large number of very
unstable cycles before a significant longer cycle is first included in the ex-
pansion. This situation is best illustrated by intermittent maps that we
shall study in detail in chapter 21, the simplest of which is the Farey map

f(x) =

{
f0 = x/(1 − x) 0 ≤ x ≤ 1/2
f1 = (1 − x)/x 1/2 ≤ x ≤ 1 ,

(18.28)

a map which will reappear in the intermittency chapter 21, and in chap-
ter 24, in context of circle maps.

For this map the symbolic dynamics is of complete binary type, so lack
of shadowing is not due to lack of a finite grammar, but rather to the
intermittency caused by the existence of the marginal fixed point x0 = 0,
for which the stability equals Λ0 = 1. This fixed point does not participate
directly in the dynamics and is omitted from cycle expansions. Its presence
is felt in the stabilities of neighboring cycles with n consecutive repeats
of the symbol 0’s whose stability falls of only as Λ ∼ n2, in contrast to
the most unstable cycles with n consecutive 1’s which are exponentially
unstable, |Λ01n | ∼ [(

√
5 + 1)/2]2n.

The symbolic dynamics is of complete binary type. A quick count in the
style of sect. 13.5.2 leads to a total of 74,248,450 prime cycles of length 30 or
less, not including the marginal point x0 = 0. Evaluating a cycle expansion
to this order would be no mean computational feat. However, the least
unstable cycle omitted has stability of roughly Λ1030 ∼ 302 = 900, and
so amounts to a 0.1% correction. The situation may be much worse than
this estimate suggests, because the next, 1031 cycle contributes a similar
amount, and could easily reinforce the error. Adding up all such omitted
terms, we arrive at an estimated error of about 3%, for a cycle-length
truncated cycle expansion based on more than 109 pseudocycle terms! On
the other hand, truncating by stability at say Λmax = 3000, only 409 prime
cycles suffice to attain the same accuracy of about 3% error, figure 18.3.

As the Farey map maps the unit interval onto itself, the leading eigen-
value of the Perron-Frobenius operator should equal s0 = 0, so 1/ζ(0) = 0.
Deviation from this exact result serves as an indication of the convergence
of a given cycle expansion. The errors of different truncation schemes are
indicated in figure 18.3. We see that topological length truncation schemes
are hopelessly bad in this case; stability length truncations are somewhat
better, but still rather bad. In simple cases like this one, where intermit-
tency is caused by a single marginal fixed point, the convergence can be
improved by going to infinite alphabets.
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Figure 18.3: Comparison of cycle expansion truncation schemes for the Farey map
(18.28); the deviation of the truncated cycles expansion for |1/ζN(0)| from the exact
flow conservation value 1/ζ(0) = 0 is a measure of the accuracy of the truncation.
The jagged line is logarithm of the stability ordering truncation error; the smooth
line is smoothed according to sect. 18.5.2; the diamonds indicate the error due the
topological length truncation, with the maximal cycle length N shown. They are
placed along the stability cutoff axis at points determined by the condition that the
total number of cycles is the same for both truncation schemes.

18.6 Dirichlet series

The most patient reader will thank me for compress-
ing so much nonsense and falsehood into a few lines.

Gibbon

A Dirichlet series is defined as

f(s) =

∞∑

j=1

aje
−λjs (18.29)

where s, aj are complex numbers, and {λj} is a monotonically increasing
series of real numbers λ1 < λ2 < · · · < λj < · · ·. A classical example of
a Dirichlet series is the Riemann zeta function for which aj = 1, λj = ln j.
In the present context, formal series over individual pseudocycles such as
(18.2) ordered by the increasing pseudocycle periods are often Dirichlet
series. For example, for the pseudocycle weight (18.3), the Dirichlet series
is obtained by ordering pseudocycles by increasing periods λπ = Tp1 +Tp2 +
. . . + Tpk

, with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk

)

|Λp1Λp2 . . .Λpk
| dπ ,

where dπ is a degeneracy factor, in the case that dπ pseudocycles have the
same weight.
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If the series
∑ |aj | diverges, the Dirichlet series is absolutely convergent

for Re s > σa and conditionally convergent for Re s > σc, where σa is the
abscissa of absolute convergence

σa = lim
N→∞

sup
1

λN
ln

N∑

j=1

|aj| , (18.30)

and σc is the abscissa of conditional convergence

σc = lim
N→∞

sup
1

λN
ln

∣∣∣∣∣∣

N∑

j=1

aj

∣∣∣∣∣∣
. (18.31)

We shall encounter another example of a Dirichlet series in the semiclassical
quantization chapter 28, where the inverse Planck constant is a complex
variable s = i/~, λπ = Sp1 + Sp2 + . . . + Spk

is the pseudocycle action,
and aπ = 1/

√
|Λp1Λp2 . . .Λpk

| (times possible degeneracy and topological
phase factors). As the action is in general not a linear function of energy
(except for billiards and for scaling potentials, where a variable s can be
extracted from Sp), semiclassical cycle expansions are Dirichlet series in
variable s = i/~ but not in E, the complex energy variable.

Commentary

Remark 18.1 Pseudocycle expansions. Bowen’s introduction of shadowing ǫ-

pseudoorbits [1.17] was a significant contribution to Smale’s theory. Expression

“pseudoorbits” seems to have been introduced in the Parry and Pollicott’s 1983

paper [15.5]. Following them M. Berry [18.9] had used the expression “pseudoor-

bits” in his 1986 paper on Riemann zeta and quantum chaos. Cycle and curvature

expansions of dynamical zeta functions and spectral determinants were introduced

in refs. [18.10, 18.2]. Some literature [15.14] refers to the pseudoorbits as “compos-

ite orbits”, and to the cycle expansions as “Dirichlet series” (see also remark 18.6

and sect. 18.6).

Remark 18.2 Cumulant expansion. To a statistical mechanician the curvature

expansions are very reminiscent of cumulant expansions. Indeed, (18.9) is the

standard Plemelj-Smithies cumulant formula (K.28) for the Fredholm determinant,

discussed in more detail in appendix K. The difference is that in cycle expansions

each Qn coefficient is expressed as a sum over exponentially many cycles.

Remark 18.3 Exponential growth of the number of cycles. Going from Nn ≈
Nn periodic points of length n to Mn prime cycles reduces the number of com-

putations from Nn to Mn ≈ Nn−1/n. Use of discrete symmetries (chapter 22)
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reduces the number of nth level terms by another factor. While the reformula-

tion of the theory from the trace (14.25) to the cycle expansion (18.5) thus does

not eliminate the exponential growth in the number of cycles, in practice only

the shortest cycles are used, and for them the computational labor saving can be

significant.

Remark 18.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in

the table 18.1 leads to the temptation of associating curvatures to individual cycles,

such as ĉ0001 = t0001 − t0t001. Such combinations tend to be numerically small

(see for example ref. [18.3], table 1). However, splitting ĉn into individual cycle

curvatures is not possible in general [11.14]; the first example of such ambiguity

in the binary cycle expansion is given by the t100101, t100110 0 ↔ 1 symmetric pair

of 6-cycles; the counterterm t001t011 in table 18.1 is shared by the two cycles.

Remark 18.5 Stability ordering. The stability ordering was introduced by Dahlqvist

and Russberg [18.12] in a study of chaotic dynamics for the (x2y2)1/a potential.

The presentation here runs along the lines of Dettmann and Morriss [18.13] for the

Lorentz gas which is hyperbolic but the symbolic dynamics is highly pruned, and

Dettmann and Cvitanović [18.14] for a family of intermittent maps. In the appli-

cations discussed in the above papers, the stability ordering yields a considerable

improvement over the topological length ordering. In quantum chaos applications

cycle expansion cancellations are affected by the phases of pseudocycles (their

actions), hence period ordering rather than stability is frequently employed.

Remark 18.6 Are cycle expansions Dirichlet series? Even though some litera-

ture [15.14] refers to cycle expansions as “Dirichlet series”, they are not Dirichlet

series. Cycle expansions collect contributions of individual cycles into groups that

correspond to the coefficients in cumulant expansions of spectral determinants, and

the convergence of cycle expansions is controlled by general properties of spectral

determinants. Dirichlet series order cycles by their periods or actions, and are

only conditionally convergent in regions of interest. The abscissa of absolute con-

vergence is in this context called the “entropy barrier”; contrary to the frequently

voiced anxieties, this number does not necessarily has much to do with the actual

convergence of the theory.

Résumé

A cycle expansion is a series representation of a dynamical zeta function,
trace formula or a spectral determinant, with products in (15.15), (30.18)
expanded as sums over pseudocycles, products of the prime cycle weigths
tp.

If a flow is hyperbolic and has a topology of a Smale horseshoe (a sub-
shift of finite type), the dynamical zeta functions are holomorphic, the
spectral determinants are entire, and the spectrum of the evolution oper-
ator is discrete. The situation is considerably more reassuring than what
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practitioners of quantum chaos fear; there is no “abscissa of absolute con-
vergence” and no “entropy barier”, the exponential proliferation of cycles
is no problem, spectral determinants are entire and converge everywhere,
and the topology dictates the choice of cycles to be used in cycle expansion
truncations.

In that case, the basic observation is that the motion in dynamical
systems of few degrees of freedom is in this case organized around a few
fundamental cycles, with the cycle expansion of the Euler product

1/ζ = 1 −
∑

f

tf −
∑

n

ĉn,

regrouped into dominant fundamental contributions tf and decreasing cur-
vature corrections ĉn. The fundamental cycles tf have no shorter approxi-
mants; they are the “building blocks” of the dynamics in the sense that all
longer orbits can be approximately pieced together from them. A typical
curvature contribution to ĉn is a difference of a long cycle {ab} minus its
shadowing approximation by shorter cycles {a} and {b}:

tab − tatb = tab(1 − tatb/tab)

The orbits that follow the same symbolic dynamics, such as {ab} and a
“pseudocycle” {a}{b}, lie close to each other, have similar weights, and for
longer and longer orbits the curvature corrections fall off rapidly. Indeed,
for systems that satisfy the “axiom A” requirements, such as the 3-disk
billiard, curvature expansions converge very well.

Once a set of the shortest cycles has been found, and the cycle periods,
stabilities and integrated observable computed, the cycle averaging formulas
such as the ones associated with the dynamical zeta function

〈a〉 = 〈A〉ζ / 〈T〉ζ
〈A〉ζ = − ∂

∂β

1

ζ
=
∑′

Aπtπ , 〈T〉ζ =
∂

∂s

1

ζ
=
∑′

Tπtπ

yield the expectation value (the chaotic, ergodic average over the non–
wandering set) of the observable a(x).
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Exercises

Exercise 18.1 Cycle expansions. Write programs that implement binary
symbolic dynamics cycle expansions for (a) dynamical zeta functions, (b) spec-
tral determinants. Combined with the cycles computed for a 2-branch repeller
or a 3-disk system they will be useful in problem that follow.

Exercise 18.2 Escape rate for a 1-d repeller. (Continuation of exer-
cise 15.1 - easy, but long)
Consider again the quadratic map (15.31)

f(x) = Ax(1 − x)

on the unit interval, for definitivness take either A = 9/2 or A = 6. Describing
the itinerary of any trajectory by the binary alphabet {0, 1} (’0’ if the iterate
is in the first half of the interval and ’1’ if is in the second half), we have a
repeller with a complete binary symbolic dynamics.

(a) Sketch the graph of f and determine its two fixed points 0 and 1, together
with their stabilities.

(b) Sketch the two branches of f−1. Determine all the prime cycles up to
topological length 4 using your pocket calculator and backwards iteration
of f (see sect. 17.2.1).

(c) Determine the leading zero of the zeta function (15.15) using the weigths
tp = znp/|Λp| where Λp is the stability of the p cycle.

(d) Show that for A = 9/2 the escape rate of the repeller is 0.361509 . . .
using the spectral determinant, with the same cycle weight. If you have
taken A = 6, the escape rate is in 0.83149298 . . ., as shown in solu-
tion 18.2. Compare the coefficients of the spectral determinant and the
zeta function cycle expansions. Which expansion converges faster?

(Per Rosenqvist)

Exercise 18.3 Escape rate for the Ulam map. (medium) We will try to
compute the escape rate for the Ulam map (17.21)

f(x) = 4x(1 − x),

using the method of cycle expansions. The answer should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map. Show that Λ0 = 4, Λ1 = −2,
Λ01 = −4, Λ001 = −8 and Λ011 = 8.
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(b) Show that

Λǫ1...ǫn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for this system

ζ−1 = 1 − t0 − t1 − (t01 − t0t1) − · · ·

You might note that the convergence as function of the truncation cycle length
is slow. Try to fix that by treating the Λ0 = 4 cycle separately.

Exercise 18.4 Pinball escape rate, semi-analytical. Estimate the 3-
disk pinball escape rate for R : a = 6 by substituting analytical cycle stabilities
and periods (exercise 8.1 and exercise 8.2) into the appropriate binary cycle
expansion. Compare with the numerical estimate exercise 10.3

Exercise 18.5 Pinball escape rate, from numerical cycles. Compute
the escape rate for R : a = 6 3-disk pinball by substituting list of numerically
computed cycle stabilities of exercise 17.5 into the binary cycle expansion.

Exercise 18.6 Pinball resonances, in the complex plane. Plot the logarithm

of the absolute value of the dynamical zeta function and/or the spectral determinant

cycle expansion (18.5) as contour plots in the complex s plane. Do you find zeros

other than the one corresponding to the complex one? Do you see evidence for a finite

radius of convergence for either cycle expansion?

Exercise 18.7 Counting the 3-disk pinball counterterms. Verify that the
number of terms in the 3-disk pinball curvature expansion (18.32) is given by

∏

p

(1 + tp) =
1 − 3z4 − 2z6

1 − 3z2 − 2z3
= 1 + 3z2 + 2z3 +

z4(6 + 12z + 2z2)

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example, c6 has a total of 20 terms, in agreement with the explicit

3-disk cycle expansion (18.33).

Exercise 18.8 3–disk unfactorized zeta cycle expansions. Check that the
curvature expansion (18.2) for the 3-disk pinball, assuming no symmetries between
disks, is given by

1/ζ = (1 − z2t12)(1 − z2t13)(1 − z2t23)(1 − z3t123)(1 − z3t132)

(1 − z4t1213)(1 − z4t1232)(1 − z4t1323)(1 − z5t12123) · · ·
= 1 − z2t12 − z2t23 − z2t31 − z3t123 − z3t132

−z4[(t1213 − t12t13) + (t1232 − t12t23) + (t1323 − t13t23)]

−z5[(t12123 − t12t123) + · · ·] − · · · (18.32)
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The symmetrically arranged 3-disk pinball cycle expansion of the Euler product
(18.2) (see table 13.4 and figure 22.2) is given by:

1/ζ = (1 − z2t12)
3(1 − z3t123)

2(1 − z4t1213)
3

(1 − z5t12123)
6(1 − z6t121213)

6(1 − z6t121323)
3 . . .

= 1 − 3z2 t12 − 2z3 t123 − 3z4 (t1213 − t212) − 6z5 (t12123 − t12t123)

−z6 (6 t121213 + 3 t121323 + t312 − 9 t12t1213 − t2123)

−6z7 (t1212123 + t1212313 + t1213123 + t212t123 − 3 t12t12123 − t123t1213)

−3z8 (2 t12121213 + t12121313 + 2 t12121323 + 2 t12123123

+ 2 t12123213 + t12132123 + 3 t212t1213 + t12t
2
123

− 6 t12t121213 − 3 t12t121323 − 4 t123t12123 − t21213) − · · · (18.33)

Remark 18.7 Unsymmetrized cycle expansions. The above 3-disk cycle expansions
might be useful for cross-checking purposes, but, as we shall see in chapter 22, they
are not recommended for actual computations, as the factorized zeta functions yield
much better convergence.

Exercise 18.9 4–disk unfactorized dynamical zeta function cycle expansions
For the symmetriclly arranged 4-disk pinball the symmetry group is C4v, of order 8.
The degenerate cycles can have multiplicities 2, 4 or 8 (see table 13.2):

1/ζ = (1 − z2t12)
4(1 − z2t13)

2(1 − z3t123)
8(1 − z4t1213)

8(1 − z4t1214)
4

(1 − z4t1234)
2(1 − z4t1243)

4(1 − z5t12123)
8(1 − z5t12124)

8(1 − z5t12134)
8

(1 − z5t12143)
8(1 − z5t12313)

8(1 − z5t12413)
8 · · · (18.34)

and the cycle expansion is given by

1/ζ = 1 − z2(4 t12 + 2 t13) − 8z3 t123

−z4(8 t1213 + 4 t1214 + 2 t1234 + 4 t1243 − 6 t212 − t213 − 8 t12t13)

−8z5(t12123 + t12124 + t12134 + t12143 + t12313 + t12413 − 4 t12t123 − 2 t13t123)

−4z6(2S8 + S4 + t312 + 3 t212 t13 + t12t
2
13 − 8 t12t1213 − 4 t12t1214

−2 t12t1234 − 4 t12t1243 − 4 t13t1213 − 2 t13t1214 − t13t1234

−2 t13t1243 − 7 t2123) − · · · (18.35)

where in the coefficient to z6 the abbreviations S8 and S4 stand for the sums over

the weights of the 12 orbits with multiplicity 8 and the 5 orbits of multiplicity 4,

respectively; the orbits are listed in table 13.4.

Exercise 18.10 Tail resummations. A simple illustration of such tail resum-
mation is the ζ function for the Ulam map (17.21) for which the cycle structure is
exceptionally simple: the eigenvalue of the x0 = 0 fixed point is 4, while the eigenvalue
of any other n-cycle is ±2n. Typical cycle weights used in thermodynamic averaging
are t0 = 4τz, t1 = t = 2τz, tp = tnp for p 6= 0. The simplicity of the cycle eigenvalues
enables us to evaluate the ζ function by a simple trick: we note that if the value of
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any n-cycle eigenvalue were tn, (15.21) would yield 1/ζ = 1 − 2t. There is only one
cycle, the x0 fixed point, that has a different weight (1 − t0), so we factor it out,
multiply the rest by (1 − t)/(1 − t), and obtain a rational ζ function

1/ζ(z) =
(1 − 2t)(1 − t0)

(1 − t)
(18.36)

Consider how we would have detected the pole at z = 1/t without the above trick.
As the 0 fixed point is isolated in its stability, we would have kept the factor (1− t0) in
(18.5) unexpanded, and noted that all curvature combinations in (18.5) which include
the t0 factor are unbalanced, so that the cycle expansion is an infinite series:

∏

p

(1 − tp) = (1 − t0)(1 − t− t2 − t3 − t4 − . . .) (18.37)

(we shall return to such infinite series in chapter 21). The geometric series in the

brackets sums up to (18.36). Had we expanded the (1 − t0) factor, we would have

noted that the ratio of the successive curvatures is exactly cn+1/cn = t; summing we

would recover the rational ζ function (18.36).
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Chapter 19

Why cycle?

“Progress was a labyrinth ... people plunging blindly
in and then rushing wildly back, shouting that they
had found it ... the invisible king the élan vital the
principle of evolution ... writing a book, starting a
war, founding a school....”

F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the
evolution operator formalism. Here we slow down in order to develop some
fingertip feeling for the traces of evolution operators.

19.1 Escape rates

We start by verifying the claim (10.11) that for a nice hyperbolic flow the
trace of the evolution operator grows exponentially with time. Consider
again the game of pinball of figure 1.1. Designate by M a phase space
region that encloses the three disks, say the surface of the table × all
pinball directions. The fraction of initial points whose trajectories start
out within the phase space region M and recur within that region at the
time t is given by

Γ̂M(t) =
1

|M|

∫ ∫

M
dxdy δ

(
y − f t(x)

)
. (19.1)

This quantity is eminently measurable and physically interesting in a va-
riety of problems spanning nuclear physics to celestial mechanics. The
integral over x takes care of all possible initial pinballs; the integral over
y checks whether they are still within M by the time t. If the dynamics
is bounded, and M envelops the entire accessible phase space, Γ̂M(t) = 1
for all t. However, if trajectories exit M the recurrence fraction decreases
with time. For example, any trajectory that falls off the pinball table in
figure 1.1 is gone for good.
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These observations can be made more concrete by examining the pinball
phase space of figure 1.8. With each pinball bounce the initial conditions
that survive get thinned out, each strip yielding two thiner strips within it.
The total fraction of survivors (1.2) after n bounces is given by

Γ̂n =
1

|M|

(n)∑

i

|Mi| , (19.2)

where i is a binary label of the ith strip, and |Mi| is the area of the ith
strip. The phase space volume is preserved by the flow, so the strips of sur-
vivors are contracted along the stable eigendirections, and ejected along the
unstable eigendirections. As a crude estimate of the number of survivors in
the ith strip, assume that the spreading of a ray of trajectories per bounce
is given by a factor Λ, the mean value of the expanding eigenvalue of the
corresponding fundamental matrix of the flow, and replace |Mi| by the
phase space strip width estimate |Mi|/|M| ∼ 1/Λi. This estimate of
a size of a neighborhood (given already on p. 108) is right in spirit, but
not without drawbacks. One problem is that in general the eigenvalues
of a fundamental matrix for a finite segment of a trajectory have no in-
variant meaning; they depend on the choice of coordinates. However, we
saw in chapter 14 that the sizes of neighborhoods are determined by sta-
bility eigenvalues of periodic points, and those are invariant under smooth
coordinate transformations.

In the approximation Γ̂n receives 2n contributions of equal size

Γ̂1 ∼ 1

Λ
+

1

Λ
, · · · , Γ̂n ∼ 2n

Λn
= e−n(λ−h) = e−nγ , (19.3)

up to preexponential factors. We see here the interplay of the two key
ingredients of chaos first alluded to in sect. 1.3.1: the escape rate γ equals
local expansion rate (the Lyapunov exponent λ = ln Λ), minus the rate of
global reinjection back into the system (the topological entropy h = ln 2).
As we shall see in (20.16), with correctly defined “entropy” this result is
exact.

As at each bounce one loses routinely the same fraction of trajectories,
one expects the sum (19.2) to fall off exponentially with n. More precisely,
by the hyperbolicity assumption of sect. 14.1.1 the expanding eigenvalue
of the fundamental matrix of the flow is exponentially bounded from both
above and below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (19.4)

and the area of each strip in (19.2) is bounded by |Λ−n
max| ≤ |Mi| ≤

|Λ−n
min|. Replacing |Mi| in (19.2) by its over (under) estimates in terms
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of |Λmax|, |Λmin| immediately leads to exponential bounds (2/|Λmax|)n ≤
Γ̂n ≤ (2/|Λmin|)n , that is,

ln |Λmax| − ln 2 ≥ − 1

n
ln Γ̂n ≥ ln |Λmin| − ln 2 . (19.5)

The argument based on (19.5) establishes only that the sequence γn =
− 1
n ln Γn has a lower and an upper bound for any n. In order to prove that

γn converge to the limit γ, we first show that for hyperbolic systems the
sum over survivor intervals (19.2) can be replaced by the sum over periodic
orbit stabilities. By (19.4) the size of Mi strip can be bounded by the
stability Λi of ith periodic point:

C1
1

|Λi|
<

|Mi|
|M| < C2

1

|Λi|
, (19.6)

for any periodic point i of period n, with constants Cj dependent on the
dynamical system but independent of n. The meaning of these bounds
is that for longer and longer cycles in a system of bounded hyperbolicity,
the shrinking of the ith strip is better and better approximated by the
derivaties evaluated on the periodic point within the strip. Hence the
survival probability can be bounded close to the cycle point stability sum

Ĉ1 Γn <

(n)∑

i

|Mi|
|M| < Ĉ2 Γn , (19.7)

where Γn =
∑(n)

i 1/|Λi| is the asymptotic trace sum (14.23). In this way we
have established that for hyperbolic systems the survival probability sum
(19.2) can be replaced by the periodic orbit sum (14.23).

We conclude that for hyperbolic, locally unstable flows the fraction
(19.1) of initial x whose trajectories remain trapped within M up to time
t is expected to decay exponentially,

ΓM(t) ∝ e−γt ,

where γ is the asymptotic escape rate defined by

γ = − lim
t→∞

1

t
ln ΓM(t) . (19.8)

✎ 19.1
page 339

✎ 9.4
page 134
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19.2 Natural measure in terms of periodic orbits

We now refine the reasoning of sect. 19.1. Consider the trace (14.6) in the
asymptotic limit (14.22):

trLn =

∫
dx δ(x− fn(x)) eβA

n(x) ≈
(n)∑

i

eβA
n(xi)

|Λi|
.

The factor 1/|Λi| was interpreted in (19.2) as the area of the ith phase space
strip. Hence trLn is a discretization of the integral

∫
dxeβA

n(x) approxi-
mated by a tesselation into strips centered on periodic points xi, figure 1.9,
with the volume of the ith neighborhood given by estimate |Mi| ∼ 1/|Λi|,
and eβA

n(x) estimated by eβA
n(xi), its value at the ith periodic point. If the

symbolic dynamics is a complete, any rectangle [s−m · · · s0.s1s2 · · · sn] of
sect. 12.3.1 always contains the cycle point s−m · · · s0s1s2 · · · sn; hence even
though the periodic points are of measure zero (just like rationals in the unit
interval), they are dense on the non–wandering set. Equiped with a mea-
sure for the associated rectangle, periodic orbits suffice to cover the entire
non–wandering set. The average of eβA

n
evaluated on the non–wandering

set is therefore given by the trace, properly normalized so 〈1〉 = 1:

〈
eβA

n
〉
n
≈
∑(n)

i eβA
n(xi)/|Λi|∑(n)

i 1/|Λi|
=

(n)∑

i

µi e
βAn(xi) . (19.9)

Here µi is the normalized natural measure

(n)∑

i

µi = 1 , µi = enγ/|Λi| , (19.10)

correct both for the closed systems as well as the open systems of sect. 10.1.3.

Unlike brute numerical slicing of the integration space into an arbitrary
lattice (for a critique, see sect. 10.4), the periodic orbit theory is smart, as
it automatically partitions integrals by the intrinsic topology of the flow,
and assigns to each tile the invariant natural measure µi.

19.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in sect. 10.1 was to evaluate the space and time averaged expec-
tation value (10.9). An average over all periodic orbits can accomplish the
job only if the periodic orbits fully explore the asymptotically accessible
phase space.
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Why should the unstable periodic points end up being dense? The cy-
cles are intuitively expected to be dense because on a connected chaotic set
a typical trajectory is expected to behave ergodically, and pass infinitely
many times arbitrarily close to any point on the set, including the initial
point of the trajectory itself. The argument is more or less the following.
Take a partition of M in arbitrarily small regions, and consider particles
that start out in region Mi, and return to it in n steps after some peregri-
nation in phase space. In particular, a particle might return a little to the
left of its original position, while a close neighbor might return a little to
the right of its original position. By assumption, the flow is continuous, so
generically one expects to be able to gently move the initial point in such
a way that the trajectory returns precisely to the initial point, that is, one
expects a periodic point of period n in cell i. As we diminish the size of
regions Mi, aiming a trajectory that returns to Mi becomes increasingly
difficult. Therefore, we are guaranteed that unstable orbits of larger and
larger period are densely interspersed in the asymptotic non–wandering set.

The above argument is heuristic, by no means guaranteed to work, and
it must be checked for the particular system at hand. A variety of ergodic
but insufficiently mixing counter-examples can be constructed - the most
familiar being a quasiperiodic motion on a torus.

19.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remain confined for all
times, escape rate (19.8) vanishes γ = −s0 = 0, and the leading eigenvalue
of the Perron-Frobenius operator (9.10) is simply exp(−tγ) = 1. Conser-
vation of material flow thus implies that for bound flows cycle expansions
of dynamical zeta functions and spectral determinants satisfy exact flow
conservation sum rules:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1 · · ·Λpk
| = 0

F (0, 0) = 1 −
∞∑

n=1

cn(0, 0) = 0 (19.11)

obtained by setting s = 0 in (18.12), (18.13) cycle weights tp = e−sTp/|Λp| →
1/|Λp| . These sum rules depend neither on the cycle periods Tp nor on the
observable a(x) under investigation, but only on the cycle stabilities Λp,1,
Λp,2, · · ·, Λp,d, and their significance is purely geometric: they are a mea-
sure of how well periodic orbits tesselate the phase space. Conservation of
material flow provides the first and very useful test of the quality of finite
cycle length truncations, and is something that you should always check
first when constructing a cycle expansion for a bounded flow.

The trace formula version of the flow conservation flow sum rule comes
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in two varieties, one for the maps, and another for the flows. By flow
conservation the leading eigenvalue is s0 = 0, and for maps (18.11) yields

trLn =
∑

i∈Fixfn

1

|det (1− Mn(xi)) |
= 1 + es1n + . . . . (19.12)

For flows one can apply this rule by grouping together cycles from t = T
to t = T + ∆T

1

∆T

T≤rTp≤T+∆T∑

p,r

Tp∣∣det
(
1− Mr

p

)∣∣ =
1

∆T

∫ T+∆T

T
dt
(
1 + es1t + . . .

)

= 1 +
1

∆T

∞∑

α=1

esαT

sα

(
esα∆T − 1

)
≈ 1 + es1T + · · · .(19.13)

As is usual for the the fixed level trace sums, the convergence of (19.12) is
controled by the gap between the leading and the next-to-leading eigenval-
ues of the evolution operator.

19.4 Correlation functions

The time correlation function CAB(t) of two observables A and B along the
trajectory x(t) = f t(x0) is defined as

CAB(t;x0) = lim
T→∞

1

T

∫ T

0
dτA(x(τ + t))B(x(τ)) , x0 = x(0) .(19.14)

If the system is ergodic, with invariant continuous measure ρ0(x)dx, then
correlation functions do not depend on x0 (apart from a set of zero mea-
sure), and may be computed by a phase average as well

CAB(t) =

∫

M
dx0 ρ0(x0)A(f t(x0))B(x0) . (19.15)

For a chaotic system we expect that time evolution will loose the informa-
tion contained in the initial conditions, so that CAB(t) will approach the
uncorrelated limit 〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of
correlation functions

ĈAB := CAB − 〈A〉 〈B〉 (19.16)

for any pair of observables coincides with the definition of mixing, a fun-
damental property in ergodic theory. We now assume 〈B〉 = 0 (otherwise
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we may define a new observable by B(x) − 〈B〉). Our purpose is now to
connect the asymptotic behavior of correlation functions with the spectrum
of the Perron-Frobenius operator L. We can write (19.15) as

C̃AB(t) =

∫

M
dx

∫

M
dy A(y)B(x)ρ0(x)δ(y − f t(x)) ,

and recover the evolution operator

C̃AB(t) =

∫

M
dx

∫

M
dy A(y)Lt(y, x)B(x)ρ0(x)

We recall that in sect. 9.1 we showed that ρ(x) is the eigenvector of L
corresponding to probability conservation

∫

M
dy Lt(x, y)ρ(y) = ρ(x) .

Now, we can expand the x dependent part in terms of the eigenbasis of L:

B(x)ρ0(x) =
∞∑

α=0

cαρα(x) ,

where ρ0(x) is the natural measure. Since the average of the left hand side
is zero the coefficient c0 must vanish. The action of L then can be written
as

C̃AB(t) =
∑

α6=0

e−sαtcα

∫

M
dy A(y)ρα(y). (19.17)

✎ 19.2
page 339We see immediately that if the spectrum has a gap, that is, if the second

largest leading eigenvalue is isolated from the largest eigenvalue (s0 = 0)
then (19.17) implies exponential decay of correlations

C̃AB(t) ∼ e−νt .

The correlation decay rate ν = s1 then depends only on intrinsic properties
of the dynamical system (the position of the next-to-leading eigenvalue of
the Perron-Frobenius operator), while the choice of a particular observable
influences only the prefactor.

Correlation functions are often accessible from time series measurable
in laboratory experiments and numerical simulations: moreover they are
linked to transport exponents.
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19.5 Trace formulas vs. level sums

Trace formulas (14.9) and (14.20) diverge precisely where one would
like to use them, at s equal to eigenvalues sα. Instead, one can proceed as
follows; according to (14.24) the “level” sums (all symbol strings of length
n) are asymptotically going like es0n

∑

i∈Fixfn

eβA
n(xi)

|Λi|
→ es0n ,

so an nth order estimate s(n) of the leading eigenvalue is given by

1 =
∑

i∈Fixfn

eβA
n(xi)e−s(n)n

|Λi|
(19.18)

which generates a “normalized measure”. The difficulty with estimating
this n→ ∞ limit is at least twofold:

1. due to the exponential growth in number of intervals, and the expo-
nential decrease in attainable accuracy, the maximal n attainable experi-
mentally or numerically is in practice of order of something between 5 to
20.

2. the preasymptotic sequence of finite estimates s(n) is not unique,
because the sums Γn depend on how we define the escape region, and
because in general the areas Mi in the sum (19.2) should be weighted by
the density of initial conditions x0. For example, an overall measuring unit
rescaling Mi → αMi introduces 1/n corrections in s(n) defined by the log
of the sum (19.8): s(n) → s(n) − lnα/n. This can be partially fixed by
defining a level average

〈
eβA(s)

〉
(n)

:=
∑

i∈Fixfn

eβA
n(xi)esn

|Λi|
(19.19)

and requiring that the ratios of successive levels satisfy

1 =

〈
eβA(s(n))

〉
(n+1)〈

eβA(s(n))
〉

(n)

.

This avoids the worst problem with the formula (19.18), the inevitable 1/n
corrections due to its lack of rescaling invariance. However, even though
much published pondering of “chaos” relies on it, there is no need for such
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gymnastics: the dynamical zeta functions and spectral determinants are
already invariant not only under linear rescalings, but under all smooth
nonlinear conjugacies x → h(x), and require no n → ∞ extrapolations
to asymptotic times. Comparing with the cycle expansions (18.5) we see
what the difference is; while in the level sum approach we keep increasing
exponentially the number of terms with no reference to the fact that most
are already known from shorter estimates, in the cycle expansions short
terms dominate, longer ones enter only as exponentially small corrections.

The beauty of the trace formulas is that they are coordinatization in-
dependent: both

∣∣det
(
1− Mp

)∣∣ = |det (1 − MTp(x))| and eβAp = eβA
Tp (x)

contribution to the cycle weight tp are independent of the starting periodic
point point x. For the fundamental matrix Mp this follows from the chain

rule for derivatives, and for eβAp from the fact that the integral over eβA
t(x)

is evaluated along a closed loop. In addition,
∣∣det

(
1− Mp

)∣∣ is invariant
under smooth coordinate transformations.

Commentary

Remark 19.1 Nonhyperbolic measures. µi = 1/|Λi| is the natural measure only
for the strictly hyperbolic systems. For non-hyperbolic systems, the measure might
develop cusps. For example, for Ulam type maps (unimodal maps with quadratic
critical point mapped onto the “left” unstable fixed point x0, discussed in more
detail in chapter 21), the measure develops a square-root singularity on the 0 cycle:

µ0 =
1

|Λ0|1/2
. (19.20)

The thermodynamics averages are still expected to converge in the “hyperbolic”

phase where the positive entropy of unstable orbits dominates over the marginal

orbits, but they fail in the “non-hyperbolic” phase. The general case remains

unclear [12.21, H.18, H.14, H.11].

Remark 19.2 Trace formula periodic orbit averaging. The cycle averaging for-

mulas are not the first thing that one would intuitively write down; the approxi-

mate trace formulas are more accessibly heuristically. The trace formula averag-

ing (19.13) seems to have be discussed for the first time by Hannay and Ozorio

de Almeida [H.1, 7.11]. Another novelty of the cycle averaging formulas and one

of their main virtues, in contrast to the explicit analytic results such as those of

ref. [18.4], is that their evaluation does not require any explicit construction of the

(coordinate dependent) eigenfunctions of the Perron-Frobenius operator (that is,

the natural measure ρ0).

Remark 19.3 Role of noise in dynamical systems. In any physical application
the dynamics is always accompanied by additional external noise. The noise can
be characterized by its strength σ and distribution. Lyapunov exponents, cor-
relation decay and dynamo rate can be defined in this case the same way as in
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the deterministic case. You might fear that noise completely destroys the results
derived here. However, one can show that the deterministic formulas remain valid
to accuracy comparable with noise width if the noise level is small. A small level
of noise even helps as it makes the dynamics more ergodic, with deterministically
non-communicating parts of the phase space now weakly connected due to the
noise, making periodic orbit theory applicacle to non-ergodic systems. For small
amplitude noise one can expand

a = a0 + a1σ
2 + a2σ

4 + ... ,

around the deterministic averages a0. The expansion coefficients a1, a2, ... can also

be expressed via periodic orbit formulas. The calculation of these coefficients is

one of the challenges facing periodic orbit theory, discussed in refs. [9.5, 9.6, 9.7].

Résumé

We conclude this chapter by a general comment on the relation of the finite
trace sums such as (19.2) to the spectral determinants and dynamical zeta
functions. One might be tempted to believe that given a deterministic rule,
a sum like (19.2) could be evaluated to any desired precision. For short
finite times this is indeed true: every region Mi in (19.2) can be accurately
delineated, and there is no need for fancy theory. However, if the dynamics
is unstable, local variations in initial conditions grow exponentially and in
finite time attain the size of the system. The difficulty with estimating
the n → ∞ limit from (19.2) is then at least twofold:

1. due to the exponential growth in number of intervals, and the expo-
nential decrease in attainable accuracy, the maximal n attainable experi-
mentally or numerically is in practice of order of something between 5 to
20;

2. the preasymptotic sequence of finite estimates γn is not unique,
because the sums Γ̂n depend on how we define the escape region, and
because in general the areas |Mi| in the sum (19.2) should be weighted by
the density of initial x0.

In contrast, the dynamical zeta functions and spectral determinants are
invariant under all smooth nonlinear conjugacies x→ h(x), not only linear
rescalings, and require no n→ ∞ extrapolations.
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Exercises

Exercise 19.1 Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining trapped in the interval
[0, 1] for the logistic map

f(x) = a(1 − 4(x− 0.5)2), (19.21)

and determine the a dependence of the escape rate γ(a) numerically.

(b) Work out a numerical method for calculating the lengths of intervals of
trajectories remaining stuck for n iterations of the map.

(c) What is your expectation about the a dependence near the critical value
ac = 1?

Exercise 19.2 Four scale map decay. Compute the second largest eigenvalue
of the Perron-Frobenius operator for the four scale map

f(x) =





a1x if 0 < x < b/a1,
(1 − b)((x− b/a1)/(b− b/a1)) + b if b/a1 < x < b,
a2(x − b) if b < x < b+ b/a2,
(1 − b)((x− b− b/a2)/(1 − b− b/a2)) + b if b+ b/a2 < x < 1.

(19.22)

Exercise 19.3 Lyapunov exponents for 1-dimensional maps. Extend
your cycle expansion programs so that the first and the second moments of
observables can be computed. Use it to compute the Lyapunov exponent for
some or all of the following maps:

(a) the piecewise-linear flow conserving map, the skew tent map

f(x) =

{
ax if 0 ≤ x ≤ a−1,
a
a−1(1 − x) if a−1 ≤ x ≤ 1.

(b) the Ulam map f(x) = 4x(1 − x)

(c) the skew Ulam map

f(x) = 0.1218x(1 − x)(1 − 0.6x)

with a peak at 0.7.

(d) the repeller of f(x) = Ax(1− x), for either A = 9/2 or A = 6 (this is a
continuation of exercise 18.2).
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(e) for the 2-branch flow conserving map

f0(x) =
h− p+

√
(h− p)2 + 4hx

2h
, x ∈ [0, p] (19.23)

f1(x) =
h+ p− 1 +

√
(h+ p− 1)2 + 4h(x− p)

2h
, x ∈ [p, 1]

This is a nonlinear perturbation of (h = 0) Bernoulli map (16.6); the first
15 eigenvalues of the Perron-Frobenius operator are listed in ref. [19.1]
for p = 0.8, h = 0.1. Use these parameter values when computing the
Lyapunov exponent.

Cases (a) and (b) can be computed analytically; cases (c), (d) and (e)
require numerical computation of cycle stabilities. Just to see whether the
theory is worth the trouble, also cross check your cycle expansions results
for cases (c) and (d) with Lyapunov exponent computed by direct numerical
averaging along trajectories of randomly chosen initial points:

(f) trajectory-trajectory separation (10.27) (hint: rescale δx every so often,
to avoid numerical overflows),

(g) iterated stability (10.31).

How good is the numerical accuracy compared with the periodic orbit theory
predictions?

oo

.
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Chapter 20

Thermodynamic formalism

So, naturalists observe, a flea hath smaller fleas that
on him prey; and those have smaller still to bite ’em;
and so proceed ad infinitum.

Jonathan Swift

(G. Vattay)

In the preceding chapters we characterized chaotic systems via global quan-
tities such as averages. It turned out that these are closely related to very
fine details of the dynamics like stabilities and time periods of individual pe-
riodic orbits. In statistical mechanics a similar duality exists. Macroscopic
systems are characterized with thermodynamic quantities (pressure, tem-
perature and chemical potential) which are averages over fine details of the
system called microstates. One of the greatest achievements of the theory
of dynamical systems was when in the sixties and seventies Bowen, Ruelle
and Sinai made the analogy between these two subjects explicit. Later this
“Thermodynamic Formalism” of dynamical systems became widely used
when the concept of fractals and multifractals has been introduced. The
formalism made it possible to calculate various fractal dimensions in an
elegant way and become a standard instrument in a wide range of scientific
fields. Next we sketch the main ideas of this theory and show how periodic
orbit theory helps to carry out calculations.

20.1 Rényi entropies

As we have already seen trajectories in a dynamical system can be char-
acterized by their symbolic sequences from a generating Markov partition.
We can locate the set of starting points Ms1s2...sn of trajectories whose
symbol sequence starts with a given set of n symbols s1s2...sn. We can
associate many different quantities to these sets. There are geometric
measures such as the volume V (s1s2...sn), the area A(s1s2...sn) or the
length l(s1s2...sn) of this set. Or in general we can have some measure
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µ(Ms1s2...sn) = µ(s1s2...sn) of this set. As we have seen in (19.10) the
most important is the natural measure, which is the probability that a
non-periodic trajectory visits the set µ(s1s2...sn) = P (s1s2...sn). The nat-
ural measure is additive. Summed up for all possible symbol sequences of
length n it gives the measure of the whole phase space:

∑

s1s2...sn

µ(s1s2...sn) = 1 (20.1)

expresses probability conservation. Also, summing up for the last symbol
we get the measure of a one step shorter sequence

∑

sn

µ(s1s2...sn) = µ(s1s2...sn−1).

As we increase the length (n) of the sequence the measure associated with it
decreases typically with an exponential rate. It is then useful to introduce
the exponents

λ(s1s2...sn) = − 1

n
log µ(s1s2...sn). (20.2)

To get full information on the distribution of the natural measure in the
symbolic space we can study the distribution of exponents. Let the number
of symbol sequences of length n with exponents between λ and λ + dλ be
given by Nn(λ)dλ. For large n the number of such sequences increases
exponentially. The rate of this exponential growth can be characterized by
g(λ) such that

Nn(λ) ∼ exp(ng(λ)).

The knowledge of the distribution Nn(λ) or its essential part g(λ) fully
characterizes the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution.
However it is very time consuming to calculate the distribution directly by
making statistics for millions of symbolic sequences. Instead, we introduce
auxiliary quantities which are easier to calculate and to handle. These are
called partition sums

Zn(β) =
∑

s1s2...sn

µβ(s1s2...sn), (20.3)

as they are obviously motivated by Gibbs type partition sums of statistical
mechanics. The parameter β plays the role of inverse temperature 1/kBT
and E(s1s2...sn) = − log µ(s1s2...sn) is the energy associated with the mi-
crostate labeled by s1s2...sn We are tempted also to introduce something
analogous with the Free energy. In dynamical systems this is called the
Rényi entropy [H.5] defined by the growth rate of the partition sum

Kβ = lim
n→∞

1

n

1

1 − β
log

(
∑

s1s2...sn

µβ(s1s2...sn)

)
. (20.4)
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In the special case β → 1 we get Kolmogorov’s entropy

K1 = lim
n→∞

1

n

∑

s1s2...sn

−µ(s1s2...sn) log µ(s1s2...sn),

while for β = 0 we recover the topological entropy

htop = K0 = lim
n→∞

1

n
logN(n),

where N(n) is the number of existing length n sequences. To connect the
partition sums with the distribution of the exponents, we can write them
as averages over the exponents

Zn(β) =

∫
dλNn(λ) exp(−nλβ),

where we used the definition (20.2). For large n we can replace Nn(λ) with
its asymptotic form

Zn(β) ∼
∫
dλ exp(ng(λ)) exp(−nλβ).

For large n this integral is dominated by contributions from those λ∗ which
maximize the exponent

g(λ) − λβ.

The exponent is maximal when the derivative of the exponent vanishes

g′(λ∗) = β. (20.5)

From this equation we can determine λ∗(β). Finally the partition sum is

Zn(β) ∼ exp(n[g(λ∗(β)) − λ∗(β)β]).

Using the definition (20.4) we can now connect the Rényi entropies and
g(λ)

(β − 1)Kβ = λ∗(β)β − g(λ∗(β)). (20.6)

Equations (20.5) and (20.6) define the Legendre transform of g(λ). This
equation is analogous with the thermodynamic equation connecting the
entropy and the free energy. As we know from thermodynamics we can
invert the Legendre transform. In our case we can express g(λ) from the
Rényi entropies via the Legendre transformation

g(λ) = λβ∗(λ) − (β∗(λ) − 1)Kβ∗(λ), (20.7)

where now β∗(λ) can be determined from

d

dβ∗
[(β∗ − 1)Kβ∗ ] = λ. (20.8)
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Obviously, if we can determine the Rényi entropies we can recover the
distribution of probabilities from (20.7) and (20.8).

The periodic orbit calculation of the Rényi entropies can be carried out
by approximating the natural measure corresponding to a symbol sequence
by the expression (19.10)

µ(s1, ..., sn) ≈
enγ

|Λs1s2...sn|
. (20.9)

The partition sum (20.3) now reads

Zn(β) ≈
∑

i

enβγ

|Λi|β
, (20.10)

where the summation goes for periodic orbits of length n. We can define
the characteristic function

Ω(z, β) = exp

(
−
∑

n

zn

n
Zn(β)

)
. (20.11)

According to (20.4) for large n the partition sum behaves as

Zn(β) ∼ e−n(β−1)Kβ . (20.12)

Substituting this into (20.11) we can see that the leading zero of the char-
acteristic function is

z0(β) = e(β−1)Kβ .

On the other hand substituting the periodic orbit approximation (20.10)
into (20.11) and introducing prime and repeated periodic orbits as usual
we get

Ω(z, β) = exp

(
−
∑

p,r

znpreβγnpr

r|Λrp|β

)
.

We can see that the characteristic function is the same as the zeta function
we introduced for Lyapunov exponents (H.14) except we have zeβγ instead
of z. Then we can conclude that the Rényi entropies can be expressed with
the pressure function directly as

P (β) = (β − 1)Kβ + βγ, (20.13)

since the leading zero of the zeta function is the pressure. The Rényi
entropies Kβ, hence the distribution of the exponents g(λ) as well, can be
calculated via finding the leading eigenvalue of the operator (H.4).
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Figure 20.1: 0
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Figure 20.2: g(λ) and P (β) for the map of
Exercise 20.4 at a = 3 and b = 3/2. See Solu-
tions N for calculation details.
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From (20.13) we can get all the important quantities of the thermody-
namic formalism. For β = 0 we get the topological entropy

P (0) = −K0 = −htop. (20.14)

For β = 1 we get the escape rate

P (1) = γ. (20.15)

Taking the derivative of (20.13) in β = 1 we get Pesin’s formula [H.2]
connecting Kolmogorov’s entropy and the Lyapunov exponent

P ′(1) = λ = K1 + γ. (20.16)

✎ 20.1
page 351

It is important to note that, as always, these formulas are strictly valid for
nice hyperbolic systems only. At the end of this Chapter we discuss the
important problems we are facing in non-hyperbolic cases.

On figure 20.2 we show a typical pressure and g(λ) curve computed
for the two scale tent map of Exercise 20.4. We have to mention, that
all typical hyperbolic dynamical system produces a similar parabola like
curve. Although this is somewhat boring we can interpret it like a sign
of a high level of universality: The exponents λ have a sharp distribution
around the most probable value. The most probable value is λ = P ′(0) and
g(λ) = htop is the topological entropy. The average value in closed systems
is where g(λ) touches the diagonal: λ = g(λ) and 1 = g′(λ).

Next, we are looking at the distribution of trajectories in real space.
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20.2 Fractal dimensions

By looking at the repeller we can recognize an interesting spatial structure.
In the 3-disk case the starting points of trajectories not leaving the system
after the first bounce form two strips. Then these strips are subdivided
into an infinite hierarchy of substrips as we follow trajectories which do not
leave the system after more and more bounces. The finer strips are similar
to strips on a larger scale. Objects with such self similar properties are
called fractals.

We can characterize fractals via their local scaling properties. The first
step is to draw a uniform grid on the surface of section. We can look at
various measures in the square boxes of the grid. The most interesting
measure is again the natural measure located in the box. By decreasing
the size of the grid ǫ the measure in a given box will decrease. If the
distribution of the measure is smooth then we expect that the measure of
the ith box is proportional with the dimension of the section

µi ∼ ǫd.

If the measure is distributed on a hairy object like the repeller we can
observe unusual scaling behavior of type

µi ∼ ǫαi ,

where αi is the local “dimension” or Hölder exponent of the the object.
As α is not necessarily an integer here we are dealing with objects with
fractional dimensions. We can study the distribution of the measure on the
surface of section by looking at the distribution of these local exponents.
We can define

αi =
log µi
log ǫ

,

the local Hölder exponent and then we can count how many of them are
between α and α + dα. This is Nǫ(α)dα. Again, in smooth objects this
function scales simply with the dimension of the system

Nǫ(α) ∼ ǫ−d,

while for hairy objects we expect an α dependent scaling exponent

Nǫ(α) ∼ ǫ−f(α).

f(α) can be interpreted [H.7] as the dimension of the points on the surface
of section with scaling exponent α. We can calculate f(α) with the help of
partition sums as we did for g(λ) in the previous section. First we define

Zǫ(q) =
∑

i

µqi . (20.17)

Then we would like to determine the asymptotic behavior of the partition
sum characterized by the τ(q) exponent

Zǫ(q) ∼ ǫ−τ(q).
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The partition sum can be written in terms of the distribution function of
α-s

Zǫ(q) =

∫
dαNǫ(α)ǫqα.

Using the asymptotic form of the distribution we get

Zǫ(q) ∼
∫
dαǫqα−f(α).

As ǫ goes to zero the integral is dominated by the term maximizing the
exponent. This α∗ can be determined from the equation

d

dα∗ (qα∗ − f(α∗)) = 0,

leading to
q = f ′(α∗).

Finally we can read off the scaling exponent of the partition sum

τ(q) = α∗q − f(α∗).

In a uniform fractal characterized by a single dimension both α and f(α)
collapse to α = f(α) = D. The scaling exponent then has the form τ(q) =
(q − 1)D. In case of non uniform fractals we can introduce generalized
dimensions [H.9] Dq via the definition

Dq = τ(q)/(q − 1).

Some of these dimensions have special names. For q = 0 the partition sum
(20.17) counts the number of non empty boxes N̄ǫ. Consequently

D0 = − lim
ǫ→0

log N̄ǫ

log ǫ
,

is called the box counting dimension. For q = 1 the dimension can be
determined as the limit of the formulas for q → 1 leading to

D1 = lim
ǫ→0

∑

i

µi log µi/ log ǫ.

This is the scaling exponent of the Shannon information entropy [H.16] of
the distribution, hence its name is information dimension.

Using equisize grids is impractical in most of the applications. Instead,
we can rewrite (20.17) into the more convenient form

∑

i

µqi
ǫτ (q)

∼ 1. (20.18)

If we cover the ith branch of the fractal with a grid of size li instead of ǫ
we can use the relation [20.5]

∑

i

µqi
li
τ (q)

∼ 1, (20.19)
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the non-uniform grid generalization of 20.18. Next we show how can we
use the periodic orbit formalism to calculate fractal dimensions. We have
already seen that the width of the strips of the repeller can be approximated
with the stabilities of the periodic orbits situating in them

li ∼
1

|Λi|
.

Then using this relation and the periodic orbit expression of the natural
measure we can write (20.19) into the form

∑

i

eqγn

|Λi|q−τ(q)
∼ 1, (20.20)

where the summation goes for periodic orbits of length n. The sum for
stabilities can be expressed with the pressure function again

∑

i

1

|Λi|q−τ(q)
∼ e−nP (q−τ(q)),

and (20.20) can be written as

eqγne−nP (q−τ(q)) ∼ 1,

for large n. Finally we get an implicit formula for the dimensions

P (q − (q − 1)Dq) = qγ. (20.21)

Solving this equation directly gives us the partial dimensions of the mul-
tifractal repeller along the stable direction. We can see again that the
pressure function alone contains all the relevant information. Setting q = 0
in (20.21) we can prove that the zero of the pressure function is the box-
counting dimension of the repeller

P (D0) = 0.

Taking the derivative of (20.21) in q = 1 we get

P ′(1)(1 −D1) = γ.

This way we can express the information dimension with the escape rate
and the Lyapunov exponent

D1 = 1 − γ/λ. (20.22)

If the system is bound (γ = 0) the information dimension and all other
dimensions are Dq = 1. Also since D10 is positive (20.22) proves that the
Lyapunov exponent must be larger than the escape rate λ > γ in general.

✎ 20.4
page 352

✎ 20.5
page 352

✎ 20.6
page 352
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Commentary

Remark 20.1 Mild phase transition. In non-hyperbolic systems the formulas
derived in this chapter should be modified. As we mentioned in 19.1 in non-
hyperbolic systems the periodic orbit expression of the measure can be

µ0 = eγn/|Λ0|δ,

where δ can differ from 1. Usually it is 1/2. For sufficiently negative β the corre-
sponding term 1/|Λ0|β can dominate (20.10) while in (20.3) eγn/|Λ0|δβ plays no
dominant role. In this case the pressure as a function of β can have a kink at
the critical point β = βc where βc log |Λ0| = (βc − 1)Kβc + βcγ. For β < βc the
pressure and the Rényi entropies differ

P (β) 6= (β − 1)Kβ + βγ.

This phenomena is called phase transition. This is however not a very deep prob-

lem. We can fix the relation between pressure and the entropies by replacing 1/|Λ0|
with 1/|Λ0|δ in (20.10).

Remark 20.2 Hard phase transition The really deep trouble of thermodynamics

is caused by intermittency. In that case we have periodic orbits with |Λ0| → 1

as n → ∞. Then for β > 1 the contribution of these orbits dominate both

(20.10) and (20.3). Consequently the partition sum scales as Zn(β) → 1 and

both the pressure and the entropies are zero. In this case quantities connected

with β ≤ 1 make sense only. These are for example the topological entropy,

Kolmogorov entropy, Lyapunov exponent, escape rate, D0 and D1. This phase

transition cannot be fixed. It is probably fair to say that quantities which depend

on this phase transition are only of mathematical interest and not very useful for

characterization of realistic dynamical systems.

Remark 20.3 Multifractals. For reasons that remain mysterious to the authors -

perhaps so that Mandelbrot can refer to himself both as the mother of fractals and

the grandmother of multifractals - some physics literature referes to any fractal

generated by more than one scale as a “multi”-fractal. This usage seems to divide

fractals into 2 classes; one consisting essentially of the above Cantor set and the

Serapinski gasket, and the second consisting of anything else, including all cases

of physical interest.

Résumé

In this chapter we have shown that thermodynamic quantities and various
fractal dimensions can be expressed in terms of the pressure function. The
pressure function is the leading eigenvalue of the operator which generates
the Lyapunov exponent. In the Lyapunov case β is just an auxiliary vari-
able. In thermodynamics it plays an essential role. The good news of the
chapter is that the distribution of locally fluctuating exponents should not
be computed via making statistics. We can use cyclist formulas for deter-
mining the pressure. Then the pressure can be found using short cycles +
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curvatures. Here the head reach the tail of the snake. We just argued that
the statistics of long trajectories coded in g(λ) and P (β) can be calculated
from short cycles. To use this intimate relation between long and short
trajectories effectively is still a research level problem.
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EXERCISES 351

Exercises

Exercise 20.1 Thermodynamics in higher dimensions Introduce the time
averages of the eigenvalues of the Jacobian

λi = lim
t→∞

1

t
log |Λt

i(x0)|, (20.23)

as a generalization of (10.31).

Show that in higher dimensions Pesin’s formula is

K1 =
∑

i

λi − γ, (20.24)

where the summation goes for the positive λi-s only. (Hint: Use the higher dimensional
generalization of (19.10)

µi = enγ/|
∏

j

Λi,j|,

where the product goes for the expanding eigenvalues of the Jacobian of the periodic

orbit.

Exercise 20.2 Bunimovich stadium Kolmogorov entropy. Take for defini-

tiveness a = 1.6 and d = 1 in the Bunimovich stadium of exercise 6.4,

2a


d


estimate the Lyapunov exponent by averaging over a very long trajectory. Biham and

Kvale [20.14] estimate the discrete time Lyapunov to λ ≈ 1.0± .1, the continuous time

Lyapunov to λ ≈ 0.43 ± .02, the topological entropy (for their symbolic dynamics)

h ≈ 1.15 ± .03.

Exercise 20.3 Entropy of rugged-edge billiards. Take a semi-circle of
diameter ε and replace the sides of a unit square by ⌊1/ε⌋ catenated copies of the
semi-circle.

(a) Is the billiard ergodic as ε→ 0?
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(b) (hard) Show that the entropy of the billiard map is

K1 → − 2

π
ln ε+ const ,

as ε→ 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the Bunimovich stadium are far
apart, say L, the entropy for the flow decays as

K1 → 2 lnL

πL
.

Exercise 20.4 Two scale map Compute all those quantities - dimensions,
escape rate, entropies, etc. - for the repeller of the one dimensional map

f(x) =

{
1 + ax if x < 0,
1 − bx if x > 0.

(20.25)

where a and b are larger than 2. Compute the fractal dimension, plot the pressure and

compute the f(α) spectrum of singularities.

Exercise 20.5 Four scale map Compute the Rényi entropies and g(λ) for the
four scale map

f(x) =





a1x if 0 < x < b/a1,
(1 − b)((x − b/a1)/(b− b/a1)) + b if b/a1 < x < b,
a2(x − b) if b < x < b+ b/a2,
(1 − b)((x − b− b/a2)/(1 − b− b/a2)) + b if b+ b/a2 < x < 1.

(20.26)

Hint: Calculate the pressure function and use (20.13).

Exercise 20.6 Transfer matrix Take the unimodal map f(x) = sin(πx) of

the interval I = [0, 1]. Calculate the four preimages of the intervals I0 = [0, 1/2] and

I1 = [1/2, 1]. Extrapolate f(x) with piecewise linear functions on these intervals. Find

a1, a2 and b of the previous exercise. Calculate the pressure function of this linear

extrapolation. Work out higher level approximations by linearly extrapolating the map

on the 2n-th preimages of I.
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Chapter 21

Intermittency

Sometimes They Come Back

Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanović)

In the theory of chaotic dynamics developed so far we assumed that the
evolution operators have discrete spectra {z0, z1, z2, . . .} given by the zeros
of

1/ζ(z) = (· · ·)
∏

k

(1 − z/zk) .

The assumption was based on the tacit premise that the dynamics is every-
where exponentially unstable. Real life is nothing like that - phase spaces
are generically infinitely interwoven patterns of stable and unstable behav-
iors. The stable (in the case of Hamiltonian flows, integrable) orbits do not
communicate with the ergodic components of the phase space, and can be
treated by classical methods. In general, one is able to treat the dynamics
near stable orbits as well as chaotic components of the phase space dynam-
ics well within a periodic orbit approach. Problems occur at the broderline
between chaos and regular dynamics where marginally stable orbits and
manifolds present difficulties and still unresolved challenges.

We shall use the simplest example of such behavior - intermittency in
1-dimensional maps - to illustrate effects of marginal stability. The main
message will be that spectra of evolution operators are no longer discrete,
dynamical zeta functions exhibit branch cuts of the form

1/ζ(z) = (· · ·) + (1 − z)α(· · ·) ,

and correlations decay no longer exponentially, but as power laws.
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354 CHAPTER 21. INTERMITTENCY

Figure 21.1: Typical phase space for an area-preserving map with mixed phase space
dynamics; here the standard map for k=1.2.

21.1 Intermittency everywhere

In many fluid dynamics experiments one observes transitions from regu-
lar behaviors to behaviors where long time intervals of regular behavior
(“laminar phases”) are interrupted by fast irregular bursts. The closer the
parameter is to the onset of such bursts, the longer are the intervals of regu-
lar behavior. The distributions of laminar phase intervals are well described
by power laws.

This phenomenon is called intermittency, and it is a very general as-
pect of dynamics, a shadow cast by non-hyperbolic, marginally stable phase
space regions. Complete hyperbolicity assumed in (14.5) is the exception
rather than the rule, and for almost any dynamical system of interest (dy-
namics in smooth potentials, billiards with smooth walls, the infinite hori-
zon Lorentz gas, etc.) one encounters mixed phase spaces with islands
of stability coexisting with hyperbolic regions, see figure 21.1. Wherever
stable islands are interspersed with chaotic regions, trajectories which come
close to the stable islands can stay ‘glued’ for arbitrarily long times. These
intervals of regular motion are interrupted by irregular bursts as the tra-
jectory is re-injected into the chaotic part of the phase space. How the
trajectories are precisely ‘glued’ to the marginally stable region is often
hard to describe. What coarsely looks like a border of an island will un-
der magnification dissolve into infinities of island chains of decreasing sizes,
broken tori and bifurcating orbits, as illustrated in figure 21.1.

Intermittency is due to the existence of fixed points and cycles of mar-
ginal stability (8.2), or (in studies of the onset of intermittency) to the
proximity of a nearly marginal complex or unstable orbits. In Hamiltonian
systems intermittency goes hand in hand with the existence of (marginally
stable) KAM tori. In more general settings, the existence of marginal or
nearly marginal orbits is due to incomplete intersections of stable and unsta-
ble manifolds in a Smale horseshoe type dynamics (see figure 13.2). Follow-
ing the stretching and folding of the invariant manifolds in time one will in-
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Figure 21.2: A complete binary repeller with
a marginal fixed point.
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evitably find phase space points at which the stable and unstable manifolds
are almost or exactly tangential to each other, implying non-exponential
separation of nearby points in phase space or, in other words, marginal sta-
bility. Under small parameter perturbations such neighborhoods undergo
tangent bifurcations - a stable/unstable pair of periodic orbits is destroyed
or created by coalescing into a marginal orbit, so the pruning which we
shall encounter in chapter 12, and the intermittency discussed here are two
sides of the same coin.

☞ sect. 12.4

How to deal with the full complexity of a typical Hamiltonian system
with mixed phase space is a very difficult, still open problem. Nevertheless,
it is possible to learn quite a bit about intermittency by considering rather
simple examples. Here we shall restrict our considerations to 1-dimensional
maps which in the neighborhood of a single marginally stable fixed point
at x=0 take the form

x 7→ f(x) = x+O(x1+s) , (21.1)

and are expanding everywhere else. Such a map may allow for escape, like
the map shown in figure 21.2 or the dynamics may be bounded, like the
Farey map (18.28) 163,164c153,154

x 7→ f(x) =

{
x/(1 − x) x ∈ [0, 1/2[
(1 − x)/x x ∈ [1/2, 1]

introduced in sect. 18.5.

Figure 21.3 compares a trajectory of the tent map (11.8) side by side
with a trajectory of the Farey map. In a stark contrast to the uniformly
chaotic trajectory of the tent map, the Farey map trajectory alternates
intermittently between slow regular motion close to the marginally stable
fixed point, and chaotic bursts.

☞ sect. 18.5.3

The presence of marginal stability has striking dynamical consequences:
correlation decay may exhibit long range power law asymptotic behavior
and diffusion processes can assume anomalous character. Escape from a
repeller of the form figure 21.2 may be algebraic rather than exponential.
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Figure 21.3: (a) A tent map trajectory. (b) A Farey map trajectory.

In long time explorations of the dynamics intermittency manifests itself
by enhancement of natural measure in the proximity of marginally stable
cycles.

The questions we shall address here are: how does marginal stability
affect zeta functions or spectral determinants? And, can we deduce power
law decays of correlations from cycle expansions?

In example 16.5 we saw that marginal stability violates one of the con-
ditions which ensure that the spectral determinant is an entire function.
Already the simple fact that the cycle weight 1/|1−Λrp| in the trace (14.3)
or the spectral determinant (15.3) diverges for marginal orbits with |Λp| = 1
tells us that we have to treat these orbits with care.

In the following we will incorporate marginal stability orbits into cycle-
expansions in a systematic manner. To get to know the difficulties lying
ahead, we will start in sect. 21.2 with a piecewise linear map, with the
asymptotics (21.1). We will construct a dynamical zeta function in the
usual way without worrying too much about its justification and show that
it has a branch cut singularity. We will calculate the rate of escape from our
piecewise linear map and find that it is characterized by decay, rather than
exponential decay, a power law. We will show that dynamical zeta functions
in the presence of marginal stability can still be written in terms of periodic
orbits, exactly as in chapters 10 and 19, with one exception: the marginally
stable orbits have to be explicitly excluded. This innocent looking step has
far reaching consequences; it forces us to change the symbolic dynamics
from a finite to an infinite alphabet, and entails a reorganization of the
order of summations in cycle expansions, sect. 21.2.4.
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Branch cuts are typical also for smooth intermittent maps with isolated
marginally stable fixed points and cycles. In sect. 21.3, we discuss the
cycle expansions and curvature combinations for zeta functions of smooth
maps tailored to intermittency. The knowledge of the type of singularity
one encounters enables us to develop the efficient resummation method
presented in sect. 21.3.1.

Finally, in sect. 21.4, we discuss a probabilistic approach to intermit-
tency that yields approximate dynamical zeta functions and provides valu-
able information about more complicated systems, such as billiards.

21.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertoire of interesting
dynamics, it is also at the root of many sorrows such as slow convergence
of cycle expansions. In order to get to know the kind of problems which
arise when studying dynamical zeta functions in the presence of marginal
stability we will consider an artfully concocted piecewise linear model first.
From there we will move on to the more general case of smooth intermittant
maps, sect. 21.3.

21.2.1 A toy map

The Bernoulli shift map (16.6) is an idealized, but highly instructive, ex-
ample of a hyperbolic map. To study intermittency we will now construct
a likewise piecewise linear model, an intermittent map stripped down to its
bare essentials.

Consider a map x 7→ f(x) on the unit interval M = [0, 1] with two
monotone branches

f(x) =

{
f0(x) for x ∈ M0 = [0, a]
f1(x) for x ∈ M1 = [b, 1]

. (21.2)

The two branches are assumed complete, that is f0(M0) = f1(M1) = M.
The map allows escape if a < b and is bounded if a = b (see figure 21.2 and
figure 21.4). We take the right branch to be expanding and linear:

f1(x) =
1

1 − b
(x− b) .

Next, we will construct the left branch in a way, which will allow us
to model the intermittent behavior (21.1) near the origin. We chose a
monotonically decreasing sequence of points qn in [0, a] with q1 = a and
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Figure 21.4: A piecewise linear intermittent
map of (21.2) type: more specifically, the map
piecewise linear over intervals (21.8) of the toy
example studied below, a = .5, b = .6, s = 1.0. x
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b..

qn → 0 as n→ ∞. This sequence defines a partition of the left interval M0

into an infinite number of connected intervals Mn, n ≥ 2 with

Mn = ]qn, qn−1] and M0 =
∞⋃

n=2

Mn. (21.3)

The map f0(x) is now specified by the following requirements

• f0(x) is continuous.

• f0(x) is linear on the intervals Mn for n ≥ 2.

• f0(qn) = qn−1, that is Mn = f−n+1
0 ([a, 1]) .

This fixes the map for any given sequence {qn}. The last condition ensures
the existence of a simple Markov partition. The slopes of the various linear
segments are

f ′0(x) = f0(qn−1)−f0(qn)
qn−1−qn = |Mn−1|

|Mn| for x ∈ Mn, n ≥ 3

f ′0(x) = f0(q1)−f0(q2)
q1−q2 = 1−a

|M2| for x ∈ M2

f ′0(x) = 1
1−b = |M|

|M1| for x ∈ M1

(21.4)

with |Mn| = qn−1 − qn for n ≥ 2. Note that we do not require as yet that
the map exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10n plays a
key role for intermittent maps of the form (21.1). An orbit 10n enters the
intervals M1 → Mn+1 → Mn → . . . → M2 successively and the family
approaches the marginal stable fixed point at x = 0 for n → ∞. The
stability of a cycle 10n for n ≥ 1 is given by the chain rule (4.34),

Λ10n = f ′0(xn+1)f
′
0(xn) . . . f

′
0(x2)f

′
1(x1) =

1

|Mn+1|
1 − a

1 − b
, (21.5)

with xi ∈ Mi.
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The properties of the map (21.2) are completely determined by the
sequence {qn}. By choosing qn = 2−n, for example, we recover the uni-
formly hyperbolic Bernoulli shift map (16.6). An intermittent map of the
form (21.3) having the asymptotic behavior (21.1) can be constructed by
choosing an algebraically decaying sequence {qn} behaving asymptotically
like

qn ∼ 1

n1/s
, (21.6)

where s is the intermittency exponent in (21.1). Such a partition leads to
intervals whose length decreases asymptotically like a power-law, that is,

|Mn| ∼
1

n1+1/s
. (21.7)

As can be seen from (21.5), the stability eigenvalues of periodic orbit fam-
ilies approaching the marginal fixed point, such as the 10n family increase
in turn only algebraically with the cycle length.

It may now seem natural to construct an intermittent toy map in terms
of a partition |Mn| = 1/n1+1/s, that is, a partition which follows (21.7)
exactly. Such a choice leads to a dynamical zeta function which can be
written in terms of so-called Jonquière functions (or polylogarithms) which
arise naturally also in the context of the Farey map (18.28), and the anom-
alous diffusion of sect. 23.3. We will, however, not go along this route here;

☞ remark 23.8
instead, we will engage in a bit of reverse engineering and construct a less
obvious partition which will simplify the algebra considerably later without
loosing any of the key features typical for intermittent systems. We fix the
intermittent toy map by specifying the intervals Mn in terms of Gamma
functions according to

|Mn| = C Γ(n+m− 1/s− 1)

Γ(n+m)
for n ≥ 2, (21.8)

where m = [1/s] denotes the integer part of 1/s and C is a normalization
constant fixed by the condition

∑∞
n=2 |Mn| = q1 = a, that is,

C = a

[ ∞∑

n=m+1

Γ(n− 1/s)

Γ(n+ 1)

]−1

. (21.9)

Using Stirling’s formula for the Gamma function

Γ(z) ∼ e−zzz−1/2
√

2π (1 + 1/12z + . . .) ,

we verify that the intervals decay asymptotically like n−(1+1/s), as required
by the condition (21.7).
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Next, let us write down the dynamical zeta function of the toy map in
terms of its periodic orbits, that is

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)

One may be tempted to expand the dynamical zeta function in terms of the
binary symbolic dynamics of the map; we saw, however, in sect. 18.5 that
such cycle expansion converges extremely slowly. The shadowing mecha-
nism between orbits and pseudo-orbits fails for orbits of the form 10n with
stabilities given by (21.5), due to the marginal stability of the fixed point 0.
It is therefore advantageous to choose as the fundamental cycles the fam-
ily of orbits with code 10n or, equivalently, switch from the finite (binary)
alphabet to an infinite alphabet given by

10n−1 → n.

Due to the piecewise-linear form of the map which maps intervals Mn

exactly onto Mn−1, all periodic orbits entering the left branch at least
twice are canceled exactly by pseudo cycles, and the cycle expanded dyn-
amical zeta function depends only on the fundamental series 1, 10, 100, . . .:

1/ζ(z) =
∏

p 6=0

(
1 − znp

|Λp|

)
= 1 −

∞∑

n=1

zn

|Λ10n−1 |

= 1 − (1 − b)z − C 1 − b

1 − a

∞∑

n=2

Γ(n+m− 1/s− 1)

Γ(n+m)
zn .(21.10)

The fundamental term (18.5) consists here of an infinite sum over alge-
braically decaying cycle weights. The sum is divergent for |z| ≥ 1. We will
see that this behavior is due to a branch cut of 1/ζ starting at z = 1. We
need to find analytic continuations of sums over algebraically decreasing
terms in (21.10). Note also that we omitted the fixed point 0 in the above
Euler product; we will discussed this point as well as a proper derivation
of the zeta function in more detail in sect. 21.2.4.

21.2.2 Branch cuts

Starting from the dynamical zeta function (21.10), we first have to worry
about finding an analytical continuation of the sum for |z| ≥ 1. We do,
however, get this part for free here due to the particular choice of interval
lengths made in (21.8). The sum over ratios of Gamma functions in (21.10)
can be evaluated analytically by using the following identities valid for
1/s = α > 0 (the famed binomial theorem in disguise),
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• α non-integer

(1 − z)α =

∞∑

n=0

Γ(n− α)

Γ(−α)Γ(n + 1)
zn (21.11)

• α integer

(1 − z)α log(1 − z) =
α∑

n=1

(−1)ncnz
n (21.12)

+ (−1)α+1α!

∞∑

n=α+1

(n− α− 1)!

n!
zn

with

cn =

(
α
n

) n−1∑

k=0

1

α− k
.

In order to simplify the notation, we restrict the intermittency parameter
to the range 1 ≤ 1/s < 2 with [1/s] = m = 1. All what follows can easily
be generalized to arbitrary s > 0 using equations (21.11) and (21.12). The
infinite sum in (21.10) can now be evaluated with the help of (21.11) or
(21.12), that is,

∞∑

n=2

Γ(n− 1/s)

Γ(n+ 1)
zn =

{
Γ(−1

s )
[
(1 − z)1/s − 1 + 1

sz
]

for 1 < 1/s < 2;
(1 − z) log(1 − z) + z for s = 1 .

The normalization constant C in (21.8) can be evaluated explicitly using
(21.9) and the dynamical zeta function can be given in closed form. We
obtain for 1 < 1/s < 2

1/ζ(z) = 1 − (1 − b)z − a

1/s − 1

1 − b

1 − a

(
(1 − z)1/s − 1 +

1

s
z

)
.(21.13)

and for s = 1,

1/ζ(z) = 1 − (1 − b)z − a
1 − b

1 − a
((1 − z) log(1 − z) + z) . (21.14)

It now becomes clear why the particular choice of intervals Mn made in
the last section is useful; by summing over the infinite family of periodic
orbits 0n1 explicitly, we have found the desired analytical continuation for
the dynamical zeta function for |z| ≥ 1. The function has a branch cut
starting at the branch point z = 1 and running along the positive real axis.
That means, the dynamical zeta function takes on different values when
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approaching the positive real axis for Re z > 1 from above and below. The
dynamical zeta function for general s > 0 takes on the form

1/ζ(z) = 1 − (1 − b)z − a

gs(1)

1 − b

1 − a

1

zm−1

(
(1 − z)1/s − gs(z)

)
(21.15)

for non-integer s with m = [1/s] and

1/ζ(z) = 1−(1−b)z− a

gm(1)

1 − b

1 − a

1

zm−1
((1 − z)m log(1 − z) − gm(z)) (21.16)

for 1/s = m integer and gs(z) are polynomials of order m = [1/s] which
can be deduced from (21.11) or (21.12). We thus find algebraic branch cuts
for non integer intermittency exponents 1/s and logarithmic branch cuts
for 1/s integer. We will see in sect. 21.3 that branch cuts of that form are
generic for 1-dimensional intermittent maps.

Branch cuts are the all important new feature of dynamical zeta func-
tions due to intermittency. So, how do we calculate averages or escape rates
of the dynamics of the map from a dynamical zeta function with branch
cuts? We take ‘a learning by doing’ approach and calculate the escape from
our toy map for a < b.

21.2.3 Escape rate

Our starting point for the calculation of the fraction of survivors after n
time steps, is the integral representation (15.19)

Γn =
1

2πi

∮

γ−r
z−n

(
d

dz
log ζ−1(z)

)
dz , (21.17)

where the contour encircles the origin in the clockwise direction. If the
contour lies inside the unit circle |z| = 1, we may expand the logarithmic
derivative of ζ−1(z) as a convergent sum over all periodic orbits. Integrals
and sums can be interchanged, the integrals can be solved term by term,
and the formula (14.23) is recovered. For hyperbolic maps, cycle expansion
methods or other techniques may provide an analytic extension of the dyn-
amical zeta function beyond the leading zero; we may therefore deform the
original contour into a larger circle with radius R which encircles both poles
and zeros of ζ−1(z), see figure 21.5(a). Residue calculus turns this into a
sum over the zeros zα and poles zβ of the dynamical zeta function, that is

Γn =
zeros∑

|zα|<R

1

znα
−

poles∑

|zβ |<R

1

znβ
+

1

2πi

∮

γ−R

dz z−n
d

dz
log ζ−1, (21.18)
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Figure 21.5: The survival probability Γn calculated by contour integration; inte-
grating (21.17) inside the domain of convergence |z| < 1 (shaded area) of 1/ζ(z) in
periodic orbit representation yields (14.23). A deformation of the contour γ−r (dashed
line) to a larger circle γ−R gives contributions from the poles and zeros (x) of 1/ζ(z)
between the two circles. These are the only contributions for hyperbolic maps (a), for
intermittent systems additional contributions arise, given by the contour γcut running
along the branch cut (b).

where the last term gives a contribution from a large circle γ−R . We thus find
exponential decay of Γn dominated by the leading zero or pole of ζ−1(z),
see chapter 20.1 for more details.

Things change considerably in the intermittent case. The point z = 1
is a branch cut singularity and there exists no Taylor series expansion of
ζ−1 around z = 1. Secondly, the path deformation that led us to (21.18)
requires more care, as it must not cross the branch cut. When expanding
the contour to large |z| values, we have to deform it along the branch
Re (z) ≥ 1, Im (z) = 0 encircling the branch cut in anti-clockwise direction,
see figure 21.5(b). We will denote the detour around the cut as γcut. We
may write symbolically

∮

γr

=

zeros∑
−

poles∑
+

∮

γR

+

∮

γcut

where the sums include only the zeros and the poles in the area enclosed by
the contours. The asymptotics is controlled by the zero, pole or cut closest
to the origin.

Let us now go back to our intermittent toy map. The asymptotics of
the survival probability of the map is here governed by the behavior of
the integrand d

dz log ζ−1 in (21.17) at the branch point z = 1. We restrict
ourselves again to the case 1 < 1/s < 2 first and write the dynamical zeta
function (21.13) in the form

1/ζ(z) = a0 + a1(1 − z) + b0(1 − z)1/s ≡ G(1 − z)
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and

a0 =
b− a

1 − a
, b0 =

a

1 − 1/s

1 − b

1 − a
.

Setting u = 1 − z, we need to evaluate

1

2πi

∮

γcut

(1 − u)−n
d

du
logG(u)du (21.19)

where γcut goes around the cut (that is, the negative u axis). Expanding
the integrand d

du logG(u) = G′(u)/G(u) in powers of u and u1/s at u = 0,
one obtains

d

du
logG(u) =

a1

a0
+

1

s

b0
a0
u1/s−1 +O(u) . (21.20)

The integrals along the cut may be evaluated using the general formula

1

2πi

∮

γcut

uα(1 − u)−ndu =
Γ(n− α− 1)

Γ(n)Γ(−α)
∼ 1

nα+1
(1 +O(1/n))(21.21)

which can be obtained by deforming the contour back to a loop around the
point u = 1, now in positive (anti-clockwise) direction. The contour integral
then picks up the (n−1)st term in the Taylor expansion of the function uα at
u = 1, cf. (21.11). For the continuous time case the corresponding formula
is

1

2πi

∮

γcut

zαeztdz =
1

Γ(−α)

1

tα+1
. (21.22)

Plugging (21.20) into (21.19) and using (21.21) we get the asymptotic
result

Γn ∼ b0
a0

1

s

1

Γ(1 − 1/s)

1

n1/s
=

a

s− 1

1 − b

b− a

1

Γ(1 − 1/s)

1

n1/s
. (21.23)

We see that, asymptotically, the escape from an intermittent repeller is
described by power law decay rather than the exponential decay we are
familiar with for hyperbolic maps; a numerical simulation of the power-law
escape from an intermittent repeller is shown in figure 21.6.

For general non-integer 1/s > 0, we write

1/ζ(z) = A(u) + (u)1/sB(u) ≡ G(u)
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Figure 21.6: The asymptotic escape from an
intermittent repeller is a power law. Normally
it is preceded by an exponential, which can be
related to zeros close to the cut but beyond the
branch point z = 1, as in figure 21.5(b). 0 200 400 600 800 1000
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with u = 1 − z and A(u), B(u) are functions analytic in a disc of radius 1
around u = 0. The leading terms in the Taylor series expansions of A(u)
and B(u) are

a0 =
b− a

1 − a
, b0 =

a

gs(1)

1 − b

1 − a
,

see (21.15). Expanding d
du logG(u) around u = 0, one again obtains lead-

ing order contributions according to (21.20) and the general result follows
immediately using (21.21), that is,

Γn ∼ a

sgs(1)

1 − b

b− a

1

Γ(1 − 1/s)

1

n1/s
. (21.24)

Applying the same arguments for integer intermittency exponents 1/s = m,
one obtains

Γn ∼ (−1)m+1 a

sgm(1)

1 − b

b− a

m!

nm
. (21.25)

So far, we have considered the survival probability for a repeller, that
is we assumed a < b. The formulas (21.24) and (21.25) do obviously not
apply for the case a = b, that is, for the bounded map. The coefficient
a0 = (b − a)/(1 − a) in the series representation of G(u) is zero, and the
expansion of the logarithmic derivative of G(u) (21.20) is no longer valid.
We get instead

d

du
logG(u) =

{
1
u

(
1 +O(u1/s−1)

)
s < 1

1
u

(
1
s +O(u1−1/s)

)
s > 1

,

assuming non-integer 1/s for convenience. One obtains for the survival
probability.

Γn ∼
{

1 +O(n1−1/s) s < 1
1/s +O(n1/s−1) s > 1

.
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For s > 1, this is what we expect. There is no escape, so the survival
probability is equal to 1, which we get as an asymptotic result here. The
result for s > 1 is somewhat more worrying. It says that Γn defined as sum
over the instabilities of the periodic orbits as in (19.12) does not tend to
unity for large n. However, the case s > 1 is in many senses anomalous.
For instance, the invariant density cannot be normalized. It is therefore
not reasonable to expect that periodic orbit theories will work without
complications.

21.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructed in the previous
section, we had the nice property that interval lengths did exactly coincide
with the inverse of the stability of periodic orbits of the system, that is

|Mn| = 1/|Λ10|n−1.

There is thus no problem in replacing the survival probability Γn given by
(1.2), (19.2), that is the fraction of phase space M surviving n iterations
of the map,

Γn =
1

|M|

(n)∑

i

|Mi| .

by a sum over periodic orbits of the form (14.23). The only orbit to worry
about is the marginal fixed point 0 itself which we excluded from the zeta
function (21.10).

For smooth intermittent maps, things are less clear and the fact that
we had to prune the marginal fixed point is a warning sign that interval
estimates by periodic orbit stabilities might go horribly wrong. The deriva-
tion of the survival probability in terms of cycle stabilities in chapter 19
did indeed rely heavily on a hyperbolicity assumption which is clearly not
fulfilled for intermittent maps. We therefore have to carefully reconsider
this derivation in order to show that periodic orbit formulas are actually
valid for intermittent systems in the first place.

We will for simplicity consider maps, which have a finite number of say
s branches defined on intervals Ms and we assume that the map maps each
interval Ms onto M, that is f(Ms) = M. This ensures the existence of a
complete symbolic dynamics - just to make things easy (see figure 21.2).

The generating partition is composed of the domains Ms . The nth level
partition C(n) = {Mi} can be constructed iteratively. Here i’s are words
i = s2s2 . . . sn of length n, and the intervals Mi are constructed recursively

Msj = f−1
s (Mj) , (21.26)
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where sj is the concatenation of letter s with word j of length nj < n.

In what follows we will concentrate on the survival probability Γn ,
postponing other quantities of interest, such as averages, to later consid-
erations. In establishing the equivalence of the survival probability and
the periodic orbit formula for the escape rate for hyperbolic systems we
have assumed that the map is expanding, with a minimal expansion rate
|f ′(x)| ≥ Λmin > 1. This enabled us to bound the size of every survivor
strip Mi by (19.6), the stability Λi of the periodic orbit i within the Mi,
and bound the survival probability by the periodic orbit sum (19.7).

The bound (19.6)

C1
1

|Λi|
<

|Mi|
|M| < C2

1

|Λi|

relies on hyperbolicity, and is thus indeed violated for intermittent systems.
The problem is that now there is no lower bound on the expansion rate, the
minimal expansion rate is Λmin = 1. The survivor strip M0n which includes
the marginal fixed point is thus completely overestimated by 1/|Λ0n | = 1
which is constant for all n. ✎ 15.6

page 259
However, bounding survival probability strip by strip is not what is re-

quired for establishing the bound (19.7). For intermittent systems a some-
what weaker bound can be established, saying that the average size of
intervals along a periodic orbit can be bounded close to the stability of the
periodic orbit for all but the interval M0n . The weaker bound applies to
averaging over each prime cycle p separately

C1
1

|Λp|
<

1

np

∑

i∈p

|Mi|
|M| < C2

1

|Λp|
, (21.27)

where the word i represents a code of the periodic orbit p and all its cyclic
permutations. It can be shown that one can find positive constants C1,
C2 independent of p. Summing over all periodic orbits leads then again to
(19.7).

To study averages of multiplicative weights we follow sect. 10.1 and
introduce a phase space observable a(x) and the integrated quantity

An(x) =

n−1∑

k=0

a(fk(x)).

This leads us to introduce the generating function (10.10)

〈eβ An(x)〉,
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Figure 21.7: Markov graph corresponding to

the alphabet {0k−11; 0 , k ≥ 1} 0 0 00 0

0

1

where 〈.〉 denote some averaging over the distribution of initial points, which
we choose to be uniform (rather than the a priori unknown invariant den-
sity). Again, all we have to show is, that constants C1, C2 exist, such that

C1
eβAp

|Λp|
<

1

np

∑

i∈p

1

|M|

∫

MQ

eβA
n(x)dx < C2

eβAp

|Λp|
, (21.28)

is valid for all p. After performing the above average one gets

C1Γn(β) <
1

|M|

∫

M
eβA(x,n)dx < C2Γn(β), (21.29)

with

Γn(β) =
n∑

p

eβAp

|Λp|
. (21.30)

and a dynamical zeta function can be derived. In the intermittent case
one can expect that the bound (21.28) holds using an averaging argument
similar to the one discussed in (21.27). This justifies the use of dynamical
zeta functions for intermittent systems.

One lesson we should have learned so far is that the natural alphabet
to use is not {0, 1} but rather the infinite alphabet {0k−11, 0 ; k ≥ 1}.
The symbol 0 occurs unaccompanied by any 1’s only in the 0 marginal
fixed point which is disconnected from the rest of the Markov graph see
figure 21.7.

☞ chapter 12

What happens if we remove a single prime cycle from a dynamical zeta
function? In the hyperbolic case such a removal introduces a pole in the
1/ζ and slows down the convergence of cycle expansions. The heuristic
interpretation of such a pole is that for a subshift of finite type removal of a
single prime cycle leads to unbalancing of cancellations within the infinity
of of shadowing pairs. Nevertheless, removal of a single prime cycle is an
exponentially small perturbation of the trace sums, and the asymptotics of
the associated trace formulas is unaffected.

☞ chapter 16

In the intermittent case, the fixed point 0 does not provide any shad-
owing (cf. sect. J.1), and a statement such as

Λ1·0k+1 ≈ Λ1·0kΛ0,
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is meaningless. It seems therefore sensible to take out the factor (1− t0) =
1−z from the product representation of the dynamical zeta function (15.15),
that is, to consider a pruned dynamical zeta function 1/ζinter(z) defined by

1/ζ(z) = (1 − z)1/ζinter(z) .

We saw in the last sections, that the zeta function 1/ζinter(z) has all the
nice properties we know from the hyperbolic case, that is, we can find a
cycle expansion with - in the toy model case - vanishing curvature contri-
butions and we can calculate dynamical properties like escape after having
understood, how to handle the branch cut. But you might still be worried
about leaving out the extra factor 1− z all together. It turns out, that this
is not only a matter of convenience, omitting the marginal 0 cycle is a dire
necessity. The cycle weight Λn0 = 1 overestimates the corresponding inter-
val length of M0n in the partition of the phase space M by an increasing
amount thus leading to wrong results when calculating escape. By leaving
out the 0 cycle (and thus also the M0n contribution), we are guaranteed
to get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determinant (15.3),
given in product form as

det (1 − zL) =
∏

p

∞∏

m=0

(
1 − znp

|Λp|Λmp

)
,

for intermittent maps the marginal stable cycle has to be excluded. It
introduces an (unphysical) essential singularity at z = 1 due the presence
of a factor (1 − z)∞ stemming from the 0 cycle.

21.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piece wise
linearity of the map led to exact cancellations of the curvature contributions
leaving only the fundamental terms. There are still infinitely many orbits
included in the fundamental term, but the cycle weights were chosen in such
a way that the zeta function could be written in closed form. For a smooth
intermittent map this all will not be the case in general; still, we will argue
that we have already seen almost all the fundamentally new features due
to intermittency. What remains are technicalities - not necessarily easy to
handle, but nothing very surprise any more.

In the following we will sketch, how to make cycle expansion techniques
work for general 1-dimensional maps with a single isolated marginal fixed
point. To keep the notation simple, we will consider two-branch maps
with a complete binary symbolic dynamics as for example the Farey map,
figure 21.3, or the repeller depicted in figure 21.2. We again assume that
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the behavior near the fixed point is given by (21.1). This implies that the
stability of a family of periodic orbits approaching the marginally stable
orbit, as for example the family 10n, will increase only algebraically, that
is we find again for large n

1

Λ10n
∼ 1

n1+1/s
,

where s denotes the intermittency exponent.

When considering zeta functions or trace formulas, we again have to
take out the marginal orbit 0; periodic orbit contributions of the form t0n1

are now unbalanced and we arrive at a cycle expansion in terms of infinitely
many fundamental terms as for our toy map. This corresponds to moving
from our binary symbolic dynamics to an infinite symbolic dynamics by
making the identification

10n−1 → n; 10n−110m−1 → nm; 10n−110m−110k−1 → nmk; . . .

see also table 21.1. The topological length of the orbit is thus no longer
determined by the iterations of our two-branch map, but by the number
of times the cycle goes from the right to the left branch. Equivalently, one
may define a new map, for which all the iterations on the left branch are
done in one step. Such a map is called an induced map and the topological
length of orbits in the infinite alphabet corresponds to the iterations of
this induced map.✎ 12.1

page 199
For generic intermittent maps, curvature contributions in the cycle ex-

panded zeta function will not vanish exactly. The most natural way to
organize the cycle expansion is to collect orbits and pseudo orbits of the
same topological length with respect to the infinite alphabet. Denoting
cycle weights in the new alphabet as tnm... = t10n−110m−1..., one obtains

ζ−1 =
∏

p 6=0

(1 − tp) = 1 −
∞∑

n=1

ce (21.31)

= 1 −
∞∑

n=1

tn −
∞∑

m=1

∞∑

n=1

1

2
(tmn − tmtn)

−
∞∑

k=1

∞∑

m=1

∞∑

n=1

(
1

3
tkmn −

1

2
tkmtn +

1

6
tktmtn) −

∞∑

l=1

∞∑

k=1

∞∑

m=1

∞∑

n=1

. . . .

The first sum is the fundamental term, which we have already seen in the
toy model, (21.10). The curvature terms cn in the expansion are now e-fold
infinite sums where the prefactors take care of double counting of prime
periodic orbits.
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∞ – alphabet binary alphabet
n = 1 n = 2 n = 3 n = 4 n = 5

1-cycles n 1 10 100 1000 10000
2-cycles mn

1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000
3n 1001 10010 100100 1001000 10010000
4n 10001 100010 1000100 10001000 100010000

3-cycles kmn
11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

Table 21.1: Infinite alphabet versus the original binary alphabet for the shortest
periodic orbit families. Repetitions of prime cycles (11 = 12, 0101 = 012, . . .) and
their cyclic repeats (110 = 101, 1110 = 1101, . . .) are accounted for by cancellations
and combination factors in the cycle expansion (21.31).

Let us consider the fundamental term first. For generic intermittent
maps, we can not expect to obtain an analytic expression for the infinite
sum of the form

f(z) =
∞∑

n=0

hnz
n. (21.32)

with algebraically decreasing coefficients

hn ∼ 1

nα
with α > 0

To evaluate the sum, we face the same problem as for our toy map: the
power series diverges for z > 1, that is, exactly in the ‘interesting’ region
where poles, zeros or branch cuts of the zeta function are to be expected.
By carefully subtracting the asymptotic behavior with the help of (21.11)
or (21.12), one can in general construct an analytic continuation of f(z)
around z = 1 of the form

f(z) ∼ A(z) + (1 − z)α−1B(z) α /∈ N (21.33)

f(z) ∼ A(z) + (1 − z)α−1 ln(1 − z) α ∈ N ,

ChaosBook.org/version11.8, Aug 30 2006 inter - 12sep2003



372 CHAPTER 21. INTERMITTENCY

where A(z) and B(z) are functions analytic in a disc around z = 1. We thus
again find that the zeta function (21.31) has a branch cut along the real axis
Re z ≥ 1. From here on we can switch to auto-pilot and derive algebraic
escape, decay of correlation and all the rest. We find in particular that the
asymptotic behavior derived in (21.24) and (21.25) is a general result, that
is, the survival probability is given asymptotically by

Γn ∼ C
1

n1/s
(21.34)

for all 1-dimensional maps of the form (21.1). We have to work a bit harder
if we want more detailed information like the prefactor C, exponential pre-
cursors given by zeros or poles of the dynamical zeta function or higher
order corrections. This information is buried in the functions A(z) and
B(z) or more generally in the analytically continued zeta function. To
get this analytic continuation, one may follow either of the two different
strategies which we will sketch next.

21.3.1 Resummation

One way to get information about the zeta function near the branch cut
is to derive the leading coefficients in the Taylor series of the functions
A(z) and B(z) in (21.33) at z = 1. This can be done in principle, if the
coefficients hn in sums like (21.32) are known (as for our toy model). One
then considers a resummation of the form

∞∑

j=0

hjz
j =

∞∑

j=0

aj(1 − z)j + (1 − z)α−1
∞∑

j=0

bj(1 − z)j , (21.35)

and the coefficients aj and bj are obtained in terms of the hj ’s by expanding
(1− z)j and (1− z)j+α−1 on the right hand side around z = 0 using (21.11)
and equating the coefficients.

In practical calculations one often has only a finite number of coefficients
hj , 0 ≤ j ≤ N , which may have been obtained by finding periodic orbits
and their stabilities numerically. One can still design a resummation scheme
for the computation of the coefficients aj and bj in (21.35). We replace the
infinite sums in (21.35) by finite sums of increasing degrees na and nb, and
require that

na∑

i=0

ai(1−z)i+(1−z)α−1
nb∑

i=0

bi(1−z)i =

N∑

i=0

hiz
i+O(zN+1) .(21.36)

One proceeds again by expanding the right hand side around z = 0, skipping
all powers zN+1 and higher, and then equating coefficients. It is natural to
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require that |nb + α− 1 − na| < 1, so that the maximal powers of the two
sums in (21.36) are adjacent. If one chooses na + nb + 2 = N + 1, then,
for each cutoff length N , the integers na and nb are uniquely determined
from a linear system of equations. The price we pay is that the so obtained
coefficients depend on the cutoff N . One can now study convergence of the
coefficients aj, and bj, with respect to increasing values of N , or various
quantities derived from aj and bj . Note that the leading coefficients a0

and b0 determine the prefactor C in (21.34), cf. (21.23). The resummed
expression can also be used to compute zeros, inside or outside the radius
of convergence of the cycle expansion

∑
hjz

j .

The scheme outlined in this section tacitly assumes that a representation
of form (21.33) holds in a disc of radius 1 around z = 1. Convergence is
improved further if additional information about the asymptotics of sums
like (21.32) is used to improve the ansatz (21.35).

21.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytic continuation
of sums of the form (21.32) without explicitly relying on an ansatz (21.35).
The main idea is to rewrite the sum (21.32) as a sum over integrals with the
help of the Poisson summation formula and find an analytic continuation
of each integral by contour deformation. In order to do so, we need to know
the n dependence of the coefficients hn ≡ h(n) explicitly for all n. If the
coefficients are not known analytically, one may proceed by approximating
the large n behavior in the form

h(n) = n−α(C1 + C2n
−1 + . . .) , n 6= 0 ,

and determine the constants Ci numerically from periodic orbit data. By
using the Poisson resummation identity

∞∑

n=−∞
δ(x − n) =

∞∑

m=−∞
exp(2πimx) , (21.37)

we may write the sum as (21.32)

f(z) =
1

2
h(0) +

∞∑

m=−∞

∫ ∞

0
dx e2πimxh(x)zx. (21.38)

The continuous variable x corresponds to the discrete summation index n
and it is convenient to write z = r exp(iσ) from now on. The integrals are
still not convergent for r > 0, but an analytical continuation can be found
by considering the contour integral, where the contour goes out along the
real axis, makes a quarter circle to either the positive or negative imaginary
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axis and goes back to zero. By letting the radius of the circle go to infinity,
we essentially rotate the line of integration from the real onto the imaginary
axis. For the m = 0 term in (21.38), we transform x→ ix and the integral
takes on the form

∫ ∞

0
dxh(x) rx eixσ = i

∫ ∞

0
dxh(ix) rixe−xσ.

The integrand is now exponentially decreasing for all r > 0 and σ 6= 0 or
2π. The last condition reminds us again of the existence of a branch cut
at Re z ≥ 1. By the same technique, we find the analytic continuation for
all the other integrals in (21.38). The real axis is then rotated according to
x→ sign(m)ix where sign(m) refers to the sign of m.

∫ ∞

0
dx e±2πi|m|xh(x) rxeixσ = ±i

∫ ∞

0
dxh(±ix) r±ixe−x(2π|m|±σ).

Changing summation and integration, we can carry out the sum over |m|
explicitly and one finally obtains the compact expression

f(z) =
1

2
h(0) + i

∫ ∞

0
dxh(ix) rixe−xσ (21.39)

+ i

∫ ∞

0
dx

e−2πx

1 − e−2πx

[
h(ix)rixe−xσ − h(−ix)r−ixexσ

]
.

The transformation from the original sum to the two integrals in (21.39)
is exact for r ≤ 1, and provides an analytic continuation for r > 0. The
expression (21.39) is especially useful for an efficient numerical calculations
of a dynamical zeta function for |z| > 1, which is essential when searching
for its zeros and poles.

21.3.3 Curvature contributions

So far, we have discussed only the fundamental term
∑∞

n=1 tn in (21.31),
and showed how to deal with such power series with algebraically decreasing
coefficients. The fundamental term determines the main structure of the
zeta function in terms of the leading order branch cut. Corrections to both
the zeros and poles of the dynamical zeta function as well as the leading
and subleading order terms in expansions like (21.33) are contained in the
curvature terms in (21.31). The first curvature correction is the 2-cycle
sum

∞∑

m=1

∞∑

n=1

1

2
(tmn − tmtn) ,
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with algebraically decaying coefficients which again diverge for |z| > 1. The
analytically continued curvature terms have as usual branch cuts along the
positive real z axis. Our ability to calculate the higher order curvature
terms depends on how much we know about the cycle weights tmn. The
form of the cycle stability (21.5) suggests that tmn decrease asymptotically
as

tmn ∼ 1

(nm)1+1/s
(21.40)

for 2-cycles, and in general for n-cycles as

tm1m2...mn ∼ 1

(m1m2 . . .mn)1+1/s
.

If we happen to know the cycle weights tm1m2...mn analytically, we may pro-
ceed as in sect. 21.3.2, transform the multiple sums into multiple integrals
and rotate the integration contours.

We have reached the edge of what has been accomplished so far in com-
puting and what is worth the dynamical zeta functions from periodic orbit
data. In the next section, we describe a probabilistic method applicable to
intermittent maps which does not rely on periodic orbits.

21.4 BER zeta functions

So far we have focused on 1-d models as the simplest setting in which
to investigate dynamical implications of marginal fixed points. We now take
an altogether different track and describe how probabilistic methods may
be employed in order to write down approximate dynamical zeta functions
for intermittent systems.

We will discuss the method in a very general setting, for a flow in
arbitrary dimension. The key idea is to introduce a surface of section P
such that all trajectories traversing this section will have spent some time
both near the marginal stable fixed point and in the chaotic phase. An
important quantity in what follows is (3.5), the first return time τ(x), or
the time of flight of a trajectory starting in x to the next return to the
surface of section P. The period of a periodic orbit p intersecting the P
section np times is

Tp =

np−1∑

k=0

τ(fk(xp)),
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where f(x) is the Poincaré map, and xp ∈ P is a cycle point. The dynamical
zeta function (15.15)

1/ζ(z, s, β) =
∏

p

(
1 − znpeβAp−sTp

|Λp|

)
, Ap =

np−1∑

k=0

a(fk(xp)), (21.41)

☞ chapter 10

associated with the observable a(x) captures the dynamics of both the flow
and the Poincaré map. The dynamical zeta function for the flow is obtained
as 1/ζ(s, β) = 1/ζ(1, s, β), and the dynamical zeta function for the discrete
time Poincaré map is 1/ζ(z, β) = 1/ζ(z, 0, β).

Our basic assumption will be probabilistic. We assume that the
chaotic interludes render the consecutive return (or recurrence) times T (xi),
T (xi+1) and observables a(xi), a(xi+1) effectively uncorrelated. Consider
the quantity eβA(x0,n)−sT (x0,n) averaged over the surface of section P. With
the above probabilistic assumption the large n behavior is

〈eβA(x0,n)−sT (x0,n)〉P ∼
(∫

P
eβa(x)−sτρ(x)dx

)n
,

where ρ(x) is the invariant density of the Poincaré map. This type of behav-
ior is equivalent to there being only one zero z0(s, β) =

∫
eβa(x)−sτ(x)ρ(x)dx

of 1/ζ(z, s, β) in the z-β plane. In the language of Ruelle-Pollicott reso-
nances this means that there is an infinite gap to the first resonance.
This in turn implies that 1/ζ(z, s, β) may be written as

☞ remark 10.1

1/ζ(z, s, β) = z −
∫

P
eβa(x)−sτ(x)ρ(x)dx , (21.42)

where we have neglected a possible analytic and non-zero prefactor. The
dynamical zeta function of the flow is now

1/ζ(s, β) = 1/ζ(1, s, β) = 1 −
∫

P
eβa(x)ρ(x)e−sτ(x)dx . (21.43)

Normally, the best one can hope for is a finite gap to the leading reso-
nance of the Poincaré map. with the above dynamical zeta function only
approximatively valid. As it is derived from an approximation due to Bal-
adi, Eckmann, and Ruelle, we shall refer to it as the BER zeta function
1/ζBER(s, β) in what follows.

A central role is played by the probability distribution of return times

ψ(τ) =

∫

P
δ(τ − τ(x))ρ(x)dx (21.44)

✎ 23.7
page 430
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The BER zeta function at β = 0 is then given in terms of the Laplace
transform of this distribution

1/ζBER(s) = 1 −
∫ ∞

0
ψ(τ)e−sτdτ.

✎ 21.5
page 381

Example 21.1 Return times for the Bernoulli map. For the Bernoulli shift map
(16.6)

x 7→ f(x) = 2x mod 1,

one easily derives the distribution of return times

ψn =
1

2n
n ≥ 1.

The BER zeta function becomes (by the discrete Laplace transform (14.8))

1/ζBER(z) = 1 −
∞∑

n=1

ψnz
n = 1 −

∞∑

n=1

zn

2n

=
1 − z

1 − z/2
= ζ−1(z)/(1 − z/Λ0) . (21.45)

Thanks to the uniformity of the piecewise linear map measure (10.19) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the cycle point 0
pruned.

Example 21.2 Return times for the model of sect. 21.2.1. For the toy model of
sect. 21.2.1 one gets ψ1 = |M1|, and ψn = |Mn|(1− b)/(1− a), for n ≥ 2, leading to
a BER zeta function

1/ζBER(z) = 1 − z|M1| −
∞∑

n=2

|Mn|zn,

which again coincides with the exact result, (21.10).

It may seem surprising that the BER approximation produces exact re-
sults in the two examples above. The reason for this peculiarity is that both
these systems are piecewise linear and have complete Markov partitions. As
long as the map is piecewise linear and complete, and the probabilistic ap-
proximation is exactly fulfilled, the cycle expansion curvature terms vanish.
The BER zeta function and the fundamental part of a cycle expansion dis-
cussed in sect. 18.1.1 are indeed intricately related, but not identical in
general. In particular, note that the BER zeta function obeys the flow con-
servation sum rule (19.11) by construction, whereas the fundamental part
of a cycle expansion as a rule does not.
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Commentary

Remark 21.1 What about the evolution operator formalism? The main virtue

of evolution operators was their semigroup property (10.25). This was natural for

hyperbolic systems where instabilities grow exponentially, and evolution operators

capture this behavior due to their multiplicative nature. Whether the evolution

operator formalism is a good way to capture the slow, power law instabilities of

intermittent dynamics is less clear. The approach taken here leads us to a for-

mulation in terms of dynamical zeta functions rather than spectral determinants,

circumventing evolution operators altogether. It is not known if the spectral deter-

minants formulation would yield any benefits when applied to intermittent chaos.

Some results on spectral determinants and intermittency can be found in [21.2]. A

useful mathematical technique to deal with isolated marginally stable fixed point

is that of inducing, that is, replacing the intermittent map by a completely hyper-

bolic map with infinite alphabet and redefining the discrete time; we have used this

method implicitly by changing from a finite to an infinite alphabet. We refer to

refs. [21.3, 21.19] for detailed discussions of this technique, as well as applications

to 1-dimensional maps.

Remark 21.2 Intermittency. Intermittency was discovered by Manneville and
Pomeau [21.1] in their study of the Lorentz system. They demonstrated that in
neighborhood of parameter value rc = 166.07 the mean duration of the periodic
motion scales as (r−rc)1/2. In ref. [21.5] they explained this phenomenon in terms
of a 1-dimensional map (such as (21.1)) near tangent bifurcation, and classified
possible types of intermittency.

Piecewise linear models like the one considered here have been studied by
Gaspard and Wang [21.6]. The escape problem has here been treated following
ref. [21.7], resummations following ref. [21.8]. The proof of the bound (21.27) can
be found in P. Dahlqvist’s notes on ChaosBook.org/PDahlqvistEscape.ps.gz.

Farey map (18.28) has been studied widely in the context of intermittent dy-

namics, for example in refs. [21.16, 21.17, 18.3, 21.18, L.23, 18.14, 21.2]. The Fred-

holm determinant and the dynamical zeta functions for the Farey map (18.28)

and the related Gauss shift map (24.38) have been studied by Mayer [21.16]. He

relates the continued fraction transformation to the Riemann zeta function, and

constructs a Hilbert space on which the evolution operator is self-adjoint, and

its eigenvalues are exponentially spaced, just as for the dynamical zeta functions

[21.23] for “Axiom A” hyperbolic systems.

Remark 21.3 Tauberian theorems. In this chapter we used Tauberian theorems

for power series and Laplace transforms: Feller’s monograph [21.9] is a highly

recommended introduction to these methods.

Remark 21.4 Probabilistic methods, BER zeta functions. Probabilistic descrip-

tion of intermittent chaos was introduced by Geisal and Thomae [21.10]. The BER

approximation studied here is inspired by Baladi, Eckmann and Ruelle [21.14], with

further developments in refs. [21.13, 21.15].
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Résumé

The presence of marginally stable fixed points and cycles changes the an-
alytic structure of dynamical zeta functions and the rules for constructing
cycle expansions. The marginal orbits have to be omitted, and the cy-
cle expansions now need to include families of infinitely many longer and
longer unstable orbits which accumulate toward the marginally stable cy-
cles. Correlations for such non-hyperbolic systems may decay algebraically
with the decay rates controlled by the branch cuts of dynamical zeta func-
tions. Compared to pure hyperbolic systems, the physical consequences
are drastic: exponential decays are replaced by slow power-law decays, and
transport properties, such as the diffusion may become anomalous.
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Exercises

Exercise 21.1 Integral representation of Jonquière functions. Check the
integral representation

J(z, α) =
z

Γ(α)

∫ ∞

0

dξ
ξα−1

eξ − z
for α > 0 . (21.46)

Note how the denominator is connected to Bose-Einstein distribution. Compute J(x+

iǫ) − J(x − iǫ) for a real x > 1.

Exercise 21.2 Power law correction to a power law. Expand (21.20) further

and derive the leading power law correction to (21.23).

Exercise 21.3 Power-law fall off. In cycle expansions the stabilities of orbits
do not always behave in a geometric fashion. Consider the map f

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

This map behaves as f → x as x → 0. Define a symbolic dynamics for this map by
assigning 0 to the points that land on the interval [0, 1/2) and 1 to the points that
land on (1/2, 1]. Show that the stability of orbits that spend a long time on the 0 side
goes as n2. In particular, show that

Λ00···0︸︷︷︸
n

1 ∼ n2

Exercise 21.4 Power law fall-off of stability eigenvalues in the stadium
billiard∗∗. From the cycle expansions point of view, the most important con-
sequence of the shear in Jn for long sequences of rotation bounces nk in (6.13) is that
the Λn grows only as a power law in number of bounces:

Λn ∝ n2
k . (21.47)

Check.

Exercise 21.5 Probabilistic zeta function for maps. Derive the probabilistic

zeta function for a map with recurrence distribution ψn.
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Exercise 21.6 Accelerated diffusion. Consider a map h, such that ĥ = f̂ ,
but now running branches are turner into standing branches and vice versa, so that
1, 2, 3, 4 are standing while 0 leads to both positive and negative jumps. Build the
corresponding dynamical zeta function and show that

σ2(t) ∼





t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

Exercise 21.7 Anomalous diffusion (hyperbolic maps). Anomalous diffusive
properties are associated to deviations from linearity of the variance of the phase
variable we are looking at: this means the the diffusion constant (10.13) either vanishes
or diverges. We briefly illustrate in this exercise how the local local properties of a
map are crucial to account for anomalous behavior even for hyperbolic systems.

Consider a class of piecewise linear maps, relevant to the problem of the onset of
diffusion, defined by

fǫ(x) =





Λx for x ∈
[
0, x+

1

]

a− Λǫ,γ |x− x+| for x ∈
[
x+

1 , x
+
2

]

1 − Λ′(x− x+
2 ) for x ∈

[
x+

2 , x
−
1

]

1 − a+ Λǫ,γ |x− x−| for x ∈
[
x−1 , x

−
2

]

1 + Λ(x− 1) for x ∈
[
x−2 , 1

]
(21.48)

where Λ = (1/3− ǫ1/γ)−1, Λ′ = (1/3− 2ǫ1/γ), Λǫ,γ = ǫ1−1/γ , a = 1 + ǫ, x+ = 1/3,
x+

1 = x+ − ǫ1/γ , x+
2 = x+ + ǫ1/γ , and the usual symmetry properties (23.11) are

satisfied.

Thus this class of maps is characterized by two escaping windows (through which
the diffusion process may take place) of size 2ǫ1/γ : the exponent γ mimicks the
order of the maximum for a continuous map, while piecewise linearity, besides making
curvatures vanish and leading to finite cycle expansions, prevents the appearance of
stable cycles. The symbolic dynamics is easily described once we consider a sequence
of parameter values {ǫm}, where ǫm = Λ−(m+1): we then partition the unit interval
though the sequence of points 0, x+

1 , x
+, x+

2 , x
−
1 , x

−, x−2 , 1 and label the corresponding
sub–intervals 1, sa, sb, 2, db, da, 3: symbolic dynamics is described by an unrestricted
grammar over the following set of symbols

{1, 2, 3, s# · 1i, d# · 3k} # = a, b i, k = m,m+ 1,m+ 2, . . .

This leads to the following dynamical zeta function:

ζ−1
0 (z, α) = 1 − 2z

Λ
− z

Λ′ − 4 cosh(α)ǫ1/γ−1
m

zm+1

Λm

(
1 − z

Λ

)−1

from which, by (23.8) we get

D =
2ǫ

1/γ−1
m Λ−m(1 − 1/Λ)−1

1 − 2
Λ − 1

Λ′ − 4ǫ
1/γ−1
m

(
m+1

Λm(1−1/Λ) + 1
Λm+1(1−1/Λ)2

) (21.49)
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The main interest in this expression is that it allows exploring how D vanishes in the
ǫ 7→ 0 (m 7→ ∞) limit: as a matter of fact, from (21.49) we get the asymptotic
behavior D ∼ ǫ1/γ , which shows how the onset of diffusion is governed by the order
of the map at its maximum.

