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Chapter One

The algebra and calculus
of vectors
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Chapter 1 The algebra and calculus of vectors

Problem 1.1

In terms of the standard basis $ét j,k},a = 2i — j — 2k, b = 3i — 4k and
c=i—-5j+3k.

(i) Find3a +2b —4c and|a — b |*.

(i) Find |a|, |b| anda - b. Deduce the angle betweerandb.

(ili) Find the component o in the direction ofz and in the direction ob.
(iv) Findaxhb, bxc and(axb)x(bxc).

(v) Finda-(bxc) and(axh)-c and verify that they are equal. Is the éetb, ¢}
right- or left-handed?

(vi) By evaluating each side, verify the identiyk (b x¢) = (a-¢)b — (a-b)c.

Solution

()
3a+2b—4¢=3Q2i—j—2k)+23i —4k)— 4@ —5j + 3k)
=8i +17j —26k.m

la—b>=(a—b)-(a—b)
=(—i—j+2k)-(—i —j +2k)
=(-1)?+(-1)*+2*>=6.m
(i)
la> =a-a
=Q2i—j—2k)-Q2i —j —2k)
=22+ (-1 + (-2)* =09.

Hencela| = 3. m
6> =b-b

= (3i —4k)-(3i —4k)
=3? + (—4)* =25

Hencelb| = 5. m

a-b=Q2i—j—2k)(3i —4k)

= (2%3) 4 ((=1) x 0) + ((=2) x (—4))
=14.m
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Chapter 1 The algebra and calculus of vectors

The anglex betweeru andb is then given by

COSsx = a-b

la||b]
14 14
3x5 15

Thusa =tarm! 1. m

(i) The component ot in the direction ofz is

2 —j —2k
= -57 3k) | ———M8
(=37 +3K) (|2i—j —2k|)

_ (1x2) 4+ ((=5) x (=) + (3 x (-2))
3

W —

The component of in the direction of is

~ b
c.b:c.(—)
|b]

3i — 4k
=G =57 +3k)-[———=
(=37 438 (|3i—4k|)

(1 x3) + ((=5) x 0) + (3 x (—4))
5

(iv)

axh = (i — j —2k)x(3i — 4k)
i ok
212
3 0-4
= (4—-0)i — ((-8) = (—6))j + (0— (-3))k
—4i +2j +3k.m
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Chapter 1 The algebra and calculus of vectors

bxe=3i —4k)x(i —5j +3k)
i j k
3 04
1-5 3
=(0-20)i —(9—(-4)j + ((—=15) —0)k
=—20i —13j — 15k.m

Hence

(axb)x(bxc) = (4i +2j +3k)x(=20i —13j —15k)
i j k
4 2 3

—20 —13 —15

= ((=30) — (—39))i — ((—60) — (—60))j + ((—52) — (—40))k

=9i —12k.m

(V)
a-(bxe)= i —j—2k)-(=20i —13j — 15k)
= (2 x (=20)) + ((—=1) x (—=13)) + ((-=2) x (—15))
=3.

(axb)y-c= @i +2j +3k)-(i —5j +3k)
=(4x1)+ (2x(=5)+(3x3)
= 3.

These values are equal and thesifies the identity
a-(bxc)=(axb)-c.

Sincea - (b xc¢) is positive the sef{a, b, ¢} must beright-handed. m
(vi) Theleft side of the identity is

ax(bxc)=Q2i —j —2k)x(-20i —13j — 15k)

i j ok
| 2 -1 =2
20 —13 —15

= (15—26)i — ((—30) —40)j + ((—26) —20)k
=—11i +70j — 46k.
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Chapter 1 The algebra and calculus of vectors

Since

(@a-b)c = ((2 x3) + ((=1) x 0) + ((—2) x (—4)))(‘
— lde = 14(i =5 + 3k)
— 14i —70j + 42k,

theright side of the identity is

(@a-c)b—(a-b)c=3i —4k)—(14i —70j + 42k)
=—11i +70j —46k.

Thus the right and left sides are equal and th@sfies the identity. m
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Chapter 1 The algebra and calculus of vectors

Problem 1.2
Find the angle between any two diagonals of a cube.

D

FIGURE 1.1 Two diagonals of a cube.

Solution

Figure 1.1 shows a cube of side OF and A D are two of its diagonals. LeD
be the origin of position vectors and suppose the pait® andC have position

—_
vectorsai, a j, ak respectively. Then the line segment represents the vector

ai +aj +ak

and the line segmem D represents the vector
(aj +ak)—ai =—ai +aj +ak.
Let o be the angle betweefE andA D. Then

(ai +aj +ak)-(—ai +aj +ak)
lai +aj +ak||—ai +aj+ak|
—a’>+a’>+a* 1

Cosx =

(V3a)(V3a) 3

Hence theangle between the diagonalss cos™ 1, which is approximately0.5°.
|

© Cambridge University Press, 2006



Chapter 1 The algebra and calculus of vectors

Problem 1.3

ABCDEF is aregular hexagon with cent@ which is also the origin of position
vectors. Find the position vectors of the verticésD, E, F in terms of the position
vectorsa, b of A andB.

C B
b
D A
O a
FIGURE 12 ABCDEF is a regular ¥ i
hexagon. E

Solution

—_
() The position vector is represented by the line segmen which has the
—_
same magnitude and direction as the line segmdht Hence

c=b—a.nm

—_
(i) The position vectow is represented by the line segme&nd which has the
—_
same magnitude as, boppositedirection to, the line segmei@4. Hence

d=—-a.m

(iii) The position vectore is represented by the line segme&nE which has the

—

same magnitude as, boppositedirection to, the line segmeid@B. Hence

e=—-b.m

(iv) The position vectorf is represented by the line segme&nk’ which has the
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Chapter 1 The algebra and calculus of vectors

—

same magnitude as, boppositedirection to, the line segmentB. Hence

e=—(b—-—-a)=a—-b.m
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Chapter 1 The algebra and calculus of vectors

Problem 1.4

Let A BCD be a general (skew) quadrilateral and BtQ, R, S be the mid-points
of the sidesA B, BC, CD, DA respectively. Show thaPQRS is a parallelogram.

Solution

Let the points4, B, C, D have position vectora, b, ¢, d relative to some origin
0. Then the position vectors of the poin®s Q, R, S are given by

p= %(a+b), q = %(b—l—c), r= %(c—i—d), s = %(d +a).
Now the line segmenPQ represents the vector
g—p=10b+c)—L@a+b) =1ic-a),

—_
and the line segmeriR represents the vector
r—s = %(c—l—d —%(d—l—a) = %(c—a).

The linesPQ and SR are therefore parallel. Similarly, the ling€gR and PSS are
parallel. The quadrilaterd® QRS is therefore garallelogram. m
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Chapter 1 The algebra and calculus of vectors 12

Problem 1.5

In a general tetrahedron, lines are drawn connecting thepmiick of each side with
the mid-point of the side opposite. Show that these thrasslmeet in a point that
bisects each of them.

Solution
Let the vertices of the tetrahedron He B, C, D and suppose that these points have

position vectors, b, ¢, d relative to some origir®. ThenX’, the mid-point of4 B,
has position vector
x =1(a+b),
andY, the mid-point ofC D, has position vector
y = %(c +d).
Hence the mid-point ok'Y has position vector
Ix+y)= %(%(a—i—b)—l—%(c—l—d)) =la+b+c+d).
The mid-points of the other two lines that join the mid-psiof opposite sides of
the tetrahedron are found to have the same position vectwselthree points are

therefore coincident. Hendke three lines that join the mid-points of opposite sides
of the tetrahedron meet in a point that bisects each of tmem
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Chapter 1 The algebra and calculus of vectors 13

Problem 1.6

Let ABCD be a general tetrahedron and BtQ, R, S be the median centres of the
faces opposite to the verticds B, C, D respectively. Show that the linesP, BQ,
CR, DS all meet in a point (called theentroidof the tetrahedron), which divides
each line in the ratio 3:1.

Solution

Let the vertices of the tetrahedron be B, C, D and suppose that these points
have position vectora, b, ¢, d respectively, relative to some origi. ThenP, the
median centre of the facBC D has position vector

p=1b+c+d).
The point that divides the lind P in the ratio 3:1 therefore has position vector

3
“+4 P:%(a+b+c+d).

The corresponding points on the other three lines that foénvertices of the tetra-
hedron to the median centres of the opposite faces are altifomhave the same
position vector. These four points are therefore coindidétencethe four lines
that join the vertices of the tetrahedron to the median @nuf the opposite faces
meet in a point that divides each line in the ratio 3:t is the same point as was
constructed in Problem 1.&.
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Chapter 1 The algebra and calculus of vectors 14

Problem 1.7

A number of particles with masses,, m,, ms, ... are situated at the points with
position vectors |, r,, r3, ... relative to an origin0. The centre of mas§ of the
particles is defined to be the point of space with positioriarec

mirq1+ mor, +msry + -
mip +my +m3 + -

R =

Show that if a different origirD’ were used, this definition would still placg at
the same point of space.
Solution

N
Suppose the line segmetO’ (that connects the two origins) represents the vector
a. Thenr', r), r’, ..., the position vectors of the masses relative to the origfin

are given by the triangle law of addition to be

/

The position vector of the centre of mass measured relati¢k ts defined to be

mir 4+ mory, +msr’y 4 -

mi +my +m3 +---

R =

my(riy—a)+my(r,—a)+ms(rz—a)+---
ni +WZ2+WZ3+"'

(Whh + mary + msrs —l—) .
mp +my +mz +---

=R —a.

By the triangle law of addition, this defines thkeame point of spaces beforem
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Chapter 1 The algebra and calculus of vectors 15

Problem 1.8
Prove that the three perpendiculars of a triangle are coscur

A
N
M
@)
FIGURE 1.3 AL and BM are two of the B ¢ - *C
perpendiculars of the triangl¢ BC. L

Solution
Let A BC be the triangle and construct the perpendiculaisand BM from 4 and

B; let O be their point of intersection. Now construct the li® and extend it to
meetA B in the pointN. We wish to show thaf’ N is perpendicular tod B.
Suppose the pointd, B, C have position vectors, b, ¢ relative toO. Then,

sinceA L is perpendicular t3C, we have

a-(c—b)=0,
and, sinceBM is perpendicular t@’ 4, we have

b-(a—c)=0.
On adding these equalities, we obtain

c-(a—b)=0,

which shows that the lin€ N is perpendicular to the sideAB. m
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Chapter 1 The algebra and calculus of vectors

Problem 1.9

Ifa1 = )\11. +M1j +vik,a, = )\21. +M2j + vk, a3 = )\31' +M3j +V3k,where
{i,j,k}is astandard basis, show that

A1 1 v
ai-(arxaz) = Ay 2 va|.
A3 (3 v3

Deduce that cyclic rotation of the vectors in a triple scalarduct leaves the value
of the product unchanged.

Solution
Since
ik
axaz = Ay (a v2
A3 (3 v3
L pm2va| A2 Ay 2
=1 — k ,
13 V3 Az V3 A3 43
it follows that
a; - (axajz) = (Mi +u1j + Vlk) . (i HaVal s Az va k Az g )
M3 V3 A3 V3 A3 13
U2 V2 A2 vy Ao 2
=A — +v
1‘#31)3 1‘)»31)3 1‘)&3%
A1y v
= )\2 M2 V2| . A
A3 3 v3

Since the value of this determinant is unchanged a cyclatiaot of its rows, it
follows thatthe value of a triple scalar product is unchanged by a cydiation of
its vectorsm

© Cambridge University Press, 2006
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Chapter 1 The algebra and calculus of vectors 17

Problem 1.10

By expressing the vectos, b, ¢ in terms of a suitable standard basis, prove the
identityax(bxc) = (a-¢c)b —(a-b)c.

Solution

The algebra in this solution is reduced by selecting a spbesis sefi, j,k} so
that

a=al,
bzb]i +b2j7
¢c=cii +c3j +csik.

Such a choice is always possible. Then

ik
by by 0
C1 C2 C3
= (b2C3 — O)I — (b]C3 — O)_] + (b]Cz — szl)k
=byczi —bicsj + (blCz —szl)k

bxc =

and hence thieft side of the identity is

i k

aq 0 0

b26’3 —b16’3 b]Cz —b201
= (0 — 0)1 — (al(b162 — bZCl) — 0)] + (dl(—b16’3) — O)k
=ai(baci —bica)j —aibicsk.

ax(bxc) =

Theright side of the identity is

(@a-c)b—(a-b)c = (ajc1)b — (a1by)c
=a1C1(b1i —I—sz) —a1by (c1i + c2j + c3k)
= ay(bycy —bica)j — (arbic3)k.

Thus the right and left sides are equal @nid proves the identity. m
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Chapter 1 The algebra and calculus of vectors 18

Problem 1.11
Prove the identities
() (axb)-(cxd)=(a-c)b-d)—(a-d)b-c)

(i) (axb)x(cxd) =[a,b,d]c—[a,b,c]ld
(i) ax(bxc)+cx(axb)+ bx(cxa)=0 (Jacobi’s identity)

Solution

0)
(axb)-(exd) =a- (bx(cxd))
—a-((b-d)c—(b-c)d)
=(a-c)b-d)—(a-d)b-c).m

(i)
(axb)x(exd) = ((axb) -d)c — ((axb) -c)d
=la,b,d]c —[a,b,c]ld.m
(iii)
ax(bxec) +cx(axb)+ bx(cxa)
((@-c)b—(a-b)c)+ ((c-b)a—(c-a)b) + ((b-a)c—(b-c)a)

=(c-b-b-c)a+(a-c—c-a)b+(b-a—a-b)c
0.m
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Chapter 1 The algebra and calculus of vectors

Problem 1.12 Reciprocal basis

Let{a,b,c} be any basis set. Then the correspondéauiprocal basis{a*,b*, c*}
is defined by

bxc « cxa " axb

“lab.c] “lab.el ¢ T lab.el

*

(i) If {i,j,k}is astandard basis, show tHat, j*, k*} = {i, j, k}.
(i) Show that[a*,b*,c*] = 1/[a,b,c]. Deduce that if{a,b,c} is a right
handed set then so{a*,b*, c*}.
(iii) Show that{(a*)*, (b*)*, (¢*)*] = {a.b,c}.
(iv) If a vectorv is expanded in terms of the basis §eth, ¢ } in the form

v=»XAa+ub+vec,

show that the coefficients, u, v are given byh = v - a*, u = v - b*,
v=uv-c*.

Solution

() If {i, j,k}isastandard basis, then
ok Jj xk

Cq - (jxk)

Similar arguments hold foj * andk™* and hencgi *, j*. k*} = {i . j . k}. m
(if)

[@a*,b",c*]=a" - (b*xc*)

" cxa axb
=a - X
([a,b,C] [a,b,C])
a*

= e ((cxa) -b)a — (cxa) -a)b)

B bxc

"~ la,b,c]?
1

T la.b.c]

. ([a,b,c]a —0)

© Cambridge University Press, 2006
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Chapter 1 The algebra and calculus of vectors

If {a,b,c} is a right-handed basis set, thn b, ¢] is positive. It follows
that[a*,b™, ¢*] must also be positive and therefore alight-handed. m
(iii)
o b*xc*
(@) = [a*,b", c*]

cxa axb
= la.b.c] ([a,b,c] % [a,b,c])
1

- [a,b,c]

= : ([a,b,c]a—O)

- [a,b,c]
=a.

((cxa) -b)a — (cxa) -a)b)

Similar arguments hold fdi*) " and(c*)* and hencé (a*)*, (b*)*, (¢*)*} =
{a,b,c}. m

(iv) Supposev is expanded in terms of the basis §&t b, ¢ } in the form
v=Aa+pub+ve.
On taking the scalar product of this equation with we obtain
vea*=Aa-a* +pub-a*+ve-a*
) bxc © b bxc N ( bxc
= Ad - ol ——— VC »
[a,b,c] H [a,b,c] [a,b,c]

=A+0+0
=A.

Hencel = v - a*, and, by similar argumentg, = v -b* andu = v - c¢*. m

© Cambridge University Press, 2006
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Chapter 1 The algebra and calculus of vectors 21

Problem 1.13

Lamé’s equationsThe directions in which X-rays are strongly scattered byyated
are determined from the solutionsof Lamé’s equations, namely

x-a=1, x-b=M, x-c=N,

where{a, b, ¢} are the basis vectors of the crystal lattice, dndM, N areany
integers. Show that the solutions of Lamé’s equations are

x=La*+ Mb*+ Nc*,
where{a*,b*, c*} is the reciprocal basis t@, b, ¢}.

Solution
Let us seek solutions of Lamé’s equations in the form

x=Aa*+ub* +vc*,
where{a*, b*, ¢*} is thereciprocal basiscorresponding to the lattice basis b, ¢}.
On substituting this expansion into Lamé’s equations, weé fhathA = L, u = M
andv = N. The onlysolution of Lamé’s equations(corresponding to given values
of L, M, N) is therefore

x=La*"+Mb*+ Nc*.m
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Chapter 1 The algebra and calculus of vectors

Problem 1.14

If r(t) = (3t2—4)i +1*j + (t +3) k, where{i, j, k} is a constant standard basis,
find /¥ and#. Deduce the time derivative ofx r.

Solution
If r(t) = (32 —4)i +13j + (t + 3)k, then

i=6ti +3t%j + k,
F=6i +6tj.

Hence

—(rxF) = FXF + rxF

dt
=04+ rxr
i ik
=(3t2—4 3 t+3
6 61 0

= —6t(t +3)i +6(t+3)j +12t(t* —2)k.m

© Cambridge University Press, 2006
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Chapter 1 The algebra and calculus of vectors 23

Problem 1.15

The vectorv is a function of the time andk is a constant vector. Find the time
derivatives of (i)|v |2, (i) (v - k) v, (iii) [v, v, k].

Solution
(i)
d 2
vl =—(v-v)
=0V-V+UV-V
=2v-.0.1
(if)
d ) . .
E((v.k)v):(v-k—i—v-k)v—l—(v-k)v
=@W-kv+(v-k)o.m
(iii)
E[v,v,k]=[v,v,k]+[v,v»k]+[v’”’k]
:0+[v,v,k]+0
=[v,v,k].m
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Chapter 1 The algebra and calculus of vectors

Problem 1.16

Find the unit tangent vector, the unit normal vector and thwature of the circle
x =acosf, y = asind, z = 0 at the point with parametér.

Solution

Leti, j be unit vectors in the direction@x, Oy respectively. Then the vector
form of the equation for the circle is

r =acosfi +asinf j.

Then
dr L. .
0= —asinfi + acosh j
and so
dr B
a6| - ¢

Theunit tangent vector to the circle is therefore

dr dr o .
t(0) = %/'% = —sinfi +cosf j.m

By the chain rule,

ﬂ _dt/df  dt/d  —cosfi —sind j
ds  ds/do  |dr/dO| a ’

Hence theaunit normal vector andcurvature of the circle are given by

Q| =

n(f) = —cosfi —sind j, k() =

Theradius of curvature of the circle isa. m
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Chapter 1 The algebra and calculus of vectors

Problem 1.17

Find the unit tangent vector, the unit normal vector and tneature of the helix
x =acosf, y = asinf, z = b0 at the point with parameté.

Solution

Leti, j, k be unit vectors in the direction@x, Oy, Oz respectively. Then the
vector form of the equation for the helix is

r=acosfi +asinfj + bok.

Then
dr L. .
7 —asinfi +acosfj + bk
and so
dr ) N\ /2

Theunit tangent vector to the helix is therefore

dr dr
t(0) = 75/ |78
__—asinfi +acost j +bk .
B (a? +b2)1/2 '

By the chain rule,
dt _dt/do _ dt/db
ds ds/d8  |dr/db|

__ —acosfi —asing j
a? + b2

Hence thaunit normal vector andcurvature of the helix are given by

a

n(f) = —cosfi —sind j, k(0) = ml

Theradius of curvature of the helix is(a* + b%) /a. m
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Chapter 1 The algebra and calculus of vectors 26

Problem 1.18

Find the unit tangent vector, the unit normal vector and thrgature of the parabola
x = ap?, y = 2ap, z = 0 at the point with parametegr.

Solution

Leti, j be unit vectors in the direction@x, Oy respectively. Then the vector
form of the equation for the parabola is

r =ap?i +2apj.

Then

dr . . 1/2
— =2api +2aj and
dp

dr

o =2a<p2—|— 1)

Theunit tangent vector to the parabola is therefore

d
=1/

pi+j
(p2 + 1)1/2

dr
dp

By the chain rule,

dt _dt/dp _ dt/dp
ds ds/dp  |dr/dp|

_ ! ( i _pwi+n)
2a(p2+1)"2\ P2+ 1) (p24+1)?
__i-pj
2a (p? +1)°

Hence theaunit normal vector andcurvature of the parabola are given by

— @ =— 1 m

no)=——=29 .
(p>+ 1) 2a (p? +1)"?

3/2
Theradius of curvature of the parabola iga (p2 + 1) .m
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Chapter 2 Velocity, acceleration and scalar angular veloci ty 28

Problem 2.1

A particle P moves along ther-axis with its displacement at tinregiven byx =
6t2 —t* + 1, wherex is measured in metres anih seconds. Find the velocity and
acceleration ofP at timez. Find the times at whiclP is at rest and find its position
at these times.

Solution
Since the displacement @f at timer is

x=06t2—13+1,
thevelocity of P at timez is given by

d
v=2 0232 ms
d

and theaccelerationof P at timer is given by

dv
=— =12—-6/ms 2,
“ dt

P is instantaneouslgt rest whenv = 0, that is, when
12t — 3t = 0.
This equation can be written in the form
3t(4—1)=0
and its solutions are therefore= 0 s andr = 4 s.

Whent = 0 s, the displacement @ is x = 6(0%) — 03 + 1 = 1 m and when
t = 4 s, the displacement @ isx = 6(4*>) —4>* +1=33m.m
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Chapter 2 Velocity, acceleration and scalar angular veloci ty 29

Problem 2.2
A particle P moves along the-axis with its acceleration at timez given by

a=6t—4ms?2,
Initially P is at the pointx = 20 m and is moving with speedl5 ms™! in the
negativex-direction. Find the velocity and displacement®fat timez. Find when

P comes to rest and its displacement at this time.

Solution
Since the acceleration @t at timer is given to be

a=6t—4,
the velocityv of P at timer must satisfy the ODE

W _ 64
dt '
Integrating with respect togives
v=23"—4t+C,

whereC is a constant of integration. The initial condition that —15 whenz = 0
gives

—15 =3(0%) — 4(0) + C,
from whichC = —15. Hence therelocity of P at timer is
v=3t"—4r—15ms".
By writing v = dx/dt and integrating again, we obtain
x=1>—2t*— 15t + D,

whereD is a second constant of integration. The initial conditivet = 20 when
t = 0 gives

20 = 0° —2(0%) — 15(0) + D,
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Chapter 2 Velocity, acceleration and scalar angular veloci ty 30

from which D = 20. Hence thalisplacementof P at timet is
x =13 —2t>— 15t +20m.
P comes to rest when = 0, that is, when

3t2 -4t —15=0.
This equation can be written in the form

(t—3)3t+5) =0
and its solutions are therefare= 3 sandt = —% S. Thetime = —% s isbeforethe
motion started and is therefore not a permissible solutibfollows that P comes

to rest only whens = 3 s. Thedisplacementof P at this time is

x=3-23H-153)+20=—16m.m
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Problem 2.3 Constant acceleration formulae

A particle P moves along thec-axis with constantacceleration: in the positive
x-direction. Initially P is at the origin and is moving with velocityin the positive
x-direction. Show that the velocity and displacement of P at timer are given

by
— _ 1 2
vV =u-+at, X =ut + zat”,
and deduce that

v? = u? + 2ax.

In a standing quarter mile test, the Suzuki Bandit 1200 noytde covered the quar-
ter mile (from rest) in 11.4 seconds and crossed the finighdwing 116 miles per
hour. Are these figures consistent with the assumption ctem acceleration?

Solution
When the acceleratiomis aconstantthe ODE
dv
— =a
dt
integrates to give
v=at+ C,

whereC is a constant of integration. The initial condition= u whenz = 0 gives
u=0+C,
from whichC = u. Hence theselocity of P at timet is given by
v=u+at. (1)
On writingv = dx/dt and integrating again, we obtain
x=ut+%at2+D,

whereD is a second constant of integration. The initial conditioa: 0 whenz = 0
gives D = 0 so that thedisplacementof P at timet is given by

x = ut + 1ar*. (2)
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From equation (1),

v? = (u + at)?
u? + 2uat + a*t*
=u? 4+ 2a (ut + %alz)

= u? + 2ax,
on using equation (1). We have thus obtained the relation

v? = u? + 2ax. (3)

In the notation used above, the results of the Bandit tesivene

u=0, v = 116 mph(= 170 fts™!),
x = 1320 ft, t=114s,

in Imperial units.
Suppose that the Bandit does have constant acceleratidmen formula (1)
gives
170 =0+ 11.4a,
from whicha = 14.9 fts~2. However, formula (2) gives

1320 = 0 + 1a(11.4)

from whicha = 20.3 fts™2. These two values far do not agree and so the Bandit
must have hadon constant accelerationm
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Problem 2.4
The trajectory of a charged particle moving in a magnetidfiglgiven by

r =bcosQti +bsinQtj + ctk,

whereb, Q andc are positive constants. Show that the particle moves witistemt
speed and find the magnitude of its acceleration.

Solution
Since the position vector a? at timet is

r =bcosQti +bsinQtj + ctk,

thevelocity of P at timez is given by

d .
v = d_’; = —QbsinQti + Qbcostj + ck,

and theaccelerationof P at timer is given by

d .
a= d—'[’ — —Q%bcosQri — Q2bsinQuj.

It follows that

[v]? = (=QbsinQ1)* + (b cosQt)? + ¢
= Q?h? (sin2 Qt + cos Qt) + c?
= Q%b* + 2.

Hencelv| = (Q%b% + cz)l/z, which is a constant.
Furthermore,

la)*> = (—Q%b cosQt)? + (—Q%bsinQr)?
= Q*h? (cos2 Qt + sin? Qz)
= Q*h?.

Hencela| = 22b, which is also a constarm
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Problem 2.5 Acceleration due to rotation and orbit of the Earth

A body is at rest at a location on the Earth’s equator. Fin@dtseleration due to
the Earth’s rotation. [Take the Earth’s radius at the equatbe 6400 km.]

Find also the acceleration of the Earth in its orbit arouredShin. [Take the Sun
to be fixed and regard the Earth as a particle following a trcpath with centre
the Sun and radiuks x 10 m.

Solution

() The distance travelled by a body on the equator in ondiostaf the Earth
is 2w R, whereR is the Earth’s radius. This distance is traversed in one day.
Thespeedof the body is therefore

_ 27 x 6,400,000

v = =465ms !,
24 x 60 x 60

in S.1. units. Theaccelerationof the body is directed towards the centre of
the Earth and has magnitude

U2

a=—=0.034ms>m
R

(i) The distance travelled by the Earth in one orbit of thev&27 R, whereR
is now the radius of the Earth&rbit. This distance is traversed in one year.
The speedof the Earth in its orbit is therefore

27 (15 x 101°)

v = =3.0x10*ms!,
365 x 24 x 60 x 60

in S.I. units. Theaccelerationof the Earth is directed towards the Sun and
has magnitude

U2
a=—=0.0060ms>.m
R
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Problem 2.6

An insect flies on a spiral trajectory such that its polar dowates at time are given
by

r = be®t, 0 = Qt,

whereb and<2 are positive constants. Find the velocity and acceleratgmors of
the insect at time, and show that the angle between these vectors is ablway.s

Solution
Thevelocity of the insect at time is given by

v="FT+ (r@) 0
= (Qbem) T+ (Qbem> 0
and theaccelerationof the insect at time is given by
a=(i-r0?)7+ (ri+20)0
= (szem — szem)?—i— (O + ZszeQ’> 0
=2Q2%be® 9.
It follows that
lv] = V2Qbe® and  |a| = 2Q%be®.
Theanglea betweerw anda is then given by

vea
COoSx =

lv|la|
2Q3p2e201
(ﬁﬂbe9’> <2Q2be9’>
1

-

Hence the angle between the vecto@nda is alwaysrz/4. m
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Problem 2.7

A racing car moves on a circular track of radikis The car starts from rest and
its speedincreases at a constant rate Find the angle between its velocity and
acceleration vectors at time

Solution
Since the car has speed= «r at timet, its velocity is

and itsaccelerationis

(b2 + a2)'*

The angle between the vectaranda at timez is therefore

b
B = cos’! (— .m
(b2 + a214)1/2
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Problem 2.8

A particle P moves on a circle with centr@ and radiug. At a certain instant the
speed ofP is v and its acceleration vector makes an angl&ith PO. Find the
magnitude of the acceleration vector at this instant.

FIGURE 2.1 The velocity and acceleration
vectors of the particle.

Solution
In the standard notation, tlvelocity andaccelerationvectors of P have the form

v =100,
2
[N Lo
a=——7+100,
b

whereuv is thecircumferential velocityf P.

—_
Consider the component afin the directionPO. This can be written in the
geometrical forma| cosa and also in the algebraic form- (—¥). Hence

It follows that

© Cambridge University Press, 2006



Chapter 2 Velocity, acceleration and scalar angular veloci ty

Problem 2.9 %
A bee flies on a trajectory such that its polar coordinatesra £ are given by

V=b—;(2f—t) o=L" 0<i1<2)
T T

whereb andr are positive constants. Find the velocity vector of the liggree .
Show that the least speed achieved by the bé¢is Find the acceleration of
the bee at this instant.

Solution
Thevelocity vector of the bee is given by

V=77 + (r9>§
2 ~
- —f(f—z)?+ b—g(zz—z)o.
T T

It follows that

4b* h2t?
v = — (-0 +—Qr—1)°
T T

b2

=— (z“ — 473 + 8722 — 873 + 4r4> ,
T

after some simplification.
To find the maximum value dfv|, consider the time derivative ¢ |?.

d b?
E|v|2 =— (4t3 —127¢% + 167% — 8r3)
T

4p?
= —(—1) (12 —2tt + 2r2> .
T

The expression? — 2t¢ + 272 is always positive and hence
d <0 for t<m,
d—|v|2 =0 for t=r,

! >0 for t>rt.

Hence|v | achieves its minimum value when= . At this instant,

o] = -,
T
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which is therefore theninimum speedof the bee.
Theaccelerationvector of the bee at timeis given by

a= ('r'—réz)?+ (ré)'+2r'é)§

= (—§ —b—i(zr—t))?Jr (O+ %(r—t))a
T T

2

whens = 1. Hence, when the speed of the bee is a minimum,

3b
_2.

la| = —.m
T
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Problem 2.10 % A pursuit problem: Daniel and the Lion

The luckless Daniel) is thrown into a circular arena of radiusontaining a lion
(L). Initially the lion is at the centr@® of the arena while Daniel is at the perimeter.
Daniel’s strategy is to run with his maximum speedround the perimeter. The
lion responds by running at its maximum spdédn such a way that it remains
on the (moving) radiu®)D. Show thatr, the distance of. from O, satisfies the

differential equation
2 2.2
u U<a
2= — ( — r2) .
ar \ u?

Find r as a function of. If U > u, show that Daniel will be caught, and find how
long this will take.

Show that the path taken by the lion is a circle. For the speeise in which
U = u, sketch the path taken by the lion and find the point of capture

FIGURE 2.2 Daniel D is pursued by the lior.. The lion
remains on the rotating radiugD.

Solution

Let the lion have polar coordinates® as shown in Figure 2.2. Then tkelocity
vector of the lion is
(r6)8

()
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since the lion remains on the radi@D which is rotating with angular velocity
6 = u/a. Since the lion is running with spedd, it follows that

2
P2+ (ﬂ) =U?,
a

which can be written in the form

2 2.2
fzzu—(U a —r2).
ar \ u?
This is theequation satisfied by the radial coordinatér).
On taking square roots and selecting the positive sign, erob

1/2
. u (U?a? ’ /
F=— = ,
a u

which is a separable first order ODE. Separation gives

1/2

¢ UZ 2 -
rf (5 )
a u
[ ur
= sin (—) + C,
a
whereC is a constant of integration. The initial condition= 0 whens = 0 gives
C = 0 so that
ut . [ur
“ it (1)),
a Ua
that is,

Ua . (ut)
r =—5SIn{ — 1.
u a

This is thesolution for  as a function of.
Daniel will be caught when = q, that is, when

. ut u
sinf — | = —.
(5)-7
If U > u, this equation has the real solution

a . _,u
t=-—sin " —
u U
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and soDaniel will be caught after this time.
Sincef = ut/a, the polar equation of theath of the lion is

Ua .
F = —asme.
u

In order to recognise this equation as a circle, we expr@s<iartesian coordinates.
This is made easier if both sides are multipliedrbyrhe equation then becomes

Ua
x? + y2 = (7) Y,

the standard form of which is

’ Ua\* _ (Ua 2
o +(y Zu) N (Zu) '
This is acircle with centre a(0, Ua/2u) and radiu€/a/2u. Note that the lion does
not traverse the full circle. Daniel will be caught when tlwmlhas traversed an arc
of length(Ua/u) sin ' (u/U).
For the special case in whidii = u (that is, the lion and Daniel have the same
speed) the path of the lion is

which is a circle with centre a0, 1a) and radius}a. Daniel will be caught when
the lion has traversed half of this circle, as shown in FiguBe The point of capture
is(0,a). m
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C

FIGURE 2.3 The paths of Daniel and the lion whéh=
u. C is the point of capture.
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Problem 2.11 General motion with constant speed

A particle moves along any path in three-dimensional spatie snstant speed
Show that its velocity and acceleration vectors must aiMegyserpendicular to each
other. Hint. Differentiate the formula - v = v* with respect ta.]

Solution
If P moves with constant speexlits velocity vectorv satisfies the equation

V.V =17V
at all times. On differentiating this equation with resptect, we obtain
vev+v-v=0,
that is,
a-v =0,

wherea (= v) is theaccelerationvector of P. Hence the velocity and acceleration
vectors of P must always be perpendicular to each otimer.
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Problem 2.12
A particle P moves so that its position vectersatisfies the differential equation

F=cxr,

wherec is a constant vector. Show th& moves with constant speed on a circular
path. Hint. Take the dot product of the equation first witland then withr.]

Solution
First we take the scalar product of the equation

F=cxr,
with r. This gives

rer=r-(cxr)
=0.

This equation can be integrated with respectto give
rer = RZ,
whereR is a positive constant. The motion #fis therefore restricted to the surface
of asphereS with centreO and radiusR.
Second we take the scalar product of the equation
F=cxr,

with ¢. This gives

Fec=(cxr)-c
=0.

This equation can be integrated with respectto give
r - ¢ = constant
which can be expressed in the more standard form

rec=p,
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wherec is aunitvector parallel ta andp is a positive constant. The motion 8fis
therefore restricted to plane P perpendicular to the vecterwhose perpendicular
distance fromO is p.

It follows that P must move on theircle C that is the intersection of the sphere
S and the plané®. The axis{O, ¢} passes through the centre of the circle and is
perpendicular to its plane.

Finally, if ¥ = v and¥ = a, then

d

E(v-v)=2v-a
=2v-(cXxv)
=0.

Hencev - v is constant and s& moves along the circlé with constant speedm
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Problem 2.13

A large truck with double rear wheels has a brick jammed bebatevo of its tyres
which are 4 ft in diameter. If the truck is travelling at 60 mimd the maximum
speed of the brick and the magnitude of its accelerationpi&ss the acceleration
as a multiple ofg = 32 fts™2.]

Solution

From the theory of the rolling wheel (see the book pp. 38-#@maximum speed
of the brick is 120 mph and occurs when the brick is in its hgjlp@sition.

The acceleration of the brick is the same as that measuredeiiei@nce frame
moving with the truck. (In other words, we can disregardtthaslational motion
of the wheel.) In Imperial units, theccelerationof the brick has magnitude

a) =2
aj=—
b
882
=5 = 3,872 fts™2

= 121g.m
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Problem 2.14
A patrticle is sliding along a smooth radial grove in a cirecularntable which is
rotating with constant angular spe@d The distance of the particle from the rotation
axis at timer is observed to be

r = b coshQt
for + > 0, whereb is a positive constant. Find the speed of the particle (ueat
to a fixed reference frame) at time and find the magnitude and direction of the
acceleration.

Solution
Relative to a fixed reference frame, the polar coordinatéseoparticle at time are

r = bcoshQr
0 = Qr.

Thevelocity vector of P is therefore
vV="7rF+ (r@) 0
= (QbsinhQ1) 7 + (b coshQr) 6.
Thespeedof P is therefore given by

|v]? = Q2b% sint? Qt + Q2b? coslt Q1
= Q?b% cosh2Qz.

Theaccelerationvector of P is
v = (i" —réz)?—l— (r@ + 2#9):9\
= (sz coshQ2r — Q2h costh) T+ (0 + 202 sinth) 0

= (292b sinth) 9.

The acceleration oP is therefore2Q25b sinhQ+ in the circumferential directior
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Problem 2.15

Book Figure 2.11 shows an eccentric circular cam of raflittating with constant
angular velocityw about a fixed pivotD which is a distance from the centreC.
The cam drives a valve which slides in a straight guide. Hredrhaximum speed
and maximum acceleration of the valve.

Solution
Thedisplacementx of the face of the valve fron?' is

X =b + ecos
= b + e coswt.

Thevelocity v andaccelerationa of the valve are therefore

dx )
V= — = —weSinwt,
dt
dv »
a=— = —w"eCoSwt.
dt

Thus themaximum speedof the valve iswe and themaximum accelerationis
2
we. i
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Problem 2.16

Book Figure 2.12 shows a piston driving a cra@® pivoted at the end). The
piston slides in a straight cylinder and the crank is madeotate with constant
angular velocityw. Find the distanc®Q in terms of the lengtha, ¢ and the angle
6. Show that, whed /¢ is small,0Q is given approximately by

2
0Q:c+bcos€—§—sin20,
C

on neglectingb/c)* and higher powers. Using this approximation, find the maxi-
mum acceleration of the piston.

Solution
Thedistance OQ is given by
OQ = bcosh + ccosy,
whereg is the angleD QP. By an application of the sine rule in the triangh? Q,

sing _ sind
b ¢

so that sip = (b/c) sind and

b2 1/2
cos¢=(1——2$in29) .
C

Hence

b2 1/2
0Q:bcos€+c(1——2 sin29)
C

b2 h\*
=bhcosh +c|1——siPd+0|-
2¢2 c

b2
= ¢+ bcosd — —sin* 0
2¢

on neglectingb/c)* and higher powers. In this approximation, itieplacement
OQ at timet is given by

b? |
x=c—|—bCOSa)t—2—S|n2a)l
C

b2
= ¢ + bcoswt — 4—(1 — COS2wt).
c
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Theaccelerationof the piston at time is therefore

d*x 5 b*
a=—==-0 bcoswt — — cos2wt
dt c

and themaximum value achieved byu| is

a)zb(l—i—é).l
¢
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Problem 2.17

Book Figure 2.13 shows an epicyclic gear arrangement intwthie ‘Sun’ geaG,;

of radiush; and the ‘ring’ geaiG, of inner radiush, rotate with angular velocities
w1, w; respectively about their fixed common cenffeBetween them they grip the
‘planet’ gearG, whose centr&€ moves on a circle centr@. Find the circumferen-
tial velocity of C and the angular velocity of the planet g&ar If O andC were
connected by an arm pivoted @ what would be the angular velocity of the arm?

Solution

Let v be the velocity of the centr€ of the planet geag and letw be its angular
velocity. Note that the radius of the planet gear ié(bz — by1). Then the rolling
condition at the point of contact ¢f and the Sun gea&y; gives

wiby=v—wb
= U—%a)(bz—bl).

The rolling condition at the point of contact Gfand the ring gea@, gives

a)2b2 =v+ wb
=v+ %a)(bz — by).

It follows that the planet gear haglocity
v = Hwiby + w2by)
andangular velocity

w2b2 — w1b1
by — by

If O andC are connected by an arm pivoted@tthe lengthL of the arm is
L =by+ 3(by—by) = 1(by + by)
and theangular velocity 2 of the arm satisfies the equati@¥. = v. Hence

v _ a)1b1 + Cl)zbz

QL=—=
L by + by
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Problem 2.18

Book Figure 2.14 shows a straight rigid link of lengthwhose ends contain pins
P, Q that are constrained to move along the ag&s, OY. The displacement
of the pin P at timez is prescribed to be = b sinQ¢, whereb and2 are positive
constants witth < «. Find the angular velocity and the speed of the centteof
the link at timer.

Solution

Let 6 be the angle between the rod and the negathaxis. Then the angular
velocity of the rod (as shown in book Figure 2.14)ds= —f. The anglef is
related to the displacementby the formulax = a cost from which it follows that
X = —(asinf) 6. Hence

X
“= 4sing
_ QbcosQr Qb cosQt
~ asin® (a® — a cog? 9)1/2

Qb cosQ2t
1/2°
<a2 — b2 sin? Qt)

This is theangular velocity of the rod at time.
Let the centre” of the link have coordinatesy, Y). Then

X = lacosb,

Y = lasing,
and so
X =- (%a sin9> 0,
Y = (%a cos@) 0.

Hence

Q24%b? cos Q1
4 (a2 — b2 sin? Qz) '
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Thespeedof C at timet is therefore

Qab| cos2t |
] 1/2°
2 (a2 b2 sir? QI)
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Problem 2.19

An aircraft is to fly from a point4 to an airfield B 600 km due north of4. If a
steady wind of 90 km/h is blowing from the north-west, find theection the plane
should be pointing and the time taken to redlf the cruising speed of the aircraft
in still air is 200 km/h.

,UG

. & ;
o)

|
| %
(%
FIGURE 2.4 The ground velocitw© of the aircraft is the
sum of its air velocitw“ and the wind velocity " .

Solution

Let v4 be the velocity of the aircraft relative to the surrounding ket v¢ be
its ground velocity and lev” be the wind velocityp4, v¢ andv” denote the
correspondingpeeds

In still air, the aircraft can cruise with speed in any direction. When a steady
wind is blowing, this remains true when the aircraft is olsdrfrom a framenoving
with the wind Hence, the ground velocity® of the aircraft is given by

v =04 1", (1)
The situation in the present problem is shown in Figure 2.4e 3peeds and
v (and the anglex) are given, and we wish to choose the anflso that the

velocity v points north. Let the unit vectofs , j} be as shown, with pointing
east ang/ pointing north. Then, on taking components of equationr{the: - and
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Jj -directions, we obtain

= —v4sing + v" sine,

0
v% = v4cosp —v" cosa.

The first equation shows that thécraft heading g is

oW
sing = | — | sinx
vA '

and the second equation then determinegtband speedv®.
In the present problem;?4 = 200 kmh™!, v = 90 kmh™! anda = 45°. It
follows that the heading must be

and that the ground speef is
v% =200 cosp — 90 cosu ~ 126 kmh™!,

Thetime takento fly to a destination 600 km to the north is therefore 600M@6rs
=4h46 mm
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Problem 2.20

An aircraft takes off from a horizontal runway with constapeedU, climbing at

a constant angle to the horizontal. A car is moving on the runway with constant
speedu directly towards the front of the aircraft. The car is distaa from the
aircraft at the instant of take-off. Find the distance okelst approach of the car and
aircraft. [Don’t try this one at home.]

U
N
\\\ \\\
C e A
@ > /6 /Oé\'
u
a

FIGURE 2.5 The velocities of the aircraft and the
car arelU andu respectively. At the instant of take-
off, the car is alC and the aircraft atl.

Solution

Let U be the velocity of the aircraft anathe velocity of the car{/ andu are the
correspondingpeedsLet U’ be the velocity of the aircraft in a franmoving with
the car Then

U=u+U" (1)
Hence

\u'P=uv'-U
=WU—-u)-(U—u)
=U*4+u*>-2U-u
= U? + u® + 2u cosa.

Also, on taking components of equation (1) in the vertica¢clion, we obtain

U’sinB = U sina,
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where the angles andg are shown in Figure 2.5. Hence

. U sina U sina
sing = =

v’ (U? + u? + 2u cosu

ym'

The distance oflosest approachof the car and the aircraft issing, that is,

aU sina

N
(U? + u? + 2u cosa)'/?
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Problem 2.21 %

An aircraft has cruising speadand a flying range (out and back) & in still air.
Show that, in a north wind of speed(z < v) its range in a direction whose true
bearing from north i# is given by

Ro(v? — u?)
v(v2 — u?sin? §)1/2°

What is the maximum value of this range and in what directisrisattained?

u

outward homeward

FIGURE 2.6 The outward and homeward journeys of an aircraft in a steady
wind.

Solution

Outward leg

The outward leg is shown in Figure 2.6 (left). Note that= |v|) and@ are given
but the aircraft bearing is unknown. The ground velocit is given by

V=v+u
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and hence

V =0vD-v
=WV -u)-(V—-u)
=V 4u?—2V-u
=V? +u?+2Vucosh.

Theoutward ground speedV therefore satisfies the equation
V2 4+ 2Vucosd — (v —u?) =0

and, on selecting the positive root, we find that

1/2
Vou = —y cosf + (v2 — u?sir? 9)
Homeward leg

The homeward leg is shown in Figure 2.6 (right). The quasditiand 6 are the
same as before artlis unknown. The ground speed is still given by

V =v +u,

but the velocitied” andv arenotthe same as on the outward leg. By proceeding
in the same way as before, we find that ttemmeward ground speedsatisfies the
equation

V2 —2Vucosd — (v —u?) =0

and, on selecting the positive root, we find that

1/2
yback — 4 cosp + (v2 — u?sir? 9)

The range

The rangeR is restricted by the flying time which must not excexgly/v. Since
the times taken to fly out and back aRe/ V°" and R/ V2 respectively,R is
determined by

R R 2Ry
J/out + Vback = v ’
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that is

2R0VoutVback
= v (Vout+ Vbaclg'

On substituting in the values that we have obtained/f8t and V"2 we find that
theflying range in the direction whose true bearing from nortlviss given by

. Ro(v? — u?)
v —usint )12’

This range takes its maximum value when= i%n (that is, in directions at
right angles to the wind). In these cases, the range is

2 1/2
Ro (1 _U_z) ,

which is still less than the range in still am.
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Problem 3.1

Four particles, each of mass are situated at the vertices of a regular tetrahedron of
sidea. Find the gravitational force exerted on any one of the pladiby the other
three.

Three uniform rigid spheres of mad$ and radius: are placed on a horizontal
table and are pressed together so that their centres aee\artices of an equilateral
triangle. A fourth uniform rigid sphere of madg and radius: is placed on top of
the other three so that all four spheres are in contact with esher. Find the
gravitational force exerted on the upper sphere by the tbweer ones.

A

FIGURE 3.1 The particles4, B C and D
each have mass and are located at the ver-
tices of a regular tetrahedron. C

Solution

By the law of gravitation, each of the particl&s C and D attracts the particlel
with a force of magnitude

m*G

a2

By symmetry, the resultant fordg points in the directio N and its magnitudeé”
can be found by summing the components of the contributingefoin this direction.

Hence
(mZGCOSa)
F=3{——F—],
Cl2

whereqx is the angle shown in Figure 3.1. The anglean be found by elementary
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geometry. By an application of Pythagoras,
2 2 2 2 1 2 3.2
BM*® =BC“—-—CM =a—<§a) = za°,

and, sinceV is the centroid of the triangl8CD,

BN =2BM = =
’ V3
A second application of Pythagoras then gives
a 2
AN? = AB* — BN? = a* — (—) = 24%,
V3 }
and so
cosu = AN _ 2
- AB V¥

Hence theresultant force exerted on particled by the particlesB, C and D
acts in the directiodd N and has magnitude

Fo Y6mG
a2

Since the four balls are spherically symmetric masses; ginavitational effect
is the same as if each one were replaced by a particle of Maastits centre. These
four ‘particles’ form a regular tetrahedron of sigle. Hence, the gravitational force
exerted on the upper ball by the three lower ones acts viytdavnwards and has
magnitude

Jem?G
“aa "
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Problem 3.2

Eight particles, each of mags, are situated at the corners of a cube of sid&ind
the gravitational force exerted on any one of the particlethb other seven.

Deduce the total gravitational force exerted on the foutigas lying on one
face of the cube by the four particles lying on the opposite fa

C

FIGURE 3.2 The particles4, ...,H each
have mas#: and are located at the vertices
of a cube.

Solution

By the law of gravitation, each of the particl®s C, ..., H attracts the particlel
with a force of magnitude

m*G
R2’

whereR is the distance between them. By symmetry, the resultacé ®rpoints in
the directionA G and so its magnitud€ can be found by summing the components
of the contributing forces in this direction. Hence

F=3 (m;G) cosu + 3 ((gG)z) cosp + ((3;(;)2)

wherea. B are the angles shown in Figure 3.2. By using elementary gegnitds
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easily found that

1 2
cosa = 4/ -, and coPY = \/j
\/g i 3

Hence theesultant force exerted on particlel by the particles3, C, ... H acts
in the directionAG and has magnitude

m2G 3 1
F = 3 —+—-1.
a? <f+ 2+3)

By symmetry, the resultant force exerted by the partidies, G H on the
particlesA4, B, C, D points in the directiom™ £ and its magnitudé” can be found
by summing the components of the contributing forces in dection. Now the
resultant force thaall the other particles exert on partickehas magnitudé” and
the component athisforce in the directiod E is F coswx. Since the the forces that
B, C, D exert on4 have zero component in this directiof,cosx is equal to the
resultant force thak', F, G, H exert on4, resolved in the directiod E. It follows
that the resultant force exerted by the partidiesF, G H on the particlesd, B, C,

D points in the directiord E and has magnitude

F'— 4F cosa — TG (1+L+L) -
a? V2 3J3)
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Problem 3.3

A uniform rod of mass\/ and lengti2« lies along the intervdl-a, ] of the x-axis
and a particle of mass is situated at the point = x’. Find the gravitational force
exerted by the rod on the particle.

Two uniform rods, each of magd and length2a, lie along the intervalg-a, a|
and[b — a, b + a] of thex-axis, so that their centres are a distah@part ¢ > 2a).
Find the gravitational forces that the rods exert upon edcéro

dx
@, i F P
T ® — ¢ @ > T
e e

FIGURE 3.3 The rod and the patrticle.

Solution

Consider the elemeit, x + dx] of the rod which has mas¥l dx/2a and exerts
an attractive force of magnitude

m(M dx/2a)G
(=)

on P (see Figure 3.3). We must now sum these contributions mdeghe rod is a
continuous distribution of mass, this sum becomes an iate@heresultant force
F, exerted by the rod is therefore given by

FlzmMGf“ dx

2a  J_, (X' —Xx)?
_mMG[ 1 ]x=a
2a | X' =Xy,
_ mMG 1 1
T 2a x'—a Xx'+a
mMG
=x/2_a2'
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Consider the element’, x’'+dx’] of the second rod which has mak&/x’/2a.
The force exerted by the first rod on this element is tow#&dsd of magnitude

(M dx/2a)M G
(x" —x)?

We must now sum these contributions but, since the seconid \dslo a continuous
distribution of mass, this sum also becomes an integral ré$dtant force F, that
each rod exerts on the other is therefore given by

M2G b+a dx’
F, =
2 2a [b_a X2 —a?
M2G [bte /1 1
= / — dx’
4a? Jp_y \X'—a X' +a
M2G b+a
= In(x' —a) —In(x’ ]
] (YRR

. M?*G In b? .
- 4a? b2 —4a? )"
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Problem 3.4

A uniform rigid disk has masd/ and radiusz, and a uniform rigid rod has mass
M’ and lengthb. The rod is placed along the axis of symmetry of the disk with o
end in contact with the disk. Find the forces necessary titipeidisk and rod apart.

[Hint. Make use of the solution in the ‘disk’ example.]

Solution

Let the axisOz be perpendicular to the disk wiif at the centre, and suppose that
the rod occupies the interval< z < b. Consider the elemeft, z + dz] of the rod
which has masa/’dz/b. The force exerted by the disk on this element acts towards
O and has magnitude

2MM'G i z J
— |1 —-— ] dz,
a’b (22 +a2)1/2

on using the result of Example 3.6. We must now sum theseibatitbns but, since
the rod is a continuous distribution of mass, this sum besoareintegral. The
resultant force F that the disk exerts on the rod is therefore given by

_2MM'G [? z J
a 0 (22 +a2)

2MM'G 1/27°
=W[Z—(22+“2) ]

_2MM'G
T a?b

0
(a+b-(a+69)").

This is theforce neededo pull the rod and the disk apasi.
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Problem 3.5

Show that the gravitational force exerted on a partickdea hollow symmetric
sphere is zero.Hint. The proof is the same as for a partidetsidea symmetric
sphere, except in one detail.]

FIGURE 3.4 The particleP is inside a hol-
low gravitating sphere.

Solution

The only difference that occurs when the partielés insidea hollow sphere is that
the polar coordinate is now alwaysgreaterthan the distancé (see Figure 3.4).
The range of the variabl® is thenr — b < R < r 4+ b and the integral oveR (see
the book , p. 66) is replaced by

r+b b2 — 2 r+b r2_p2
1 dR = 1— dR
[ () om= [ ()
R=r+b

2 b2
]
R R=r—b

(0 +0)+ =)= (¢ =5+ +b))
0.

(When P is outside the sphere, the corresponding valuk-i¥ It follows that the
gravitational force exerted on a particle inside a hollovhspe is zerom
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Problem 3.6

A narrow hole is drilled through the centre ofuamiform sphere of masd/ and
radiusa. Find the gravitational force exerted on a particle of masghich is inside
the hole at a distancefrom the centre.

Solution
In this solution, we will neglect the material that was remd\¥rom the sphere to

make the hole. When the partickis a distance from the centre, itis
(i) exterior to a uniformsolid sphere of radius and massr /a)* M, and
(ii) interior to a uniformhollow sphere with inner radiusand outer radius.
The solid sphere exerts the same force as that of a particieas$(r /a)* M

located at the centre, while (from Problem 3.5) the hollohesp exerts no resultant
force. Theresultant force exerted onP when it is inside the hole is therefore

m((r/a);’M)G Lo (mMG)r.
r

a3

This force acts towards the centre and is proportional télence, in the absence
of any other forces (such as air resistance or boiling lav@Nvill perform simple
harmonic oscillationsin the hole. Note that this result applies only taiiform
spherem
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Problem 3.7

A symmetric sphere, of radiusand mass\/, has its centre a distanée(b > a)
from an infinite plane containing a uniform distribution csso per unit area. Find
the gravitational force exerted on the sphere.

FIGURE 3.5 The particleP is distance from a unform gravi-
tating plane.

Solution

This is basically the same problem as that in Example 3.6 evtier disk now has
infinite radius (and therefore infinite mass). Despite tthig, gravitational force it
exerts onP is still finite.

The force on the sphere is the same as that on a paRtiolemassM located at
its centre. Consider the elemef of the plane shown in Figure 3.5. This element
has massdA and attracts the sphere with a force whose component pagodsad
to the plane is

M(cdA)G
(T) COSx

We must now sum these contributions but, since the plane e@antious distrib-
ution of mass, this sum becomes an integral. f@siltant force F that the plane
exerts onP is therefore given by

F = MO’G/ cose dA,

p R?
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whereP is the region occupied by the mass distribution.
This integral is most easily evaluated using polar cootginan this caséA =
(dr)(rdf) = r dr df, and the integrand becomes

cose  Rcosx b
R2 =~ R3 - (r2 +b2)3/2’

whereb is the distance o from the plane. The ranges of integration fo9 are
0 <r <ooand0 <6 < 2x. We thus obtain

0=2m
F=bMaG/r /9 ( b2)3/2)rdrd9.

Since the integrand is independentiothe f-integration is trivial leaving

F—ombMoG [ — A
R S YO

=2nbMoG [—(r2 n bz)_l/z:li’:oo

r=

1

=2nMoG.

73

This is thegravitational force exerted on the sphere. It seems strange that this force

is independent of the distanée but this is because the attracting mass distribution

is aninfinite plane m
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Problem 3.8 %

Two uniform rigid hemispheres, each of magsand radius: are placed in contact
with each other so as to form a complete sphere. Find thedareeessary to pull
the hemispheres apart.

FIGURE 3.6 The solid hemisphergg™ and
‘H~ attract each other.

Solution

Let the two hemispheres{™ and H~ be as shown in Figure 3.6. We wish to
calculate the forceF that H+ exerts onH~. SinceH™ exerts no resultant force
uponitself, F is equal to the force thdt ™ exerts on thevhole spher@f mass2M .

It is tempting to say that this is equal to the force théat exerts on a particle of

mass2M located atO. However, this is not true since the massHof liesinside

the whole spheraVe must therefore proceed in the same manner as in Probéem 3.
Consider the volume elemedt of H*. This has masgdv, wherep is the

constant density. This element attracts the whole sphdteanforce which is the

same as if the sphere were replaced by a particle of nds3® (2M1) at its centre.

The component of this force in thedirection is

r2

(2M(r/a)3(,0dv)G) coso.

We must now sum these contributions but, sikte is a continuous distribution of
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mass, this sum becomes an integral. Tésultant force F is therefore given by

2MpG
f [ r cos6 dv.
a HF

This integral is most easily evaluated using spherical poteordinates, 6,
¢. In this casalv = (dr)(r d9)(r sinf d¢) = r?sind dr do d¢, and the integral
becomes

F =

§=n/2 p¢=2n
2M,0Gf / / 3 sinf cosb dr db d¢
r=0 Jo= ¢=

41 MoG r=a O=m/2 .
_ %(/ r3dr) (/ sm@cos@d@)
a r=0 =0

_A4aMpG [ 4 1 /2

= %nM,oaG.

Finally, on usmg the relatiodd = —na p, we find that theesultant force that
H™T exerts orfH~

3IM2G

F =
4q2

This is theforce neededo pull the hemispheres apast.
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Problem 4.1

Two identical blocks each of magd are connected by a light inextensible string
and can move on the surface atbmghhorizontal table. The blocks are being towed
at constant speed in a straight line by a rope attached tofaghem. The tension in
the tow rope isTy. What is the tension in the connecting string? The tensidhen
tow rope is suddenly increased4®,. What is the instantaneous acceleration of the
blocks and what is the instantaneous tension in the comuestiing?

M > <« M |—> T,
! e

FIGURE 4.1 The two blocks are linked together and towed by a fdfge

Solution

Let the tension in the connecting string Beand the frictional force acting on each
block be F (see Figure 4.1). The two frictional forces are equal bee#us blocks
are physically identical and are travelling at the samedpee

(i) Suppose first that the whole system is movinganstant speedThen the
blocks have zero acceleration and therjuations of motionare therefore

To—T —-F =0,
T—-F=0.

Hence
T=1T, and F=1T.

Thetensionin the connecting string is therefo%d“o. [

(i) Suppose that the tension in the tow rope is increasediTipand that the
system then has acceleratiorat times. The equations of motionfor the
two blocks then become

4To— T — F = Ma,
T—F=Ma.

At any instant, the two blocks have the same speed and so thigitional
forces do remairequal However, we have no right to suppose that, as the
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speed of the system increases, the frictional forces willaie constant But,
at the instant that the tension in the tow rope is increabedspeed is (as yet)
unchanged and it will still be true thdt = %To. Thus,at this instant we
have

ITo—T = Ma,
T —3To = Ma.

Hence

T =2T, and a:ﬁ.
2M
Hence thanstantaneouscceleration of the blocks &7,/2M and thein-
stantaneousgension in the connecting string295. (If it happens to be true
that F is independent of the speed of the blocks, these values evilam
constant in the subsequent motiom.)

© Cambridge University Press, 2006



Chapter 4 Problems in particle dynamics 79

Problem 4.2

A body of massM is suspended from a fixed poitt by an inextensible uniform
rope of massn and lengthb. Find the tension in the rope at a distancbelow
0. The point of support now begins to rise with accelerafign What now is the
tension in the rope?