Remark 21.5 Onset of diffusion for continuous maps. The zoology of behavior for
continuous maps at the onset of diffusion is described in refs. [23.11, 23.12, 21.24]:
our treatment for piecewise linear maps was introduced in ref. [21.25].
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Chapter 22

Discrete symmetries

Utility of discrete symmetries in reducing spectrum calculations is familiar
from quantum mechanics. Here we show that the classical spectral deter-
minants factor in essentially the same way as in quantum mechanics. In
the process we also learn how to simplify the classical dynamics. The main
result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the contribution of a cy-
cle p of multiplicity mp to a dynamical zeta function factorizes into a prod-
uct over the dα-dimensional irreducible representations Dα of the symmetry
group,

(1 − tp)
mp =

∏

α

det (1 −Dα(hp̃)tp̃)
dα , tp = t

g/mp

p̃ ,

where tp̃ is the cycle weight evaluated on the fundamental domain, g is the
dimension of the group, hp̃ is the group element relating the fundamental
domain cycle p̃ to a segment of the full space cycle p, and mp is the mul-
tiplicity of the p cycle. As the dynamical zeta functions have particularly
simple cycle expansions, a simple geometrical shadowing interpretation of
their convergence, and as they suffice for determination of leading eigen-
values, we shall concentrate in this chapter on their factorizations; the full
spectral determinants can be factorized by the same techniques. To em-
phasize the group theoretic structure of zeta functions, we shall combine
all the non-group-theory dependence of a p-cycle into a cycle weight tp.

This chapter is meant to serve as a detailed guide to computation of dyn-
amical zeta functions and spectral determinants for systems with discrete
symmetries. Familiarity with basic group-theoretic notions is assumed,
with the definitions relegated to appendix I.1. We develop here the cycle
expansions for factorized determinants, and exemplify them by working out
a series of cases of physical interest: C2, C3v symmetries in this chapter,
and C2v, C4v symmetries in appendix I below.
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22.1 Preview

Dynamical systems often come equipped with discrete symmetries, such
as the reflection and the rotation symmetries of various potentials. Such
symmetries simplify and improve the cycle expansions in a rather beautiful
way; they can be exploited to relate classes of periodic orbits and reduce
dynamics to a fundamental domain. Furthermore, in classical dynamics,
just as in quantum mechanics, the symmetrized subspaces can be probed by
linear operators of different symmetries. If a linear operator commutes with
the symmetry, it can be block-diagonalized, and, as we shall now show, the
associated spectral determinants and dynamical zeta functions factorize.

Invariance of a system under symmetries means that the symmetry
image of a cycle is again a cycle, with the same weight. The new orbit may
be topologically distinct (in which case it contributes to the multiplicity of
the cycle) or it may be the same cycle, shifted in time. A cycle is symmetric
if some symmetry operations act on it like a shift in time, advancing the
starting point to the starting point of a symmetry related segment. A
symmetric cycle can thus be subdivided into a sequence of repeats of an
irreducible segment. The period or any average evaluated along the full
orbit is given by the sum over the segments, whereas the stability is given
by the product of the stability matrices of the individual segments.

Cycle degeneracies induced by the symmetry are removed by desym-
metrization, reduction of the full dynamics to the dynamics on a fundamen-
tal domain. The phase space can be completely tiled by a fundamental
domain and its symmetry images. The irreducible segments of cycles in the
full space, folded back into the fundamental domain, are closed orbits in
the reduced space.

22.1.1 3-disk game of pinball

We have already exploited a discrete symmetry in our introduction to the 3-
disk game of pinball, sect. 1.3. As the three disks are equidistantly spaced,
our game of pinball has a sixfold symmetry. The symmetry group of rela-
beling the 3 disks is the permutation group S3; however, it is better to think
of this group geometrically, as C3v, the group of rotations by ±2π/3 and
reflections across the three symmetry axes. Applying an element (identity,
rotation by ±2π/3, or one of the three possible reflections) of this sym-
metry group to any trajectory yields another trajectory. For instance, the
cycles 12, 23, and 13, are related to each other by rotation by ±2π/3, or,
equivalently, by a relabeling of the disks.

An irreducible segment corresponds to a periodic orbit in the fundamen-
tal domain, a one-sixth slice of the full 3-disk system, with the symmetry
axes acting as reflecting mirrors, see figure 11.6. A set of orbits related in
the full space by discrete symmetries maps onto a single fundamental do-
main orbit. The reduction to the fundamental domain desymmetrizes the
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dynamics and removes all global discrete symmetry induced degeneracies:
rotationally symmetric global orbits (such as the 3-cycles 123 and 132) have
degeneracy 2, reflection symmetric ones (such as the 2-cycles 12, 13 and 23)
have degeneracy 3, and global orbits with no symmetry are 6-fold degener-
ate. Table 11.2 lists some of the shortest binary symbols strings, together
with the corresponding full 3-disk symbol sequences and orbit symmetries.
Some examples of such orbits are shown in figure 22.3.

We shall return to the 3-disk game of pinball desymmetrization in
sects. 22.2.2 and 22.6, but first we develop a feeling for discrete symme-
tries by working out a simple 1-d example.

22.1.2 Reflection symmetric 1-d maps

Consider f , a map on the interval with reflection symmetry f(−x) = −f(x).
A simple example is the piecewise-linear sawtooth map of figure 22.1. De-
note the reflection operation by Cx = −x. The symmetry of the map
implies that if {xn} is a trajectory, than also {Cxn} is a trajectory be-
cause Cxn+1 = Cf(xn) = f(Cxn) . The dynamics can be restricted to a
fundamental domain, in this case to one half of the original interval; every
time a trajectory leaves this interval, it can be mapped back using C. Fur-
thermore, the evolution operator commutes with C, L(y, x) = L(Cy,Cx).
C satisfies C2 = e and can be used to decompose the phase space into
mutually orthogonal symmetric and antisymmetric subspaces by means of
projection operators

PA1 =
1

2
(e + C) , PA2 =

1

2
(e − C) ,

LA1(y, x) = PA1L(y, x) =
1

2
(L(y, x) + L(−y, x)) ,

LA2(y, x) = PA2L(y, x) =
1

2
(L(y, x) − L(−y, x)) . (22.1)

To compute the traces of the symmetrization and antisymmetrization
projection operators (22.1), we have to distinguish three kinds of cycles:
asymmetric cycles a, symmetric cycles s built by repeats of irreducible
segments s̃, and boundary cycles b. Now we show that the spectral det-
erminant can be written as the product over the three kinds of cycles:
det (1 − L) = det (1 − L)adet (1 − L)s̃det (1 − L)b.

Asymmetric cycles: A periodic orbits is not symmetric if {xa}∩{Cxa} =
∅, where {xa} is the set of periodic points belonging to the cycle a. Thus
C generates a second orbit with the same number of points and the same
stability properties. Both orbits give the same contribution to the first term
and no contribution to the second term in (22.1); as they are degenerate,
the prefactor 1/2 cancels. Resuming as in the derivation of (15.15) we find

ChaosBook.org/version11.8, Aug 30 2006 symm - 29dec2004



388 CHAPTER 22. DISCRETE SYMMETRIES
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Figure 22.1: The Ulam sawtooth map with the C2 symmetry f(−x) = −f(x).

(a) boundary fixed point C, (b) symmetric 2-cycle LR, (c) asymmetric 2-cycles pair
{LC,CR}. The Ulam sawtooth map restricted to the fundamental domain; pieces of
the global map (a) are reflected into the upper right quadrant. (d) Boundary fixed
point C maps into the fixed point c, symmetric 2-cycle LR maps into fixed point s,
and the asymmetric fixed point pair {L,R} maps into a single fixed point r, (e) the
asymmetric 2-cycles pair {LC,CR} maps into a single 2-cycle cr.

that asymmetric orbits yield the same contribution to the symmetric and
the antisymmetric subspaces:

det (1 − L±)a =
∏

a

∞∏

k=0

(
1 − ta

Λka

)
, ta =

zna

|Λa|
.

Symmetric cycles: A cycle s is reflection symmetric if operating with C
on the set of cycle points reproduces the set. The period of a symmetric
cycle is always even (ns = 2ns̃) and the mirror image of the xs cycle point is
reached by traversing the irreducible segment s̃ of length ns̃, f

ns̃(xs) = Cxs.
δ(x− fn(x)) picks up 2ns̃ contributions for every even traversal, n = rns̃, r
even, and δ(x+ fn(x)) for every odd traversal, n = rns̃, r odd. Absorb the
group-theoretic prefactor in the stability eigenvalue by defining the stability
computed for a segment of length ns̃,

Λs̃ = − ∂fns̃(x)

∂x

∣∣∣∣
x=xs

.

Restricting the integration to the infinitesimal neighborhood Ms of the s
cycle, we obtain the contribution to trLn±:

zntrLn± →
∫

Ms

dx zn
1

2
(δ(x− fn(x)) ± δ(x+ fn(x)))
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= ns̃

(
even∑

r=2

δn,rns̃

trs̃
1 − 1/Λrs̃

±
odd∑

r=1

δn,rns̃

trs̃
1 − 1/Λrs̃

)

= ns̃

∞∑

r=1

δn,rns̃

(±ts̃)r
1 − 1/Λrs̃

.

Substituting all symmetric cycles s into det (1 − L±) and resuming we
obtain:

det (1 − L±)s̃ =
∏

s̃

∞∏

k=0

(
1 ∓ ts̃

Λks̃

)

Boundary cycles: In the example at hand there is only one cycle which
is neither symmetric nor antisymmetric, but lies on the boundary of the
fundamental domain, the fixed point at the origin. Such cycle contributes
simultaneously to both δ(x− fn(x)) and δ(x+ fn(x)):

zntrLn± →
∫

Mb

dx zn
1

2
(δ(x− fn(x)) ± δ(x+ fn(x)))

=

∞∑

r=1

δn,r t
r
b

1

2

(
1

1 − 1/Λrb
± 1

1 + 1/Λrb

)

zn trLn+ →
∞∑

r=1

δn,r
trb

1 − 1/Λ2r
b

; zn trLn− →
∞∑

r=1

δn,r
1

Λrb

trb
1 − 1/Λ2r

b

.

Boundary orbit contributions to the factorized spectral determinants follow
by resummation:

det (1 − L+)b =
∞∏

k=0

(
1 − tb

Λ2k
b

)
, det (1 − L−)b =

∞∏

k=0

(
1 − tb

Λ2k+1
b

)

Only even derivatives contribute to the symmetric subspace (and odd to
the antisymmetric subspace) because the orbit lies on the boundary.

Finally, the symmetry reduced spectral determinants follow by collect-
ing the above results:

F+(z) =
∏

a

∞∏

k=0

(
1 − ta

Λka

)∏

s̃

∞∏

k=0

(
1 − ts̃

Λks̃

) ∞∏

k=0

(
1 − tb

Λ2k
b

)

F−(z) =
∏

a

∞∏

k=0

(
1 − ta

Λka

)∏

s̃

∞∏

k=0

(
1 +

ts̃

Λks̃

) ∞∏

k=0

(
1 − tb

Λ2k+1
b

)
(22.2)
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We shall work out the symbolic dynamics of such reflection symmetric sys-
tems in some detail in sect. 22.5. As reflection symmetry is essentially the
only discrete symmetry that a map of the interval can have, this exam-
ple completes the group-theoretic factorization of determinants and zeta
functions for 1-d maps. We now turn to discussion of the general case.✎ 22.1

page 406

22.2 Discrete symmetries

A dynamical system is invariant under a symmetry groupG = {e, g2, . . . , g|G|}
if the equations of motion are invariant under all symmetries g ∈ G. For
a map xn+1 = f(xn) and the evolution operator L(y, x) defined by (10.23)
this means

f(x) = g−1f(gx)

L(y, x) = L(gy,gx) . (22.3)

Bold face letters for group elements indicate a suitable representation on
phase space. For example, if a 2-dimensional map has the symmetry x1 →
−x1, x2 → −x2, the symmetry group G consists of the identity and C,
a rotation by π around the origin. The map f must then commute with
rotations by π, f(Cx) = Cf(x), with C given by the [2 × 2] matrix

C =

(
−1 0
0 −1

)
. (22.4)

C satisfies C2 = e and can be used to decompose the phase space into mutu-
ally orthogonal symmetric and antisymmetric subspaces by means of projec-
tion operators (22.1). More generally the projection operator onto the α ir-
reducible subspace of dimension dα is given by Pα = (dα/|G|)

∑
χα(h)h−1,

where χα(h) = trDα(h) are the group characters, and the transfer oper-
ator L splits into a sum of inequivalent irreducible subspace contributions∑

α trLα,

Lα(y, x) =
dα
|G|

∑

h∈G
χα(h)L(h−1y, x) . (22.5)

The prefactor dα in the above reflects the fact that a dα-dimensional rep-
resentation occurs dα times.

22.2.1 Cycle degeneracies

If g ∈ G is a symmetry of the dynamical problem, the weight of a cycle p
and the weight of its image under a symmetry transformation g are equal,
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Figure 22.2: The symmetries of three disks
on an equilateral triangle. The fundamental do-
main is indicated by the shaded wedge.

tgp = tp. The number of degenerate cycles (topologically distinct, but
mapped into each other by symmetry transformations) depends on the cycle
symmetries. Associated with a given cycle p is a maximal subgroupHp ⊆ G,
Hp = {e, b2, b3, . . . , bh} of order hp, whose elements leave p invariant. The
elements of the quotient space b ∈ G/Hp generate the degenerate cycles bp,
so the multiplicity of a degenerate cycle is mp = g/hp.

Taking into account these degeneracies, the Euler product (15.15) takes
the form

∏

p

(1 − tp) =
∏

p̂

(1 − tp̂)
mp̂ . (22.6)

Here p̂ is one of the mp degenerate cycles, picked to serve as the label for
the entire class. Our labeling convention is usually lexical, that is, we label
a cycle p by the cycle point whose label has the lowest value, and we label
a class of degenerate cycles by the one with the lowest label p̂. In what
follows we shall drop the hat in p̂ when it is clear from the context that we
are dealing with symmetry distinct classes of cycles.

22.2.2 Example: C3v invariance

An illustration of the above is afforded by C3v, the group of symmetries of
a game of pinball with three equal size, equally spaced disks, figure 22.2.
The group consists of the identity element e, three reflections across axes
{σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C3, C

2
3}, so

its dimension is g = 6. On the disk labels {1, 2, 3} these symmetries act
as permutations which map cycles into cycles. For example, the flip across
the symmetry axis going through disk 1 interchanges the symbols 2 and 3;
it maps the cycle 12123 into 13132, figure 22.3a.

The subgroups of C3v are Cv, consisting of the identity and any one
of the reflections, of dimension h = 2, and C3 = {e,C3, C

2
3}, of dimension

h = 3, so possible cycle multiplicities are g/h = 2, 3 or 6.

The C3 subgroup invariance is exemplified by the cycles 123 and 132
which are invariant under rotations by 2π/3 and 4π/3, but are mapped
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Figure 22.3: Some examples of 3-disk cy-

cles: (a) 12123 and 13132 are mapped into each
other by σ23, the flip across 1 axis; this cycle
has degeneracy 6 under C3v symmetries. (C3v

is the symmetry group of the equilateral trian-
gle.) Similarly (b) 123 and 132 and (c) 1213,
1232 and 1323 are degenerate under C3v. (d)
The cycles 121212313 and 121212323 are re-
lated by time reversal but not by any C3v sym-
metry. (from ref. [1.2])

into each other by any reflection, figure 22.3b; Hp = {e,C3, C
2
3}, and the

degeneracy is g/hc3 = 2.

The Cv type of a subgroup is exemplified by the invariances of p̂ = 1213.
This cycle is invariant under reflection σ23{1213} = 1312 = 1213, so the
invariant subgroup is Hp̂ = {e, σ23}. Its order is hCv = 2, so the degeneracy
is mp̂ = g/hCv = 3; the cycles in this class, 1213, 1232 and 1323, are related
by 2π/3 rotations, figure 22.3(c).

A cycle of no symmetry, such as 12123, has Hp = {e} and contributes
in all six terms (the remaining cycles in the class are 12132, 12313, 12323,
13132 and 13232), figure 22.3a.

Besides the above discrete symmetries, for Hamiltonian systems cycles
may be related by time reversal symmetry. An example are the cycles
121212313 and 121212323 = 313212121 which are related by no space sym-
metry (figure 22.3(d)).

The Euler product (15.15) for the C3v symmetric 3-disk problem is given
in (18.33).

22.3 Dynamics in the fundamental domain

So far we have used the discrete symmetry to effect a reduction in the
number of independent cycles in cycle expansions. The next step achieves
much more: the symmetries can be used to restrict all computations to a
fundamental domain. We show here that to each global cycle p corresponds
a fundamental domain cycle p̃. Conversely, each fundamental domain cycle
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p̃ traces out a segment of the global cycle p, with the end point of the cycle
p̃ mapped into the irreducible segment of p with the group element hp̃.

An important effect of a discrete symmetry is that it tessellates the
phase space into copies of a fundamental domain, and thus induces a natural
partition of phase space. The group elements g = {a, b, · · · , d} which map
the fundamental domain M̃ into its copies gM̃ , can double in function as
letters of a symbolic dynamics alphabet. If the dynamics is symmetric
under interchanges of disks, the absolute disk labels ǫi = 1, 2, · · · , N can
be replaced by the symmetry-invariant relative disk→disk increments gi,
where gi is the discrete group element that maps disk i− 1 into disk i. We
demonstrate the reduction for a series of specific examples in sect. 22.4.
An immediate gain arising from symmetry invariant relabeling is that N -
disk symbolic dynamics becomes (N − 1)-nary, with no restrictions on the
admissible sequences. However, the main gain is in the close connection
between the symbol string symmetries and the phase space symmetries
which will aid us in the dynamical zeta function factorizations. Once the
connection between the full space and the reduced space is established,
working in the fundamental domain (ie., with irreducible segments) is so
much simpler that we never use the full space orbits in actual computations.

If the dynamics is invariant under a discrete symmetry, the phase space
M can be completely tiled by the fundamental domain M̃ and its images
aM̃ , bM̃ , . . . under the action of the symmetry group G = {e, a, b, . . .},

M =
∑

a∈G
Ma =

∑

a∈G
aM̃ .

In the above example (22.4) with symmetry group G = {e,C}, the phase
space M = {x1-x2 plane} can be tiled by a fundamental domain M̃ = {half-
plane x1 ≥ 0}, and CM̃ = {half-plane x1 ≤ 0}, its image under rotation
by π.

If the space M is decomposed into g tiles, a function φ(x) over M
splits into a g-dimensional vector φa(x) defined by φa(x) = φ(x) if x ∈
Ma, φa(x) = 0 otherwise. Let h = ab−1 conflicts with be the symmetry
operation that maps the endpoint domainMb into the starting point domain
Ma, and let D(h)ba, the left regular representation, be the [g × g] matrix
whose b, a-th entry equals unity if a = hb and zero otherwise; D(h)ba =
δbh,a. Since the symmetries act on phase space as well, the operation h
enters in two guises: as a [g × g] matrix D(h) which simply permutes
the domain labels, and as a [d × d] matrix representation h of a discrete
symmetry operation on the d phase-space coordinates. For instance, in the
above example (22.4) h ∈ C2 and D(h) can be either the identity or the
interchange of the two domain labels,

D(e) =

(
1 0
0 1

)
, D(C) =

(
0 1
1 0

)
. (22.7)
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Note that D(h) is a permutation matrix, mapping a tile Ma into a different
tile Mha 6= Ma if h 6= e. Consequently only D(e) has diagonal elements,
and trD(h) = gδh,e. However, the phase-space transformation h 6= e leaves
invariant sets of boundary points; for example, under reflection σ across a
symmetry axis, the axis itself remains invariant. The boundary periodic
orbits that belong to such point-wise invariant sets will require special care
in trL evaluations.

One can associate to the evolution operator (10.23) a [g × g] matrix
evolution operator defined by

Lba(y, x) = D(h)baL(y, x) ,

if x ∈Ma and y ∈Mb, and zero otherwise. Now we can use the invariance
condition (22.3) to move the starting point x into the fundamental domain
x = ax̃, L(y, x) = L(a−1y, x̃), and then use the relation a−1b = h−1 to also
relate the endpoint y to its image in the fundamental domain, L̃(ỹ, x̃) :=
L(h−1ỹ, x̃). With this operator which is restricted to the fundamental
domain, the global dynamics reduces to

Lba(y, x) = D(h)baL̃(ỹ, x̃) .

While the global trajectory runs over the full space M , the restricted tra-
jectory is brought back into the fundamental domain M̃ any time it crosses
into adjoining tiles; the two trajectories are related by the symmetry opera-
tion h which maps the global endpoint into its fundamental domain image.

Now the traces (15.3) required for the evaluation of the eigenvalues of
the transfer operator can be evaluated on the fundamental domain alone

trL =

∫

M
dxL(x, x) =

∫

M̃
dx̃

∑

h

trD(h) L(h−1x̃, x̃) (22.8)

The fundamental domain integral
∫
dx̃ L(h−1x̃, x̃) picks up a contribution

from every global cycle (for which h = e), but it also picks up contribu-
tions from shorter segments of global cycles. The permutation matrix D(h)
guarantees by the identity trD(h) = 0, h 6= e, that only those repeats of
the fundamental domain cycles p̃ that correspond to complete global cy-
cles p contribute. Compare, for example, the contributions of the 12 and
0 cycles of figure 11.6. trD(h)L̃ does not get a contribution from the 0
cycle, as the symmetry operation that maps the first half of the 12 into
the fundamental domain is a reflection, and trD(σ) = 0. In contrast,
σ2 = e, trD(σ2) = 6 insures that the repeat of the fundamental domain
fixed point tr (D(h)L̃)2 = 6t20, gives the correct contribution to the global
trace trL2 = 3 · 2t12.
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Let p be the full orbit, p̃ the orbit in the fundamental domain and hp̃ an
element of Hp, the symmetry group of p. Restricting the volume integra-
tions to the infinitesimal neighborhoods of the cycles p and p̃, respectively,
and performing the standard resummations, we obtain the identity

(1 − tp)
mp = det (1 −D(hp̃)tp̃) , (22.9)

valid cycle by cycle in the Euler products (15.15) for det (1 − L). Here
“det” refers to the [g × g] matrix representation D(hp̃); as we shall see,
this determinant can be evaluated in terms of standard characters, and no
explicit representation of D(hp̃) is needed. Finally, if a cycle p is invariant
under the symmetry subgroup Hp ⊆ G of order hp, its weight can be written
as a repetition of a fundamental domain cycle

tp = t
hp

p̃ (22.10)

computed on the irreducible segment that corresponds to a fundamental
domain cycle. For example, in figure 11.6 we see by inspection that t12 = t20
and t123 = t31.

22.3.1 Boundary orbits

Before we can turn to a presentation of the factorizations of dynamical
zeta functions for the different symmetries we have to discuss an effect that
arises for orbits that run on a symmetry line that borders a fundamental
domain. In our 3-disk example, no such orbits are possible, but they exist in
other systems, such as in the bounded region of the Hénon-Heiles potential
and in 1-d maps. For the symmetrical 4-disk billiard, there are in principle
two kinds of such orbits, one kind bouncing back and forth between two
diagonally opposed disks and the other kind moving along the other axis
of reflection symmetry; the latter exists for bounded systems only. While
there are typically very few boundary orbits, they tend to be among the
shortest orbits, and their neglect can seriously degrade the convergence of
cycle expansions, as those are dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations, their
neighborhoods are not. This affects the stability matrix Mp of the lin-
earization perpendicular to the orbit and thus the eigenvalues. Typically,
e.g. if the symmetry is a reflection, some eigenvalues of Mp change sign.
This means that instead of a weight 1/det (1 − Mp) as for a regular orbit,
boundary cycles also pick up contributions of form 1/det (1−hMp), where
h is a symmetry operation that leaves the orbit pointwise invariant; see for
example sect. 22.1.2.

Consequences for the dynamical zeta function factorizations are that
sometimes a boundary orbit does not contribute. A derivation of a dyn-
amical zeta function (15.15) from a determinant like (15.9) usually starts
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with an expansion of the determinants of the Jacobian. The leading order
terms just contain the product of the expanding eigenvalues and lead to
the dynamical zeta function (15.15). Next to leading order terms contain
products of expanding and contracting eigenvalues and are sensitive to their
signs. Clearly, the weights tp in the dynamical zeta function will then be
affected by reflections in the Poincaré surface of section perpendicular to
the orbit. In all our applications it was possible to implement these effects
by the following simple prescription.

If an orbit is invariant under a little group Hp = {e, b2, . . . , bh}, then the
corresponding group element in (22.9) will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, then this projector is

gp =
1

h

h∑

i=1

bi . (22.11)

In the cases that we have considered, the change of sign may be taken into
account by defining a sign function ǫp(g) = ±1, with the “-” sign if the
symmetry element g flips the neighborhood. Then (22.11) is replaced by

gp =
1

h

h∑

i=1

ǫ(bi) bi . (22.12)

We have illustrated the above in sect. 22.1.2 by working out the full factor-
ization for the 1-dimensional reflection symmetric maps.

22.4 Factorizations of dynamical zeta functions

In the above we have shown that a discrete symmetry induces degeneracies
among periodic orbits and decomposes periodic orbits into repetitions of
irreducible segments; this reduction to a fundamental domain furthermore
leads to a convenient symbolic dynamics compatible with the symmetry,
and, most importantly, to a factorization of dynamical zeta functions. This
we now develop, first in a general setting and then for specific examples.

22.4.1 Factorizations of dynamical dynamical zeta functions

According to (22.9) and (22.10), the contribution of a degenerate class of
global cycles (cycle p with multiplicity mp = g/hp) to a dynamical zeta
function is given by the corresponding fundamental domain cycle p̃:

(1 − t
hp

p̃ )g/hp = det (1 −D(hp̃)tp̃) (22.13)
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Let D(h) =
⊕

α dαDα(h) be the decomposition of the matrix representa-
tion D(h) into the dα dimensional irreducible representations α of a finite
group G. Such decompositions are block-diagonal, so the corresponding
contribution to the Euler product (15.9) factorizes as

det (1 −D(h)t) =
∏

α

det (1 −Dα(h)t)dα , (22.14)

where now the product extends over all distinct dα-dimensional irreducible
representations, each contributing dα times. For the cycle expansion pur-
poses, it has been convenient to emphasize that the group-theoretic factor-
ization can be effected cycle by cycle, as in (22.13); but from the transfer
operator point of view, the key observation is that the symmetry reduces
the transfer operator to a block diagonal form; this block diagonalization
implies that the dynamical zeta functions (15.15) factorize as

1

ζ
=
∏

α

1

ζdα
α

,
1

ζα
=
∏

p̃

det (1 −Dα(hp̃)tp̃) . (22.15)

Determinants of d-dimensional irreducible representations can be eval-
uated using the expansion of determinants in terms of traces,

det (1 +M) = 1 + trM +
1

2

(
(trM)2 − trM2

)

+
1

6

(
(trM)3 − 3 (trM)(trM2) + 2 trM3

)

+ · · · + 1

d!

(
(trM)d − · · ·

)
, (22.16)

(see (K.26), for example) and each factor in (22.14) can be evaluated by
looking up the characters χα(h) = trDα(h) in standard tables [22.15]. In
terms of characters, we have for the 1-dimensional representations

det (1 −Dα(h)t) = 1 − χα(h)t ,

for the 2-dimensional representations

det (1 −Dα(h)t) = 1 − χα(h)t+
1

2

(
χα(h)2 − χα(h2)

)
t2,

and so forth.

In the fully symmetric subspace trDA1(h) = 1 for all orbits; hence a
straightforward fundamental domain computation (with no group theory
weights) always yields a part of the full spectrum. In practice this is the
most interesting subspectrum, as it contains the leading eigenvalue of the
transfer operator. ✎ 22.2
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22.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (15.3) proceeds in essentially
the same manner as the factorization of dynamical zeta functions outlined
above. By (22.5) and (22.8) the trace of the transfer operator L splits into
the sum of inequivalent irreducible subspace contributions

∑
α trLα, with

trLα = dα
∑

h∈G
χα(h)

∫

M̃
dx̃L(h−1x̃, x̃) .

This leads by standard manipulations to the factorization of (15.9) into

F (z) =
∏

α

Fα(z)dα

Fα(z) = exp


−

∑

p̃

∞∑

r=1

1

r

χα(hrp̃)z
np̃r

|det
(
1− M̃r

p̃

)
|


 , (22.17)

where M̃p̃ = hp̃Mp̃ is the fundamental domain Jacobian. Boundary orbits
require special treatment, discussed in sect. 22.3.1, with examples given in
the next section as well as in the specific factorizations discussed below.

The factorizations (22.15), (22.17) are the central formulas of this chap-
ter. We now work out the group theory factorizations of cycle expansions
of dynamical zeta functions for the cases of C2 and C3v symmetries. The
cases of the C2v, C4v symmetries are worked out in appendix I below.

22.5 C2 factorization

As the simplest example of implementing the above scheme consider the C2

symmetry. For our purposes, all that we need to know here is that each orbit
or configuration is uniquely labeled by an infinite string {si}, si = +,− and
that the dynamics is invariant under the + ↔ − interchange, that is, it is
C2 symmetric. The C2 symmetry cycles separate into two classes, the self-
dual configurations +−, + + −−, + + + − −−, + − − + − + +−, · · ·,
with multiplicity mp = 1, and the asymmetric configurations +, −, + +−,
−− +, · · ·, with multiplicity mp = 2. For example, as there is no absolute
distinction between the “up” and the “down” spins, or the “left” or the
“right” lobe, t+ = t−, t++− = t+−−, and so on.✎ 22.5

page 407
The symmetry reduced labeling ρi ∈ {0, 1} is related to the standard

si ∈ {+,−} Ising spin labeling by

If si = si−1 then ρi = 1

If si 6= si−1 then ρi = 0 (22.18)
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p̃ p mp

1 + 2
0 −+ 1
01 −− ++ 1
001 − + + 2
011 −−− + ++ 1
0001 − + −− + − ++ 1
0011 − + ++ 2
0111 −−−− + + ++ 1
00001 − + − + − 2
00011 − + −−− + − + ++ 1
00101 − + + −− + −− ++ 1
00111 − + −−− + − + ++ 1
01011 −− + + + 2
01111 −−−−− + + + ++ 1
001011 − + + −−− + −− + ++ 1
001101 − + + + −− + −−− ++ 1

Table 22.1: Correspondence between the C2 symmetry reduced cycles p̃ and the
standard Ising model periodic configurations p, together with their multiplicities mp.
Also listed are the two shortest cycles (length 6) related by time reversal, but distinct
under C2.

For example, + = · · ·++++ · · · maps into · · · 111 · · · = 1 (and so does −),
−+ = · · ·−+−+ · · · maps into · · · 000 · · · = 0, − + +− = · · ·−−++−−+
+ · · · maps into · · · 0101 · · · = 01, and so forth. A list of such reductions is
given in table 22.1.

Depending on the maximal symmetry group Hp that leaves an orbit p
invariant (see sects. 22.2 and 22.3 as well as sect. 22.1.2), the contributions
to the dynamical zeta function factor as

A1 A2

Hp = {e} : (1 − tp̃)
2 = (1 − tp̃)(1 − tp̃)

Hp = {e, σ} : (1 − t2p̃) = (1 − tp̃)(1 + tp̃) , (22.19)

For example:

H++− = {e} : (1 − t++−)2 = (1 − t001)(1 − t001)

H+− = {e, σ} : (1 − t+−) = (1 − t0) (1 + t0), t+− = t20

This yields two binary cycle expansions. The A1 subspace dynamical zeta
function is given by the standard binary expansion (18.5). The antisym-
metric A2 subspace dynamical zeta function ζA2 differs from ζA1 only by a
minus sign for cycles with an odd number of 0’s:

1/ζA2 = (1 + t0)(1 − t1)(1 + t10)(1 − t100)(1 + t101)(1 + t1000)

(1 − t1001)(1 + t1011)(1 − t10000)(1 + t10001)

(1 + t10010)(1 − t10011)(1 − t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0) − (t100 − t10t0) + (t101 − t10t1)

−(t1001 − t1t001 − t101t0 + t10t0t1) − . . . . . . (22.20)
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Note that the group theory factors do not destroy the curvature corrections
(the cycles and pseudo cycles are still arranged into shadowing combina-
tions).

If the system under consideration has a boundary orbit (cf. sect. 22.3.1)
with group-theoretic factor hp = (e + σ)/2, the boundary orbit does not
contribute to the antisymmetric subspace

A1 A2

boundary: (1 − tp) = (1 − tp̃)(1 − 0tp̃) (22.21)

This is the 1/ζ part of the boundary orbit factorization of sect. 22.1.2.

22.6 C3v factorization: 3-disk game of pinball

The next example, the C3v symmetry, can be worked out by a glance at
figure 11.6a. For the symmetric 3-disk game of pinball the fundamental
domain is bounded by a disk segment and the two adjacent sections of the
symmetry axes that act as mirrors (see figure 11.6b). The three symme-
try axes divide the space into six copies of the fundamental domain. Any
trajectory on the full space can be pieced together from bounces in the fun-
damental domain, with symmetry axes replaced by flat mirror reflections.
The binary {0, 1} reduction of the ternary three disk {1, 2, 3} labels has a
simple geometric interpretation: a collision of type 0 reflects the projectile
to the disk it comes from (back–scatter), whereas after a collision of type
1 projectile continues to the third disk. For example, 23 = · · · 232323 · · ·
maps into · · · 000 · · · = 0 (and so do 12 and 13), 123 = · · · 12312 · · · maps
into · · · 111 · · · = 1 (and so does 132), and so forth. A list of such reductions
for short cycles is given in table 11.2.

C3v has two 1-dimensional irreducible representations, symmetric and
antisymmetric under reflections, denoted A1 and A2, and a pair of degen-
erate 2-dimensional representations of mixed symmetry, denoted E. The
contribution of an orbit with symmetry g to the 1/ζ Euler product (22.14)
factorizes according to

det (1−D(h)t) = (1 − χA1(h)t) (1 − χA2(h)t)
(
1 − χE(h)t+ χA2(h)t

2
)2

(22.22)

with the three factors contributing to the C3v irreducible representations
A1, A2 and E, respectively, and the 3-disk dynamical zeta function factor-
izes into ζ = ζA1ζA2ζ

2
E . Substituting the C3v characters [22.15]

C3v A1 A2 E
e 1 1 2

C3, C
2
3 1 1 −1

σv 1 −1 0
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into (22.22), we obtain for the three classes of possible orbit symmetries
(indicated in the first column)

hp̃ A1 A2 E

e : (1 − tp̃)
6 = (1 − tp̃)(1 − tp̃)(1 − 2tp̃ + t2p̃)

2

C3, C
2
3 : (1 − t3p̃)

2 = (1 − tp̃)(1 − tp̃)(1 + tp̃ + t2p̃)
2

σv : (1 − t2p̃)
3 = (1 − tp̃)(1 + tp̃)(1 + 0tp̃ − t2p̃)

2. (22.23)

where σv stands for any one of the three reflections.

The Euler product (15.15) on each irreducible subspace follows from
the factorization (22.23). On the symmetric A1 subspace the ζA1 is given
by the standard binary curvature expansion (18.5). The antisymmetric A2

subspace ζA2 differs from ζA1 only by a minus sign for cycles with an odd
number of 0’s, and is given in (22.20). For the mixed-symmetry subspace
E the curvature expansion is given by

1/ζE = (1 + zt1 + z2t21)(1 − z2t20)(1 + z3t100 + z6t2100)(1 − z4t210)

(1 + z4t1001 + z8t21001)(1 + z5t10000 + z10t210000)

(1 + z5t10101 + z10t210101)(1 − z5t10011)
2 . . .

= 1 + zt1 + z2(t21 − t20) + z3(t001 − t1t
2
0)

+z4
[
t0011 + (t001 − t1t

2
0)t1 − t201

]

+z5
[
t00001 + t01011 − 2t00111 + (t0011 − t201)t1 + (t21 − t20)t100

]
+ · · ·(22.24)

We have reinserted the powers of z in order to group together cycles and
pseudocycles of the same length. Note that the factorized cycle expansions
retain the curvature form; long cycles are still shadowed by (somewhat less
obvious) combinations of pseudocycles.

Referring back to the topological polynomial (13.31) obtained by setting
tp = 1, we see that its factorization is a consequence of the C3v factorization
of the ζ function:

1/ζA1 = 1 − 2z , 1/ζA2 = 1 , 1/ζE = 1 + z , (22.25)

as obtained from (18.5), (22.20) and (22.24) for tp = 1.

Their symmetry is K = {e, σ}, so according to (22.11), they pick up
the group-theoretic factor hp = (e + σ)/2. If there is no sign change in tp,
then evaluation of det (1 − e+σ

2 tp̃) yields

A1 A2 E

boundary: (1 − tp)
3 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)

2 , tp = tp̃ .(22.26)
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However, if the cycle weight changes sign under reflection, tσp̃ = −tp̃, the
boundary orbit does not contribute to the subspace symmetric under re-
flection across the orbit;

A1 A2 E

boundary: (1 − tp)
3 = (1 − 0tp̃)(1 − tp̃)(1 − tp̃)

2 , tp = tp̃ .(22.27)

Commentary

Remark 22.1 Some examples of systems with discrete symmetries. This chapter

is based on ref. [22.1]. One has a C2 symmetry in the Lorenz system [2.1, 22.16],

the Ising model, and in the 3-dimensional anisotropic Kepler potential [30.6, 30.19,

30.20], a C3v symmetry in Hénon-Heiles type potentials [22.2, 22.6, 22.7, 22.5], a

C4v symmetry in quartic oscillators [22.9, 22.10], in the pure x2y2 potential [22.11,

22.12] and in hydrogen in a magnetic field [22.13], and a C2v = C2 ×C2 symmetry

in the stadium billiard [22.4]. A very nice application of the symmetry factorization

is carried out in ref. [22.8].

Remark 22.2 Who did it? This chapter is based on long collaborative effort

with B. Eckhardt, ref. [22.1]. The group-theoretic factorizations of dynamical zeta

functions that we develop here were first introduced and applied in ref. [6.3]. They

are closely related to the symmetrizations introduced by Gutzwiller [30.6] in the

context of the semiclassical periodic orbit trace formulas, put into more general

group-theoretic context by Robbins [22.4], whose exposition, together with Lau-

ritzen’s [22.5] treatment of the boundary orbits, has influenced the presentation

given here. A related group-theoretic decomposition in context of hyperbolic bil-

liards was utilized in ref. [22.8].

Remark 22.3 Computations The techniques of this chapter have been applied

to computations of the 3-disk classical and quantum spectra in refs. [1.2, 32.15],

and to a “Zeeman effect” pinball and the x2y2 potentials in refs. [22.3, 18.12]. In a

larger perspective, the factorizations developed above are special cases of a general

approach to exploiting the group-theoretic invariances in spectra computations,

such as those used in enumeration of periodic geodesics [22.8, 15.4, 15.14] for

hyperbolic billiards [30.4] and Selberg zeta functions [25.2].

Remark 22.4 Other symmetries. In addition to the symmetries exploited here,

time reversal symmetry and a variety of other non-trivial discrete symmetries can

induce further relations among orbits; we shall point out several of examples of

cycle degeneracies under time reversal. We do not know whether such symmetries

can be exploited for further improvements of cycle expansions.

Remark 22.5 Cycles and symmetries. We conclude this section with a few com-
ments about the role of symmetries in actual extraction of cycles. In the example
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at hand, the N -disk billiard systems, a fundamental domain is a sliver of the N -
disk configuration space delineated by a pair of adjoining symmetry axes, with the
directions of the momenta indicated by arrows. The flow may further be reduced
to a return map on a Poincaré surface of section, on which an appropriate transfer
operator may be constructed. While in principle any Poincaré surface of section
will do, a natural choice in the present context are crossings of symmetry axes.

In actual numerical integrations only the last crossing of a symmetry line

needs to be determined. The cycle is run in global coordinates and the group

elements associated with the crossings of symmetry lines are recorded; integration

is terminated when the orbit closes in the fundamental domain. Periodic orbits

with non-trivial symmetry subgroups are particularly easy to find since their points

lie on crossings of symmetry lines.

Remark 22.6 C2 symmetry The C2 symmetry arises, for example, in the

Lorenz system [22.16], in the 3-dimensional anisotropic Kepler problem [30.6,

30.19, 30.20] or in the cycle expansions treatments of the Ising model [12.64].

Remark 22.7 Hénon-Heiles potential An example of a system with C3v sym-
metry is provided by the motion of a particle in the Hénon-Heiles potential [22.2]

V (r, θ) =
1

2
r2 +

1

3
r3 sin(3θ) .

Our coding is not directly applicable to this system because of the existence of el-

liptic islands and because the three orbits that run along the symmetry axis cannot

be labeled in our code. However, since these orbits run along the boundary of the

fundamental domain, they require the special treatment discussed in sect. 22.3.1.

Résumé

If a dynamical system has a discrete symmetry, the symmetry should be
exploited; much is gained, both in understanding of the spectra and ease of
their evaluation. Once this is appreciated, it is hard to conceive of a calcu-
lation without factorization; it would correspond to quantum mechanical
calculations without wave–function symmetrizations.

Reduction to the fundamental domain simplifies symbolic dynamics and
eliminates symmetry induced degeneracies. While the resummation of the
theory from the trace sums to the cycle expansions does not reduce the
exponential growth in number of cycles with the cycle length, in practice
only the short orbits are used, and for them the labor saving is dramatic.
For example, for the 3-disk game of pinball there are 256 periodic points of
length 8, but reduction to the fundamental domain non-degenerate prime
cycles reduces the number of the distinct cycles of length 8 to 30.

In addition, cycle expansions of the symmetry reduced dynamical zeta
functions converge dramatically faster than the unfactorized dynamical zeta
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functions. One reason is that the unfactorized dynamical zeta function has
many closely spaced zeros and zeros of multiplicity higher than one; since
the cycle expansion is a polynomial expansion in topological cycle length,
accommodating such behavior requires many terms. The dynamical zeta
functions on separate subspaces have more evenly and widely spaced zeros,
are smoother, do not have symmetry-induced multiple zeros, and fewer
cycle expansion terms (short cycle truncations) suffice to determine them.
Furthermore, the cycles in the fundamental domain sample phase space
more densely than in the full space. For example, for the 3-disk problem,
there are 9 distinct (symmetry unrelated) cycles of length 7 or less in full
space, corresponding to 47 distinct periodic points. In the fundamental
domain, we have 8 (distinct) periodic orbits up to length 4 and thus 22
different periodic points in 1/6-th the phase space, that is, an increase in
density by a factor 3 with the same numerical effort.

We emphasize that the symmetry factorization (22.23) of the dynam-
ical zeta functionis intrinsic to the classical dynamics, and not a special
property of quantal spectra. The factorization is not restricted to the
Hamiltonian systems, or only to the configuration space symmetries; for
example, the discrete symmetry can be a symmetry of the Hamiltonian
phase space [22.4]. In conclusion, the manifold advantages of the symme-
try reduced dynamics should thus be obvious; full space cycle expansions,
such as those of exercise 18.8, are useful only for cross checking purposes.
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Exercises

Exercise 22.1 Sawtooth map desymmetrization. Work out the some
of the shortest global cycles of different symmetries and fundamental domain
cycles for the sawtooth map of figure 22.1. Compute the dynamical zeta func-
tion and the spectral determinant of the Perron-Frobenius operator for this
map; check explicitely the factorization (22.2).

Exercise 22.2 2-d asymmetric representation. The above expressions
can sometimes be simplified further using standard group-theoretical methods. For
example, the 1

2

(
(trM)2 − trM2

)
term in (22.16) is the trace of the antisymmetric

part of the M ×M Kronecker product; if α is a 2-dimensional representation, this is
the A2 antisymmetric representation, so

2-dim: det (1 −Dα(h)t) = 1 − χα(h)t+ χA2(h)t
2. (22.28)

Exercise 22.3 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for the 0 and 1 cycles, i.e.
which symmetry do they have, what is the degeneracy in full space and
how do they factorize (how do they look in the A1, A2 and the E
representations).

b) Find the shortest cycle with no symmetries and factorize it like in a)

c) Find the shortest cycle that has the property that its time reversal is not
described by the same symbolic dynamics.

d) Compute the dynamical zeta functions and the spectral determinants
(symbolically) in the three representations; check the factorizations (22.15)
and (22.17).

(Per Rosenqvist)

Exercise 22.4 The group C3v. We will compute a few of the properties
of the group C3v, the group of symmetries of an equilateral triangle

1


2
  3


(a) All discrete groups are isomorphic to a permutation group or one of its
subgroups, and elements of the permutation group can be expressed as
cycles. Express the elements of the group C3v as cycles. For example,
one of the rotations is (123), meaning that vertex 1 maps to 2 and 2 to
3 and 3 to 1.
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(b) Find the subgroups of the group C3v.

(c) Find the classes of C3v and the number of elements in them.

(d) Their are three irreducible representations for the group. Two are one
dimensional and the other one is formed by 2 × 2 matrices of the form

[
cos θ sin θ
− sin θ cos θ

]
.

Find the matrices for all six group elements.

(e) Use your representation to find the character table for the group.

Exercise 22.5 C2 factorizations: the Lorenz and Ising systems. In the

Lorenz system [2.1, 22.16] the labels + and − stand for the left or the right lobe of

the attractor and the symmetry is a rotation by π around the z-axis. Similarly, the

Ising Hamiltonian (in the absence of an external magnetic field) is invariant under spin

flip. Work out the factorizations for some of the short cycles in either system.

Exercise 22.6 Ising model. The Ising model with two states ǫi = {+,−} per
site, periodic boundary condition, and Hamiltonian

H(ǫ) = −J
∑

i

δǫi,ǫi+1 ,

is invariant under spin-flip: + ↔ −. Take advantage of that symmetry and factorize

the dynamical zeta function for the model, that is, find all the periodic orbits that

contribute to each factor and their weights.

Exercise 22.7 One orbit contribution. If p is an orbit in the fundamental
domain with symmetry h, show that it contributes to the spectral determinant with a
factor

det

(
1 −D(h)

tp
λk

p

)
,

where D(h) is the representation of h in the regular representation of the group.
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Chapter 23

Deterministic diffusion

This is a bizzare and discordant situation.

M.V. Berry

(R. Artuso and P. Cvitanović)

The advances in the theory of dynamical systems have brought a new life to
Boltzmann’s mechanical formulation of statistical mechanics. Sinai, Ruelle
and Bowen (SRB) have generalized Boltzmann’s notion of ergodicity for a
constant energy surface for a Hamiltonian system in equilibrium to dissi-
pative systems in nonequilibrium stationary states. In this more general
setting the attractor plays the role of a constant energy surface, and the
SRB measure of sect. 9.1 is a generalization of the Liouville measure. Such
measures are purely microscopic and indifferent to whether the system is
at equilibrium, close to equilibrium or far from it. “Far for equilibrium” in
this context refers to systems with large deviations from Maxwell’s equilib-
rium velocity distribution. Furthermore, the theory of dynamical systems
has yielded new sets of microscopic dynamics formulas for macroscopic ob-
servables such as diffusion constants and the pressure, to which we turn
now.

We shall apply cycle expansions to the analysis of transport properties
of chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are made,
and the all correlations are taken into account by the inclusion of cycles of
all periods. The infinite extent systems for which the periodic orbit theory
yields formulas for diffusion and other transport coefficients are spatially
periodic, the global phase space being tiled with copies of a elementary
cell. The motivation are physical problems such as beam defocusing in
particle accelerators or chaotic behavior of passive tracers in 2-d rotating
flows, problems which can be described as deterministic diffusion in periodic
arrays.

In sect. 23.1 we derive the formulas for diffusion coefficients in a simple
physical setting, the 2-d periodic Lorentz gas. This system, however, is

409



410 CHAPTER 23. DETERMINISTIC DIFFUSION

Figure 23.1: Deterministic diffusion in a finite
horizon periodic Lorentz gas. (Courtesy of T.
Schreiber)

not the best one to exemplify the theory, due to its complicated symbolic
dynamics. Therefore we apply the theory first to diffusion induced by a 1-d
maps in sect. 23.2.

23.1 Diffusion in periodic arrays

The 2-d Lorentz gas is an infinite scatterer array in which diffusion of a light
molecule in a gas of heavy scatterers is modelled by the motion of a point
particle in a plane bouncing off an array of reflecting disks. The Lorentz
gas is called “gas” as one can equivalently think of it as consisting of any
number of pointlike fast “light molecules” interacting only with the station-
ary “heavy molecules” and not among themselves. As the scatterer array
is built up from only defocusing concave surfaces, it is a pure hyperbolic
system, and one of the simplest nontrivial dynamical systems that exhibits
deterministic diffusion, figure 23.1. We shall now show that the periodic
Lorentz gas is amenable to a purely deterministic treatment. In this class of
open dynamical systems quantities characterizing global dynamics, such as
the Lyapunov exponent, pressure and diffusion constant, can be computed
from the dynamics restricted to the elementary cell. The method applies to
any hyperbolic dynamical system that is a periodic tiling M̂ =

⋃
n̂∈T Mn̂

of the dynamical phase space M̂ by translates Mn̂ of an elementary cell M,
with T the Abelian group of lattice translations. If the scattering array has
further discrete symmetries, such as reflection symmetry, each elementary
cell may be built from a fundamental domain M̃ by the action of a discrete
(not necessarily Abelian) group G. The symbol M̂ refers here to the full
phase space, that is,, both the spatial coordinates and the momenta. The
spatial component of M̂ is the complement of the disks in the whole space.

We shall now relate the dynamics in M to diffusive properties of the
Lorentz gas in M̂.
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Figure 23.2: Tiling of M̂, a periodic lattice
of reflecting disks, by the fundamental domain
M̃. Indicated is an example of a global trajec-
tory x̂(t) together with the corresponding ele-
mentary cell trajectory x(t) and the fundamen-
tal domain trajectory x̃(t). (Courtesy of J.-P.
Eckmann)

These concepts are best illustrated by a specific example, a Lorentz gas
based on the hexagonal lattice Sinai billiard of figure 23.2. We distinguish
two types of diffusive behavior; the infinite horizon case, which allows for
infinite length flights, and the finite horizon case, where any free particle
trajectory must hit a disk in finite time. In this chapter we shall restrict our
consideration to the finite horizon case, with disks sufficiently large so that
no infinite length free flight is possible. In this case the diffusion is normal,
with x̂(t)2 growing like t. We shall return to the anomalous diffusion case
in sect. 23.3.

As we will work with three kinds of phase spaces, good manners require
that we repeat what hats, tildas and nothings atop symbols signify:

˜ fundamental domain, triangle in figure 23.2

elementary cell, hexagon in figure 23.2

ˆ full phase space, lattice in figure 23.2 (23.1)

It is convenient to define an evolution operator for each of the 3 cases of
figure 23.2. x̂(t) = f̂ t(x̂) denotes the point in the global space M̂ reached
by the flow in time t. x(t) = f t(x0) denotes the corresponding flow in the
elementary cell; the two are related by

n̂t(x0) = f̂ t(x0) − f t(x0) ∈ T , (23.2)

the translation of the endpoint of the global path into the elementary cell
M. The quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domain

M̃; f̃ t(x̃) is related to f t(x̃) by a discrete symmetry g ∈ G which maps

x̃(t) ∈ M̃ to x(t) ∈ M .
☞ chapter 22

Fix a vector β ∈ R
d, where d is the dimension of the phase space. We

will compute the diffusive properties of the Lorentz gas from the leading
eigenvalue of the evolution operator (10.11)

s(β) = lim
t→∞

1

t
log〈eβ·(x̂(t)−x)〉M , (23.3)
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where the average is over all initial points in the elementary cell, x ∈ M.

If all odd derivatives vanish by symmetry, there is no drift and the
second derivatives

∂

∂βi

∂

∂βj
s(β)

∣∣∣∣
β=0

= lim
t→∞

1

t
〈(x̂(t) − x)i(x̂(t) − x)j〉M ,

yield a (generally anisotropic) diffusion matrix. The spatial diffusion con-
stant is then given by the Einstein relation (10.13)

D =
1

2d

∑

i

∂2

∂β2
i

s(β)

∣∣∣∣
β=0

= lim
t→∞

1

2dt
〈(q̂(t) − q)2〉M ,

where the i sum is restricted to the spatial components qi of the phase space
vectors x = (q, p), that is, if the dynamics is Hamiltonian to the number of
the degrees of freedom.

We now turn to the connection between (23.3) and periodic orbits in

the elementary cell. As the full M̂ → M̃ reduction is complicated by the
☞ remark 23.6

nonabelian nature of G, we shall introduce the main ideas in the abelian
M̂ → M context.

23.1.1 Reduction from M̂ to M

The key idea follows from inspection of the relation

〈
eβ·(x̂(t)−x)

〉
M

=
1

|M|

∫

x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) .

|M| =
∫
M dx is the volume of the elementary cell M. As in sect. 10.2, we

have used the identity 1 =
∫
Mdy δ(y − x̂(t)) to motivate the introduction of

the evolution operator Lt(ŷ, x). There is a unique lattice translation n̂ such
that ŷ = y − n̂, with y ∈ M, and f t(x) given by (23.2). The difference is a
translation by a constant, and the Jacobian for changing integration from
dŷ to dy equals unity. Therefore, and this is the main point, translation
invariance can be used to reduce this average to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1

|M|

∫

x,y∈M
dxdy eβ·(f̂

t(x)−x)δ(y − f t(x)) . (23.4)

As this is a translation, the Jacobian is δŷ/δy = 1. In this way the global
f̂ t(x) flow averages can be computed by following the flow f t(x0) restricted
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to the elementary cell M. The equation (23.4) suggests that we study the
evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − f t(x)) , (23.5)

where x̂(t) = f̂ t(x) ∈ M̂, but x, f t(x), y ∈ M. It is straightforward to
check that this operator satisfies the semigroup property (10.25),

∫
M dz Lt2(y, z)Lt1(z, x) =

Lt2+t1(y, x) . For β = 0, the operator (23.5) is the Perron-Frobenius oper-
ator (9.10), with the leading eigenvalue es0 = 1 because there is no escape
from this system (this will lead to the flow conservation sum rule (19.11)
later on).

The rest is old hat. The spectrum of L is evaluated by taking the trace
☞ sect. 14.3

trLt =

∫

M
dx eβ·n̂t(x)δ(x − x(t)) .

Here n̂t(x) is the discrete lattice translation defined in (23.2). Two kinds of
orbits periodic in the elementary cell contribute. A periodic orbit is called
standing if it is also periodic orbit of the infinite phase space dynamics,
f̂Tp(x) = x, and it is called running if it corresponds to a lattice translation
in the dynamics on the infinite phase space, f̂Tp(x) = x + n̂p. In the
theory of area–preserving maps such orbits are called accelerator modes,
as the diffusion takes place along the momentum rather than the position
coordinate. The travelled distance n̂p = n̂Tp(x0) is independent of the
starting point x0, as can be easily seen by continuing the path periodically
in M̂.

The final result is the spectral determinant (15.6)

det (s(β) −A) =
∏

p

exp

(
−

∞∑

r=1

1

r

e(β·n̂p−sTp)r

∣∣det
(
1− Mr

p

)∣∣

)
, (23.6)

or the corresponding dynamical zeta function (15.15)

1/ζ(β, s) =
∏

p

(
1 − e(β·n̂p−sTp)

|Λp|

)
. (23.7)

The dynamical zeta function cycle averaging formula (18.18) for the diffu-
sion constant (10.13), zero mean drift 〈x̂i〉 = 0 , is given by

D =
1

2d

〈
x̂2
〉
ζ

〈T〉ζ
=

1

2d

1

〈T〉ζ
∑′ (−1)k+1(n̂p1 + · · · + n̂pk

)2

|Λp1 · · ·Λpk
| . (23.8)

where the sum is over all distinct non-repeating combination of prime cy-
cles. The derivation is standard, still the formula is strange. Diffusion is
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unbounded motion accross an infinite lattice; nevertheless, the reduction to
the elementary cell enables us to compute relevant quantities in the usual
way, in terms of periodic orbits.

A sleepy reader might protest that xp = x(Tp)−x(0) is manifestly equal
to zero for a periodic orbit. That is correct; n̂p in the above formula refers
to a displacement on the infinite periodic lattice, while p refers to closed
orbit of the dynamics reduced to the elementary cell, with xp belonging to
the closed prime cycle p.

Even so, this is not an obvious formula. Globally periodic orbits have
x̂2
p = 0, and contribute only to the time normalization 〈T〉ζ . The mean

square displacement
〈
x̂2
〉
ζ

gets contributions only from the periodic run-
away trajectories; they are closed in the elementary cell, but on the periodic
lattice each one grows like x̂(t)2 = (n̂p/Tp)

2 = v2
pt

2. So the orbits that con-
tribute to the trace formulas and spectral determinants exhibit either bal-
listic transport or no transport at all: diffusion arises as a balance between
the two kinds of motion, weighted by the 1/|Λp| measure. If the system is
not hyperbolic such weights may be abnormally large, with 1/|Λp| ≈ 1/Tp

α

rather than 1/|Λp| ≈ e−Tpλ, where λ is the Lyapunov exponent, and they
may lead to anomalous diffusion - accelerated or slowed down depending
on whether the probabilities of the running or the standing orbits are en-
hanced.

☞ sect. 23.3

We illustrate the main idea, tracking of a globally diffusing orbit by
the associated confined orbit restricted to the elementary cell, with a class
of simple 1-d dynamical systems where all transport coefficients can be
evaluated analytically.

23.2 Diffusion induced by chains of 1-d maps

In a typical deterministic diffusive process, trajectories originating from a
given scatterer reach a finite set of neighboring scatterers in one bounce,
and then the process is repeated. As was shown in chapter 11, the essential
part of this process is the stretching along the unstable directions of the
flow, and in the crudest approximation the dynamics can be modelled by
1-d expanding maps. This observation motivates introduction of a class of
particularly simple 1-d systems, chains of piecewise linear maps.

We start by defining the map f̂ on the unit interval as

f̂(x̂) =

{
Λx̂ x̂ ∈ [0, 1/2)
Λx̂+ 1 − Λ x̂ ∈ (1/2, 1]

, Λ > 2 , (23.9)

and then extending the dynamics to the entire real line, by imposing the
translation property

f̂ (x̂+ n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (23.10)
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(a) (b)

Figure 23.3: (a) f̂ (x̂), the full space sawtooth map (23.9), Λ > 2. (b) f (x), the
sawtooth map restricted to the unit circle (23.12), Λ = 6.

As the map is dicontinuous at x̂ = 1/2, f̂(1/2) is undefined, and the x =
1/2 point has to be excluded from the Markov partition. The map is
antisymmetric under the x̂-coordinate flip

f̂ (x̂) = −f̂ (−x̂) , (23.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the gen-
erating function (10.11) with respect to β, evaluated at β = 0, will vanish.

The map (23.9) is sketched in figure 23.3(a). Initial points sufficiently
close to either of the fixed points in the initial unit interval remain in the
elementary cell for one iteration; depending on the slope Λ, other points
jump n̂ cells, either to the right or to the left. Repetition of this process
generates a random walk for almost every initial condition.

The translational symmetry (23.10) relates the unbounded dynamics on
the real line to dynamics restricted to the elementary cell - in the example
at hand, the unit interval curled up into a circle. Associated to f̂ (x̂) we
thus also consider the circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂− [x̂] ∈ [0, 1] (23.12)

figure 23.3(b), where [· · ·] stands for the integer part (23.2). As noted above,
the elementary cell cycles correspond to either standing or running orbits
for the map on the full line: we shall refer to n̂p ∈ Z as the jumping number
of the p cycle, and take as the cycle weight

tp = znpeβn̂p/|Λp| . (23.13)

For the piecewise linear map of figure 23.3 we can evaluate the dynamic-
al zeta function in closed form. Each branch has the same value of the
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slope, and the map can be parametrized by a single parameter, for example
its critical value a = f̂ (1/2), the absolute maximum on the interval [0, 1]
related to the slope of the map by a = Λ/2. The larger Λ is, the stronger
is the stretching action of the map.

The diffusion constant formula (23.8) for 1-d maps is

D =
1

2

〈
n̂2
〉
ζ

〈n〉ζ
(23.14)

where the “mean cycle time” is given by (18.19)

〈n〉ζ = z
∂

∂z

1

ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k
np1 + · · · + npk

|Λp1 · · ·Λpk
| , (23.15)

and the “mean cycle displacement squared” by (20.1)

〈
n̂2
〉
ζ

=
∂2

∂β2

1

ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk

)2

|Λp1 · · ·Λpk
| , (23.16)

the primed sum indicating all distinct non-repeating combinations of prime
cycles. The evaluation of these formulas in this simple system will require
nothing more than pencil and paper.

23.2.1 Case of unrestricted symbolic dynamics

Whenever Λ is an integer number, the symbolic dynamics is exceedingly
simple. For example, for the case Λ = 6 illustrated in figure 23.3(b),
the elementary cell map consists of 6 full branches, with uniform stretch-
ing factor Λ = 6. The branches have different jumping numbers: for
branches 1 and 2 we have n̂ = 0, for branch 3 we have n̂ = +1, for
branch 4 n̂ = −1, and finally for branches 5 and 6 we have respectively
n̂ = +2 and n̂ = −2. The same structure reappears whenever Λ is an
even integer Λ = 2a: all branches are mapped onto the whole unit in-
terval and we have two n̂ = 0 branches, one branch for which n̂ = +1
and one for which n̂ = −1, and so on, up to the maximal jump |n̂| =
a− 1. The symbolic dynamics is thus full, unrestricted shift in 2a symbols
{0+, 1+, . . . , (a− 1)+, (a− 1)−, . . . , 1−, 0−}, where the symbol indicates
both the length and the direction of the corresponding jump.

For the piecewise linear maps with uniform stretching the weight asso-
ciated with a given symbol sequence is a product of weights for individual
steps, tsq = tstq. For the map of figure 23.3 there are 6 distinct weigths
(23.13):

t1 = t2 = z/Λ

t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .
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The piecewise linearity and the simple symbolic dynamics lead to the full
cancellation of all curvature corrections in (18.5). The exact dynamical zeta
function (13.13) is given by the fixed point contributions:

1/ζ(β, z) = 1 − t0+ − t0− − · · · − t(a−1)+ − t(a−1)−

= 1 − z

a


1 +

a−1∑

j=1

cosh(βj)


 . (23.17)

The leading (and only) eigenvalue of the evolution operator (23.5) is

s(β) = log





1

a


1 +

a−1∑

j=1

cosh(βj)





 , Λ = 2a, a integer .(23.18)

The flow conservation (19.11) sum rule is manifestly satisfied, so s(0) = 0.
The first derivative s(0)′ vanishes as well by the left/right symmetry of the
dynamics, implying vanishing mean drift 〈x̂〉 = 0. The second derivative
s(β)′′ yields the diffusion constant (23.14):

〈n〉ζ = 2a
1

Λ
= 1 ,

〈
x̂2
〉
ζ

= 2
02

Λ
+2

12

Λ
+2

22

Λ
+· · ·+2

(a− 1)2

Λ
(23.19)

Using the identity
∑n

k=1 k
2 = n(n+ 1)(2n + 1)/6 we obtain

D =
1

24
(Λ − 1)(Λ − 2) , Λ even integer . (23.20)

Similar calculation for odd integer Λ = 2k − 1 yields ✎ 23.1
page 429

D =
1

24
(Λ2 − 1) , Λ odd integer . (23.21)

23.2.2 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1

k!

dk

dβk
s(β)

∣∣∣∣
β=0

, B2 = D , (23.22)

known for k > 2 as the Burnett coefficients. The behavior of the higher
order coefficients yields information on the relaxation to the asymptotic
distribution function generated by the diffusive process. Here x̂t is the rel-
evant dynamical variable and Bk’s are related to moments

〈
x̂kt
〉

of arbitrary
order.
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Figure 23.4: (a) A partition of the unit interval into six intervals, labeled by the
jumping number n̂(x) I = {0+, 1+, 2+, 2−, 1−, 0−}. The partition is Markov, as the
critical point is mapped onto the right border of M1+ . (b) The Markov graph for this
partition. (c) The Markov graph in the compact notation of (23.26) (introduced by
Vadim Moroz).

Were the diffusive process purely Gaussian

ets(β) =
1√

4πDt

∫ +∞

−∞
dx̂ eβx̂e−x̂

2/(4Dt) = eβ
2Dt (23.23)

the only Bk coefficient different from zero would be B2 = D. Hence, nonva-
nishing higher order coefficients signal deviations of deterministic diffusion
from a Gaussian stochastic process.

For the map under consideration the first Burnett coefficient coefficient
B4 is easily evaluated. For example, using (23.18) in the case of even integer
slope Λ = 2a we obtain✎ 23.2

page 429

B4 = − 1

4! · 60(a− 1)(2a − 1)(4a2 − 9a+ 7) . (23.24)

We see that deterministic diffusion is not a Gaussian stochastic process.
Higher order even coefficients may be calculated along the same lines.

23.2.3 Case of finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the criti-
cal points are mapped in finite numbers of iterations onto partition bound-
ary points, or onto unstable periodic orbits. We will work out here an
example for which this occurs in two iterations, leaving other cases as ex-
ercises.

The key idea is to construct a Markov partition (11.4), with intervals
mapped onto unions of intervals. As an example we determine a value of the
parameter 4 ≤ Λ ≤ 6 for which f (f (1/2)) = 0. As in the integer Λ case, we
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partition the unit interval into six intervals, labeled by the jumping number
n̂(x) ∈ {M0+ ,M1+ ,M2+ ,M2− ,M1− ,M0−}, ordered by their placement
along the unit interval, figure 23.4(a).

In general the critical value a = f̂ (1/2) will not correspond to an in-
terval border, but now we choose a such that the critical point is mapped
onto the right border of M1+ . Equating f (1/2) with the right border of
M1+ , x = 1/Λ, we obtain a quadratic equation with the expanding solu-
tion Λ = 2(

√
2 + 1). For this parameter value f(M1+) = M0+

⋃M1+ ,
f(M2−) = M0−

⋃M1− , while the remaining intervals map onto the whole
unit interval M. The transition matrix (11.2) is given by

φ′ = Tφ =




1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1







φ0+

φ1+

φ2+

φ2−
φ1−
φ0−



. (23.25)

One could diagonalize (23.25) on a computer, but, as we saw in sect. 11.5,
the Markov graph figure 23.4(b) corresponding to figure 23.4(a) offers more
insight into the dynamics. The graph figure 23.4(b) can be redrawn more
compactly as Markov graph figure 23.4(c) by replacing parallel lines in a
graph by their sum

2

3

2 311
= t1 + t2 + t3 . (23.26)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .

Applying the loop expansion (13.13) of sect. 13.3, we are led to the dyn-
amical zeta function

1/ζ(β, z) = 1 − t0+ − t1+ − t2+0+ − t2+1+ − t2−1− − t2−0− − t1− − t0−

= 1 − 2z

Λ
(1 + cosh(β)) − 2z2

Λ2
(cosh(2β) + cosh(3β)) .(23.27)

For grammar as simple as this one, the dynamical zeta function is the sum
over fixed points of the unrestricted alphabet. As the first check of this
expression for the dynamical zeta function we verify that

1/ζ(0, 1) = 1 − 4

Λ
− 4

Λ2
= 0 ,
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as required by the flow conservation (19.11). Conversely, we could have
started by picking the desired Markov partition, writing down the corre-
sponding dynamical zeta function, and then fixing Λ by the 1/ζ(0, 1) = 0
condition. For more complicated Markov graphs this approach, together
with the factorization (23.35), is helpful in reducing the order of the poly-
nomial condition that fixes Λ.

The diffusion constant follows from (23.14)✎ 23.3
page 429

〈n〉ζ = 4
1

Λ
+ 4

2

Λ2
,
〈
n̂2
〉
ζ

= 2
12

Λ
+ 2

22

Λ2
+ 2

32

Λ2

D =
15 + 2

√
2

16 + 8
√

2
. (23.28)

It is by now clear how to build an infinite hierarchy of finite Markov par-
titions: tune the slope in such a way that the critical value f(1/2) is
mapped into the fixed point at the origin in a finite number of iterations p
fP (1/2) = 0. By taking higher and higher values of p one constructs a dense
set of Markov parameter values, organized into a hierarchy that resembles
the way in which rationals are densely embedded in the unit interval. For
example, each of the 6 primary intervals can be subdivided into 6 intervals
obtained by the 2-nd iterate of the map, and for the critical point map-
ping into any of those in 2 steps the grammar (and the corresponding cycle
expansion) is finite. So, if we can prove continuity of D = D(Λ), we can
apply the periodic orbit theory to the sawtooth map (23.9) for a random
“generic” value of the parameter Λ, for example Λ = 4.5. The idea is to
bracket this value of Λ by a sequence of nearby Markov values, compute
the exact diffusion constant for each such Markov partition, and study their
convergence toward the value of D for Λ = 4.5. Judging how difficult such
problem is already for a tent map (see sect. 13.6 and appendix E.1), this is
not likely to take only a week of work.

Expressions like (23.20) may lead to an expectation that the diffusion
coefficient (and thus transport properties) are smooth functions of para-
meters controling the chaoticity of the system. For example, one might
expect that the diffusion coefficient increases smoothly and monotonically
as the slope Λ of the map (23.9) is increased, or, perhaps more physically,
that the diffusion coefficient is a smooth function of the Lyapunov expo-
nent λ. This turns out not to be true: D as a function of Λ is a fractal,
nowhere differentiable curve illustrated in figure 23.5. The dependence of
D on the map parameter Λ is rather unexpected - even though for larger Λ
more points are mapped outside the unit cell in one iteration, the diffusion
constant does not necessarily grow.

This is a consequence of the lack of structural stability, even of purely
hyperbolic systems such as the Lozi map and the 1-d diffusion map (23.9).
The trouble arises due to non-smooth dependence of the topological entropy
on system parameters - any parameter change, no mater how small, leads
to creation and destruction of ininitely many periodic orbits. As far as
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Figure 23.5: The dependence of D on the map parameter a is continuous, but not
monotone. (From ref. [23.7]). Here a stands for the slope Λ in (23.9).

diffusion is concerned this means that even though local expansion rate is
a smooth function of Λ, the number of ways in which the trajectory can
re-enter the the initial cell is an irregular function of Λ.

The lesson is that lack of structural stabily implies lack of spectral
stability, and no global observable is expected to depend smoothly on the
system parameters. If you want to master the material, working through
the project O.1 and/or project O.2 is strongly recommended.
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(a) (b)

Figure 23.6: (a) A map with marginal fixed point. (b) The map restricted to the
unit circle.

23.3 Marginal stability and anomalous diffusion

What effect does the intermittency of chapter 21 have on transport prop-
erties of 1-d maps? Consider a 1− d map of the real line on itself with the
same properties as in sect. 23.2, except for a marginal fixed point at x = 0.

A marginal fixed point unbalances the role of running and standing or-
bits, thus generating a mechanism that may result in anomalous diffusion.
Our model example is the map shown in figure 23.6(a), with the corre-
sponding circle map shown in figure 23.6(b). As in sect. 21.2.1, a branch
with support in Mi, i = 1, 2, 3, 4 has constant slope Λi, while f |M0 is of
intermittent form. To keep you nimble, this time we take a slightly different
choice of slopes. The toy example of sect. 21.2.1 was cooked up so that the
1/s branch cut in dynamical zeta function was the whole answer. Here we
shall take a slightly different route, and pick piecewise constant slopes such
that the dynamical zeta function for intermittent system can be expressed
in terms of the Jonquière function

☞ remark 23.8

J(z, s) =

∞∑

k=1

zk/ks (23.29)

Once the 0 fixed point is pruned away, the symbolic dynamics is given
by the infinite alphabet {1, 2, 3, 4, 0i1, 0j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . . (com-
pare with table 21.1). The partitioning of the subinterval M0 is induced
by M0k(right) = φk(right)(M3

⋃M4) (where φ(right) denotes the inverse of
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the right branch of f̂ |M0) and the same reasoning applies to the leftmost
branch. These are regions over which the slope of f̂ |M0 is constant. Thus
we have the following stabilities and jumping numbers associated to letters:

0k3, 0k4 Λp = k1+α

q/2 n̂p = 1

0l1, 0l2 Λp = l1+α

q/2 n̂p = −1

3, 4 Λp = ±Λ n̂p = 1

2, 1 Λp = ±Λ n̂p = −1 , (23.30)

where α = 1/s is determined by the intermittency exponent (21.1), while q
is to be determined by the flow conservation (19.11) for f̂ : —PCdefine R

4

Λ
+ 2qζ(α+ 1) = 1

so that q = (Λ − 4)/2Λζ(α + 1). The dynamical zeta function picks up
contributions just by the alphabet’s letters, as we have imposed piecewise
linearity, and can be expressed in terms of a Jonguiere function (23.29):

1/ζ0(z, β) = 1 − 4

Λ
z cosh β − Λ − 4

Λζ(1 + α)
z cosh β · J(z, α+ 1) .(23.31)

Its first zero z(β) is determined by

4

Λ
z +

Λ − 4

Λζ(1 + α)
z · J(z, α + 1) =

1

cosh β
.

By using implicit function derivation we see that D vanishes (that is,
z′′(β)|β=1 = 0) when α ≤ 1. The physical interpretion is that a typi-

cal orbit will stick for long times near the 0 marginal fixed point, and the
‘trapping time’ will be larger for higher values of the intermittency parame-
ter s (recall α = s−1). Hence, we need to look more closely at the behavior
of traces of high powers of the transfer operator.

The evaluation of transport coefficient requires one more derivative with
respect to expectation values of phase functions (see sect. 23.1): if we use
the diffusion dynamical zeta function (23.7), we may write the diffusion co-
efficient as an inverse Laplace transform,in such a way that any distinction
between maps and flows has vanished. In the case of 1-d diffusion we thus
have

D = lim
t→∞

d2

dβ2

1

2πi

∫ a+i∞

a−i∞
ds est

ζ ′(β, s)
ζ(β, s)

∣∣∣∣
β=0

(23.32)

where the ζ ′ refers to the derivative with respect to s.
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The evaluation of inverse Laplace transforms for high values of the argu-
ment is most conveniently performed using Tauberian theorems. We shall
take

ω(λ) =

∫ ∞

0
dx e−λxu(x) ,

with u(x) monotone as x → ∞; then, as λ 7→ 0 and x 7→ ∞ respectively
(and ρ ∈ (0,∞),

ω(λ) ∼ 1

λρ
L

(
1

λ

)

if and only if

u(x) ∼ 1

Γ(ρ)
xρ−1L(x) ,

where L denotes any slowly varying function with limt→∞ L(ty)/L(t) = 1.
Now

1/ζ0
′(e−s, β)

1/ζ0(e
−s, β)

=

(
4
Λ + Λ−4

Λζ(1+α) (J(e−s, α+ 1) + J(e−s, α))
)

cosh β

1 − 4
Λe

−s cosh β − Λ−4
Λζ(1+α)e

−s(e−s, α+ 1) cosh βJ
.

We then take the double derivative with respect to β and obtain

d2

dβ2

(
1/ζ0

′(e−s, β)/ζ−1(e−s, β)
)
β=0

=

4
Λ + Λ−4

Λζ(1+α) (J(e−s, α+ 1) + J(e−s, α))
(
1 − 4

Λe
−s − Λ−4

Λζ(1+α)e
−sJ(e−s, α+ 1)

)2 = gα(s) (23.33)

The asymptotic behavior of the inverse Laplace transform (23.32) may then
be evaluated via Tauberian theorems, once we use our estimate for the
behavior of Jonquière functions near z = 1. The deviations from normal
behavior correspond to an explicit dependence of D on time. Omitting
prefactors (which can be calculated by the same procedure) we have

gα(s) ∼





s−2 for α > 1

s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .

The anomalous diffusion exponents follow:✎ 23.6
page 429

〈(x− x0)
2〉t ∼





t for α > 1
tα for α ∈ (0, 1)
t/ ln t for α = 1 .

(23.34)
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Commentary

Remark 23.1 Lorentz gas. The original pinball model proposed by Lorentz [23.3]

consisted of randomly, rather than regularly placed scatterers.

Remark 23.2 Who’s dun it? Cycle expansions for the diffusion constant of a

particle moving in a periodic array have been introduced independently by R. Ar-

tuso [23.4] (exact dynamical zeta function for 1-d chains of maps (23.8)), by W.N.

Vance [23.5], and by P. Cvitanović, J.-P. Eckmann, and P. Gaspard [23.6] (the

dynamical zeta function cycle expansion (23.8) applied to the Lorentz gas).

Remark 23.3 Lack of structural stability for D. Expressions like (23.20) may

lead to an expectation that the diffusion coefficient (and thus transport properties)

are smooth functions of the chaoticity of the system (parametrized, for example,

by the Lyapunov exponent λ = ln Λ). This turns out not to be true: D as a

function of Λ is a fractal, nowhere differentiable curve shown in figure 23.5. The

dependence of D on the map parameter Λ is rather unexpected - even though for

larger Λ more points are mapped outside the unit cell in one iteration, the diffusion

constant does not necessarily grow. The fractal dependence of diffusion constant on

the map parameter is discussed in refs. [23.7, 23.8, 23.9]. Statistical mechanicians

tend to believe that such complicated behavior is not to be expected in systems

with very many degrees of freedom, as the addition to a large integer dimension of

a number smaller than 1 should be as unnoticeable as a microscopic perturbation

of a macroscopic quantity. No fractal-like behavior of the conductivity for the

Lorentz gas has been detected so far [23.10].

Remark 23.4 Diffusion induced by 1-d maps. We refer the reader to refs. [23.11,
23.12] for early work on the deterministic diffusion induced by 1-dimenional maps.
The sawtooth map (23.9) was introduced by Grossmann and Fujisaka [23.13] who
derived the integer slope formulas (23.20) for the diffusion constant. The sawtooth
map is also discussed in refs. [23.14].

Remark 23.5 Symmetry factorization in one dimension. In the β = 0 limit the
dynamics (23.11) is symmetric under x → −x, and the zeta functions factorize
into products of zeta functions for the symmetric and antisymmetric subspaces, as
described in sect. 22.1.2:

1

ζ(0, z)
=

1

ζs(0, z)

1

ζa(0, z)
,

∂

∂z

1

ζ
=

1

ζs

∂

∂z

1

ζa
+

1

ζa

∂

∂z

1

ζs
. (23.35)

The leading (material flow conserving) eigenvalue z = 1 belongs to the symmet-
ric subspace 1/ζs(0, 1) = 0, so the derivatives (23.15) also depend only on the
symmetric subspace:

〈n〉ζ = z
∂

∂z

1

ζ(0, z)

∣∣∣∣
z=1

=
1

ζa(0, z)
z
∂

∂z

1

ζs(0, z)

∣∣∣∣
z=1

. (23.36)

Implementing the symmetry factorization is convenient, but not essential, at this
level of computation.
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length # cycles ζ(0,0) λ

1 5 -1.216975 -
2 10 -0.024823 1.745407
3 32 -0.021694 1.719617
4 104 0.000329 1.743494
5 351 0.002527 1.760581
6 1243 0.000034 1.756546

Table 23.1: Fundamental domain, w=0.3 .

Remark 23.6 Lorentz gas in the fundamental domain. The vector valued nature
of the generating function (23.3) in the case under consideration makes it difficult
to perform a calculation of the diffusion constant within the fundamental domain.
Yet we point out that, at least as regards scalar quantities, the full reduction to M̃
leads to better estimates. A proper symbolic dynamics in the fundamental domain
has been introduced in ref. [23.15], numerical estimates for scalar quantities are
reported in table 23.1, taken from ref. [23.16].

In order to perform the full reduction for diffusion one should express the dyn-

amical zeta function (23.7) in terms of the prime cycles of the fundamental domain

M̃ of the lattice (see figure 23.2) rather than those of the elementary (Wigner-

Seitz) cell M. This problem is complicated by the breaking of the rotational

symmetry by the auxilliary vector β, or, in other words, the non-commutativity

of translations and rotations: see ref. [23.6].

Remark 23.7 Anomalous diffusion. Anomalous diffusion for 1-d intermittent

maps was studied in the continuous time random walk approach in refs. [21.10,

21.11]. The first approach within the framework of cycle expansions (based on

truncated dynamical zeta functions) was proposed in ref. [21.12]. Our treatment

follows methods introduced in ref. [21.13], applied there to investigate the behavior

of the Lorentz gas with unbounded horizon.

Remark 23.8 Jonquière functions. In statistical mechanics Jonquière functions

J(z, s) =
∞∑

k=1

zk/ks (23.37)

appear in the theory of free Bose-Einstein gas, see refs. [21.21, 21.22].

Résumé

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-
particle collision. It is a very good approximate description of dilute gas
dynamics, but a difficult starting point for inclusion of systematic correc-
tions. In the theory developed here, no correlations are neglected - they
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are all included in the cycle averaging formula such as the cycle expansion
for the diffusion constant

D =
1

2d

1

〈T〉ζ
∑′

(−1)k+1 (n̂p + · · ·)
|Λp · · · |

(n̂p1 + · · · + n̂pk
)2

|Λp1 · · ·Λpk
| .

Such formulas are exact; the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums required for their
evaluation. Unlike most statistical mechanics, here there are no phenom-
enological macroscopic parameters; quantities such as transport coefficients
are calculable to any desired accuracy from the microscopic dynamics.

Though superficially indistinguishable from the probabilistic random
walk diffusion, deterministic diffusion is quite recognizable, at least in low
dimensional settings, through fractal dependence of the diffusion constant
on the system parameters, and through non-Gaussion relaxation to equi-
librium (non-vanishing Burnett coefficients).

For systems of a few degrees of freedom these results are on rigorous
footing, but there are indications that they capture the essential dynamics
of systems of many degrees of freedom as well.

Actual evaluation of transport coefficients is a test of the techniques
developped above in physical settings. In cases of severe pruning the trace
formulas and ergodic sampling of dominant cycles might be more effective
strategy than the cycle expansions of dynamical zeta functions and system-
atic enumeration of all cycles.
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Exercises

Exercise 23.1 Diffusion for odd integer Λ. Show that when the slope
Λ = 2k − 1 in (23.9) is an odd integer, the diffusion constant is given by
D = (Λ2 − 1)/24, as stated in (23.21).

Exercise 23.2 Fourth-order transport coefficient. Verify (23.24). You
will need the identity

n∑

k=1

k4 =
1

30
n(n+ 1)(2n + 1)(3n2 + 3n− 1) .

Exercise 23.3 Finite Markov partitions. Verify (23.28).

Exercise 23.4 Maps with variable peak shape:
Consider the following piecewise linear map

fδ(x) =





3x
1−δ for x ∈

[
0, 1

3 (1 − δ)
]

3
2 −

(
2
δ

∣∣ 4−δ
12 − x

∣∣) for x ∈
[
1
3 (1 − δ), 1

6 (2 + δ)
]

1 − 3
1−δ

(
x− 1

6 (2 + δ)
)

for x ∈
[
1
6 (2 + δ), 1

2

] (23.38)

and the map in [1/2, 1] is obtained by antisymmetry with respect to x = 1/2, y = 1/2.
Write the corresponding dynamical zeta function relevant to diffusion and then show
that

D =
δ(2 + δ)

4(1 − δ)

See refs. [23.17, 23.18] for further details.

Exercise 23.5 Two-symbol cycles for the Lorentz gas. Write down all

cycles labeled by two symbols, such as (0 6), (1 7), (1 5) and (0 5).

Appendix O contains several project-length deterministic diffusion exer-
cises.

Exercise 23.6 Accelerated diffusion. Consider a map h, such that ĥ = f̂ of
figure 23.6(b), but now running branches are turner into standing branches and vice
versa, so that 1, 2, 3, 4 are standing while 0 leads to both positive and negative jumps.
Build the corresponding dynamical zeta function and show that

σ2(t) ∼





t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)
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Exercise 23.7 Recurrence times for Lorentz gas with infinite horizon. Con-
sider the Lorentz gas with unbounded horizon with a square lattice geometry, with disk
radius R and unit lattice spacing. Label disks according to the (integer) coordinates
of their center: the sequence of recurrence times {tj} is given by the set of collision
times. Consider orbits that leave the disk sitting at the origin and hit a disk far away
after a free flight (along the horizontal corridor). Initial conditions are characterized
by coordinates (φ, α) (φ determines the initial position along the disk, while α gives
the angle of the initial velocity with respect to the outward normal: the appropriate
measure is then dφ cosα dα (φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find how ψ(T ) scales
for large values of T : this is equivalent to investigating the scaling of portions of the
phase space that lead to a first collision with disk (n, 1), for large values of n (as
n 7→ ∞ n ≃ T ).

Suggested steps

(a) Show that the condition assuring that a trajectory indexed by (φ, α) hits the
(m,n) disk (all other disks being transparent) is written as

∣∣∣∣
dm,n

R
sin (φ− α− θm,n) + sinα

∣∣∣∣ ≤ 1 (23.39)

where dm,n =
√
m2 + n2 and θm,n = arctan(n/m). You can then use a small

R expansion of (23.39).

(b) Now call jn the portion of the phase space leading to a first collision with disk
(n, 1) (take into account screening by disks (1, 0) or (n − 1, 1)). Denote by
Jn =

⋃∞
k=n+1 jk and show that Jn ∼ 1/n2, from which the result for the

distribution function follows.
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Chapter 24

Irrationally winding

I don’t care for islands, especially very small ones.

D.H. Lawrence

(R. Artuso and P. Cvitanović)

This chapter is concerned with the mode locking problems for circle maps:
besides its physical relevance it nicely illustrates the use of cycle expansions
away from the dynamical setting, in the realm of renormalization theory at
the transition to chaos.

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative sys-
tems. In the context of dissipative dynamical systems one of the most com-
mon and experimentally well explored routes to chaos is the two-frequency
mode-locking route. Interaction of pairs of frequencies is of deep theoretical
interest due to the generality of this phenomenon; as the energy input into
a dissipative dynamical system (for example, a Couette flow) is increased,
typically first one and then two of intrinsic modes of the system are excited.
After two Hopf bifurcations (a fixed point with inward spiralling stability
has become unstable and outward spirals to a limit cycle) a system lives
on a two-torus. Such systems tend to mode-lock: the system adjusts
its internal frequencies slightly so that they fall in step and minimize the
internal dissipation. In such case the ratio of the two frequencies is a ratio-
nal number. An irrational frequency ratio corresponds to a quasiperiodic
motion - a curve that never quite repeats itself. If the mode-locked states
overlap, chaos sets in. The likelihood that a mode-locking occurs depends
on the strength of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global” theory of
circle maps, connected with universality properties of the whole irrational
winding set. We shall see that critical global properties may be expressed
via cycle expansions involving “local” renormalization critical exponents.
The renormalization theory of critical circle maps demands rather tedious
numerical computations, and our intuition is much facilitated by approxi-
mating circle maps by number-theoretic models. The models that arise in
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432 CHAPTER 24. IRRATIONALLY WINDING

this way are by no means mathematically trivial, they turn out to be re-
lated to number-theoretic abysses such as the Riemann conjecture, already
in the context of the “trivial” models.

24.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a cir-
cle is by 1-dimensional circle maps x → x′ = f(x), restricted to the one
dimensional torus, such as the sine map

xn+1 = f(xn) = xn + Ω − k

2π
sin(2πxn) mod 1 . (24.1)

f(x) is assumed to be continuous, have a continuous first derivative, and
a continuous second derivative at the inflection point (where the second
derivative vanishes). For the generic, physically relevant case (the only one
considered here) the inflection is cubic. Here k parametrizes the strength
of the nonlinear interaction, and Ω is the bare frequency.

The phase space of this map, the unit interval, can be thought of as the
elementary cell of the map

x̂n+1 = f̂(x̂n) = x̂n + Ω − k

2π
sin(2πx̂n) . (24.2)

where ˆ is used in the same sense as in chapter 23.

The winding number is defined as

W (k,Ω) = lim
n→∞

(x̂n − x̂0)/n. (24.3)

and can be shown to be independent of the initial value x̂0.

For k = 0, the map is a simple rotation (the shift map) see figure 24.1

xn+1 = xn + Ω mod 1 , (24.4)

and the rotation number is given by the parameter Ω.

W (k = 0,Ω) = Ω .

For given values of Ω and k the winding number can be either rational
or irrational. For invertible maps and rational winding numbers W = P/Q
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Figure 24.1: Unperturbed circle map (k = 0 in (24.1)) with golden mean rotation
number.

the asymptotic iterates of the map converge to a unique attractor, a stable
periodic orbit of period Q

f̂Q(x̂i) = x̂i + P, i = 0, 1, 2, · · · , Q− 1 .

This is a consequence of the independence of x̂0 previously mentioned.
There is also an unstable cycle, repelling the trajectory. For any rational
winding number, there is a finite interval of values of Ω values for which
the iterates of the circle map are attracted to the P/Q cycle. This interval ✎ 24.1

page 452
is called the P/Q mode-locked (or stability) interval, and its width is given
by

∆P/Q = Q−2µP/Q = Ωright
P/Q − Ωleft

P/Q . (24.5)

where Ωright
P/Q (Ωleft

P/Q) denote the biggest (smallest) value of Ω for which

W (k,Ω) = P/Q. Parametrizing mode lockings by the exponent µ rather
than the width ∆ will be convenient for description of the distribution of
the mode-locking widths, as the exponents µ turn out to be of bounded
variation. The stability of the P/Q cycle is

ΛP/Q =
∂xQ
∂x0

= f ′(x0)f
′(x1) · · · f ′(xQ−1)

For a stable cycle |ΛP/Q| lies between 0 (the superstable value, the “cen-

ter” of the stability interval) and 1 (the Ωright
P/Q , Ωleft

P/Q endpoints of (24.5)).
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Figure 24.2: The critical circle map (k = 1 in (24.1)) devil’s staircase [24.3]; the
winding number W as function of the parameter Ω.

For the shift map (24.4), the stability intervals are shrunk to points. As
Ω is varied from 0 to 1, the iterates of a circle map either mode-lock,
with the winding number given by a rational number P/Q ∈ (0, 1), or do
not mode-lock, in which case the winding number is irrational. A plot of
the winding number W as a function of the shift parameter Ω is a conve-
nient visualization of the mode-locking structure of circle maps. It yields a
monotonic “devil’s staircase” of figure 24.2 whose self-similar structure we
are to unravel. Circle maps with zero slope at the inflection point xc (see
figure 24.3)

f ′(xc) = 0 , f ′′(xc) = 0

(k = 1, xc = 0 in (24.1)) are called critical: they delineate the borderline
of chaos in this scenario.

As the nonlinearity parameter k increases, the mode-locked intervals
become wider, and for the critical circle maps (k = 1) they fill out the
whole interval. A critical map has a superstable P/Q cycle for any rational
P/Q, as the stability of any cycle that includes the inflection point equals
zero. If the map is non-invertible (k > 1), it is called supercritical; the
bifurcation structure of this regime is extremely rich and beyond the scope
of this exposition.

The physically relevant transition to chaos is connected with the critical
case, however the apparently simple “free” shift map limit is quite instruc-
tive: in essence it involves the problem of ordering rationals embedded in
the unit interval on a hierarchical structure. From a physical point of view,
the main problem is to identify a (number-theoretically) consistent hierar-
chy susceptible of experimental verification. We will now describe a few
ways of organizing rationals along the unit interval: each has its own ad-
vantages as well as its drawbacks, when analyzed from both mathematical
and physical perspective.
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Figure 24.3: Critical circle map (k = 1 in (24.1)) with golden mean bare rotation
number.

24.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of the parameter Ω
required to attain it; given finite time and resolution, we expect to be
able to resolve cycles up to some maximal length Q. This is the physical
motivation for partitioning mode lockings into sets of cycle length up to
Q. In number theory such sets of rationals are called Farey series. They
are denoted by FQ and defined as follows. The Farey series of order Q is
the monotonically increasing sequence of all irreducible rationals between
0 and 1 whose denominators do not exceed Q. Thus Pi/Qi belongs to FQ
if 0 < Pi ≤ Qi ≤ Q and (Pi|Qi) = 1. For example

F5 =

{
1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

}

A Farey series is characterized by the property that if Pi−1/Qi−1 and Pi/Qi
are consecutive terms of FQ, then

PiQi−1 − Pi−1Qi = 1.

The number of terms in the Farey series FQ is given by

Φ(Q) =

Q∑

n=1

φ(Q) =
3Q2

π2
+ O(Q lnQ). (24.6)
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Here the Euler function φ(Q) is the number of integers not exceeding
and relatively prime to Q. For example, φ(1) = 1, φ(2) = 1, φ(3) =
2, . . . , φ(12) = 4, φ(13) = 12, . . .

From a number-theorist’s point of view, the continued fraction parti-
tioning of the unit interval is the most venerable organization of ratio-
nals, preferred already by Gauss. The continued fraction partitioning is
obtained by ordering rationals corresponding to continued fractions of in-
creasing length. If we turn this ordering into a way of covering the com-
plementary set to mode-lockings in a circle map, then the first level is
obtained by deleting ∆[1], ∆[2], · · · ,∆[a1], · · · mode-lockings; their comple-
ment are the covering intervals ℓ1, ℓ2, . . . , ℓa1 , . . . which contain all wind-
ings, rational and irrational, whose continued fraction expansion starts with
[a1, . . .] and is of length at least 2. The second level is obtained by deleting
∆[1,2], ∆[1,3], · · · ,∆[2,2], ∆[2,3], · · · ,∆[n,m], · · · and so on.

The nth level continued fraction partition Sn = {a1a2 · · · an} is defined
as the monotonically increasing sequence of all rationals Pi/Qi between 0
and 1 whose continued fraction expansion is of length n:

Pi
Qi

= [a1, a2, · · · , an] =
1

a1 +
1

a2 + . . .
1

an

The object of interest, the set of the irrational winding numbers, is in
this partitioning labeled by S∞ = {a1a2a3 · · ·}, ak ∈ Z+, that is, the
set of winding numbers with infinite continued fraction expansions. The
continued fraction labeling is particularly appealing in the present context
because of the close connection of the Gauss shift to the renormalization
transformation R, discussed below. The Gauss map

T (x) =
1

x
−
[

1

x

]
x 6= 0

0 , x = 0 (24.7)

([· · ·] denotes the integer part) acts as a shift on the continued fraction
representation of numbers on the unit interval

x = [a1, a2, a3, . . .] → T (x) = [a2, a3, . . .] . (24.8)

into the “mother” interval ℓa2a3....

However natural the continued fractions partitioning might seem to a
number theorist, it is problematic in practice, as it requires measuring
infinity of mode-lockings even at the first step of the partitioning. Thus
numerical and experimental use of continued fraction partitioning requires
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at least some understanding of the asymptotics of mode–lockings with large
continued fraction entries.

The Farey tree partitioning is a systematic bisection of rationals: it is
based on the observation that roughly halfways between any two large sta-
bility intervals (such as 1/2 and 1/3) in the devil’s staircase of figure 24.2
there is the next largest stability interval (such as 2/5). The winding num-
ber of this interval is given by the Farey mediant (P + P ′)/(Q + Q′) of
the parent mode-lockings P/Q and P ′/Q′. This kind of cycle “gluing” is
rather general and by no means restricted to circle maps; it can be attained
whenever it is possible to arrange that the Qth iterate deviation caused by
shifting a parameter from the correct value for the Q-cycle is exactly com-
pensated by the Q′th iterate deviation from closing the Q′-cycle; in this
way the two near cycles can be glued together into an exact cycle of length
Q+Q′. The Farey tree is obtained by starting with the ends of the unit
interval written as 0/1 and 1/1, and then recursively bisecting intervals by
means of Farey mediants.

We define the nth Farey tree level Tn as the monotonically increasing
sequence of those continued fractions [a1, a2, . . . , ak] whose entries ai ≥
1, i = 1, 2, . . . , k − 1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 = {[4], [2, 2], [1, 1, 2], [1, 3]} =

(
1

4
,
1

5
,
3

5
,
3

4

)
. (24.9)

The number of terms in Tn is 2n. Each rational in Tn−1 has two “daughters”
in Tn, given by

[· · · , a]
[· · · , a− 1, 2] [· · · , a+ 1]

Iteration of this rule places all rationals on a binary tree, labeling each by
a unique binary label, figure 24.4.

The smallest and the largest denominator in Tn are respectively given
by

[n− 2] =
1

n− 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (24.10)

where the Fibonacci numbers Fn are defined by Fn+1 = Fn +Fn−1; F0 =
0, F1 = 1, and ρ is the golden mean ratio

ρ =
1 +

√
5

2
= 1.61803 . . . (24.11)
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Figure 24.4: Farey tree: alternating binary ordered labeling of all Farey denominators
on the nth Farey tree level.

Note the enormous spread in the cycle lengths on the same level of the Farey
tree: n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the
Farey tree level will cause strong non-hyperbolic effects in the evaluation
of various averages.

Having defined the partitioning schemes of interest here, we now briefly
summarize the results of the circle-map renormalization theory.

24.2 Local theory: “Golden mean” renormaliza-
tion

The way to pinpoint a point on the border of order is to recursively
adjust the parameters so that at the recurrence times t = n1, n2, n3, · · ·
the trajectory passes through a region of contraction sufficiently strong
to compensate for the accumulated expansion of the preceding ni steps,
but not so strong as to force the trajectory into a stable attracting orbit.
The renormalization operation R implements this procedure by recursively
magnifying the neighborhood of a point on the border in the dynamical
space (by rescaling by a factor α), in the parameter space (by shifting
the parameter origin onto the border and rescaling by a factor δ), and by
replacing the initial map f by the nth iterate fn restricted to the magnified
neighborhood

fp(x) → Rfp(x) = αfnp/δ(x/α)

There are by now many examples of such renormalizations in which the new
function, framed in a smaller box, is a rescaling of the original function, that
is, the fix-point function of the renormalization operator R. The best known
is the period doubling renormalization, with the recurrence times ni =
2i. The simplest circle map example is the golden mean renormalization,
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with recurrence times ni = Fi given by the Fibonacci numbers (24.10).
Intuitively, in this context a metric self-similarity arises because iterates of
critical maps are themselves critical, that is, they also have cubic inflection
points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a gen-
eralization of the Gauss shift (24.38); it maps a circle map (represented as
a pair of functions (g, f), of winding number [a, b, c, . . .] into a rescaled map
of winding number [b, c, . . .]:

Ra

(
g

f

)
=

(
αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)
, (24.12)

Acting on a map with winding number [a, a, a, . . .], Ra returns a map
with the same winding number [a, a, . . .], so the fixed point of Ra has a
quadratic irrational winding number W = [a, a, a, . . .]. This fixed point
has a single expanding eigenvalue δa. Similarly, the renormalization trans-
formation Rap . . . Ra2Ra1 ≡ Ra1a2...ap has a fixed point of winding number
Wp = [a1, a2, . . . , anp , a1, a2, . . .], with a single expanding eigenvalue δp.

For short repeating blocks, δ can be estimated numerically by compar-
ing successive continued fraction approximants to W . Consider the Pr/Qr
rational approximation to a quadratic irrational winding number Wp whose
continued fraction expansion consists of r repeats of a block p. Let Ωr be
the parameter for which the map (24.1) has a superstable cycle of rotation
number Pr/Qr = [p, p, . . . , p]. The δp can then be estimated by extrapolat-
ing from

Ωr − Ωr+1 ∝ δ−rp . (24.13)

What this means is that the “devil’s staircase” of figure 24.2 is self-similar
under magnification by factor δp around any quadratic irrational Wp.

The fundamental result of the renormalization theory (and the rea-
son why all this is so interesting) is that the ratios of successive Pr/Qr
mode-locked intervals converge to universal limits. The simplest example
of (24.13) is the sequence of Fibonacci number continued fraction approxi-
mants to the golden mean winding number W = [1, 1, 1, ...] = (

√
5 − 1)/2.

When global problems are considered, it is useful to have at least and
idea on extemal scaling laws for mode–lockings. This is achieved, in a first
analysis, by fixing the cycle length Q and describing the range of possible
asymptotics.

For a given cycle length Q, it is found that the narrowest interval shrinks
with a power law

∆1/Q ∝ Q−3 (24.14)
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For fixed Q the widest interval is bounded by P/Q = Fn−1/Fn, the nth
continued fraction approximant to the golden mean. The intuitive reason
is that the golden mean winding sits as far as possible from any short cycle
mode-locking.

The golden mean interval shrinks with a universal exponent

∆P/Q ∝ Q−2µ1 (24.15)

where P = Fn−1, Q = Fn and µ1 is related to the universal Shenker
number δ1 (24.13) and the golden mean (24.11) by

µ1 =
ln |δ1|
2 ln ρ

= 1.08218 . . . (24.16)

The closeness of µ1 to 1 indicates that the golden mean approximant mode-
lockings barely feel the fact that the map is critical (in the k=0 limit this
exponent is µ = 1).

To summarize: for critical maps the spectrum of exponents arising from
the circle maps renormalization theory is bounded from above by the har-
monic scaling, and from below by the geometric golden-mean scaling:

3/2 > µm/n ≥ 1.08218 · · · . (24.17)

24.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intervals (24.5):

Ω(τ) =

∞∑

Q=1

∑

(P |Q)=1

∆−τ
P/Q. (24.18)

The sum is over all irreducible rationals P/Q, P < Q, and ∆P/Q is the
width of the parameter interval for which the iterates of a critical circle
map lock onto a cycle of length Q, with winding number P/Q.

The qualitative behavior of (24.18) is easy to pin down. For sufficiently
negative τ , the sum is convergent; in particular, for τ = −1, Ω(−1) = 1, as
for the critical circle maps the mode-lockings fill the entire Ω range [24.11].
However, as τ increases, the contributions of the narrow (large Q) mode-
locked intervals ∆P/Q get blown up to 1/∆τ

P/Q, and at some critical value

of τ the sum diverges. This occurs for τ < 0, as Ω(0) equals the number of
all rationals and is clearly divergent.
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The sum (24.18) is infinite, but in practice the experimental or numer-
ical mode-locked intervals are available only for small finite Q. Hence it
is necessary to split up the sum into subsets Sn = {i} of rational wind-
ing numbers Pi/Qi on the “level” n, and present the set of mode-lockings
hierarchically, with resolution increasing with the level:

Z̄n(τ) =
∑

i∈Sn

∆−τ
i . (24.19)

The original sum (24.18) can now be recovered as the z = 1 value of a
“generating” function Ω(z, τ) =

∑
n z

nZ̄n(τ). As z is anyway a formal
parameter, and n is a rather arbitrary “level” in some ad hoc partitioning of
rational numbers, we bravely introduce a still more general, P/Q weighted
generating function for (24.18):

Ω(q, τ) =

∞∑

Q=1

∑

(P |Q)=1

e−qνP/QQ2τµP/Q . (24.20)

The sum (24.18) corresponds to q = 0. Exponents νP/Q will reflect the
importance we assign to the P/Q mode-locking, that is, the measure used
in the averaging over all mode-lockings. Three choices of of the νP/Q hi-
erarchy that we consider here correspond respectively to the Farey series
partitioning

Ω(q, τ) =

∞∑

Q=1

Φ(Q)−q
∑

(P |Q)=1

Q2τµP/Q , (24.21)

the continued fraction partitioning

Ω(q, τ) =

∞∑

n=1

e−qn
∑

[a1,...,an]

Q2τµ[a1,...,an] , (24.22)

and the Farey tree partitioning

Ω(q, τ) =

∞∑

k=n

2−qn
2n∑

i=1

Q2τµi
i , Qi/Pi ∈ Tn . (24.23)

We remark that we are investigating a set arising in the analysis of the
parameter space of a dynamical system: there is no “natural measure”
dictated by dynamics, and the choice of weights reflects only the choice of
hierarchical presentation.
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24.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution”
is obtained by deleting the parameter values corresponding to the mode-
lockings in the subset Sn; left behind is the set of complement covering
intervals of widths

ℓi = Ωmin
Pr/Qr

− Ωmax
Pl/Ql

. (24.24)

Here Ωmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode-

locking intervals ∆Pr/Qr
(∆Pl/Ql

) bounding ℓi and i is a symbolic dynam-
ics label, for example the entries of the continued fraction representation
P/Q = [a1, a2, ..., an] of one of the boundary mode-lockings, i = a1a2 · · · an.
ℓi provide a finite cover for the irrational winding set, so one may consider
the sum

Zn(τ) =
∑

i∈Sn

ℓ−τi (24.25)

The value of −τ for which the n→ ∞ limit of the sum (24.25) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking,
this is the Hausdorff dimension only if the choice of covering intervals ℓi
is optimal; otherwise it provides an upper bound to DH . As by construc-
tion the ℓi intervals cover the set of irrational winding with no slack, we
expect that this limit yields the Hausdorff dimension. This is supported
by all numerical evidence, but a proof that would satisfy mathematicians
is lacking.

The physically relevant statement is that for critical circle maps DH =
0.870 . . . is a (global) universal number.✎ 24.2

page 452

24.4.1 The Hausdorff dimension in terms of cycles

Estimating the n → ∞ limit of (24.25) from finite numbers of covering
intervals ℓi is a rather unilluminating chore. Fortunately, there exist con-
siderably more elegant ways of extracting DH . We have noted that in the
case of the “trivial” mode-locking problem (24.4), the covering intervals are
generated by iterations of the Farey map (24.37) or the Gauss shift (24.38).
The nth level sum (24.25) can be approximated by Lnτ , where

Lτ (y, x) = δ(x− f−1(y))|f ′(y)|τ

This amounts to approximating each cover width ℓi by |dfn/dx| evaluated
on the ith interval. We are thus led to the following determinant

det (1 − zLτ ) = exp

(
−
∑

p

∞∑

r=1

zrnp

r

|Λrp|τ
1 − 1/Λrp

)
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=
∏

p

∞∏

k=0

(
1 − znp |Λp|τ/Λkp

)
. (24.26)

The sum (24.25) is dominated by the leading eigenvalue of Lτ ; the
Hausdorff dimension condition Zn(−DH) = O(1) means that τ = −DH

should be such that the leading eigenvalue is z = 1. The leading eigenvalue
is determined by the k = 0 part of (24.26); putting all these pieces together,
we obtain a pretty formula relating the Hausdorff dimension to the prime
cycles of the map f(x):

0 =
∏

p

(
1 − 1/|Λp|DH

)
. (24.27)

For the Gauss shift (24.38) the stabilities of periodic cycles are available
analytically, as roots of quadratic equations: For example, the xa fixed
points (quadratic irrationals with xa = [a, a, a . . .] infinitely repeating con-
tinued fraction expansion) are given by

xa =
−a+

√
a2 + 4

2
, Λa = −

(
a+

√
a2 + 4

2

)2

(24.28)

and the xab = [a, b, a, b, a, b, . . .] 2–cycles are given by

xab =
−ab+

√
(ab)2 + 4ab

2b
(24.29)

Λab = (xabxba)
−2 =

(
ab+ 2 +

√
ab(ab+ 4)

2

)2

We happen to know beforehand that DH = 1 (the irrationals take the
full measure on the unit interval, or, from another point of view the Gauss
map is not a repeller), so is the infinite product (24.27) merely a very con-
voluted way to compute the number 1? Possibly so, but once the meaning
of (24.27) has been grasped, the corresponding formula for the critical circle
maps follows immediately:

0 =
∏

p

(
1 − 1/|δp|DH

)
. (24.30)

The importance of this formula relies on the fact that it expresses DH in
terms of universal quantities, thus providing a nice connection from local
universal exponents to global scaling quantities: actual computations using
(24.30) are rather involved, as they require a heavy computational effort to
extract Shenker’s scaling δp for periodic continued fractions, and moreover
dealing with an infinite alphabet requires control over tail summation if an
accurate estimate is to be sought. In table 24.1 we give a small selection of
computed Shenker’s scalings.

ChaosBook.org/version11.8, Aug 30 2006 irrational - 22sep2000



444 CHAPTER 24. IRRATIONALLY WINDING

p δp
[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140

[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

Table 24.1: Shenker’s δp for a few periodic continued fractions, from ref. [24.1].

24.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical
model motivated by the mode-locking phenomenology. We will consider it
by means of the thermodynamic formalism of chapter 20, by looking at the
free energy.

Consider the Farey tree partition sum (24.23): the narrowest mode-
locked interval (24.15) at the nth level of the Farey tree partition sum
(24.23) is the golden mean interval

∆Fn−1/Fn
∝ |δ1|−n. (24.31)

It shrinks exponentially, and for τ positive and large it dominates q(τ) and
bounds dq(τ)/dτ :

q′max =
ln |δ1|
ln 2

= 1.502642 . . . (24.32)

However, for τ large and negative, q(τ) is dominated by the interval (24.14)
which shrinks only harmonically, and q(τ) approaches 0 as

q(τ)

τ
=

3 lnn

n ln 2
→ 0. (24.33)

So for finite n, qn(τ) crosses the τ axis at −τ = Dn, but in the n→ ∞ limit,
the q(τ) function exhibits a phase transition; q(τ) = 0 for τ < −DH , but
is a non-trivial function of τ for −DH ≤ τ . This non-analyticity is rather
severe - to get a clearer picture, we illustrate it by a few number-theoretic
models (the critical circle maps case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynamics is given
by the “Farey model”, in which the intervals ℓP/Q are replaced by Q−2:

Zn(τ) =

2n∑

i=1

Q2τ
i . (24.34)
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Here Qi is the denominator of the ith Farey rational Pi/Qi. For example
(see figure 24.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (24.38) of the Gauss shift on rationals, the
nth Farey level sum Zn(−1) can be written as the integral

Zn(−1) =

∫
dxδ(fn(x)) =

∑
1/|f ′a1...ak

(0)| ,

and in general

Zn(τ) =

∫
dxLnτ (0, x) ,

with the sum restricted to the Farey level a1 + . . .+ ak = n+ 2. It is easily
checked that f ′a1...ak

(0) = (−1)kQ2
[a1,...,ak], so the Farey model sum is a

partition generated by the Gauss map preimages of x = 0, that is, by
rationals, rather than by the quadratic irrationals as in (24.26). The sums
are generated by the same transfer operator, so the eigenvalue spectrum
should be the same as for the periodic orbit expansion, but in this variant
of the finite level sums we can can evaluate q(τ) exactly for τ = k/2, k a
nonnegative integer. First one observes that Zn(0) = 2n. It is also easy
to check that Zn(1/2) =

∑
iQi = 2 · 3n. More surprisingly, Zn(3/2) =∑

iQ
3 = 54 · 7n−1. A few of these “sum rules” are listed in the table 24.2,

they are consequence of the fact that the denominators on a given level are
Farey sums of denominators on preceding levels. ✎ 24.3

page 452
A bound on DH can be obtained by approximating (24.34) by

Zn(τ) = n2τ + 2nρ2nτ . (24.35)

In this approximation we have replaced all ℓP/Q, except the widest interval
ℓ1/n, by the narrowest interval ℓFn−1/Fn

(see (24.15)). The crossover from
the harmonic dominated to the golden mean dominated behavior occurs at
the τ value for which the two terms in (24.35) contribute equally:

Dn = D̂ + O

(
lnn

n

)
, D̂ =

ln 2

2 ln ρ
= .72 . . . (24.36)

For negative τ the sum (24.35) is the lower bound on the sum (24.25) ,
so D̂ is a lower bound on DH .

From a general perspective the analysis of circle maps thermodynamics
has revealed the fact that physically interesting dynamical systems often
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5 +

√
17)/2

3 7
4 (5 +

√
17)/2

5 7 + 4
√

6
6 26.20249 . . .

Table 24.2: Partition function sum rules for the Farey model.

exhibit mixtures of hyperbolic and marginal stabilities. In such systems
there are orbits that stay ‘glued’ arbitrarily close to stable regions for arbi-
trarily long times. This is a generic phenomenon for Hamiltonian systems,
where elliptic islands of stability coexist with hyperbolic homoclinic webs.
Thus the considerations of chapter 21 are important also in the analysis of
renomarmalization at the onset of chaos.

Commentary

Remark 24.1 The physics of circle maps. Mode–locking phenomenology is re-
viewed in ref. [24.5], a more theoretically oriented discussion is contained in ref. [24.3].
While representative of dissipative systems we may also consider circle mapsas a
crude approximation to Hamiltonian local dynamics: a typical island of stabil-
ity in a Hamiltonian 2-d map is an infinite sequence of concentric KAM tori and
chaotic regions. In the crudest approximation, the radius can here be treated as
an external parameter Ω, and the angular motion can be modelled by a map peri-
odic in the angular variable [24.8, 24.9]. By losing all of the “island-within-island”
structure of real systems, circle map models skirt the problems of determining the
symbolic dynamics for a realistic Hamiltonian system, but they do retain some
of the essential features of such systems, such as the golden mean renormaliza-
tion [17.4, 24.8] and non-hyperbolicity in form of sequences of cycles accumulating
toward the borders of stability. In particular, in such systems there are orbits
that stay “glued” arbitrarily close to stable regions for arbitrarily long times. As
this is a generic phenomenon in physically interesting dynamical systems, such as
the Hamiltonian systems with coexisting elliptic islands of stability and hyperbolic
homoclinic webs, development of good computational techniques is here of utmost
practical importance.

Remark 24.2 Critical mode–locking set The fact that mode-lockings completely

fill the unit interval at the critical point has been proposed in refs. [?, 24.10]. The

proof that the set of irrational windings is of zero Lebesgue measure in given in

ref. [24.11].

Remark 24.3 Counting noise for Farey series. The number of rationals in the
Farey series of order Q is φ(Q), which is a highly irregular function of Q: incre-
menting Q by 1 increases Φ(Q) by anything from 2 to Q terms. We refer to this
fact as the “Euler noise”.

The Euler noise poses a serious obstacle for numerical calculations with the

Farey series partitionings; it blocks smooth extrapolations to Q → ∞ limits from
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finite Q data. While this in practice renders inaccurate most Farey-sequence par-

titioned averages, the finite Q Hausdorff dimension estimates exhibit (for reasons

that we do not understand) surprising numerical stability, and the Farey series

partitioning actually yields the best numerical value of the Hausdorff dimension

(24.25) of any methods used so far; for example the computation in ref. [24.12] for

critical sine map (24.1), based on 240 ≤ Q ≤ 250 Farey series partitions, yields

DH = .87012 ± .00001. The quoted error refers to the variation of DH over this

range of Q; as the computation is not asymptotic, such numerical stability can

underestimate the actual error by a large factor.

Remark 24.4 Farey tree presentation function. The Farey tree rationals can be
generated by backward iterates of 1/2 by the Farey presentation function [24.13]:

f0(x) = x/(1 − x) 0 ≤ x < 1/2
f1(x) = (1 − x)/x 1/2 < x ≤ 1 .

(24.37)

The Gauss shift (24.7) corresponds to replacing the binary Farey presentation
function branch f0 in (24.37) by an infinity of branches

fa(x) = f1 ◦ f (a−1)
0 (x) =

1

x
− a,

1

a− 1
< x ≤ 1

a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (24.38)

A rational x = [a1, a2, . . . , ak] is annihilated by the kth iterate of the Gauss shift,
fa1a2···ak

(x) = 0. The above maps look innocent enough, but note that what is
being partitioned is not the dynamical space, but the parameter space. The flow
described by (24.37) and by its non-trivial circle-map generalizations will turn out
to be a renormalization group flow in the function space of dynamical systems, not
an ordinary flow in the phase space of a particular dynamical system.

The Farey tree has a variety of interesting symmetries (such as “flipping heads
and tails” relations obtained by reversing the order of the continued-fraction en-
tries) with as yet unexploited implications for the renormalization theory: some
of these are discussed in ref. [24.4].

An alternative labeling of Farey denominators has been introduced by Knauf [24.6]

in context of number-theoretical modeling of ferromagnetic spin chains: it allows

for a number of elegant manipulations in thermodynamic averages connected to

the Farey tree hierarchy.

Remark 24.5 Circle map renormalization The idea underlying golden mean
renormalization goes back to Shenker [24.9]. A renormalization group proce-
dure was formulated in refs. [24.7, 24.14], where moreover the uniqueness of the
relevant eigenvalue is claimed. This statement has been confirmed by a computer–
assisted proof [24.15], and in the following we will always assume it. There are a
number of experimental evidences for local universality, see refs. [24.16, 24.17].

On the other side of the scaling tale, the power law scaling for harmonic

fractions (discussed in refs. [24.2, ?, 24.4]) is derived by methods akin to those used

in describing intermittency [24.21]: 1/Q cycles accumulate toward the edge of 0/1

mode-locked interval, and as the successive mode-locked intervals 1/Q, 1/(Q− 1)

lie on a parabola, their differences are of order Q−3.
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Remark 24.6 Farey series and the Riemann hypothesis The Farey series ther-
modynamics is of a number theoretical interest, because the Farey series provide
uniform coverings of the unit interval with rationals, and because they are closely
related to the deepest problems in number theory, such as the Riemann hypoth-
esis [24.22, 24.23] . The distribution of the Farey series rationals across the unit
interval is surprisingly uniform - indeed, so uniform that in the pre-computer days
it has motivated a compilation of an entire handbook of Farey series [24.24]. A
quantitive measure of the non-uniformity of the distribution of Farey rationals is
given by displacements of Farey rationals for Pi/Qi ∈ FQ from uniform spacing:

δi =
i

Φ(Q)
− Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta function lie on
the s = 1/2+ iτ line in the complex s plane, and would seem to have nothing to do
with physicists’ real mode-locking widths that we are interested in here. However,
there is a real-line version of the Riemann hypothesis that lies very close to the
mode-locking problem. According to the theorem of Franel and Landau [24.25,
24.22, 24.23], the Riemann hypothesis is equivalent to the statement that

∑

Qi≤Q

|δi| = o(Q
1
2+ǫ)

for all ǫ as Q → ∞. The mode-lockings ∆P/Q contain the necessary information

for constructing the partition of the unit interval into the ℓi covers, and therefore

implicitly contain the δi information. The implications of this for the circle-map

scaling theory have not been worked out, and is not known whether some conjec-

ture about the thermodynamics of irrational windings is equivalent to (or harder

than) the Riemann hypothesis, but the danger lurks.

Remark 24.7 Farey tree partitioning. The Farey tree partitioning was intro-

duced in refs. [24.26, 24.27, 24.4] and its thermodynamics is discussed in detail in

refs. [24.12, 24.13]. The Farey tree hierarchy of rationals is rather new, and, as

far as we are aware, not previously studied by number theorists. It is appealing

both from the experimental and from the the golden-mean renormalization point

of view, but it has a serious drawback of lumping together mode-locking intervals

of wildly different sizes on the same level of the Farey tree.

Remark 24.8 Local and global universality. Numerical evidences for global uni-
versal behavior have been presented in ref. [24.3]. The question was reexamined
in ref. [24.12], where it was pointed out how a high-precision numerical estimate
is in practice very hard to obtain. It is not at all clear whether this is the optimal
global quantity to test but at least the Hausdorff dimension has the virtue of being
independent of how one partitions mode-lockings and should thus be the same for
the variety of thermodynamic averages in the literature.

The formula (24.30), linking local to global behavior, was proposed in ref. [24.1].

The derivation of (24.30) relies only on the following aspects of the “hyperbol-
icity conjecture” of refs. [24.4, 24.18, 24.19, 24.20]:
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1. limits for Shenker δ’s exist and are universal. This should follow from the
renormalization theory developed in refs. [24.7, 24.14, 24.15], though a gen-
eral proof is still lacking.

2. δp grow exponentially with np, the length of the continued fraction block p.

3. δp for p = a1a2 . . . n with a large continued fraction entry n grows as a power
of n. According to (24.14), limn→∞ δp ∝ n3. In the calculation of ref. [24.1]
the explicit values of the asymptotic exponents and prefactors were not used,
only the assumption that the growth of δp with n is not slower than a power
of n.

Remark 24.9 Farey model. The Farey model (24.33) has been proposed in

ref. [24.12]; though it might seem to have been pulled out of a hat, the Farey

model is as sensible description of the distribution of rationals as the periodic

orbit expansion (24.26).

Remark 24.10 Symbolic dynamics for Hamiltonian rotational orbits. The rota-
tional codes of ref. [5.4] are closely related to those for maps with a natural angle
variable, for example for circle maps [24.34, 24.36] and cat maps [24.37]. Ref. [5.4]
also offers a systematic rule for obtaining the symbolic codes of “islands around
islands” rotational orbits [24.39]. These correspond, for example, to orbits that ro-
tate around orbits that rotate around the elliptic fixed point; thus they are defined
by a sequence of rotation numbers.

A different method for constructing symbolic codes for “islands around islands”

was given in refs. [24.42, 24.40]; however in these cases the entire set of orbits in

an island was assigned the same sequence and the motivation was to study the

transport implications for chaotic orbits outside the islands [24.39, 24.41].

Résumé

The mode locking problem, and the quasiperiodic transition to chaos offer
an opportunity to use cycle expansions on hierarchical structures in parame-
ter space: this is not just an application of the conventional thermodynamic
formalism, but offers a clue on how to extend universality theory from local
scalings to global quantities.
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Exercises

Exercise 24.1 Mode-locked intervals. Check that when k 6= 0 the interval

∆P/Q have a non-zero width (look for instance at simple fractions, and consider k

small). Show that for small k the width of ∆0/1 is an increasing function of k.

Exercise 24.2 Bounds on Hausdorff dimension. By making use of the
bounds (24.17) show that the Hausdorff dimension for critical mode lockings may be
bounded by

2/3 ≤ DH ≤ .9240 . . .

Exercise 24.3 Farey model sum rules. Verify the sum rules reported in

table 24.2. An elegant way to get a number of sum rules for the Farey model is

by taking into account an lexical ordering introduced by Contucci and Knauf, see

ref. [24.28].

Exercise 24.4 Metric entropy of the Gauss shift. Check that the Lyapunov

exponent of the Gauss map (24.7) is given by π2/6 ln 2. This result has been claimed

to be relevant in the discussion of “mixmaster” cosmologies, see ref. [24.30].

Exercise 24.5 Refined expansions. Show that the above estimates can be
refined as follows:

F (z, 2) ∼ ζ(2) + (1 − z) log(1 − z) − (1 − z)

and

F (z, s) ∼ ζ(s) + Γ(1 − s)(1 − z)s−1 − S(s)(1 − z)

for s ∈ (1, 2) (S(s) being expressed by a converging sum). You may use either more

detailed estimate for ζ(s, a) (via Euler summation formula) or keep on subtracting

leading contributions [24.31].

Exercise 24.6 Hitting condition. Prove (23.39). Hint: together with the real

trajectory consider the line passing through the starting point, with polar angle θm,n:

then draw the perpendiculars to the actual trajectory, passing through the center of

the (0, 0) and (m,n) disks.

Exercise 24.7 jn and αcr. Look at the integration region and how it scales

by plotting it for increasing values of n.

Exercise 24.8 Estimates of the Riemann zeta function. Try to approximate

numerically the Riemann zeta function for s = 2, 4, 6 using different acceleration

algorithms: check your results with refs. [24.32, 24.33].
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Exercise 24.9 Farey tree and continued fractions I. Consider the Farey tree

presentation function f : [0, 1] 7→ [0, 1], such that if I = [0, 1/2) and J = [1/2, 1],

f |I = x/(1 − x) and f |J = (1 − x)/x. Show that the corresponding induced map is

the Gauss map g(x) = 1/x− [1/x].

Exercise 24.10 Farey tree and continued fraction II. (Lethal weapon II).

Build the simplest piecewise linear approximation to the Farey tree presentation func-

tion (hint: substitute first the righmost, hyperbolic branch with a linear one): consider

then the spectral determinant of the induced map ĝ, and calculate the first two eigen-

values besides the probability conservation one. Compare the results with the rigorous

bound deduced in ref. [21.17].
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Chapter 25

Prologue

Anyone who uses words “quantum” and “chaos” in
the same sentence should be hung by his thumbs on
a tree in the park behind the Niels Bohr Institute.

Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanović)

You have read the first volume of this book. So far, so good – anyone
can play a game of classical pinball, and a skilled neuroscientist can poke
rat brains. We learned that information about chaotic dynamics can be
obtained by calculating spectra of linear operators such as the evolution
operator of sect. 10.2 or the associated partial differential equations such
as the Liouville equation (9.36). The spectra of these operators can be
expressed in terms of periodic orbits of the deterministic dynamics by means
of trace formulas and cycle expansions.

But what happens quantum mechanically, that is, if we scatter waves
rather than point-like pinballs? Can we turn the problem round and study
linear PDE’s in terms of the underlying deterministic dynamics? And, is
there a link between structures in the spectrum or the eigenfunctions of a
PDE and the dynamical properties of the underlying classical flow? The
answer is yes, but . . . things are becoming somewhat more complicated
when studying 2nd or higher order linear PDE’s. We can find classical
dynamics associated with a linear PDE, just take geometric optics as a
familiar example. Propagation of light follows a second order wave equation
but may in certain limits be well described in terms of geometric rays. A

☞ chapter 35
theory in terms of properties of the classical dynamics alone, referred to here
as the semiclassical theory, will not be exact, in contrast to the classical
periodic orbit formulas obtained so far. Waves exhibit new phenomena,
such as interference, diffraction, and higher ~ corrections which will only
be partially incorporated into the periodic orbit theory.
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25.1 Quantum pinball

In what follows, we will restrict the discussion to the non-relativistic Schrödinger
equation. The approach will be very much in the spirit of the early days
of quantum mechanics, before its wave character has been fully uncovered
by Schrödinger in the mid 1920’s. Indeed, were physicists of the period
as familiar with classical chaos as we are today, this theory could have
been developed 80 years ago. It was the discrete nature of the hydrogen
spectrum which inspired the Bohr - de Broglie picture of the old quantum
theory: one places a wave instead of a particle on a Keplerian orbit around
the hydrogen nucleus. The quantization condition is that only those orbits
contribute for which this wave is stationary; from this followed the Balmer
spectrum and the Bohr-Sommerfeld quantization which eventually led to
the more sophisticated theory of Heisenberg, Schrödinger and others. To-
day we are very aware of the fact that elliptic orbits are an idiosyncracy of
the Kepler problem, and that chaos is the rule; so can the Bohr quantization
be generalized to chaotic systems?

The question was answered affirmatively by M. Gutzwiller, as late as
1971: a chaotic system can indeed be quantized by placing a wave on each
of the infinity of unstable periodic orbits. Due to the instability of the
orbits the wave does not stay localized but leaks into neighborhoods of
other periodic orbits. Contributions of different periodic orbits interfere
and the quantization condition can no longer be attributed to a single
periodic orbit: A coherent summation over the infinity of periodic orbit
contributions gives the desired spectrum.

The pleasant surprise is that the zeros of the dynamical zeta function
(1.9) derived in the context of classical chaotic dynamics,

☞ chapter 15

1/ζ(z) =
∏

p

(1 − tp) ,

also yield excellent estimates of quantum resonances, with the quantum
amplitude associated with a given cycle approximated semiclassically by
the weight

tp =
1

|Λp|
1
2

e
i
~
Sp−iπmp/2 , (25.1)

whose magnitude is the square root of the classical weight (15.10)

tp =
1

|Λp|
eβ·Ap−sTp ,

and the phase is given by the Bohr-Sommerfeld action integral Sp, to-
gether with an additional topological phase mp, the number of caustics
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along the periodic trajectory, points where the naive semiclassical approx-
imation fails.

☞ chapter 28

In this approach, the quantal spectra of classically chaotic dynamical
systems are determined from the zeros of dynamical zeta functions, defined
by cycle expansions of infinite products of form

1/ζ =
∏

p

(1 − tp) = 1 −
∑

f

tf −
∑

k

ck (25.2)

with weight tp associated to every prime (non-repeating) periodic orbit (or
cycle) p.

The key observation is that the chaotic dynamics is often organized
around a few fundamental cycles. These short cycles capture the skeletal
topology of the motion in the sense that any long orbit can approximately
be pieced together from the fundamental cycles. In chapter 18 it was shown
that for this reason the cycle expansion (25.2) is a highly convergent ex-
pansion dominated by short cycles grouped into fundamental contributions,
with longer cycles contributing rapidly decreasing curvature corrections.
Computations with dynamical zeta functions are rather straightforward;
typically one determines lengths and stabilities of a finite number of short-
est periodic orbits, substitutes them into (25.2), and estimates the zeros of
1/ζ from such polynomial approximations.

From the vantage point of the dynamical systems theory, the trace for-
mulas (both the exact Selberg and the semiclassical Gutzwiller trace for-
mula) fit into a general framework of replacing phase space averages by
sums over periodic orbits. For classical hyperbolic systems this is possi-

☞ chapter 30
ble since the invariant density can be represented by sum over all periodic
orbits, with weights related to their instability. The semiclassical periodic
orbit sums differ from the classical ones only in phase factors and stability
weights; such differences may be traced back to the fact that in quantum
mechanics the amplitudes rather than the probabilities are added.

The type of dynamics has a strong influence on the convergence of cycle
expansions and the properties of quantal spectra; this necessitates devel-
opment of different approaches for different types of dynamical behavior
such as, on one hand, the strongly hyperbolic and, on the other hand, the
intermittent dynamics of chapters 18 and 21. For generic nonhyperbolic
systems (which we shall not discuss here), with mixed phase space and
marginally stable orbits, periodic orbit summations are hard to control,
and it is still not clear that the periodic orbit sums should necessarily be
the computational method of choice.

Where is all this taking us? The goal of this part of the book is to
demonstrate that the cycle expansions, developed so far in classical settings,
are also a powerful tool for evaluation of quantum resonances of classically
chaotic systems.
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Figure 25.1: A typical collinear helium trajec-
tory in the r1 – r2 plane; the trajectory enters
along the r1 axis and escapes to infinity along
the r2 axis.
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First we shall warm up playing our game of pinball, this time in a quan-
tum version. Were the game of pinball a closed system, quantum mechan-
ically one would determine its stationary eigenfunctions and eigenenergies.
For open systems one seeks instead complex resonances, where the imagi-
nary part of the eigenenergy describes the rate at which the quantum wave
function leaks out of the central scattering region. This will turn out to
work well, except who truly wants to know accurately the resonances of a
quantum pinball?

☞ chapter 32

25.2 Quantization of helium

Once we have derived the semiclassical weight associated with the periodic
orbit p (25.1), we will finally be in position to accomplish something alto-
gether remarkable. We are now able to put together all ingredients that
make the game of pinball unpredictable, and compute a “chaotic” part of
the helium spectrum to shocking accuracy. From the classical dynamics
point of view, helium is an example of Poincaré’s dreaded and intractable
3-body problem. Undaunted, we forge ahead and consider the collinear
helium, with zero total angular momentum, and the two electrons on the
opposite sides of the nucleus.

☞ chapter 34

++- -

We set the electron mass to 1, the nucleus mass to ∞, the helium nucleus
charge to 2, the electron charges to -1. The Hamiltonian is

H =
1

2
p2
1 +

1

2
p2
2 −

2

r1
− 2

r2
+

1

r1 + r2
. (25.3)

Due to the energy conservation, only three of the phase space coordinates
(r1, r2, p1, p2) are independent. The dynamics can be visualized as a motion
in the (r1, r2), ri ≥ 0 quadrant, figure 25.1, or, better still, by a well chosen
2-dimensional Poincaré section.
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The motion in the (r1, r2) plane is topologically similar to the pinball
motion in a 3-disk system, except that the motion is not free, but in the
Coulomb potential. The classical collinear helium is also a repeller; almost
all of the classical trajectories escape. Miraculously, the symbolic dynamics
for the survivors turns out to be binary, just as in the 3-disk game of pinball,
so we know what cycles need to be computed for the cycle expansion (1.10).
A set of shortest cycles up to a given symbol string length then yields an
estimate of the helium spectrum. This simple calculation yields surprisingly

☞ chapter 34
accurate eigenvalues; even though the cycle expansion was based on the
semiclassical approximation (25.1) which is expected to be good only in
the classical large energy limit, the eigenenergies are good to 1% all the
way down to the ground state.

Before we can get to this point, we first have to recapitulate some ba-
sic notions of quantum mechanics; after having defined the main quantum
objects of interest, the quantum propagator and the Green’s function, we
will relate the quantum propagation to the classical flow of the underlying
dynamical system. We will then proceed to construct semiclassical approx-
imations to the quantum propagator and the Green’s function. A rederiva-
tion of classical Hamiltonian dynamics starting from the Hamilton-Jacobi
equation will be offered along the way. The derivation of the Gutzwiller
trace formula and the semiclassical zeta function as a sum and as a product
over periodic orbits will be given in chapter 30. In subsequent chapters we
buttress our case by applying and extending the theory: a cycle expan-
sion calculation of scattering resonances in a 3-disk billiard in chapter 32,
the spectrum of helium in chapter 34, and the incorporation of diffraction
effects in chapter 35.

Guide to literature

A key prerequisite to developing any theory of “quantum chaos” is solid un-
derstanding of Hamiltonian mechanics. For that, Arnol’d monograph [1.28]
is the essential reference. Ozorio de Almeida’s monograph [7.11] offers a
compact introduction to the aspects of Hamiltonian dynamics required for
the quantization of integrable and nearly integrable systems, with emphasis
on periodic orbits, normal forms, catastrophy theory and torus quantiza-
tion. The book by Brack and Bhaduri [25.1] is an excellent introduction to
the semiclassical methods. Gutzwiller’s monograph [25.2] is an advanced
introduction focusing on chaotic dynamics both in classical Hamiltonian
settings and in the semiclassical quantization. This book is worth browsing
through for its many insights and erudite comments on quantum and ce-
lestial mechanics even if one is not working on problems of quantum chaos.
More suitable as a graduate course text is Reichl’s exposition [25.3].

This book does not discuss the random matrix theory approach to chaos
in quantal spectra; no randomness assumptions are made here, rather the
goal is to milk the deterministic chaotic dynamics for its full worth. The
book concentrates on the periodic orbit theory. For an introduction to
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“quantum chaos” that focuses on the random matrix theory the reader is
referred to the excellent monograph by Haake [25.4], among others.
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Chapter 26

Quantum mechanics, briefly

We start with a review of standard quantum mechanical concepts prereq-
uisite to the derivation of the semiclassical trace formula.

In coordinate representation the time evolution of a quantum mechan-
ical wave function is governed by the Schrödinger equation

i~
∂

∂t
ψ(q, t) = Ĥ(q,

~

i

∂

∂q
)ψ(q, t), (26.1)

where the Hamilton operator Ĥ(q,−i~∂q) is obtained from the classical
Hamiltonian by substitution p → −i~∂q. Most of the Hamiltonians we
shall consider here are of form

H(q, p) = T (p) + V (q) , T (p) = p2/2m, (26.2)

describing dynamics of a particle in a D-dimensional potential V (q). For
time independent Hamiltonians we are interested in finding stationary so-
lutions of the Schrödinger equation of the form

ψn(q, t) = e−iEnt/~φn(q), (26.3)

where En are the eigenenergies of the time-independent Schrödinger equa-
tion

Ĥφ(q) = Eφ(q) . (26.4)

If the kinetic term can be separated out as in (26.2), the time-independent
Schrödinger equation

− ~
2

2m
∂2φ(q) + V (q)φ(q) = Eφ(q) (26.5)
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can be rewritten in terms of a local wavenumber

(∂2 + k2(q))φ = 0 , ~
2k(q) =

√
2m(E − V (q)) . (26.6)

For bound systems the spectrum is discrete and the eigenfunctions form
an orthonormal,

∫
dq φn(q)φ

∗
m(q) = δnm , (26.7)

and complete,

∑

n

φn(q)φ
∗
n(q

′) = δ(q − q′) , (26.8)

set of functions in a Hilbert space. Here and throughout the text,

∫
dq =

∫
dq1dq2...dqD. (26.9)

For simplicity we will assume that the system is bound, although most
of the results will be applicable to open systems, where one has complex

☞ chapter 32
resonances instead of real energies, and the spectrum has continuous com-
ponents.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne
−iEnt/~φn(q) , (26.10)

where the expansion coefficient cn is given by the projection of the initial
wave function ψ(q, 0) onto the nth eigenstate

cn =

∫
dq φ∗n(q)ψ(q, 0). (26.11)

By substituting (26.11) into (26.10), we can cast the evolution of a wave
function into a multiplicative form

ψ(q, t) =

∫
dq′K(q, q′, t)ψ(q′, 0) ,

with the kernel

K(q, q′, t) =
∑

n

φn(q) e
−iEnt/~φ∗n(q

′) (26.12)
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called the quantum evolution operator, or the propagator. Applied twice,
first for time t1 and then for time t2, it propagates the initial wave function
from q′ to q′′, and then from q′′ to q

K(q, q′, t1 + t2) =

∫
dq′′K(q, q′′, t2)K(q′′, q′, t1) (26.13)

forward in time, hence the name “propagator”. In non-relativistic quantum
mechanics the range of q′′ is infinite, meaning that the wave can propagate
at any speed; in relativistic quantum mechanics this is rectified by restrict-
ing the propagation to the forward light cone.

Since the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, it also satisfies the Schrödinger equation

i~
∂

∂t
K(q, q′, t) = Ĥ(q,

i

~

∂

∂q
)K(q, q′, t) , (26.14)

and is thus a wave function defined for t ≥ 0; from the completeness relation
(26.8) we obtain the boundary condition at t = 0:

lim
t→0+

K(q, q′, t) = δ(q − q′) . (26.15)

The propagator thus represents the time evolution of a wave packet which
starts out as a configuration space delta-function localized in the point q′

at the initial time t = 0.

For time independent Hamiltonians the time dependence of the wave
functions is known as soon as the eigenenergies En and eigenfunctions φn
have been determined. With time dependence rendered “trivial”, it makes
sense to focus on the Green’s function, the Laplace transformation of the
propagator

G(q, q′, E+iǫ) =
1

i~

∫ ∞

0
dt e

i
~
Et− ǫ

~
tK(q, q′, t) =

∑

n

φn(q)φ
∗
n(q

′)
E − En + iǫ

.(26.16)

Here ǫ is a small positive number, ensuring the existence of the integral.
The eigenenergies show up as poles in the Green’s function with residues
corresponding to the wave function amplitudes. If one is only interested in
the spectrum, one may restrict the considerations to the (formal) trace of
the Green’s function,

trG(q, q′, E) =

∫
dq G(q, q, E) =

∑

n

1

E − En
, (26.17)
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Figure 26.1: Schematic picture of a) the density of states d(E), and b) the spectral
staircase function N(E). The dashed lines denote the mean density of states d̄(E)
and the average number of states N̄(E) discussed in more detail in sect. 30.1.1.

where E is complex, with a positive imaginary part, and we have used
the eigenfunction orthonormality (26.7). This trace is formal, since as it
stands, the sum in (26.17) is often divergent. We shall return to this point
in sects. 30.1.1 and 30.1.2.

A useful characterization of the set of eigenvalues is given in terms
of the density of states, with a delta function peak at each eigenenergy,
figure 26.1(a),

d(E) =
∑

n

δ(E − En). (26.18)

Using the identity✎ 26.1
page 466

δ(E − En) = − lim
ǫ→+0

1

π
Im

1

E − En + iǫ
(26.19)

we can express the density of states in terms of the trace of the Green’s
function, that is

d(E) =
∑

n

δ(E − En) = − lim
ǫ→0

1

π
Im trG(q, q′, E + iǫ). (26.20)

☞ sect. 30.1.1

As we shall see after ”some” work, a semiclassical formula for right hand
side of this relation will yield the quantum spectrum in terms of periodic
orbits.

The density of states can be written as the derivative d(E) = dN(E)/dE
of the spectral staircase function

N(E) =
∑

n

Θ(E − En) (26.21)
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which counts the number of eigenenergies below E, figure 26.1(b). Here Θ
is the Heaviside function

Θ(x) = 1 if x > 0; Θ(x) = 0 if x < 0 . (26.22)

The spectral staircase is a useful quantity in many contexts, both exper-
imental and theoretical. This completes our lightning review of quantum
mechanics.
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Exercises

Exercise 26.1 Dirac delta function, Lorentzian representation. De-
rive the representation (26.19)

δ(E − En) = − lim
ǫ→+0

1

π
Im

1

E − En + iǫ

of a delta function as imaginary part of 1/x.

(Hint: read up on principal parts, positive and negative frequency part of the
delta function, the Cauchy theorem in a good quantum mechanics textbook).

Exercise 26.2 Green’s function. Verify Green’s function Laplace transform
(26.16),

G(q, q′, E + iε) =
1

i~

∫ ∞

0

dt e
i
~

Et− ε
~

tK(q, q′, t)

=
∑ φn(q)φ∗n(q′)

E − En + iε

argue that positive ǫ is needed (hint: read a good quantum mechanics textbook).
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Chapter 27

WKB quantization

The wave function for a particle of energy E moving in a constant potential
V is

ψ = Ae
i
~
pq (27.1)

with a constant amplitude A, and constant wavelength λ = 2π/k, k = p/~,
and p = ±

√
2m(E − V ) is the momentum. Here we generalize this solution

to the case where the potential varies slowly over many wavelengths. This
semiclassical (or WKB) approximate solution of the Schrödinger equation
fails at classical turning points, configuration space points where the par-
ticle momentum vanishes. In such neighborhoods, where the semiclassical
approximation fails, one needs to solve locally the exact quantum problem,
in order to compute connection coefficients which patch up semiclassical
segments into an approximate global wave function.

Two lessons follow. First, semiclassical methods can be very powerful
- classical mechanics computations yield suprisingly accurate estimates of
quantal spectra, without solving the Schrödinger equation. Second, semi-
classical quantization does depend on a purely wave-mechanical phenom-
ena, the coherent addition of phases accrued by all fixed energy phase-space
trajectories that connect pairs of coordinate points, and the topological
phase loss at every turning point, a topological property of the classical
flow that plays no role in classical mechanics.

27.1 WKB ansatz

Consider a time-independent Schrödinger equation in 1 spatial dimension:

− ~
2

2m
ψ′′(q) + V (q)ψ(q) = Eψ(q) , (27.2)
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Figure 27.1: A 1-dimensional potential, loca-
tion of the two turning points at fixed energy
E.

with potential V (q) growing sufficiently fast as q → ±∞ so that the classical
particle motion is confined for any E. Define the local momentum p(q) and
the local wavenumber k(q) by

p(q) = ±
√

2m(E − V (q)), p(q) = ~k(q) . (27.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (27.4)

sugests that the wave function be written as ψ = Ae
i
~
S, A and S real

functions of q. Substitution yields two equations, one for the real and other
for the imaginary part:

(S′)2 = p2 + ~
2A

′′

A
(27.5)

S′′A+ 2S′A′ =
1

A

d

dq
(S′A2) = 0 . (27.6)

The Wentzel-Kramers-Brillouin (WKB) or semiclassical approximation con-
sists of dropping the ~

2 term in (27.5). Recalling that p = ~k, this amounts
to assuming that k2 ≫ A′′

A , which in turn implies that the phase of the wave
function is changing much faster than its overall amplitude. So the WKB
approximation can interpreted either as a short wavelength/high frequency
approximation to a wave-mechanical problem, or as the semiclassical, ~ ≪ 1
approximation to quantum mechanics.

Setting ~ = 0 and integrating (27.5) we obtain the phase increment of
a wave function initially at q, at energy E

S(q, q′, E) =

∫ q

q′
dq′′p(q′′) . (27.7)

This integral over a particle trajectory of constant energy, called the action,
will play a key role in all that follows. The integration of (27.6) is even easier

A(q) =
C

|p(q)| 12
, C = |p(q′)| 12ψ(q′) , (27.8)
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where the integration constant C is fixed by the value of the wave function
at the initial point q′. The WKB (or semiclassical) ansatz wave function is
given by

ψsc(q, q
′, E) =

C

|p(q)| 12
e

i
~
S(q,q′,E) . (27.9)

In what follows we shall supress dependence on the initial point and energy
in such formulas, (q, q′, E) → (q).

The WKB ansatz generalizes the free motion wave function (27.1), with
the probability density |A(q)|2 for finding a particle at q now inversely
proportional to the velocity at that point, and the phase 1

~
q p replaced by

1
~

∫
dq p(q), the integrated action along the trajectory. This is fine, except

at any turning point q0, figure 27.1, where all energy is potential, and

p(q) → 0 as q → q0 , (27.10)

so that the assumption that k2 ≫ A′′
A fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslov, does
the job. In the q coordinate, the turning points are defined by the zero
kinetic energy condition (see figure 27.1), and the motion appears singular.
This is not so in the full phase space: the trajectory in a smooth confining
1-dimensional potential is always a smooth loop, with the “special” role
of the turning points qL, qR seen to be an artifact of a particular choice of
the (q, p) coordinate frame. Maslov’s idea was to proceed from the initial
point (q′, p′) to a point (qA, pA) preceeding the turning point in the ψ(q)
representation, then switch to the momentum representation

ψ̃(p) =
1√
2π~

∫
dq e−

i
~
qpψ(q) , (27.11)

continue from (qA, pA) to (qB, pB), switch back to the coordinate represen-
tation,

ψ(q) =
1√
2π~

∫
dp e

i
~
qp ψ̃(p) , (27.12)

and so on.

The only rub is that one usually cannot evaluate these transforms ex-
actly. But, as the WKB wave function (27.9) is approximate anyway, it
suffices to estimate these transforms to leading order in ~ accuracy. This
is accomplished by the method of stationary phase.
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Figure 27.2: A 1-dof phase space trajectory
of a particle moving in a bound potential.

27.2 Method of stationary phase

All “semiclassical” approximations are based on saddlepoint evaluations of
integrals of the type

I =

∫
dxA(x) eisΦ(x) , x,Φ(x) ∈ R , (27.13)

where s is assumed to be a large, real parameter, and Φ(x) is a real-valued
function. In our applications s = 1/~ will always be assumed large.

For large s, the phase oscillates rapidly and “averages to zero” every-
where except at the extremal points Φ′(x0) = 0. The method of approxi-
mating an integral by its values at extremal points is called the method of
stationary phase. Consider first the case of a 1-dimensional integral, and
expand Φ(x0 + δx) around x0 to second order in δx,

I =

∫
dxA(x) eis(Φ(x0)+ 1

2
Φ′′(x0)δx2+...) . (27.14)

Assume (for time being) that Φ′′(x0) 6= 0, with either sign, sgn[Φ′′] =
Φ′′/|Φ′′| = ±1. If in the neighborhood of x0 the amplitude A(x) varies
slowly over many oscillations of the exponential function, we may retain the
leading term in the Taylor expansion of the amplitude, and approximate
the integral up to quadratic terms in the phase by

I ≈ A(x0)e
isΦ(x0)

∫
dx e

1
2
isΦ′′(x0)(x−x0)2 . (27.15)

Using the Fresnel integral formula✎ 27.2
page 477

1√
2π

∫ ∞

−∞
dx e−

x2

2ia =
√
ia = |a|1/2 ei

π
4

a
|a| (27.16)

we obtain

I ≈ A(x0)

∣∣∣∣
2π

sΦ′′(x0)

∣∣∣∣
1/2

eisΦ(x0)±iπ
4 , (27.17)

where ± corresponds to the positive/negative sign of sΦ′′(x0).
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27.3 WKB quantization

We can now evaluate the Fourier transforms (27.11), (27.12) to the same
order in ~ as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C√
2π~

∫
dq

|p(q)| 12
e

i
~
(S(q)−qp)

≈ C√
2π~

e
i
~
(S(q∗)−q∗p)

|p(q∗)| 12

∫
dq e

i
2~
S′′(q∗)(q−q∗)2 , (27.18)

where q∗ is given implicitly by the stationary phase condition

0 = S′(q∗) − p = p(q∗) − p

and the sign of S′′(q∗) = p′(q∗) determines the phase of the Fresnel integral
(27.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)| 12
e

i
~
[S(q∗)−q∗p]+ iπ

4
sgn[S′′(q∗)] . (27.19)

As we continue from (qA, pA) to (qB , pB), nothing problematic occurrs -
p(q∗) is finite, and so is the acceleration p′(q∗). Otherwise, the trajectory
would take infinitely long to get across. We recognize the exponent as the
Legendre transform

S̃(p) = S(q(p)) − q(p)p

which can be used to expresses everything in terms of the p variable,

q∗ = q(p),
d

dq
q = 1 =

dp

dq

dq(p)

dp
= q′(p)p′(q∗) . (27.20)

As the classical trajectory crosses qL, the weight in (27.19),

d

dq
p2(qL) = 2p(qL)p′(qL) = −2mV ′(q) , (27.21)

is finite, and S′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant,
including (qA, pA). Hence, the phase loss in (27.19) is −π

4 . To go back
from the p to the q representation, just turn figure 27.2 90o anticlockwise.
Everything is the same if you replace (q, p) → (−p, q); so, without much
ado we get the semiclassical wave function at the point (qB , pB),

ψsc(q) =
e

i
~
(S̃(p∗)+qp∗)− iπ

4

|q∗(p∗)| 12
ψ̃sc(p

∗) =
C

|p(q)| 12
e

i
~
S(q)− iπ

2 . (27.22)
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Figure 27.3: Sp(E), the action of a periodic
orbit p at energy E, equals the area in the phase
space traced out by the 1-dof trajectory.

The extra |p′(q∗)|1/2 weight in (27.19) is cancelled by the |q′(p∗)|1/2 term,
by the Legendre relation (27.20).

The message is that going through a smooth potential turning point
the WKB wave function phase slips by −π

2 . This is equally true for the
right and the left turning points, as can be seen by rotating figure 27.2 by
180o, and flipping coordinates (q, p) → (−q,−p). While a turning point is
not an invariant concept (for a sufficiently short trajectory segment, it can
be undone by a 45o turn), for a complete period (q, p) = (q′, p′) the total
phase slip is always −2 · π/2, as a loop always has m = 2 turning points.

The WKB quantization condition follows by demanding that the wave
function computed after a complete period be single-valued. With the
normalization (27.8), we obtain

ψ(q′) = ψ(q) =

∣∣∣∣
p(q′)
p(q)

∣∣∣∣
1
2

ei(
1
~

H
p(q)dq−π)ψ(q′) .

The prefactor is 1 by the periodic orbit condition q = q′, so the phase must
be a multiple of 2π,

1

~

∮
p(q)dq = 2π

(
n+

m

4

)
, (27.23)

where m is the number of turning points along the trajectory - for this
1-dof problem, m = 2.

The action integral in (27.23) is the area (see figure 27.3) enclosed by the
classical phase space loop of figure 27.2, and the quantization condition says
that eigenenergies correspond to loops whose action is an integer multiple
of the unit quantum of action, Planck’s constant ~. The extra topological
phase, which, although it had been discovered many times in centuries past,
had to wait for its most recent quantum chaotic (re)birth until the 1970’s.
Despite its derivation in a noninvariant coordinate frame, the final result
involves only canonically invariant classical quantities, the periodic orbit
action S, and the topological index m.
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Figure 27.4: Airy function Ai(q).

27.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose
quantum mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure 27.2 is now a circle in the (mωq, p) plane, the action is
its area S = 2πE/ω, and the spectrum in the WKB approximation

En = ~ω(n+ 1/2) (27.24)

turns out to be the exact harmonic oscillator spectrum. The stationary
phase condition (27.18) keeps V (q) accurate to order q2, which in this case
is the whole answer (but we were simply lucky, really). For many 1-dof
problems the WKB spectrum turns out to be very accurate all the way
down to the ground state. Surprisingly accurate, if one interprets dropping
the ~

2 term in (27.5) as a short wavelength approximation.

27.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly varying
potential the phase of the WKB wave function slips by a π/2 for each
turning point. This π/2 came from a

√
i in the Fresnel integral (27.16), one

such factor for every time we switched representation from the configuration
space to the momentum space, or back. Good, but what does this mean?

The stationary phase approximation (27.14) fails whenever Φ′′(x) = 0,
or, in our the WKB ansatz (27.18), whenever the momentum p′(q) = S′′(q)
vanishes. In that case we have to go beyond the quadratic approxima-
tion (27.15) to the first nonvanishing term in the Taylor expansion of the
exponent. If Φ′′′(x0) 6= 0, then

I ≈ A(x0)e
isΦ(x0)

∫ ∞

−∞
dx eisΦ

′′′(x0)
(x−x0)3

6 . (27.25)
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Airy functions can be represented by integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞
dy ei(xy−

y3

3
) . (27.26)

Derivations of the WKB quantization condition given in standard quan-
tum mechanics textbooks rely on expanding the potential close to the turn-
ing point

V (q) = V (q0) + (q − q0)V
′(q0) + · · · ,

solving the Airy equation

ψ′′ = qψ , (27.27)

and matching the oscillatory and the exponentially decaying “forbidden”
region wave function pieces by means of the WKB connection formulas.
That requires staring at Airy functions and learning about their asymp-
totics - a challenge that we will have to eventually overcome, in order to
incorporate diffraction phenomena into semiclassical quantization.

2) what does the wave function look like?

3) generically useful when Gaussian approximations fail

The physical origin of the topological phase is illustrated by the shape
of the Airy function, figure 27.4. For a potential with a finite slope V ′(q)
the wave function pentrates into the forbidden region, and accomodates a
bit more of a stationary wavelength then what one would expect from the
classical trajectory alone. For infinite walls (that is, billiards) a different
argument applies: the wave function must vanish at the wall, and the phase
slip due to a specular reflection is −π, rather than −π/2.

Commentary

Remark 27.1 Airy function. The stationary phase approximation is all that is

needed for the semiclassical approximation, with the proviso that D in (28.36) has

no zero eigenvalues. The zero eigenvalue case would require going beyond the

Gaussian saddle-point approximation, which typically leads to approximations of

the integrals in terms of Airy functions [27.10].✎ 27.4
page 477

Remark 27.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization
condition was the key result of the old quantum theory, in which the electron
trajectories were purely classical. They were lucky - the symmetries of the Kepler
problem work out in such a way that the total topological index m = 4 amount
effectively to numbering the energy levels starting with n = 1. They were unlucky
- because the hydrogen m = 4 masked the topological index, they could never
get the helium spectrum right - the semiclassical calculation had to wait for until
1980, when Leopold and Percival [A.6] added the topological indices.
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Résumé

The WKB ansatz wave function for 1-degree of freedom problems fails at
the turning points of the classical trajectory. While in the q-representation
the WKB ansatz a turning point is singular, along the p direction the clas-
sical trajectory in the same neighborhood is smooth, as for any smooth
bound potential the classical motion is topologically a circle around the
origin in the (q, p) space. The simplest way to deal with such singulari-
ties is as follows; follow the classical trajectory in q-space until the WKB
approximation fails close to the turning point; then insert

∫
dp|p〉〈p| and

follow the classical trajectory in the p-space until you encounter the next
p-space turning point; go back to the q-space representation, an so on. Each
matching involves a Fresnel integral, yielding an extra e−iπ/4 phase shift,
for a total of e−iπ phase shift for a full period of a semiclassical particle
moving in a soft potential. The condition that the wave-function be single-
valued then leads to the 1-dimensional WKB quantization, and its lucky
cousin, the Bohr-Sommerfeld quantization.

Alternatively, one can linearize the potential around the turning point
a, V (q) = V (a)+(q−a)V ′(a)+ · · ·, and solve the quantum mechanical con-
stant linear potential V (q) = qF problem exactly, in terms of an Airy func-
tion. An approximate wave function is then patched together from an Airy
function at each turning point, and the WKB ansatz wave-function seg-
ments inbetween via the WKB connection formulas. The single-valuedness
condition again yields the 1-dimensional WKB quantization. This a bit
more work than tracking the classical trajectory in the full phase space,
but it gives us a better feeling for shapes of quantum eigenfunctions, and
exemplifies the general strategy for dealing with other singularities, such
as wedges, bifurcation points, creeping and tunneling: patch together the
WKB segments by means of exact QM solutions to local approximations
to singular points.
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EXERCISES 477

Exercises

Exercise 27.1 WKB ansatz. Try to show that no other ansatz other

than (28.1) gives a meaningful definition of the momentum in the ~ → 0 limit.

Exercise 27.2 Fresnel integral. Derive the Fresnel integral

1√
2π

∫ ∞

−∞
dx e−

x2

2ia =
√
ia = |a|1/2ei

π
4

a
|a| .

Exercise 27.3 Sterling formula for n!. Compute an approximate value of

n! for large n using the stationary phase approximation. Hint: n! =
∫∞
0 dt tne−t.

Exercise 27.4 Airy function for large arguments. Important
contributions as stationary phase points may arise from extremal points where the
first non-zero term in a Taylor expansion of the phase is of third or higher order. Such
situations occur, for example, at bifurcation points or in diffraction effects, (such as
waves near sharp corners, waves creeping around obstacles, etc.). In such calculations,
one meets Airy functions integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞
dy ei(xy−y3

3 ) . (27.28)

Calculate the Airy function Ai(x) using the stationary phase approximation. What

happens when considering the limit x → 0. Estimate for which value of x the

stationary phase approximation breaks down.
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Chapter 28

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian,
Arabic, Chaldee, Syrian and sundry Indian dialects.
At age seventeen he began to think about optics,
and worked out his great principle of “Characteris-
tic Function”.

Turnbull, Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanović)

Semiclassical approximations to quantum mechanics are valid in the regime
where the de Broglie wavelength λ ∼ ~/p of a particle with momentum p
is much shorter than the length scales across which the potential of the
system changes significantly. In the short wavelength approximation the
particle is a point-like object bouncing off potential walls, the same way it
does in the classical mechanics. The novelty of quantum mechanics is the
interference of the point-like particle with other versions of itself traveling
along different classical trajectories, a feat impossible in classical mechan-
ics. The short wavelength – or semiclassical – formalism is developed by

☞ remark 28.1
formally taking the limit ~ → 0 in quantum mechanics in such a way that
quantum quantities go to their classical counterparts.

28.1 Hamilton-Jacobi theory

We saw in chapter 27 that for a 1-dof particle moving in a slowly varying
potential, it makes sense to generalize the free particle wave function (27.1)
to a wave function

ψ(q, t) = A(q, t)eiR(q,t)/~ , (28.1)

with slowly varying (real) amplitudeA(q, t) and rapidly varying (real) phase
R(q, t). its phase and magnitude. The time evolution of the phase and ✎ 27.1

page 477
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the magnitude of ψ follows from the Schrödinger equation (26.1)

(
i~
∂

∂t
+

~
2

2m

∂2

∂q2
− V (q)

)
ψ(q, t) = 0 . (28.2)

Assume A 6= 0, and separate out the real and the imaginary parts. We get
two equations: The real part governs the time evolution of the phase

∂R

∂t
+

1

2m

(
∂R

∂q

)2

+ V (q) − ~
2

2m

1

A

∂2

∂q2
A = 0 , (28.3)

and the imaginary part the time evolution of the amplitude✎ 28.8
page 502

✎ 28.9
page 502

∂A

∂t
+

1

m

D∑

i=1

∂A

∂qi

∂R

∂qi
+

1

2m
A
∂2R

∂q2
= 0 . (28.4)

✎ 28.10
page 502 In this way a linear PDE for a complex wave function is converted

into a set of coupled non-linear PDE’s for real-valued functions R and A.
The coupling term in (28.3) is, however, of order ~

2 and thus small in the
semiclassical limit ~ → 0.

Now we generalize the Wentzel-Kramers-Brillouin (WKB) ansatz for
1-dof dynamics to the Van Vleck ansatz in arbitrary dimension: we assume
the magnitude A(q, t) varies slowly compared to the phase R(q, t)/~, so we
drop the ~-dependent term. In this approximation the phase R(q, t) and
the corresponding “momentum field” ∂R

∂q (q, t) can be determined from the
amplitude independent equation

∂R

∂t
+H

(
q,
∂R

∂q

)
= 0 . (28.5)

In classical mechanics this equation is known as the Hamilton-Jacobi equa-
tion. We will refer to this step (as well as all leading order in ~ approxima-
tions to follow) as the semiclassical approximation to wave mechanics, and
from now on work only within this approximation.

28.1.1 Hamilton’s equations

We now solve the nonlinear partial differential equation (28.5) in a way
the 17 year old Hamilton might have solved it. The main step is the step
leading from the nonlinear PDE (28.9) to Hamilton’s ODEs (28.10). If you
already understand the Hamilton-Jacobi theory, you can safely skip this
section.

VanVleck - 28dec2004 ChaosBook.org/version11.8, Aug 30 2006



28.1. HAMILTON-JACOBI THEORY 481
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Figure 28.1: (a) A phase R(q, t) plotted as a function of the position q for two
infinitesimally close times. (b) The phaseR(q, t) transported by a swarm of “particles”;
The Hamilton’s equations (28.10) construct R(q, t) by transporting q0 → q(t) and the
slope of R(q0, t0), that is p0 → p(t).

fast track:

sect. 28.1.3, p. 484

The wave equation (26.1) describes how the wave function ψ evolves
with time, and if you think of ψ as an (infinite dimensional) vector, position
q plays a role of an index. In one spatial dimension the phase R plotted
as a function of the position q for two different times looks something
like figure 28.1(a): The phase R(q, t0) deforms smoothly with time into
the phase R(q, t) at time t. Hamilton’s idea was to let a swarm of particles
transportR and its slope ∂R/∂q at q at initial time t = t0 to a corresponding
R(q, t) and its slope at time t, figure 28.1(b). For notational convenience,
define

pi = pi(q, t) :=
∂R

∂qi
, i = 1, 2, . . . ,D . (28.6)

We saw earlier that (28.3) reduces in the semiclassical approximation to
the Hamilton-Jacobi equation (28.5). To make life simple, we shall assume
throughout this chapter that the Hamilton’s function H(q, p) does not de-
pend explicitly on time t, that is, the energy is conserved.

To start with, we also assume that the function R(q, t) is smooth and
well defined for every q at the initial time t. This is true for sufficiently short
times; as we will see later, R develops folds and becomes multi-valued as t
progresses. Consider now the variation of the function R(q, t) with respect
to independent infinitesimal variations of the time and space coordinates
dt and dq, figure 28.1(a)

dR =
∂R

∂t
dt+

∂R

∂q
dq . (28.7)

Dividing through by dt and substituting (28.5) we obtain the total deriv-
ative of R(q, t) with respect to time along the as yet arbitrary direction q̇,
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482 CHAPTER 28. SEMICLASSICAL EVOLUTION

that is,

dR

dt
(q, q̇, t) = −H(q, p) + q̇ · p . (28.8)

Note that the “momentum” p = ∂R/∂q is a well defined function of q and
t. In order to integrate R(q, t) with the help of (28.8) we also need to know
how p = ∂R/∂q changes along q̇. Varying p with respect to independent
infinitesimal variations dt and dq and substituting the Hamilton-Jacobi
equation (28.5) yields

d
∂R

∂q
=
∂2R

∂q∂t
dt +

∂2R

∂q2
dq = −

(
∂H

∂q
+
∂H

∂p

∂p

∂q

)
dt+

∂p

∂q
dq .

Note that H(q, p) depends on q also through p(q, t) = ∂R/∂q, hence the
∂H
∂p term in the above equation. Dividing again through by dt we get the
time derivative of ∂R/∂q, that is,

ṗ(q, q̇, t) +
∂H

∂q
=

(
q̇ − ∂H

∂p

)
∂p

∂q
. (28.9)

Time variation of p depends not only on the yet unknown q̇, but also on
the second derivatives of R with respect to q with yet unknown time de-
pendence. However, if we choose q̇ (which was arbitrary, so far) such that
the right hand side of the above equation vanishes, we can calculate the
function R(q, t) along a specific trajectory (q(t), p(t)) given by integrating
the ordinary differential equations

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
(28.10)

with initial conditions

q(t0) = q′, p(t0) = p′ =
∂R

∂q
(q′, t0). (28.11)

☞ sect. 5.1

We recognize (28.10) as Hamilton’s equations of motion of classical me-
chanics. The miracle happens in the step leading from (28.5) to (28.9) – if
you missed it, you have missed the point. Hamilton derived his equations
contemplating optics - it took him three more years to realize that all of
Newtonian dynamics can be profitably recast in this form.

q̇ is no longer an independent function, and the phase R(q, t) can now
be computed by integrating equation (28.8) along the trajectory (q(t), p(t))

R(q, t) = R(q′, t0) +R(q, t; q′, t0)

R(q, t; q′, t0) =

∫ t

t0

dτ [q̇(τ) · p(τ) −H(q(τ), p(τ))] , (28.12)
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with the initial conditions (28.11). In this way the Hamilton-Jacobi par-
tial differential equation (28.3) is solved by integrating a set of ordinary
differential equations, Hamilton’s equations. In order to determine R(q, t)
for arbitrary q and t we have to find a q′ such that the trajectory starting
in (q′, p′ = ∂qR(q′, t0)) reaches q in time t and then compute R along this
trajectory, see figure 28.1(b). The integrand of (28.12) is known as the
Lagrangian,

L(q, q̇, t) = q̇ · p−H(q, p, t) . (28.13)

A variational principle lurks here, but we shall not make much fuss about
it as yet.

Throughout this chapter we assume that the energy is conserved, and
that the only time dependence of H(q, p) is through (q(τ), p(τ)), so the
value of R(q, t; q′, t0) does not depend on t0, but only on the elapsed time
t− t0. To simplify notation we will set t0 = 0 and write

R(q, q′, t) = R(q, t; q′, 0) .

The initial momentum of the particle must coincide with the initial mo-
mentum of the trajectory connecting q′ and q:

p′ =
∂

∂q′
R(q′, 0) = − ∂

∂q′
R(q, q′, t). (28.14)

✎ 28.7
page 502The function R(q, q′, t) is known as Hamilton’s principal function.
✎ 28.11
page 502To summarize: Hamilton’s achievement was to trade in the Hamilton-

Jacobi partial differential equation (28.5) describing the evolution of a wave
front for a finite number of ordinary differential equations of motion, with
the initial phase R(q, 0) incremented by the integral (28.12) evaluated along
the phase space trajectory (q(τ), p(τ)).

28.1.2 Action

Before proceeding, we note in passing a few facts about Hamiltonian dy-
namics that will be needed for the construction of semiclassical Green’s
functions. If the energy is conserved, the

∫
H(q, p)dτ integral in (28.12) is

simply Et. The first term, or the action

S(q, q′, E) =

∫ t

0
dτ q̇(τ) · p(τ) =

∫ q

q′
dq · p (28.15)

is integrated along a trajectory from q′ to q with a fixed energy E. By
(28.12) the action is a Legendre transform of Hamilton’s principal function

S(q, q′, E) = R(q, q′, t) + Et . (28.16)
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The time of flight t along the trajectory connecting q′ → q with fixed energy
E is given by

∂

∂E
S(q, q′, E) = t . (28.17)

The way to think about the formula (28.16) for action is that the time
of flight is a function of the energy, t = t(q, q′, E). The left hand side is
explicitly a function of E; the right hand side is an implicit function of E
through energy dependence of the flight time t.

Going in the opposite direction, the energy of a trajectory E = E(q, q′, t)
connecting q′ → q with a given time of flight t is given by the derivative of
Hamilton’s principal function

∂

∂t
R(q, q′, t) = −E , (28.18)

and the second variations of R and S are related in the standard way of
Legendre transforms:

∂2

∂t2
R(q, q′, t)

∂2

∂E2
S(q, q′, E) = −1 . (28.19)

A geometric visualization of what the phase evolution looks like is very
helpful in understanding the origin of topological indices to be introduced
in what follows. Given an initial phase R(q, t0), the gradient ∂qR defines a

☞ sect. 28.1.4
D-dimensional Lagrangian manifold (q, p = ∂qR(q)) in the full 2d dimen-
sional phase space (q, p). The defining property of this manifold is that any
contractible loop γ in it has zero action,

0 =

∮

γ
dq · p,

a fact that follows from the definition of p as a gradient, and the Stokes
theorem. Hamilton’s equations of motion preserve this property and map
a Lagrangian manifold into a Lagrangian manifold at a later time. t

Returning back to the main line of our argument: so far we have de-
termined the wave function phase R(q, t). Next we show that the velocity
field given by the Hamilton’s equations together with the continuity equa-
tion determines the amplitude of the wave function.

28.1.3 Density evolution

To obtain the full solution of the Schrödinger equation (26.1), we also have
to integrate (28.4).

ρ(q, t) := A2 = ψ∗ψ
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plays the role of a density. To the leding order in ~, the gradient of R may
be interpreted as the semiclassical momentum density

ψ(q, t)∗(−i~ ∂
∂q

)ψ(q, t) = −i~A∂A
∂q

+ ρ
∂R

∂q
.

Evaluated along the trajectory (q(t), p(t)), the amplitude equation (28.4)
is equivalent to the continuity equation (9.35) after multiplying (28.4) by
2A, that is

∂ρ

∂t
+

∂

∂qi
(ρvi) = 0 . (28.20)

Here, vi = q̇i = pi/m denotes a velocity field, which is in turn determined by
the gradient of R(q, t), or the Lagrangian manifold (q(t), p(t) = ∂qR(q, t)),

v =
1

m

∂

∂q
R(q, t).

As we already know how to solve the Hamilton-Jacobi equation (28.5), we
can also solve for the density evolution as follows:

The density ρ(q) can be visualized as the density of a configuration
space flow q(t) of a swarm of hypothetical particles; the trajectories q(t) are
solutions of Hamilton’s equations with initial conditions given by (q(0) =
q′, p(0) = p′ = ∂qR(q′, 0)).

If we take a small configuration space volume dDq around some point
q at time t, then the number of particles in it is ρ(q, t)dDdq. They started
initially in a small volume dDq′ around the point q′ of the configuration
space. For the moment, we assume that there is only one solution, the case
of several paths will be considered below. The number of particles at time
t in the volume is the same as the number of particles in the initial volume
at t = 0,

ρ(q(t), t)dDq = ρ(q′, 0)dDq′ ,

see figure 28.2. The ratio of the initial and the final volumes can be
expressed as

ρ(q(t), t) =

∣∣∣∣det
∂q′

∂q

∣∣∣∣ ρ(q
′, 0) . (28.21)

☞ sect. 9.2

As we know how to compute trajectories (q(t), p(t)), we know how to com-
pute this Jacobian and, by (28.21), the density ρ(q(t), t) at time t.
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Figure 28.2: Density evolution of an ini-
tial surface (q′, p′ = ∂qR(q′, 0) into (q(t), p(t))
surface time t later, sketched in 1 dimension.
While the number of trajectories and the phase
space Liouville volume are conserved, the den-
sity of trajectories projected on the q coordinate
varies; trajectories which started in dq′ at time
zero end up in the interval dq.

28.1.4 Semiclassical wave function

Now we have all ingredients to write down the semiclassical wave function at
time t. Consider first the case when our initial wave function can be written
in terms of single-valued functions A(q′, 0) and R(q′, 0). For sufficiently
short times, R(q, t) will remain a single-valued function of q, and every dDq
configuration space volume element keeps its orientation. The evolved wave
function is in the semiclassical approximation then given by

ψsc(q, t) = A(q, t)eiR(q,t)/~ =

√
det

∂q′

∂q
A(q′, 0)ei(R(q′ ,0)+R(q,q′,t))/~

=

√
det

∂q′

∂q
eiR(q,q′,t)/~ψ(q′, 0) .

As the time progresses the Lagrangian manifold ∂qR(q, t) can develop folds,
so for longer times the value of the phase R(q, t) is not necessarily unique; in
general more than one trajectory will connect points q and q′ with different
phases R(q, q′, t) accumulated along these paths, see figure 28.3.

We thus expect in general a collection of different trajectories from q′ to
q which we will index by j, with different phase increments Rj(q, q

′, t). The
hypothetical particles of the density flow at a given configuration space
point can move with different momenta p = ∂qRj(q, t). This is not an
ambiguity, since in the full (q, p) phase space each particle follows its own
trajectory with a unique momentum.

Whenever the Lagrangian manifold develops a fold, the density of the
phase space trajectories in the fold projected on the configuration coordi-
nates diverges. As illustrated in figure 28.3, when the Lagrangian manifold
develops a fold at q = q1; the volume element dq1 in the neighborhood of
the folding point is proportional to

√
dq′ instead of dq′. The Jacobian

∂q′/∂q diverges like 1/
√
q1 − q(t) when computed along the trajectory go-

ing trough the folding point at q1. After the folding the orientation of
the interval dq′ has changed when being mapped into dq2; in addition the
function R, as well as its derivative which defines the Lagrangian manifold,
becomes multi-valued. Distinct trajectories starting from different initial
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Figure 28.3: Folding of the Lagrangian sur-
face (q, ∂qR(q, t)).

points q′ can now reach the same final point q2. (That is, the point q′ may
have more than one pre-image.) The projection of a simple fold, or of an
envelope of a family of phase space trajectories, is called a caustic; this
expression comes from the Greek word for “capable of burning”, evoking
the luminous patterns that one observes swirling across the bottom of a
swimming pool.

The folding also changes the orientation of the pieces of the Lagrangian
manifold (q, ∂qR(q, t)) with respect to the initial manifold, so the eigenval-
ues of the Jacobian determinant change sign at each fold crossing. We can
keep track of the signs by writing the Jacobian determinant as

det
∂q′

∂q

∣∣∣∣
j

= e−iπmj (q,q′,t)

∣∣∣∣det
∂q′

∂q

∣∣∣∣
j

,

where mj(q, q
′, t) counts the number of sign changes of the Jacobian deter-

minant on the way from q′ to q along the trajectory indexed with j, see
figure 28.3. We shall refer to the integer mj(q, q

′, t) as the topological of
the trajectory. So in general the semiclassical approximation to the wave
function is thus a sum over possible trajectories that start at any inital q′

and end in q in time t

ψsc(q, t) =

∫
dq′
∑

j

∣∣∣∣det
∂q′

∂q

∣∣∣∣
1/2

j

eiRj(q,q
′,t)/~−iπmj (q,q′,t)/2ψ(q′j , 0) , (28.22)

each contribution weighted by corresponding density, phase increment and
the topological index.

That the correct topological index is obtained by simply counting the
number of eigenvalue sign changes and taking the square root is not obvious
- the careful argument requires that quantum wave functions evaluated
across the folds remain single valued.
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28.2 Semiclassical propagator

We saw in chapter 26 that the evolution of an initial wave function ψ(q, 0) is
completely determined by the propagator (26.12). As K(q, q′, t) itself sat-
isfies the Schrödinger equation (26.14), we can treat it as a wave function
parameterized by the configuration point q′. In order to obtain a semiclas-
sical approximation to the propagator we follow now the ideas developed
in the last section. There is, however, one small complication: the initial
condition (26.15) demands that the propagator at t = 0 is a δ-function at
q = q′, that is, the amplitude is infinite at q′ and the phase is not well
defined. Our hypothetical cloud of particles is thus initially localized at
q = q′ with any initial velocity. This is in contrast to the situation in the
previous section where we assumed that the particles at a given point q have
well defined velocity (or a discrete set of velocities) given by q̇ = ∂pH(q, p).
We will now derive at a semiclassical expression for K(q, q′, t) by consid-
ering the propagator for short times first, and extrapolating from there to
arbitrary times t.

28.2.1 Short time propagator

For infinitesimally short times δt away from the singular point t = 0 we
assume that it is again possible to write the propagator in terms of a well
defined phase and amplitude, that is

K(q, q′, δt) = A(q, q′, δt)e
i
~
R(q,q′,δt) .

As all particles start at q = q′, R(q, q′, δt) will be of the form (28.12), that
is

R(q, q′, δt) = pq̇δt −H(q, p)δt , (28.23)

with q̇ ≈ (q−q′)/δt. For Hamiltonians of the form (26.2) we have q̇ = p/m,
which leads to

R(q, q′, δt) =
m(q − q′)2

2δt
− V (q)δt .

Here V can be evaluated any place along the trajectory from q to q′, for
example at the midway point V ((q + q′)/2). Inserting this into our ansatz
for the propagator we obtain

Ksc(q, q
′, δt) ≈ A(q, q′, δt)e

i
~
( m

2δt
(q−q′)2−V (q)δt) . (28.24)
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For infinitesimal times we can neglect the term V (q)δt, so Ksc(q, q
′, δt) is a

d-dimensional Gaussian with width σ2 = i~δt/m. This Gaussian is a finite
width approximation to the Dirac delta function

δ(z) = lim
σ→0

1√
2πσ2

e−z
2/2σ2

(28.25)

if A = (m/2πi~δt)D/2, with A(q, q′, δt) fixed by the Dirac delta function
normalization condition. The correctly normalized propagator for infini- ✎ 28.2

page 501
tesimal times δt is therefore

Ksc(q, q
′, δt) ≈

( m

2πi~δt

)D/2
e

i
~
(

m(q−q′)2
2δt

−V (q)δt) . (28.26)

The short time dynamics of the Lagrangian manifold (q, ∂qR) which corre-
sponds to the quantum propagator can now be deduced from (28.23); one
obtains

∂R

∂q
= p ≈ m

δt
(q − q′) ,

that is, is the particles start for short times on a Lagrangian manifold which
is a plane in phase space, see figure 28.4. Note, that for δt → 0, this plane
is given by the condition q = q′, that is, particles start on a plane parallel to
the momentum axis. As we have already noted, all particles start at q = q′

but with different velocities for t = 0. The inital surface (q′, p′ = ∂qR(q′, 0))
is mapped into the surface (q(t), p(t)) some time t later. The slope of the
Lagrangian plane for a short finite time is given as

∂pi
∂qj

= − ∂2R

∂qj∂q′i
= −∂p

′
i

∂qj
=
m

δt
δij .

The prefactor (m/δt)D/2 in (28.26) can therefore be interpreted as the de-
terminant of the Jacobian of the transformation from final position coordi-
nates q to initial momentum coordinates p′, that is

Ksc(q, q
′, δt) =

1

(2πi~)D/2

(
det

∂p′

∂q

)1/2

eiR(q,q′,δt)/~, (28.27)

where

∂p′i
∂qj

∣∣∣∣
t,q′

=
∂2R(q, q′, δt)

∂qj∂q′i
(28.28)

The subscript · · ·|t,q′ indicates that the partial derivatives are to be evalu-
ated with t, q′ fixed.

ChaosBook.org/version11.8, Aug 30 2006 VanVleck - 28dec2004



490 CHAPTER 28. SEMICLASSICAL EVOLUTION

Figure 28.4: Evolution of the semiclassi-
cal propagator. The configuration which cor-
responds to the initial conditions of the propa-
gator is a Lagrangian manifold q = q′, that is,
a plane parallel to the p axis. The hypothet-
ical particles are thus initially all placed at q′

but take on all possible momenta p′. The Jaco-
bian matrix C (28.29) relates an initial volume
element in momentum space dp′ to a final con-
figuration space volume dq.

The propagator in (28.27) has been obtained for short times. It is,
however, already more or less in its final form. We only have to evolve our
short time approximation of the propagator according to (28.22)

Ksc(q
′′, q′, t′ + δt) =

∑

j

∣∣∣∣det
∂q

∂q′′

∣∣∣∣
1/2

j

eiRj(q
′′,q,t′)/~−iπmj (q′′,q,t′)/2K(q, q′j , δt) ,

and we included here already the possibility that the phase becomes multi-
valued, that is, that there is more than one path from q′ to q′′. The topolog-
ical index mj = mj(q

′′, q′, t) is the number of singularities in the Jacobian
along the trajectory j from q′ to q′′. We can write Ksc(q

′′, q′, t′ + δt) in
closed form using the fact that R(q′′, q, t′) + R(q, q′, δt) = R(q′′, q′, t′ + δt)
and the multiplicativity of Jacobian determinants, that is

det
∂q

∂q′′

∣∣∣∣
t

det
∂p′

∂q

∣∣∣∣
q′,δt

= det
∂p′

∂q′′

∣∣∣∣
q′,t′+δt

. (28.29)

The final form of the semiclassical or Van Vleck propagator, is thus

Ksc(q, q
′, t) =

∑

j

1

(2πi~)D/2

∣∣∣∣det
∂p′

∂q

∣∣∣∣
1/2

eiRj(q,q
′,t)/~−imjπ/2 . (28.30)

This Van Vleck propagator is the essential ingredient of the semiclassical
quantization to follow.

The apparent simplicity of the semiclassical propagator is deceptive.
The wave function is not evolved simply by multiplying by a complex num-
ber of magnitude

√
det ∂p′/∂q and phase R(q, q′, t); the more difficult task

in general is to find the trajectories connecting q′ and q in a given time t.

In addition, we have to treat the approximate propagator (28.30) with
some care. Unlike the full quantum propagator, which satisfies the group
property (26.13) exactly, the semiclassical propagator performs this only
approximately, that is

Ksc(q, q
′, t1 + t2) ≈

∫
dq′′Ksc(q, q

′′, t2)Ksc(q
′′, q′, t1) . (28.31)
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The connection can be made explicit by the stationary phase approxima-
tion, sect. 27.2. Approximating the integral in (28.31) by integrating only
over regions near points q′′ at which the phase is stationary, leads to the
stationary phase condition

∂R(q, q′′, t2)
∂q′′i

+
∂R(q′′, q′, t1)

∂q′′i
= 0. (28.32)

Classical trajectories contribute whenever the final momentum for a path
from q′ to q′′ and the initial momentum for a path from q′′ to q coincide.
Unlike the classical evolution of sect. 10.2, the semiclassical evolution is not
an evolution by linear operator multiplication, but evolution supplemented
by a stationary phase condition pout = pin that matches up the classical
momenta at each evolution step.

28.2.2 Free particle propagator

To develop some intuition about the above formalism, consider the case of
a free particle. For a free particle the potential energy vanishes, the kinetic
energy is m

2 q̇
2, and the Hamilton’s principal function (28.12) is

R(q, q′, t) =
m(q − q′)2

2t
. (28.33)

The weight det ∂p
′

∂q from (28.28) can be evaluated explicitly, and the Van
Vleck propagator is

Ksc(q, q
′, t) =

( m

2πi~t

)D/2
eim(q−q′)2/2~t , (28.34)

identical to the short time propagator (28.26), with V (q) = 0. This case
is rather exceptional: for a free particle the semiclassical propagator turns
out to be the exact quantum propagator K(q, q′, t), as can be checked by
substitution in the Schrödinger equation (28.2). The Feynman path inte-

☞ remark 28.3
gral formalism uses this fact to construct an exact quantum propagator by
integrating the free particle propagator (with V (q) treated as constant for
short times) along all possible (not necessarily classical) paths from q′ to q.

✎ 28.12
page 502

✎ 28.13
page 503

✎ 28.14
page 503

28.3 Semiclassical Green’s function

So far we have derived semiclassical formulas for the time evolution of
wave functions, that is, we obtained approximate solutions to the time
dependent Schrödinger equation (26.1). Even though we assumed in the
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calculation a time independent Hamiltonian of the special form (26.2), the
derivation would lead to the same final result (28.30) were one to consider
more complicated or explicitly time dependent Hamiltonians. The prop-
agator is thus important when we are interested in finite time quantum
mechanical effects. For time independent Hamiltonians, the time depen-
dence of the propagator as well as of wave functions is, however, essentially
given in terms of the energy eigen-spectrum of the system, as in (26.10).
It is therefore advantageous to switch from a time representation to an
energy representation, that is from the propagator (26.12) to the energy
dependent Green’s function (26.16). A semiclassical approximation of the
Green’s function Gsc(q, q

′, E) is given by the Laplace transform (26.16) of
the Van Vleck propagator Ksc(q, q

′, t):

Gsc(q, q
′, E) =

1

i~

∫ ∞

0
dt eiEt/~Ksc(q, q

′, t) . (28.35)

The expression as it stands is not very useful; in order to evaluate the
integral, at least to the leading order in ~, we need to turn to the method
of stationary phase again.

28.3.1 Stationary phase in higher dimensions

✎ 27.2
page 477 Generalizing the method of sect. 27.2 to d dimensions, consider stationary

phase points fulfilling

d

dxi
Φ(x)

∣∣∣∣
x=x0

= 0 ∀i = 1, . . . d .

An expansion of the phase up to second order involves now the symmetric
matrix of second derivatives of Φ(x), that is

Dij(x0) =
∂2

∂xi∂xj
Φ(x)

∣∣∣∣
x=x0

.

After choosing a suitable coordinate system which diagonalizes D, we can
approximate the d-dimensional integral by d one-dimensional Fresnel inte-
grals; the stationary phase estimate of (27.13) is then

I ≈
∑

x0

(2πi/s)d/2 |detD(x0)|−1/2A(x0) e
isΦ(x0)− iπ

2
m(x0) , (28.36)

where the sum runs over all stationary phase points x0 of Φ(x) and m(x0)
counts the number of negative eigenvalues of D(x0).✎ 28.3

page 501

✎ 28.4
page 501

✎ 27.3
page 477

The stationary phase approximation is all that is needed for the semi-
classical approximation, with the proviso that D in (28.36) has no zero
eigenvalues.
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28.3.2 Long trajectories

When evaluating the integral (28.35) approximately we have to distinguish
between two types of contributions: those coming from stationary points of
the phase and those coming from infinitesimally short times. The first type
of contributions can be obtained by the stationary phase approximation
and will be treated in this section. The latter originate from the singular
behavior of the propagator for t → 0 where the assumption that the am-
plitude changes slowly compared to the phase is not valid. The short time
contributions therefore have to be treated separately, which we will do in
sect. 28.3.3.

The stationary phase points t∗ of the integrand in (28.35) are given by
the condition

∂

∂t
R(q, q′, t∗) + E = 0 . (28.37)

We recognize this condition as the solution of (28.18), the time t∗ = t∗(q, q′, E)
in which a particle of energy E starting out in q′ reaches q. Taking into ac-
count the second derivative of the phase evaluated at the stationary phase
point,

R(q, q′, t) + Et = R(q, q′, t∗) + Et∗ +
1

2
(t− t∗)2

∂2

∂t2
R(q, q′, t∗) + · · ·

the stationary phase approximation of the integral corresponding to a clas-
sical trajectory j in the Van Vleck propagator sum (28.30) yields

Gj(q, q
′, E) =

1

i~(2iπ~)(D−1)/2

∣∣∣∣∣detCj

(
∂2Rj
∂t2

)−1
∣∣∣∣∣

1/2

e
i
~
Sj− iπ

2
mj , (28.38)

where mj = mj(q, q
′, E) now includes a possible additional phase arising

from the time stationary phase integration (27.16), and Cj = Cj(q, q
′, t∗),

Rj = Rj(q, q
′, t∗) are evaluated at the transit time t∗. We re-express the

phase in terms of the energy dependent action (28.16)

S(q, q′, E) = R(q, q′, t∗) + Et∗ , with t∗ = t∗(q, q′, E) , (28.39)

the Legendre transform of Hamilton’s principal function. Note that the
partial derivative of the action (28.39) with respect to qi

∂S(q, q′, E)

∂qi
=
∂R(q, q′, t∗)

∂qi
+

(
∂R(q, q′, t)

∂t∗
+ E

)
∂t

∂qi
.
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is equal to

∂S(q, q′, E)

∂qi
=
∂R(q, q′, t∗)

∂qi
, (28.40)

due to the stationary phase condition (28.37), so the definition of momen-
tum as a partial derivative with respect to q remains unaltered by the
Legendre transform from time to energy domain.✎ 28.15

page 503
Next we will simplify the amplitude term in (28.38) and rewrite it as

an explicit function of the energy. Consider the [(D + 1)×(D + 1)] matrix

D(q, q′, E) =

(
∂2S
∂q′∂q

∂2S
∂q′∂E

∂2S
∂q∂E

∂2S
∂E2

)
=

(
−∂p′

∂q −∂p′

∂E
∂t
∂q

∂t
∂E

)
, (28.41)

where S = S(q, q′, E) and we used (28.14–28.17) here to obtain the left
hand side of (28.41). The minus signs follow from observing from the
definition of (28.15) that S(q, q′, E) = −S(q′, q, E). Note that D is nothing
but the Jacobian matrix of the coordinate transformation (q,E) → (p′, t)
for fixed q′. We can therefore use the multiplication rules of determinants
of Jacobians, which are just ratios of volume elements, to obtain

detD = (−1)D+1

(
det

∂(p′, t)
∂(q,E)

)

q′
= (−1)D+1

(
det

∂(p′, t)
∂(q, t)

∂(q, t)

∂(q,E)

)

q′

= (−1)D+1

(
det

∂p′

∂q

)

t,q′

(
det

∂t

∂E

)

q′,q
= detC

(
∂2R

∂t2

)−1

.

We use here the notation (det .)q′,t for a Jacobian determinant with par-
tial derivatives evaluated at t, q′ fixed, and likewise for other subscripts.
Using the relation (28.19) which relates the term ∂t

∂E to ∂2
tR we can write

the determinant of D as a product of the Van Vleck determinant (28.28)
and the amplitude factor arising from the stationary phase approximation.
The amplitude in (28.38) can thus be interpreted as the determinant of a
Jacobian of a coordinate transformation which includes time and energy as
independent coordinates. This causes the increase in the dimensionality of
the matrix D relative to the Van Vleck determinant (28.28).

We can now write down the semiclassical approximation of the contri-
bution of the jth trajectory to the Green’s function (28.38) in explicitly
energy dependent form:

Gj(q, q
′, E) =

1

i~(2iπ~)(D−1)/2
|detDj |1/2 e

i
~
Sj− iπ

2
mj . (28.42)

However, this is still not the most convenient form of the Green’s function.
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The trajectory contributing to Gj(q, q
′, E) is constrained to a given en-

ergy E, and will therefore be on a phase space manifold of constant energy,
that is H(q, p) = E. Writing this condition as a partial differential equation
for S(q, q′, E), that is

H(q,
∂S

∂q
) = E ,

one obtains

∂

∂q′i
H(q, p) = 0 =

∂H

∂pj

∂pj
∂q′i

= q̇j
∂2S

∂qj∂q′i
∂

∂qi
H(q′, p′) = 0 =

∂2S

∂qi∂q′j
q̇′j , (28.43)

that is the sub-matrix ∂2S/∂qi∂q
′
j has (left- and right-) eigenvectors cor-

responding to an eigenvalue 0. Rotate the local coordinate system at the
either end of the trajectory

(q1, q2, q3, · · · , qd) → (q‖, q⊥1, q⊥2, · · · , q⊥(D−1))

so that one axis points along the trajectory and all others are perpendicular
to it

(q̇1, q̇2, q̇3, · · · , q̇d) → (q̇, 0, 0, · · · , 0) .

With such local coordinate systems at both ends, with the longitudinal
coordinate axis q‖ pointing along the velocity vector of magnitude q̇, the
stability matrix of S(q, q′, E) has a column and a row of zeros as (28.43)
takes form

q̇
∂2S

∂q‖∂q
′
i

=
∂2S

∂qi∂q
′
‖
q̇′ = 0 .

The initial and final velocities are non-vanishing except for points |q̇| = 0.
These are the turning points (where all energy is potential), and we assume
that neither q nor q′ is a turning point (in our application - periodic orbits
- we can always chose q = q′ not a turning point). In the local coordinate
system with one axis along the trajectory and all other perpendicular to it
the determinant of (28.41) is of the form

detD(q, q′, E) = (−1)D+1


det

0 0 ∂2S
∂E∂q′‖

0 ∂2 S
∂q⊥∂q′⊥

∗
∂2S
∂q‖∂E

∗ ∗


 . (28.44)
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The corner entries can be evaluated using (28.17)

∂2S

∂q‖∂E
=

∂

∂q‖
t =

1

q̇
,

∂2S

∂E∂q′‖
=

1

q̇′
.

As the q‖ axis points along the velocity direction, velocities q̇, q̇′ are by
construction almost always positive non-vanishing numbers. In this way
the determinant of the [(D + 1)×(D + 1)] dimensional matrix D(q, q′, E)
can be reduced to the determinant of a [(D − 1)×(D − 1)] dimensional
transverse matrix D⊥(q, q′, E)

detD(q, q′, E) =
1

q̇q̇′
detD⊥(q, q′, E)

D⊥(q, q′, E)ik = −∂
2S(q, q′, E)

∂q⊥i∂q′⊥k
. (28.45)

Putting everything together we obtain the jth trajectory contribution to
the semiclassical Green’s function✎ 28.17

page 503

Gj(q, q
′, E) =

1

i~(2πi~)(D−1)/2

1

|q̇q̇′|1/2
∣∣∣detDj

⊥

∣∣∣
1/2

e
i
~
Sj− iπ

2
mj , (28.46)

where the topological index mj = mj(q, q
′, E) now counts the number of

changes of sign of detDj
⊥ along the trajectory j which connects q′ to q at

energy E.

The endpoint velocities q̇, q̇′ also depend on (q, q′, E) and the trajectory
j.

28.3.3 Short trajectories

The stationary phase method cannot be used when t∗ is small, both be-
cause we cannot extend the integration in (27.16) to −∞, and because the
amplitude of K(q, q′, t) is divergent. In this case we have to evaluate the
integral involving the short time form of the exact quantum mechanical
propagator (28.26)

G0(q, q
′, E) =

1

i~

∫ ∞

0
dt
( m

2πi~t

)D/2
e

i
~
(

m(q−q′)2
2t

−V (q)t+Et) . (28.47)

By introducing a dimensionless variable τ = t
√

2m(E − V (q))/m|q − q′|,
the integral can be rewritten as

G0(q, q
′, E) =

m

i~2(2πi)D/2

(√
2m(E − V )

~|q − q′|

)D
2
−1 ∫ ∞

0

dτ

τD/2
e

i
2~
S0(q,q′,E)(τ+1/τ),
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where S0(q, q
′, E) =

√
2m(E − V )|q − q′| is the short distance form of the

action. Using the integral representation of the Hankel function of first
kind

H+
ν (z) = − i

π
e−iνπ/2

∫ ∞

0
e

1
2
iz(τ+1/τ)τ−ν−1dτ

we can write the short distance form of the Green’s function as

G0(q, q
′, E) ≈ − im

2~2

(√
2m(E − V )

2π~|q − q′|

)D−2
2

H+
D−2

2

(S0(q, q
′, E)/~) .(28.48)

Hankel functions are stabdard, and their the short wavelength asymptot-
ics is described in standard reference books. The short distance Green’s
function approximation is valid when S0(q, q

′, E) ≤ ~.

Commentary

Remark 28.1 Limit ~ → 0. The semiclassical limit “~ → 0” discussed in sect. 28

is a shorthand notation for the limit in which typical quantities like the actions R

or S in semiclassical expressions for the propagator or the Green’s function become

large compared to ~. In the world that we live in the quantity ~ is a fixed physical

constant whose value [28.8] is 1.054571596(82) 10−34 Js.

Remark 28.2 Madelung’s fluid dynamics. Already Schrödinger [28.3] noted that

ρ = ρ(q, t) := A2 = ψ∗ψ

plays the role of a density, and that the gradient of R may be interpreted as a
local semiclassical momentum, as the momentum density is

ψ(q, t)∗(−i~ ∂
∂q

)ψ(q, t) = −i~A∂A
∂q

+ ρ
∂R

∂q
.

A very different interpretation of (28.3–28.4) has been given by Madelung [28.2],
and then built upon by Bohm [28.6] and others [28.3, 28.7]. Keeping the ~ de-
pendent term in (28.3), the ordinary differential equations driving the flow (28.10)
have to be altered; if the Hamiltonian can be written as kinetic plus potential term
V (q) as in (26.2), the ~

2 term modifies the p equation of motion as

ṗi = − ∂

∂qi
(V (q) +Q(q, t)) , (28.49)
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where, for the example at hand,

Q(q, t) = − ~2

2m

1√
ρ

∂2

∂q2
√
ρ (28.50)

interpreted by Bohm [28.6] as the “quantum potential”. Madelung observed that
Hamilton’s equation for the momentum (28.49) can be rewritten as

∂vi

∂t
+

(
v · ∂

∂q

)
vi = − 1

m

∂V

∂qi
− 1

mρ

∂

∂qj
σij , (28.51)

where σij = ~
2ρ

4m
∂2 ln ρ
∂qi∂qj

is the “pressure” stress tensor, vi = pi/m, and ρ = A2

as defined [28.3] in sect. 28.1.3. We recall that the Eulerian ∂
∂t + ∂qi

∂t
∂

∂qi
is the

ordinary derivative of Lagrangian mechanics, that is d
dt . For comparison, the

Euler equation for classical hydrodynamics is

∂vi

∂t
+

(
v · ∂

∂q

)
vi = − 1

m

∂V

∂qi
− 1

mρ

∂

∂qj
(pδij) ,

where pδij is the pressure tensor.

The classical dynamics corresponding to quantum evolution is thus that of

an “hypothetical fluid” experiencing ~ and ρ dependent stresses. The “hydrody-

namic” interpretation of quantum mechanics has, however, not been very fruitful

in practice.

Remark 28.3 Path integrals. The semiclassical propagator (28.30) can also
be derived from Feynman’s path integral formalism. Dirac was the first to dis-
cover that in the short-time limit the quantum propagator (28.34) is exact. Feyn-
man noted in 1946 that one can construct the exact propagator of the quantum
Schrödinger equation by formally summing over all possible (and emphatically not
classical) paths from q′ to q .

Gutzwiller started from the path integral to rederive Van Vleck’s semiclassical

expression for the propagator; Van Vleck’s original derivation is very much in the

spirit of what has presented in this chapter. He did, however, not consider the

possibility of the formation of caustics or folds of Lagrangian manifolds and thus

did not include the topological phases in his semiclassical expression for the prop-

agator. Some 40 years later Gutzwiller [30.4] added the topological indices when

deriving the semiclassical propagator from Feynman’s path integral by stationary

phase conditions.

Résumé

The aim of the semiclassical or short-wavelength methods is to approximate
a solution of the Schrödinger equation with a semiclassical wave function

ψsc(q, t) =
∑

j

Aj(q, t)e
iRj (q,t)/~ ,
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accurate to the leading order in ~. Here the sum is over all classical tra-
jectories that connect the initial point q′ to the final point q in time t.
“Semi–” refers to ~, the quantum unit of phase in the exponent. The quan-
tum mechanics enters only through this atomic scale, in units of which the
variation of the phase across the classical potential is assumed to be large.
“–classical” refers to the rest - both the amplitudes Aj(q, t) and the phases
Rj(q, t) - which are determined by the classical Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time evolution operator
is given by the semiclassical propagator

Ksc(q, q
′, t) =

1

(2πi~)D/2

∑

j

∣∣∣∣det
∂p′

∂q

∣∣∣∣
1/2

j

e
i
~
Rj− iπ

2
mj ,

where the topological index mj(q, q
′, t) counts the number of the direction

reversal along the jth classical trajectory that connects q′ → q in time t.
Until very recently it was not possible to resolve quantum evolution on
quantum time scales (such as one revolution of electron around a nucleus)
- physical measurements are almost always done at time scales asymptot-
ically large compared to the intrinsic quantum time scale. Formally this
information is extracted by means of a Laplace transform of the propagator
which yields the energy dependent semiclassical Green’s function

Gsc(q, q
′, E) = G0(q, q

′, E) +
∑

j

Gj(q, q
′, E)

Gj(q, q
′, E) =

1

i~(2πi~)
(D−1)

2

∣∣∣∣
1

q̇q̇′
det

∂p′⊥
∂q⊥

∣∣∣∣
1/2

j

e
i
~
Sj− iπ

2
mj (28.52)

whereG0(q, q
′, E) is the contribution of short trajectories with S0(q, q

′, E) ≤
~, while the sum is over the contributions of long trajectories (28.46) going
from q′ to q with fixed energy E, with Sj(q, q

′, E) ≫ ~.
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Exercises

Exercise 28.1 Who ordered
√
π? Derive the Gaussian integral

1√
2π

∫ ∞

−∞
dx e−

x2

2a =
√
a , a > 0 .

assuming only that you know to integrate the exponential function e−x. Hint,
hint: x2 is a radius-squared of something. π is related to the area or circum-
ference of something.

Exercise 28.2 Dirac delta function, Gaussian representation. Con-
sider the Gaussian distribution function

δσ(z) =
1√

2πσ2
e−z

2/2σ2
.

Show that in σ → 0 limit this is the Dirac delta function

∫

M
dx δ(x) = 1 if 0 ∈ M , zero otherwise .

Exercise 28.3 D-dimensional Gaussian integrals. Show that the Gaussian
integral in D-dimensions is given by

1

(2π)d/2

∫
ddφe−

1
2
φT ·M−1·φ+φ·J = |detM | 12 e 1

2
JT ·M ·J , (28.53)

where M is a real positive definite [d× d] matrix, that is a matrix with strictly
positive eigenvalues. x, J are D-dimensional vectors, and xT is the transpose
of x.

Exercise 28.4 Stationary phase approximation in higher dimensions. All
semiclassical approximations are based on saddlepoint evaluations of integrals
of type

I =

∫
dDxA(x)eiΦ(x)/~ (28.54)

for small values of ~. Obtain the stationary phase estimate

I ≈
∑

n

A(xn)e
iΦ(xn)/~ (2πi~)D/2√

detD2Φ(xn)
,

where D2Φ(xn) denotes the second derivative matrix.
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Exercise 28.5 Schrödinger equation in the Madelung form. Verify
the decomposition of Schrödinger equation into real and imaginary parts, eqs.
(28.3) and (28.4).

Exercise 28.6 Transport equations. Write the wave-function in the
asymptotic form

ψ(q, t) = e
i
~

R(x,t)+ i
~

εt
∑

n≥0

(i~)nAn(x, t) .

Derive the transport equations for the An by substituting this into the Schrödinger

equation and then collecting terms by orders of ~. Notice that equation for Ȧn only

requires knowledge of An−1 and R.

Exercise 28.7 Easy examples of the Hamilton’s principal function. Cal-
culate R(q, q′, t) for

a) a D-dimensional free particle

b) a 3-dimensional particle in constant magnetic field

c) a 1-dimensional harmonic oscillator.

(Continuation: exercise 28.15.)

Exercise 28.8 1-dimensional harmonic oscillator. Take a 1-dimensional
harmonic oscillator U(q) = 1

2kq
2. Take a WKB wave function of form A(q, t) =

a(t) and R(q, t) = r(t)+ b(t)q+ c(t)q2, where r(t), a(t), b(t) and c(t) are time
dependent coefficients. Derive ordinary differential equations by using (28.3)
and (28.4) and solve them. (Continuation: exercise 28.11.)

Exercise 28.9 1-dimensional linear potential. Take a 1-dimensional
linear potential U(q) = −Fq. Take a WKB wave function of form A(q, t) =
a(t) and R(q, t) = r(t)+ b(t)q+ c(t)q2, where r(t), a(t), b(t) and c(t) are time
dependent coefficients. Derive and solve the ordinary differential equations
from (28.3) and (28.4).

Exercise 28.10 D-dimensional quadratic potentials. Generalize the above

method to general D-dimensional quadratic potentials.

Exercise 28.11 Time evolution of R. (Continuation of exercise 28.8).

Calculate the time evolution of R(q, 0) = a + bq + cq2 for a 1-dimensional harmonic

oscillator using (28.12) and (28.14).

Exercise 28.12 D-dimensional free particle propagator. Verify the re-
sults in sect. 28.2.2; show explicitely that (28.34), the semiclassical Van Vleck
propagator in D dimensions, solves the Schrödinger’s equation.
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Exercise 28.13 Propagator, charged particle in constant magnetic field.

Calculate the semiclassical propagator for a charged particle in constant magnetic field

in 3 dimensions. Verify that the semiclassical expression coincides with the exact

solution.

Exercise 28.14 1-dimensional harmonic oscillator propagator. Calculate

the semiclassical propagator for a 1-dimensional harmonic oscillator and verify that it

is identical to the exact quantum propagator.

Exercise 28.15 Free particle action. Calculate the energy dependent
action for a free particle, a charged particle in a constant magnetic field and
for the harmonic oscillator.

Exercise 28.16 Zero length orbits. Derive the classical trace (14.1)

rigorously and either add the t → 0+ zero length contribution to the trace formula,

or show that it vanishes. Send us a reprint of Phys. Rev. Lett. with the correct

derivation.

Exercise 28.17 Free particle semiclassical Green’s functions. Calculate the

semiclassical Green’s functions for the systems of exercise 28.15.
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Chapter 29

Noise

He who establishes his argument by noise and com-
mand shows that his reason is weak.

M. de Montaigne

(G. Vattay and P. Cvitanović)

This chapter (which reader can safely skip on the first reading) is
about noise, how it affects classical dynamics, and the ways it mimicks
quantum dynamics.

fast track:

chapter 30, p. 515

Why - in a study of deterministic and quantum chaos - start discussing
noise? First, in physical settings any dynamics takes place against a noisy
background, and whatever prediction we might have, we have to check its
robustness to noise. Second, as we show in this chapter, to the leading
order in noise strength the semiclassical Hamilton-Jacobi formalism carries
over to weakly stochastic flows in totto. As classical noisy dynamics is more
intuitive than quantum dynamics, this exercise helps demistify some of the
formal machinery of semiclassical quantization. Surprisingly, symplectic
structure emerges here not as a deep principle of mechanics, but an artifact
of the leading approximation to quantum/noisy dynamics, not respected
by higher order corrections. The same is true of semiclasical quantum
dynamics; higher corrections do not respect canonical invariance. Third,
the variational principle derived here will be refashioned into a powerful
tool for determining periodic orbits in chapter 31.

We start by deriving the continuity equation for purely deterministic,
noiseless flow, and then incorporate noise in stages: diffusion equation,
Langevin equation, Fokker-Planck equation, Hamilton-Jacobi formulation,
stochastic path integrals.

505



506 CHAPTER 29. NOISE

29.1 Deterministic transport

(E.A. Spiegel and P. Cvitanović)

Fluid dynamics is about physical flows of media with continuous densities.
On the other hand, the flows in state spaces of dynamical systems frequently
require more abstract tools. To sharpen our intuition about those, it is
helpful to outline the more tangible fluid dynamical vision.

Consider first the simplest property of a fluid flow called material in-
variant. A material invariant I(x) is a property attached to each point x
that is preserved by the flow, I(x) = I(f t(x)); for example, at this point a
green particle (more formally: a passive scalar) is embedded into the fluid.
As I(x) is invariant, its total time derivative vanishes, İ(x) = 0. Written in
terms of partial derivatives this is the conservation equation for the material
invariant

∂tI + v · ∂I = 0 . (29.1)

Let the density of representative points be ρ(x, t). The manner in which the
flow redistributes I(x) is governed by a partial differential equation whose
form is relatively simple because the representative points are neither cre-
ated nor destroyed. This conservation property is expressed in the integral
statement

∂t

∫

V
dx ρI = −

∫

∂V
dσ n̂iviρI ,

where V is an arbitrary volume in the state space M, ∂V is its surface, n̂
is its outward normal, and repeated indices are summed over throughout.
The divergence theorem turns the surface integral into a volume integral,

∫

V
[∂t(ρI) + ∂i(viρI)] dx = 0 ,

where ∂i is the partial derivative operator with respect to xi. Since the
integration is over an arbitrary volume, we conclude that

∂t(ρI) + ∂i(ρIvi) = 0 . (29.2)

The choice I ≡ 1 yields the continuity equation for the density:

∂tρ+ ∂i(ρvi) = 0 . (29.3)

We have used here the language of fluid mechanics to ease the visual-
ization, but, as we already saw in the discussion of infinitesimal action of
the Perron-Frobenius operator (9.24), continuity equation applies to any
deterministic state space flow.
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29.2 Brownian difussion

Consider tracer molecules, let us say green molecules, embedded in a denser
gas of transparent molecules. Assume that the density of tracer molecules
ρ compared to the background gas density is low, so we can neglect green-
green collisions. Each green molecule, jostled by frequent collisions with
the background gas, executes its own Brownian motion. The molecules are
neither created nor destroyed, so their number within an arbitrary volume
V changes with time only by the current density ji flow through its surface
∂V (with n̂ its outward normal):

∂t

∫

V
dx ρ = −

∫

∂V
dσ n̂iji . (29.4)

The divergence theorem turns this into the conservation law for tracer den-
sity:

∂tρ+ ∂iji = 0 . (29.5)

The tracer density ρ is defined as the average density of a “material parti-
cle”, averaged over a subvolume large enough to contain many green (and
still many more background) molecules, but small compared to the macro-
scopic observational scales. What is j? If the density is constant, on the
average as many molecules leave the material particle volume as they enter
it, so a reasonable phenomenological assumption is that the average current
density (not the individual particle current density ρvi in (29.3)) is driven
by the density gradient

ji = −D ∂ρ

∂xi
. (29.6)

This is the Fick law, with the diffusion constant D a phenomenological
parameter. For simplicity here we assume that D is a scalar; in general
D → Dij(x, t) is a space- and time-dependent tensor. Substituting this j
into (29.5) yields the diffusion equation

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t) . (29.7)

This linear equation has an exact solution in terms of an initial Dirac delta
density distribution, ρ(x, 0) = δ(x− x0),

ρ(x, t) =
1

(4πDt)d/2
e−

(x−x0)2

4Dt =
1

(4πDt)d/2
e−

ẋ2

4D
t , (29.8)
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in the spirit of the quantum free particle propagation of sect. 28.2.2. The
average distance covered in time t obeys the Einstein diffusion formula

〈
(x− x0)

2
〉
t
=

∫
dx ρ(x, t)(x − x0)

2 = 2Dt . (29.9)

29.3 Weak noise

The connection between path integration and Brown-
ian motion is so close that they are nearly indistin-
gushable. Unfortunately though, like a body and its
mirror image, the sum over paths for Brownian mo-
tion is a theory having substance, while its path in-
tegral image exists mainly in the eye of the beholder.

L. S. Schulman

So far we have considered tracer molecule dynamics which is purely Brown-
ian, with no deterministic “drift”. Consider next a deterministic flow
ẋ = v(x) perturbed by a stochastic term ξ(t),

ẋ = v(x) + ξ(t) . (29.10)

Assume that ξ(t)’s fluctuate around [ẋ−v(x)] with a Gaussian probability
density

p(ξ, δt) =

(
δt

4πD

)d/2
e−

ξ2

4D
δt , (29.11)

and are uncorrelated in time (white noise)

〈
ξ(t)ξ(t′)

〉
= 2Dδ(t − t′) . (29.12)

The normalization factors in (29.8) and (29.11) differ, as p(ξ, δt) is a proba-
bility density for velocity ξ, and ρ(x, t) is a probability density for position
x. The material particle now drifts along the trajectory x(t), so the veloc-
ity diffusion follows (29.8) for infinitesimal time δt only. As D → 0, the
distribution tends to the (noiseless, deterministic) Dirac delta function.

An example is the Langevin equation for a Brownian particle, in which
one replaces the Newton’s equation for force by two counter-balancing
forces: random accelerations ξ(t) which tend to smear out a particle tra-
jectory, and a damping term which drives the velocity to zero.

The phenomenological Fick law current (29.6) is now a sum of two
components, the material particle center-of-mass deterministic drift v(x)
and the weak noise term

ji = ρvi −D
∂ρ

∂xi
, (29.13)
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Substituting this j into (29.5) yields the Fokker-Planck equation

∂tρ+ ∂i(ρvi) = D∂2ρ. (29.14)

The left hand side, dρ/dt = ∂tρ+ ∂ · (ρv), is deterministic, with the conti-
nuity equation (29.3) recovered in the weak noise limit D → 0. The right
hand side describes the diffusive transport in or out of the material particle
volume. If the density is lower than in the immediate neighborhood, the
local curvature is positive, ∂2ρ > 0, and the density grows. Conversely, for
negative curvature diffusion lowers the local density, thus smoothing the
variability of ρ. Where is the density going globally?

If the system is bound, the probability density vanishes sufficiently fast
outside the central region, ρ(x, t) → 0 as |x| → ∞, and the total probability
is conserved

∫
dx ρ(x, t) = 1 .

Any initial density ρ(x, 0) is smoothed by diffusion and with time tends to
the invariant density

ρ0(x) = lim
t→∞

ρ(x, t) , (29.15)

an eigenfunction ρ(x, t) = est ρ0(x) of the time-independent Fokker-Planck
equation

(
∂ivi −D∂2 + sα

)
ρα = 0 , (29.16)

with vanishing eigenvalue s0 = 0. Provided the noiseless classical flow is
hyperbolic, in the vanishing noise limit the leading eigenfunction of the
Fokker-Planck equation tends to natural measure (9.16) of the correspond-
ing deterministic flow, the leading eigenvector of the Perron-Frobenius oper-
ator.

If the system is open, there is a continuous outflow of probability from
the region under study, the leading eigenvalue is contracting, s0 < 0, and
the density of the system tends to zero. In this case the leading eigenvalue
s0 of the time-independent Fokker-Planck equation (29.16) can be inter-
preted by saying that a finite density can be maintained by pumping back
probability into the system at a constant rate γ = −s0. The value of γ
for which any initial probability density converges to a finite equilibrium
density is called the escape rate. In the noiseless limit this coincides with
the deterministic escape rate (10.15).

We have introduced noise phenomenologically, and used the weak noise
assumption in retaining only the first derivative of ρ in formulating the
Fick law (29.6) and including noise additively in (29.13). A full theory of
stochastic ODEs is much subtler, but this will do for our purposes.

ChaosBook.org/version11.8, Aug 30 2006 noise - 18Augu2006



510 CHAPTER 29. NOISE

29.4 Weak noise approximation

In the spirit of the WKB approximation, we shall now study the evolution
of the probability distribution by rewriting it as

ρ(x, t) = e
1

2D
R(x,t)/2D . (29.17)

The time evolution of R is given by

∂tR+ v∂R + (∂R)2 = D∂v +D∂2R .

Consider now the weak noise limit and drop the terms proportional to D.
The remaining equation

∂tR+H(x, ∂R) = 0

is the Hamilton-Jacobi equation (28.5). The function R can be interpreted
as the Hamilton’s principal function, corresponding to the Hamiltonian

H(x, p) = p v(x) + p2/2 ,

with the Hamilton’s equations of motion

ẋ = ∂pH = v + p

ṗ = −∂xH = −AT p , (29.18)

where A is the stability matrix (4.3)

Aij(x) =
∂vi(x)

∂xj
.

The noise Lagrangian (28.13) is then

L(x, ẋ) = ẋ · p−H =
1

2
[ẋ− v(x)]2 . (29.19)

We have come the full circle - the Lagrangian is the exponent of our as-
sumed Gaussian distribution (29.11) for noise ξ2 = [ẋ−v(x)]2. What is the
meaning of this Hamiltonian, Lagrangian? Consider two points x0 and x.
Which noisy path is the most probable path that connects them in time t?
The probability of a given path P is given by the probability of the noise
sequence ξ(t) which generates the path. This probability is proportional to
the product of the noise probability functions (29.11) along the path, and
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the total probability for reaching x from x0 in time t is given by the sum
over all paths, or the stochastic path integral (Wiener integral)

P (x, x0, t) ∼
∑

P

∏

j

p(ξ(τj), δτj) =

∫ ∏

j

dξj

(
δτj
2πD

)d/2
e−

ξ(τj )2

2D
δτi

→ 1

Z

∑

P
exp

(
− 1

2D

∫ t

0
dτ ξ2(τ)

)
, (29.20)

where δτi = τi − τi, and the normalization constant is

1

Z
= lim

∏

i

(
δτi

2πD

)d/2
.

The most probable path is the one maximizing the integral inside the ex-
ponential. If we express the noise (29.10) as

ξ(t) = ẋ(t) − v(x(t)) ,

the probability is maximized by the variational principle

min

∫ t

0
dτ [ẋ(τ) − v(x(τ))]2 = min

∫ t

0
L(x(τ), ẋ(τ))dτ .

By the standard arguments, for a given x, x′ and t the the probability is
maximized by a solution of Hamilton’s equations (29.18) that connects the
two points x0 → x′ in time t.

Commentary

Remark 29.1 Literature. The theory of stochastic processes is a vast subject,

spanning over centuries and over disciplines ranging from pure mathematics to im-

pure finance. We enjoyed reading van Kampen classic [29.1], especially his railings

against those who blunder carelessly into nonlinear landscapes (with this chapter

we join the list of van Kampen’s sinners). A more specialized monograph like

Risken’s [29.2] will do just as well. The “Langevin equation” introduces noise and

damping only into the acceleration of Newton’s equations; here we are considering

more general stochastic differential equations in the weak noise limit. Onsager-

Machlup seminal paper [29.18] was the first to introduce a variational method - the

“principle of least dissipation” - based on the Lagrangian of form (29.19). This

paper deals only with a finite set of linearly damped thermodynamic variables.

Here the setting is much more general: we study fluctuations over a state space

varying velocity field v(x). Schulman’s monograph [29.11] contains a very readable

summary of Kac’s [29.12] exposition of Wiener’s integral over stochastic paths.
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Résumé

When a deterministic trajectory is smeared out under the influence of
Gaussian noise of strength D, the deterministic dynamics is recovered in
the weak noise limit D → 0. The effect of the noise can be taken into
account by adding noise corrections to the classical trace formula.
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Chapter 30

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanović)

We derive here the Gutzwiller trace formula and the semiclassical zeta
function, the central results of the semiclassical quantization of classically
chaotic systems. In chapter 32 we will rederive these formulas for the case
of scattering in open systems. Quintessential wave mechanics effects such
as creeping, diffraction and tunneling will be taken up in chapter 35.

30.1 Trace formula

Our next task is to evaluate the Green’s function trace (26.17) in the semi-
classical approximation. The trace

trGsc(E) =

∫
dDq Gsc(q, q, E) = trG0(E) +

∑

j

∫
dDq Gj(q, q, E)

receives contributions from “long” classical trajectories labeled by j which
start and end in q after finite time, and the “zero length” trajectories whose
lengths approach zero as q′ → q.

First we work out the contributions coming from the finite time return-
ing classical orbits, that is, trajectories that originate and end at a given
configuration point q. As we are identifying q with q′, taking of a trace
involves (still another!) stationary phase condition in the q′ → q limit,

∂Sj(q, q
′, E)

∂qi

∣∣∣∣
q′=q

+
∂Sj(q, q

′, E)

∂q′i

∣∣∣∣
q′=q

= 0 ,

meaning that the initial and final momenta (28.40) of contributing trajec-
tories should coincide

pi(q, q, E) − p′i(q, q, E) = 0 , q ∈ jth periodic orbit , (30.1)
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Figure 30.1: A returning trajectory in the
configuration space. The orbit is periodic in
the full phase space only if the initial and the
final momenta of a returning trajectory coincide
as well.

Figure 30.2: A romanticized sketch of
Sp(E) = S(q, q, E) =

∮
p(q, E)dq landscape

orbit. Unstable periodic orbits traverse isolated
ridges and saddles of the mountainous land-
scape of the action S(q‖, q⊥, E). Along a peri-
odic orbit Sp(E) is constant; in the transverse
directions it generically changes quadratically.

so the trace receives contributions only from those long classical trajectories
which are periodic in the full phase space.

For a periodic orbit the natural coordinate system is the intrinsic one,
with q‖ axis pointing in the q̇ direction along the orbit, and q⊥, the rest of
the coordinates transverse to q̇. The jth periodic orbit contribution to the
trace of the semiclassical Green’s function in the intrinsic coordinates is

trGj(E) =
1

i~(2π~)(d−1)/2

∮

j

dq‖
q̇

∫

j
dd−1q⊥|detDj

⊥|1/2e
i
~
Sj− iπ

2
mj ,

where the integration in q‖ goes from 0 to Lj , the geometric length of
small tube around the orbit in the configuration space. As always, in the
stationary phase approximation we worry only about the fast variations in
the phase Sj(q‖, q⊥, E), and assume that the density varies smoothly and is

well approximated by its value Dj
⊥(q‖, 0, E) on the classical trajectory, q⊥ =

0 . The topological index mj(q‖, q⊥, E) is an integer which does not depend
on the initial point q‖ and not change in the infinitesimal neighborhood of
an isolated periodic orbit, so we set mj(E) = mj(q‖, q⊥, E).

The transverse integration is again carried out by the stationary phase
method, with the phase stationary on the periodic orbit, q⊥ = 0. The result
of the transverse integration can depend only on the parallel coordinate

trGj(E) =
1

i~

∮
dq‖
q̇

∣∣∣∣∣
detD⊥j(q‖, 0, E)

detD′
⊥j(q‖, 0, E)

∣∣∣∣∣

1/2

e
i
~
Sj− iπ

2
mj ,

where the new determinant in the denominator, detD′
⊥j =

det

(
∂2S(q, q′, E)

∂q⊥i∂q⊥j
+
∂2S(q, q′, E)

∂q′⊥i∂q⊥j
+
∂2S(q, q′, E)

∂q⊥i∂q′⊥j
+
∂2S(q, q′, E)

∂q′⊥i∂q
′
⊥j

)
,
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is the determinant of the second derivative matrix coming from the sta-
tionary phase integral in transverse directions. Mercifully, this integral
also removes most of the 2π~ prefactors in (??).

The ratio detD⊥j/detD′
⊥j is here to enforce the periodic boundary

condition for the semiclassical Green’s function evaluated on a periodic
orbit. It can be given a meaning in terms of the monodromy matrix of the
periodic orbit by following observations

detD⊥ =

∥∥∥∥
∂p′⊥
∂q⊥

∥∥∥∥ =

∥∥∥∥
∂(q′⊥, p

′
⊥)

∂(q⊥, q′⊥)

∥∥∥∥

detD′
⊥ =

∥∥∥∥
∂p⊥
∂q⊥

− ∂p′⊥
∂q⊥

+
∂p⊥
∂q′⊥

− ∂p′⊥
∂q′⊥

∥∥∥∥ =

∥∥∥∥
∂(p⊥ − p′⊥, q⊥ − q′⊥),

∂(q⊥, q′⊥)

∥∥∥∥ .

Defining the 2(D − 1)-dimensional transverse vector x⊥ = (q⊥, p⊥) in the
full phase space we can express the ratio

detD′
⊥

detD⊥
=

∥∥∥∥
∂(p⊥ − p′⊥, q⊥ − q′⊥)

∂(q′⊥, p
′
⊥)

∥∥∥∥ =

∥∥∥∥
∂(x⊥ − x′⊥)

∂x′⊥

∥∥∥∥
= det (M− 1) , (30.2)

in terms of the monodromy matrix M for a surface of section transverse to
the orbit within the constant energy E = H(q, p) shell.

The classical periodic orbit action Sj(E) =
∮
p(q‖, E)dq‖ is an integral

around a loop defined by the periodic orbit, and does not depend on the
starting point q‖ along the orbit, see figure 30.2. The eigenvalues of the
monodromy matrix are also independent of where Mj is evaluated along
the orbit, so det (1 − Mj) can also be taken out of the the q‖ integral

trGj(E) =
1

i~

∑

j

1

|det (1 − Mj)|1/2
er(

i
~
Sj− iπ

2
mj)

∮
dq‖
q̇‖

.

Here we have assumed that Mj has no marginal eigenvalues. The deter-
minant of the monodromy matrix, the action Sp(E) =

∮
p(q‖, E)dq‖ and

the topological index are all classical invariants of the periodic orbit. The
integral in the parallel direction we now do exactly.

First we take into account the fact that any repeat of a periodic orbit
is also a periodic orbit. The action and the topological index are additive
along the trajectory, so for rth repeat they simply get multiplied by r. The
monodromy matrix of the rth repeat of a prime cycle p is (by the chain
rule for derivatives) Mr

p, where Mp is the prime cycle monodromy matrix.
Let us denote the time period of the prime cycle p, the single, shortest
traversal of a periodic orbit by Tp. The remaining integral can be carried
out by change of variables dt = dq‖/q̇(t)

∫ Lp

0

dq‖
q̇(t)

=

∫ Tp

0
dt = Tp .
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518 CHAPTER 30. SEMICLASSICAL QUANTIZATION

Note that the spatial integral corresponds to a single traversal. If you do
not see why this is so, rethink the derivation of the classical trace formula
(14.20) - that derivation takes only three pages of text. Regrettably, in the
quantum case we do not know of an honest derivation that takes less than
30 pages. The final result, the Gutzwiller trace formula

trGsc(E) = trG0(E)+
1

i~

∑

p

Tp

∞∑

r=1

1

|det (1 − Mr
p)|1/2

er(
i
~
Sp− iπ

2
mp) , (30.3)

an expression for the trace of the semiclassical Green’s function in terms of
periodic orbits, is beautiful in its simplicity and elegance.

The topological index mp(E) counts the number of changes of sign of
the matrix of second derivatives evaluated along the prime periodic orbit
p. By now we have gone through so many stationary phase approximations
that you have surely lost track of what the total mp(E) actually is. The
rule is this: The topological index of a closed curve in a 2D phase space
is the sum of the number of times the partial derivatives ∂pi

∂qi
for each dual

pair (qi, pi), i = 1, 2, . . . ,D (no sum on i) change their signs as one goes
once around the curve.

30.1.1 Average density of states

We still have to evaluate trG0(E), the contribution coming from the infin-
itesimal trajectories. The real part of trG0(E) is infinite in the q′ → q
limit, so it makes no sense to write it down explicitly here. However, the
imaginary part is finite, and plays an important role in the density of states
formula, which we derive next.

The semiclassical contribution to the density of states (26.17) is given
by the imaginary part of the Gutzwiller trace formula (30.3) multiplied
with −1/π. The contribution coming from the zero length trajectories is
the imaginary part of (28.48) for q′ → q integrated over the configuration
space

d0(E) = − 1

π

∫
dDq ImG0(q, q, E),

The resulting formula has a pretty interpretation; it estimates the num-
ber of quantum states that can be accomodated up to the energy E by
counting the available quantum cells in the phase space. This number is
given by the Weyl rule , as the ratio of the phase space volume bounded
by energy E divided by hD, the volume of a quantum cell,

Nsc(E) =
1

hD

∫
dDpdDqΘ(E −H(q, p)) . (30.4)
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where Θ(x) is the Heaviside function (26.22). Nsc(E) is an estimate of
the spectral staircase (26.21), so its derivative yields the average density of
states

d0(E) =
d

dE
Nsc(E) =

1

hD

∫
dDpdDq δ(E −H(q, p)) , (30.5)

precisely the semiclassical result (30.6). For Hamiltonians of type p2/2m+
V (q), the energy shell volume in (30.5) is a sphere of radius

√
2m(E − V (q)).

The surface of a d-dimensional sphere of radius r is πd/2rd−1/Γ(d/2), so the ✎ 30.3
page 528

average density of states is given by

d0(E) =
2m

~D2dπD2Γ(D/2)

∫

V (q)<E
dDq [2m(E − V (q))]D/2−1 , (30.6)

and

Nsc(E) =
1

hD
πD/2

Γ(1 +D/2)

∫

V (q)<E
dDq [2m(E − V (q))]D/2 . (30.7)

Physically this means that at a fixed energy the phase space can support
Nsc(E) distinct eigenfunctions; anything finer than the quantum cell hD

cannot be resolved, so the quantum phase space is effectively finite dimen-
sional. The average density of states is of a particularly simple form in one
spatial dimension ✎ 30.4

page 528

d0(E) =
T (E)

2π~
, (30.8)

where T (E) is the period of the periodic orbit of fixed energy E. In two
spatial dimensions the average density of states is

d0(E) =
mA(E)

2π~2
, (30.9)

where A(E) is the classically allowed area of configuration space for which
V (q) < E. ✎ 30.5

page 528
The semiclassical density of states is a sum of the average density

of states and the oscillation of the density of states around the average,
dsc(E) = d0(E) + dosc(E), where

dosc(E) =
1

π~

∑

p

Tp

∞∑

r=1

cos(rSp(E)/~ − rmpπ/2)

|det (1 − Mr
p)|1/2

(30.10)

follows from the trace formula (30.3).
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520 CHAPTER 30. SEMICLASSICAL QUANTIZATION

30.1.2 Regularization of the trace

The real part of the q′ → q zero length Green’s function (28.48) is ultraviolet
divergent in dimensions d > 1, and so is its formal trace (26.17). The short
distance behavior of the real part of the Green’s function can be extracted
from the real part of (28.48) by using the Bessel function expansion for
small z

Yν(z) ≈
{

− 1
πΓ(ν)

(
z
2

)−ν
for ν 6= 0

2
π (ln(z/2) + γ) for ν = 0

,

where γ = 0.577... is the Euler constant. The real part of the Green’s
function for short distance is dominated by the singular part

Gsing(|q − q′|, E) =





− m

2~2π
d
2
Γ((d− 2)/2) 1

|q−q′|d−2 for d 6= 2

m
2π~2 (ln(2m(E − V )|q − q′|/2~) + γ) for d = 2

.