FIGURE 4.2 The block of massV is sus-
pended from a support by a uniform rope of M
massn and lengthp.

Solution

Consider the motion of’, which is that part of the system that libglow the
horizontal plane shown dashed in Figure 4.2. This consfdtsedblock of mass\/
and a segment of the rope of lendth- z and massn(b — z)/b. Then:

() When the system is iaquilibrium , the acceleration is zero and tbguation
of motion for S’ is

T—Mg—m(l—%)gzo,

whereT (= T(z)) be the tension in the rope at depthHence, théension
in the rope is

T=Mg+m<1—%)g.

This tension takes itsvaximum value of (M + m)g atz =0.m

(i) When the support is accelerating upwards with accélema g, theequation
of motion for S’ becomes

T—Mg—m(1—§>g=(Mg—i—m(l—g))@g).
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Thetensionin the rope is therefore
z
T:3Mg—|-3m(1—g>g,

which is three times the static valu.
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Problem 4.3

Two uniform lead spheres each have mass 5000 kg and radiun.47Tbey are
released from rest with their centres 1 m apart and move uhdemutual gravita-
tion. Show that they will collide ifessthan 425 s. ¢ = 6.67 x 107" Nm?kg™2.]

Solution

The uniform spheres may be replaced by particles of mass kf®hich are re-
leased from rest a distance 1 m apart. We wish to know how lotades for each
particle to move a distance 3 cm.

Strictly speaking, this is a problem with non-constant &rations, but we may
find anupper boundor the time taken by replacing the non-constant accetanaf
each patrticle by itsitial value. By the inverse square law, the subsequent accelera-
tions will be greater than this so that the true time will besléhan that calculated by
this approximation. Thenitial acceleration of each particle is given by the inverse
square law to be

mG 5000 x 6.67 x 107"

=7 B =3.335%x 107" ms™2.

a =

If the particles moved with this constant accelerationirttisplacements after time
¢t would be given by the constant acceleration formula %atz. The timer taken
for each sphere to move a distance 3 cm would then be

1/2
B L
3335 x 107

Hence, (allowing a little for rounding error) tlspheres will collidein lessthan 425
S.m
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Problem 4.4

The block in Figure 4.2 is sliding down the inclined surfaéa dixed wedge. This
time the frictional forceF exerted on the block is given by = uN, whereN is

the normal reaction and is a positive constant. Find the acceleration of the block.
How do the caseg < tana andu > tana differ?

Solution

We will make use of the results on p. 79 of the book. Ehneations of motionfor
the block are

. dv
Mgsina — F = M—

dt’
N — Mg cosa = 0.

In the present problem, we are given tliaand N are related by = uN, where
W is a positive constant. It follows thatsatisfies the equation

dv .

o= (sine — pcosw) g.

Assuming that the block is moving at all, this is @sceleration it may be positive
or negative. lfju > tana, the block will always come to rest and will theemain at
rest If u < tana, the block may come to rest (nay be negative initially), but will
then slide down the plana.
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Problem 4.5

A stuntwoman is to be fired from a cannon and projected a distah 40 m over
level ground. What is the least projection speed that canskd? If the barrel of
the cannon is 5 m long, show that she will experience an aat&la of at leasttg
in the barrel. [Takeg = 10 ms 2]

Solution

We will make use of the projectile results on p. 89 of the baokthe absence of
air resistance, the least projection speed will be needexhiilie barrel is inclined
at45° to the horizontal. In this case, the horizontal ralys given by

R=—,
g

in the standard notation. Hence, the stuntwoman muktuehed with speed
u=(Rg)"*=140x10)"/?> =20ms".

Suppose that the acceleration of the stuntwoman in thelbaraeconstant:.
Then the constant acceleration formufa— u? = 2ax shows that: is given by

2,2 202_02
a=21_" _ —40ms? = 4g.
2x 2x5

This is the stuntwoman’accelerationin the barrel, provided that it is constant. If
her acceleration is not constant, then there will be timeshath it is less tharg

and other times at which it is greater thég. In all cases then, an acceleration of

4g will be experienced by the stuntwomann.
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Problem 4.6

In an air show, a pilot is to execute a circular loop at the dpdsound $40 ms™1).
The pilot may black out if his acceleration exce@gs Find the radius of the small-
est circle he can use. [Take= 10 ms 2]

Solution
Theaccelerationa of the pilot is given by

v? 3402
a=—=—",
R R

whereR is the radius of the circle in metres. dfis not to exceedg, then R must
satisfy

3402
8 x 10

=

= 1445m

This is the radius oémallest circlethe pilot can use. This is nearly a mile, which is

surprisingly largem
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Problem 4.7

A body has terminal speeld when falling in still air. What is its terminal velocity
(relative to the ground) when falling in a steady horizomtadd with speed’?

U1

—Vk v

FIGURE 4.3 Terminal velocity in a steady .
wind. ¢

Solution

In still air, the body has terminal spe&d which means that the equation of motion
for the body velocityw has the constant solutian= —V k (see Figure 4.3). When
a steady horizontal wind/ i is present, let us view the motion of the body from
a frameF’ moving with the wind This is an inertial frame in which the air is at
rest. It follows that the equation of motion for the appareatly velocityv’ has
the constant solution” = —V k. When viewed from the fixed frame, this solution
becomes = Ui —Vk. Thisis a constant solution for the body veloaitwhen the

wind is presentlt represents terminal velocity with speec(U2 + V2) "% inclined
at an angle tan' (U/ V) to the downward vertical, as shown in Figure 3.
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Problem 4.8 Cathode ray tube

A particle of massn and charge is moving along thec-axis with speed: when it
passes between two charged parallel plates. The platesageaeuniform electric
field Eoj in the regiond < x < b and no field elsewhere.Find the angle through
which the particle is deflected by its passage between thesplfiThe cathode ray
tube uses this arrangement to deflect the electron beam.]

Y
A

!
\
® > T
!
\
!
\
I
I

FIGURE 4.4 A charged particle moves through a region in which there isifotm
electric field.

Solution

While the particle is between the plates it experiencesdieet E j . Itsequation
of motion in this region is therefore

dv B
m— =e .
1 0oJ
If we now writev = vxi + v, j and take components of this equation in th@nd
Jj -directions, we obtain the two scalar equations of motion

dvy 0 dvy, eEp

dt ’ dt m

Simple integrations then give

E
vy = C, vyz(em—())t—l—D,
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whereC and D are constants of integration. Suppose that the particldlearigin
whens = 0. Then the initial conditions, = u andv, = 0 whens = 0 imply that
C = u and D = 0 so that thevelocity components of the particle are given by

eE()
vx - U, Uy - - l.
m

The position of the particle at tinrecan now be found by integrating the expres-
sions forvy, v, and applying the initial conditions = 0 andy = 0 whenz = 0.

This gives
E
x:l/lt, y:(e_o)tz,
2m

which is thetrajectory of the particle. On eliminating the tintebetween these two
equations, th@ath of the particle is found to be

€E0 2
= X,
Y 2mu?
The angle through which the particle is deflected by its ppsdsetween the
plates is the angle shown in Figure 4.4. Since

eon
mu?’

dy
tane = —
“ dx

x=b

it follows that thedeflection angleis tar! (eb Eo/mu?). m
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Problem 4.9

An object is dropped from the top of a building and is in view fone ¢ while
passing a window of heiglttsome distance lower down. How high is the top of the
building above the top of the window?

O

-— > - m —

FIGURE 4.5 The body is released from the
top of the building and falls past the win-
dow. z

Solution

Let the axisOz point vertically downwards, wher@ is the point from which the
body is released. Then the displacement of the body aftertim

2

1
Zzigt

It follows that

H=1gT?,
H+h=2L1g(T +1)2
whereH is the height of the top of the building above the top of thedeww, andT
is the time taken for the body to fall this distance. We aresdgb find H, but it is
easier to findl" first. On subtracting the first of these equations from theseécwe
obtain
h = %g(ZT‘L’-FTZ),

from which it follows that
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On substituting this value fof into the equation fo#f, we find that theneight of
the top of the building above the top of the window is

H

= = (Zh — gt2>2 .m
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Problem 4.10

A patrticle P of massn moves under the gravitational attraction of a masdgixed
at the originO. Initially P is at a distance from O when it is projected with the
critical escape spee@M G/a)'/? directly away fromO. Find the distance of
from O at timer, and confirm that” escapes to infinity.

Solution

By symmetry, the motion oP takes place in a straight line through By the law
of gravitation, theequation of motionis

dv mMG

T r2
wherer is the distanc&P. Since
dv dv dr dv
= v

— = — X —=v—,
dt dr dt dr

this can be written in the form

dv MG

V— = -
dr rz

which is a first order separable ODE foas a function of. Separation gives

fvdv=—MG/d—Z,
p

so that

whereC is the integration constant. On applying the initial corudity = (2M G/a)'/?
whenr = a, we find thatC = 0. It follows that thevelocity of P when its displace-
ment isr is given by

, 2MG

v = .
r

To find r as a function of, we writev = dr/dt and solve the ODE
dr\? _ 2Mg
) — r
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After taking the positive square root of each side (dt is certainly positive ini-
tially), the equation separates to give

fr1/2dr = (2MG)1/2fdt.
Hence
2,32 = @M G)"?t + D,

3

where D is an integration constant. On applying the initial coratitt = a when
t = 0, we find thatD = §a3/2 and, after some simplification, tltksplacementof
P at timet is found to be

2/3
r= (0¥ +30MG) )

It is evident that the right side of this expression tendsnfmity with ¢ and
hence thearticle escapesm
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Problem 4.11

A particle P of massn is attracted towards a fixed origi by a force of magnitude
my/r?, wherer is the distance of? from O andy is a positive constant. [It's
gravity Jim, but not as we know it.] InitiallyP is at a distance from O, and is
projected with speed directly away fromO. Show thatP will escape to infinity if
u>>vy/a*.

For the case in which? = y/(24?), show that the maximum distance frath
achieved byP in the subsequent motion ig2«, and find the time taken to reach
this distance.

Solution

By symmetry, the motion oP takes place in a straight line through From the
specified law of attraction, thequation of motionis

dv my
m— = )
dt r3
wherer is the distanc&®P. Since

dv B dv dr Udv

_ = — X — = —_,
dt dr dt dr
this can be written in the form

dv %

V— = ——
dr r3’

which is a first order separable ODE foas a function of. Separation gives
d
fvdv = —y/—g,
p

sV
2r2

so that

v + C,

=

whereC is the integration constant. On applying the initial coiwtitv = u when
r = a, we find thatC = 1u? — 1y /a?. It follows that thevelocity of P when its
displacement is is given by

)
a
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Suppose first that? > y/a?. Then we can write
2 Y
u- — ; =V ,
whereV is a positive constant. Then

v? = l%-+‘V2
r
> V2
Hencev always exceed¥® and theparticle escapes
Suppose now that?> = y/(2a?). The formula forv then becomes

oY v

r2  2q?°
In this casep becomes zero when

14 14
LA S—)
rz  2a?

that is, when- = +/2a. Themaximum distancefrom O achieved by the particle is
thereforey/2a.
To find the time taken to reach this distance, we wite dr/dt and solve the

ODE
dr 2__ % %
dt) — r2 24

After taking the positive square root of each side (dt > 0 in this outward mo-
tion), the equation separates to give

V2a r 1/2 [T
14
f gy dr = (_2a2) f dt.
a (2a —r ) 0

Here we have introduced the initial and final conditions diseinto the limits of
integration;z is the elapsed time. Hence, ttime taken for the particle to achieve
its maximum distance is given by

=) [l
_ (2)/?)—1/261

o\ 12
= (—) a*. m
v

V2a

a
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Problem 4.12

If the Earth were suddenly stopped in its orbit, how long widoitltake for it to
collide with the Sun? [Regard the Sun aBx@dpoint mass. You may make use of
the formula for the period of the Earth’s orbit.]

Solution

By symmetry, the motion takes place in a straight line thiotige Sun. From the
law of gravitation, theequation of motionis

dv mMG

T rz
whereM is the mass of the Sum; is the mass of the Earth amds the distance of
the Earth from the Sun. Since
dv dv dr dv
= v

— = — X — =v—,
dt dr dt dr

this can be written in the form

dv MG

V— = E—
dr r2’

which is a first order separable ODE foas a function of. Separation gives

fvdvz—MG/ﬂ,
2

so that

whereC is the integration constant. On applying the initial cormitv = 0 when
r = R, whereR is the radius of the Earth’s orbit, we find th@t= —M G/R. It
follows that thevelocity of the Earth when it is distangefrom the Sun is given by

1 1
2
=2MG|-——.
0 (r R)

To find the time taken for the Earth to reach the Sun, we write dr/dt and

solve the ODE
2
ﬂ =2MG l—i .
dt r R
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After taking the square root of each side (and rememberiatytty dt < 0 in this
motion), the equation separates to give

0 1/2 2MG\V? (T
/( ! ) dr:—(—G) /dt.
R R—r R 0

Here we have introduced the initial and final conditions aikeinto the limits of
integration;T is the elapsed time. Hence, ttime taken for the Earth to reach the

Sunis
R \'?* (R 1/2
= () )
QMG o \R—r

This integral can be evaluated by making the substitutien R sir® 6. Thendr =
2R sinf cost db and

1/2
R \'? (72 ( sir?g
T=|—— _— 2R sinf cosh) db
(e) | (Paes) ¢ )
R3 \/? pr/2 _ R \'/?
_(2MG) [0 23|n29d9_(2MG)
R3 1/2 .- /2
- (2MG) [0 - 4sin26 ],

1/2
= l]‘[ R3
2 2MG

We could substitute the numerical data directly into thisrfola, but it is neater
to observe thal is related tar, the period of the Earth’s orbit (before it was brought
to rest!). Sincer? = 472 R3/ M G, it follows that 7 is given by the simple formula

/2
/ (1 —cos20)do
0

For the Earth, this is 65 daym.
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Problem 4.13

A particle P of massm slides on a smooth horizontal tablé. is connected to a
second particle? of massM by a light inextensible string which passes through a
small smooth hol® in the table, so tha hangs below the table whil2 moves on
top. Investigate motions of this system in whiGhremains at rest vertically below
O, while P describes a circle with centi@ and radiug. Show that this is possible
provided thatP moves with constant speegd whereu? = M gh/m.

b P
\\M

1.
¢

Mg
FIGURE 4.6 The particleP slides on the table while particl@ hangs
below.
Solution

Since the particle) is at rest, the resultant force acting on it is zero and so the
tension T in the string must be equal & g. Now consider the motion oP. The
polarequations of motionare

m(O—béz) =—-Mg,
m(bé—l-O) =0.

The second equation shows th# = u, whereu is a constant that we can identify
as thecircumferential velocityf P. The first equation then requires that

mu2

— = Mg.
b 4

Hence, circular motions of any radihsare possible provided tha moves with
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constant speed(Mgb/m)'/?. m
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Problem 4. 14

A light pulley can rotate freely about its axis of symmetryighis fixed in a hor-
izontal position. A light inextensible string passes over pulley. At one end the
string carries a masbn, while the other end supports a second light pulley. A sec-
ond string passes over this pulley and carries magsasd4m at its ends. The
whole system undergoes planar motion with the masses meeitigally. Find the
acceleration of each of the masses.

Uyt Uy

FIGURE 4.7 The double Attwood machine.

Solution

The system is shown in Figure 4.7. hgtbe the upward velocity of the mads:,
which is the same as the downward velocity of the ceatref the moving pulley.
Let v, be the upward velocity of the magsmeasured relative t@'; this is the same
as the downward velocity of the (lower) mabs relative toC. The corresponding
true velocities are, — v; andv, + vy repectively. Note that, since the pulleys are
light, the strings have constant tensidfisand 7, respectively. Theequations of
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motion for the three masses are then

dv1
Am— =T, -4 1
m a1 1 mg, 1)
d
mo (v2—v1) =T, —mg 2)
d
4mE (v2 +vy) =4mg — T). (3)

Leta; = dvy/dt anda, = dv,/dt. We then have the four unknowns, a,, T,
T,, but only three equations. However, an additional equasqgorovided by the
‘equation of motion’ of the moving pulley. Since this pullesyof negligible mass,
theresultant force acting upon it must be zero, no matter howntoving It follows
that

Ty —2T, = 0. (4)

On eliminating?; and7, from equations (1)—(4), we find that the accelerations
ay, a, satisfy the equations

3a; + S5a; = 3g,
3a; —a; = —g,

from which it follows that

._.
W

ay = —398; a = 38.

Hence the three masses haeelerations—3 g, ¢ and 3 g respectively. Note
that, somewhat surprisingly, the (upper) méssacceleratedownwardsm
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Problem 4.15

A particle P of massmn can slide along amoothrigid straight wire. The wire has
one of its points fixed at the origi@, and is made to rotate in th{e, y)-plane with
angular spee€. By using the vector equation of motion 8fin polar co-ordinates,
show thatr, the distance oP from O, satisfies the equation

F—Q*r =0,

and find a second equation involvindg, whereN@ is the force the wire exerts on
P. [Ignore gravity in this question.]

Initially, P is at rest (relative to the wire) at a distancérom O. Findr as a
function of in the subsequent motion, and deduce the correspondingifarior
N.

FIGURE 4.8 The particleP slides along the
rotating wire.

Solution

Since the wire ismooththe reactionV that it exerts onP must always be perpen-
dicular to the wire, as shown in Figure 4.8. The paquations of motionfor P
are therefore

m ('r' - rS22> =0,
m(0 +2/Q2) = N,
on using the fact that = © andé = 0. Hencer satisfies the equation

F—Q%r =0
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and the reaction of the wire is given By = 2m Q7 . The equation for is a second
order linear ODE with constant coefficients . Its generalisoh can be written in
the form

r = AcoshQ¢ + B sinhQt,

where A, B are arbitrary constants. The initial conditions= ¢ and7 = 0 when
t = 0imply that4 = a and B = 0 so that theposition of P at timez is given by

r = acoshQz.

On using this expression ferin the formula forN, thereaction of the wire at
time¢ is found to be

N = 2ma?sinhQr. m
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Problem 4.16
A body of massn is projected with speed in a medium that exerts a resistance

force of magnitude (iynk|v |, or (i) mK|v |?, wherek andK are positive constants
andv is the velocity of the body. Gravity can be ignored. Determrime subsequent

motion in each case. Verify that the motion is bounded in ¢gséut not in case

(ii).

Solution

(i) Suppose that the motion starts from the origin and takesgpalong the pos-

itive x-axis. Then thequation of motionis

dv

mz = —mkv,
wherev = x. This is a separable first order ODE for On separating, we
obtain
d
&k / dt.
v
that is,

Inv=—kt + C,

whereC is an integration constant. The initial condition= © whent = 0
givesC = Inu and hence theelocity of the body at time is

V=1ue

To find the displacement of the body, we write= dx/dt and integrate
again. This gives

U —kt
X=——e " +D,
k

where D is a second integration constant. The initial conditios- 0 when
t = 0 givesD = u/k and hence thdisplacementof the body at time is

xz%(l—e_k’>.

As ¢ tends to infinity, the negative exponential*’ tends to zero and so
tends tou/ k. Hencex tends to dinite limit and themotion is bounded m
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(i) Suppose that the motion starts from the origin and tghase along the pos-
itive x-axis. Then thequation of motionis

m— = —mKv~,

dt

wherev = x. This is a separable first order ODE for On separating, we

obtain
D _ [ .

v2

that is,

1
—— = —Kt+C,
v

whereC is an integration constant. The initial condition= © whent = 0
givesC = —1/u and hence theelocity of the body at time is

u
V= —.
Kut + 1

To find the displacement of the body, we write= dx/dt and integrate
again. This gives

1In(K t+1)+D
X =— u ,
K

where D is a second integration constant. The initial conditios- 0 when
t = 0 givesD = 0 and hence thdisplacementof the body at time is

1
= — In(Kut + 1).
X e (Kut +1)

As ¢ tends to infinity,x tends to infinity and so themotion is unbounded m
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Problem 4.17

A body is projected vertically upwards with speednd moves under uniform grav-
ity in a medium that exerts a resistance force proportiam#té square of its speed
and in which the body’s terminal speed¥is Find the maximum height above the
starting point attained by the body and the time taken tolrélaat height.

Show also that the speed of the body when it returns to itsirsgapoint is
uV/(V?* 4+ u?)'/2. [Hint. The equations of motion for ascent and descent are dif-
ferent.]

Solution

Suppose that the medium exerts a resistance force of mdgnitk v> on the body,
whereK is a positive constant. Then, if the body were falling veatlicdownwards
with its terminal speed’, its acceleration would be zero and so

mg —mKV? =0.
Hence, théerminal speedis related to the resistance const&nhby the formula

y2= 5
£

Upward motion Suppose that the upward motion starts from the origin anelstak
place along the-axis, which is pointing vertically upwards. Then the edp@bf

motion is
dv
m— = —mg — vaz,

dt
wherev = z. On intoducing the terminal spedd instead ofK, this equation

becomes
dv . v?
dr 5 v2)’

which is theequation for upwards motion.
This is a separable first order ODE foas a function of the time. On separat-

ing, we obtain
d
/ _dv g / ar.
v2 4 V2 V2
that is,
1 Y g
—tan ' = =—=1¢+4C,
Vv vy
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whereC is an integration constant. The initial conditior= u whent = 0 gives

1
C=—tanr' 2
Vv Vv

and hence

Vv L, u v
[ = —(tan 2 tan —).
g 1% 1%

We could invert this expression to find a formula for the upiwaelocity v at time
t, but this manipulation is not neccessary. Since 0 at the highest point, thime
7 taken to reach the maximum heightis given immediately by

T = g (tan‘1 %)I

To find the maximum height itself, we will begin again with adifted form of
the equation of motion. Since

dv B dv dz _Udv

— = — X — =v—,
dt dz dt dz

the equation of motion can be written in tivedified form

dv 1+v2
Vi T8 v2)’

which a separable first order ODE fois a function of the height On separating,

we obtain
d
f _vdv g f i-.
V24 V2 V2
that is,
lln(v2+V2) -5 .4D
2 Vz ’

whereD is a second integration constant. The initial conditiog © whenz = 0
gives

D=%In<u2+V2)
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and hence

v: o (ut+V?
z=—In{ ——|.
2g \v24 V2
We could invert this expression to find a formula for the upwaelocityv at height

z, but this manipulation is not neccessary. Simce= 0 at the highest point, the
maximum height H is given immediately by

V2 u?
H=—I|{l4+—)].m
2g ( +V2)

Downward motion In the downward motion, it is best to take new axes wiklat
the highest point andz pointing verticallydownwards The equation of motion is

then
dv Ky?
m— =mg —m~Auv-,
a e

wherev (= z) is thedownwardsvelocity of the body. On introducing the terminal
speedV instead ofK, this becomes

dv | v?

a ¢ v2)’
which is theequation for downwards motion. We will take this equation in the
modified form

which is a separable first order ODE foas a function ot. Separation gives
vdv g
[ =va ]

1 2 2y _ &
——In(V —v>—ﬁz+E,

where E is a third integration constant. The initial condition= 0 whenz = 0
gives

that is,

_ 1 2
E_—EInV
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and hence

V2 V2
=—In{—).
" T2 (VZ—UZ)

The body returns to its starting point whern= H, that is, when

V2 V2 V2 M2
—N|——)=—I(1+—=].
2 (VZ—vZ) 2 (+V2)

This equation solves quite easily fotto give

uVv

1/2°

V= —
(u? +V?)

This is the downwardelocity of the body on its return to its starting poim.
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Problem 4.18 %

A body is released from rest and moves under uniform grawitg medium that
exerts a resistance force proportional to the square op#ed and in which the
body’s terminal speed iE. Show that the time taken for the body to fall a distance
his

Vot (Lgh/V?

p cosh (e ) .

In his famous (but probably apocryphal) experiment, Galdeopped different
objects from the top of the tower of Pisa and timed how long thek to reach the
ground. If Galileo had dropped two iron balls, of 5 mm and 5 edtius respectively,
from a height of 25 m, what would the descent times have besn®likely that
this difference could have been detected? [Use the quadaatiof resistance with
C = 0.8. The density of iron is 7500 kgm.]

Solution

Suppose that the motion starts from the origin and takespéung thez-axis,
where Oz points verticallydownwards Suppose also that the medium exerts a re-
sistance force of magnitude Kv? on the body, whereX is a positive constant.
Then the equation of motion is

dv
m— =mg —WIKU2,

dt
wherev (= 2) is thedownwardsvelocity of the body.
In particular, if the body were falling with its terminal sgebl/, its acceleration
would be zero and so
mg —mKV? =0.
Hence thaerminal speedV is related to the resistance const&nhby the formula

y2= &
£

On intoducing the terminal speddinstead ofK, we obtain

_y(1-2)
ar ~ ¢ v2)’

which is theequation for downwards motion. This is a separable first order ODE
for v as a function of the time. On separating, we obtain

dv g
[vit=ve ]
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Hence
g . dv
W[ T y2_ 2
1 1 1
= — + dv
2V V—-—v V+uo

1 V+v
=—1n C,
2V (V—v)+

whereC is an integration constant. The initial condition= 0 whent = 0 gives
C = 0 and hence
Vv V+o
t=—1In .
2g V —v

This formula can be now be inverted to givas a function of. After some manip-
ulation, we find that

t
V= Vtanhg—.
Vv

This is thevelocity of the body at time.

To find the displacementof the body, we writes = dz/dt and integrate again.

This gives

z = V/tanhg—l dt
14

sinh(gz/ V)
=V | ————=dt
/ coshgt/ V)
2
= V— In (coshg—t) + D,
g |4

where D is a second integration constant. The initial conditiog 0 whens = 0
givesD = 0 and hence the downwadisplacementof the body at time is

V2 t
z=—1In (coshg—) .
g Vv

This formula can be inverted to findas a function ot. After some manipula-
tion, we find that théime ¢ taken for the body to fall a distanck is

T = 4 cosh™! (eg”/Vz).
g
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To calculate the descent times in Galileo’s experiment, wetrfirst find the
terminal speeds of the two iron balls. If a ball is falling vits terminal speed’,
then D = mg, whereD is the drag on the ball and is its mass. [In this problem,

the buoyancy of the air is negligible.] With the quadratiw laf resistance, this
requires that

Cpa®Vv? = (%ncﬂ) o'g,

whereC is the drag coefficient of the spheteis its radius, angh, o’ are densities
of air and iron respectively. Therminal speedof the ball is therefore given by

v — drp' ga 1/2.
3Cp
On using the data given in the problem (and Table 1 for theitjeokair), we

can now calculate the terminal speeds and hencddbkeent timesf the balls. We
find that

(i) the ball of radius 5 mm has a terminal speed of 40 mand a descent time
of 2.32 s, and

(i) the ball of radius 5 cm has a terminal speed of 127 fand a descent time
of 2.27 s.

Thus the larger ball arrives first but the time differenceois $mall to have been
observed by Galileam
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Problem 4.19

A body is projected vertically upwards with speednd moves under uniform grav-
ity in a medium that exerts a resistance force proportiomahé fourth power its
speed and in which the body’s terminal speeWl id=ind the maximum height above
the starting point attained by the body.

Deduce that, however largemay be, this maximum height is always less than
wV?/4g.

Solution

Suppose that the medium exerts a resistance force of mdgnitk v* on the bodly,
whereK is a positive constant. Then, if the body were falling veatticdownwards
with its terminal speed’, its acceleration would be zero and so

mg —mKV*=0.
Hence, théerminal speedis related to the resistance const&nhby the formula

yi=2
£.

Suppose that the upward motion starts from the origin anestalkace along the
z-axis, which is pointing vertically upwards. Then the edquabf motion is

dv 4
m— = —mg —mKv”",

dt

wherev = z. On intoducing the terminal spedd instead ofK, this equation

becomes
dv . v
a - ® V4 )’
which is theequation for upwards motion. To find the maximum height, we will

use the modified form of this equation. Since

dv B dv dz _Udv

— = — X — =Vv—,
dt dz dt dz

the equation of motion can be written in tivedified form

dv |+ vt
V— = — —
dz g v4 )’
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which is a separable first order ODE fors a function of the height On separat-

ing, we obtain
vdv g
/m = —W/dz-

To perform the integral ovar, we make the substitutian = v2. Thendw = 2vdv
and we find that

_ —1 W
=572 tan 72 + C

1 _, 2
mtan W + C,

where( is an integration constant. The initial condition= u whent = 0 gives

1 u?
C=——tan! —
2V?2 V2

and hence

VZ uZ U2
z=—(tan! — —tan’' — |.
2g V2 V2

We could invert this expression to find a formula for the upivaelocity v at height
z, but this manipulation is not neccessary. Simce= 0 at the highest point, the
maximum height attained by the body is given immediately by

V2 u2

—tam ! —.

2¢g V2

No matter how large: may be, tan' (u?/V?) is always less thagr. Hence, for
any projection speed, the height reached is always lessithdr4g. m
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Problem 4.20 Millikan’s experiment

A microscopic spherical oil droplet, of densityand unknown radius, carries an
unknown electric charge. The droplet is observed to haveited speedy; when
falling vertically in air of viscosityu. When a uniform electric field, is applied

in the vertically upwards direction, the same droplet waseoled to moveipwards
with terminal speed,. Find the charge on the droplet. [Use the low Reynolds
number approximation for the drag.]

Solution

If the droplet is simply falling through air with terminal spdv,, thenD = mg,
whereD is the drag on the droplet amdlis its mass. [In this problem, the buoyancy
of the air is negligible.] On using the Stokes formula 1oy we obtain

brapuv, = (%ncﬁ) o'g,

wherea is the radius of the droplel is the viscosity of air, ang’ is the density
of the oil. [Since the droplet inot a rigid body, one may wonder why the Stokes
formula can be used. Stokes’s analysis can be generalisi tcase of diquid
sphere. This analysis shows that there is a correction tkeS®formula of order
O(u/ 1), wherep' is the viscosity of theoil. The ratiow/u’ is about10~* for
air/oil and so (fortunately) the correction is negligibJeThe radius of the droplet

is therefore
1/2
a=3 (,uvl ) .
2p'g

Suppose that the droplet is now subject to an upwards eldatd £, and is
rising with terminal speed,. TheneEy = mg+ D, wheree is the (positive) charge
on the droplets is its mass and is the drag. On using the Stokes formula again,
we obtain

eEy = (%na3> 0'g + 6mapv,
= 6mapuv; + 6rapv;
= 6map (v; + v2).

Hence thechargecarried by the droplet is

. 6map (vi + vy)
= E, ,

wherea = 3(uvi /2p'g)V%. m

© Cambridge University Press, 2006



Chapter 4 Problems in particle dynamics 114

Problem 4.21

A mortar gun, with a maximum range of 40 m on level ground, ecptl on the
edge of a vertical cliff of height 20 m overlooking a horizalplain. Show that the
horizontal rangeR of the mortar gun is given by

1
R =40 {sina + (1 + sin? a)z} cosa,

wherex is the angle of elevation of the mortar above the horizonféhke g =
10 ms™2]

EvaluateR (to the nearest metre) when = 45° and 35° and confirm that
a = 45° does not yield the maximum range.

Solution

Suppose that the motion starts from the origin and takeeptathe(x, z)-plane,
whereO: points vertically upwards. The path of the shell is then

g 2
z = x tana — (—)x ,
2u? cog o

whereu is the muzzle speed andis elevation angle of the gun (see the book p.89).
Suppose that the plain is distankebelow the cliff. Then the shell lands when
z = —h, that is, when

g 2
—h = xtana — (7)x )
2u?cog «

The x-coordinate of the landing point therefore satisfies theagqo

5 (2u2 sina COSa) 2hu? cos «
xX-l—— )

g g
Therange R of the mortar is thgositiveroot of this equation, namely,

. . 2gh\ /2
R =Ry [sma + (S|n2a + 28 ) cosu,

u2

whereR, = u?/g is the maximum range of the mortar tavelground.
From the data in the problenRy = 40 m,2, = 20 m,g = 10 ms 2 and so

1/2
R =40 [sina + (Sinzoz + 1) ]COSa m.

Whena = 45°, R = 55 m, and wherx = 35°, R = 57 m, correct to the
nearest metre. Thus = 45° does not yield the maximum range in this problam.
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Problem 4.22

It is required to project a body from a point on level grounduich a way as to clear
a thin vertical barrier of heightt placed at distance from the point of projection.
Show that the body will just skim the top of the barrier if

2 2
(ﬂ) tart o — atana + (ii +h) — 0,

2u? u?

whereu is the speed of projection arndis the angle of projection above the hori-
zontal.
Deduce that, if the above trajectory is to exist for saméhenu must satisfy

u* —2ghu® — g%a* > 0.

Find the least value af that satisfies this inequality.
For the special case in whieh= /3%, show that the minimum projection speed

necessary to clear the barrier(i’ﬁgh)% , and find the projection angle that must be
used.

Solution

Suppose that the motion starts from the origin and takeepfathe(x, z)-plane,
whereOz points vertically upwards. Then the path of the body is

g 2
z = x tana — (—)x ,
2u? cog o

whereu is the projection speed ads the angle between the direction of projection
and the positivex-axis (see the book p.89). If the path just skims the top of the
barrier, then: anda must satisfy the equation

g 2
h = atana — <7>a .
2u? cog «

On using the trigonometric identity see = 1+-tar? «, this condition can be written
in the form

ga* tart « — 2au’ tana + (ga2 + 2hu2) =0,

which is a quadratic equation in the variable darA path skimming the barrier will
exist if this equation haeal roots for tar. The condition for real roots is

ut > g (ga2 + 2hu2) :
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which can be written in the form
2
<u2 — gh) > g2 (a2 + hz) )

Hence, a path skimming the top of the barrier will exist if fh®jection speed
satisfies the inequality

1/2
u? Zgh+(a2+h2) )

For the special case in which= +/3/, this condition orv becomes
u? > 3gh.

The corresponding value(s) of are found by solving the quadratic equation for
tana. For the critical case in which? = 3gh, the equation for tam becomes

tart @ — 2+/3tana + 3 = 0,
that is,
2
(tana — ﬁ) =0.

Hence (in the critical case) only one projection angle issfme, namelya =
tam ! /3 = 60°. m
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Problem 4.23

A particle is projected from the origin with speadn a direction making an angle
a with the horizontal. The motion takes place in i{he z)-plane, where)z points
vertically upwards. If the projection speeds fixed, show that the particle can be
made to pass through the poiiat ») for some choice ok if (a, b) lies belowthe

parabola
uz g2x2
z=—|1- .
2¢g ut

This is called theparabola of safety. Pointsabovethe parabola are ‘safe’ from the
projectile.

An artillery shell explodes on the ground throwing shrapne&ll directions
with speeds of up t80 ms™!. A man is standing at an open window 20 m above
the ground in a building 60 m from the blast. Is he safe? [Take 10 ms™2.]

Solution

This is the same as Problem 4.22 except that now the projestieed: is fixed
from the start.

Suppose that the motion starts from the origin and takeptethe(x, z)-plane,
whereO:z points vertically upwards. Then the path of the body is

g 2
= vtana— (5 )t
2u? cog o

whereu is the given projection speed andis the angle between the direction of
projection and the positive-axis (see the book p.89). If the path passes through the
point(a, b), thena, b anda must satisfy the equation

g 2
b = atana — <7>a .
2u?cos o

On using the trigonometric identity see = 1+tar? «, this condition can be written
in the form

ga® tart @ — 2au’ tana + (ga2 + 2bu2> =0,

which is a quadratic equation in the variable ¢&arA path through the pointa, b)
will exist if this equation haseal roots for tanx. The condition for real roots is

ut> g (ga2 + 2bu2> :
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which can be written as a condition on the coordirfaibe the form

2 2,2
)
2g u

Hence, a path througla, ) will exist if (a, b) lies belowthe parabola

uz ( gzxz)
z=—|[1- .
2¢g u*

This is theparabola of safety.

From the data given in the problem= 30 ms™! andg = 10 ms~? so that the
parabola of safety is
2
=451 2 ).
8100

The window is at the poing60, 20) which liesbelowthis parabola. It follows that
theman is not safe m
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Problem 4 .24

A projectile is fired from the top of a conical mound of heighand base radius.
What is the least projection speed that will allow the prbjedo clear the mound?
[Hint. Make use of the parabola of safety.]

A mortar gun is placed on the summit of a conical hill of hei§itm and base
diameter 160 m. If the gun has a muzzle speedsois™!, can it shell anywhere
on the hill? [Takeg = 10 ms™2.]

Solution

Suppose that the motion starts from the origin and takeeptathe(x, z)-plane,
whereO:z points vertically upwards. If the projection speed jghen theparabola

of safetyis
2 2.2
z = v (1 & ) .
2g u*
The foot of the mound can be reached if the pgint—/) lies below this parabola,

that is, if
2 2,2
—hf”—(l—g ? )
2¢g u*

Hence the foot of the mound can be reached by the projecttieptojection speed
u satisfies the condition

u* +2ghu* — g%a®> > 0.
This inequality can be written in the form
2
(u2 + gh) > g2 <a2 + hz) .

Hence, gath clearing the moundwill exist if the projection speed satisfies the
condition

1/2
u? > g(a2 +h2> —gh.

From the data given in the problem,= 80 m, # = 60 m andg = 10 ms™2.
All points on the hill can therefore be reached if the muzpleesl: satisfies

1/2
u? = 10 (802 + 60%) " — 600 = 400,
thatis, ifu > 20 ms™!. The actual muzzle speed2d ms! is therefore more than
enough to shell anywhere on the hil.
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Problem 4.25
An artillery gun is located on a plane surface inclined atragi@g to the horizontal.
The gun is aligned with the line of steepest slope of the plaihe gun fires a shell
with speedu in the direction making an angte with the (upward) line of steepest
slope. Find where the shell lands.

Deduce the maximum rang®’, R, up and down the plane, and show that

RY  1-—sinp
RDP  1+4sing’

u I
AN Y

—mgkv

> 'l

FIGURE 4.9 Projectile motion under uniform gravity on a plane inclirsdn-
gle B to the horizontal. The unit vectd” pointsvertically upwards

Solution

Suppose that the motion starts from the origin and takeepfathe(x, z)-plane,
whereOx points up the line of steepest slope of the plane@nds perpendicular to
the planej andj are the corresponding unit vectors. Note that the upwaricedr
is inclined at anglgs to the axisOz (see Figure 4.9).

The vectorequation of motionfor the shell is

wherek" is the unit vector pointing vertically upwards. The init@ndition is
v = (ucosa)i + (usina)k whent = 0. If we now writev = vi + v,k and
take components of this equation (and initial conditiondhieZ - and k-directions,

© Cambridge University Press, 2006



Chapter 4 Problems in particle dynamics 121

we obtain the two scalar equations of motion

dvy .
- 8sinh.
dv,

o =8 cosp,

with the respective initial conditions, = u cosa andv, = u sina whent = 0.
Simple integrations then give the components of the staddicity at timer to be

Vx = u COSa — g Sinf ¢,
v, = uSine — g cosp ¢.

Theposition of the particle at time can now be found by integrating the expressions
for vy, v, and applying the initial conditions = 0 andz = 0 whens = 0. This
gives

x =ucosat— Lgsingir?,

z=usinat —1gcospr’.

The shell lands when = 0 again, that is, when

. 2u Sina
~ gcosp’

The value ofx at this instant is

— 1 H 2
X =ucosat— 5gsinfie,

_  cosa 2u sina Ly sing 2usina )’
- g cosp 28 g cosp

(sinza cosp —sinp(1 — cosZa))

2

- gcosfp
2

- gcosp

(sin(za +B)— sinﬂ).

On allowing the elevation of the gun to vary in the rangé< o < 7, we see
that the landing point of the shell varies in the range

2 2

u . u
(—l—slnﬂ)fxfgco§/3

gcosp

(1 —sing).
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It follows that theRY and RP?, theranges of the shellup and down the plane, are
given by

2

RY = gczszﬁ(l—sinﬁ)

2

R = ch(l)sZﬁ(l + sinp).

In particular, the ratio of the two ranges is

RY 1 —sinB
— =——— . n
RP  1+sing
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Problem 4.26

Show that, when a particle is projected from the origin in aimen that exertéinear
resistance, its position vector at timeas the general form

r =—a(t)k + p(t)u,

wherek is the vertically upwards unit vector andis the velocity of projection.
Deduce the following results:

() A number of particles are projected simultaneously frtira same point,
with the same speed, but different directions Show that, at each later
time, the particles all lie on the surface of a sphere.

(i) A number of particles are projected simultaneouslyrirthe same point, in
the same direction, but wittlifferent speedsShow that, at each later time,
the particles all lie on a straight line.

(iif) Three particles are projected simultaneously in a ptetely general manner.
Show that the plane containing the three particles remainallpl to some
fixed plane.

Solution

Suppose that the motion starts from the origin and takeepfathe(x, z)-plane,
where Oz points vertically upwardsi andk are the corresponding unit vectors.
The solution to the projectile problem with linear resistarias been obtained in
the book on p. 90. The position of the body at timeas found to be

u COSx _
X = (1—e K’),

K

_ Kusina + g (1 —e‘K’> 8

: K2 K

Z,

where K is the resistance constant,is the projection speed and is the angle
between the direction of projection and the positivaxis. Theposition vector of
the body at time is therefore

r=xi+zk _
I (1) (R (1) - £
= % (1 —e_K’> (ucosai + usinak) — (Kt —(1 —e_K’)> %k

=—a)k + p()u.
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where
at)=e X' -1+ Kz,
_ Kt
By = = (1-e7X7).

andu (= ucoswi + usina k) is the velocity of projection.

It follows that, if a number of particle®;, P,, ...aresimultaneouslprojected
from O with velocitiesu, u,, ..., their position vectors,, r,, ...at timer are
given by the formula

ri=—a(t)k + p)u;.

The geometrical interpretation of this formula is shown igufe 4.10.

B(t) us

FIGURE 4.10 The positons of three of the particles at time

() If the particles all have theame initial speed, then the distancesP;, C P,

124

...are all equal taB (7). Hence the particles all lie on a sphere with centre

C and radius:B(¢). Note that this sphere is both falling and expandmg.

(ii) If the initial velocities of the particles are ghlarallel, then the line segments

— —
CPy, CPq, ...are all parallel. Hence the particles all lie on a straige
throughC'. Note that this line is falling but remains ‘parallel to ifSem

(i) Consider three particlest, B, C with initial velocitiesu, u®, u€. Then
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their position vectors at timeare

a=—a()k+ B()u?,
b=—a(l)k+ B(t)u®,
¢ =—a(t)k + B(t)uC.

Hence, the vectofh — a) x (¢ — a), which isnormalto the planed BC, is
given by

(b—a)x(c —a) = B(t)* (uB —uA>x<uC —uA>.

This vector has constant direction and so the pldaB&” remains ‘parallel to
itself’. m
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Problem 4.27

A body is projected in a steady horizontal wind and moves undéorm gravity
andlinear air resistance. Show that the influence of the wind is the sasriéthe
magnitude and direction of gravity were altered. Deduct itha possible for the
body to return to its starting point. What is the shape of thi [in this case?

Solution

Let the unit vectork point vertically upwards and lel/ i be the constant wind
velocity. Suppose the motion is viewed from a reference é&anoving with the
wind. In this frame, the air is still and the equation of matifwr the apparent
velocity v’ is

d /
md—j =-—mgk —mKv',

whereK is the linear resistance constant. This equation can b&ewiih the form

dv' K+ v/

a ¢ V)’
whereV is the terminal speed of the bodly still air. Since the true velocity is
related to the apparent velocity by

v=v +Ui,

it follows that theequation of motionfor the true velocity is

@__ k+v—Ui
ar ¢ % '

This equation can be written in the form

where

1/2 .
g =g 1+ = kUL V*=<U2+V2)1/2
vz) U2 +v2)'* '

This is the same as the equation with no wind, exceptghatandV are replaced
by g*, k™ andV*. The quantitieg* and—k* can be regarded as the magnitude
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and direction ofmodified gravity, and V* is themodified terminal speed This
terminal speed is consistent with that calculated in Probiler.

The body will return to its starting point if it is projected the direction ofc*.
In this case, the path is a straight line inclined into thedafilom the vertical by an
angletan' (U/V).m
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Problem 4.28

The radius of the Moon’s approximately circular orbit is 380 km and its period

is 27.3 days. Estimate the mass of the Earth.=f 6.67 x 107! Nm2kg~2.] The

actual mass i§.97 x 10> kg. What is the main reason for the error in your estimate?
An artificial satellite is to be placed in a circular orbit arml the Earth so as to

be ‘geostationary’. What must the radius of its orbit be?¢ period of the Earth’s

rotation is 23 h 56 mnot 24 h. Why?]

Solution

Example 4.8 in the book solves the problem of a body moving éir@ular orbit

about afixedgravitating mass. The periadof the motion was found to be
, 4nR3
T = —,
MG

whereR is the radius of the orbit andlf is the fixed mass.

(i) If the radius and period of a circular orbit are known, tiravitating mass
M can be found from the formula

4% R3

M = .
G2

In the orbit of the moon about the EartR, = 384,000 km andz = 27.3
days. The calculated value of theass of the Earthis then

472 x (3.84 x 10%)3

M =
(6.67 x 10-11) x (27.3 x 1436 x 60)2

= 6.06 x 10%* kg.

This figure overestimates the actual mass of the Earth, vigich7x10* kg.
Most of this small error arises because we have ignored the®mof the
Earth induced by the Moom

(ii) If we need to produce a satellite orbit that has a givernqakr, then theorbit
radius R must be taken to be

MGt?
R =
42

For a geostationary satellitd/ = 5.97 x 10%* kg andr = 1436 min. The

1/3
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calculatedadius of the geostationary orbitis then

o (397X 10%) x (6.67 x 107'1) x (1436 x 60)° 13
- 42
=4.23%x10"m
— 42,300 km. m
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Problem 4.29 Conical pendulum

A particle is suspended from a fixed point by a light inextblesstring of length
a. Investigate ‘conical motions’ of this pendulum in whicletbtring maintains a
constant angler with the downward vertical. Show that, for any acute angle
conical motion exists and that the particle spees given byu? = ag sina tana.

FIGURE 4.11 The conical pendulum.

Solution

Suppose the pendulum is in conical motion with the strindimed at anglex to
the downward vertical (see Figure 4.11). Let the speed ofrithss be:. Then the
vertical component of thequation of motion gives

0 = T cosa —mg,

the component in the directioRC gives

2
u .
m - = T sina,
asina

and the component in the direction of motion is satisfiedtidelly if « is constant.
HenceT = mg/ cosa and aconical motion at anglex is possibleif the speed of
the mass is given by

u? = ag sina tane. m
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Problem 4. 30

A patrticle of massn is attached to the highest point ofsanoothrigid sphere of
radiusa by a light inextensible string of lengtha /4. The particle moves in contact
with the outer surface of the sphere, with the string taut, @escribes a horizontal
circle with constant speed. Find the reaction of the sphere on the particle and
the tension in the string. Deduce the maximum value &dr which such a motion
could take place. What will happenufexceeds this value?

FIGURE 4.12 The ‘conical’ pendulum on a
sphere.

Solution
The system is shown in Figure 4.12. The vertical componeth®équation of
motion gives

T N

0=—=+—=—mg,
NV A

the component in the directioRC gives
V2u? T N
m =——-—,
a V2 V2

and the component in the direction of motion is satisfiedtidefly if « is constant.
On solving these simultaneous equations, we find that

2 2
mg mu mg mu
T=—24— N=—=——.
V2 oa V2 ooa
The motion as described is possible provided ffiat 0; otherwise the particle
will leave the sphere. Thus tiparticle remains on the sphereif the speed: of the

mass satisfies the inequality

V2
©
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Problem 4 .31

A particle of massn can move on aughhorizontal table and is attached to a fixed
point on the table by a light inextensible string of length The resistance force
exerted on the particle ism Kv, wherev is the velocity of the particle. Initially the
string is taut and the particle is projected horizontaltyight angles to the string,
with speed:. Find the angle turned through by the string before the glartiomes
to rest. Find also the tension in the string at time

Solution

Let the fixed point on the table be the origin, and letr, 6 be the plane polar
coordinates of the particle. Then= b and thevelocity andaccelerationof the
particle are given by

v =100,

2
a=— (%) F+00,
wherev (= b6) is the circumferential velocity. Thequation of horizontal motion
is therefore
2
m [— (%)?—i— 1')9] =-mK (1)0) -T7,

whereT is the tension in the string. This vector equation is egeinato the two
scalar equations

2

muv
5
v+ Kv=0.

The general solution of the ODE foris
v = Ce_K’,

whereC is an integration constant. The initial condition= u whent = 0 gives
C = u and so thesircumferential velocity of the particle at time is

be
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To find the angle turned by the string at timewe writev = b(d6/dt) and
integrate again. This gives

0 = _(Kib> e Kt 4 D,

where D is a second integration constant. The initial conditfos- 0 whent = 0
givesD = u/ Kb so that theangle turned by the string at time is

9=Kib<l—e_K’).

The particle never actually comes to rest, buts &snds to infinity,v tendsto
zero and tendsto the valueu/ Kb. m
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Problem 4.32 Mass spectrograph

A stream of particles of various masses, all carrying theeselnarger, is moving
along thex-axis in the positivec-direction. When the particles reach the origin they
encounter an electronic ‘gate’ which allows only those ipk$ with a specified
speedV to pass. These particles then move in a uniform magnetic Bgldcting

in the z-direction. Show that each particle will execute a semieitiefore meeting
the y-axis at a point which depends upon its mass. [This providesetnod for
determining the masses of the particles.]

Solution

The equation of motion for a particle of massn and chargee moving in the
uniform magnetic fieldBok is

d
m—v = evx(Bok),

dt
which can be written in the form
dv
— = Quxk,
a7
whereQ2 = eBy/m. This vector equation is equivalent to the three scalar s
dvy dvy dv,
— = Qu,, — = —Quy, = 0.
dt vy dt vx dt

It follows thatv, satisfies the equation

This second order linear ODE has the general solution
vy = C cosQ2t + D sinQt,

whereC andD are arbitrary constants. The corresponding expressian fiarthen
vy = C SinQ2 — D cosQt.

The initial conditionsu, = V andv, = 0 whent = 0 giveC = 0andD = -V
and so thevelocity componentsv, andv, at timer are given by

vy = V cosQt,
v, = =V sinQt.

© Cambridge University Press, 2006



Chapter 4 Problems in particle dynamics

The velocity component;, is easily shown to be zero.
To find the position of the particle at timewe writev, = dx/dt, v, = dy/dt,
v, = dz/dt and integrate again. This gives

Vv .
= —sinQt + E,
X 9 +
|4
= —CcosQt + F,
Y=9 +
z=0G,
where E, F, G are integration constants. The initial conditions= y =z = 0

whent = 0give E =0, F = -V /Q, G = 0 and so theosition of the particle at
timez is given by

X = KsinSZt,

Q
y =——(1-cosQr),
z=0.

Thus the particle moves on a circle with centré@atl’/ 2) and radiusi’/ 2.

The particle next meets theaxis whery = 7/ Q; by this time, the particle will
have executed semi-circle The meeting pointis g0, Y'), where

2V _ 2mV

Y = .
Q €Bo

The distance of this point fror® is thusproportional to the mass: of the particle
and this provides a method for measuring particle maseses.
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Problem 4.33 The magnetron

An electron of mass: and charge-e is moving under the combined influence of a
uniform electric fieldEy j and a uniform magnetic fiel@yk. Initially the electron

is at the origin and is moving with velocityi. Show that the trajectory of the
electron is given by

x = a(Qt) + bsinQt, y = b(1 —cosft), z =0,

whereQ2 = eByg/m,a = Ey/QBy andb = (uBy — E¢)/ Q2By. Use computer
assistance to plot typical paths of the electron for thes@ase b, a = b anda > b.
[The general path is calledteochoid, which becomes aycloidin the special case
a = b. Cycloidal motion of electrons is used in theagnetronvacuum tube, which
generates the microwaves in a microwave oven.]

Solution
Theequation of motion of the electron is

d
md—l; = —eEyj —evx(Bok),
which can be written in the form
dv QE()
— = | — Quxk,
dt ( By )J v

whereQ2 = eBy/m. This vector equation is equivalent to the three scalar teaus

X — _Qu,, b A Qu,. 7z
dt vy dt Bo T 200 dt

=0.

It follows thatwv, satisfies the equation

This second order linear ODE has the general solution
vy = C cosQ2t + D sinQt,

whereC and D are arbitrary constants. The corresponding expressian farthen

E .
vy = =2 _ CsinQt + D cosQt.
By
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The initial conditionsvy = « andv, = 0 whent = 0 giveC = 0 andD =

u — (Eo/By) and so therelocity componentsv,, andv, at timet are given by

Ey Ey
= — — JcosQ2t + —,
Ux (U BO ) + Bo

E .
vy = (u — —0) sinQ2z.
By
The velocity component; is easily shown to be zero.

To find the position of the particle at timewe writev, = dx/dt, v, = dy/dt,
v, = dz/dt and integrate again. This gives

! Eo SinQt + Eo t+ E
X=—=\u—— — ,
Q By By
1 E
y=——= (u —0) cosQ2t + F,

_Bo

where E, F, G are integration constants. The initial conditions= y =z = 0
whenr = 0 give

1 E
E =0, F=—(u-2=2), G =0,
Q Bo

and so the position of the particle at times given by
1 Eo . EO
X=—|\u——|sinQt+{— )¢
Q By By
1 Ey
=—|u——) (1 —cosQt),
"7 a (u Bo) ( )
z=0.

This is thetrajectory of the particle ; the path is called trochoid. It can be written
in the more compact form

x = bsinQt + aQt,

y = b(1—cosQzi),
z=0,
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where

Eo 1 Eo
= — and b=—(u——]).
‘= QB Q (“ BO)

Three examples of trochoidal motion (corresponding to #eeg: < b, a = b and
a > b) are shown in Figure 4.1%&

Y
X
Yy
X
Y
FIGURE 4.13 Three examples of trochoidal
motion (two cycles of each are shown):
Top: a < b.
Centre: a = b (the cycloid), T

Bottom: a > b.
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Problem 5.1
A certain oscillator satisfies the equation

X +4x = 0.

Initially the particle is at the point = +/3 when it is projected towards the origin
with speed. Show that, in the subsequent motion,

x = /3082t — sin2t.

Deduce the amplitude of the oscillations. How long doeskié tior the particle to
first reach the origin?

Solution
Thegeneral solutionof the equation of motion is

x = Acos2t + Bsin2t,
where A, B are arbitrary constants. Thaitial conditions x = +/3 andx = —2
whent = 0 give 4 = /3 and B = —1 respectively. Thenotion of the particle is

therefore given by

x = /3082t — sin2t.

1/2
Theamplitude of the oscillations is thereforé(«/i)2 + (—1)2) =2.

The particle is at the origin when
V/3¢0s2t —sin2s = 0,
that is, when
tan2s = /3.

Thisfirst occurs when = 17. m
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Problem 5.2

When a body is suspended from a fixed point by a certain lingamg, the angular
frequency of its vertical oscillations is found to 8¢. When a different linear spring
is used, the oscillations have angular frequefigy Find the angular frequency of
vertical oscillations when the two springs are used togdthm parallel, and (ii) in
series. Show that the first of these frequencies is at ledst tive second.

Solution
In each case, we are being asked to find the effective straxigtie composite
spring.

(i) Springs in parallel
Let x be thecommon extensioof the springs and let the tensions Bg 7,
respectively. Then the total restoring forcdis+ 7,. Theeffective strength
aP of the springs in parallel is then

T, +T
of — 1+ 12

X
n.n
X X
= +ap
= mQ7 + mQ3.

Hence theangular frequency Q when the body is suspended from springs
in parallel is given by

2
m(QP) =m£2f+m£22,
that is,
1/2
P
Qf = (et +@3) " .m

(i) Springs in series
Let T be thecommon tensioof the two springs and let the extensionse
X, respectively. Then the total extensionis+ x,. Theeffective strength
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oS of the springs in series is then

T
o =

X1+ X2
_ T
~(T/ay) + (T/a2)
o100

o+ a
202
_ legz_
Qf + Q37

142

Hence theangular frequency Q° when the body is suspended from springs

in series is given by
m(25) = mQQ;
Q7 + Q]
that is,

2182,

Q= ——= .
1/2
(QF +23)

From the above formulae, it follows that

Qf Qi+ Q3
QS T Q1Q,
(& —Q25)% + 292192,
B 2182,
Q — Q)2
=( 1 2) 4
218,
> 2,

since(R2; — 2,)?/Q12, is positive Hence, whatever the values @f;, Q,, it is
always true that

Qf>2Q%5 m
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Problem 5.3

A particle of mass moves along the-axis and is acted upon by the restoring force
—m(n? + k?)x and the resistance foremkx, wheren, k are positive constants.
If the particle is released from restaat= a, show that, in the subsequent motion,

a .
x = —e ¥ (ncosnt + k sinnt).
n
Find how far the particle travels before it next comes to.rest

Solution
Theequation of motionfor the particle is
mi = —mn?* + k?*)x — 2mkx,
that is,
¥+ 2kx + (n* + k*)x = 0.

The solution procedure is the same as that on pp.109-11@ dfotbk. We seek
solutions of the formx = ¢*’. Then) must satisfy the equation

A +2kh + (n® + k%) =0,

the roots of which aré. = —k + in. We have thus found the pair of complex

solutions
x = e—ktezi:int’

which form a basis for the space of complex solutions. Theaméimaginary parts
of the first complex solution are

_ [e7* cosnt
RS Kt
e sinnt

and these functions form a basis for the space of real sakiti®hegeneral real
solution of the equation of motion is therefore
x = ek (4 cosnt + Bsinnt),

whereA and B are real arbitrary constants. The initial conditior= ¢ whenz = 0
givesA = a, and the conditioox = 0 whent = 0 then givesB = ak/n. The
motion of the patrticle is therefore given by

a .
x = — e ¥ (ncosnt + k sinnt).
n
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The patrticle is (instantaneously) at rest whiea: 0. On using the above formula
for x, we find that

. a ks
X =— (n2 + kz) e % sinnt,
n

which is zero when sint = 0. This next happens when= n/n and, at this instant,
the particle is at the point
x = —ae Tk,

Since the motion starts at the poit= «a, the particle therefore travelsdistance
a (1 + e—nk/n)

before it next comes to res.
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Problem 5.4
An overdamped harmonic oscillator satisfies the equation

X +10x + 16x = 0.

Attimet = 0 the particle is projected from the point= 1 towards the origin with
speedu. Find x in the subsequent motion.
Show that the particle will reach the origin at some latesetinf
-2
u — bt
u—3_8

How large must: be so that the particle will pass through the origin?

Solution

The equation of motion is solved in the standard manner isgsolutions of the
form x = ¢*. Theni must satisfy the equation

A%+ 104 + 16 = 0,
the roots of which ar@ = —2, —8. We have thus found the pair of solutions
€—2t’
= {6_8’.
Thegeneral solutionof the equation of motion is therefore
x = Ae?' + Be ¥,

whereA4 and B are arbitrary constants. The initial conditions= 1 andx = —u
when? = 0 give the equations

A+ B =1,
24+ 8B = u,
from which it follows that4 = —$(u —8), B = #(u — 2). Themotion of the

particle is therefore given by
x=Lwu—2)e¥ — Lu—8)e .
The particle is at the origin at timeif

Tu—2)e ¥ —Lw-38)e? =0,
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that is, if

-2
oSt =12
u—3_8

Such a value of will exist if u is such thatF'(z) > 1, where

u—2
u—38

F =

FIGURE 5.1 The functionF'(u).

The graph ofF is shown in Figure 5.1. The conditioA > 1 is satisfied if
u > 8, but not otherwise. Hence the particle wiliss through the originif u > 8.
]
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Problem 5.5
A damped oscillator satisfies the equation

¥4+2Kx+Q*x=0

whereK and2 are positive constants witkh < Q (under-damping). Attime = 0
the particle is released from rest at the point= a. Show that the subsequent
motion is given by

—Kt K
X =ae cosQpt + —sSinQpt |,
Qp

whereQp = (Q2 — K2)1/2,

Find all the turning points of the function(z) and show that the ratio of succes-
sive maximum values of is e ~27K/9p

A certain damped oscillator has mass 10 kg, period 5 s an@ssige maximum
values of its displacement are in the ratio 1. Find the values of the spring and
damping constantg andf.