The regularized Green’s function

Greg(q, q
′, E) = G(q, q′, E) −Gsing(|q − q′|, E)

is obtained by subtracting the q′ → q ultraviolet divergence. For the regu-
larized Green’s function the Gutzwiller trace formula is

trGreg(E) = −iπd0(E) +
1

i~

∑

p

Tp

∞∑

r=1

er(
i
~
Sp(E)− iπ

2
mp(E))

|det (1 −Mr
p)|1/2

. (30.11)

Now you stand where Gutzwiller stood in 1990. You hold the trace formula
in your hands. You have no clue how good is the ~ → 0 approximation,
how to take care of the sum over an infinity of periodic orbits, and whether
the formula converges at all.

30.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge where we need them,
at the individual energy eigenvalues. What to do? Much of the quantum
chaos literature responds to the challenge of wrestling the trace formulas
by replacing the delta functions in the density of states (26.18) by Gaus-
sians. But there is no need to do this - we can compute the eigenenergies
without any further ado by remembering that the smart way to determine
the eigenvalues of linear operators is by determining zeros of their spectral
determinants.
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Figure 30.3: A sketch of how spectral de-
terminants convert poles into zeros: The trace
shows 1/(E − En) type singularities at the
eigenenergies while the spectral determinant
goes smoothly through zeroes.

A sensible way to compute energy levels is to construct the spectral det-
erminant whose zeroes yield the eigenenergies, det (Ĥ − E)sc = 0. A first
guess might be that the spectral determinant is the Hadamard product of
form

det (Ĥ − E) =
∏

n

(E −En),

but this product is not well defined, since for fixed E we multiply larger
and larger numbers (E−En). This problem is dealt with by regularization,
discussed below in appendix 30.1.2. Here we offer an impressionistic sketch
of regularization.

The logarithmic derivative of det (Ĥ − E) is the (formal) trace of the
Green’s function

− d

dE
ln det (Ĥ − E) =

∑

n

1

E − En
= trG(E).

This quantity, not surprisingly, is divergent again. The relation, however,
opens a way to derive a convergent version of det (Ĥ − E)sc, by replacing
the trace with the regularized trace

− d

dE
ln det (Ĥ − E)sc = trGreg(E).

The regularized trace still has 1/(E−En) poles at the semiclassical eigenen-
ergies, poles which can be generated only if det (Ĥ − E)sc has a zero at
E = En, see figure 30.3. By integrating and exponentiating we obtain

det (Ĥ − E)sc = exp

(
−
∫ E

dE′ trGreg(E
′)

)

Now we can use (30.11) and integrate the terms coming from periodic orbits,
using the relation (28.17) between the action and the period of a periodic
orbit, dSp(E) = Tp(E)dE, and the relation (26.21) between the density
of states and the spectral staircase, dNsc(E) = d0(E)dE. We obtain the
semiclassical zeta function

det (Ĥ − E)sc = eiπNsc(E) exp

(
−
∑

p

∞∑

r=1

1

r

eir(Sp/~−mpπ/2)

|det (1 − Mr
p)|1/2

)
.(30.12)
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☞ chapter 18

We already know from the study of classical evolution operator spectra of
chapter 15 that this can be evaluated by means of cycle expansions. The
beauty of this formula is that everything on the right side – the cycle action
Sp, the topological index mp and monodromy matrix Mp determinant – is
intrinsic, coordinate-choice independent property of the cycle p.

30.3 One-dof systems

It has been a long trek, a stationary phase upon stationary phase. Let us
check whether the result makes sense even in the simplest case, for quantum
mechanics in one spatial dimension.

In one dimension the average density of states follows from the one-dof
form of the oscillating density (30.10) and of the average density (30.8)

d(E) =
Tp(E)

2π~
+
∑

r

Tp(E)

π~
cos(rSp(E)/~ − rmp(E)π/2). (30.13)

The classical particle oscillates in a single potential well with period Tp(E).
There is no monodromy matrix to evaluate, as in one dimension there is
only the parallel coordinate, and no transverse directions. The r repetition
sum in (30.13) can be rewritten by using the Fourier series expansion of a
delta spike train

∞∑

n=−∞
δ(x− n) =

∞∑

k=−∞
ei2πkx = 1 +

∞∑

k=1

2 cos(2πkx).

We obtain

d(E) =
Tp(E)

2π~

∑

n

δ(Sp(E)/2π~ −mp(E)/4 − n). (30.14)

This expression can be simplified by using the relation (28.17) between Tp
and Sp, and the identity (9.7) δ(x − x∗) = |f ′(x)|δ(f(x)), where x∗ is the
only zero of the function f(x∗) = 0 in the interval under consideration. We
obtain

d(E) =
∑

n

δ(E − En),

where the energies En are the zeroes of the arguments of delta functions in
(30.14)

Sp(En)/2π~ = n−mp(E)/4 ,
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where mp(E) = mp = 2 for smoth potential at both turning points, and
mp(E) = mp = 4 for two billiard (infinite potential) walls. These are pre-
cisely the Bohr-Sommerfeld quantized energies En, defined by the condition

∮
p(q,En)dq = h

(
n− mp

4

)
. (30.15)

In this way the trace formula recovers the well known 1-dof quantization
rule. In one dimension, the average of states can be expressed from the
quantization condition. At E = En the exact number of states is n, while
the average number of states is n − 1/2 since the staircase function N(E)
has a unit jump in this point

Nsc(E) = n− 1/2 = Sp(E)/2π~ −mp(E)/4 − 1/2. (30.16)

The 1-dof spectral determinant follows from (30.12) by dropping the
monodromy matrix part and using (30.16)

det (Ĥ − E)sc = exp

(
− i

2~
Sp +

iπ

2
mp

)
exp

(
−
∑

r

1

r
e

i
~
rSp− iπ

2
rmp

)
.(30.17)

Summation yields a logarithm by
∑

r t
r/r = − ln(1 − t) and we get

det (Ĥ − E)sc = e−
i

2~
Sp+

imp
4

+ iπ
2 (1 − e

i
~
Sp−imp

2 )

= 2 sin (Sp(E)/~ −mp(E)/4) .

So in one dimension, where there is only one periodic orbit for a given energy
E, nothing is gained by going from the trace formula to the spectral deter-
minant. The spectral determinant is a real function for real energies, and
its zeros are again the Bohr-Sommerfeld quantized eigenenergies (30.15).

30.4 Two-dof systems

For flows in two configuration dimensions the monodromy matrix Mp has
two eigenvalues Λp and 1/Λp, as explained in sect. 5.2. Isolated periodic
orbits can be elliptic or hyperbolic. Here we discuss only the hyperbolic
case, when the eigenvalues are real and their absolute value is not equal to
one. The determinant appearing in the trace formulas can be written in
terms of the expanding eigenvalue as

|det (1 − Mr
p)|1/2 = |Λrp|1/2

(
1 − 1/Λrp

)
,
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and its inverse can be expanded as a geometric series

1

|det (1 − Mr
p)|1/2

=

∞∑

k=0

1

|Λrp|1/2Λkrp
.

With the 2-dof expression for the average density of states (30.9) the
spectral determinant becomes

det (Ĥ −E)sc = ei
mAE
2~2 exp

(
−
∑

p

∞∑

r=1

∞∑

k=0

eir(Sp/~−mpπ/2)

r|Λrp|1/2Λkrp

)

= ei
mAE
2~2

∏

p

∞∏

k=0

(
1 − e

i
~
Sp− iπ

2
mp

|Λp|1/2Λkp

)
. (30.18)

Commentary

Remark 30.1 Zeta functions. For “zeta function” nomenclature, see remark 15.4

on page 255.

Résumé

Spectral determinants and dynamical zeta functions arise both in classical
and quantum mechanics because in both the dynamical evolution can be
described by the action of linear evolution operators on infinite-dimensional
vector spaces. In quantum mechanics the periodic orbit theory arose from
studies of semi-conductors, and the unstable periodic orbits have been mea-
sured in experiments on the very paradigm of Bohr’s atom, the hydrogen
atom, this time in strong external fields.

In practice, most “quantum chaos” calculations take the stationary
phase approximation to quantum mechanics (the Gutzwiller trace formula,
possibly improved by including tunneling periodic trajectories, diffraction
corrections, etc.) as the point of departure. Once the stationary phase
approximation is made, what follows is classical in the sense that all quan-
tities used in periodic orbit calculations - actions, stabilities, geometrical
phases - are classical quantities. The problem is then to understand and
control the convergence of classical periodic orbit formulas.

While various periodic orbit formulas are formally equivalent, practice
shows that some are preferable to others. Three classes of periodic orbit
formulas are frequently used:

Trace formulas. The trace of the semiclassical Green’s function

trGsc(E) =

∫
dq Gsc(q, q, E)
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is given by a sum over the periodic orbits (30.11). While easiest to derive,
in calculations the trace formulas are inconvenient for anything other than
the leading eigenvalue estimates, as they tend to be divergent in the region
of physical interest. In classical dynamics trace formulas hide under a
variety of appelations such as the f−α or multifractal formalism; in quantum
mechanics they are known as the Gutzwiller trace formulas.

Zeros of Ruelle or dynamical zeta functions

1/ζ(s) =
∏

p

(1 − tp), tp =
1

|Λp|1/2
e

i
~
Sp−iπmp/2

yield, in combination with cycle expansions, the semiclassical estimates of
quantum resonances. For hyperbolic systems the dynamical zeta functions
have good convergence and are a useful tool for determination of classical
and quantum mechanical averages.

Spectral determinants, Selberg-type zeta functions, Fredholm determi-
nants, functional determinants are the natural objects for spectral calcula-
tions, with convergence better than for dynamical zeta functions, but with
less transparent cycle expansions. The 2-dof semiclassical spectral deter-
minant (30.18)

det (Ĥ − E)sc = eiπNsc(E)
∏

p

∞∏

k=0

(
1 − eiSp/~−iπmp/2

|Λp|1/2Λkp

)

is a typical example. Most periodic orbit calculations are based on cycle
expansions of such determinants.

As we have assumed repeatedly during the derivation of the trace for-
mula that the periodic orbits are isolated, and do not form families (as
is the case for integrable systems or in KAM tori of systems with mixed
phase space), the formulas discussed so far are valid only for hyperbolic
and elliptic periodic orbits.

For deterministic dynamical flows and number theory, spectral deter-
minants and zeta functions are exact. The quantum-mechanical ones, de-
rived by the Gutzwiller approach, are at best only the stationary phase
approximations to the exact quantum spectral determinants, and for quan-
tum mechanics an important conceptual problem arises already at the level
of derivation of the semiclassical formulas; how accurate are they, and can
the periodic orbit theory be systematically improved?
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Exercises

Exercise 30.1 Monodromy matrix from second variations of the action.
Show that

D⊥j/D
′
⊥j = (1− M) (30.19)

Exercise 30.2 Jacobi gymnastics. Prove that the ratio of determinants
in (N.43) can be expressed as

detD′
⊥j(q‖, 0, E)

detD⊥j(q‖, 0, E)
= det

(
I − Mqq −Mqp

−Mpq I − Mpp

)
= det (1−Mj) , (30.20)

where Mj is the monodromy matrix of the periodic orbit.

Exercise 30.3 Volume of d-dimensional sphere. Show that the volume of a

d-dimensional sphere of radius r equals πd/2rd/Γ(1 + d/2). Show that Γ(1 + d/2) =

Γ(d/2)d/2.

Exercise 30.4 Average density of states in 1 dimension. Show that
in one dimension the average density of states is given by (30.8)

d̄(E) =
T (E)

2π~
,

where T (E) is the time period of the 1-dimensional motion and show that

N̄(E) =
S(E)

2π~
, (30.21)

where S(E) =
∮
p(q,E) dq is the action of the orbit.

Exercise 30.5 Average density of states in 2 dimensions. Show that in 2
dimensions the average density of states is given by (30.9)

d̄(E) =
mA(E)

2π~2
,

where A(E) is the classically allowed area of configuration space for which U(q) < E.
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Chapter 31

Relaxation for cyclists

Cycles, that is, solutions of the periodic orbit condition (17.1)

f t+T(x) = f t(x) , T > 0 (31.1)

are prerequisite to chapters 14 and 15 evaluation of spectra of classical
evolution operators, and, as we shall see in chapter 30, the semiclassical
approximations to quantum evolution operators. Chapter 17 offered an
introductory, hands-on guide to extraction of periodic orbits by means of
the Newton-Raphson method. Here we take a very different tack, draw-
ing inspiration from variational principles of classical mechanics, and path
integrals of quantum mechanics.

In sect. 17.2.1 we converted orbits unstable forward in time into orbits
stable backwards in time. Indeed, all methods for finding unstable cycles
are based on the idea of constructing a new dynamical system such that
(i) the position of the cycle is the same for the original system and the
transformed one, (ii) the unstable cycle in the original system is a stable
cycle of the transformed system.

The Newton-Raphson method for determining a fixed point x∗ for a
map x′ = f(x) is an example. The method replaces iteration of f(x) by
iteration of the Newton-Raphson map (17.5)

x′i = gi(x) = xi −
(

1

M(x) − 1

)

ij

(f(x) − x)j . (31.2)

A fixed point x∗ for a map f(x) is also a fixed point of g(x), indeed a super-
stable fixed point since ∂gi(x∗)/∂xj = 0. This makes the convergence to
the fixed point super-exponential.

We also learned in chapter 17 that methods that start with initial
guesses for a number of points along a cycle are considerably more robust
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and safer than searches based on direct solution of the fixed-point condition
(31.1). The relaxation (or variational) methods that we shall now describe
take this multipoint approach to its logical extreme, and start by a guess
of not a few points along a periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the desired periodic
orbit looks like globally, and then use variational methods to drive the
initial guess toward the exact solution. Sacrificing computer memory for
robustness of the method, we replace a guess that a point is on the periodic
orbit by a guess of the entire orbit. And, sacrificing speed for safety, in
sect. 31.1 we replace the Newton-Raphson iteration by a fictitious time flow
that minimizes a cost function computed as deviation of the approximate
flow from the true flow along a loop approximation to a periodic orbit.

If you have some insight into the topology of the flow and its symbolic
dynamics, or have already found a set of short cycles, you might be able to
construct an initial approximation to a longer cycle p as a sequence of N

points (x̃
(0)
1 , x̃

(0)
2 , · · · , x̃(0)

N ) with the periodic boundary condition x̃N+1 = x̃1.
Suppose you have an iterative method for improving your guess; after k
iterations the cost function

F 2(x̃(k)) =
N∑

i

(
x̃

(k)
i+1 − f(x̃

(k)
i )
)2

(31.3)

or some other more cleverly constructed function (for classical mechanics
- action) is a measure of the deviation of the kth approximate cycle from
the true cycle. This observation motivates variational approaches to deter-
mining cycles.

We give here three examples of such methods, two for maps, and one for
billiards. In sect. 31.1 we start out by converting a problem of finding an
unstable fixed point of a map into a problem of constructing a differential
flow for which the desired fixed point is an attracting equilibrium point.
Solving differential equations can be time intensive, so in sect. 31.2 we
replace such flows by discrete iterations. In sect. 31.3 we show that for
2D-dimensional billiard flows variation of D coordinates (where D is the
number of Hamiltonian degrees of freedom) suffices to determine cycles in
the full 2D-dimensional phase space.

31.1 Fictitious time relaxation

(O. Biham, C. Chandre and P. Cvitanović)

The relaxation (or gradient) algorithm for finding cycles is based on the
observation that a trajectory of a map such as the Hénon map (3.15),

xi+1 = 1 − ax2
i + byi

yi+1 = xi , (31.4)
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Figure 31.1: “Potential” Vi(x) (31.7) for a
typical point along an inital guess trajectory.
For σi = +1 the flow is toward the local maxi-
mum of Vi(x), and for σi = −1 toward the local
minimum. A large deviation of xi’s is needed
to destabilize a trajectory passing through such
local extremum of Vi(x), hence the basin of at-
traction is expected to be large. −1 0 1 xi

−1

0

1

Vi(x)

is a stationary solution of the relaxation dynamics defined by the flow

dxi
dτ

= vi, i = 1, . . . , n (31.5)

for any vector field vi = vi(x) which vanishes on the trajectory. Here τ is a
“fictitious time” variable, unrelated to the dynamical time (in this example,
the discrete time of map iteration). As the simplest example, take vi to be
the deviation of an approximate trajectory from the exact 2-step recurrence
form of the Hénon map (3.16)

vi = xi+1 − 1 + ax2
i − bxi−1. (31.6)

For fixed xi−1, xi+1 there are two values of xi satisfying vi = 0. These
solutions are the two extremal points of a local “potential” function (no
sum on i)

vi =
∂

∂xi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1) +

a

3
x3
i . (31.7)

Assuming that the two extremal points are real, one is a local minimum
of Vi(x) and the other is a local maximum. Now here is the idea; replace
(31.5) by

dxi
dτ

= σivi, i = 1, . . . , n, (31.8)

where σi = ±1.

The modified flow will be in the direction of the extremal point given
by the local maximum of Vi(x) if σi = +1 is chosen, or in the direction of
the one corresponding to the local minimum if we take σi = −1. This is
not quite what happens in solving (31.8) - all xi and Vi(x) change at each
integration step - but this is the observation that motivates the method.
The differential equations (31.8) then drive an approximate initial guess
toward the exact trajectory. A sketch of the landscape in which xi converges
towards the proper fixed point is given in figure 31.1. As the “potential”
function (31.7) is not bounded for a large |xi|, the flow diverges for initial
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Figure 31.2: The repeller for the Hénon map
at a = 1.8, b = 0.3 . −1.5 −0.5 0.5 1.5

−1.5

−0.5

0.5

1.5

guesses which are too distant from the true trajectory. However, the basin
of attraction of initial guesses that converge to a given cycle is nevertheless
very large, with the spread in acceptable initial guesses for figure 31.1 of
order 1, in contrast to the exponential precision required of initial guesses
by the Newton-Raphson method.

Example 31.1 Hénon map cycles. Our aim in this calculation is to find all periodic
orbits of period n for the Hénon map (31.4), in principle at most 2n orbits. We start by
choosing an initial guess trajectory (x1, x2, · · · , xn) and impose the periodic boundary
condition xn+1 = x1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is xi = 0 for all i. In order to find a given orbit one sets
σi = −1 for all iterates i which are local minima of Vi(x), and σi = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such
as the table 11.1. The real issue for all searches for periodic orbits, this one included,
is how large is the basin of attraction of the desired periodic orbit? There is no easy
answer to this question, but empirically it turns out that for the Hénon map such initial
guess almost always converges to the desired trajectory as long as the initial |x| is not
too large compared to 1/

√
a. Figure 31.1 gives some indication of a typical basin of

attraction of the method (see also figure 31.3).

The calculation is carried out by solving the set of n ordinary differential
equations (31.8) using a simple Runge-Kutta method with a relatively large step size
(h = 0.1) until |v| becomes smaller than a given value ε (in a typical calculation
ε ∼ 10−7). Empirically, in the case that an orbit corresponding to the desired itinerary
does not exist, the initial guess escapes to infinity since the “potential” Vi(x) grows
without bound.✎ 31.3

page 544 Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 1000. All prime cycles up to period 10 for the Hénon
map, a = 1.4 and b = 0.3, are listed in table 31.1. The number of unstable periodic
orbits for periods n ≤ 28 is given in table 31.2. Comparing this with the list of all
possible 2-symbol alphabet prime cycles, table 11.1, we see that the pruning is quite
extensive, with the number of cycle points of period n growing as e0.4645·n = (1.592)n

rather than as 2n .

As another example we plot all unstable periodic points up to period n = 14 for
a = 1.8, b = 0.3 in figure 31.2. Comparing this repelling set with the strange attractor
for the Hénon’s parameters figure 3.3, we note the existence of gaps in the set, cut out
by the preimages of the escaping regions.

☞ remark 31.2

In practice, the relaxation flow (31.8) finds (almost) all periodic orbits which
exist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.
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n p ( yp , xp ) λp

1 0 (-1.13135447 , -1.13135447) 1.18167262
1 (0.63135447 , 0.63135447) 0.65427061

2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511

Table 31.1: All prime cycles up to period 10 for the Hénon map, a = 1.4 and b = 0.3.
The columns list the period np, the itinerary (defined in remark 31.4), a cycle point
(yp, xp), and the cycle Lyapunov exponent λp = ln |Λp|/np. While most of the cycles
have λp ≈ 0.5, several significantly do not. The 0 cycle point is very unstable, isolated
and transient fixed point, with no other cycles returning close to it. At period 13 one
finds a pair of cycles with exceptionally low Lyapunov exponents. The cycles are close
for most of the trajectory, differing only in the one symbol corresponding to two cycle
points straddle the (partition) fold of the attractor. As the system is not hyperbolic,
there is no known lower bound on cycle Lyapunov exponents, and the Hénon’s strange
“attractor” might some day turn out to be nothing but a transient on the way to a
periodic attractor of some long period.
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n Mn Nn

11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn

17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn

23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520

Table 31.2: The number of unstable periodic orbits of the Hénon map for a = 1.4,
b = 0.3, of all periods n ≤ 28. Mn is the number of prime cycles of length n, and Nn

is the total number of periodic points of period n (including repeats of shorter prime
cycles).

Figure 31.3: Typical trajectories of the vector
field (31.9) for the stabilization of a hyperbolic
fixed point of the Ikeda map (31.11) located
at (x, y) ≈ (0.53275, 0.24689). The circle in-
dicates the position of the fixed point. Note
that the basin of attraction of this fixed point
is large, larger than the entire Ikeda attractor. 0 1

−2

0

x

y

x
*
 

The idea of the relaxation algorithm illustrated by the above Hénon
map example is that instead of searching for an unstable periodic orbit of
a map, one searches for a stable attractor of a vector field. More generally,
consider a d-dimensional map x′ = f(x) with a hyperbolic fixed point x∗.
Any fixed point x∗ is by construction an equilibrium point of the fictitious
time flow

dx

dτ
= f(x) − x. (31.9)

If all eigenvalues of the fundamental matrix J(x∗) = Df(x∗) have real parts
smaller than unity, then x∗ is a stable equilibrium point of the flow.

If some of the eigenvalues have real parts larger than unity, then one
needs to modify the vector field so that the corresponding directions of the
flow are turned into stable directions in a neighborhood of the fixed point.
In the spirit of (31.8), modify the flow by

dx

dτ
= C (f(x) − x) , (31.10)

where C is a [d×d] invertible matrix. The aim is to turn x∗ into a stable
equilibrium point of the flow by an appropriate choice of C. It can be shown

☞ appendix G.2
that a set of permutation / reflection matrices with one and only one non-
vanishing entry ±1 per row or column (for d-dimensional systems, there
are d!2d such matrices) suffices to stabilize any fixed point. In practice, one
chooses a particular matrix C, and the flow is integrated. For each choice
of C, one or more hyperbolic fixed points of the map may turn into stable
equilibria of the flow.
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Figure 31.4: Typical trajectories of the vector field (31.10) for a hyperbolic fixed
point (x, y) ≈ (−0.13529,−0.37559) of f3, where f is the Ikeda map (31.11). The
circle indicates the position of the fixed point. For the vector field corresponding to

(a) C = 1, x∗ is a hyperbolic equilibrium point of the flow, while for (b) C =
(

1
0

0
−1

)
,

x∗ is an attracting equilibrium point.

Example 31.2 Ikeda map: We illustrate the method with the determination of
the periodic orbits of the Ikeda map:

x′ = 1 + a(x cosw − y sinw)

y′ = a(x sinw + y cosw) (31.11)

where w = b− c

1 + x2 + y2
,

with a = 0.9, b = 0.4, c = 6. The fixed point x∗ is located at (x, y) ≈ (0.53275, 0.24689),
with eigenvalues of the fundamental matrix (Λ1,Λ2) ≈ (−2.3897,−0.3389), so the flow
is already stabilized with C = 1. Figure 31.3 depicts the flow of the vector field around
the fixed point x∗.

In order to determine x∗, one needs to integrate the vector field (31.9) forward
in time (the convergence is exponential in time), using a fourth order Runge-Kutta or
any other integration routine.

In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial
C matrices, different from the identity. Consider for example the hyperbolic fixed point
(x, y) ≈ (−0.13529,−0.37559) of the third iterate f3 of the Ikeda map. The flow of
the vector field for C = 1, Figure 31.4(a), indicates a hyperbolic equilibrium point,

while for C =
(

1
0

0
−1

)
the flow of the vector field, figure 31.4(b) indicates that x∗ is

an attracting equilibrium point, reached at exponential speed by integration forward in
time.

The generalization from searches for fixed points to searches for cycles is
straightforward. In order to determine a prime cycle x = (x1, x2, . . . , xn) of
a d-dimensional map x′ = f(x), we modify the multipoint shooting method
of sect. 17.4.1, and consider the nd-dimensional vector field

dx

dτ
= C (f(x) − x) , (31.12)

where f(x) = (f(xn), f(x1), f(x2), . . . , f(xn−1)), and C is an invertible
[nd×nd] matrix. For the Hénon map, it is sufficient to consider a set
of 2n diagonal matrices with eigenvalues ±1. Risking a bit of confusion,
we denote by x, f(x) both the d-dimensional vectors in (31.10), and nd-
dimensional vectors in (31.12), as the structure of the equations is the same.
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31.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteration (31.2) is that it requires
very precise initial guesses. For example, the nth iterate of a unimodal
map has as many as 2n periodic points crammed into the unit interval, so
determination of all cycles of length n requires that the initial guess for
each one of them has to be accurate to roughly 2−n. This is not much of a
problem for 1-dimensional maps, but making a good initial guess for where
a cycle might lie in a d-dimensional phase space can be a challenge.

Emboldened by the success of the cyclist relaxation trick (31.8) of man-
ually turning instability into stability by a sign change, we now (i) abandon
the Newton-Raphson method altogether, (ii) abandon the continuous ficti-
tious time flow (31.9) with its time-consuming integration, replacing it by
a map g with a larger basin of attraction (not restricted to a linear neigh-
borhood of the fixed point). The idea is to construct a very simple map g,
a linear transformation of the original f , for which the fixed point is stable.
We replace the fundamental matrix prefactor in (31.2) (whose inversion can
be time-consuming) by a constant matrix prefactor

x′ = g(x) = x+ ∆τC(f(x)− x), (31.13)

where ∆τ is a positive real number, and C is a [d×d] permutation and
reflection matrix with one and only one non-vanishing entry ±1 per row or
column. A fixed point of f is also a fixed point of g. Since C is invertible,
the inverse is also true.

This construction is motivated by the observation that for small ∆τ →
dτ the map (31.13) is the Euler method for integrating the modified flow
(31.10), with the integration step ∆τ .

The argument why a suitable choice of matrix C can lead to the stabi-
lization of an unstable periodic orbit is similar to the one used to motivate
the construction of the modified vector field in sect. 31.1. Indeed, the flow
(31.8) is the simplest example of this method, with the infinitesimal fic-
titious time increment ∆τ → dτ , the infinitesimal coordinate correction
(x− x′) → dxi, and the [n×n] diagonal matrix C → σi = ±1.

For a given fixed point of f(x) we again chose a C such that the flow in
the expanding directions of M(x∗) is turned into a contracting flow. The
aim is to stabilize x∗ by a suitable choice of C. In the case where the map
has multiple fixed points, the set of fixed points is obtained by changing the
matrix C (in general different for each unstable fixed point) and varying
initial conditions for the map g. For example, for 2-dimensional dissipative

☞ remark 31.3
maps it can be shown that the 3 matrices

C ∈
{(

1

0

0

1

)
,

(−1

0

0

1

)
,

(
1

0

0

−1

)}

relax - 29mar2004 ChaosBook.org/version11.8, Aug 30 2006



31.2. DISCRETE ITERATION RELAXATION METHOD 537

☞ appendix G.2

suffice to stabilize all kinds of possible hyperbolic fixed points.

If ∆τ is chosen sufficiently small, the magnitude of the eigenvalues of
the fixed point x∗ in the transformed system are smaller than one, and
one has a stable fixed point. However, ∆τ should not be chosen too small:
Since the convergence is geometrical with a ratio 1−α∆τ (where the value
of constant α depends on the stability of the fixed point in the original
system), small ∆τ can slow down the speed of convergence. The critical
value of ∆τ , which just suffices to make the fixed point stable, can be read
off from the quadratic equations relating the stability coefficients of the
original system and those of the transformed system. In practice, one can
find the optimal ∆τ by iterating the dynamical system stabilized with a
given C and ∆τ . In general, all starting points converge on the attractor
provided ∆τ is small enough. If this is not the case, the trajectory either
diverges (if ∆τ is far too large) or it oscillates in a small section of the
phase space (if ∆τ is close to its stabilizing value).

The search for the fixed points is now straightforward: A starting point
chosen in the global neighborhood of the fixed point iterated with the trans-
formed dynamical system g converges to the fixed point due to its stability.
Numerical investigations show that the domain of attraction of a stabilized
fixed point is a rather extended connected area, by no means confined to
a linear neighborhood. At times the basin of attraction encompasses the
complete phase space of the attractor, so one can be sure to be within the
attracting basin of a fixed point regardless of where on the on the attractor
on picks the initial condition.

The step size |g(x) − x| decreases exponentially when the trajectory
approaches the fixed point. To get the coordinates of the fixed points with
a high precision, one therefore needs a large number of iterations for the
trajectory which is already in the linear neighborhood of the fixed point.
To speed up the convergence of the final part of the approach to a fixed
point we recommend a combination of the above approach with the Newton-
Raphson method (31.2).

The fixed points of the nth iterate fn are cycle points of a cycle of
period n. If we consider the map

x′ = g(x) = x+ ∆τC(fn(x) − x) , (31.14)

the iterates of g converge to a fixed point provided that ∆τ is sufficiently
small and C is a [d×d] constant matrix chosen such that it stabilizes the flow.
As n grows, ∆τ has to be chosen smaller and smaller. In the case of the
Ikeda map example 31.2 the method works well for n ≤ 20. As in (31.12),
the multipoint shooting method is the method of preference for determining
longer cycles. Consider x = (x1, x2, . . . , xn) and the nd-dimensional map

x′ = f(x) = (f(xn), f(x1), . . . , f(xn−1)) .
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Determining cycles with period n for the d-dimensional f is equivalent to
determining fixed points of the multipoint dn-dimensional f . The idea is
to construct a matrix C such that the fixed point of f becomes stable for
the map:

x′ = x+ ∆τC(f(x) − x),

where C is now a [nd×nd] permutation/reflection matrix with only one
non-zero matrix element ±1 per row or column. For any given matrix C, a
certain fraction of the cycles becomes stable and can be found by iterating
the transformed map which is now a nd dimensional map.

From a practical point of view, the main advantage of this method com-
pared to the Newton-Raphson method is twofold: (i) the stability matrix
of the flow need not be computed, so there is no large matrix to invert,
simplifying considerably the implementation, and (ii) empirical basins of
attractions for individual C are much larger than for the Newton-Raphson
method. The price is a reduction in the speed of convergence.

31.3 Least action method

(P. Dahlqvist)

The methods of sects. 31.1 and 31.2 are somewhat ad hoc, as for general
flows and iterated maps there is no fundamental principle to guide us in
chosing the cost function, such as (31.3), to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maupertuis
least action principle. You yawn your way through it in every mechanics
course - Maupertuis believed that the principle provided a proof of the
existence of God - but as we shall now see, it is a very hands-on numerical
method for finding cycles.

Indeed, the simplest and numerically most robust method for deter-
mining cycles of planar billiards is given by the principle of least action, or
equivalently, by extremizing the length of an approximate orbit that visits
a given sequence of disks. In contrast to the multipoint shooting method
of sect. 17.4.1 which requires variation of 2N phase-space points, extrem-
ization of a cycle length requires variation of only N bounce positions si.

The problem is to find the extremum values of cycle length L(s) where
s = (s1, . . . , sN ), that is find the roots of ∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑

j

∂i∂jL(s0)δsj + . . .

✎ 31.1
page 544
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p Λp Tp

0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×102 8.316529485168
001 -1.240542557041×103 12.321746616182
011 1.449545074956×103 12.580807741032
0001 -1.229570686196×104 16.322276474382
0011 1.445997591902×104 16.585242906081
0111 -1.707901900894×104 16.849071859224
00001 -1.217338387051×105 20.322330025739
00011 1.432820951544×105 20.585689671758
00101 1.539257907420×105 20.638238386018
00111 -1.704107155425×105 20.853571517227
01011 -1.799019479426×105 20.897369388186
01111 2.010247347433×105 21.116994322373
000001 -1.205062923819×106 24.322335435738
000011 1.418521622814×106 24.585734788507
000101 1.525597448217×106 24.638760250323
000111 -1.688624934257×106 24.854025100071
001011 -1.796354939785×106 24.902167001066
001101 -1.796354939785×106 24.902167001066
001111 2.005733106218×106 25.121488488111
010111 2.119615015369×106 25.165628236279
011111 -2.366378254801×106 25.384945785676

Table 31.3: All prime cycles up to 6 bounces for the 3-disk fundamental domain,
center-to-center separation R = 6, disk radius a = 1. The columns list the cycle
itinerary, its expanding eigenvalue Λp, and the length of the orbit (if the velocity=1
this is the same as its period or the action). Note that the two 6 cycles 001011 and
001101 are degenerate due to the time reversal symmetry, but are not related by any
discrete spatial symmetry. (Computed by P.E. Rosenqvist.)

and use Mij(s0) = ∂i∂jL(s0) in the N -dimensional Newton-Raphson iter-
ation scheme of sect. 17.2.2

si 7→ si −
∑

j

(
1

M(s)

)

ij

∂jL(s) (31.15)

The extremization is achieved by recursive implementation of the above
algorithm, with proviso that if the dynamics is pruned, one also has to
check that the final extremal length orbit does not penetrate a billiard
wall. ✎ 31.2

page 544

✎ 17.10
page 302

As an example, the short periods and stabilities of 3-disk cycles com-
puted this way are listed table 31.3.

Commentary

Remark 31.1 Piece-wise linear maps. The Lozi map (3.17) is linear, and 100,000’s

of cycles can be easily computed by [2x2] matrix multiplication and inversion.
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Remark 31.2 Relaxation method. The relaxation (or gradient) algorithm is
one of the methods for solving extremal problems [31.13]. The method described
above was introduced by Biham and Wenzel [31.1], who have also generalized it
(in the case of the Hénon map) to determination of all 2n cycles of period n, real
or complex [31.2]. The applicability and reliability of the method is discussed in
detail by Grassberger, Kantz and Moening [31.5], who give examples of the ways in
which the method fails: (a) it might reach a limit cycle rather than a equilibrium
saddlepoint (that can be remedied by the complex Biham-Wenzel algorithm [31.2])
(b) different symbol sequences can converge to the same cycle (that is, more refined
initial conditions might be needed). Furthermore, Hansen (ref. [31.7] and chapter
4. of ref. [1.3]) has pointed out that the method cannot find certain cycles for
specific values of the Hénon map parameters.

In practice, the relaxation method for determining periodic orbits of maps
appears to be effective almost always, but not always. It is much slower than the
multipoint shooting method of sect. 17.4.1, but also much quicker to program,
as it does not require evaluation of stability matrices and their inversion. If the
complete set of cycles is required, the method has to be supplemented by other
methods.

Remark 31.3 Hybrid Newton-Raphson/relaxation methods. The method dis-

cussed in sect. 31.2 was introduced by Schmelcher et al [31.9]. The method was ex-

tended to flows by means of the Poincaré surface of section technique in ref. [31.10].

It is also possible to combine the Newton-Raphson method and (31.13) in the con-

struction of a transformed map [31.14]. In this approach, each step of the iteration

scheme is a linear superposition of a step of the stability transformed system and

a step of the Newton-Raphson algorithm. Far from the linear neighborhood the

weight is dominantly on the globally acting stability transformation algorithm.

Close to the fixed point, the steps of the iteration are dominated by the Newton-

Raphson procedure.

Remark 31.4 Relation to the Smale horseshoe symbolic dynamics. For a com-
plete horseshoe Hénon repeller (a sufficiently large), such as the one given in
figure 31.2, the signs σi ∈ {1,−1} are in a 1-to-1 correspondence with the Smale
horsheshoe symbolic dynamics si ∈ {0, 1}:

si =

{
0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0

. (31.16)

For arbitrary parameter values with a finite subshift symbolic dynamics or with

arbitrarily complicated pruning, the relation of sign sequences {σ1, σ2, · · · , σn} to

the itineraries {s1, s2, · · · , sn} can be much subtler; this is discussed in ref. [31.5].

Remark 31.5 Ikeda map. Ikeda map (31.11) was introduced in ref. [31.12]

is a model which exhibits complex dynamics observed in nonlinear optical ring

cavities.

Remark 31.6 Relaxation for continuous time flows. For a d-dimensional flow

ẋ = v(x), the method described above can be extended by considering a Poincaré

relax - 29mar2004 ChaosBook.org/version11.8, Aug 30 2006



31.3. LEAST ACTION METHOD 541

surface of section. The Poincaré section yields a map f with dimension d-1, and

the above discrete iterative maps procedures can be carried out. A method that

keeps the trial orbit continuous throughout the calculation is the Newton descent, a

variational method for finding periodic orbits of continuous time flows, is described

in refs. [31.15, 31.16].

Remark 31.7 Stability ordering. The parameter ∆τ in (31.13) is a key quan-

tity here. It is related to the stability of the desired cycle in the transformed

system: The more unstable a fixed point is, the smaller ∆τ has to be to stabilize

it. With increasing cycle periods, the unstable eigenvalue of the stability matrix

increases and therefore ∆τ has to be reduced to achieve stabilization of all fixed

points. In many cases the least unstable cycles of a given period n are of phys-

ically most important [31.11]. In this context ∆τ operates as a stability filter.
☞ sect. 18.5

It allows the selective stabilization of only those cycles which posses Lyapunov

exponents smaller than a cut-off value. If one starts the search for cycles within

a given period n with a value ∆τ ≈ O(10−1), and gradually lowers ∆τ one ob-

tains the sequence of all unstable orbits of order n sorted with increasing values of

their Lyapunov exponents. For the specific choice of C the relation between ∆τ

and the stability coefficients of the fixed points of the original system is strictly

monotonous. Transformed dynamical systems with other C’s do not obey such a

strict behavior but show a rough ordering of the sequence of stability eigenvalues

of the fixed points stabilized in the course of decreasing values for ∆τ . As ex-

plained in sect. 18.5, stability ordered cycles are needed to order cycle expansions

of dynamical quantities of chaotic systems for which a symbolic dynamics is not

known. For such systems, an ordering of cycles with respect to their stability has

been proposed [18.13, 18.14, 18.12], and shown to yield good results in practical

applications.

Remark 31.8 Action extremization method. The action extremization (sect. 31.3)
as a numerical method for finding cycles has been introduced independently by
many people. We have learned it from G. Russberg, and from M. Sieber’s and
F. Steiner’s hyperbola billiard computations [31.17, 31.18]. The convergence rate
is really impressive, for the Sinai billiard some 5000 cycles are computed within
CPU seconds with rather bad initial guesses.

Variational methods are the key ingredient of the Aubry-Mather theory of area-
preserving twist maps (known in the condensed matter literature as the Frenkel-
Kontorova models of 1-dimensional crystals), discrete-time Hamiltonian dynamical
systems particularly suited to explorations of the K.A.M. theorem. Proofs of
the Aubry-Mather theorem [31.20] on existence of quasi-periodic solutions are
variational. It was quickly realized that the variational methods can also yield
reliable, high precision computations of long periodic orbits of twist map models
in 2 or more dimensions, needed for K.A.M. renormalization studies [31.19].

A fictitious time gradient flow similar to the one discussed here in sect. 31.1 was
introduced by Anegent [31.21] for twist maps, and used by Gole [31.22] in his proof
of the Aubry-Mather theorem. Mathematical bounds on the regions of stability of
K.A.M. tori are notoriously restrictive compared to the numerical indications, and
de la Llave, Falcolini and Tompaidis [31.23, 31.24] have found the gradient flow
formulation advantageous both in studies of the analyticity domains of the K.A.M.
stability, as well as proving the Aubry-Mather theorem for extended systems (for
a pedagogical introduction, see the lattice dynamics section of ref. [31.25]).
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All of the twist-maps work is based on extremizing the discrete dynamics ver-
sion of the action S (in this context sometimes called a “generating function”).
However, in their investigations in the complex plane, Falcolini and de la Llave [31.23]
do find it useful to minimize instead SS̄, analogous to our cost function (31.3).

Résumé

Unlike the Newton-Raphson method, variational methods are very robust.
As each step around a cycle is short, they do not suffer from exponential
instabilities, and with rather coarse initial guesses one can determine cycles
of arbitrary length.
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Exercises

Exercise 31.1 Evaluation of cycles by minimization∗. Given a symbol
sequence, you can construct a guess trajectory by taking a point on the boundary
of each disk in the sequence, and connecting them by straight lines. If this were a
rubber band wrapped through 3 rings, it would shrink into the physical trajectory,
which minimizes the action (in this case, the length) of the trajectory.

Write a program to find the periodic orbits for your billiard simulator. Use the

least action principle to extremize the length of the periodic orbit, and reproduce the

periods and stabilities of 3-disk cycles, table 31.3. After that check the accuracy of the

computed orbits by iterating them forward with your simulator. What is |fTp(x)−x|?

Exercise 31.2 Tracking cycles adiabatically∗. Once a cycle has been

found, orbits for different system parameters values may be obtained by varying slowly

(adiabatically) the parameters, and using the old orbit points as starting guesses in the

Newton method. Try this method out on the 3-disk system. It works well for R : a

sufficiently large. For smaller values, some orbits change rather quickly and require

very small step sizes. In addition, for ratios below R : a = 2.04821419 . . . families

of cycles are pruned, that is some of the minimal length trajectories are blocked by

intervening disks.

Exercise 31.3 Find cycles of the Hénon map. Apply the method of sect. 31.1

to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3, and compute

all prime cycles for at least n ≤ 6. Estimate the topological entropy, either from the

definition (13.1), or as the zero of a truncated topological zeta function (13.21). Do

your cycles agree with the cycles listed in table 31.1?
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Chapter 32

Quantum scattering

Scattering is easier than gathering.

Irish proverb

(A. Wirzba, P. Cvitanović and N. Whelan)

So far the trace formulas have been derived assuming that the system under
consideration is bound. As we shall now see, we are in luck - the semiclassics
of bound systems is all we need to understand the semiclassics for open,
scattering systems as well. We start by a brief review of the quantum
theory of elastic scattering of a point particle from a (repulsive) potential,
and then develop the connection to the standard Gutzwiller theory for
bound systems. We do this in two steps - first, a heuristic derivation which
helps us understand in what sense density of states is “density”, and then
we sketch a general derivation of the central result of the spectral theory
of quantum scattering, the Krein-Friedel-Lloyd formula. The end result
is that we establish a connection between the scattering resonances (both
positions and widths) of an open quantum system and the poles of the trace
of the Green function, which we learned to analyze in earlier chapters.

32.1 Density of states

For a scattering problem the density of states (26.18) appear ill defined
since formulas such as (30.6) involve integration over infinite spatial extent.
What we will now show is that a quantity that makes sense physically is
the difference of two densities - the first with the scatterer present and the
second with the scatterer absent.

In nonrelativistic dynamics the relative motion can be separated from
the center-of-mass motion. Therefore the elastic scattering of two particles
can be treated as the scattering of one particle from a static potential V (q).
We will study the scattering of a point-particle of (reduced) mass m by
a short-range potential V (q), excluding inter alia the Coulomb potential.

545



546 CHAPTER 32. QUANTUM SCATTERING

(The Coulomb potential decays slowly as a function of q so that various
asymptotic approximations which apply to general potentials fail for it.)
Although we can choose the spatial coordinate frame freely, it is advisable to
place its origin somewhere near the geometrical center of the potential. The
scattering problem is solved, if a scattering solution to the time-independent
Schrödinger equation (26.5)

(
− ~

2

2m

∂2

∂q2
+ V (q)

)
φ~k(q) = Eφ~k(q) (32.1)

can be constructed. Here E is the energy, ~p = ~~k the initial momentum of
the particle, and ~k the corresponding wave vector.

When the argument r = |q| of the wave function is large compared to the
typical size a of the scattering region, the Schrödinger equation effectively
becomes a free particle equation because of the short-range nature of the
potential. In the asymptotic domain r ≫ a, the solution φ~k(q) of (32.1)
can be written as superposition of ingoing and outgoing solutions of the
free particle Schrödinger equation for fixed angular momentum:

φ(q) = Aφ(−)(q) +Bφ(+)(q) , (+ boundary conditions) ,

where in 1-dimensional problems φ(−)(q), φ(+)(q) are the “left”, “right”
moving plane waves, and in higher-dimensional scattering problems the
“incoming”, “outgoing” radial waves, with the constant matrices A, B fixed
by the boundary conditions. What are the boundary conditions? The
scatterer can modify only the outgoing waves (see figure 32.1), since the
incoming ones, by definition, have yet to encounter the scattering region.
This defines the quantum mechanical scattering matrix, or the S matrix

φm(r) = φ(−)
m (r) + Smm′φ

(+)
m′ (r) . (32.2)

All scattering effects are incorporated in the deviation of S from the unit
matrix, the transition matrix T

S = 1− iT . (32.3)

For concreteness, we have specialized to two dimensions, although the final
formula is true for arbitrary dimensions. The indices m and m′ are the
angular momenta quantum numbers for the incoming and outgoing state
of the scattering wave function, labeling the S-matrix elements Smm′ . More
generally, given a set of quantum numbers β, γ, the S matrix is a collection
Sβγ of transition amplitudes β → γ normalized such that |Sβγ |2 is the
probability of the β → γ transition. The total probability that the ingoing
state β ends up in some outgoing state must add up to unity

∑

γ

|Sβγ |2 = 1 , (32.4)
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(a) (b)

Figure 32.1: (a) Incoming spherical waves running into an obstacle. (b) Superposi-
tion of outgoing spherical waves scattered from an obstacle.

so the S matrix is unitary: S†S = SS† = 1.

We have already encountered a solution to the 2-dimensional problem;
free particle propagation Green’s function (28.48) is a radial solution, given
in terms of the Hankel function

G0(r, 0, E) = − im

2~2
H

(+)
0 (kr) ,

where we have used S0(r, 0, E)/~ = kr for the action. The mth angular

momentum eigenfunction is proportional to φ
(±)
m (q) ∝ H

(±)
m (kr), and given

a potential V (q) we can in principle compute the infinity of matrix elements

Smm′ . We will not need much information about H
(t)
m (kr), other than that

for large r its asymptotic form is

H± ∝ e±ikr

In general, the potential V (q) is not radially symmetric and (32.1) has
to be solved numerically, by explicit integration, or by diagonalizing a large
matrix in a specific basis. To simplify things a bit, we assume for the time
being that a radially symmetric scatterer is centered at the origin; the final
formula will be true for arbitrary asymmetric potentials. Then the solutions
of the Schrödinger equation (26.5) are separable, φm(q) = φ(r)eimθ , r = |q|,
the scattering matrix cannot mix different angular momentum eigenstates,
and S is diagonal in the radial basis (32.2) with matrix elements given by

Sm(k) = e2iδm(k). (32.5)

The matrix is unitary so in a diagonal basis all entries are pure phases.

This means that an incoming state of the form H
(−)
m (kr)eimθ gets scattered

into an outgoing state of the form Sm(k)H
(+)
m (kr)eimθ, where H

(∓)
m (z) are

incoming and outgoing Hankel functions respectively. We now embed the
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Figure 32.2: The “difference” of two bounded
reference systems, one with and one without the
scattering system.

b b

-

scatterer in a infinite cylindrical well of radiusR, and will later take R→ ∞.
Angular momentum is still conserved so that each eigenstate of this (now
bound) problem corresponds to some value of m. For large r ≫ a each
eigenstate is of the asymptotically free form

φm(r) ≈ eimθ
(
Sm(k)H(+)

m (kr) +H(−)
m (kr)

)

≈ · · · cos(kr + δm(k) − χm) , (32.6)

where · · · is a common prefactor, and χm = mπ/2 + π/4 is an annoying
phase factor from the asymptotic expansion of the Hankel functions that
will play no role in what follows.

The state (32.6) must satisfy the external boundary condition that it
vanish at r = R. This implies the quantization condition

knR+ δm(kn) − χm = π (n+ 12) .

We now ask for the difference in the eigenvalues of two consecutive states of
fixed m. Since R is large, the density of states is high, and the phase δm(k)
does not change much over such a small interval. Therefore, to leading
order we can include the effect of the change of the phase on state n+ 1 by
Taylor expanding. is

kn+1R+ δm(kn) + (kn+1 − kn)δ
′
m(kn) − χm ≈ π + π(n+ 12) .

Taking the difference of the two equations we obtain ∆k ≈ π(R+δ′m(k))−1.
This is the eigenvalue spacing which we now interpret as the inverse of the
density of states within m angular momentum sbuspace

dm(k) ≈ 1

π

(
R+ δ′m(k)

)
.

The R term is essentially the 1 − d Weyl term (30.8), appropriate to 1 − d
radial quantization. For large R, the dominant behavior is given by the size
of the circular enclosure with a correction in terms of the derivative of the
scattering phase shift, approximation accurate to order 1/R. However, not
all is well: the area under consideration tends to infinity. We regularize this
by subtracting from the result from the free particle density of states d0(k),
for the same size container, but this time without any scatterer, figure 32.2.
We also sum over all m values so that
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d(k) − d0(k) =
1

π

∑

m

δ′m(k) =
1

2πi

∑

m

d

dk
log Sm

=
1

2πi
Tr

(
S†dS
dk

)
. (32.7)

The first line follows from the definition of the phase shifts (32.5) while the
second line follows from the unitarity of S so that S−1 = S†. We can now
take the limit R→ ∞ since the R dependence has been cancelled away.

This is essentially what we want to prove since for the left hand side
we already have the semiclassical theory for the trace of the difference of
Green’s functions,

d(k) − d0(k) = − 1

2πk
Im (tr (G(k) −G0(k)) . (32.8)

There are a number of generalizations. This can be done in any number
of dimensions. It is also more common to do this as a function of energy
and not wave number k. However, as the asymptotic dynamics is free wave
dynamics labeled by the wavenumber k, we have adapted k as the natural
variable in the above discussion.

Finally, we state without proof that the relation (32.7) applies even
when there is no circular symmetry. The proof is more difficult since one
cannot appeal to the phase shifts δm but must work directly with a non-
diagonal S matrix.

32.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there is a connection be-
tween the scattering matrix and the trace of the quantum Green’s function
(more formally between the difference of the Green’s function with and
without the scattering center.) We now show how this connection can be
derived in a more rigorous manner. We will also work in terms of the energy
E rather than the wavenumber k, since this is the more usual exposition.
Suppose particles interact via forces of sufficiently short range, so that in
the remote past they were in a free particle state labeled β, and in the
distant future they will likewise be free, in a state labeled γ. In the Heisen-
berg picture the S-matrix is defined as S = Ω−Ω†

+ in terms of the Møller
operators

Ω± = lim
t→±∞

eiHt/~e−iH0t/~ , (32.9)

where H is the full Hamiltonian, whereas H0 is the free Hamiltonian. In
the interaction picture the S-matrix is given by

S = Ω†
+Ω− = lim

t→∞
eiH0t/~e−2iHt/~eiH0t/~
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= T exp

(
−i
∫ +∞

−∞
dtH ′(t)

)
, (32.10)

where H ′ = V = H −H0 is the interaction Hamiltonian and T is the time-
ordering operator. In stationary scattering theory the S matrix has the
following spectral representation

S =

∫ ∞

0
dE S(E)δ(H0 − E)

S(E) = Q+(E)Q−1
− (E), Q±(E) = 1 + (H0 − E ± iǫ)−1V ,(32.11)

such that

Tr

[
S†(E)

d

dE
S(E)

]
= Tr

[
1

H0 − E − iǫ
− 1

H − E − iǫ
− (ǫ↔ −ǫ)

]
.(32.12)

The manipulations leading to (32.12) are justified if the operators Q±(E)
☞ appendix K

can be linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formula which is
the central result of this chapter. The Krein-Lloyd formula provides the
connection between the trace of the Green’s function and the poles of the
scattering matrix, implicit in all of the trace formulas for open quantum
systems which will be presented in the subsequent chapters.

32.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics for scattering prob-
lems is provided by the semiclassical limit of the Krein-Friedel-Lloyd sum
for the spectral density which we now derive. This derivation builds on the
results of the last section and extends the discussion of the opening section.

In chapter 28 we linked the spectral density (see (26.18)) of a bounded
system

d(E) ≡
∑

n

δ(En − E) (32.13)

via the identity

δ(En − E) = − lim
ǫ→0

1

π
Im

1

E − En + iǫ

= − lim
ǫ→0

1

π
Im〈En|

1

E −H + iǫ
|En〉

=
1

2π i
lim
ǫ→0

〈
En

∣∣∣∣
1

E −H − iǫ
− 1

E −H + iǫ

∣∣∣∣En
〉
(32.14)
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to the trace of the Green’s function (30.1.1). Furthermore, in the semi-
classical approximation, the trace of the Green’s function is given by the
Gutzwiller trace formula (30.11) in terms of a smooth Weyl term and an
oscillating contribution of periodic orbits.

Therefore, the task of constructing the semiclassics of a scattering sys-
tem is completed, if we can find a connection between the spectral density
d(E) and the scattering matrix S. We will see that (32.12) provides the
clue. Note that the right hand side of (32.12) has nearly the structure of
(32.14) when the latter is inserted into (32.13). The principal difference
between these two types of equations is that the S matrix refers to outgo-
ing scattering wave functions which are not normalizable and which have a
continuous spectrum, whereas the spectral density d(E) refers to a bound
system with normalizable wave functions with a discrete spectrum. Fur-
thermore, the bound system is characterized by a hermitian operator, the
Hamiltonian H, whereas the scattering system is characterized by a unitary
operator, the S-matrix. How can we reconcile these completely different
classes of wave functions, operators and spectra? The trick is to put our
scattering system into a finite box as in the opening section. We choose a
spherical conatiner with radius R and with its center at the center of our
finite scattering system. Our scattering potential V (~r) will be unaltered
within the box, whereas at the box walls we will choose an infinitely high
potential, with the Dirichlet boundary conditions at the outside of the box:

φ(~r)|r=R = 0 . (32.15)

In this way, for any finite value of the radius R of the box, we have mapped
our scattering system into a bound system with a spectral density d(E;R)
over discrete eigenenergies En(R). It is therefore important that our scat-
tering potential was chosen to be short-ranged to start with. (Which ex-
plains why the Coulomb potential requires special care.) The hope is that
in the limit R → ∞ we will recover the scattering system. But some
care is required in implementing this. The smooth Weyl term d̄(E;R) be-
longing to our box with the enclosed potential V diverges for a spherical
two-dimensional box of radius R quadratically, as πR2/(4π) or as R3 in the
three-dimensional case. This problem can easily be cured if the spectral
density of an empty reference box of the same size (radius R) is subtracted
(see figure 32.2). Then all the divergences linked to the increasing radius
R in the limit R→ ∞ drop out of the difference. Furthermore, in the limit
R → ∞ the energy-eigenfunctions of the box are only normalizable as a
delta distribution, similarly to a plane wave. So we seem to recover a con-
tinous spectrum. Still the problem remains that the wave functions do not
discriminate between incoming and outgoing waves, whereas this symme-
try, namely the hermiticity, is broken in the scattering problem. The last
problem can be tackled if we replace the spectral density over discrete delta
distributions by a smoothed spectral density with a small finite imaginary
part η in the energy E:

d(E+iη;R) ≡ 1

i 2π

∑

n

{
1

E − En(R) − iη
− 1

E − En(R) + iη

}
.(32.16)
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Note that d(E + iη;R) 6= d(E − iη;R) = −d(E + iη;R). By the introduc-
tion of the positive finite imaginary part η the time-dependent behavior of
the wave function has effectively been altered from an oscillating one to a
decaying one and the hermiticity of the Hamiltonian is removed. Finally
the limit η → 0 can be carried out, respecting the order of the limiting
procedures. First the limit R → ∞ has to be performed for a finite value
of η, only then the limit η → 0 is allowed. In practice, one can try to
work with a finite value of R, but then it will turn out (see below) that the
scattering system is only recovered if R

√
η ≫ 1.

Let us summarize the relation between the smoothed spectral densities
d(E+iη;R) of the boxed potential and d(0)(E+iη;R) of the empty reference
system and the S matrix of the corresponding scattering system:

lim
η→+0

lim
R→∞

(
d(E+iη;R) − d(0)(E+iη;R)

)
=

1

2πi
Tr

[
S†(E)

d

dE
S(E)

]

=
1

2πi
Tr

d

dE
lnS(E) =

1

2πi

d

dE
ln detS(E) .(32.17)

This is the Krein-Friedel-Lloyd formula. It replaces the scattering problem
by the difference of two bounded reference billiards of the same radius
R which finally will be taken to infinity. The first billiard contains the
scattering region or potentials, whereas the other does not (see figure 32.2).
Here d(E + iη;R) and d(0)(E + iη;R) are the smoothed spectral densities
in the presence or in the absence of the scatterers, respectively. In the
semiclassical approximation, they are replaced by a Weyl term (30.10) and
an oscillating sum over periodic orbits. As in (30.2), the trace formula
(32.17) can be integrated to give a relation between the smoothed staircase
functions and the determinant of the S-matrix:

lim
η→+0

lim
R→∞

(
N(E+iη;R) −N (0)(E+iη;R)

)
=

1

2πi
ln detS(E) .(32.18)

Furthermore, in both versions of the Krein-Friedel-Lloyd formulas the en-
ergy argument E+ iη can be replaced by the wavenumber argument k+ iη′.
These expressions only make sense for wavenumbers on or above the real
k-axis. In particular, if k is chosen to be real, η′ must be greater than zero.
Otherwise, the exact left hand sides (32.18) and (32.17) would give dis-
continuous staircase or even delta function sums, respectively, whereas the
right hand sides are continuous to start with, since they can be expressed
by continuous phase shifts. Thus the order of the two limits in (32.18) and
(32.17) is essential.

The necessity of the +iη prescription can also be understood by purely
phenomenological considerations in the semiclassical approximation: With-
out the iη term there is no reason why one should be able to neglect spu-
rious periodic orbits which are there solely because of the introduction of
the confining boundary. The subtraction of the second (empty) reference
system removes those spurious periodic orbits which never encounter the
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scattering region – in addition to the removal of the divergent Weyl term
contributions in the limit R→ ∞. The periodic orbits that encounter both
the scattering region and the external wall would still survive the first limit
R→ ∞, if they were not exponentially suppressed by the +iη term because
of their

eiL(R)
√

2m(E+iη) = eiL(R)k e−L(R)η′

behavior. As the length L(R) of a spurious periodic orbit grows linearly
with the radius R. The bound Rη′ ≫ 1 is an essential precondition on the
suppression of the unwanted spurious contributions of the container if the
Krein-Friedel-Lloyd formulas (32.17) and (32.18) are evaluated at a finite
value of R. ✎ 32.1

page 558
Finally, the semiclassical approximation can also help us in the interpre-

tation of the Weyl term contributions for scattering problems. In scattering
problems the Weyl term appears with a negative sign. The reason is the
subtraction of the empty container from the container with the potential.
If the potential is a dispersing billiard system (or a finite collection of dis-
persing billiards), we expect an excluded volume (or the sum of excluded
volumes) relative to the empty container. In other words, the Weyl term
contribution of the empty container is larger than of the filled one and
therefore a negative net contribution is left over. Secondly, if the scattering
potential is a collection of a finite number of non-overlapping scattering re-
gions, the Krein-Friedel-Lloyd formulas show that the corresponding Weyl
contributions are completely independent of the position of the single scat-
terers, as long as these do not overlap.

32.4 Wigner time delay

The term d
dE ln detS in the density formula (32.17) is dimensionally time.

This suggests another, physically important interpretation of such formulas
for scattering systems, the Wigner delay, defined as

d(k) =
d

dk
Argdet (S(k))

= −i d
dk

log det (S(k)

= −i tr
(
S†(k)

dS

dk
(k)

)
(32.19)

and can be shown to equal the total delay of a wave packet in a scattering
system. We now review this fact.

A related quantity is the total scattering phase shift Θ(k) defined as

detS(k) = e+iΘ(k) ,
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so that d(k) = d
dkΘ(k).

The time delay may be both positive and negative, reflecting attractive
respectively repulsive features of the scattering system. To elucidate the
connection between the scattering determinant and the time delay we study
a plane wave:

The phase of a wave packet will have the form:

φ = ~k · ~x− ω t + Θ .

Here the term in the parenthesis refers to the phase shift that will occur if
scattering is present. The center of the wave packet will be determined by
the principle of stationary phase:

0 = dφ = d~k · ~x− dω t + dΘ .

Hence the packet is located at

~x =
∂ω

∂~k
t − ∂Θ

∂~k
.

The first term is just the group velocity times the given time t. Thus the
the packet is retarded by a length given by the derivative of the phase shift
with respect to the wave vector ~k. The arrival of the wave packet at the
position ~x will therefore be delayed. This time delay can similarly be found
as

τ(ω) =
∂Θ(ω)

∂ω
.

To show this we introduce the slowness of the phase ~s = ~k/ω for which
~s · ~vg = 1, where ~vg is the group velocity to get

d~k · ~x = ~s · ~x dω =
x

vg
dω ,

since we may assume ~x is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

t =
x

vg
+
∂Θ(ω)

∂ω
.

If the scattering matrix is not diagonal, one interprets

∆tij = Re

(
−i S−1

ij

∂Sij
∂ω

)
= Re

(
∂Θij

∂ω

)
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as the delay in the jth scattering channel after an injection in the ith.
The probability for appearing in channel j goes as |Sij |2 and therefore the
average delay for the incoming states in channel i is

〈∆ti〉 =
∑

j

|Sij |2∆tij = Re (−i
∑

j

S∗
ij

∂Sij
∂ω

) = Re (−iS† · ∂S
∂ω

)ii

= −i
(
S† · ∂S

∂ω

)

ii

,

where we have used the derivative, ∂/∂ω, of the unitarity relation S · S† = 1
valid for real frequencies. This discussion can in particular be made for
wave packets related to partial waves and superpositions of these like an
incoming plane wave corresponding to free motion. The total Wigner delay
therefore corresponds to the sum over all channel delays (32.19).

Commentary

Remark 32.1 Krein-Friedel-Lloyd formula. The third volume of Thirring [32.1],
sections 3.6.14 (Levison Theorem) and 3.6.15 (the proof), or P. Scherer’s the-
sis [32.15] (appendix) discusses the Levison Theorem.

It helps to start with a toy example or simplified example instead of the general
theorem, namely for the radially symmetric potential in a symmetric cavity. Have
a look at the book of K. Huang, chapter 10 (on the ”second virial coefficient”), or
Beth and Uhlenbeck [32.5], or Friedel [32.7]. These results for the correction to
the density of states are particular cases of the Krein formula [32.3]. The Krein-
Friedel-Lloyd formula (32.17) was derived in refs. [32.3, 32.7, 32.8, 32.9], see also
refs. [32.11, 32.14, 32.15, 32.17, 32.18]. The original papers are by Krein and
Birman [32.3, 32.4] but beware, they are mathematicans.

Also, have a look at pages 15-18 of Wirzba’s talk on the Casimir effect [32.16].

Page 16 discusses the Beth-Uhlenbeck formula [32.5], the predecessor of the more

general Krein formula for spherical cases.

Remark 32.2 Weyl term for empty container. For a discussion of why the Weyl

term contribution of the empty container is larger than of the filled one and there-

fore a negative net contribution is left over, see ref. [32.15].

Remark 32.3 Wigner time delay. Wigner time delay and the Wigner-Smith

time delay matrix, are powerful concepts for a statistical description of scattering.

The diagonal elements Qaa of the lifetime matrix Q = −iS−1∂S/∂ω, where S

is the [2N×2N ] scattering matrix, are interpreted in terms of the time spent in

the scattering region by a wave packet incident in one channel. As shown by

Smith [32.26], they are the sum over all ouput channels (both in reflection and

transmission) of ∆tab = Re [(−i/Sab)(∂Sab/∂ω)] weighted by the probability of

emerging from that channel. The sum of the Qaa over all 2N channels is the

Wigner time delay τW =
∑

aQaa, which is the trace of the lifetime matrix and is

proportional to the density of states.
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Exercises

Exercise 32.1 Spurious orbits under the Krein-Friedel-Lloyd contruction.
Draw examples for the three types of period orbits under the Krein-Friedel-Lloyd con-
struction: (a) the genuine periodic orbits of the scattering region, (b) spurious periodic
orbits which can be removed by the subtraction of the reference system, (c) spurious
periodic orbits which cannot be removed by this subtraction. What is the role of the
double limit η → 0, container size b→ ∞?

Exercise 32.2 The one-disk scattering wave function. Derive the one-disk
scattering wave function.

(Andreas Wirzba)

Exercise 32.3 Quantum two-disk scattering. Compute the quasiclassical
spectral determinant

Z(ε) =
∏

p,j,l

(
1 − tp

Λj+2l
p

)j+1

for the two disk problem. Use the geometry

a

a


R


The full quantum mechanical version of this problem can be solved by finding the
zeros in k for the determinant of the matrix

Mm,n = δm,n +
(−1)n

2

Jm(ka)

H
(1)
n (ka)

(
H

(1)
m−n(kR) + (−1)nH

(1)
m+n(kR)

)
,

where Jn is the nth Bessel function and H
(1)
n is the Hankel function of the first kind.

Find the zeros of the determinant closest to the origin by solving detM(k) = 0.

(Hints: notice the structure M = I + A to approximate the determinant; or read

Chaos 2, 79 (1992))

Exercise 32.4 Pinball topological index. Upgrade your pinball simulator so

that it computes the topological index for each orbit it finds.
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Chapter 33

Chaotic multiscattering

(A. Wirzba and P. Cvitanović)

We discuss here the semiclassics of scattering in open systems with a finite
number of non-overlapping finite scattering regions. Why is this interesting
at all? The semiclassics of scattering systems has five advantages compared
to the bound-state problems such as the helium quantization discussed in
chapter 34.

• For bound-state problem the semiclassical approximation does not re-
spect quantum-mechanical unitarity, and the semi-classical eigenener-
gies are not real. Here we construct a manifestly unitary semiclassical
scattering matrix.

• The Weyl-term contributions decouple from the multi-scattering sys-
tem.

• The close relation to the classical escape processes discussed in chap-
ter 1.

• For scattering systems the derivation of cycle expansions is more di-
rect and controlled than in the bound-state case: the semiclassical
cycle expansion is the saddle-point approximation to the cumulant
expansion of the determinant of the exact quantum-mechanical multi-
scattering matrix.

• The region of convergence of the semiclassical spectral function is
larger than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a point particle
from finite collection of non-overlapping scattering regions in terms of the
standard textbook scattering theory, and then develop the semiclassical
scattering trace formulas and spectral determinants for scattering off N
disks in a plane.
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33.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point particle from fi-
nite collection of N non-overlapping reflecting disks in a 2-dimensional
plane. As the point particle moves freely between the static scatterers,
the time independent Schrödinger equation outside the scattering regions
is the Helmholtz equation:

(
~∇2
r + ~k2

)
ψ(~r ) = 0 , ~r outside the scattering regions. (33.1)

Here ψ(~r ) is the wave function of the point particle at spatial position ~r
and E = ~

2~k2/2m is its energy written in terms of its mass m and the wave
vector ~k of the incident wave. For reflecting wall billiards the scattering
problem is a boundary value problem with Dirichlet boundary conditions:

ψ(~r) = 0 , ~r on the billiard perimeter (33.2)

As usual for scattering problems, we expand the wave function ψ(~r ) in
the (2-dimensional) angular momentum eigenfunctions basis

ψ(~r ) =

∞∑

m=−∞
ψkm(~r )e−imΦk , (33.3)

where k and Φk are the length and angle of the wave vector, respectively.
A plane wave in two dimensions expaned in the angular momentum basis
is

ei
~k·~r = eikr cos(Φr−Φk) =

∞∑

m=−∞
Jm(kr)eim(Φr−Φk) , (33.4)

where r and Φr denote the distance and angle of the spatial vector ~r as
measured in the global 2-dimensional coordinate system.

The mth angular component Jm(kr)eimΦr of a plane wave is split into
a superposition of incoming and outgoing 2-dimensional spherical waves by
decomposing the ordinary Bessel function Jm(z) into the sum

Jm(z) =
1

2

(
H(1)
m (z) +H(2)

m (z)
)

(33.5)

of the Hankel functions H
(1)
m (z) and H

(2)
m (z) of the first and second kind.

For |z| ≫ 1 the Hankel functions behave asymptotically as:

H(2)
m (z) ∼

√
2

πz
e−i(z−

π
2
m−π

4
) incoming,

H(1)
m (z) ∼

√
2

πz
e+i(z−

π
2
m−π

4
) outgoing. (33.6)
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Thus for r → ∞ and k fixed, the mth angular component Jm(kr)eimΦr of
the plane wave can be written as superposition of incoming and outgoing
2-dimensional spherical waves:

Jm(kr)eimΦr ∼ 1√
2πkr

[
e−i(kr−

π
2
m−π

4
) + ei(kr−

π
2
m−π

4
)
]
eimΦr . (33.7)

In terms of the asymptotic (angular momentum) components ψkm of the
wave function ψ(~r ), the scattering matrix (32.3) is defined as

ψkm ∼ 1√
2πkr

∞∑

m′=−∞

[
δmm′e−i(kr−

π
2
m′−π

4
) + Smm′ei(kr−

π
2
m′−π

4
)
]
eim

′Φr .(33.8)

The matrix element Smm′ describes the scattering of an incoming wave with
angular momentum m into an outgoing wave with angular momentum m′.
If there are no scatterers, then S = 1 and the asymptotic expression of the

plane wave ei
~k·~r in two dimensions is recovered from ψ(~r ).

33.1.1 1-disk scattering matrix

In general, S is nondiagonal and nonseparable. An exception is the 1-disk
scatterer. If the origin of the coordinate system is placed at the center of
the disk, by (33.5) the mth angular component of the time-independent
scattering wave function is a superposition of incoming and outgoing 2-
dimensional spherical waves ✎ 32.2

page 558

ψkm =
1

2

(
H(2)
m (kr) + SmmH

(1)
m (kr)

)
eimΦr

=

(
Jm(kr) − i

2
TmmH

(1)
m (kr)

)
eimΦr .

The vanishing (33.2) of the wave function on the disk perimeter

0 = Jm(ka) − i

2
TmmH

(1)
m (ka)

yields the 1-disk scattering matrix in analytic form:

Ssmm′(k) =

(
1 − 2Jm(kas)

H
(1)
m (kas)

)
δmm′ = −H

(2)
m (kas)

H
(1)
m (kas)

δmm′ , (33.9)

where a = as is radius of the disk and the suffix s indicates that we are
dealing with a disk whose label is s. We shall derive a semiclassical ap-
proximation to this 1-disk S-matrix in sect. 33.3.
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33.1.2 Multi-scattering matrix

Consider next a scattering region consisting of N non-overlapping disks
labeled s ∈ {1, 2, · · · , N}, following the notational conventions of sect. 11.6.
The strategy is to construct the full T-matrix (32.3) from the exact 1-
disk scattering matrix (33.9) by a succession of coordinate rotations and
translations such that at each step the coordinate system is centered at the
origin of a disk. Then the T-matrix in Smm′ = δmm′ − i Tmm′ can be split
into a product over three kinds of matrices,

Tmm′(k) =
N∑

s,s′=1

∞∑

ls ,ls′=−∞
C s
mls

(k)M−1(k)ss
′

ls ls′
Ds′
ls′m

′(k) .

The outgoing spherical wave scattered by the disk s is obtained by shifting
the global coordinates origin distance Rs to the center of the disk s, and
measuring the angle Φs with respect to direction k of the outgoing spherical
wave. As in (33.9), the matrix Cs takes form

C s
mls

=
2i

πas

Jm−ls (kRs)

H
(1)
ls

(kas)
eimΦs . (33.10)

If we now describe the ingoing spherical wave in the disk s′ coordinate
frame by the matrix Ds′

Ds′
ls′m

′ = −πas′Jm′−ls′ (kRs′)Jls′ (kas′)e
−im′Φs′ , (33.11)

and apply the Bessel function addition theorem

Jm(y + z) =

∞∑

ℓ=−∞
Jm−ℓ(y)Jℓ(z),

we recover the T-matrix (33.9) for the single disk s = s′, M = 1 scattering.
The Bessel function sum is a statement of the completness of the spherical
wave basis; as we shift the origin from the disk s to the disk s′ by distance
Rs′ , we have to reexpand all basis functions in the new coordinate frame.

The labels m and m′ refer to the angular momentum quantum numbers
of the ingoing and outgoing waves in the global coordinate system, and ls , ls′

refer to the (angular momentum) basis fixed at the sth and s′th scatterer,
respectively. Thus, Cs and Ds′ depend on the origin and orientation of
the global coordinate system of the 2-dimensional plane as well as on the
internal coordinates of the scatterers. As they can be made separable in
the scatterer label s, they describe the single scatterer aspects of what, in
general, is a multi-scattering problem.
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Figure 33.1: Global and local coordinates for
a general 3-disk problem.

R α
21 21

RR 1
2

Φ1

a 2

a 1

a 3

The matrix M is called the multi-scattering matrix. If the scattering
problem consists only of one scatterer, M is simply the unit matrix M ss′

ls ls′
=

δss
′
δls ls′ . For scattering from more than one scatterer we separate out

a “single traversal” matrix A which transports the scattered wave from a
scattering region Ms to the scattering region Ms′ ,

M ss′
ls ls′

= δss
′
δls ls′ −Ass

′
ls ls′

. (33.12)

The matrix Ass′ reads:

Ass
′

ls ls′
= −(1−δss′) as

as′

Jls (kas)

H
(1)
ls′

(kas′)
H

(1)
ls−ls′ (kRss

′) ei(lsαs′s−ls′ (αss′−π)) .(33.13)

Here, as is the radius of the sth disk. Rs and Φs are the distance
and angle, respectively, of the ray from the origin in the 2-dimensional
plane to the center of disk s as measured in the global coordinate system.
Furthermore, Rss′ = Rs′s is the separation between the centers of the sth
and s′th disk and αs′s of the ray from the center of disk s to the center of
disk s′ as measured in the local (body-fixed) coordinate system of disk s
(see figure 33.1).

Expanded as a geometrical series about the unit matrix 1, the inverse
matrix M−1 generates a multi-scattering series in powers of the single-
traversal matrix A. All genuine multi-scattering dynamics is contained in
the matrix A; by construction A vanishes for a single-scatterer system.

33.2 N-scatterer spectral determinant

In the following we limit ourselves to a study of the spectral properties of
the S-matrix: resonances, time delays and phase shifts. The resonances are
given by the poles of the S-matrix in the lower complex wave number (k)
plane; more precisely, by the poles of the S on the second Riemann sheet
of the complex energy plane. As the S-matrix is unitary, it is also natural
to focus on its total phase shift η(k) defined by detS = exp2iη(k). The
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time-delay is proportional to the derivative of the phase shift with respect
to the wave number k.

As we are only interested in spectral properties of the scattering prob-
lem, it suffices to study detS. This determinant is basis and coordinate-
system independent, whereas the S-matrix itself depends on the global
coordinate system and on the choice of basis for the point particle wave
function.

As the S-matrix is, in general, an infinite dimensional matrix, it is not
clear whether the corresponding determinant exists at all. If T-matrix is
trace-class, the determinant does exist. What does this mean?

33.2.1 Trace-class operators

An operator (an infinite-dimensional matrix) is called trace-class if and
only if, for any choice of orthonormal basis, the sum of the diagonal matrix
elements converges absolutely; it is called “Hilbert-Schmidt”, if the sum of
the absolute squared diagonal matrix elements converges. Once an operator
is diagnosed as trace-class, we are allowed to manipulate it as we manipulate
finite-dimensional matrices. We review the theory of trace-class operators
in appendix K; here we will assume that the T-matrix (32.3) is trace-class,
and draw the conlusions.

If A is trace-class, the determinant det (1 − zA), as defined by the
cumulant expansion, exists and is an entire function of z. Furthermore, the
determinant is invariant under any unitary transformation.

The cumulant expansion is the analytical continuation (as Taylor ex-
pansion in the book-keeping variable z) of the determinant

det (1 − zA) = exp[tr ln(1 − zA)] = exp

(
−

∞∑

n=1

zn

zn
tr (An)

)
.

That means

det (1 − zA) :=

∞∑

m=0

zmQm(A) , (33.14)

where the cumulants Qm(A) satisfy the Plemelj-Smithies recursion formula
(K.26), a generalization of Newton’s formula to determinants of infinite-
dimensional matrices,

Q0(A) = 1

Qm(A) = − 1

m

m∑

j=1

Qm−j(A) tr (Aj) for m ≥ 1 , (33.15)
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in terms of cumulants of order n < m and traces of order n ≤ m. Because
of the trace-class property of A, all cumulants and traces exist separately.

For the general case of N <∞ non-overlapping scatterers, the T-matrix
can be shown to be trace-class, so the determinant of the S-matrix is well
defined. What does trace-class property mean for the corresponding ma-
trices Cs , Ds and Ass′? Manipulating the operators as though they were
finite matrices, we can perform the following transformations:

detS = det
(
1 − iCM−1D

)

= Det
(
1 − iM−1DC

)
= Det

(
M−1(M − iDC)

)

=
Det (M − iDC)

Det (M)
. . (33.16)

In the first line of (33.16) the determinant is taken over small ℓ (the angular
momentum with respect to the global system). In the remainder of (33.16)
the determinant is evaluated over the multiple indices Ls = (s, ls). In order
to signal this difference we use the following notation: det . . . and tr . . . refer
to the |ℓ〉 space, Det . . . and Tr . . . refer to the multiple index space. The
matrices in the multiple index space are expanded in the complete basis
{|Ls〉} = {|s, ℓs〉} which refers for fixed index s to the origin of the sth
scatterer and not any longer to the origin of the 2-dimensional plane.

Let us explicitly extract the product of the determinants of the subsys-
tems from the determinant of the total system (33.16):

detS =
Det (M − iDC)

Det (M)

=
Det (M − iDC)

Det M

∏N
s=1 detSs

∏N
s=1 detSs

=

(
N∏

s=1

detSs

)
Det (M − iDC)/

∏N
s=1 detSs

DetM
. (33.17)

The final step in the reformulation of the determinant of the S-matrix of
the N -scatterer problem follows from the unitarity of the S-matrix. The
unitarity of S†(k∗) implies for the determinant

det (S(k∗)†) = 1/detS(k) , (33.18)

where this manipulation is allowed because the T-matrix is trace-class. The
unitarity condition should apply for the S-matrix of the total system, S,
as for the each of the single subsystems, Ss , s = 1, · · · , N . In terms of the
result of (33.17), this implies

Det (M(k) − iD(k)C(k))
∏N
s=1 detSs

= Det (M(k∗)†)
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since all determinants in (33.17) exist separately and since the determinants
detSs respect unitarity by themselves. Thus, we finally have

detS(k) =

{
N∏

s=1

(detSs(k))

}
DetM(k∗)†

DetM(k)
, (33.19)

where all determinants exist separately.

In summary: We assumed a scattering system of a finite number of
non-overlapping scatterers which can be of different shape and size, but are
all of finite extent. We assumed the trace-class character of the T-matrix
belonging to the total system and of the single-traversal matrix A and
finally unitarity of the S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering from a finite num-
ber of scatterers of arbitrary shape and size? As long as each of N < ∞
single scatterers has a finite spatial extent, i.e., can be covered by a finite
disk, the total system has a finite spatial extent as well. Therefore, it too
can be put insided a circular domain of finite radius b, e.g., inside a single
disk. If the impact parameter of the point particle measured with respect
to the origin of this disk is larger than the disk size (actually larger than
(e/2)× b), then the T matrix elements of the N -scatterer problem become
very small. If the wave number k is kept fixed, the modulus of the diago-
nal matrix elements, |Tmm| with the angular momentum m > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

33.2.2 Quantum cycle expansions

In formula (33.19) the genuine multi-scattering terms are separated from
the single-scattering ones. We focus on the multi-scattering terms, that
is, on the ratio of the determinants of the multi-scattering matrix M =
1−A in (33.19), since they are the origin of the periodic orbit sums in the
semiclassical reduction. The resonances of the multi-scattering system are
given by the zeros of DetM(k) in the lower complex wave number plane.

In order to set up the problem for the semiclassical reduction, we ex-
press the determinant of the multi-scattering matrix in terms of the traces
of the powers of the matrix A, by means of the cumulant expansion (33.14).
Because of the finite number N ≥ 2 of scatterers tr (An) receives contri-
butions corresponding to all periodic itineraries s1s2s3 · · · sn−1sn of total
symbol length n with an alphabet si ∈ {1, 2, . . . , N}. of N symbols,

trAs1s2As2s3 · · ·Asn−1snAsnsn (33.20)

=
+∞∑

ls1=−∞

+∞∑

ls2=−∞
· · ·

+∞∑

lsn =−∞
As1s2ls1 ls2

As2s3ls2 ls3
· · ·Asn−1sn

lsn−1 lsn
A
sns1
lsn ls1

.
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Remember our notation that the trace tr (· · ·) refers only to the |l〉 space.
By construction A describes only scatterer-to-scatterer transitions, so the
symbolic dynamics has to respect the no-self-reflection pruning rule: for
admissible itineraries the successive symbols have to be different. This rule
is implemented by the factor 1 − δss

′
in (33.13).

The trace trAn is the sum of all itineraries of length n,

trAn =
∑

{s1s2···sn}
tr As1s2As2s3 · · ·Asn−1snAsns1 . (33.21)

We will show for the N -disk problem that these periodic itineraries
correspond in the semiclassical limit, kasi ≫ 1, to geometrical periodic
orbits with the same symbolic dynamics.

For periodic orbits with creeping sections the symbolic alphabet has to
be extended, see sect. 33.3.1. Furthermore, depending on the geometry,
there might be nontrivial pruning rules based on the so called ghost orbits,
see sect. 33.4.1.

33.2.3 Symmetry reductions

The determinants over the multi-scattering matrices run over the multi-
ple index L of the multiple index space. This is the proper form for the
symmetry reduction (in the multiple index space), e.g., if the scatterer
configuration is characterized by a discrete symmetry group G, we have

DetM =
∏

α

(detMDα(k))dα ,

where the index α runs over all conjugate classes of the symmetry group G
and Dα is the αth representation of dimension dα. The symmetry reduction
on the exact quantum mechanical level is the same as for the classical evo-
lution operators spectral determinant factorization (22.17) of sect. 22.4.2.

33.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. In order to be con-
crete, we will consider the semiclassical reduction of the scattering of a
single disk in plane.

Instead of calculating the semiclassical approximation to the determi-
nant of the one-disk system scattering matrix (33.9), we do so for

d(k) ≡ 1

2πi

d

dk
ln detS1(ka) =

1

2πi

d

dk
tr
(
lnS1(ka)

)
(33.22)
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the so called time delay.

d(k) =
1

2πi

d

dk
tr
(
ln detS1(ka)

)
=

1

2πi

∑

m

(
H

(1)
m (ka)

H
(2)
m (ka)

d

dk

H
(2)
m (ka)

H
(1)
m (ka)

)

=
a

2πi

∑

m

(
H

(2)
m

′
(ka)

H
(2)
m (ka)

− H
(1)
m

′
(ka)

H
(1)
m (ka)

)
. (33.23)

Here the prime denotes the derivative with respect to the argument of the
Hankel functions. Let us introduce the abbreviation

χν =
H

(2)
ν

′
(ka)

H
(2)
ν (ka)

− H
(1)
ν

′
(ka)

H
(1)
ν (ka)

. (33.24)

We apply the Watson contour method to (33.23)

d(k) =
aj
2πi

+∞∑

m=−∞
χm =

aj
2πi

1

2i

∮

C
dν

e−iνπ

sin(νπ)
χν . (33.25)

Here the contour C encircles in a counter-clockwise manner a small semi-
infinite strip D which completely covers the real ν-axis but which only has
a small finite extent into the positive and negative imaginary ν direction.
The contour C is then split up in the path above and below the real ν-axis
such that

d(k) =
a

4πi

{∫ +∞+iǫ

−∞+iǫ
dν

e−iνπ

sin(νπ)
χν −

∫ +∞−iǫ

−∞−iǫ
dν

e−iνπ

sin(νπ)
χν

}
.

Then, we perform the substitution ν → −ν in the second integral so as to
get

d(k) =
a

4π

{∫ +∞+iǫ

−∞+iǫ
dν

e−iνπ

sin(νπ)
χν + dν

e+iνπ

sin(νπ)
χ−ν

}

=
a

2πi

{
2

∫ +∞+iǫ

−∞+iǫ
dν

e2iνπ

1 − e2iνπ
χν +

∫ +∞

−∞
dν χν

}
, (33.26)

where we used the fact that χ−ν = χν . The contour in the last integral can
be deformed to pass over the real ν-axis since its integrand has no Watson
denominator.

We will now approximate the last expression semiclassically, that is,
under the assumption ka ≫ 1. As the two contributions in the last line
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of (33.26) differ by the presence or absence of the Watson denominator,
they will have to be handled semiclassically in different ways: the first will
be closed in the upper complex plane and evaluated at the poles of χν ,
the second integral will be evaluated on the real ν-axis under the Debye
approximation for Hankel functions.

We will now work out the first term. The poles of χν in the upper

complex plane are given by the zeros of H
(1)
ν (ka) which will be denoted

by νℓ(ka) and by the zeros of H
(2)
ν (ka) which we will denote by −ν̄ℓ(ka),

ℓ = 1, 2, 3, · · ·. In the Airy approximation to the Hankel functions they are
given by

νℓ(ka) = ka+ iαℓ(ka) , (33.27)

−ν̄ℓ(ka) = −ka+ i(αℓ(k
∗a))∗ = − (νℓ(k

∗a))∗ , (33.28)

with

iαℓ(ka) = ei
π
3

(
ka

6

)1/3

qℓ − e−i
π
3

(
6

ka

)1/3 q2ℓ
180

− 1

70ka

(
1 − q3ℓ

30

)

+ ei
π
3

(
6

ka

)5
3 1

3150

(
29qℓ
62

− 281q4ℓ
180 · 63

)
+ · · · . (33.29)

Here qℓ labels the zeros of the Airy integral

A(q) ≡
∫ ∞

0
dτ cos(qτ − τ3) = 3−1/3πAi(−3−1/3q) ,

with Ai(z) being the standard Airy function; approximately, qℓ ≈ 61/3[3π(ℓ−
1/4)]2/3/2. In order to keep the notation simple, we will abbreviate νℓ ≡
νℓ(ka) and ν̄ℓ ≡ ν̄ℓ(ka). Thus the first term of (33.26) becomes finally

a

2πi

{
2

∫ +∞+iǫ

−∞+iǫ
dν

e2iνπ

1 − e2iνπ
χν

}
= 2a

∞∑

ℓ=1

(
e2iνℓπ

1 − e2iνℓπ
+

e−2iν̄ℓπ

1 − e−2iν̄ℓπ

)
.

In the second term of (33.26) we will insert the Debye approximations for
the Hankel functions:

H(1/2)
ν (x) ∼

√
2

π
√
x2 − ν2

exp
(
±i
√
x2 − ν2 ∓ iν arccos

ν

x
∓ i

π

4

)
for |x| > ν

(33.30)

H(1/2)
ν (x) ∼ ∓i

√
2

π
√
ν2 − x2

exp
(
−
√
ν2 − x2 + νArcCosh

ν

x

)
for |x| < ν .
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Note that for ν > ka the contributions in χν cancel. Thus the second
integral of (33.26) becomes

a

2πi

∫ +∞

−∞
dν χν =

a

2πi

∫ +ka

−ka
dν

(−2i)

a

d

dk

(√
k2a2 − ν2 − ν arccos

ν

ka

)
+ · · ·

= − 1

kπ

∫ ka

−ka
dν
√
k2a2 − ν2 + · · · = −a

2

2
k + · · · , (33.31)

where · · · takes care of the polynomial corrections in the Debye approxima-
tion and the boundary correction terms in the ν integration.

In summary, the semiclassical approximation to d(k) reads

d(k) = 2a
∞∑

ℓ=1

(
e2iνℓπ

1 − e2iνℓπ
+

e−2iν̄ℓπ

1 − e−2iν̄ℓπ

)
− a2

2
k + · · · .

Using the definition of the time delay (33.22), we get the following expres-
sion for detS1(ka):

ln detS1(ka) − lim
k0→0

ln detS1(k0a) (33.32)

= 2πia

∫ k

0
dk̃

(
−ak̃

2
+ 2

∞∑

ℓ=1

(
ei2πνℓ(k̃a)

1 − ei2πνℓ(k̃a)
+

e−i2πν̄ℓ(k̃a)

1 − e−i2πν̄ℓ(k̃a)

))
+ · · ·

∼ −2πiN(k)+2
∞∑

ℓ=1

∫ k

0
dk̃

d

dk̃

{
− ln

(
1−ei2πνℓ(k̃a)

)
+ ln

(
1−e−i2πν̄ℓ(k̃a)

)}
+ · · · ,

where in the last expression it has been used that semiclassically d
dkνℓ(ka) ∼

d
dk ν̄ℓ(ka) ∼ a and that the Weyl term for a single disk of radius a goes like
N(k) = πa2k2/(4π) + · · · (the next terms come from the boundary terms
in the ν-integration in (33.31)). Note that for the lower limit, k0 → 0, we
have two simplifications: First,

lim
k0→0

S1
mm′(k0a) = lim

k0→0

−H(2)
m (k0a)

H
(1)
m (k0a)

δmm′ = 1 × δmm′ ∀m,m′

→ lim
k0→0

detS1(k0a) = 1 .

Secondly, for k0 → 0, the two terms in the curly bracket of (33.32) cancel.

33.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the determinant S1(ka)
is given by

detS1(ka) ∼ e−i2πN(k)

∏∞
ℓ=1

(
1 − e−2iπν̄ℓ(ka)

)2
∏∞
ℓ=1

(
1 − e2iπνℓ(ka)

)2 , (33.33)
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l

l

Figure 33.2: Right- and left-handed diffractive creeping paths of increasing mode
number ℓ for a single disk.

with

νℓ(ka) = ka+ iαℓ(ka) = ka+ e+iπ/3(ka/6)1/3qℓ + · · ·
ν̄ℓ(ka) = ka− i(αℓ(k

∗a))∗ = ka+ e−iπ/3(ka/6)1/3qℓ + · · ·
= (νℓ(k

∗a))∗

and N(ka) = (πa2k2)/4π+ · · · the leading term in the Weyl approximation
for the staircase function of the wavenumber eigenvalues in the disk interior.
From the point of view of the scattering particle, the interior domains of
the disks are excluded relatively to the free evolution without scattering
obstacles. Therefore the negative sign in front of the Weyl term. For the
same reason, the subleading boundary term has here a Neumann structure,
although the disks have Dirichlet boundary conditions.

Let us abbreviate the r.h.s. of (33.33) for a disk s as

detSs(kas) ∼
(
e−iπN(kas )

)2 Z̃sℓ (k
∗as)

∗

Z̃sℓ (kas)

Z̃sr (k
∗as)

∗

Z̃sr (kas)
, (33.34)

where Z̃sℓ (kas) and Z̃sr (kas) are the diffractional zeta functions (here and
in the following we will label semiclassical zeta functions with diffractive
corrections by a tilde) for creeping orbits around the sth disk in the left-
handed sense and the right-handed sense, respectively (see figure 33.2). The
two orientations of the creeping orbits are the reason for the exponents 2 in
(33.33). Equation (33.33) describes the semiclassical approximation to the
incoherent part (= the curly bracket on the r.h.s.) of the exact expression
(33.19) for the case that the scatterers are disks.

In the following we will discuss the semiclassical resonances in the 1-disk
scattering problem with Dirichlet boundary conditions, i.e. the so-called
shape resonances. The quantum mechanical resonances are the poles of
the S-matrix in the complex k-plane. As the 1-disk scattering problem is
separable, the S-matrix is already diagonalized in the angular momentum
eigenbasis and takes the simple form (33.9). The exact quantummechanical
poles of the scattering matrix are therefore given by the the zeros, kres

nm, of

the Hankel functions H
(1)
m (ka) in the lower complex k plane which can be

labeled by two indices, m and n, where m denotes the angular quantum
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number of the Hankel function and n is a radial quantum number. As the
Hankel functions have to vanish at specific k values, one cannot use the
usual Debye approximation as semiclassical approximation for the Hankel
function, since this approximation only works in case the Hankel function
is dominated by only one saddle. However, for the vanishing of the Hankel
function, one has to have the interplay of two saddles, thus an Airy ap-
proximation is needed as in the case of the creeping poles discussed above.

The Airy approximation of the Hankel function H
(1)
ν (ka) of complex-valued

index ν reads

H(1)
ν (ka) ∼ 2

π
e−i

π
3

(
6

ka

)1/3

A(q(1)) ,

with

q(1) = e−i
π
3

(
6

ka

)1/3

(ν − ka) + O
(
(ka)−1

)
.

Hence the zeros νℓ of the Hankel function in the complex ν plane follow
from the zeros qℓ of the Airy integral A(q) (see (33.3). Thus if we set νℓ = m
(with m integer), we have the following semiclassical condition on kres

m ∼ kresa+ iαℓ(k
resa)

= ei
π
3

(
kresa

6

)1/3

qℓ − e−i
π
3

(
6

kresa

)1/3 q2ℓ
180

− 1

70kresa

(

+ ei
π
3

(
6

kresa

) 5
3 1

3150

(
29qℓ
62

− 281q4ℓ
180 · 63

)
+ · · · ,

with l = 1, 2, 3, · · · .

For a given index l this is equivalent to

0 ∼ 1 − e(ik
res−αℓ)2πa ,

the de-Broglie condition on the wave function that encircles the disk. Thus
the semiclassical resonances of the 1-disk problem are given by the zeros of
the following product

∞∏

l=1

(
1 − e(ik−αℓ)2πa

)
,

which is of course nothing else than Z̃1-disk(k), the semiclassical diffrac-
tion zeta function of the 1-disk scattering problem, see (33.34). Note that
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Figure 33.3: The shape resonances of the 1-disk system in the complex k plane in
units of the disk radius a. The boxes label the exact quantum mechanical resonances

(given by the zeros of H
(1)
m (ka) for m = 0, 1, 2), the crosses label the diffractional

semiclassical resonances (given by the zeros of the creeping formula in the Airy ap-
proximation (33.35) up to the order O([ka]1/3)).
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Figure 33.4: Same as in figure 33.3. However, the subleading terms in the Airy

approximation (33.35) are taken into account up to the order O([ka]−1/3) (upper
panel) and up to order O([ka]−1) (lower panel).

this expression includes just the pure creeping contribution and no genuine
geometrical parts. Because of

H
(1)
−m(ka) = (−1)mH(1)

m (ka) ,

the zeros are doubly degenerate if m 6= 0, corresponding to right- and left
handed creeping turns. The case m = 0 is unphysical, since all zeros of the

Hankel function H
(1)
0 (ka) have negative real value.

From figure 33.3 one notes that the creeping terms in the Airy order
O([ka]1/3), which are used in the Keller construction, systematically under-
estimate the magnitude of the imaginary parts of the exact data. However,
the creeping data become better for increasing Re k and decreasing |Im k|,
as they should as semiclassical approximations.

In the upper panel of figure 33.4 one sees the change, when the next
order in the Airy approximation (33.35) is taken into account. The approx-
imation is nearly perfect, especially for the leading row of resonances. The
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second Airy approximation using (33.35) up to order O([ka]−1) is perfect
up to the drawing scale of figure 33.4 (lower panel).

33.4 From quantum cycle to semiclassical cycle

The procedure for the semiclassical approximation of a general periodic
itinerary (33.20) of length n is somewhat laborious, and we will only sketch
the procedure here. It follows, in fact, rather closely the methods developed
for the semiclassical reduction of the determinant of the 1-disk system.

The quantum cycle

trAs1s2 · · ·Asms1 =
∞∑

ls1=−∞
· · ·

∞∑

lsm=−∞
As1s2ls1 ls2

· · ·Asms1
lsm ls1

still has the structure of a “multi-trace” with respect to angular momentum.

Each of the sums
∑∞

lsi=−∞ – as in the 1-disk case – is replaced by a

Watson contour resummation in terms of complex angular momentum νsi .
Then the paths below the real νsi-axes are transformed to paths above these
axes, and the integrals split into expressions with and without an explicit
Watson sin(νsiπ) denominator.

1. In the sin(νsiπ) -independent integrals we replace all Hankel and
Bessel functions by Debye approximations. Then we evaluate the
expression in the saddle point approximation: either left or right spec-
ular reflection at disk si or ghost tunneling through disk si result.

2. For the sin(νsiπ) -dependent integrals, we close the contour in the

upper νsi plane and evaluate the integral at the residuaH
(1)
νsi

(kasi)=0.

Then we use the Airy approximation for Jνsi
(kasi) and H

(1)
νsi

(kasi):
left and right creeping paths around disk si result.

In the above we have assumed that no grazing geometrical paths appear.
If they do show up, the analysis has to be extended to the case of coninciding
saddles between the geometrical paths with π/2 angle reflection from the
disk surface and paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contact of the point par-
ticle with the disk si:

1. either geometrical which in turn splits into three alternatives

(a) specular reflection to the right,

(b) specular reflection to the left,
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Figure 33.5: A 4-disk problem with three
specular reflections, one ghost tunneling, and
distinct creeping segments from which all asso-
ciated creeping paths can be constructed. ����
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(c) or ‘ghost tunneling’ where the latter induce the nontrivial prun-
ing rules (as discussed above)

2. or right-handed creeping turns

3. or left-handed creeping turns,

see figure 33.5. The specular reflection to the right is linked to left-handed
creeping paths with at least one knot. The specular reflection to the left
matches a right-handed creeping paths with at least one knot, whereas the
shortest left- and right-handed creeping paths in the ghost tunneling case
are topologically trivial. In fact, the topology of the creeping paths encodes
the choice between the three alternatives for the geometrical contact with
the disk. This is the case for the simple reason that creeping sections have
to be positive definite in length: the creeping amplitude has to decrease
during the creeping process, as tangential rays are constantly emitted. In
mathematical terms, it means that the creeping angle has to be positive.
Thus, the positivity of the two creeping angles for the shortest left and right
turn uniquely specifies the topology of the creeping sections which in turn
specifies which of the three alternatives, either specular reflection to the
right or to the left or straight “ghost” tunneling through disk j, is realized
for the semiclassical geometrical path. Hence, the existence of a unique
saddlepoint is guaranteed.

In order to be concrete, we will restrict ourselves in the following to the
scattering from N < ∞ non-overlapping disks fixed in the 2-dimensional
plane. The semiclassical approximation of the periodic itinerary

trAs1s2As2s3 · · ·Asn−1snAsns1

becomes a standard periodic orbit labeled by the symbol sequence s1s2 · · · sn .
Depending on the geometry, the individual legs si−1 → si → si+1 result
either from a standard specular reflection at disk si or from a ghost path
passing straight through disk si. If furthermore creeping contributions are
taken into account, the symbolic dynamics has to be generalized from single-
letter symbols {si} to triple-letter symbols {si, σi × ℓi} with ℓi ≥ 1 integer
valued and σi = 0,±1 1 By definition, the value σi = 0 represents the
non-creeping case, such that {si, 0× ℓi} = {si, 0} = {si} reduces to the old
single-letter symbol. The magnitude of a nonzero ℓi corresponds to creep-
ing sections of mode number |ℓi|, whereas the sign σi = ±1 signals whether

1Actually, these are double-letter symbols as σi and li are only counted as a product.
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4

31 2_
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Figure 33.6: (a) The ghost itinerary (1, 2, 3, 4). (b) The parent itinerary (1, 3, 4).

the creeping path turns around the disk si in the positive or negative sense.
Additional full creeping turns around a disk si can be summed up as a geo-
metrical series; therefore they do not lead to the introduction of a further
symbol.

33.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, say, disk si can be shown
to have the same weight as the corresponding itinerary without the si th
symbol. Thus, semiclassically, they cancel each other in the tr ln(1 − A)
expansion, where they are multiplied by the permutation factor n/r with
the integer r counting the repeats. For example, let (1, 2, 3, 4) be a non-
repeated periodic itinerary with a ghost section at disk 2 steming from the
4th-order trace trA4. By convention, an underlined disk index signals a
ghost passage (as in figure 33.6a), with corresponding semiclassical ghost
traversal matrices also underlined, Ai,i+1Ai+1,i+2. Then its semiclassical,
geometrical contribution to tr ln(1−A) cancels exactly against the one of
its “parent” itinerary (1, 3, 4) (see figure 33.6b) resulting from the 3rd-order
trace:

−1

4

(
4A1,2A2,3A3,4A4,1

)
− 1

3

(
3A1,3A3,4A4,1

)

= (+1 − 1)A1,3A3,4A4,1 = 0 .

The prefactors −1/3 and −1/4 are due to the expansion of the logarithm,
the factors 3 and 4 inside the brackets result from the cyclic permutation
of the periodic itineraries, and the cancellation stems from the rule

· · ·Ai,i+1Ai+1,i+2 · · · = · · ·
(
−Ai,i+2

)
· · · . (33.36)

The reader might study more complicated examples and convince herself
that the rule (33.36).is sufficient to cancel any primary or repeated periodic
orbit with one or more ghost sections completely out of the expansion of
tr ln(1−A) and therefore also out of the cumulant expansion in the semi-
classical limit: Any periodic orbit of length m with n(< m) ghost sections
is cancelled by the sum of all ‘parent’ periodic orbits of length m− i (with
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1 ≤ i ≤ n and i ghost sections removed) weighted by their cyclic permu-
tation factor and by the prefactor resulting from the trace-log expansion.
This is the way in which the nontrivial pruning for the N -disk billiards can
be derived from the exact quantum mechanical expressions in the semi-
classical limit. Note that there must exist at least one index i in any given
periodic itinerary which corresponds to a non-ghost section, since otherwise
the itinerary in the semiclassical limit could only be straight and therefore
nonperiodic. Furthermore, the series in the ghost cancelation has to stop
at the 2nd-order trace, trA2, as trA itself vanishes identically in the full
domain which is considered here.

33.5 Heisenberg uncertainty

Where is the boundary ka ≈ 2m−1L̄/a coming from?

This boundary follows from a combination of the uncertainty principle
with ray optics and the non-vanishing value for the topological entropy of
the 3-disk repeller. When the wave number k is fixed, quantum mechanics
can only resolve the classical repelling set up to the critical topological
order n.The quantum wave packet which explores the repelling set has to
disentangle 2n different sections of size d ∼ a/2n on the “visible” part
of the disk surface (which is of order a) between any two successive disk
collisions. Successive collisions are separated spatially by the mean flight
length L̄, and the flux spreads with a factor L̄/a. In other words, the
uncertainty principle bounds the maximal sensible truncation in the cycle
expansion order by the highest quantum resolution attainable for a given
wavenumber k.

Commentary

Remark 33.1 Sources. This chapter is based in its entirety on ref. [K.1];
the reader is referred to the full exposition for the proofs and discussion of de-
tails omitted here. sect. 33.3 is based on appendix E of ref. [K.1]. We follow
Franz [32.19] in applying the Watson contour method [32.20] to (33.23). The
Airy and Debye approximations to the Hankel functions are given in ref. [32.21],
the Airy expansion of the 1-disk zeros can be found in ref. [32.22].For details see
refs. [32.19, 32.22, 32.23, K.1]. That the interior domains of the disks are ex-
cluded relatively to the free evolution without scattering obstacles was noted in
refs. [32.24, 32.15].

The procedure for the semiclassical approximation of a general periodic itinerary
(33.20) of length n can be found in ref. [K.1] for the case of the N -disk systems.
The reader interested in the details of the semiclassical reduction is advised to
consult this reference.

The ghost orbits were introduced in refs. [32.12, 32.24].
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Remark 33.2 Krein-Friedel-Lloyd formula. In the literature (see, e.g., refs. [32.14,
32.15] based on ref. [32.11] or ref. [32.1]) the transition from the quantum me-
chanics to the semiclassics of scattering problems has been performed via the
semiclassical limit of the left hand sides of the Krein-Friedel-Lloyd sum for the
(integrated) spectral density [K.5, K.6, 32.8, 32.9]. See also ref. [32.13] for a mod-
ern discussion of the Krein-Friedel-Lloyd formula and refs. [32.1, 32.17] for the
connection of (32.17) to the the Wigner time delay.

The order of the two limits in (32.18) and (32.17) is essential, see e.g. Balian
and Bloch [32.11] who stress that smoothed level densities should be inserted into
the Friedel sums.

The necessity of the +iǫ in the semiclassical calculation can be understood by
purely phenomenological considerations: Without the iǫ term there is no reason
why one should be able to neglect spurious periodic orbits which solely are there
because of the introduction of the confining boundary. The subtraction of the sec-
ond (empty) reference system helps just in the removal of those spurious periodic
orbits which never encounter the scattering region. The ones that do would still
survive the first limit b→ ∞, if they were not damped out by the +iǫ term.✎ 32.1

page 558

Remark 33.3 T, Cs , Ds and Ass′

matrices are trace-class In refs. [K.1] it has

explicitly been shown that the T-matrix as well as the Cs , Ds and Ass′

-matrices

of the scattering problem from N < ∞ non-overlapping finite disks are all trace-

class. The corresponding properties for the single-disk systems is particulary easy

to prove.
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Chapter 34

Helium atom

“But,” Bohr protested, “nobody will believe me un-
less I can explain every atom and every molecule.”
Rutherford was quick to reply, “Bohr, you explain
hydrogen and you explain helium and everybody will
believe the rest.”

John Archibald Wheeler (1986)

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and
other curious but rather idealized dynamical systems. If you have become
impatient and started wondering what good are the methods learned so
far in solving real physical problems, we have good news for you. We
will show in this chapter that the concepts of symbolic dynamics, unstable
periodic orbits, and cycle expansions are essential tools to understand and
calculate classical and quantum mechanical properties of nothing less than
the helium, a dreaded three-body Coulomb problem.

This sounds almost like one step too much at a time; we all know how
rich and complicated the dynamics of the three-body problem is – can
we really jump from three static disks directly to three charged particles
moving under the influence of their mutually attracting or repelling forces?
It turns out, we can, but we have to do it with care. The full problem is
indeed not accessible in all its detail, but we are able to analyze a somewhat
simpler subsystem – collinear helium. This system plays an important role
in the classical dynamics of the full three-body problem and its quantum
spectrum.

The main work in reducing the quantum mechanics of helium to a semi-
classical treatment of collinear helium lies in understanding why we are
allowed to do so. We will not worry about this too much in the begin-
ning; after all, 80 years and many failed attempts separate Heisenberg,
Bohr and others in the 1920ties from the insights we have today on the
role chaos plays for helium and its quantum spectrum. We have introduced
collinear helium and learned how to integrate its trajectories in sect. 7.3.
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Figure 34.1: Coordinates for the helium three
body problem in the plane.
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Figure 34.2: Collinear helium, with the two
electrons on opposite sides of the nucleus.
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Here we will find periodic orbits and determine the relevant eigenvalues of
the fundamental matrix in sect. 34.1. We will explain in sect. 34.5 why
a quantization of the collinear dynamics in helium will enable us to find
parts of the full helium spectrum; we then set up the semiclassical spectral
determinant and evaluate its cycle expansion. A full quantum justification
of this treatment of helium is briefly discussed in sect. 34.5.1.

34.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in sect. 7.3: the collinear helium
system consists of two electrons of mass me and charge −e moving on a
line with respect to a fixed positively charged nucleus of charge +2e, as in
figure 34.2.

The Hamiltonian can be brought to a non–dimensionalized form

H =
p2
1

2
+
p2
2

2
− 2

r1
− 2

r2
+

1

r1 + r2
= −1 . (34.1)

The case of negative energies chosen here is the most interesting one for us.
It exhibits chaos, unstable periodic orbits and is responsible for the bound
states and resonances of the quantum problem treated in sect. 34.5.

There is another classical quantity important for a semiclassical treat-
ment of quantum mechanics, and which will also feature prominently in
the discussion in the next section; this is the classical action (28.15) which
scales with energy as

S(E) =

∮
dq(E) · p(E) =

e2m
1/2
e

(−E)1/2
S, (34.2)

with S being the action obtained from (34.1) for E = −1, and coordinates
q = (r1, r2), p = (p1, p2). For the Hamiltonian (34.1), the period of a cycle
and its action are related by (28.17), Tp = 1

2Sp.
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Figure 34.3: (a) A typical trajectory in the r1 – r2 plane; the trajectory enters here
along the r1 axis and escapes to infinity along the r2 axis; (b) Poincaré map (r2=0)
for collinear helium. Strong chaos prevails for small r1 near the nucleus.

After a Kustaanheimo–Stiefel transformation

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
, (34.3)

and reparametrization of time by dτ = dt/r1r2, the equations of motion
take form (7.18) ✎ 34.1

page 600

Ṗ1 = 2Q1

[
2 − P 2

2

8
−Q2

2

(
1 +

Q2
2

R4
12

)]
; Q̇1 =

1

4
P1Q

2
2 (34.4)

Ṗ2 = 2Q2

[
2 − P 2

1

8
−Q2

1

(
1 +

Q2
1

R4
12

)]
; Q̇2 =

1

4
P2Q

2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 = 0 no
longer pose a problem to a numerical integration routine. The equations
(7.18) are singular only at the triple collision R12 = 0, that is, when both
electrons hit the nucleus at the same time.

The new coordinates and the Hamiltonian (7.17) are very useful when
calculating trajectories for collinear helium; they are, however, less intuitive
as a visualization of the three-body dynamics. We will therefore refer to
the old coordinates r1, r2 when discussing the dynamics and the periodic
orbits.

34.2 Chaos, symbolic dynamics and periodic or-

bits

Let us have a closer look at the dynamics in collinear helium. The electrons
are attracted by the nucleus. During an electron–nucleus collision momen-
tum is transferred between the inner and outer electron. The inner electron
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Figure 34.4: The cycle 011 in the fundamen-
tal domain r1 ≥ r2 (full line) and in the full
domain (dashed line).
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has a maximal screening effect on the charge of the nucleus, diminishing the
attractive force on the outer electron. This electron – electron interaction
is negligible if the outer electron is far from the nucleus at a collision and
the overall dynamics is regular like in the 1-dimensional Kepler problem.

Things change drastically if both electrons approach the nucleus nearly
simultaneously. The momentum transfer between the electrons depends
now sensitively on how the particles approach the origin. Intuitively, these
nearly missed triple collisions render the dynamics chaotic. A typical tra-
jectory is plotted in figure 34.3(a) where we used r1 and r2 as the relevant
axis. The dynamics can also be visualized in a Poincaré surface of section,
see figure 34.3(b). We plot here the coordinate and momentum of the outer
electron whenever the inner particle hits the nucleus, that is, r1 or r2 =
0. As the unstructured gray region of the Poincaré section for small r1
illustrates, the dynamics is chaotic whenever the outer electron is close to
the origin during a collision. Conversely, regular motions dominate when-
ever the outer electron is far from the nucleus. As one of the electrons
escapes for almost any starting condition, the system is unbounded: one
electron (say electron 1) can escape, with an arbitrary amount of kinetic
energy taken by the fugative. The remaining electron is trapped in a Ke-
pler ellipse with total energy in the range [−1,−∞]. There is no energy
barrier which would separate the bound from the unbound regions of the
phase space. From general kinematic arguments one deduces that the outer
electron will not return when p1 > 0, r2 ≤ 2 at p2 = 0, the turning point of
the inner electron. Only if the two electrons approach the nucleus almost
symmetrically along the line r1 = r2, and pass close to the triple collision
can the momentum transfer between the electrons be large enough to kick
one of the particles out completely. In other words, the electron escape
originates from the near triple collisions.

The collinear helium dynamics has some important properties which we
now list.

34.2.1 Reflection symmetry

The Hamiltonian (7.9) is invariant with respect to electron–electron ex-
change; this symmetry corresponds to the mirror symmetry of the poten-
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tial along the line r1 = r2, figure 34.4. As a consequence, we can restrict
ourselves to the dynamics in the fundamental domain r1 ≥ r2 and treat a
crossing of the diagonal r1 = r2 as a hard wall reflection. The dynamics
in the full domain can then be reconstructed by unfolding the trajectory
through back-reflections. As explained in chapter 22, the dynamics in the
fundamental domain is the key to the factorization of spectral determin-
ants, to be implemented here in (34.15). Note also the similarity between
the fundamental domain of the collinear potential figure 34.4, and the fun-
damental domain figure 11.6(b) in the 3–disk system, a simpler problem
with the same binary symbolic dynamics.

in depth:

sect. 22.6, p. 400

34.2.2 Symbolic dynamics

We have already made the claim that the triple collisions render the collinear
helium fully chaotic. We have no proof of the assertion, but the analysis of
the symbolic dynamics lends further credence to the claim.

The potential in (34.1) forms a ridge along the line r1 = r2. One can
show that a trajectory passing the ridge must go through at least one two-
body collision r1 = 0 or r2 = 0 before coming back to the diagonal r1 = r2.
This suggests a binary symbolic dynamics corresponding to the dynamics

in the fundamental domain r1 ≥ r2; the symbolic dynamics is linked to the
Poincaré map r2 = 0 and the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the line r1 = r2 between two
collisions with the nucleus r2 = 0;

1: if a trajectory is reflected from the line r1 = r2 between two collisions
with the nucleus r2 = 0.

Empirically, the symbolic dynamics is complete for a Poincaré map in
the fundamental domain, that is, there exists a one-to-one correspondence
between binary symbol sequences and collinear trajectories in the funda-
mental domain, with exception of the 0 cycle.

34.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easy to count the
number of periodic orbits in the fundamental domain, as in sect. 13.5.2.
However, mere existence of these cycles does not suffice to calculate semi-
classical spectral determinants. We need to determine their phase space
trajectories and calculate their periods, topological indices and stabilities.
A restriction of the periodic orbit search to a suitable Poincaré surface of
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section, e.g. r2 = 0 or r1 = r2, leaves us in general with a 2-dimensional
search. Methods to find periodic orbits in multi-dimensional spaces have
been described in chapter 17. They depend sensitively on good starting
guesses. A systematic search for all orbits can be achieved only after com-
bining multi-dimensional Newton methods with interpolation algorithms
based on the binary symbolic dynamics phase space partitioning. All cycles
up to symbol length 16 (some 8000 primitive cycles) have been computed
by such methods, with some examples shown in figure 34.5. All numerical
evidence indicates that the dynamics of collinear helium is hyperbolic, and
that all periodic orbits are unstable.

Note that the fixed point 0 cycle is not in this list. The 0 cycle would
correspond to the situation where the outer electron sits at rest infinitely far
from the nucleus while the inner electron bounces back and forth into the
nucleus. The orbit is the limiting case of an electron escaping to infinity
with zero kinetic energy. The orbit is in the regular (that is, separable)
limit of the dynamics and is thus marginally stable. The existence of this
orbit is also related to intermittent behavior generating the quasi–regular
dynamics for large r1 that we have already noted in figure 34.3(b).

Search algorithm for an arbitrary periodic orbit is quite cumbersome to
program. There is, however, a class of periodic orbits, orbits with symme-
tries, which can be easily found by a one-parameter search. The only sym-
metry left for the dynamics in the fundamental domain is time reversal sym-
metry; a time reversal symmetric periodic orbit is an orbit whose trajectory
in phase space is mapped onto itself when changing (p1, p2) → (−p1,−p2),
by reversing the direction of the momentum of the orbit. Such an orbit
must be a “libration” or self-retracing cycle, an orbit that runs back and
forth along the same path in the (r1, r2) plane. The cycles 1, 01 and 001 in
figure 34.5 are examples of self-retracing cycles. Luckily, the shortest cycles
that we desire most ardently have this symmetry.

Why is this observation helpful? A self-retracing cycle must start per-
pendicular to the boundary of the fundamental domain, that is, on either of
the axis r2 = 0 or r1 = r2, or on the potential boundary − 2

r1
− 2

r2
+ 1′

r1+r2
=

−1. By shooting off trajectories perpendicular to the boundaries and mon-
itoring the orbits returning to the boundary with the right symbol length
we will find time reversal symmetric cycles by varying the starting point on
the boundary as the only parameter. But how can we tell whether a given
cycle is self-retracing or not? All the relevant information is contained in
the itineraries; a cycle is self-retracing if its itinerary is invariant under time
reversal symmetry (that is, read backwards) and a suitable number of cyclic
permutations. All binary strings up to length 5 fulfill this condition. The
symbolic dynamics contains even more information; we can tell at which
boundary the total reflection occurs. One finds that an orbit starts out
perpendicular

• to the diagonal r1 = r2 if the itinerary is time reversal invariant and
has an odd number of 1’s; an example is the cycle 001 in figure 34.5;
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Figure 34.5: Some of the shortest cycles in collinear helium. The classical collinear
electron motion is bounded by the potential barrier −1 = −2/r1 − 2/r2 +1/(r1 + r2)
and the condition ri ≥ 0. The orbits are shown in the full r1–r2 domain, the itineraries
refers to the dynamics in the r1 ≥ r2 fundamental domain. The last figure, the 14-
cycle 00101100110111, is an example of a typical cycle with no symmetry.
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• to the axis r2 = 0 if the itinerary is time reversal invariant and has an
even number of symbols; an example is the cycle 0011 in figure 34.5;

• to the potential boundary if the itinerary is time reversal invariant
and has an odd number of symbols; an example is the cycle 011 in
figure 34.5.

All cycles up to symbol length 5 are time reversal invariant, the first two
non-time reversal symmetric cycles are cycles 001011 and 001101 in fig-
ure 34.5. Their determination would require a two-parameter search. The
two cycles are mapped onto each other by time reversal symmetry, that is,
they have the same trace in the r1–r2 plane, but they trace out distinct
cycles in the full phase space.

We are ready to integrate trajectories for classical collinear helium with
the help of the equations of motions (7.18) and to find all cycles up to
length 5. There is only one thing not yet in place; we need the govern-✎ 34.5

page 600
ing equations for the matrix elements of the fundamental matrix along a
trajectory in order to calculate stability indices. We will provide the main
equations in the next section, with the details of the derivation relegated
to the appendix C.2.

34.3 Local coordinates, fundamental matrix

In this section, we will derive the equations of motion for the fundamental
matrix along a collinear helium trajectory. The fundamental matrix is 4-
dimensional; the two trivial eigenvectors corresponding to the conservation
of energy and displacements along a trajectory can, however, be projected
out by suitable orthogonal coordinates transformations, see appendix C.
We will give the transformation to local coordinates explicitly, here for the
regularized coordinates (7.16), and state the resulting equations of motion
for the reduced [2 × 2] fundamental matrix.

The vector locally parallel to the trajectory is pointing in the direction
of the phase space velocity (5.7)

vm = ẋm(t) = ωmn
∂H

∂xn
= (HP1,HP2 ,−HQ1,−HQ2)

T ,

with HQi = ∂H
∂Qi

, and HPi = ∂H
∂Pi

, i = 1,2. The vector perpendicular to a
trajectory x(t) = (Q1(t), Q2(t), P1(t), P2(t)) and to the energy manifold is
given by the gradient of the Hamiltonian (7.17)

γ = ∇H = (HQ1,HQ2,HP1 ,HP2)
T .

By symmetry vmγm = ωmn
∂H
∂xn

∂H
∂xm

= 0, so the two vectors are orthogonal.
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Next, we consider the orthogonal matrix

O = (γ1, γ2, γ/R, v) (34.5)

=




−HP2/R HQ2 HQ1/R HP1

HP1/R −HQ1 HQ2/R HP2

−HQ2/R −HP2 HP1/R −HQ1

HQ1/R HP1 HP2/R −HQ2




with R = |∇H|2 = (H2
Q1

+H2
Q2

+H2
P1

+H2
P2

), which provides a transforma-
tion to local phase space coordinates centered on the trajectory x(t) along
the two vectors (γ, v). The vectors γ1,2 are phase space vectors perpen- ✎ 34.6
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dicular to the trajectory and to the energy manifold in the 4-dimensional
phase space of collinear helium. The fundamental matrix (4.6) rotated to
the local coordinate system by O then has the form

m =




m11 m12 ∗ 0
m21 m22 ∗ 0
0 0 1 0
∗ ∗ ∗ 1


 , M = OTmO

The linearized motion perpendicular to the trajectory on the energy mani-
fold is described by the [2× 2] matrix m; the ‘trivial’ directions correspond
to unit eigenvalues on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced fundamental matrix m are
given by

ṁ = l(t)m(t), (34.6)

with m(0) = 1. The matrix l depends on the trajectory in phase space and
has the form

l =




l11 l12 ∗ 0
l21 l22 ∗ 0
0 0 0 0
∗ ∗ ∗ 0


 ,

where the relevant matrix elements lij are given by

l11 =
1

R
[2HQ1Q2(HQ2HP1 +HQ1HP2) (34.7)

+(HQ1HP1 −HQ2HP2)(HQ1Q1 −HQ2Q2 −HP1P1 +HP2P2)]

l12 = −2HQ1Q2(HQ1HQ2 −HP1HP2)

+(H2
Q1

+H2
P2

)(HQ2Q2 +HP1P1) + (H2
Q2

+H2
P1

)(HQ1Q1 +HP2P2)

l21 =
1

R2
[2(HQ1P2 +HQ2P1)(HQ2HP1 +HQ1HP8)

−(H2
P1

+H2
P2

)(HQ1Q1 +HQ2Q2) − (H2
Q1

+H2
Q2

)(HP1P1 +HP2P2)]

l22 = −l11 .
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p Sp/2π ln |Λp| σp mp

1 1.82900 0.6012 0.5393 2
01 3.61825 1.8622 1.0918 4

001 5.32615 3.4287 1.6402 6
011 5.39451 1.8603 1.6117 6

0001 6.96677 4.4378 2.1710 8
0011 7.04134 2.3417 2.1327 8
0111 7.25849 3.1124 2.1705 8

00001 8.56618 5.1100 2.6919 10
00011 8.64306 2.7207 2.6478 10
00101 8.93700 5.1562 2.7291 10
00111 8.94619 4.5932 2.7173 10
01011 9.02689 4.1765 2.7140 10
01111 9.07179 3.3424 2.6989 10

000001 10.13872 5.6047 3.2073 12
000011 10.21673 3.0323 3.1594 12
000101 10.57067 6.1393 3.2591 12
000111 10.57628 5.6766 3.2495 12
001011 10.70698 5.3251 3.2519 12
001101 10.70698 5.3251 3.2519 12
001111 10.74303 4.3317 3.2332 12
010111 10.87855 5.0002 3.2626 12
011111 10.91015 4.2408 3.2467 12

Table 34.1: Action Sp (in units of 2π), Lyapunov exponent |Λp|/Tp for the motion
in the collinear plane, winding number σp for the motion perpendicular to the collinear
plane, and the topological indexmp for all fundamental domain cycles up to topological
length 6.

Here HQiQj , HPiPj , i, j = 1, 2 are the second partial derivatives of H with
respect to the coordinates Qi, Pi, evaluated at the phase space coordinate
of the classical trajectory.

34.4 Getting ready

Now everything is in place: the regularized equations of motion can be
implemented in a Runge–Kutta or any other integration scheme to calculate
trajectories. We have a symbolic dynamics and know how many cycles there
are and how to find them (at least up to symbol length 5). We know how to
compute the fundamental matrix whose eigenvalues enter the semiclassical
spectral determinant (30.12). By (28.17) the action Sp is proportional to
the period of the orbit, Sp = 2Tp.

There is, however, still a slight complication. Collinear helium is an in-
variant 4-dimensional subspace of the full helium phase space. If we restrict
the dynamics to angular momentum equal zero, we are left with 6 phase
space coordinates. That is not a problem when computing periodic orbits,
they are oblivious to the other dimensions. However, the fundamental ma-
trix does pick up extra contributions. When we calculate the fundamental
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matrix for the full problem, we must also allow for displacements out of
the collinear plane, so the full fundamental matrix for dynamics for L = 0
angular momentum is 6 dimensional. Fortunately, the linearized dynamics
in and off the collinear helium subspace decouple, and the fundamental
matrix can be written in terms of two distinct [2× 2] matrices, with trivial
eigendirections providing the remaining two dimensions. The submatrix
related to displacements off the linear configuration characterizes the lin-
earized dynamics in the additional degree of freedom, the Θ-coordinate in
figure 34.1. It turns out that the linearized dynamics in the Θ coordinate
is stable, corresponding to a bending type motion of the two electrons. We
will need the stability exponents for all degrees of freedom in evaluating
the semiclassical spectral determinant in sect. 34.5.

The numerical values of the actions, stability exponents, stability angles,
and topological indices for the shortest cycles are listed in table 34.3. These
numbers, needed for the semiclassical quantization implemented in the next
section, an also be helpful in checking your own calculations.

34.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium quantum energy
levels let us have a brief look at the overall structure of the spectrum. This
will give us a preliminary feel for which parts of the helium spectrum are
accessible with the help of our collinear model – and which are not. In
order to keep the discussion as simple as possible and to concentrate on the
semiclassical aspects of our calculations we offer here only a rough overview.
For a guide to more detailed accounts see remark 34.4.

34.5.1 Structure of helium spectrum

We start by recalling Bohr’s formula for the spectrum of hydrogen like
one-electron atoms. The eigenenergies form a Rydberg series

EN = −e
4me

~2

Z2

2N2
, (34.8)

where Ze is the charge of the nucleus and me is the mass of the electron.
Through the rest of this chapter we adopt the atomic units e = me = ~ = 1.

The simplest model for the helium spectrum is obtained by treating the
two electrons as independent particles moving in the potential of the nucleus
neglecting the electron–electron interaction. Both electrons are then bound
in hydrogen like states; the inner electron will see a charge Z = 2, screening
at the same time the nucleus, the outer electron will move in a Coulomb
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potential with effective charge Z−1 = 1. In this way obtain a first estimate
for the total energy

EN,n = − 2

N2
− 1

2n2
with n > N. (34.9)

This double Rydberg formula contains already most of the information
we need to understand the basic structure of the spectrum. The (correct)
ionizations thresholds EN = − 2

N2 are obtained in the limit n→ ∞, yielding
the ground and excited states of the helium ion He+. We will therefore
refer to N as the principal quantum number. We also see that all states
EN,n with N ≥ 2 lie above the first ionization threshold for N = 1. As
soon as we switch on electron-electron interaction these states are no longer
bound states; they turn into resonant states which decay into a bound state
of the helium ion and a free outer electron. This might not come as a big
surprise if we have the classical analysis of the previous section in mind: we
already found that one of the classical electrons will almost always escape
after some finite time. More remarkable is the fact that the first, N = 1
series consists of true bound states for all n, an effect which can only be
understood by quantum arguments.

The hydrogen-like quantum energies (34.8) are highly degenerate; states
with different angular momentum but the same principal quantum number
N share the same energy. We recall from basic quantum mechanics of
hydrogen atom that the possible angular momenta for a given N span
l = 0, 1 . . . N − 1. How does that affect the helium case? Total angular
momentum L for the helium three-body problem is conserved. The collinear
helium is a subspace of the classical phase space for L = 0; we thus expect
that we can only quantize helium states corresponding to the total angular
momentum zero, a subspectrum of the full helium spectrum. Going back
to our crude estimate (34.9) we may now attribute angular momenta to the
two independent electrons, l1 and l2 say. In order to obtain total angular
momentum L = 0 we need l1 = l2 = l and lz1 = −lz2, that is, there
are N different states corresponding to L = 0 for fixed quantum numbers
N,n. That means that we expect N different Rydberg series converging to
each ionization threshold EN = −2/N2. This is indeed the case and the N
different series can be identified also in the exact helium quantum spectrum,
see figure 34.6. The degeneracies between the different N Rydberg series
corresponding to the same principal quantum number N , are removed by
the electron-electron interaction. We thus already have a rather good idea
of the coarse structure of the spectrum.

In the next step, we may even speculate which parts of the L = 0
spectrum can be reproduced by the semiclassical quantization of collinear
helium. In the collinear helium, both classical electrons move back and
forth along a common axis through the nucleus, so each has zero angu-
lar momentum. We therefore expect that collinear helium describes the
Rydberg series with l = l1 = l2 = 0. These series are the energetically
lowest states for fixed (N,n), corresponding to the Rydberg series on the
outermost left side of the spectrum in figure 34.6. We will see in the next
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Figure 34.6: The exact quantum helium spectrum for L = 0. The energy levels
denoted by bars have been obtained from full 3-dimensional quantum calculations
[34.3].
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section that this is indeed the case and that the collinear model holds down
to the N = 1 bound state series, including even the ground state of helium!
We will also find a semiclassical quantum number corresponding to the an-
gular momentum l and show that the collinear model describes states for
moderate angular momentum l as long as l ≪ N . .

☞ remark 34.4

34.5.2 Semiclassical spectral determinant for collinear he-
lium

Nothing but lassitude can stop us now from calculating our first semiclassi-
cal eigenvalues. The only thing left to do is to set up the spectral determin-
ant in terms of the periodic orbits of collinear helium and to write out the
first few terms of its cycle expansion with the help of the binary symbolic
dynamics. The semiclassical spectral determinant (30.12) has been written
as product over all cycles of the classical systems. The energy dependence
in collinear helium enters the classical dynamics only through simple scal-
ing transformations described in sect. 7.3.1 which makes it possible to write
the semiclassical spectral determinant in the form

det (Ĥ −E)sc = exp

(
−
∑

p

∞∑

r=1

1

r

eir(sSp−mp
π
2
)

(−det (1 − Mr
p⊥))1/2|det (1 − Mr

p‖)|1/2

)
, (34.10)

with the energy dependence absorbed into the variable

s =
e2

~

√
me

−E ,

obtained by using the scaling relation (34.2) for the action. As explained in
sect. 34.3, the fact that the [4 × 4] fundamental matrix decouples into two
[2×2] submatrices corresponding to the dynamics in the collinear space and
perpendicular to it makes it possible to write the denominator in terms of a
product of two determinants. Stable and unstable degrees of freedom enter
the trace formula in different ways, reflected by the absence of the modulus
sign and the minus sign in front of det (1−M⊥). The topological index mp

corresponds to the unstable dynamics in the collinear plane. Note that the
factor eiπN̄(E) present in (30.12) is absent in (34.10). Collinear helium is
an open system, that is, the eigenenergies are resonances corresponding to
the complex zeros of the semiclassical spectral determinant and the mean
energy staircase N̄(E) not defined. In order to obtain a spectral deter-
minant as an infinite product of the form (30.18) we may proceed as in
(15.9) by expanding the determinants in (34.10) in terms of the eigenval-
ues of the corresponding fundamental matrices. The matrix representing
displacements perpendicular to the collinear space has eigenvalues of the
form exp(±2πiσ), reflecting stable linearized dynamics. σ is the full wind-
ing number along the orbit in the stable degree of freedom, multiplicative
under multiple repetitions of this orbit .The eigenvalues corresponding to
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the unstable dynamics along the collinear axis are paired as {Λ, 1/Λ} with
|Λ| > 1 and real. As in (15.9) and (30.18) we may thus write

[
−det (1 − Mr

⊥)|det (1 − Mr
‖)|
]−1/2

(34.11)

=
[
−(1 − Λr)(1 − Λ−r)|(1 − e2πirσ)(1 − e−2πirσ)

]−1/2

=

∞∑

k,ℓ=0

1

|Λr|1/2Λrk e
−ir(ℓ+1/2)σ .

The ± sign corresponds to the hyperbolic/inverse hyperbolic periodic orbits
with positive/negative eigenvalues Λ. Using the relation (34.12) we see
that the sum over r in (34.10) is the expansion of the logarithm, so the
semiclassical spectral determinant can be rewritten as a product over dyn-
amical zeta functions, as in (15.9):

det (Ĥ − E)sc =

∞∏

k=0

∞∏

m=0

ζ−1
k,m =

∞∏

k=0

∞∏

m=0

∏

p

(1 − t(k,m)
p ) , (34.12)

where the cycle weights are given by

t(k,m)
p =

1

|Λ|1/2Λk e
i(sSp−mp

π
2
−4π(ℓ+1/2)σp) , (34.13)

and mp is the topological index for the motion in the collinear plane which
equals twice the topological length of the cycle. The two independent
directions perpendicular to the collinear axis lead to a twofold degeneracy
in this degree of freedom which accounts for an additional factor 2 in front
of the winding number σ. The values for the actions, winding numbers
and stability indices of the shortest cycles in collinear helium are listed in
table 34.3.

The integer indices ℓ and k play very different roles in the semiclass-
ical spectral determinant (34.12). A linearized approximation of the flow
along a cycle corresponds to a harmonic approximation of the potential in
the vicinity of the trajectory. Stable motion corresponds to a harmonic
oscillator potential, unstable motion to an inverted harmonic oscillator.
The index ℓ which contributes as a phase to the cycle weights in the dyn-
amical zeta functions can therefore be interpreted as a harmonic oscillator
quantum number; it corresponds to vibrational modes in the Θ coordinate
and can in our simplified picture developed in sect. 34.5.1 be related to
the quantum number l = l1 = l2 representing the single particle angular
momenta. Every distinct ℓ value corresponds to a full spectrum which
we obtain from the zeros of the semiclassical spectral determinant 1/ζℓ
keeping ℓ fixed. The harmonic oscillator approximation will eventually
break down with increasing off-line excitations and thus increasing ℓ. The
index k corresponds to ‘excitations’ along the unstable direction and can be
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identified with local resonances of the inverted harmonic oscillator centered
on the given orbit. The cycle contributions t

(k,m)
p decrease exponentially

with increasing k. Higher k terms in an expansion of the determinant give
corrections which become important only for large negative imaginary s
values. As we are interested only in the leading zeros of (34.12), that is,
the zeros closest to the real energy axis, it is sufficient to take only the
k = 0 terms into account.

Next, let us have a look at the discrete symmetries discussed in sect. 34.2.
Collinear helium has a C2 symmetry as it is invariant under reflection across
the r1 = r2 line corresponding to the electron-electron exchange symmetry.
As explained in sects. 22.1.2 and 22.5, we may use this symmetry to factor-
ize the semiclassical spectral determinant. The spectrum corresponding to
the states symmetric or antisymmetric with respect to reflection can be ob-
tained by writing the dynamical zeta functions in the symmetry factorized
form

1/ζ(ℓ) =
∏

a

(1 − ta)
2
∏

s̃

(1 − t2s̃) . (34.14)

Here, the first product is taken over all asymmetric prime cycles, that is,
cycles that are not self-dual under the C2 symmetry. Such cycles come in
pairs, as two equivalent orbits are mapped into each other by the symmetry
transformation. The second product runs over all self-dual cycles; these
orbits cross the axis r1 = r2 twice at a right angle. The self-dual cycles close
in the fundamental domain r1 ≤ r2 already at half the period compared
to the orbit in the full domain, and the cycle weights ts̃ in (34.14) are the
weights of fundamental domain cycles. The C2 symmetry now leads to the
factorization of (34.14) 1/ζ = ζ−1

+ ζ−1
− , with

1/ζ
(ℓ)
+ =

∏

a

(1 − ta)
∏

s̃

(1 − ts̃) ,

1/ζ
(ℓ)
− =

∏

a

(1 − ta)
∏

s̃

(1 + ts̃) , (34.15)

setting k = 0 in what follows. The symmetric subspace resonances are given

by the zeros of 1/ζ
(ℓ)
+ , antisymmetric resonances by the zeros of 1/ζ

(ℓ)
− , with

the two dynamical zeta functions defined as products over orbits in the
fundamental domain. The symmetry properties of an orbit can be read off
directly from its symbol sequence, as explained in sect. 34.2. An orbit with
an odd number of 1’s in the itinerary is self-dual under the C2 symmetry
and enters the spectral determinant in (34.15) with a negative or a positive
sign, depending on the symmetry subspace under consideration.

34.5.3 Cycle expansion results

So far we have established a factorized form of the semiclassical spectral
determinant and have thereby picked up two good quantum numbers; the
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quantum number m has been identified with an excitation of the bend-
ing vibrations, the exchange symmetry quantum number ±1 corresponds
to states being symmetric or antisymmetric with respect to the electron-
electron exchange. We may now start writing down the binary cycle ex-
pansion (18.5) and determine the zeros of spectral determinant. There is,
however, still another problem: there is no cycle 0 in the collinear helium.
The symbol sequence 0 corresponds to the limit of an outer electron fixed
with zero kinetic energy at r1 = ∞, the inner electron bouncing back and
forth into the singularity at the origin. This introduces intermittency in
our system, a problem discussed in chapter 21. We note that the behavior
of cycles going far out in the channel r1 or r2 → ∞ is very different from
those staying in the near core region. A cycle expansion using the binary
alphabet reproduces states where both electrons are localized in the near
core regions: these are the lowest states in each Rydberg series. The states
converging to the various ionization thresholds EN = −2/N2 correspond
to eigenfunctions where the wave function of the outer electron is stretched
far out into the ionization channel r1, r2 → ∞. To include those states,
we have to deal with the dynamics in the limit of large r1, r2. This turns
out to be equivalent to switching to a symbolic dynamics with an infinite
alphabet. With this observation in mind, we may write the cycle expansion

☞ remark 34.5
(....) for a binary alphabet without the 0 cycle as

1/ζℓ(s) = 1 − t
(ℓ)
1 − t

(ℓ)
01 − [t

(ℓ)
001 + t

(ℓ)
011 − t

(ℓ)
01 t

(ℓ)
1 ]

−[t
(ℓ)
0001 + t

(ℓ)
0011 − t

(ℓ)
001t

(ℓ)
1 + t

(ℓ)
0111 − t

(ℓ)
011t

(ℓ)
1 ] − . . . .(34.16)

The weights t
(ℓ)
p are given in (34.12), with contributions of orbits and com-

posite orbits of the same total symbol length collected within square brack-
ets. The cycle expansion depends only on the classical actions, stability
indices and winding numbers, given for orbits up to length 6 in table 34.3.
To get reacquainted with the cycle expansion formula (34.16), consider a
truncation of the series after the first term

1/ζ(ℓ)(s) ≈ 1 − t1 .

The quantization condition 1/ζ(ℓ)(s) = 0 leads to

Em,N = − (S1/2π)2

[m+ 1
2 + 2(N + 1

2 )σ1]2
, m,N = 0, 1, 2, . . . , (34.17)

with S1/2π = 1.8290 for the action and σ1 = 0.5393 for the winding num-
ber, see table 34.3, the 1 cycle in the fundamental domain. This cycle can
be described as the asymmetric stretch orbit, see figure 34.5. The addi-
tional quantum number N in (34.17) corresponds to the principal quantum
number defined in sect. 34.5.1. The states described by the quantization

ChaosBook.org/version11.8, Aug 30 2006 helium - 27dec2004



596 CHAPTER 34. HELIUM ATOM

N n j = 1 j = 4 j = 8 j = 12 j = 16 −Eqm

1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 — 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 — — — 0.5383 0.5429 0.5449
3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 — — 0.2812 0.2808 0.2808 0.2811
3 5 — — 0.2550 0.2561 0.2559 0.2560
3 6 — — — 0.2416 0.2433 0.2438
4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 — 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 — — 0.1508 0.1505 0.1507 0.1508
4 7 — — 0.1413 0.1426 0.1426 0.1426

Table 34.2: Collinear helium, real part of the symmetric subspace resonances ob-
tained by a cycle expansion (34.16) up to cycle length j. The exact quantum ener-
gies [34.3] are in the last column. The states are labeled by their principal quantum
numbers. A dash as an entry indicates a missing zero at that level of approximation.

condition (34.17) are those centered closest to the nucleus and correspond
therefore to the lowest states in each Rydberg series (for a fixed m and N
values), in figure 34.6. The simple formula (34.17) gives already a rather
good estimate for the ground state of helium! Results obtained from (34.17)
are tabulated in table 34.2, see the 3rd column under j = 1 and the com-
parison with the full quantum calculations.

In order to obtain higher excited quantum states, we need to include
more orbits in the cycle expansion (34.16), covering more of the phase space
dynamics further away from the center. Taking longer and longer cycles
into account, we indeed reveal more and more states in each N -series for
fixed m. This is illustrated by the data listed in table 34.2 for symmetric
states obtained from truncations of the cycle expansion of 1/ζ+.✎ 34.7

page 601
Results of the same quality are obtained for antisymmetric states by

calculating the zeros of 1/ζ
(ℓ)
− . Repeating the calculation with ℓ = 1 or

higher in (34.15) reveals states in the Rydberg series which are to the right
of the energetically lowest series in figure 34.6.

Commentary

Remark 34.1 Sources. The full 3-dimensional Hamiltonian after elimination of

the center of mass coordinates, and an account of the finite nucleus mass effects

is given in ref. [34.2]. The general two–body collision regularizing Kustaanheimo–

Stiefel transformation [34.5], a generalization of Levi-Civita’s [34.13] Pauli ma-

trix two–body collision regularization for motion in a plane, is due to Kustaan-

heimo [34.12] who realized that the correct higher-dimensional generalization of
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the “square root removal” trick (7.14), by introducing a vector Q with property

r = |Q|2 , is the same as Dirac’s trick of getting linear equation for spin 1/2 fermions

by means of spinors. Vector spaces equipped with a product and a known satisfy

|Q · Q| = |Q|2 define normed algebras. They appear in various physical applica-

tions - as quaternions, octonions, spinors. The technique was originally developed

in celestial mechanics [34.6] to obtain numerically stable solutions for planetary

motions. The basic idea was in place as early as 1931, when H. Hopf [34.14] used a

KS transformation in order to illustrate a Hopf’s invariant. The KS transformation

for the collinear helium was introduced in ref. [34.2].

Remark 34.2 Complete binary symbolic dynamics. No stable periodic orbit and

no exception to the binary symbolic dynamics of the collinear helium cycles have

been found in numerical investigations. A proof that all cycles are unstable, that

they are uniquely labeled by the binary symbolic dynamcis, and that this dynamics

is complete is, however, still missing. The conjectured Markov partition of the

phase space is given by the triple collision manifold, that is, by those trajectories

which start in or end at the singular point r1 = r2 = 0. See also ref. [34.2].

Remark 34.3 Spin and particle exchange symmetry. In our presentation of collinear

helium we have completely ignored all dynamical effects due to the spin of the par-

ticles involved, such as the electronic spin-orbit coupling. Electrons are fermions

and that determines the symmetry properties of the quantum states. The total

wave function, including the spin degrees of freedom, must be antisymmetric un-

der the electron-electron exchange transformation. That means that a quantum

state symmetric in the position variables must have an antisymmetric spin wave

function, that is, the spins are antiparallel and the total spin is zero (singlet-

state). Antisymmetric states have symmetric spin wave function with total spin 1

(tripletstates). The threefold degeneracy of spin 1 states is lifted by the spin-orbit

coupling.

Remark 34.4 Helium quantum numbers. The classification of the helium states

in terms of single electron quantum numbers, sketched in sect. 34.5.1, prevailed

until the 1960’s; a growing discrepancy between experimental results and theoreti-

cal predictions made it necessary to refine this picture. In particular, the different

Rydberg series sharing a given N -quantum number correspond, roughly speaking,

to a quantization of the inter electronic angle Θ, see figure 34.1, and can not be

described in terms of single electron quantum numbers l1, l2. The fact that some-

thing is slightly wrong with the single electron picture laid out in sect. 34.5.1 is

highlighted when considering the collinear configuration where both electrons are

on the same side of the nucleus. As both electrons again have angular momentum

equal to zero, the corresponding quantum states should also belong to single elec-

tron quantum numbers (l1, l2) = (0, 0). However, the single electron picture breaks

down completely in the limit Θ = 0 where electron-electron interaction becomes

the dominant effect. The quantum states corresponding to this classical configu-

ration are distinctively different from those obtained from the collinear dynamics

with electrons on different sides of the nucleus. The Rydberg series related to the

classical Θ = 0 dynamics are on the outermost rigth side in each N subspectrum

in figure 34.6, and contain the energetically highest states for given N,n quantum
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numbers, see also remark 34.5. A detailed account of the historical development

as well as a modern interpretation of the spectrum can be found in ref. [34.1].

Remark 34.5 Beyond the unstable collinear helium subspace. The semiclassical
quantization of the chaotic collinear helium subspace is discussed in refs. [34.7, 34.8,
34.9]. Classical and semiclassical considerations beyond what has been discussed
in sect. 34.5 follow several other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium where both electrons
are on the same side of the nucleus reveals that this configuration is fully stable
both in the collinear plane and perpendicular to it. The corresponding quantum
states can be obtained with the help of an approximate EBK-quantization which
reveals helium resonances with extremely long lifetimes (quasi - bound states in
the continuum). These states form the energetically highest Rydberg series for
a given principal quantum number N , see figure 34.6. Details can be found in
refs. [34.10, 34.11].

In order to obtain the Rydberg series structure of the spectrum, that is, the

succession of states converging to various ionization thresholds, we need to take

into account the dynamics of orbits which make large excursions along the r1 or

r2 axis. In the chaotic collinear subspace these orbits are characterized by symbol

sequences of form (a0n) where a stands for an arbitrary binary symbol sequence

and 0n is a succession of n 0’s in a row. A summation of the form
∑∞

n=0 ta0n , where

tp are the cycle weights in (34.12), and cycle expansion of indeed yield all Rydberg

states up the various ionization thresholds, see ref. [34.4]. For a comprehensive

overview on spectra of two-electron atoms and semiclassical treatments ref. [34.1].

Résumé

We have covered a lot of ground starting with considerations of the clas-
sical properties of a three-body Coulomb problem, and ending with the
semiclassical helium spectrum. We saw that the three-body problem re-
stricted to the dynamics on a collinear appears to be fully chaotic; this
implies that traditional semiclassical methods such as WKBquantization
will not work and that we needed the full periodic orbit theory to obtain
leads to the semiclassical spectrum of helium. As a piece of unexpected
luck the symbolic dynamics is simple, and the semiclassical quantization of
the collinear dynamics yields an important part of the helium spectrum,
including the ground state, to a reasonable accuracy. A sceptic might say:
“Why bother with all the semiclassical considerations? A straightforward
numerical quantum calculation achieves the same goal with better preci-
sion.” While this is true, the semiclassical analysis offers new insights
into the structure of the spectrum. We discovered that the dynamics per-
pendicular to the collinear plane was stable, giving rise to an additional
(approximate) quantum number ℓ. We thus understood the origin of the
different Rydberg series depicted in figure 34.6, a fact which is not at all
obvious from a numerical solution of the quantum problem.
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Having traversed the long road from the classical game of pinball all the
way to a credible helium spectrum computation, we could declare victory
and fold down this enterprise. Nevertheless, there is still much to think
about - what about such quintessentially quantum effects as diffraction,
tunnelling, ...? As we shall now see, the periodic orbit theory has still
much of interest to offer.
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Exercises

Exercise 34.1 Kustaanheimo–Stiefel transformation. Check the Kustaanheimo–
Stiefel regularization for collinear helium; derive the Hamiltonian (7.17) and the
collinear helium equations of motion (7.18).

Exercise 34.2 Helium in the plane. Starting with the helium Hamiltonian

in the infinite nucleus mass approximation mhe = ∞, and angular momentum L =

0, show that the three body problem can be written in terms of three independent

coordinates only, the electron-nucleus distances r1 and r2 and the inter-electron angle

Θ, see figure 7.1.

Exercise 34.3 Helium trajectories. Do some trial integrations of the
collinear helium equations of motion (7.18). Due to the energy conservation,
only three of the phase space coordinates (Q1, Q2, P1, P2) are independent.
Alternatively, you can integrate in 4 dimensions and use the energy conservation
as a check on the quality of your integrator.

The dynamics can be visualized as a motion in the original configuration
space (r1, r2), ri ≥ 0 quadrant, or, better still, by an appropriately chosen
2-d Poincaré section, exercise 34.4. Most trajectories will run away, do not be
surprised - the classical collinear helium is unbound. Try to guess approximately
the shortest cycle of figure 34.4.

Exercise 34.4 A Poincaré section for collinear Helium. Construct a
Poincaré section of figure 34.3b that reduces the helium flow to a map. Try
to delineate regions which correspond to finite symbol sequences, that is initial
conditions that follow the same topological itinerary in the figure 34.3a space
for a finite number of bounces. Such rough partition can be used to initiate 2–
dimensional Newton-Raphson method searches for helium cycles, exercise 34.5.

Exercise 34.5 Collinear helium cycles. The motion in the (r1, r2) plane
is topologically similar to the pinball motion in a 3-disk system, except that
the motion is in the Coulomb potential.

Just as in the 3-disk system the dynamics is simplified if viewed in the
fundamental domain, in this case the region between r1 axis and the r1 = r2
diagonal. Modify your integration routine so the trajectory bounces off the
diagonal as off a mirror. Miraculously, the symbolic dynamics for the survivors
again turns out to be binary, with 0 symbol signifying a bounce off the r1
axis, and 1 symbol for a bounce off the diagonal. Just as in the 3-disk game of
pinball, we thus know what cycles need to be computed for the cycle expansion
(34.16).

Guess some short cycles by requiring that topologically they correspond to
sequences of bounces either returning to the same ri axis or reflecting off the
diagonal. Now either Use special symmetries of orbits such as self-retracing to
find all orbits up to length 5 by a 1-dimensional Newton search.
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Exercise 34.6 Collinear helium cycle stabilities. Compute the eigen-
values for the cycles you found in exercise 34.5, as described in sect. 34.3. You
may either integrate the reduced 2× 2 matrix using equations (34.6) together
with the generating function l given in local coordinates by (34.7) or integrate
the full 4 × 4 Jacobian matrix, see sect. 20.1. Integration in 4 dimensions
should give eigenvalues of the form (1, 1,Λp, 1/Λp); The unit eigenvalues are
due to the usual periodic orbit invariances; displacements along the orbit as well
as perpendicular to the energy manifold are conserved; the latter one provides
a check of the accuracy of your computation. Compare with table 34.3; you
should get the actions and Lyapunov exponents right, but topological indices
and stability angles we take on faith.

Exercise 34.7 Helium eigenenergies. Compute the lowest eigenenergies
of singlet and triplet states of helium by substituting cycle data into the cycle
expansion (34.16) for the symmetric and antisymmetric zeta functions (34.15).
Probably the quickest way is to plot the magnitude of the zeta function as
function of real energy and look for the minima. As the eigenenergies in
general have a small imaginary part, a contour plot such as figure 18.1, can
yield informed guesses. Better way would be to find the zeros by Newton
method, sect. 18.2.3. How close are you to the cycle expansion and quantum
results listed in table 34.2? You can find more quantum data in ref. [34.3].
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Chapter 35

Diffraction distraction

(N. Whelan)

Diffraction effects characteristic to scattering off wedges are incorporated
into the periodic orbit theory.

35.1 Quantum eavesdropping

As noted in chapter 34, the classical mechanics of the helium atom is un-
defined at the instant of a triple collision. This is a common phenomenon -
there is often some singularity or discontinuity in the classical mechanics of
physical systems. This discontinuity can even be helpful in classifying the
dynamics. The points in phase space which have a past or future at the
discontinuity form manifolds which divide the phase space and provide the
symbolic dynamics. The general rule is that quantum mechanics smoothes
over these discontinuities in a process we interpret as diffraction. We solve
the local diffraction problem quantum mechanically and then incorporate
this into our global solution. By doing so, we reconfirm the central leitmotif
of this treatise: think locally - act globally.

While being a well-motivated physical example, the helium atom is
somewhat involved. In fact, so involved that we do not have a clue how
to do it. In its place we illustrate the concept of diffractive effects with a
pinball game. There are various classes of discontinuities which a billiard
can have. There may be a grazing condition such that some trajectories
hit a smooth surface while others are unaffected - this leads to the creeping
described in chapter 32. There may be a vertex such that trajectories to
one side bounce differently from those to the other side. There may be a
point scatterer or a magnetic flux line such that we do not know how to
continue classical mechanics through the discontinuities. In what follows,
we specialize the discussion to the second example - that of vertices or
wedges. To further simplify the discussion, we consider the special case of
a half line which can be thought of as a wedge of angle zero.
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Figure 35.1: Scattering of a plane wave off a
half line.

III

α

I

II

We start by solving the problem of the scattering of a plane wave off
a half line (see figure 35.1). This is the local problem whose solution we
will use to construct a global solution of more complicated geometries. We
define the vertex to be the origin and launch a plane wave at it from an
angle α. What is the total field? This is a problem solved by Sommerfeld
in 1896 and our discussion closely follows his.

The total field consists of three parts - the incident field, the reflected
field and the diffractive field. Ignoring the third of these for the moment,
we see that the space is divided into three regions. In region I there is both
an incident and a reflected wave. In region II there is only an incident field.
In region III there is nothing so we call this the shadowed region. However,
because of diffraction the field does enter this region. This accounts for
why you can overhear a conversation if you are on the opposite side of a
thick wall but with a door a few meters away. Traditionally such effects
have been ignored in semiclassical calculations because they are relatively
weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with the full line
case, so let us briefly consider that much simpler problem. There we know
that the problem can be solved by images. An incident wave of amplitude
A is of the form

v(r, ψ) = Ae−ikr cosψ (35.1)

where ψ = φ − α and φ is the angular coordinate. The total field is then
given by the method of images as

vtot = v(r, φ − α) − v(r, φ + α), (35.2)

where the negative sign ensures that the boundary condition of zero field
on the line is satisfied.

Sommerfeld then argued that v(r, ψ) can also be given a complex inte-
gral representation

v(r, ψ) = A

∫

C
dβf(β, ψ)e−ikr cos β. (35.3)
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Figure 35.2: The contour in the complex β plane. The pole is at β = −ψ (marked
by × in the figure) and the integrand approaches zero in the shaded regions as the
magnitude of the imaginary part of β approaches infinity.

This is certainly correct if the function f(β, ψ) has a pole of residue 1/2πi
at β = −ψ and if the contour C encloses that pole. One choice is

f(β, ψ) =
1

2π

eiβ

eiβ − e−iψ
. (35.4)

(We choose the pole to be at β = −ψ rather than β = ψ for reasons
discussed later.) One valid choice for the contour is shown in figure 35.2.
This encloses the pole and vanishes as |Imβ| → ∞ (as denoted by the
shading). The sections D1 and D2 are congruent because they are displaced
by 2π. However, they are traversed in an opposite sense and cancel, so
our contour consists of just the sections C1 and C2. The motivation for
expressing the solution in this complicated manner should become clear
soon.

What have we done? We extended the space under consideration by a
factor of two and then constructed a solution by assuming that there is also
a source in the unphysical space. We superimpose the solutions from the
two sources and at the end only consider the solution in the physical space
to be meaningful. Furthermore, we expressed the solution as a contour
integral which reflects the 2π periodicity of the problem. The half line
scattering problem follows by analogy.

Whereas for the full line the field is periodic in 2π, for the half line it is
periodic in 4π. This can be seen by the fact that the field can be expanded
in a series of the form {sin(φ/2), sin(φ), sin(3φ/2), · · ·}. As above, we extend
the space by thinking of it as two sheeted. The physical sheet is as shown
in figure 35.1 and the unphysical sheet is congruent to it. The sheets are
glued together along the half line so that a curve in the physical space which
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intersects the half line is continued in the unphysical space and vice-versa.
The boundary conditions are that the total field is zero on both faces of
the half line (which are physically distinct boundary conditions) and that
as r → ∞ the field is composed solely of plane waves and outgoing circular
waves of the form g(φ) exp(ikr)/

√
kr. This last condition is a result of

Huygens’ principle.

We assume that the complete solution is also given by the method of
images as

vtot = u(r, φ − α) − u(r, φ+ α). (35.5)

where u(r, ψ) is a 4π-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical space and the negative
sign guarantees that the solution vanishes on both faces of the half line.
Sommerfeld then made the ansatz that u is as given in equation (35.3)
with the same contour C1 + C2 but with the 4π periodicity accounted for
by replacing equation (35.4) with

f(β, ψ) =
1

4π

eiβ/2

eiβ/2 − e−iψ/2
. (35.6)

(We divide by 4π rather than 2π so that the residue is properly normalized.)
The integral (35.3) can be thought of as a linear superposition of an infinity
of plane waves each of which satisfies the Helmholtz equation (∇2 + k2)v =
0, and so their combination also satisfies the Helmholtz equation. We will
see that the diffracted field is an outgoing circular wave; this being a result
of choosing the pole at β = −ψ rather than β = ψ in equation (35.4).
Therefore, this ansatz is a solution of the equation and satisfies all boundary
conditions and therefore constitutes a valid solution. By uniqueness this is
the only solution.

In order to further understand this solution, it is useful to massage
the contour. Depending on φ there may or may not be a pole between
β = −π and β = π. In region I, both functions u(r, φ±α) have poles which
correspond to the incident and reflected waves. In region II, only u(r, φ−α)
has a pole corresponding to the incident wave. In region III there are no
poles because of the shadow. Once we have accounted for the geometrical
waves (that is, the poles), we extract the diffracted waves by saddle point
analysis at β = ±π. We do this by deforming the contours C so that they
go through the saddles as shown in figure 35.2.

Contour C1 becomes E2 + F while contour C2 becomes E1 − F where
the minus sign indicates that it is traversed in a negative sense. As a result,
F has no net contribution and the contour consists of just E1 and E2.

As a result of these machinations, the curves E are simply the curves D
of figure 35.2 but with a reversed sense. Since the integrand is no longer 2π
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Figure 35.3: The contour used to evaluate the diffractive field after the contribution
of possible poles has been explicitly evaluated. The curve F is traversed twice in
opposite directions and has no net contribution.

periodic, the contributions from these curves no longer cancel. We evaluate
both stationary phase integrals to obtain

u(r, ψ) ≈ −Ae
iπ/4

√
8π

sec(ψ/2)
eikr√
kr

(35.7)

so that the total diffracted field is

vdiff = −Ae
iπ/4

√
8π

(
sec

(
φ− α

2

)
− sec

(
φ+ α

2

))
eikr√
kr
. (35.8)

Note that this expression breaks down when φ ± α = π. These angles
correspond to the borders among the three regions of figure 35.1 and must
be handled more carefully - we can not do a stationary phase integral in the
vicinity of a pole. However, the integral representation (35.3) and (35.6) is
uniformly valid. ✎ 35.1

page 618
We now turn to the simple task of translating this result into the lan-

guage of semiclassical Green’s functions. Instead of an incident plane
wave, we assume a source at point x′ and then compute the resulting field
at the receiver position x. If x is in region I, there is both a direct term,
and a reflected term, if x is in region II there is only a direct term and
if x is in region III there is neither. In any event these contributions to
the semiclassical Green’s function are known since the free space Green’s
function between two points x2 and x1 is

Gf(x2, x1, k) = − i

4
H

(+)
0 (kd) ≈ − 1√

8πkd
exp{i(kd + π/4)}, (35.9)
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608 CHAPTER 35. DIFFRACTION DISTRACTION

where d is the distance between the points. For a reflection, we need to
multiply by −1 and the distance is the length of the path via the reflection
point. Most interesting for us, there is also a diffractive contribution to
the Green’s function. In equation (35.8), we recognize that the coefficient
A is simply the intensity at the origin if there were no scatterer. This is
therefore replaced by the Green’s function to go from the source to the
vertex which we label xV . Furthermore, we recognize that exp(ikr)/

√
kr

is, within a proportionality constant, the semiclassical Green’s function to
go from the vertex to the receiver.

Collecting these facts, we say

Gdiff(x, x′, k) = Gf(x, xV , k)d(θ, θ
′)Gf(xV , x

′, k), (35.10)

where, by comparison with equations (35.8) and (35.9), we have

d(θ, θ′) = sec

(
θ − θ′

2

)
− sec

(
θ + θ′

2

)
. (35.11)

Here θ′ is the angle to the source as measured from the vertex and θ is
the angle to the receiver. They were denoted as α and φ previously. Note
that there is a symmetry between the source and receiver as we expect
for a time-reversal invariant process. Also the diffraction coefficient d does
not depend on which face of the half line we use to measure the angles.
As we will see, a very important property of Gdiff is that it is a simple
multiplicative combination of other semiclassical Green’s functions.✎ 35.2

page 618
We now recover our classical perspective by realizing that we can still

think of classical trajectories. In calculating the quantum Green’s function,
we sum over the contributions of various paths. These include the classi-
cal trajectories which connect the points and also paths which connect the
points via the vertex. These have different weights as given by equations
(35.9) and (35.10) but the concept of summing over classical paths is pre-
served.

For completeness, we remark that there is an exact integral representa-
tion for the Green’s function in the presence of a wedge of arbitrary opening
angle [35.15]. It can be written as

G(x, x′, k) = g(r, r′, k, θ′ − θ)− g(r, r′, k, θ′ + θ) (35.12)

where (r, θ) and (r′, θ′) are the polar coordinates of the points x and x′ as
measured from the vertex and the angles are measured from either face of
the wedge. The function g is given by

g(r, r′, k, ψ) =
i

8πν

∫

C1+C2

dβ
H+

0 (k
√
r2 + r′2 − 2rr′ cos β)

1 − exp
(
iβ+ψ

ν

) (35.13)
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Figure 35.4: The billiard considered here.
The dynamics consists of free motion followed
by specular reflections off the faces. The top
vertex induces diffraction while the bottom one
is a right angle and induces two specular geo-
metric reflections.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

H

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

B’

A

B
L

where ν = γ/π and γ is the opening angle of the wedge. (ie γ = 2π in
the case of the half plane). The contour C1 + C2 is the same as shown in
figure 35.2.

The poles of this integral give contributions which can be identified with
the geometric paths connecting x and x′. The saddle points at β = ±π give
contributions which can be identified with the diffractive path connecting
x and x′. The saddle point analysis allows us to identify the diffraction
constant as

d(θ, θ′) = −4 sin π
ν

ν

sin θ
ν sin θ′

ν(
cos πν − cos θ+θ

′
ν

) (
cos πν − cos θ−θ

′
ν

) , (35.14)

which reduces to (35.11) when ν = 2. Note that the diffraction coefficient
vanishes identically if ν = 1/n where n is any integer. This corresponds
to wedge angles of γ = π/n (eg. n=1 corresponds to a full line and n=2
corresponds to a right angle). This demonstration is limited by the fact
that it came from a leading order asymptotic expansion but the result is
quite general. For such wedge angles, we can use the method of images
(we will require 2n − 1 images in addition to the actual source point) to
obtain the Green’s function and there is no diffractive contribution to any
order. Classically this corresponds to the fact that for such angles, there
is no discontinuity in the dynamics. Trajectories going into the vertex can
be continued out of them unambiguously. This meshes with the discussion
in the introduction where we argued that diffractive effects are intimately
linked with classical discontinuities.

The integral representation is also useful because it allows us to consider
geometries such that the angles are near the optical boundaries or the wedge
angle is close to π/n. For these geometries the saddle point analysis leading
to (35.14) is invalid due to the existence of a nearby pole. In that event,
we require a more sophisticated asymptotic analysis of the full integral
representation.

35.2 An application

Although we introduced diffraction as a correction to the purely classical
effects; it is instructive to consider a system which can be quantized solely
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610 CHAPTER 35. DIFFRACTION DISTRACTION

Figure 35.5: The dashed line shows a simple
periodic diffractive orbit γ. Between the vertex
V and a point P close to the orbit there are
two geometric legs labeled ±. The origin of the
coordinate system is chosen to be at R. �
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in terms of periodic diffractive orbits. Consider the geometry shown in fig-
ure 35.4 The classical mechanics consists of free motion followed by specular
reflections off faces. The upper vertex is a source of diffraction while the
lower one is a right angle and induces no diffraction. This is an open sys-
tem, there are no bound states - only scattering resonances. However, we
can still test the effectiveness of the theory in predicting them. Formally,
scattering resonances are the poles of the scattering S matrix and by an
identity of Balian and Bloch are also poles of the quantum Green’s func-
tion. We demonstrate this fact in chapter 32 for 2-dimensional scatterers.
The poles have complex wavenumber k, as for the 3-disk problem.

Let us first consider how diffractive orbits arise in evaluating the trace of
G which we call g(k). Specifying the trace means that we must consider all
paths which close on themselves in the configuration space while stationary
phase arguments for large wavenumber k extract those which are periodic -
just as for classical trajectories. In general, g(k) is given by the sum over all
diffractive and geometric orbits. The contribution of the simple diffractive
orbit labeled γ shown in figure 35.5 to g(k) is determined as follows.

We consider a point P just a little off the path and determine the
semiclassical Green’s function to return to P via the vertex using (35.9)
and (35.10). To leading order in y the lengths of the two geometric paths
connecting P and V are d± = (L ± x) + y2/(L ± x)2/2 so that the phase
factor ik(d+ +d−) equals 2ikL+iky2/(L2−x2). The trace integral involves
integrating over all points P and is

gγ(k) ≈ −2dγ
ei(2kL+π/2)

8πk

∫ L

0

dx√
L2 − x2

∫ ∞

−∞
dye

�
iky2 L

L2−x2

�
. (35.15)

We introduced an overall negative sign to account for the reflection at the
hard wall and multiplied by 2 to account for the two traversal senses, V RPV
and V PRV . In the spirit of stationary phase integrals, we have neglected
the y dependence everywhere except in the exponential. The diffraction
constant dγ is the one corresponding to the diffractive periodic orbit. To
evaluate the y integral, we use the identity

∫ ∞

−∞
dξeiaξ

2
= eiπ/4

√
π

a
, (35.16)

and thus obtain a factor which precisely cancels the x dependence in the x
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integral. This leads to the rather simple result

gγ ≈ − ilγ
2k

{
dγ√
8πklγ

}
ei(klγ+π/4) (35.17)

where lγ = 2L is the length of the periodic diffractive orbit. A more
sophisticated analysis of the trace integral has been done [35.6] using the
integral representation (35.13). It is valid in the vicinity of an optical
boundary and also for wedges with opening angles close to π/n.

Consider a periodic diffractive orbit with nγ reflections off straight hard
walls and µγ diffractions each with a diffraction constant dγ,j . The total
length of the orbit Lγ =

∑
lγ,j is the sum of the various diffractive legs and

lγ is the length of the corresponding prime orbit. For such an orbit, (35.17)
generalizes to

gγ(k) = − ilγ
2k





µγ∏

j=1

dγ,j√
8πklγ,j



 exp {i(kLγ + nγπ − 3µγπ/4)}. (35.18)

✎ 35.3
page 618Each diffraction introduces a factor of 1/

√
k and multi-diffractive orbits are

thereby suppressed.

If the orbit γ is prime then Lγ = lγ . If γ is the r’th repeat of a prime
orbit β we have Lγ = rlβ, nγ = rpβ and µγ = rσβ, where lβ, pβ and σβ all
refer to the prime orbit. We can then write

gγ = gβ,r = − ilβ
2k
trβ (35.19)

where

tβ =





σβ∏

j=1

dβ,j√
8πklβ,j



 exp {i(klβ + pβπ − 3σβπ/4)}. (35.20)

It then makes sense to organize the sum over diffractive orbits as a sum
over the prime diffractive orbits and a sum over the repetitions

gdiff(k) =
∑

β

∞∑

r=1

gβ,r = − i

2k

∑

β

lβ
tβ

1 − tβ
. (35.21)

We cast this as a logarithmic derivative (15.7) by noting that
dtβ
dk =

ilβtβ − σβtβ/2k and recognizing that the first term dominates in the semi-
classical limit. It follows that

gdiff(k) ≈ 1

2k

d

dk



ln

∏

β

(1 − tβ)



 . (35.22)
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Figure 35.6: The two-node Markov graph
with all the diffractive processes connecting the
nodes.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

A

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

B

4

1 5
_

_

3

4

2

In the case that there are only diffractive periodic orbits - as in the geometry
of figure 35.4 - the poles of g(k) are the zeros of a dynamical zeta function

1/ζ(k) =
∏

β

(1 − tβ). (35.23)

For geometric orbits, this function would be evaluated with a cycle expan-
sion as discussed in chapter 18. However, here we can use the multiplicative
nature of the weights tβ to find a closed form representation of the func-
tion using a Markov graph, as in sect. 11.5.1. This multiplicative property
of the weights follows from the fact that the diffractive Green’s function
(35.10) is multiplicative in segment semiclassical Green’s functions, unlike
the geometric case.

There is a reflection symmetry in the problem which means that all
resonances can be classified as even or odd. Because of this, the dynam-
ical zeta function factorizes as 1/ζ = 1/ζ+ζ− (as explained in sects. 22.5
and 22.1.2) and we determine 1/ζ+ and 1/ζ− separately using the ideas of
symmetry decomposition of chapter 22.

In the Markov graph shown in figure 35.6, we enumerate all processes.
We start by identifying the fundamental domain as just the right half of
figure 35.4. There are two nodes which we call A and B. To get to another
node from B, we can diffract (always via the vertex) in one of three direc-
tions. We can diffract back to B which we denote as process 1. We can
diffract to B’s image point B′ and then follow this by a reflection. This
process we denote as 2̄ where the bar indicates that it involves a reflection.
Thirdly, we can diffract to node A. Starting at A we can also diffract to a
node in three ways. We can diffract to B which we denote as 4. We can
diffract to B′ followed by a reflection which we denote as 4̄. Finally, we can
diffract back to A which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier discussion. First
though, we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumerating all closed
loops which do not intersect themselves in figure 35.6. We do it first for
1/ζ+ because that is simpler. In that case, the processes with bars are
treated on an equal footing as the others. Appealing back to sect. 22.5 we
find

1/ζ+ = 1 − t1 − t2̄ − t5 − t3t4 − t3t4̄ + t5t1 + t5t2̄ ,

= 1 − (t1 + t2̄ + t5) − 2t3t4 + t5(t1 + t2̄) (35.24)
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where we have used the fact that t4 = t4̄ by symmetry. The last term
has a positive sign because it involves the product of shorter closed loops.
To calculate 1/ζ−, we note that the processes with bars have a relative
negative sign due to the group theoretic weight. Furthermore, process 5 is
a boundary orbit (see sect. 22.3.1) and only affects the even resonances -
the terms involving t5 are absent from 1/ζ−. The result is

1/ζ− = 1 − t1 + t2̄ − t3t4 + t3t4̄ ,

= 1 − (t1 − t2̄). (35.25)

Note that these expressions have a finite number of terms and are not in ✎ 35.4
page 618

the form of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (35.20) but note
that each weight involves just one diffraction constant. It is then convenient
to define the quantities

u2
A =

exp{i(2kL + 2π)}√
16πkL

u2
B =

exp{i(2kH + π)}√
16πkH

. (35.26)

The lengths L and H = L/
√

2 are defined in figure 35.4; we set L = 1
throughout. Bouncing inside the right angle at A corresponds to two spec-
ular reflections so that p = 2. We therefore explicitly include the factor
exp (i2π) in (35.26) although it is trivially equal to one. Similarly, there is
one specular reflection at point B giving p = 1 and therefore a factor of
exp (iπ). We have defined uA and uB because, together with some diffrac-
tion constants, they can be used to construct all of the weights. Altogether
we define four diffraction coefficients: dAB is the constant corresponding
to diffracting from B to A and is found from (35.11) with θ′ = 3π/4 and
θ = π and equals 2 sec (π/8) ≈ 2.165. With analogous notation, we have
dAA and dBB = dB′B which equal 2 and 1 +

√
2 respectively. dij = dji due

to the Green’s function symmetry between source and receiver referred to
earlier. Finally, there is the diffractive phase factor s = exp (−i3π/4) each
time there is a diffraction. The weights are then as follows:

t1 = sdBBu
2
B t2̄ = sdB′Bu

2
B t3 = t4 = t4̄ = sdABuAuB

t5 = sdAAu
2
A. (35.27)

Each weight involves two u’s and one d. The u’s represent the contribution
to the weight from the paths connecting the nodes to the vertex and the d
gives the diffraction constant connecting the two paths.

The equality of dBB and dB′B implies that t1 = t2̄. From (35.25) this
means that there are no odd resonances because 1 can never equal 0. For
the even resonances equation (35.24) is an implicit equation for k which
has zeros shown in figure 35.7.
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Figure 35.7: The even resonances of the
wedge scatterer of figure 35.4 plotted in the
complex k−plane, with L = 1. The exact reso-
nances are represented as circles and their semi-
classical approximations as crosses.
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For comparison we also show the result from an exact quantum cal-
culation. The agreement is very good right down to the ground state -
as is so often the case with semiclassical calculations. In addition we can
use our dynamical zeta function to find arbitrarily high resonances and the
results actually improve in that limit. In the same limit, the exact numer-
ical solution becomes more difficult to find so the dynamical zeta function
approximation is particularly useful in that case.✎ 35.5

page 618
In general a system will consist of both geometric and diffractive or-

bits. In that case, the full dynamical zeta function is the product of the
geometric zeta function and the diffractive one. The diffractive weights are
typically smaller by order O(1/

√
k) but for small k they can be numerically

competitive so that there is a significant diffractive effect on the low-lying
spectrum. It might be expected that higher in the spectrum, the effect
of diffraction is weaker due to the decreasing weights. However, it should
be pointed out that an analysis of the situation for creeping diffraction
[35.7] concluded that the diffraction is actually more important higher in
the spectrum due to the fact that an ever greater fraction of the orbits need
to be corrected for diffractive effects. The equivalent analysis has not been
done for edge diffraction but a similar conclusion can probably be expected.

To conclude this chapter, we return to the opening paragraph and dis-
cuss the possibility of doing such an analysis for helium. The important
point which allowed us to successfully analyze the geometry of figure 35.4
is that when a trajectory is near the vertex, we can extract its diffrac-
tion constant without reference to the other facets of the problem. We
say, therefore, that this is a “local” analysis for the purposes of which we
have “turned off” the other aspects of the problem, namely sides AB and
AB′. By analogy, for helium, we would look for some simpler description of
the problem which applies near the three body collision. However, there is
nothing to “turn off”. The local problem is just as difficult as the global one
since they are precisely the same problem, just related by scaling. There-
fore, it is not at all clear that such an analysis is possible for helium.

Commentary

Remark 35.1 Classical discontinuities. Various classes of discontinuities for bil-
liard and potential problems discussed in the literature:

• a grazing condition such that some trajectories hit a smooth surface while
others are unaffected, refs. [35.1, 35.2, 35.3, 35.7]
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• a vertex such that trajectories to one side bounce differently from those to
the other side, refs. [35.2, 35.4, 35.5, 35.8, 35.9].

• a point scatterer [35.10, 35.11] or a magnetic flux line [35.12, 35.13] such
that we do not know how to continue classical mechanics through the dis-
continuities.

Remark 35.2 Geometrical theory of diffraction. In the above discussion we bor-

rowed heavily from the ideas of Keller who was interested in extending the geomet-

rical ray picture of optics to cases where there is a discontinuity. He maintained

that we could hang onto that ray-tracing picture by allowing rays to strike the

vertex and then leave at any angle with amplitude (35.8). Both he and Sommer-

feld were thinking of optics and not quantum mechanics and they did not phrase

the results in terms of semiclassical Green’s functions but the essential idea is the

same.

Remark 35.3 Generalizations Consider the effect of replacing our half line by

a wedge of angle γ1 and the right angle by an arbitrary angle γ2. If γ2 > γ1 and

γ2 ≥ π/2 this is an open problem whose solution is given by equations (35.24) and

(35.25) (there will then be odd resonances) but with modified weights reflecting the

changed geometry [35.8]. (For γ2 < π/2, more diffractive periodic orbits appear

and the dynamical zeta functions are more complicated but can be calculated

with the same machinery.) When γ2 = γ1, the problem in fact has bound states

[35.21, 35.22]. This last case has been of interest in studying electron transport

in mesoscopic devices and in microwave waveguides. However we can not use our

formalism as it stands because the diffractive periodic orbits for this geometry lie

right on the border between illuminated and shadowed regions so that equation

(35.7) is invalid. Even the more uniform derivation of [35.6] fails for that particular

geometry, the problem being that the diffractive orbit actually lives on the edge

of a family of geometric orbits and this makes the analysis still more difficult.

Remark 35.4 Diffractive Green’s functions. The result (35.17) is proportional to

the length of the orbit times the semiclassical Green’s function (35.9) to go from

the vertex back to itself along the classical path. The multi-diffractive formula

(35.18) is proportional to the total length of the orbit times the product of the

semiclassical Green’s functions to go from one vertex to the next along classical

paths. This result generalizes to any system — either a pinball or a potential —

which contains point singularities such that we can define a diffraction constant as

above. The contribution to the trace of the semiclassical Green’s function coming

from a diffractive orbit which hits the singularities is proportional to the total

length (or period) of the orbit times the product of semiclassical Green’s functions

in going from one singularity to the next. This result first appeared in reference

[35.2] and a derivation can be found in reference [35.9]. A similar structure also

exists for creeping [35.2].

Remark 35.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of

diffractive orbits has been made in a different atomic physics system, the response

of hydrogenic atoms to strong magnetic fields [35.23]. In these systems, a single

ChaosBook.org/version11.8, Aug 30 2006 whelan - 30nov2001



616 References

electron is highly excited and takes long traversals far from the nucleus. Upon

returning to a hydrogen nucleus, it is re-ejected with the reversed momentum as

discussed in chapter 34. However, if the atom is not hydrogen but sodium or some

other atom with one valence electron, the returning electron feels the charge distri-

bution of the core electrons and not just the charge of the nucleus. This so-called

quantum defect induces scattering in addition to the classical re-ejection present

in the hydrogen atom. (In this case the local analysis consists of neglecting the

magnetic field when the trajectory is near the nucleus.) This is formally similar

to the vertex which causes both specular reflection and diffraction. There is then

additional structure in the Fourier transform of the quantum spectrum correspond-

ing to the induced diffractive orbits, and this has been observed experimentally

[35.24].

Résumé

In this chapter we have discovered new types of periodic orbits contributing
to the semiclassical traces and determinants. Unlike the periodic orbits we
had seen so far, these are not true classical orbits. They are generated by
singularities of the scattering potential. In these singular points the classi-
cal dynamics has no unique definition, and the classical orbits hitting the
singularities can be continued in many different directions. While the clas-
sical mechanics does not know which way to go, quantum mechanics solves
the dilemma by allowing us to continue in all possible directions. The like-
lihoods of different paths are given by the quantum mechanical weights
called diffraction constants. The total contribution to a trace from such or-
bit is given by the product of transmission amplitudes between singularities
and diffraction constants of singularities. The weights of diffractive peri-
odic orbits are at least of order 1/

√
k weaker than the weights associated

with classically realizable orbits, and their contribution at large energies is
therefore negligible. Nevertheless, they can strongly influence the low lying
resonances or energy levels. In some systems, such as the N disk scattering
the diffraction effects do not only perturb semiclassical resonances, but can
also create new low energy resonances. Therefore it is always important to
include the contributions of diffractive periodic orbits when semiclassical
methods are applied at low energies.
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Exercises

(N. Whelan)

Exercise 35.1 Stationary phase integral. Evaluate the two stationary phase
integrals corresponding to contours E1 and E2 of figure 35.3 and thereby verify (35.7).

Exercise 35.2 Scattering from a small disk Imagine that instead of a wedge,
we have a disk whose radius a is much smaller than the typical wavelengths we are
considering. In that limit, solve the quantum scattering problem - find the scattered
wave which result from an incident plane wave. You can do this by the method of
partial waves - the analogous three dimensional problem is discussed in most quantum
textbooks. You should find that only the m = 0 partial wave contributes for small a.
Following the discussion above, show that the diffraction constant is

d =
2π

log
(

2
ka

)
− γe + iπ

2

(35.28)

where γe = 0.577 · · · is Euler’s constant. Note that in this limit d depends weakly on
k but not on the scattering angle.

Exercise 35.3 Several diffractive legs. Derive equation (35.18). The calcula-
tion involves considering slight variations of the diffractive orbit as in the simple case
discussed above. Here it is more complicated because there are more diffractive arcs
- however you should convince yourself that a slight variation of the diffractive orbit
only affects one leg at a time.

Exercise 35.4 Unsymmetrized dynamical zeta function. Assume you know
nothing about symmetry decomposition. Construct the three node Markov diagram
for figure 35.1 by considering A, B and B′ to be physically distinct. Write down
the corresponding dynamical zeta function and check explicitly that for B = B′ it
factorizes into the product of the the even and odd dynamical zeta functions. Why is
there no term t2̄ in the full dynamical zeta function?

Exercise 35.5 Three point scatterers. Consider the limiting case of the
three disk game of pinball of figure 1.1 where the disks are very much smaller than
their spacing R. Use the results of exercise 35.2 to construct the desymmetrized
dynamical zeta functions, as in sect. 22.6. You should find 1/ζA1 = 1 − 2t where
t = dei(kR−3π/4)/

√
8πkR. Compare this formula with that from chapter 11. By

assuming that the real part of k is much greater than the imaginary part show that
the positions of the resonances are knR = αn − iβn where αn = 2πn + 3π/4,
βn = log

(√
2παn/d

)
and n is a non-negative integer. (See also reference [35.11].)
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Epilogue

Nowadays, whatever the truth of the matter may be
(and we will probably never know), the simplest so-
lution is no longer emotionally satisfying. Everything
we know about the world militates against it. The
concepts of indeterminacy and chaos have filtered
down to us from the higher sciences to confirm our
nagging suspicions.

L. Sante, “Review of ‘American Tabloid’ by James
Ellroy”, New York Review of Books (May 11, 1995)

A motion on a strange attractor can be approximated by shadowing long
orbits by sequences of nearby shorter periodic orbits. This notion has here
been made precise by approximating orbits by prime cycles, and evaluating
associated curvatures. A curvature measures the deviation of a long cycle
from its approximation by shorter cycles; the smoothness of the dynamical
system implies exponential fall-off for (almost) all curvatures. We propose
that the theoretical and experimental non–wandering sets be expressed in
terms of the symbol sequences of short cycles (a topological characterization
of the spatial layout of the non–wandering set) and their eigenvalues (metric
structure)

Cycles as the skeleton of chaos

We wind down this all-too-long treatise by asking: why cycle?

We tend to think of a dynamical system as a smooth system whose
evolution can be followed by integrating a set of differential equations.
Traditionally one used integrable motions as zeroth-order approximations
to physical systems, and accounted for weak nonlinearities perturbatively.
However, when the evolution is actually followed through to asymptotic
times, one discovers that the strongly nonlinear systems show an amaz-
ingly rich structure which is not at all apparent in their formulation in
terms of differential equations. In particular, the periodic orbits are impor-
tant because they form the skeleton onto which all trajectories trapped for
long times cling. This was already appreciated century ago by H. Poincaré,
who, describing in Les méthodes nouvelles de la méchanique céleste his dis-
covery of homoclinic tangles, mused that “the complexity of this figure will
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be striking, and I shall not even try to draw it”. Today such drawings
are cheap and plentiful; but Poincaré went a step further and, noting that
hidden in this apparent chaos is a rigid skeleton, a tree of cycles (periodic
orbits) of increasing lengths and self-similar structure, suggested that the
cycles should be the key to chaotic dynamics.

The zeroth-order approximations to harshly chaotic dynamics are very
different from those for the nearly integrable systems: a good starting ap-
proximation here is the stretching and kneading of a baker’s map, rather
than the winding of a harmonic oscillator.

For low dimensional deterministic dynamical systems description in
terms of cycles has many virtues:

1. cycle symbol sequences are topological invariants: they give the spatial
layout of a non–wandering set

2. cycle eigenvalues are metric invariants: they give the scale of each
piece of a non–wandering set

3. cycles are dense on the asymptotic non–wandering set

4. cycles are ordered hierarchically: short cycles give good approxima-
tions to a non–wandering set, longer cycles only refinements. Errors
due to neglecting long cycles can be bounded, and typically fall off
exponentially or super-exponentially with the cutoff cycle length

5. cycles are structurally robust: for smooth flows eigenvalues of short
cycles vary slowly with smooth parameter changes

6. asymptotic averages (such as correlations, escape rates, quantum me-
chanical eigenstates and other “thermodynamic” averages) can be
efficiently computed from short cycles by means of cycle expansions

Points 1, 2: That the cycle topology and eigenvalues are invariant
properties of dynamical systems follows from elementary considerations. If
the same dynamics is given by a map f in one set of coordinates, and a map
g in the next, then f and g (or any other good representation) are related
by a reparametrization and a coordinate transformation f = h−1 ◦ g ◦ h.
As both f and g are arbitrary representations of the dynamical system, the
explicit form of the conjugacy h is of no interest, only the properties invari-
ant under any transformation h are of general import. The most obvious
invariant properties are topological; a fixed point must be a fixed point in
any representation, a trajectory which exactly returns to the initial point
(a cycle) must do so in any representation. Furthermore, a good represen-
tation should not mutilate the data; h must be a smooth transformation
which maps nearby cycle points of f into nearby cycle points of g. This
smoothness guarantees that the cycles are not only topological invariants,
but that their linearized neighborhoods are also metrically invariant. In
particular, the cycle eigenvalues (eigenvalues of the fundamental matrixs
dfn(x)/dx of periodic orbits fn(x) = x) are invariant.
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Point 5: An important virtue of cycles is their structural robustness.
Many quantities customarily associated with dynamical systems depend on
the notion of “structural stability”, that is, robustness of non–wandering
set to small parameter variations.

Still, the sufficiently short unstable cycles are structurally robust in
the sense that they are only slightly distorted by such parameter changes,
and averages computed using them as a skeleton are insensitive to small
deformations of the non–wandering set. In contrast, lack of structural sta-
bility wreaks havoc with long time averages such as Lyapunov exponents,
for which there is no guarantee that they converge to the correct asymptotic
value in any finite time numerical computation.

The main recent theoretical advance is point 4: we now know how to
control the errors due to neglecting longer cycles. As we seen above, even
though the number of invariants is infinite (unlike, for example, the number
of Casimir invariants for a compact Lie group) the dynamics can be well
approximated to any finite accuracy by a small finite set of invariants. The
origin of this convergence is geometrical, as we shall see in appendix J.1.2,
and for smooth flows the convergence of cycle expansions can even be super-
exponential.

The cycle expansions such as (18.5) outperform the pedestrian meth-
ods such as extrapolations from the finite cover sums (19.2) for a number
of reasons. The cycle expansion is a better averaging procedure than the
naive box counting algorithms because the strange attractor is here pieced
together in a topologically invariant way from neighborhoods (“space aver-
age”) rather than explored by a long ergodic trajectory (“time average”).
The cycle expansion is co-ordinate and reparametrization invariant - a finite
nth level sum (19.2) is not. Cycles are of finite period but infinite duration,
so the cycle eigenvalues are already evaluated in the n → ∞ limit, but for
the sum (19.2) the limit has to be estimated by numerical extrapolations.
And, crucially, the higher terms in the cycle expansion (18.5) are deviations
of longer prime cycles from their approximations by shorter cycles. Such
combinations vanish exactly in piecewise linear approximations and fall off
exponentially for smooth dynamical flows.

In the above we have reviewed the general properties of the cycle expan-
sions; those have been applied to a series of examples of low-dimensional
chaos: 1-d strange attractors, the period-doubling repeller, the Hénon-type
maps and the mode locking intervals for circle maps. The cycle expansions
have also been applied to the irrational windings set of critical circle maps,
to the Hamiltonian period-doubling repeller, to a Hamiltonian three-disk
game of pinball, to the three-disk quantum scattering resonances and to the
extraction of correlation exponents, Feasibility of analysis of experimental
non–wandering set in terms of cycles is discussed in ref. [18.1].
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Homework assignment

“Lo! thy dread empire Chaos is restor’d, Light dies
before thy uncreating word; Thy hand, great Anarch,
lets the curtain fall, And universal darkness buries
all.”

Alexander Pope, The Dunciad

We conclude cautiously with a homework assignment posed May 22,
1990 (the original due date was May 22, 2000, but alas...):

1. Topology Develop optimal sequences (“continued fraction approxi-
mants”) of finite subshift approximations to generic dynamical sys-
tems. Apply to (a) the Hénon map, (b) the Lorenz flow and (c) the
Hamiltonian standard map.

2. Non-hyperbolicity Incorporate power–law (marginal stability or-
bits,“intermittency”) corrections into cycle expansions. Apply to
long-time tails in the Hamiltonian diffusion problem.

3. Phenomenology Carry through a convincing analysis of a genuine
experimentally extracted data set in terms of periodic orbits.

4. Invariants Prove that the scaling functions, or the cycles, or the
spectrum of a transfer operator are the maximal set of invariants of
an (physically interesting) dynamically generated non–wandering set.

5. Field theory Develop a periodic orbit theory of systems with many
unstable degrees of freedom. Apply to (a) coupled lattices, (b) cellular
automata, (c) neural networks.

6. Tunneling Add complex time orbits to quantum mechanical cycle
expansions (WKB theory for chaotic systems).

7. Unitarity Evaluate corrections to the Gutzwiller semiclassical peri-
odic orbit sums. (a) Show that the zeros (energy eigenvalues) of the
appropriate Selberg products are real. (b) Find physically realistic
systems for which the “semiclassical” periodic orbit expansions yield
the exact quantization.

8. Atomic spectra Compute the helium spectrum from periodic orbit
expansions (already accomplished by Wintgen and Tanner!).

9. Symmetries Include fermions, gauge fields into the periodic orbit
theory.

10. Quantum field theory Develop quantum theory of systems with
infinitely many classically unstable degrees of freedom. Apply to (a)
quark confinement (b) early universe (c) the brain.
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Conclusion

Good-bye. I am leaving because I am bored.

George Saunders’ dying words

Nadie puede escribir un libro. Para Que un libro sea
verdaderamente, Se requieren la aurora y el poniente
Siglos, armas y el mar que une y separa.

Jorge Luis Borges El Hacedor, Ariosto y los arabes

The buttler did it.
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abscissa
absolute conv., 321
conditional conv., 321

accelerator mode, 413
action, 468, 483, 493

helium, 580
relation to period, 588

admissible
periodic points, 206
trajectories, number of, 203

Airy
equation, 474
function, 474

Airy function, 474, 477, 569, 572, 577
at a bifurcation, 477

Airy integral, 474
alphabet, 158
alternating

binary ordering, 177
alternating binary tree, 200
analyticity

domain, 243
anomalous diffusion, 422
Anosov flows, 191
antiharmonic extension, 672
arc, 177
area

preserving map, 713
area preserving

Hénon map, 78
Artin-Mazur zeta function, 213
attractor, 34

basin, 34
Hénon, 55
strange, 34, 38, 146

Aubry-Mather theory, 541
autonomous flow, 37, 295
average

space, 125
time, 125

averages
chaotic, 367

averaging, 27
space, 140
time, 138

Axiom A, 283
systems, 277

baker’s map, 90
Balmer spectrum, 456
basin of attraction, 34
BER

approximation, 378
Bernoulli

polynomials, 264
shift, 264, 377

Bessel function, 560
addition theorem, 562

bi-infinite itinerary, 174
bifurcation

Airy function approximation, 477
bizarre, 671
generic, 90
Hopf, 431
saddle-node, 53

billiard
map, 87
stadium, 85

billiards, 85, 90, 787
stability, 88, 110

binary
prime cycles, 163
symbolic dynamics

collinear helium, 583
tree, alternating, 200

binary ordering
alternating, 177

Birkhoff
ergodic theorem, 125

Birkhoff coordinates, 11
block

finite sequence, 175
block, pruning, 176
Bohr

– de Broglie picture, 456
-Sommerfeld quantization, 456,

523, 649
helium, 579, 589
Uetli Schwur, 648

Bohr-Sommerfeld quantization, 474
Boltzmann

equation, 426
Boltzmann, L, 23
boredom, 345, 623
Borges, J.L., 623
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boundary orbits, 395
bounded operators, 727
Bourbaki, N., 52
Bowen, R., 25
brain, rat, 3, 25
branch cut, 361

singularity, 363
Bunimovich

billiard, see stadium
Burnett coefficient, 418

C3v symmetry, 400
canonical

transformation, 76
canonical transformation, 76
canonical transformations, 656
Cartwright M.L., 643
Cauchy criterion, 725
caustic, 487
ceiling function, 240, 283
center, 63
center of mass, 303
chain rule

matrix, 723
change

of coordinates, 95
chaology, see chaos
chaos, 5, 6

caveats, 8
deterministic, 24
diagnostics, 40
quantum, 24
skeleton of, 10, 12
successes, 8

character
orthonormalitity, 705
representation, 702

characteristic
exponent, 62
function, 120
polynomial, 209
value, 62

chicken heart palpitations, 5
circle map

critical, 434
coarse-graining, 119
coding, see symbolic dynamics
collinear helium, 458

symbolic dynamics, 583
combinatorics

teaching, 168
complete

N -ary dynamics, 159
complexity

algorithmic, 222
confession

C.N. Yang, 124
Kepler, 640
St. Augustine, 119

conjugacy, 97
invariant, 114
smooth, 96, 106, 114, 787
topological, 169

connection formulas, 474
conservation

equation, 506
phase space volume, 77–79, 129

continuity
equation, 129

continuity equation, 127, 485, 506,
509

contour integral, 249
contracting

Floquet multipliers, 108
flow, 34, 38, 115
map, 72, 180
stability eigenvalues, 232

convergence
abscissa of, 321
mediocre, 718
radius, 243
super-exponential, 269, 529

convexity, 152
coordinate

change, 95, 97, 788
longitudinal, 495
transformations, 106

Copenhagen School, xi, 648
correlation

decay
power law, 356

function, 280
spectrum, 280
time, 334

cost function, 530
covering

symbolic dynamics, 175
creeping

1-disk, 570
critical

point, 110, 166, see equilibrium
point

value, 167, 416
cumulant

expansion, 208, 211, 310
Plemelj-Smithies, 731

curvature
correction, 307
expansion, 27, 307

cycle, 10, see periodic orbit
expansion, 18, 307, 522

3-disk, 325
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finite subshift, 316
Lyapunov exponent, 315
stability ordered, 317

fundamental, 209, 307, 716
limit, 146
Lyapunov exponent, 109
marginal stability, 59, 111
point, 175
prime, 175, 225, 234, 287

3-disk, 539
Hénon map, 532

pruning, 216
Rössler system, 288
stability, 107

Gauss map, 443
stable, 110
superstable, 110
unstable, 12
weigth, 246

cycle point, see periodic point
cycles

Rössler system, 301
cyclic

invariance, 288
symmetry, 206

cyclic group, 706

D’Alambert’s wave equation, 651
damped Newton’s method, 291
Danish pastry, see symbol plane
de Broglie wavelength, 479
Debye approximation, 577
decay

rate, 253
rate of correlations, 280

degree of freedom, 8, 73, 469
delta function

Dirac, 122, 463, 789, 813
density, 120, 506

evolution, 23
phase space, 129

density of states
average, 518
Green’s function, 464
quantum, 464

desymmetrization
3-disk, 406

determinant
Fredholm, 734
graph, 221
Hadamard, 243
spectral, 22, 208, 243

for flows, 245
trace relation, 208
trace-class operator, 728

deterministic

dynamics, 32
deterministic dynamics, 5
deterministic flow, 126
differential equations

ordinary
almost, 42, 783

diffraction
Green’s function, 607
Keller, 615
Sommerfeld, 615

diffusion
partial differential equations, 652
anomalous, 422
constant, 142
equation, 507

dihedral group, 706
dike map, 170
dimension

box counting, 347
fractal, 347
generalized, 2
information, 347
intrisic, 8

Dirac delta derivatives, 133
Dirac delta function, 20, 121, 122,

133, 144, 213, 233, 466, 489,
501, 507, 789, 813

Dirac path integral, 498
Dirichlet series, 320
dissipative

map, 72, 180
distribution, 653
divergence rate

local, 149
divergence ultraviolet, 520
dof, see degree of freedom
doubling map, 276
Duffing

undamped, 74
Duffing oscillator, 36, 47
Duffing system, 39
dynamical

system, 31, 32
deterministic, 32
gradient, 42, 784
smooth, 32

systems
equivalent, 104

transitivity, 205
zeta function, 17, 247

Euler product rep., 247
dynamical system

smooth, 18, 19, 27, 220, 643, 753,
755, 757

dynamics
deterministic, 5
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hyperbolic, 161
irreversible, 35
reversible, 35
spatiotemporal, 24
stochastic, 5
symbolic, 9, 158, 173
symmetry, 704
topological, 158, 173, 175

edge, 177
eigendirection, 59
eigenfunction

Perron-Frobenius operator, 262
energy, 461

eigenfunctions
Perron-Frobenius, 262

eigenstate, see eigenfunction
eigenvalue, 63, 253

Perron-Frobenius operator, 262
exponential spacing, 244
zero, 474, 492

Einstein
diffusion formula, 508

elastic
scattering, 545

elliptic
partial differential equations, 652
stability, 78

enemy
thy, 357

English
plain, 174

ensemble
microcanonical, 152

entire function, 261
entropy

barrier, 322
Gauss map, 452
topological, 6, 204, 218, 221

equation
of variations, 58

equilibrium
measure, see natural measure
point, 37, 64, 124, 534
Rössler system, 43, 64, 785
stability, 788

equivalence
of dynamical systems, 104

equivariant, see relative
ergodic

average, 125
theorem

multiplicative, 152
theory, 125

escape
intermittency, 366

rate, 12, 13, 143, 144, 265, 310,
315, 325, 331

rate, 3-disk, 314, 329
rate, vanishing, 314
rate,3-disk, 326

essential
spectral radius, 272
spectrum, 271

essential spectral radius, 281
Euler

formula, 264, 802
limit, 65
product, 251
product rep.

dynamical zeta function, 247
totient function, 436

Euler-MacLaurin
formula, 280

Eulerian
coordinates, 33, 59, 63

evolution
group, 42, 783
kernel

probabilistic, 126
operator, 20, 145

quantum, 463
semigroup, 146

expanding
Floquet multipliers, 108
stability eigenvalues, 232

expectation value, 140, 154
exponent

Floquet, 108
exponential

convergence, 243, 269
decay rate of correlations, 280
of a matrix, 61

exponential proliferation, 20, 222
extremal point, 470

false zeros, 251
Farey

map, 355, 378
mediant, 437
series, 435
tree, 437

Feynman path integral, 491, 498
Fick law, 507
finite subshift

cycle expansion, 316
first return function, 45
first return time, 375
fixed point, 288

maps, 56
marginally stable, 355

Floquet
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exponents, 108
multipliers, 108

flow, 32, 35
autonomous, 37, 295
contracting, 34, 38, 115
deterministic, 126
elliptic, 109
generator of, 127, 660
Hamiltonian, 73, 713
hyperbolic, 78, 109, 253
incompressible, 115, 129
infinite-dimensional, 651
inverse hyperbolic, 78
linear, 60, 69
linearized, 58
nonhyperbolic, 109
spectral determinant, 245
stability, 64
stationary, 37
stochastic, 126
stretch&fold, 166

Fokker-Planck equation, 509
form

normal, 103
Fourier

mode, 652
fractal, 346

aggregates, 2
dimension, 347
geometry of nature, 2
probabilistic, 2
science, 2

Fredholm
determinant, 734
integral equations, 270
integral operator, 269

Fredholm theory, 269
Frenkel-Kontorova model, 541
frequency analysis, 40
Fresnel integral, 470, 477
function

space
piecewise constant, 235

functional, 125, 652
Lyapunov, 34

functions
L2 square-integrable, 281
analytic, 281

fundamental
cycle, 209
cycles, 716
domain, 163

collinear helium, 583
fundamental matrix, 14, 58, 663

Gauss

shift, see Gauss map
Gauss map, 135, 378, 436, 447

cycle stability, 443
metric entropy, 452

Gaussian
integral, 133, 418, 501
integral, d-dimensional, 489, 501
noise, 765
probability density, 508

generating function, 234, 542
generating partition, 175
generator

of flow, 127, 660
golden mean

pruning, 210
gradient

system, 42, 784
gradient algorithm, 530
grammar

symbolic dynamics, 176
grandmother

of fractals, 349
graph, 177

irreducible, 177
Markov, 176

Gray codes, 177
Green’s function, 466

analogue of, 664
density of states, 464
diffraction, 607
energy dependent, 463
regularized, 520
scattering, 551
semiclassical, 499, 503
short distance, 496, 497
trace, 463

long orbits, 496
group, 701

cyclic, 706
dihedral, 706
dynamical, 35
evolution, 42, 783
finite, 701
integration, 705
matrix, 702
order of, 701
representation, 702
semi-, 127, 660

Gutzwiller
trace formula, 518

Gutzwiller path integral, 498

Hadamard determinant, 243
Hadamard product, 521
Hamilton

-Jacobi equation, 480
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equations, 480
principal function, 483, 510

Hamiltonian, 461, 481
flow, 713

spectral determinant, 247
stability, 657

flows, stability, 75, 655
Hénon map, 78
repeller, periodic orbits, 302, 804

Hankel function, 497, 560, 577
Heaviside function, 465
Heisenberg, 649

picture, 725
Heisenberg, W, 659
Helfand moments, 417
helium, 579, 649

collinear, 44, 55, 74, 458, 600,
785

cycles, 302, 600
eigenenergies, 601
fundamental domain, 583
Poincaré section, 600
stabilities, 601
stability, 302

Helmholtz equation, 560
Hénon

attractor, 55, 125
Lyapunov exponent, 154, 793

map, 51, 53, 78, 186, 530, 544
fixed points, 55, 186
Hamiltonian, 78
inverse, 186
prime cycles, 532, 544
stability, 68, 110
symmetries, 713
transient, 532

Hénon, M., 53
Hénon-Heiles

symbolic dynamics, 403
heroes

unsung, xi, xv
Hessian matrix, 75
Hilbert

space, 462
Hilbert-Schmidt

condition, 270
operators, 727

Hopf bifurcation, 431
horseshoe, 185

complete, 188
hydrodynamical

interpretation of QM, 498
hyperbolic

partial differential equations, 652
flow, 78, 109, 253
non-, 23

hyperbolicity assumption, 15, 233

in/out nodes, 63
inadmissible symbol sequence, 176
incommesurate, 34
incompressible flow, 115
indecomposability, 205

metric, 159
index

Maslov, see topological index
indifferent

stability, 59
induced map, 370
inertial manifold, 652
infinite-dimensional flows, 651
inflection point, 432
information

dimension, 347
initial

conditions
sensitivity to, 6

point x0, 14, 33, 58
state x0, 14, 33

injective, 52
integrable system, 74, 95
integrated observable, 138
integration

group, 705
Runge-Kutta, 43

intermittency, 90, 275, 354
escape rate, 366
piecewise linear model, 357
resummation, 372
stability ordering, 319

invariance
cyclic, 288
of flows, 111
symplectic, 75, 655

invariant
measure, 123
metric, 108, 114
topological, 107

invariant measure
Gauss map, 135

inverse
hyperbolic flow, 78

inverse iteration, 290
Hamiltonian repeller, 302, 804

involution, 706
inward/outward spirals, 63
irreducible

graph, 177
segment, 386

irreversibility, 23
irreversible

dynamics, 35
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iteration, 32
inverse, 290

Hamiltonian repeller, 302, 804
map, 50

itinerary, 9, 12, 158
bi-infinite, 161, 174
future, 167, 174
past, 174

Jacobian, 114, 121
matrix, see fundamental matrix

Jonquière function, 359, 422, 426

KAM
tori, 354

Keller
diffraction, 615

Keller, J.B., 647
Keplerian orbit, 456
kernel

resolving, 270
kneading

determinant, 193
sequence, 169
theory, 169
value, 169

Koopman operator, 659, 664
Kramers, 649
Krein-Friedel-Lloyd formula, 552
KS, see Kustaanheimo-Stiefel
Kuramoto-Sivashinsky system, 651
kurtosis, 154, 417
Kustaanheimo-Stiefel transformation,

100, 580

L2 function space, 281
Lagrangian, 483

coordinates, 33, 59, 63
manifold, 484

laminar states, 354
Langevin equation, 508, 511
Laplace

transform, 21, 128, 213, 237, 242,
463, 499, 661

transform, discrete, 207, 234, 377
Laplace, Pierre-Simon de, 5
Laplacian, 651
least action principle, 538
Legendre transform, 483
Leibniz, Gottfried Wilhelm, 5
level set, 74
libration orbit, 584, see self–retracing
Lie algebra

symplectic, 76
Lie group

orthogonal, 76
lifetime, 13

limit
cycle, 146

limit cycle
stability, 788

linear
flows, 60, 69
stability, 57, 107

linearized
flow, 58

link, 177
Liouville

equation, 130
operator, 130
theorem, 77–79, 129

Littlewood J.E., 643
local

divergence rate, 149
stability, 57, 107

logistic map, see unimodal
longitudinal

coordinate, 495
loop

intersecting, 209
Lorentz gas, 354, 378
Lorenz, E.N., 53
loxodromic, 78, 657
Lozi map, 51, 53
Lyapunov exponent, 6, 62, 115, 147

cycle, 109
cycle expansion, 315
natural measure, 149
numerical, 152
numerically, 148

Lyapunov functional, 34
Lyapunov time, 6, 8, 35

M phase space volume, 143
manifold

stable, 184
map, 32, 45

area preserving, 713
contracting, 72, 180
dike, 170
dissipative, 72, 180
expanding, 160
fixed point, 56
Hénon, 51, 530, 713

Hamiltonian, 78
prime cycles, 532

Hamiltonian
Hénon, 78

iteration, 50
logistic, see unimodal
Lozi, 51, 53
once-folding, 186
order preserving, 169
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orientation preserving, 713
orientation reversing, 713
quadratic, 52, 166
return, 11, 15, 45, 46, 186
sawtooth, 387
stability, 67
tent, 166
unimodal, 166

marginal
stability, 15, 108, 275, 355

fixed point, 355
stability eigenvalues, 232

marginal stability
cycle, 59, 111

Markov
graph, 176

infinite, 211
partition, 418

finite, 160, 161
infinite, 194
not unique, 162

Maslov index, see topological index
material invariant, 506
Mather, see Aubry-Mather theory
matrix

exponential, 61, 662
group, 702
of variations, see stability ma-

trix
stability, 58, 510

Maupertuis, P.L.M. de, 538
measure, 120

invariant, 123
natural, 124, 140
smooth, 139

mechanics
quantum, 461
statistical, 22

mediocre
convergence, 718

memory
finite, 173

metric
indecomposability, 159, 720
invariant, 108, 114

stability eigenvalues, 114
transitivity, 720

metric entropy
Gauss map, 452

microcanonical ensemble, 152
Mira, C., 53
Misiurewicz, M., 53
mixing, 6, 7, 15, 125
Moebius inversion, 215
monodromy matrix, 67, 232, 656
Morse index, see topological index

mother
of fractals, 349

multi-scattering matrix, 563
multifractals, 349, 749
multiplicative ergodic theorem, 152
multipoint shooting method, 292

natural measure, 124, 140, 149, 278,
299

nature
geometry of, 2

neighborhood, 57, 116
neutral, see marginal

stability, 59
Newton’s method, 290

convergence, 291
damped, 291
flows, 295
optimal surface of section, 297

Newtonian dynamics, 73
node, 177
noise

Gaussian, 508, 512, 765
white, 508

non-wandering set, 34, 187
nonequilibrium, 409
nonhyperbolic

flow, 109, 111
norm, 725
normal form, 103

obscure
foundations, 648
jargon, 158

observable, 124, 138
ODE, see ordinary differential equa-

tions
1-disk

creeping, 570
scattering, 561
semiclassical scattering, 567

Onsager-Machlup, 511
open systems, 12, 142
operator

evolution, 145
Hilbert-Schmidt, 727
Koopman, 659, 664
Liouville, 130
norm, 725
Perron-Frobenius, 122, 152
positive, 727
regularization, 733
resolvent, 128, 661
semigroup

bounded, 128, 661
shift, 175
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trace-class, 726
orbit, 33, 50

inadmissible, 169
Keplerian, 456
periodic, 34, 175, 516, 517
returning, 515

order preserving map, 169
ordering

spatial, 168, 188
ordinary differential equations

almost, 42, 783
orientation

preserving map, 713
reversing map, 713

orthogonal
Lie group, 76

Oseledec multiplicative ergodic theo-
rem, 152

palpitations, chicken heart, 5
parabolic

partial differential equations, 652
paradise

this side of, 329
partial differential equations, 651
partition, 158, 175

generating, 175
infinite, 218, 221
Markov, 160
phase space, 120

partition function, 152
passive scalar, 506
past topological coordinate, 190
path integral

stochastic, see Wiener integral
PDE, see partial differential equations
period

relation to action, 588
periodic

orbit, 34, 175, 306, 516, 517
orbit condition, 287, 298, 529
orbit extraction, 287–299, 529–

539
Hamiltonian repeller, 302, 804
inverse iteration, 290
multipoint shooting, 292
Newton’s method, 290–291
relaxation algorithm, 530

point, 10, 20, 175
admissible, 206
count, 214
unstable, 12

periodic point, see cycle point
Perron-Frobenius

matrix, 204
operator, 122, 152, 262

theorem, 278, 283, 752
phase space, 32

3-disk, 720
density, 129
partition, 120
volume M, 143

piecewise constant function, 235
piecewise linear map, 378

intermittency, 357
repeller, 143

pinball, see 3-disk
simulator, 93, 787

plain English, 174
Plemelj-Smithies cumulants, 731
Poincaré

invariants, 79
return map, 45, 46

cycle, 112
polynomial, 50
stability, 68

section, 10, 11, 45, 86, 186
3-disk, 86
Hénon trick, 52
hyperplane, 46

Poincaré, H., 3, 7, 14
point

non-wandering, 34
periodic, 10, 175
scatterer, 618
wandering, 33

Poisson
bracket, 129–131, 655
resummation, 21, 373

Pollicott, M, 152, 376
polylogarithm, 359
polynomial

characteristic, 209
topological, 213

Pomeau, Y., 53
positive operators, 727
potential

partial differential equations, 652
problems, 42

power law
correlation decay, 356

pressure, 152
thermodynamic, 152

prime cycle, 175, 225, 234, 287
3-disk, 160, 225, 539
binary, 163
count, 215
Hénon map, 532
ternary, 163

primitive cycle, see prime cycle
probabilistic zeta function, 376
probability density
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Gaussian, 508
profile

spatial, 33
propagator, 463

semiclassical, 488
short time, 489, 496
Van Vleck, 490

pruning, 9, 355
block, 176
front, 190
golden mean, 210
individual cycles, 216
primary interval, 170
rules, 161
symbolic dynamics, 176

pruning front
3-disk, 202

pseudocycle, 306

quadratic map, 52
quantization

Bohr-Sommerfeld, 456
semiclassical, 515
WKB, 467, 471

quantum
chaos, 459, 460, 520
evolution, 463
interference, 479
mechanics, 461
potential, 498
propagator, 463
resonances, 456
theory, old, 648

quantum chaology, see chaos, quan-
tum

quasiperiodicity, 34

radius
of convergence, 243

random matrix theory, 460
recoding, 162, 176
rectangle, 188
rectification

flows, 97
maps, 102

recurrence, 34, 158
time, see return time

regularization, 100, 521
Green’s function, 520
operator, 733

relaxation algorithm, 530
renormalization, 90
repeller, 12, 35, 142, 459

piecewise-linear, 143
single fixed point, 262

representation

character, 702
equivalent, 703
faithful, 703
matrix, 702
regular, 703

representative point, 32
residue

stability, 78
resolvent

kernel, 270
operator, 128, 661

resonance
Ruelle-Pollicott, 376

resonances
complex, 458
quantum, 456
Ruelle-Pollicott, 152

resummation
intermittency, 372

return map, 11, 15, 186
return time, 376

distribution, 376
returning orbit, 515
reversible

dynamics, 35
Riemann zeta function, 320, 378
Rössler system, 38, 39, 43, 47, 55, 72,

148, 157, 165, 185
cycles, 288, 301
equilibria, 43, 64, 785

Roux
Henri, 24, 115

Ruelle
-Pollicott resonances, 152, 376
zeta function, see dynamical zeta

function
Ruelle, D, 152, 376
Ruelle, D., 25
Runge-Kutta integration, 43
running orbits

Lorentz gas, 413
Rutherford, 579
Rydberg series, 589

saddle, 63
saddle point, see stationary phase
saddle-node

bifurcation, 53
sawtooth map, 387
scattering

3-dimensional spheres, 91
elastic, 545
Green’s function, 551
matrix, 546
phase shift, 553
point, 618
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Schrödinger
equation, 461

time independent, 461
picture, 725

Schrödinger, E, 659
Schwartz, 653
section

Poincaré, 11, 45, 86
self-retracing cycle, 584
self-similar, 20
semiclassical

approximation, 480
Green’s function, 499, 503
propagator, 488
quantization, 515
spectral determinant

collinear helium, 592
wave function, 486
semiclassical zeta function, 521

semiclassical resonances
3-disk, 778

semigroup, 127, 660
dynamical, 35
evolution, 146
operator, 128, 661

Sensitivity
initial conditions, 30, 781

sensitivity to initial conditions, 6, 146
set

non-wandering, 187
shadowing, 18, 219

3-disk, 314
shift, 175

Bernoulli, 264, 377
finite type, 176
full, 174
map, 432
operator, 175
sub-, 175

Sinai, Ya., 25
Sinai-Bowen-Ruelle measure, see nat-

ural measure
single fixed point

repeller, 262
spectral determinant, 263

singular value decomposition, 63
singularity

branch cut, 363
skeleton of chaos, 10, 12
Smale

wild idea, 245, 254
Smale, S., 9, 25, 183, 193, 222, 255,

643
S-matrix, 546
smooth

conjugacy, 96, 106, 114, 787

dynamics, 18, 19, 27, 32, 220,
643, 753, 755, 757

approximated, 715
Spectral determinant, 283

interaction, 759
measure, 139
potential, 90

Sommerfeld
diffraction, 615

space
analytic functions, 281
average, 125
averaging, 140
density functions, 235

spatial
profile, 33

spatiotemporal dynamics, 24
spectral

determinant, 22, 208, 243
1-d maps, 246
2-d hyperbolic Hamiltonian flow,

247
entire, 244, 268
for flows, 245
infinite product rep., 245
single fixed point, 263
weighted, 252

spectral determinant
1-dof, 523
2-dof, 524

radius, 263, 272
essential, 281

staircase, 464
spectral stability, 421
spectrum

Balmer, 456
specular reflection, 85
SRB measure, see natural measure
St. Augustine, 119
stability

billiards, 88, 110
eigenvalue, 62
eigenvalues, 232
eigenvalues, metric invariants, 114
exact, 118, 788
exponent, 77, see Floquet expo-

nent
flow, 64
Hamiltonian flow, 657
Hamiltonian flows, 75, 655
indifferent, 59
linear, 57, 107
maps, 67
matrix, 58, 510
multiplier, see stability eigenvalue
neutral, 59, see marginal
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ordering
cycle expansions, 317
intermittent flows, 319

Poincaré map cycle, 112
Poincaré return map, 68
residue, 78
spectral, 421
structural, 188, 191, 220, 420
window, 109

stability eigenvalue, see Floquet mul-
tiplier

stability elliptic, 233
stable

cycle, 110
manifold, 15, 184, 186

flow, 184
map, 184

stadium billiard, 85
stagnation point, see equilibrium point
staircase

mean eigenvalue density, 592
spectral, 464

standard map, 354
standing orbit

Lorentz gas, 413
state, 158, 177

set, 158
state space, 32, see phase space
stationary

flow, 37
phase approximation, 470, 477,

491, 501, 516, 607, 618, 818,
819

point, see equilibrium point
state, 123

statistical mechanics, 22
steady state, see equilibrium point
Sterling formula, 477
stochastic

path integral, see Wiener inte-
gral

stochastic dynamics, 5
stochastic flow, 126
Stokes theorem, 79, 484
stosszahlansatz, 23, 426
strange

attractor, 34, 38
strange attractor, 146
stretch & fold dynamics, 51
stretch&fold flow, 166
strobe method, 45
strongly connected graph, 177
structural stability, 188, 191, 220, 420
subshift, 175

finite type, 161, 176, 191
super-exponential

convergence, 529
super-stable fixed point, 529
superstable cycle, 110
surface of section

optimal, 297
surjective, 52
survival probability, 13, see escape

rate
symbol

sequence
inadmissible, 176

square, 188
symbol square, 188, 189
symbolic

dynamics
at a bifurcation, 90
complete N -ary, 159
covering, 175

symbolic dynamics, 9, 158, 173
3-disk, 30, 160, 180, 794
binary

collinear helium, 583
coding, 176

Markov graph, 316
complete, 167, 188
grammar, 176
Hénon-Heiles, 403
pruned, 176
recoding, 162, 176
unimodal, 167

symmetry
C3v, 400
3-disk, 163, 386, 400, 406
cyclic, 206
discrete, 162
dynamical system, 704
Hénon map, 713

symplectic
form, 75
group Sp(2D), 656
Hénon map, 78
integrator, 663
invariance, 75, 655
Lie algebra, 76
map, 76
transformation, 76, 130, 193

systems
open, 142

tangent
bundle, 36, 58
space, 58

Tauberian theorem, 378
teaching

combinatorics, 168
template, 290
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ternary
prime cycles, 163

tessalation
smooth dynamics, 715

thermodynamical
pressure, 152

3-body problem, 98, 458, 579, 640,
650

3-dimensional sphere
scattering, 91

3-disk
boundary orbits, 395
convergence, 274, 715
cycle

analytically, 118
count, 403, 683
expansion, 325

escape rate, 155, 314, 326, 329
fractal dimension, 346
geometry, 86
hyperbolicity, 233
phase space, 12, 346, 720
pinball, 4, 87, 90
point scatterer, 618
prime cycles, 16, 160, 225, 539
pruning front, 202
semiclassical resonances, 778
shadowing, 314
simulator, 93, 94
symbolic dynamics, 10, 30, 160,

180, 794
symmetry, 163, 386, 400, 406
transition matrix, 159

time
arrow of, 23
as parametrization, 96
average, 125, 148
averaging, 138
ceiling function, see ceiling func-

tion
ordered integration, 66, 70

time delay
Wigner, 553

topological
conjugacy, 169
dynamics, 158, 173, 175, 176
entropy, 6, 204, 218
equivalence, 63
future coordinate, 168
index, 487
invariant, 107
parameter, 170
polynomial, 213
trace formula, 207
transitivity, 205
zeta function, 213

topological index, 518, 649
torus, 34
totient function, 436
tp

cycle weight, 246
trace

-class operators, 564
formula

classical, 21
flows, 237
Gutzwiller, 518
maps, 234, 263
topological, 207, 213

local, 206
trace-class operator, 726

determinant, 728
trajectory, 33, 61

discrete, 50
transfer

matrix, 123, 144
transfer operator, 254

spectrum, 244
transformation

canonical, 193
coordinate, 106
symplectic, 193

transient, 34, 159, 193
transition matrix, 159, 204, 206

3-disk, 159
transversality

condition, 46
transverse

stability, 496
Trotter product formula, 725
turbulence, 7, 8

Ulam map, 301
ultraviolet divergence, 520
unimodal map, 166

symbolic dynamics, 167
unstable

cycle, 12, 110
manifold, 15, 184, 186

map, 184
manifold, flow, 184
periodic point, 12

unsung
heroes, xi, xv

UPO (Unstable Periodic Orbit), see
periodic orbit

van Kampen, N. G., 511
Van Vleck

propagator, 490
variational principle, 511
vector field, 36
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vector fields
singularities, 97

vertex, 177
visitation frequency, 124
visitation sequence, see itinerary
volume preservation, 89
von Neumann

ergodicity, 664

wandering point, 33
wave

partial differential equations, 652
wave function

semiclassical, 486
WKB, 487

weight
multiplicative, 27

Wentzel-Kramers-Brillouin, 467, see
WKB

Wentzel-Kramers-Brillouin, 480
Weyl rule, 518
white noise, 508
Wiener integral, 511
Wigner delay time, 553
winding number, 432, 434
WKB, 480, 653

connection formulas, 474
quantization, 467, 471
wave function, 487

Yang, C.N., 124
Young, L.-S., 53

zero eigenvalue, 474, 492
zeros

false, 251
zeta function

Artin-Mazur, 213
dynamical, 17, 247
probabilistic , 376
Ruelle, see dynamical
topological, 213
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Appendix A

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discov-
ered is named after someone else (including
Arnol’d’s law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discov-
ered for the first time.

3. Whiteheads’s Law: Everything of impor-
tance has been said before by someone who did
not discover it.

M.V. Berry

A.1 Chaos is born

(R. Mainieri)

Trying to predict the motion of the Moon has preoccupied astronomers
since antiquity. Accurate understanding of its motion was important for
determining the longitude of ships while traversing open seas.

Kepler’s Rudolphine tables had been a great improvement over previous
tables, and Kepler was justly proud of his achievements. He wrote in the
introduction to the announcement of Kepler’s third law, Harmonice Mundi
(Linz, 1619) in a style that would not fly with the contemporary Physical
Review Letters editors:

What I prophesied two-and-twenty years ago, as soon as I discov-
ered the five solids among the heavenly orbits – what I firmly believed
long before I had seen Ptolemy’s Harmonics – what I had promised
my friends in the title of this book, which I named before I was sure
of my discovery – what sixteen years ago, I urged as the thing to be
sought – that for which I joined Tycho Brahé, for which I settled in
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640 APPENDIX A. A BRIEF HISTORY OF CHAOS

Prague, for which I have devoted the best part of my life to astronom-
ical contemplations, at length I have brought to light, and recognized
its truth beyond my most sanguine expectations. It is not eighteen
months since I got the first glimpse of light, three months since the
dawn, very few days since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me; I will indulge my sacred
fury; I will triumph over mankind by the honest confession that I
have stolen the golden vases of the Egyptians to build up a tabernacle
for my God far away from the confines of Egypt. If you forgive me,
I rejoice; if you are angry, I can bear it; the die is cast, the book is
written, to be read either now or in posterity, I care not which; it may
well wait a century for a reader, as God has waited six thousand years
for an observer.

Then came Newton. Classical mechanics has not stood still since New-
ton. The formalism that we use today was developed by Euler and La-
grange. By the end of the 1800’s the three problems that would lead to the
notion of chaotic dynamics were already known: the three-body problem,
the ergodic hypothesis, and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits
of Kepler and set an example of how equations of motion could be solved
by integrating. But the motion of the Moon is not well approximated by
an ellipse with the Earth at a focus; at least the effects of the Sun have
to be taken into account if one wants to reproduce the data the classical
Greeks already possessed. To do that one has to consider the motion of
three bodies: the Moon, the Earth, and the Sun. When the planets are
replaced by point particles of arbitrary masses, the problem to be solved
is known as the three-body problem. The three-body problem was also a
model to another concern in astronomy. In the Newtonian model of the
solar system it is possible for one of the planets to go from an elliptic orbit
around the Sun to an orbit that escaped its dominion or that plunged right
into it. Knowing if any of the planets would do so became the problem
of the stability of the solar system. A planet would not meet this terrible
end if solar system consisted of two celestial bodies, but whether such fate
could befall in the three-body case remained unclear.

After many failed attempts to solve the three-body problem, natural
philosophers started to suspect that it was impossible to integrate. The
usual technique for integrating problems was to find the conserved quan-
tities, quantities that do not change with time and allow one to relate the
momenta and positions different times. The first sign on the impossibility
of integrating the three-body problem came from a result of Burns that
showed that there were no conserved quantities that were polynomial in
the momenta and positions. Burns’ result did not preclude the possibility
of more complicated conserved quantities. This problem was settled by
Poincaré and Sundman in two very different ways.
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A.1. CHAOS IS BORN 641

In an attempt to promote the journal Acta Mathematica, Mittag-Leffler
got the permission of the King Oscar II of Sweden and Norway to establish
a mathematical competition. Several questions were posed (although the
king would have preferred only one), and the prize of 2500 kroner would go
to the best submission. One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other
according to Newton’s laws, under the assumption that no two points
ever collide, try to find a representation of the coordinates of each
point as a series in a variable that is some known function of time and
for all of whose values the series converges uniformly.

This problem, whose solution would considerably extend our un-
derstanding of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quanti-
ties that were analytic in the momenta and positions could not exist. To
show that he introduced methods that were very geometrical in spirit: the
importance of phase space flow, the role of periodic orbits and their cross
sections, the homoclinic points.

The interesting thing about Poincaré’s work was that it did not solve the
problem posed. He did not find a function that would give the coordinates
as a function of time for all times. He did not show that it was impossible
either, but rather that it could not be done with the Bernoulli technique
of finding a conserved quantity and trying to integrate. Integration would
seem unlikely from Poincaré’s prize-winning memoir, but it was accom-
plished by the Finnish-born Swedish mathematician Sundman. Sundman
showed that to integrate the three-body problem one had to confront the
two-body collisions. He did that by making them go away through a trick
known as regularization of the collision manifold. The trick is not to expand
the coordinates as a function of time t, but rather as a function of 3

√
t. To

solve the problem for all times he used a conformal map into a strip. This
allowed Sundman to obtain a series expansion for the coordinates valid for
all times, solving the problem that was proposed by Weirstrass in the King
Oscar II’s competition.