Solution

By using the method given on p.110 of the book, glemeral solutionof the equa-
tion of motion is found to be

x = e X (AcosQpt + BsinQpt),
whereQp = (22 — K2)!/2. The corresponding formula faris
% = e™K((Qp B~ K4) cos@pt — (2pA + KB)sin@pr).

Theinitial conditions x = ¢ andx = Owhent = 0give4d = aandB = Ka/Qp.
Themotion of the body s therefore given by

K .
x = ae Kt (cosQDt + —stDz) )
Qp

The turning points of the functiorn(z) occur whent = 0, wherex is given by

K2

. —Kt .

X = —ae (QD + —) SiNnQ2 pt
Qp
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This is zero when siR pt = 0, that is, whenr = 0, 7/ Q2p, 27/ Q2p, .... The
maxima of x occur whent = 0,27/Qp, 47/ Qp, ..., and the values of at these
maxima are

a, ae_2”K/QD, a€_477K/QD’

and so on. Theatio of successive maximum valuesf x is thereforee=27K/<p

Suppose we have a damped oscillator with petiadd for which the successive
maximum values of its displacement are in the ratiol. Then

21
E— T,
Qp
e—ZHK/QD — l
v

’

whereQp = (2 — K2)1/2. It then follows that

2 _ 47'[2—1—(|n)/)2

1
K=—-Iny, Q 5
T T

On using the values = 5s andy = 3 given in the question, we find th& =
0.22s ' andQ = 1.28 s7! approximately. Thespring constanta anddamping
constant therefore have the approximate values

a=mQ>=163Nm"!,
B=2mK=44Nsm ' =
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Problem 5.6 Ciritical damping
Find the general solution of the damped SHM equation for peeial case of crit-

ical damping, that is, wheX = 2. Show that, if the particle is initially released
from rest atx = «, then the subsequent motion is given by

x =ae ¥ (1 + Qr).
Sketch the graph of against.

Solution
WhenK = , theequation of motionbecomes

X42Qx +Q%x = 0.

This equation is solved in the standard manner by seekingigos of the form
x = M. Theni must satisfy the equation

AT +2Q0 + Q% =0,

which has theepeated roof. = —<. In this special case, the functions
o~
v {le_m.

are a pair of solutions. Thgeneral solutionof the equation of motion is therefore

x =e (4 + Br),
whereA and B are arbitrary constants.

Theinitial conditions x = ¢ andx = 0 whenz = 0 give A = ¢ and B = a{2.

Themotion of the particle is therefore given by

x = ae (1 + Q1).

The graph ofx is shown in Figure 5.2. Qualitatively, it is indistinguidia from
the corresponding over-damped problam.
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\

FIGURE 5.2 The graph ofx againstz in ¢
Problem 5.6.
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Problem 5.7 % Fastest decay
The oscillations of a galvanometer satisfy the equation

¥4 2Kx 4+ Q*x =0.

The galvanometer is released from rest wite= « and we wish to bring the reading
permanently within the intervatea < x < ea as quickly as possible, wheteis

a small positive constant. What value Kfshould be chosen? One possibility is to
choose a sub-critical value & such that the first minimum point of () occurs
whenx = —ea. [Sketch the graph of(z) in this case.] Show that this can be
acheived by setting the value &f to be

,-1/2
JT
k=2 [1 * (In(l/e)) } ‘

If K has this value, show that the time taken foto reach its first minimum is
approximately2~! In(1/€) whene is small.

Solution

By using the method given on p.110 of the book, glemeral solutionof the equa-
tion of motion is found to be

x =e *(AcosQpt + BsinQpt),
whereQ p = (Q2 — K2)!/2, The corresponding formula faris
X = e‘K’((QDB — KA)cosQpt — (2pA + KB) sian).

Theinitial conditions x = a andx = Owhens = 0 give4A = aandB = Ka/Qp.
Themotion of the galvanometeris therefore given by

—Kt K
X =ae cosQpt + —sSinQpt |.
Qp

The stationary points of the function(z) occur whenx = 0, wherex is given
by

K2

. —Kt .

X = —ae (QD + —) SiNnQ2 pt
Qp
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This is zero when siR pt = 0, thatis, when =0, 7/ Qp, 27/ Qp, .... Thefirst
minimum of the functionx (¢) thus occurs when = =/ Q2 p, and the value of at
this instant is

x = —ae "K/@p

ea

T/ Qp

b N

FIGURE 5.3 The damping constank is chosen so that the first turning
point of the motion lies on the ling = —ea.

\/
~

The suggestion in the question is to sel&ctso that this first minimum ok
occurs whenx = —eaj; this is shown in Figure 5.3. For this to happeéamust be
chosen to satisfy the equation

e—nK/S'ZD =,

that is,

K
W = |n(1/€)

On solving this equation, we find that thequired value of K is

5 —1/2
K=Q (1 +”—2) .
(In(l/e))
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Whene is small, this igust lessthan critical damping.
The time taken to reach the first minimum valuexas =/ Q2 where

Qp =Q* - K?
—1
2
—2— 1+ ———
(In(1/€))
72Q?

(In(1/€))* + n2

after a little algebra. Theme 1 taken for x to reach its first minimum is therefore

In(1 2 12
T = (/) (1 + n—z) .
Q (In(1/€))

Whene tends to zerol / In(1/¢) also tends to zero andis given approximately by

T |n(1/e).
Q

With this choice ofK, the galvanometer settles down remarkably quickly. Fonmexa

153

ple, ife = 107%, thent ~ 9.7/, which is less than two periods of the undamped

galvanometem
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Problem 5.8

A block of massM is connected to a second block of mas®y a linear spring of
natural lengtl8a. When the system is in equilibrium with the first block on tloefi
and with the spring and second block vertically above it,|#mgth of the spring is
7a. The upper block is then pressed down until the spring hdsthalatural length
and is then resleased from rest. Show that the lower blodkledle the floor if
M < 2m. For the case in which/ = 3m/2, find when the lower block leaves the
floor.

Solution

Since the spring provides the restoring forag when its extension is-a, the
spring constantu is given by

Let x be the upwards displacement of the upper bloogasured from its equilibrium
position Then, providing that the lower block does not leave the flbwrequation
of motion of the upper block is

that is
¥4+ wix =0,
wherew = (g/a)'/?. Thegeneral solutionof this SHM equation is
x = Acoswt + Bsinwt,
whereA and B are arbitrary constants. Thetial conditions x = —3a andx = 0
whenr = 0 give A = —3a and B = 0. Themotion of the upper block is therefore
given by

X = —3a coswt,

wherew = (g/a)'/?.
At time ¢, the extension of the spring is— a and thetension T is therefore

T =a(x—a)= E(x —a) = —mg(3 coswt + 1).
a
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This tension also actspwardson the lower block. The lower block will therefore
remain in place so long 88 < Mg, that is,

—mg((3coswt +1) < Mg.
Since cosv? lies in the rangé—1, 1], the left side of this inequality lies in the range
[—-4mg,2mg]. Hence, thdower block will never moveif M > 2m. If M < 2m,

the lower block will leave the floor when

—mg(3coswt +1) = Mg.

For the special case in whigd = %m this condition reduces to
6coswt = =5

so that thdower block leaves the floorwhen

a\ 12 a\1/2
= (—) cos! (—%) ~ 2.56 (—) .H
g g
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Problem 5.9

A block of mass 2 kg is suspended from a fixed support by a smirgjrength
2000 Nm~!. The block is subject to the vertical driving for86 cospt N. Given
that the spring will yield if its extension exceeds 4 cm, fihd tange of frequencies
that can safely be applied. [Take= 10 ms™2 ]

Solution

Let x be the downward displacement of block (in metresgasured from the equi-
librium position Then theequation of motion of the block is

2

2_
de?

= —2000x + 36 cospt,

that is
X 4+ 1000x = 18 cospt.

When damping is absent, it is not neccessary to use the cammathod to find the
driven response. One can simply seek a response of the form

x? = Acospt,
where the constart is to be determined. On substituting this form of soluticimin
the equation of motion, we find that
18
A= ———
1000 — p2
so that thedriven responseof the block is

p _ 18cospi
1000 — p2°

Theamplitude a of the driven response is therefore

18
a=—,
11000 — p2|

In the equilibrium position, the force applied to the spriag20 N and so the

extension i% m. ThemaximumextensionA of the spring in the driven motion is

therefore given by

1 18

A= ——fp ——
100 ' 1000 — p2|

metres
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The spring is safe i\ < &, that s, if

1800 _
11000 — p2| —

There are two cases:

(i) If p? < 1000, then the spring is safe if
1800 < 3(1000 — p?),

thatis, if p < 20.
(i) If p% > 1000, then the spring is safe if

1800 < 3(p? — 1000),

thatis, if p > 40.

Hence, thespring is safeif either (i) p < 20 radss! or (i) if p > 40radss'. m

© Cambridge University Press, 2006

157



Chapter 5 Linear oscillations and normal modes 158

Problem 5.10

A driven oscillator satisfies the equation

3+ Q%x = FycodQ(l + €)1],
wheree is a positive constant. Show that the solution that satisifiesnitial condi-
tionsx = 0 andx = 0 whenz = 0 is
F, . .
X = —10 sinfeQsinQ(1 + 1e)r.

6(1 + 56)92
Sketch the graph of this solution for the case in whigk small.

Solution

First we find thedriven responsex?. When damping is absent, it is not neccessary
to use the complex method. One can simply seek a response foirth

x? = AcosQ(1 + €)1,
where the constart is to be determined. On substituting this form of soluticimin
the equation of motion, we find that

. Fo B Fo
Q2 -Q2(14€)? e+ e)Q2

so that thedriven responseof the block is

p_ ko cosQ2(1 + €)t

o 2 + Q2

Next we find thecomplementary functionx“¥. This is the general solution of
the corresponding undriven equation

d*x 5
W—FQ.X:O,

which is known to be
xF = AcosQt + BsinQt,

where A and B are arbitrary constants. Thgeneral solutionof the equation of
motion is therefore

x = xCF £ D
FocosQ(l + e)t

= AcosQt + BsinQt —
€2+ €)Q2
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It remains to choosd and B so that thenitial conditions are satisfied. The condi-
tion x = 0 whent = 0 gives

F
f=—_ "0
€2+ ¢)Q2

and the conditionr = 0 whenr = 0 givesB = 0. Therequired solution satisfying
the given initial conditions is therefore

FycosQt FocosQ2(1 + e)t
X = —
€2+ €)Q2 €2+ €)Q2

Fo

Al : 1
= ———  sin-eQrsinQ(1 + z¢)r.
e(14 1)@z 2 (1+2¢)

Figure 5.4 shows the graph of a typical solution wkas small. The slow modula-
tion in the amplitude of the oscillations is the phenomenoovin asbeats m

4 \
\ \ /
v N

R
\ /N
)/ N J/ )/ '

FIGURE 5.4 The solution to Problem 5.10 when= 0.2.

3
Il
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Problem 5.11

Book Figure 5.12 shows a simple model of a car moving with taorisspeed:
along a gently undulating road with profildx), where/’(x) is small. The car is
represented by a chassis which keeps contact with the roadgected to an upper
massn by a spring and a damper. At timeéhe upper mass has displacemeft)
above its equilibrium level. Show that, under suitable agstions, y satisfies a
differential equation of the form

P+ 2Ky + Q%y =2Kch'(ct) + Q2h(ct)

whereK and€2 are positive constants.

Suppose that the profile of the road surface is giverhy) = /o cod px/c),
wherehy and p are positive constants. Find the amplitudef thedriven oscilla-
tions of the upper mass.

The vehicle designer adjusts the damper so khat 2. Show that

a < —ho,

VA
whatever the values of the consaf2snd p.

Solution

Since the undulations in the road are small, we may supp@ddhb horizontal
displacement of the car at timas simply given byx = cz. Then the extensioA
of the spring at time is

A =y —h(ct)
and
A= p—chct).
Theequation of motionfor the vertical oscillations of the car is therefore
mj = —aA — BA,

wherem is the suspended mass of the qars the spring constant, anfl is the
resistance constant. On writing= mQ? andf = 2mK, the equation of motion
takes the form

j=—Q*y—h(ct)) —2K(y — ch'(c1)),
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that is,
P+ 2Ky + Q2%y =2Kch'(ct) + Q2h(ct).

When the road surface has the profiker) = /o coq px/c), this equation be-
comes

J 42Ky + Q%y = —2hoKpsinpt + hoQ* cospt.

To find thedriven responseexcited by these undulations, consider the complex
equation

§+ 2Ky + Q% = ho (2iKp + QZ) eiP!

On seeking a solution of this equation of the fosm= Ce'?’, we find that the
complex amplitude C of the driven oscllations is

_ ho(2iKp + Q2)
Q2 p2 4 2iKp’

Theamplitude «a of the driven oscillationsis therefore

a=|C|
_ hol2iKp + Q7
Q2 — p2 +2iKp]|

1/2
, 4K?p? + Q /
= O .
(Q2— p2)? +4K2p?

In the special case in whick = 2, this formula can be written in the form

a? 4u + 1

R+ 12

whereu = p?/Q2. To find the maximum value of (considered as a function of
with  fixed), we must find the maximum value attained by the function

. du + 1
(u+ 1)?
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whenu is positive Now

, 41+ u)2 —2(1 + 4u)(1 + u)
F =
(1 4+ u)*
201 -2u)
(I +uw)?

>0 for 0<u<1,

=0 for u=

’

1
2
<0 for u>1.

It follows that the maximum value of the functidi(u) in the intervald < u < oo
is F(%) = %. Hence, whatever the values of the frequen€leand p,

®|QN
[A
Wl A

[=) ]

and so

5l
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Problem 5.12 Solution by Fourier series
A driven oscillator satisfies the equation

¥+ 2Kx 4+ Q%x = F(1),

whereK and2 are positive constants. Find the driven response of thdatseito
the saw tooth’ input, that is, whefi(z) is given by

F(t) = Fot (—m<t<m)

and F(¢) is periodic with perioz. [It is a good idea to sketch the graph of the
function F(¢).]

Solution
Figure 5.5 shows the graph of the ‘saw tooth’ functié(r).

FIGURE 5.5 The ‘saw tooth’ functionF (¢).

The first step is to find the Fourier series of the functit(n). This function has
period2s and so the Fourier formulae on p.117 of the book apply. Théicmnt
an 1s given by

1 b
ay = —f F(t)cosnt dt
T J-n
g

F
=2 | tcosntdt
T J-x

= 0.
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The last step follows since the integrand isadd function of ¢+ and the range of
integration is symmetrical about= 0; the contributions from the intervalsr, 0]
and|0, ] therefore cancel.

In the same way,

1 (7 .
b, = —[ F(t)sinnt dt
T

-7

F T
=22 | tsinntdt
T J-n
2F T
-0 tsinnt dt,
T Jo

since this time the contributions from the interv@lsr, 0] and [0, 7] are equal.

Hence
2F, —cosnt\|" 2F, (™ — cosnt
= ()] S L o ()@
T n 0 T 0 n

2F 2F T
0( m(—1)" — ) + —0/ cosnt dt
mn Jo

mn

2Fy(—1)"*! 2F . t=mw
= o=D) + O[Slnnt]

n n? =0
2Fq (=1 n+1
_ 2k 40
n
_ 2F0(_1)n+1
= . )

Hence thd-ourier seriesof the functionF(z) is

o0
2Fy (="t
F() = —_— .
(1) =) ————sinn
n=1
The next step is to find the driven response of the oscillatdine forcing term
b, sinnt. That is, we need the particular integral of the equation

d?x dx )
) —|—2Kd— + Q°x = b, sinnt.
The complex counterpart of this equaton is

d*x dx 5
) —|—2Kd——|—S2 x—be
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for which the particular integral ise’”*, where the complex amplitudds given by

bn

T 1 2ikn

The particular integral of the real equation is then given by

N bpetn? 5 (% — n?)sinnt + 2Kn cosnt
N = .
Q2 —n2+2iKn ! (22 —n?)2 +4K?n?

Finally we add together these separate responses to findkiten response
of the oscillator to the forcé'(z). On inserting the value of the coefficiehy, this
gives

B S (=)t ((Q2 = n?)sinnt + 2Kn cosnt
¥ =2k n; n (Q2 — n2)2 + 4K2n2
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Problem 5.13

A particle of massn is connected to a fixed poi@® on a smooth horizontal table
by a linear elastic string of natural length and strengtw: Q2. Initially the particle
is released from rest at a point on the table whose distanoedr is 3a. Find the
period of the resulting oscillations.

Solution

This problem has the feature that, when the distance of thicigafrom O is
less thama, the string goes slack arekerts no forceon the particle. Hence, the
restoring force is non-linear. It is convenient to split the motion into a number of
parts, in each of which the equation of motion is linear.

(i) Suppose that the motion takes place along the éis Then the particle is
initially at rest at the poink = 3a. In this position the string is taut and a
motion begins. Thequation of motionis

d2
m—x = —mQ?(x — 2a),

de?
which can be written in the form

J+Qfy =0

wherey = x — 2a. This equation holds whilg > 0. The solution corre-
sponding to the initial conditiongs = ¢ andy = 0 is

y = a cosQt.

This is an SHM with amplitude and period2z/ 2. Thus, after a quarter of
an oscillation, the particle reaches= 0 (that is,x = +2a) moving with
speed:$2 in the negativex-direction. The time that elapses during this part
of the motion is therefore a quarter of a period, thatri&2 2.

(i) This part of the motion begins with the particle at= +2a and moving
with speed:<2 in the negativer-direction. The string is slack and the particle
continues to move with speed? until it reaches the point = —2a. The
time that elapses during this part of the motioAdga2 = 4/ 2.

(iif) This part of the motion begins with the particle at= —2a and moving
with speed:€? in the negativex-direction. The string becomes taut and the
equation of motionis

d*x

mﬁ = —mQ*(x + 2a),
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which can be written in the form
P4+ Q%2 =0,

wherez = x + 2a. This equation holds while < 0. The solution corre-
sponding to the initial conditions= 0 andz = —aQ is

z = —a SinQt,

where the initial time has been reset to zero. This is alsd-#vl @ith ampli-
tudea and perio®x/ 2. Thus the particle executes half an oscillation of the
SHM and returns ta = 0 (that isx = —2a) with speed:<2 in the positive
x-direction. The time that elapses during this part of theiomois therefore
half a period, that isg/ 2.

(iv) This part of the motion begins with the particle at= —2a and moving
with speed:€2 in the positivex-direction. The string is slack and the particle
continues to move with speed2 until it reaches the point = +2a. The
time that elapses during this part of the motiodiga2 = 4/ Q2.

(v) This part of the motion begins with the particlerat= +2a and moving
with speedu2 in the positivex-direction. The string becomes taut and the
equation of motionis

d2
mﬁ = —mQ2(x — 2a),

which can be written in the form
J+Q%y =0,

wherey = x — 2a. This equation holds whilg > 0. The solution corre-
sponding to the initial conditiongs = 0 andy = aQ is

y = asinQt,

where the initial time has again been reset to zero. This iSHNM with
amplitudeq and perio®/ 2. Thus the particle comes to restiat= « (that
is, x = 3a) after a quarter of an oscillation. The time that elapsesdtthis
part of the motion is therefore/2%2.

The patrticle has thus come to rest at its starting point amevtiole cycle is then
repeated indefinitely. Hencthe motion is periodic and theperiod 7 is given by
b4 4 b/ 4 b4 2w + 8

TaetetetaeT e
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Problem 5.14 Coulomb friction

The displacement of a spring mounted mass under the action of Coulomb friction
satisfies the equation

—F x>0

. 2. 0

X+Qx_{ Fo %<0

whereQ and F, are positive constants. k| > F,/Q? whenx = 0, then the
motion continues; ifx| < Fy/ Q2 whenx = 0, then the motion ceases. Initially
the body is released from rest with= 9F,/2Q2. Find where it finally comes to
rest. How long was the body in motion?

Solution

This Problem has the feature that thsistance force is non-linear It is convenient
to split the motion into a number of parts, in each of whichélgeation of motion
is linear.

First leg
On the first leg, the block is initially at rest at the paint 9 Fy/ 2. In this position
Q2|x| > Fo and a motion begins. Theguation of motionis

¥+ Q%x = +Fo,

which is the SHM equation with a constant right hand side. géamticular integral
is the constanf,/ 22 and thegeneral solutionis

) F
x = AcosQt + BsSinQt + Q—g

Theinitial conditions x = 9F,/2Q2 andx = 0 whent = 0 give 4 = 7F,/2Q?
and B = 0. Themotion of the block is therefore given by

7F, F,
X = Q—;COSQI—F Q_(;

This solution holds until the block next comes to rest. Since

TFy .
X = 0 sinQ2z,
2Q

this happens when = =x/Q. At this instant, the block is at the point =
—5F/2RQ2.
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Second leg
On the second leg, the block is initially at rest at the pairt —5F,/2Q2. In this
positionQ2?|x| > F, and a motion begins. Theguation of motionis now

¥+ Q%*x = —F,.

The particular integral is the constanf, / 22 and thegeneral solutionis

_ : Fo
x = Acos2t + BsIinQt — o
If we now reset the initial time to zero, theitial conditions x = —5F,/Q? and

x = 0whent = 0 gived = —3F,/2Q? andB = 0. Themotion of the body s
therefore given by

3F, Fy
= ———COSQ2t — —..
YT T Q2

This solution holds until the block next comes to rest. Since

3Fy .
x = —— SInQ2¢,
YT 00

this happens when= 7/ Q. At this instant, the block is at the point= F,/2Q2.

Third leg
On the third leg, the block is initially at rest at the point= Fy/2Q2. In this
positionQ2?|x| < F, andno motion takes place

Hence, theblock comes to permanent resat the pointx = + Fy/2Q2. The
time t for which the block was in motionis given by

T = +

b4
Q
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Problem 5.15
A partially damped oscillator satisfies the equation

¥4+2kx+Q%x =0,

whereQ is a positive constant andis given by

= 0 x <0
1K x>0

whereK is a positive constant such that < Q. Find the period of the oscillator
and the ratio of successive maximum values of

Solution

This problem has the feature that tlesistance force is non-linear It is convenient
to split the motion into a number of parts, in each of whichélqeation of motion
is linear.

(i) Suppose that the particle is initially at the origin asdmoving with speed
uy in the positivex-direction. [We must haveomeinitial conditions.] The
particle immediatelgntersthe resisting medium and tleguation of motion
iS

¥4 2Kx 4+ Q*x =0.

This equation holds while > 0. The solution of this damped SHM equation
corresponding to the initial conditions= 0 andx = u; is

u] —Kt .
X =—0t sinQ pt,
Q

D

whereQp = (Q* — Kz)l/z. Thus the particle returns to the origin after time
7/ p moving with speed:, in the negativer-direction, where

Uy = uje "K/9p,

(i) This part of the motion begins with the particle at thegam and moving with
speedu, in the negativex-direction. The particle immediatelgavesthe
resisting medium and thequation of motionis

4 Q%x =0.
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This equation holds while < 0. The solution of this SHM equation corre-
sponding to the initial conditions = 0 andx = —u; is

U .
X = ——sIinQz,
Q

where the initial time has been reset to zero. Thus the fpareturns to the
origin after timesr/ 2 moving with speed:, in the positivex-direction.

This completes the first oscillation. The only differenceéween the second
oscillation and the first is that the initial condition = u; is now replaced by
X = u,. This change affects themplitudeof the second cycle, but not its period.
Hence, there are infinitely mameriodic oscillationsand theperiod 7 is given by

T +n 1+1 .
T=—+—=a|—+—].
Qp Qp Q
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Problem 5.16

A particle P of mass3m is suspended fron a fixed poitk by a light linear spring
with strengthe. A second particle? of mass2m is in turn suspended fron® by
a second spring of the same strength. The system moves ieittieaV straight line
throughO. Find the normal frequencies and the form of the normal méaiethis
system. Write down the form of the general motion.

Solution

Let x, y be the downward displacements of the partickesQ measured from
their equilibrium positions Then the extensions of the springs ar@and y — x
respectively. Thequations of motionfor P and Q are therefore

3mX = —ax + a(y — x),

2my = —a(y —x),
which can be written in the form

3)'c'+2n2x—n2y =0,
2j —n’x +n%y =0,

wheren? = a/m.
These equations havermal mode solutions of the form

x = Acoqwt — y),

when the simultaneous linear equations

(2n* —3w*)A —n’B =0,
—n?A + (n*> —20*)B =0,

have anon-trivial solution for the amplituded, B. The condition for this is

2n? —3w? —n?
det = 0.
—n? n? —2w?

On simplification, this gives

6w* — Tn*w? +n* =0, (1)
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a quadratic equation in the variahlé. This equation factorises and the roots are
found to be

2 __ 1 2 _
C()l—gi’l, 602—1’1.

Hence there arvo normal modeswith normal frequenciesn/+/6 andn respec-
tively.

Slow mode: In the slow mode we have? = rn?/6 so that the linear equations for
the amplitudesd, B become

%nzA —n’B =0,

—n’A + %nzB =0.

These two equations are each equivalent to the single equati = 2B so that
we have the family of non-trivial solutiong = 26, B = 3§, where§ can take any
(non-zero) value. Thelow normal modetherefore has the form

x =25 coqwit — y),
y =35 coqwit —y),

wherew; = n/+/6 and the amplitude factaf and phase factop can take any
values. In the slow mode, the two particles always move irsgmeedirection.

Fast mode: In the fast mode we hawe? = »n? and, by following the same proce-
dure, we find that the form of tHiast normal modeis

X =6 coqwyt —y),
y = —dcodwat —y),

wherew, = n and the amplitude factédrand phase factgr can take any values. In
the fast mode, the two particles always moveppositedirections.

The general motionis now the sum of the first normal mode (with amplitude
factor§; and phase factop;) and the second normal mode (with amplitude factor
8, and phase factagr,). This gives

x = 28; cojw it — y1) + 82 coLwat — y2),
y = 381 coqwit — y1) — 62 COL 221 — y2). W
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Problem 5.17

Two particlesP and Q, each of mas®:, are secured at the points of trisection of
a light string that is stretched to tensi@p between two fixed supports a distance
3a apart. The particles undergo smaknsverseoscillations perpendicular to the
equlilibrium line of the string. Find the normal frequersi¢éhe forms of the normal
modes, and the general motion of this system. [Note thatdhad of the modes
could have been deduced from the symmetry of the systemijelgéneral motion
periodic?

Solution

This solution is obtained under the same simplifying asdionp as were made in
Example 5.4 of the book.

Let x, y be the transverse displacements of the parti€le® from their equi-
librium positions Then theequations of transverse motiorfor P andQ are

m)'c'z—T()(g)—i-To(y;x),

. — X
mJ/:—To(ya )-R(%),

which can be written in the form

X 42n°x —ny =0,

j—n*x +2n%y =0,

wheren? = Ty/ma.
These equations havermal mode solutions of the form

x = Acoqwt — y),

when the simultaneous linear equations

(2n* —w*A—-n*B =0,
—n?A4 + 2n* —w?)B =0,

have anon-trivial solution for the amplituded, B. The condition for this is
2n? —w? —n?
det = 0.
—n? 2n? —o?
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On simplification, this gives
o* —4n’w? 4+ 3n* =0, (1)

a quadratic equation in the variahlé. This equation factorises and the roots are
found to be

wi =n?, w3 = 3n>.

Hence there aravo normal modeswith normal frequenciesr and +/3n respec-
tively.
Slow mode:In the slow mode we hawe? = n? so that the linear equations for the
amplitudes4, B become
n*A—n’B =0,
—n*A+n*B =0.
These two equations are each equivalent to the single equat= B so that we
have the family of non-trivial solutiond = §, B = §, where§ can take any (non-
zero) value. Thalow normal modetherefore has the form
x =décodwit —y),
y =4dcoqwit —y),
wherew; = n and the amplitude factédrand phase factgr can take any values. In
the slow mode, the two particles always move inshenedirection.
Fast mode: In the fast mode we hawe? = 3n? and, by following the same proce-
dure, we find that the form of tHast normal modeis
X = dcoqwyt —y),
y = —8cowrt —y),
wherew, = +/3n and the amplitude factérand phase factar can take any values.
In the fast mode, the two particles always moveppositedirections.

The general motionis now the sum of the first normal mode (with amplitude
factor§; and phase factop;) and the second normal mode (with amplitude factor
8, and phase factor,). This gives

x = 81 CoS w1t — y1) + 62 COY Wzl — ¥2),
y = 51 COia)ll — )/1) — 85 COinl — )/2). [ |
The general motion is periodic i;/w; is a rational number. In the present

problem,w,/w, = 1/«/3, which is anirrational number. The general motion is
thereforenot periodic. m

© Cambridge University Press, 2006



Chapter 5 Linear oscillations and normal modes 176

Problem 5.18

A particle P of mass3m is suspended from a fixed poitk by a light inextensible
string of lengtha. A second particle? of massm is in turn suspended from? by

a second string of lengtlhh The system moves in a vertical plane throughShow
that the linearised equations of motion femall oscillations near the downward
vertical are

40 + ¢ + 4n%0 =0,
0+¢+np=0,

wheref) and¢ are the angles that the two strings make with the downwartiteér
andn? = g/a. Find the normal frequencies and the forms of the normal 5 6ale
this system.

Solution

FIGURE 5.6 The double pendulum in Prob-
lem 5.18.

The system is shown in Figure 5.6. Let, x, be the horizontal displacements
of P, Q from their equilibrium positionsand letzy, z, be the corresponding vertical
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displacements. Then tlexact equations of motiorfor P andQ are

3mx, =1 sin¢ —Ti sing,
3mZ; = Ty cosh — T, cosp — 3mg,
mx, = =T, sSing,
mz, = T, COS¢p — mg,
whereT,, T, are the tensions in the strings. These are a complicated seue
plednon-linearequations irfour unknowns. The situation simplifies greatly if we
suppose the motion is small enough so that the squares ohties#, ¢ can be

neglected. In thisinear approximation, x; = a0, x, = af + a¢ and the vertical
displacements;, z, are negligible. The equations of motion then simplify toegiv

3mab = Top — T4 6,
0=T1—T2—3ng,
ma (9 + ¢) = -T5¢,
0=1T, —mg.
HenceT, = 4mg andT, = mg. [Thus, in the linear approximation, motions in
the z-direction are negligible as are changes in the tensiortse] équations for the
anglesd, ¢ can now be written in the form
30 + 4n%0 —n’¢p =0,
0+ +np =0,
wheren? = g/a. These are a nice set of couplatear equations irtwo unknowns.

[They are not identical with the equations quoted in the joesbut they are equiv-
alent. The first equation in the question is just the sum ofwlteequations above.]

These equations havermal mode solutions of the form

0 = Acojwt — ),
¢ = Bcoswt —y),

when the simultaneous linear equations
(4n? —30HA—n*B =0,

—w?A+ (n*—w?)B =0,
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have anon-trivial solution for the amplituded, B. The condition for this is
4n? —30w? —-n?
det =0.
—w? n? — w?
On simplification, this gives
30* — 8n’w? + 4n* =0, (1)

a quadratic equation in the variahlé. This equation factorises and the roots are
found to be

2 _2 2 _
wi = 35n°, wy = 2n”.

Hence there arevo normal modeswith normal frequencies %n and+/2n re-
spectively.

Slow mode: In the slow mode we have? = %nz so that the linear equations for
the amplitudesd, B become

2n*4A—n*B =0,
—3n*A+ 1n*B =0.

These two equations are each equivalent to the single eguati = B so that
we have the family of non-trivial solutiond = §, B = 26, where§ can take any
(non-zero) value. Thelow normal modetherefore has the form

x =6 codwit —y),
y =26 coSwit —y),
wherew; = \/g n and the amplitude factérand phase factgr can take any values.

Fast mode: In the fast mode we havwe? = 2n? and, by following the same proce-
dure, we find that the form of thiast normal modeis

X = §coqwyt —y),
y = —28codwst —y),

wherew, = +/2n and the amplitude factdrand phase factqr can take any values.
|
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Problem 6.1

A particle P of mass 4 kg moves under the action of the fofce= 4i + 1212 j N,
wheret is the time in seconds. The initial velocity of the partidei + j + 2k
ms~!. Find the work done by, and the increase in kinetic energy ®f during the
time intervald < ¢ < 1. What principle does this illustrate?

Solution
Theequation of motion of the particle is
dv
4— =4 + 121§,
o 1+ J

which has the general solution
v=ti +13j+C,

whereC is the integration constant. Thatial condition v = 27 + j 4+ 2k when
t = 0givesC = 2i + j + 2k and hence theelocity of the particle at time is

v=>+2i+ @ +1)j+2k.

Thework W doneby the force during the time interval< r < 1 is therefore

1
sz F -vdt
0
1

:/ (4i +12¢2j) - ((t +2)i + (> + 1) j +2k)dt
0

1
= / 41 42) + 12023 + 1) dt
0
1
= [2:6 + 413 4212 + 81]0
=16J

During the same time interval, tiecreaseAT in thekinetic energy of the particle
is

AT =2p(1)|* = 2[v(0)?
=2|3i +2j +2k|>=22i +j +2k|?
=34—-18=16J

This verifies theenergy principle for the particlem

© Cambridge University Press, 2006

180



Chapter 6 Energy conservation 181

Problem 6.2

In a competition, a man pushes a block of mass 50 kg with cohspeee® ms™!
up a smooth plane inclined 80° to the horizontal. Find the rate of working of the
man. [Takeg = 10 ms 2]

Solution

The weight of the block i$00 N. Since the plane ismooth the force that the
man must apply to the block so that it moves up the plane wittstamt speed
is 500sin30° = 250 N. Therate of working of the man is thereford” x v =
250 x2 =500W.m
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Problem 6.3

An athlete putts a shot of mass 7 kg a distance of 20 m. Showvittbatthlete must
do to at least 700 J of work to achieve this. [ Ignore the hedjttie athlete and take
g=10ms2]

Solution

In order to project the shot a distan®e theleastprojection speed that can be
used is

u = (Rg)"?.

This is the projection speed needed when the elevation asgle. Thus a putt
of 20 m can be achieved with a projection speed®{/2 ms™!. In this case, the
kinetic energy of the shot at the instant of release;—is< 7 x 200 = 700 J. By the
energy principle, this increase in the kinetic energy of the shot is equal@ontbrk
done on the shot by the athlete. Hencewlek done by the athleteis 700 J. If the
shot were projected at any other angle of elevation, a bigggection speed would
be neccessary and the athlete would have tmdeework. m
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Problem 6.4

Find the work needed to lift a satellite of mass 200 kg to afiea 2000 km above
the Earth’s surface. [Take the Earth to be spherically syimmand of radius 6400
km. Take the surface value gfto be9.8 ms™2]

Solution

Let the satellite have mass and suppose the Earth is spherically symmetric with
massM and radiusR. Then the forceF that the Earth exerts on the satellite when
it is distancer from thecentreof the Earth is

MG
e (222)r

r2

wherer is the unit vector pointing radially outwards. When the Bisgels at the
Earth’s surfacer = R and|F | = mg, whereg is thesurface valuef the gravita-
tional acceleration. Henc® G = R?g and the formula foF can be written

R 2
F = —mg (—) .
r

This is a conservative force field with potential energy

R2
y = &%
r

Suppose that the satellite is also subject to a fécand moves from a poird on
the Earth’s surface to a poi# at heightz. Then, by theenergy principle,

wF +wG =151,

WhereWF, WG are the works done by the forcds G in this motion, andl’4,
T8 are the kinetic energies of the satellite at the poiit®®. Now

wE — vy - v

_mR21 1
=—me R R+h

mgRh

R+h

Hence

G mgRh
WY =——+Tp—Tg4.
R—|—h+ B A
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In particular, if the satellite starts and finishes at r@&st,= 72 = 0 and

G _ mgRh
R+

This is the work done by the foro&'. On using the numerical data given in the
question, we find that thevork done by G in raising the satellite to a height of
2000 km is approximatel§.0 x 10° J.

Note This calculation ignores the contribution & made by the Earth’s rotation.
However, a quick calculation shows thaj is about2 x 107 J, which is relatively
insignificant. Hence the rotation of the Earth can be safdsedarded.

On the other hand, if the foro@ is required to place the satellite incacular
orbit at height 2000 km, thef'p is approximately.8 x 10° J, which is larger than
the work done against the Earth’s gravisy.
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Problem 6.5
A particle P of unit mass moves on the positiveaxis under the force field
36 9

Show that each motion of consists of either (i) a periodic oscillation between
two extreme points, or (i) an unbounded motion with oneeanxie point, depending
upon the value of the total energy. Initiallyis projected from the point = 4 with
speed 0.5. Show that oscillates between two extreme points and find the period
of the motion. [You may make use of the formula

b xdx n(a +b)

a [(x—a)b-x)1/2 2

]

Show that there is a single equilibrium position #Brand that it is stable. Find
the period osmalloscillations about this point.

Solution
Thepotential energy of the force fieldF(x) is

V=—/F(x)dx
36 9
=_/(F_F)dx
_18_9
x2 x

Theenergy conservationequation is then
%vz + V(x) = E,

wherev = x and E is the constant total energy.
The graph of the functio®’(x) is shown in Figure 6.1. The possible motions of
the particle can be classified as follows:

() If E < 0thenthe motionis a periodic oscillation between two exgg@uints.
(i) If £ > 0then the motion is unbounded with one extreme point.

Consider now the motion arising from the initial conditioa= 0.5 whenx = 4.

In this case £ = —1 and so the motion must be a periodic oscillation between two
extreme points. At the extreme points= 0 andx must satisfy the equation

18 9

- -="L

X X
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v
A

unbounded

E>0 o-

E>0 ¢-- bounded ~__—"

FIGURE 6.1 The potential energy functio¥i(x) in Problem 6.5.

that is,
¥ —9x + 18 =0.
This quadratic equation factorises and the rootsvate 3 andx = 6. These are the

extreme pointsof the motion.
To find the periodr, we must integrate the energy equation

which can be written in the form
2
x? = —(x =3)(6—x).
X

When the particle is moving to theght, we have

dx 2 1/2
o= +7((x— 3)(6—x)) ",

which is a separable first order ODE for the functiaf). On separating we obtain

t/2 1 6 xdx
dt = —
fo «/Efa ((x = 3)(6-x)"?
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so that theperiod of the oscillationsis

6 dx O
— V2 X =22
' f3 (x=36-x)" V2

on using the formula given in the question.

The equilibrium positions of the particle are the statigrawints of the function
V(x). Since

) 9 36
et

the only stationary point oF is atx = 4. This is the onlyequilibrium position of
the particle. Now

108 18
" o__
V=
_9
T 64

whenx = 4. SinceV”(4) > 0, this equlibrium position istable The angular
frequency2 of small oscillatons about = 4 is given by

0 (V//(4))1/2
m

(96?3
U -8

Theperiod t of small oscillationsaboutx = 4 is therefore
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Problem 6.6

A patrticle P of massm moves on thex-axis under the force field with potential
energyV = Vy(x/b)*, whereV, andb are positive constants. Show that any
motion of P consists of a periodic oscillation with centre at the origshow further
that, when the oscillation has amplitudethe periodr is given by

m\" b2 (v dg
=22(3) L e

[Thus, the larger the amplitude, the shorter the period!]

Solution

FIGURE 6.2 The potential energy function
V(x) in Problem 6.6.

Theenergy conservationequation for the particle is

1,2 x4
zmv” + Vo (E> =F,
wherev = x and E is the constant total energy. The graph of the potentialggner
function V(x) is shown in Figure 6.2. It is evident thaterymotion of the particle
is a periodic oscillation that is symmetrical about the iorig
Consider an oscillating motion of amplitude In this casep = 0 atx = +a
and so

)

and the energy conservation equation becomes

x? = ni—g‘l(d‘—f‘).
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To find the periodr, we must integrate the energy equation. When the particle
is moving to theright,
dx W\ . a2
dt _+(mb4) (" - )
which is a separable first order ODE for the functiam). On separating we obtain

N “ dx
bt /0 dt:[o 7( : —7
a* — x*)

so that theperiod of the oscillationsis

T =22 (’"—b“)

Vo

1/2

“ dx
/0 (a4—x4)1/2
A

on making the substitution = a¢£. m

[Just for the record,

(1-gH!/2 r@E/4) -

whereI'(z) is the Gamma function. The numerical value of the integrdl.&l approxi-
mately.]

/1 de _ JTT(/4)
0
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Problem 6.7

A particle P of massm, which is on the negative-axis, is moving towards the
origin with constant speed. When P reaches the origin, it experiences the force
F = —Kx?, whereK is a positive constant. How far doésget along the positive
x-axis?

Solution
Thepotential energy of the force fieldF is

Vz—/Fdszfxzdx

_1p.3
—3Kx.

Hence, while the particle is in the region> 0, its energy conservationequation
is

%va + %Kx3 =F,
wherev = x and E is the constant total energy. Consider the motion arisiamfr
the initial conditionv = u whenx = 0. In this case,

2

E = :mu

1
2
and the energy conservation equation becomes

1.2 1 31,2
5Mv —|—§Kx—2mu.

The maximum value ok is attained whernv = 0, that is, whenx satisfies the
equation

1 3 _1 2
0+ 3Kx" = smu”.
Hence thdarthest point along thex-axis reached by the particle is

3mu?
X =
2K

1/3
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Problem 6.8

A particle P of massm moves on thec-axis under the combined gravitational at-
traction of two particles, each of maas, fixed at the point$0, +a, 0) respectively.
Example 3.4 shows that the force figl{x) acting onP is given by

. 2mM G x
- _(a2 + x2)3/2°
Find the corresponding potential energyx).

Initially P is released from rest at the pomt= 3a/4. Find the maximum speed
achieved byP in the subsequent motion.

Solution
Thepotential energyof the force fieldF(x) is

Vz—/Fdx

d
=2mMG@G _ raxr
(a2 + x2)3/2

2mMG
(a® + x2)1/2‘

Hence theenergy conservationequation for the particle is

L, 2mMG
MY — ————— = F

? (a> 4+ x2)'/?

wherev = x and E is the constant total energy. Consider now the motion ayisin
from the initial conditionrv = 0 whenx = %a. In this case,

2mMG
<a2 + % a2>1/2

8mMG
S5a

E=0-

’

and the energy conservation equation is

., 2mMG  8mMG
(a2 4 xz)l/z 5a
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The maximum valud” of the speedv| is achieved wher = 0. Hence

. 2mMG  8mMG
B a S5a

1 2
En’lV

and so

AMG\ /2
V:( ) .
S5a
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Problem 6.9
A particle P of massm moves on the axi®)z under the gravitational attraction of
a uniform circular disk of masa/ and radius:. Example 3.6 shows that the force
field F(z) acting onP is given by
F 2mMG i z 0
T2 o (a% + z2)1/2 (z > 0).

Find the corresponding potential energyz) for z > 0.
Initially P is released from rest at the point= 4a/3. Find the speed oP
when it hits the disk.

Solution
Thepotential energy of the force fieldF(z) is

Vz—dex

_ 2mMG 1 z d
2 / - (a? + z2)1/2 X

= 2ma]\24G (z — (@ + 22)1/2) .

Hence theenergy conservationequation for the particle is
2mMG
%mv2 + m 3 (z— (a® + 22)1/2> =F
a

wherev = z and E is the constant total energy. Consider now the motion ayisin
from the initial conditiorv = 0 whenz = %a. In this case,

2mMG (4a Sa
E=0 —_——
+ a? (3 3)
B 2mM G
N 3a

and the energy conservation equation is

2mM G 2mMG
1,2 2 an1/2 )
Smu° = 3 ((a +z9) Z) v

On substituting = 0 into this formula, we find that thepeed of the particlewhen

it hits the disk is
SMG\ /2
( v ) -
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Problem 6. 10

A catapult is made by connecting a light elastic cord of ratlength2« and
strengtha between two fixed supports, which are dista@eeapart. A stone of
massm is placed at the center of the cord, which is pulled back aadist3a/4
and then released from rest. Find the speed with which thmeessoprojected by the
catapult.

Solution

Initial state Final state

FIGURE 6.3 The catapult in Problem 6.10.

This is a ‘before and after’ problem. We do not obtain an eiquabf motion;
instead we simply equate the initial and final values of thal tenergy.

Initial state: In the initial state, the stone is at rest and sokitsetic energy is
zero. The main problem is to find the internal energy of thetskred elastic cord.
Consider either of the the two equal segments that make ugotite In the initial
state, the length of the segment is

1/2
(@ +(a)’) " = 1a

so that its extension i%a. The strength of the cord ig, but the strength of the
segments 2«. (If the whole cord and the segment were both subjected teahe

tension, the extension of the cord would tvéce the extension of the segment.)

Hence, the internal energy of the segmenﬂ%a)(%a)2 = Lad®. Theinternal
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energyof the cord is thereforéoza2 and thetotal energy E is therefore

E=0+ %aaz = %aaz.

Final state: In the final state, the stone is moving with unknown spEeahd so its
kinetic energy is %m V2. In the final state, each segment of the cord has its natural
length and so the totahternal energy is zero. Theotal energy E is therefore

E = %mV2 + 0= %mVZ.

Since thetotal energy is conservedn this problem, the initial and final values of
E are equal. Hence

1 2 _ 1,2
EmV—Saa

and thespeedwith which the stone is projected is therefore

1/2

V = (a—az) ]
4dm
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Problem 6.11

A light spring of natural lengtlx is placed on a horizontal floor in the upright po-
sition. When a block of masa/ is resting in equilibrium on top of the spring, the
compression of the spring is/15. The block is now lifted so that its underside is
at height3a/2 above the floor and then released from rest. Find the compresk
the spring when the block first comes to rest.

Solution
3a/2
g
x
= !
FIGURE 6.4 The system in Problem 6.11. Initial state Final state

This is a ‘before and after’ problem. We do not obtain an equabdf motion;
instead we simply equate the initial and final values of thal tenergy.

Initial state: In the initial state, the block is at rest and the spring istnatished.
Hence thekinetic energy of the block and thenternal energy of the spring are
zero. Thegravitational potential energy of the block isM g (%a + h), whereM
is the mass of the block ari is its thickness. Hence, thetal energy E is

E=O+O+Mg(%a+h).

Final state: In the final state, the block is again at rest and s@&iigtic energy is
zero. The internal energy of the springgs(a — x)?, whereq is its strength anct
is the length to which it has been compressed when the blatlesdo rest. Since
o = Mg/({a) = 15Mg/a, theinternal energy of the spring is2> M g(a—x)? /a.
The gravitational potential energy of the block isM g(x + h). Hence, theotal
energy E is

15Mg

E=0+ (a—x)*+ Mg(x +h).
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Since thetotal energy is conservedn this problem, the initial and final values
of E are equal. Hence

15Mg

P (a—x)2 + Mg(x + h),

Mg (%a + h) =
which reduces to
15x% — 28ax + 12a* = 0.
This quadratic equation factorises and its rootsxare 2a andx = £4. The second
root is unphysical since it would require the block to comeetstbeforeit had even

met the spring. Theompression of the springwhen the block first comes to rest
is thereforer — 24 = 1a. m
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Problem 6.12

A particle P carries a charge and moves under the influence of the static magnetic
field B (r) which exerts the forcé" = evx B on P, wherev is the velocity ofP.
Show thatP travels with constardpeed

Solution
SinceF = evx B, the rate at whiclF does work on the particle is

F-v =e(va)-v =0.
Thus F does no work and sthe kinetic energy of the particle is a constant of the

motion Hence the particle moves wittonstant speedbut not neccessarily with
constanwelocity) m
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Problem 6.13 %

A mortar shell is to be fired from level ground so as to clear tdlpped building
of height/ and widtha. The mortar gun can be placed anywhere on the ground and
can have any angle of elevation. What is the least projesi@ed that will allow
the shell to clear the building™Hjnt How is the reqired minimum projection speed
changed if the mortar is raised to rooftop level?]

For the special case in whi¢gh= %a, find the optimum position for the mortar
and the optimum elevation angle to clear the building.

Solution

\
8

A B

FIGURE 6.5 Left: A general trajectory that clears the buildirRight: The optimum trajectory.

A typical trajectory that clears the building is shown in g 6.5 (left). The
problem is to choose the projection poifitand the elevation angke so that the
building can be cleared using the least valud/of Suppose the path first cuts the
horizontal plane at rooftop level &t at which point the speed of the shelkisand
the elevation angle i8. Then, byenergy conservation U andu are related by

U? = u® +2gh.

HenceU? andu? differ by a constantlt follows that the original problem is equiv-
alent to the problem of choosing and g so that the building can be cleared using
the least value ofi. But the solution to this second problem is well known. This
is solved by taking (i)C to be at the top corner of the building, (ii) the an@leo
be45°, and (iii) the speed to be(ga)'/?. Thisoptimum trajectory is shown in
Figure 6.5 (right). The value of theitial projection speed’ in this trajectory is
then given by

U? =u’ +2gh =ga+2gh = g(a+2h).
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Hence thdeast projection speedthat will allow the shell to clear the building is

(g(a +20))".

To find the position of4 and the elevatiorr, we must investigate the optimum
trajectory in more detail. Take ax€3xz as shown in Figure 6.5 (right). Then the
optimum path is

z = i(a—x).
a

This path intersects the ground whee= —#, that is, when

x2—ax —ah = 0.

The two roots of this quadratic equation are the coordinafehe points4, B
in Figure 6.5 (right). From now on, we will work with thepecial casen which
h = %a. In this case, the equation farbecomes

2x? = 2ax —a® = 0,

the roots of which are = % (1 + ﬁ) a. It follows that (in the special case when

h = ia) themortar should be placeda distance} (ﬁ — 1) a from the wall of
the building. The corresponding value of the elevatias given by

dz
tane = —
dx x=%(l—«/§)a
2]
a x=%(1—@a

= 3.

Hence (in the special case whén= %a) the elevation of the mortar should be
taken to be0°. m
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Problem 6.14 %

An earthedconducting sphere of radiugs fixed in space, and a partickg of mass
m and charge, can move freely outside the sphere. Initialys a distancé (> a)
from the centreO of the sphere when it is projected directly away fral What
must the projection speed be fér to escape to infinity? [Ignore electtgnamic
effects. Use the method of images to solve the elstit@ problem.]

Solution

FIGURE 6.6 The charge and its image chargg.

The system is shown in Figure 6.6. When eledymamiceffects are neglected,
the electric field outside the sphere is the sasé the sphere were removed and an
‘image chargey’ placed at the ‘image poinf, whereg’ = —qa/r andOI = a?/r.
The outwardorce F experienced byP is therefore

(—)
qq I\

F = =
1P2 ( a2)
r—_
B

qzar

(=)

This formula is correct in cgs/electrostatic units.
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The potential energy of this force field is

V=—[Fdr
’ rdr
=q a/—
(2 —a)
_ q'a
2(r2—a2)'

Theenergy conservationequation for the particle is therefore

2
1.2 q-a _
5Mv _72(;’2—(12) =F,

wherev = 7 and E is the constant total energy. Consider the motion that rise
from the initial conditiorv = u whenr = b. In this case

2

E = imu® — 74

2 2 (b2 —a?)

and the energy conservation equation becomes

2 2
2 2 q“a qca
mv —(mu _bz—a2)+r2—a2'

Thecondition for escapeis that the quantity in the bracketspssitive that is,
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Problem 6.15

An unchargedconducting sphere of radiusis fixed in space and a particke, of
massm and chargey, can move freely outside the sphere. Initialyis a distance

b (> a) from the centreO of the sphere when it is projected directly away from
0. What must the projection speed be fBrto escape to infinity? [Ignore elec-
trodynamiceffects. Use the method of images to solve the elstataproblem.]

Solution

FIGURE 6.7 The charge and its image chargeg and—¢’.

The system is shown in Figure 6.7. When eledymmamiceffects are neglected,
the electric field outside the sphere is the saséf the sphere were removed and
‘image chargesy’ and—q’ were placed at the ‘image points’and O, whereq’ =
—qa/r andOI = a?/r. The outwardorce F experienced by is therefore

(-5) ()
Cqq q¢ 1\ 775

1P 0oP? a2)2 r2

r

2 2

q-ar q-a
=+
(r2 — a?) r

This formula is correct in cgs/electrostatic units.
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The potential energy of this force field is

Vz—[Fdr
=q2a/ _r 1 dr
(r2—a r’

2)2 B
_qla qla
2(r2—a2) 2r2°

Theenergy conservationequation for the particle is therefore

wherev = 7 and E is the constant total energy. Consider the motion that rrise
from the initial conditiorv = u whenr = b. In this case

2
1,2 _ 4 4a
Y (e T

and the energy conservation equation becomes

2 2 2
2 ) q-a q-a q-a
mv —(mu _—bz—a2+_b2)+—r2—a2'

Thecondition for escapeis that the quantity in the bracketspssitive that is,

2.3
2 q-a
u~=> ——

= mb2(b% — a2)
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Problem 6.16

A bead of massn can slide on a smooth circular wire of radiuswhich is fixed
in a vertical plane. The bead is connected to the highest pbithe wire by a
light spring of natural lengtBa/2 and strengthx. Determine the stability of the
equilibrium position at the lowest point of the wire in thesea (i)o = 2mg/a, and
(i) « = 5mg/a.

Solution

FIGURE 6.8 The system in Problem 6.16.

Since the wire ismooththe constraint force that it exerts on the particle does
no work. Thus energy conservation holds in its standard form

Let 6 be the angle between the radiQ® and the downwards vertical, as shown
in Figure 6.8. The length of the springls cos%@ and itsinternal energy is there-
fore

2

2 aa 2
1 1 3 _ 1
>0 (2a 00559 - Ea) =5 (4 00559 - 3) .

Thegravitational potential energy of the particle is-mga cosf. Thetotal poten-
tial energy of the system is therefore

2 2
V= % (4 cosif — 3) — mga cosh.
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On differentiating, we find that

V' = 2aa®singf + (mga - aaz) sind

and

V" = 3aa®cosib + (mga — aa2> cosb.

Hence

V'(0) =0 and  V"(0) = mga — taa’.

This confirms that = 0 is an equilibrium position of the particle and shows that
the equilibrium there istablewhena < 4mg/a andunstablewhena > 4mg/a.
Hence:

() Whena = 2mg/a, the equilibrium isstable
(i) Whena = 5mg/a, the equilibrium isunstable m

© Cambridge University Press, 2006



Chapter 6 Energy conservation 207

Problem 6.17

A smooth wire has the form of the helix = acosf, y = asinf, z = b6, where

0 is a real parameter, and b are positive constants. The wire is fixed with the axis
Oz pointing vertically upwards. A particl®, which can slide freely on the wire, is
released from rest at the poi@t, 0, 27 b). Find the speed oP when it reaches the
point(«, 0,0) and the time taken for it to do so.

Solution

Since the wire ismooththe constraint force that it exerts does no work. Hence
energy conservation holds in its standard form. €hergy conservation equation
is therefore

%mv2 +mgz =F,

wherem is the mass of the particle,is its speed and is the constant total energy.
The initial conditionsz = 27b andv = 0 whent = 0 give E = 2nmgb and the
energy equation can be written

v =2g(2nh — z2).

Hence, providing that the particle arrives at= 0 at all, its arrival speed is
2(wgb)'/?, whatever the shape of the wire

To find the time taken, we must investigate the motion in matitl For the
helical wire given,

vt =x? 4 p? 4 22
A\ 2 N\ 2 N 2
= (~asin6 §)" + (acos# §) " + (b6)
= (a2 + b2> 62,
and the energy equation can be written
(a2 + b2> 6% = 2gb(2m — 0).
Sinced is decreasingn this motion, we have
1/2 .
(a2 + b2> 6 = —(2eb)2 (2 — )12,

which is a separable first order ODE fér On separating, we obtain
1/2 0 do r
2 4 b2 /7=—2b1/2fdt,
(a + ) 27 (2]'[—9)1/2 (g ) 0
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wherer is the duration of the motion. Hence

a’ + bz)
T=——
2gb
1/2

_ (a22;_bb2) [_2(2n _ 9)1/2]

_, w(a* + b?) 12
— s )

1/2

This is thetime taken for the particle to reach the poif, 0,0). m
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Problem 6.18

A smooth wire has the form of the parabela= x2/2b, y = 0, whereb is a positive
constant. The wire is fixed with the axi$z pointing vertically upwards. A particle
P, which can slide freely on the wire, is performing oscilbais withx in the range
—a < x < a. Show that the period of these oscillations is given by

4 a (b2 4 x2\'"?
=gy (@) o

By making the substitution = « siny in the above integral, obtain a new formula
for . Use this formula to find a two-term approximationdovalid when the ratio
a/b is small.

Solution

Since the wire issmooththe constraint force that it exerts does no work. Hence
energy conservation holds in its standard form. &hergy conservation equation
is therefore

%mv2 +mgz = FE,

wherem is the mass of the particle,is its speed and’ is the constant total energy.
In the present problem, = x2/2b and

v? = %% 4 22

— )'C2 + (ﬂ)z
N b

2
(1)

so that the energy equation becomes
2 2
1 X .2 mgx N

Consider an oscillatory motion of amplitude In this casep = 0 x = +a and so
E = mga®/2b. The energy equation for this motion is therefore

(b2 + xz) x2 =gb (a2 — x2> .

To find the periodr, we must integrate the energy equation. When the patrticle is
moving to theright, we have

(b? + x2>1/2 fl—j =+ (gb)"/2 (a? - x2>1/2 :
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which is a separable first order ODE for the functiaf). On separating we obtain

/4 a /12 2 1/2
(gb)1/2/ dt:/ (b2+x2) dx
0 0o \da”—xX

so that theperiod of the oscillationsis

4 / b2+x2)1/2dx
T=— - .
@07 Jo \a? =2

On making the substitution = « siny in the integral, this formula becomes

p\ /2 (/2 a2 1/2

T=4(- f 14+ —=sify ) dy.
g 0 b2
When the ratiat/b is small, the integrand can be expanded in the form

a’ . 12 a’ . a*

from which it follows that
T =4(§)1/2/0”/2 [1 + Za—;sinzw + O(Z—j)}dw
() s o ()]
() [ 03]

This is the requiredwo term approximation to the period, valid when the ratio
a/bis small.m
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Problem 6.19 %

A smooth wire has the form of the cyclod = ¢(6 + sinf), y = 0,z = ¢(1 —
cosf), wherec is a positive constant and the parametdres in the range-n <

6 < m. The wire is fixed with the axi®)z pointing vertically upwards. [Make a
sketch of the wire.] A particle can slide freely on the wireho® that the energy
conservation equation is

(1 4+ cosd) 62 + (1 — cosh) = constant
C

A new parameter is defined by = sin%&. Show that, in terms af, the equation
of motion for the particle is
.. g

Deduce that the particle performs oscillations with pedadc/g)!/?, independent
of the amplitude!

Solution

\
8

FIGURE 6.9 The cycloidal wire in Problem 6.19.

Since the wire ismooththe constraint force that it exerts does no work. Hence
energy conservation holds in its standard form. &hergy conservation equation
is therefore

%mv2 +mgz = FE,

wherem is the mass of the particle,is its speed and’ is the constant total energy.
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In the present problemy, = ¢(6 + sinf) andz = ¢(1 — cos#) so that

vt =% 4 22
= ¢2(1 4 cosh)?62 + ¢? sin? 662
= 2¢% (1 + cosb) 62.

The energy equation then becomes
me? (1 + cost) % + mge(1 — cosh) = E,

which is the form required.
If we make the substitution = sin%@, then

1 —cosf = 2sin* 16 = 242,
(1 + cos0)f? = 2cos 16 6% = 8i?

and the energy equation becomes
8mc? u? 4+ 2mgcu® = E.