The Sundman’s series are not used today to compute the trajectories
of any three-body system. That is more simply accomplished by numerical
methods or through series that, although divergent, produce better numer-
ical results. The conformal map and the collision regularization mean that

the series are effectively in the variable 1 − e−
3√t. Quite rapidly this gets

exponentially close to one, the radius of convergence of the series. Many
terms, more terms than any one has ever wanted to compute, are needed to
achieve numerical convergence. Though Sundman’s work deserves better
credit than it gets, it did not live up to Weirstrass’s expectations, and the
series solution did not “considerably extend our understanding of the solar
system.” The work that followed from Poincaré did.
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A.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dy-
namics was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann
had combined the mechanics of Newton with notions of probability in order
to create statistical mechanics, deriving thermodynamics from the equa-
tions of mechanics. To evaluate the heat capacity of even a simple system,
Boltzmann had to make a great simplifying assumption of ergodicity: that
the dynamical system would visit every part of the phase space allowed by
conservation laws equally often. This hypothesis was extended to other av-
erages used in statistical mechanics and was called the ergodic hypothesis.
It was reformulated by Poincaré to say that a trajectory comes as close as
desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the
end of twentieth century it has only been shown true for a few systems and
wrong for quite a few others. Early on, as a mathematical necessity, the
proof of the hypothesis was broken down into two parts. First one would
show that the mechanical system was ergodic (it would go near any point)
and then one would show that it would go near each point equally often
and regularly so that the computed averages made mathematical sense.
Koopman took the first step in proving the ergodic hypothesis when he
noticed that it was possible to reformulate it using the recently developed
methods of Hilbert spaces. This was an important step that showed that it
was possible to take a finite-dimensional nonlinear problem and reformulate
it as a infinite-dimensional linear problem. This does not make the problem
easier, but it does allow one to use a different set of mathematical tools on
the problem. Shortly after Koopman started lecturing on his method, von
Neumann proved a version of the ergodic hypothesis, giving it the status of
a theorem. He proved that if the mechanical system was ergodic, then the
computed averages would make sense. Soon afterwards Birkhoff published
a much stronger version of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the the-
ory of chaotic dynamical systems was the work on the nonlinear oscillators.
The problem is to construct mechanical models that would aid our under-
standing of physical systems. Lord Rayleigh came to the problem through
his interest in understanding how musical instruments generate sound. In
the first approximation one can construct a model of a musical instrument
as a linear oscillator. But real instruments do not produce a simple tone
forever as the linear oscillator does, so Lord Rayleigh modified this simple
model by adding friction and more realistic models for the spring. By a
clever use of negative friction he created two basic models for the musical
instruments. These models have more than a pure tone and decay with
time when not stroked. In his book The Theory of Sound Lord Rayleigh
introduced a series of methods that would prove quite general, such as the
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notion of a limit cycle, a periodic motion a system goes to regardless of the
initial conditions.

A.2 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis
were published in 1912 and 1913. This line of enquiry developed in two
directions. One direction took an abstract approach and considered dy-
namical systems as transformations of measurable spaces into themselves.
Could we classify these transformations in a meaningful way? This lead
Kolmogorov to the introduction of the concept of entropy for dynamical
systems. With entropy as a dynamical invariant it became possible to clas-
sify a set of abstract dynamical systems known as the Bernoulli systems.
The other line that developed from the ergodic hypothesis was in trying
to find mechanical systems that are ergodic. An ergodic system could not
have stable orbits, as these would break ergodicity. So in 1898 Hadamard
published a paper with a playful title of “... billiards ...,” where he showed
that the motion of balls on surfaces of constant negative curvature is every-
where unstable. This dynamical system was to prove very useful and it was
taken up by Birkhoff. Morse in 1923 showed that it was possible to enu-
merate the orbits of a ball on a surface of constant negative curvature. He
did this by introducing a symbolic code to each orbit and showed that the
number of possible codes grew exponentially with the length of the code.
With contributions by Artin, Hedlund, and Hopf it was eventually proven
that the motion of a ball on a surface of constant negative curvature was
ergodic. The importance of this result escaped most physicists, one excep-
tion being Krylov, who understood that a physical billiard was a dynamical
system on a surface of negative curvature, but with the curvature concen-
trated along the lines of collision. Sinai, who was the first to show that a
physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It
prompted many experiments and some theoretical development by van der
Pol, Duffing, and Hayashi. They found other systems in which the non-
linear oscillator played a role and classified the possible motions of these
systems. This concreteness of experiments, and the possibility of analysis
was too much of temptation for Mary Lucy Cartwright and J.E. Little-
wood, who set out to prove that many of the structures conjectured by
the experimentalists and theoretical physicists did indeed follow from the
equations of motion. Birkhoff had found a “remarkable curve” in a two
dimensional map; it appeared to be non-differentiable and it would be nice
to see if a smooth flow could generate such a curve. The work of Cartwright
and Littlewood lead to the work of Levinson, which in turn provided the
basis for the horseshoe construction of S. Smale.

In Russia, Lyapunov paralleled the methods of Poincaré and initiated
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the strong Russian dynamical systems school. Andronov carried on with the
study of nonlinear oscillators and in 1937 introduced together with Pontrya-
gin the notion of coarse systems. They were formalizing the understanding
garnered from the study of nonlinear oscillators, the understanding that
many of the details on how these oscillators work do not affect the overall
picture of the phase space: there will still be limit cycles if one changes
the dissipation or spring force function by a little bit. And changing the
system a little bit has the great advantage of eliminating exceptional cases
in the mathematical analysis. Coarse systems were the concept that caught
Smale’s attention and enticed him to study dynamical systems.

A.3 Chaos with us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where he met
Arnol’d, Anosov, Sinai, and Novikov. He lectured there, and spent a lot
of time with Anosov. He suggested a series of conjectures, most of which
Anosov proved within a year. It was Anosov who showed that there are
dynamical systems for which all points (as opposed to a non–wandering set)
admit the hyperbolic structure, and it was in honor of this result that Smale
named these systems Axiom-A. In Kiev Smale found a receptive audience
that had been thinking about these problems. Smale’s result catalyzed
their thoughts and initiated a chain of developments that persisted into the
1970’s.

Smale collected his results and their development in the 1967 review
article on dynamical systems, entitled “Differentiable dynamical systems”.
There are many great ideas in this paper: the global foliation of invariant
sets of the map into disjoint stable and unstable parts; the existence of a
horseshoe and enumeration and ordering of all its orbits; the use of zeta
functions to study dynamical systems. The emphasis of the paper is on
the global properties of the dynamical system, on how to understand the
topology of the orbits. Smale’s account takes you from a local differential
equation (in the form of vector fields) to the global topological description
in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confus-
ing. The general character of entropy was understood by Weiner, who
seemed to have spoken to Shannon. In 1948 Shannon published his re-
sults on information theory, where he discusses the entropy of the shift
transformation. Kolmogorov went far beyond and suggested a definition of
the metric entropy of an area preserving transformation in order to clas-
sify Bernoulli shifts. The suggestion was taken by his student Sinai and
the results published in 1959. In 1960 Rohlin connected these results to
measure-theoretical notions of entropy. The next step was published in
1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these pa-
pers showed that one could define the notion of topological entropy and use
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it as an invariant to classify continuous maps. In 1967 Anosov and Sinai
applied the notion of entropy to the study of dynamical systems. It was in
the context of studying the entropy associated to a dynamical system that
Sinai introduced Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems and statisti-
cal mechanics; this has been a very fruitful relationship. It adds measure
notions to the topological framework laid down in Smale’s paper. Markov
partitions divide the phase space of the dynamical system into nice little
boxes that map into each other. Each box is labeled by a code and the
dynamics on the phase space maps the codes around, inducing a symbolic
dynamics. From the number of boxes needed to cover all the space, Sinai
was able to define the notion of entropy of a dynamical system. In 1970
Bowen came up independently with the same ideas, although there was
presumably some flow of information back and forth before these papers
got published. Bowen also introduced the important concept of shadowing
of chaotic orbits. We do not know whether at this point the relations with
statistical mechanics were clear to every one. They became explicit in the
work of Ruelle. Ruelle understood that the topology of the orbits could
be specified by a symbolic code, and that one could associate an “energy”
to each orbit. The energies could be formally combined in a “partition
function” to generate the invariant measure of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the
statistical mechanics approach to chaotic systems, research turned to study-
ing particular cases. The simplest case to consider is one-dimensional maps.
The topology of the orbits for parabola-like maps was worked out in 1973
by Metropolis, Stein, and Stein. The more general one-dimensional case
was worked out in 1976 by Milnor and Thurston in a widely circulated
preprint, whose extended version eventually got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, and Stein in-
spired Feigenbaum to study simple maps. This lead him to the discovery
of the universality in quadratic maps and the application of ideas from
field-theory to dynamical systems. Feigenbaum’s work was the culmination
in the study of one-dimensional systems; a complete analysis of a nontriv-
ial transition to chaos. Feigenbaum introduced many new ideas into the
field: the use of the renormalization group which lead him to introduce
functional equations in the study of dynamical systems, the scaling func-
tion which completed the link between dynamical systems and statistical
mechanics, and the use of presentation functions as the dynamics of scaling
functions.

The work in more than one dimension progressed very slowly and is still
far from completed. The first result in trying to understand the topology of
the orbits in two dimensions (the equivalent of Metropolis, Stein, and Stein,
or Milnor and Thurston’s work) was obtained by Thurston. Around 1975
Thurston was giving lectures “On the geometry and dynamics of diffeomor-
phisms of surfaces”. Thurston’s techniques exposed in that lecture have not
been applied in physics, but much of the classification that Thurston de-
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veloped can be obtained from the notion of a “pruning front” developed
independently by Cvitanović.

Once one develops an understanding for the topology of the orbits of a
dynamical system, one needs to be able to compute its properties. Ruelle
had already generalized the zeta function introduced by Artin and Mazur
so that it could be used to compute the average value of observables. The
difficulty with Ruelle’s zeta function is that it does not converge very well.
Starting out from Smale’s observation that a chaotic dynamical system is
dense with a set of periodic orbits, Cvitanović used these orbits as a skele-
ton on which to evaluate the averages of observables, and organized such
calculations in terms of rapidly converging cycle expansions. This conver-
gence is attained by using the shorter orbits used as a basis for shadowing
the longer orbits.

This account is far from complete, but we hope that it will help get a
sense of perspective on the field. It is not a fad and it will not die anytime
soon.

Remark A.1 Notion of global foliations. For each paper cited in dynamical
systems literature, there are many results that went into its development. As
an example, take the notion of global foliations that we attribute to Smale. As
far as we can trace the idea, it goes back to René Thom; local foliations were
already used by Hadamard. Smale attended a seminar of Thom in 1958 or 1959.
In that seminar Thom was explaining his notion of transversality. One of Thom’s
disciples introduced Smale to Brazilian mathematician Peixoto. Peixoto (who had
learned the results of the Andronov-Pontryagin school from Lefschetz) was the
closest Smale had ever come until then to the Andronov-Pontryagin school. It
was from Peixoto that Smale learned about structural stability, a notion that got
him enthusiastic about dynamical systems, as it blended well with his topological
background. It was from discussions with Peixoto that Smale got the problems in
dynamical systems that lead him to his 1960 paper on Morse inequalities. The next
year Smale published his result on the hyperbolic structure of the nonwandering
set. Smale was not the first to consider a hyperbolic point, Poincaré had already
done that; but Smale was the first to introduce a global hyperbolic structure.
By 1960 Smale was already lecturing on the horseshoe as a structurally stable
dynamical system with an infinity of periodic points and promoting his global
viewpoint.

(R. Mainieri)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin
tried to use geometry to establish positive Lyapunov exponents. A. Katok and J.-
M. Strelcyn carried out the program and developed a theory of general dynamical
systems with singularities. They studied uniformly hyperbolic systems (as strong
as Anosov’s), but with sets of singularities. Under iterations a dense set of points
hits the singularities. Even more important are the points that never hit the
singularity set. In order to establish some control over how they approach the set,
one looks at trajectories that apporach the set by some given ǫn, or faster.

Ya.G. Sinai, L. Bunimovich and Chernov studied the geometry of billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was much more robust. Look
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at the discontinuity set (geometry of it matters not at all), take an ǫ neighborhood
around it. Given that the Lebesgue measure is ǫα and the stability grows not faster
than (distance)n, A. Katok and J.-M. Strelcyn prove that the Lyapunov exponent
is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the problem has no
invariant Lebesgue measure. Assuming uniform hyperbolicity, with singularities,
and tying together Lebesgue measure and discontinutities, and given that the
stability grows not faster than (distance)n, Ya.B. Pesin proved that the Lyapunov
exponent is non-zero, and that SRB measure exists. He also proved that the
Lorenz, Lozi and Byelikh attractors satisfy these conditions.

In the the systems were uniformly hyperbolic, all trouble was in differentials.
For the Hénon attractor, already the differentials are nonhyperbolic. The points
do not separate uniformly, but the analogue of the singularity set can be obtained
by excizing the regions that do not separate. Hence there are 3 levels of ergodic
systems:

1. Anosov flow

2. Anosov flow + singularity set

• the Hamiltonian systems: general case A. Katok and J.-M. Strelcyn,
billiards Ya.G. Sinai and L. Bunimovich.

• the dissipative case: Ya.B. Pesin

3. Hénon

• The first proof was given by M. Benedicks and L. Carleson [12.33].

• A more readable proof is given in M. Benedicks and L.-S. Young [3.12]

(based on Ya.B. Pesin’s comments)

A.3.1 Periodic orbit theory

Pure mathematics is a branch of applied mathemat-
ics.
Joe Keller, after being asked to define applied math-
ematics

The history of the periodic orbit theory is rich and curious, and the
recent advances are to equal degree inspired by a century of separate devel-
opment of three disparate subjects; 1. classical chaotic dynamics, initiated
by Poincaré and put on its modern footing by Smale, Ruelle, and many
others; 2. quantum theory initiated by Bohr, with the modern “chaotic”
formulation by Gutzwiller; and 3. analytic number theory initiated by Rie-
mann and formulated as a spectral problem by Selberg. Following totally
different lines of reasoning and driven by very different motivations, the
three separate roads all arrive at formally nearly identical trace formulas,
zeta functions and spectral determinants.

That these topics should be related is far from obvious. Connection be-
tween dynamics and number theory arises from Selberg’s observation that
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description of geodesic motion and wave mechanics on spaces of constant
negative curvature is essentially a number-theoretic problem. A posteriori,
one can say that zeta functions arise in both classical and quantum me-
chanics because in both the dynamical evolution can be described by the
action of linear evolution (or transfer) operators on infinite-dimensional
vector spaces. The spectra of these operators are given by the zeros of
appropriate determinants. One way to evaluate determinants is to expand
them in terms of traces, log det = tr log, and in this way the spectrum of
an evolution operator becames related to its traces, that is, periodic orbits.
A perhaps deeper way of restating this is to observe that the trace formu-
las perform the same service in all of the above problems; they relate the
spectrum of lengths (local dynamics) to the spectrum of eigenvalues (global
averages), and for nonlinear geometries they play a role analogous to that
the Fourier transform plays for the circle.

A.4 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue
went up for a walk up the Uetliberg. On the top they
sat down and talked about physics. In particular they
talked about the new atom model of Bohr. There
and then they made the “Uetli Schwur”: If that crazy
model of Bohr turned out to be right, then they would
leave physics. It did and they didn’t.

A. Pais, Inward Bound: of Matter and Forces in the
Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in his office at the
Niels Bohr Institute beaming with the unparalleled glee of a boy who has
just committed a major mischief. The starting words of the manuscript he
has just penned are

The failure of the Copenhagen School to obtain a reasonable . . .

34 years old at the time, Dieter was a scruffy kind of guy, always in sandals
and holed out jeans, a left winger and a mountain climber, working around
the clock with his students Gregor and Klaus to complete the work that
Bohr himself would have loved to see done back in 1916: a “planetary”
calculation of the helium spectrum.

Never mind that the “Copenhagen School” refers not to the old quantum
theory, but to something else. The old quantum theory was no theory at
all; it was a set of rules bringing some order to a set of phenomena which
defied logic of classical theory. The electrons were supposed to describe
planetary orbits around the nucleus; their wave aspects were yet to be
discovered. The foundations seemed obscure, but Bohr’s answer for the
once-ionized helium to hydrogen ratio was correct to five significant figures
and hard to ignore. The old quantum theory marched on, until by 1924 it
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reached an impasse: the helium spectrum and the Zeeman effect were its
death knell.

Since the late 1890’s it had been known that the helium spectrum con-
sists of the orthohelium and parahelium lines. In 1915 Bohr suggested that
the two kinds of helium lines might be associated with two distinct shapes of
orbits (a suggestion that turned out to be wrong). In 1916 he got Kramers
to work on the problem, and wrote to Rutherford: “I have used all my spare
time in the last months to make a serious attempt to solve the problem of
ordinary helium spectrum . . . I think really that at last I have a clue to
the problem.” To other colleagues he wrote that “the theory was worked
out in the fall of 1916” and of having obtained a “partial agreement with
the measurements.” Nevertheless, the Bohr-Sommerfeld theory, while by
and large successful for hydrogen, was a disaster for neutral helium. Heroic
efforts of the young generation, including Kramers and Heisenberg, were of
no avail.

For a while Heisenberg thought that he had the ionization potential
for helium, which he had obtained by a simple perturbative scheme. He
wrote enthusiastic letters to Sommerfeld and was drawn into a collabo-
ration with Max Born to compute the spectrum of helium using Born’s
systematic perturbative scheme. In first approximation, they reproduced
the earlier calculations. The next level of corrections turned out to be larger
than the computed effect. The concluding paragraph of Max Born’s classic
“Vorlesungen über Atommechanik” from 1925 sums it up in a somber tone:

(. . . ) the systematic application of the principles of the quantum
theory (. . . ) gives results in agreement with experiment only in those
cases where the motion of a single electron is considered; it fails even
in the treatment of the motion of the two electrons in the helium
atom.

This is not surprising, for the principles used are not really con-
sistent. (. . . ) A complete systematic transformation of the classical
mechanics into a discontinuous mechanics is the goal towards which
the quantum theory strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum
theory was dead. In 1926 he gave the first quantitative explanation of the
helium spectrum. He used wave mechanics, electron spin and the Pauli
exclusion principle, none of which belonged to the old quantum theory, and
planetary orbits of electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It was not
the fault of the old quantum mechanics, but rather it reflected their lack of
understanding of the subtleties of classical mechanics. Today we know what
they missed in 1913-24: the role of conjugate points (topological indices)
along classical trajectories was not accounted for, and they had no idea of
the importance of periodic orbits in nonintegrable systems.

Since then the calculation for helium using the methods of the old quan-
tum mechanics has been fixed. Leopold and Percival added the topological
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indices in 1980, and in 1991 Wintgen and collaborators orbits. Dieter had
good reasons to gloat; while the rest of us were preparing to sharpen our
pencils and supercomputers in order to approach the dreaded 3-body prob-
lem, they just went ahead and did it. What it took - and much else - is
described in this book. One is also free to ponder what quantum theory
would look like today if all this was worked out in 1917.

Remark A.3 Sources. This tale, aside from a few personal recollections, is in

large part lifted from Abraham Pais’ accounts of the demise of the old quantum

theory [A.7, A.8], as well as Jammer’s account [A.3]. The helium spectrum is taken

up in chapter 34. In August 1994 Dieter Wintgen died in a climbing accident in

the Swiss Alps.
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Appendix B

Infinite-dimensional flows

Flows described by partial differential equations (PDEs) are con-
sidered infinite dimensional because if one writes them down as a set of
ordinary differential equations (ODEs) then one needs an infinity of the
ordinary kind to represent the dynamics of one equation of the partial
kind. Even though the phase space is infinite-dimensional, for many sys-
tems of physical interest the global attractor is finite-dimensional. We
illustrate how this works for dissipative systems with a concrete example,
the Kuramoto-Sivashinsky system.

B.0.1 Partial differential equations

First, a few words about partial differential equations in general. Many of
the partial differential equations of mathematical physics can be written in
the quasi-linear form

∂tu = Au+N(u) , (B.1)

where u is a function (possibly a vector function) of the coordinate x and
time t, A is a linear operator, usually containing the Laplacian and a few
other derivatives of u, and N(u) is the nonlinear part of the equation.

Not all equations are stated in the form (B.1), but they can easily be
so transformed, just as the ordinary differential equations can be rewritten
as first-order systems. We will illustrate the method with a variant of the
D’Alambert’s wave equation describing a plucked string:

∂tty =

(
c+

1

2
(∂xy)

2

)
∂xxy . (B.2)

Were the term ∂xy small, this equation would be just the ordinary wave
equation. To rewrite the equation in the first order form (B.1), we need a
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field u = (y,w) that is two-dimensional,

∂t

[
y
w

]
=

[
0 1

c∂xx 0

] [
y
w

]
+

[
0

∂xxy(∂xy)
2/2

]
. (B.3)

The [2×2] matrix is the linear operator A and the vector on the far right is
the nonlinear function N(u). Unlike ordinary functions, differentiations are
part of the function. The nonlinear part can also be expressed as a function
on the infinite set of numbers that represent the field, as exemplified by the
Kuramoto-Sivashinsky system (??).

The usual technique for solving the linear part is to use Fourier methods.
Just as in the ordinary differential equation case, one can integrate the
linear part of

☞ chapter 4.2

∂tu = Au (B.4)

to obtain

u(x, t) = etAu(x, 0) . (B.5)

If u is expressed as Fourier series
∑

k ak exp(ikx), as we will do for the
Kuramoto-Shivashinsky system, then we can determine the action of etA

on u(x, 0). This can be done because differentiations in A act rather simply
on the exponentials. For example,

et∂xu(x, 0) = et∂x
∑

k

ake
ikx =

∑

k

ak
(it)k

k!
eikx . (B.6)

Depending on the behavior of the linear part, one distinguishes three classes
of partial differential equations: diffusion, wave, and potential. The
classification relies on the solution by a Fourier series, as in (B.5). In
mathematical literature these equations are also called parabolic, hyperbolic
and elliptic. If the nonlinear part N(u) is as big as the linear part, the
classification is not a good indication of behavior, and one can encounter
features of one class of equations while studying the others.

In diffusion-type equations the modes of high frequency tend to become
smooth, and all initial conditions tend to an attractor, called the inertial
manifold. The solution being attracted to the inertial manifold does not
mean that the amplitudes of all but a finite number of modes go to zero
(alas were we so lucky), but that there is a finite set of modes that could
be used to describe any solution of the inertial manifold. The only catch is
that there is no simple way to discover what these inertial manifold modes
might be.
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In wave-like equations the high frequency modes do not die out and
the solutions tend to be distributions. The equations can be solved by

☞ chapter 28
variations on the WKB idea: the wave-like equations can be approximated
by the trajectories of the wave fronts.

Elliptic equations have no time dependence and do not represent dy-
namical systems.
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Appendix C

Stability of Hamiltonian flows

C.1 Symplectic invariance

(M.J. Feigenbaum and P. Cvitanović)

The symplectic structure of Hamilton’s equations buys us much more
than the incompressibility, or the phase space volume conservation alluded
to in sect. 5.1. We assume you are at home with Hamiltonian formalism. If
you would like to see the Hamilton’s equations derived, Hamilton’s original
line of reasoning is retraced in sect. 28.1.1. The evolution equations for any

☞ sect. 28.1.1
p, q dependent quantity Q = Q(q, p) are given by (9.31).

In terms of the Poisson brackets, the time evolution equation for Q =
Q(q, p) is given by (9.33). We now recast the symplectic condition (5.13)
in a form convenient for using the symplectic constraints on M. Writing
x(t) = x′ = [p′, q′] and the fundamental matrix and its inverse

M =

(
∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

)
, M−1 =

( ∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′

)
, (C.1)

we can spell out the symplectic invariance condition (5.13):

∂q′k
∂qi

∂p′k
∂qj

− ∂p′k
∂qi

∂q′k
∂qj

= 0

∂q′k
∂pi

∂p′k
∂pj

− ∂p′k
∂pi

∂q′k
∂pj

= 0

∂q′k
∂qi

∂p′k
∂pj

− ∂p′k
∂qi

∂q′k
∂pj

= δij . (C.2)

From (5.16) we obtain

∂qi
∂q′j

=
∂p′j
∂pi

,
∂pi
∂p′j

=
∂q′j
∂qi

,
∂qi
∂p′j

= −
∂q′j
∂pi

,
∂pi
∂q′j

= −
∂p′j
∂qi

. (C.3)
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Taken together, (C.3) and (C.2) imply that the flow conserves the {p, q}
Poisson brackets

{qi, qj} =
∂qi
∂p′k

∂qj
∂q′k

− ∂qj
∂p′k

∂qi
∂q′k

= 0

{pi, pj} = 0 , {pi, qj} = δij , (C.4)

that is, the transformations induced by a Hamiltonian flow are canonical,
preserving the form of the equations of motion. The first two relations are
symmetric under i, j interchange and yield D(D−1)/2 constraints each; the
last relation yields D2 constraints. Hence only (2D)2−2D(D−1)/2−D2 =
2D2 + D elements of M are linearly independent, as it behooves group
elements of the symplectic group Sp(2D).

We have now succeeded in making the full set of constraints explicit -
as we shall see in appendix D, this will enable us to implement dynamics in
such a way that the symplectic invariance will be automatically preserved.

C.2 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the fundamental matrix of the flow, but the monodromy
matrix, which enters the trace formula. This matrix gives the time depen-
dence of a displacement perpendicular to the flow on the energy manifold.
Indeed, we discover some trivial parts in the fundamental matrix M. An
initial displacement in the direction of the flow x = ω∇H(x) transfers ac-
cording to δx(t) = xt(t)δt with δt time independent. The projection of any
displacement on δx on ∇H(x) is constant, that is, ∇H(x(t))δx(t) = δE.
We get the equations of motion for the monodromy matrix directly choos-
ing a suitable local coordinate system on the orbit x(t) in form of the (non
singular) transformation U(x(t)):

M̃(x(t)) = U−1(x(t))M(x(t))U(x(0)) (C.5)

These lead to

˙̃M = L̃ M̃

with L̃ = U−1(LU − U̇) (C.6)

Note that the properties a) – c) are only fulfilled for M̃ and L̃, if U itself
is symplectic.
Choosing xE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the
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two trivial eigenvalues 1 of the transformed matrix in (C.5) at any time t.
Setting U = (xTt , x

T
E, x

T
1 , . . . , x

T
2d−2) gives

M̃ =




1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...

... m
0 ∗




; L̃ =




0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...

... l
0 ∗



, (C.7)

The matrix m is now the monodromy matrix and the equation of motion
are given by

ṁ = l m. (C.8)

The vectors x1, . . . , x2d−2 must span the space perpendicular to the flow on
the energy manifold.

For a system with two degrees of freedom, the matrix U(t) can be
written down explicitly, that is,

U(t) = (xt, x1, xE , x2) =




ẋ −ẏ −u̇/q2 −v̇/q2
ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2
v̇ −u̇ ẏ/q2 ẋ/q2


 (C.9)

with xT = (x, y;u, v) and q = |∇H| = |ẋ|. The matrix U is non singular
and symplectic at every phase space point x (except the equilibrium points
ẋ = 0). The matrix elements for l are given (C.11). One distinguishes 4
classes of eigenvalues of m.

• stable or elliptic, if Λ = e±iπν and ν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ; λ > 0 is called
the Lyapunov exponent of the periodic orbit.

• loxodromic, if Λ = e±u±iΨ with u and Ψ real. This is the most general
case possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, that is, m is a (2× 2) matrix, the eigenvalues are
determined by

λ =
Tr(m) ±

√
Tr(m)2 − 4

2
, (C.10)

that is, Tr(m) = 2 separates stable and unstable behavior.
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The l matrix elements for the local transformation (C.9) are

l̃11 =
1

q
[(h2

x − h2
y − h2

u + h2
v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu − hvv)]

l̃12 =
1

q2
[(h2

x + h2
v)(hyy + huu) + (h2

y + h2
u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −̃l11, (C.11)

with hi, hij is the derivative of the Hamiltonian H with respect to the phase
space coordinates and q = |∇H|2.
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Appendix D

Implementing evolution

D.1 Koopmania

The way in which time evolution acts on densities may be rephrased in
the language of functional analysis, by introducing the Koopman operator,
whose action on a phase space function a(x) is to replace it by its down-
stream value time t later, a(x) → a(x(t)) evaluated at the trajectory point
x(t):

Kta(x) = a(f t(x)) . (D.1)

Observable a(x) has no explicit time dependence; all time dependence is
carried in its evaluation at x(t) rather than at x = x(0).

Suppose we are starting with an initial density of representative points
ρ(x): then the average value of a(x) evolves as

〈a〉(t) =
1

|ρM|

∫

M
dx a(f t(x))ρ(x) =

1

|ρM|

∫

M
dx
[
Kta(x)

]
ρ(x) .

An alternative point of view (analogous to the shift from the Heisenberg to
the Schrödinger picture in quantum mechanics) is to push dynamical effects
into the density. In contrast to the Koopman operator which advances the
trajectory by time t, the Perron-Frobenius operator (9.10) depends on the
trajectory point time t in the past, so the Perron-Frobenius operator is the
adjoint of the Koopman operator

∫

M
dx
[
Kta(x)

]
ρ(x) =

∫

M
dx a(x)

[
Ltρ(x)

]
. (D.2)

Checking this is an easy change of variables exercise. For finite dimensional
deterministic invertible flows the Koopman operator (D.1) is simply the
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inverse of the Perron-Frobenius operator (9.6), so in what follows we shall
not distinguish the two. However, for infinite dimensional flows contracting
forward in time and for stochastic flows such inverses do not exist, and there
you need to be more careful.

The family of Koopman’s operators
{
Kt
}
t∈R+

forms a semigroup para-

metrized by time

(a) K0 = I

(b) KtKt′ = Kt+t′ t, t′ ≥ 0 (semigroup property) ,

with the generator of the semigroup, the generator of infinitesimal time
translations defined by

A = lim
t→0+

1

t

(
Kt − I

)
.

(If the flow is finite-dimensional and invertible, A is a generator of a group).
The explicit form of A follows from expanding dynamical evolution up to
first order, as in (2.4):

Aa(x) = lim
t→0+

1

t

(
a(f t(x)) − a(x)

)
= vi(x)∂ia(x) . (D.3)

Of course, that is nothing but the definition of the time derivative, so the
equation of motion for a(x) is

(
d

dt
−A

)
a(x) = 0 . (D.4)

☞ appendix D.2

The finite time Koopman operator (D.1) can be formally expressed by
exponentiating the time evolution generator A as

Kt = etA . (D.5)

✎ D.1
page 665 The generator A looks very much like the generator of translations. Indeed,

for a constant velocity field dynamical evolution is nothing but a translation
by time× velocity:✎ 9.10

page 135

etv
∂

∂xa(x) = a(x+ tv) . (D.6)

As we will not need to implement a computational formula for general etA in
what follows, we relegate making sense of such operators to appendix D.2.
Here we limit ourselves to a brief remark about the notion of “spectrum”

☞ appendix D.2
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of a linear operator.

The Koopman operator K acts multiplicatively in time, so it is rea-
sonable to suppose that there exist constants M > 0, β ≥ 0 such that
||Kt|| ≤ Metβ for all t ≥ 0. What does that mean? The operator norm is
define in the same spirit in which we defined the matrix norms in sect. K.2:
We are assuming that no value of Ktρ(x) grows faster than exponentially
for any choice of function ρ(x), so that the fastest possible growth can be
bounded by etβ , a reasonable expectation in the light of the simplest exam-
ple studied so far, the exact escape rate (10.20). If that is so, multiplying
Kt by e−tβ we construct a new operator e−tβKt = et(A−β) which decays ex-
ponentially for large t, ||et(A−β)|| ≤ M . We say that e−tβKt is an element
of a bounded semigroup with generator A−βI. Given this bound, it follows
by the Laplace transform

∫ ∞

0
dt e−stKt =

1

s−A , Re s > β , (D.7)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to
☞ sect. K.2

cause separation into constituents)

∣∣∣∣
∣∣∣∣

1

s−A

∣∣∣∣
∣∣∣∣ ≤

∫ ∞

0
dt e−stMetβ =

M

s− β
.

If one is interested in the spectrum of K, as we will be, the resolvent operator
is a natural object to study. The main lesson of this brief aside is that for
the continuous time flows the Laplace transform is the tool that brings
down the generator in (9.28) into the resolvent form (9.30) and enables us
to study its spectrum.

D.2 Implementing evolution

(R. Artuso and P. Cvitanović)

We now come back to the semigroup of operators Kt. We have
introduced the generator of the semigroup (9.26) as

A =
d

dt
Kt

∣∣∣∣
t=0

.

If we now take the derivative at arbitrary times we get

(
d

dt
Ktψ

)
(x) = lim

η→0

ψ(f t+η(x)) − ψ(f t(x))

η

= vi(f
t(x))

∂

∂x̃i
ψ(x̃)

∣∣∣∣
x̃=ft(x)

=
(
KtAψ

)
(x)
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which can be formally integrated like an ordinary differential equation yield-
ing

✎ D.1
page 665

Kt = etA . (D.8)

This guarantees that the Laplace transform manipulations in sect. 9.4 are
correct. Though the formal expression of the semigroup (D.8) is quite
simple one has to take care in implementing its action. If we express the
exponential through the power series

Kt =
∞∑

k=0

tk

k!
Ak , (D.9)

we encounter the problem that the infinitesimal generator (9.26) contains
non-commuting pieces, that is, there are i, j combinations for which the
commutator does not satisfy

[
∂

∂xi
, vj(x)

]
= 0 .

To derive a more useful representation, we follow the strategy used for finite-
dimensional matrix operators in sects. 4.2 and 4.3 and use the semigroup
property to write

Kt =

t/δτ∏

m=1

Kδτ

as the starting point for a discretized approximation to the continuous
time dynamics, with time step δτ . Omitting terms from the second order
onwards in the expansion of Kδτ yields an error of order O(δτ 2). This might
be acceptable if the time step δτ is sufficiently small. In practice we write
the Euler product

Kt =

t/δτ∏

m=1

(
1 + δτA(m)

)
+ O(δτ 2) (D.10)

where

(
A(m)ψ

)
(x) = vi(f

mδτ (x))
∂ψ

∂x̃i

∣∣∣∣
x̃=fmδτ (x)

As far as the x dependence is concerned, eδτAi acts as

eδτAi





x1

·
xi

xd





→





x1

·
xi + δτvi(x)

xd




. (D.11)
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✎ 2.6
page 43 We see that the product form (D.10) of the operator is nothing else but a

prescription for finite time step integration of the equations of motion - in
this case the simplest Euler type integrator which advances the trajectory
by δτ×velocity at each time step.

D.2.1 A symplectic integrator

The procedure we described above is only a starting point for more
sophisticated approximations. As an example on how to get a sharper
bound on the error term consider the Hamiltonian flow A = B + C, B =
pi

∂
∂qi

, C = −∂iV (q) ∂
∂pi

. Clearly the potential and the kinetic parts do not
commute. We make sense of the formal solution (D.10) by spliting it into ✎ D.3

page 665
infinitesimal steps and keeping terms up to δτ 2 in

Kδτ = K̂δτ +
1

24
(δτ )3[B + 2C, [B, C]] + · · · , (D.12)

where

K̂δτ = e
1
2
δτBeδτCe

1
2
δτB . (D.13)

The approximate infinitesimal Liouville operator K̂δτ is of the form that
now generates evolution as a sequence of mappings induced by (9.29), a
free flight by 1

2
δτB, scattering by δτ∂V (q′), followed again by 1

2
δτB free

flight:

e
1
2
δτB
{
q

p

}
→

{
q′

p′

}
=

{
q − δτ

2 p

p

}

eδτC
{
q′

p′

}
→

{
q′′

p′′

}
=

{
q′

p′ + δτ∂V (q′)

}

e
1
2
δτB
{
q′′

p′′

}
→

{
q′′′

p′′′

}
=

{
q′ − δτ

2 p
′′

p′′

}
(D.14)

Collecting the terms we obtain an integration rule for this type of symplectic
flow which is better than the straight Euler integration (D.11) as it is
accurate up to order δτ2:

qn+1 = qn − δτ pn −
(δτ )2

2
∂V (qn − δτpn/2)

pn+1 = pn + δτ∂V (qn − δτpn/2) (D.15)

The fundamental matrix of one integration step is given by

M =

(
1 −δτ/2
0 1

)(
1 0

δτ∂V (q′) 1

)(
1 −δτ/2
0 1

)
. (D.16)
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Note that the billiard flow (6.11) is an example of such symplectic inte-
grator. In that case the free flight is interupted by instantaneous wall
reflections, and can be integrated out.

Commentary

Remark D.1 Koopman operators. The “Heisenberg picture” in dynamical sys-

tem theory has been introduced by Koopman refs. [D.1, D.2], see also ref. [9.8].

Inspired by the contemporary advances in quantum mechanics, Koopman [D.1] ob-

served in 1931 that Kt is unitary on L2(µ) Hilbert spaces. The Liouville/Koopman

operator is the classical analogue of the quantum evolution operator — the kernel

of Lt(y, x) introduced in (9.15) (see also sect. 10.2) is the analogue of the Green’s

function. The relation between the spectrum of the Koopman operator and clas-

sical ergodicity was formalized by von Neumann [D.2]. We shall not use Hilbert

spaces here and the operators that we shall study will not be unitary. For a dis-

cussion of the relation between the Perron-Frobenius operators and the Koopman

operators for finite dimensional deterministic invertible flows, infinite dimensional

contracting flows, and stochastic flows, see Lasota-Mackey [9.8] and Gaspard [1.4].

Remark D.2 Symplectic integration. The reviews [D.5] and [D.6] offer a good

starting point for exploring the symplectic integrators literature. For a higher

order integrators of type (D.13), check ref. [D.7].

References

[D.1] B.O. Koopman, Proc. Nat. Acad. Sci. USA 17, 315 (1931).

[D.2] J. von Neumann, Ann. Math. 33, 587 (1932).

[D.3] B.A. Shadwick, J.C. Bowman, and P.J. Morrison, Exactly Conservative In-
tegrators, chao-dyn/9507012, Submitted to SIAM J. Sci. Comput.

[D.4] D.J.D. Earn, Symplectic integration without roundoff error,
astro-ph/9408024.

[D.5] P.J. Channell and C. Scovel, Nonlinearity 3, 231 (1990).

[D.6] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian problems (Chap-
man and Hall, London, 1994).

[D.7] M. Suzuki, “General theory of fractal path integrals with applications to
many-body theories and statistical physics,” J. Math. Phys. 32, 400 (1991).

refsAppMeasure - 17nov2004 ChaosBook.org/version11.8, Aug 30 2006



EXERCISES 665

Exercises

Exercise D.1 Exponential form of semigroup elements. Check that the

Koopman operator and the evolution generator commute, KtA = AKt, by considering

the action of both operators on an arbitrary phase space function a(x).

Exercise D.2 Symplectic volume preservation. Check that the sequence of

mappings (D.14) is volume preserving, det Û = 1.

Exercise D.3 Noncommutativity. Check that the commutators in (D.12) are
not vanishing by showing that

[B, C] = −p
(
V ′′ ∂

∂p
− V ′ ∂

∂q

)
.

Exercise D.4 Symplectic leapfrog integrator. Implement (D.15) for 2-

dimensional Hamiltonian flows; compare it with Runge-Kutta integrator by integrating

trajectories in some (chaotic) Hamiltonian flow.
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Appendix E

Symbolic dynamics techniques

The kneading theory for unimodal mappings is developed in sect. E.1. The
prime factorization for dynamical itineraries of sect. E.2 illustrates the sense
in which prime cycles are “prime” - the product structure of zeta functions
is a consequence of the unique factorization property of symbol sequences.

E.1 Topological zeta functions for infinite subshifts

(P. Dahlqvist)

The Markov graph methods outlined in chapter 11 are well suited
for symbolic dynamics of finite subshift type. A sequence of well defined
rules leads to the answer, the topological zeta function, which turns out
to be a polynomial. For infinite subshifts one would have to go through
an infinite sequence of graph constructions and it is of course very difficult
to make any asymptotic statements about the outcome. Luckily, for some
simple systems the goal can be reached by much simpler means. This is
the case for unimodal maps.

We will restrict our attention to the topological zeta function for uni-
modal maps with one external parameter fΛ(x) = Λg(x). As usual, sym-
bolic dynamics is introduced by mapping a time series . . . xi−1xixi+1 . . .
onto a sequence of symbols . . . si−1sisi+1 . . . where

si = 0 xi < xc

si = C xi = xc

si = 1 xi > xc (E.1)

and xc is the critical point of the map (that is, maximum of g). In addition
to the usual binary alphabet we have added a symbol C for the critical
point. The kneading sequence KΛ is the itinerary of the critical point.
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I(C) ζ−1
top(z)/(1 − z)

1C
101C
1011101C
H∞(1)

∏∞
n=0(1 − z2n

)
10111C
1011111C
101∞ (1 − 2z2)/(1 + z)
10111111C
101111C
1011C
101101C
10C (1 − z − z2)
10010C
100101C

I(C) ζ−1
top(z)/(1 − z)

1001C
100111C
10011C
100110C
100C
100010C
10001C
100011C
1000C
100001C
10000C
100000C
10∞ (1 − 2z)/(1− z)

Table E.1: All ordered kneading sequences up to length seven, as well as some longer
kneading sequences. Harmonic extension H∞(1) is defined below.

The crucial observation is that no periodic orbit can have a topological
coordinate (see sect. E.1.1) beyond that of the kneading sequence. The
kneading sequence thus inserts a border in the list of periodic orbits (or-
dered according to maximal topological coordinate), cycles up to this limit
are allowed, all beyond are pruned. All unimodal maps (obeying some fur-
ther constraints) with the same kneading sequence thus have the same set
of periodic orbitsand the same topological zeta function. The topological
coordinate of the kneading sequence increases with increasing Λ.

The kneading sequence can be of one of three types

1. It maps to the critical point again, after n iterations. If so, we adopt
the convention to terminate the kneading sequence with a C, and
refer to the kneading sequence as finite.

2. Preperiodic, that is, it is infinite but with a periodic tail.

3. Aperiodic.

As an archetype unimodal map we will choose the tent map

x 7→ f(x) =

{
Λx x ∈ [0, 1/2]
Λ(1 − x) x ∈ (1/2, 1]

, (E.2)

where the parameter Λ ∈ (1, 2]. The topological entropy is h = log Λ. This
follows from the fact any trajectory of the map is bounded, the escape rate
is strictly zero, and so the dynamical zeta function

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)
=
∏

p

(
1 −

( z
Λ

)np
)

= 1/ζtop(z/Λ)

has its leading zero at z = 1.
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The set of periodic points of the tent map is countable. A consequence
of this fact is that the set of parameter values for which the kneading
sequence is periodic or preperiodic are countable and thus of measure zero
and consequently the kneading sequence is aperiodic for almost all Λ. For
general unimodal maps the corresponding statement is that the kneading
sequence is aperiodic for almost all topological entropies.

For a given periodic kneading sequence of period n, KΛ = PC =
s1s2 . . . sn−1C there is a simple expansion for the topological zeta function.
Then the expanded zeta function is a polynomial of degree n

1/ζtop(z) =
∏

p

(1 − znp ) = (1 − z)
n−1∑

i=0

aiz
i , ai =

i∏

j=1

(−1)sj (E.3)

and a0 = 1.

Aperiodic and preperiodic kneading sequences are accounted for by sim-
ply replacing n by ∞.

Example. Consider as an example the kneading sequence KΛ = 10C.
From (E.3) we get the topological zeta function 1/ζtop(z) = (1− z)(1− z−
z2), see table E.1. This can also be realized by redefining the alphabet. The
only forbidden subsequence is 100. All allowed periodic orbits, except 0, can
can be built from a alphabet with letters 10 and 1. We write this alphabet
as {10, 1; 0}, yielding the topological zeta function 1/ζtop(z) = (1 − z)(1 −
z − z2). The leading zero is the inverse golden mean z0 = (

√
5 − 1)/2.

Example. As another example we consider the preperiodic kneading
sequence KΛ = 101∞. From (E.3) we get the topological zeta function
1/ζtop(z) = (1 − z)(1 − 2z2)/(1 + z), see table E.1. This can again be
realized by redefining the alphabet. There are now an infinite number of
forbidden subsequences, namely 1012n0 where n ≥ 0. These pruning rules
are respected by the alphabet {012n+1; 1, 0}, yielding the topological zeta
function above. The pole in the zeta function ζ−1

top(z) is a consequence of
the infinite alphabet.

An important consequence of (E.3) is that the sequence {ai} has a
periodic tail if and only if the kneading sequence has one (however, their
period may differ by a factor of two). We know already that the kneading
sequence is aperiodic for almost all Λ.

The analytic structure of the function represented by the infinite series∑
aizi with unity as radius of convergence, depends on whether the tail of

{ai} is periodic or not. If the period of the tail is N we can write

1/ζtop(z) = p(z) + q(z)(1 + zN + z2N . . .) = p(z) +
q(z)

1 − zN
,
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for some polynomials p(z) and q(z). The result is a set of poles spread out
along the unit circle. This applies to the preperiodic case. An aperiodic
sequence of coefficients would formally correspond to infinite N and it is
natural to assume that the singularities will fill the unit circle. There is
indeed a theorem ensuring that this is the case [12.70], provided the ai’s
can only take on a finite number of values. The unit circle becomes a
natural boundary, already apparent in a finite polynomial approximations
to the topological zeta function, as in figure 13.4. A function with a natural
boundary lacks an analytic continuation outside it.

To conclude: The topological zeta function 1/ζtop for unimodal maps
has the unit circle as a natural boundary for almost all topological entropies
and for the tent map (E.2), for almost all Λ.

Let us now focus on the relation between the analytic structure of the
topological zeta function and the number of periodic orbits, or rather (13.6),
the numberNn of fixed points of fn(x). The trace formula is (see sect. 13.4)

Nn = trT n =
1

2πi

∮

γr

dz z−n
d

dz
log ζ−1

top

where γr is a (circular) contour encircling the origin z = 0 in clockwise
direction. Residue calculus turns this into a sum over zeros z0 and poles zp
of ζ−1

top

Nn =
∑

z0:r<|z0|<R
z−n0 −

∑

zp:r<|zp|<R
z−n0 +

1

2πi

∮

γR

dz z−n
d

dz
log ζ−1

top

and a contribution from a large circle γR. For meromorphic topological
zeta functions one may let R → ∞ with vanishing contribution from γR,
and Nn will be a sum of exponentials.

The leading zero is associated with the topological entropy, as discussed
in chapter 13.

We have also seen that for preperiodic kneading there will be poles on
the unit circle.

To appreciate the role of natural boundaries we will consider a (very)
special example. Cascades of period doublings is a central concept for the
description of unimodal maps. This motivates a close study of the function

Ξ(z) =

∞∏

n=0

(1 − z2n
) . (E.4)

This function will appear again when we derive (E.3).
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The expansion of Ξ(z) begins as Ξ(z) = 1−z−z2 +z3−z4 +z5 . . .. The
radius of convergence is obviously unity. The simple rule governing the
expansion will effectively prohibit any periodicity among the coefficients
making the unit circle a natural boundary.

It is easy to see that Ξ(z) = 0 if z = exp(2πm/2n) for any integer m and
n. (Strictly speaking we mean that Ξ(z) → 0 when z → exp(2πm/2n) from
inside). Consequently, zeros are dense on the unit circle. One can also show
that singular points are dense on the unit circle, for instance |Ξ(z)| → ∞
when z → exp(2πm/3n) for any integer m and n.

As an example, the topological zeta function at the accumulation point
of the first Feigenbaum cascade is ζ−1

top(z) = (1 − z)Ξ(z). Then Nn =

2l+1 if n = 2l, otherwise Nn = 0. The growth rate in the number of
cycles is anything but exponential. It is clear that Nn cannot be a sum
of exponentials, the contour γR cannot be pushed away to infinity, R is
restricted to R ≤ 1 and Nn is entirely determined by

∫
γR

which picks up
its contribution from the natural boundary.

We have so far studied the analytic structure for some special cases and
we know that the unit circle is a natural boundary for almost all Λ. But
how does it look out there in the complex plane for some typical parameter
values? To explore that we will imagine a journey from the origin z =
0 out towards the unit circle. While traveling we let the parameter Λ
change slowly. The trip will have a distinct science fiction flavor. The
first zero we encounter is the one connected to the topological entropy.
Obviously it moves smoothly and slowly. When we move outward to the
unit circle we encounter zeros in increasing densities. The closer to the
unit circle they are, the wilder and stranger they move. They move from
and back to the horizon, where they are created and destroyed through
bizarre bifurcations. For some special values of the parameter the unit
circle suddenly gets transparent and and we get (infinitely) short glimpses
of another world beyond the horizon.

We end this section by deriving eqs (E.5) and (E.6). The impenetrable
prose is hopefully explained by the accompanying tables.

We know one thing from chapter 11, namely for that finite kneading se-
quence of length n the topological polynomial is of degree n. The graph con-
tains a node which is connected to itself only via the symbol 0. This implies
that a factor (1 − z) may be factored out and ζtop(z) = (1 − z)

∑n−1
i=0 aiz

i.
The problem is to find the coefficients ai.

The ordered list of (finite) kneading sequences table E.1 and the ordered
list of periodic orbits (on maximal form) are intimately related. In table E.2
we indicate how they are nested during a period doubling cascade. Every
finite kneading sequence PC is bracketed by two periodic orbits, P1 and
P0. We have P1 < PC < P0 if P contains an odd number of 1’s, and
P0 < PC < P1 otherwise. From now on we will assume that P contains
an odd number of 1’s. The other case can be worked out in complete
analogy. The first and second harmonic of PC are displayed in table E.2.
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periodic orbits finite kneading sequences

P1 = A∞(P )
PC

P0
P0PC

P0P1
P0P1P0PC

↓ ↓
H∞(P ) H∞(P )

Table E.2: Relation between periodic orbits and finite kneading sequences in a har-
monic cascade. The string P is assumed to contain an odd number of 1’s.

The periodic orbit P1 (and the corresponding infinite kneading sequence)
is sometimes referred to as the antiharmonic extension of PC (denoted
A∞(P )) and the accumulation point of the cascade is called the harmonic
extension of PC [11.8] (denoted H∞(P )).

A central result is the fact that a period doubling cascade of PC is
not interfered by any other sequence. Another way to express this is that a
kneading sequence PC and its harmonic are adjacent in the list of kneading
sequences to any order.

I(C) ζ−1
top(z)/(1 − z)

P1 = 100C 1 − z − z2 − z3

H∞(P1) = 10001001100 . . . 1 − z − z2 − z3 − z4 + z5 + z6 + z7 − z8 . . .
P ′ = 10001C 1 − z − z2 − z3 − z4 + z5

A∞(P2) = 1000110001 . . . 1 − z − z2 − z3 − z4 + z5 − z6 − z7 − z8 . . .
P2 = 1000C 1 − z − z2 − z3 − z4

Table E.3: Example of a step in the iterative construction of the list of kneading
sequences PC.

Table E.3 illustrates another central result in the combinatorics of knead-
ing sequences. We suppose that P1C and P2C are neighbors in the list of
order 5 (meaning that the shortest finite kneading sequence P ′C between
P1C and P2C is longer than 5.) The important result is that P ′ (of length
n′ = 6) has to coincide with the first n′ − 1 letters of both H∞(P1) and
A∞(P2). This is exemplified in the left column of table E.3. This fact
makes it possible to generate the list of kneading sequences in an iterative
way.

The zeta function at the accumulation point H∞(P1) is

ζ−1
P1

(z)Ξ(zn1) , (E.5)

and just before A∞(P2)

ζ−1
P2

(z)/(1 − zn2) . (E.6)
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A short calculation shows that this is exactly what one would obtain by
applying (E.3) to the antiharmonic and harmonic extensions directly, pro-
vided that it applies to ζ−1

P1
(z) and ζ−1

P2
(z). This is the key observation.

Recall now the product representation of the zeta function ζ−1 =
∏
p(1−

znp). We will now make use of the fact that the zeta function associated
with P ′C is a polynomial of order n′. There is no periodic orbit of length
shorter than n′ + 1 between H∞(P1) and A∞(P2). It thus follows that the
coefficients of this polynomial coincides with those of (E.5) and (E.6), see
Table E.3. We can thus conclude that our rule can be applied directly to
P ′C.

This can be used as an induction step in proving that the rule can be
applied to every finite and infinite kneading sequences.

Remark E.1 How to prove things. The explicit relation between the kneading

sequence and the coefficients of the topological zeta function is not commonly seen

in the literature. The result can proven by combining some theorems of Milnor

and Thurston [12.15]. That approach is hardly instructive in the present context.

Our derivation was inspired by Metropolis, Stein and Stein classical paper [11.8].

For further detail, consult [12.69].

E.1.1 Periodic orbits of unimodal maps

A periodic point (or a cycle point) xi belonging to a cycle of period n is a
real solution of

fn(xi) = f(f(. . . f(xi) . . .)) = xi , i = 0, 1, 2, . . . , n− 1 (E.7)

The nth iterate of a unimodal map crosses the diagonal at most 2n times.
Similarly, the backward and the forward Smale horseshoes intersect at most
2n times, and therefore there will be 2n or fewer periodic points of length
n. A cycle of length n corresponds to an infinite repetition of a length n
symbol string, customarily indicated by a line over the string:

S = (s1s2s3 . . . sn)
∞ = s1s2s3 . . . sn .

If s1s2 . . . sn is the symbol string associated with x0, its cyclic permutation
sksk+1 . . . sns1 . . . sk−1 corresponds to the point xk−1 in the same cycle. A
cycle p is called prime if its itinerary S cannot be written as a repetition
of a shorter block S′.

Each cycle yields n rational values of γ. The repeating string s1, s2, . . . sn
contains an odd number “1”s, the string of well ordered symbols w1w2 . . . wn
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has to be of the double length before it repeats itself. The value γ is a geo-
metrical sum which we can write as the finite sum

γ(s1s2 . . . sn) =
22n

22n − 1

2n∑

t=1

wt/2
t

Using this we can calculate the γ̂(S) for all short cycles.

Here we give explicit formulas for the topological coordinate of a pe-
riodic point, given its itinerary. For the purpose of what follows it is
convenient to compactify the itineraries by replacing the binary alphabet
si = {0, 1} by the infinite alphabet

{a1, a2, a3, a4, · · · ; 0} = {1, 10, 100, 1000, . . . ; 0} . (E.8)

In this notation the itinerary S = aiajakal · · · and the corresponding topo-
logical coordinate (??) are related by γ(S) = .1i0j1k0l · · ·. For example:

S = 111011101001000 . . . = a1a1a2a1a1a2a3a4 . . .
γ(S) = .101101001110000 . . . = .1101120111021304 . . .

Cycle points whose itineraries start with w1 = w2 = . . . = wi = 0, wi+1 = 1
remain on the left branch of the tent map for i iterations, and satisfy
γ(0 . . . 0S) = γ(S)/2i.

A periodic point (or a cycle point) xi belonging to a cycle of period n is
a real solution of

fn(xi) = f(f(. . . f(xi) . . .)) = xi , i = 0, 1, 2, . . . , n− 1 . (E.9)

The nth iterate of a unimodal map has at most 2n monotone segments, and
therefore there will be 2n or fewer periodic points of length n. A periodic
orbit of length n corresponds to an infinite repetition of a length n symbol
string, customarily indicated by a line over the string:

S = (s1s2s3 . . . sn)
∞ = s1s2s3 . . . sn .

As all itineraries are infinite, we shall adopt convention that a finite string
itinerary S = s1s2s3 . . . sn stands for infinite repetition of a finite block, and
routinely omit the overline. If s1s2 . . . sn is the symbol string associated
with x0, its cyclic permutation sksk+1 . . . sns1 . . . sk−1 corresponds to the
point xk−1 in the same cycle. A periodic orbit p is called prime if its
itinerary S cannot be written as a repetition of a shorter block S′.
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Periodic points correspond to rational values of γ, but we have to dis-
tinguish even and odd cycles. The even (odd) cycles contain even (odd)
number of ai in the repeating block, with periodic points given by

γ(aiaj · · · akaℓ) =

{
2n

2n−1 .1
i0j · · · 1k even

1
2n+1 (1 + 2n × .1i0j · · · 1ℓ) odd

, (E.10)

where n = i+ j + · · · + k + ℓ is the cycle period. The maximal value cycle
point is given by the cyclic permutation of S with the largest ai as the first
symbol, followed by the smallest available aj as the next symbol, and so
on. For example:

γ̂(1) = γ(a1) = .10101 . . . = .10 = 2/3
γ̂(10) = γ(a2) = .1202 . . . = .1100 = 4/5
γ̂(100) = γ(a3) = .1303 . . . = .111000 = 8/9
γ̂(101) = γ(a2a1) = .1201 . . . = .110 = 6/7

An example of a cycle where only the third symbol determines the maximal
value cycle point is

γ̂(1101110) = γ(a2a1a2a1a1) = .11011010010010 = 100/129 .

Maximal values of all cycles up to length 5 are given in table!?

E.2 Prime factorization for dynamical itineraries

The Möbius function is not only a number-theoretic function, but
can be used to manipulate ordered sets of noncommuting objects such as
symbol strings. Let P = {p1, p2, p3, · · ·} be an ordered set of prime strings,
and

N = {n} =
{
pk11 p

k2
2 p

k3
3 · · · pkj

j

}
,

j ∈ N, ki ∈ Z+, be the set of all strings n obtained by the ordered con-
catenation of the “primes” pi. By construction, every string n has a unique
prime factorization. We say that a string has a divisor d if it contains d as
a substring, and define the string division n/d as n with the substring d

deleted. Now we can do things like this: defining tn := tk1p1t
k2
p2 · · · t

kj
pj we can

write the inverse dynamical zeta function (18.2) as

∏

p

(1 − tp) =
∑

n

µ(n)tn ,
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factors string
p1 0
p2 1

p2
1 00
p1p2 01
p2
2 11
p3 10

p3
1 000
p2
1p2 001
p1p

2
2 011

p3
2 111
p1p3 010
p2p3 110
p4 100
p5 101

factors string
p4
1 0000
p3
1p2 0001
p2
1p

2
2 0011

p1p
3
2 0111

p4
2 1111
p2
1p3 0010
p1p2p3 0110
p2
2p3 1110
p2
3 1010
p1p4 0100
p2p4 1100
p1p5 0101
p2p5 1101
p6 1000
p7 1001
p8 1011

factors string
p5
1 00000
p4
1p2 00001
p3
1p

2
2 00011

p2
1p

3
2 00111

p1p
4
2 01111

p5
2 11111
p3
1p3 00010
p2
1p2p3 00110
p1p

2
2p3 01110

p3
2p3 11110
p1p

2
3 01010

p2p
2
3 11010

p2
1p4 00100
p1p2p4 01100
p2
2p4 11100
p3p4 10100

factors string
p2
1p5 00101
p1p2p5 01101
p2
2p5 11101
p3p5 10101
p1p6 01000
p2p6 11000
p1p7 01001
p2p7 11001
p1p8 01011
p2p8 11011
p9 10000
p10 10001
p11 10010
p12 10011
p13 10110
p14 10111

Table E.4: Factorization of all periodic points strings up to length 5 into ordered

concatenations pk1
1 p

k2
2 · · · pkn

n of prime strings p1 = 0, p2 = 1, p3 = 10, p4 = 100, . . .
, p14 = 10111.

and, if we care (we do in the case of the Riemann zeta function), the dyn-
amical zeta function as .

∏

p

1

1 − tp
=
∑

n

tn (E.11)

A striking aspect of this formula is its resemblance to the factorization
of natural numbers into primes: the relation of the cycle expansion (E.11)
to the product over prime cycles is analogous to the Riemann zeta (exer-
cise 15.9) represented as a sum over natural numbers vs. its Euler product
representation.

We now implement this factorization explicitly by decomposing recur-
sively binary strings into ordered concatenations of prime strings. There
are 2 strings of length 1, both prime: p1 = 0, p2 = 1. There are 4 strings
of length 2: 00, 01, 11, 10. The first three are ordered concatenations of
primes: 00 = p2

1, 01 = p1p2, 11 = p2
2; by ordered concatenations we mean

that p1p2 is legal, but p2p1 is not. The remaining string is the only prime
of length 2, p3 = 10. Proceeding by discarding the strings which are con-

catenations of shorter primes pk11 p
k2
2 · · · pkj

j , with primes lexically ordered,
we generate the standard list of primes, in agreement with table 11.1: 0, 1,
10, 101, 100, 1000, 1001, 1011, 10000, 10001, 10010, 10011, 10110, 10111,
100000, 100001, 100010, 100011, 100110, 100111, 101100, 101110, 101111,
. . .. This factorization is illustrated in table E.4.
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E.2.1 Prime factorization for spectral determinants

Following sect. E.2, the spectral determinant cycle expansions is
obtained by expanding F as a multinomial in prime cycle weights tp

F =
∏

p

∞∑

k=0

Cpktkp =
∞∑

k1k2k3···=0

τ
p

k1
1 p

k2
2 p

k3
3 ··· (E.12)

where the sum goes over all pseudocycles. In the above we have defined

τ
p

k1
1 p

k2
2 p

k3
3 ··· =

∞∏

i=1

Cpi
ki t

ki
pi
. (E.13)

✎ 15.9
page 260A striking aspect of the spectral determinant cycle expansion is its re-

semblance to the factorization of natural numbers into primes: as we al-
ready noted in sect. E.2, the relation of the cycle expansion (E.12) to the
product formula (15.9) is analogous to the Riemann zeta represented as a
sum over natural numbers vs. its Euler product representation.

This is somewhat unexpected, as the cycle weights factorize exactly
with respect to r repetitions of a prime cycle, tpp...p = trp, but only ap-
proximately (shadowing) with respect to subdividing a string into prime
substrings, tp1p2 ≈ tp1tp2.

The coefficients Cpk have a simple form only in 1-d, given by the Euler
formula (16.34). In higher dimensions Cpk can be evaluated by expanding
(15.9), F (z) =

∏
p Fp, where

Fp = 1 −
( ∞∑

r=1

trp
rdp,r

)
+

1

2

( ∞∑

r=1

trp
rdp,r

)2

− . . . .

Expanding and recollecting terms, and suppressing the p cycle label for the
moment, we obtain

Fp =

∞∑

r=1

Ckt
k, Ck = (−)kck/Dk,

Dk =

k∏

r=1

dr =

d∏

a=1

k∏

r=1

(1 − ura) (E.14)

where evaluation of ck requires a certain amount of not too luminous alge-
bra:

c0 = 1
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c1 = 1

c2 =
1

2

(
d2

d1
− d1

)
=

1

2

(
d∏

a=1

(1 + ua) −
d∏

a=1

(1 − ua)

)

c3 =
1

3!

(
d2d3

d2
1

+ 2d1d2 − 3d3

)

=
1

6

(
d∏

a=1

(1 + 2ua + 2u2
a + u3

a)

+2

d∏

a=1

(1 − ua − u2
a + u3

a) − 3

d∏

a=1

(1 − u3
a)

)

etc.. For example, for a general 2-dimensional map we have

Fp = 1− 1

D1
t+
u1 + u2

D2
t2−u1u2(1 + u1)(1 + u2) + u3

1 + u3
2

D3
t3+. . . .(E.15)

We discuss the convergence of such cycle expansions in sect. J.4.

With τ
p

k1
1 p

k2
2 ···pkn

n
defined as above, the prime factorization of symbol

strings is unique in the sense that each symbol string can be written as a
unique concatenation of prime strings, up to a convention on ordering of
primes. This factorization is a nontrivial example of the utility of general-
ized Möbius inversion, sect. E.2.

How is the factorization of sect. E.2 used in practice? Suppose we have
computed (or perhaps even measured in an experiment) all prime cycles up
to length n, that is, we have a list of tp’s and the corresponding fundamental
matrix eigenvalues Λp,1,Λp,2, . . .Λp,d. A cycle expansion of the Selberg
product is obtained by generating all strings in order of increasing length
j allowed by the symbolic dynamics and constructing the multinomial

F =
∑

n

τn (E.16)

where n = s1s2 · · · sj, si range over the alphabet, in the present case {0, 1}.
Factorizing every string n = s1s2 · · · sj = pk11 p

k2
2 · · · pkj

j as in table E.4,
and substituting τ

p
k1
1 p

k2
2 ··· we obtain a multinomial approximation to F .

For example, τ001001010101 = τ001 001 01 01 01 = τ0012τ013 , and τ013, τ0012 are
known functions of the corresponding cycle eigenvalues. The zeros of F
can now be easily determined by standard numerical methods. The fact
that as far as the symbolic dynamics is concerned, the cycle expansion
of a Selberg product is simply an average over all symbolic strings makes
Selberg products rather pretty.

To be more explicit, we illustrate the above by expressing binary strings
as concatenations of prime factors. We start by computing Nn, the number
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of terms in the expansion (E.12) of the total cycle length n. Setting Cpktkp =

znpk in (E.12), we obtain

∞∑

n=0

Nnz
n =

∏

p

∞∑

k=0

znpk =
1∏

p(1 − znp)
.

So the generating function for the number of terms in the Selberg product
is the topological zeta function. For the complete binary dynamics we have
Nn = 2n contributing terms of length n:

ζtop =
1∏

p(1 − znp)
=

1

1 − 2z
=

∞∑

n=0

2nzn

Hence the number of distinct terms in the expansion (E.12) is the same
as the number of binary strings, and conversely, the set of binary strings
of length n suffices to label all terms of the total cycle length n in the
expansion (E.12).
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Appendix F

Counting itineraries

F.1 Counting curvatures

One consequence of the finitness of topological polynomials is that
the contributions to curvatures at every order are even in number, half
with positive and half with negative sign. For instance, for complete binary
labeling (18.5),

c4 = −t0001 − t0011 − t0111 − t0t01t1

+ t0t001 + t0t011 + t001t1 + t011t1 . (F.1)

We see that 23 terms contribute to c4, and exactly half of them appear
with a negative sign - hence if all binary strings are admissible, this term
vanishes in the counting expression. ✎ F.2

page 683
Such counting rules arise from the identity

∏

p

(1 + tp) =
∏

p

1 − tp
2

1 − tp
. (F.2)

Substituting tp = znp and using (13.15) we obtain for unrestricted symbol
dynamics with N letters

∞∏

p

(1 + znp) =
1 −Nz2

1 −Nz
= 1 +Nz +

∞∑

k=2

zk
(
Nk −Nk−1

)

The zn coefficient in the above expansion is the number of terms contribut-
ing to cn curvature, so we find that for a complete symbolic dynamics of N
symbols and n > 1, the number of terms contributing to cn is (N −1)Nk−1

(of which half carry a minus sign).
✎ F.4
page 684
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We find that for complete symbolic dynamics of N symbols and n > 1,
the number of terms contributing to cn is (N − 1)Nn−1. So, superficially,
not much is gained by going from periodic orbits trace sums which get Nn

contributions of n to the curvature expansions with Nn(1−1/N). However,
the point is not the number of the terms, but the cancellations between
them.
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Exercises

Exercise F.1 Lefschetz zeta function. Elucidate the relation betveen the

topological zeta function and the Lefschetz zeta function.

Exercise F.2 Counting the 3-disk pinball counterterms. Verify that the
number of terms in the 3-disk pinball curvature expansion (18.32) is given by

∏

p

(1 + tp) =
1 − 3z4 − 2z6

1 − 3z2 − 2z3
= 1 + 3z2 + 2z3 +

z4(6 + 12z + 2z2)

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . . .(F.3)

This means that, for example, c6 has a total of 20 terms, in agreement with the explicit

3-disk cycle expansion (18.33).

Exercise F.3 Cycle expansion denominators∗∗. Prove that the denominator

of ck is indeed Dk, as asserted (E.14).

Exercise F.4 Counting subsets of cycles. The techniques developed above
can be generalized to counting subsets of cycles. Consider the simplest example of a
dynamical system with a complete binary tree, a repeller map (11.8) with two straight
branches, which we label 0 and 1. Every cycle weight for such map factorizes, with
a factor t0 for each 0, and factor t1 for each 1 in its symbol string. The transition
matrix traces (13.5) collapse to tr(T k) = (t0 + t1)

k, and 1/ζ is simply

∏

p

(1 − tp) = 1 − t0 − t1 (F.4)

Substituting into the identity

∏

p

(1 + tp) =
∏

p

1 − tp
2

1 − tp

we obtain

∏

p

(1 + tp) =
1 − t20 − t21
1 − t0 − t1

= 1 + t0 + t1 +
2t0t1

1 − t0 − t1

= 1 + t0 + t1 +
∞∑

n=2

n−1∑

k=1

2

(
n− 2

k − 1

)
tk0t

n−k
1 . (F.5)

Hence for n ≥ 2 the number of terms in the expansion ?! with k 0’s and n − k
1’s in their symbol sequences is 2

(
n−2
k−1

)
. This is the degeneracy of distinct cycle

eigenvalues in fig.?!; for systems with non-uniform hyperbolicity this degeneracy is
lifted (see fig. ?!).

In order to count the number of prime cycles in each such subset we denote
with Mn,k (n = 1, 2, . . . ; k = {0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the
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number of prime n-cycles whose labels contain k zeros, use binomial string counting
and Möbius inversion and obtain

M1,0 = M1,1 = 1

nMn,k =
∑

m
∣∣n

k

µ(m)

(
n/m

k/m

)
, n ≥ 2 , k = 1, . . . , n− 1

where the sum is over all m which divide both n and k.
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Appendix G

Finding cycles

(C. Chandre)

G.1 Newton-Raphson method

G.1.1 Contraction rate

Consider a d-dimensional map x′ = f(x) with an unstable fixed point x∗.
The Newton-Raphson algorithm is obtained by iterating the following map

x′ = g(x) = x− (J(x) − 1)−1 (f(x) − x) .

The linearization of g near x∗ leads to

x∗ + ǫ′ = x∗ + ǫ− (J(x∗) − 1)−1 (f(x∗) + J(x∗)ǫ− x∗ − ǫ) +O
(
‖ǫ‖2

)
,

where ǫ = x− x∗. Therefore,

x′ − x∗ = O
(
(x− x∗)

2
)
.

After n steps and if the initial guess x0 is close to x∗, the error decreases
super-exponentially

gn(x0) − x∗ = O
(
(x0 − x∗)

2n)
.

G.1.2 Computation of the inverse

The Newton-Raphson method for finding n-cycles of d-dimensional map-
pings using the multi-shooting method reduces to the following equation




1 −Df(xn)
−Df(x1) 1

· · · 1
−Df(xn−1) 1







δ1
δ2
· · ·
δn


 = −




F1

F2

· · ·
Fn


 , (G.1)
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where Df(x) is the [d × d] Jacobian matrix of the map evaluated at the
point x, and δm = x′m − xm and Fm = xm − f(xm−1) are d-dimensional
vectors. By some starightforward algebra, the vectors δm are expressed as
functions of the vectors Fm:

δm = −
m∑

k=1

βk,m−1Fk − β1,m−1 (1 − β1,n)
−1

(
n∑

k=1

βk,nFk

)
, (G.2)

for m = 1, . . . , n, where βk,m = Df(xm)Df(xm−1) · · ·Df(xk) for k < m
and βk,m = 1 for k ≥ m. Therefore, finding n-cycles by a Newton-Raphson
method with multiple shooting requires the inversing of a [d × d] matrix
1 −Df(xn)Df(xn−1) · · ·Df(x1).

G.2 Hybrid Newton-Raphson / relaxation method

Consider a d-dimensional map x′ = f(x) with an unstable fixed
point x∗. The transformed map is the following one:

x′ = g(x) = x+ γC(f(x) − x),

where γ > 0 and C is a d× d invertible constant matrix. We notice that x∗
is also a fixed point of g. Consider the stability matrix at the fixed point
x∗

Ag =
dg

dx

∣∣∣∣
x=x∗

= 1 + γC(Af − 1).

The matrix C is constructed such that the eigenvalues of Ag are of modulus
less than one. Assume that Af is diagonalizable: In the basis of diagonal-
ization, the matrix writes:

Ãg = 1 + γC̃(Ãf − 1),

where Ãf is diagonal with elements µi. We restrict the set of matrices C̃
to diagonal matrices with C̃ii = ǫi where ǫi = ±1. Thus Ãg is diagonal
with eigenvalues γi = 1 + γǫi(µi − 1). The choice of γ and ǫi is such that
|γi| < 1. It is easy to see that if Re(µi) < 1 one has to choose ǫi = 1, and
if Re(µi) > 1, ǫi = −1. If λ is chosen such that

0 < γ < min
i=1,...,d

2|Re(µi) − 1|
|µi − 1|2 ,

all the eigenvalues of Ag have modulus less that one. The contraction rate
at the fixed point for the map g is then maxi |1 + γǫi(µi − 1)|. We notice
that if Re(µi) = 1, it is not possible to stabilize x∗ by the set of matrices
γC.
From the construction of C, we see that 2d choices of matrices are possible.
For example, for two-dimensional systems, these matrices are

C ∈
{(

1

0

0

1

)
,

(−1

0

0

1

)
,

(
1

0

0

−1

)
,

(−1

0

0

−1

)}
.
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For 2-dimensional dissipative maps, the eigenvalues satisfy Re(µ1)Re(µ2) ≤
det Df < 1. The case (Re(µ1) > 1,Re(µ2) > 1) which is stabilized by(
−1
0

0
−1

)
has to be discarded. The minimal set is reduced to three matrices.
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Appendix H

Applications

Man who says it cannot be done should not interrupt
man doing it.

Sayings of Vattay Gábor

In this appendix we show that the multidimensional Lyapunov expo-
nents and relaxation exponents (dynamo rates) of vector fields can be ex-
pressed in terms of leading eigenvalues of appropriate evolution operators.

H.1 Evolution operator for Lyapunov exponents

Lyapunov exponents were introduced and computed for 1-d maps
in sect. 10.3.2. For higher-dimensional flows only the fundamental matri-
ces are multiplicative, not individual eigenvalues, and the construction of
the evolution operator for evaluation of the Lyapunov spectra requires the
extension of evolution equations to the flow in the tangent space. We now
develop the requisite theory.

Here we construct a multiplicative evolution operator (H.4) whose spec-
tral determinant (H.8) yields the leading Lyapunov exponent of a d-dimensional
flow (and is entire for Axiom A flows).

The key idea is to extending the dynamical system by the tangent space
of the flow, suggested by the standard numerical methods for evaluation of
Lyapunov exponents: start at x0 with an initial infinitesimal tangent space
vector η(0) ∈ TMx, and let the flow transport it along the trajectory
x(t) = f t(x0).

The dynamics in the (x, η) ∈ U × TUx space is governed by the system
of equations of variations [7.1]:

ẋ = v(x) , η̇ = Dv(x)η .
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Here Dv(x) is the derivative matrix of the flow. We write the solution as

x(t) = f t(x0) , η(t) = Mt(x0) · η0 , (H.1)

with the tangent space vector η transported by the stability matrix Mt(x0) =
∂x(t)/∂x0.

As explained in sect. 4.1, the growth rate of this vector is multiplicative
along the trajectory and can be represented as η(t) = |η(t)|/|η(0)|u(t)
where u(t) is a “unit” vector in some norm ||.||. For asymptotic times
and for almost every initial (x0, η(0)), this factor converges to the leading
eigenvalue of the linearized stability matrix of the flow.

We implement this multiplicative evaluation of stability eigenvalues by
adjoining the d-dimensional transverse tangent space η ∈ TMx; η(x)v(x) =
0 to the (d+1)-dimensional dynamical evolution space x ∈ M ⊂ R

d+1.
In order to determine the length of the vector η we introduce a homo-
geneous differentiable scalar function g(η) = ||η||. It has the property
g(Λη) = |Λ|g(η) for any Λ. An example is the projection of a vector to its
dth component

g




η1

η2

· · ·
ηd


 = |ηd| .

Any vector η ∈ TUx can now be represented by the product η = Λu,
where u is a “unit” vector in the sense that its norm is ||u|| = 1, and the
factor

Λt(x0,u0) = g(η(t)) = g(Mt(x0) · u0) (H.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretching factor is
multiplicative along the trajectory:

Λt
′+t(x0,u0) = Λt

′
(x(t),u(t))Λt(x0,u0).

✎ H.1
page 700 The u evolution constrained to ETg,x, the space of unit transverse tangent

vectors, is given by rescaling of (H.1):

u′ = Rt(x,u) =
1

Λt(x,u)
Mt(x) · u . (H.3)
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Eqs. (H.1), (H.2) and (H.3) enable us to define a multiplicative evolution
operator on the extended space U × ETg,x

Lt(x′,u′;x,u) = δ
(
x′ − f t(x)

) δ
(
u′ −Rt(x,u)

)

|Λt(x,u)|β−1
, (H.4)

where β is a variable.

To evaluate the expectation value of log |Λt(x,u)| which is the Lya-
punov exponent we again have to take the proper derivative of the leading
eigenvalue of (H.4). In order to derive the trace formula for the operator
(H.4) we need to evaluate TrLt =

∫
dxduLt(u, x;u, x). The

∫
dx integral

yields a weighted sum over prime periodic orbits p and their repetitions r:

TrLt =
∑

p

Tp

∞∑

r=1

δ(t− rTp)

| det (1 − Mr
p) |

∆p,r,

∆p,r =

∫

g
du

δ
(
u −RTpr(xp,u)

)

|ΛTpr(xp,u)|β−1
, (H.5)

where Mp is the prime cycle p transverse stability matrix. As we shall see
below, ∆p,r is intrinsic to cycle p, and independent of any particular cycle
point xp.

We note next that if the trajectory f t(x) is periodic with period T , the
tangent space contains d periodic solutions

ei(x(T + t)) = ei(x(t)) , i = 1, ..., d,

corresponding to the d unit eigenvectors {e1, e2, · · · , ed} of the transverse
stability matrix, with “stretching” factors (H.2) given by its eigenvalues

Mp(x) · ei(x) = Λp,i ei(x) , i = 1, ..., d. (no summation on i)

The
∫
du integral in (H.5) picks up contributions from these periodic solu-

tions. In order to compute the stability of the ith eigendirection solution,
it is convenient to expand the variation around the eigenvector ei in the
stability matrix eigenbasis δu =

∑
δuℓ eℓ . The variation of the map (H.3)

at a complete period t = T is then given by

δRT (ei) =
M · δu
g(M · ei)

− M · ei
g(M · ei)2

(
∂g(ei)

∂u
·M · δu

)

=
∑

k 6=i

Λp,k
Λp,i

(
ek − ei

∂g(ei)

∂uk

)
δuk . (H.6)
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The δui component does not contribute to this sum since g(ei + duiei) =
1 + dui implies ∂g(ei)/∂ui = 1. Indeed, infinitesimal variations δu must
satisfy

g(u + δu) = g(u) = 1 =⇒
d∑

ℓ=1

δuℓ
∂g(u)

∂uℓ
= 0 ,

so the allowed variations are of form

δu =
∑

k 6=i

(
ek − ei

∂g(ei)

∂uk

)
ck , |ck| ≪ 1 ,

and in the neighborhood of the ei eigenvector the
∫
du integral can be

expressed as

∫

g
du =

∫ ∏

k 6=i
dck .

Inserting these variations into the
∫
du integral we obtain

∫

g
du δ

(
ei + δu −RT (ei) − δRT (ei) + . . .

)

=

∫ ∏

k 6=i
dck δ((1 − Λk/Λi)ck + . . .)

=
∏

k 6=i

1

|1 − Λk/Λi|
,

and the
∫
du trace (H.5) becomes

∆p,r =

d∑

i=1

1

| Λrp,i |β−1

∏

k 6=i

1

| 1 − Λrp,k/Λ
r
p,i |

. (H.7)

The corresponding spectral determinant is obtained by observing that the
Laplace transform of the trace (14.20) is a logarithmic derivative TrL(s) =
− d
ds logF (s) of the spectral determinant:

F (β, s) = exp

(
−
∑

p,r

esTpr

r | det (1 − Mr
p) |

∆p,r(β)

)
. (H.8)

This determinant is the central result of this section. Its zeros correspond
to the eigenvalues of the evolution operator (H.4), and can be evaluated by
the cycle expansion methods.
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The leading zero of (H.8) is called “pressure” (or free energy)

P (β) = s0(β). (H.9)

The average Lyapunov exponent is then given by the first derivative of the
pressure at β = 1:

λ = P ′(1). (H.10)

The simplest application of (H.8) is to 2-dimensional hyperbolic Hamil-
tonian maps. The stability eigenvalues are related by Λ1 = 1/Λ2 = Λ, and
the spectral determinant is given by

F (β, z) = exp

(
−
∑

p,r

zrnp

r | Λrp |
1

(1 − 1/Λrp)
2
∆p,r(β)

)

∆p,r(β) =
| Λrp |1−β
1 − 1/Λ2r

p

+
| Λrp |β−3

1 − 1/Λ2r
p

. (H.11)

The dynamics (H.3) can be restricted to a u unit eigenvector neighbor-
hood corresponding to the largest eigenvalue of the Jacobi matrix. On this
neighborhood the largest eigenvalue of the Jacobi matrix is the only fixed
point, and the spectral determinant obtained by keeping only the largest
term the ∆p,r sum in (H.7) is also entire.

In case of maps it is practical to introduce the logarithm of the leading
zero and to call it “pressure”

P (β) = log z0(β). (H.12)

The average of the Lyapunov exponent of the map is then given by the first
derivative of the pressure at β = 1:

λ = P ′(1). (H.13)

By factorizing the determinant (H.11) into products of zeta functions
we can conclude that the leading zero of the (H.4) can also be recovered
from the leading zeta function

1/ζ0(β, z) = exp

(
−
∑

p,r

zrnp

r|Λrp|β

)
. (H.14)

This zeta function plays a key role in thermodynamic applications as we
will will see in Chapter 20.
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H.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An example is the
magnetic field of the Sun which is “frozen” in the fluid motion. A passively
evolving vector field V is governed by an equation of the form

∂tV + u · ∇V − V · ∇u = 0, (H.15)

where u(x, t) represents the velocity field of the fluid. The strength of the
vector field can grow or decay during its time evolution. The amplification
of the vector field in such a process is called the ”dynamo effect”. In a
strongly chaotic fluid motion we can characterize the asymptotic behavior
of the field with an exponent

V(x, t) ∼ V(x)eνt, (H.16)

where ν is called the fast dynamo rate. The goal of this section is to show
that periodic orbit theory can be developed for such a highly non-trivial
system as well.

We can write the solution of (H.15) formally, as shown by Cauchy. Let
x(t,a) be the position of the fluid particle that was at the point a at t = 0.
Then the field evolves according to

V(x, t) = J(a, t)V(a, 0) , (H.17)

where J(a, t) = ∂(x)/∂(a) is the fundamental matrix of the transformation
that moves the fluid into itself x = x(a, t).

We write x = f t(a), where f t is the flow that maps the initial positions
of the fluid particles into their positions at time t. Its inverse, a = f−t(x),
maps particles at time t and position x back to their initial positions. Then
we can write (H.17)

Vi(x, t) =
∑

j

∫
d3a Ltij(x,a)Vj(a, 0) , (H.18)

with

Ltij(x,a) = δ(a − f−t(x))
∂xi
∂aj

. (H.19)

For large times, the effect of Lt is dominated by its leading eigenvalue, eν0t

with Re(ν0) > Re(νi), i = 1, 2, 3, .... In this way the transfer operator
furnishes the fast dynamo rate, ν := ν0.
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The trace of the transfer operator is the sum over all periodic orbit
contributions, with each cycle weighted by its intrinsic stability

TrLt =
∑

p

Tp

∞∑

r=1

trMr
p∣∣det

(
1− M−r

p

)∣∣δ(t− rTp). (H.20)

We can construct the corresponding spectral determinant as usual

F (s) = exp

[
−
∑

p

∞∑

r=1

1

r

tr Mr
p∣∣det

(
1− M−r

p

)∣∣e
srTp

]
. (H.21)

Note that in this formuli we have omitted a term arising from the Jacobian
transformation along the orbit which would give 1+tr Mr

p in the numerator
rather than just the trace of Mr

p. Since the extra term corresponds to
advection along the orbit, and this does not evolve the magnetic field, we
have chosen to ignore it. It is also interesting to note that the negative
powers of the Jacobian occur in the denominator, since we have f−t in
(H.19).

In order to simplify F (s), we factor the denominator cycle stability
determinants into products of expanding and contracting eigenvalues. For
a 3-dimensional fluid flow with cycles possessing one expanding eigenvalue
Λp (with |Λp| > 1), and one contracting eigenvalue λp (with |λp| < 1) the
determinant may be expanded as follows:

∣∣det
(
1 −M−r

p

)∣∣−1
= |(1−Λ−r

p )(1−λ−rp )|−1 = |λp|r
∞∑

j=0

∞∑

k=0

Λ−jr
p λkrp .(H.22)

With this decomposition we can rewrite the exponent in (H.21) as

∑

p

∞∑

r=1

1

r

(λrp + Λrp)e
srTp

∣∣det
(
1 − M−r

p

)∣∣ =
∑

p

∞∑

j,k=0

∞∑

r=1

1

r

(
|λp|Λ−j

p λkpe
sTp

)r
(λrp+Λrp) , (H.23)

which has the form of the expansion of a logarithm:

∑

p

∑

j,k

[
log
(
1 − esTp |λp|Λ1−j

p λkp

)
+ log

(
1 − esTp |λp|Λ−j

p λ1+k
p

)]
.(H.24)

The spectral determinant is therefore of the form,

F (s) = Fe(s)Fc(s) , (H.25)
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where

Fe(s) =
∏

p

∞∏

j,k=0

(
1 − t(jk)p Λp

)
, (H.26)

Fc(s) =
∏

p

∞∏

j,k=0

(
1 − t(jk)p λp

)
, (H.27)

with

t(jk)p = esTp |λp|
λkp

Λjp
. (H.28)

The two factors present in F (s) correspond to the expanding and contract-
ing exponents. (Had we not neglected a term in (H.21), there would be a
third factor corresponding to the translation.)

For 2-d Hamiltonian volume preserving systems, λ = 1/Λ and (H.26)
reduces to

Fe(s) =
∏

p

∞∏

k=0

(
1 − tp

Λk−1
p

)k+1

, tp =
esTp

| Λp |
. (H.29)

With σp = Λp/|Λp|, the Hamiltonian zeta function (the j = k = 0 part of
the product (H.27)) is given by

1/ζdyn(s) =
∏

p

(
1 − σpe

sTp
)
. (H.30)

This is a curious formula — the zeta function depends only on the return
times, not on the eigenvalues of the cycles. Furthermore, the identity,

Λ + 1/Λ

|(1 − Λ)(1 − 1/Λ)| = σ +
2

|(1 − Λ)(1 − 1/Λ)| ,

when substituted into (H.25), leads to a relation between the vector and
scalar advection spectral determinants:

Fdyn(s) = F 2
0 (s)/ζdyn(s) . (H.31)

The spectral determinants in this equation are entire for hyperbolic (axiom
A) systems, since both of them correspond to multiplicative operators.

appendApplic - 30may2003 ChaosBook.org/version11.8, Aug 30 2006



H.2. ADVECTION OF VECTOR FIELDS BY CHAOTIC FLOWS 697

In the case of a flow governed by a map, we can adapt the formulas
(H.29) and (H.30) for the dynamo determinants by simply making the sub-
stitution

znp = esTp , (H.32)

where np is the integer order of the cycle. Then we find the spectral deter-
minant Fe(z) given by equation (H.29) but with

tp =
znp

|Λp|
(H.33)

for the weights, and

1/ζdyn(z) = Πp (1 − σpz
np) (H.34)

for the zeta-function

For maps with finite Markov partition the inverse zeta function (H.34)
reduces to a polynomial for z since curvature terms in the cycle expansion
vanish. For example, for maps with complete binary partition, and with
the fixed point stabilities of opposite signs, the cycle expansion reduces to

1/ζdyn(s) = 1. (H.35)

For such maps the dynamo spectral determinant is simply the square of
the scalar advection spectral determinant, and therefore all its zeros are
double. In other words, for flows governed by such discrete maps, the fast
dynamo rate equals the scalar advection rate.

In contrast, for three-dimensional flows, the dynamo effect is distinct
from the scalar advection. For example, for flows with finite symbolic dy-
namical grammars, (H.31) implies that the dynamo zeta function is a ratio
of two entire determinants:

1/ζdyn(s) = Fdyn(s)/F
2
0 (s) . (H.36)

This relation implies that for flows the zeta function has double poles at
the zeros of the scalar advection spectral determinant, with zeros of the
dynamo spectral determinant no longer coinciding with the zeros of the
scalar advection spectral determinant; Usually the leading zero of the

✎ H.2
page 700

dynamo spectral determinant is larger than the scalar advection rate, and
the rate of decay of the magnetic field is no longer governed by the scalar
advection.
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Commentary

Remark H.1 Dynamo zeta. The dynamo zeta (H.34) has been introduced

by Aurell and Gilbert [H.3] and reviewed in ref. [H.4]. Our exposition follows

ref. [17.10].
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Exercises

Exercise H.1 Stretching factor. Prove the multiplicative property of the

stretching factor (H.2). Why should we extend the phase space with the tangent

space?

Exercise H.2 Dynamo rate. Suppose that the fluid dynamics is highly
dissipative and can be well approximated by the piecewise linear map

f(x) =

{
1 + ax if x < 0,
1 − bx if x > 0,

(H.37)

on an appropriate surface of section (a, b > 2). Suppose also that the return time is
constant Ta for x < 0 and Tb for x > 0. Show that the dynamo zeta is

1/ζdyn(s) = 1 − esTa + esTb . (H.38)

Show also that the escape rate is the leading zero of

1/ζ0(s) = 1 − esTa/a− esTb/b. (H.39)

Calculate the dynamo and the escape rates analytically if b = a2 and Tb = 2Ta. Do

the calculation for the case when you reverse the signs of the slopes of the map. What

is the difference?
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Discrete symmetries

Author : predrag Date : 2006−07−1713 : 15 : 52−0400(Mon, 17Jul2006)

I.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanović)

In the following we will define what we mean by the concepts group, repre-
sentation, symmetry of a dynamical system, and invariance.

Group axioms. First, we define a group in abstract terms: A group G
is a set of elements g1, g2, g3, . . . for which a law of composition or group
multiplication is given such that the product g2 ◦g1 (which we will also just
abbreviate as g2g1) of any two elements satisfies the following conditions:

1. If g1, g2 ∈ G, then g2 ◦ g1 ∈ G.

2. The group multiplication is associative: g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1.

3. The group G contains an element e called identity such that g ◦ e =
e ◦ g = g for every element g ∈ G.

4. For every element g ∈ G, there exists an unique element h ∈ G such
that h ◦ g = g ◦ h = e. The element h is called inverse of g, and is
denoted by h = g−1.

A finite group is a group with a finite number of elements

G = {e, g2, . . . , g|G|} ,

where |G|, the number of elements, will be referred to as order of the group.
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Matrix group on vector space. We will now apply these abstract
group definitions to the set of [d × d]-dimensional non-singular matrices
A,B,C, . . . acting in a d-dimensional vector space V ∈ R

d, that is, the
product of matrices A and B gives the single matrix C, such that

Cv = B(Av) ∈ V, ∀v ∈ V. (I.1)

The identity of the group is the unit matrix 11 which leaves all vectors in
V unchanged. Every matrix in the group has a unique inverse.

Linear representation of a group. Let us now map the abstract group
G homeomorphically on a group of matrices D(G) in the vector space V ,
that is, in such a way that the group properties, especially the group mul-
tiplication, are preserved:

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 ∈ G is mapped onto the matrix product
D(g2 ◦ g1) = D(g2)D(g1).

3. The associativity is preserved: D(g3◦(g2◦g1)) = D(g3)(D(g2)D(g1)) =
(D(g3)(D(g2))D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11
and the inverse element g−1 ∈ G is mapped onto the inverse matrix
D(g−1) = [D(g)]−1 ≡ D−1(g).

We call the so defined matrix group D(G) a linear or matrix representa-
tion of the group G in the representation space V . Note that the matrix
operation on a vector is by definition linear. We use the specification lin-
ear in order to discriminate the matrix representations from other operator
representations that do not have to be linear, in general. Throughout this
appendix we only consider linear representations.

If the dimensionality of V is d, we say the representation is an d-
dimensional representation or has the degree d. The matrices D(g) ∈ D(G)
are non-singular [d×d] matrices, which we will also just abbreviate as g, that
is, x′ = gx corresponds to the normal matrix operation x′i =

∑d
j=1(g)ijxj =∑d

j=1 gijxj .

Character of a representation. The character of χα(g) of an d-dimensional
representation D(g) of the group element g of a discrete group G is defined
as trace

χα(g) =

d∑

i=1

Dii(g) ≡ trD(g) .

Note especially that χ(e) = n, since Dij(e) = δij for 1 ≤ i, j ≤ d.
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Faithful representations. If the homomorphismus mapping G on D(G)
becomes an isomorphism, the representation is said to be faithful. In this
case the order of the group of matrices D(G) is equal to the order |G| of the
group. In general, however, there will be several elements of G that will be
mapped on the unit matrix D(e) = 11. This property can be used to define
a subgroup H ⊂ G of the group G consisting of all elements h ∈ G that are
mapped to the unit matrix of a given representation. Then the cosidered
representation is a faithful representation of the factor group G/H.

Equivalent representations. From this remarks it should be clear that
the representation of a group is by no means unique. If the basis in the
d-dimensional vector space V is changed, the matrices D(g) have to be
replaced by their transformations D′(g). In this case, however, the new
matrices D′(g) and the old matrices D(g) are related by an equivalence
transformation through a non-singular matrix C

D′(g) = CD(g)C−1 .

Thus, the group of matrices D′(g) form an equivalent representation D′(G)
to the representation D(G) of the group G. The equivalent representations
have the same structure, although the matrices look different. Because of
the cylic nature of the trace and because equivalent representations have
the same dimension, the character of equivalent representations is the same

χ(g) =

n∑

i=1

D′
ii(g) = tr

(
D′(g)

)
= tr

(
CD(g)C−1

)
.

Regular representation of a group. The regular representation of a
group is a special representation that is defined as follows: If we define
the elements of a finite group as g1, g2, . . . , g|G|, the multiplying from the
left by any element gν permutes the g1, g2, . . . , g|G| among themselves. We
can represent the element gν by the permutations of the |G| “coordinates”
g1, g2, . . . , g|G|. Thus for i, j = 1, . . . , |G|, we define the regular representa-
tion

Dij(gν) =

{
δjli if gνgi = gli with li = 1, . . . , |G| ,
0 otherwise .

In this regular representation the diagonal elements of all matrices are zero
except for the element gν0 with gν0gi = gi, that is, for the identity element
e. So in the regular representation the character is given by

χ(g) =

{
1 for g = e ,
0 for g 6= e .
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Passive and active coordinate transformations. We have to discrim-
inate between active and passive coordinate transformations. An active
(coordinate) transformation corresponds to an non-singular d × d matrix
that actively shifts/changes the vector x ∈ M

x→ Tx.

The corresponding passive coordinate transformation changes the coordi-
nate system with respect to which the vector f(x) ∈ M is measured. Thus
it is given by

f(x) → T−1f(x) = f(T−1x).

Note that the combination of an passive and active coordinate transforma-
tion results to the identity

f(x) = T−1f(Tx) .

On the other hand, the evolution operator L(x, y) satisfies the following
identity

L(x, y) =

∣∣∣∣det

(
∂Tx

∂x

)∣∣∣∣L(Tx,Ty) = |detT| L(Tx,Ty).

Note the appearance of detT instead of detT−1 and therefore the con-
travariant transformation property of L(x, y) in correspondence to maps
f(x). If the coordinate transformation T belongs to the linear non-singular
representation of a discrete (that is, finite) symmetry groupG, then |detT| =
1, since for any element g of a finite group G, where exists a number m
such that

gn ≡ g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
m times

= e.

Thus T corresponds to themth root of 1 and the modulus of its determinant
is unity.

Symmetry of dynamical system. A dynamical system (M, f) is in-
variant under a discrete symmetry group G = {e, g2, . . . , g|G|}, if the map
f : M → M (or the continous flow f t) from the d-dimensional manifold
M into itself (with d finite) is invariant

f(gx) = gf(x)

appendSymm - 09jul2006 ChaosBook.org/version11.8, Aug 30 2006



I.1. PRELIMINARIES AND DEFINITIONS 705

for any coordinate x ∈ M and any finite non-singular linear representation
(that is, a non-singular d×dmatrix) g of any element g ∈ G. So a symmetry
for a dynamical system (M, f) has to satisfy the two conditions

1) gx ∈ M ∀x ∈ M and ∀g ∈ G ,
2) [D(g), f ] = 0 ∀f : M → M and ∀g ∈ G .

Group integration. Note the following laws

1

|G|
∑

g∈G
= 1

and therefore

1

|G|
∑

g∈G
D(gi) = D(gi0), i0 fixed .

However,

1

|G|
∑

g∈G
D(g) = 0,

where 0 is the zero matrix of same dimension as the representations D(g) ∈
D(G). In particular,

1

|G|
∑

g∈G
χα(g) =

1

|G|
∑

g∈G

dα∑

i=1

D(g)ii = 0.

Furthermore, if we consider all non-equilavent irreducible representations

of a group G, then the quantities D
(α)
ij (g) for fixed α, i and j

Orthonormalitity of characters. But what can we say about

1

|G|
∑

g∈G
χα(hg)χα(g−1k−1) with h, k ∈ G fixed ?

Note the following relation

δabδcd =
1

n
δadδcb +

(
δabδcd −

1

n
δadδcb

)
.
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Projection operators. The projection operator onto the α irreducible
subspace of dimension dα is given by

Pα =
dα
|G|

∑

g∈G
χα(g)g

−1.

Note that Pα is a [d× d]-dimensional matrix as the representation g.

Irreducible subspaces of the evolution operator.

L =
∑

α

trLα

with

Lα(y, x) =
dα
|G|

∑

g∈G
χα(g)L(g−1y, x),

where the prefactor dα reflects the fact that a dα-dimensional representation
occurs dα times.

Example I.1 Cyclic and dihedral groups: The cyclic group Cn ⊂ SO(2) of order
n is gen- erated by one element. For example, this element can be rotation through
2π/n. The dihedral group Dn ⊂ O(2), n > 2, can be generated by two elements
one at least of which must reverse orientation. For example, take σ corresponding
to reflection in the x-axis. σ2 = e; such operation σ is called an involution. C to
rotation through 2π/n, then Dn = 〈σ,C〉, and the defining relations are σ2 = Cn = e,
(Cσ)2 = e.

I.2 C4v factorization

If an N -disk arrangement has CN symmetry, and the disk visitation se-
quence is given by disk labels {ǫ1ǫ2ǫ3 . . .}, only the relative increments
ρi = ǫi+1 − ǫi mod N matter. Symmetries under reflections across axes
increase the group to CNv and add relations between symbols: {ǫi} and
{N−ǫi} differ only by a reflection. As a consequence of this reflection incre-
ments become decrements until the next reflection and vice versa. Consider
four equal disks placed on the vertices of a square (figure I.1a). The sym-
metry group consists of the identity e, the two reflections σx, σy across x,
y axes, the two diagonal reflections σ13, σ24, and the three rotations C4, C2

and C3
4 by angles π/2, π and 3π/2. We start by exploiting the C4 subgroup

symmetry in order to replace the absolute labels ǫi ∈ {1, 2, 3, 4} by relative
increments ρi ∈ {1, 2, 3}. By reflection across diagonals, an increment by 3
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(a) (b)

Figure I.1: (a) The symmetries of four disks on a square. (b) The symmetries of four
disks on a rectangle. The fundamental domains are indicated by the shaded wedges.

is equivalent to an increment by 1 and a reflection; this new symbol will be
called 1. Our convention will be to first perform the increment and then to
change the orientation due to the reflection. As an example, consider the
fundamental domain cycle 112. Taking the disk 1 → disk 2 segment as the
starting segment, this symbol string is mapped into the disk visitation se-
quence 1+12+13+21 . . . = 123, where the subscript indicates the increments
(or decrements) between neighboring symbols; the period of the cycle 112
is thus 3 in both the fundamental domain and the full space. Similarly, the
cycle 112 will be mapped into 1+12−11−23−12+13+21 = 121323 (note that
the fundamental domain symbol 1 corresponds to a flip in orientation after
the second and fifth symbols); this time the period in the full space is twice
that of the fundamental domain. In particular, the fundamental domain
fixed points correspond to the following 4-disk cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2

Conversions for all periodic orbits of reduced symbol period less than 5 are
listed in table I.1.

This symbolic dynamics is closely related to the group-theoretic struc-
ture of the dynamics: the global 4-disk trajectory can be generated by
mapping the fundamental domain trajectories onto the full 4-disk space
by the accumulated product of the C4v group elements g1 = C, g2 = C2,
g1 = σdiagC = σaxis, where C is a rotation by π/2. In the 112 example
worked out above, this yields g112 = g2g1g1 = C2Cσaxis = σdiag, listed in
the last column of table I.1. Our convention is to multiply group elements in
the reverse order with respect to the symbol sequence. We need these group
elements for our next step, the dynamical zeta function factorizations.

The C4v group has four one-dimensional representations, either symmet-
ric (A1) or antisymmetric (A2) under both types of reflections, or symmetric
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p̃ p hp̃

0 1 2 σx

1 1 2 3 4 C4

2 1 3 C2, σ13

01 12 14 σ24

02 12 43 σy

12 12 41 34 23 C3
4

001 121 232 343 414 C4

002 121 343 C2

011 121 434 σy

012 121 323 σ13

021 124 324 σ13

022 124 213 σx

112 123 e
122 124 231 342 413 C4

p̃ p hp̃

0001 1212 1414 σ24

0002 1212 4343 σy

0011 1212 3434 C2

0012 1212 4141 34342323 C3
4

0021 (a) 1213 4142 34312324 C3
4

0022 1213 e
0102 (a) 1214 2321 34324143 C4

0111 1214 3234 σ13

0112 (b) 1214 2123 σx

0121 (b) 1213 2124 σx

0122 1213 1413 σ24

0211 1243 2134 σx

0212 1243 1423 σ24

0221 1242 1424 σ24

0222 1242 4313 σy

1112 1234 2341 34124123 C4

1122 1231 3413 C2

1222 1242 4131 34242313 C3
4

Table I.1: C4v correspondence between the ternary fundamental domain prime cycles
p̃ and the full 4-disk {1,2,3,4} labeled cycles p, together with the C4v transformation
that maps the end point of the p̃ cycle into an irreducible segment of the p cycle.
For typographical convenience, the symbol 1 of sect. I.2 has been replaced by 0, so
that the ternary alphabet is {0, 1, 2}. The degeneracy of the p cycle is mp = 8np̃/np.
Orbit 2 is the sole boundary orbit, invariant both under a rotation by π and a
reflection across a diagonal. The two pairs of cycles marked by (a) and (b) are
related by time reversal, but cannot be mapped into each other by C4v transformations.

under one and antisymmetric under the other (B1, B2), and a degenerate
pair of two-dimensional representations E. Substituting the C4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2
C2 1 1 1 1 -2

C4, C
3
4 1 1 -1 -1 0

σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0

into (22.15) we obtain:

hp̃ A1 A2 B1 B2 E
e: (1 − tp̃)

8 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)
4

C2: (1 − t2p̃)
4 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 + tp̃)

4

C4, C
3
4 : (1 − t4p̃)

2 = (1 − tp̃) (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 + t2p̃)
2

σaxes: (1 − t2p̃)
4 = (1 − tp̃) (1 + tp̃) (1 − tp̃) (1 + tp̃) (1 − t2p̃)

2

σdiag: (1 − t2p̃)
4 = (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 − tp̃) (1 − t2p̃)

2

The possible irreducible segment group elements hp̃ are listed in the first
column; σaxes denotes a reflection across either the x-axis or the y-axis, and
σdiag denotes a reflection across a diagonal (see figure I.1a). In addition,
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degenerate pairs of boundary orbits can run along the symmetry lines in
the full space, with the fundamental domain group theory weights hp =
(C2 + σx)/2 (axes) and hp = (C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1 − t2p̃)
2 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)(1 − 0tp̃)(1 + tp̃)

2

diagonals: (1 − t2p̃)
2 = (1 − tp̃)(1 − 0tp̃)(1 − 0tp̃)(1 − tp̃)(1 + tp̃)

2(I.2)

(we have assumed that tp̃ does not change sign under reflections across sym-
metry axes). For the 4-disk arrangement considered here only the diagonal
orbits 13, 24 occur; they correspond to the 2 fixed point in the fundamental
domain.

The A1 subspace in C4v cycle expansion is given by

1/ζA1 = (1 − t0)(1 − t1)(1 − t2)(1 − t01)(1 − t02)(1 − t12)

(1 − t001)(1 − t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 − t112)

(1 − t122)(1 − t0001)(1 − t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 − t1 − t2 − (t01 − t0t1) − (t02 − t0t2) − (t12 − t1t2)

−(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) − (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (I.3)

(for typographical convenience, 1 is replaced by 0 in the remainder of this
section). For one-dimensional representations, the characters can be read
off the symbol strings: χA2(hp̃) = (−1)n0 , χB1(hp̃) = (−1)n1 , χB2(hp̃) =
(−1)n0+n1, where n0 and n1 are the number of times symbols 0, 1 appear
in the p̃ symbol string. For B2 all tp with an odd total number of 0’s and
1’s change sign:

1/ζB2 = (1 + t0)(1 + t1)(1 − t2)(1 − t01)(1 + t02)(1 + t12)

(1 + t001)(1 − t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 − t112)

(1 + t122)(1 − t0001)(1 + t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 + t1 − t2 − (t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)

+(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) − (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (I.4)

The form of the remaining cycle expansions depends crucially on the special
role played by the boundary orbits: by (I.2) the orbit t2 does not contribute
to A2 and B1,

1/ζA2 = (1 + t0)(1 − t1)(1 + t01)(1 + t02)(1 − t12)
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(1 − t001)(1 − t002)(1 + t011)(1 + t012)(1 + t021)(1 + t022)(1 − t112)

(1 − t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 + t0 − t1 + (t01 − t0t1) + t02 − t12

−(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+t022 − t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . . (I.5)

and

1/ζB1 = (1 − t0)(1 + t1)(1 + t01)(1 − t02)(1 + t12)

(1 + t001)(1 − t002)(1 − t011)(1 + t012)(1 + t021)(1 − t022)(1 − t112)

(1 + t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 − t0 + t1 + (t01 − t0t1) − t02 + t12

+(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−t022 + t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . . (I.6)

In the above we have assumed that t2 does not change sign under C4v

reflections. For the mixed-symmetry subspace E the curvature expansion
is given by

1/ζE = 1 + t2 + (−t02 + t1
2) + (2t002 − t2t0

2 − 2t112 + t2t1
2)

+(2t0011 − 2t0022 + 2t2t002 − t01
2 − t02

2 + 2t1122 − 2t2t112

+t12
2 − t0

2t1
2) + (2t00002 − 2t00112 + 2t2t0011 − 2t00121 − 2t00211

+2t00222 − 2t2t0022 + 2t01012 + 2t01021 − 2t01102 − t2t01
2 + 2t02022

−t2t022 + 2t11112 − 2t11222 + 2t2t1122 − 2t12122 + t2t12
2 − t2t0

2t1
2

+2t002(−t02 + t1
2) − 2t112(−t02 + t1

2)) (I.7)

A quick test of the ζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the

topological polynomial; substituting tp = znp into the expansion yields

1/ζA1 = 1 − 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1 + z ,

in agreement with (13.42).✎ 18.9
page 327

Remark I.1 Labelling conventions While there is a variety of labelling conven-

tions [23.15, 22.13] for the reduced C4v dynamics, we prefer the one introduced

here because of its close relation to the group-theoretic structure of the dynamics:

the global 4-disk trajectory can be generated by mapping the fundamental domain

trajectories onto the full 4-disk space by the accumulated product of the C4v group

elements.
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p̃ p g
0 1 4 σy

1 1 2 σx

2 1 3 C2

01 14 32 C2

02 14 23 σx

12 12 43 σy

001 141 232 σx

002 141 323 C2

011 143 412 σy

012 143 e
021 142 e
022 142 413 σy

112 121 343 C2

122 124 213 σx

p̃ p g
0001 1414 3232 C2

0002 1414 2323 σx

0011 1412 e
0012 1412 4143 σy

0021 1413 4142 σy

0022 1413 e
0102 1432 4123 σy

0111 1434 3212 C2

0112 1434 2343 σx

0121 1431 2342 σx

0122 1431 3213 C2

0211 1421 2312 σx

0212 1421 3243 C2

0221 1424 3242 C2

0222 1424 2313 σx

1112 1212 4343 σy

1122 1213 e
1222 1242 4313 σy

Table I.2: C2v correspondence between the ternary {0, 1, 2} fundamental domain
prime cycles p̃ and the full 4-disk {1,2,3,4} cycles p, together with the C2v trans-
formation that maps the end point of the p̃ cycle into an irreducible segment of the
p cycle. The degeneracy of the p cycle is mp = 4np̃/np. Note that the 012 and
021 cycles are related by time reversal, but cannot be mapped into each other by
C2v transformations. The full space orbit listed here is generated from the symmetry
reduced code by the rules given in sect. I.3, starting from disk 1.

I.3 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle has
C2v symmetry (figure I.1b). C2v consists of {e, σx, σy, C2}, that is, the
reflections across the symmetry axes and a rotation by π.

This system affords a rather easy visualization of the conversion of a
4-disk dynamics into a fundamental domain symbolic dynamics. An orbit
leaving the fundamental domain through one of the axis may be folded
back by a reflection on that axis; with these symmetry operations g0 =
σx and g1 = σy we associate labels 1 and 0, respectively. Orbits going
to the diagonally opposed disk cross the boundaries of the fundamental
domain twice; the product of these two reflections is just C2 = σxσy, to
which we assign the label 2. For example, a ternary string 0 0 1 0 2 0 1 . . .
is converted into 12143123. . ., and the associated group-theory weight is
given by . . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in ta-
ble I.2. Note that already at length three there is a pair of cycles (012 = 143
and 021 = 142) related by time reversal, but not by any C2v symmetries.

The above is the complete description of the symbolic dynamics for 4
sufficiently separated equal disks placed at corners of a rectangle. How-
ever, if the fundamental domain requires further partitioning, the ternary
description is insufficient. For example, in the stadium billiard fundamen-
tal domain one has to distinguish between bounces off the straight and the
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curved sections of the billiard wall; in that case five symbols suffice for
constructing the covering symbolic dynamics.

The group C2v has four one-dimensional representations, distinguished
by their behavior under axis reflections. TheA1 representation is symmetric
with respect to both reflections; the A2 representation is antisymmetric
with respect to both. The B1 and B2 representations are symmetric under
one and antisymmetric under the other reflection. The character table is

C2v A1 A2 B1 B2

e 1 1 1 1
C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (22.14), the contributions
of periodic orbits split as follows

gp̃ A1 A2 B1 B2

e: (1 − tp̃)
4 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)

C2: (1 − t2p̃)
2 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)

σx: (1 − t2p̃)
2 = (1 − tp̃) (1 + tp̃) (1 − tp̃) (1 + tp̃)

σy: (1 − t2p̃)
2 = (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 − tp̃)

Cycle expansions follow by substituting cycles and their group theory fac-
tors from table I.2. For A1 all characters are +1, and the corresponding
cycle expansion is given in (I.3). Similarly, the totally antisymmetric sub-
space factorization A2 is given by (I.4), the B2 factorization of C4v. For B1

all tp with an odd total number of 0’s and 2’s change sign:

1/ζB1 = (1 + t0)(1 − t1)(1 + t2)(1 + t01)(1 − t02)(1 + t12)

(1 − t001)(1 + t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 + t112)

(1 − t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 − t1 + t2 + (t01 − t0t1) − (t02 − t0t2) + (t12 − t1t2)

−(t001 − t0t01) + (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) + (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (I.8)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1 − t0)(1 + t1)(1 + t2)(1 + t01)(1 + t02)(1 − t12)

(1 + t001)(1 + t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 + t112)

(1 + t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 + t1 + t2 + (t01 − t0t1) + (t02 − t0t2) − (t12 − t1t2)
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+(t001 − t0t01) + (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) + (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (I.9)

Note that all of the above cycle expansions group long orbits together with
their pseudoorbit shadows, so that the shadowing arguments for conver-
gence still apply.

The topological polynomial factorizes as

1

ζA1

= 1 − 3z ,
1

ζA2

=
1

ζB1

=
1

ζB2

= 1 + z,

consistent with the 4-disk factorization (13.42).

Remark I.2 C2v symmetry C2v is the symmetry of several systems studied in

the literature, such as the stadium billiard [6.9], and the 2-dimensional anisotropic

Kepler potential [30.6].

I.4 Hénon map symmetries

We note here a few simple symmetries of the Hénon map (3.15). For b 6= 0
the Hénon map is reversible: the backward iteration of (3.16) is given by

xn−1 = −1

b
(1 − ax2

n − xn+1) . (I.10)

Hence the time reversal amounts to b → 1/b, a → a/b2 symmetry in the
parameter plane, together with x → −x/b in the coordinate plane, and
there is no need to explore the (a, b) parameter plane outside the strip
b ∈ {−1, 1}. For b = −1 the map is orientation and area preserving (see
(20.1) below),

xn−1 = 1 − ax2
n − xn+1 , (I.11)

the backward and the forward iteration are the same, and the non–wandering
set is symmetric across the xn+1 = xn diagonal. This is one of the sim-
plest models of a Poincaré return map for a Hamiltonian flow. For the
orientation reversing b = 1 case we have

xn−1 = 1 − ax2
n + xn+1 , (I.12)

and the non–wandering set is symmetric across the xn+1 = −xn diagonal.
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I.5 Symmetries of the symbol square
• advanced section

Depending on the type of dynamical system, the symbol square might have
a variety of symmetries. Under the time reversal

· · · s−2s−1s0.s1s2s3 · · · → · · · s3s2s1.s0s−1s−2 · · ·

the points in the symbol square for an orientation preserving map are
symmetric across the diagonal γ = δ, and for the orientation reversing
case they are symmetric with respect to the γ = 1 − δ diagonal. Con-
sequently the periodic orbits appear either in dual pairs p = s1s2s3 . . . sn,
p = snsn−1sn−2 . . . s1, or are self-dual under time reversal, Sp = Sp. For the
orientation preserving case a self-dual cycle of odd period has at least one
point on the symmetry diagonal. In particular, all fixed points lie on the
symmetry diagonal. Determination of such symmetry lines can be of con-
siderable practical utility, as it reduces some of the periodic orbit searches
to 1-dimensional searches.