This is actually the energy equation for the simple harmosdillator. On differen-
tiating with respect te@, we obtain

i+ (£)amo

which is the SHM equation witk? = g/4c. Hence theperiod t of the oscillations

IS
1/2
T =4 (E) ,
g

independent of the amplitude
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Problem 6.20

A smooth horizontal table has a vertical post fixed to it whiras the form of a
circular cylinder of radiug. A light inextensible string is wound around the base of
the post (so that it does not slip) and its free end of thegtamttached to a particle
that can slide on the table. Initially the unwound part of $txéng is taut and of
lengthh. The particle is then projected with spereét right angles to the string so
that the string winds itselfn to the post. How long does it take for the particle to
hit the post?

Solution

FIGURE 6.10 The system in Problem 6.20.

Since the string does not slip on the post, the points of thegsthat are in
contact with the post are at rest. In particular, this apgpigethe pointC shown in
Figure 6.10. The free part of the string is therefore (instaaously) rotating about
C. The velocity of the particle is therefore perpendicula€tB and so théension
in the string does no workThe energy conservation equatiorfor the particle is
therefore

mv2=E,

N | —

wherem is the mass of the particle,is its speed, and is the constant total energy.
The particle therefore moves wittonstant speed
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Let 6 be the angle between the direction of the free string at tiave its initial
direction, as shown in Figure 6.10. Since the length of tke String at time is
b — a#, it follows thatv = (b — a#)f. On using the initial conditiom = u when
t = 0, theenergy conservation equatiorbecomes

(b —ab)b = u.

This is a separable first order ODE f@¢r). On separating, we obtain

b/a T
/ (b—a@)d@:u/ dt,
0 0

wherert is the time taken for the particle to hit the post. Hence

1 b/a
r=—/ (b—ab)do
uJo

_ % (b6 - %aez]z/a

b2

C au’

This is thetime taken for the particle to hit the pos
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Problem 6.21

A heavy ball is suspended from a fixed point by a light inextaesstring of length
b. The ball is at rest in the equilibrium position when it is jcied horizontally

215

with speed7¢gh/2)'/2. Find the angle that the string makes with the upward vertica

when the ball begins to leave its circular path. Show thahésubsequent projectile
motion, the ball returns to its starting point.

Solution

FIGURE 6.11 The system in Problem 6.21.

Since the tension in the string does no work, energy consernvholds in its
standard form. Thenergy conservation equations therefore

%mv2 +mgz =F,

wherem is the mass of the ball; is its speed; is its vertical displacement above
O, andE is the constant total energy. In the present problers,—b cosf so that

%mv2 —mgbcost = E.

The initial conditionv = (7gb/2)'/2 when# = 0 gives

E = %mgb —mgb = %mgb
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and the energy equation becomes
v? = 1gb(3 +4cosb).

The tension?” in the string can be found by using the Second Law in reverse.
Consider the component of the Second LAw= ma in the directionPO. This
gives

2

muv
T —mg cosh = 5

and, on using the formula far* provided by the energy equation, we find that
T = 3mgb(1 + 2cosb).

This formula holdsvhile the ball moves on the circular path

The ball leaves the circlewhenT = 0, that is, whery = 120°. The angles
shown in Figure 6.11 is therefo6®°. Thespeedu of the ball at this instant is given
by the energy equation to be= (gb/2)'/2. The subsequent trajectory is given by
standard projectile theory. In the coordinate sys#@kZ shown in Figure 6.11, the
path of the ball is

on using the calculated values piandu. The starting poind has coordinates

X =bsing = —\/Eb,
3b
Z =—-bcosp —b = 5

and it is easily verified that this point does lie on the pathhaf ball. The ball
thereforereturns to its starting point. m
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Problem 6.22 %

A new avant gardanathematics building has a highly polished outer surfacbken
shape of a huge hemisphere of radius 40 m. The Head of DepdrtRref. Oldfart,
has his student, Vita Youngblood, hauled to the summit (tglhetographed for
publicity purposes) but a small gust of wind causes Vita tgimeéo slide down.
Oldfart’s displeasure is increased when Vita lands on (ardrely damages) his car
which is parked nearby. How far from the outer edge of thedong did Oldfart
park his car? Did he get what he deserved? (Happily, Vitapestanjury and found
a new supervisor.)

Solution

A p Z
CLL\// ] () X
v -~ B Sg
.
O |

FIGURE 6.12 The system in Problem 6.22.

Since the surface of the building $snooth the reaction that it exerts does no
work. Hence energy conservation holds in its standard fdime.energy conserva-
tion equation is therefore

%mv2 +mgz = FE,

wherem andv are Vita’s mass and speedis her height above the ground, aAds
the constant total energy. Létbe the angle shown in Figure 6.12. Thes- a cosf
and we have

%va + mgacosh = E.

The initial conditiorv = 0 whené = 0 gives

E =mga
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so that the energy equation becomes
v? = 2ga(l — cosh).
The normal reactioR exerted by the roof can be found by using the Second Law
in reverse. Consider the component of the Second Faw: ma in the direction
P_O). This gives

va

mg Ccos — R = 5

and, on using the formula far* provided by the energy equation, we find that
R = mgb(3cost — 2).
This formula holdswhile Vita remains in contact with the raof

Vita leaves the roofwhenR = 0, thatis, wherf) = cos™! % Thisis the angl¢
shown in Figure 6.11. Vita'speedu at this instant is given by the energy equation
to beu = (2ga/3)'/2. Her subsequent trajectory is given by standard projectile
theory. In the coordinate systeBi Z shown in Figure 6.11, her path is

Z=—tanBX — (L) x?

2u?cog B
5 27X?
_ Y5, _mx?
2 16a

on using the calculated values gfandu. This path intersects the ground when
Z = —acosp, that is, when

2 5. 27Xx?
V5.

—_a = ——

3 2 16a
The X coordinate of the landing point therefore satisfies the catadequation

27X* 4+ 8v/5aX — 2a* =0

the roots of which are

e (s,
27

The physically appropriate root is tip®sitiveone, X *, which is0.379a approxi-
mately. The distance of Vita’s landing point from the waltloé building is therefore
asing + Xt —a = 0.125a approximately. Whea = 40 m, this is approximately
5 m. Hence Oldfart'sar was parked5 m from the wall of the buildingm
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Problem 6.23 % %

A heavy ball is attached to a fixed poifitby a light inextensible string of lengthu.
The ball is drawn back until the string makes an acute amglgth the downward
vertical and is then released from rest. A thin peg is fixedséadicez vertically
below O in the path of the string, as shown in book Figure 6.6. In a gafrskill,
the contestant chooses the valuexo&dnd wins a prize if the ball strikes the peg.
Show that the winning value of is approximatel\86°.

Solution

|
|
|
|
|
\ \ /
|
|
il

FIGURE 6.13 The system in Problem 6.23 after the
string has met the peg.

Once the string has met the peg, the ball moves on a circullaiopaadiusa, as
shown in figure 6.13. Suppose that the ball leaves this @rquath at the poinB,
where its speed ig and its direction of motion makes an anglevith the horizontal.
At this instant, the tension in the string is zero. Then theoBd Law, resolved in

the directionBO, gives

mu2
mg cosp = ——.
a
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Henceu andp are related by:> = ga cosp. Once the string has become slack, the
trajectory of the ball is given by standard projectile thedn the coordinate system
BXZ shown in Figure 6.13, the path of the ball is

_ _ g 2
Z =tanf X (2u2C0§ﬁ)X

2

=tanf X — (m) X

on using the relatiom? = gacosp. If the ball is to hit the peg, we must have
Z = —acosp whenX = asinpg. This requires that

sin’ B

which reduces to the simple equatidoos’ B = 1. The physically appropriate root
of this equation is theositive acuteanglef = cos'(1/+/3). This determines the
angleB and, on making use of the relatiad = ag cosp again, thespeedof the
ball at B is found to bey = (ag/ﬁ)l/z.

The initial inclinationa of the string can now be found by energy conservation.
Since the tension in the string and the reaction of the pegdeank, energy conser-
vation holds in its standard form. Tle@ergy conservation equatiors therefore

%mv2 +mgz = FE,

wherem is the mass of the bali, is its speed;z is its vertical displacement abovg,
andE is the constant total energy. The initial conditioe= 0 whenz = a—2a cosu
givesE = mga(l — 2 cosx) so that the energy equation becomes

v? +2gz = 2ga(l — 2 cosa).
In particular, when the ball is &, z = a/+/3 andv? = ag/~/3. Hence

2
a8 + -84 _ 2ga(l —2cosw)

NEIRVE]

from which it follows that
cose = 1(2 - V3).

Hencex = cos™! (1(2 — +/3)) = 86° approximatelym
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Problem 7.1

A particle P of massn moves under the repulsive inverse cube fiEld= (my/r3) 7.
Initially P is at a great distance from and is moving with speel towardsO along

a straight line whose perpendicular distance fr@ns p. Find the equation satisfied
by the apsidal distances. What is the distance of closesbagpip of P to O?

Solution
The (specificpotential energycorresponding to the force field = (my/r3) 7 is
v
2r?’

and, from the initial conditions, the energy and angular rotmm constants are
E = %VZ andL = pV. The energy and angular momenteonservation equa-
tions are therefore

1(:2 242 Y _1y2
E(V +1"9)+m—5v9

r20 = pV.

On eliminatingd between these two equations, we obtainréial motion equa-
tion
S+ V=3V

where theeffective potential V* is given by

1
* 22\
|4 —<y+p V)2r2'
Sincer = 0 at an apse, it follows that the apsidal distances satisfyethwtion
V*(r) = 1V?, thatis,
v
r? = p2 + W
Hence the onlyapsidal distanceis r = (p* + y/ V2)1/2.
The graph of the effective potentill* is shown in Figure 7.1. Itis evident that,
whatever the values of the constadisand L, this unique apsidal distance is the
minimumvalue achieved by. Thedistance of closest approach™" is therefore

given by
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\
=

FIGURE 7.1 The effective potential’* in Problem 7.1.
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Problem 7.2

A particle P of massn moves under the attractive inverse square fleles —(my /r?)7.
Initially P is at a pointC, a distance: from O, when it is projected with speed
(y/c)"/? in a direction making an acute angtewith the lineOC. Find the apsidal
distances in the resulting orbit.

Given that the orbit is an ellipse witt at a focus, find the semi-major and
semi-minor axes of this ellipse.

Solution

The (specificlpotential energy corresponding to the force fieldl = —(my/r?)7
is

v=-°,
p

and, from the initial conditions, the energy and angular romm constants are
given by

1/2 )
L=c <Z> Sine = (J/C)l/2 sina.
c

The energy and angular momentaonservation equationsare therefore
1(:2 242 14 14
(7" +r°0 )——=——,
2 ( r 2¢
r20 = (y¢)'/? sina.
On eliminatingd between these two equations, we obtainrtial motion equa-
tion

1:2 * 14
1p2 pp*x =2
2" 2¢

where theeffective potential V* is given by

sin’
pe_ ¥ vesifa
r 2r2

Sincer = 0 at an apse, it follows that the apsidal distances satisfyethwation
V*(@r) = —y/2c, thatis,

12 —2cr 4+ ¢?sifa = 0.
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Theapsidal distancesare therefore = ¢(1+cosx). Since the initial value of lies
betweerthese distances, it follows thatmust oscillate in the rangg1 — cosa) <
r < c¢(1 4+ cosx). Hence thdeastandgreatest distancesrom O achieved by the
particle are

r™" = ¢(1 — cosa),

rM® = ¢(1 + cosa),

P
RN
/,/ P 1/2
, -7 (/e
/ // /
// -7 %
'/ /.// /’a
Phs c .
o e
~ -

SN —_ - = -

FIGURE 7.2 The orbit in Problem 7.2. The point$ and B are
the apses of the orbit.
Since we are given that the orbit is an ellipse wiltat a focus, we know that

PN =04 = a(l —e),
r" = 0B =a(l +e),

wherea, e are thesemi-major axis and theeccentricity, of the orbit. Hence

c(1 —cosa) = a(l —e),
c(1 4+ cosx) =a(l +e),

from which it follows thate = ¢ ande = cosa. The semi-minor axisb is then
given by

b? =a*(1 —e?) = c*(1 —coga) = ¢?sinfa.

Henceb = ¢ sina. m
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Problem 7.3

A particle of mass moves under the attractive inverse square flele —(my /r?) 7.
Show that the equation satisfied by the apsidal distances is

2Er? 4 2yr —L? =0,

whereE and L are the specific total energy and angular momentum of thecjgart
WhenE < 0, the orbit is known to be an ellipse with as a focus. By considering
the sum and product of the roots of the above equation, ésttathle elliptic orbit
formulae

L* = yb?/a, E =—y/2a.

Solution

The (specific)potential energy corresponding to the force fielll = —(my/r?)7
is

y =L
r

The energy and angular momentaonservation equationgherefore have the form

(2 +r0) L=k,
r

120 = L,

whereE, L are the energy and angular momentum constants of the orili@i-
natingf between these two equations, we obtainrteial motion equation in the
form

2y L?

FP=2E+ = — —.
r r

Sincer = 0 at an apse, it follows that the apsidal distances satisfeduation

Q(r) =0, (1)

where Q(r) = 2(—E)r? —2yr + L%. When the energys < 0, equation (1)
generally has two distinct roots. (The special case in wthielroots are coincident
corresponds to a circular orbit.) Hence there tave possible apsidal distances
Sincer? cannot be negative,is restricted to those values that satisfy the inequality

2y L?
2E+ ——— 20,
r

r
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which is equivalent to

Q(r)=<0.

Y

min - max

FIGURE 7.3 The functionQ(r) when the energ§ < 0.

It is evident from Figure 7.3 that, whef < 0, the permitted range of lies
betweerthe roots of the equatio@(r) = 0. It follows thatr must oscillate in the
ranger™" < r < M wherer™" is the smaller of We note that the sum and
product of these distances are given by

i 4
pmin | pmax _ —
E
rmin x pmax — _L_2
2E°

Since we are given that the orbit is an ellipse withat a focus, we know that

M = a(1 —e),

rm* =qg(1 +e),

wherea, e are thesemi-major axisand theeccentricity of the orbit. Hence the sum
and product of ™" andr™® can also be expressed as

rmln + rmax — za,

pmin s pMmax — g2 (1 — e2> = b2

© Cambridge University Press, 2006



Chapter 7 Orbits in a central field 228

On equating these different expressions for the sum ancuptad ™" and ™,
we obtain

E=-L
2a
L? = 2Eb* = il
a

which are thee- and L-formulae for the attractive inverse square elliptic orlmit.
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Problem 7.4

A particle P of massm moves under the simple harmonic fiefd = —(mQ2r) 7,
whereg2 is a positive constant. Obtain the radial motion equatiahsrow that all
orbits of P are bounded.

Initially P is at a pointC, a distance from O, when it is projected with speed
Qc in a direction making an acute anglevith OC. Find the equation satisfied by
the apsidal distances. Given that the orbitofs an ellipse with centr@, find the
semi-major and semi-minor axes of this ellipse.

Solution
The (specific)potential energy corresponding to the force fiell = —mQ?r 7 is

V= %erz.

The energy and angular momentaonservation equationgherefore have the form

L(# 4+ r26%) + 1022 — .
r2 = L,
whereE, L are the energy and angular momentum constants of the omieli@i-

natingd between these two equations, we obtainréial motion equation in the
form

1P+ V =E,
where theeffective potential V* is given by

L?
x _ 102,.2
V—EQV +ﬁ

Since7? cannot be negative, is restricted to those values that satisfy the in-
equality V* < E. Itis evident from the graph of* shown in Figure 7.4, that,
whatever the values df andL, r must oscillate between two apsidal distance8
andr™®, Thusall orbits are bounded.

With the special initial conditions given,

E=1Q%*+1Q%* = Q%

L = Qc?sina,
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I
I
I
I
I
Tmln rmax

FIGURE 7.4 The effective potential’* in Problem 7.4.

andV* becomes

Q24 sirt a

¥ _ 1022
V—EQV“‘ 2}"2

Since/ = 0 at an apse, it follows that the apsidal distances satisfyeth&tion
V*(r) = E, thatis,

rt—2¢2r? + ¢*sinfa = 0.
Theapsidal distancesf the orbit are theositiveroots of this equation. Hence

= /2¢ COS%O(,
PN = 2¢ Sin%a.
Since we are given that the orbit is an ellipse withcigmtreat O, we know that

rmaX andrmin gre themajor andminor axesof this ellipse. Hence = +/2¢ cos%a
andb = v2csinle. m
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Problem 7.5

A particle P moves under the attractive inverse square fieles —(my /r?) 7. Ini-
tially P is at the pointC, a distance from O, and is projected with speédy /c)!/2
perpendicular taDC. Find the polar equation of the path make a sketch of it. De-
duce the angle betweenC and the final direction of departure &f.

Solution
In the force fieldF = —(my/r?)7, the outward force per unit mass j&r) =
—y/r?and sof(1/u) = —yu?. Also, from the initial conditions, the angular mo-

mentum constant of the orbit & = ¢(3y/c)'/? = (3yc)'/?. Thepath equation
for the orbit is therefore

d?u N 1
- u=—,
do? 3¢

which is a second order linear ODE with constant coefficiehssgeneral solution
is

1 .
u = 3—+A0059+Bsm9,
C

whereA and B are arbitrary constants.

The values of the constantls B can be determined from thitial conditions.
Take the lingd = 0 of the polar coordinate system to pass through the initisitjmm
C of the particle (see Figure 7.5). Then

(i) the initial conditionr = ¢ whent = 0 givesu = 1/¢ whené = 0, and
(i) the initial condition/ = 0 whenz = 0 gives

du 7

_— = —— = 0

db L ’
whené = 0.

The conditionu = 1/c whenf = 0 givesA = 2/3¢ and the condition
du/df = 0 whenf = 0 givesB = 0. Thepolar equation of the orbit is therefore

that is,

3¢
r=—.
1 4+ 2 cosb

© Cambridge University Press, 2006



Chapter 7 Orbits in a central field

FIGURE 7.5 The orbit in Problem 7.5 (not to scale).

The graph of the orbit is shown in Figure 7.5. The partt#earts to infinity when
1 4+2cosh =0,

that is, wherd = 120°. This is the angle: shown in Figure 7.5a
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Problem 7.6

A comet moves under the gravitational attraction of the Shnitially the comet

is at a great distance from the Sun and is moving towards f speed) along

a straight line whose perpendicular distance from the Syn iBy using the path
equation, find the angle through which the comet is deflectetitihe distance of
closest approach.

Solution

In this problem, the force field i = —(my/r?)7, wherey = MoG and Mg
is the mass of the Sun. The outward force per unit maggi$ = —y/r? and so
f(1/u) = —yu?. Also, from the initial conditions, the angular momentunmstant
of the orbitisL = pV. Thepath equationfor the orbit is therefore

d?u y

A + u = )
dQZ P2 V2
which is a second order linear ODE with constant coefficielssgeneral solution

IS

Y
- pzyz

+ A cosf + Bsind,

whereA and B are arbitrary constants.

The values of the constantls B can be determined from thitial conditions.
Take the line# = 0 of the polar coordinate system to be parallel to the direotib
approach of the comet (see Figure 7.6). Then

() the condition that — oo ast — —oo givesu = 0 whenf = 0, and
(i) the condition that* — —V ast — —oo gives

du 7 _ )1

a0~ L pV p
whené = 0.

The initial conditionu = 0 whenf = 0 gives4 = —y/p?V? and the initial
conditiondu/d6 = 1/p when6 = 0 givesB = 1/ p. Thepolar equation of the
orbit is therefore

P 14 .
~— = ——(1—-cosb sing.
r pV2( )+

© Cambridge University Press, 2006

233



Chapter 7 Orbits in a central field 234

FIGURE 7.6 The orbitin Problem 7.6.

The graph of the orbit is shown in Figure 7.6. The comheparts to infinity
when

Y .
——(1 - cosf sing = 0.
v )+

This equation is best solved by expressing it in terms of ﬂgiee%@ in which case
it becomes

V2
tanlo = e
v
Thedeflection anglex (= 7 — 0) shown in Figure 7.6 is therefore given by
1 1 1 1 )4
tania = tan(EG — E'T[> = —C0t59 = W
Hence
o = 2tan! L.
pV?

To find thedistance of closest approaclof the comet, consider the function
q(1 —cosf) + sind.

whereg = y/pV?2. Thelargestvalue attained by this function in the rangje< 6 <
a+ mis

) 1/2
q+ (q +1>

and hence

pmin — - (Q2p+ 1)1/2 = p((q2 + l)l/z—q) = (% +p2) - %.I
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Problem 7.7

A particle P of massn moves under the attractive inverse cube fi€ld= —(my?/r®)7,
wherey is a positive constant. Initially’ is at a great distance froi? and is pro-
jected towardgD with speedV along a line whose perpendicular distance from
is p. Obtain the path equation fa?.

For the case in which

V= 15y
V209 p’

find the polar equation of the path #fand make a sketch of it. Deduce the distance
of closest approach t@, and the final direction of departure.

Solution
In the force fieldF = —(my?/r3)7, the outward force per unit mass j&r) =
—y?/r3and sof(1/u) = —y?u®. Also, from the initial conditions, the angular

momentum constant of the orbit Is = pV. Thepath equation for the orbit is

therefore
d?u y?
- - 1 — —
a0 " ( p2V2) u

For the special case in which

15y
V209 p’
the path equation reduces to
d?u N 16 0
[ —_—Uu = s
de? = 225

which is the SHM equation witke = %. Its general solution is

u = Acos20 + BsinQ0,

whereA and B are arbitrary constants.

The values of the constantls B can be determined from thieitial conditions.
Take the line# = 0 of the polar coordinate system to be parallel to the direoctib
approach of the patrticle (see Figure 7.6). Then

() the condition that — oo ast — —oo givesu = 0 whenf = 0, and
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(ii) the condition that — —V ast — —oo gives

du P (V) 1

a0~ L~ pV p
whené = 0.

The initial conditionu = 0 whené# = 0 givesA = 0 and the initial condition
du/d6 = 1/p whenf = 0 givesB = 1/Qp. Thepolar equation of the orbit is
therefore

4p
r=
155|n30

FIGURE 7.7 The orbitin Problem 7.7.

The graph of the orbit is shown in Figure 7.7. The partadparts to infinity
when

sin-%0 =0,
that is, wherd = %n. The anglex (= 27 — 6) shown in Figure 7.7 is therefore
45°,
Thedistance of closest approacls achieved when siﬁ§9 takes itsmaximum
value for6 in the range) < 0 < %n. This maximum is+1 and hence

Fmin_ ip_.

[
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Problem 7.8 %

A particle P of massm moves under the central fiell = —(my?/r3) 7, where
y iIs a positive constant. Initially? is at a great distance fro® and is projected
towardsO with speedv/2y/ p? along a line whose perpendicular distance from
is p. Show that the polar equation of the pathfs given by

p 0
r = —coth{ — ).
V2 (ﬁ)
Make a sketch of the path.

Solution

In the force fieldF = —(my?/r°)¥, the outward force per unit mass f&r) =
—y?/r’>and sof (1/u) = —y*u®. Also, from the initial conditions, the angular mo-

mentum constant of the orbitis = p (ﬁy/pz) = /2y /p. Thepath equation
for the orbit is therefore

d*u 1.2 3
—+U:§pu,

which is anon-linearsecond order ODE. Such equations cannot usually be solved,
but, when the independent variable does not appear explitie equation can al-
ways be reduced to first order. Let= du/d6. Then

d?u dv . dv du dv

402 =46 du a6 " Vdw
and the path equation can be written

dv
UE +u= %p2u3.

This is a separable first order ODE foas a function of:. On separating, we obtain

1.2 1,24 1,2
VS = gpu su”+C,

where( is the integration constant.
Take the lingg = 0 of the polar coordinate system to be parallel to the directio
of approach of the particle (see Figure 7.8). Then

() the condition that — oo ast — —oo givesu = 0 whenf = 0, and

© Cambridge University Press, 2006



Chapter 7 Orbits in a central field

(ii) the condition that — —V ast — —oo gives

du  F_ V) _1

v

- do L pV p
whend = 0.

The conditiorv = 1/p whenu = 0 givesC = 1/2p? and hence
1 2
2 _ 2.2
VT = 17 (2 pu ) .

The initial condition on/ implies thatr initially decreaseso thatu initially in-
creases Henceu satisfies the equation

fl—g = +$ (2—p2u2>.

We have thus reduced the path equation to a first order sdpddaiE foru as a
function of6. On separating, we obtain

6 =2 [L
=P 2 — p2u?
=2y + D,

on making the substitutiopu = +/2tanhy. The initial conditionu = 0 when
0 = 0 givesD = 0 and the solution is

0 pu
tanh{ — | = —,
() -%
that is,
p 4 )
r = —coth{ — ).
V2 (fz
This is thepolar equation of the orbit.

The graph of the orbit is shown in Figure 7.8. The path spiralsards and is
asymptotic to the circle = p/+/2. m
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FIGURE 7.8 The orbitin Problem 7.8.
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Problem 7.9 %
A particle of massn moves under the central field

4 a?
— 2 e~
F——m)/ (r—3+r—5)l’»

wherey anda are positive constants. Initially the particle is at a dista from
the centre of force and is projected at right angles to thaisagector with speed
3y /+/2a. Find the polar equation of the resulting path and make ahlatit.

Find the time taken for the particle to reach the centre afdor

Solution
In the given force field, the outward force per unit mass is

2

4
0= (5+%)

and sof(1/u) = —y?* (4u® + a*u’). Also, from the initial conditions, the angu-
lar momentum constant of the orbit s = a(3y/~/2a) = 3y/+/2. Thepath
equationfor the orbit is therefore

d?u

W+u=%(4u+a2u3>,

that is
d?u 2 2 3
402 9
This is anon-linearsecond order ODE. Such equations cannot usually be solved,

but, when the independent variable does not appear explitie equation can al-
ways be reduced to first order. Let= du/d6. Then

d*u dv . dv du dv

462 =40 " du " do Udu
and the path equation can be written
d
v = 3t — .
This is a separable first order ODE foas a function of:. On separating, we obtain

v = Latut — %uz + C,

1
2 1
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where( is the integration constant.
Take the line® = 0 of the polar coordinate system to pass through the péint
where the motion begins(see Figure 7.9). Then

(i) the conditionr = a whent = 0 givesu = 1/a whenf = 0, and
(i) the condition that = 0 whenz = 0 gives

du P
= —— = —— :0
Tae T L
whené = 0.

The conditiorw = 0 whenu = 1/a givesC = 0 and hence

du 1/2

— =41y <a2u2 — 1) .

do 3

It is not immediately clear which sign to take since= 0 initially. However, since
the initial value ofd?u/d6? is positive u mustincreaseinitially. Henceu satisfies
the equation

% = —l—%u <a2u2 — 1)1/2.

We have thus reduced the path equation to a first order sdpdpaiE foru as a
function of 6. On separating, we obtain

du
N T
u(a?u? —1)

=3y + D,

on making the substitutiomu: = secyr. The initial conditioru = 1/a whenf = 0
givesD = 0 and the solution is

secld = au,
that is,
r = acosif.

This is thepolar equation of the orbit. The graph of the orbit is shown in Figure
7.8. The path spirals inwards and reaches the centre ﬂ/h@@n.
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FIGURE 7.9 The orbitin Problem 7.9.

To find thetime taken to reach the centre, consider thegular momentum
conservationequation

_ 3
7

Since we now know that the path of the particle is= « cos%@, it follows that#
satisfies the equation

26

<a2 cos %9) 6 = %

This is a separable first order ODE fas a function of. On separating, we obtain

5 3m/2 52 . 3)/ T
a cos z0df = —/ dt,
J, cosinar =7 |

wherert is the required time. Hence

2 a? 3n/2
;= Y28 / cos 10 d6
0

3y

7'[612

Zﬁy'
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Problem 7.10
A particle of massn moves under the central field

—er/a
F =—m ()/e )?,
1"2

wherey, a ande are positive constants. Find the apsidal angle for a neadwular
orbit of radiusa. Whene is small, show that the perihelion of the orbit advances by
approximatelyre on each revolution.

Solution
Let the nearly circular orbit of radiusbe

1
u=-—+E,
a

whereu = 1/r andé = £(0). Then, in the linear approximatio§, satisfies the
equation

d&

26 _
702 + Q°E=0,
where
af'(a)
Q=3+
Sf(a)

and f'(r) is theinward force per unit mass (see section 7.4 of the book).
In the present problem,

Ve—er/a
Sy ="
2ye—er/a yee—er/a
/ —_— —
so that
€
fla) ="
f/(a) — _(2 + G)Ve €
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and
af'@ _
Sf(a) '

Q=3+

The general solution faf has the form

& =CcoqQb + §),

whereC andé are arbitrary constants. Tlagsidal angleof the orbit is therefore

T
o= —
Q
=n(l—e) /2
=7 (1 + %6)

in the linear approximation whea is small. Hence theerihelion advancesby

approximatelyre on each revolutiorm

244
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Problem 7.11 Solar oblateness

A planet of mass: moves in the equatorial plane of a star that is a uniform eblat
spheroid. The planet experiences a force field of the form

approximately, wherg, a ande are positive constants ards small. If the planet

moves in a nearly circular orbit of radius find an approximation to the ‘annual’
advance of the perihelion. [It has been suggested thatestdas of the Sun might
contribute significantly to the precession of the plandtastundermining the suc-
cess of general relativity. This point has yet to be resobattlusively.]

Solution
Let the nearly circular orbit of radiusbe

1
u=-—+E,
a

whereu = 1/r andé = £(6). Then, in the linear approximatiod,satisfies the
equation

d%&

2 _
ﬁ + Q 5 = 0,
where
af'(a)
Q=3+
Sf(a)

and f(r) is theinward force per unit mass (see section 7.4 of the book).
In the present problem,

2
f(r)=ry—2(l+%),

2
==L (2455,

so that
f@) =2+,
a

/(@) = —a%(z +4e),

© Cambridge University Press, 2006



Chapter 7 Orbits in a central field

and

af'(a)  1—e
fla) 1+¢€

The general solution faf has the form

Q=3+

& = CcoqQb +9),

whereC andé are arbitrary constants. Tlagsidal angleof the orbit is therefore

o =

1—e\ V2
=7
(l—l—e)

=n(l +¢€)

S

in the linear approximation whenis small. Hence the ‘annua#idvance of the
perihelion of the orbit is approximatel@ze. m
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Problem 7.12

Suppose the solar system is embedded in a dust cloud of omdensityp. Find

an approximation to the ‘annual’ advance of the periheliba planet moving in a
nearly circular orbit of radius. (For convenience, let = € M/a®, whereM is the

solar mass andis small.)

Solution

Suppose that the dust cloud is spherically symmetric alb@u$tin. Then the grav-
itational force that it exerts on a planet of magsacts towards the Sun and has
magnitude

mG [, dme
7 (gnr ,0) =mMG (W) r,

wherer is the distance of the planet from the Suns pa®/ M, andM is the mass
of the Sun. The total inward force per unit mass acting on theqt is therefore

4
o=y ()

wherey = MG.
Suppose the planet has the nearly circular orbit

1
u=_+g9
a

whereu = 1/r andé = £(6). Then, in the linear approximatiod,satisfies the
equation

d?& 20
702 + Q€ =0,
where
af'(a)
S(a)

and f'(r) is theinward force per unit mass (see section 7.4 of the book).

Q=3+

In the present problem,

o=ty ()

30
2 4
rn=-2%+y(35).

3a3
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so that

fl@) =5 (1+ 4xe).

a
f(a) = —Z—3 (2— %ne) ,
and

af’(a) . 1+ 13—67'[6
fl@ 1+%ne

Q=3+

The general solution faf has the form
& =Cco9dQb + 9),

whereC andé are arbitrary constants. Tlagsidal angleof the orbit is therefore

m
“Ta
_ (1 + 13—67re)_1/2
1+§ne
= (1l —2me)

in the linear approximation whenis small. Hence the ‘annua#idvance of the
perihelion of the planetary orbit is approximatelyr2¢ . m
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Problem 7 .13 Orbits in general relativity

In the theory of general relativity, the path equation forlanet moving in the
gravitational field of the Sun is, in the standard notation,

d?u MG  (3MGY ,
= )"

wherec is the speed of light. Find an approximation to the ‘annudlance of the
perihelion of a planet moving in a nearly circular orbit ofingsa.

Solution

The general relativistic path equation for a planet is theesas that in Newtonian
mechanics with a slightly modified law of force. The modifiesvard force f(r)
per unit mass is chosen so that

f(juw) _ MG (3MG) .2

L2y? L2 c?

that is,

MG (3MGL?*\ 1
Jr) = r2 ( c? ) 4
We will take the value of the constahtto be that in a non-relativistic circular orbit
of radiusa, that is,L? = M Ga. Themodified law of force then has the form

MG 3ea?
f(r):r_2(1+r_2)’

where the dimensionless constanis defined bye = M G/ac?. In the context
of the solar system, the parameteis very small, being abouit0~’ for the planet
Mercury.

Suppose the planet has the nearly circular orbit

1
u=-—+E,
a

whereu = 1/r andé = £(6). Then, in the linear approximatiod, satisfies the
equation

d*¢
251 Q% =
02 T £§=0,
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where

af’(a)
f(a)

and f'(r) is theinward force per unit mass (see section 7.4 of the book).

Q=3+

In the present problem,

MG 3ea?
f(”)=r—2(1+r—2),

2
f/(r) = —Af—f (2 + 12¢a ) ’

r2

so that

f@) =21+ 36,

a
/@) = —L @+ 120),
a
and
92:3+af/(a) 1= 3e

fla) 14 3¢

The general solution faf has the form
&§=Cco9dQb + 9),

whereC ands are arbitrary constants. Tla@sidal angleof the orbit is therefore

o =

1 — 3¢\ /2
=7
(1—|—36)

= (1 + 3¢)

O

in the linear approximation whenis small. Hence the ‘annua#idvance of the
perihelion of the planetary orbit is approximatefyre, wheree = M G/ac?. This
is Einstein’s famous formula (specialised to the case ofaalyeircular orbit).m
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Problem 7. 14

A uniform flux of particles is incident upon a fixed hard sphefeadiusa. The
particles that strike the sphere are reflected elastidaihd the differential scattering
Cross section.

Solution

FIGURE 7.10 An incident particle with impact parametgris elasti-
cally scattered through an angle The angles marked with a bullet
(e) are all equal.

Consider an incident particle with impact parameteas shown in Figure 7.10.
Let the ‘angle of incidence’ of the particle lye then, since the collision is elastic,
all the angles marked with a bullét) are equal tgy. Then

p =asiny
and the scattering angteis
0 =m—2¢.
On eliminatingy: between these two formulae, we obtain
p =acosio,

which expresses the impact parameieas a function of the scattering angle
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Thedifferential scattering cross sectiorno is now given by

__p dp
siné do
_acosé@ (
sing

a2.

1 il
—Ea S|n§9)

1
]

Thus (somewhat surprisingly) the particles acattered equally in all directions
Thetotal scattering cross sectionS is given by

O=n pop=2m
S = / f o sing dob d¢
6=0 J¢p=0

=27 (4a?) /::n sind do

=0
= 7'[612.

This is the answer expected since the particles that areesedtare those with im-
pact parameters < a. m
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Problem 7.15

A uniform flux of particles, each of mass and speed’, is incident upon a fixed
scatterer that exerts the repulsive radial folce= (my?/r?)¥. Find the impact
parametep as a function of the scattering angleand deduce the differential scat-
tering cross section. Find the total back-scattering esession.

Solution

In the force fieldF = (my?/r?®)¥, the outward force per unit mass f4r) =
y?/r3and sof(1/u) = y*u3. Consider a particle with impact paramegerThen
the angular momentum constant of its orbilis= pV. Thepath equationfor this
particle is therefore

The general solution is
u = AcosQ20 + BsinQo,

whereA and B are arbitrary constants.

The values of the constantls B can be determined from thiitial conditions.
Take the line# = 0 of the polar coordinate system to be parallel to the direoctib
approach of the particle. Then

() the condition that — oo ast — —oo givesu = 0 whenf = 0, and
(ii) the condition that — —V ast — —oo gives

du 7 _ ) _1

a0~ L~ pV p
whené = 0.

The initial conditionu = 0 whené# = 0 givesA = 0 and the initial condition
du/df = 1/p whenf = 0 givesB = 1/Qp. Thepolar equation of the orbit is
therefore

Qp
r = — .
sinQ20
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The particledeparts to infinity when
sinQ6 =0,

that is, wherd = /2. Thescattering angle® (= = — (/Q2)) is therefore

2
®=n—n(l+p2V2)

On makingp the subject of this formula, we obtain

—1/2

2 _ J/Z(]T - ®)2
V2OQ2r — 0)’
which is the required expression for thepact parameter p as a function of the

scattering angl@.
Thedifferential scattering cross sections is now given by

__p dp
sSin® dO®
1 dp?

2sin® dO

B y? (m —©)°
- (21/2 sm@) (@(Zn — @))

_ w*yA(r—0)
V20227 — ©)2sin®’

The totalback scattering cross sectiors 8 is then given by

=21
f / o sin® doO d¢
=n/2 Jop=

m3y? T—0
= —— db
V2 /@:n/z 0221 — ©)?

_ Ty I §
V2 0027 —-0) /2

_”V

3y2 .
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Problem 7.16

In Yuri Gagarin’s first manned space flight in 1961, the pezigad apogee were
181 km and 327 km above the Earth. Find the period of his orfatras maximum
speed in the orbit.

Solution
Suppose that the perigee and apogee of a satellite orbit hedght/s and H above

the Earth. The corresponding apsidal distances are ther&oe+ # and R + H
respectively, wher is the Earth’s radius. Then
(R+h)+ (R+ H) = 2a,
wherea is the semi-major axis of the orbit. The parametes therefore given by
a=R+1(h+ H).

Theperiod t of the orbit can now be found from the period formula

, Anid?
2 = :
MG

whereM is the mass of the Earth.
Let V be the speed of the satellite at the perigee. Then, from thggrconser-
vation equation and the E-formula,

MG MG

11,2
ly2 - _ ,
R+h 2a

so that thespeedat theperigeeis given by

V:i=MG 2 !
a R+h a)’

On using the given data , we find that= 89.6 minandV = 7.84 kms!. m
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Problem 7.17

An Earth satellite has a speed of 8.60 km per second at itggeeB00 km above the
Earth’s surface. Find the apogee distance above the Etrtépeed at the apogee,
and the period of its orbit.

Solution

Suppose a satellite has spelédat its perigee, which is heiglit above the Earth.
The corresponding apsidal distance is there®re/, whereR is the Earth’s radius.
Then, from the energy conservation equation and the E-flaymu

MG MG

11,2
ly2 _ —
R+h 2a

2

il

whereM is the mass of the Earth amds the semi-major axis of the orbit. Hence

L MG(R + h)
 2MG —V2(R+h)’

and theperiod t of the orbit can now be found from the period formula
2 _ 4243
MG’
Let H be the height of the satellite above the Earth at the apodesn T

T

(R+h)+(R+ H)=2a
so thatH is given by
H=2a—-2R—h.

Thespeedv at theapogeecan now be found from the angular momentum con-
servation formula

(R+h)V = (R + H)v,

R+h
= V.
v (R+H)
On using the given data , we find that= 128 min, H = 3910 km, andv =
5.50kms ™. m

which gives
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Problem 7.18

A spacecraft is orbiting the Earth in a circular orbit of nagk when the motors are
fired so as to multiply the speed of the spacecraft by a factér> 1), its direction

of motion being unaffected. [You may neglect the time takenthis operation.]
Find the range ok for which the spacecraft will escape from the Earth, and the
eccentricity of the escape orbit.

Solution

In a circular orbit of radiug the spacecraft has speg@d/c)!/?, wherey = MG,
M being the mass of the Earth. Firing the motors causes thel dpesuddenly
increase td (y/c)'/2. The energyE of the new orbit is therefore

E=ye (D)7

C C
2 (12-2).

The spacecraft wilkscapef E > 0, thatis, ifk > /2.

Suppose then thdt > +/2 so that the new orbit is a hyperbola. The E-formula
then gives

Y <k2 _2> — Y
2¢ +2a’

whereq is the standard hyperbola parameter. Hence

¢
k2 -2’

a =
The angular momentum of the new orbit is
1/2
L =ck (Z) = k(ye)'/2,
c
The L-formula then gives
yb* _

= kzyc,
a

whereb is the other standard hyperbola parameter. Hence

— = k2.
a
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Theeccentricity e of the new orbit is given by

e'2=1—|—b—2
a2
=1+k2(k2—2)

:<k2—1>2.

Hencee = k*—1.m
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Problem 7.19

A spacecratft travelling with spedd approaches a planet of mak&along a straight
line whose perpendicular distance from the centre of thagtles p. When the
spacecraft is at a distanedrom the planet, it fires its engines so as to multiply its
current speed by a factar(0 < k& < 1), its direction of motion being unaffected.
[You may neglect the time taken for this operation.] Find toadition that the
spacecraft should go into orbit around the planet.

Solution

In the initial orbit, the total energy i%VZ. Suppose that, when the spacecratft is
distancer from the planet, its speed is Then, by energy conservation,

4
V-t =
c

1 1 2
3 2V

wherey = M G, M being the mass of the planet. Hence the speed of the sp&cecraf
just before the motors are fired is

2\ 172
v = (V2 + _J/) .
c

Firing the motors causes the speed to suddenly increase to
) 1/2
k (V2 + —V) .
c

The total energye of the new orbit is therefore

2
EI%kZ(VZ-F—y)—Z.
C C

The spacecraft wilyo into orbit around the planet i < 0, that is, if

2
24«

k? <

il

wherea = cV?/MG.m
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Problem 7.20

A body moving in an inverse square attractive field traveaseslliptical orbit with
major axis2a. Show that the time average of the potential enérgy= —y/r is
—y/a. [Transform the time integral to an integral with repectte eccentric angle

]

Deduce the time average of the kinetic energy in the same orbi

Solution
The time average of the potential enerfgyover a period of the motion is

_ 1 T
V = —[ V dt
T Jo
1 [7 y
[ (L)
2w
% 1 (dt
=L —|— ) do
t/(; r (d@)
2
_ _Z/ (L) 40
T Jo r20
Y 2w

=—— rdo
L 0

_ be on 4o
“tLa )y 1+ecosh’
This integral can be evaluated by standard methods (for pbearby making the

substitutiory = tan%@), but the easiest way is to transform the integration végiab
to the eccentric anglg by means of the formulae

2
(1—ecosy)(1 +ecosh) = b—2
a

o b
dy ~ a(l —ecosy)’
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(see the book p.175). This gives

. ]/b 2w
V=-"— d
L 0 w

on making use of the L-formul&? = y5? /a and the period formula? = 47243 /y.

This is the required time average of {hetential energyover a period of the motion.

It is exactlythe same as if the orbit were a circle of radius
SinceT + V = —y/2a, it follows that

and hence that

This is the required time average of tkieetic energy over a period of the motion.

It is alsoexactlythe same as if the orbit were a circle of radius
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Problem 7.21

A body moving in an inverse square attractive field traveaseslliptical orbit with
eccentricitye and major axia. Show that the time average of the distanocef
the body from the centre of force i1 + %ez). [Transform the time integral to an
integral with respect to the eccentric anglg

Solution
The time average of the radial distancever a period of the motion is

1 T
= —f rdt
T Jo
1 (2 [(dt
1 2 3
= —/ (r—) do
T Jo r20
1 2w

= — r3do
tL 0

b6 2w 4o
TV fo (1 +ecosh)3’

This integral can be evaluated by standard methods (for pbearby making the
substitutiorr = tan%@), but the easiest way is to transform the integration végiab
to the eccentric anglg by means of the formulae

2
(1—ecosy)(1 +ecost) = b—2
a

dae b

dy  a(l —ecosy)’
(see the book p.175). This gives
a2b 2
L Jo
a’b

=_—_ 12 2]
TL[n—l-ne

=a<1+%ez>,

(1 —ecosy)?dy

7=
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on making use of the L-formul&? = y5? /a and the period formula? = 47243 /y.
This is the required time average of ttalial distance over a period of the motion.
Note that it is alwaygreaterthana. m
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Problem 7.22

A spacecratft is ‘parked’ in a circular orbit 200 km above treth's surface. The
spacecratft is to be sent to the Moon’s orbit by Hohmann tean&find the velocity
changesAv? and AvM that are required at the Earth and Moon respectively. How
long does the journey take? [The radius of the Moon'’s ort884,000 km. Neglect
the gravitation of the Moon.]

Solution

Let 4 be the radius of the initial orbit of the spacecraft a®dbe the radius of the
Moon'’s orbit. Then

A+ B = 2a,
wherea is the semi-major axis of the connecting Hohmann orbit. ldenc
a=1(A+ B).

Thejourney time T is then given by the period formula to be

. 22\ (2B + )\
= -7 = = B ——— s
2 MG SMG

whereM is the mass of the Earth.

Let vE€ be the speed of the spacecraft at the perigee of the congemtii.
Then, by energy conservation and the E-formula,

o (I L

from which it follows that

P 2MGB \'?
v = _—
A(B + A)

By a similar argument, the speed’ of the spacecraft at the apogee of the connect-
ing orbit is

1/2
m_ [ 2MGA \Y
B(B + A) '
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The requiredspeed boostst the Earth and Moon are therefore

AE _ (2MGB N\ (MG
" T \AB T4 A ’

AM _ (MG (2MGa '
T\ B BB+ 4))

respectively.

On using the given data , we find that tjoeirney time is 119 hours, and the
speed boostsequired ar&.13 kms™! at the Earth and.83 kms™! at the Moonm
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Problem 7.23 %

A spacecraft is ‘parked’ in aalliptic orbit around the Earth. What is the most fuel
efficient method of escaping from the Earth by using a singlaulse?

Solution

FIGURE 7.11 The initial orbit in Problem 7.23.

Suppose that the spacecraft is at a general ppiot its orbit when it receives
a velocity boostAv as shown in Figure 7.11. Then the total enefgwf the new
orbit is

E=%|v—|—Av|2—Z
p
= %|v|2+v-Av+%|Av|2—%
=v-Av+%|Av|2+Eo,

whereE, (= —y/2a) is the total energy of the original orbit. Tlspacecraft will
escapdf E > 0, that is, if

v Av+ |Av|* > —E,.

We wish to choose the poit, and thadirectionof Av, so that this is achieved with
the least value ofAv|.

Theoptimum direction of Av must be parallel ta. Suppose the least possible
value of| Av| is achieved with Av | not parallel tov. Then it would be possible to
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increase the left side of the above inequality by changirg the directionof Av,
after which| Av| could be reduced without violating the inequality. Wity made
parallel tov, the condition for escape becomes

[v||Av| + L|Av|* = —E,.

Theoptimum position of the point? must be such thaw | has its maximum value
there. If|v| werenota maximum at the optimum point, then it would be possible
to increase the left side of the above inequality by changinly the position of

P, after which|Av| could be reduced without violating the inequality. Since th
maximum value ofv| is achieved at thperigeeof the orbit, this is where the boost
should be appliedn
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Problem 7.24

A satellite already in the Earth’s heliocentric orbit carefits engines only once.

What is the most fuel efficient method of sending the sagetit a ‘flyby’ visit to
another planet? The satellite can visit either Mars or VeMikich trip would use

less fuel? Which trip would take the shorter time? [The arbit Mars and Venus

have radii 1.524 AU and 0.723 AU respectively.]

Solution

Although this single-impulse problem is not the same as\ileitmpulse problem
discussed in section 7.6 of the book, THehmann orbit still provides the optimum

fuel conserving strategy. This can be shown by modifyingibitemality proof given
in Appendix B to Chapter 7 so as to include only the velocitgsia v4.

Let A be the radius of the Earth’s orbit a®lbe the radius of the orbit of the

other planet. Then
A+ B = 2a,
wherea is the semi-major axis of the connecting Hohmann orbit. ldenc
a=3(A+ B).

The (one way)ourney time T is then given by the period formula to be

. m’a? 1/2_ 7%(B + A)? 12
T\ o) T\ smee ’

whereM is the mass of the Sun.

T =

N | —

Let v4 be the speed of the spacecraft at the perigee of the congemtii.
Then, by energy conservation and the E-formula,

) =

from which it follows that

4 [ 2MoGB \'?
A(B + A)

The requiredspeed boosts therefore

A 2MoGB \'?* [ MoG\'?
v o= e — _ — .
A(B + A) A
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On using the given data , we find that:

Mars: Thejourney time is 259 days, and thepeed boostequired is2.95 kms™!.
Venus: Thejourney time is 146 days, and thepeed ‘boostrequired is-2.50 kms™!.

Thus the Venus flyby uses less fuel and takes a shortersime.
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Problem 7.25

A satellite is ‘parked’ in a circular orbit 250 km above therti& surface. What is
the most fuel efficient method of transferring the satettitan (elliptical) synchro-
nous orbit by using a single impulse? [A synchronous orlstdnperiod of 23 hr 56
m.] Find the value ofAv and apogee distance.

Solution

v Av

\/

FIGURE 7.12 The initial orbit in Problem
7.25.

Suppose that the spacecraft is moving in a circular orbiadiusA. Its speed is
then(M G/A)'/?, whereM is the mass of the Earth. At some point of the orbit, the
spacecraft receives a velocity boadsié shown in Figure 7.11. Then the total energy
E of the new orbit is

MG
E:%lv“‘AUlZ—T
MG
= %|v|2+v-Av+%|Av|2—T
MG

=v-Av—|—%|Av|2—ﬂ.

The new orbit is required to have a specified perio&rom the period formula

, Anid?
77 = —,
MG
this is equivalent to specifying the parameieand, by the E-formula
MG
E=—-—,
2a

© Cambridge University Press, 2006



Chapter 7 Orbits in a central field 271

this is in turn equivalent to specifying the total enetgyf the new orbit. The new
orbit will therefore have the correct periodAfv is such that

MG
cAv 4 AP = E+ —,
v-Av + 3[Av] + 74
where E is the value of the total energy that corresponds to the redyeriodr.
We wish to choose thairectionof Av so that this is achieved with the least possible
value of| Av]|.

Suppose that the required perioddaagerthan the period of the origional circu-
lar orbit; then the right side of the above period condifpmsitive The optimum
direction of Av must be parallel tww. Suppose the least possible value| Afv |
is achieved with Av| not parallel tov. Then it would be possible to increase the
left side of the above equality by changing only ttesction of Av, after which
the period condition could be satisfied againréglucing| Av|. Hence the optimum
strategy is taapply the impulse in the direction of motion. It does not matter at
what point of the orbit this impulse is applied.

For a synchronous orbit of 1436 mins, the semi-major axis®hiew orbit is re-
quired to be 42,170 km. Since the perigee distance is 663@Haapogee distance
must be 77,720 km. The speed that the spacecraft must hdnee@rigee of this or-
bitis 10.53 kms™! in contrast with the constant speed/cf6 kms™! that the space-
craft has in its circular orbit. Theelocity boostneeded is therefor¢2.77 kms™!.
]
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Problem 7.26

A satellite of massn moves under the attractive inverse square fiefdiy /r2) 7
and is also subject to the linear resistance fereeK v, whereK is a positive con-
stant. Show that the governing equations of motion can hecestlto the form

=0, r20 = Loe X7,

whereL is a constant which will be assumed to be positive.

Suppose now that the effect of resistance is slight and kieasatellite is exe-
cuting a ‘circular’ orbit of slowly changing radius. By negting the terms in and
i, find an approximate solution for the time variationroAnd 6 in such an orbit.
Deduce that small resistance causes the circular orbitrtvaxt slowly, but that the
satellite speeds up!

Solution
Newton’s equations of motion for the satellite are

F—ré? =1 _ ki,
r

r 420 = —Kré.
On mutiplying through by, the second equation can be written

dL
— =—KL,
dt

whereL = r20. Note thatL is the angular momentum at timgin this problem,L
is not a constantOn solving this ODE, the time dependencelois found to be

L =Loe X,

whereL is a constant determined by the initial conditions. On mglhre substi-
tution

9' _ Loe—Kt

72
into the first Newton equation, we obtain

L2e—2Kt
Py Ki+ L0
r r
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This is theradial motion equation.

If 7 and# are negligible compared to the other terms in this equatlen the
time variation ofr is given approximately by

L2
o= -0 €—2Kt,
v

so that theorbit slowly contracts. From the angular momentum equation, the cor-
responding time variation af is

The time variation of theircumferential velocity v (= r ) is therefore

v = (L) otk
Lo

which is anincreasingfunction ofz. Thus, contrary to most expectations, the effect
of small resistance is that theatellite speeds up This is not contrary to energy
conservation however since potential energy is lost asHibie @ntractsm
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Problem 7.27

Repeat the last problem for the case in which the particleemomder the simple
harmonic attractive field-(mQ?r) 7 with the same law of resistance. Show that, in
this case, the body slows down as the orbit contracts. [Tioklem can be solved
exactly in Cartesian coordinates, but do not do it this way.]

Solution
Newton’s equations of motion are
i—r0? = —Q% — Kr,
ré + 20 = —Kr.
On mutiplying through by, the second equation can be written

dL

—= = KL,
dt

whereL = r26. Note that is the angular momentum at timgin this problem,L
is not a constantOn solving this ODE, the time dependencelois found to be

L =Lye X,

whereL is a constant determined by the initial conditions. On mglhre substi-
tution

. Le—Kt
H =22

72
into the first Newton equation, we obtain
L

P+ Ki+ Q% — —2—— =0.

This is theradial motion equation.

If 7 and# are negligible compared to the other terms in this equatleen the
time variation ofr is given approximately by

Lo 1/2 e
=== 2

so that theorbit slowly contracts. From the angular momentum equation, the cor-
responding time variation df is

H=Q
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so thatd is constant in this approximation. The time variation oftlreumferential
velocity v (= r0) is therefore

1
v = (QL0)1/2 e_EKt,

which is adecreasingunction off. Hence théody slows downas the orbit con-
tracts.m
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Problem 8.1
A non-linear oscillator satisfies the equation

(1+ex2)5é+x=0,

wheree is a small parameter. Use Linstedt’s method to obtain a sum-approx-
imation to the oscillation frequency when the oscillatiasunit amplitude. Find
also the corresponding two-term approximation:to). [You will need the identity
4cos s = 3¢oSs + €0S3s.]

Solution

The problem is solved usirigndstedt’'s method. Define the new independent vari-
ables (the dimensionless time) by= w(¢) ¢, wherew(¢) is the angular frequency
of the required solution. Then(s, ¢) satisfies the equation

(a)(e))2 (1 + ex2> x"+x=0,

with the initial conditionsx = 1 andx’ = 0 whens = 0. (Here’ meansd/ds.)
These initial conditions correspond to an oscillation oft @mplitude. We now
expandx andw in theperturbation series

x(s,€) = xo(s) + exi(s) + ezxz(s) 4+
wE)=14ew + 2wy +---,

which is possible when is small. By construction, this solution must have period
27 for all € from which it follows that each of the functions(s), xi(s), x2(s),

... must also have peridtlz. On substituting these expansions into the governing
equation and its initial conditions, we obtain:

(14 wie+--- )2 (1 + €(xo 4+ exy + - )2> (xg +exi+--)
+(xo +€xy +---) =0,
with

xo—|—€x1+62xz+--- =1,
Xo +ex) +eXxy 00 =0,

whens = 0. If we now equate coefficients of powers ©fn these equalities, we
obtain a succession of ODEs and initial conditions, the fikst of which are as
follows:
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e From coefficients o&°, we obtain thezero order equation
xg + xo0 = 0,
with xo = 1 andx; = 0 whens = 0.

¢ From coefficients o¢!, we obtain thdirst order equation

" " 2.1
x| + X1 = 2w1x5 — XX,

with x; = 0 andx| = 0 whens = 0.
The solution of theero order equation and initial conditions is
Xo = COSs
and this can now be substituted into the first order equatigive
x| 4+ x1 = 2w; coss + coS s
= 1 (8w + 3) coss + 1 cos3s, (1)
on using the trigonometric identiycos s = 3 coss + cos3s. The coefficient of

coss on the right side of this equation must be zero, for otherwige) would not
be periodic. Hence
3

wp = ——.

8
The general solution of thigst order equation is then

1 .
X1 = ) C0S3s + A coss + B; sins,

where A, B, are arbitrary constants. The initial conditiong = x’1 = 0 when
s =0giveA; = 55 andB; = 0 so that
X1 = 35(COSs — COS3s).

Hence, wherz is small,approximate frequency of the oscillation of unit am-
plitude is given by

_ 3 2
a)—l—ge—l-O(e )
and theapproximate displacementat timer is given by

X = C0Ss + 55 (coss — cos3s)e + O (ez),

wheres = (1 — %e +0 (62)> {.m
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Problem 8.2
A non-linear oscillator satisfies the equation

F4+x+ex’=0,

wheree is a small parameter. Use Linstedt's method to obtain a smm-tapprox-
imation to the oscillation frequency when the oscillati@ashunit amplitude. [You
will need the identityl 6 coS' s = 10 coss + 5c0s3s + €0S5s.]

Solution

The problem is solved usirigndstedt’'s method. Define the new independent vari-
ables (the dimensionless time) by= w(¢) ¢, wherew(¢) is the angular frequency
of the required solution. Then(s, ¢) satisfies the equation

(a)(e))zx“ +x+ex’ =0,

with the initial conditionsx = 1 andx’ = 0 whens = 0. (Here’ meansd/ds.)
These initial conditions correspond to an oscillation oft amplitude. We now
expandx andw in theperturbation series

x(s,€) = xo(s) + exi(s) + ezxz(s) 4+
w(€) =1+ ew, + 2wy + -+,

which is possible when is small. By construction, this solution must have period
27 for all € from which it follows that each of the functiong(s), x;(s), x2(s),

... Mmust also have periatir. On substituting these expansions into the governing
equation and its initial conditions, we obtain:

(14 o+ )V (xf +ex)+-) + (xo+exi+--)
+e(xo +ex; ++-+)° =0,
with

xo—|—€x1+62xz+--- =1,
Xo +ex) +eXxy 00 =0,

whens = 0. If we now equate coefficients of powers ©fn these equalities, we
obtain a succession of ODEs and initial conditions, the fikst of which are as
follows:
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e From coefficients o&°, we obtain thezero order equation
xg + xo0 = 0,
with xo = 1 andx; = 0 whens = 0.

e From coefficients o', we obtain thdirst order equation

" _ Vi 5
X] +x1 = 2w1x5 — Xy,

with x; = 0 andx| = 0 whens = 0.
The solution of theero order equation and initial conditions is
Xo = COSs
and this can now be substituted into the first order equati@ive
X} + x1 = 2w; coss — coS s

= % (16w — 5) coss — %(cosSs + 5c0s3s), 1)

on using the trigonometric identity6 coS s = 10 coss + 5cos3s + cos5s. The

280

coefficient of cog on the right side of this equation must be zero, for otherwise

x1(s) would not be periodic. Hence
5
=T
The general solution of thigst order equation is then

w1

x1 = 557(C0SS5s + 15¢c0s3s) + A coss + Bj sins,

where A, B, are arbitrary constants. The initial conditiong = x’1 = 0 when
s = 0give 4| = —5 andB; = 0 so that

X1 = 757 (C0S5s 4 15c0s3s — 16 COSs).

Hence, wherz is small,approximate frequency of the oscillation of unit am-
plitude is given by

w=1+%e+0<62),
and theapproximate displacementat timer is given by

X = COSs + 527 (C0SS5s + 15c0s3s — 16 coss) e + O (62) :

wheres = (1 +2e+0 (62)) /. m

© Cambridge University Press, 2006



Chapter 8 Non-linear oscillations and phase space 281

Problem 8.3 Unsymmetrical oscillations
A non-linear oscillator satisfies the equation

F4+x+ex?=0,

wheree is a small parameter. Explain why the oscillations are umaginical about
x = 0in this problem.

Use Linstedt’s method to obtain a two-term approximatior ¢o for the oscil-
lation in which themaximumvalue ofx is unity. Deduce a two-term approximation
to theminimumvalue achieved by (7) in this oscillation.