Remark I.3 Symmetries of the symbol square. For a more detailed discussion

of the symbolic dynamics symmetries, see refs. [3.7, 12.46].
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Appendix J

Convergence of spectral
determinants

J.1 Curvature expansions: geometric picture

If you has some experience with numerical estimates of fractal dimensions,
you will note that the numerical convergence of cycle expansions for systems
such as the 3-disk game of pinball, table 18.2, is very impressive; only
three input numbers (the two fixed points 0, 1 and the 2-cycle 10) already
yield the escape rate to 4 significant digits! We have omitted an infinity
of unstable cycles; so why does approximating the dynamics by a finite
number of cycles work so well?

Looking at the cycle expansions simply as sums of unrelated contribu-
tions is not specially encouraging: the cycle expansion (18.2) is not ab-
solutely convergent in the sense of Dirichlet series of sect. 18.6, so what one
makes of it depends on the way the terms are arranged.

The simplest estimate of the error introduced by approximating smooth
flow by periodic orbits is to think of the approximation as a tessalation of
a smooth curve by piecewise linear tiles, figure 1.9.

J.1.1 Tessalation of a smooth flow by cycles

One of the early high accuracy computations of π was due to Euler. Euler
computed the circumference of the circee of unit radius by inscribing into
it a regular polygon with N sides; the error of such computation is propor-
tional to 1− cos(2π/N) ∝ N−2. In a periodic orbit tessalation of a smooth
flow, we cover the phase space by ehn tiles at the nth level of resolution,
where h is the topological entropy, the growth rate of the number of tiles.
Hence we expect the error in approximating a smooth flow by ehn linear
segments to be exponentially small, of order N−2 ∝ e−2hn.
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J.1.2 Shadowing and convergence of curvature expansions

We have shown in chapter 13 that if the symbolic dynamics is defined by a
finite grammar, a finite number of cycles, let us say the first k terms in the
cycle expansion are necessary to correctly count the pieces of the Cantor
set generated by the dynamical system.

They are composed of products of non–intersecting loops on the Markov
graph, see (13.13). We refer to this set of non–intersecting loops as the
fundamental cycles of the strange set. It is only after these terms have
been included that the cycle expansion is expected to converge smoothly,
that is, only for n > k are the curvatures cn in (9.2??) a measure of the
variation of the quality of a linearized covering of the dynamical Cantor set
by the length n cycles, and expected to fall off rapidly with n.

The rate of fall-off of the cycle expansion coefficients can be estimated by
observing that for subshifts of finite type the contributions from longer or-
bits in curvature expansions such as (18.5) can always be grouped into shad-
owing combinations of pseudo-cycles. For example, a cycle with itinerary
ab= s1s2 · · · sn will appear in combination of form

1/ζ = 1 − · · · − (tab − tatb) − · · · ,

with ab shadowed by cycle a followed by cycle b, where a = s1s2 · · · sm,
b = sm+1 · · · sn−1sn, and sk labels the Markov partition Msk

(11.4) that
the trajectory traverses at the kth return. If the two trajectories coincide
in the first m symbols, at the mth return to a Poincaré section they can
land anywhere in the phase space M

∣∣fTa(xa) − fTa...(xa...)
∣∣ ≈ 1 ,

where we have assumed that the M is compact, and that the maximal
possible separation across M is O(1). Here xa is a point on the a cycle of
period Ta, and xa... is a nearby point whose trajectory tracks the cycle a for
the first m Poincaré section returns completed at the time Ta.... An esti-
mate of the maximal separation of the initial points of the two neighboring
trajectories is achieved by Taylor expanding around xa... = xa + δxa...

fTa(xa) − fTa...(xa...) ≈
∂fTa(xa)

∂x
· δxa... = Ma · δxa... ,

hence the hyperbolicity of the flow forces the initial points of neighboring
trajectories that track each other for at least m consecutive symbols to lie
exponentially close

|δxa...| ∝
1

|Λa|
.
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Similarly, for any observable (10.1) integrated along the two nearby
trajectories

ATa...(xa...) ≈ ATa(xa) +
∂ATa

∂x

∣∣∣∣
x=xa

· δxa... ,

so

∣∣ATa...(xa...) −ATa(xa)
∣∣ ∝ TaConst

|Λa|
,

As the time of return is itself an integral along the trajectory, return times
of nearby trajectories are exponentially close

|Ta... − Ta| ∝
TaConst

|Λa|
,

and so are the trajectory stabilities

∣∣ATa...(xa...) −ATa(xa)
∣∣ ∝ TaConst

|Λa|
,

Substituting tab one finds

tab − tatb
tab

= 1 − e−s(Ta+Tb−Tab)

∣∣∣∣
ΛaΛb
Λab

∣∣∣∣ .

Since with increasing m segments of ab come closer to a, the differences
in action and the ratio of the eigenvalues converge exponentially with the
eigenvalue of the orbit a,

Ta + Tb − Tab ≈ Const × Λ−j
a , |ΛaΛb/Λab| ≈ exp(−Const/Λab)

Expanding the exponentials one thus finds that this term in the cycle ex-
pansion is of the order of

tajb − tataj−1b ≈ Const × tajbΛ
−j
a . (J.1)

Even though the number of terms in a cycle expansion grows exponentially,
the shadowing cancellations improve the convergence by an exponential fac-
tor compared to trace formulas, and extend the radius of convergence of the
periodic orbit sums. Table J.1 shows some examples of such compensations
between long cycles and their pseudo-cycle shadows.
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n tab − tatb Tab − (Ta + Tb) log
[

ΛaΛb

Λab

]
ab− a · b

2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 -7.96028600139×106 5.21713101432×103 -9.8×103 001-0·01
4 -1.03326529874×107 5.29858199419×104 -1.3×103 0001-0·001
5 -1.27481522016×109 5.35513574697×105 -1.6×104 00001-0·0001
6 -1.52544704823×1011 5.40999882625×106 -1.8×105 000001-0·00001
2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 5.30414752996×106 -3.67093656690×103 7.7×103 011-01·1
4 -5.40934261680×108 3.14925761316×104 -9.2×104 0111-011·1
5 4.99129508833×1010 -2.67292822795×105 1.0×104 01111-0111·1
6 -4.39246000586×1012 2.27087116266×106 -1.0×105 011111-01111·1

Table J.1: Demonstration of shadowing in curvature combinations of cycle weights
of form tab − tatb, the 3-disk fundamental domain cycles at R : d = 6, table 31.3.
The ratio ΛaΛb/Λab is approaching unity exponentially fast.

It is crucial that the curvature expansion is grouped (and truncated)
by topologically related cycles and pseudo-cycles; truncations that ignore
topology, such as inclusion of all cycles with Tp < Tmax, will contain or-
bits unmatched by shadowed orbits, and exhibit a mediocre convergence
compared with the curvature expansions.

Note that the existence of a pole at z = 1/c implies that the cycle expan-
sions have a finite radius of convergence, and that analytic continuations
will be required for extraction of the non-leading zeros of 1/ζ. Preferably,
one should work with cycle expansions of Selberg products, as discussed in
sect. 18.2.2.

J.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift type, there is no
finite topological polynomial, there are no “curvature” corrections, and the
convergence of the cycle expansions will be poor.

J.2 On importance of pruning

If the grammar is not finite and there is no finite topological polynomial,
there will be no “curvature” expansions, and the convergence will be poor.
That is the generic case, and one strategy for dealing with it is to find a
good sequence of approximate but finite grammars; for each approximate
grammar cycle expansions yield exponentially accurate eigenvalues, with
successive approximate grammars converging toward the desired infinite
grammar system.

When the dynamical system’s symbolic dynamics does not have a finite
grammar, and we are not able to arrange its cycle expansion into curvature
combinations (18.5), the series is truncated as in sect. 18.5, by including all
pseudo-cycles such that |Λp1 · · ·Λpk

| ≤ |ΛP |, where P is the most unstable
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prime cycle included into truncation. The truncation error should then be of
order O(ehTP TP /|ΛP |), with h the topological entropy, and ehTP roughly the
number of pseudo-cycles of stability ≈ |ΛP |. In this case the cycle averaging
formulas do not converge significantly better than the approximations such
as the trace formula (19.18).

Numerical results (see for example the plots of the accuracy of the cycle
expansion truncations for the Hénon map in ref. [18.3]) indicate that the
truncation error of most averages tracks closely the fluctuations due to the
irregular growth in the number of cycles. It is not known whether one can
exploit the sum rules such as the mass flow conservation (19.11) to improve
the accuracy of dynamical averaging.

J.3 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a
ritornar nel chiaro monde; e sanza cura aver d’alcun
riposa
salimmo sù, el primo e io secondo, tanto ch’i’ vidi de
le cose belle che porta ‘l ciel, per un perutgio tondo.”

Dante

The periodic orbit theory is learned in stages. At first glance, it
seems totally impenetrable. After basic exercises are gone through, it seems
totally trivial; all that seems to be at stake are elementary manipulations
with traces, determinants, derivatives. But if start thinking about you will
get a more and more uncomfortable feeling that from the mathematical
point of view, this is a perilous enterprise indeed. In chapter 16 we shall
explain which parts of this enterprise are really solid; here you give a fortaste
of what objections a mathematician might rise.

Birkhoff’s 1931 ergodic theorem states that the time average (10.4) ex-
ists almost everywhere, and, if the flow is ergodic, it implies that 〈a(x)〉 =
〈a〉 is a constant for almost all x. The problem is that the above cycle
averaging formulas implicitly rely on ergodic hypothesis: they are strictly
correct only if the dynamical system is locally hyperbolic and globally mix-
ing. If one takes a β derivative of both sides

ρβ(y)e
ts(β) =

∫

M
dx δ(y − f t(x))eβ·A

t(x)ρβ(x) ,

and integrates over y

∫

M
dy

∂

∂β
ρβ(y)

∣∣∣∣
β=0

+ t
∂s

∂β

∣∣∣∣
β=0

∫

M
dy ρ0(y) =

∫

M
dx At(x)ρ0(x) +

∫

M
dx

∂

∂β
ρβ(x)

∣∣∣∣
β=0

,

ChaosBook.org/version11.8, Aug 30 2006 appendConverg - 27dec2004



720APPENDIX J. CONVERGENCE OF SPECTRAL DETERMINANTS

one obtains in the long time limit

∂s

∂β

∣∣∣∣
β=0

=

∫

M
dy ρ0(x) 〈a(x)〉 . (J.2)

This is the expectation value (10.12) only if the time average (10.4) equals
the space average (10.9), 〈a(x)〉 = 〈a〉, for all x except a subset x ∈ M of
zero measure; if the phase space is foliated into non-communicating sub-
spaces M = M1 + M2 of finite measure such that f t(M1) ∩M2 = ∅ for
all t, this fails. In other words, we have tacitly assumed metric indecom-
posability or transitivity. We have also glossed over the nature of the
“phase space” M. For example, if the dynamical system is open, such as
the 3-disk game of pinball, M in the expectation value integral (10.22) is
a Cantor set, the closure of the union of all periodic orbits. Alternatively,
M can be considered continuous, but then the measure ρ0 in (J.2) is highly
singular. The beauty of the periodic orbit theory is that instead of using
an arbitrary coordinatization of M it partitions the phase space by the in-
trinsic topology of the dynamical flow and builds the correct measure from
cycle invariants, the stability eigenvalues of periodic orbits.

Were we to restrict the applications of the formalism only to systems
which have been rigorously proven to be ergodic, we might as well fold
up the shop right now. For example, even for something as simple as the
Hénon mapping we do not know whether the asymptotic time attractor is
strange or periodic. Physics applications require a more pragmatic atti-✎ 10.1

page 154
tude. In the cycle expansions approach we construct the invariant set of
the given dynamical system as a closure of the union of periodic orbits, and
investigate how robust are the averages computed on this set. This turns
out to depend very much on the observable being averaged over; dynamical
averages exhibit “phase transitions”, and the above cycle averaging for-
mulas apply in the “hyperbolic phase” where the average is dominated by
exponentially many exponentially small contributions, but fail in a phase
dominated by few marginally stable orbits. Here the noise - always present,
no matter how weak - helps us by erasing an infinity of small traps that
the deterministic dynamics might fall into.

Still, in spite of all the caveats, periodic orbit theory is a beautiful the-
ory, and the cycle averaging formulas are the most elegant and powerful
tool available today for evaluation of dynamical averages for low dimen-
sional chaotic deterministic systems.

J.4 Estimate of the nth cumulant

An immediate consequence of the exponential spacing of the eigenvalues is
that the convergence of the Selberg product expansion (E.12) as function of
the topological cycle length, F (z) =

∑
nCnz

n, is faster than exponential.
Consider a d–dimensional map for which all fundamental matrix eigenval-
ues are equal: up = Λp,1 = Λp,2 = · · · = Λp,d. The stability eigenvalues
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are generally not isotropic; however, to obtain qualitative bounds on the
spectrum, we replace all stability eigenvalues with the least expanding one.
In this case the p cycle contribution to the product (15.9) reduces to

Fp(z) =

∞∏

k1···kd=0

(
1 − tpu

k1+k2+···+kd
p

)

=

∞∏

k=0

(
1 − tpu

k
p

)mk

; mk =

(
d− 1 + k

d− 1

)
=

(k + d− 1)!

k!(d− 1)!

=
∞∏

k=0

mk∑

ℓ=0

(
mk

ℓ

)(
−ukptp

)ℓ
(J.3)

In one dimension the expansion can be given in closed form (16.34), and
the coefficients Ck in (E.12) are given by

τpk = (−1)k
u

k(k−1)
2

p∏k
j=1(1 − ujp)

tkp . (J.4)

Hence the coefficients in the F (z) =
∑

nCnz
n expansion of the spectral

determinant (18.8) fall off faster than exponentially, as |Cn| ≈ un(n−1)/2.
In contrast, the cycle expansions of dynamical zeta functions fall of “only”
exponentially; in numerical applications, the difference is dramatic.

In higher dimensions the expansions are not quite as compact. The
leading power of u and its coefficient are easily evaluated by use of binomial
expansions (J.3) of the (1 + tuk)mk factors. More precisely, the leading un

terms in tk coefficients are of form

∞∏

k=0

(1 + tuk)mk = . . .+ um1+2m2+...+jmj t1+m1+m2+...+mj + . . .

= . . .+
(
u

md
d+1 t

)(d+m
m )

+ . . . ≈ . . .+ u
d√

d!
(d−1)!

n
d+1

d
tn + . . .

Hence the coefficients in the F (z) expansion fall off faster than exponen-

tially, as un
1+1/d

. The Selberg products are entire functions in any dimen-
sion, provided that the symbolic dynamics is a finite subshift, and all cycle
eigenvalues are sufficiently bounded away from 1.

The case of particular interest in many applications are the 2-d Hamil-
tonian mappings; their symplectic structure implies that up = Λp,1 =
1/Λp,2, and the Selberg product (15.13) In this case the expansion cor-
responding to (16.34) is given by (16.35) and the coefficients fall off asymp-

totically as Cn ≈ un
3/2

.
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Appendix K

Infinite dimensional operators

(A. Wirzba)

This appendix taken from ref. [K.1] summarizes the definitions and prop-
erties for trace-class and Hilbert-Schmidt matrices, the determinants over
infinite dimensional matrices and possible regularization schemes for ma-
trices or operators which are not of trace-class.

K.1 Matrix-valued functions

(P. Cvitanović)

As a preliminary we summarize some of the properties of functions of finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′

ij(x) =
d

dx
Aij(x) . (K.1)

Derivatives of products of matrices are evaluated by the chain rule

d

dx
(AB) =

dA

dx
B +A

dB

dx
. (K.2)

A matrix and its derivative matrix in general do not commute

d

dx
A2 =

dA

dx
A+A

dA

dx
. (K.3)

The derivative of the inverse of a matrix, follows from d
dx(AA−1) = 0:

d

dx
A−1 = − 1

A

dA

dx

1

A
. (K.4)
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A function of a single variable that can be expressed in terms of addi-
tions and multiplications generalizes to a matrix-valued function by replac-
ing the variable by the matrix.

In particular, the exponential of a constant matrix can be defined either
by its series expansion, or as a limit of an infinite product:

eA =
∞∑

k=0

1

k!
Ak , A0 = 1 (K.5)

= lim
N→∞

(
1 +

1

N
A

)N
(K.6)

The first equation follows from the second one by the binomial theorem, so
these indeed are equivalent definitions. That the terms of order O(N−2) or
smaller do not matter follows from the bound

(
1 +

x− ǫ

N

)N
<

(
1 +

x+ δxN
N

)N
<

(
1 +

x+ ǫ

N

)N
,

where |δxN | < ǫ. If lim δxN → 0 as N → ∞, the extra terms do not
contribute.

Consider now the determinant

det (eA) = lim
N→∞

(det (1 +A/N ))N .

To the leading order in 1/N

det (1 +A/N) = 1 +
1

N
trA+O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1

N
trA+O(N−2)

)N
= etrA (K.7)

Due to non-commutativity of matrices, generalization of a function of
several variables to a function is not as straightforward. Expression involv-
ing several matrices depend on their commutation relations. For example,
the commutator expansion

etABe−tA = B+t[A,B]+
t2

2
[A, [A,B]]+

t3

3!
[A, [A, [A,B]]]+ · · · (K.8)
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sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics follows by recursive evaluation of t derivaties

d

dt

(
etABe−tA

)
= etA[A,B]e−tA .

Manipulations of such ilk yield

e(A+B)/N = eA/NeB/N − 1

2N2
[A,B] +O(N−3) ,

and the Trotter product formula: if B, C and A = B + C are matrices,
then

eA = lim
N→∞

(
eB/NeC/N

)N
(K.9)

K.2 Operator norms

(R. Mainieri and P. Cvitanović)

The limit used in the above definition involves matrices - operators
in vector spaces - rather than numbers, and its convergence can be checked
using tools familiar from calculus. We briefly review those tools here, as
throughout the text we will have to consider many different operators and
how they converge.

The n→ ∞ convergence of partial products

En =
∏

0≤m<n

(
1 +

t

m
A

)

can be verified using the Cauchy criterion, which states that the sequence
{En} converges if the differences ‖Ek − Ej‖ → 0 as k, j → ∞. To make
sense of this we need to define a sensible norm ‖ · · · ‖. Norm of a matrix is
based on the Euclidean norm for a vector: the idea is to assign to a matrix
M a norm that is the largest possible change it can cause to the length of
a unit vector n̂:

‖M‖ = sup
n̂

‖Mn̂‖ , ‖n̂‖ = 1 . (K.10)

We say that ‖ · ‖ is the operator norm induced by the vector norm ‖ · ‖.
Constructing a norm for a finite-dimensional matrix is easy, but had M
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been an operator in an infinite-dimensional space, we would also have to
specify the space n̂ belongs to. In the finite-dimensional case, the sum
of the absolute values of the components of a vector is also a norm; the
induced operator norm for a matrix M with components Mij in that case
can be defined by

‖M‖ = max
i

∑

j

|Mij | . (K.11)

The operator norm (K.11) and the vector norm (K.10) are only rarely
distinguished by different notation, a bit of notational laziness that we
shall uphold.

Now that we have learned how to make sense out of norms of operators,
we can check that

‖etA‖ ≤ et‖A‖ . (K.12)

✎ 2.9
page 44 As ‖A‖ is a number, the norm of etA is finite and therefore well defined.

In particular, the exponential of a matrix is well defined for all values of t,
and the linear differential equation (4.9) has a solution for all times.

K.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [K.9]. Refs. [K.7, K.10, K.11,
K.14] should be consulted for more details and proofs. The trace class and
Hilbert-Schmidt property will be defined here for linear, in general non-
hermitian operators A ∈ L(H): H → H (where H is a separable Hilbert
space). The transcription to matrix elements (used in the prior chapters) is
simply aij = 〈φi,Aφj〉 where {φn} is an orthonormal basis of H and 〈 , 〉 is
the inner product in H (see sect. K.5 where the theory of von Koch matrices
of ref. [K.12] is discussed). So, the trace is the generalization of the usual
notion of the sum of the diagonal elements of a matrix; but because infinite
sums are involved, not all operators will have a trace:

Definition:

(a) An operator A is called trace class, A ∈ J1, if and only if, for every
orthonormal basis, {φn}:

∑

n

|〈φn,Aφn〉| <∞. (K.13)

The family of all trace class operators is denoted by J1.
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(b) An operator A is called Hilbert-Schmidt, A ∈ J2, if and only if,
for every orthonormal basis, {φn}:

∑

n

‖Aφn‖2 <∞. (K.14)

The family of all Hilbert-Schmidt operators is denoted by J2.

Bounded operators are dual to trace class operators. They satisfy the
the following condition: |〈ψ,Bφ〉| ≤ C‖ψ‖‖φ‖ with C < ∞ and ψ, φ ∈ H.
If they have eigenvalues, these are bounded too. The family of bounded
operators is denoted by B(H) with the norm ‖B‖ = supφ 6=0

‖Bφ‖
‖φ‖ for φ ∈ H.

Examples for bounded operators are unitary operators and especially the
unit matrix. In fact, every bounded operator can be written as linear
combination of four unitary operators.

A bounded operator C is compact, if it is the norm limit of finite rank
operators.

An operator A is called positive, A ≥ 0, if 〈Aφ, φ〉 ≥ 0 ∀φ ∈ H. Notice
that A†A ≥ 0. We define |A| =

√
A†A.

The most important properties of the trace and Hilbert-Schmidt classes
are summarized in (see refs. [K.7, K.9]):

(a) J1 and J2 are ∗ideals., that is, they are vector spaces closed un-
der scalar multiplication, sums, adjoints, and multiplication with
bounded operators.

(b) A ∈ J1 if and only if A = BC with B,C ∈ J2.

(c) J1 ⊂ J2 ⊂ Compact operators.

(d) For any operator A, we have A ∈ J2 if
∑

n ‖Aφn‖2 <∞ for a single
basis.
For any operator A ≥ 0 we have A ∈ J1 if

∑
n |〈φn,Aφn〉| < ∞ for

a single basis.

(e) If A ∈ J1, Tr(A) =
∑〈φn,Aφn〉 is independent of the basis used.

(f) Tr is linear and obeys Tr(A†) = Tr(A); Tr(AB) = Tr(BA) if either
A ∈ J1 and B bounded, A bounded and B ∈ J1 or both A,B ∈ J2.

(g) J2 endowed with the inner product 〈A,B〉2 = Tr(A†B) is a Hilbert

space. If ‖A‖2 = [Tr(A†A) ]
1
2 , then ‖A‖2 ≥ ‖A‖ and J2 is the

‖ ‖2-closure of the finite rank operators.

(h) J1 endowed with the norm ‖A‖1 = Tr(
√

A†A) is a Banach space.
‖A‖1 ≥ ‖A‖2 ≥ ‖A‖ and J1 is the ‖ ‖1-norm closure of the finite
rank operators. The dual space of J1 is B(H), the family of bounded
operators with the duality 〈B,A〉 = Tr(BA).
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728 APPENDIX K. INFINITE DIMENSIONAL OPERATORS

(i) If A,B ∈ J2, then ‖AB‖1 ≤ ‖A‖2‖B‖2. If A ∈ J2 and B ∈ B(H),
then ‖AB‖2 ≤ ‖A‖2‖B‖. If A ∈ J1 and B ∈ B(H), then ‖AB‖1 ≤
‖A‖1‖B‖.

Note the most important property for proving that an operator is trace class
is the decomposition (b) into two Hilbert-Schmidt ones, as the Hilbert-
Schmidt property can easily be verified in one single orthonormal basis (see
(d)). Property (e) ensures then that the trace is the same in any basis.
Properties (a) and (f) show that trace class operators behave in complete
analogy to finite rank operators. The proof whether a matrix is trace-class
(or Hilbert-Schmidt) or not simplifies enormously for diagonal matrices, as
then the second part of property (d) is directly applicable: just the moduli
of the eigenvalues (or – in case of Hilbert-Schmidt – the squares of the
eigenvalues) have to be summed up in order to answer that question. A
good strategy in checking the trace-class character of a general matrix A
is therefore the decomposition of that matrix into two matrices B and C
where one, say C, should be chosen to be diagonal and either just barely of
Hilbert-Schmidt character leaving enough freedom for its partner B or of
trace-class character such that one only has to show the boundedness for
B.

K.4 Determinants of trace class operators

This section is mainly based on refs. [K.8, K.10] which should be consulted
for more details and proofs. See also refs. [K.11, K.14].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert space H, ⊗nH is defined as the vector space of multi-linear
functionals on H with φ1 ⊗ · · · ⊗φn ∈ ⊗nH in case φ1, . . . , φn ∈ H.

∧n(H)
is defined as the subspace of ⊗nH spanned by the wedge-product

φ1 ∧ · · · ∧ φn =
1√
n!

∑

π∈Pn

ǫ(π)[φπ(1) ⊗ · · · ⊗ φπ(n)] (K.15)

where Pn is the group of all permutations of n letters and ǫ(π) = ±1
depending on whether π is an even or odd permutation, respectively. The
inner product in

∧n(H) is given by

(φ1 ∧ · · · ∧ φn, η1 ∧ · · · ∧ ηn) = det {(φi, ηj)} (K.16)

where det{aij} =
∑

π∈Pn
ǫ(π)a1π(1) · · · anπ(n).

∧n(A) is defined as functor
(a functor satisfies

∧n(AB) =
∧n(A)

∧n(B)) on
∧n(H) with

∧n
(A) (φ1 ∧ · · · ∧ φn) = Aφ1 ∧ · · · ∧ Aφn . (K.17)
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When n = 0,
∧n(H) is defined to be C and

∧n(A) as 1: C → C.

Properties: If A trace class, that is, A ∈ J1, then for any k,
∧k(A) is

trace class, and for any orthonormal basis {φn} the cumulant

Tr

(∧k
(A)

)
=

∑

i1<···<ik
((φi1 ∧ · · · ∧ φik), (Aφi1 ∧ · · · ∧ Aφik)) <∞(K.18)

is independent of the basis (with the understanding that Tr
∧0(A) ≡ 1).

Definition: Let A ∈ J1, then det(1+A) is defined as

det(1 + A) =
∞∑

k=0

Tr

(∧k
(A)

)
(K.19)

Properties:

Let A be a linear operator on a separable Hilbert space H and {φj}∞1
an orthonormal basis.

(a)
∑∞

k=0 Tr
(∧k(A)

)
converges for each A ∈ J1.

(b) |det(1+A)| ≤∏∞
j=1 (1 + µj(A)) where µj(A) are the singular values

of A, that is, the eigenvalues of |A| =
√

A†A.

(c) |det(1 + A)| ≤ exp(‖A‖1).

(d) For any A1, . . . ,An ∈ J1, 〈z1, . . . , zn〉 7→ det (1 +
∑n

i=1 ziAi) is an
entire analytic function.

(e) If A,B ∈ J1, then

det(1 + A)det(1 + B) = det (1 + A + B + AB)

= det ((1 + A)(1 + B))

= det ((1 + B)(1 + A)) . (K.20)

If A ∈ J1 and U unitary, then

det
(
U−1(1 + A)U

)
= det

(
1 + U−1AU

)
= det(1 + A) .(K.21)

(f) If A ∈ J1, then (1 + A) is invertible if and only if det(1 + A) 6= 0.

(g) If λ 6= 0 is an n-times degenerate eigenvalue of A ∈ J1, then det(1+
zA) has a zero of order n at z = −1/λ.

(h) For any ǫ, there is a Cǫ(A), depending on A ∈ J1, so that |det(1 +
zA)| ≤ Cǫ(A) exp(ǫ|z|).
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(i) For any A ∈ J1,

det(1 + A) =

N(A)∏

j=1

(1 + λj(A)) (K.22)

where here and in the following {λj(A)}N(A)
j=1 are the eigenvalues of

A counted with algebraic multiplicity .

(j) Lidskii’s theorem: For any A ∈ J1,

Tr(A) =

N(A)∑

j=1

λj(A) <∞ . (K.23)

(k) If A ∈ J1, then

Tr

(∧k
(A)

)
=

N(
Vk(A))∑

j=1

λj

(∧k
(A)

)

=
∑

1≤j1<···<jk≤N(A)

λj1(A) · · · λjk(A) <∞.

(l) If A ∈ J1, then

det(1 + zA) =

∞∑

k=0

zk
∑

1≤j1<···<jk≤N(A)

λj1(A) · · · λjk(A) <∞.(K.24)

(m) If A ∈ J1, then for |z| small (that is, |z|max|λj(A)| < 1) the series∑∞
k=1 z

kTr
(
(−A)k

)
/k converges and

det(1 + zA) = exp

(
−

∞∑

k=1

zk

k
Tr
(
(−A)k

))

= exp (Tr ln(1 + zA)) . (K.25)

(n) The Plemelj-Smithies formula: Define αm(A) for A ∈ J1 by

det(1 + zA) =
∞∑

m=0

zm
αm(A)

m!
. (K.26)

Then αm(A) is given by the m×m determinant:

αm(A) =

∣∣∣∣∣∣∣∣∣∣∣∣

Tr(A) m− 1 0 · · · 0
Tr(A2) Tr(A) m− 2 · · · 0
Tr(A3) Tr(A2) Tr(A) · · · 0

...
...

...
...

...
1

Tr(Am) Tr(A(m−1)) Tr(A(m−2)) · · · Tr(A)

∣∣∣∣∣∣∣∣∣∣∣∣

(K.27)
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with the understanding that α0(A) ≡ 1 and α1(A) ≡ Tr(A). Thus
the cumulants cm(A) ≡ αm(A)/m! satisfy the following recursion
relation

cm(A) =
1

m

m∑

k=1

(−1)k+1cm−k(A)Tr(Ak) for m ≥ 1

c0(A) ≡ 1 . (K.28)

Note that in the context of quantum mechanics formula (K.26) is the quan-
tum analog to the curvature expansion of the semiclassical zeta function
with Tr(Am) corresponding to the sum of all periodic orbits (prime and also
repeated ones) of total topological length m, that is, let cm(s.c.) denote the
m th curvature term, then the curvature expansion of the semiclassical zeta
function is given by the recursion relation

cm(s.c.) =
1

m

m∑

k=1

(−1)k+m+1cm−k(s.c.)
∑

p;r>0
with [p]r=k

[p]
tp(k)

r

1 −
(

1
Λp

)r for m ≥ 1

c0(s.c.) ≡ 1 . (K.29)

In fact, in the cumulant expansion (K.26) as well as in the curvature ex-
pansion there are large cancellations involved. Let us order – without lost
of generality – the eigenvalues of the operator A ∈ J1 as follows:

|λ1| ≥ |λ2| ≥ · · · ≥ |λi−1| ≥ |λi| ≥ |λi+1| ≥ · · ·

(This is always possible because of
∑N(A)

i=1 |λi| < ∞.) Then, in the stan-
dard (Plemelj-Smithies) cumulant evaluation of the determinant, eq. (K.26),
we have enormous cancellations of big numbers, e.g. at the k th cumulant
order (k > 3), all the intrinsically large ‘numbers’ λk1, λ

k−1
1 λ2, . . ., λ

k−2
1 λ2λ3,

. . . and many more have to cancel out exactly until only
∑

1≤j1<···<jk≤N(A) λj1 · · ·λjk
is finally left over. Algebraically, the fact that there are these large can-
cellations is of course of no importance. However, if the determinant is
calculated numerically, the big cancellations might spoil the result or even
the convergence. Now, the curvature expansion of the semiclassical zeta
function, as it is known today, is the semiclassical approximation to the
curvature expansion (unfortunately) in the Plemelj-Smithies form. As the
exact quantum mechanical result is approximated semiclassically, the er-
rors introduced in the approximation might lead to big effects as they are
done with respect to large quantities which eventually cancel out and not
– as it would be of course better – with respect to the small surviving cu-
mulants. Thus it would be very desirable to have a semiclassical analog
to the reduced cumulant expansion (K.24) or even to (K.22) directly. It
might not be possible to find a direct semiclassical analog for the individual
eigenvalues λj. Thus the direct construction of the semiclassical equivalent
to (K.22) is rather unlikely. However, in order to have a semiclassical “cu-
mulant” summation without large cancellations – see (K.24) – it would be
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just sufficient to find the semiclassical analog of each complete cumulant
(K.24) and not of the single eigenvalues. Whether this will eventually be
possible is still an open question.

K.5 Von Koch matrices

Implicitly, many of the above properties are based on the theory of von
Koch matrices [K.11, K.12, K.13]: An infinite matrix 1−A = ‖δjk−ajk‖∞1 ,
consisting of complex numbers, is called a matrix with an absolutely con-
vergent determinant, if the series

∑ |aj1k1aj2k2 · · · ajn,kn | converges, where
the sum extends over all pairs of systems of indices (j1, j2, · · · , jn) and
(k1, k2, · · · , kn) which differ from each other only by a permutation, and
j1 < j2 < · · · jn (n = 1, 2, · · ·). Then the limit

lim
n→∞

det‖δjk − ajk‖n1 = det(1 − A)

exists and is called the determinant of the matrix 1 − A. It can be repre-
sented in the form

det(1 − A) = 1 −
∞∑

j=1

ajj +
1

2!

∞∑

j,k=1

∣∣∣∣
ajj ajk
akj akk

∣∣∣∣−
1

3!

∞∑

j,k,m=1

∣∣∣∣∣∣

ajj ajk ajm
akj akk akm
amj amk amm

∣∣∣∣∣∣
+ · · ·

where the series on the r.h.s. will remain convergent even if the numbers ajk
(j, k = 1, 2, · · ·) are replaced by their moduli and if all the terms obtained
by expanding the determinants are taken with the plus sign. The matrix
1 − A is called von Koch matrix, if both conditions

∞∑

j=1

|ajj| < ∞ , (K.30)

∞∑

j,k=1

|ajk|2 < ∞ (K.31)

are fulfilled. Then the following holds (see ref. [K.11, K.13]): (1) Every von
Koch matrix has an absolutely convergent determinant. If the elements
of a von Koch matrix are functions of some parameter µ (ajk = ajk(µ),
j, k = 1, 2, · · ·) and both series in the defining condition converge uniformly
in the domain of the parameter µ, then as n→ ∞ the determinant det‖δjk−
ajk(µ)‖n1 tends to the determinant det(1 + A(µ)) uniformly with respect
to µ, over the domain of µ. (2) If the matrices 1 − A and 1 − B are von
Koch matrices, then their product 1 − C = (1 − A)(1 − B) is a von Koch
matrix, and

det(1 − C) = det(1 − A) det(1 − B) . (K.32)
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Note that every trace-class matrix A ∈ J1 is also a von Koch ma-
trix (and that any matrix satisfying condition (K.31) is Hilbert-Schmidt
and vice versa). The inverse implication, however, is not true: von Koch
matrices are not automatically trace-class. The caveat is that the def-
inition of von Koch matrices is basis-dependent, whereas the trace-class
property is basis-independent. As the traces involve infinite sums, the basis-
independence is not at all trivial. An example for an infinite matrix which
is von Koch, but not trace-class is the following:

Aij =





2/j for i− j = −1 and j even ,
2/i for i− j = +1 and i even ,
0 else ,

that is,

A =




0 1 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 0 0 1/2 0 0 · · ·
0 0 1/2 0 0 0 · · ·
0 0 0 0 0 1/3

. . .

0 0 0 0 1/3 0
. . .

...
...

...
...

. . .
. . .

. . .




. (K.33)

Obviously, condition (K.30) is fulfilled by definition. Secondly, condition
(K.31) is satisfied as

∑∞
n=1 2/n2 <∞. However, the sum over the moduli of

the eigenvalues is just twice the harmonic series
∑∞

n=1 1/n which does not
converge. The matrix (K.33) violates the trace-class definition (K.13), as
in its eigenbasis the sum over the moduli of its diagonal elements is infinite.
Thus the absolute convergence is traded for a conditional convergence, since
the sum over the eigenvalues themselves can be arranged to still be zero,
if the eigenvalues with the same modulus are summed first. Absolute con-
vergence is of course essential, if sums have to be rearranged or exchanged.
Thus, the trace-class property is indispensable for any controlled unitary
transformation of an infinite determinant, as then there will be necessarily
a change of basis and in general also a re-ordering of the corresponding
traces. Therefore the claim that a Hilbert-Schmidt operator with a vanish-
ing trace is automatically trace-class is false. In general, such an operator
has to be regularized in addition (see next chapter).

K.6 Regularization

Many interesting operators are not of trace class (although they might be
in some Jp with p > 1 - an operator A is in Jp iff Tr|A|p < ∞ in any
orthonormal basis). In order to compute determinants of such operators,
an extension of the cumulant expansion is needed which in fact corresponds
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to a regularization procedure [K.8, K.10]:
E.g. let A ∈ Jp with p ≤ n. Define

Rn(zA) = (1 + zA) exp

(
n−1∑

k=1

(−z)k
k

Ak

)
− 1 (K.34)

as the regulated version of the operator zA. Then the regulated operator
Rn(zA) is trace class, that is, Rn(zA) ∈ J1. Define now detn(1 + zA) =
det(1 +Rn(zA)). Then the regulated determinant

detn(1 + zA) =

N(zA)∏

j=1

[
(1 + zλj(A)) exp

(
n−1∑

k=1

(−zλj(A))k

k

)]
<∞.(K.35)

exists and is finite. The corresponding Plemelj-Smithies formula now reads [K.10]:

detn(1 + zA) =
∞∑

m=0

zm
α

(n)
m (A)

m!
. (K.36)

with α
(n)
m (A) given by the m×m determinant:

α(n)
m (A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ
(n)
1 m− 1 0 · · · 0

σ
(n)
2 σ

(n)
1 m− 2 · · · 0

σ
(n)
3 σ

(n)
2 σ

(n)
1 · · · 0

...
...

...
...

...
1

σ
(n)
m σ

(n)
m−1 σ

(n)
m−2 · · · σ

(n)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(K.37)

where

σ
(n)
k =

{
Tr(Ak) k ≥ n
0 k ≤ n− 1

As Simon [K.10] says simply, the beauty of (K.37) is that we get detn(1 +
A) from the standard Plemelj-Smithies formula (K.26) by simply setting
Tr(A), Tr(A2), . . ., Tr(An−1) to zero.

See also ref. [K.15] where {λj} are the eigenvalues of an elliptic (pseudo)-
differential operator H of order m on a compact or bounded manifold of
dimension d, 0 < λ0 ≤ λ1 ≤ · · · and λk ↑ +∞. and the Fredholm
determinant

∆(λ) =
∞∏

k=0

(
1 − λ

λk

)
(K.38)
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is regulated in the case µ ≡ d/m > 1 as Weierstrass product

∆(λ) =

∞∏

k=0

[(
1 − λ

λk

)
exp

(
λ

λk
+

λ2

2λ2
k

+ · · · + λ[µ]

[µ]λ
[µ]
k

)]
(K.39)

where [µ] denotes the integer part of µ. This is, see ref. [K.15], the unique
entire function of order µ having zeros at {λk} and subject to the normal-
ization conditions

ln ∆(0) =
d

dλ
ln ∆(0) = · · · =

d[µ]

dλ[µ]
ln ∆(0) = 0 . (K.40)

Clearly eq. (K.39) is the same as (K.35); one just has to identify z = −λ,
A = 1/H and n− 1 = [µ]. An example is the regularization of the spectral
determinant

∆(E) = det [(E − H)] (K.41)

which – as it stands – would only make sense for a finite dimensional basis
(or finite dimensional matrices). In ref. [K.16] the regulated spectral deter-
minant for the example of the hyperbola billiard in two dimensions (thus
d = 2, m = 2 and hence µ = 1) is given as

∆(E) = det [(E − H)Ω(E,H)] (K.42)

where

Ω(E,H) = −H−1eEH−1
(K.43)

such that the spectral determinant in the eigenbasis of H (with eigenvalues
En 6= 0) reads

∆(E) =
∏

n

(
1 − E

En

)
eE/En <∞ . (K.44)

Note that H−1 is for this example of Hilbert-Schmidt character.
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Amer. Meth. Soc. 16, Providence R. I. (1955).

[K.4] C.A. Tracy and H. Widom, CHECK THIS!: Fredholm Determinants, Dif-
ferential Equations and Matrix Models, hep-th/9306042.

[K.5] M.G. Krein, On the Trace Formula in Perturbation Theory Mat.. Sborn.
(N.S.) 33 (1953) 597-626; Perturbation Determinants and Formula for Traces
of Unitary and Self-adjoint Operators Sov. Math.-Dokl. 3 (1962) 707-710. M.S.
Birman and M.G. Krein, On the Theory of Wave Operators and Scattering
Operators, Sov. Math.-Dokl. 3 (1962) 740-744.

[K.6] J. Friedel, Nuovo Cim. Suppl. 7 (1958) 287-301.

[K.7] M. Reed and B. Simon, Methods of Modern Mathematical Physics , Vol. I:
Functional Analysis , Chap. VI, Academic Press (New York), 1972.

[K.8] M. Reed and B. Simon, Methods of Modern Mathematical Physics , Vol. IV:
Analysis of Operators, Chap. XIII.17, Academic Press (New York), 1976.

[K.9] B. Simon, Quantum Mechanics for Hamiltonians defined as Quadratic
Forms , Princeton Series in Physics, 1971, Appendix.

[K.10] B. Simon, Notes on Infinite Determinants of Hilbert Space Operators, Adv.
Math. 24 (1977) 244-273.

[K.11] I.C. Gohberg and M.G. Krein, Introduction to the theory of linear non-
selfadjoint operators, Translations of Mathematical Monographs 18, Amer.
Math. Soc. (1969).

[K.12] H. von Koch, Sur quelques points de la théorie des déterminants infinis,
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Appendix L

Statistical mechanics recycled

(R. Mainieri)

A spin system with long-range interactions can be converted into a chaotic
dynamical system that is differentiable and low-dimensional. The thermo-
dynamic limit quantities of the spin system are then equivalent to long time
averages of the dynamical system. In this way the spin system averages can
be recast as the cycle expansions. If the resulting dynamical system is an-
alytic, the convergence to the thermodynamic limit is faster than with the
standard transfer matrix techniques.

L.1 The thermodynamic limit

There are two motivations to recycle statistical mechanics: one gets better
control over the thermodynamic limit and one gets detailed information on
how one is converging to it. From this information, most other quantities
of physical interst can be computed.

In statistical mechanics one computes the averages of observables. These
are functions that return a number for every state of the system; they are
an abstraction of the process of measuring the pressure or temperature of a
gas. The average of an observable is computed in the thermodynamic limit
— the limit of system with an arbitrarily large number of particles. The
thermodynamic limit is an essential step in the computation of averages,
as it is only then that one observes the bulk properties of matter.

Without the thermodynamic limit many of the thermodynamic prop-
erties of matter could not be derived within the framework of statistical
mechanics. There would be no extensive quantities, no equivalence of en-
sembles, and no phase transitions. From experiments it is known that cer-
tain quantities are extensive, that is, they are proportional to the size of the
system. This is not true for an interacting set of particles. If two systems
interacting via pairwise potentials are brought close together, work will be
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738 APPENDIX L. STATISTICAL MECHANICS RECYCLED

required to join them, and the final total energy will not be the sum of the
energies of each of the parts. To avoid the conflict between the experiments
and the theory of Hamiltonian systems, one needs systems with an infinite
number of particles. In the canonical ensemble the probability of a state
is given by the Boltzman factor which does not impose the conservation of
energy; in the microcanonical ensemble energy is conserved but the Boltz-
mann factor is no longer exact. The equality between the ensembles only
appears in the limit of the number of particles going to infinity at constant
density. The phase transitions are interpreted as points of non-analyticity
of the free energy in the thermodynamic limit. For a finite system the par-
tition function cannot have a zero as a function of the inverse temperature
β, as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in the study of
field theories. A field theory can be first defined on a lattice and then
the lattice spacing is taken to zero as the correlation length is kept fixed.
This continuum limit corresponds to the thermodynamic limit. In lattice
spacing units the correlation length is going to infinity, and the interacting
field theory can be thought of as a statistical mechanics model at a phase
transition.

For general systems the convergence towards the thermodynamic limit is
slow. If the thermodynamic limit exists for an interaction, the convergence
of the free energy per unit volume f is as an inverse power in the linear
dimension of the system.

f(β) → 1

n
(L.1)

where n is proportional to V 1/d, with V the volume of the d-dimensional
system. Much better results can be obtained if the system can be described
by a transfer matrix. A transfer matrix is concocted so that the trace of its
nth power is exactly the partition function of the system with one of the
dimensions proportional to n. When the system is described by a transfer
matrix then the convergence is exponential,

f(β) → e−αn (L.2)

and may only be faster than that if all long-range correlations of the system
are zero — that is, when there are no interactions. The coefficient α depends
only on the inverse correlation length of the system.

One of the difficulties in using the transfer matrix techniques is that
they seem at first limited to systems with finite range interactions. Phase
transitions can happen only when the interaction is long range. One can
try to approximate the long range interaction with a series of finite range
interactions that have an ever increasing range. The problem with this ap-
proach is that in a formally defined transfer matrix, not all the eigenvalues
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of the matrix correspond to eigenvalues of the system (in the sense that the
rate of decay of correlations is not the ratio of eigenvalues).

Knowledge of the correlations used in conjunction with finite size scal-
ing to obtain accurate estimates of the parameters of systems with phase
transitions. (Accurate critical exponents are obtained by series expansions
or transfer matrices, and seldomly by renormalization group arguments or
Monte Carlo.) In a phase transition the coefficient α of the exponential
convergence goes to zero and the convergence to the thermodynamic limit
is power-law.

The computation of the partition function is an example of a functional
integral. For most interactions these integrals are ill-defined and require
some form of normalization. In the spin models case the functional integral
is very simple, as “space” has only two points and only “time” being infinite
has to be dealt with. The same problem occurs in the computation of the
trace of transfer matrices of systems with infinite range interactions. If one
tries to compute the partition function Zn

Zn = trT n

when T is an infinite matrix, the result may be infinite for any n. This is
not to say that Zn is infinite, but that the relation between the trace of an
operator and the partition function breaks down. We could try regularizing
the expression, but as we shall see below, that is not necessary, as there is
a better physical solution to this problem.

What will described here solves both of these problems in a limited
context: it regularizes the transfer operator in a physically meaningful way,
and as a a consequence, it allows for the faster than exponential convergence
to the thermodynamic limit and complete determination of the spectrum.
The steps to achieve this are:

• Redefine the transfer operator so that there are no limits involved
except for the thermodynamic limit.

• Note that the divergences of this operator come from the fact that
it acts on a very large space. All that is needed is the smallest sub-
space containing the eigenvector corresponding to the largest eigen-
value (the Gibbs state).

• Rewrite all observables as depending on a local effective field. The
eigenvector is like that, and the operator restricted to this space is
trace-class.

• Compute the spectrum of the transfer operator and observe the magic.

L.2 Ising models

The Ising model is a simple model to study the cooperative effects of many
small interacting magnetic dipoles. The dipoles are placed on a lattice and
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their interaction is greatly simplified. There can also be a field that includes
the effects of an external magnetic field and the average effect of the dipoles
among themselves. We will define a general class of Ising models (also called
spin systems) where the dipoles can be in one of many possible states and
the interactions extend beyond the nearest neighboring sites of the lattice.
But before we extend the Ising model, we will examine the simplest model
in that class.

L.2.1 Ising model

One of the simplest models in statistical mechanics is the Ising model. One
imagines that one has a one-dimensional lattice with small magnets at each
site that can point either up or down.

.

Each little magnet interacts only with its neighbors. If they both point in
the same direction, then they contribute an energy −J to the total energy
of the system; and if they point in opposite directions, then they contribute
+J . The signs are chsen so that they prefer to be aligned. Let us suppose
that we have n small magnets arranged in a line: A line is drawn between
two sites to indicate that there is an interaction between the small magnets
that are located on that site

. (L.3)

(This figure can be thought of as a graph, with sites being vertices and
interacting magnets indicated by edges.) To each of the sites we associate
a variable, that we call a spin, that can be in either of two states: up (↑) or
down (↓). This represents the two states of the small magnet on that site,
and in general we will use the notation Σ0 to represent the set of possible
values of a spin at any site; all sites assume the same set of values. A
configuration consists of assigning a value to the spin at each site; a typical
configuration is

↓
 ↑
↑
 ↑
 ↓
 ↑
 ↑
 ↓
↓


. (L.4)

The set of all configurations for a lattice with n sites is called Ωn
0 and is

formed by the Cartesian product Ω0 ×Ω0 · · · ×Ω0, the product repeated n
times. Each configuration σ ∈ Ωn is a string of n spins

σ = {σ0, σ1, . . . σn} , (L.5)
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In the example configuration (L.4) there are two pairs of spins that have
the same orientation and six that have the opposite orientation. Therefore
the total energy H of the configuration is J × 6 − J × 2 = 4J . In general
we can associate an energy H to every configuration

H(σ) =
∑

i

Jδ(σi, σi+1) , (L.6)

where

δ(σ1, σ2) =

{
+1 if σ1 = σ2

−1 if σ1 6= σ2
. (L.7)

One of the problems that was avoided when computing the energy was
what to do at the boundaries of the one-dimensional chain. Notice that
as written, (L.6) requires the interaction of spin n with spin n + 1. In
the absence of phase transitions the boundaries do not matter much to
the thermodynamic limit and we will connect the first site to the last,
implementing periodic boundary conditions.

Thermodynamic quantities are computed from the partition function
Z(n) as the size n of the system becomes very large. For example, the free
energy per site f at inverse temperature β is given by

− βf(β) = lim
n→∞

1

n
lnZ(n) . (L.8)

The partition function Z(n) is computed by a sum that runs over all the
possible configurations on the one-dimensional chain. Each configuration
contributes with its Gibbs factor exp(−βH(σ)) and the partition function
Z(n) is

Z(n)(β) =
∑

σ∈Ωn
0

e−βH(σ) . (L.9)

The partition function can be computed using transfer matrices. This is
a method that generalizes to other models. At first, it is a little mysterious
that matrices show up in the study of a sum. To see where they come from,
we can try and build a configuration on the lattice site by site. The frst
thing to do is to expand out the sum for the energy of the configuration

Z(n)(β) =
∑

σ∈Ωn

eβJδ(σ1,σ2)eβJδ(σ2,σ3) · · · eβJδ(σn,σ1) . (L.10)

Let us use the configuration in (L.4). The first site is σ1 =↑. As the second
site is ↑, we know that the first term in (L.10) is a term eβJ . The third spin
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is ↓, so the second term in (L.10) is e−βJ . If the third spin had been ↑, then
the term would have been eβJ but it would not depend on the value of the
first spin σ1. This means that the configuration can be built site by site
and that to compute the Gibbs factor for the configuration just requires
knowing the last spin added. We can then think of the configuration as
being a weighted random walk where each step of the walk contributes
according to the last spin added. The random walk take place on the
Markov graph

↓
 ↑
eβJ


e−βJ


e−βJ


eβJ


.

Choose one of the two sites as a starting point. Walk along any allowed edge
making your choices randomly and keep track of the accumulated weight as
you perform the n steps. To implement the periodic boundary conditions
make sure that you return to the starting node of the Markov graph. If the
walk is carried out in all possible 2n ways then the sum of all the weights
is the partition function. To perform the sum we consider the matrix

T (β) =

[
eβJ e−βJ

e−βJ eβJ

]
. (L.11)

As in chapter 11 the sum of all closed walks is given by the trace of powers
of the matrix. These powers can easily be re-expressed in terms of the two
eigenvalues λ1 and λ2 of the transfer matrix:

Z(n)(β) = trT n(β) = λ1(β)n + λ2(β)n . (L.12)

L.2.2 Averages of observables

Averages of observables can be re-expressed in terms of the eigenvectors of
the transfer matrix. Alternatively, one can introduce a modified transfer
matrix and compute the averages through derivatives. Sounds familiar?

L.2.3 General spin models

The more general version of the Ising model — the spin models — will be
defined on a regular lattice, Z

D. At each lattice site there will be a spin
variable that can assumes a finite number of states identified by the set Ω0.

The transfer operator T was introduced by Kramers and Wannier [L.12]
to study the Ising model on a strip and concocted so that the trace of its nth
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power is the partition function Zn of system when one of its dimensions is
n. The method can be generalized to deal with any finite-range interaction.
If the range of the interaction is L, then T is a matrix of size 2L× 2L. The
longer the range, the larger the matrix.

L.3 Fisher droplet model

In a series of articles [L.20], Fisher introduced the droplet model. It is
a model for a system containing two phases: gas and liquid. At high
temperatures, the typical state of the system consists of droplets of all
sizes floating in the gas phase. As the temperature is lowered, the droplets
coalesce, forming larger droplets, until at the transition temperature, all
droplets form one large one. This is a first order phase transition.

Although Fisher formulated the model in three-dimensions, the analytic
solution of the model shows that it is equivalent to a one-dimensional lattice
gas model with long range interactions. Here we will show how the model
can be solved for an arbitrary interaction, as the solution only depends on
the asymptotic behavior of the interaction.

The interest of the model for the study of cycle expansions is its relation
to intermittency. By having an interaction that behaves asymptotically
as the scaling function for intermittency, one expects that the analytic
structure (poles and cuts) will be same.

Fisher used the droplet model to study a first order phase transition [L.20].
Gallavotti [L.21] used it to show that the zeta functions cannot in general
be extended to a meromorphic functions of the entire complex plane. The
droplet model has also been used in dynamical systems to explain features
of mode locking, see Artuso [L.22]. In computing the zeta function for the
droplet model we will discover that at low temperatures the cycle expan-
sion has a limited radius of convergence, but it is possible to factorize the
expansion into the product of two functions, each of them with a better
understood radius of convergence.

L.3.1 Solution

The droplet model is a one-dimensional lattice gas where each site can have
two states: empty or occupied. We will represent the empty state by 0 and
the occupied state by 1. The configurations of the model in this notation
are then strings of zeros and ones. Each configuration can be viewed as
groups of contiguous ones separated by one or more zeros. The contiguous
ones represent the droplets in the model. The droplets do not interact with
each other, but the individual particles within each droplet do.

To determine the thermodynamics of the system we must assign an en-
ergy to every configuration. At very high temperatures we would expect
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a gaseous phase where there are many small droplets, and as we decrease
the temperature the droplets would be expected to coalesce into larger ones
until at some point there is a phase transition and the configuration is dom-
inated by one large drop. To construct a solvable model and yet one with
a phase transition we need long range interaction among all the particles
of a droplet. One choice is to assign a fixed energy θn for the interactions
of the particles of a cluster of size n. In a given droplet one has to consider
all the possible clusters formed by contiguous particles. Consider for ex-
ample the configuration 0111010. It has two droplets, one of size three and
another of size one. The droplet of size one has only one cluster of size one
and therefore contributes to the energy of the configuration with θ1. The
cluster of size three has one cluster of size three, two clusters of size two,
and three clusters of size one; each cluster contributing a θn term to the
energy. The total energy of the configuration is then

H(0111010) = 4θ1 + 2θ2 + 1θ3 . (L.13)

If there where more zeros around the droplets in the above configuration
the energy would still be the same. The interaction of one site with the
others is assumed to be finite, even in the ground state consisting of a single
droplet, so there is a restriction on the sum of the cluster energies given by

a =
∑

n>0

θn <∞ . (L.14)

The configuration with all zeros does not contribute to the energy.

Once we specify the function θn we can computed the energy of any
configuration, and from that determine the thermodynamics. Here we will
evaluate the cycle expansion for the model by first computing the generating
function

G(z, β) =
∑

n>0

zn
Zn(β)

n
(L.15)

and then considering its exponential, the cycle expansion. Each partition
function Zn must be evaluated with periodic boundary conditions. So if
we were computing Z3 we must consider all eight binary sequences of three
bits, and when computing the energy of a configuration, say 011, we should
determine the energy per three sites of the long chain

. . . 011011011011 . . .

In this case the energy would be θ2 + 2θ1. If instead of 011 we had consid-
ered one of its rotated shifts, 110 or 101, the energy of the configuration
would have been the same. To compute the partition function we only need
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to consider one of the configurations and multiply by the length of the con-
figuration to obtain the contribution of all its rotated shifts. The factor 1/n
in the generating function cancels this multiplicative factor. This reduction
will not hold if the configuration has a symmetry, as for example 0101 which
has only two rotated shift configurations. To compensate this we replace
the 1/n factor by a symmetry factor 1/s(b) for each configuration b. The
evaluation of G is now reduced to summing over all configurations that are
not rotated shift equivalent, and we call these the basic configurations and
the set of all of them B. We now need to evaluate

G(z, β) =
∑

b∈B

z|b|

s(b)
e−βH(b) . (L.16)

The notation | · | represents the cardinality of the set.

Any basic configuration can be built by considering the set of droplets
that form it. The smallest building block has size two, as we must also put
a zero next to the one so that when two different blocks get put next to
each other they do not coalesce. The first few building blocks are

size droplets

2 01
3 001 011
4 0001 0011 0111

(L.17)

Each droplet of size n contributes with energy

Wn =
∑

1≤k≤n
(n− k + 1)θk . (L.18)

So if we consider the sum

∑

n≥1

1

n

(
z2e−βH(01) + z3(e−βH(001) + e−βH(011)) +

+ z4(e−βH(0001) + e−βH(0011) + e−βH(0111)) + · · ·
)n

(L.19)

then the power in n will generate all the configurations that are made from
many droplets, while the z will keep track of the size of the configuration.
The factor 1/n is there to avoid the over-counting, as we only want the
basic configurations and not its rotated shifts. The 1/n factor also gives
the correct symmetry factor in the case the configuration has a symmetry.
The sum can be simplified by noticing that it is a logarithmic series

− ln
(
1 − (z2e−βW1 + z3(e−βW1 + e−βW2) + · · ·

)
, (L.20)
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where the H(b) factors have been evaluated in terms of the droplet energies
Wn. A proof of the equality of (L.19) and (L.20) can be given , but we there
was not enough space on the margin to write it down. The series that is
subtracted from one can be written as a product of two series and the
logarithm written as

− ln
(
1 − (z1 + z2 + z3 + · · ·)(ze−βW1 + z2e−βW2 + · · ·)

)
(L.21)

The product of the two series can be directly interpreted as the generating
function for sequences of droplets. The first series adds one or more zeros
to a configuration and the second series add a droplet.

There is a whole class of configurations that is not included in the
above sum: the configurations formed from a single droplet and the vacuum
configuration. The vacuum is the easiest, as it has zero energy it only
contributes a z. The sum of all the null configurations of all sizes is

∑

n>0

zn

n
. (L.22)

The factor 1/n is here because the original G had them and the null con-
figurations have no rotated shifts. The single droplet configurations also do
not have rotated shifts so their sum is

∑

n>0

zne−βH(

n︷ ︸︸ ︷
11 . . . 11)

n
. (L.23)

Because there are no zeros in the above configuration clusters of all size
exist and the energy of the configuration is n

∑
θk which we denote by na.

From the three sums (L.21), (L.22), and (L.23) we can evaluate the
generating function G to be

G(z, β) = − ln(1−z)−ln(1−ze−βa)−ln(1− z

1 − z

∑

n≥1

zne−βWn) .(L.24)

The cycle expansion ζ−1(z, β) is given by the exponential of the gener-
ating function e−G and we obtain

ζ−1(z, β) = (1 − ze−βa)(1 − z(1 +
∑

n≥1

zne−βWn)) (L.25)

To pursue this model further we need to have some assumptions about
the interaction strengths θn. We will assume that the interaction strength
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decreases with the inverse square of the size of the cluster, that is, θn =
−1/n2. With this we can estimate that the energy of a droplet of size n is
asymptotically

Wn ∼ −n+ lnn+ O(
1

n
) . (L.26)

If the power chosen for the polynomially decaying interaction had been
other than inverse square we would still have the droplet term proportional
to n, but there would be no logarithmic term, and the O term would be of a
different power. The term proportional to n survives even if the interactions
falls off exponentially, and in this case the correction is exponentially small
in the asymptotic formula. To simplify the calculations we are going to
assume that the droplet energies are exactly

Wn = −n+ lnn (L.27)

in a system of units where the dimensional constants are one. To evaluate
the cycle expansion (L.25) we need to evaluate the constant a, the sum of
all the θn. One can write a recursion for the θn

θn = Wn −
∑

1≤k<n
(n− k + 1)θk (L.28)

and with an initial choice for θ1 evaluate all the others. It can be verified
that independent of the choice of θ1 the constant a is equal to the number
that multiplies the n term in (L.27). In the units used

a = −1 . (L.29)

For the choice of droplet energy (L.27) the sum in the cycle expansion
can be expressed in terms of a special function: the Lerch transcendental
φL. It is defined by

φL(z, s, c) =
∑

n≥0

zn

(n+ c)s
, (L.30)

excluding from the sum any term that has a zero denominator. The Lerch
function converges for |z| < 1. The series can be analytically continued to
the complex plane and it will have a branch point at z = 1 with a cut chosen
along the positive real axis. In terms of Lerch transcendental function we
can write the cycle expansion (L.25) using (L.27) as

ζ−1(z, β) =
(
1 − zeβ

)(
1 − z(1 + φL(zeβ , β, 1))

)
(L.31)
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This serves as an example of a zeta function that cannot be extended to a
meromorphic function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the smallest root
of (L.31). The root can come from any of the two factors. For large value
of β (low temperatures) the smallest root is determined from the (1− zeβ)
factor, which gave the contribution of a single large drop. For small β (large
temperatures) the root is determined by the zero of the other factor, and
it corresponds to the contribution from the gas phase of the droplet model.
The transition occurs when the smallest root of each of the factors become
numerically equal. This determines the critical temperature βc through the
equation

1 − e−βc(1 + ζR(βc)) = 0 (L.32)

which can be solved numerically. One finds that βc = 1.40495. The phase
transition occurs because the roots from two different factors get swapped
in their roles as the smallest root. This in general leads to a first order
phase transition. For large β the Lerch transcendental is being evaluated
at the branch point, and therefore the cycle expansion cannot be an analytic
function at low temperatures. For large temperatures the smallest root is
within the radius of convergence of the series for the Lerch transcendental,
and the cycle expansion has a domain of analyticity containing the smallest
root.

As we approach the phase transition point as a function of β the smallest
root and the branch point get closer together until at exactly the phase
transition they collide. This is a sufficient condition for the existence of a
first order phase transitions. In the literature of zeta functions [L.23] there
have been speculations on how to characterize a phase transition within the
formalism. The solution of the Fisher droplet model suggests that for first
order phase transitions the factorized cycle expansion will have its smallest
root within the radius of convergence of one of the series except at the
phase transition when the root collides with a singularity. This does not
seem to be the case for second order phase transitions.

The analyticity of the cycle expansion can be restored if we consider
separate cycle expansions for each of the phases of the system. If we sep-
arate the two terms of ζ−1 in (L.31), each of them is an analytic function
and contains the smallest root within the radius of convergence of the series
for the relevant β values.

L.4 Scaling functions

“Clouds are not spheres, mountains are not cones,
coastlines are not circles and bark is not smooth, nor
does lightning travel in straight line.”

B.B. Mandelbrot
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Figure L.1: Construction of the steps of the
scaling function from a Cantor set. From one
level to the next in the construction of the Can-
tor set the covers are shrunk, each parent seg-
ment into two children segments. The shrink-
age of the last level of the construction is plot-
ted and by removing the gaps one has an ap-
proximation to the scaling function of the Can-
tor set.
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There is a relation between general spin models and dynamical system.
If one thinks of the boxes of the Markov partition of a hyperbolic system
as the states of a spin system, then computing averages in the dynamical
system is carrying out a sum over all possible states. One can even construct
the natural measure of the dynamical system from a translational invariant
“interaction function” call the scaling function.

There are many routes that lead to an explanation of what a scaling
function is and how to compute it. The shortest is by breaking away from
the historical development and considering first the presentation function
of a fractal. The presentation function is a simple chaotic dynamical system
(hyperbolic, unlike the circle map) that generates the fractal and is closely
related to the definition of fractals of Hutchinson [L.24] and the iterated
dynamical systems introduced by Barnsley and collaborators [H.19]. From
the presentation function one can derive the scaling function, but we will
not do it in the most elegant fashion, rather we will develop the formalism
in a form that is directly applicable to the experimental data.

In the upper part of figure L.1 we have the successive steps of the
construction similar to the middle third Cantor set. The construction is
done in levels, each level being formed by a collection of segments. From
one level to the next, each “parent” segment produces smaller “children”
segments by removing the middle section. As the construction proceeds,
the segments better approximate the Cantor set. In the figure not all the
segments are the same size, some are larger and some are smaller, as is the
case with multifractals. In the middle third Cantor set, the ratio between
a segment and the one it was generated from is exactly 1/3, but in the case
shown in the figure the ratios differ from 1/3. If we went through the last
level of the construction and made a plot of the segment number and its
ratio to its parent segment we would have a scaling function, as indicated
in the figure. A function giving the ratios in the construction of a fractal
is the basic idea for a scaling function. Much of the formalism that we
will introduce is to be able to give precise names to every segments and to
arrange the “lineage” of segments so that the children segments have the
correct parent. If we do not take these precautions, the scaling function
would be a “wild function”, varying rapidly and not approximated easily
by simple functions.

To describe the formalism we will use a variation on the quadratic map
that appears in the theory of period doubling. This is because the combi-
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Figure L.2: A Cantor set presentation func-
tion. The Cantor set is the set of all points that
under iteration do not leave the interval [0, 1].
This set can be found by backwards iterating
the gap between the two branches of the map.
The dotted lines can be used to find these back-
ward images. At each step of the construction
one is left with a set of segments that form a
cover of the Cantor set.

0 1
0

1

{∆ }

{∆ }

{∆ }
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(0)
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natorial manipulations are much simpler for this map than they are for the
circle map. The scaling function will be described for a one dimensional
map F as shown in figure L.2. Drawn is the map

F (x) = 5x(1 − x) (L.33)

restricted to the unit interval. We will see that this map is also a presen-
tation function.

It has two branches separated by a gap: one over the left portion of the
unit interval and one over the right. If we choose a point x at random in
the unit interval and iterate it under the action of the map F , (L.33), it
will hop between the branches and eventually get mapped to minus infinity.
An orbit point is guaranteed to go to minus infinity if it lands in the gap.
The hopping of the point defines the orbit of the initial point x: x 7→ x1 7→
x2 7→ · · ·. For each orbit of the map F we can associate a symbolic code.
The code for this map is formed from 0s and 1s and is found from the orbit
by associating a 0 if xt < 1/2 and a 1 if xt > 1/2, with t = 0, 1, 2, . . ..

Most initial points will end up in the gap region between the two
branches. We then say that the orbit point has escaped the unit inter-
val. The points that do not escape form a Cantor set C (or Cantor dust)
and remain trapped in the unit interval for all iterations. In the process
of describing all the points that do not escape, the map F can be used
as a presentation of the Cantor set C, and has been called a presentation
function by Feigenbaum [24.13].

How does the map F “present” the Cantor set? The presentation is done
in steps. First we determine the points that do not escape the unit interval
in one iteration of the map. These are the points that are not part of the
gap. These points determine two segments, which are an approximation
to the Cantor set. In the next step we determine the points that do not
escape in two iterations. These are the points that get mapped into the
gap in one iteration, as in the next iteration they will escape; these points

form the two segments ∆
(1)
0 and ∆

(1)
1 at level 1 in figure L.2. The processes

can be continued for any number of iterations. If we observe carefully what
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is being done, we discover that at each step the pre-images of the gap
(backward iterates) are being removed from the unit interval. As the map
has two branches, every point in the gap has two pre-images, and therefore
the whole gap has two pre-images in the form of two smaller gaps. To
generate all the gaps in the Cantor set one just has to iterate the gap
backwards. Each iteration of the gap defines a set of segments, with the

nth iterate defining the segments ∆
(n)
k at level n. For this map there will

be 2n segments at level n, with the first few drawn in figure L.2. As n→ ∞
the segments that remain for at least n iterates converge to the Cantor set
C.

The segments at one level form a cover for the Cantor set and it is
from a cover that all the invariant information about the set is extracted
(the cover generated from the backward iterates of the gap form a Markov

partition for the map as a dynamical system). The segments {∆(n)
k } at

level n are a refinement of the cover formed by segments at level n − 1.
From successive covers we can compute the trajectory scaling function, the
spectrum of scalings f(α), and the generalized dimensions.

To define the scaling function we must give labels (names) to the seg-
ments. The labels are chosen so that the definition of the scaling function
allows for simple approximations. As each segment is generated from an
inverse image of the unit interval, we will consider the inverse of the pre-
sentation function F . Because F does not have a unique inverse, we have
to consider restrictions of F . Its restriction to the first half of the segment,
from 0 to 1/2, has a unique inverse, which we will call F−1

0 , and its restric-
tion to the second half, from 1/2 to 1, also has a unique inverse, which we
will call F−1

1 . For example, the segment labeled ∆(2)(0, 1) in figure L.2 is
formed from the inverse image of the unit interval by mapping ∆(0), the
unit interval, with F−1

1 and then F−1
0 , so that the segment

∆(2)(0, 1) = F−1
0

(
F−1

1

(
∆(0)

))
. (L.34)

The mapping of the unit interval into a smaller interval is what determines
its label. The sequence of the labels of the inverse maps is the label of the
segment:

∆(n)(ǫ1, ǫ2, . . . , ǫn) = F−1
ǫ1 ◦ F−1

ǫ2 ◦ · · ·F−1
ǫn

(
∆(0)

)
.

The scaling function is formed from a set of ratios of segments length.
We use | · | around a segment ∆(n)(ǫ) to denote its size (length), and define

σ(n)(ǫ1, ǫ2, . . . , ǫn) =
|∆(n)(ǫ1, ǫ2, . . . , ǫn)|
|∆(n−1)(ǫ2, . . . , ǫn)|

.

We can then arrange the ratios σ(n)(ǫ1, ǫ2, . . . , ǫn) next to each other as
piecewise constant segments in increasing order of their binary label ǫ1, ǫ2, . . . , ǫn
so that the collection of steps scan the unit interval. As n → ∞ this col-
lection of steps will converge to the scaling function.
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L.5 Geometrization

The L operator is a generalization of the transfer matrix. It gets more
by considering less of the matrix: instead of considering the whole matrix
it is possible to consider just one of the rows of the matrix. The L op-
erator also makes explicit the vector space in which it acts: that of the
observable functions. Observables are functions that to each configuration
of the system associate a number: the energy, the average magnetization,
the correlation between two sites. It is in the average of observables that
one is interested in. Like the transfer matrix, the L operator considers only
semi-infinite systems, that is, only the part of the interaction between spins
to the right is taken into account. This may sound un-symmetric, but it is
a simple way to count each interaction only once, even in cases where the
interaction includes three or more spin couplings. To define the L operator
one needs the interaction energy between one spin and all the rest to its
right, which is given by the function φ. The L operators defined as

Lg(σ) =
∑

σ0∈Ω0

g(σ0σ)e−βφ(σ0σ) .

To each possible value in Ω0 that the spin σ0 can assume, an average of
the observable g is computed weighed by the Boltzmann factor e−βφ. The
formal relations that stem from this definition are its relation to the free
energy when applied to the observable ι that returns one for any configu-
ration:

−βf(β) = lim
n→∞

1

n
ln ‖Lnι‖

and the thermodynamic average of an observable

〈g〉 = lim
n→∞

‖Lng‖
‖Lnι‖ .

Both relations hold for almost all configurations. These relations are part
of theorem of Ruelle that enlarges the domain of the Perron-Frobenius
theorem and sharpens its results. The theorem shows that just as the
transfer matrix, the largest eigenvalue of the L operator is related to the
free-energy of the spin system. It also hows that there is a formula for the
eigenvector related to the largest eigenvalue. This eigenvector |ρ〉 (or the
corresponding one for the adjoint L∗ of L) is the Gibbs state of the system.
From it all averages of interest in statistical mechanics can be computed
from the formula

〈g〉 = 〈ρ|g|ρ〉 .

The Gibbs state can be expressed in an explicit form in terms of the
interactions, but it is of little computational value as it involves the Gibbs
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state for a related spin system. Even then it does have an enormous theo-
retical value. Later we will see how the formula can be used to manipulate
the space of observables into a more convenient space.

The geometrization of a spin system converts the shift dynamics (neces-
sary to define the Ruelle operator) into a smooth dynamics. This is equiv-
alent to the mathematical problem in ergodic theory of finding a smooth
embedding for a given Bernoulli map.

The basic idea for the dynamics is to establish the a set of maps Fσk

such that

Fσk
(0) = 0

and

Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn(0) = φ(+, σ1, σ2, . . . , σn,−,−, . . .) .

This is a formal relation that expresses how the interaction is to be con-
verted into a dynamical systems. In most examples Fσk

is a collection of
maps from a subset of RD to itself.

If the interaction is complicated, then the dimension of the set of maps
may be infinite. If the resulting dynamical system is infinite have we gained
anything from the transformation? The gain in this case is not in terms
of added speed of convergence to the thermodynamic limit, but in the fact
that the Ruelle operator is of trace-class and all eigenvalues are related to
the spin system and not artifacts of the computation.

The construction of the higher dimensional system is done by borrowing
the phase space reconstruction technique from dynamical systems. Phase
space reconstruction can be done in several ways: by using delay coordi-
nates, by using derivatives of the position, or by considering the value of
several independent observables of the system. All these may be used in
the construction of the equivalent dynamics. Just as in the study of dy-
namical systems, the exact method does not matter for the determination
of the thermodynamics (f(α) spectra, generalized dimension), also in the
construction of the equivalent dynamics the exact choice of observable does
not matter.

We will only consider configurations for the half line. This is bescause
for translational invariant interactions the thermodynamic limit on half
line is the same as in the whole line. One can prove this by considering the
difference in a thermodynamic average in the line and in the semiline and
compare the two as the size of the system goes to infinity.

When the interactions are long range in principle one has to specify
the boundary conditions to be able to compute the interaction energy of
a configuration in a finite box. If there are no phase transitions for the
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interaction, then which boundary conditions are chosen is irrelevant in the
thermodynamic limit. When computing quantities with the transfer ma-
trix, the long rrange interaction is truncated at some finite range and the
truncated interaction is then use to evaluate the transfer matrix. With the
Ruelle operator the interaction is never truncated, and the boundary must
be specified.

The interaction φ(σ) is any function that returns a number on a con-
figuration. In general it is formed from pairwise spin interactions

φ(σ) =
∑

n>0

δσ0,σnJ(n)

with different choices of J(n) leading to differnt models. If J(n) = 1 only
if n = 1 and ) otherwise, then one has the nearest neighbor Ising model. If
J(n) = n−2, then one has the inverse square model relevant in the study of
the Kondo problem.

Let us say that each site of the lattice can assume two values +,− and
the set of all possible configurations of the semiline is the set Ω. Then an
observable g is a function from the set of configurations Ω to the reals.
Each configuration is indexed by the integers from 0 up, and it is useful to
think of the configuration as a string of spins. One can append a spin η0

to its begining, η ∨ σ, in which case η is at site 0, ω0 at site 1, and so on.

The Ruelle operator L is defined as

Lg(η) =
∑

ω0∈Ω0

g(ω0 ∨ η)e−βφ(ω0∨η) .

This is a positive and bounded operator over the space of bounded observ-
ables. There is a generalization of the Perron-Frobenius theorem by Ruelle
that establishes that the largest eigenvalue of L is isolated from the rest of
the spectrum and gives the thermodynamics of the spin system just as the
largest eigenvalue of the transfer matrix does. Ruelle alos gave a formula
for the eigenvector related to the largest eigenvalue.

The difficulty with it is that the relation between the partition function
and the trace of its nth power, trLn = Zn no longer holds. The reason is
that the trace of the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observables {x1(σ), . . . , x1(σ)}. The
idea is to choose the observables in such a way that from their values on a
particular configuration σ the configuration can be reconstructed. We also
introduce the interaction observables hσ0

To geometrize spin systems, the interactions are assumed to be transla-
tionally invariant. The spins σk will only assume a finite number of values.
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For simplicity, we will take the interaction φ among the spins to depend
only on pairwise interactions,

φ(σ) = φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑

n>0

δσ0,σnJ1(n) , (L.35)

and limit σk to be in {+,−}. For the one-dimensional Ising model, J0

is the external magnetic field and J1(n) = 1 if n = 1 and 0 otherwise.
For an exponentially decaying interaction J1(n) = e−αn. Two- and three-
dimensional models can be considered in this framework. For example, a
strip of spins of L×∞ with helical boundary conditions is modeled by the
potential J1(n) = δn,1 + δn,L.

The transfer operator T was introduced by Kramers and Wannier [L.12]
to study the Ising model on a strip and concocted so that the trace of its
nth power is the partition function Zn of system when one of its dimen-
sions is n. The method can be generalized to deal with any finite-range
interaction. If the range of the interaction is L, then T is a matrix of size
2L × 2L. The longer the range, the larger the matrix. When the range
of the interaction is infinite one has to define the T operator by its ac-
tion on an observable g. Just as the observables in quantum mechanics,
g is a function that associates a number to every state (configuration of
spins). The energy density and the average magnetization are examples
of observables. From this equivalent definition one can recover the usual
transfer matrix by making all quantities finite range. For a semi-infinite
configuration σ = {σ0, σ1, . . .}:

T g(σ) = g(+ ∨ σ)e−βφ(+∨σ) + g(− ∨ σ)e−βφ(−∨σ) . (L.36)

By + ∨ σ we mean the configuration obtained by prepending + to the
beginning of σ resulting in the configuration {+, σ0, σ1, . . .}. When the
range becomes infinite, tr T n is infinite and there is no longer a connection
between the trace and the partition function for a system of size n (this is
a case where matrices give the wrong intuition). Ruelle [L.13] generalized
the Perron-Frobenius theorem and showed that even in the case of infinite
range interactions the largest eigenvalue of the T operator is related to the
free-energy of the spin system and the corresponding eigenvector is related
to the Gibbs state. By applying T to the constant observable u, which
returns 1 for any configuration, the free energy per site f is computed as

− βf(β) = lim
n→∞

1

n
ln ‖T nu‖ . (L.37)

To construct a smooth dynamical system that reproduces the proper-
ties of T , one uses the phase space reconstruction technique of Packard
et al. [L.6] and Takens [L.7], and introduces a vector of state observables
x(σ) = {x1(σ), . . . , xD(σ)}. To avoid complicated notation we will limit the
discussion to the example x(σ) = {x+(σ), x−(σ)}, with x+(σ) = φ(+ ∨ σ)
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and x−(σ) = φ(−∨σ); the more general case is similar and used in a later ex-
ample. The observables are restricted to those g for which, for all configura-
tions σ, there exist an analytic function G such that G(x1(σ), . . . , xD(σ)) =
g(σ). This at first seems a severe restriction as it may exclude the eigen-
vector corresponding to the Gibbs state. It can be checked that this is not
the case by using the formula given by Ruelle [L.14] for this eigenvector.
A simple example where this formalism can be carried out is for the in-
teraction φ(σ) with pairwise exponentially decaying potential J1(n) = an

(with |a| < 1). In this case φ(σ) =
∑

n>0 δσ0,σna
n and the state observables

are x+(σ) =
∑

n>0 δ+,σna
n and x−(σ) =

∑
n>0 δ−,σna

n. In this case the
observable x+ gives the energy of + spin at the origin, and x− the energy
of a − spin.

Using the observables x+ and x−, the transfer operator can be re-
expressed as

T G (x(σ)) =
∑

η∈{+,−}
G (x+ (η ∨ σ) , x− (η ∨ σ)) e−βxη(σ) . (L.38)

In this equation the only reference to the configuration σ is when comput-
ing the new observable values x+(η∨σ) and x−(η∨σ). The iteration of the
function that gives these values in terms of x+(σ) and x−(σ) is the dynam-
ical system that will reproduce the properties of the spin system. For the
simple exponentially decaying potential this is given by two maps, F+ and
F−. The map F+ takes {x+(σ), x+(σ)} into {x+(+∨ σ), x−(+∨ σ)} which
is {a(1 + x+), ax−} and the map F− takes {x+, x−} into {ax+, a(1 + x−)}.
In a more general case we have maps Fη that take x(σ) to x(η ∨ σ).

We can now define a new operator L

LG (x)
def
= T G(x(σ)) =

∑

η∈{+,−}
G (Fη(x)) e

−βxη , (L.39)

where all dependencies on σ have disappeared — if we know the value of
the state observables x, the action of L on G can be computed.

A dynamical system is formed out of the maps Fη. They are chosen so
that one of the state variables is the interaction energy. One can consider
the two maps F+ and F− as the inverse branches of a hyperbolic map
f , that is, f−1(x) = {F+(x), F−(x)}. Studying the thermodynamics of
the interaction φ is equivalent to studying the long term behavior of the
orbits of the map f , achieving the transformation of the spin system into
a dynamical system.

Unlike the original transfer operator, the L operator — acting in the
space of observables that depend only on the state variables — is of trace-
class (its trace is finite). The finite trace gives us a chance to relate the
trace of Ln to the partition function of a system of size n. We can do
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better. As most properties of interest (thermodynamics, fall-off of corre-
lations) are determined directly from its spectrum, we can study instead
the zeros of the Fredholm determinant det (1− zL) by the technique of cy-
cle expansions developed for dynamical systems [18.2]. A cycle expansion
consists of finding a power series expansion for the determinant by writ-
ing det (1 − zL) = exp(tr ln(1 − zL)). The logarithm is expanded into a
power series and one is left with terms of the form trLn to evaluate. For
evaluating the trace, the L operator is equivalent to

LG(x) =

∫

RD

dy δ(y − f(x))e−βyG(y) (L.40)

from which the trace can be computed:

trLn =
∑

x=f(◦n)(x)

e−βH(x)

|det
(
1 − ∂xf (◦n)(x)

)
| (L.41)

with the sum running over all the fixed points of f (◦n) (all spin configu-
rations of a given length). Here f (◦n) is f composed with itself n times,
and H(x) is the energy of the configuration associated with the point x.
In practice the map f is never constructed and the energies are obtained
directly from the spin configurations.

To compute the value of trLn we must compute the value of ∂xf
(◦n);

this involves a functional derivative. To any degree of accuracy a number x
in the range of possible interaction energies can be represented by a finite
string of spins ǫ, such as x = φ(+, ǫ0, ǫ1, . . . ,−, −, . . .). By choosing the
sequence ǫ to have a large sequence of spins −, the number x can be made
as small as needed, so in particular we can represent a small variation by
φ(η). As x+(ǫ) = φ(+ ∨ ǫ), from the definition of a derivative we have:

∂xf(x) = lim
m→∞

φ(ǫ ∨ η(m)) − φ(ǫ)

φ(η(m))
, (L.42)

where η(m) is a sequence of spin strings that make φ(η(m)) smaller and
smaller. By substituting the definition of φ in terms of its pairwise in-
teraction J(n) = nsan

γ
and taking the limit for the sequences η(m) =

{+,−,−, . . . , ηm+1, ηm+2, . . .} one computes that the limit is a if γ = 1,
1 if γ < 1, and 0 if γ > 1. It does not depend on the positive value of
s. When γ < 1 the resulting dynamical system is not hyperbolic and the
construction for the operator L fails, so one cannot apply it to potentials
such as (1/2)

√
n. One may solve this problem by investigating the behavior

of the formal dynamical system as γ → 0.

The manipulations have up to now assumed that the map f is smooth.
If the dimension D of the embedding space is too small, f may not be

smooth. Determining under which conditions the embedding is smooth is a
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Figure L.3: The spin adding map F+ for
the potential J(n) =

∑
n2aαn. The action

of the map takes the value of the interaction
energy between + and the semi-infinite config-
uration {σ1, σ2, σ3, . . .} and returns the inter-
action energy between + and the configuration
{+, σ1, σ2, σ3, . . .}.
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complicated question [L.15]. But in the case of spin systems with pairwise
interactions it is possible to give a simple rule. If the interaction is of the
form

φ(σ) =
∑

n≥1

δσ0,σn

∑

k

pk(n)an
γ

k (L.43)

where pk are polynomials and |ak| < 1, then the state observables to use
are xs,k(σ) =

∑
δ+,σnn

sank . For each k one uses x0,k, x1,k, . . . up to the
largest power in the polynomial pk. An example is the interaction with
J1(n) = n2(3/10)n. It leads to a 3-dimensional system with variables x0,0,
x1,0, and x2,0. The action of the map F+ for this interaction is illustrated
figure L.3. Plotted are the pairs {φ(+∨σ), φ(+∨+∨σ)}. This can be seen
as the strange attractor of a chaotic system for which the variables x0,0,
x1,0, and x2,0 provide a good (analytic) embedding.

The added smoothness and trace-class of the L operator translates into
faster convergence towards the thermodynamic limit. As the reconstructed
dynamics is analytic, the convergence towards the thermodynamic limit
is faster than exponential [2.13, L.16]. We will illustrate this with the
polynomial-exponential interactions (L.43) with γ = 1, as the convergence
is certainly faster than exponential if γ > 1, and the case of an has been
studied in terms of another Fredholm determinant by Gutzwiller [L.17].
The convergence is illustrated in figure L.4 for the interaction n2(3/10)n.
Plotted in the graph, to illustrate the transfer matrix convergence, are
the number of decimal digits that remain unchanged as the range of the
interaction is increased. Also in the graph are the number of decimal digits
that remain unchanged as the largest power of trLn considered. The plot is
effectively a logarithmic plot and straight lines indicate exponentially fast
convergence. The curvature indicates that the convergence is faster than
exponential. By fitting, one can verify that the free energy is converging to
its limiting value as exp(−n(4/3)). Cvitanović [2.13] has estimated that the
Fredholm determinant of a map on a D dimensional space should converge
as exp(−n(1+1/D)), which is confirmed by these numerical simulations.
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Figure L.4: Number of digits for the Fredholm
method (•) and the transfer function method
(×). The size refers to the largest cycle consid-
ered in the Fredholm expansions, and the trun-
cation length in the case of the transfer matrix.
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Commentary

Remark L.1 Presentation functions. The best place to read about Feigenbaum’s

work is in his review article published in Los Alamos Science (reproduced in various

reprint collections and conference proceedings, such as ref. [18.5]). Feigenbaum’s

Journal of Statistical Physics article [24.13] is the easiest place to learn about

presentation functions.

Remark L.2 Interactions are smooth In most computational schemes for ther-
modynamic quantities the translation invariance and the smoothness of the basic
interaction are never used. In Monte Carlo schemes, aside from the periodic bound-
ary conditions, the interaction can be arbitrary. In principle for each configuration
it could be possible to have a different energy. Schemes such as the Sweneson-Wang
cluster flipping algorithm use the fact that interaction is local and are able to ob-
tain dramatic speed-ups in the equilibration time for the dynamical Monte Carlo
simulation. In the geometrization program for spin systems, the interactions are
assumed translation invariant and smooth. The smoothness means that any in-
teraction can be decomposed into a series of terms that depend only on the spin
arrangement and the distance between spins:

φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑

δ(σ0, σn)J1(n) +
∑

δ(σ0, σn1 , σn2)J2(n1, n2) + · · ·

where the Jk are symmetric functions of their arguments and the δ are arbitrary

discrete functions. This includes external constant fields (J0), but it excludes site

dependent fields such as a random external magnetic field.

Résumé

The geometrization of spin systems strengthens the connection between
statistical mechanics and dynamical systems. It also further establishes
the value of the Fredholm determinant of the L operator as a practical
computational tool with applications to chaotic dynamics, spin systems,
and semiclassical mechanics. The example above emphasizes the high ac-
curacy that can be obtained: by computing the shortest 14 periodic orbits
of period 5 or less it is possible to obtain three digit accuracy for the free
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energy. For the same accuracy with a transfer matrix one has to consider a
256 × 256 matrix. This make the method of cycle expansions practical for
analytic calculations.
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Exercises

Exercise L.1 Not all Banach spaces are also Hilbert If we are given a
norm ‖ · ‖ of a Banach space B, it may be possible to find an inner product
〈· , · 〉 (so that B is also a Hilbert space H) such that for all vectors f ∈ B, we
have

‖f‖ = 〈f, f〉1/2 .

This is the norm induced by the scalar product. If we cannot find the inner
product how do we know that we just are not being clever enough? By checking
the parallelogram law for the norm. A Banach space can be made into a Hilbert
space if and only if the norm satisfies the parallelogram law. The parallelogram
law says that for any two vectors f and g the equality

‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2 ,

must hold.

Consider the space of bounded observables with the norm given by ‖a‖ =
supσ∈ΩN |a(σ)|. Show that ther is no scalar product that will induce this
norm.

Exercise L.2 Automaton for a droplet Find the Markov graph and the weights
on the edges so that the energies of configurations for the dropolet model are correctly
generated. For any string starting in zero and ending in zero your diagram should
yield a configuration the weight eH(σ), with H computed along the lines of (L.13) and
(L.18).

Hint: the Markov graph is infinite.

Exercise L.3 Spectral determinant for an interactions Compute the
spectral determinant for one-dimensional Ising model with the interaction

φ(σ) =
∑

k>0

akδ(σ0, σk) .

Take a as a number smaller than 1/2.

(a) What is the dynamical system this generates? That is, find F+ and F−
as used in (L.39).

(b) Show that

d

dx
F{+ or−} =

[
a 0
0 a

]
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Exercise L.4 Ising model on a thin strip Compute the transfer matrix
for the Ising model defined on the graph

Assume that whenever there is a bond connecting two sites, there is a contri-
bution Jδ(σi, σj) to the energy.

Exercise L.5 Infinite symbolic dynamics Let σ be a function that returns zeo
or one for every infinite binary string: σ : {0, 1}N → {0, 1}. Its value is represented
by σ(ǫ1, ǫ2, . . .) where the ǫi are either 0 or 1. We will now define an operator T that
acts on observables on the space of binary strings. A function a is an observable if it
has bounded variation, that is, if

‖a‖ = sup
{ǫi}

|a(ǫ1, ǫ2, . . .)| <∞ .

For these functions

T a(ǫ1, ǫ2, . . .) = a(0, ǫ1, ǫ2, . . .)σ(0, ǫ1, ǫ2, . . .) + a(1, ǫ1, ǫ2, . . .)σ(1, ǫ1, ǫ2, . . .) .

The function σ is assumed such that any of T ’s “matrix representations” in (a) have
the Markov property (the matrix, if read as an adjacency graph, corresponds to a graph
where one can go from any node to any other node).

(a) (easy) Consider a finite version Tn of the operator T :

Tna(ǫ1, ǫ2, . . . , ǫn) =

a(0, ǫ1, ǫ2, . . . , ǫn−1)σ(0, ǫ1, ǫ2, . . . , ǫn−1) +

a(1, ǫ1, ǫ2, . . . , ǫn−1)σ(1, ǫ1, ǫ2, . . . , ǫn−1) .

Show that Tn is a 2n × 2n matrix. Show that its trace is bounded by a number
independent of n.

(b) (medium) With the operator norm induced by the function norm, show that T
is a bounded operator.

(c) (hard) Show that T is not trace-class. (Hint: check if T is compact).

Classes of operators are nested; trace-class ≤ compact ≤ bounded.
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Appendix M

Noise/quantum corrections

(G. Vattay)

The Gutzwiller trace formula is only a good approximation to the
quantum mechanics when ~ is small. Can we improve the trace formula by
adding quantum corrections to the semiclassical terms? A similar question
can be posed when the classical deterministic dynamics is disturbed by some
way Gaussian white noise with strength D. The deterministic dynamics
then can be considered as the weak noise limit D → 0. The effect of the
noise can be taken into account by adding noise corrections to the classical
trace formula. A formal analogy exists between the noise and the quantum
problem. This analogy allows us to treat the noise and quantum corrections
together.

M.1 Periodic orbits as integrable systems

From now on, we use the language of quantum mechanics, since it is more
convenient to visualize the results there. Where it is necessary we will
discuss the difference between noise and quantum cases.

First we would like to introduce periodic orbits from an unusual point
of view, which can convince you, that chaotic and integrable systems are
in fact not as different from each other, than we might think. If we start
orbits in the neighborhood of a periodic orbit and look at the picture on the
Poincaré section we can see a regular picture. For stable periodic orbits the
points form small ellipses around the center and for unstable orbits they
form hyperbolas (See Fig. M.1).

The motion close to a periodic orbits is regular in both cases. This is
due to the fact, that we can linearize the Hamiltonian close to an orbit, and

Figure M.1: Poincaré section close to a stable and an unstable periodic orbit
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linear systems are always integrable. The linearized Hamilton’s equations
close to the periodic orbit (qp(t) + q, pp(t) + p) look like

q̇ = +∂2
pqH(qp(t), pp(t))q + ∂2

ppH(qp(t), pp(t))p, (M.1)

ṗ = −∂2
qqH(qp(t), pp(t))q − ∂2

qpH(qp(t), pp(t))p, (M.2)

where the new coordinates q and p are relative to a periodic orbit. This
linearized equation can be regarded as a d dimensional oscillator with time
periodic frequencies. These equations are representing the equation of mo-
tion in a redundant way since more than one combination of q, p and t
determines the same point of the phase space. This can be cured by an
extra restriction on the variables, a constraint the variables should fulfill.
This constraint can be derived from the time independence or stacionarity
of the full Hamiltonian

∂tH(qp(t) + q, pp(t) + p) = 0. (M.3)

Using the linearized form of this constraint we can eliminate one of the
linearized equations. It is very useful, although technically difficult, to do
one more transformation and to introduce a coordinate, which is parallel
with the Hamiltonian flow (x‖) and others which are orthogonal. In the
orthogonal directions we again get linear equations. These equations with
x‖ dependent rescaling can be transformed into normal coordinates, so that
we get tiny oscillators in the new coordinates with constant frequencies.
This result has first been derived by Poincaré for equilibrium points and
later it was extended for periodic orbits by V.I. Arnol’d and co-workers. In
the new coordinates, the Hamiltonian reads as

H0(x‖, p‖, xn, pn) =
1

2
p2
‖ + U(x‖) +

d−1∑

n=1

1

2
(p2
n ± ω2

nx
2
n), (M.4)

which is the general form of the Hamiltonian in the neighborhood of a
periodic orbit. The ± sign denotes, that for stable modes the oscillator
potential is positive while for an unstable mode it is negative. For the
unstable modes, ω is the Lyapunov exponent of the orbit

ωn = ln Λp,n/Tp, (M.5)

where Λp,n is the expanding eigenvalue of the Jacobi matrix. For the stable
directions the eigenvalues of the Jacobi matrix are connected with ω as

Λp,n = e−iωnTp . (M.6)

The Hamiltonian close to the periodic orbit is integrable and can be quan-
tized by the Bohr-Sommerfeld rules. The result of the Bohr-Sommerfeld
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quantization for the oscillators gives the energy spectra

En = ~ωn

(
jn +

1

2

)
for stable modes, (M.7)

En = −i~ωn
(
jn +

1

2

)
for unstable modes,

where jn = 0, 1, .... It is convenient to introduce the index sn = 1 for stable
and sn = −i for unstable directions. The parallel mode can be quantized
implicitly trough the classical action function of the mode:

1

2π

∮
p‖dx‖ =

1

2π
S‖(Em) = ~

(
m+

mpπ

2

)
, (M.8)

where mp is the topological index of the motion in the parallel direction.
This latter condition can be rewritten by a very useful trick into the equiv-
alent form

(1 − eiS‖(Em)/~−impπ/2) = 0. (M.9)

The eigenenergies of a semiclassically quantized periodic orbit are all the
possible energies

E = Em +
d−1∑

n=1

En. (M.10)

This relation allows us to change in (M.9) Em with the full energy minus
the oscillator energies Em = E −∑nEn. All the possible eigenenergies of
the periodic orbit then are the zeroes of the expression

∆p(E) =
∏

j1,...,jd−1

(1 − eiS‖(E−
P

n ~snωn(jn+1/2))/~−impπ/2). (M.11)

If we Taylor expand the action around E to first order

S‖(E + ǫ) ≈ S‖(E) + T (E)ǫ, (M.12)

where T (E) is the period of the orbit, and use the relations of ω and
the eigenvalues of the Jacobi matrix, we get the expression of the Selberg
product

∆p(E) =
∏

j1,...,jd−1

(
1 − eiSp(E)/~−impπ/2

∏
n Λ

(1/2+jn)
p,n

)
. (M.13)
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If we use the right convention for the square root we get exactly the d
dimensional expression of the Selberg product formula we derived from the
Gutzwiller trace formula in ? . Just here we derived it in a different way!
The function ∆p(E) is the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to construct a
function which is zero, whenever the energy coincides with the BS quantized
energy of one of the periodic orbits, we have to take the product of these
determinants:

∆(E) =
∏

p

∆p(E). (M.14)

The miracle of the semiclassical zeta function is, that if we take infinitely
many periodic orbits, the infinite product will have zeroes not at these
energies, but close to the eigenenergies of the whole system !

So we learned, that both stable and unstable orbits are integrable sys-
tems and can be individually quantized semiclassically by the old Bohr-
Sommerfeld rules. So we almost completed the program of Sommerfeld to
quantize general systems with the method of Bohr. Let us have a remark
here. In addition to the Bohr-Sommerfeld rules, we used the unjustified
approximation (M.12). Sommerfeld would never do this ! At that point
we loose some important precision compared to the BS rules and we get
somewhat worse results than a semiclassical formula is able to do. We will
come back to this point later when we discuss the quantum corrections. To
complete the program of full scale Bohr-Sommerfeld quantization of chaotic
systems we have to go beyond the linear approximation around the periodic
orbit.

The Hamiltonian close to a periodic orbit in the parallel and normal co-
ordinates can be written as the ‘harmonic’ plus ‘anharmonic’ perturbation

H(x‖, p‖, xn, pn) = H0(x‖, p‖, xn, pn) +HA(x‖, xn, pn), (M.15)

where the anharmonic part can be written as a sum of homogeneous poly-
nomials of xn and pn with x‖ dependent coefficients:

HA(x‖, xn, pn) =
∑

k=3

Hk(x‖, xn, pn) (M.16)

Hk(x‖, xn, pn) =
∑P

ln+mn=k

Hk
ln,mn

(x‖)x
ln
n p

mn
n (M.17)

This classical Hamiltonian is hopeless from Sommerfeld’s point of view,
since it is non integrable. However, Birkhoff in 19273 introduced the concept
of normal form, which helps us out from this problem by giving successive
integrable approximation to a non-integrable problem. Let’s learn a bit
more about it!

3It is really a pity, that in 1926 Schrödinger introduced the wave mechanics and

blocked the development of Sommerfeld’s concept.
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M.2 The Birkhoff normal form

Birkhoff studied the canonical perturbation theory close to an equilibrium
point of a Hamiltonian. Equilibrium point is where the potential has a
minimum ∇U = 0 and small perturbations lead to oscillatory motion. We
can linearize the problem and by introducing normal coordinates xn and
conjugate momentums pn the quadratic part of the Hamiltonian will be a
set of oscillators

H0(xn, pn) =

d∑

n=1

1

2
(p2
n + ω2

nx
2
n). (M.18)

The full Hamiltonian can be rewritten with the new coordinates

H(xn, pn) = H0(xn, pn) +HA(xn, pn), (M.19)

where HA is the anharmonic part of the potential in the new coordinates.
The anharmonic part can be written as a series of homogeneous polynomials

HA(xn, pn) =

∞∑

j=3

Hj(xn, pn), (M.20)

Hj(xn, pn) =
∑

|l|+|m|=j
hjlmx

lpm, (M.21)

where hjlm are real constants and we used the multi-indices l := (l1, ..., ld)
with definitions

|l| =
∑

ln, x
l := xl11 x

l2
2 ...x

ld
d .

Birkhoff showed, that that by successive canonical transformations one can
introduce new momentums and coordinates such, that in the new coordi-
nates the anharmonic part of the Hamiltonian up to any given n polynomial
will depend only on the variable combination

τn =
1

2
(p2
n + ω2

nx
2
n), (M.22)

where xn and pn are the new coordinates and momentums, but ωn is the
original frequency. This is called the Birkhoff normal form of degree N :

H(xn, pn) =

N∑

j=2

Hj(τ1, ..., τd), (M.23)

ChaosBook.org/version11.8, Aug 30 2006 qmnoise - 19jun2003



770 APPENDIX M. NOISE/QUANTUM CORRECTIONS

where Hj are homogeneous degree j polynomials of τ -s. This is an in-
tegrable Hamiltonian, the non-integrability is pushed into the remainder,
which consists of polynomials of degree higher than N . We run into trouble
only when the oscillator frequencies are commensurate e.g. it is possible to
find a set of integers mn such that the linear combination

d∑

n=1

ωnmn,

vanishes. This extra problem has been solved by Gustavson in 1966 and
we call the the object Birkhoff-Gustavson normal form. The procedure of
the successive canonical transformations can be computerized and can be
carried out up to high orders (∼ 20).

Of course, we pay a price for forcing the system to be integrable up to
degree N . For a non-integrable system the high order terms behave quete
widely and the series is not convergent. Therefore we have to use this tool
carefully. Now, we learned how to approximate a non-integrable system
with a sequence of integrable systems and we can go back and carry out
the BS quantization.

M.3 Bohr-Sommerfeld quantization of periodic or-

bits

There is some difference between equilibrium points and periodic orbits.
The Hamiltonian (M.4) is not a sum of oscillators. One can transform
the parallel part, describing circulation along the orbit, into an oscillator
Hamiltonian, but this would make the problem extremelly difficult. There-
fore, we carry out the canonical transformations dictated by the Birkhoff
procedure only in the orthogonal directions. The x‖ coordinate plays the
role of a parameter. After the tasformation up to order N the Hamiltonian
(M.17) is

H(x‖, p‖, τ1, ...τd−1) = H0(x‖, p‖, τ1, ..., τd−1)+

N∑

j=2

U j(x‖, τ1, ..., τd−1), (M.24)

where U j is a jth order homogeneous polynomial of τ -s with x‖ dependent
coefficients. The orthogonal part can be BS quantized by quantizing the
individual oscillators, replacing τ -s as we did in (M.8). This leads to a one
dimensional effective potential indexed by j1, ..., jd−1

H(x‖, p‖, j1, ..., jd−1) =
1

2
p2
‖ + U(x‖) +

d−1∑

n=1

~snωn(jn + 1/2) + (M.25)

+
N∑

k=2

Uk(x‖,~s1ω1(j1 + 1/2),~s2ω2(j2 + 1/2), ...,~sd−1ωd−1(jd−1 + 1/2)),
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where jn can be any non-negative integer. The term with index k is pro-
portional with ~

k due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given set of j-s

Sp(E, j1, ..., jd−1) =

∮
p‖dx‖ = (M.26)

=

∮
dx‖

√√√√E −
d−1∑

n=1

~snωn(jn + 1/2) − U(x‖, j1, ..., jd−1) = 2π~(m+mp/2),

where U contains all the x‖ dependent terms of the Hamiltonian. The
spectral determinant becomes

∆p(E) =
∏

j1,...,jd−1

(1 − eiSp(E,j1,...,jd−1)/~−mpπ/2). (M.27)

This expression completes the Sommerfeld method and tells us how to
quantize chaotic or general Hamiltonian systems. Unfortunately, quantum
mechanics postponed this nice formula until our book.

This formula has been derived with the help of the semiclassical Bohr-
Sommerfeld quantization rule and the classical normal form theory. Indeed,
if we expand Sp in the exponent in the powers of ~

Sp =

N∑

k=0

~
kSk,

we get more than just a constant and a linear term. This formula already
gives us corrections to the semiclassical zeta function in all powers of ~.
There is a very attracting feature of this semiclassical expansion. ~ in Sp
shows up only in the combination ~snωn(jn + 1/2). A term proportional
with ~

k can only be a homogeneous expression of the oscillator energies
snωn(jn+1/2). For example in two dimensions there is only one possibility
of the functional form of the order k term

Sk = ck(E) · ωkn(j + 1/2)k,

where ck(E) is the only function to be determined.

The corrections derived sofar are doubly semiclassical, since they give
semiclassical corrections to the semiclassical approximation. What can
quantum mechanics add to this ? As we have stressed in the previous
section, the exact quantum mechanics is not invariant under canonical
transformations. In other context, this phenomenon is called the opera-
tor ordering problem. Since the operators x̂ and p̂ do not commute, we
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run into problems, when we would like to write down operators for classical
quantities like x2p2. On the classical level the four possible orderings xpxp,
ppxx, pxpx and xxpp are equivalent, but they are different in the quantum
case. The expression for the energy (M.26) is not exact. We have to go
back to the level of the Schrödinger equation if we would like to get the
exact expression.

M.4 Quantum calculation of ~ corrections

The Gutzwiller trace formula has originally been derived from the saddle
point approximation of the Feynman path integral form of the propagator.
The exact trace is a pathsum for all closed paths of the system

TrG(x, x′, t) =

∫
dxG(x, x, t) =

∫
DxeiS(x,t)/~, (M.28)

where
∫
Dx denotes the discretization and summation for all paths of time

length t in the limit of the infinite refination and S(x, t) is the classical
action calculated along the path. The trace in the saddle point calculation
is a sum for classical periodic orbits and zero length orbits, since these are
the extrema of the action δS(x, t) = 0 for closed paths:

TrG(x, x′, t) = g0(t) +
∑

p∈PO

∫
DξpeiS(ξp+xp(t),t)/~, (M.29)

where g0(t) is the zero length orbit contribution. We introduced the new
coordinate ξp with respect to the periodic orbit xp(t), x = ξp + xp(t).
Now, each path sum

∫
Dξp is computed in the vicinity of periodic orbits.

Since the saddle points are taken in the configuration space, only spatially
distinct periodic orbits, the so called prime periodic orbits, appear in the
summation. Sofar nothing new has been invented. If we continue the
standard textbook calculation scheme, we have to Taylor expand the action
in ξp and keep the quadratic term in the exponent while treating the higher
order terms as corrections. Then we can compute the path integrals with
the help of Gaussian integrals. The key point here is that we don’t compute
the path sum directly. We use the correspondence between path integrals
and partial differential equations. This idea comes from Maslov [M.5] and
a good summary is in ref. [M.6]. We search for that Schrödinger equation,
which leads to the path sum

∫
DξpeiS(ξp+xp(t),t)/~, (M.30)

where the action around the periodic orbit is in a multi dimensional Taylor
expanded form:

S(x, t) =

∞∑

n

sn(t)(x− xp(t))
n/n!. (M.31)
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The symbol n = (n1, n2, ..., nd) denotes the multi index in d dimensions,
n! =

∏d
i=1 ni! the multi factorial and (x − xp(t))

n =
∏d
i=1(xi − xp,i(t))

ni ,
respectively. The expansion coefficients of the action can be determined
from the Hamilton-Jacobi equation

∂tS +
1

2
(∇S)2 + U = 0, (M.32)

in which the potential is expanded in a multidimensional Taylor series
around the orbit

U(x) =
∑

n

un(t)(x− xp(t))
n/n!. (M.33)

The Schrödinger equation

i~∂tψ = Ĥψ = −~
2

2
∆ψ + Uψ, (M.34)

with this potential also can be expanded around the periodic orbit. Using
the WKB ansatz

ψ = ϕeiS/~, (M.35)

we can construct a Schrödinger equation corresponding to a given order of
the Taylor expansion of the classical action. The Schrödinger equation in-
duces the Hamilton-Jacobi equation (M.32) for the phase and the transport
equation of Maslov and Fjedoriuk [M.7] for the amplitude:

∂tϕ+ ∇ϕ∇S +
1

2
ϕ∆S − i~

2
∆ϕ = 0. (M.36)

This is the partial differential equation, solved in the neighborhood of a
periodic orbit with the expanded action (M.31), which belongs to the local
pathsum (M.30).

If we know the Green’s function Gp(ξ, ξ
′, t) corresponding to the local

equation (M.36), then the local path sum can be converted back into a
trace:

∫
Dξpei/~

P
n
Sn(xp(t),t)ξnp /n! = TrGp(ξ, ξ

′, t). (M.37)

The saddle point expansion of the trace in terms of local traces then be-
comes

TrG(x, x′, t) = TrGW (x, x′, t) +
∑

p

TrGp(ξ, ξ
′, t), (M.38)
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where GW (x, x′, t) denotes formally the Green’s function expanded around
zero length (non moving) periodic orbits, known as the Weyl term [M.8].
Each Green’s function can be Fourier-Laplace transformed independently
and by definition we get in the energy domain:

TrG(x, x′, E) = g0(E) +
∑

p

TrGp(ξ, ξ
′, E). (M.39)

Notice, that we do not need here to take further saddle points in time,
since we are dealing with exact time and energy domain Green’s functions.
indexGreen’s function!energy dependent

The spectral determinant is a function which has zeroes at the eigenen-
ergies En of the Hamilton operator Ĥ. Formally it is

∆(E) = det (E − Ĥ) =
∏

n

(E − En).

The logarithmic derivative of the spectral determinant is the trace of the
energy domain Green’s function:

TrG(x, x′, E) =
∑

n

1

E − En
=

d

dE
log ∆(E). (M.40)

We can define the spectral determinant ∆p(E) also for the local operators
and we can write

TrGp(ξ, ξ
′, E) =

d

dE
log ∆p(E). (M.41)

Using (M.39) we can express the full spectral determinant as a product for
the sub-determinants

∆(E) = eW (E)
∏

p

∆p(E),

where W (E) =
∫ E

g0(E
′)dE′ is the term coming from the Weyl expansion.

The construction of the local spectral determinants can be done eas-
ily. We have to consider the stationary eigenvalue problem of the local
Schrödinger problem and keep in mind, that we are in a coordinate system
moving together with the periodic orbit. If the classical energy of the peri-
odic orbit coincides with an eigenenergy E of the local Schrödinger equation
around the periodic orbit, then the corresponding stationary eigenfunction
fulfills

ψp(ξ, t+Tp) =

∫
dξ′Gp(ξ, ξ

′, t+Tp)ψp(ξ
′, t) = e−iETp/~ψp(ξ, t), (M.42)
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where Tp is the period of the prime orbit p. If the classical energy of the
periodic orbit is not an eigenenergy of the local Schrödinger equation, the
non-stationary eigenfunctions fulfill

ψl
p(ξ, t+Tp) =

∫
dξ′Gp(ξ, ξ

′, t+Tp)ψp(ξ
′, t) = e−iETp/~λl

p(E)ψl
p(t), (M.43)

where l = (l1, l2, ...) is a multi-index of the possible quantum numbers of
the local Schrödinger equation. If the eigenvalues λl

p(E) are known the
local functional determinant can be written as

∆p(E) =
∏

l

(1 − λl
p(E)), (M.44)

since ∆p(E) is zero at the eigenenergies of the local Schrödinger problem.
We can insert the ansatz (M.35) and reformulate (M.43) as

e
i
~
S(t+Tp)ϕl

p(t+ Tp) = e−iETp/~λl
p(E)e

i
~
S(t)ϕl

p(t). (M.45)

The phase change is given by the action integral for one period S(t+Tp)−
S(t) =

∫ Tp

0 L(t)dt. Using this and the identity for the action Sp(E) of the
periodic orbit

Sp(E) =

∮
pdq =

∫ Tp

0
L(t)dt + ETp, (M.46)

we get

e
i
~
Sp(E)ϕl

p(t+ Tp) = λl
p(E)ϕl

p(t). (M.47)

Introducing the eigenequation for the amplitude

ϕl
p(t+ Tp) = Rl,p(E)ϕl

p(t), (M.48)

the local spectral determinant can be expressed as a product for the quan-
tum numbers of the local problem:

∆p(E) =
∏

l

(1 −Rl,p(E)e
i
~
Sp(E)). (M.49)

Since ~ is a small parameter we can develop a perturbation series for

the amplitudes ϕl
p(t) =

∑∞
m=0

(
i~
2

)m
ϕ

l(m)
p (t) which can be inserted into the
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equation (M.36) and we get an iterative scheme starting with the semiclas-
sical solution ϕl(0):

∂tϕ
l(0) + ∇ϕl(0)∇S +

1

2
ϕl(0)∆S = 0, (M.50)

∂tϕ
l(m+1) + ∇ϕl(m+1)∇S +

1

2
ϕl(m+1)∆S = ∆ϕl(m).

The eigenvalue can also be expanded in powers of i~/2:

Rl,p(E) = exp

{ ∞∑

m=0

(
i~

2

)m
C

(m)
l,p

}
(M.51)

= exp(C
(0)
l,p ) {1 +

i~

2
C

(1)
l,p +

(
i~

2

)2(1

2
(C

(1)
l,p )2 + C

(2)
l,p

)
+ ... .(M.52)

The eigenvalue equation (M.48) in ~ expanded form reads as

ϕl(0)
p (t+ Tp) = exp(C

(0)
l,p )ϕl(0)

p (t),

ϕl(1)
p (t+ Tp) = exp(C

(0)
l,p )[ϕl(1)

p (t) + C
(1)
l,p ϕ

l(0)
p (t)],

ϕl(2)
p (t+ Tp) = exp(C

(0)
l,p )[ϕl(2)

p (t) + C
(1)
l,p ϕ

l(1)
p (t) + (C

(2)
l,p +

1

2
(C

(1)
l,p )2)ϕl(0)

p (t)],(M.53)

and so on. These equations are the conditions selecting the eigenvectors
and eigenvalues and they hold for all t.

It is very convenient to expand the functions ϕ
l(m)
p (x, t) in Taylor se-

ries around the periodic orbit and to solve the equations (M.51) in this
basis [M.10], since only a couple of coefficients should be computed to
derive the first corrections. This technical part we are going to publish

elsewhere [M.9]. One can derive in general the zero order term C
(0)
l =

iπνp +
∑d−1

i=1

(
li +

1
2

)
up,i, where up,i = log Λp,i are the logarithms of the

eigenvalues of the monodromy matrix Mp and νp is the topological index
of the periodic orbit. The first correction is given by the integral

C
(1)
l,p =

∫ Tp

0
dt

∆ϕ
l(0)
p (t)

ϕ
l(0)
p (t)

.

When the theory is applied for billiard systems, the wave function
should fulfill the Dirichlet boundary condition on hard walls, e.g. it should
vanish on the wall. The wave function determined from (M.36) behaves
discontinuously when the trajectory xp(t) hits the wall. For the simplicity
we consider a two dimensional billiard system here. The wave function on
the wall before the bounce (t−0 ) is given by

ψin(x, y(x), t) = ϕ(x, y(x), t−0)e
iS(x,y(x),t−0)/~, (M.54)
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where y(x) = Y2x
2/2! + Y3x

3/3! + Y4x
4/4! + ... is the parametrization of

the wall around the point of reflection (see Fig 1.). The wave function on
the wall after the bounce (t+0) is

ψout(x, y(x), t) = ϕ(x, y(x), t+0)e
iS(x,y(x),t+0)/~. (M.55)

The sum of these wave functions should vanish on the hard wall. This
implies that the incoming and the outgoing amplitudes and the phases are
related as

S(x, y(x), t−0) = S(x, y(x), t+0), (M.56)

and

ϕ(x, y(x), t−0) = −ϕ(x, y(x), t+0). (M.57)

The minus sign can be interpreted as the topological phase coming from
the hard wall.

Now we can reexpress the spectral determinant with the local eigenval-
ues:

∆(E) = eW (E)
∏

p

∏

l

(1 −Rl,p(E)e
i
~
Sp(E)). (M.58)

This expression is the quantum generalization of the semiclassical Selberg-
product formula [M.11]. A similar decomposition has been found for quan-
tum Baker maps in ref. [M.12]. The functions

ζ−1
l

(E) =
∏

p

(1 −Rl,p(E)e
i
~
Sp(E)) (M.59)

are the generalizations of the Ruelle type [30.24] zeta functions. The trace
formula can be recovered from (M.40):

TrG(E) = g0(E)+
1

i~

∑

p,l

(Tp(E)−i~d logRl,p(E)

dE
)

Rl,p(E)e
i
~
Sp(E)

1 −Rl,p(E)e
i
~
Sp(E)

.(M.60)

We can rewrite the denominator as a sum of a geometric series and we get

TrG(E) = g0(E)+
1

i~

∑

p,r,l

(Tp(E)−i~d logRl,p(E)

dE
)(Rl,p(E))re

i
~
rSp(E).(M.61)
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The new index r can be interpreted as the repetition number of the prime
orbit p. This expression is the generalization of the semiclassical trace for-
mula for the exact quantum mechanics. We would like to stress here, that
the perturbation calculus introduced above is just one way to compute the
eigenvalues of the local Schrödinger problems. Non-perturbative methods
can be used to calculate the local eigenvalues for stable, unstable and mar-
ginal orbits. Therefore, our trace formula is not limited to integrable or
hyperbolic systems, it can describe the most general case of systems with
mixed phase space.

The semiclassical trace formula can be recovered by dropping the sub-
leading term −i~d logRl,p(E)/dE and using the semiclassical eigenvalue

R
(0)
l,p (E) = eC

l(0)
p = e−iνpπe−

P
i(li+1/2)up,i . Summation for the indexes li

yields the celebrated semiclassical amplitude

∑

l

(R
(0)
l,p (E))r =

e−irνpπ

| det (1 − Mr
p) |1/2

. (M.62)

To have an impression about the improvement caused by the quantum
corrections we have developed a numerical code [M.13] which calculates the

first correction C
(1)
p,l for general two dimensional billiard systems . The first

correction depends only on some basic data of the periodic orbit such as the
lengths of the free flights between bounces, the angles of incidence and the
first three Taylor expansion coefficients Y2, Y3, Y4 of the wall in the point
of incidence. To check that our new local method gives the same result
as the direct calculation of the Feynman integral, we computed the first ~

correction C
(1)
p,0 for the periodic orbits of the 3-disk scattering system [M.14]

where the quantum corrections have been We have found agreement up to
the fifth decimal digit, while our method generates these numbers with any
desired precision. Unfortunately, the l 6= 0 coefficients cannot be compared
to ref. [M.15], since the l dependence was not realized there due to the
lack of general formulas (M.58) and (M.59). However, the l dependence
can be checked on the 2 disk scattering system [M.16]. On the standard
example [M.14, M.15, M.16, M.18], when the distance of the centers (R) is
6 times the disk radius (a), we got

C
(1)
l =

1√
2E

(−0.625l3 − 0.3125l2 + 1.4375l + 0.625).

For l = 0 and 1 this has been confirmed by A. Wirzba [M.17], who was

able to compute C
(1)
0 from his exact quantum calculation. Our method

makes it possible to utilize the symmetry reduction of Cvitanović and Eck-
hardt and to repeat the fundamental domain cycle expansion calculation
of ref. [M.18] with the first quantum correction. We computed the cor-
rection to the leading 226 prime periodic orbits with 10 or less bounces
in the fundamental domain. Table I. shows the numerical values of the
exact quantum calculation [M.16], the semiclassical cycle expansion [M.10]
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Figure M.2: A typical bounce on a billiard wall. The wall can be characterized by
the local expansion y(x) = Y2x

2/2! + Y3x
3/3! + Y4x

4/4! + ....

Table M.1: Real part of the resonances (Re k) of the 3-disk scattering system at disk
separation 6:1. Semiclassical and first corrected cycle expansion versus exact quantum
calculation and the error of the semiclassical δSC divided by the error of the first
correction δCorr. The magnitude of the error in the imaginary part of the resonances
remains unchanged.
Quantum Semiclassical First correction δSC/δCorr
0.697995 0.758313 0.585150 0.53
2.239601 2.274278 2.222930 2.08
3.762686 3.787876 3.756594 4.13
5.275666 5.296067 5.272627 6.71
6.776066 6.793636 6.774061 8.76

... ... ... ...
30.24130 30.24555 30.24125 92.3
31.72739 31.73148 31.72734 83.8
32.30110 32.30391 32.30095 20.0
33.21053 33.21446 33.21048 79.4
33.85222 33.85493 33.85211 25.2
34.69157 34.69534 34.69152 77.0

and our corrected calculation. One can see, that the error of the corrected
calculation vs. the error of the semiclassical calculation decreases with the
wavenumber. Besides the improved results, a fast convergence up to six
decimal digits can be observed, which is just three decimal digits in the full
domain calculation [M.15].
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Appendix N

Solutions

Chapter 1

Solution 1.1: 3-disk symbolic dynamics. As explained in sect. 1.4, each orbit
segment can be characterized by either of the two symbols 0 and 1, differentiating
topologically bouncing back or going onto the third disk. So, there are 2n topologically
different orbits starting from each disk. Altogether, the 3-disk pinball has 3 · 2n

itineraries of length n.
Periodic orbits (prime cycles in fundamental domain)

• Of length 2: 12,13,32; or (0).

• Of length 3: 123,321; or (1).

• Of length 4: 1213,2321,3231; or (01).

• Of length 5: 12123,13132,23231,21213,32321,31312; or (00111).

Some of the cycles are listed in table 11.2 and drawn in figure 22.3.

(Yuheng Lan)

Solution 1.2: Sensitivity to initial conditions. To estimate the pinball
sensitivity we consider a narrow beam of point particles bouncing between two disks,
figure N.1(a). Or if you find this easier to visualize, think of a narrow ray of light. We
assume that the ray of light is focused along the axis between the two points. This
is where the least unstable periodic orbit lies, so its stability should give us an upper
bound on the number of bounces we can expect to achieve. To estimate the stability
we assume that the ray of light has a width w(t) and a “dispersion angle” θ(t) (we
assume both are small), figure N.1(b). Between bounces the dispersion angle stays
constant while the width increases as

w(t) ≈ w(t′) + (t− t′)θ

At each bounce the width stays constant while the angle increases by

θn+1 = θn + 2φ ≈ θn + w(t)/a.

781
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(a)

R-2a aa

R (b)

ϕθ

Figure N.1: The 2-disk pinball (a) geometry, (b) defocusing of scattered rays.

where θn denotes the angle after bounce n. Denoting the width of the ray at the nth
bounce by wn then we obtain the pair of coupled equations

wn+1 = wn +
(
R− 2a

)
θn

(N.1)

θn = θn−1 +
wn

a
(N.2)

where we ignore corrections of order w2
n and θ2n. Solving for θn we find

θn = θ0 +
1

a

n∑

j=1

wn.

Assuming θ0 = 0 then

wn+1 = wn +
R− 2a

a

n∑

j=1

wn

Plugging in the values in the question we find the width at each bounce in Ångstrøms
grows as 1, 5, 29, 169, 985, etc. To find the asymptotic behavior for a large number of
bounces we try an solution of the form wn = axn. Substituting this into the equation
above and ignoring terms that do not grow exponentially we find solutions

wn ≈ awasym
n = a(3 ± 2

√
2)n

The solution with the positive sign will clearly dominate. The constant a we cannot
determine by this local analysis although it is clearly proportional to w0. However, the
asymptotic solution is a good approximation even for quite a small number of bounces.
To find an estimate of a we see that wn/w

asym
n very rapidly converges to 0.146447,

thus

wn ≈ 0.146447w0(3 + 2
√

2)n ≈ 0.1 × w0 × 5.83n

The outside edges of the ray of light will miss the disk when the width of the ray
exceeds 2 cm; this occurs after 11 bounces.
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(Adam Prügel-Bennett)

Solution 1.2: Sensitivity to initial conditions, another try. Adam’s estimate
is not very good - do you have a better one? The first problem with it is that the
instability is very underestimated. As we shall check in exercise 8.1, the exact formula
for the 2-cycle stability is Λ = R − 1 + R

√
1 − 2/R. For R = 6, a = 1 this yields

wn/w0 ≈ (5 + 2
√

6)n = 9.898979n, so if that were the whole story, the pinball would
be not likely to make it much beyond 8 bounces.

The second problem is that local instability overestimates the escape rate from an
enclosure; trajectories are reinjected by scatterers. In the 3-disk pinball the particle
leaving a disk can be reinjected by hitting either of other 2 disks, hence wn/w0 ≈
(9.9/2)n. This interplay between local instability and global reinjection will be cast into
the exact formula involving “Lyapunov exponent” and “Kolmogorov entropy”. In order
to relate this estimate to our best continuous time escape rate estimate γ = 0.4103 . . .
(see table 18.2), we will have to also compute the mean free flight time (18.21). As
a crude estimate, we take the shortest disk-to-disk distance, 〈T〉 = R − 2 = 4. The
continuous time escape rate result implies that wn/w0 ≈ e(R−2)γn = (5.16)n, in the
same ballpark as the above expansion-reinjection estimate.

(Predrag Cvitanović)

Chapter 2

Solution 2.1: Trajectories do not intersect. Suppose that two trajectories Cx

and Cy intersect at some point z. We claim that any points x̃ on Cx is also a point
on Cy and vice versa. We only need to prove the first part of the statement.
According to the definition of Cx, there exist tx , ty , t1 ∈ R such that f tx(x) =
z , f ty(y) = z , f t1(x) = x̃. It is easy to check that f ty−tx+t1(y) = x̃. So, x̃ ∈ Cy .
Therefore, if two trajectories intersect, then they are the same trajectory.

(Yueheng Lan)

Solution 2.2: Evolution as a group. Let’s check the basic defining properties
of a group. The members of the set are f t , t ∈ R and the “product law” is given by
’◦’.

• As f t+s = f t ◦ fs, the set is closed, i.e., the product of any two members
generates another member of the set.

• It is associative, as (f t ◦ fs) ◦ f r = f t+s+r = f t ◦ (fs ◦ f r).

• I = f0 is the identity, as f t ◦ f0 = f t.

• f−t is the inverse of f t, as f−t ◦ f t = I.

So, {f t, ◦}t∈R forms a group. As f t ◦ fs = f t+s = fs ◦ f t, it is a commutative
(Abelian) group.

Any Abelian group can replace the continuous time. For example, R can be
replaced by Z6. To mess things up try a non-commutative group.

(Yueheng Lan)

Solution 2.3: Almost ode’s. What is an ODE on R ? An ODE is an equality
which reveals explicitly the relation between function x(t) and its time derivatives
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ẋ, ẍ, · · ·, i.e., F (t, x, ẋ, ẍ, · · ·) = 0 for some given function F . Let’s check the equations
given in the exercise.
(a) ẋ = exp(ẋ) is an ODE.
(b) ẋ = x(x(t)) is not an ODE, as x(x(t)) is not a known function acting on x(t).
(c) ẋ = x(t+ 1) is not an ODE, as x(t + 1) is not a value at current time. Actually,
it is a difference-differential equation.

(Yueheng Lan)

Solution 2.4: All equilibrium points are fixed points. Given a vector field
v(x), the phase space dynamics is defined by

d

dt
x(t) = v(x(t)) . (N.3)

An equilibrium point a of v is defined by v(a) = 0, so x(t) = a is a constant solution
of (N.3). For the flow f t defined by (N.3), this solution satisfies f t(a) = a , t ∈ R .
So, it is a fixed point of the dynamics f t.

(Yueheng Lan)

Solution 2.5: Gradient systems.

1. The directional derivative

d

dn
φ = n · ∇φ

produces the increasing rate along the unit vector n. So, along the gradient
direction ∇φ/|∇φ|, φ has the largest increasing rate. The velocity of the particle
has the opposite direction to the gradient, so φ deceases most rapidly in the
velocity direction.

2. An extremum a of φ satisfies ∇φ(a) = 0. According to exercise 2.4, a is a fixed
point of the flow.

3. Two arguments lead to the same conclusion here.

First, near an equilibrium point, the equation is always linearizable. For gra-
dient system, after orthogonal transformation it is even possible to write the
linearized equation in diagonal form so that we need only to consider one
eigendirection. The corresponding scalar equation is ẋ = λx. Notice that
we moved the origin to the equilibrium point. The solution of this equation is
x(t) = x(0) exp(λt), for λ 6= 0. if x(0) 6= 0, it will take infinite amount of time
(positive or negative) for x(t) → 0. For λ = 0, the approach to zero is even
slower as then only higher orders of x take effect.

The second argument seems easier. We know that the solution curve through an
equilibrium point is the point itself. According to exercise 2.1, no other solution
curve will intersect it, which means that if not starting from the equilibrium
point itself, other point can never reach it.

4. On a periodic orbit, the velocity is bounded away from zero. So φ is always
decreasing on a periodic orbit, but in view of the periodicity, we know that this
can not happen (at each point, there is only one value of φ.). So, there is no
periodic orbit in a gradient system.
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(Yueheng Lan)

Solution 2.10: Classical collinear helium dynamics. An example of a solution

are A. Prügel-Bennett’s programs, available at ChaosBook.org/extras.

Solution 2.8: Equilibria of the Rössler system.

1. Solve ẋ = ẏ = ż = 0, to get x = az, y = −z and x2 − cx+ ab = 0. There are
two solutions of a quadratic equation, hence there are two equilibrium points:

x± = az± = −ay± = (c±
√
c2 − 4ab)/2 . (N.4)

2. That above expressions are exact. However, it pays to think of ǫ = a/c as a
small parameter in the problem. By subsitution from (2.18),

x± = cp±, y± = −p±/ǫ, z± = p±/ǫ. (N.5)

Expanding
√
D in ǫ yields p− = ǫ2 + o(ǫ3), and p+ = 1 − ǫ2 + o(ǫ3). Hence

x− = a2/c+ o(ǫ3), x+ = c− a2/c+ o(ǫ3),
y− = −a/c+ o(ǫ2), z+ = c/a+ a/c+ o(ǫ2),
z− = a/c+ o(ǫ2), z+ = c/a− a/c+ o(ǫ2).

(N.6)

For a = b = 0.2, c = 5.7 in (2.14), ǫ ≈ 0.035, so

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 ) ,
(x+, y+, z+) = ( 5.6929, −28.464, 28.464 ) .

(N.7)

(Rytis Paškauskas)

Chapter 3

(No solutions available.)

Chapter 4

Solution 4.1: Trace-log of a matrix. 1) one method is to first check that this
is true for any Hermitian matrix M . Then write an arbitrary complex matrix as sum
M = A+ zB, A, B Hermitian, Taylor expand in z and prove by analytic continuation
that the identity applies to arbitrary M . (David Mermin)

2) another method: evaluate d
dtdet

(
et ln M

)
by definition of derivative in terms

of infinitesimals. (Kasper Juel Eriksen)

3) check appendix K.1

4) This identity makes sense for a matrix M ⊂ Cn×n, if |∏n
i=1 λi| < ∞ and

{|λi| > 0, ∀i}, where {λi} is a set of eigenvalues of M . Under these conditions there

ChaosBook.org/version11.8, Aug 30 2006 soluStability - 2apr2005
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exist a nonsingular O : M = ODO−1, D = diag[{λi, i = 1, . . . , n}]. If f(M) is a
matrix valued function defined in terms of power series then f(M) = Of(D)O−1,
and f(D) = diag[{f(λi)}]. Using these properties and cyclic property of the trace we
obtain

exp(tr (lnM)) = exp

(
∑

i

lnλi

)
=
∏

i

λi = det (M)

5) Consider M = expA.

detM = det lim
n→∞

(
1 +

1

n
A

)n

= lim
n→∞

(1 +
1

n
trA+ . . .)n = exp(tr (lnM))

Solution 4.2: Stability, diagonal case. The relation (4.17) can be verified by
noting that the defining product (4.12) can be rewritten as

etA =

(
UU−1 +

tUADU−1

m

)(
UU−1 +

tUADU−1

m

)
· · ·

= U

(
I +

tAD

m

)
U−1U

(
I +

tAD

m

)
U−1 · · · = UetADU−1 . (N.8)

Solution 4.3: Topology of the Rössler flow.

1. The characteristic determinant of the stability matrix that yields the equilibrium
point stability (4.25) yields

∣∣∣∣∣
−λ −1 −1
1 a− λ 0
z± 0 x± − c− λ

∣∣∣∣∣ = 0

λ3 + λ2(−a− x± + c) + λ(a(x± − c) + 1 + x±/a) + c− 2x± = 0 .

Equation (4.42) follows after noting that x± − c = c(p± − 1) = −cp∓ and
2x± − c = c(2p± − 1) = ±c

√
D, see (2.8).

2. Approximate solutions of (4.42) are obtained by expanding p± and
√
D and

substituting into this equation. Namely,

√
D = 1 − 2ǫ2 − 2ǫ4 − 4ǫ6 − . . .

p− = ǫ2 + ǫ4 + 2ǫ6 + . . .
p+ = 1 − ǫ2 − ǫ4 − 2ǫ6 + . . .

In case of the equilibrium “−”, close to the origin expansion of (4.42) results in

(λ2 + 1)(λ+ c) = −ǫλ(1 − c2 − cλ) + ǫ2c(λ2 + 2) + o(ǫ2)

The term on the left-hand side suggests the expansion for eigenvalues as

λ1 = −c+ ǫa1 + . . . , λ2 + iθ2 = ǫb1 + i+ . . . .
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after some algebra one finds the first order correction coefficients a1 = c/(c2+1)
and b1 = (c3 + i)/(2(c2 + 1)). Numerical values are λ1 ≈ −5.694, λ2 + iθ2 ≈
0.0970 + i1.0005.

In case of p+, the leading order term in (4.42) is 1/ǫ. Set x = λ/ǫ, then
expansion of (4.42) results in

x = c− ǫx− ǫ2(2c− x) − ǫ3(x3 − cx2) − ǫ4(2c− x(1 + c2) + cx2) + o(ǫ4)

Solve for real eigenvalue first. Set x = c+ ǫa1 + ǫ2a2 + ǫ3a3 + ǫ4a4 + . . .. The
subtle point here is that leading order correction term of the real eigenvalue is
ǫa1, but to determine leading order of the real part of complex eigenvalue, one
needs all terms a1 through a4.

Collecting powers of ǫ results in

ǫ : a1 + c = 0 a1 = −c
ǫ2 : c+ a1 + a2 = 0 a2 = 0
ǫ3 : a1 − a2 − a3 = 0 a3 = −c
ǫ4 : c+ c2a1 − a2 + a3 + a4 = 0 a4 = c3 .

hence

λ1 = ǫx = a− a2/c+ o(ǫ3) ≈ 0.192982 .

To calculate the complex eigenvalue, one can make use of identities detA =∏
λ = 2x+ − c, and trA =

∑
λ = a+ x+ − c. Namely,

λ2 = 1
2 (a− cp− − λ1) = − a5

2c2 + o(ǫ5) ≈ −0.49× 10−6 ,

θ2 =
√

2x+−c
λ1

− λ2
2 =

√
a+c

a (1 + o(ǫ)) ≈ 5.431 .

(Rytis Paškauskas)

Chapter 5

(No solutions available.)

Chapter 6

Solution 6.1: A pinball simulator. Examples of pretty pinballs are A. Prügel-

Bennett’s xpinball.c and W. Benfold’s java programs, available at ChaosBook.org/extras

Solution 6.4: Billiard exercises. Korsch and Jodl [1.10] have a whole book of

numerical exercises with billiards, including 3-disks.

Chapter 7

Solution 7.2: Linearization for maps. (difficulty: medium) The first few terms
of the map h that conjugates f to αz

f(z) = h−1(αh(z)) .

ChaosBook.org/version11.8, Aug 30 2006 soluConjug - 10sep2003
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are determined many places, for example in ref. [9.5].

There are conditions on the derivative of f at the origin to assure that the con-

jugation is always possible. These conditions are formulated in ref. [1.15], among

others.

Chapter 8

Solution 8.3: A limit cycle with analytic stability exponent. The trajectories
x(t) = (q(t), p(t)) The 2-d flow (8.23) is cooked up so that it is separable (check!) in
polar coordinates q = r cosφ , p = r sinφ :

ṙ = r(1 − r2) , φ̇ = 1 . (N.9)

In the (r, φ) coordinates the flow starting at any r > 0 is attracted to the r = 1 limit
cycle, with the angular coordinate φ wraping around with a constant angular velocity.
The non–wandering set of this flow consists of the r = 0 equilibrium and the r = 1
periodic orbit.

Equilibrium stability. As the change of coordinates is defined everywhere except
at the the equilibrium point (r = 0, any φ), the equilibrium stability matrix (4.25) has
to be computed in the original (q, p) coordinates,

A =

[
1 1

−1 1

]
. (N.10)

The eigenvalues are λ ± i θ = 1 ± i , indicating that the origin is linearly unstable,
with nearby trajectories spiralling out with the constant Poincaré section (p = 0, for
example) return time T = 2π, and the radial stability multiplier Λ = e2π per one
Poincaré return.

Limit cycle stability. From (N.9) the stability matrix is diagonal in the (r, φ)
coordinates,

A =

[
1 − 3r2 0

0 0

]
, (N.11)

with the λθ = 0 eigenvalue due to the rotational invariance of the r = 1 cycle along
φ direction, and the radial λr = −2 eigenvalue corresponding to contraction of the
radial deviations from r = 1 with the radial stability multiplier Λr = e−4π per one
Poincaré return. This limit cycle is very attracting.

Stability of a trajectory segment. Multiply (N.9) by r to obtain 1
2 ṙ

2 = r2 − r4 ,
separate variables

dr2

r2(1 − r2)
=
dr2

r2
+

dr2

1 − r2
= 2 dt ,

and integrate

r2

1 − r2
=

r20
1 − r20

e2t .
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After a bit of algebra one gets the r(r0, t) trajectory

r(t)2 =
r20

r20 + (1 − r20)e
−2t

. (N.12)

The [1×1] fundamental matrix

J(r0, t) =
∂r(t)

∂r0

∣∣∣∣
r0=r(0)

. (N.13)

satisfies (4.32)

d

dt
J(r, t) = A(r)J(r, t) = (1 − 3r(t)2)J(r, t) , J(r0, 0) = 1 .

This too can be integrated by separating variables d(lnJ(r, t)) = dt − 3r(t)2dt ,
substituting (N.12) and integrating. The stability of a finite trajectory segment is:

J(r0, t) =
1

(r20 + (1 − r20)e
−2t)3/2

e−2t . (N.14)

This general formula agrees with the limit cycle contraction Λr(1, t) = e−2t when
r = 1, and with the radial part of the equilibrium instability Λr(r0, t) = et for r0 ≪ 1.

P. Cvitanović

Chapter 9

Solution 9.1: Integrating over Dirac delta functions. (a) Whenever h(x)
crosses 0 with a nonzero velocity (det ∂xh(x) 6= 0), the delta function contributes
to the integral. Let x0 ∈ h−1(0). Consider a small neighborhood V0 of x0 so that
h : V0 → V0 is a one-to-one map, with the inverse function x = x(h). By changing
variable from x to h, we have

∫

V0

dx δ(h(x)) =

∫

h(V0)

dh |det ∂hx| δ(h) =

∫

h(V0)

dh
1

|det ∂xh|
δ(h)

=
1

|det ∂xh|h=0
.

Here, the absolute value | · | is taken because delta function is always positive and we
keep the orientation of the volume when the change of variables is made. Therefore
all the contributions from each point in h−1(0) add up to the integral

∫

Rd

dx δ(h(x)) = Σx∈h−1(0)
1

|det ∂xh|
.
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Notice that if det ∂xh = 0, then the delta function integral is not well defined.

(b) The formal expression can be written as the limit

F :=

∫

R

dx δ(x2) = lim
σ→0

∫

R

dx
e−

x4

2σ√
2πσ

,

by invoking the approximation given in the exercise. The change of variable y = x2/
√
σ

gives

F = lim
σ→0

σ−3/4

∫

R+

dy
e−

y2

2√
2πy

= ∞ ,

where R+ represents the positive part of the real axis. So, the formal expression does
not make sense. Notice that x2 has a zero derivative at x = 0, which invalidates the
expression in (a).

(Yueheng Lan)

Solution 9.2: Derivatives of Dirac delta functions. We do this problem just
by direct evaluation. We denote by Ωy a sufficiently small neighborhood of y.
(a)

∫

R

dx δ′(y) = Σx∈y−1(0)

∫

Ωy

dy det (
dy

dx
)−1δ′(y)

= Σx∈y−1(0)
δ(y)

|y′| |
ǫ
−ǫ −

∫

Ωy

dy
δ(y)

y′2
(−y′′) 1

y′

= Σx∈y−1(0)
y′′

|y′|y′2 ,

where the absolute value is taken to take care of the sign of the volume.

(b)

∫

R

dx δ(2)(y) = Σx∈y−1(0)

∫

Ωy

dy
δ(2)(y)

y′

= Σx∈y−1(0)
δ′(y)

|y′| |
ǫ
−ǫ −

∫

Ωy

dy
δ′(y)

y′2
(−y′′) 1

y′

= Σx∈y−1(0)
y′′δ(y)

|y′|y′2 |
ǫ
−ǫ −

∫

Ωy

dy δ(y)
d

dx
(
y′′

y′3
)
1

y′

= Σx∈y−1(0) −
∫

Ωy

dy δ(y)

(
y′′′

y′3
− 3

y′′2

y′4

)
1

y′

= Σx∈y−1(0)

(
3
y′′2

y′4
− y′′′

y′3

)
1

|y′| .
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(c)

∫

R

dx b(x)δ(2)(y) = Σx∈y−1(0)

∫

Ωy

dy b(x)
δ(2)(y)

y′

= Σx∈y−1(0)
b(x)δ′(y)

|y′| |ǫ−ǫ −
∫

Ωy

dy δ′(y)
d

dx
(
b

y′
)
1

y′

= Σx∈y−1(0) − δ(y)
d

dx
(
b

y′
)
1

y′
|ǫ−ǫ +

∫

Ωy

dy δ(y)
d

dx
(
d

dx
(
b

y′
)
1

y′
)
1

y′

= Σx∈y−1(0)
1

|y′|
d

dx
(
b′

y′2
− by′′

y′3
))

= Σx∈y−1(0)
1

|y′|

[
b′′

y′2
− b′y′′

y′3
− 2

b′y′′

y′3
+ b(3

y′′2

y′4
− y′′′

y′3
)

]

= Σx∈y−1(0)
1

|y′|

[
b′′

y′2
− 3

b′y′′

y′3
+ b(3

y′′2

y′4
− y′′′

y′3
)

]
.

(Yueheng Lan)

Solution 9.3: Lt generates a semigroup. Every “sufficiently good” transfor-
mation f t in phase space M is associated with a Perron-Frobenius operator Lt which
is when acting on a function ρ(x) in M

Lt · ρ(x) =

∫

M
dy δ(x− f t(y))ρ(y) .

In some proper function space F on M, the one parameter family of operators
{Lt}t∈R+ generate a semigroup. Let’s check this statement. For any t1, t2 > 0
and ρ ∈ F , the product “◦” of two operators is defined as usual

(Lt1 ◦ Lt2) · ρ(y) = Lt1 · (Lt2 · ρ)(y) .

So, we have

(Lt1 ◦ Lt2)(y, x) =

∫

M
dz Lt1(y, z)Lt2(z, x)

=

∫

M
dz δ(y − f t1(z))δ(z − f t2(x))

= δ(y − f t1(f t2(x)))

= δ(y − f t1+t2(x))

= Lt1+t2(y, x) ,

where the semigroup property f t1(f t2(x)) = f t1+t2(x) of f t has been used. This
proves the claim in the title.

(Yueheng Lan)

Solution 9.5: Invariant measure. Hint: Compare the second map to the
construction of Exercise 13.6. We do (a),(b),(c),(d) for the first map and (e) for the
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second.
(a) The partition point is in the middle of [0, 1]. If the density on the two pieces are
two constants ρA

0 and ρB
0 , respectively, the Perron-Frobenius operator still leads to the

piecewise constant density

ρA
1 =

1

2
(ρA

0 + ρB
0 ) ,

ρB
1 =

1

2
(ρA

0 + ρB
0 ) .

Notice that in general if a finite Markov partition exists and the map is affine (linear
on each partition cell), a finite-dimensional invariant subspace consisting of piecewise
constant function can always be identified in the function space.

(b) From the discussion of (a), any constant function on [0, 1] is an invariant
measure. If we consider the invariant probability measure, then the constant has to
be 1.

(c) As the map is invariant in [0, 1] (there is no escaping), the leading eigenvalue
of L is always 1 due to the “mass” conservation.

(d) Take a typical point on [0, 1] and record its trajectory under the first map for
some time (105 steps). Plot the histogram...ONLY 0 is left finally!! This happens be-
cause of the finite accuracy of the computer arithmetics. A small trick is to change the
slope 2 to 1.99999999. You will find a constant measure on [0, 1] which is the natural
measure. Still, the finite presicion of the computer will make every point eventually
periodic and strictly speaking the measure is defined only on some fine lattice points.
But when the resolution improves, the computer-generated measure will steadily ap-
proach the natural measue. For the first map, any small deviation from the constant
profile will be stretched and smeared out. So, the natural measure has to be constant.

(e) Simple calculation shows that α is the partition point. We may use A ,B to
mark the left and right part of the partition, respectively. A maps to B and B maps
to the whole interval [0, 1]. As the magnitude of the slope Λ = (

√
5 + 1)/2 is greater

than 1, we may expect the natural measure is still piecewise constant with eigenvalue
1. The determining equation is

(
0 1/Λ

1/Λ 1/Λ

)(
ρA

ρB

)
=

(
ρA

ρB

)
,

which gives ρB/ρA = Λ.

(Yueheng Lan)

Solution 9.7: Eigenvalues of the skew Ulam tent map Perron-Frobenius
operator. If we have density ρn(x), the action of the Perron-Frobenius operator
associated with f(x) gives a new density

ρn+1(x) =
1

Λ0
ρn(x/Λ0) +

1

Λ1
ρn(1 − x/Λ1) ,
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where Λ1 = Λ0

Λ0−1 . The eigenvalue equation is given by

ρn+1(x) = λρn(x) . (N.15)

We may solve it by assuming that the eigenfunctions are N -th order polynomials P (N)
(check it). Indeed, detailed calculation gives the following results:

• P (0) gives λ = 1, corresponding to the expected leading eigenvalue.

• P (1) gives λ = 1
Λ2

0
− 1

Λ2
1

= 2
Λ0

− 1,

• P (2) gives λ = 1
Λ3

0
+ 1

Λ3
1
,

• P (3) gives λ = 1
Λ4

0
− 1

Λ4
1
,

• The guess is that P (N) gives λ = 1
ΛN+1

0

+ (−1)N 1
ΛN+1

1

.

The final solution is that the piecewise linear function ρA = −Λ0 , ρ
B = Λ1 gives the

eigenvalue 0. If only the continuous functions are considered, this kind of eigenfunction
of course should not be included.

(Yueheng Lan)

Solution 9.7: Eigenvalues of the skew Ulam tent map Perron-Frobenius
operator. The first few eigenvalues are

es0 = 1 , es1 =
2

Λ0
− 1

es2 =
1

4
+

3

4

(
2

Λ0
− 1

)2

, es3 =
1

2

(
2

Λ0
− 1

)
+

1

2

(
2

Λ0
− 1

)3

. . .

For eigenvectors (invariant densities for skew tent maps), see for example Invariant densities for skew tent maps

by L. Billings and E.M. Bolt.

Solution 9.10: A as a generator of translations. If v is a constant in space,
Taylor series expansion gives

a(x+ tv) = Σ∞
k=0

1

k!
(tv

∂

∂x
)ka(x) = etv ∂

∂x a(x) .

(Yueheng Lan)

Chapter 10

Solution 10.1: How unstable is the Hénon attractor?

1. Evaluate numerically the Lyapunov exponent by iterating the Hénon map; For
a = 1.4, b = 0.3 the answer should be close to λ = 0.41922 . . .. If you have
a good estimate and a plot of the convergence of your estimate with t, please
send us your results for possible inclusion into this text.
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2. Both Lyapunov exponents for a = 1.39945219, b = 0.3 are negative, roughly
λ1 = −0.2712, λ2 = −0.9328 (check that these values respect the constant
volume contraction condition (4.37) for the Hénon map). Why? Because after
a long transient exploration of the Hénon map’s non–wandering set, on average
after some 11,000 iterates, almost every inital point falls into a stable 13-
cycle. You can check its existence by starting at one of its periodic points
(xp, yp) = (−0.2061,−0.3181).

If you missed the stable 13-cycle (as all students in one of the courses did), you
should treat your computer experiments with great deal of scepticism.

As the product of eigenvalues is the constant −b, you need to evaluate only the
expanding eigenvalue. There are many ways to implement this calculation - here are
a few:

1. The most naive way - take the log of distance of two nearby trajectories, iterate
until you run out of accuracy. Tray this many times, estimate an average.

2. Slighly smarter: as above, but keep rescaling the length of the vector connecting
neighboring points so it remains small, average over the sum of logs of rescaling
factors. You can run this forever.

3. Keep multiplying the [2×2] Jacobian stability matrix (4.36) until you run out
of accuracy. Compute the log of the leading eigenvalue (4.19), try this many
times, estimate an average.

4. Slighly smarter still: as above, but start with an arbitrary initial tangent space
vector, keep multiplying it with the Jacobian stability matrix, and rescaling the
length of the vector so it remains small. You can run this forever.

5. There is probably no need to use the QR decomposition method or any other
such numerical method for this 2-dimensional problem.

(Yueheng Lan and P. Cvitanović)

Chapter 11

Solution 11.1: Binary symbolic dynamics. Read the text.

Solution 11.2: 3-disk fundamental domain symbolic dynamics. Read

sect. 1.4.

Solution 11.5: Reduction of 3-disk symbolic dynamics. The answer is given
in sect. 22.6. Some remarks concerning part (c):

If an orbit does not have any spatial symmetry, its length in the fundamental
domain is equal to that in the full space. One fundamental domain orbit corresponds
to six copies of the orbit in the full space related to each other by symmetries. If a
periodic orbit does have a spatial symmetry, then its fundamental domain image is a
fraction of that in the whole space, and the orbit (and its symmetry pratnenrs) in the
full space is tiled by copies of the irreducible segment, corresponding to an orbit in the
fundamental domain. The higher symmetry an orbit has, the shorter the irreducible
segment.

Another way to construct a fundamental domain orbit: put a periodic orbit and
all its spatial symmetry relatives simultaneously in the full space. The segments that
fall into a fundamental domain constitute the orbit in the fundamental domain.
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(Yueheng Lan)

Solution 11.6: Unimodal map symbolic dynamics. Hint: write down an

arbitrary binary number such as γ = .1101001101000 . . . and generate the future

itinerary S+ by checking whether fn(γ) is greater or less than 1/2. Then verify that

(??) recovers γ.

Solution 11.7: “Golden mean” pruned map.
(a) Consider the 3-cycle drawn in the figure. Denote the lengths of the two horizontal
intervals by a and b. We have

a

b
=

b

a+ b
,

so the slope is given by the golden mean, Λ = b
a = 1+

√
5

2 , and the piece-wise linear
map is given by

f(x) =

{
Λx , x ∈ [0, 1/2]
Λ(1 − x) , x ∈ [1/2, 1]

(b) Evaluate

f

(
1

2

)
=

1 +
√

5

4
, f

(
1 +

√
5

4

)
=

−1 +
√

5

4
, f

(
−1 +

√
5

4

)
=

1

2
.

Once a point enters the region covered by the interval M of length a+b, bracketed by
the 3-cycle, it will be trapped there forever. Outside M, all points on unit interval will

be mapped to (0, 1/2], except for 0. The points in the interval (0, −1+
√

5
4 ) approach

M monotonically.

(c) It will be in (1
2 ,

1+
√

5
4 ).

(d) From (b), we know that except for the origin 0, all periodic orbits should be
in M. By (c), we cannot have the substring 00 in a periodic orbit (except for the
fixed point at 0). Hence 00 is the only pruning block, and the symbolic dynamics is a
finite subshift, with alphabet {0, 1} and only one grammar rule: a consecutive repeat
of symbol 0 is inadmissible.

(e) Yes. 0 is a periodic orbit with the symbol sequence 0. It is a repeller and no
point in its neighborhood will return. So it plays no role in the asymptotic dynamics.

(Yueheng Lan)

Chapter 12

(No solutions available.)
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Chapter 13

Solution 13.1: A transition matrix for 3-disk pinball. a) As the disk is convex,
the transition to itself is forbidden. Therefore, the Markov diagram is

1 2

3

,

with the corresponding transition matrix

T =

(
0 1 1
1 0 1
1 1 0

)
.

Note that T2 = T + 2. Suppose that Tn = anT + bn, then

T
n+1 = anT

2 + bnT = (an + bn)T + 2an .

So an+1 = an + bn , bn+1 = 2an with a1 = 1 , b1 = 0.

b) From a) we have an+1 = an + 2an−1. Suppose that an ∝ λn. Then λ2 = λ + 2.
Solving this equation and using the initial condition for n = 1, we obtain the general
formula

an =
1

3
(2n − (−1)n) ,

bn =
2

3
(2n−1 + (−1)n) .

c) T has eigenvalue 2 and −1 (degeneracy 2). So the topological entropy is ln 2, the

same as in the case of the binary symbolic dynamics. (Yueheng Lan)

Solution 13.2: Sum of Aij is like a trace. Suppose that Aφk = λkφk,
where λk , φk are eigenvalues and eigenvectors, respectively. Expressing the vector
v = (1, 1, · · · , 1)t in terms of the eigenvectors φk, that is, v = Σkdkφk, we have

Γn = Σij [A
n]ij = vtAnv = Σkv

tAndkφk = Σkdkλ
n
k (vtφk)

= Σkckλ
n
k ,

where ck = (vtφk)dk are constants.

a) As trAn = Σkλ
n
k , it is easy to see that both trAn and Γn are dominated by the

largest eigenvalue λ0. That is

ln |trAn|
ln |Γn|

=
n ln |λ0| + ln |Σk(λk

λ0
)n|

n ln |λ0| + ln |Σkdk(λk

λ0
)n|

→ 1 as n→ ∞ .
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b) The nonleading eigenvalues do not need to be distinct, as the ratio in a) is controlled
by the largest eigenvalues only.

(Yueheng Lan)

Solution 13.4: Transition matrix and cycle counting. a) According to the
definition of Tij , the transition matrix is

T =

(
a c
b 0

)
.

b) All walks of length three 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010 (four sym-
bols!) with weights aaa, aac, acb, cba, cbc, baa, bac, bcb . Let’s calculate T3,

T
3 =

(
a3 + 2abc a2c+ bc2

a2b+ b2c abc

)
.

There are altogether 8 terms, corresponding exactly to the terms in all the walks.

c) Let’s look at the following equality

T
n
ij = Σk1,k2,···,kn−1Tik1Tk1k2 · · ·Tkn−1j .

Every term in the sum is a possible path from i to j, though the weight could be zero.
The summation is over all possible intermediate points (n− 1 of them). So, Tn

ij gives
the total weight (probability or number) of all the walks from i to j in n steps.

d) We take a = b = c = 1 to just count the number of possible walks in n steps. This
is the crudest description of the dynamics. Taking a, b, c as transition probabilities
would give a more detailed description. The eigenvlues of T is (1 ±

√
5)/2, so we get

N(n) ∝ (1+
√

5
2 )n.

e) The topological entropy is then ln 1+
√

5
2 . (Yueheng Lan)

Solution 13.6: “Golden mean” pruned map. It is easy to write the transition
matrix T

T =

(
0 1
1 1

)
.

The eigenvalues are (1 ±
√

5)/2. The number of periodic orbits of length n is the
trace

T
n =

(1 +
√

5)n + (1 −
√

5)n

2n
.

(Yueheng Lan)

Solution 13.5: 3-disk prime cycle counting. The formula for arbitrary length

cycles is derived in sect. 13.4.
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Solution 13.45: Alphabet {0,1}, prune 1000 , 00100 , 01100 .

step 1. 1000 prunes all cycles with a 000 subsequence with the exception of
the fixed point 0; hence we factor out (1 − t0) explicitly, and prune 000 from the
rest. Physically this means that x0 is an isolated fixed point - no cycle stays in its
vicinity for more than 2 iterations. In the notation of exercise 13.18, the alphabet is
{1, 2, 3; 0}, and the remaining pruning rules have to be rewritten in terms of symbols
2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 . Physically, the 3-cycle
3 = 100 is pruned and no long cycles stay close enough to it for a single 100 repeat.
As in exercise 13.7, prohibition of 33 is implemented by dropping the symbol “3”
and extending the alphabet by the allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 , 13 13 , where 13 = 13,
23 = 23 are now used as single letters. Pruning of the repetitions 13 13 (the 4-cycle
13 = 1100 is pruned) yields the

Result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary dynamics. The other
remaining possible blocks 213 , 2313 are forbidden by the rules of step 3. The
topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (N.16)

for unrestricted 4-letter alphabet {1, 2, 23, 113}.

Solution 13.8: Spectrum of the “golden mean” pruned map.

1. The idea is that with the redefinition 2 = 10, the alphabet {1,2} is unrestricted
binary, and due to the piecewise linearity of the map, the stability weights factor
in a way similar to (14.10).

2. As in (15.9), the spectral determinant for the Perron-Frobenius operator takes
form (15.11)

det (1 − zL) =

∞∏

k=0

1

ζk
,

1

ζk
=
∏

p

(
1 − znp

|Λp|Λk
p

)
.

The mapping is piecewise linear, so the form of the topological zeta function
worked out in (13.16) already suggests the form of the answer. The alphabet
{1,2} is unrestricted binary, so the dynamical zeta functions receive contribu-
tions only from the two fixed points, with all other cycle contributions cancelled
exactly. The 1/ζ0 is the spectral determinant for the transfer operator like the
one in (10.19) with the T00 = 0, and in general

1

ζk
=

(
1 − z

|Λ1|Λk
1

)(
1 − z2

|Λ2|Λk
2

)(
1 − z3

|Λ12|Λk
12

)
· · ·

= 1 − (−1)k

(
z

Λk+1
+

z2

Λ2k+2

)
. (N.17)

The factor (−1)k arises because both stabilities Λ1 and Λ2 include a factor −Λ from

the right branch of the map.

Solution 15.2: Dynamical zeta functions
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1. Work through section sect. 15.3.2.

2. Generalize the transition matrix (11.15) to a transfer operator.

Solution 13.11: Whence Möbius function? Written out f(n) line-by-line for
a few values of n, (13.38) yields

f(1) = g(1)

f(2) = g(2) + g(1)

f(3) = g(3) + g(1)

f(4) = g(4) + g(2) + g(1)

· · ·
f(6) = g(6) + g(3) + g(2) + g(1)

· · · (N.18)

Now invert recursively this infinite tower of equations to obtain

g(1) = f(1)

g(2) = f(2) − f(1)

g(3) = f(3) − f(1)

g(4) = f(4) − [f(2) − f(1)] − f(1) = f(4) − f(2)

· · ·
g(6) = f(6) − [f(3) − f(1)] − [f(2) − f(1)] − f(1)

· · ·

We see that f(n) contributes with factor −1 if n prime, and not at all if n contains

a prime factor to a higher power. This is precisely the raison d’etre for the Möbius

function, with whose help the inverse of (13.38) can be written as the Möbius inversion

formula [24.29] (13.39).

Chapter 14

(No solutions available.)

Chapter 15

Solution 15.1: Numerical estimate of the escape rate for a 1-d repeller The
logistic map is defined by xn+1 = Axn(1 − xn) . For A ≤ 4 any point in the unit
interval [0, 1] will remain in the interval forever. For A > 4 almost all points starting
in the unit interval will eventually escape towards −∞.

The rate of escape can be easily measured by numerical experiment. We define
the fraction of initial conditions that leave the interval after n iterations to be Γn.
Figure N.2 shows a plot of log(Γn) versus n, computed by starting with 10 000 000
random initial points. Asymptotically the escape rate falls off exponentially as

Γ(n) = Ce−γn .
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0 5 10 15
n

0.0

5.0

10.0

15.0

20.0

lo
g(

Γ(
n)

)
Figure N.2: Plot of log(Γ(n)) versus n for the logistic map xn+1 = 6xn(1 −
xn). Error bars show estimated errors in the mean assuming a binomial distribution.
10 000 000 random initial starting points were used.

Figure N.2 suggests that this formula is very accurate even for relatively small n. We
estimate γ by measuring the slope of the curve in figure N.2. To avoid errors due to
rounding and transients only the points 5 ≤ n ≤ 10 were used. A linear regression fit
yields the escape rate for A = 6:

γ = 0.8315± 0.0001 ,

where the error is from statistical fluctuations (there may be systematic errors either
due to rounding or because we are not in the true asymptotic regime).

(Adam Prügel-Bennet)

Solution 15.2: Dynamical zeta functions

1. Work through section sect. 15.3.2.

2. Generalize the transition matrix (11.15) to a transfer operator.

Solution 15.5: Dynamical zeta functions as ratios of spectral determinants.

Try inserting a factor equal to one in the zeta function and then expanding it. The

problem is solved in sect. 15.5.

Solution 15.8: Dynamical zeta functions for Hamiltonian maps. Read

example 15.7.

Chapter 16

Solution 16.3: Euler formula. Let

P =

∞∏

k=0

(1 + tuk) =

∞∑

n=0

Pnt
n
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then

Pn =
1

n!

∂nP

∂tn

∣∣∣∣
t=0

=
1

n!

∑

in 6=in−1 6=···6=i1

uin+in−1+···+i1

(N.19)

=
∑

in>in−1>···i1≥0

uin+in−1+···+i1

Clearly P0 = 1, and

P1 =
∑

i=0

ui

multiplying both sides by 1 − u

(1 − u)P1 = 1 + u+ u2 + · · · − (u+ u2 + · · ·) = 1

(since, for |u| < 1, limn→∞ un = 0). Thus P1 = 1/(1 − u). Similarly

P2 =
∑

i>j≥0

ui+j

Graphically the allowed values of i and j are

6

-s s s s

s s s

s s

s

i

j

Performing the same trick as for P1

(1 − u)P2 =
∑

i>j≥0

ui+j −
∑

i>j≥0

ui+(j+1)

The only terms that survive are those for which j = i− 1 (that is the top diagonal in
the figure) thus

(1 − u)P2 = u−1
∞∑

i=1

u2i
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and

(1 − u)(1 − u2)P2 = u−1
(
u2 + u4 + · · · − (u4 + u6 + · · ·)

)
= u

Thus

P2 =
u

(1 − u)(1 − u2)

In general

(1 − u)Pn =
∑

in>in−1>···i1≥0

uin+in−1+···+i1 −
∑

in>in−1>···i1≥0

uin+in−1+···+(i1+1)

(N.20)

= u−1
∑

in>in−1>···i2≥1

uin+in−1+···+2i2 (N.21)

since only the term i1 = i2 − 1 survives. Repeating this trick

(1 − u)(1 − u2)Pn = u−1−2
∑

in>in−1>···i3≥2

uin+in−1+···+3i3

and

n∏

i=1

(1 − ui)Pn = u−(1+2+···+n)un(n−1) = un(n−1)/2

Thus

Pn =
un(n−1)/2

∏n
i=1(1 − ui)

.

(Adam Prügel-Bennet)

Solution 16.3: Euler formula, 2nd method. The coefficients Qk in (16.4) are
given explicitly by the Euler formula

Qk =
1

1 − Λ−1

Λ−1

1 − Λ−2
· · · Λ−k+1

1 − Λ−k
. (N.22)

Such a formula is easily proved by considering the finite order product

Wj(z, γ) =

j∏

l=0

(1 + zγl) =

j+1∑

l=0

Γlz
l
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Since we have that

(1 + zγj+1)Wj(z, γ) = (1 + z)Wj(γz, γ) ,

we get the following identity for the coefficients

Γm + Γm−1γ
j+1 = Γmγ

m + Γm−1γ
m−1 m = 1, . . . .

Starting with Γ0 = 1, we recursively get

Γ1 =
1 − γj+1

1 − γ
Γ2 =

(1 − γj+1)(γ − γj+1)

(1 − γ)(1 − γ2)
. . . .

the Euler formula (16.5) follows once we take the j → ∞ limit for |γ| < 1.

(Robert Artuso)

Solution 16.3: Euler formula, 3rd method. First define

f(t, u) :=

∞∏

k=0

(1 + tuk) . (N.23)

Note that

f(t, u) = (1 + t)f(tu, u) , (N.24)

by factoring out the first term in the product. Now make the ansatz

f(t, u) =

∞∑

n=0

tngn(u) , (N.25)

plug it into (N.24), compare the coefficients of tn and get

gn(u) = ungn(u) + un−1gn−1(u) . (N.26)

Of course g0(u) = 1. Therefore by solving the recursion (N.26) and by noting that∑n−1
k=1 k = n(n−1)

2 one finally arrives at

gn(u) =
u

n(n−1)
2∏n

k=1(1 − uk)
. (N.27)

Euler got this formula and he and Jacobi got many nice number theoretical results
from it, most prominent the pentagonal number theorem, which says that in the series

ChaosBook.org/version11.8, Aug 30 2006 soluConverg - 12jun2003



804 APPENDIX N. SOLUTIONS

expansion of
∏∞

k=1(1 − qk) all terms cancel except those which have as an exponent
the circumference of a regular pentagon with integer base length.

(Juri Rolf)

Solution 16.4: 2-d product expansion. Now let us try to apply the same trick
as above to the two dimensional situation

h(t, u) :=

∞∏

k=0

(1 + tuk)k+1 . (N.28)

Write down the first terms and note that similar to (N.24)

h(t, u) = f(t, u)h(tu, u) , (N.29)

where f is the Euler product (N.23). Now make the ansatz

h(t, u) =
∞∑

n=0

tnan(u) (N.30)

and use the series expansion for f in (N.29) to get the recursion

an(u) =
1

1 − un

n−1∑

m=0

umam(u)gn−m(u) . (N.31)

With this one can at least compute the generalized Euler product effectively, but it
would be nice if one could use it for a proof of the general behaviour of the coefficients
an.

(Juri Rolf)

Chapter 17

Solution 17.3: Stability of billiard cycles. The 2-cycle 0 stability (8.1) is the

solution to both problems (provided you evaluate correctly the hyperbola curvature on

the diagonal).

Solution 17.4: Numerical cycle routines. A number of sample Fortran

programs for finding periodic orbits is available on the homepage for this manuscript,

www.nbi.dk/ChaosBook/.

Solution 17.11: Inverse iteration method for a Hamiltonian repeller.
For the complete repeller case (all binary sequences are realized), the cycles can be
evaluated variationally, as follows. According to (3.15), the coordinates of a periodic
orbit of length np satisfy the equation

xp,i+1 + xp,i−1 = 1 − ax2
p,i , i = 1, ..., np , (N.32)
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with the periodic boundary condition xp,0 = xp,np .

In the complete repeller case, the Hénon map is a realization of the Smale horse-
shoe, and the symbolic dynamics has a very simple description in terms of the binary
alphabet ǫ ∈ {0, 1}, ǫp,i = (1 +Sp,i)/2, where Sp,i are the signs of the corresponding
cycle point coordinates, Sp,i = xp,i/|xp,i|. We start with a preassigned sign sequence
Sp,1, Sp,2, . . . , Sp,np , and a good initial guess for the coordinates x′p,i. Using the
inverse of the equation (17.22)

x′′p,i = Sp,i

√
1 − x′p,i+1 − x′p,i−1

a
, i = 1, ..., np (N.33)

we converge iteratively, at exponential rate, to the desired cycle points xp,i. Given
the cycle points, the cycle stabilities and periods are easily computed using (4.36).
The itineraries and the stabilities of the short periodic orbits for the Hénon repeller
(N.32) for a = 6 are listed in table 17.2; in actual calculations all prime cycles up to
topological length n = 20 have been computed.

(G. Vattay)

Chapter 18

Solution 18.2: Prime cycles for a 1-d repeller, analytic formulas. For the
logistic map the prime cycles, ordered in terms of their symbolic dynamics, are listed
in table 11.1

P = {0, 1, 01, 001, 011, 0001, 0011, 0111, . . .}

The position of the prime cycles can be found by iterating the inverse mapping. If we
wish to find the position of a prime orbit p = b1b2 · · · bnp , where bi ∈ {0, 1}, then
starting from some initial point, x = 1/2 say, we apply one of the inverse mappings

f−1
± (x) =

1

2
± 1

2

√
1 − x/4A

where we choose f−1
− if b1 = 0 or f−1

+ if b1 = 1. We then apply the inverse mapping
again depending on the next element in the prime orbit. Repeating this procedure
many times we converge onto the prime cycle. The stability Λp of a prime cycle p is
given by the product of slopes of f around the cycle. The first eight prime cycles are
shown in figure N.3.

The stabilities of the first five prime orbits can be calculated for arbitrary A. We
find that Λ0 = A, Λ1 = 2 −A, Λ01 = 4 + 2A−A2, and

Λ 001
011

= 8 + 2A−A2 ±A(2 −A)
√
A2 − 2A− 7. (N.34)

There is probably a closed form expression for the 4-cycles as well.
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0
0

1

1
Λ0 = 6

0

0
0

1

1
Λ1 = -4

1

0
0

1

1
Λ01 = -20

01

0
0

1

1
Λ001 = -114.955

001

0
0

1

1
Λ011 = 82.9545

011

0
0

1

1
Λ0001 = -684.424

0001

0
0

1

1
Λ0011 = 485.094

0011

0
0

1

1
Λ0111 = -328.67

0111

Figure N.3: Periodic orbits and stabilities for the logistics equation xn+1 = 6xn(1−
xn).

For crosschecking purposes: if A = 9/2, Λ0 = 9/2 Λ1 = −5/2 Λ01 = −7.25
Λ011 = 19.942461 . . ..

(Adam Prügel-Bennet)

Solution 18.2: Dynamical zeta function for a 1-d repeller The escape rate
can be estimated from the leading zero in the dynamical zeta function 1/ζ(z), defined
by

1/ζ(z) =
∏

p

(1 − znp/|Λp|) .

To compute the position of this pole we expand 1/ζ(z) as a power series (18.5) in z

1/ζ(z) = 1 −
∑

i=1

ĉiz
i

where

ĉ1 = |Λ0|−1 + |Λ1|−1 , ĉ2 = |Λ01|−1 − |Λ1Λ0|−1

ĉ3 = |Λ001|−1 − |Λ0Λ01|−1 + |Λ011|−1 − |Λ01Λ1|−1

etc.. Using the cycles up to length 6 we get

1/ζ(z) = 1 − 0.416667z− 0.00833333z2

+0.000079446z3− 9.89291× 10−7z4 + . . .

The leading zero of this Taylor series is an estimate of exp(γ). Using n = 1, 2, 3 and 4
we obtain the increasingly accurate estimates for γ: 0.875469, 0.830597, 0.831519 and
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0.831492 In a hope to improve the convergence we can use the Padé approximates
PN

M (z) =
∑N

i=1 piz
i/(1 +

∑M
j=1 qjz

j). Using the Padé approximates Pn−1
1 (z) for

n = 2, 3 and 4 we obtain the estimates 0.828585, 0.831499 and 0.831493.

The above results correspond to A = 6; in the A = 9/2 case the leading zero is

1/z = 1.43549 . . . and γ = 0.36150 . . .. (Adam Prügel-Bennet)

Solution 18.2: Spectral determinant for a 1-d repeller We are told the correct
expression for the escape rate is also given by the logarithm of the leading zero of the
spectral determinant (15.11), expanded as the Taylor series (18.8). The coefficients
ci should fall off super-exponentially so that truncating the Taylor series is expected
to give a far more accurate estimate of the escape rate than using the dynamical
zeta function. How do we compute the ci coefficients in (18.8)? One straightforward
method is to first compute the Taylor expansion of log(F (z))

log(F (z)) =
∑

p

∑

k=0

log

(
1 − tp

Λk
p

)
= −

∑

p

∑

k=0

∑

r=1

trp
Λkr

p

= −
∑

p

∑

r=1

trp

1 − Λ−r
p

= −
∑

p

∑

r=1

Bp(r)z
npr

where Bp(r) = − 1/r|Λr
p|(1 + Λ−r

p ) . Writing log(F (z)) as a power series

log(F (z)) = −
∑

i=1

biz
i

we obtain

b1 = B0(1) +B1(1)

b2 = B01(1) +B0(2) +B1(2)

b3 = B001(1) +B011(1) +B0(3) +B1(3)

b3 = B0001(1) +B0011(1) +B0111(1) +B01(2) +B0(4) +B1(4) (N.35)

etc.. To obtain the coefficients for the spectral determinant we solve

F (z) = 1 −
∑

i=1

Qiz
i = exp

(
∑

i=1

biz
i

)

for the Qi’s. This gives

Q1 = b1 , Q2 = b2 + b21/2 , Q3 = b3 + b1b2 + b31/6

Q4 = b4 + b1b3 + b22/2 + b2b
2
1/2 + b41/24

Using these formulas we find

F (z) = 1 − 0.4z − 0.0152381z2 − 0.0000759784z3 + 4.5311× 10−9z4 + · · ·
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1.0 2.0 3.0 4.0
n

-20.0

-15.0

-10.0

-5.0

0.0

log|ci|
log|bi|

Figure N.4: Plot of the Taylor coefficients for the spectral determinant, ci, and for
the dynamical zeta function, bi.

The logarithm of the leading zero of F (z) again gives the escape rate. Using the
n = 1, 2, 3, and 4 truncations we find the approximation to γ of 0.916291, 0.832345,
0.83149289 and 0.8314929875. As predicted, the convergence is much faster for the
spectral determinant than for the dynamical zeta function.

In figure N.4 we show a plot of the logarithm of the coefficients for the spectral
determinant and for the dynamical zeta function.

(Adam Prügel-Bennet)

The above results correspond to A = 6; in the A = 9/2 case all cycles up to

length 10 yield γ = 0.36150966984250926 . . .. (Vadim Moroz)

Solution 18.2: Escape rate for a 1-d repeller We can compute an approximate
functional dependence of the escape rate on the parameter a using the stabilities of
the first five prime orbits computed above, see (N.34). The spectral determinant (for
a > 4) is

F = 1 − 2z

a− 1
− 8z2

(a− 3)(a− 1)2(a+ 1)

+

(
2(32 − 18a+ 17a2 − 16a3 + 14a4 − 6a5 + a6)

(a− 3)(a− 1)3(1 + a)(a2 − 5a+ 7)(a2 + a+ 1)
(N.36)

− 2a(a− 2)
√

(a2 − 2a− 7)

(a2 − 5a+ 7)(a2 − 2a− 7)(a2 + a+ 1)

)
z3

The leading zero is plotted in figure N.5; it always remains real while the other two
roots which are large and negative for a > 5.13 . . . become imaginary below this critical
value. The accuracy of this truncation is clearly worst for a → 4, the value at which
the hyperbolicity is lost and the escape rate goes to zero.

(Adam Prügel-Bennet)

Solution 18.3: Escape rate for the Ulam map. The answer is worked out in

Nonlinearity 3, 325; 3, 361 (1990).
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4 5 6 7 8 9 10

a

0
0.2
0.4
0.6
0.8

1
1.2
1.4

γ

Figure N.5: Plot of the escape rate versus a for the logistic map xn+1 = axn(1−xn)
calculated from the first five periodic orbits.

Chapter 19

Solution 19.3:

(d) In the A = 9/2 case all cycles up to length 9 yield λ = 1.08569 . . .. (Vadim
Moroz)

Solution 9.4: The escape rate is the leading zero of the zeta function

0 = 1/ζ(γ) = 1 − eγ/2a− eγ/2a = 1 − eγ/a.

So, γ = log(a) if a > ac = 1 and γ = 0 otherwise. For a ≈ ac the escape rate
behaves like

γ(a) ≈ (a− ac).

Solution 19.1: The escape is controlled by the size of the primary hole of the
repeller. All subholes in the repeller will be proportional with the main hole. The size
of the main hole is l =

√
1 − 1/a. Near ac = 1 the escape rate is

γ(a) ∼ (a− ac)
1/2.

We can generalize this and the previous result and conclude that

γ(a) ∼ (a− ac)
1/z,

where z is the order of the maximum of the single humped map.

Solution 19.2: By direct evaluation we can calculate the zeta functions and the
Fredholm determinant of this map. The zeta functions are

1/ζk(z) = det (1 − zTk),

where

Tk =

(
T k+1

00 T k+1
01

T k+1
10 T k+1

11

)
,
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and T00 = 1/a1, T01 = (b− b/a1)/(1− b), T11 = (1− b− b/a2)/(1− b), T10 = 1/a2

are inverses of the slopes of the map. The Fredholm determinant is the product of
zeta functions

F (z) =

∞∏

k=0

1/ζk(z).

The leading zeroes of the Fredholm determinant can come from the zeroes of the
leading zeta functions.

The zeroes of 1/ζ0(z) are

1/z1 =
T00+T11+

√
(T00−T11)2+4T01T10

2 ,

1/z2 =
T00+T11−

√
(T00−T11)2+4T01T10

2 .

The zeroes of 1/ζ1(z) are

1/z3 =
T 2
00+T 2

11+
√

(T 2
00−T 2

11)2+4T 2
01T 2

10

2 ,

1/z4 =
T 2
00+T 2

11−
√

(T 2
00−T 2

11)2+4T 2
01T 2

10

2 .

By substituting the slopes we can show that z1 = 1 is the leading eigenvalue. The
next to leading eigenvalue, which is the correlation decay in discrete time, can be 1/z3
or 1/z2.

Chapter 20

Solution 20.1: In the higher dimensional case there is no change in the

derivation except Λp should be replaced with the product of expanding eigenvalues∏
j |Λp,j|. The logarithm of this product is

∑
j log |Λp,j |. The average of log |Λ,j| is

the j-th Lyapunov exponent.

Solution 20.4: The zeta function for the two scale map is

1/ζ(z, β) = 1 − z

(
1

aβ
+

1

bβ

)
.

The pressure function is

P (β) = log z0(β) = − log

(
1

aβ
+

1

bβ

)
.

The escape rate is

γ = P (1) = − log

(
1

a
+

1

b

)
,

The topological entropy is

K0 = htop = −P (0) = log 2.

The Lyapunov exponent is

λ = P ′(1) =
log a/a+ log b/b

1/a+ 1/b
.

The Kolmogorov entropy is

K1 = λ− γ = P ′(1) − P (1) =
log a/a+ log b/b

1/a+ 1/b
+ log

(
1

a
+

1

b

)
.
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The Rényi entropies are

Kβ = (P (β) − βγ)/(β − 1) = (log

(
1

aβ
+

1

bβ

)
+ β log

(
1

a
+

1

b

)
)/(1 − β).

The box counting dimension is the solution of the implicit equation P (D0) = 0, which
is

1 =
1

aD
0

+
1

bD0
.

The information dimension is

D1 = 1 − γ/λ.

The rest of the dimensions can be determined from equation P (q− (q− 1)Dq) = γq.
Taking exp of both sides we get

1

aq−(q−1)Dq
+

1

bq−(q−1)Dq
=

(
1

a
+

1

b

)q

.

For a given q we can find Dq from this implicit equation.

Solution 20.5: The zeta function is

1/ζ(z, β) = det (1 − Tβ−1),

where we replaced k with β − 1 in solution N. The pressure can be calculated from
the leading zero which is (see solution N)

P (β) = log z0(β) = − log


T

β
00 + T β

11 +

√
(T β

00 − T β
11)

2 + 4T β
01T

β
10

2


 .

Solution 20.6: We can easily read off that b = 1/2, a1 = arcsin(1/2)/2π and

a2 = a1 and do the steps as before.

Chapter 21

(No solutions available.)

Chapter 22

(No solutions available.)

Chapter 23

Solution 23.1: Diffusion for odd integer Λ. Consider first the case Λ = 3,
illustrated in figure N.6. If β = 0, the dynamics in the elementary cell is simple enough;
a partition can be constructed from three intervals, which we label {M1,M2,M3},
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(a) (b) 1 2 3

4 5
1

2

3

4

5

(c) (d)

Figure N.6: (a) (b) A partition of the unit interval into three or five intervals,

labeled by the order along the unit interval A = {M1, M2 = M4 ∪ (1
2 )∪M5, M3}.

The partition is Markov, as the critical point is also a fixed point. (c) the Markov
graph for this Markov partition.

with the alphabet ordered as the intervals are laid out along the unit interval. The
Markov graph is figure N.6(c), and the dynamical zeta function is

1/ζ|β=0 = 1 − (t1 + t2 + t3) = 1 − 3z/Λ ,

with eigenvalue z = 1 as required by the flow conservation.

However, description of global diffusion requires more care. As explained in the
definition of the map (23.9), we have to split the partition M2 = M4∪(1

2 )∪M5, and

exclude the fixed point f (1
2 ) = 1

2 , as the map f̂ (x̂) is not defined at f̂ (1
2 ). (Are we

to jump to the right or to the left at that point?) As we have f (M4) = M1 ∪M4,
and similarly for f (M5), the Markov graph figure N.6(d) is infinite, and so is the
dynamical zeta function:

1/ζ = 1 − t1 − t14 − t144 − t1444 · · · − t3 − t35 − t355 − t3555 · · · .

The infinite alphabet A = {1, 14, 144, 1444 · · ·3, 35, 355, 3555 · · ·} is a consequence
of the exclusion of the fixed point(s) x4, x5. As is customary in such situations
(see exercise 18.10, and chapter 21, inter alia), we deal with this by dividing out the
undesired fixed point from the dynamical zeta function. We can factorize and resum
the weights using the piecewise linearity of (23.9)

1/ζ = 1 − t1
1 − t4

− t3
1 − t5

.

The diffusion constant is now most conveniently evaluated by evaluating the partial
derivatives of 1/ζ as in (18.16)

〈T〉ζ = −z ∂
∂z

1

ζ
= 2

(
t1

1 − t4
+

t1t4
(1 − t4)2

)∣∣∣∣
z=1,β=0

=
3

4

〈
x̂2
〉

ζ

∣∣∣
z=1,β=0

= 2

(
n̂1(n̂1 + n̂4)Λ

2

(1 − 1/Λ)2
+ 2

n̂2
4/Λ

3

(1 − 1/Λ)3

)
=

1

2
(N.37)

yielding D = 1/3, in agreement with in (23.21) for Λ = 3.
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Chapter 24

(No solutions available.)

Chapter 26

Solution 26.2: Green’s function. The Laplace transform of the (time-dependent)
quantum propagator

K(q, q′, t) =
∑

n

φn(q)e−iEnt/~φ∗n(q′)

is the (energy-dependent) Green’s function

G(q, q′, E + iε) =
1

i~

∫ ∞

0

dt e
i
~

Et− ε
~

t
∑

n

φn(q)e−iEnt/~φ∗n(q′)

=
1

i~

∑

n

φn(q)φ∗n(q′)

∫ ∞

0

dt e
i
~
(E−En+iε)t

= −
∑

n

φn(q)φ∗n(q′)
1

E − En + iε
e−

ε
~

tei(E−En)t/~

∣∣∣∣
t=∞

t=0

.

When ε is positive, e−
ε
~
∞ = 0, so

G(q, q′, E + iε) =
∑

n

φn(q)φ∗n(q′)

E − En + iε
.

(Bo Li)

Solution 26.1: Lorentzian representation of the Dirac delta function.
General hint: read up on principal parts, positive and negative frequency parts of the
Dirac delta function, perhaps the Cauchy theorem, in any good quantum mechanics
textbook.

To see that (26.19) satisfies properties of the delta function,

δ(E − En) = − lim
ε→0

1

π
Im

1

E − En + iε
,

start by expressing explicitely the imaginary part:

−Im
1

E − En + iε
= −Im

E − En − iε

(E − En + iε)(E − En − iε)

=
ε

(E − En)2 + ε2
.
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This is a Lorenzian of width ǫ, with a peak at E = En. It has the correct normalization
for the delta function,

1

π

∫ ∞

−∞
dE

ε

(E − En)2 + ε2
=

1

π

ε

ε
arctan

E − En

ε

∣∣∣∣
∞

−∞

=
1

π
(π/2 − (−π/2)) = 1 ,

so

1

π

∫ ∞

−∞
dE

ǫ

(E − En)2 + ǫ2
= 1 , (N.38)

independently of the width ǫ.

Next we show that in the ǫ→ ∞ limit the support of the Lorentzian is concentrated
at E = En. When E = En,

lim
ε→0

1

π

(
ε

(E − En)2 + ε2

)
= lim

ε→0

1

π

1

ε
= ∞ ,

and when E 6= En,

lim
ε→0

1

π

ε

(E − En)2 + ε2
= 0

Providing that a function convolved with δ(s),
∫
f(E)δ(E−En)dE has a continuous

first derivative at E = En and falls of sufficiently rapidly as E → ±∞, this is a
representation of the delta function.

(R. Paskauskas, Bo Li)

Chapter 27

Solution 27.2: Fresnel integral. Start by re-expressing the integral overthe
infinite half-line:

1√
2π

∫ ∞

−∞
dx e−

x2

2ia =
2√
2π

∫ ∞

0

dx e−
x2

2ia , a ∈ R , a 6= 0 .

When a > 0, the contour

yy

xx

π / 44
RR→∞

RR

C’

vanishes, as it contains no pole:

∮

C

dz e−z2/2ia =

∫ ∞

0

dx e−
x2

2ia +

∫

C′

+

∫ 0

∞
ei π

4 e−
x2

2a dx = 0

∫

C′

=

∫ π
4

0

eiR2ei2φ/2aReiφidφ = 0 . (N.39)
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So

2√
2π

∫ ∞

0

dx e−
x2

2ia =
2√
2π

∫ ∞

0

dx ei π
4 e−

x2

2a = ei π
4
√
a =

√
ia

In the a < 0 case take the contour

yy

xxπ / 44

RR→∞

RR

C’

∮

C

dz e−z2/2ia =

∫ ∞

0

dx e−
x2

2ia +

∫

C′

+

∫ 0

∞
e−i π

4 e
x2

2a dx

=

∫ ∞

0

dx e−
x2

2ia − e−i π
4

∫ ∞

0

dx e
x2

2a = 0 .

Again

2√
2π

∫ ∞

0

dx e−
x2

2ia = e−i π
4

√
|a| ,

and, as one should have perhaps intuited by analyticity arguments, for either sign of
a we have the same Gaussian integral formula

1√
2π

∫ ∞

−∞
dx e−

x2

2ia = |a|1/2ei π
4

a
|a| =

√
ia .

The vanishing of the C′ contour segment (N.39) can be proven as follows: Substitute
z = Reiφ into the integral

IR =

∫ π
4

0

eiR2ei2φ/2aReiφidφ =

∫ π
4

0

eiR2(cos 2φ+i sin 2φ)/2aReiφidφ .

Then

|IR| ≤ R

∫ π
4

0

e−R2 sin 2φ/2adφ =
R

2

∫ π
2

0

e−R2 sin θ/2adθ .

In the range [0, π/2] we can replace 2
π θ ≤ sin θ , obtain a bound

|IR| ≤
R

2

∫ π
2

0

e−R2θ/πadθ =
R

2

1 − e−R2/2a

R2/aπ
,

so

lim
R→∞

|IR| = 0 .

(Bo Li)
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Chapter 28

Solution 28.7: Free particle R-function. Calculate R by its definition

R(q′, q, t) =

∫ t

0

L(q̇(t′), q(t′), t′)dt′

where the solution of Lagrange equations of motion is substituted for q(t).

a) a D-dimensional free particle:
We have
L(q̇(t′), q(t′), t′) = m

2

∑D
i=1[q̇i(t

′)]2,

q̇i(t) = const =
q′

i−qi

t .

Answer:
R(q′, q, t) = m

2

∑D
i=1

[q′
i−qi]

2

t .

b) Using symmetric gauge for vector potential and denoting the Larmor frequency
by ω = eB

mc , we have

L =
m

2

(
ẋ2 + ẏ2 + ż2 + ω(xẏ − yẋ)

)

The equations of motion are

ẍ− ωẏ = 0,
ÿ + ωẋ = 0,
z̈ = 0.

To calculate the expression for the principal function we do integration by parts
on ẋ2 + ẏ2, and the result is

R =

∫
Ldt =

m

2

(
xẋ|tt0 + yẏ|tt0 +

(z′ − z)2

t
+

∫ t

t0

[x(−ẍ+ ωẏ) + y(−ÿ − ωẋ)] dt

)
,

however terms inside the integral vanish by equations of motion. Denote w(t) =
x(t) + ιy(t), then the first two equations of motion are equivalent to equation
in complex w(t):

ẅ(t) + ιωẇ(t) = 0

Solution to which is

w′ ≡ w(t) = w +
ẇ(1 − e−ιωt)

ιω

We must reexpress velocities in R in terms of time and initial and final coordi-
nates. In terms of ẇ we have

ẇ0 =
ω

2

e
ιωt
2 (w − w0)

sin(ωt
2 )

ẇ =
ω

2

e
−ιωt

2 (w − w0)

sin(ωt
2 )

Notice that

xẋ+ yẏ = Rew∗ẇ
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Rew∗ẇ|t0 = ω
2 sin ωt

2

(
(|w|2 + |w0|2) cos ωt

2 − 2Rew0w
∗e

−ιω
2

)

= ω
2

(
cot(ωt

2 )[(x− x0)
2 + (y − y0)

2] + 2(x0y − y0x)
)

R = m(z−z0)
2

2t + mω
4

(
cot(ωt

2 )[(x − x0)
2 + (y − y0)

2] + 2(x0y − y0x)
)

c)

Solution 28.2: Dirac delta function, Gaussian representation. To prove that
δσ converges to a dirac delta function, it is enough to show that it has the following
properties:

1.
∫∞
−∞ δσ(x)dx = 1

2. limσ→0

∫ a

−a
f(x)δσ(x)dx=f(0)

for arbitrary f(x) continuous and positive a.

First property is satisfied by the choise of normalisation constant.

Second property is verified by the change of variables y = x/
√

2σ2:

lim
σ→0

∫ a

−a

f(x)δσ(x)dx = lim
σ→0

1√
π

∫ a√
2σ2

−a√
2σ2

f(
√

2σ2y)e−y2

dy = f(0)

(Rytis Paškauskas)

Solution 28.3: d-dimensional Gaussian integrals.

We require that the matrix in the exponent is nondegenerate (i.e. has no zero
eigenvalues.) The converse may happen when doing stationary phase approximations
which requires going beyond the Gaussian saddlepoint approximation, typically to the
Airy-function type stationary points [27.10]. We also assume that M is positive-
definite, otherwise the integral is infinite.

Make a change of variables y = Ax such that ATM−1A = Id. Then

I =
1

(2π)d/2

∫

Rd

exp[−1

2

∑

i

(y2
i − 2(JA)iyi)]|detA|dy

Complete each term under in the sum in the exponent to a full square

y2
i − 2(JA)iyi = (yi − (JA)i)

2 − (JA)2i

and shift the origin of integration to JA/2, so that

I =
1

(2π)d/2
exp(

1

2
JTAATJ)|detA|

∫

Rd

exp[−1

2

∑

i

y2
i ]dy
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Note that AATM−1AAT = AAT , therefore AAT = M and |detA| =
√

detM . The
remaining integral is equal to a Poisson integral raised to the d-th power, i.e. (2π)d/2.
Answer:

I =
√

detM exp[
1

2
JTMJ ]

(Rytis Paškauskas)

Solution 28.4: Stationary phase approximation.

Main contribution to this integral come from critical points of Φ(x). Suppose
that p is such a nondegenerate critical point, p : DΦ(p) = 0, and D2Φ(p) has full
rank. Then there is a local coordinate system y in the neighbourhood of p such that
Φ(p+y) = Φ(p)−∑λ

i=1 y
2
i +
∑d

i=λ+1 y
2
i , where λ is the number of negative eigenvalues

of D2Φ(p). Indeed, if we set x − p = Ay, then Φ(x) ≈ Φ(p) + 1
2yA

TD2Φ(p)Ay.
There exist such A that 1

2A
TD2Φ(p)A = diag[−1, . . .− 1︸ ︷︷ ︸

λ

,+1, . . .︸ ︷︷ ︸
d−λ

]. With this change

of variables in mind, we have

I = e
ιΦ(p)

~

∫

Rd

e
ι
~
(−
Pλ

i=1 y2
i +
Pd

i=λ+1 y2
i )|detA|dy = e

ιΦ(p)
~ (π~)d/2e

ιπ
4 (−2λ+d)|detA|

Furthermore, (detA)2detD2Φ(p) = 2d exp ιπλ, therefore

|detA| =
2d/2 exp ιπλ

2√
detD2Φ(p)

.

Phase factors exp ιπλ/2 and exp−ιπλ/2 cancel out. Substitute exp ιπd/2 = ιd/2.

The result:

I =
(2ιπ~)d/2e

ιΦ(p)
~

√
detD2Φ(p)

Critical nondegenerate points are isolated. Therefore if Φ has more than one
critical point, then equivalent local approximation can be made in the neighbourhoods
of each critical point and the complete approximation to the integral made by adding
contributions of all critical points.

Answer:

I =
∑

p:DΦ(p)=0

(2ιπ~)d/2e
ιΦ(p)

~ A(p)√
detD2Φ(p)

Rytis Paškauskas

Solution 28.4: Stationary phase approximation.
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values of x of stationary phase, the points for which the gradient of the phase
vanishes

∂

∂x
Φ(x) = 0.

Intuitively, these are the important contributions as for ~ → 0 the phase Φ(x)/~ grows
large and the function eiΦ(x)/~ oscillates rapidly as a function of x, with the negative
and positive parts cancelling each other. More precisely, if the stationary points are
well separated local extrema of Φ(x), we can deform the integration contour and
approximate Φ(x)/~ up to the second order in x by

I ≈
∑

n

A(xn)eiΦ(xn)/~

∫
ddxe

i
2~

(x−xn)T
D

2Φ(xn)(x−xn).

The second derivative matrix is a real symmetric matrix, so we can transform it to a
diagonal matrix by a similarity transformation

Diag(λ1, ..., λd) = OD2ΦO+ ,

where O is a matrix of an orthogonal transfomation. In the rotated coordinate system
u = O(x− xn) and the integral takes form

I ≈
∑

n

A(xn)eiΦ(xn)/~

∫
ddue

Pd
k=1 iλku2

k/2~ ,

where we used the fact that the Jacobi determinant of an orthogonal transformation
is detO = 1. Carrying out the Gauss integrals

∫
dueiλu2/2~ =

(2πi~)1/2

√
λ

(N.40)

and using detD2Φ(xn) =
∏d

k=1 λk we obtain the stationary phase estimate of (28.54).

A nice exposition of the subject is given in ref. [27.10].

Solution 30.2: Stationary phase approximation in higher dimensions. In this
case 1/~ is assumed to be a very large number. parameter. The idea of this method
is that we only evaluate part of integral I where eiϕ is stationary that is, ϕ ≈const.
That means we need extrema (saddle points) of manifold Φ. In this case

∂Φ

∂xsp,µ
= 0

Introduce a new d-dimensional variable s such, that

iΦ(x) = iΦ(xsp,µ) − s2
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Integral I in terms of new variables is

I =
∑

n

eiΦ(xn)/~

∫
e−s2/~A(xn(s))

∣∣∣∣
Dx

Ds

∣∣∣∣ d
ds

Here n sums all stationary phase points which the path of integration (in complex
plane!) meets. next, we need to calculate the Jacobian J :

J = 1/

∣∣∣∣
∂si

∂xk

∣∣∣∣ ,

where

∂si

∂xk
=

1

2isi

∂Φ

∂xk
.

This expression is undetermined at stationary phase points, because its right hand side
becomes division zero by zero. However, by the chain rule

∂si

∂xk
=

1

2i ∂si

∂xm

∂Φ2

∂xk∂xm

where x = xsp are evaluated at the stationary phase point. From this expression we
obtain that

[(
∂s

∂x

)2
]

i,k

=
1

2i

∂Φ2

∂xi∂xk

So the Jacobian is (employing a standard notation for a second derivative)

J =
(2i)d/2

√
detD2Φ

.

Since the exponential factor e−s2/~ cuts integration sharply because of a very large
parameter 1/~, the function is evaluated only at the stationary point s = 0, and the
integral is approximately

I ≈
∑

n

eiΦ(xn)/~A(xn)
(2i)d/2

√
detD2Φ(xn)

∫
e−s2/~dds

Limits of integration may depend on particular situation. If limits are infinite, then

∫
e−s2/~dds =

(∫ ∞

−∞
e−s2/~ds

)
= (π~)d/2

soluVanVleck - 26feb2004 ChaosBook.org/version11.8, Aug 30 2006



821

We substitute this into I and get the answer.

(Rytis Paškauskas)

Solution 28.12: D-dimensional free particle propagator. A free particle reachs
q from q′ by only one trajectory. Taking this into account the semiclassical Van Vleck
propagator is

Ksc(q, q
′, t) =

e
iR
~

(2πi~)d/2

∣∣∣∣∣det
∂2R

∂qi∂q′j

∣∣∣∣∣

1/2

The principal function of free motion in D-dimensions is

R(q, q′, t) =
m

2t

D∑

µ=1

(qµ − q′µ)2

The derivative is

∂2R

∂qi∂q′j
= −δi,j

m

t

According to that determinant is

∣∣∣∣∣det
∂2R

∂qi∂q′j

∣∣∣∣∣

1/2

= eiπD/2
(m
t

)D/2

,

and the Van Vleck propagator is

Ksc(q, q
′, t) = eiπD/4

( m

2π~t

)D/2 D∏

µ=1

exp

[
im

2~t

(
qµ − q′µ

)2
]

The next step is to calculate the exact quantum propagator:

K(q, q′, t) =
∑

n

φn(q)e−iEnt/~φ∗n(q′)

Taking that particle wave function in free space is

φp(q) =
1

(2π~)D/2
eipq/~

we derive that propagator K is

1

(2π~)D

∫
e−

it
2m~

p2+ip(q−q′)dDp
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We can split multi-dimensional integral that stands here into a product of one di-
mensional integrals. Then we should change variables for purpose of reduction to
Poisson-type integrals. We have omitted some straightforward algebra. The result is
that the semiclassical Van Vleck propagator and the exact quantum propagator are
identical:

K(q, q′, t) = eiπD/4
( m

2π~t

)D/2 D∏

µ=1

exp

[
im

2~t

(
qµ − q′µ

)2
]

= Ksc(q, q
′, t)

This result could have been anticipated because approximate formula (??.37) becomes
exact for the free particle Lagrangian.

(Rytis Paškauskas)

Chapter 30

Solution 30.1: Monodromy matrix from second variations of the action. If
we take two points in the configuration space q and q′ connected with a trajectory
with energy E and vary them in such a way that the variation of their initial and
final points are transverse to the velocity of the orbit in that point, we can write the
variations of the initial and final momenta as

δp⊥i =
∂2S(q, q′, E)

∂q⊥i∂q⊥k
δq⊥k +

∂2S(q, q′, E)

∂q⊥i∂q′⊥k

δq′⊥k (N.41)

and

δp′⊥i = −∂
2S(q, q′, E)

∂q′⊥i∂q⊥k
δq⊥k − ∂2S(q, q′, E)

∂q′⊥i∂q
′
⊥k

δq′⊥k . (N.42)

Next we express the variations of the final momenta and coordinates in terms of the
initial ones. In the obvious shorthand we can write (N.42) as

δq⊥ = −S−1
q′qSq′q′δq′⊥ − S−1

q′qδp
′
⊥,

From (N.41) it then follows that

δp⊥ = (Sqq′ − SqqS
−1
q′qSq′q′)δq′⊥ − SqqS

−1
q′qδp

′
⊥. (N.43)

These relations remain valid in the q′ → q limit, with q on the periodic orbit, and
can also be expressed in terms of the monodromy matrix of the periodic orbit. The
monodromy matrix for a surface of section transverse to the orbit within the constant
energy E = H(q, p) shell is

δq⊥ = Mqqδq
′
⊥ + Mqpδp

′
⊥,

δp⊥ = Mpqδq
′
⊥ + Mppδp

′
⊥. (N.44)
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In terms of the second derivatives of the action the monodromy matrix is

Mqq = −S−1
q′qSq′q′ , Mqp = −S−1

q′q ,

Mpq = (Sqq′ − SqqS
−1
q′qSq′q′) , Mpp = −SqqS

−1
q′q ,

and vice versa

Sqq = MppM
−1
qp , Sqq′ = Mpq − MppM

−1
qp Mqq,

Sq′q = −M−1
qp , Sq′q′ = −M−1

qp Mqq.

Now do exercise 30.2.

Solution 30.2: Jacobi gymnastics. We express the Jacobi matrix elements in
det (1− J) with the derivative matrices of S

det (1 − J) = det

(
I + S−1

q′qSq′q′ S−1
q′q

−Sqq′ + SqqS
−1
q′qSq′q′ I + SqqS

−1
q′q

)
.

We can multiply the second column with Sq′q′ from the and substract from the first
column, leaving the determinant unchanged

det (1 − J) = det

(
I S−1

q′q

−Sqq′ − Sq′q′ I + SqqS
−1
q′q

)
.

Then, we multiply the second column with Sq′q from the right and compensate this
by dividing the determinant with detSq′q

det (1 − J) = det

(
I I

−Sqq′ − Sq′q′ Sq′q + Sqq

)
/detSq′q.

Finally we subtract the first column from the second one

det (1 − Jj)) = det

(
I 0

Sqq′ + Sq′q′ Sqq′ + Sq′q′ + Sq′q + Sqq

)
/detSq′q.

The last determinant can now be evaluated and yields the desired result (30.2)

det (1 − Jj) = det (Sqq′ + Sq′q′ + Sq′q + Sqq)/detSq′q.
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A

B C

O

y

xθ

Figure N.7: Minimizing the path from the previous bounce to the next bounce.

Chapter 31

Solution 31.1: Evaluation of cycles by minimization. To start with a
guess path where each bounce is given some arbitrary position on the correct disk and
then iteratively improve on the guess. To accomplish this an improvement cycle is
constructed whereby each bouncing point in the orbit is taken in turn and placed in a
new position so that it minimizes the path. Since the positions of all the other bounces
are kept constant this involves choosing the new bounce position which minimizes the
path from the previous bounce to the next bounce. This problem is schematically
represented in figure N.7

Finding the point B involves a one dimensional minimization. We define the
vectors ~A = ~OA, ~B = ~OB and ~C = ~OC. We wish to minimize the length LABC by
varying ~B subject to the constraint that | ~B| = a. Clearly

LABC =
∣∣∣ ~A− ~B

∣∣∣+
∣∣∣~C − ~B

∣∣∣

=

√
~A2 + ~B2 − 2 ~A · ~B +

√
~C2 + ~B2 − 2 ~C · ~B

writing

~B(θ) = a(cos θ, sin θ)

then the minima is given by

dLABC

dθ
= −

(
~A√

~A2 + ~B2 − 2 ~A · ~B
+

~C√
~C2 + ~B2 − 2 ~C · ~B

)
· ~B′(θ) = 0.

The minima can then be found using a bisection algorithm or using Newton-Raphson.
A simpler way is to observe that ~B′(θ) is orthogonal to ~B(θ) so that the vector

~D =
~A√

~A2 + ~B2 − 2 ~A · ~B
+

~C√
~C2 + ~B2 − 2 ~C · ~B

will be proportional to ~B. This then provides an iterative sequence for finding ~B
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• Starting from your current guess for ~B calculate ~D

• Put ~B = a ~D/| ~D|

• Repeat the first step until you converge.

At each iteration of the improvement cycle the total length of the orbit is measured.
The minimization is complete when the path length stops improving. Although this
algorithm is not as fast as the Newton-Raphson method, it nevertheless converges very
rapidly.

(Adam Prügel-Bennet)

Chapter 32

Solution 32.2: The one-disk scattering wave function.

ψ(~r ) =
1

2

∞∑

m=−∞

(
H(2)

m (kr) − H
(2)
m (ka)

H
(1)
m (ka)

H(1)
m (kr)

)
eim(Φr−Φk) . (N.45)

(For r < a, ψ(~r) = 0 of course.)

(Andreas Wirzba)

Chapter 34

(No solutions available.)

Chapter 35

(No solutions available.)

Chapter D

(No solutions available.)

Chapter E

(No solutions available.)
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Chapter F

Solution F.1: Lefschetz zeta function. Starting with dynamical zeta function

ref. [13.11] develops the Atiyah-Bott-Lefschetz fixed point formula and relates is to

Weyl characters. Might be worth learning.

Chapter H

Solution H.1: Using the multiplicative property of the Jacobi matrix we can
write

Λt′+t(x0,u0) = ||Jt′+t(x0)u0|| = ||Jt′ (x(t))Jt(x0)u0||.
We can introduce the time evolved unit vector

u(t) = Jt(x0)u0/||Jt(x0)u0||.

Then
||Jt′(x(t))Jt(x0)u0|| = ||Jt′(x(t))u(t)||||Jt(x0)u0||,

which is the desired result.

We have to adjoin the tangent space, since the stretching factor depends on u
and not just on x. The stretching factor is multiplicative along the entire trajectory
(x(t),u(t)). However, it is not multiplicative along the phase space trajectory x(t)
with a fixed u.

Solution H.2: If b = a2 and Tb = 2Ta we can introduce the variable y = esTa .
The dynamo rate equation then reads

0 = 1 − x+ x2.

The solutions of this are x± = (1 ± i
√

3)/2. The dynamo rate is then a complex
cojugate pair ν = log x±/Ta.

The escape rate equation is

0 = 1 − x/a− x2/a2.

The solutions are x± = a(−1 ±
√

5)/2. The escape rate is γ = log(x+)/Ta.

In the reverse case the escape rate remains unchanged, while the dynamo rate
becomes ν = log((

√
5 + 1)/2)/Ta. In this case the advected field grows with an

exponential rate. In the previous case it shows oscillations in addition to the exponential
growth due to the imaginary part of the rate.

Chapter L

(No solutions available.)
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Projects

You are urged to try to work through the essential steps in a project that
combines the techniques learned in the course with some application of
interest to you for other reasons. It is OK to share computer programs and
such, but otherwise each project should be distinct, not a group project.
The essential steps are:

• Dynamics

1. construct a symbolic dynamics

2. count prime cycles

3. prune inadmissible itineraries, construct Markov graphs if ap-
propriate

4. implement a numerical simulator for your problem

5. compute a set of the shortest periodic orbits

6. compute cycle stabilities

• Averaging, numerical

1. estimate by numerical simulation some observable quantity, like
the escape rate,

2. or check the flow conservation, compute something like the Lya-
punov exponent

• Averaging, periodic orbits

1. implement the appropriate cycle expansions

2. check flow conservation as function of cycle length truncation, if
the system is closed

3. implement desymmetrization, factorization of zeta functions, if
dynamics possesses a discrete symmetry

4. compute a quantity like the escape rate as a leading zero of a
spectral determinant or a dynamical zeta function.
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5. or evaluate a sequence of truncated cycle expansions for averages,
such as the Lyapunov exponent or/and diffusion coefficients

6. compute a physically intersting quantity, such as the conduc-
tance

7. compute some number of the classical and/or quantum eigenval-
ues, if appropriate
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O.1. DETERMINISTIC DIFFUSION, ZIG-ZAG MAP 829

O.1 Deterministic diffusion, zig-zag map

To illustrate the main idea of chapter 23, tracking of a globally diffusing
orbit by the associated confined orbit restricted to the fundamental cell,
we consider a class of simple 1-d dynamical systems, chains of piecewise
linear maps, where all transport coefficients can be evaluated analytically.
The translational symmetry (23.10) relates the unbounded dynamics on the
real line to the dynamics restricted to a “fundamental cell” - in the present
example the unit interval curled up into a circle. An example of such map
is the sawtooth map

f̂ (x) =





Λx x ∈ [0, 1/4 + 1/4Λ]
−Λx+ (Λ + 1)/2 x ∈ [1/4 + 1/4Λ, 3/4 − 1/4Λ]
Λx+ (1 − Λ) x ∈ [3/4 − 1/4Λ, 1]

.(O.1)

The corresponding circle map f (x) is obtained by modulo the integer part.
The elementary cell map f (x) is sketched in figure O.1. The map has the
symmetry property

f̂ (x̂) = −f̂ (−x̂) , (O.2)

so that the dynamics has no drift, and all odd derivatives of the generating
function (23.3) with respect to β evaluated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (O.3)

The diffusion constant formula for 1-d maps is

D =
1

2

〈
n̂2
〉
ζ

〈n〉ζ
(O.4)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z

1

ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k
np1 + · · · + npk

|Λp1 · · ·Λpk
| , (O.5)

the mean cycle displacement squared by

〈
n̂2
〉
ζ

=
∂2

∂β2

1

ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk

)2

|Λp1 · · ·Λpk
| , (O.6)
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Figure O.1: (a)-(f) The sawtooth map (O.1) for the 6 values of parameter a for
which the folding point of the map aligns with the endpoint of one of the 7 intervals
and yields a finite Markov partition (from ref. [O.1]). The corresponding Markov
graphs are given in figure O.2.

Problems/projDDiff1.tex 7aug2002 ChaosBook.org/version11.8, Aug 30 2006



O.1. DETERMINISTIC DIFFUSION, ZIG-ZAG MAP 831

and the sum is over all distinct non-repeating combinations of prime cycles.
Most of results expected in this projects require no more than pencil and
paper computations.

Implementing the symmetry factorization (23.35) is convenient, but not
essential for this project, so if you find sect. 22.1.2 too long a read, skip the
symmetrization.

O.1.1 The full shift

Take the map (O.1) and extend it to the real line. As in example of fig-
ure 23.3, denote by a the critical value of the map (the maximum height in
the unit cell)

a = f̂ (
1

4
+

1

4Λ
) =

Λ + 1

4
. (O.7)

Describe the symbolic dynamics that you obtain when a is an integer, and
derive the formula for the diffusion constant:

D =
(Λ2 − 1)(Λ − 3)

96Λ
for Λ = 4a− 1, a ∈ Z . (O.8)

If you are going strong, derive also the fromula for the half-integer a =
(2k+1)/2, Λ = 4a+1 case and email it to DasBuch@nbi.dk. You will need
to partition M2 into the left and right half, M2 = M8 ∪ M9, as in the
derivation of (23.21). ✎ 23.1

page 429

O.1.2 Subshifts of finite type

We now work out an example when the partition is Markov, although the
slope is not an integer number. The key step is that of having a partition
where intervals are mapped onto unions of intervals. Consider for example
the case in which Λ = 4a − 1, where 1 ≤ a ≤ 2. A first partition is con-
structed from seven intervals, which we label {M1,M4,M5,M2,M6,M7,M3},
with the alphabet ordered as the intervals are laid out along the unit in-
terval. In general the critical value a will not correspond to an interval
border, but now we choose a such that the critical point is mapped onto
the right border of M1, as in figure O.1(a). The critical value of f () is
f (Λ+1

4Λ ) = a − 1 = (Λ − 3)/4. Equating this with the right border of M1,
x = 1/Λ, we obtain a quadratic equation with the expanding solution Λ = 4.
We have that f (M4) = f (M5) = M1, so the transition matrix (11.2) is
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(a)

1
2 6

31

54 7
3

1 3

(b) 1

4
5 6

3

7

1

2

3

(c)

6
7

4
5

2 31

1 3

Figure O.2: (a) The sawtooth map (O.1) partition tree for figure O.1(a); while inter-
vals M1,M2,M3 map onto the whole unit interval, f (M1) = f (M2) = f (M3) =
M, intervals M4,M5 map onto M1 only, f (M4) = f (M5) = M1, and similarly for
intervals M6,M7. An initial point starting out in the interval M1, M2 or M3 can
land anywhere on the unit interval, so the subtrees originating from the corresponding
nodes on the partition three are similar to the whole tree and can be identified (as,
for example, in figure 11.13), yielding (b) the Markov graph for the Markov partition
of figure O.1(a). (c) the Markov graph in the compact notation of (23.26).

given by

φ′ = Tφ =




1 1 1 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 1 1 1







φ1

φ4

φ5

φ2

φ6

φ7

φ3




(O.9)

and the dynamics is unrestricted in the alphabet

{1, 41, 51, 2, 63, 73, 3, } .

One could diagonalize (O.9) on the computer, but, as we saw in sect. 11.5,
the Markov graph figure O.2(b) corresponding to figure O.1(a) offers more
insight into the dynamics. The dynamical zeta function

1/ζ = 1 − (t1 + t2 + t3) − 2(t14 + t37)

1/ζ = 1 − 3
z

Λ
− 4 cosh β

z2

Λ2
. (O.10)

follows from the loop expansion (13.13) of sect. 13.3.

The material flow conservation sect. 19.3 and the symmetry factoriza-
tion (23.35) yield

0 =
1

ζ(0, 1)
=

(
1 +

1

Λ

)(
1 − 4

Λ

)
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figure O.1 Λ D

3 0
(a) 4 1

10
(b)

√
5 + 2 1

2
√

5

(c) 1
2(
√

17 + 5) 2√
17

(c’) 5 2
5

(d) 1
2(
√

33 + 5) 1
8 + 5

88

√
33

(e) 2
√

2 + 3 1
2
√

2

(f) 1
2(
√

33 + 7) 1
4 + 1

4
√

33

7 2
7

Table O.1: The diffusion constant as function of the slope Λ for the a = 1, 2 values
of (O.8) and the 6 Markov partitions of figure O.1

which indeed is satisfied by the given value of Λ. Conversely, we can use the
desired Markov partition topology to write down the corresponding dyn-
amical zeta function, and use the 1/ζ(0, 1) = 0 condition to fix Λ. For more
complicated transition matrices the factorization (23.35) is very helpful in
reducing the order of the polynomial condition that fixes Λ.

The diffusion constant follows from (23.36) and (O.4)

〈n〉ζ = −
(

1 +
1

Λ

)(
− 4

Λ

)
,
〈
n̂2
〉
ζ

=
4

Λ2

D =
1

2

1

Λ + 1
=

1

10

Think up other non-integer values of the parameter for which the symbolic
dynamics is given in terms of Markov partitions: in particular consider the
cases illustrated in figure O.1 and determine for what value of the parame-
ter a each of them is realized. Work out the Markov graph, symmetrization
factorization and the diffusion constant, and check the material flow con-
servation for each case. Derive the diffusion constants listed in table O.1.
It is not clear why the final answers tend to be so simple. Numerically, the
case of figure O.1(c) appears to yield the maximal diffusion constant. Does
it? Is there an argument that it should be so?

The seven cases considered here (see table O.1, figure O.1 and (O.8))
are the 7 simplest complete Markov partitions, the criterion being that the
critical points map onto partition boundary points. This is, for example,
what happens for unimodal tent map; if the critical point is preperiodic
to an unstable cycle, the grammar is complete. The simplest example is
the case in which the tent map critical point is preperiodic to a unimodal
map 3-cycle, in which case the grammar is of golden mean type, with 00
substring prohibited (see figure 11.13). In case at hand, the “critical” point
is the junction of branches 4 and 5 (symmetry automatically takes care of
the other critical point, at the junction of branches 6 and 7), and for the
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cases considered the critical point maps into the endpoint of each of the
seven branches.

One can fill out parameter a axis arbitrarily densely with such points -
each of the 7 primary intervals can be subdivided into 7 intervals obtained
by 2-nd iterate of the map, and for the critical point mapping into any of
those in 2 steps the grammar (and the corresponding cycle expansion) is
finite, and so on.

O.1.3 Diffusion coefficient, numerically

(optional:)
Attempt a numerical evaluation of

D =
1

2
lim
n→∞

1

n

〈
x̂2
n

〉
. (O.11)

Study the convergence by comparing your numerical results to the exact
answers derived above. Is it better to use few initial x̂ and average for long
times, or to use many initial x̂ for shorter times? Or should one fit the
distribution of x̂2 with a Gaussian and get the D this way? Try to plot
dependence of D on Λ; perhaps blow up a small region to show that the
dependance of D on the parameter Λ is fractal. Compare with figure 23.5
and figures in refs. [O.1, O.2, 23.7, 23.8].

O.1.4 D is a nonuniform function of the parameters

(optional:)
The dependence of D on the map parameter Λ is rather unexpected - even
though for larger Λ more points are mapped outside the unit cell in one it-
eration, the diffusion constant does not necessarily grow. An interpretation
of this lack of monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map
(O.1) for a random “generic” value of the parameter Λ, for example Λ = 6.
The idea is to bracket this value of Λ by the nearby ones, for which higher
and higher iterates of the critical value a = (Λ+1)/4 fall onto the partition
boundaries, compute the exact diffusion constant for each such approximate
Markov partition, and study their convergence toward the value of D for
Λ = 6. Judging how difficult such problem is already for a tent map (see
sect. 13.6 and appendix E.1), this is too ambitious for a week-long exam.
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O.2 Deterministic diffusion, sawtooth map

To illustrate the main idea of chapter 23, tracking of a globally diffusing
orbit by the associated confined orbit restricted to the fundamental cell, we
consider in more detail the class of simple 1-d dynamical systems, chains of
piecewise linear maps (23.9). The translational symmetry (23.10) relates
the unbounded dynamics on the real line to the dynamics restricted to a
“fundamental cell” - in the present example the unit interval curled up into
a circle. The corresponding circle map f (x) is obtained by modulo the
integer part. The elementary cell map f (x) is sketched in figure 23.3. The
map has the symmetry property

f̂ (x̂) = −f̂ (−x̂) , (O.12)

so that the dynamics has no drift, and all odd derivatives of the generating
function (23.3) with respect to β evaluated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (O.13)

The diffusion constant formula for 1-d maps is

D =
1

2

〈
n̂2
〉
ζ

〈n〉ζ
(O.14)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z

1

ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k
np1 + · · · + npk

|Λp1 · · ·Λpk
| , (O.15)

the mean cycle displacement squared by

〈
n̂2
〉
ζ

=
∂2

∂β2

1

ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk

)2

|Λp1 · · ·Λpk
| , (O.16)

and the sum is over all distinct non-repeating combinations of prime cycles.
Most of results expected in this projects require no more than pencil and
paper computations.

O.2.1 The full shift

Reproduce the formulas of sect. 23.2.1 for the diffusion constant D for Λ
both even and odd integer.
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figure 23.4 Λ D

4 1
4

(a) 2 +
√

6 1 − 3
4

√
6

(b) 2
√

2 + 2 15+2
√

2
16+4

√
2

(c) 5 1
(d) 3 +

√
5 5

2
Λ−1
3Λ−4

(e) 3 +
√

7 5Λ−4
3Λ−2

6 5
6

Table O.2: The diffusion constant as function of the slope Λ for the Λ = 4, 6 values
of (23.20) and the 5 Markov partitions like the one indicated in figure 23.4.

O.2.2 Subshifts of finite type

We now work out examples when the partition is Markov, although the
slope is not an integer number. The key step is that of having a partition
where intervals are mapped onto unions of intervals.

Start by reproducing the formula (23.28) of sect. 23.2.3 for the diffusion
constant D for the Markov partition, the case where the critical point is
mapped onto the right border of I1+ .

Think up other non-integer values of the parameter Λ for which the
symbolic dynamics is given in terms of Markov partitions: in particular
consider the remaing four cases for which the critical point is mapped onto
a border of a partion in one iteration. Work out the Markov graph sym-
metrization factorization and the diffusion constant, and check the material
flow conservation for each case. Fill in the diffusion constants missing in
table O.2. It is not clear why the final answers tend to be so simple. What
value of Λ appears to yield the maximal diffusion constant?

The 7 cases considered here (see table O.2 and figure 23.4) are the 7
simplest complete Markov partitions in the 4 ≤ Λ ≤ 6 interval, the criterion
being that the critical points map onto partition boundary points. In case
at hand, the “critical” point is the highest point of the left branch of the
map (symmetry automatically takes care of the other critical point, the
lowest point of the left branch), and for the cases considered the critical
point maps into the endpoint of each of the seven branches.

One can fill out parameter a axis arbitrarily densely with such points -
each of the 6 primary intervals can be subdivided into 6 intervals obtained
by 2-nd iterate of the map, and for the critical point mapping into any of
those in 2 steps the grammar (and the corresponding cycle expansion) is
finite, and so on.

O.2.3 Diffusion coefficient, numerically

(optional:)
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Attempt a numerical evaluation of

D =
1

2
lim
n→∞

1

n

〈
x̂2
n

〉
. (O.17)

Study the convergence by comparing your numerical results to the exact
answers derived above. Is it better to use few initial x̂ and average for long
times, or to use many initial x̂ for shorter times? Or should one fit the
distribution of x̂2 with a Gaussian and get the D this way? Try to plot
dependence of D on Λ; perhaps blow up a small region to show that the
dependance of D on the parameter Λ is fractal. Compare with figure 23.5
and figures in refs. [O.1, O.2, 23.7, 23.8].

O.2.4 D is a nonuniform function of the parameters

(optional:)
The dependence of D on the map parameter Λ is rather unexpected -
even though for larger Λ more points are mapped outside the unit cell in
one iteration, the diffusion constant does not necessarily grow. Figure 23.5
taken from ref. [23.7] illustrates the fractal dependence of diffusion constant
on the map parameter. An interpretation of this lack of monotonicity would
be interesting.

You can also try applying periodic orbit theory to the sawtooth map
(23.9) for a random “generic” value of the parameter Λ, for example Λ =
4.5. The idea is to bracket this value of Λ by the nearby ones, for which
higher and higher iterates of the critical value a = Λ/2 fall onto the partition
boundaries, compute the exact diffusion constant for each such approximate
Markov partition, and study their convergence toward the value of D for
Λ = 4.5. Judging how difficult such problem is already for a tent map (see
sect. 13.6 and appendix E.1), this is too ambitious for a week-long exam.

Problems/projDDiff2.tex 7aug2002 ChaosBook.org/version11.8, Aug 30 2006


	Contributors
	Acknowledgements
	Overture
	Why ChaosBook?
	Chaos ahead
	The future as in a mirror
	A game of pinball
	Chaos for cyclists
	Evolution
	From chaos to statistical mechanics
	A guide to the literature

	Go with the flow
	Dynamical systems
	Flows
	Computing trajectories

	Do it again
	Poincaré sections
	Constructing a Poincaré section
	Maps

	Local stability
	Flows transport neighborhoods
	Linear flows
	Stability of flows
	Stability of maps

	Newtonian dynamics
	Hamiltonian flows
	Stability of Hamiltonian flows
	Symplectic maps

	Billiards
	Billiard dynamics
	Stability of billiards

	Get straight
	Changing coordinates
	Rectification of flows
	Classical dynamics of collinear helium
	Rectification of maps

	Cycle stability
	Stability of periodic orbits
	Cycle stabilities are cycle invariants
	Stability of Poincaré map cycles
	Rectification of a 1-dimensional periodic orbit
	Smooth conjugacies and cycle stability
	Neighborhood of a cycle

	Transporting densities
	Measures
	Perron-Frobenius operator
	Invariant measures
	Density evolution for infinitesimal times
	Liouville operator

	Averaging
	Dynamical averaging
	Evolution operators
	Lyapunov exponents
	Why not just run it on a computer?

	Qualitative dynamics, for pedestrians
	Qualitative dynamics
	A brief detour; recoding, symmetries, tilings
	Stretch and fold
	Kneading theory
	Markov graphs
	Symbolic dynamics, basic notions

	Qualitative dynamics, for cyclists
	Going global: Stable/unstable manifolds
	Horseshoes
	Spatial ordering
	Pruning

	Counting
	Counting itineraries
	Topological trace formula
	Determinant of a graph
	Topological zeta function
	Counting cycles
	Infinite partitions
	Shadowing

	Trace formulas
	Trace of an evolution operator
	A trace formula for maps
	A trace formula for flows
	An asymptotic trace formula

	Spectral determinants
	Spectral determinants for maps
	Spectral determinant for flows
	Dynamical zeta functions
	False zeros
	Spectral determinants vs. dynamical zeta functions
	All too many eigenvalues?

	Why does it work?
	Linear maps: exact spectra
	Evolution operator in a matrix representation
	Classical Fredholm theory
	Analyticity of spectral determinants
	Hyperbolic maps
	The physics of eigenvalues and eigenfunctions
	Troubles ahead

	Fixed points, and how to get them
	Where are the cycles?
	One-dimensional mappings
	Multipoint shooting method
	d-dimensional mappings
	Flows

	Cycle expansions
	Pseudocycles and shadowing
	Construction of cycle expansions
	Cycle formulas for dynamical averages
	Cycle expansions for finite alphabets
	Stability ordering of cycle expansions
	Dirichlet series

	Why cycle?
	Escape rates
	Natural measure in terms of periodic orbits
	Flow conservation sum rules
	Correlation functions
	Trace formulas vs. level sums

	Thermodynamic formalism
	Rényi entropies
	Fractal dimensions

	Intermittency
	Intermittency everywhere
	Intermittency for pedestrians
	Intermittency for cyclists
	BER zeta functions

	Discrete symmetries
	Preview
	Discrete symmetries
	Dynamics in the fundamental domain
	Factorizations of dynamical zeta functions
	C2 factorization
	C3v factorization: 3-disk game of pinball

	Deterministic diffusion
	Diffusion in periodic arrays
	Diffusion induced by chains of 1-d maps
	Marginal stability and anomalous diffusion

	Irrationally winding
	Mode locking
	Local theory: ``Golden mean" renormalization
	Global theory: Thermodynamic averaging
	Hausdorff dimension of irrational windings
	Thermodynamics of Farey tree: Farey model

	Prologue
	Quantum pinball
	Quantization of helium

	Quantum mechanics, briefly
	WKB quantization
	WKB ansatz
	Method of stationary phase
	WKB quantization
	Beyond the quadratic saddle point

	Semiclassical evolution
	Hamilton-Jacobi theory
	Semiclassical propagator
	Semiclassical Green's function

	Noise
	Deterministic transport
	Brownian difussion
	Weak noise
	Weak noise approximation

	Semiclassical quantization
	Trace formula
	Semiclassical spectral determinant
	One-dof systems
	Two-dof systems

	Relaxation for cyclists
	Fictitious time relaxation
	Discrete iteration relaxation method
	Least action method

	Quantum scattering
	Density of states
	Quantum mechanical scattering matrix
	Krein-Friedel-Lloyd formula
	Wigner time delay

	Chaotic multiscattering
	Quantum mechanical scattering matrix
	N-scatterer spectral determinant
	Semiclassical 1-disk scattering
	From quantum cycle to semiclassical cycle
	Heisenberg uncertainty

	Helium atom
	Classical dynamics of collinear helium
	Chaos, symbolic dynamics and periodic orbits
	Local coordinates, fundamental matrix
	Getting ready
	Semiclassical quantization of collinear helium

	Diffraction distraction
	Quantum eavesdropping
	An application

	Epilogue
	Index
	A brief history of chaos
	Chaos is born
	Chaos grows up
	Chaos with us
	Death of the Old Quantum Theory

	Infinite-dimensional flows
	Stability of Hamiltonian flows
	Symplectic invariance
	Monodromy matrix for Hamiltonian flows

	Implementing evolution
	Koopmania
	Implementing evolution

	Symbolic dynamics techniques
	Topological zeta functions for infinite subshifts
	Prime factorization for dynamical itineraries

	Counting itineraries
	Counting curvatures

	Finding cycles
	Newton-Raphson method
	Hybrid Newton-Raphson / relaxation method

	Applications
	Evolution operator for Lyapunov exponents
	Advection of vector fields by chaotic flows

	Discrete symmetries
	Preliminaries and definitions
	C4v factorization
	C2v factorization
	Hénon map symmetries
	Symmetries of the symbol square

	Convergence of spectral determinants
	Curvature expansions: geometric picture
	On importance of pruning
	Ma-the-matical caveats
	Estimate of the nth cumulant

	Infinite dimensional operators
	Matrix-valued functions
	Operator norms
	Trace class and Hilbert-Schmidt class
	Determinants of trace class operators
	Von Koch matrices
	Regularization

	Statistical mechanics recycled
	The thermodynamic limit
	Ising models
	Fisher droplet model
	Scaling functions
	Geometrization

	Noise/quantum corrections
	Periodic orbits as integrable systems
	The Birkhoff normal form
	Bohr-Sommerfeld quantization of periodic orbits
	Quantum calculation of  corrections

	Solutions
	Projects
	Deterministic diffusion, zig-zag map
	Deterministic diffusion, sawtooth map