Solution

In this problem, the effective spring stiffness dependshensign ofx. Fore > 0,
we have éhardeningspring whenx is positive, and aofteningspring whenx is
negative. Hence thescillations are unsymmetricalaboutx = 0.

The problem is solved usingndstedt’s method. Define the new independent
variables (the dimensionless time) by = w(e)t, wherew(e) is the angular fre-
guency of the required solution. Theits, €) satisfies the equation

(a)(e))zx“ +x+ex?=0,

with the initial conditionsx = 1 andx’ = 0 whens = 0. (Here’ meansd/ds.)
These initial conditions correspond to an oscillation inekitheright amplitude is
unity. We now expand andw in the perturbation series

X(s,€) = xo(s) + €x1(s) + €2x2(8) + -+ ,
wE)=14ew + 2wy + -+,

which is possible when is small. By construction, this solution must have period
27 for all € from which it follows that each of the functions(s), xi(s), x2(s),

... must also have peridtlz. On substituting these expansions into the governing
equation and its initial conditions, we obtain:

(1 wre o ) (xg +exf+-o ) + (o +exi +-02)
+e(xo+ex; +---)> =0,
with
xo—|—€x1+62xz+--- =1,

Xo +€ex) +€Xxh 4 =0,
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whens = 0. If we now equate coefficients of powers ©fn these equalities, we
obtain a succession of ODEs and initial conditions, the fitst of which are as
follows:

e From coefficients o&°, we obtain thezero order equation
xg + x0 =0,

with xo = 1 andx; = 0 whens = 0.
e From coefficients oé!, we obtain thdirst order equation
X+ x1 = —2w1x) — X3,

with x; = 0 andx| = 0 whens = 0.

The solution of theero order equation and initial conditions is
Xo = COSs§
and this can now be substituted into the first order equatigive

X/ + x1 = 2w; coss — cOS s
= 2w; coSs — 3(C0S2s + 1).

The coefficient of cos on the right side of this equation must be zero, for otherwise
x1(s) would not be periodic. Hence

w; =0,

which means that there is no correction to the oscillati@gdiency at first order.
The general solution of thigst order equation is then

x1 = —1 + Lcos2s + A4 coss + By sins,

where A, B, are arbitrary constants. The initial conditiong = x’1 = 0 when
s =0giveA; = ; andB; = 0 so that

x1 = 1(cos2s + 2coss — 3).

Hence, where is small, theapproximate frequency of the oscillation of unit
right amplitude is given by

a)=1—i—0(62>,
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and theapproximate displacementat timez is given by

x = coss + +(cos2s + 2coss — 3)e + O (ez),

wheres = (1 + O (¢?)) 1.

To find theleft amplitude of the oscillation, considet which, correct to order
€, IS given by

X = —sins — 1(sin2z + sint) e
= —sint [1 + 1(2cost + l)e] :
Sincee is small, the factor in the square brackets is close to umtyia therefore
never zero. Hence the stationary pointscof) occur when sim = 0, that is, when
t =0,+m £2m,.... The values = 0, +2x, +4x ... correspond toc achieving

its right amplitude while the valugs= +x, +37 ... correspond toc achieving its
left amplitude. In the latter case,

—_1_2
x =-1 S€

and hence thapproximate left amplitude of the oscillation isl + %e. As expected,
this is bigger than the right amplitude wheis positive.m

© Cambridge University Press, 2006

283



Chapter 8 Non-linear oscillations and phase space 284

Problem 8.4 % A limit cycle by perturbation theory

Use perturbation theory to investigate the limit cycldRafyleigh’s equation taken
here in the form

5&+e(%>’c2—1)5c+x=0,

wheree is a small positive parameter. Show that the zero order appation to the
limit cycle is a circle and determine its centre and radiusdRhe frequency of the
limit cycle correct to ordee?, and find the functiornx (¢) correct to ordee.

Solution

The difference between this problem and problems 8.1-8l&itheamplitude of
the limit cycle cannot be prescribett must be determined along with the rest of the
solution. This is because the limit cycle isignlatedperiodic solution rather than a
member of a family of such solutions. With this modificatitme problem is solved
usingLindstedt’s method.

Define the new independent variabléthe dimensionless time) by= w(¢)1,
wherew(¢) is the angular frequency of the limit cycle. Theits, ¢) satisfies the
equation

(w(e))zx” +e (%x/z — 1) x' 4+ x=0,
with the initial conditionsx = ¢ andx’ = 0 whens = 0, wherea (= a(¢)) is the
unknown amplitude of the limit cycle. (Hefemeansd/ds.) We now expand:, @

anda in theperturbation series

xX(s,€) = xo(s) + €x1(s) + €2x2(5) + -+ ,
w(€) =1+ ewy +ewy+---
a(e) = ap + €ay +e2ay + -,
which we assume to be possible whems small. By construction, this solution
must have periodx for all € from which it follows that each of the functiong(s),

x1(s), x2(s), ... must also have periatlz. On substituting these expansions into
the governing equation and its initial conditions, we oftai

(1 + wie+-- )2(x6/+ex/{+---)+
6(%()664-6)6/14—--- )2—1)(x6+6x;—|—---) + (xo+ex;+-+ ) =0,
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with

Xo 4+ €x) +€xy - =ag+eay +€*ar + -+,

xp +ex) + e xh+ - =0,

whens = 0. If we now equate coefficients of powers ©fn these equalities, we
obtain a succession of ODEs and initial conditions, the fitste of which are as
follows:

e From coefficients o&°, we obtain theero order equation
xg + xo0 = 0,
with xo = ao andx; = 0 whens = 0.
¢ From coefficients o¢!, we obtain thdirst order equation

1" o ” 1,72 /
X] +x1 = 2wi1xy — (§x0 — 1)x0

with x; = a; andx] = 0 whens = 0.
e From coefficients o&?, we obtain thesecond orderequation
XY+ X2 = 201 x] — (0} 4 2w2)xf — x57x) + x)
with x, = a, andx’, = 0 whens = 0.
The solution of theero order equation and initial conditions is

Xo = dg COSs,

where the positive constant cannot be determined at the zero order stage. On
substituting this expression fay into the first order equation, we obtain

x{ + x1 = 2aow; cOSs + (%a% Sin s — 1) ao Sins

= 2aow; COSS + %ao [(3a% —12) sins — a; Sin3s] ,

on using the trigonometric identiysin® s = 3 sins — sin3s. The coefficients of
coss and sins on the right side of this equation must both be zero, for eviss
x1(s) would not be periodic. Since, is positive, this implies thab; = 0 and
ao = 2. Hence thezero order approximation to the limit cycle is

X = 2COSs,
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wheres = (1 + O(e))¢.
Thefirst order equation now reduces to

x4+ x = —% sin3s,

the general solution of which is

| .
x| = Esm3s + A coss + Bj sins,

whereA, B, are arbitrary constants. The initial conditians = @; andx; = 0
whens = 0 give 4; = a; andB; = —1 so that

x1 = 15(sin3s — 3sins) + a; coss,

where the constamt; cannot be determined at the first order stage.

To determinez;, and to find the leading correction to the frequency, we must
proceed to the second order. On substituting the expres&omn, andx; into the
second order equation, we obtain

2 2
x5 4 x3 = =2w1x] — (0] + 2w2)x(5 — xg"x] + X
= 4w, coSs — sin’ 5(COS3s — COSs) + 4a; SiM’ s + 1(COS3s — COSs) — ay Sins

= (4a)2 + %) COSs + ap Sins — % C0S3s — ag Sin3s + %COSSS,

after some trigonometric simplification. The coefficienfsoss and sins on the
right side of this equation must both be zero, for otherwisés) would not be
periodic. Hencer; = 0 and thatw, = —%. Mercifully, this is as far as we need to

go.
Hence, wher is small, theapproximate frequency of the limit cycle is

a)=1—11—662+0<e3),
and theapproximate displacementat timer is given by
X = 2C0Ss + %(Sin3s —3sins)e + O (62> ,

wheres = (14 O (¢?)) 7. m
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Problem 8.5 Phase paths in polar form
Show that the system of equations

x1 = Fi(x1, x2,1), X2 = Fa(x1, Xx2,1)
can be written in polar coordinates in the form

f_x1F1+X2F2 é_xlFZ_XZFl

r r2

’

wherex; = r cosf andx, = r Siné.
A dynamical system satisfies the equations
X=-x4+y,
y=-x-y.
Convert this system into polar form and find the polar equatiof the phase paths.
Show that every phase path encircles the origin infinitelpyrtames in the clock-

wise direction. Show further that every phase path terramat the origin. Sketch
the phase diagram.

Solution
From the relations; = r cosf, x, = r sind, it follows that

1/2
r= (xl2 —|—x§> ,

and on differentiating these formulae with respeat, twe obtain

—-1/2 -1/2 X1X1 + XoX
. 2 2 . 2 2 . 141 2A2
r= (xl + x2> X1X1 + (xl + xz) XoXp = B

. 1 X15C2—X25€1 X1X2—X2)'C1
0= 2 2 = 2 :
1+ (x2/x1) X r
Hence, ifxy, x, satisfy the equations, = Fy, X, = F;, thenr, 6 must satisfy the
equations
x1F1 +x2F>
r b

. Fr—x, F
9:x12 X2 1,

r2
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wherex; = r cosf andx, = r sinf.
The system of equations

X=-x+4y,
y=—-x-y
can be expressed in tipelar form

XX+ ) +yEx—y)
r

_xX(=x—y)—y(=x+y)
r2 N

_r,

—1.

The general solution of this pair of (now) uncoupled ODEs is

r=ae’’,

0=—t+a,

wherea anda are integration constants. We see that, whatever theliogritions,

6 tends to negative infinity andtends to zero astends to infinity. In other words,
every phase path encircles the origin infinitely many timeke clockwise directign
andevery phase path terminates at the origiigure 8.1 shows some typical phase
pathsm

FIGURE 8.1 Three typical phase paths in problem 8.5.
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Problem 8.6
A dynamical system satisfies the equations

Xx=x—y—x*+yHx,

y=x4+y— P+ phy.
Convert this system into polar form and find the polar equatiof the phase paths
that begin in the domaiff < r < 1. Show that all these phase paths spiral anti-

clockwise and tend to the limit cycle = 1. Show also that the same is true for
phase paths that begin in the domair 1. Sketch the phase diagram.

Solution
The system of equations

)'c=x—y—(x2—|—y2)x,
y=x+4+y—(x*+ )y

can be expressed in tipelar form

r._x(x—y—rzx)er(ery—rzy)

r

j_ Xty =rty) ==y —r¥)

that is,

The general solution of the second equatiof is ¢ + «, wherex is the integration
constant. It follows that, whatever the initial conditipesery phase path encircles
the origin infinitely many times in the anti-clockwise dtren. The first equation is
a separable first order ODE whose general solution is

z:/;déﬁy

The integral on the right can be evaluated by first writing ititegrand in partial
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2

'”(1ir2) r <1),
2

In (y'zr—_l) (V > 1),

wherert is the integration constant. Hence the time variation isfgiven by

fractions and the result is

(Sl

t+1=

N|—=

1
1 4+ e—2+0)

1
1 — e—20@+7)

(r<1),
(r > 1).

We see that it < 1 initially, thenr increaseswith time and tends to unity from
below. Conversely, if > 1 initially, thenr decreasesvith time and tends to unity
from above. Thus, whatever the initial conditioesery phase path spirals anti-
clockwise and tends to the limit cyole= 1. Figure 8.2 shows some typical phase
paths.

FIGURE 8.2 Three typical phase paths tending to the limit cycle in peabB.6.
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Problem 8.7
A damped linear oscillator satisfies the equation

X+x+x=0.
Show that the polar equations for the motion of the phasetpane
j=-rsifd, 0= (1+}sin20).

Show that every phase path encircles the origin infinitelpyrtames in the clock-
wise direction. Show further that these phase paths tetmatdahe origin.

Solution
The second order ODE

X+x+x=0
is equivalent to the system of first order ODEs

X =,

V= —X—0.
These equations can be expressed irpthlar form

Xv + v(—x —v)

bl

B
x(=x —v) —v?

0 = :

72

that is,

F=—rsiné,
0 = —(1 + 1sin26).
We first wish to show tha# tends to negative infinity astends to infinity.
Although the second equation can be integrated explidttig a very messy job.
One can however argue that sirttec —% for all ¢, then

1
6—a<—1
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whereq is the initial value off. It follows immediately that, whatever the initial
conditions,f tends to negative infinity astends to infinity This simple argument
does not provide thealueof 6 at timez, but it does yield the required result.

We proceed in a similar way to show thatends to zero astends to infinity.
In order not to get confused by the negative signs, we intedbe new variable
0’ = —6 so that] < 6’ < 3 and@’ tends topositiveinfinity as¢ tends to infinity.
The first ODE then becomes

= —rsintg’
and hence

—mr=[9ﬁ@m

in2 A/
=/Sm.9d9’
9/

z%/gﬁyda

=1(¢'—1sin20’) + C,

whereC is the integration constant. Whatever the valu€othis tends to infinity
as#’ tends to infinity. Thus-Inr tends to infinity and hencetends to zero. Thus,
whatever the initial conditions; tends to zero ag tends to infinity As before,

this simple argument does not provide thaueof r at timet, but it does yield the
required resultm
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Problem 8.8
A non-linear oscillator satisfies the equation

¥+ +x=0.

Find the polar equations for the motion of the phase pointew&hat phase paths
that begin within the circle < 1 encircle the origin infinitely many times in the
clockwise direction. Show further that these phase pathsitate at the origin.

Solution
The second order ODE

F4+x+x=0.
is equivalent to the system of first order ODEs

X =v,

b= —x —v.

These equations can be expressed irptiiar form

. xv+v(—x—v3)
r= ,

that is,
i=—risin*o,
0 = —1—r2cosf sin 6.

Since this pair of coupled equations cannot be solved aiglicve must use
inequalities in the remainder of the problem. It is cleanirthe first equation that
is a decreasing function of It follows that any phase path that begins in the region
r < R remains there. Suppose that< 1. On phase paths that begin in this region,

0 = —1—r2cosfsin §
< -1+ R?

and hence

6—a=<—(1 — R,
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whereq is the initial value off. It follows that, whatever the initial conditions,
6 tends to negative infinity astends to infinity This simple argument does not
provide thevalueof 6 at timer, but it does yield the required result.

We proceed in a similar way to show thatends to zero astends to infinity.
In order not to get confused by the negative signs, we intedbe new variable
0’ = —f sothatl — R? < 6’ < 1 + R? and#’ tends topositiveinfinity as: tends
to infinity. The first ODE then becomes

= —r3sinte’
and hence

i:2/S,in49/dt

r2

s 4N/
=2/S|n.9 40’
9/

2
/sin4 0’ do’.
1+ R?

We could evaluate this integral but it obviously tends taniitfiasé’ tends to infinity
since the integrand is positive and periodic. Thys? tends to infinity and hence
r tends to zero. Thus, whatever the initial conditionsgnds to zero as tends to
infinity. As before, this simple argument does not provideuhleie of r at timez,
but it does yield the required resul.

=
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Problem 8.9
A non-linear oscillator satisfies the equation

5€—|—(x2—|—5c2—1)5c+x=0.

Find the polar equations for the motion of the phase pointowSthat any phase
path that starts in the domain< r < /3 spirals clockwise and tends to the limit
cycler = 1. [The same is true of phase paths that start in the dothain < 1.]
What is the period of the limit cycle?

Solution
The second order ODE

¥+ (x2+x*—1)+x=0.
is equivalent to the system of first order ODEs

X =,

b =—x— (x> +v>—1)v.
These equations can be expressed irpthlar form

. xv4v(—x —(x?+ v = 1))

o= ,
r

x (—x — (x2 + 02 = 1)v) — 02

r2

6 =

il

that is,
F= —r(r2 - 1) Sin? 6,

f=—-1-1

L(r* — 1) sin26.

Since this pair of coupled equations cannot be solved eilpliwe use inequal-
ities in the remainder of the problem. Consider those pha#igsghat begin in the
domainl < r < R. Such a phase path cannot cross the circle 1. This is
because the circle = 1 is itself a phase path (by virtue of the fact that= 1,
6 = —1 satisfies the above equations) and phase paths of an autos@ystem
cannot cross each other. The phase path is therefore tegtricthe domaim > 1.
But it then follows from the first equation thatmust be alecreasindgunction ofz,
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that is, the phase point must mowevards The second equation then implies that,
on such a path,

0 =—1—1(r*—1)sin26

<-1+1(R*-1)

40~ #)

and hence
0—a< —%(3 — Rz)t,

whereq is the initial value ofd. Suppose now thaR < +/3. Then, whatever the
initial conditions,f tends to negative infinity astends to infinity

We proceed in a similar way to show thatends to unity as tends to infinity.
In order not to get confused by the negative signs, we intedbe new variable
0’ = —0 so that

AR SETEFIL

and@’ tends tgpositiveinfinity asz tends to infinity. The first ODE then becomes

F=—r(r?—1)sin*6’

—fr(}j—r_l):fsian/dt.

The integral on the left can be evaluated by first putting tttegrand into partial
fractions. This gives

7'2 .
In (rZ— 1) =2[S|n29’dz

H /
=2[S'n.29 4o’
9/

and hence

4
> fsinzefde/

2 .
=R (0/ — %smze/) + C,
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whereC is the integration constant. Whatever the valu€othis tends to infinity
asf’ tends to infinity. Thus Ifr?/(r* — 1)) tends to infinity and hencetends to
unity. Thus, whatever the initial conditionstends to unity as tends to infinity

The above analysis, together with the corresponding résufthase paths that
start in the domai® < r < 1, shows that the periodic solution= 1,6 = —1is a
limit cycle. (It also shows that there are no other limit cycles lying Wshor partly
in the domaird < r < +/3.) This limit cycle is executed in the clockwise sense and
its period is27. m
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Problem 8.10 Predator—prey
Consider the symmetrical predator—prey equations

X=Xx—-XxJ, y=Xxy—y,
wherex(¢) and y(¢) are positive functions. Show that the phase paths satisfy th
equation

(xe™) (ye™) = 4,

whereA is a constant whose value determines the particular phalseByaconsid-
ering the shape of the surface

z=(xe")(ye),

deduce that each phase path is a simple closed curve thatleathe equilibrium
point at(1, 1). Henceevery solutiorof the equations is periodic! [This prediction
can be confirmed by solving the original equations numdyigal

Solution
The phase paths of the predator prey system satisfy theiequat
dy _xy—y

dx x—xy’

which is a separable first order ODE. On separating and splwe find that
Iny —y = x —Inx 4+ constant
which can be written in the form
xye X7V = A,

whereA is a constant whose value determines the particular phalse faephase
paths are therefore the curves in which the surface
z=xye 7

meets the family of planes= A.
The surface = xye ™77 is shown in Figure 8.3 (left). It has a single maximum
at the equilibrium pointl, 1), it is zero on the axes = 0 andy = 0 and it tends
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(xe_x) (ye™”). Right: The intersection of the surface

with the planez = constant is @losedcurve.

A is shown in Figure 8.3 (right). It is evident from the shape of

the surface that the intersection must be a simple closea ¢hat (when projected

down on to the(x, y)-plane) encircles the equilibrium point @t, 1). Henceevery
solution of the predator prey system must be perio8imme typical phase paths are

to zero as(x? + y2)'/ tends to infinity. The intersection of this surface with a
shown in Figure 8.4.

typical planez
FIGURE 8.4 Three typical phase paths of

the predator-prey equationg: is the equi-

FIGURE 8.3 Left: The surface
librium point.
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Problem 8.11

Use Poincaré-Bendixson to show that the system
Xx=x—y—(x*+4yHx,
y=x+y—(*+4p?)y,

has a limit cycle lying in the annul@ <r<l.

Solution
The equilibrium points of the system satisfy the equations

x—y—(x2+4y2)x=0,
x+y—(x2+4y2)y=0.

On multiplying the first equation by and the second equation lyand then sub-
tracting, we find that? + y? = 0. Hence the onlgquilibrium point of the system
is at the origin.

The system of equations

)'c=x—y—(x2+4y2)x,
y=x+y—(x*+4)y

can be expressed in tipelar form

x(x—py—(2+4H)x)+ p(x +y—(x2+4y?)y)

bl

p
j_ x(x+y—(x2+4?)y)—y(x —y — (x* + 4p?)x)

r2

that is,
F :r(l—r200529—4r23in29),
6=1.
At points on the circle =1,

F=1-—cog6—4sin’ 0
= —3sir 6

<0.

© Cambridge University Press, 2006

300



Chapter 8 Non-linear oscillations and phase space 301

Hence, exceppossiblyfor the two points(£1, 0), phase points that start on the
circle r = 1 move towards the origin

Similarly. at points on the circle = %

(1—1cos 6 —sin’6)
cos 6

i1
r=3

3
=3
> 0.

Hence, exceppossiblyfor the two points(0, :I:%), phase points that start on the
circler = % move away from the origin

We are now in a position to apply tiincaré-Bendixsontheorem. LetD be
the annular domai% < r < 1. Then, with perhaps four exceptions, phase points
that start anywhere on the boundaries= 1 andr = 1 enterthe domainD. It
follows thatinfinitely many phase paths enter the domBimand never leaveSince
D is aboundeddomain withno equilibrium pointswvithin it or on its boundaries, it
follows from Poincaré-Bendixson that any such path mubeeibe a simple closed
loop or tend to a limit cycle. In fact these phase paths cadise themselves (that
would mean leavin@) and so can only tend to a limit cycle. It follows that the
system must have (at least ori@it cycle lying in the domainD. Some typical
phase paths tending to the limit cycle are shown in FiguresB.5

3N

FIGURE 8.5 Three typical phase paths tending to the limit cycle in
problem 8.11.

© Cambridge University Press, 2006



Chapter 8 Non-linear oscillations and phase space 302

Problem 8.12 Van der Pol’'s equation
Show that Van der Pol’s equation

5é+e)'c(x2—1>+x=0
is equivalent to the system of first order equations

u=—-Xx,

)'czu—ex(%xz—l),

and, by making appropriate changes of variable, that tlsesyis in turn equivalent
to the system
X =V,
V=—X—6V<V2—l>.
By comparing this last system with the system (8.20) disedigs Example 8.4,

deduce that Van der Pol's equation has a limit cycle for arsitpme value of the
parametee.

Solution
Van der Pol’'s equation can be written in the form

%(X—I—e(%x?’—x))—l—x:O,

that is,
u+x=0,

whereu = % + ex(3x? — 1). Thus Van der Pol's equation is equivalent to the

system of first order equations
u=—x,

)'czu—ex(%xz—l).

If we now make the changes of varaible= v/3V,u = —/3 X, thenX, V satisfy
the system of equations

X =V,
V:—X—EV(VZ—I),
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as required. These equations are identical to equatio28)(&hich were obtained
from Rayleigh’s equation (see Example 8.4). Since we haneady proved that
these equations have a limit cycle for all positive values, dtffollows that the same
must be true of Van der Pol’s equatiam.
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Problem 8.13
A driven non-linear oscillator satisfies the equation

¥ +ex® + x = cospt,
wheree, p are positive constants. Use perturbation theory to find atesm ap-
proximation to the driven response wheiis small. Are there any restrictions on

the value ofp?

Solution
The driven response satisfies the equation

¥+ ex® 4+ x = cospt
and has periodrn/ p. We expand the required solution in therturbation series
x(t,€) = xo(t) + ex1(t) + €2x2(t) + -+,
where the expansion functiong (), x;(¢), x2(¢), ... each have periogiz/ p. If

we now substitute this series into the equation and equatificents of powers of
€, we obtain a succession of ODESs the first two of which are devist

e From coefficients o&°:
Xo + xo = COSpt.
¢ From coefficients oé!:
X1 +x1 = —)'cg. (1)

For p # 1, the general solution of the zero order equation is

cospt .
Xo = 2 + Ag cost + By sint,
1 — p?

where A, and B, are arbitrary constants. Singg is known to have periodzx/ p,
it follows that 4, and By must be zero unless p is an integer; we will assume this
is notthe case. Then the required solution of #eeo order equation is

cospt
p*—1

X0 = —
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Thefirst order equation can now be written

3
X1+ x1 :—( 2p ) Sin3pl
pr—1

p3

m(3 Sinpl —Sin3pt),

on using the trigonometric identitysin® § = 3siné — sin36. Sincel/p is not an
integer, the only solution of this equation that has pefisdp is

o P’ (3Sinpt B Sin3pt)
"Tapr -3\ p2—1 9pr—1)°

Hence thalriven responseof the oscillator is given by

cospt 3p3sinpt p3sin3pt 5
) =— — 0
0 (4<p2—1)4 oo n) T )

This is the approximate solution correct to the first ordethimm small paramete.
In the course of the derivation we have assumed tjatis not an integer. When
1/p = 1,3,..., this expression is clearly invalid. Whdrip = 2,4,..., it does
provide a solution (although possibly not the only ome).
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Problem 9.1

Book Figure 9.12 shows two particle® and Q, of massesM andm, that can
move on the smooth outer surface of a fixed horizontal cylindibe particles are
connected by a light inextensible string of length/2. Find the equilibrium con-
figuration and show that it is unstable.

Solution
In the configuration shown, the potential energy of the sysie

V = Mgacost + mgasiné.
In equilibrium, it is necessary th&t’ () = 0, which implies that) must satisfy
m cosf — M sinf = 0.

Theequilibrium positions are therefore
6 = tan ! (ﬂ) and 0 =gz +tan! (ﬁ>
M M
In the present problem, only the first value is permissiblt&e(second value would
also be permissible if the particles were sliding on a cacwlire.)
To investigatestability , we examine the value df” at the equilibrium position.
V" = —ga(M cosh + msinf)

1/2
= —ga <M2 + mz)

whenf = tarm!(m/M). This value ofV’” is negativeand soV has a locamaxi-
mumatd = tarm ! (m/M). This equilibrium position is therefonenstable. m
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Problem 9.2

A uniform rod of length2a has one end smoothly pivoted at a fixed paiht The
other end is connected to a fixed pouht which is a distanc@a vertically above
0, by a light elastic spring of natural lengthand modulu%mg. The rod moves
in a vertical plane througly. Show that there are two equilibrium positions for the
rod, and determine their stability. [The vertically upwspbsition for the rod would
compress the spring to zero length and is excluded.]

FIGURE 9.1 The rod and the spring in Problem 9.2.

Solution
The system of the rod and the spring is shown in Figure 9.1hitndonfiguration,

the spring has lengtd B = 4a sin%@ and the extension is therefore

A=a(4sinio—1).

The modulus of the spring is given to l%eng so that the strength (as defined in
Section 5.1, p. 106) iémg/a. The potential energy of the spring is therefore

yS=1 (@) A2
2a
2
= %mga (4Sin%0 — 1) .

The gravitational potential energy of the rod is simpl§ = mga cosd and so the
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total potenetial energyof the system is

V=vS4+ve
2
= lmga (4 sinl6 — 1) + mga cosf

= %mga <8$in2 %9 - 8Sin%9 + 5),

on using the trigonometric identity cés= 1 — 2 sin* 16.
In equilibrium, it is necessary th&t’(6) = 0, which implies that) must satisfy

cosif (25in%9 — 1) = 0.
Theequilibrium positions are therefore
0=n and 6 = %n.

To investigatestability, we examine the value df” at each of the equilibrium
positions. It is easily shown that”(z) < 0 andV”(3x) > 0 so that

() the vertically downwards position of the rodusistable and
(i) the position withf = %n is stable m
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Problem 9.3

The internal potential energy function for a diatomic maleds approximated by
theMorse potential

V() = Vo (1 — e—<’—“)/b)2 — Y,

wherer is the distance of separation of the two atoms, &pda, b are positive
constants. Make a sketch of the Morse potential.

Suppose the molecule is restrictedvibrational motion in which the centre of
massG of the molecule is fixed, and the atoms move on a fixed straigiéathrough
G. Show that there is a single equilibrium configuration fag tholecule and that
it is stable. If the atoms each have magsfind the angular frequency of small
vibrational oscillations of the molecule.

V

\{
=

FIGURE 9.2 The Morse potential.

Solution
If V is theMorse potential

V() = Vo (1 — e—<’—a)/b)2 — Y,

thenV’ is given by

V=2V, (1—e /) (%e_(’_”)/b)

_ % (e—(r—a)/b _ €—2(r—a)/b>.
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Hence, at the stationary points Bf » must satisfy the equation

e—(r—a)/b _ e—2(r—a)/b =0,
which has the single solution= «. To determine the nature of this stationary point,
we examine the value df”.

2V

V" = b_zo (26—2(r—a)/b _ e—(r—a)/b)
2Vo

whenr = a. The pointr = « is therefore a locaminimum point of the function

V(r). The graph of the Morse potential is shown in Figure 9.2.

In rectilinear vibrational motion, the molecule Hdsetic energy

2 2
m(57)" + sm ()

mr-?

T =

NI

and theenergy conservationequation is
1 .2 _
ami+V(r)=E,

whereV/ (r) is the Morse potential. On differentiating this equatiothwespect ta
(and cancelling by), we obtain the vibrationaquation of motion

1, s _
smi +V'(r) = 0.

In smallvibrational motions near = «, we can approximat&’(r) by the first
two terms of its Taylor series, namely,

V'iry=V'(a)+ (r—a)V"(a) +---
2Vy
= b—z(r —a) + -
Thelinearised equationfor small vibrations is therefore
. 2V
%mr + b—z(}’ —Cl) = 0,

which can be written in the form

d? 4V,

ﬁ(r—a)—l—w(r—a) =0.
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This is the SHM equation withngular frequency 2 given by

_ 4%

Q= —.
mb?

Theperiod t of small extensional vibrations of the molecule is therefor

27 mb? 1/2
=—=na|— .
=2 n(VO)
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Problem 9.4 %

The internal gravitational potential energy of a system a$ses is sometimes called
the self energyof the system. (The reference configuration is taken to beirone
which the particles are all a great distance from each gth®how that the self
energy of a uniform sphere of maas and radiusR is —3M2G/5R. [Imagine that
the sphere is built up by the addition of successive thinrkapé matter brought in
from infinity.]

Solution

When the sphere has been built up to radipigs mass isM (r/R)3. Suppose that
a new layer of thicknesér is now added. The volume of this layerds rdr and
its mass is

4 2 M 2
M wredr _ 3IMr dr'
%T[R3 R3

Since the gravitation of the sphere is the same as that oftielpasf equal mass at
the centre, the potential energy of the new layer is

M3 3Mr2dr\ G 3IM?G 4
dv = — = redr,
R3 R3 r RS
whereG is the constant of gravitation. Tipotential energyof the complete sphere
of radiusR is therefore given by

2 R
Vo () [
R 0
o (3M2G) (RS)
- RS 5

3IM2G
=— N |
5R
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Problem 9.5

Book Figure 9.13 shows two blocks of masddésandm that slide on smooth planes
inclined at anglesx and g to the horizontal. The blocks are connected by a light
inextensible string that passes over a light frictionlagtey. Find the acceleration
of the block of mas®: up the plane, and deduce the tension in the string.

Solution

Let x be the displacement of the massup the plane, measured from some refer-
ence configuration, and let(= x) be the velocity ofn. Then thekinetic energy
of the system is

T = %mv2 + %Mvz,
thepotential energyis
V =mgxsinf — Mgx sina,
and theenergy conservationequation is
1(m+ M)v* + g(msing — M sina)x = E.
If we now differentiate this equation with respectstGand cancel by), we obtain
theequation of motion

d . .
(m + M)d—l; + g(msing — M sina) = 0.

Theaccelerationof the mass» up the plane is therefore

dv (M sina —msinﬂ)

E: M +m

which is a constant.
To find thetension S the string, consider the Newton equation for the mass
resolved parallel to the plane. This gives

d .
md—l; =S —mgsing,

which, on using the calculated value v /dt, gives

_ Mmg(sina 4 sinp) .

S
M +m
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Problem 9.6

Consider the system shown in book Figure 9.12 for the spease in which the
particlesP, Q have masse&mn, m respectively. The system is released from rest in
a symmetrical position with, the angle betwee@P and the upward vertical, equal
to 7/4. Find the energy conservation equation for the subsequetibmin terms
of the coordinaté.

% Find the normal reactions of the cylinder on each of the gagi Show that
P isfirst to leave the cylinder and that this happens whea 70° approximately.

Solution
In terms of the coordinat@, thekinetic energy of the system is

T = 1M (ab)? + 1m(ab)’ = L(M + m)a*6?,

thepotential energyis
V = Mgacost + mga sing,
and theenergy conservationequation has the form
(m + M)a*6? + ga(M cosf + msing) = E.
For the special case in whigld = 2m, this becomes

3ma*0? + mga(2cosf + sing) = E.

The initial condition® = /4 andd = 0 whens = 0 imply thatE = 3mga/~/2
and the final form of the energy conservation equation isfioee

02 = % (3\5— 4cosf) — 2sin0) .

To find thenormal reaction R exerted on the particl®, consider the Newton
equation forP resolved in the radial direction. This is

(2m)(ad)>

a

2mgcos — RY =
which gives

2 .
RY = % (70050 +2sinf — 3\5) .
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R/mg

\P .

«

\
a)

FIGURE 9.3 The (dimensionless) normal reactio®’ /mg and
R2/mgform/4 <6 <x/2.

In the same way, theormal reaction RZ exerted on the particl@ is found to be

RC = % (40050 + 5sin6 — 3«/5).

Figure 9.3 shows the dimensionless normal react®figrmg and RC /mg for
/4 < 6 < /2. Although R is initially larger thanR €, it is the first to become
zero a9 increases. A numerical evaluation gives= 70° approximately.

This value can be obtained analytically by solving the tnigmetric equation

7c0sf + 2sinf — 32 = 0.

On writing
. 1/2
7cosh + 2sinf = (72 + 22) cogf — B),

wherep = tan! % the equation becomes

cos6 — f) = %

and the solution is

6 =tan! (% + cos’! 3—ﬁ ~70°. m
7 V33
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Problem 9.7

A heavy uniform rope of lengtla is draped symmetrically over thin smooth
horizontal peg. The rope is then disturbed slightly and metp slide off the peg.
Find the speed of the rope when it finally leaves the peg.

Vo=
FIGURE 9.4 Rope sliding off a smooth fixed *
peg. v
Solution

Let x be the downward displacement of the rope (see Figure 9.4)eand= x.
Then, since every particle of the rope has the same speekingtec energy of the
rope is

T = 1an?

1
2
whereM is the total mass.

The displaced configuration is the same as if the rope wedestidland a length
x were cut from the left side and hung from the end of the rigti¢ siThe mass of
this segment i\ x/2a and its centre of mass is lowered by a distanceThe
potential energy of the rope in the displaced configuration is therefore

M x Mgx?
V=-—]|lgx=- .
2a 2a

Theenergy conservationequation for the rope then has the form

Mgx? .

Mv? =F.

1
2 2a
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The initial conditionsx = 0 andv = 0 whent = 0 imply that £ = 0 and the final
form of the energy conservation equation is

This gives thespeed of the ropewhen its displacement is. The rope leaves the
peg whenx = « at which time its speed igg)!/%. m
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Problem 9.8

A uniform heavy rope of length is held at rest with its two ends close together
and the rope hanging symmetrically below. (In this posititve rope has two long
vertical segments connected by a small curved segment apttem.) One of the
ends is then released. Find the velocity of the free end wheasi descended by a
distancex.

Deduce a similar formula for the acceleration of the free and show that it
alwaysexceeds. Find how far the free end has fallen when its acceleratia ha
risen toS5g.

FIGURE 9.5 Rope falling with one end sup-

U l
ported and the other free. u

Solution

Let x be the downward displacement of the free end of the rope (gped-9.5)
and letv (= x) be its velocity. In the displaced configuration, the lengtbf the
right side of the rope is given by + 2y = q, thatis,y = %(a — X).

Since the left side of the rope is at rest and every partickefight side has
the same velocity, thekinetic energy of the rope is

M M
T =0+ % (_y) V2 = —(a — x)v.
a 4a
Thepotential energyof the rope in the displaced configuration is
_ M(x + y) 1 My 1
V——(?)g(g(ﬂy))— - g(X+5y)

M
=——g< 2+2ax—x2),
4a
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after some simplification.
Theenergy conservationequation for the rope then has the form

M M
—(a—x)vz——g( 2—|—2ax—x2> =FE.
4a 4a

The initial conditionsx = 0 andv = 0 whenz = 0 imply that E = —%Mga and
the final form of the energy conservation equation is

, XQa—x)g
vo= ——=
a—Xx

This gives thespeed of the ropewhen its displacement is.
On differentiating this formula with respect tqland cancelling by) we find
that the downwara@ccelerationof the free end is given by

dv_ 2a% — 2ax + x?
a -\ 2a-—x2 )%

after more simplification.

It follows that
@ o x(2a —x)
a7 2(a — x)2 &

which is positive forx in the physical rang® < x < a. Hence the downward
acceleration of the free end always excegts
If dv/dt is to have the valuég, then the displacementmust satisfy

2a% — 2ax + x?
2(a — x)?

il

which yields the quadratic equation
9x2 — 18ax + 84> = 0,
whose solutions are = 24 andx = %a. The solutionx = %4 lies outside the

physical range. Hence, the downward acceleration of tleednel becomes equal to
5g¢ when it has fallen a distance:. m
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Problem 9.9

A heavy uniform rope of masa/ and lengthda has one end connected to a fixed
point on a smooth horizontal table by light elastic springhatural lengthz and
modulus%Mg, while the other end hangs down over the edge of the table.nWhe
the spring has its natural length, the free end of the ropg$aristance vertically
below the level of the table top. The system is released freshin this position.
Show that the free end of the rope executes simple harmoniomand find its
period and amplitude.

[ D

Initial level - -----4-_-_Y_

FIGURE 9.6 The rope and the spring.

Solution

Let x be the downward displacement of the free end of the rope ftermitial
position (see Figure 9.6) and le{= x) be its velocity.

Since every particle of the rope has the same speedinleéic energy of the
rope is simply

T = 1Mo
In the displaced configuration, the potential energy of fireng is

1
yS 1 sMg x2=ng2
2\ «a 4a

while the gravitational potential energy of the rope (rigkto the initial configura-
tion) is

M M
Ve =— (4—;) g (a + %x) = —%(Za + Xx).
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The totalpotential energy of the system is therefore

V=vS4+Vve©

M
8T (x —2a).
8a

Theenergy conservationequation for the rope then has the form
M
%Mv2 + (S—g) x(x—2a)=E.
a

The initial conditionsx = 0 andv = 0 whens = 0 imply that £ = 0 and so the
final form of the energy conservation equation is

v? = (%) x(2a— x).

This gives thespeedof the rope when its displacementis
On differentiating this formula with respect to(and cancelling by) we find
that

dv _ g

dr 4a(a —x).

Hence theequation of motionfor the displacement can be written in the form

2

g
W(X—a)‘i‘@(x—a) =0.

Thus the free end of the rope performs simple harmonic asicitis about the point
x = a. Theperiod 7 of these oscillations is

(a)l/Z
T=4r | —
g

and, sincew = 0 whenx = 0, theamplitude of the oscillations is:. m
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Problem 9.10

323

A circular hoop is rolling with speed along level ground when it encounters a

slope leading to more level ground, as shown in book Figuré.9f the hoop loses
altitude/ in the process, find its final speed.

Solution
In theinitial state, thekinetic energy of the hoop is

2
T =Mt + 5 (M) (2) = M2,
a

where M is the mass of the hoop. The gravitatiopakential energy (relative to
thelowerlevel ground) is

vIi= Mg+ a).
The corresponding values in thinal state are
TF =mv?  vE = Mga,

whereV is the final speed of the hoop.
Energy conservationthen requires that

MV?+ Mga = Mv?+ Mg(h + a).

Hence, thdinal speedof the hoop is

V= (v2 +gh)1/2.l
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Problem 9.11

A uniform ball is rolling in a straight line down eough plane inclined at an an-
gle « to the horizontal. Assuming the ball to be in planar motiond fihe energy
conservation equation for the ball. Deduce the acceleratiohe ball.

Solution

Let x be the displacement of the ball down the plane (measureddoone reference
configuration) and let (= x) be its velocity.
Then thekinetic energy of the ball is

1 2, 1(2 2\ (Y\? _ 7 2

where M is the mass of the ball. The gravitationatential energy of the ball
(relative to its initial configuration) is

V =—Mgxsina.
Theenergy conservationequation then has the form
%MU2 — Mgxsina = E,
whereE is the constant total energy.

On differentiating this formula with respect toland cancelling by) we find
that theaccelerationof the ball down the plane is given by

dv _ s sine. m
— = zgsina.
dt 7
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Problem 9.12

A uniform circular cylinder (a yo-yo) has a light inextenigilstring wrapped around
it so that it does not slip. The free end of the string is satucea fixed point

and the yo-yo descends in a vertical straight line with thagiht part of the string
also vertical. Explain why the string does no work on the yo-find the energy
conservation equation for the yo-yo and deduce its acdelara

FIGURE 9.7 The yo-yo in vertical motion. v

Solution

The string does no work on the yo-yo because (i) the suppdied, (ii) there is
no slippage between the string and the yo-yo.

Let z be thedownwarddisplacement of the yo-yo (measured from the support)
and letv (= 2) be its velocity.

Then thekinetic energy of the yo-yo is

_ 1 2, 1(1 2\ (V)% _ ;3 2

whereM is the mass of the yo-yo. The gravitatiopaitential energy of the yo-yo
(relative to the support) is

V=-Mg:z
Theenergy equationfor the yo-yo then has the form

SMv?— Mgz =E,
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whereF is the constant total energy.
On differentiating this formula with respect to(and cancelling by) we find
that the downwardccelerationof the yo-yo is given by

dv

Ezgg.
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Problem 9.13

Book Figure 9.15 shows a partially unrolled roll of paper dmoaizontal floor. Ini-
tially the paper on the roll has radiusand the free paper is laid out in a straight
line on the floor. The roll is then projected horizontally kvipeed in such a way
that the free paper is gathered up on to the roll. Find thedspééhe roll when its
radius has increased to [Neglect the bending stiffness of the paper.] Deduce that
the radius of the roll when it comes to rest is

3V? 41
a —_—
dga
Solution
In theinitial state, thekinetic energy of the paper is

V2
7! = %mV2 + % (%maZ) (—) = %mVZ,
a

wherem is the mass of the roll when it has radius The gravitationapotential
energyof the paper (relative to the ground) is

1/3

vi= mga.
The corresponding values in thinal state are
TP =3Mv: VP =Mgb,

whereM is the mass and is the speed of the roll when its radiushis
Energy conservationthen requires that

%mV2 + mga = %Mv2 + Mgh.

Hence, thespeedof the roll when its radius has increasedt given by

m
v2=M<V2—I—§ga>—§gb
2
a 2, 4 4
a*Vv?r 4 (b3 -4dP
~ T 3\ )R

on making use of the fact that/ M = a?/b>.

© Cambridge University Press, 2006



Chapter 9 The energy principle 328

When the roll comes to rest, = 0 and so the final radiu® must satisfy the
equation

a*V?* 4 (R} -4° .
3\ "r )&=0

On solving, we find that thénal radius of the roll is

1/3

3V2
R=all+ — N |
dag
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Problem 9.14

A rigid body of general shape has magsand can rotate freely about a fixed hori-
zontal axis. The centre of mass of the body is distanfrem the rotation axis, and
the moment of inertia of the body about the rotation axis.iShow that the period
of small oscillations of the body about the downward equilliln position is

I 1/2
27 |~ .
" (Mgh)

Deduce the period of small oscillations of a uniform rod ofgéh2a, pivoted about
a horizontal axis perpendicular to the rod and distanfrem its centre.

Solution

Let 6 be the angular displacement of the body from the downwardiedum
position and letv (= 0) be its angular velocity.
Then thekinetic energy of the body is

T = L11w?

1
2

wherel is the moment of inertia of the body about its rotation axise §ravitational
potential energy of the body (relative to the axis level) is

V =—Mghcost,

whereM is the mass of the the body.
Theenergy equationfor the body then has the form
1lw*— Mghcost = E,

whereE is the constant total energy.
On differentiating this formula with respect tqand cancelling by») we find
that theequation of motionfor 6 is

o Mgh\ .
0 + (—g) sind = 0.
1
This is the exact equation of motion for large oscillatiohike linearised equation

for small oscillations is
.. Mgh
i+ (Tg) 6 =0,
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which is the SHM equation. Theeriod = of small oacillations is therefore

, 7 o\1/2
T=21|— )
Mgh

For the special case of the rdd= b and/ = 1 Ma® + Mb?. Inthis case, the
period of small oscillations is

a* + 3b? 12
2 -
" ( 3gb )
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Problem 9.15

A uniform ball of radiusz can roll without slipping on theutsidesurface of a fixed
sphere of (outer) radius and centreO. Initially the ball is at rest at the highest
point of the sphere when it is slightly disturbed. Find theespof the centré& of
the ball in terms of the variable, the angle between the lin@G and the upward
vertical. [Assume planar motion.]

Solution

Let 6 be the angle betweef G and theupwardvertical and let (= (« + 5)6) be
the velocity ofG .
Then thekinetic energy of the ball is

1 2, 1(2 2\ (V) _ 7 2

whereM is the mass of the ball.
The gravitationapotential energy of the ball (relative to the level aD) is

V = Mg(a + b) cosb.
Theenergy conservationequation for the ball then has the form
LMv* + Mg(a+b)cost = E,
whereF is the constant total energy. The initial conditighs= 0 andv = 0 when
t = 0imply that E = Mg(a + b) and the final form of the energy conservation

equation is

2 _ 10ga+b)

1 —cosh).
- (1 —cosh)

This gives thespeedof the ball when its angular displacementia
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Problem 9.16

A uniform ball of radiusz and centres can roll without slipping on thensidesur-
face of a fixed hollow sphere of (inner) radibisand centreD. The ball undergoes
planar motion in a vertical plane through. Find the energy conservation equa-
tion for the ball in terms of the variabl, the angle between the linreG and the
downward vertical. Deduce the period of small oscillatiofighe ball about the
equilibrium position.

Solution

Let 0 be the angle betweefG and thedownwardvertical and let (= (b — a)6)
be the velocity oiG.
Then thekinetic energy of the ball is

1 2, 1(2 2\ (V)2 7 2
T =M+ 1 (3ma?) (=) = Mo,

whereM is the mass of the ball.
The gravitationapotential energy of the ball (relative to the level aD) is

V=—Mg(b— a)cosh.
Theenergy conservationequation for the ball then has the form
7 2 _
ToMv® — Mg(b—a)cost = E,

whereE is the constant total energy. _
If we now differentiate this formula with respect tgand cancel by) we find
that theequation of motionfor 0 is

0 + (7(b _a)) sind = 0.

This is the exact equation for large motions of the ball. Tihearised equationfor

small motions is
6 =0,
" (7(b = a))

which is the SHM equation. Theeriod t of small oscillations of the ball is there-

fore
_ 1/2
T =2r (7(b a)) .H

5g
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Problem 9.17 %

Figure 9.6 shows a uniform thin rigid plank of length which can roll without
slipping on top of a rough circular log of radius The plank is initially in equilib-
rium, resting symmetrically on top of the log, when it is 8lity disturbed. Find the
period of small oscillations of the plank.

FIGURE 9.8 Plank rolling on a log.

Solution

Let C be the point of contact between the plank and the log (seeé&&8) and let
be the angle betweefC and the upward verticalA4; thend is also the inclination
of the plank to the horizontal. Note also that, since the lplafis on the log, the
lengthG C is equal to the length of the circular add.

Let G have coordinategX, Z) in the Cartesian coordinate systé&mxy shown
in Figure 9.8. Then

X =asinf — (ab) cosb,
= a(sing — 6 cost)

and

Z = acost + (ab)sinf
= a(cost + 0'sinb).

© Cambridge University Press, 2006

333



Chapter 9 The energy principle

Hence

X =a(0sind)o
Z = a(6 cosh)b.

We can now calculaté& andV for the plank in terms of the coordinafle The
kinetic energy of the plank is

T=3M (%2 +22) + 4 (smb?) 6
= 1Ma?026% 1+ LMp262,
and the gravitationgdotential energy (relative to the level oD) is

V=MgZ
= Mga(cosf + 6 sinf).

Theenergy conservationequation for the plank thus has the form
IMa*6%0* + 1M b*0% + Mga(cost + 0 sind) = E,
whereF is the constant total energy.

If we now differentiate this equation with respectttand cancel by), we find
that theequation of motionfor 6 is

Gﬂ92+§b2)5%—Gﬂ9>92+ga900$9=0.

This is the exact equation for large oscillations of the klahhelinearised equa-
tion for small oscillations is

.. 3ga

9+(ii)9=a

b2

which is the SHM equation. Thperiod t of small oscillations of the plank is

therefore
2
T =27 (b—)
3ga
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Problem 10.1

Show that, if a system moves from one state of rest to anotrerabcertain time
interval, then the average of the total external force olisrtime interval must be
zero.

An hourglass of masg/ stands on a fixed platform which also measures the
apparent weight of the hourglass. The sand is at rest in therughamber when, at
timer = 0, a tiny disturbance causes the sand to start running throtiga sand
comes to rest in the lower chamber after a time . Find the time average of the
apparent weight of the hourglass over the time intefval]. [The apparent weight
of the hourglass is howeverot constanin time. One can advance an argument
that, when the sand is steadily running through, the appareight of the hourglass
exceedshe real weight!]

Solution

Let P be the linear momentum of the system andhe total external force acting
on it. Then, by théinear momentum principle,

P=F
and, for any time interva) <t < t,
/ F dt = P(t)— P(0).
0

In particular, if the system moves from one state of rest wtlar in the time
interval0 < ¢ < t,thenP (0) = P(r) = 0 and

1 T
—/ F dt =0,
T Jo

that is, themean value of' over the time intervad < ¢ < t must be zero

Suppose the hourglass is supported by a fixed platform thasumes the up-
thrust X (¢) that it applies to the hourglass. TheiX is the apparent weight of the
hourglass. In this problen¥; = X — M gk, whereM is the total mass of the hour-
glass and its contents, ardis the unit vector pointing vertically upwards. Since
this system moves between two states of rest, it follows that

1 T
—/ (X —Mgk)dt =0,
TJo

that is,

1 T
—/ (—X)dt = —Mgk.
T Jo
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Hence themean valueof the apparent weight of the hourglass is the same as its
static weightm
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Problem 10.2

Show that, if a system moves periodically, then the aver&tjeedotal external force
over a period of the motion must be zero.

A juggler juggles four balls of masséd, 2M ,3M and4 M in a periodic man-
ner. Find the time average (over a period) of the total fore@pplies to the balls.
The juggler wishes to cross a shaky bridge that cannot stiipocombined weight
of the juggler and his balls. Would it help if he juggles hid®ahile he crosses?

Solution

Let P be the linear momentum of the system andhe total external force acting
on it. Then, by thdinear momentum principle,

P=F

and, for any time interval < ¢ < 7,

/r Fdt = P(x)— P(0).
0

In particular, if the system moves periodically with perigdhenP (0) = P (1)

and
1 T
_[ Fdi =0,
T Jo

that is, themean value of over a period of the motion must be zero

For simplicity, suppose that the juggler walks over the dpeiavith constant ve-
locity and that we observe the motion from an inertial rafieeeframe moving with
this velocity. Then

F=X-(m+10M)gk,

where X (¢) is the upthrust that the bridge applies to the juggler at time is the
mass of the juggler, ankl is the unit vector pointing vertically upwards.

In the new reference frame, the system moves periodicélly i@ what jugglers
do) and it follows that

l/ (X—(m+10M)gk)dt:(),
T Jo

that is,

1 T
—f Xdt =(m+ 10M)gk.
T Jo
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Hence, by the Third Law, theean valuef thetotal force that the juggler applies
to the bridge is simply equal to his own weight plus the coratlinveight of the
balls. Henceaveraged over a juggling period, there is nothing to be gdihg
juggling the balls In fact, sinceX (¢) is not a constant, there must be times when
its instantaneous value ggeaterthan its mean value, which makes juggling worse
than simply carrying the balls across. [He could have carhe balls across one at
a time, but he never thought of thai]
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Problem 10.3

A boat of massM is at rest in still water and a man of massis sitting at the
bow. The man stands up, walks to the stern of the boat and ttseedasvn again.
If the water offers a resistance to the motion of the boat priopnal to the velocity
of the boat, show that the boat wélventuallycome to rest at its orginal position.
[This remarkable result is independent of the resistanosteat and the details of
the man’s motion.]

O

—e

|
: X >

FIGURE 10.1 Man walking on a boat.

Solution
Let x be the displacement of the boat at timandv (= x) be its velocity. Let be
the diplacement of the maelative to the boatt timer, measured in the negative
x direction (see Figure 10.1). Then the true velocity of thertia the positivex
direction) isv — £.
Thelinear momentum of the system in the positive-direction is therefore
P = Mv—l—m(v—é) = (M—l—m)v—mé.

The only horizontaforce acting on the system is the resistance foRcexerted by
the water. Since the resistance is known to be linBdras the form

R =—(M + m)Kv,

whereK is a constant; the facta¥/ + m has been included purely for convenience.
Then, by the linear momentum principlB,= R, which can be written in the form

o+Kv=(M’im)§.
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On integrating this equation with respectttave obtain

m
M +m

X+ Kx = ( ) £+ C,
whereC is a constant of integration. Since the whole system steota fest with
x = 0, it follows thatC = 0 and we obtain

>'c+Kx:(Mnj_m)é.

This is theequation of motion satisfied byx. The functioré (¢) (the motion of the
man) is supposed to be known.

This is a first order linear ODE with integrating factof?. On solving, we find
that

t
—Kt Lo Kt g, —kt
X = e e dt' + De ™',
(M+M) /oé()

whereD is a second constant of integration. The initial conditioa: 0 whenz = 0
implies thatD = 0 and so thalisplacementx of the boat at time is

X = m e K1 fté(t/)eK’/ dt’
M +m 0 )

We now wish to show that the boat eventually regains its palgposition. Let
us suppose that the man has taken his seat at the back of theylioae . Then,
fort > 1, S = 0 and the integral can be restricted to the rafige ' < 7. The
solution forx for r > © can therefore be written

_ m kit [T g Kt g
X = ( +m)e /0 E(t)e™" dt
_ m F i N Kt g0\ =Kt
= ( +m[0 E()e™" dt ) e .

The expression in the brackets looks complicated but, $heémits of integration
are now constants, it is simplycamnstantx,, say. Hence, for > t, the solution for
x has the form

X = xpe X7,

This tends to zero astends to infinity, which is the required resuit.
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Problem 10.4

A uniform rope of massM and lengtha is held at rest with its two ends close
together and the rope hanging symmetrically below. (In ploisition, the rope has

two long vertical segments connected by a small curved segahéhe bottom.) One

of the ends is then released. It can be shown by energy catserysee Problem

9.8) that the velocity of the free end when it has descendetidigtancex is given

by
) (x(2a—x))
vi=[——)¢g
a—Xx

Find the reactionk exerted by the support at tlieedend when the free end has
descended a distange The support will collapse iR exceed%Mg. Find how far
the free end will fall before this happens.

Solution

The motion of the rope in this problem was found in Solutid 9y energy meth-
ods. We will make use of the notation and results from thiatsmh.
The downward$éinear momentum P of the rope is

M M
P=O—|—(—y)v=—(a—x)v,
2a

and total downwards forcg is
F=Mg—R,

whereR is the reaction of the support. Tlieear momentum principle P = F
then implies that

M d
ZE((a—x)v)—Mg—R

which gives
M
R=Mg—z((a—x)i)—v2).
If we now make use of the formulae

, xQRa-—x)g ) (2a2—2ax+x2)
Vo= — v =
2(a — x)?

a—X
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that were obtained in Solution 9.8, we find that

R Mg (2a® + 2ax — 3x?
" da a—x '
after some simplification. This is theaction exerted by the support at the fixed
end of the rope when the free end has descended a distance
This reaction will be equal téMg when

Mg (2a2 —|—2ax—3x2) _ 3
2

=3Mg,
da a—x &

a condition which reduces to the quadratic equation
3x? — 8ax + 4a* = 0.

The solutions are = %a andx = 2a. Since the solutior = 24« lies outside the
physical rang® < x < a, thesupport will collapse whenx = %a. ]
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Problem 10.5

A fine uniform chain of mass\/ and lengtha is held at rest hanging vertically
downwards with its lower end just touching a fixed horizonéddle. The chain is
then released. Show that, while the chain is falling, theddhat the chain exerts
on the table is alwaythree timeghe weight of chain actually lying on the table.
[Assume that, before hitting the table, the chain fallslfreender gravity.]

% When all the chain has landed on the table, the loose end lsdouwbwards
with the constant forcéMg. Find the height to which the chain will first rise. [This
time, assume that the force exerted on the chain by the tabbpualto the weight
of chain lying on the table.]

Solution

Let x be the downward displacement of the top end of the chainvafzd x) its
velocity. The mass of the vertical part of the chaiddga — x)/a.
Then the downwartinear momentum P of the chain is

M
P=—(a—x)v
a

and the total downwardsrce F acting on the chain is
F=Mg—R,

whereR is the reaction of the table. Thi@ear momentum principle P = F then
implies that

M d
75(((1—)6)11) =Mg—-R
which gives
R=Mg—%((a—x)i)—v2).
a

Since the chain is assumed to be falling freely under gravity g andv? = 2gx,

from which it follows that
M
R=3 (_x) g.
a

This is thereaction of the table when the chain has fallen by a distancd®y the
Third Law, it is equal to the force that the chain exerts ontéide. Thus, théorce
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that the chain exerts on the table is always three times thghwef chain lying on
the table

When the chain is being pulled up, lebe the height of the top end of the chain
above the table and (= x) its upwards velocity. The mass of the vertical part of
the chain isM x /a.

Then the upwardinear momentum P of the chain is

M
P=—xv
a

and the total upward®rce F acting on the chain is

F=1IMg+R—- Mg,

whereR is the reaction of the table. Thi@ear momentum principle P = F then
implies that

d 2
- E(xv) =R—-3iMg,
that is,

M
—(v2+xd>=R—%Mg.
a

In theupwardsmotion, we assume that the force exerted on the chain by bieita
equalto the weight of chain lying on the table, that is,

R— (M(a—x))g
a

. 2 1
X0+ v = 3g(a — 3x),

We then obtain

which is theequation of motionfor the chain.
To solve this equation, writé = vdv/dx and introduce the new dependent
variablew = v2. The equation fow is then

dw
XE + 2w = %g(a —3Xx).

This is a first order linear ODE with integrating factor On solving, we find that

C
vP=1g(a—2x)+ —
X
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whereC is a constant of integration.

A curious feature of this problem is that the initial conditsx = 0 andv = 0
whent = 0 cannot be satisfied. The easiest way to make sense of thisuppmse
that the motion starts from rest with= 54 (instead ofx = 0), find the solution, and
then leth — 0. The solution obtained turns out to be the same as puttirg 0 in
the above expression. Hence tleocity of the chain when its upward displacement
is x is given by

v? = %g(a —2X).

Thechain first comes to restwhenv = 0, that is whenx = %a. ]
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Problem 10.6

A uniform ball of massM and radius: can roll without slipping on the rough outer
surface of a fixed sphere of raditisand centreD. Initially the ball is at rest at the
highest point of the sphere when it is slightly disturbechdRine speed of the centre
G of the ball in terms of the variablé, the angle between the lin@G and the
upward vertical. [Assume planar motion.] Show that the talllleave the sphere
when cog = 12.

Solution

The motion of the ball in this problem was found in Solutioh®by energy meth-
ods. We will make use of the notation and results from thigtsmh.
On making use of the centre of mass form of linear momentum principle

—_
(resolved in the directior O), we obtain

Mgcosd —R=M v?
J - a+b)’

where R is thenormal component of the reaction exerted on the ball by the fixed
sphere. If we now make use of the formula

2 _ 10ga+b)
7

that was obtained in Solution 9.15, we find that
R = @ (17cosf — 10).
The ball will leave the sphere wheh = 0, that is, when
cosf = 12,

that is, wherf = 54° approximatelym
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Problem 10.7

A rocket of initial massM , of which M — m is fuel, burns its fuel at a constant rate
in time T and ejects the exhaust gases with constant spe&te rocket starts from
rest and moves vertically under uniform gravity. Show theg maximum speed
acheived by the rocket isln y — gt and that its height at burnout is

Iny . o
uf(l—y_l)—igt,

wherey = M /m. [Assume that the thrust is such that the rocket takes offenim
ately.]

Solution
Let v be the upward velocity of the rocket at timeThen, from the text p. 255, the

solution forv is given by
m(0)
=uln[—=) -
v ulin (I’}’l(l)) gt,

wherem(t) is the mass of the rocket and the remaining fuel at tima the present
problem(0) = M and

m(t) = M — %(M —m(v)

so that

m(t) (7 —1 ,

m(0) vt )
wherey = M /m(t). [Note that the question uses the symhbofor m(t), but, in
order to avoid confusion with the previous usage«f), we will not use this in the

solution.]
Hence therelocity of the rocket at time into the burn is

v=—uln(l—*kt)— gt,
where

y —1

k = .
YT
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In particular,vmayx, thevelocity at burnout, is given by
Vmax = ulny — gt.
The heightz achieved by the rocket at timesatisfies the equation

% =—uln(l —kt) — gt,

with the initial conditionz = 0 whenr = 0. The solution is messy but straightfor-
ward and gives

z = —utIn(l — ko) + % In(1 — ki) + ut — Lgi®.

This is theheight of the rocket at time into the burn. In particula#;, theheight at
burnout is given by
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Problem 10.8 Saturn V rocket

In first stage of the Saturn V rocket, the initial mass @& x 10° kg, of which
2.1 x 10® kg was fuel. The fuel was burned at a constant rate over 15d $han
exhaust speed was 600 ms~!. Use the results of the last problem to find the speed
and height of the Saturn V at first stage burnout. [Take be constant #.8 ms2
and neglect air resistance.]

Solution
This is a numerical application of the results of Probleni71(~or the Saturn V

rocket,y = 4,7 = 150s,u = 2,600 ms ! andg = 9.8 ms2. The calculated
values ofvnax and/ are
Umax = 2,100ms™', k=100 km,

approximatelym
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Problem 10.9 Rocket in resisting medium

A rocket of initial massM, of which M — m is fuel, burns its fuel at a constant
ratek and ejects the exhaust gases with constant speelthe rocket starts from
rest and moves through a medium that exerts the resistanoefekv, wherev

is the forward velocity of the rocket, ardis a small positive constant. Gravity is
absent. Find the maximum spe&dachieved by the rocket. Deduce a two term
approximation for/, valid whene is small.

Solution

Let v be the velocity of the rocket at timre Then, on incorporating the resistance
force —ekv into the rocket equation on p. 253 of the text, ggpiation of motion
forvis

d
md—;} = —mu — €k,

wherem (= m(t)) is the mass of the rocket and its fuel at timeln the present
problem(0) = M andm = —k so that

m(t) = M — kt.
The equation of motion therefore becomes
dv n ek _ ku
dat  \M—kt)" T M —kt

This is a first order linear ODE with integrating facto — kt)~¢. The general
solution is

v="2 4 oM —ko),
€
whereC is a constant of integration. On applying the initial coraditv = 0 when
t = 0, we find that

u
eMe’

Thevelocity of the rocket at time into the burn is therefore

(5]
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In particular, aburnout, M — kt = m and the rocket velocity is

_ U e
V_e(l y ),

wherey = M/m. [Note that the symbat: used heres the same as the: used
in the question. There is now little chance of confusion Wik previous usage of
m(t).]

Whene is small,

y“ =exp(—¢€lny)
= l—elny+%(e|ny)2+0<e3)

and so the requiredpproximation to V- whene is small is

V=u|ny[1—%|ny6+0(ez>].l
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Problem 10.10 Two-stage rocket

A two-stage rocket has a first stage of initial mags, of which (1 — n) M, is fuel,

a second stage of initial magds,, of which (1 — n) M, is fuel, and an inert payload
of massny. In each stage, the exhaust gases are ejected with the saptkisphe
rocket is initially at rest in free space. The first stage isdiand, on completion,
the first stage carcass (of mag&f,) is discarded. The second stage is then fired.
Find an expression for the final spe&dof the rocket and deduce th&t will be
maximised when the mass ratio= M, /(M + M>) satisfies the equation

o’ +2Ba— B =0,

wheref = mqy/(M; + M,). [Messy algebra.]
Show that, wheif is small, the optimum value of is approximatelely'/2 and
the maximum velocity reached is approximat2lyin y, wherey = 1/n.

Solution

It follows from the formula (10.9) on p. 254 of the text thag ttocket velocity when
thefirst stageis completed is

(M1+M2+Wl0)
U1=u|n )
T]M1+M2+Wl0

and that the rocket velocity when teecond stagés completed is

M> + my )

nMj + mg

— ( (M + M + mo)(M> + mo) )
(nMy + M + mo)(nM> + mo)

S G L3 TGRS
m+ (A =—na+p)na+p))’

V=v1—|—uln(

where
M2 mo
o = ) ,B = *
M1 + Mz Ml + M2
We must now choose the mass ra#ioso as to maximisd’. The equation
dV /da = 0 gives

1—n n 1 n .
n+(1-ma+p oa+pf na+p

il
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which reduces to
a4+ 2a—B =0

after much labour. On selecting the positive root,dp&mium value of « is found
to be

1/2
o=—p+(B2+8) .
Wheng is small, the optimum value af is approximately

a=-p+(p2+8)"
=—p+ 720+
=B+ B2+ 0(B)
=7+ 0(p).

Hence, when the mass rattbis small, the optimum value of the mass ratias
approximatelys'/2. In this limit, the final velocity achieved by the rocket is

V:um( (L+5) (B + 0(B)) )
(0 + (L =mpY/2 + O(B)) (B2 + O(B))

— B! + 0(B)
n?B% + O(B)

=uln (iz + 0(51/2))
Y

=uln (2 +0(8'%).

—2ulny (1 + 0(51/2))

wherey = 1/n. Hence, when the mass raffois small and the mass ratiotakes

its optimum value, thenaximum velocity achieved by the rocket is approximately

2ulny.
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Problem 10.11 %

A raindrop falls vertically through stationary mist, calteng mass as it falls. The
raindrop remains spherical and the rate of mass accretoportional to its speed
and the square of its radius. Show that, if the drop starts fiest with a negligible
radius, then it has constant acceleratgof1. [Tricky ODE.]

Solution

Suppose that the drop has massnd downward velocity at timez. Thenm and
v satisfy the following two conditions:

(i) Since the mass gained by the drop is at rest|ittear momentum equation
becomes

d
E(mv) = mg.

(i) The rate ofmass increasas given to be

dm
dt

wherek is a constant and is the radius of the drop at tinte

= kr?v,

It is convenient to work with the radius of the drop rathemthits mass. Since
the mass is proportional to the cube of the radius, the abqwat®ns become

d

E(ﬂv) =rig, (1)
dr
E = KU, (2)

where K is a new constant. These are a pair of simultaneous first @Bé&s for
the unknown functions andr.
The trick is to eliminate the time and to obtain a single ODEufas a function

of r. [In the language of dynamical systems, we are finding thes@lpaths of an
autonomous system.] Now

d, 4 _d 3 dr
a7 = g
dv dr
_ 2 3dv ar
—(3r v+ dr)xdt

= Kv (3r2v + r3@) ,
dr
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on making use of equation (2). On substituting this resuth equation (1), we
obtain

rv% + 302 = (%) r.

This is the required ODE fov as a function of. To solve, we introduce the new
independent variable = v2. The equation fow is then

dw (6}, 2
dr r w_K’

which is a first order linear ODE with integrating factdy. The general solution is

whereC is a constant of integration. The initial conditions= 0 andr = 0 when
t = 0 then imply thatC = 0 so that the solution fow is

v = (Z_g) .
7K
This gives thevelocity of the drop when its radius is

To find theacceleration of the drop, we differentiate this last equation with
respect ta. This gives

o ()i

dt  \7K ) dt
2g
=== ) Kv,
(71<) ’
on using equation (2) again. Hence
dv 2g
dt 7’

as is requirecn
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Problem 10.12

A body of masstm is at rest when it explodes intbreefragments of massesn, m
andm. After the explosion the two fragments of massare observed to be moving
with the same speed in directions makirit§)° with each other. Find the proportion
of the total kinetic energy carried by each fragment.

U
v
o
,.m J
¢ /60° :
V€— @ —-—-¢-—]---- )
~60
2m \
\\\m
[ ]

FIGURE 10.2 The three emerging fragments.

Solution

Since the explosion conserves linear momentum, and theibdnigially at rest, the
total linear momentum of the fragments must be zero. The three velocities must
therefore be coplanar. Also, since the two fragments of makave equal speeds,
the third velocity must lie along the bisector of the angléasen their paths (see
Figure 10.2).

Let the speed of the fragmentisand B beu and the speed of fragmeatbev.
Then, since the total linear momentum in #heirection must be zero, we have

mu c0s60° + mu cos60° — (2m)v = 0.

Hence, thespeedof C isv = Ju.
It follows that the thredinetic energiesare

TA=T8 =

1
E )
2

T¢ = %(anz) (%u) = %mu?
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The total kinetic energy is therefof@ = %muz. Hence, theroportions of the
total kinetic energy carried by each fragment are
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Problem 10.13

Show that, in an elastic head-on collision between two sshéhe relative velocity
of the spheres after impact is the negative of the relatil@city before impact.

A tube is fixed in the vertical position with its lower end on erizontal floor.
A ball of massM is released from rest at the top of the tube followed closglg b
second ball of mass. The first ball bounces off the floor and immediately collides
with the second ball coming down. Assuming that both cdhsiare elastic, show
that, whenm/M is small, the second ball will be projected upwards to a heigh
nearly nine times the length of the tube.

Solution

In a head-on collision between spheres, the motion must beelgnrectilinear.
Suppose that the spheres have magsgsm,, that their initial velocities arer,
u,, and that their final velocities atg, v,. These velocities are all measured in the
same direction along the line of motion.
Then conservation dinear momentum requires that

miuq + moUy; = M1V +m2v2,

and conservation afnergyrequires that

mluf + mzug = mlvf + mzvg.
We wish to show that, — vy = u; — u,. Itis possible to grind this out directly, but
the following argument is neater.
Let the collision be observed from a reference frame in wthehvelocity ofi
is reversedby the collision, that isy; = —u;. Such a choice is always possible.
[This reference frame is actually the ZM frame.] Then, irsttéference frame, the
energy equation becomes

2 2
U =1,

so thatv, = +u,. The linear momentum equation shows that the sign must be
negative so that, = —u,. Thenv, —vy = (—uy) — (—uy) = u; —u,, as required.

Suppose the balB; of massM has speed when it hits the floor. Since the
collision with the floor is elastic, the ball will be reflectedth initial upward speed
v. The ball is then immediately in collision with the secondl B (of massn) that
has downwards spead Suppose that, after this second collisi@h, has upward
speedV. Since the collision between the balls is elastic, the teshiined above
applies and so the upward speed®f must belV — 2v. Conservation ofinear
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momentumthen implies that
Mv + m(—v) = M(V —2v) +mV
from which it follows that
(3M — m)
V={——-I]v
M +m
This is the upwardelocity of B, after its collision withB;. B, will then rise to the
height

V2 IM —m\? v?

H:—: _ _—

2g M +m 2g
_(3M—m\,
T\ M +m '

where/ is the height from which the balls were dropped. When the matis

360

m/ M is small, this height is neari. [This experiment makes quite a spectacular

demonstration.i
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Problem 10. 14

Two particles with masses, m, and velocitiesv, v, collide and stick together.
Find the velocity of this composite particle and show thatltyss in kinetic energy
due to the collision is

miyms

2
—C  |v;—v
2(m1—|—m2)| b

Solution

Let V' be the velocity of the composite particle. Then, silmear momentum is
conserved in the collision,

mivy +movy; = (m1 + mz)V.

Hence therelocity of the composite particle is

y mlvl—l-mzvz
my + my

The loss irkinetic energy in the collision is therefore
AT = %mlvf + %mzvg — %(ml + my)V?

2

mivy + mpvsy

=lm1vf+%m2v§— | |
2(my 4 my)

2

m2v2 + m2v2 + 2m1m2v1 * V)
1 2 1 2 171 272
= En’llvl + 51/)’121}2 —

2(my + my)
mpmy ( 2 2
e + —2 N )
2(m1 +m2) Ul 1)2 V103
20my +my)
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Problem 10. 15

In an elastic collision between a proton moving with speethd a helium nucleus
at rest, the proton was scattered through an anghkstf What proportion of its
initial energy did it lose? What was the recoil angle of thiume nucleus?

Solution

In the standard notation of tleastic scattering formulae we are given that:; =
1,m, = 4andf, = 45°. Theny = % and formulaA gives

siny {
cosy +3

whereys is the scattering angle in the ZM-frame. This equationfaran be written
in the form

42 sin(y — ) =1

and the solution is

¥ =" 4sin! (L) ~ 55°
4 442 '

The proportion oenergy lostby the proton is given by formulB:

E, 4 ; 1 _ 16 o 1 140
T (V_'_—l)zsm2 (ﬂx) = Lsin’ (ﬂx) ~ 14%.
Therecoil angleof the helium nucleus is given by formuba

by =2(r—y)~62°.m
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Problem 10.16

In an elastic collision between an alpha particle and an awknnucleus at rest,
the alpha particle was deflected through a right angle anddle® of its energy.
Identify the mystery nucleus.

Solution
In the standard notation of tledastic scattering formulag we are given that

E 2 4
6, =90°, Z2=2, y=_—_,
Ey 5 M
whereM is the mass of the mystery nucleus.
FormulaA then gives

cosy +y =0,
while formulaD gives
4y . 2
_ s (Ly) =2,
(y +1)?2 (ﬁﬂ) 5
which can be written in the form
2y 2
————— (1l —cosy) = —.
T 1)2( V) 5

The mass ratigr therefore satisfies the equation

2y

2
m(l +y) = 3

which solves to givey = % Hence themystery nucleushas mass 16 and must

therefore beoxygen m
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Problem 10.17 Some inequalities in elastic collisions
Use the elastic scattering formulae to show the followiregumnalities:

() Whenm; > m,, the scattering anglé, is restricted to the range < 6, <
Sin_l(mz/ml).

(i) If my < m,, the opening angle is obtuse, whilepify > m,, the opening angle
is acute.

(i)

2
ﬂ > (Wll —I’}’lz) 2 < 4]’]’111”)72 ‘
Ey my + my Eo = (my + my)?

Solution

(i) From formulaA, thescattering anglef, is given by

sin
tan6; = 71#
cosy + y

wherey = m/m, andy is the scattering angle in the ZM-frame.
Let F(y) be the function

sinyr

F = cosy +y

Then tard,; lies between zero and the maximum value achieved ty) for

Y in the intervald < v < 7. When the constant > 1, F is a continuous
function ofy» and so the maximum certainly exists. The stationary poihts o
F satisfy the equatiod”’(y) = 0, that is,

1+ ycosy
(cosy + )2

It follows that there is jusbne stationary pointof F intherang® < v < x
at

One could show that this sationary point ibaal maximum of F by finding
F”, but there is no need. The functidhis zero at the end points = 0, =
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and is positive within the interval. It follows that the stetary pointyr =
cos ! (=1/y) must give rise taF ™ theglobal maximum of F. Hence

_on1/2
Fmax _ (1—)/ 2)
_V_1+V
= (-7

The maximum value of; is therefore
6" = tan ! (y2 — 1)_1/2 :
This is the answer, but it can be written more simply since
cosed 6" =1 + cot 9" =1 + ()/2 —~ 1) = y?

and so si)"* = 1/y = m,/m;. We thus have the simpler formula

. 11%)
0" = sin”! (—) :
my

The scattering angle therefore lies in the rafige 6; < sin™ ! (my/m;).m
(i) From formulaC, theopening anglef is given by

_(rt1 1
tand = (ﬁ) cot(5w>
B {> 0 for y>1,

<0 for y<I.

Hence, the opening angle is acute foy > m, and obtuse fon; < n,. m
(i) From formulaD,

E1_1 E,
Ey Eo
4y .
=1——Sln2 L
e (3)
4y (y—-1?

>1-— =
y+D? (y+1)?
()
=——=)] .m
miy + mj
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Also from formulaD,
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Problem 10.18 Equal masses

Show that, when the particles are of equal mass, the elastitesing formulae take
the simple form

E,

Ey
— =cos 1y E, 2

91=llﬂ 92=%T[—%1ﬂ 9=%]‘[ EO—

2

wherey is the scattering angle in the ZM frame.

In the scattering of neutrons of energyby neutrons at rest, in what directions
should the experimenter look to find neutrons of enej@i? What other energies
would be observed in these directions?

Solution
Whenm; = m,, the mass ratiy = 1.

(i) FormulaA then becomes

Henced; = 1y. m
(i) FormulaB is unchangecds

(iif) Formula C becomes tafi = oo so thatd = z/2. If you do not like the
infinity, simply use formulaé\ andB to give

0=6+0=3y+(3r-1y)=4rm

(iv) FormulaD becomes

E, )
— =sirflym
Ey 2V
from which we deduce that
Ey E, .
—=1-2=1l-sifiy=codly.m
Ey Ey 2V 2V

If it is scattered neutronsthat are being observed, then

E, 1

E 4
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Hence, from formuld,
cos (%l”) =1

andy = 120°. FormulaA now tells us thaty = 60°. Hence, in order to see
scatterecheutrons with energ&E, we must look at an angle 60° to the direction
of the incident beam.

However, if it isrecoiling neutrons that are being observed, then

E, 1
E 4
Hence, from formul®,
si? (3v) = 4
andy = 60°. FormulaA now tells us tha®; = 30°. Hence, in order to see

recoiling neutrons with energ&E, we must look at an angle 60° to the direction

of the incident beam. Thus neutrons with ene;}g‘;? will be seen at angles &0°
and60° to the direction of the incident beam. At t36° angle, we see recoiling
neutrons of energ%E and scattered neutrons of energy

E; = cosS 30°E = 3E,

while, at the60° angle, we see scattered neutrons of en%rﬁyand recoiling neu-
trons of energy

E, =sin 60°F = 3E.

3
4

Hence neutrons of ener@E are also seen at th3®° and60° anglesm
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Problem 10.19

Use the elastic scattering formulae to express the eneltipeaicattered particle as a
function of the scattering angle, and the energy of the hecpparticle as a function
of the recoil angle, as follows:

5 ) 1/2
E, l+v C0s26; + 2y cosb, (1 — y2sir? 91) E> 4y

o : == _—"___cob,.
Eo (y + 1)2 Eo (v +1)7? ?

Make polar plots ofE'; / E as a function of); for the case of neutrons scattered by
the nuclei of hydrogen, deuterium, helium and carbon.

Solution

(i) From formulaD, the energy of thecattered particleis given by

E1 4]/ .

— =1-——"sit(iy),
Ey (y + 1)? <21/f)
_ 1+y*+2ycosy
B (y+D2

where the ZM scattering anglg is related to the actual scattering angle
by formulaA, namely,

sin
tang, = oV
cosyr + y

The object is to eliminatey and expres¥/ E, in terms off;. To do this,
we need to invert formuléa. On clearing the fractions, we obtain

sin(y — 0;) = y sinb,
so that
¥ =6 +sin ! (ysing;).

Consequently,

1/2
cosyr = cosh; (1 — y?sir? 01) — y sint 6,
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and, on substituting this expression into the formulafy £, we obtain

) 1/2
Ei 1 4+ y2cos26; + 2y cosb, (1 — y2sin? 91)

ik .H
Ey (y +1)2

(i) From formulaD, the energy of theecoiling particle is given by

Ez N 4]/ .
=T (),

where the ZM scattering angle is related to the recoil angk® by formula
B, namely,

02 = 3(m — V).

The object is to eliminatg and expres€,/ E, in terms of6,. In this case,
¥ = m — 26, and consequently s@w> = cosf,. Hence

E, 4y

E—O:(y_‘_—l)zcoszez..

He

91:()
0 1

FIGURE 10.3 Polar plots ofE |/ Ey againstd; for neutrons scattered by nu-

clei of hydrogen, deuterium, helium and carbon.

The polar plots off; / Ey against; are shown in Figure 10.3
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Problem 10.20 Binary star

The observed period of the binary star Cygnus X-1 (of whicly one component
is visible) is 5.6 days, and the semi-major axis of the orbihe visible component
is about 0.09 AU. The mass of the visible component is beti¢pde abou20 M.
Estimate the mass of its dark companion. [Requires the ricpatesolution of a
cubic equation.]

Solution

Let m, m, be the masses of the bright and dark components of Cygnusn¢1 a
leta,, a; be the semi-major axes of their respective orbits. Tier (m/m3)a;
anda, the semi-major axis of the orbit eélative motionis

a=a + a
1
14

wherey = m,/m;. The periodr of the orbit is then given by

2 _ a
my + mjp
2 3
_ (I +y) ay

y3my
in astronomical units. The mass rajtdherefore satisfies the cubic equation

Cmi\ oy,
(a3 y —y =2y —1=0.

1

On inserting the given values for ¢; andm; and performing a numerical solution,
we find that the cubic hamereal root whose value is approximately 0.79. Hence the
mass of the&lark componentof Cygnus X-1 is about6 M. [This dark component

is thought to be a black holes
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Problem 10.21

In two-body elastic scattering, show that the angular itistion of therecoiling
particles is given by

4cosb, oM (7 — 26,),

whereaZM (v) is defined by text equation (10.32).
In a Rutherford scattering experiment, alpha particlesiefgy £ were scattered
by a target of ionised helium. Find the angular distributtbthe emerging particles.

Solution

Let p be the impact parameter of an incoming particle. Thé&n the recoil cross
section of the helium nuclei, is given by

R _ P d_l?
’ _(sinez) 6,
- (a) (a5 )
~ \sing, ) \dy = 4o,
_ p_dp)\ (siny\ dy
= (anyay) (i)

_ 7M sinyr d_l/f
- (W)(sinez)dez'

Now, from formulaB,

dy
= —260 d —=-2
Vf g > an d02
and so
[ -2
oR =206%M (7 —26,) (M)
sind,
= 4cosb, 0ZM (x — 20,),
as required.

For Rutherford scattering, we know from the text that

o ZM gy = - :
&\ (1))
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in the standard notation. Hence, tteeoil cross sectiorf the helium nuclei is

r_ 4" 4 cosh,
4E? \ sipt (%n — 92)

- 5 (cowm)
 E2\cos$6, )’

Since alpha particles and helium nuclei are the same thiegyigular distribution
of the emerging particles is the sum of the recoil cross seetf and the two-body
Rutherfordscattering cross sectiorfor equal masses, namely,

4

S q co0sH, )

0°(0)) = — )
)= (sin4 o

o

This gives theangular distribution

ﬁ cos@+ 1
E2 \sinfe coso)’

wheref is measured from the direction of the incident beam.
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Problem 10.22 %

Consider two-body elastic scattering in which the incigearticles have energl.
Show that the energies of thecoiling particles lie in the intervad < E < Emnax
whereEmax = 4y Eo/(1 + y)%. Show further that the energies of the recoiling par-
ticles are distributed over the internvialk £ < Eqax by the frequency distribution

& = (5 ) e w.

max

whereo4M is defined by text equation (10.32), and

Emax .

In the elastic scattering of neutrons of enetjy by protons at rest, the energies
of the recoiling protons were found to be uniformly distitiéah over the interval
0 < E < E,, the total cross section beirf} Find theangulardistribution of the
recoiling protons and the scattering cross section of thiel@mt neutrons.

¥ = 2sin! (

Solution
From Problem 10.17 (iii), we know that
£ < 4m1m2
Eo = (my + my)?
__ Y
(14
Hence, the energies of the recoiling particles are boungled b

o< g < WE _
(1+7y)?

max-

Let the recoil cross section lae? (0,). ThendF, the flux of recoiling particles
that have recoil angles betweénand6, + d6, is

dF = 27N sin6, o ®(6,) db,,

where N is the incident flux per unit area. On using the result of ReoblL0.21,
this can be written
dF = 87N sinf, cosh, 0 “M (= — 26,) db,
= 47N sin20, 0 ?M (z — 20,) db,
= —27N siny o ?M () dv,
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whereyr (= n — 26,) is the ZM scattering angle.
Now, from formulaD, the recoil energy is given in terms of) by

E = Emaxsinz %w,
and hence/E anddyr are related by
dE - %Emaxslnw dw.

Hence

dF = — (‘ZT—N) oZM () dE

- (%) oZM () |dE].

Now thefrequency distribution f(E) is definedby the relation
dF = Nf(E)dE,

wheredE is now positive, and is hence given by

F(E) = (E“T”) o 7M (),

where the ZM scattering angle is expressed in terms @ by the formula

In the given example, the functiof( £) is constant and hence so is the function
aZM (). It follows that the recoil cross section has the form

oR = k cosh,,

wherek is a constant. This constant can be determined from theHatthe total
cross section igl. This implies that

/2
A:[ k cosb, (27 sinby) db,
0

/2

= J'[k/ sin292 do,
0

= k.
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Hencek = A/x. Therecoil cross sectiorof the protons is therefore given by

A
o® = = cosb, (0<6,<1in).
T

The scattering cross sectiorof the incident neutrons is given by the standard
two-body formula for equal masses (see the text page 272)lya

oT8(0)) = 4cost; M (26;)

A
= — cosb, (0<6; <in).
T

Although the functions ® ando 72 happen to be the same in this example, this is
not true in general, even for particles of equal mass.
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Problem 10.23

A particle Q has mas@m and two other particle®, R, each of mass:, are con-
nected toQ by light inextensible strings of length The system is free to move on
a smooth horizontal table. Initially’, O R are at the point$0, @), (0,0), (0, —a)
respectively so that they lie in a straight line with therggs taut.Q is then projected
in the positivex-direction with speed. Express the conservation of linear momen-
tum and energy for this system in terms of the coordinatéthe displacement of
Q) andé (the angle turned by each of the strings).

Show that) satisfies the equation

o (L
T a2 \2—-cog6

and deduce thaP and R will collide after a time

72 1
9/0 [2—cos2 9]2 de.

u

FIGURE 10.4 Generalised coordinates and velocity diagram for the sys-
tem in Problem 10.23.

Solution

Takex, 0 as generalised coordinates. The corresponding velo@tyrdm is shown
in Figure 10.4.
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Since thex-component of the totdinear momentum is conserved,
2m)x +2xm (x —abl COSQ) =C,

whereC is a constant. From the initial conditions, we find that= (2m)u so that
the first conservation relation becomes

2x —abf cost = u. 1)
Thetotal energyis also conserved. Since there is no potential energy, ives g
L@m)s% +2 x im (xZ + (ab)? — 2%(ab) cose) —E,

whereE is the constant total energy. From the initial conditions,fimd thatE =
%(Zm)uz so that the second conservation relation becomes

2x% + a%0? — 2ax6 cosh = u?. (2)

On eliminatingx between equations (1), (2), we obtain

(L
a2 \2-cog6 )’

after some simplification. This is the required equatiortl@ coordinaté.
Since# is an increasing function afin the motion,

do u 1 1/2
- = +_ - s
dt a\2—-cogo

which is a first order separable ODE. On separating and iatiegy, we find that,
the time at whichP and R collide is given by

= [T (2 cos6) @~ 191 () m
0

u u
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Problem 10. 24

A uniform rod of length2a has its lower end in contact with a smooth horizontal
table. Initially the rod is released from rest in a positioakimg an angle ob0°
with the upward vertical. Express the conservation of limieamentum and energy
for this system in terms of the coordinategthe horizontal displacement of the
centre of mass of the rod) afddthe angle between the rod and the upward vertical).
Deduce that the centre of mass of the rod moves in a verticaght line, and that

0 satisifies the equation
g2 3g (1 —-2cost
a \4—3cog0 )
Find how long it takes for the rod to hit the table.

FIGURE 10.5 The velocity diagram for the falling
rod.

Solution

Suppose first that the rod can move freely in a vertical plaifteen{x, z, 0} is a
possible set of generalised coordinates, whesedz are the horizontal and vertical
displacements of the centre of masgrelative to a fixed origin on the table), and
0 is the angle between the rod and the upward vertical. Thesponding velocity
diagram is shown in Figure 10.5. If one end of the rod is nowstr@ined to slide on
the table, these coordinates are no longer independeetsiaa: cosf. The system
is thus reduced to two degrees of freedom and we will faké} as its generalised
coordinates.

Since the horizontal component of the tdtaéar momentum is conserved,

Mx = C,
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whereC is a constant. From the initial conditions, we find tidat= 0 so that the
first conservation relation becomes

x=0.

Hence,G moves in a vertical straight line.
Thetotal energy is also conserved. The kinetic energy is

T =4 (32 4+ 22) + 3 ($Ma?) 62
= %Ma2 sin? 662 + %Mazéz,

on using the fact that = 0 andz = —a'siné 6. The gravitational potential energy
is

V=Mgz= Mgacosf.
The energy conservation equation thus has the form
IMa® (1 + 3sir? 9) 6% + Mgacosh = E,

whereE is the constant total energy. From the initial conditions,fimd thatE =
%Mga so that the second conservation relation becomes

9-2_3_g 1 —2cosb
~a \4-3cog0)’

This is the required equation fér
Since# is an increasing function afin the motion,

do N (3g 1/2 ( 1 —2cosh \/?

dt a 4—3cog 6 ’
which is a first order separable ODE. On separating and iatiegy, we find that,
the time at which the rod hits the table, is given by

V2 mj2 g 1/2
r= (i) / (ﬂ) do ~ 1.18(3) .
3g /3 1 —2cosf g
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Problem 11.1 Non-standard angular momentum principle

If A is a generally moving point of space aild, is the angular momentum of
a systemS aboutA4 in its motion relative to4, show that the angular momentum
principle forS about4 takes the non-standard form

dL 4 d%a
o4 _ K- MR -a)xZ2.
di 4— MR —a)x7z

[Begin by expanding the expression fbry.]
When does this formula reduce to the standard form? [Thisstamdard version
of the angular momentum principle is rarely needed. Howeses Problem 11.9.]

Solution
By definition, the angular momentum &fabout4 in its motion relative toA is

Ly=Y m(r—a)x(i —a).

where the summing is taken over all the particlesSof On differentiating with
respect ta, this becomes

Ly=) m@r—a)x(i - i)
= Z(mrxi' —ax(mif') - (mr)xii +maxii>
= Lo—ax(Mﬁ)— (M R)xd + Maxa
=Ko—axF — M(R —a)xd
= KA—M(R—a)Xii,

as required.
This non-standard form of the angular momentum principdeices to thetan-
dard form if

(R—a)xa=0

at all times This will be true if

() @ = R, that s, the poin# is the centre of mass d, or
(i) a = 0, that is,4 moves with constant velocity, or
(i) R — a happens to be parallel ibat all times

© Cambridge University Press, 2006



Chapter 11 The angular momentum principle 383

Condition (i) leads to the standard angular momentum mladl = Kg.
Condition (ii) is equivalent to the result that the standandular momentum princi-
ple applies in the inertial frame moving with the constaribeity a. The author is
not aware of any practical problem in which condition (iigltds.m
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Problem 11.2

A fairground target consists of a uniform circular disk ofsed/ and radius: that
can turn freely about a diameter which is fixed in a verticaipon. Initially the
target is at rest. A bullet of mass is moving with speed: along a horizontal
straight line at right angles to the target. The bullet enshiezklf in the target at a
point distanceb from the rotation axis. Find the final angular speed of thgetr
[The moment of inertia of the disk about its rotation axidds?/4.]

Show also that the energy lost in the impact is

1, Ma?
—mu —————= | -
2 Ma? + 4mb?

Solution
,,,,,, U <-—@
! o
b e~
Co-t o v fec
Q
Before impact After impact

FIGURE 11.1 The system in problem 11.2 (viewed from above).

Since the target ismoothlypivoted about aertical axis, the angular momentum
of the system about this axis is conserved. (The proof islainw that given in
Example 11.8.) Thud ¢ - k is conserved, wher€ is the centre of the disk arid
is the unit vector pointing vertically upwards.

Figure 11.1 shows the system before and after the impact.

(i) Before the impact, the bullet has angular momeniami and the target is at
rest. Hence the initial value df¢ - k ismbu.

(i) After the impact, the target has the unknown angulaogiy 2 and the em-
bedded bullet has speéf2, as shown in Figure 11.1 (right). The final value

of L¢ - k is thereforenb (b2) + (%Mcﬂ) Q.
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Since the angular momentub - & is conserved, we have

(mb2 + %Maz) Q = mbu,
from which it follows that, after the impact, tl@gular velocity of the target is

. 4mbu
 Ma? + 4mb?’

Thekinetic energy of the system after the impact is then given by
T = Lib)2 + L (Lara2) Q2
= % (Ma2 + 4mb2) Q?

2m2b%u?
Ma? + 4mb?’

on using the calculated value @f Theloss of energyin the impact is therefore

T 2m?b2u?
== am = e e
mMa*u?

2 (Ma2 + 4mb2) .
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Problem 11.3

A uniform circular cylinder of masd/ and radius: can rotate freely about its axis
of symmetry which is fixed in a vertical position. A light stg is wound around the
cylinder so that it does not slip and a particle of masis attached to the free end.
Initially the system is at rest with the free string taut,ikontal and of lengtlh. The
particle is then projected horizontally with speedt right angles to the string. The
string winds itself around the cylinder and eventually thetigple strikes the cylinder
and sticks to it. Find the final angular speed of the cylinder.

Solution

af
~
’ Qs
Q
y |
.
Initially After impact

FIGURE 11.2 The system in problem 11.3 (viewed from above).

Since the cylinder ismoothlypivoted about aertical axis, the angular momen-
tum of the system about this axis is conserved. (The proafrigas to that given in
Example 11.8.) Thud ¢ - k is conserved, wheré€ is the centre of the cylinder and
k is the unit vector pointing vertically upwards.

Figure 11.2 shows the system initially and after the impact.
(i) Before the impact, the particle has angular momentuba and the cylinder
is at rest. Hence the initial value é&f¢ - k ismbu.

(i) After the impact, the cylinder has the unknown angulafoeity 2 and the
attached particle has speef, as shown in Figure 11.2 (right). The final

value of L ¢ - k is thereforena(a?) + (%Mcﬂ) Q.
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Since the angular momentub - & is conserved, we have

(ma2 + %Ma2> Q = mbu,
from which it follows that, after the impact, tl@gular velocity of the cylinder is

. 2mbu .
(M +2m)a?
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Problem 11.4 Rotating gas cloud

A cloud of interstellar gas of total magd can move freely in space. Initially the
cloud has the form of a uniform sphere of radiusotating with angular spee@®
about an axis through its centre. Later, the cloud is obsetwéave changed its
form to that of a thin uniform circular disk of radidswhich is rotating about an
axis through its centre and perpendicular to its plane. Eiecangular speed of the
disk and the increase in the kinetic energy of the cloud.

Solution

Since the gas cloud is asolatedsystem, the angular momentuby; is conserved,
whereG is its centre of mass. For simplicity, we will suppose thattiotion of the
cloud is viewed from an inertial frame in which is at rest.

Initially, the cloud is a uniform sphere of radiugotating with angular speed
about a fixed axis througi. Its angular momentum is therefore

Lo = (1Ma®) 2k,

wherek is a unit vector pointing along the rotation axis. Later,d¢lwid is a uniform
disk of radiush rotating with unknown angular speél about a fixed axis through
G perpendicular to the plane of the disk. The angular momerdfithe cloud in
this configuration is

Lo = (§Mb*) QK

wherek’ is a unit vector pointing along the new rotation axis.
Since the angular momentuby; is conserved, we therefore have

IMa*Qk = 1MbP*Q'K.

Hencek’ = k (that is, the two rotation axes must be the same) and theangwlar

speedof the cloud is
, (4ad?
Q= (—sz Q.
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The increase in thkinetic energy of the cloud is then given by

AT =4 ($mb?) @2 -} (3ma?) @2

402\’
szw(aﬁ)sf—nggz
Ma? (4a* — 5b%) Q2
= .
25h2
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Problem 11.5 Conical pendulum with shortening string

A particle is suspended from a support by a light inexterssiling which passes
through a small fixed ring vertically below the support. ikl the particle is per-
forming a conical motion of angl€0°, with the moving part of the string ef. The
support is now made to move slowly upwards so that the mogomams nearly
conical. Find the angle of this conical motion when the suppas been raised by
a distance:/2. [Requires the numerical solution of a trigonometric egprat

Solution

FIGURE 11.3 A pendulum in conical motion .

Consider first a true conical pendulum with a strindigédlength/ inclined at
aconstantangley to the downward vertical. What is its angular momentum about
the axis{O, k} (see Figure 11.3)? Newton’s equations of motion for the lveb a

0 = T cosy —mg,

mu?

[ siny

= T siny,

whereT is the tension in the string andis the speed of the bob. It follows that

S lgSinzy‘
cosy
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The axial angular momentum of the pendulum is therefore

Lo -k =m(lsiny)u

_m (l?’g)l/2 sin’ y
~ (cosy)!/2

Suppose now that the string is pulled upwards. Since tharedtéorces are
either vertical or act a0, the axial angular momentuihy - k is conserved. The
motion of the pendulum is not now conical but, if the stringigled upslowly; it
remains approximately conical. (Numerical solution of iliéequations of motion
confirms this.) Hence, if the pendulum passes slowly fromragad motion with a
string of lengthz and inclinationx to a nearly conical motion with a string of length
b and inclinations, conservation of angular momentum requires that

m (a3g)1/2 sin* o _m (b3g)1/2 sin’
(cosw)!/2 (cosp)l/z

that is,

adsinffta  b3sintp
cose  cosp

In particular, if the initial inclinatiore = 60° and the final lengtlh = %a, the
final inclination g must satisfy the equation

sintg
cosf

Numerical solution of this trigonometric equation showatth = 84° approxi-
mately.m
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Problem 11.6 Baseball bat

A baseball bat has madg and moment of inertid/ k2 about any axis through its
centre of mas$; that is perpendicular to the axis of symmetry. The bat is st re
when a ball of mass:, moving with speed:, is normally incident along a straight
line through the axis of symmetry at a distadcéom G. Show that, whether the
impact is elastic or not, there is a point on the axis of synmynet the bat that is
instantaneously at rest after the impact and that the distanf this point fromG

is given bybc = k2. In the elastic case, find the speed of the ball after the itnpac
[Gravity (and the batter!) should be ignored throughow tiuestion.]

Solution
(M N
e ® — U V<@
b Q
G G
L 5 t Sl
k
1—— ’i, ° C
@) @)
Before impact Immediately after impact

FIGURE 11.4 The ball and the bat in problem 11.6 .

Since the system is assumed toig@ated its linear momentum is conserved.
Initially, the ball has linear momentumui and the bat is at rest. Hence the initial
value of P is mui . Immediately after the impact, the motion is assumed to tizere
form shown in Figure 11.4 (right). The ball has linear momvemt-mvi and the
bat has linear momentud Vi . The final value ofP is therefore—muv + M V)i .
SinceP is conserved, we therefore have

—mv+ MV =mu,
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that is,
mu-+v)y=MYV.

The fact that the system isolatedalso has the consequence thatatgyular
momentum about any fixed point is conserved. We will apply this priheigbout
G, the centre of mass of the bat. SinGeis not a fixed point (nor is it the centre
of mass of the whole system) this needs some justificationatWie are actually
doing is using angular momentum conservation aligytthefixed point of space
occupied byG before the impactin the subsequent motio, will move away from
Gy, but the two points are still coincident immediately aftee impact. The value
of L at this instants therefore the same as that before the impact.

Before the impact, the angular momentum of the ball a@us mbuj and
the bat is at rest. Hence the initial value b§; is mbu j. Immediately after the
impact, the angular momentum of the ball ab6uis —mbvj and that of the bat is
(Mk?)Qj, whereM k? is the moment of inertia of the bat aboGit The ‘final’
value of L ¢ istherefore(—mbv + Mk2§2) j . SinceL ¢ is conserved, we therefore
have

—mbv + (Mkz)Q = mbu.

It follows from these two conservation relations that

Let C be some point on the axis of the bat (see Figure 11.4) and byet the
distanceG C. Thenvc, the forward velocity ofC immediately after the impact, is
given by

ve =V —Qc

bc

The pointC will be instantaneously at restafter the impact ivc = 0, that is, if
bc = k2. [Note that the point that satisfies this equation may not lie within the
bat!]

In the special case in which the impaceisstic the total kinetic energy is also
conserved so that

Ln? 4 1MV? 4 LH(ME?)Q? = L.
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On using the relatio® = bV /k?, this can be written in the form

2 2 b2 2
m(u —v)=M(1—|—P)V .
Since we also have the linear momentum conservation ralatio
m(u+v)y =MV,

it follows that

b2
u—v=(l+p)V.

The last two equations can now be solved for the unknawasd V. In particular,
thevelocity of the ball after the impact is

- (%)
vV = l—l—ﬁ u,

where
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Problem 11.7 Hoop mounting a step

A uniform hoop of masg9/ and radius is rolling with speed/ along level ground
when it meets a step of height(z < «). The particleC of the hoop that makes
contact with the step is suddenly brought to rest. Find tls&amaneous speed of
the centre of mass, and the instantaneous angular veldche doop, immediately
after the impact. Deduce that the parti€lecannot remain at rest on the edge of the
step if

-2
V> (a—h)g(l—i) .
2a

Suppose that the particté doesremain on the edge of the step. Show that the
hoop will go on to mount the step if

-2
V2 > hg (1—£) .
2a

Deduce that the hoop cannot mount the step in the manneilks$d/ > a/2.

Solution

h
t

Before hitting the step Immediately after hitting the step

FIGURE 11.5 The hoop and the step in problem 11.7 .

Consider the angular momentum of the hoop alGuthe corner of the step.
While the hoop is rolling,
Le=M@a—hVij+ (Ma2) Qj
=MQa—-h)Vj,
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on using the rolling condition. When the hoop hits the stBp,dontact particle is
suddenly brought to rest by an impulsive reaction suppliethle step. Since this
reaction acts throug@, its moment about’ is zero. It follows that the value df ¢

is not changedby the impactimmediately after the impact, the angular momentum
of the hoop abou€ is

Le=MaV'j + (Maz) Q
=2MaV’,

since the contact particle is instantaneously at rest. HEbecity V' and angular
velocity Q' are those shown in Figure 11.5 (right). Sinke is unchanged by the

impact, it follows that
V' = (1 — i) Vv
2a

Q/:(l_i)K.
2a )] a

What happens next is not clear. The hauopstleave the floor, but it may or
may not maintain contact with the step. Suppose that, at feaa short time, the
hoop maintains contact with the step without slipping sa thanoves on an arc of
a circle. The centre of mass equation éothen implies that

and hence that

MV
Mgcose — R = ,
a

whereR is the initial reaction of the step (resolved in the directioG), andw is the
angle betweerty C and the downward vertical (see Figure 11.5 (right)). Itdalé
that

R

_ Mgla—h) MV? (1 h )2

a a 2a

Since R must bepositive it follows that the hoop willeave the step immedi-
ately if

h

-2
2
Ve > (a—h)g(l—g) .
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Suppose from now on that

-2
V? < (a—h)g(l—i)
2a

and that the hoop maintains contact with the step (withappsig) until it either
mounts the step or falls back. Nalic is not conserved in this motion because of
the moment of the gravity force aboGt However, theotal energy is conserved.
The hoop willmount the stepif, and only if,

/

V2
ImMv?+1 (Ma2> (—) + Mga> Mg(a+h),
a

that is

-2
V2 > gh (1—£) .
2a

This condition, together with the condition that the hoopwdd maintain contact
without slipping, means that the hoopnnot mount the step(by rolling up it) if

h\ "2 h\ ™2
gh(l—z) >(a—h)g(l—z) ,

thatis, if2 > 1a.m
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Problem 11.8 Particle sliding on a cone
A patrticle P slides on the smooth inner surface of a circular cone of semglec.
The axis of symmetry of the cone is vertical with the veréypointing downwards.
Show that the vertical component of angular momentum abastconserved in the
motion. State a second dynamical quantity that is conserved

Initially P is a distance: from O when it is projected horizontally along the
inside surface of the cone with speed Show that, in the subsequent motion, the
distancer of P from O satisfies the equation

P2 =(r—

2
a) [@ —2g COSOt:| .

Case AFor the case in which gravity is absent, findnd the azimuthal angle
explicitly as functions of. Make a sketch of the path @t (as seen from ‘above’)
whena = /6.

Case BFor the case in which = /3, find the value of: such that oscillates
betweeru and2a« in the subsequent motion. With this valuewgfshow that- will
first return to the value = « after a time

1/2 n2
23 3) §d§ .
(g /1 (5 - D2 -8+ 38)]"?

Solution

The forces acting o® are shown in Figure 11.6 (left). Since the consnisoth
the reactionV is always normal to its surface. The total moment of forcemiab
is

Ko =rx(—mgk)+rxN
and hence
Ko-k=-mg(rxk)-k+ (rxN)-k.
Now the triple scalar product xk) - k is zero since two of its vectors are the same.
Also the triple scalar product x V) - k is zero since its three vectors are coplanar.
ThusK o - k = 0 and hence thaxial angular momentum L o - k is conserved

The fact that the cone is smooth also has the consequendbédhatal energy
of the particle iconserved
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| k
.
—mgk
O O
External forces Velocity diagram

FIGURE 11.6 The cone and the particle in problem 11.8 .

399

The coordinates, ¢ and the corresponding velocity diagram are shown in Fig-

ure 11.6 (right). In terms of these coordinates,
Lo -k = m(r Sina)(r Sinou,z.S)
= msint ar2¢p.

Since the initial value oL ¢ - k is m(a Sina)u, theangular momentum conserva-
tion equation is

sinar2¢ = au.
Similarly, theenergy conservation equations
Im (r'2 + (r sinoui))z) + mg(r cosa) = mu’® + mg(a cosw),
that is,
P2+ Sinzar2¢52 = u? + 2gcosa(a —r).

On eliminatingg between these two conservation equations, we findrtlsat-
isfies the equation

i2=(a—r) (@—cho&x),

as requiredm
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Case A In the special case in which gravity is absent, the equatomn f
becomes

. uZ(},Z_aZ)
= —— -
}’2

so that the motion takes place within the ranger < r < oco. On taking
square roots, we obtain

2 2\1/2
u\r- —a
r:+¥,
r

which is a separable first order ODE foias a function of. On separating
and integrating, we obtain

(r?—a*)'? =ut + C,

whereC is the integration constant. Since= a whent = 0, it follows that
C = 0 and on solving for we find that the¢ime variation of r is given by

1/2
r = (a2 + u2t2> .

The corresponding time variation ¢fcan now be found by substituting this
formula into the angular momentum conservation equatitis gives

sina (a2 + u2t2> ¢ = au,

which is a separable first order ODE f¢ras a function of. On separating
and integrating, we obtain

1 _ [ (ut
SN a

where D is the integration constant. If we suppose that 0 whent = 0,
thenD = 0 and thetime variation of ¢ is given by

¢ = L et (4
"~ sina a)’

The path of the particle whem = 7/6 is shown in Figure 11.7. Sincg
tends tor ast tends to infinity, the path is asymptotically parallel to time
p=m.1
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O »=0

FIGURE 11.7 The path ofP in the absence of gravity when the cone
anglex = 7/6 (viewed from above).

Case B The stationary values afare achieved wheih = 0, that is, when
u’(r + a)
(a—r)| —————2gcosa | =0,
r

which becomes
u’(r + a)
- (B ) o

when the cone angle = n/3. Hencer = a is one stationary value (a
consequence of the initial conditions) and any other statip values must
satisfy the equation

2
r? = u—(r + a).
g

If » = 2a is to be the maximum value achieved bythen it must be a root
of the above equation which in turn implies thet = %ag. With this value
of u (and witha = 7/3), the equation satisfied bythen becomes

.2 &r—a)2a—r)(2a+3r)
" 3r2 '

after some simplification. On examining tlsegn of the right side of this
equation, we see thatmust oscillate periodically betweenand2a, which
is the required result.

It remains to find the period of this motion. In the first halfripd, r is
increasing so that

il

. g\1/2 ((r —a)a—r)(2a + 3r))1/2
P=+(3) r
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which is a separable first order ODE foias a function of. On separating
and integrating, we obtain

f2a rdr _ (5)1/2 fr/z P
a ((r —a)(2a—r)(2a+3r))1/2 3 0
wherert is the period of the oscillations of Hence
3\ /2 [2a rdr
T=2 (—) f 72
g a ((r—a)(2a—r)Q2a+3r))

a\?* 2 £dE
) e
g 1 (E-DR—-8&2+398)

on making the substitution = «&. This is thetime taken for r to first return
to the valuer = a. A numerical integration shows thatx 5.19(a/g)'/?. m
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Problem 11.9 % Bug running on a hoop

A uniform circular hoop of masd/ can slide freely on a smooth horizontal table,
and a bug of mass can run on the hoop. The system is at rest when the bug starts
to run. What is the angle turned through by the hoop when tigehlais completed
one lap of the hoop? [This is a classic problem, but difficépply the angular
momentum principle about the centre of the hoop, usinghthre standardversion
given in Problem 11.1]

Solution

Initially In motion

FIGURE 11.8 The bugB runs around the hoop with centé& Note that the velocity oB
shown is not its absolute velocity but that relativetto

This problem can be solved by using linear and angular mamewbnserva-
tion principles. Since there are no horizontal forces, &mdvertical forces cancel,
the total external force is zero. Hence fiveear momentum is conservedwhich
implies that the centre of massof the system moves with constant velocity. More-
over, since the system starts from rest, this constant iglowst be zero. Hencé
remains at restduring the motion.

We will apply the angular momentum principle aba@utthe centre of the hoop.
SinceC is not fixed (nor is it the centre of mass of tiwhole system this requires
thenon-standardorm of theangular momentum principle given in problem 11.1.
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In the present casdf ¢ = 0 and, if we take the fixed point as origin,R = 0.
The principle then reduces to

Lc = (M + m)exé,

wherec is the position vector of” relative to the fixed origirz. Since

d
cx¢ = —(cxé),

dt

this equation can be integrated with respeat to give
Lc =M +m)exéc+ D,

whereD is the (vector) integration constant. Moreover, since tloéion starts from
rest,L c and¢ are initially zero so thaD = 0. We thus obtain

Lc = (M + m)ex¢é

as our (non-standar@ngular momentum conservation equation

Suppose that initially the bu@ is at a marked poin#l of the hoop, as shown
in Figure 11.8 (left). Suppose also that, after time¢he angle turned through by
the hoop isf while the angular displacement of the brgjative to the hoops «,
as shown in Figure 11.8 (right). (In this figure. the angleanda are shown with
the same sign. This is simply to assist the drawing i$ positive therf will turn
out to be negative!) Theh ¢, the angular momentum of the system abGun its
motion relative taC is

Lc =ma (aé + ad) k + (Ma2> 0k
=a? ((M +m)b + I’l’ld) k,

wherek is the unit vector pointing vertically upwards. Also, sinGedivides the

line CB in the ratiom/ M,
m
= bc,
¢ (M+m) ¢
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whereb ¢ is the position vector of the buglative toC. Hence

2

M = bexb
(M 4+ m)exé (M—l—m) cxbc

_ (Mmjm)a<a9+ad>k
_ (;zﬂm) (é +d)k.

The angular momentum conservation equation is therefore

az((M+m)é+md>k:( ma? )(é+oz)k,

M +m

that is,
(M +2m)8 = —ma,
after a little simplification. On integrating with respeot/{ we obtain

(M +2m)0 = —ma + D,

where D is the integration constant. Sinée= 0 andae = 0 whenz =0, D =0

and the solution fof is

9__(L
- M +2m @

This is the angle turned through by the hoop when the bug hamnadd to angular

405

displacementr. In particular, when the bug has completed one lap of the hoop

a = 27 and theangle turned through by the hoopis

2nm
M +2m

in theoppositedirection to the bug. Note that this result is independethedetails

of the bug’s motionm
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Problem 11.10 General rigid pendulum

A rigid body of general shape has mags and can rotate freely about a fixed
horizontal axis. The centre of mass of the body is distanitem the rotation axis,
and the moment of inertia of the body about the rotation axik iShow that the
period of small oscillations of the body about the downwardikbrium position is

I 1/2
by 3 .
n(Mgh)

Deduce the period of small oscillations of a uniform rod ofgéh2a, pivoted about
a horizontal axis perpendicular to the rod and distanfrem its centre.

Solution

FIGURE 11.9 Arigid body of general shape
rotates freely about a fixed horizontal axis
throughO.

Since the body is constrained to rotate about a fixed axisir®, its equation
of motion is the planar angular momentum principle

dLo

—— = Kp.
d ©

Since the body ismoothlypivoted atO, the only contribution to thplanar moment
Ko is from the gravity force so that

Ko =(hsind)Mg
= Mghsin6d
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(see Figure 11.9). Thalanar angular momentum L is
Lo=—-16,

where! is the moment of inertia of the body about the rotation axisreHve are
using the sign convention thatockwisemoments, angular velocities and angular
momenta ar@ositive

Theequation of motionis therefore

4 ré = Mghsind,
di

that is,
b+ (Tgh) sing = 0.

For oscillations of small amplitude, this can be approxedaty thelinearised
equation

.. M
b + (—gh) 0 =0,
1
which is the SHM equation witR? = M gh/I. Theperiod r of small oscillations

of the body is therefore
I 1/2
=27 | —
’ H(Mgh) ’

For the particular case of the rod= » and

as required.

I=4Ma®+ Mb> = 1M (@ +30%)

so that

a* + 3b? 1/2
T = 27'[ _ N |
( 3gb )
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Problem 11.11 From sliding to rolling

A snooker ball is at rest on the table when it is projected &odwvith speed/
and no angular velocity. Find the speed of the ball when ibaly begins to roll.
What proportion of the original kinetic energy is lost in {icess?

Solution

FIGURE 11.10 The snooker ball moves in

contact with the table but is not necessar-

ily rolling. Vertical forces are omitted for > X
clarity.

Since the ball moves horizontally, iganar equations of motionreduce to

M = ,
dt x
1% _ g
Gd[ - Gs
that is,
My =X,

IMa*o = —aX,

wherev, ® and X are shown in Figure 11.10. Here we are using the sign corenti
that clockwisemoments, angular velocities and angular momentgasitive On
eliminating the unknown frictional forc&’, we find that

v+ %ad) =0
and, on integrating with respect tpwe obtain

v—|—%aa)=C,
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whereC is the integration constant. Initially, = V andew = 0 so that C = V. We
have thus established the non-standamdservation principle

v+ %aa) =V
which holds in the subsequent motion whether the ball sideslls.

Suppose that thieall eventually rolls with speedV’. By the rolling condition,
its angular velocity will then b&” /a. Then, from the conservation principle,

V/
V+%a(;)=K

so that thespeed of the ball when rollingmust be
V' =23V.

The final kinetic energy of the ball is therefore
7”:5MV”+§($M&)(%02
=LMV'"
= fm (3v)
=ZMV?
=27,

whereT is theinitial kinetic energy. Hence theall Ioses% of its kinetic energyin
the transition from sliding to rollingm
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Problem 11.12 Rolling or sliding?

A uniform ball is released from rest on a rough plane incliaé@nglex to the
horizontal. The coefficient of friction between the ball ahd plane is«. Will the
ball roll or slide down the plane? Find the acceleration eflihll in each case.

Solution

F
FIGURE 11.11 The ball and the inclined
plane in problem 11.12. «a
Theplanar equations of motionare
dt - X
M = F,,
dt ?
19—k
G dl - Gs

where thex-axis pointsdownthe plane. In the present problem, these equations give
Mv= Mgsina — F,
0=N— Mgcosu,
%Mazd) =af,
wherev, o, F andN are shown in Figure 11.11. Here we are using the sign conven-

tion thatclockwisemoments, angular velocities and angular momentgasgive
The second equation shows that, in all cases, the normdiageat = M g cosa.
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Rolling Suppose that the ball rolls down the plane. Then, by thengplli
condition, when the velocity of the ball is, its angular velocity must be
v/a. In this case, the third equation of motion givEs= %Mi) and the first
equation then gives theccelerationof the ball to be

. 5 .

U = zgsina.

The requiredrictional force F is therefore

F

2 .
ZMg sina.
Thus, in any period of rolling,

F 2
N = 7tan01

Hencerolling is impossible at any stage of the motion if the coefficient of
friction © < %tanoc. Conversely, ifu > %tana and the motion starts from
rest, then the ball will roll.m

Sliding Suppose now that < %tana so that the ball always slides. In this
case,l’ has its maximum value, that is

F=uN
= uMg cosa.

The first equation of motion then gives taecelerationof the ball to be

v = (Sine — uCcoSx)g. m
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Problem 11.13

A circular disk of massM/ and radius: is smoothly pivoted about its axis of sym-
metry which is fixed in a horizontal position. A bug of magsuns with constant
speedu around the rim of the disk. Initially the disk is held at restlds released
when the bug reaches its lowest point. What is the condihiahthe bug will reach
the highest point of the disk?

Solution

FIGURE 11.12 The bug and the disk in
problem 11.13.

We solve this problem by using the planar angular momentuncipte

dLo
=Y _K
dt 0

applied to thewvhole systenof the diskandthe bug.

Let ¢ be the angular displacement of the bug at tiqmaeasured from the down-
ward vertical and letf be the angle turned through by the disk at this instant, mea-
sured in theoppositedirection to¢ (see Figure 11.12). Since the bug moves with
speed relative to the diskits velocity relative to a fixed reference frameuis- a6.

The planar angular momentuhy is then

Lo =—ma (u —aé) + (%Ma2> 0.

Here we are using the sign convention thetckwisemoments, angular velocities
and angular momenta apesitive Since the disk is smoothly pivoted @, the only
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contribution to theplanar moment Ko is from the gravity force so that

Ko = (asing)mg
= mgasing.

Theequation of motionis therefore

d . . .
oh (—ma(u —ab) + (%Ma2)9> = mgasing,
which, sincex is constant, simplifies to give

(M + 2m)abl = 2mg sing.

Since the bug runs with constant speedndd = ¢ = 0 whens = 0, it follows
that

a0 + ¢) = ut
and hence that = —¢. Henceyp satisfies the equation
(M + 2m)ad = —2mg sing,

which is the equation for large amplitude pendulum motiohe Titial conditions
are¢ = 0 and¢ = u/a whent = 0.

In order to find if the bug reaches the top we need to integhegesjuation. On
multiplying through byy and integrating, we obtain the ‘energy’ equation

1M + 2m)a¢? = 2mg cosp + C,

whereC is the integration constant. Sin¢e= u/a wheng = 0,

2
u
C=1iM+ 2m)7 —2mg

so thaty satisfies the first order ODE
(M + 2m)a2q§2 = (M + 2m)u® —4mga(1l — cosg).

If the bug is to reach the top of the diﬁ?,must remairpositivefor 0 < ¢ < .
This requires that

(M + 2m)u® —4mga(l —cosp) >0 for 0<¢p <uxu
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which is satisfied if, and only if,
(M + 2m)u® > 8mga.

Hence, the bugyill reach the top of the disk if, and only if,

2 8mga
M +2m’
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Problem 11.14 Yo-yo with moving support

A uniform circular cylinder (a yo-yo) has a light inextenlgilstring wrapped around
it so that it does not slip. The free end of the string is fasteto a support and the
yo-yo moves in a vertical straight line with the straighttpdithe string also vertical.
At the same time the supportis made to move vertically haupward displacement
Z(t) attimet. Find the acceleration of the yo-yo. What happens if theesystarts
from rest and the support moves upwards with accelerggon

Solution

Mg
Forces Velocities

FIGURE 11.13 The yo-yo with a moving support.

Since the yo-yo moves vertically, idanar equations of motionreduce to

dVZ
= F,,
dt z
140 _ g
Gdl_ G7
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that is,
Mio=Mg—T,
%Mazd) =aT,
wherev, w andT are shown in Figure 11.13. Here we are using the sign cororenti

that clockwisemoments, angular velocities and angular momentgasitive On
eliminating the unknown string tensidn, we find thatv andw are related by

U+ tad = g. (1)

Since the string does not slip on the yo-yo, the velocity &f pointC of the
string must be equal to the velocity of the particle of theyygowith which it is in
contact. This implies that

Z =daw —V
and hence

Z =aw—1. (2)
Equations (1) and (2) can now be solved fcand® which gives

v=20-17

aw = +27

Wi Wi
Wl W=

g

g
. . 2 1 b

Thus the downwardacceleration of the yo-yas $¢ — 3 Z.

In particular, whenZ = 2g, v = 0 so that the yo-yo moves witbonstant
velocity. m
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Problem 11.15 Supermarket belt

A circular cylinder, which is axially symmetric but not uaiin, has mas4/ and
moment of inertiaM k2 about its axis of symmetry. The cylinder is placed on a
rough horizontal belt at right angles to the direction in eththe belt can move.
Initially the cylinder and the belt are both at rest when te# begins to move with
velocity V(¢). Given that there is no slipping, find the velocity of the oder at
timer.

Explain why drinks bottles tend to spin on a supermarket(oetead of moving
forwards) if they are placed at right-angles to the belt.

Solution

F

.V

FIGURE 11.14 The cylinder and the beltin problem 11.15. Vertical forces
have been omitted for clarity.

Since the cylinder moves horizontally, pganar equations of motionreduce

to
de
=F ,
dt x
dw
Ic— = Kg,
G G
that is,
Mv=F,

Mk?*(—&) = —aF,

wherev, w and F are shown in Figure 11.14. Here we are using the sign cororenti
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that clockwisemoments, angular velocities and angular momentgasitive On
eliminating the unknown frictional forcé&’, we find that

atv —k*o =0
and, on integrating with respect tpwe obtain
av —k*w = C,

whereC is the integration constant. Since the cylinder is iniyiall rest,C = 0 and
hencev andw are related by

av —k*w = 0.

Since the cylinder does not slip on the belt, the velocityheflielt must be equal
to the velocity of the particles of the cylinder with whichgtin contact. This implies
that

V =v+aw.

These two equations can now be solvedif@ndw which gives
k2
= —)V
v (a2 + k2)

a
w = 7a2+k2 V.

This is thevelocity (and angular velocitydf the cylinder at timez.

The drinks bottle is not a rigid body since it is filled with awviscid fluid (ex-
pensive water!). When the bottle begins to rotate, the wetetly moves for several
revolutions. The effect is that the bottle and its contematgehasmall moment of in-
ertia, that is,k < a. In this case, the above formulae imply thakg V while
o ~ V /a. Thus thebottle spins on the beltinstead of moving forwardm
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Problem 11.16 % Falling chimney

A uniform rod of length2a has one end on a rough table and is balanced in the
vertically upwards position. The rod is then slightly disted. Given that its lower
end does not slip, show that, in the subsequent motion, thke @nthat the rod
makes with the upward vertical satisfies the equation

2a6* = 3g(1 — cosb).

Consider now the thepper partof the rod of lengti2ya, as shown in book Figure
11.15. LetT', S and K be the tension force, the shear force and the couple exerted
on the upper part of the rod by the lower part. By considerivegupper part of the
rod to be a rigid body in planar motion, find expressionsf¥and K in terms of6.

If a tall thin chimney begins to fall, at what point along iength would you
expect it to break first?

Solution

Forces Velocities

FIGURE 11.15 The falling rod in problem 11.16.

The first part of the problem is a straightforward applicatid energy conser-
vation applied to thevhole rod This gives

%M <a9'>2 + % (%Maz) 0% + Mgacosh = E,

whereE is the constant total energy. Since the rod starts from netbta vertically
upright position,E = M ga and theenergy conservation equatiorbecomes

2a6* = 3g(1 — cosb), 1)
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as required.

Condider now the planar motion of tnpper segmeruf the rod shown in Figure
11.15. The planar equations for the centre of mass of the eseigimthe radial and
transverse directions are

(yM)(2 - y)ab)’
2—y)a

(yM)(a(2—y))0 = (yM)gsing — S,

and the planar angular momentum equation about the centnass is

=T + (yM)g cost,

(36M)(ya)*) b = K + (va)s.

Here,y (as defined in the problem) is the ratio of the length of therssg to the
length of the whole rod. These three equations can be sobvidd the stress and
couple resultantg’, S and K. This gives

T =yQ2—y)Mab* — yMg cosh,

S =yMgsind —y(2—y)Mab,

K = %y2(3 —y)Mda*6 — y> M ga sind.

We now wish to expresg, S and K in terms of the anglé alone. Nowé? is
already given as a function éfby the energy equation

6% = ;—g(l — cosb).
a

Moreover, if we differentiate this equation with respect tove find thatd is given
by

. 3
i = 25 sing.
4a

On making use of these relations, we find that stressand couple resultants
exerted on the segment are given by

T=1y(3(2—y)—(8—3y)cost)Mg,
S =3yBy —2)Mgsing,

K = %]/2(1 —y)Mgasinéb.
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We model the chimney as a long thin rod whose base does notfstie rod is
weak (as brick-built chimneys are), it will fracture at thamt where thecouple re-
sultant K is largest. This is because the interpaintwisestresses in the rod due to
resultants”, S andK are of orders) (7'/ ), O (S/h) andO (K / h*) respectively,
wherer: is the thickness of the rod. Singas small, the pointwise stresses duekio
predominate. The variation & along the rod is determined by the function

f=y*A-y),

which is positive fory in the range) < y < 1. Elementary calculus shows that
achieves its maximum value when= % which is one third way up the rod from
the baseWe therefore expect the chimney to break by bending onevtiaiydip from
the base Qualitatively, this is what is observed when tall brickiibahimneys are
demolished. Real chimneys are tapered however and the detuding point is a
little higher than that predicted our simple theory (seepthetograph below)m

FIGURE 11.16 The 120 ft chimney of the former Co-op brush
factory at Wymondham, Norfolk being demolished in 1988.
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Problem 11.17 Leaning triangular panel

A rough floor lies in the horizontal plane = 0 and the planes = 0, y = 0
are occupied by smooth vertical walls. A rigid uniform trgautar paneld BC has
massm. The vertexA4 of the panel is placed on the floor at the poiat 2, 0)
and the vertices3, C rest in contact with the walls at the poin® 1, 6), (1,0, 6)
respectively. Given that the vertekdoes not slip, find the reactions exerted by the
walls. Deduce the reaction exerted by the floor.

Solution
Z
A B N j
Nzt
FIGURE 11.17 The triangular panel in prob- o €T
lem 11.17. Mgk

Leta, b, ¢ be the position vectors of the verticds B, C relative to the origin
0. Then

a=2i +2j,
b=j+6k,
c=1i + 6k,

andR, the position vector of the centre of massis given by

R=3(@+b+c)
=i+ j+4k.

Since the walls aremooth the reactions they exert are perpendicular to their
surfaces. Hence the reactionshaandC are in thei - and -directions respectively.
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Let the reaction a3 be Npi and the reaction af' be N¢j. We now apply the
equilibrium conditions.

(i) The equilibrium conditionF = 0 gives
X + Npi + Ncj— Mgk =0,

where X is the reaction of the floor. (The reactidh need not be vertical
because the floor is rough.) This equation merely serves terrdame X
onceNg andN¢ are known.

(i) The equilibrium conditionk 4 = 0 gives
O0xX + (b —a)x(Npi)+ (¢ —a)x(Ncj)+ (R—a)x(—Mgk) = 0.
On substituting in the values af b, ¢ and R, this condition reduces to
(Mg —6N¢c)i +(6Np—Mg)i + (Np— Nc)k = 0.

Since{i, j, k} is a linearly independent set of vectors, this relation cald h
only when all the coefficients are zero, that is, when

Mg —6N¢ =0,
6Np— Mg =0,
Ng— N¢ = 0.

Thus we must satisfy three linear equations in only two umkre However,
the equationsre consistent and the solution is

Np = éMg,
Nc =1iMg.

These are the requiredactions at the walls

Now thatNp and N¢ are known, the conditiof¥ = 0 reduces to
X+1iMgi+1iMgj— Mgk =0
so that theeaction at the floor is

X=—-1Mgi—iMgj+ Mgk.m

© Cambridge University Press, 2006



Chapter 11 The angular momentum principle 424

Problem 11.18 Triangular coffee table

A trendy swedish coffee table has an unsymmetrical trisargylass top supported
by a leg at each vertex. Show that, whatever the shape ofiimgtriar top, each leg
bears one third of its weight.

Solution

N k

L
l

n
1
G
[
[}

O‘ M¢k

FIGURE 11.18 The table in problem 11.18.

Let the triangle have vertice3, A, B and leta, b be the position vectors of the
verticesA, B relative to the originO. ThenR, the position vector of the centre of
massG, is given by

R=3(0+a+b)
= 1(a + b).

Let the reactions af, 4, B be Nok, N 4k, Nk respectively. We now apply
theequilibrium conditions.

() The equilibrium conditionF = 0 gives
Nok + Nsk + Ngk — Mgk = 0,
that is

No+ N4gs+ Np=Mg.
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This simply means that the sum of the reactions must balameaveight
force.

(i) The equilibrium conditionk o = 0 gives
0x(Nok) +ax(N4k) + bx(Ngk) + Rx(—Mgk) = 0,
that is,
[(Na—iMg)a+ (Np—3Mg)b|xk =0,

on using that fact thakR = %(a + b). This equation is satisfied only when
the expression in the square brackets is zero, that is, when

(Ng—iMg)a+ (Np—1Mg)b =0.

Furthermore, since, b are linearly independent vectors, this last relation is
satisfied only when both the coefficients are zero, that igrwh

Ng—1iMg=0,
Np—iMg=0.
HenceN4 = Np = 1 Mg.

Thus the legs adt and B each bear one third of the weight and the first equilib-
rium condition then implies thaVp = %Mg. Henceeach leg bears one third of
the weight m
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Problem 11.19 Pile of balls

Three identical balls are placed in contact with each othex borizontal table and
a fourth identical ball is placed on top of the first three. Bhbat the four balls
cannot be in equilibrium unless (i) the coefficient of frictibetween the balls is at
least+/3 — +/2, and (i) the coefficient of friction between each ball and thble is
atleastl (v/3 — v2).

Solution

FIGURE 11.19 The balls in problem 11.19Left The lower three balls seen from abouight
The upper ball andneof the lower balls seen from the side. Gravity forces are wiifor clarity.

Consider first the equilibrium of one of the lower balls. Rataal equilibrium
implies thatF; = F, (see Figure 11.19 (right)) and we will denote the common
value of these forces b¥. Horizontal and vertical equilibrium then imply that

Ny sina — F — Fcosa =0,
Ny — Nycosa — Mg =0,

whereq is the angle shown in Figure 11.19 (right). We will show lateata =

sin~! \/g but it is easier not to use this fact at the moment.

Now consider the equilibrium of the upper ball. Vertical giguium implies
that

3N,cosx + 3F sina — Mg =0,
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while horizontal and rotational equilibrium are automalig satisfied by symmetry.
We thus have three equations for the unknown forégsV, and F. On solving,
we find that

Fo Mg sina
~ 3(1 4 cosa)’

N] = %Mg,

N, = 1Mmg.

(The formulaN; = %Mg follows immediately from the vertical equilibrium of the

whole system of four balls. The formul, = %Mg does not seem to have a simple
explanation.) Hence

F . sina
Ni  4(1 + cosa)’
F sina

N, 1+ cosa’

It follows that if 7 is the coefficient of friction between each ball and the tadnhel
wup is the coefficient of friction between any two balls, ther, tiee balls to be in
equilibrium, the inequalities
sina

>,

4(1 + cosw)

Sina

>,

1 + cosu

KT

"B

must both be satisfied.
It remains to evaluate the angle In Figure 11.19 (left)4 BC is an equilateral
triangle of sid€2« and M is its median centre. Then

2a
AM = 24N = %(v3a) = ek
This is the same distanceM shown in Figure 11.19 (right). Hence

. 1
SN = —— = —

AD 3

COoSx = \/5
=V3
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On substituting in these numerical values, we find tfatthe balls to be equilib-
rium, the inequalities

nr >4 (V3-2) ~ 008,
pup>+3—-+22032

must both be satisfied. Tennis balls can be stacked in this bvaysnooker balls
cannotm
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Problem 12.1

A bicycle chain consists aV freely jointed links forming a closed loop. The chain
can slide freely on a smooth horizontal table. How many degd freedom has
the chain? How many conserved quantities are there in theonitWhat is the
maximum number of links the chain can have for its motion tabt&ermined by
conservation principles alone?

> T

FIGURE 12.1 Generalised coordinates for anclosed
chain with NV links.

Solution

Suppose first that the chainisclosedas shown in Figure 12.1. Then the Cartesian
coordinatescg, yo together with the angles, 0,, .. .0n are sufficient to determine
its position on the table. Since these variables are alseperadent, they are there-
fore a set of generalised coordinates for the unclosed chiie unclosed chain
with N links therefore ha®v + 2 degrees of freedom.

Now suppose that the chaindtosed The previous coordinates still specify the
position of the chain, but now they are not independent siheepoint Py must
coincide with the pointPy,. The Cartesian coordinates Bfy are given by

XN = Xo +acost; +acosf, + -+ + acosby,
YN = Yo +asinfy +asinb, + --- + asinby,
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and so the old coordinates must satisfy the two functionatiocas

acost; +acosfy + -+ + acosby =0,
asinfy +asinf, + ---+asinfy = 0.

These functional relations reduce the number of degreezefldbm by two so that
theclosed chainhasN degrees of freedom.

There are four conserved quantities, namely, the linear ambam components
Py, P,, the angular momentum componeht (about any fixed point on the ta-
ble) and the kinetic energy. These are sufficient to determine the motion of an
unclosed chainwith two links, or aclosed chainwith four links. m
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Problem 12.2 Attwood’s machine

A uniform circular pulley of mas&m can rotate freely about its axis of symmetry
which is fixed in a horizontal position. Two masses3m are connected by a light
inextensible string which passes over the pulley withowipshg. The whole sys-
tem undergoes planar motion with the masses moving vdstiCEdke the rotation
angle of the pulley as generalised coordinate and obtairelbgg’s equation for the
motion. Deduce the upward acceleration of the mass

2

2

FIGURE 12.2 The velocity diagram for the °
single Attwood machine. at

Solution

Let 6 be the rotation angle of the pulley measured from some nefereonfigura-
tion. Then the velocity diagram is shown in Figure 12.2. Kmetic energy of the
system is

N\ 2 N\ 2 )
%m (a@) + %(31%) (a@) + % (%(Zm)az) 62

_ 5 272

= yma“6

and thepotential energyrelative to the reference configuration is

V =mg (ad) + (3m)g (—ab)
= —2mgab.
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Lagrange’s equationfor the system is therefore

d .
7 <5ma29> — 0 =2mga,
that is,

ab = %g.

Theupward accelerationof the massn is therefore%g. [
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Problem 12 .3 Double Attwood machine

A light pulley can rotate freely about its axis of symmetryighis fixed in a hor-
izontal position. A light inextensible string passes over pulley. At one end the
string carries a masbn, while the other end supports a second light pulley. A sec-
ond string passes over this pulley and carries magsasd4m at its ends. The
whole system undergoes planar motion with the masses maarigally. Find
Lagrange’s equations and deduce the acceleration of edhk afasses.

[ ]
T
1: T
T 4dm
—xr+y
y T
T m
FIGURE 12.3 The coordinates and velocity 4dm
diagram for the double Attwood machine. l
Note that the displacement is measured . .
relative to the centre of the lower pulley. r+vy

Solution

Let x be the upward displacement of the first mdss, and lety be the upward
displacement of the massmeasured relative to the centre of the lower pullEgen
the velocity diagram is shown in Figure 12.3. Thiretic energy of the system is

T = L@m)x? + im (=x + )* + 1@4m) (& + »)°
=1m (95c2 + 61y + 5)'/2>
and thepotential energyis

V = (4m)gx + mg(—x + y) —4mg(x + y)
= —mgx —3mgy.
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Lagrange equationsfor the system are therefore

d

— (9% +3)) =g.

7 ( V) =g

d (Bx +59) =3

J— X — S

di Y g
that is,

9X + 3y = g,
3X + 5y = 3g.

These simultaneous linear equations have the solution

The accelerationsof the three masses are thereftérg downwards% g upwards,
and3 g downwardsm
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Problem 12.4 The swinging door

A uniform rectangular door of widtBa can swing freely on its hinges. The door
is misaligned and the line of the hinges makes an amgléth the upward vertical.
Take the rotation angle of the door from its equilibrium piosi as generalised co-
ordinate and obtain Lagrange’s equation for the motion.ugedhe period of small
oscillations of the door about the equilibrium position.

FIGURE 12.4 The door is pivoted about the
fixed axisOA which makes an angle with
the upward vertical. The anglé is the
opening angle of the door from its equilib-
rium position.

Solution

Let{i’, j’, k’} be a standard set of basis vectors witlalong the line of the hinges
andi’ along the equilibrium position of the bottom edge of the d@srshown in
Figure 12.4; the unit vectdr points vertically upwards. Let be the opening angle
of the door. Then thk&inetic energy of the door is

T = 11046%
=1 (3Ma® + Ma?) 67
= %Mazéz.
To find thepotential energy of the door we need to find the vertical displace-
ment of the centre of mags when the door is opened. Relativedq the position

vector of G isai’ + bk’ in the equilibrium position and cosfi’” + asin6 j’ + bk’
in the open position. The displacement@fwhen the door is opened through an
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angled is therefore
a(cosf — 1)i’ +asinfj’.

Thevertical componenof this displacement is

(a(cose 1)’ + asinej') k = a(cosb — 1)(i’ - k) + asind(j’ - k)

=a(cost — 1)(—sina) + 0
= asina(l — cosh).

The potential energy of the door is therefore
V = Mgasina(l — cosf).
Lagrange’s equationfor the door is therefore
%Ma2§ = —Mgasinasinf,

that is

b+ (3g5'n°‘) sing = 0.
4a

This is the equation for large oscillations of the door. Tineadrised equation for

small oscillations is

j+ (3gsina) 9—0
4a

and theperiod of small oscillations is therefore

1/2
a
v/ - .u
(3gSIna)
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Problem 12.5

A uniform solid cylinderC with massn and radius: rolls on the rough outer surface
of a fixed horizontal cylinder of radius. In the motion, the axes of the two cylin-
ders remain parallel to each other. lBebe the angle between the plane containing
the cylinder axes and the upward vertical. Takéhgs generalised coordinate, ob-
tain Lagrange’s equation and verify that it is equivalentht® energy conservation
equation.

Initially the cylinderC is at rest on top of the fixed cylinder when it is given
a very small disturbance. Find, as a functionfofthe normal component of the
reaction force exerted an. Deduce tha€ will leave the fixed cylinder wheA =
cos 1(4/7). Is the assumption that rolling persists up to this momesmtgtc?

v

FIGURE 12.5 A uniform solid cylinderC of radiusa rolls on the rough
outer surface of a fixed horizontal cylinder of radius

Solution

Letv the velocity of the centre of mass of the cylinderandw its angular velocity.
Thenv = (a 4+ b)6 and, by the rolling condition,

a
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Thekinetic energy of C is therefore

T = %mv2 + %IG w?

1 2in 1 (1 2\ (4FDY s
= Im(a+b)0% + § (Sma?) o

a
= %m(a + b)%62.
Thepotential energyof C (relative to the centre of the fixed cylinder) is
V =mg(a + b) cosb.
Lagrange’s equationfor the cylinder is therefore
3m(a + b)*6 = mg(a + b)sing,
that is,

b= 25
"~ 3(a+b)

Theenergy equation” +V = E is

sing.

%m(a + b)%62 4+ mg(a + b)cost = E,

which, on differentiation with respect tq gives Lagrange’s equation. The two
equations are therefore equivalent.

On using the initial conditiond = 0 andé = 0 whens = 0 we find that the
total energyE is given by

E =mg(a+b),
and the energy equation becomes

. 4g
2
= ——"—(1—cosh).
3(a + b)( )
To find whenC leaves the fixed cylinder, we need to find the normal reaction
N that it exerts orC. To do this we apply the centre of mass form of the linear
momentum principle. Iteormalcomponent gives

muv?

a+b
_ m(a+ b)262
N a+b
= 32mg(1 — cosh),

mgcost — N =
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on using the energy equation. It follows that

N = tmg(7cost —4).
The cylinderC will leave the fixed cylinder whei = 0, that is, wherf = cos™! %,
which is approximately5°.

The assumption that rolling persists up to this moment is@alistic. For any
finite coefficient of friction, slipping will occur firstm
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Problem 12.6

A uniform disk of massM and radius: can roll along a rough horizontal rail. A
particle of mass is suspended from the centteof the disk by a light inextensible
string of lengthh. The whole system moves in the vertical plane through tHe rai
Take as generalised coordinatesthe horizontal displacement @f, and @, the
angle between the string and the downward vertical. Obtagrange’s equations.
Show thatx is a cyclic coordinate and find the corresponding consenau@mtum
Px- 1S px the horizontal linear momentum of the system?

Given that? remains small in the motion, find the period of small osditias of
the particle.

b .

bo

FIGURE 12.6 The velocity diagram for the A .
system in Problem 12.6. xz

Solution

The velocity diagram for the system is shown in Figure 12.61 &pplying the
rolling condition, the angular velocity of the disk is given byw = x/a. The
kinetic energy of the disk is

<\ 2
. R .
%sz + % (%Ma2> (;) = %sz.
and the kinetic energy of the patrticle is
Lm (xZ + (b0)? + 2x(b) cose) .
The totalkinetic energy of the system is therefore

T =3Mi*+1im (xZ + b20% + 2b%0 cos@) .
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Thepotential energy of the system (relative to the centre of the disk) is
V = —mgb cosh.

SincedT /dx anddV /dx are both zero, the coordinateis cyclic. The con-
served momentump, is

T
Toox

= 3 M + m(x + b6 cosh).

DPx

This isnotthe same as the horizontal component of linear momentunchasi
Mx + m(x + b cosh).

Lagrange’s equationsfor the system are therefore

d 3 . . A
- <5Mx Fmx + b cos@)) —0=0,

% (mb29' + mbs cos@) _ (—mbxé sin@) — —mgb siné.

On expanding these equations and eliminatinge find that? satisfies the equation

(BM +2m)g

(3M + 2msin 9) § + 2m siné cos 62 + ( ;

) sing = 0.

This is the equation for large oscillations of the partidlbe linearised equation
for small oscillations is

. BM +2m)g B
9+( 3D 0=0

and theperiod of small oscillations is therefore

3IMb 1/2
27 ———mMmM— .H
((3M + 2m)g)
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Problem 12.7

A uniform ball of massn rolls down a rough wedge of madg and anglex, which
itself can slide on a smooth horizontal table. The wholeesystindergoes planar
motion. How many degrees of freedom has this system? Obtairahge’s equa-
tions. For the special case in whidd = 3m/2, find (i) the acceleration of the
wedge, and (ii) the acceleration of the ball relative to tleslge.

FIGURE 12.7 The coordinates and the velocity diagram from the systemablem 12.7

Solution

The velocity diagram for the system is shown in Figure 12.h &plying the
rolling condition, the angular velocity of the ball is given byv = y/a. The total
kinetic energy of the system is

.\ 2
T = M2 + fm (%2 + §% + 255 cosa ) + 4 (3ma?) (Z)
=1iMx*+ Im ()'cz + 17+ 2>‘cy'cos<x)

and thepotential energy of the system (relative to the reference position) is

V = —mgy sina.
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Lagrange’s equationsfor the system are therefore
i(Mfc +omx + cosay')) —0=0,
dt

d

- (%my +m005a5c) — 0 = mg sina.

For the particular case in whicll = %m these equations become

5% +2cosey =0,
5cosux + 7y = 5g sina,

which give the requiredccelerationsto be

2g Sina CoSw . 5gsina

o ’ _ _ogsine
v 7 —2cos o Y 7 —2cos o
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Problem 12.8

A rigid rod of length2a has its lower end in contact with a smooth horizontal floor.
Initially the rod is at an angle: to the upward vertical when it is released from
rest. The subsequent motion takes place in a vertical pldake as generalised
coordinatesr, the horizontal displacement of the centre of the rod, @rttie angle
between the rod and the upward vertical. Obtain Lagrangpiatoons. Show that
x remains constant in the motion and verify that éhequation is equivalent to the
energy conservation equation.

% Find, in terms of the anglé, the reaction exerted on the rod by the floor.

FIGURE 12.8 The velocity diagram for the
rod in terms of thenon-independerdoordi-
natesx, y, 6.

\

Solution
Let x, y be the Cartesian coordinates of the centre of mass of thearmtiletf
be the angle between the rod and the upward vertical. These tloordinates are
not independensincey = acosf. In order to expres§” andV in terms of the
generalised coordinatesand6, we will need to eliminate’ and y. However, since
y = acosf it follows that y = —a siné 6.

Thekinetic energy of the rod is

m (fcz + )'/2> + 171662

m(x? + —asind 6)? + 1 (Lma?) 62
(2 + )) + 5 (4ma’)

m ()'cz +a*(3 +sin® 0)92> )

N — N | —

N | —

The potential energy of the rod (relative to the ground) is

V =mgy = mga cosf.
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SincedT /dx anddV /dx are both zero, the coordinateis cyclic. The con-
served momentum, is

==
which is the horizontal component of linear momentum of tbé. r Thusx is a
constant of the motion. But since the rod is initially at reist= 0 initially and so

mustalwaysbe zero. Hence is alsoconstantin this motion.
The Lagrange equation féris

Px mx,

% (maz(% + sin? 9)é> - (ma2 siné cosf é2> = mgasinb,

which, after simplification, becomes
a (% + sin? 9) 6 + asind cosh 2 = g sind.
Theenergy equation” + V = Eis
%m ()%2 + a2(% + sir? 0)92> +mgacosd = E,
which becomes

Ima? (% + sir? 9) 6% + mgacosh = E,
on using the linear momentum conservation equation= 0. On differentiation
with respect ta, this gives Lagrange’s equation fér The two equations are there-
fore equivalent.

On using the initial condition8 = « andd = 0 whens = 0, we find that the
total energyE is given by E = mga cosw, and the energy equation becomes

a (% + sin? 9) 6% = 2g(cosa — cosh).
To find the normal reactioV exerted by the floor, we apply tlegular mo-
mentum principle about the centre of ma&sof the rod. This gives

% (1(;9') — N(asind) + 0,

since gravity has no moment abdut Hence, sincdg = %maz, N is given by

B maé
"~ 3sing
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Now.é' can be expressed in termséandf? by using the Lagrange equation fbr
andé? can, in turn, be expressed in termstolby using the energy equation. After
some labour, this gives theormal reaction of the floor to be

N = L(4—I—3CO§9—6COS{XCOSQ).I

(1+3sin?6)’
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Problem 12.9

A particle P is connected to one end of a light inextensible string whiaksps
through a small hol® in a smooth horizontal table and extends below the table in
a vertical straight line.P slides on the upper surface of the table while the string
is pulled downwards from below in a prescribed manner. (88pghat the length

of the horizontal part of the string iR(z) at time¢.) Take®, the angle between
OP and some fixed reference line in the table, as generalisedioate and obtain
Lagrange’s equation. Show théis a cyclic coordinate and find (and identify) the
corresponding conserved momentwg Why is the kinetic energy not conserved?

If the constant value opy is m L, find the tension in the string at time

S
FIGURE 12.9 The velocity diagram for the system in Problem
12.9.
Solution

The velocity diagram is shown in Figure 12.9. Remember fhatthe generalised
coordinate whiler is a prescribed function of the time Thekinetic energy of the
particle is

1 52 292
T = im (R + R2?)
and thepotential energy (relative to the table top) is zero.

SincedT /a6 and dV /a6 are both zerof is acyclic coordinate. The corre-
sponding conserved momentyrg is given by

8T 2'
0=—.=I’}’IR 9,
P 20
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which is the vertical component of tle@gular momentum of the particle abou©.
The kinetic energy of the particle is not conserved becausésinsionS does work
(but no virtual work!).

To find the tensiors, apply the second law to the patrticle, resolved in the radi-
ally outwards direction. Then

—S=m (R — R92>
on using the fact thaty = m L. Hence thdensionin the string is

L2 .
S:m(__R).
R3

Thus (unlesd. = 0) itis impossible to pull the particle through the hole!
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Problem 12.10

A particle P of massm can slide along a smooth rigid straight wire. The wire has
one of its points fixed at the origi@, and is made to rotate in th{e, y)-plane with
angular spee®. Taker, the distance of from O, as generalised coordinate and
obtain Lagrange’s equation.

Initially the particle is a distancefrom O and is at rest relative to the wire. Find
its position at time. Find also the energy functionand show that it is conserved
even though there is a time dependent constraint.

Qr\ /

FIGURE 12.10 The velocity diagram for the
particle sliding on a rotating wire. O

Solution

The velocity diagram is shown in Figure 12.10. Rememberitiathe generalised
coordinate whil& is a prescribed constant. Tkimetic energy of the particle is

T = %m (,;2 + 522;’2)

and, since there is no gravity, tpetential energyis zero.
ThelLagrange equationfor the coordinate is therefore

d . 2
7 (mr) — (mQ r) =0,
that is,
F—Q%r =0.
The general solution of this equation can be written in thienfo

r = AcoshQt¢ + BsinhQz,
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and, on applying the initial conditions= a and/ = 0 whenz = 0, we find that
A = a and B = 0. Theposition of the particle at time is therefore given by

r = acoshQz.

Theenergy function / is given by

h = ra—L — L = }}S_T - T
or ar
= mi? — %m (,;2 + 5221’2)
= %m (r2 er2)
= ima*Q* (sinh2 Qt — cosit Qt)
= —%mazﬁz,

which is aconstant The fact that: is constant (though not its value) can be obtained
more quickly by remembering that

an _ L

dt 0t
__8_T_O.
o
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Problem 12.11 Yo-yo with moving support

A uniform circular cylinder (a yo-yo) has a light inextenlgilstring wrapped around
it so that it does not slip. The free end of the string is fasteto a support and the
yo-yo moves in a vertical straight line with the straighttpdithe string also vertical.
At the same time the supportis made to move vertically haupward displacement
Z(t) at timet. Take the rotation angle of the yo-yo as generalised coateiand
obtain Lagrange’s equation. Find the acceleration of theg/o What upwards
acceleration must the support have so that the centre obtye gan remain at rest?

Suppose the whole system starts from rest. Find an exprefsidhe total
energyE = T + V at timet.

FIGURE 12.11 The velocity diagram for the
yo-yo with a moving support.

Solution

The velocity diagram for the yo-yo is shown in Figure 12.1Eniember tha# is
the generalised coordinate whil(¢) is a prescribed function of the time Since
the string does not slip on the yo-yo, the velocity of thengtrand the yo-yo at the
pointC must be equal. Henae+ af = Z and so

U:Z—aé.
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Thekinetic energy of the particle is therefore

2
m (Z — aé)z + % (%mcﬂ) 62

m <Z2 —2a7Z0 + %azéz) .

T =

The potential energy of the yo-yo (relative to the reference position in whi¢h=
0 =0)is

V=mg(Z —ab).

Lagrange’s equationfor the yo-yo is therefore

m% (%azé — aZ) — 0 = mga,
so that
al = % (g + Z) .

The upwardaccelerationof the yo-yo is then given by

V=27 —ab
=Z—§<g+2>
=%<Z—2g>.

If the centre of the yo-yo remains at rest, thee= 0 andZ = 2g. This is the
required upwards acceleration of the support.

If the motion begins from rest in the reference positionpttiee Lagrange equa-
tion integrates to give

af = §<g1+2) and af = %(%g12+2).

Then

N —

. . . 2\ 2
m(zz—gz(gt+z)+§(gz+z))

m (ZZ + 2g212)

O\ =
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and

V =mg(Z —ab) = %mg (Z—gt2>.
Hence the total energ is

E=T+YV
= %m (22 + 2g212) + %mg (Z — glz)

= %m (22 +2gZ).I
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Problem 12.12 Pendulum with a shortening string

A particle is suspended from a support by a light inexterssiling which passes
through a small fixed ring vertically below the support. Tletigle moves in a
vertical plane with the string taut. At the same time the supjs made to move
vertically having an upward displaceme#i(z) at time¢. The effect is that the
particle oscillates like a simple pendulum whose stringterat timer isa — Z(t),
wherea is a positive constant. Take the angle between the stringrendownward
vertical as generalised coordinate and obtain Lagranggiateon. Find the energy
function/ and the total energf and show that = E — mZ2. Is either quantity
conserved?

FIGURE 12.12 The velocity diagram for the
pendulum with a shortening string. —7

Solution

The velocity diagram for the pendulum is shown in Figure 22Remember that
is the generalised coordinate whitgr) is a prescribed function of the time
Thekinetic energy of the particle is

T = %m <Z2 + (a — Z)292>
and thepotential energy of the particle (relative to the restraining ring) is

V = —mg(a — Z)cosh.
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Lagrange’s equationfor the pendulum is therefore
d Y .
mE ((a —-7) 9) —0=—-mg(a— Z)sing,
that is,
(a—2Z)6 —2Z0 + gsind =0,

which is theequation of motion of the pendulum.
Thetotal energy E is given by

E=T+V = §m(z'2+(a—Z)ZéZ—zg(a—Z)cose),

while theenergy function / is given by

: T
h=0pg—L=0——-T+V
g 36

=m(a— Z)*0* — %m <22 + (a — Z)ZQZ) —mg(a — Z)cosh

=1m (—2'2 t(a—2)2602 —2g(a—2Z) cose) .

Thush — E —mZ?, as required.

Neither/ nor E is conserved in general. Consider, for example, the speasa
in which the string is pulledipwardswith constant speed’. Then, sinceE and/
differ by a constant/E /dt anddh/dt are equal. Also

dh _ L
dt 0t
=mV ((a—Z)92+gCOSQ>,

which is certainlypositivewhile 6 is an acute angle. Thusis not constant and so
neither is£. We would not expecE to be conserved since the tension in the string
does work (but no virtual work!m
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Problem 12.13 % Bug on a hoop

A uniform circular hoop of masd/ can slide freely on a smooth horizontal table,
and a bug of mass can run on the hoop. The system is at rest when the bug starts
to run. What is the angle turned through by the hoop when tigehlais completed
one lap of the hoop?

FIGURE 12.13 The coordinates and velocity diagram for the hoop and
the bug.

Solution

Take the generalised coordinates tobeY andf, as shown in Figure 12.13Y
andY are the Cartesian coordinates of the centre of ndas$ the hoop, and is
the rotation angle of the hoop from its initial positia#.is a fixed point of the hoop
which, in the initial position, is such th&iA4 is parallel to the positive-axis. The
angleg is the angular displacement of the biedative to the hoopRemember that
¢ is not a generalised coordinate but is regarded as a knovatidarof the timer.
The velocity diagram corresponding to this choice of comatks is also shown in
Figure 12.13.
The totalkinetic energy of the hoop and the bug is

T = %MV2 + %I(;a)2 + %mv2
=1m <X2 T Y2) T %(Mcﬂ) 6% +
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Im ()'(2 + V2 +a?(0 +¢)° —2aX (6 + ¢)SiN@ + ¢) + 2aY (6 + ¢) cox6 + ¢)) :

and thepotential energy (relative to the level of the table) is zero.
SincedL /dX anddL/dY are both zero, it follows that the coordinat¥sand
Y are cyclic. The corresponding momenig and py , given by

oL . L

pxzﬁ=MX—|—m(X—a(9—|—¢)SIn(9+¢)),
oL . S

py=ﬁzMY—Fm(X—l—a(G—l—cb)Cos(Q—i-qﬁ)),

are therefore constants of the motion. The whole systeniu@iney the bug) starts
from rest, so thafl’, Y, 6 and¢ are all zero initially. We therefore obtain the two
conservation relations

MX+m(X—a(é+<i>)Sin(9+¢)) —0,
MY+m(Y+a(é+¢'>)cos(9+¢)) —0.

Our third equation is theagrange equationfor . Now
aL  dT
30 06
= Mda*0 + ma (a(é +¢) — X sin(6 + ¢) + Y cog0 + ¢))

m?a?

=(M+m)a29+ma2¢5—M+m

(6 + ¢)

on eliminatingX andY by using the conservation relations. Also,

oL 9T
30~ 90
= —ma(f + ¢)(X cog6 + ¢) + ¥ sin(d + ¢))
=0,

on using the conservation relations again. The Lagrangategufor6 is therefore

d . . m2a2 . .
— (M 2 2 — -0 =
dt(( + m)a“0 + ma“¢ M+m(9—|—¢)) 0 =0,
which simplifies to give
0=——-—1]0¢.
(M + 2m) ¢
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On integrating and using the initial conditions, the santior 6(z) is

m
9=—(m)¢’

where¢ () is the known angular displacement of the bug. The bug coeplete
lap of the hoop whe = 2x. Theangle turned by the ring at this instant is
therefore

2nm
M +2m

in the opposite sense to the motion of the tmg.
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Problem 12.14

Suppose a particle is subjected to a time dependent forbe &tmF = f(¢z) gradW(r).
Show that this force can be represented by the time depemarential U =
— f(t)W(r). What is the value o/ whenF = f(¢)i ?

Solution

If U =—f(@)W(r), then
8_U _ 0 aU B oW
ox ox ox

and

since, in Cartesian coordinates, the generalised fOrgceorresponding ta: is just
the x-component of the actual ford€. A similar argument applies to theand:z
components.

In particular, if F = f(¢)i,thenU = —f(f)x. m

© Cambridge University Press, 2006



Chapter 12 Lagrange’s equations and conservation principl es

Problem 12.15 Charged particle in an electrodynamic field
Show that the velocity dependent potential

U=cep(r,t)y—er-A(r,t)
represents the Lorentz fordé = ¢ E + e vx B that acts on a chargemoving with

velocity v in the generatlectrodynamidield {E (r,t), B(r,t)}. [Here{¢, A} are
theelectrodynamic potentiakthat generate the fielgt, B } by the formulae

A
E =—grad¢—aa—t, B =curlA.]

Show that the potentials = 0, 4 = ¢zi generate a fieldE, B} that satisfies
all four Maxwell equations in free space. A particle of masand charge moves

in this field. Find the Lagrangian of the particle in terms @fr@sian coordinates.

Show thatx andy are cyclic coordinates and find the conserved momggta,,.

Solution
We are given that

U=ep—er-A
= egb(r,t)—e()'ch + yAy +2AZ).

Then (dropping the for the moment)

U

wu U _ 8¢ s 04, 04
x ox  ox ox Y

_A.X )
dx dx

and, by the chain rule,

i(a_U)__an, 0A 04y . 0Ay
dr \ax ] ’

ox ay
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Hence
d(UY U _ dAx. s A, DA
R - - = — — zZ —
di \ 9% )~ ox ox T oy Y oz o

dp 04, .04, .04,
-V +X +y8x +z

ox ox ox
_ 0 A (04, 3Ac\ (04 04
T Tu ox oy ) S\ oz Tax

= —[ gradg] - [%—f]x + ylcurl4], - 2[curIA]y

= —[gradg] — [aa—f] + [ xcurl 4]
= Ex + [FxB],,

which, on restoring the, is thex component of the Lorentz force. A similar argu-
ment applies to the andz components.
If p =0andd4 =¢zi,thenE = —zi and

B =curlA = gradtz)xi = tkxi

=tj.
Then
divE =0,
CUurlE = —gradzxi = —kxi = —j = —aa—l:,
divB =0,
curl B =O=%—f,

so thatMaxwell’s equationsfor free space are satisfied.
When a particle of mass and charge moves in this field, its Lagrangian is

L=T-U
= %miz—eqﬁ—l-e;?-A
= dm (5% + 97 4 22) + etz
The coordinates and y arecyclic and the corresponding conserved momenta
are
Px =mX +etz,

py =my.
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The conserved momentum, is the linear momentum of the particle in the
direction, butp, is notthe corresponding-componentm
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Problem 12.16 % Relativistic Lagrangian

The relativistic Lagrangian for a particle of rest masgs moving along thex-axis
under the simple harmonic potential fidld= %mOQZxZ is given by

2 x? = 1 2.2
L =moc“|1— 1——2 — 3mo2°x".
¢

Obtain the energy integral for this system and show that ¢éneg of oscillations of
amplitudeqa is given by

4 (™2 14 1e?cog b
== 2€ do.
2 Jo 1+ le2cogp i

( +Z€ CcO )

where the dimensionless parametet Qa/c.
Deduce that

27
T:§[1+%€2+0(64>],
whene is small.

Solution
SinceL is given by

2 x? i 1 2.2
L =moc“|1— 1——2 — 3mo€27°x"7,
c

JL 2\ 72
g = MmopX (1 — c_2)

and so theenergy function  is given by

it follows that

oL
h=x——L
Yo%
2 —1/2 52 1/2
= mox? (1 — —2) — myc (1 — (1 — —2) ) + %moQsz
¢ ¢
2 —-1/2
= moc? (1 — —2) + %moﬂzxz — moc?.
¢
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SincedL/dt = 0, h is a constant of the motion; the conditian= 0 when
x = a shows that the value of this constantgmoﬂzaz. Hence, the relativistic

energy equationcan be written
2
1ot
=1+ EG (1 az) ,

(=)
62

where the dimensionless constans defined by = Qa/c.
On solving forx, this gives

—1/2

b

2\ 1/2
. (1 + 1€2 (1 - ’;—2)) 2\ /2
X =xQa 1

L+ g2 (1- %) a?

where thet sign depends on whether the particle is moving in positivesgative
x-direction. Consider the particle moving in the positiglirection fromx = 0 to

X = a, a motion that takes a quarter of the periodOn separating variables and
integrating, we obtain

2
[Ta-t (o)
(1=7) (43 (-%))

Theperiod t of the motion is therefore given by

4 /a 1+%€2(1_2_§)
0 (1

T=— dx.
Q 1/2 1/2

This formula can be written in a simpler form by making the redpa of variable
x =asinf (0 <6 < x/2). This gives

4/”/2 1+ 1e?cog 6
T=—

12 4%
2 Jo (1+%62C0829)

as required.
This is the formula for the exact period, but when the paramets small we
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can find a simple approximation. In this case, the integramdoe approximated by

1+ 1e?cog

(1 + %62 cog 9>1/2 = (1 + %62 cos 9) (1 + %62 co< 9)—1/2

— (1 + 1e? cos 9) (1 —1e%cos 0 + 0(64)>

= (1 + 3e’cos 0 + O(e“))
and, when this is substituted into the integral, we obtain

0= (14 e+ 0(Y).

as required. The period of the motion is thereftaegthenedy the inclusion of
relativistic effectsm
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Problem 12.17

A particle of massn moves under the gravitational attraction of a fixed mass
situated at the origin. Take polar coordinate8 as generalised coordinates and ob-
tain Lagrange’s equations. Show tlfais a cyclic coordinate and find (and identify)
the conserved momentupy.

ré\ /v’"

FIGURE 12.14 The coordinates and velocity - -
diagram for the particle in Problem 12.17.

Solution

The coordinates and velocity diagram for the particle acewshin Figure 12.14.
Thekinetic energy of the particle is

T = %m (};2 + r292)
and thepotential energyof the particle (relative to infinity) is

MG
y=-""
r

ThelLagrangian of the particle is therefore

. MG
L=%m(r'2—|-r292)—|— pt

SincedL /36 = 0, the coordinate is cyclic. The corresponding conserved
momentumpy is given by

90

which is theangular momentum of the particle about the axis through perpen-
dicular to the plane of motiom

Po erzé,
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Problem 12.18

A particle P of massm slides on the smooth inner surface of a circular cone of
semi-anglex. The axis of symmetry of the cone is vertical with the veré&point-

ing downwards. Take as generalised coordinatethe distanceOP, and¢, the
azimuthal angle about the vertical through Obtain Lagrange’s equations. Show
that¢ is a cyclic coordinate and find (and identify) the conserveaantump,,.

FIGURE 12.15 The coordinates and velocity diagram for
a particle sliding on a cone.

Solution
The coordinates and velocity diagram for the particle slidin the cone are shown

in Figure 12.15.
Thekinetic energy of the particle is
T = %m (fz + rzsinzaq52>
and thepotential energy of the particle (relative t@) is
V = mgr cosu.

ThelLagrangian of the particle is therefore

L=1m (fZ + rzsinzaq52> —mgr Ccosa.
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Lagrange’s equationsare therefore

%(mr) — (mr Sinzoc(;'Sz) = —mg COSu,

d 2 cir2 .
- (mr sin a¢) —0=0.

The second equation has the foumy, /dt = 0, wherepy = dL/d¢, the mo-
mentum corresponding t. This is becaus@L/d¢ = 0, that is,¢ is acyclic

coordinate. The momentupy is theangular momentum of the particle about the
vertical axis throughO. m
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Problem 12.19

A particle of massn and charge moves in the magnetic field produced by a current
I flowing in an infinite straight wire that lies along theaxis. The vector potential
A of the induced magnetic field is given by

I
A, = Ag =0, Az=—(“L) Inr,
27

wherer, 6, z are cylindrical polar coordinates. Find the Lagrangianhef parti-
cle. Show that) andz are cyclic coordinates and find the corresponding conserved
momenta.

Solution
Thekinetic energy of the particle is

T = m (&2 + 5 + 22)
and the (velocity dependergptential energy of the particle is given by

U=—er-A4
I
— e (Fdx + FAy + 24;) =+(e“° )z’lnr.

27

ThelLagrangian of the particle is therefore

I
L:%m(x2+y2+22)—(e“° )élnr
2

. I
m (72 +r20% 4+ 27) - (6’2“’ )z’lnr

g

=

in cylindrical polar coordinates.
SincedL /0 anddL /dz are both zero, the coordinatésandz arecyclic. The
corresponding conserved momemptaand p, are given by

== = mr?6,
Po Y

—a—L—mé— etol Inr
Pz = 9z 2

The momentunypy is theangular momentum of the particle about the-axis, but
Pz is notthe linear momentum of the particle in thedirection.m
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Problem 12 .20

A particle moves freely in the gravitational field of a fixed sealistribution. Find
the conservation principles that correspond to the symesedif the following fixed
mass distributions: (i) a uniform sphere, (ii) a uniformflhne, (iii) two particles,
(iv) a uniform right circular cone, (v) an infinite uniformrcular cylinder.

Solution

In every case, the particle is free to move in any directiomernains to find those
motions (translations or rotations) that preserve theitag@onal potential energy .

() V is preserved if the particle iotated about any fixed axis through the
centreG of the sphere. The full vect@ngular momentum L ¢ is therefore
conserved.

(i) Suppose the half-plane is> 0, z = 0. ThenV is preserved if the particle
is translatedin the y-direction. Thelinear momentum componentP, is
therefore conserved.

(iif) V is preserved if the particle iotatedabout the fixed axis passing through
the two particles. Thangular momentum about this axis is therefore con-
served.

(iv) V is preserved if the particle imtatedabout the axis of symmetry of the
cone. Theangular momentum about the symmetry axis is therefore con-
served.

(v) Since the cylinderis infinité; is preserved if the particle teanslatedparal-
lel to the symmetry axis of the cylinder. Theear momentum component
in this direction is therefore conserved. AldSd,is preserved if the parti-
cle isrotatedabout the symmetry axis. Ttagular momentum about the
symmetry axis is therefore also conserved.
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Problem 12.21 % Helical symmetry

A particle moves in a conservative field whose potential gnétr hashelical sym-
metry. This means that is invariant under theimultaneousperations (i) a rotation
through any angle about the axi®z, and (ii) a translatior« in the z-direction.
What conservation principle corresponds to this symmetry?

Solution

This is essentially a linear combination of Theorems 12d Bh2. In the present
case, there is a family of mappin@)tk} with the effectr; — r?‘, where

r
a)f =ck + er?‘,

that preserve the potential enerdfyy The correspondingonserved quantityis
thereforec P, + L.
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Problem 13.1
Find the extremal of the functional

2x2
J = —dt
[x] /1t3

that satisfiesc(1) = 3 andx(2) = 18. Show that this extremal provides the global
minimum of J .

Solution
For this functional, the integranfl(x, x, 7) is

P X
8

and the correspondirguler-Lagrange equationis

d (2x 0=0
de \ 13 -
This equation integrates immediately to give

2x

[—3:8a,

wherea is an integration constant. (The factor 8 is introduced $yrtavoid frac-
tions.) Hence

x = 4dat?,
and so
x = at* + b,

whereb is a second integration constant. This is family of extremals of the
functionalJ.

We must now find the extremals that satisfy the gies conditions The
conditionx = 3 whent = 1 givesa + b = 3, and the conditionr = 18 whent = 2
givesl6a + b = 18. These simultaneous equations have the unique solutier,
b = 2. Hence there is exactlyne admissible extremalnamely

x =t*+2.
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To investigate the nature of this extremal, consider thetianx = ¢4 + 2 + A,
whereh(z) is any admissible variation. Then

2 (443 7\ 2
J[t4+2+h]=/ (tt—jh)dz
1

2 .2
=/ 16t3+8h+l—3 dt
1
272

=[] D[]S ) e

2 j2
=60—|—0—|—/ — dt,
13

sincek(1) = h(2) = 0 in anadmissiblevariation. In particular, by taking = 0,
J[t* + 2] = 60. Hence

2 72
J[t4+2+h]:J[t4+2]+f %dr
1

> J[t* + 2],

since the integrant'zlz/t3 is positivein the range > 0. Sinceh is a general admissi-
ble variation, it follows that the extremal = ¢* + 2 provides theglobal minimum
for the functional/.
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Problem 13.2
Find the extremal of the functional

J[x] = /0” (2x sins — x2) di

that satisfiesc(0) = x(7r) = 0. Show that this extremal provides the global maxi-
mum of J.

Solution
For this functional, the integranfl(x, x, 7) is

F = 2xsint — x2

and the correspondirguler-Lagrange equationis

%( —2x) —2sint =0,
that is

X = —sint.
The general solution of this equation is

X = sint + at + b,

wherea andb are integration constants. This is tfemily of extremals of the
functionalJ.

We must now find the extremals that satisfy the giesr conditions The
conditionx = 0 whent = 0 givesh = 0, and the conditionx = 0 whent = &
then gives: = 0. Hence there is exactlyne admissible extremalnamely

x = sint.

To investigate the nature of this extremal, consider thetion

x =sint + h,
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whereh(t) is any admissible variation. Then

T AN 2
J[sint + h] = / 2(sint + h) sint — (cosz + h) dt
0

T
=/ 2sint t — coS ¢ + 2hsint — 2h cost — h? dt
0

=/ (2sinzz—coszz) —i(zhcost)—/é2 dt
0 di

t=m T,
=%n—[2hcosz] —[ h? dt,
t=0 0
T
=%n+0—/ h* dt,
0

sinceq(0) = h(xr) = 0 in anadmissiblevariation. In particular, by taking = 0,
J[sint] = 1x. Hence

2
Jlsint + h] = J[sinz]—[ h2dt
1

< J[sint].

since the integrank? is positive Since’ is a general admissible variation, it follows
that the extremat = sinz provides theglobal maximum for the functional/.
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Problem 13.3
Find the extremal of the path length functional

wi=[ e (2)] o

that satisfieg/(0) = y(1) = 0 and show that it does provide the global minimum
for L.

Solution
For this functional, the integrand(y, y, x) is

N\ 12
F=(1+7)

which has no explicit dependence. We may therefore replace the Euler-Lagrange
equation by thentegrated form

LOF
y— — IF' = constant

Iy
In the present case, this simplifies to give

1

(14 52)"?

= constant

that is
y=a,
wherea is a constant. The general solution of this equation is
y =ax + b,

whereb is an integration constant. Except possibly for constalutems, this fam-
ily of straight lines is théamily of extremals of the length functional.

We must now find the extremals that satisfy the giesr conditions The
conditiony = 0 whenx = 0 givesh = 0, and the conditiory = 0 whenx = 1
then gives: = 0. However, since the function = 0 is aconstantsolution of the
integrated equation, it may not actually be an extremal. Westroheck whether or
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not it satisfies the original Euler-Lagrange equation, fgme

a2 Y _o_o
dx (1+y2)1/2 .

The functiony = 0 clearly satisfies this equation and hence isdhly admissible
extremal. It represents the straight line joining the poiffis0) and(1, 0).

To investigate the nature of this extremal, consider thi pat
y=0+h,

whereh(x) is any admissible variation. Then

Lly]= /1 [1 + hz]m dx
0

=1,

since the integrand is alwagseater than unity Thus thestraight line y = 0 really
is thepath of shortest lengthjoining the points (0,0) and (1,0).
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Problem 13.4

An aircraft flies in thg(x, z)-plane from the poin(—a, 0) to the point(a,0). (z = 0

is ground level and the-axis points vertically upwards.) The cost of flying the
aircraft at heightz is exp(—kz) per unitdistanceof flight, wherek is a positive
constant. Find the extremal for the problem of minimising tbtal cost of the
journey. [Assume thata < 7/2.]

Solution
The cost functional’[z] for the flight pathz(x) is given by

a 1/2
Clz] = f ek (1 + 22) dx.
—a
For this functional, the integrané(z, z, x) is
1/2
F=e (14 22)

which has no explicitt dependence. We may therefore replace the Euler-Lagrange
equation by théntegrated form
LOF

z— — I = constant
0z

In the present case, this simplifies to give

e—kz

m - Constant

that is
z° =

22 = pe—2kz _ |

whereb is a positive constant. This equation evidently has thelfaofisolutions
z = constant but these solutions do not satisfy the Euler-lraggra@quation and are
thereforenot extremals. Other solutions can be found by taking squarts raxd
separating, as usual. This gives

dz
= +
¥ / (b2e—2k= — 1)1/2
B :I:/ ekz dx
N (b2 _ ezkz)l/z'
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On making the substitutiobu: = ¢*#, this becomes
2\1/2 k

1 1 ekz
= +-—C0S —_ S
2 b +c

wherec is an integration constant. Hence flaenily of extremals of the functional
C is given by

1 du 1 1
X=:t—[—=:t—COS u+c,
I (1—w?)

ek? = b cosk(x — ¢).

We must now find the extremals that satisfy the giesr conditions The
conditionsz = 0 whenx = +a give

bcosk(a +c) =bcosk(a—c) =1

from which it follows thatc = 0 andbd = 1/ coska. (We know thatca < 7/2 so
that cosca is positive.) Hence there is exactiye admissible extremalnamely

. l n (coskx
Tk coska )

Figure 13.1 shows the optimal flight path in Problem 13.4 lioe¢ different values
of the parameteta. m
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i

—a

FIGURE 13.1 The optimal flight path in Problem 13.4 for three different
values of the parametéw.
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Problem 13.5 % Geodesics on a cone

Solve the problem of finding a shortest path over the surfhaeone of semi-angle
« by the calculus of variations. Take the equation of the pathé formp = p(6),
wherep is distance from the verte® andé is the cylindrical polar angle measured
around the axis of the cone. Obtain the general expressrahédgpath length and
find the extremal that satisfies the end conditipftsz/2) = p(7/2) = a.

Verify that this extremal is the same as the shortest pathitbald be obtained
by developing the cone on to a plane.

FIGURE 13.2 The coordinatep and6 used in Problem 13.5.

Solution

The coordinatep andf are shown in Figure 13.2. In terms of these coordinates,
the length elements is given by

(ds)* = (dp)® + (psina dh)?,

whereq is the semi-angle of the cone. Hence

and the length functional for paths over the surface of thneds

1/2

0> d 2
L[p]=/01 [(d—g) +,025in2a:| 4o,
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wheref; and6, are the initial and final values éfon the path. In the present case,
these values aren/2 andx /2 respectively.
For this functional, the integran8(p, p, 0) is

1/2
F = (,02 + p?sir? oc)

which has no explicit dependence. We may therefore replace the Euler-Lagrange
equation by thentegrated form

OF
p— — F = constant
ap

In the present case, this simplifies to give

2

75 = constant
(,02 sinf a + ,(')2)

that is
p? = b*p* — p*sirta,

whereb is a positive constant. This equation evidently has thelfaofisolutions
p = constant but these solutions do not satisfy the Euler-lragg@quation and are
thereforenot extremals.

Other solutions can be found by taking square roots and atpgy as usual.
This gives

=i/ dp .
o <b2,02 — sin? a>1/2

On making the substitutiobp = sina secyr, this becomes

0 = :I:.L + c,
Sino

wherec is an integration constant. In reintroducing the varigbiastead ofyy we
find that thefamily of extremals of the length functional is given by

p = (#) sec((@ —c) sina).

© Cambridge University Press, 2006



Chapter 13 The calculus of variations and Hamilton’s princi ple

We must now find the extremals that satisfy the prescréyeticonditions The
conditionsp = a when6 = +1/2 give

Sina . sina )
a= (T) sec((%n +¢) sma) = (T) sec((%n —¢) Slna)
from which it follows thate = 0 and

b = (sma) sec(3 7 sina).

a

Hence there is exactlyne admissible extremalnamely

cos(%n sina)

10=

cos(f sina)

(7/2) sin «x

0 sin o

A

FIGURE 13.3 A cone of semi-angle developed on to
a plane. The shortest path frat{p = a,0 = —7/2)
to B(p = a,0 = /2) isthe line segment B. P is a
general point on this path.

It remains to identify this extremal with the minimum lengthth obtained by
developing the cone on to a plane. Figure 13.3 shows whabitewould look like
if it were slit along the generatdr = 7 and then rolled out on a flat tablet and
B are the starting and end points of the path and the straighIB is the shortest
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path. LetP be a general point on this path with coordingte8. ThenOP = p
and the angle betweedP andOM is 6 sin«. The equation of the straight linéB
is therefore

pcos(d sina) = a cos(1r sina),

which is the same as obtained from the Euler-Lagrange exqudigure 13.4 shows
a path of shortest length on a cone of semi-angleé.

7~

FIGURE 13.4 A path of shortest length on a cone of
semi-angler/6.
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Problem 13.6 Cost functional
A manufacturer wishes to minimise the cost functional

Clx] = /04 ((3 )%+ 2x) dt

subject to the conditions(0) = 0 andx(4) = X, whereX is volume of goods to
be produced. Find the extremal 6f that satisfies the given conditions and prove
that this function provides the global minimum Gt

Why is this solution not applicable when < 8?

Solution
For this functional, the integranfl(x, x, t) is

F=(3+ %)%+ 2x

which has no explicit dependence. We may therefore replace the Euler-Lagrange
equation by théntegrated form

_OF
xX— — F = constant
ax

In the present case, this simplifies to give
X2 =2x +a,

wherea is a constant. This equation evidently has the family of ohs x =
constant but these solutions do not satisfy the Euler-lragg@quation and are there-
fore notextremals.

Other solutions can be found by taking square roots and atpgy as usual.
This gives

t—i[ dx
- (2x + a)l/?
= (2x +a)'/? +b,

whereb is an integration constant. On solving for we find that thefamily of
extremalsof the cost functional” is

1 2 1
.X:E(t—b) —Ea,
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which is a family of parabolas in the, x)-plane.
We must now find the extremals that satisfy the prescréseticonditions The
conditionx = 0 whent = 0 gives

0=>5b%—uq,
and the conditiomr = X whent = 4 gives
2X = (4—-b)* —a.

These equations have the solution

a=108-X)>2 b=18-X),
so that there is exactiyne admissible extremalnamely

x=5@r+X-8)°—-508-X)

=112t + X —8).

To investigate the nature of this extremal tét= %z(zz + X —8) and consider
the functionx* + i, whereh(z) is any admissible variation. Then

Clx*+h]=C[x"] +f

0

4
[(3 20+ (X = 8))h 4+ A2 + 2h] di

r=4 4

=C[x*] + [(3 +2r + 3(X — 8))h] + / h* dt
t=0 0

4
=C[x*]+0+ f h? dt,
0
sincei(0) = h(4) = 0 in anadmissiblevariation. Hence
C[x*+h]=C[x*]

since the integran? is positive Since/ is a general admissible variation, it follows
thatx™* provides theglobal minimum for the cost functionad”.

This minimising function is not necessarily appropriatecsi solutions of the
actual problem must also satisfy a condition not previousiéntioned, namely, that
therate of production of goods must always be positbmce

=14 (X —8),

this condition will be satisfied i\’ > 8 but not otherwise. [Can you guess what the
optimum solution is whelk” < 8?]m
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Problem 13.7 Soap film problem
Consider the soap film problem for which it is required to mirge

J[y]=fay<1+)'/2>% dx

—a

with y(—a) = y(a) = b. Show that the extremals df have the form
X
y = cCOSh(; + d) ,

wherec, d are constants, and that the end conditions are satisfieddfdaly if)

d =0and
coshh = (é) A,
[4)

whereA = a/c. Show that there arevo admissible extremals provided that the
aspect ratidb/a exceeds a certain critical value andneif b/a is less than this
crirical value. Sketch a graph showing how this criticalueais determined.

The remainder of this question requires computer assistai&ow that the
critical value of the aspect ratiya is about 1.51. Choose a valueigfa larger than
the critical value §/a = 2 is suitable) and find the two values bf Plot the two
admissible extremals on the same graph. Which one looksHi&actual shape of
the soap film? Check your guess by perturbing each extremsiniayl admissible
variations and finding the change in the value of the funetidiy |.

Solution
For this functional, the integranél(y, y, x) is

o\ 172
F=y(1—|—y>

which has no explicit dependence. We may therefore replace the Euler-Lagrange
equation by thentegrated form

LOF
y— — F = constant
Iy
In the present case, this simplifies to give

y

m - ConStarl,t
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that is

wherec is a positive constant. This equation evidently has thelfaofisolutions
y = constant but these solutions do not satisfy the Euler-lraggra@quation and are
thereforenot extremals. Other solutions can be found by taking squarts raxad
separating, as usual. This gives

_ dy
= :I:/ ((yZ/CZ) — 1)1/2

= +ccosh’! (X> +d,

c

whered is an integration constant. On solving fpywe obtain

y = ccosh(x;d).

This family of catenaries (hanging chains) is taenily of extremals of the func-
tional J.

We must now find the extremals that satisfy the giesr conditions The
conditionsy = b whenx = +a give

b= cCOSh(a t d) - CCOSh(a:d)

from which it follows thatd = 0 and thatc must satisfy the equation

% = cosh(g) )

This equation determines the value of the constaiftwe introduce the dimension-
less unknowrk = a/c, theni satisfies the equation

coshh = (é) A.
[4)

This equation cannot be solved explicitly, but the naturétofolutions can be
investigated graphically. Figure 13.5 shows that graplt®shi andk A for various
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FIGURE 13.5 Graphs of cosh andkA for
various values of the gradieht

values of the gradierit. There is acritical value K of the gradient such that the
straight lineK A toucheghe catenary cosh Whenk (= b/a) is less thank, there
are no intersections, and whéns greater thark there ardwo. Each intersection
corresponds to aadmissible extremalof the functional/.

The critical gradientK can be found by observing that, at the touching point
A = A, the functions cosh andk A are equal, and so are their gradients. This gives
the simultaneous equations

coshh = kA,
sinhA =k

for the critical values ok andA. On eliminatingk, we find that the critical valuéa
satisfies the equation

AtanhA = 1.

This equation cannot be solved explicitly, but it is easydive numerically and the
value of A is found to be about 1.20. The corresponding valu&df= sinhA) is
about 1.51.

When the aspect ratib/a is lessthan K there are no extremals and hence no
soap film can exist. However, when the aspect rafiois greaterthan K there are
two extremals and apparentlywo different shapes that the film can havégure
13.6 shows the two extremals for the case in witich = 2. It seems baffling that
two different solutions can exist since experience indisdhat there is only one
configuration for the soap film (or none at all). Although werat prove this here,
it can be shown thahe upper extremal providesrainimum for the functional/
while the lower extremal does ndtlence it is thaipper extremal that provides the
unique stable configurationof the film. m
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Y
A

>

FIGURE 13.6 The two extremals in the soap film problem for
the case in which the aspect ratiga = 2.
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Problem 13.8

A sugar solution has a refractive indexhat increases with the depthaccording
to the formula

Z\1/2
n=n0<1+—> ,
a

whereny anda are positive constants. A particular ray is horizontal wherasses
through the origin of coordinates. Show that the path of #yeis not the straight
line z = 0 but the parabola = x2/4a.

Solution
Rays in this medium make thl&ermat time functional

T[z] = [n (1 + 22)1/2 dx

stationary, where (= n(z)) is the refractive index of the medium. For this func-
tional, the integrand-'(z, z, x) is

1/2
F =n(z) (1 n 22)
which has no explicitt dependence. We may therefore replace the Euler-Lagrange

equation by théntegrated form

LOF
z— — I = constant
0z

In the present case, this simplifies to give
z\1/2
no (1 + —>
a
——=~— = constant
(1+22)"/? i

that is,
2= (142) -1,
a

where4 is a positive constant. We are interested in a particulatiralyis horizontal
when it passes through the origin, thatas= 0 andz = 0 whenx = 0. For this
ray, A = 1/no and we have the simple ODE

22 =

z
P .

© Cambridge University Press, 2006



Chapter 13 The calculus of variations and Hamilton’s princi ple 494

This equation evidently has the constant solutiog 0 but this is not an extremal
unless it satisfies the original Euler-Lagrange equation

i () (0o

wheren’ = dn/dz. This equation admits = 0 as a solution if2’(0) = 0, but
not otherwise. Since this condition ot satisfied by the medium in the present
problem, thestraight line solution is excluded

Other solutions can be found by taking square roots and atpauin the usual
way. This gives

x=:ta1/2/£

~1/2

= 4242712 4 B,

where B is an integration constant. The initial condition= 0 whenx = 0 gives
B = 0 and hence the onlgdmissible extremalis the parabola

This is thepath of the ray. m
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Problem 13.9

Consider the propagation of light rays in an axially symmeatredium, where, in a
system of cylindrical polar co-ordinatés 6, z), the refractive index = n(r) and
the rays lie in the plane = 0. Show that Fermat'’s time functional has the form

61 1/2
Tlr] = c_lf n(r2+7%) " e,
o

wherer = r(60) is the equation of the path, andneansdr/d6.
() Show that the extremals df satisfy the ODE

an

m - Constant

Show further that, if we writé = r tany, wherey is the angle between the
tangent to the ray and the local cylindrical surface constant, this equation
becomes

r n COSy = constant
which is the form of Snell’s law for this case. Deduce thatwiar rays with
centre at the origin exist only when the refractive index a/r, wherea is
a positive constant.

Solution
In plane polar coordinates, the element of lengths given by

(ds)? = (dr)* + (rd6)?,

that is,

5 dr\? 12
ds =|r°+ 0 do.

Hence, rays in this medium make tRermat time functional

o\ 1/2
T[r]zfn(r2+(j—g) ) d
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stationary, where (= n(r)) is the refractive index of the medium. For this func-
tional, the integrand-'(r, 7, 0) is

1/2
F=n <r2 + i2>

which has no explicit dependence. We may therefore replace the Euler-Lagrange
equation by thentegrated form

_OF
r— — F = constant
or

In the present case, this simplifies to give

2

r n .
that is,
2.2
P2 =r? (nbz —1), (1)

whereb is a positive constant. This equation evidently has thelfaofisolutions
r = constant but these solutions do ganerallysatisfy the Euler-Lagrange equa-

tion
d in , o\ /2 rn )
— | — 5| (1 +7 ——F—F ] =0,
d6 ((1+r'2)”2) ( (1+7) (1+72)'/

wheren’ = dn/dr. Thus, if the circler = ¢ is an extremal, then
n'(c) + cn(c) = 0,

and if circles ofall radii are extremals, then the functiar) must satisfy the ODE
n'(ry+rn(r)=0

for » > 0. Hencen must have thepecial radial dependence

n=-, (2)
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wherea is a positive constant.

Other solutions may be investigated by introducing the amglwhich is the
angle between the tangent to the ray and the local cylindsigéacer = constant.
The relationship is

Onreplacing’ in equation (1) by tany, we find that, along each rayandy must
related by the formula

rn COSyr = constant
This is the form ofSnell’s law for this geometry. [It is tempting to try to establish

the formula (1) by puttings = 0 in Snell’s law. However, although this gives the
right answer, this step is not justified. Why noi?]
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Problem 13.10

A particle of mass 2 kg moves under uniform gravity alongA¥axis, which points
verically downwards. Show that (in S.l. units) the actiondtional for the time
interval[0, 2] is

S[z] = foz (22 n 202) dt,

whereg has been taken to be 10 fres
Show directly that, of all the functiongr) that satisfy the end condition$0) =
0 andz(2) = 20, the actual motiom = 5¢2 provides thdeastvalue ofS.

Solution
For this mechanical system, thagrangian is

L=T-V=12):-(-(2)(10)z)
=22 420z,

and theaction functional for the time interval0, 2] is

S[z] = /2 (22 + 202) dt.
0

By Hamilton’s principle , the motionz = 5¢> makes the action functional sta-
tionary. To investigate the nature of this extremal, coaisttle function

x = 5t> + h,

where/ is an admissible variation. Then
2 N2
S[562 + h] = f (1oz + h) +20 (5:2 + h) dt
0

2
_ f (2ooz2 + 200 + 208 + ) di
0

2007372
=[3] +20zh /hdt

1
=ﬂ+0+f h2dt,
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sincek(0) = h(2) = 0 in anadmissiblevariation. In particular, by taking = 0,
S[5¢%] = 1600/3. Hence

2
S[5t* + h] = S[5¢*] + / h*dt
0
> S[51%],
since the integrankf is positive Since’: is a general admissible variation, it follows

that the extremak = 5¢% provides theglobal minimum for the action functional
S.m
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Problem 13.11
A certain oscillator with generalised coordingtbas Lagrangian

L =g§*>—4q¢>.

Verify thatg™ = sin2z is a motion of the oscillator, and show directly that it makes
the action functionab|¢|] satationary in any time intervé, .

For the time intervahb < ¢ < =, find the variation in the action functional
corresponding to the variations (i)= € sin4z, (ii) 7 = € sinz, wheree is a small
parameter. Deduce that the motigh = sin2¢ does not make& a minimum or a
maximum.

Solution
Theequation of motion corresponding to the Lagrangidn= ¢> — 44 is

Gg+4q=0,

which is the classical SHM equation withh = 2. Henceg™ = sin2z is a possible
motion of the system.
Theaction functional for the time interval0, z] is

Stal= [ (4>~ 40%) ar

and, byHamilton’s principle , the motiong* = sin2r makesS stationary. To prove
this from first principles, consider the function

q=q"+h,
whereh is an admissible variation. Then
T . 2 ] 5
Slg* +h]l= f (2 cos2t + h) —4(sin2r + h)" dt
0
= / (4 cosdt + 4/ cos2t — 8hsin2t + h* — 4h2) dt
0

— sindr + [4h coszz]tzt ¥ / (AZ _ 4h2) di
0

t=0

— sindt 4+ 0 + / (/12 . 4h2) dt,

0

sincei(0) = h(r) = 0 in anadmissiblevariation. In particular, by taking = 0,
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S[g*] = sin4z. Hence

S[q* + h] = S[¢*] + [0 (/12 —4h2) dt
= S[g*1+ 0 (IInl1?).

Thus, in accordance with Hamilton’s principle, the motigh = sin2s makes the
action functionaktationary.

To investigate the nature of this extremal for the partictitae interval[0, ],
letg™ first be perturbed by the variatidn = € sin4¢, wheree is a positive constant.
Then

T

Slg* +h] = S[q*]+ fo (/&2 - 4h2) di
= S[q*] + /” (1662 cod 41 — 42 sir? 4z) dt
0
= S[q*] + 6me’.

On the other hand, wheyt is perturbed by the variatiol, = € sint,

Slg* +h] = S[g*]+ f (/&2 - 4h2) di
0
= S[g*] + / (62 cos t — 4€? sin? t) dt
0
= S[q*] - 3ne’
ThusS isincreasedyy the variatiorz; anddecreasedby the variatior,. It follows

that the motiorny™ providesneither a minimum nor a maximum for the action
functionalS over the time intervdl, ]. m
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Problem 13.12

A patrticle is constrained to move over a smooth fixed surfackewno forcesother
than the force of constraint. By using Hamilton’s principled energy conservation,
show that the path of the particle must be a geodesic of tHacgur (The term
geodesic has been extended here to mean those paths thahmbgegth functional
stationary).

FIGURE 13.7 The particleP slides over the
smooth surfacé.

Solution

Let A and B be two points on an actual path traced out by the parfc{see Figure
13.7) and suppose that the motion betweeand B takes place in the time interval
0<t=<r.

Since the surface is smooth and there are no forces otherthiearonstraint
force, theLagrangian L = %m|v |2 and theaction functional for the interval0, 7]
is

T
S = %m/o lv|? dt.

Let ¢ (= (¢1.92)) be a set of generalised coordinates for the particle and let
q*(t) be the actual motion shown in Figure 13.7. ThenHamilton’s principle ,

Sla™ +h1=S1g"1+ O (IIA1P?).

whereh(¢) is any admissible variation. In the present problem, tlatestthat
[k ar= [ o ().
0 0
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wherev is the velocity corresponding to the geometrically posstbhjectoryg =
q* + h andv* is the velocity corresponding to the actual motigh

Since the surface is smooth and there are no prescribedsfemergy conser-
vation applies in the forni" = constant. Hence, in the actual motiah,moves
with constant speedSince the motion takes place over the time intefvat], this
speed must bé&* /7, whereL* is the path length of the actual motion connectihg

andB. Hence
T
[ |v|2dz =
0

Now comes the clever bit. Létbe some path o0& connecting the pointd and
B, and letg (¢) be the trajectory in whiclP traverse€ atconstant speedSince all
trajectories are supposed to take place over the time adférv |, the constant speed
required isL /7, whereL is the length of. Then Hamilton’s principle implies that

(L:)z +0(In1P).

LB o (mip).

T T

which in turn implies that
L=L*+0 (||h||2).

SinceC can beanypath connectingl and B, this formula states that the motiqri
makes the path length functional stationary. In other wattts path of the particle
is ageodesic of the surfacss. m
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Problem 13.13

By using Hamilton’s principle, show that, if the Lagrangiaiig, ¢, ¢) is modified
to L’ by any transformation of the form

d
L' =L+ —g(q.1),
7,840
then the equations of motion are unchanged.

Solution

The action functionab’corresponding to the Lagrangidri over the time interval
[t4.tB]is

/ tB /
S[q]=/ L' dt
t

A

[, (14 Grewn)a
= +—g(q.1) ) dt
g 7,84

= [2 Ldt + [g(q,t)]t=t3

1 1=ty

= STq)+ (2@ 5.1) — 8(g.1.1a) ).

Thus S and S’ differ by a constant and hence have the same family of exteema
extremals. The Lagrange equations foand L’ therefore havéhe same family of
solutions m
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Problem 14.1
Find the Legendre transfor@i(vy, v,, w) of the function
F(uy,uz,w) = 2uf —3uquy + u% + 3wuq,

wherew is a passive variable. Verify tha¥/ow = —3dG/dw.

Solution
In a specific example such as this itakvayseasier to work from first principles
rather than from the relatioR + G = uv; + u,v;.

The new variables;, v, are expressed in terms of the old variahlesu, by

oF

vy = — = 4uy — 3uy + 3w,
8u1
oF

V) = — = —3141 + 2142.
8u2

The first step is to invert these relations by solving the #iameous equations
4uy — 3uy = v — 3w,
3M1 — 2M2 = —Vy,
which gives
Uy = —2vy — 3vy + 6w,
Uy = —3v; —4vy + 9w.
The Legendre transfori@ (v, v, w) then satisfies the equations
0G

— = —2v1 — 3v, + 6w,
8v1
G
— = —3v; —4vy + 9w,
81)2

from which it follows that
G = —v? — 3vvy — 207 + 6wv; + wvy + f(w).

In this method of solution, we mustakeG satisfy the equatiofdG/dw = —dF/dw
by an appropriate choice of the functigifw). Now

0G
— = 6v; + 92 + f(w),
ow
oF
—— = —3u; = 6v; + v, — 18w,
Jw
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and these expressions are equal’ifw) = —18w. Hence f(w) = —9w? to within
an added constant. Thegendre transform of F is therefore

G = —vf — 3V — 2v§ + 6wv; + Ywvy — 9w’ m
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Problem 14 .2

A smooth wire has the form of the helix= a cosf, y = asinf, z = b6, whered
is a real parameter, alaglh are positive constants. The wire is fixed with the alis
pointing vertically upwards. A particl®® of massm can slide freely on the wire.
Taking 6 as generalised coordinate, find the Hamiltonian and obtamilion’s
equations for this system.

Solution
In terms of the coordinaté, the particle hakinetic energy

=%m(x +y +z)
(( —asing)? 4 (acosh)* + b ) 62
=1y (a +b2) 62.

Thepotential energyis V = mgz = mgb6. Hence thd.agrangian of the system
is

Nl'—‘

[\]

L0.6)=T—V=1im <a2 + b2) 6% — mgh9.
Theconjugate momentumpy is then given by

pezz—gZWZ(az—l-bz)é

and the corresponding inverse relation is

N
m(a? + b?)’

Since this system is conservative, thamiltonian is given by

2
HO,po) =T +V =1im <a2+b2> (L) + mgh0

m(a® + b?)
2
Py
= bo.
2m(a? + b?) +mg
Hamilton’s equations for the system are then given by
6=
dpe
. 0H
Po = 50
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that is,

__ pPe
m(a® + b?) -

pg = —mgb
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Problem 14 .3 Projectile

Using Cartesian coordinates, find the Hamiltonian for aguiile of mass»n mov-
ing under uniform gravity. Obtain Hamilton’s equations addntify any cyclic
coordinates.

Solution
In terms of Cartesian coordinatesz, the particle hakinetic energy

1 22 22
T'=3m (x +z )
andpotential energy V' = mgz. Hence thd.agrangian of the system is
Lx,z,x,z)=T -V = %m (562 + 22> —mgz.

Theconjugate momentap,, p, are then given by

oL )

= — =m
px a)'C X,
oL )

= — =m
Pz = =M=

and the corresponding inverse relations are

. DPx
X =—,
m
. Dz
zZ = —.
m

Since this system is conservative, themiltonian is given by

2 2
H(x.y.pe.ps) =T +V = tm ((%) +(2) ) e

_pitrp:

mgz.
2m—|—gz

Hamilton’s equationsfor the system are then given by

. oH . oH
x_a’ px=_§,
. oH . oH
Z_apz’ Pz=—g,
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that is,
. Px .
X = E, px = 0’
z = &, Pz = —mg.
m

The coordinater does not appear i/ and is thereforeyclic. As a result, the
conjugate momentum, is conserveda
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Problem 14.4 Spherical pendulum

The spherical pendulum is a particle of massttached to a fixed point by a light
inextensible string of lengtén and moving under uniform gravity. It differs from the
simple pendulum in that the motion is not restricted to li@ivertical plane. Show
that the Lagrangian is

L = Imad® (92 + sin*6 ¢2) + mga cosb,

where the polar angles, ¢ are shown in Figure 11.7.
Find the Hamiltonian and obtain Hamilton’s equations. tdgrany cyclic co-
ordinates.

Solution
In terms of the polar angles ¢, the system hakinetic energy

T=1m ((aé)2 4 (asin q's)z)
andpotential energy V = —mga cosf. Hence thd.agrangian of the system is
L(0.¢.6.$) =T —V = Lma? (9‘2 + sirfh ¢'>2) + mga cosh.
Theconjugate momentapy, p, are then given by
_oL _
a0

aL 2 . M
= — = ma*sin*é ¢.
2 ” ¢

Do ma29,

Since this system is conservative, themiltonian is given by

HO,¢,pg.pg) =T +V

2
12 Po N2 i 12
= > — sinff | ————— — cost
24 <<ma2) s (ma2 sin29) ) e

2
1 p
=— (p§ + —d’) — mga cosh.

2ma? sin’é
Hamilton’s equations for the system are then given by
0 = 8_H Z o
dpe 20’
. J0H . oH
= @» Py = —%,
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that is,
. pe pé cosf .
0 = , g = —————— — mga Ccosb,
ma? P ma? sin*6 &
: Po .
=5 =0.
¢ ma? sin*6 Po

The coordinatey does not appear i/ and is thereforeyclic. As a result, the
conjugate momenturp,, is conservecs
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Problem 14 .5

The system shown in Figure 10.9 consists of two partiéleand P, connected by
a light inextensible string of lengtlh The particleP; is constrained to move along
a fixed smooth horizontal rail, and the whole system movegundiform gravity
in the vertical plane through the rail. For the case in whighgarticles are of equal
massn, show that the Lagrangian is

L= %m (2)&2 +2ax6 + a292> + mga cosb,
wherex andé are the coordinates shown in Figure 10.9.
~ Find the Hamiltonian and verify that it satisfies the equaid = dH/dp. and
6 = 0H/dpy. [Messy algebra.]

Solution
In terms of coordinates, 6, the system hakinetic energy

T =1mx*+Im ()'cz + (aé)2 + 2x (aé) cos@)
=1Im (2)%2 + a%0% + 2ax0 cos@) .
Thepotential energyis V = —mga cosf. Hence thd.agrangian of the system is
L(x,0,%,0)=T -V =1m (23&2 + a%6?* + 2ax0 cos@) + mga cosh.

Theconjugate momentap,, pg are then given by

oL

px:§=m<25c—|—a9'0059>,
pgzz—g=ma<aé+5ccose).

This is more typical of the general case in that we must solpaiaof coupled
equations to obtaint and6 in terms ofp, and py. This gives

DPx — COSH (pg/a)
m (2 —cog 0)

X =

26 — 2 (pg/a) — cost px
 m(2-cog0)
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Since this system is conservative, thamiltonian is given by

Px +2(po/a)* —2cost px(pe/a)

H(x,0, px, =T+V=
(x. 9. Px. po) * 2m (2 — cog 0)

mga cosf,

after much algebra.
It may now be verified thai/ satisfies

dH  px—cosf(pg/a) .
dpx  m(2-cog)
OH  2(pg/a) — cost p
dpg  m(2—cog0)

il

=6.m
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Problem 14.6 Pendulum with a shortening string

A particle is suspended from a support by a light inexterssiling which passes
through a small fixed ring vertically below the support. Tletigle moves in a
vertical plane with the string taut. At the same time, thepgwpis made to move
vertically having an upward displaceme#i(z) at time¢. The effect is that the
particle oscillates like a simple pendulum whose stringterat timer isa — Z(t),
wherea is a positive constant. Show that the Lagrangian is

L=1m ((a —7)%0% ¢ 2'2) + mg(a — Z)cosh,

wheref is the angle between the string and the downward vertical.
Find the Hamiltonian and obtain Hamilton’s equationsHisonserved?

Solution
In terms of coordinaté, the system hakinetic energy

T = %m (Zz + (a — Z)292>

and potential energyis V.= —mg(a — Z)cosf. (Remember thaZ is not a
coordinate but a specified functionoj Hence thd.agrangian of the system is

LO.6)=T—V=1m (2'2 +(a— 2)29'2) + mg(a — Z)cosh.

Theconjugate momentumpy is then given by

oL :
= — =ml(a—Z)*0
pe =5 ( )

and the corresponding inverse relation is

g—_ Po
m(a—Z)*

Since this system isot conservative, thélamiltonian must be found from the
general expression

H(0,pg) =0pg— L
2

= (ﬁ) Po — %Wl (ZZ + ﬁ) —mg(a— Z)cost

r;

= e —zZyp e’ —mela—Z)cosh.
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Hamilton’s equations for the system are then given by

5 oH . OH
that is,

; P . .

0 = m, Po =—mg(a—Z)Sln9.

SinceH has an explicit time dependence throug(r), H will not generallybe
conserved. lwill be conserved however H () is constant. [Why is this
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Problem 14.7 Charged particle in an electrodynamic field

The Lagrangian for a particle with mass and chargee moving in the general
electrodynamic field E (r, ), B (r,t)} is given in Cartesian coordinates by

L(r,r,t)= %mﬁ-i—e¢(r,l)—|—e;?-A(r,t),

wherer = (x, y,z) and{¢, A} are the electrodynamic potentials of figlff, B }.
Show that the corresponding Hamiltonian is given by

(p—eA)-(p—eA)+e
2m

H(r,p,t) = o,

wherep = (px, py. px) are the generalised momenta conjugate to the coordinates

(x, y,z). [Note thatp is notthe ordinary linear momentum of the particle.] Under
what circumstances i conserved?

Solution
In terms of Cartesian coordinatesy, z, the system halsagrangian

L=1m (xZ + g 2'2) —ep+exAy + epAy + eiA;.

Theconjugate momentapy, p,, p, are given by

JdL

Px = — = mx + eAy,
ax
JdL .

Py = @ =my + ed,,
JL .

Pz =——=mz+eA,.
0z

and the corresponding inverse relations are

. 1
X =—(px —eAx),

m

1
o1 —ed,).
y m(Py e y)
. 1
z=—(p;—eA;).

m

Since this system isot conservative, thélamiltonian must be found from the
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general expression

H(r,p)=xpx+ypy+zip.—L

1
= ; (Px(Px —edAx) + py(py —edy) + pz(pz — eAz))

1
_% ((Px - eAx)z + (Py - eAy)2 + (pz — eAz)2)

e
+ep — E (Ax(Px —edAy) + Ay(py —edy) + Az(pz — eAz))
1

= 3= ((px =€) + (py = €4,) + (pz = e42)*) + 9

1
= 3—(p—ed)-(p—ed) +ep.
m

This is the requiretHamiltonian. SinceH has an explicit time dependence through
{¢(1), A(¢)}, H will not generallybe conserved. Will be conserved however if the
potentials{¢, A4} are independent af that is, if the fields are statia
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Problem 14 .8 Relativistic Hamiltonian

The relativistic Lagrangian for a particle of rest masgs moving along thex-axis
under the potential field (x) is given by

. 1/2
L = mgc? (1— (1—);—;) )—V(x).

Show that the corresponding Hamiltonian is given by

o\ 1/2
H=moc2<l—|—(px) ) —moc? 4+ V(x),

moC

wherep, is the generalised momentum conjugate to

Solution
Since the particle hdsagrangian

. 1/2
L =mgyc? (1—(1—’2—;) )—V(x),

theconjugate momentump, is given by

oL
Px = s
. 2 —1/2
= moyX (1 — C_2)
and the corresponding inverse relation is
X = cpx (m%c2 + pi)_lﬂ.

This system is conservative, but the non-standard form efkimetic energy’
part of L means that the Hamiltonian must be found from the generaksson

H(x,px)=xpx—L
—1/2
—cp} (mic* + 12)

-1/

2
—moc? + moc? (m%cz + pi) + V(x)

e \? 1/2
= mg c? <1+(mxc) ) —moc? 4+ V(x).
0
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This is the required relativistidamiltonian. m
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Problem 14.9 A variational principle for Hamilton's equations
Consider the functional

Jlq(). p(t)] = /

fo

I

(H(q,p,t)—ti-p)dt

of the 2n independent functiong, (¢), ..., gn(?), p1(t),..., pn(t). Show that the
extremals of/ satisfy Hamilton’s equations with Hamiltonidi.

Solution
In expanded form, the integrand is
F=H(q p.t) — (qip1 +42p2+ -+ Gnpn)

and there is one Euler Lagrange equation correspondingtoafdhe{q;} and one
corresponding to each of tHe; }, making2» equations in all.
The Euler Lagrange equation corresponding to the varigbis

i(a_F)_a_F_o
di\dq;) dq;

that is,
d oH
—(—pi)—— =0,
A vy
which becomes
. oH .
bi=—5— (1=j=n). 1)
qj

Similarly, the Euler Lagrange equation corresponding éovriablep; is

i(a_F)_a_F_o
di\dp;) dp;

%(O) - (a—H —éj) =0,

apj

that is,

which becomes

_0H
 Opj
Equations (1) and (2) are exactly Hamilton’s equations feystem with Hamil-
tonianH(q, p,t). m

qj (I=j=n. 2)
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Problem 14 .10

In the theory of dynamical systems, a point is said to beasymptotically stable
equilibrium pointif it ‘attracts’ points in a nearby volume of the phase spa&igow
that such points cannot occur in Hamiltonian dynamics.

Solution

// \\
;Q - ~
0 ’ N

FIGURE 14.1 The motion of phase points towards the asymptot-
ically stable equilibrium point .

Suppose that there is an asymptotically stable equilibpomt x, and that the
sphereR, is sufficiently small so thaall of its phase points are attracted i@
(see Figure 14.1, left). Then, with increasing time, theae@ occupied by these
points will shrink in size as its points are drawn towaxggsee Figure 14.1, right).
Thus the volume of this region it conserved. However, by Liouville’s theorem,
volumes in phase spaeee conserved for any Hamiltonian system. The conclusion
is that asymptotically stable equilibrium points cannotbfeature of Hamiltonian
systemsm
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Problem 14.11

A one dimensional damped oscillator with coordinatsatisfies the equatiaj +
4 + 3q = 0, which is equivalent to the first order system

qg=mv, v = —3¢q — 4v.

Show that the area(?) of any region of points moving iy, v)-space has the time
variation

a(t) = a(0)e.
Does this result contradict Liouville’s theorem?

Solution

Leta(z) be the area of a regiad; of phase points moving in the phase plagev)
of the first order system of equations

=U,

v = —3q — 4v.

Then, as in the proof of Liouville’s theorem,

— = div F dqd
P . ivF dqdv,

where

Hence

— = [ divF dqd
7 . iv F dqdv

=/At(—4)dqdv

= —4a.
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The areau(t) therefore satisfies the equation

da 4

— = —4q

dt
thegeneral solutionof which is

a(t) = a(0)e™.

This example does not contradict Liouville’s theorem sitieeoriginal oscilla-
tor equationj + 4¢ + 3¢ = 0 contains the ‘damping tern#g and is thereforaot
derivable from a Lagrangiam
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Problem 14 .12 Ensembles in statistical mechanics

In statistical mechanics, a macroscopic property of a systes calculated by av-
eraging that property over a set,@rsemblegof points moving in the phase space of
S. The number of ensemble points in any volume of phase spaegriesented by
adensity functiorp(q, p. ). If the system is autonomous andstatistical equilib-
rium, it is required that, even though the ensemble points arengdin accordance
with Hamilton’s equations), their density function shoudinain the same, that is,
p = p(q, p). This places a restriction on possible choicesd@y, p). Let Ry be
any region of the phase space and suppose that, after,ttheepoints ofRy occupy
the regionR;. Explain why statistical equilibrium requires that

[Rop(q,p)dv =/Rt plg, p)dv

and show that thaniformdensity functiorp(q, p) = po satisfies this condition. [It
can be proved that the above condition is also satisfied bylangity function that
is constant along the streamlines of the phase flow.]

Solution
The equation

/Rop(q,p)dv =th plg. p)dv

merely expresses the condition that thenberof ensemble points lying in the mov-
ing regionR; remains constant.

If p(q. p) = po, then
[ p(q,mdv:/ podv = pov(t),
'Rt Rt

wherev(z) is the volume of the regiofR;. Sincev(t) is known to be constant
by Liouville’s theorem, it follows that the uniform densitynction p(¢, p) = po
satisfies the condition for statistical equilibriumn.
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Problem 14 .13

Decide if the energy surfaces in phase space are boundeel fiollihwing cases:

(i) The two-body gravitation problem with' < 0.

(ii) The two-body gravitation problem viewed from the zerommentum frame
and withE < 0.

(iif) The three-body gravitation problem viewed from theezenomentum frame
and with E' < 0. Does the solar system have the recurrence property?

Solution

(i) Let us take generalised coordinatd®, r }, whereR is the position vector of
G andr is the position vector obneof the particles relative t6;. Then the
conjugate momentgP, p} are bounded imnymotion, and the coordinate
is bounded in a motion with negative energy. However, thedioateR is
not bounded. The energy surfaces in phase space are tlearsfmunded

(i) The difference with (i) is that, in the zero momentumrfra, G is at rest
and we are left with the coordinate Then the conjugate momuntumis
bounded irmnymotion and the coordinaieis bounded in a motion with neg-
ative energy. Hence, surfaces in phase space with constgative energy
arebounded The recurrence theorem therefore applies, but this does no
yield an interesting result since motions with negativergnavere already
known to be periodic.

(i) In the three body problem, take generalised cooradiedR, rq, r,}, where
R is the position vector ofr, andrq, r, are the position vectors a@io of
the patrticles relative t&'. In the zero momentum framg;, is at rest and we
are left with the coordinatefs 1, r»}. Then the conjugate momentg,, p,}
are bounded irany motion and we need to decide whethgrandr, are
bounded in a motion in which the total energy is negative. dnegal, the
answer is no. In the three body problem, it is known to be jpbsd$or one
body toescape even though the total energy is negative. In such a case,
one of the position vectors;, r, must be unbounded. Hence, surfaces in
phase space with constant negative energy are genergdbyunded The
recurrence theorem does not apply and so we have no righpexethat the
three body problem has the recurrence property. Similaarksmapply (even
more so!) to the solar system.
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Problem 14 .14 Poisson brackets

Suppose that (g, p) andv(q, p) are any two functions of position in the phase
space(gq, p) of a mechanical systei. Then thePoisson brackefu, v] of u andv
is defined by

[u, v] = grad; u - grady, v — grady, u - grad, v = Z (a—uﬂ - a_ua_v) _

i=1 \04; 9p; 9pj dq;

Thealgebraicbehaviour of the Poisson bracket of two functions resemtbigts
of the cross produd/ x V' of two vectors or the commutatdy V — VU of two
matrices. The Poisson bracket of two functions is closdbted to the commutator
of the corresponding operators in quantum mechahics.

Prove the following properties of Poisson brackets.

Algebraic properties

[u,u] =0, [v,u] = —[u,v], [Auy + Aauaz,v] = Aqug, v] + Az uz, v]

[[u,v], w] + [[w,u],v] + [[v,w],u] = 0.

This last formula is calledacobi’s identity It is quite important, but there seems to be no way of proving
it apart from crashing it out, which is very tedious. Unlessiyan invent a smart method, leave this one
alone.

Fundamental Poisson brackets

[¢j.qx] =0, [pj.p] =0, (9. P] =0k,

whered j; is the Kroneker delta.
Hamilton’s equations

Show that Hamilton’s equations f& can be written in the form
qj =1lqg;.H].  pj=Ip;.H]l. (A =j=n).

Constants of the motion

* The commutatofU, V] of two quantum mechanical operatddsV corresponds to#i[u, v], where# is
the modified Planck constant, ahd v] is the Poisson bracket of the corresponding classicalhlasa,
V.
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(i) Show that theotal time derivative ofu(q, p) is given by

du
— = H
dt [u. H]
and deduce that is a constant of the motion & if, and only if,[u, H] = 0.

(i) If « andv are constants of the motion 6f show that the Poisson bracket v]
is another constant of the motion. [Use Jacobi’s identiDoks this mean that you
can keep on finding more and more constants of the motion ?

Solution

Algebraic properties

0]
[u,u] = gradq u- gradp u— gradp u- gradq u=>0.
(it)
[v,u] = gradq v - gradp u— gradp v- gradq u
= - (gradq u- gradp v— gradp u- gradq v)
= —[u,v].
(i)

[klul + Aalta, U] = gradq (klul + )\2u2) . gradp v — gradp (klul + )\.2“2) . gradq v
=M (gradq uy - grady v —grady, u; - grad; v)

+ Az (gradq Uy gradp v — gradp us - gradq v)
== )\l[ulv U] + )\2[1’{29 U]'

(iv) You must be joking!

Fundamental Poisson brackets

(i)
[¢j.qx] = grady ¢; - grady g — grady ¢; - grady g
=e;j-0-0-e
= 0.
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Heree ; is then-dimensional basis vector with zeros everywhere except in
the j-th position where there is a one. For example= (1,0,0,...,0) and
e, =(0,1,0,0,...,0).

(i)
[pj. pr]l = grady p; - grady pi —grady p; - grady py
=0-er—e¢;-0
=0.
(i)

[4j. p]=0rad; q; - grady, py —grady, g; - grady p
=ej-e;—0:0
:5ij-
Hamilton’s equations
(i)
lqgj. H] = gradq qj -gradp H — gradp qj -gradq H
:ej-grade—O-graqu
_ o
apj
=qj'
(i)
[pj. H]=grad, p; - grad, H —grady, p; - grad, H
:0-grade—ej-graqu
_oH
g,
=pj'

Constants of the motion
(i)
[u,H] = gradq u- gradp H— gradp u- gradq H
=grady u - ¢ —grad, u - (—p)
=gradyu-q +grad, u - p
_du
Cdt
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(i) Fom Jacobi’s identity,
[[u,v], Hl|+ [[H,u],v] + [[v, H],u] = 0.
However, since: andv are known to be constants of the motion,
[u,H] =[v, H] =0,
and so
[[u,v], H] = 0.

Hence[u, v] must be another constant of the motion.

Obviously one cannot keep on finding more and more constdriteeano-
tion! The reason is thdgu, v] may be simply some combination afandv
and therefore not amdependentonstantm
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Problem 14 .15 Integrable systems and chaos

A mechanical system is said to b#egrable if its equations of motion are soluble
in the sense that they can be reduced to integrations. (Yowtaoeed to be able
to evaluate the integrals in terms of standard functionghedrem due to Liouville
states thaany Hamiltonian system with n degrees of freedom is intdgii&ii hasn
independent constants of the motion, and all these questitmmute in the sense
that all their mutual Poisson brackets are zeralhe qualitative behaviour of inte-
grable Hamiltonian systems is well investigated (see Geidg?]). In particular,
no integrable Hamiltonian system can exhibit chaos

Use Liouville’s theorem to show that any autonomous systéimsdegrees of
freedom and: — 1 cyclic coordinates must be integrable.

Solution

For any autonomous systent] is a constant of the motion. Also this system
hasn — 1 cyclic coordinatesy;, ¢2,...,q,—1 and thereforez — 1 conserved mo-
mentapy, pa2,..., pn—1. Hence there are a total afconstants of the motion and
Liuoville’s theorem will be satisfied if all these variableesmmute. We already
know that[ p;. px] = 0, and

[pj,H]=p;j =0,

since eaclp; is conserved. Hence the conditions of Liuoville’s theoremsatisfied
and so the system must bdegrable. Most integrable systems are like thss.

* This result is really very surprising. generalsystem of first order ODEs idn variables need&n
integrals in order to be integrable in the Liouville sensantitonian systems need only half that number.
The theorem does not rule out the possibility that that thetdd be other classes of integrable systems.
However, according to Arnold?], every system that has ever been integrated is of the Liewind!
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Problem 15.1

A particle P of mass3m is connected to a particl@ of mass8m by a light elastic
spring of natural lengtlr and strengttw. Two similar springs are used to connect
P and Q to the fixed points4 and B respectively, which are a distande apart
on a smooth horizontal table. The particles can performitadmal oscillations
along the straight linet B. Find the normal frequencies and the forms of the normal
modes.

The system is in equlilibrium when the partidkereceives a blow that gives it a

N
speed in the directiond B. Find the displacement of each particle at time the
subsequent motion.

Solution

3m 8m
4 110000 ~e-0000 ~e-0000 =

— —

FIGURE 15.1 The system in problem 15.1.

Let the displacements of the two particles from their equilim positions bex,
y, as shown in Figure 15.1. Then the exact and approxikiatgic energiesare
the same, namely

_ _ 1 2 1 )
T =T =203m)x* + 5(8m)y~,

30
— 1
T—zm(0 8)'

Likewise, since the springs are linear, the exact and ajpmpaie potential en-
ergiesare the same, namely

and theT -matrix is

V=V¥=1lox*+ la(y—x)* + 1ay?

2
=la <2x2 —2xy + 2y2),

2 —1
— 1
V_2(>z(_1 2).
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Theeigenvalue equatiordetV — w?T) = 0 can be written

2-3pn -1
-1 2-8u

=0,

wherey = mow?/a. When expanded, this gives the quadratic equation
24p* — 22 4+3=0

whose roots arg = é andu = % Sinceu = mw?/a, thenormal frequencies
are therefore given by

2 o 2
w; = —, w; = —.
! 6m 27 4m
Since the normal frequencies are non-degenerate, thesponding amplitude vec-
tors are unique to within multiplied constants. In #lew mode yu = % and the

equationgV — w?T) - a = 0 for the amplitude vectoa become

3 =2 X\ _ (0
-3 2 Y ) \o)’
on clearing fractions. It is evident thaf = 2, Y = 3 is a solution so that the
amplitude vector for the;-mode isa; = (2, 3). The other mode is treated in a

similar way and its amplitude vector is found tode= (4, —1). In column vector
form, theamplitude vectorsof the normal modes are therefore

o) ()

These are théorms of the normal modes.
It follows that thegeneral solutionof the small motion equations is

x =2C COia)ll — )/1) +4C, COia)zl — )/2)
y = 3Cicojwit —y1) — Gy coqwat — y2),

whereCy, C,, y1, Y2 are arbitrary constants. This can be written in the alt@reat
form

x = 2(A; coswit + By sinwit) + 4(Az Coswat + B, Sinw,t),
y = 3(A4; coswit + By sinwyt) — (A2 Coswat + B; Sinwst),
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whereA, By, A,, B, are arbitrary constants.
It remains to determine the constadts, B, 4,, B, from theinitial conditions
x =0,y =0,x =u, y=0whent = 0. These conditions require that

241+ 44, =0,

341 — A, =0,
2w1B1 + 4wy By = u,
3wi1B; — w2 By =0,

from which it follows that4; = 4, = 0 and

u 3u
= . B2 = .
146()1 14602

B,

Themotion resulting from the given initial conditions is therefore

2u

X = (w2 sinw;t + 6w, Sinwat),
146()16()2
3u . .
= (a)z SINw1t — w1 Slna)zl).l
146()16()2
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Problem 15.2

A particle 4 of mass3m is suspended from a fixed poitk by a spring of strength
a and a second particl8 of mass2m is suspended froml by a second identical
spring. The system performs small oscillations in the eattstraight line through
0. Find the normal frequencies, the forms of the normal moaled a set of normal
coordinates.

Solution

n'g b

FIGURE 15.2 The system in problem 15.2.
The displacements of the particles are mea-
sured from theequilibrium configuratiorof

the system.

2m

<

Let the displacements of the two particles from their euilim positions bex,
y, as shown in Figure 15.2. In the equilibrium configuratitwe, tension in the upper
spring is5mg while the tension in the lower spring2sng. Hence, in the displaced
configuration, the total potential energy of the springfatiee to the equilibrium
configuration, is given by

X y—x
S _
Ve = /0 (5mg + af) d& +[0 2mg + &) d&

= 3mgx + 2mgy + %owc2 + %a(y —x)?
=3mgx + 2mgy + %a (2x2 —2xy + y2> .

The total gravitational potential energy, relative to tigeigbrium configuration, is

Ve =—-(Bm)gx — (2m)gy
= -3mgx —2mgy.
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Hence, the totgbotential energy of the system is

V=vS4+ve®
=l <2x2 —2xy + y2) .

The exact and approximap®tential energiesare the same so that

Ve = lg (2x2 —2xy + y2>

2 —1
1
V_2(>z(_1 1).

Likewise, the exact and approximadtimetic energiesare the same, namely

and theV -matrix is

_ _ 1 2 1 )
T =T =203m)x* + 52m)y~,

30
— 1
T—zm(0 2).

Theeigenvalue equatiordetV — »?T) = 0 can be written

and theT -matrix is

2-3u -1
—1 1-2u

il

whereu = mw?/a. When expanded, this gives the quadratic equation
6> =T +1=0

whose roots arg = é andu = 1. Sincep = mw?/a, thenormal frequencies
are therefore given by

2 o 2 _ @

w; = —, w; = —.

! 6m 2 m
Since the normal frequencies are non-degenerate, thesponding amplitude vec-
tors are unique to within multiplied constants. In #lew mode u = é and the
equationgV — w?T) - a = 0 for the amplitude vectoa become

(572)-(G)=()
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on clearing fractions. It is evident th&f = 2, Y = 3 is a solution so that the
amplitude vector for the;-mode isa; = (2, 3). The other mode is treated in a
similar way and its amplitude vector is found todg= (1, —1). In column vector
form, theamplitude vectorsof the normal modes are therefore

=) ()

These are théorms of the normal modes.
The matrix P, whose columns are the (un-normalised) amplitude vectsrs,

therefore
2 1
"= (3.1)

and a set of normal coordinates is given by

(n)=P()
(32)-(69)-0)
n(55)-(3):

These are a set oiormal coordinates but we may remove inessential scaling fac-
tors and take the set

=

=

n=x+y,
N2 =3x—2y

insteadm
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Problem 15.3 Rod pendulum

A uniform rod of length2a is suspended from a fixed poi@tby a light inextensible
string of lengthb attached to one of its ends. The system moves in a verticaépla
through O. Take as coordinates the anglés¢ between the string and the rod
respectively and the downward vertical. Show that the egasitgoverning small
oscillations of the system abotit= ¢ = 0 are

bl + ap = —gb,
b + %aéﬂ = —g¢.

For the special case in whi¢gh= 4a/5, find the normal frequencies and the forms
of the normal modes. Is the general motion periodic?

Solution

FIGURE 15.3 The rod pendulum in problem
15.3.

The kinetic energy of the rod can be expressed as the sum of its translational
and rotational contributions in the form

T=3iMV?+ 3w’

whereM is the mass of the rod/ is the speed of its centre of maSs I is its mo-
ment of inertia abou@, andw is its angular speed. The value 5P can be found
by evaluatingl” when the system ipassing through its equilibrium configuration
In terms of the coordinates ¢ shown in Figure 15.3, this is

TaPP — %M (b@ +a¢;>2+ % (%Maz)q'sz,

= 1M (b2 +2babdg + $a%¢?).

© Cambridge University Press, 2006



Chapter 15 The general theory of small oscillations 541

T 1y b? ba
S 2 ba %az '

The gravitationapotential energy of the rod relative to the equilibrium config-
uration is

The T-matrix is therefore

V = Mg(b(1 —cos) + a(l — cosp)),
from which it follows that

Ve = LMg (b62 +ag?).

V—leO
Rl W

Thesmall oscillation equationsare then
0 0 0
T o . —|— V . = s
<¢) (¢) (0)

bl + ad + g6 = 0,
bi + 2ap + g¢ = 0,

The V-matrix is therefore

that is,

as required.
Theeigenvalue equatiordetV — w?T) = 0 is

gb —b?w? —baw? 0

—baw? ga— %aza)2

For the special case in whi¢h= %a, this reduces to

S—4pu  —=5u
—12pn 15—-20p

=0,
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whereu = aw?/g. When expanded, this gives the quadratic equation
4p? —32u+15=0

whose roots aree = % andu = 1—25 Sinceu = aw?/g, thenormal frequencies
are therefore given by

g 2 _ 1¢
2a

Since the normal frequencies are non-degenerate, thesponding amplitude vec-
tors are unique to within multiplied constants. In #lew mode u = % and the
equationgV — w?T) - a = 0 for the amplitude vectoa become

6 —5 A _ (0
—6 5 B) \0)’
on clearing fractions. It is evident that = 5, B = 6 is a solution so that the
amplitude vector for the,-mode isa; = (5, 6). The other mode is treated in a

similar way and its amplitude vector is found todge = (3, —2). In column vector
form, theamplitude vectorsof the normal modes are therefore

() =-(3)

These are théorms of the normal modes.

For this system, the ratio of the normal frequencie&igw; = /15 which
is anirrational number. It follows that,/t; is also irrational and that the general
motion of the pendulum isot periodic. m
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Problem 15.4 Triple pendulum

A triple pendulum has three strings of equal lengtnd the three particles (starting
from the top) have massésn, 2m, m respectively. The pendulum performs small
oscillations in a vertical plane. Show that the normal fitgies satisfy the equation

120 — 60> + 810 — 27 = 0,

wherey = aw?/g. Find the normal frequencies, the forms of the normal modes,
and a set of normal coordinateg. £ 3 is a root of the equation.]

Solution

FIGURE 15.4 The system in problem 15.4.

The value of7'?PP can be found by evaluating when the system ipassing
through its equilibrium configuratiarin terms of the coordinates ¢, ¥ shown in
Figure 15.4, this is

TaPP — %(6m) (a9>2 + %(2m) (aé + aq5>2 + %m (aé +a¢ + a¢>2
= lma? (99'2 43¢+ 9% + 609 + 20y + 2¢'>1/}) .

The T-matrix is therefore

ma

=
[\S)
— W \O

—_ U W
—_
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The gravitationapotential energyof the system relative to the equilibrium con-
figuration is

V = 6mga(l — cost) + 2mg(a(l — cosf) + a(l — cosp)) +
mga((1 — cosf) + a(l — cosp) + a(l — cosy)),

from which it follows that
Ve = Imga (902 + 3¢ + 1#2) .

The V-matrix is therefore

V= %mga

S O O
S W o
—_o O

Theeigenvalue equatiordetV — w2T) = 0 can be written
9—-9u —3pu —p
=3n 3-3u —pn | =0.
—-n  —p l—p
whereu = aw?/g. When expanded, this gives the cubic equation
4 —20u* + 270 -9 =0,

as required. We are given that= 3 is a root, and, on extracting the factor— 3,
we are left with the quadratic equation

4pu* —8u +3=0,

whose roots arg = % andu = % Sinceu = aw?/g, thenormal frequenciesare
therefore given by

g 2 _ 38 2 _ 38

-, a)z — 5 (,()3 — T

2a 2a a

Since the normal frequencies are non-degenerate, thesponding amplitude vec-

tors are unique to within multiplied constants. In $lew mode yu = % and the
equationgV — w?T) - a = 0 for the amplitude vectoa become

2 _
a)l_

9 =3 —1 A 0
-3 3-1]|-{\B|=10],
-1 -1 1 C 0
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on clearing fractions. On discarding the first equation asldiisg the remaining
two, we find thatB = 24 andC = 34. The amplitude vector for the;-mode

is thereforer; = (1, 2, 3). The other modes are treated in a similar way and the
amplitude vectors are found to be = (1, 0,—3) anda; = (1,—3, 3). In column
vector form, theamplitude vectorsof the normal modes are therefore

1 1 1
a=12]1. ) = 0], as = | -3
3 -3 3

These are théorms of the normal modes.

The matrix P, whose columns are the (un-normalised) amplitude vectsrs,
therefore

1 1 1
P=1]2 0-3
3-3 3

and a set of normal coordinates is given by

m 0
m | =P-T-| ¢
13 v
1 2 3 9 31 0
=ima*>(1 0-3]-13 31 ¢
1-3 3 111 W
1812 6 0
=ima*| 6 0-2 ¢
3-3 1 Y

These are a set mormal coordinates but we may remove inessential scaling fac-
tors and take the set

n1=39+2¢+w,
T]2=39 —Iﬂ,
3 =30-3¢+ v

insteadm
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Problem 15.5

A light elastic string is stretched to tensiofy between two fixed pointst and
B a distance3a apart, and two particles of mags are attached to the string at
equally spaced intervals. The strengtheatchof the three sections of the string is
«. The system performs small oscillations in a plane throdgh Without making
any prior assumptions, prove that the particles oscillagitudinally in two of the
normal modes and transversely in the other two. Find therioumal frequencies.

Solution
Y Y,
l T—» Z, T—» Z, l
B [
m m

FIGURE 15.5 The system in problem 15.5.

Let the displacements of the two particles from their euilim positions be
X1, y1 andxy, y», as shown in Figure 15.5. Then the exact and approxikiasgic
energiesare the same, namely

T =T% = {m (5} + 37) + 3m (53 + 32)

m(fc12+y'12+>‘c§+y'§),

N | —

so that thel’ -matrix is

10 00

01 00
_1
T=2m160 10

00 01

Let A, be the extension of the middle segment of the string, reddt\its state
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in the equilibrium configuration of the system. Then

1/2
A, = ((a +x2—x1)*+ (2 — y1)2> —a

1/2
( 2(x2—x1) (2 —x1)*+ (32— yl)z) /
a a

a 2a? 2! a

:a(1+x2—x1 +(x2—x1)2—|—(y2—y1)2+ (z2)(-3) (2(X2—x1))2+___)_a

(y2 = y1)?

2a
correct to quadratic terms. The exact potential energy®tdgment relative to the
equilibrium configuration is

=(x2 —x1) +

Ar
V2=f (To+0[§)d§,
0
= ToAs + A3,
and so the corresponding approximate potential energy is
T
V3P Tola = x1) + (2= y)* + a2 —x)

The approximate potential energies of the other segmenitestring are calculated
similarly and are given by

T
Vlapp: Tox1 + Zylz + %lelz,

T
V3app= —ToX2 =+ gyg + %ax%-
The approximate totglotential energy of the system is therefore

T
VAP = g <Xf — X1 + x%) + 70 (yf — i+ y%) :
On taking the coordinates in the order, x5, y1, 2, the V-matrix becomes

20— 0 0
—x 2a O 0
v=1
21 0 0 2To/a —To/a
0 0 —T()/Cl ZTQ/CI
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Theeigenvalue equatiordetV — w?T) = 0 is therefore

200 — mw? - 0 0
—a 20 —mw? 0 0
0 0 2Tv/a — o —To/a

0 0 —To/a 2To/a —mw?

that is

200 —mw? —mw? 2To/a —mw?  —mw?
X =0.
2 2

—mw*- 20— mo

—mw? 2To/a — mw?

Thus the eigenvalue equation is satisfied if

(a) either
2—pn —1
=0,
-1 2—pn
wherep = mow?/a,
(b) or
2—v —v
= 0.
—v 2—v

wherev = maw?/ Ty.

In Case (a) the determinant expands to give the quadratic equation
pr—4p+3=0,

whose roots areg = 1 andu = 3. The corrresponding normal frequencies are

1/2 3\ /2
o =()" et ()
m m

In order to identify these frequencies wittngitudinal modes we determine the
correspondin@mplitude vectors. In the slow modep? = «/m and the equations
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(V— ?T) - a = 0for the amplitude vectoa become

o —« 0 0

X, 0
-0 o 0 0 X, 0
0 02Tp/a—a —To/a i |o
Y 0

0 0 —To/a 2Ty/a—«

These equations have the soluti@p = X, Y; = Y, = 0 so that the amplitude
vector for thewl-mode isal = (1, 1, 0, 0). The fastwf-mode is treated in
a similar way and its amplitude vector is found tmbz% = (1,—1, 0, 0). Thus
y1 = y2 = 0in these two modes, that is, the modes pueely longitudinal . The
existence of such modes is entirely to be expected sincele# by the symmetry
of the system that purely longitudinal motions do exist.

In Case (b) the determinant expands to give the quadratic equation
V2 —4v +3 =0,

whose roots are = 1 andv = 3. The corrresponding normal frequencies are

To \ /2 375\ /2
T 0 T 0
1 = (%) @2 T (%) '

In order to identify these frequencies witiansverse modeswe determine the cor-
respondingamplitude vectors. In the slow modew? = Ty/ma and the equations
(V— ?T) - a = 0for the amplitude vectoa become

20— Ty/a —«a 0 0
X1 0
—a  2a—To/a 0 0 X, 0
0 0 To/a —To/a Y 0
Y, 0
0 0 —T()/Cl T()/Cl

These equations have the solutibp= Y, X; = X, = 0, so that the amplitude
vector for thew!-mode isal = (0, 0, 1, 1). The fastw!-mode is treated in
a similar way and its amplitude vector is found tmbz% = (0, 0, 1,—1). Thus
x1 = x = 0in these two modes, that is, the modes jaweely transverse This
was not to be expected since there is no symmetry reason wieyyguansverse
motions should exist. Indeed, in the large displacemerdrthehey donot exist.
However, in the linearisesmall displacemertheory they do exist and this is what
we have foundm
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Problem 15.6

A rod of massM and lengthL is suspended from two fixed points at the same
horizontal level and a distande apart by two equal strings of lengthattached to

its ends. From each end of the rod a particle of mass suspended by a string of
lengtha. The system of the rod and two particles performs small la¢ichs in a
vertical plane. Find/ andT for this system. For the special case in whick: 3a/2
andM = 6m/5, find the normal frequencies. Show that the general smaliomot
is periodic and find the period.

Solution

FIGURE 15.6 The system in problem 15.6.

The approximatedinetic energy of the system can be found by evaluatifg
when the system ipassing through its equilibrium configuratiomn terms of the
coordinate®, ¢, ¢ shown in Figure 15.6, this is

" 2 ) 2 ) .\ 2
7%= 1M (b8) + 3m (b6 +ad)” + Lm (b6 +ay))
= LM +2m)bp?0? + tma?§* + Ima*y* + +mbabd + mbabdy.
[Note that theotationalkinetic energy of the rod is zero.] THé-matrix is therefore

(M + 2m)b* mba mba

T= mba ma* 0

1
2
mba 0 ma?
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The gravitationapotential energyof the system relative to the equilibrium con-
figuration is

V = Mgb(1—cost)+mg(b(1—cost)+a(1—cosp))+mg(b(1—cosh)+a(1—cosy))
from which it follows that

VP = 1(M +2m)gh6* + Imgag® + Tmgay?.
The V-matrix is therefore

(M +2m)b 0 0
V=1g 0 ma 0
0 0 ma

For the special case in whi¢h= 3a/2 andM = 6m/5, T andV reduce to

g (721515 mga (2400
T==,|1s00].  v==-] 050
15 010 005

Theeigenvalue equatiordetV — »?T) = 0 is then

48 —T72u  —151 —15u
—15n 10—10p 0 =0.
—15un 0 10— 10p

whereu = aw?/g. When expanded, this gives the cubic equation
O —49u% 4+ 560 — 16 = 0

whose roots arg = g, u = 1andus = 4. [You were supposed to spot that= 1
is a root.] Sincex = aw?/g, thenormal frequenciesare therefore given by

w1 = %n, wy =n, w3 =2n,

wheren? = g/a.

The periods of the normal modes ate= 37 /n, 1, = 2x/n andt; = n/n.
The ratios of these periods arational numbersand hence thgeneral motion is
periodic. The period of the general motion is the lowest common mieltypz,, 75,
73, which is6r/n m
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Problem 15.7

A uniform rod is suspended in a horizontal positionunequalvertical strings of
lengthsh, ¢ attached to its ends. Show that the frequency of the in-pdaneging
mode is((b + ¢)g/2bc)'/?, and that the frequencies of the other modes satisfy the
equation

bep? —2a(b + c)p + 3a* = 0,

wherepn = aw?/g. Find the normal frequencies for the particular case in whic
b = 3a andc = 8a.

Solution
———
—,—
C
b
a a
- T
Ao Go Bo Ao Go Bo

FIGURE 15.7 The system in problem 15.T7eft: In the equilibrium position (side viewRight: In
general position (viewed from above).

This problem is quite similar to that in Example 15.6. &t Y) be the hori-
zontal displacement of the centre of massf the rod from its equilibrium position,
and letd be the rotation angle of the rod when viewed from above (sger€il5.7).
The geometry is complicated by the fact that the rod does emtim horizontal
in the motion. However, its vertical displacemengisadraticin the small quanti-
ties X, Y, 6, and this enables us to make approximations. In particdlar,the
displacement of the end, is given by

Aa =Xi+ (Y —ab)j,

correct to thdirst order in small quantities. The vertical displacemefiof the end
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A is therefore given by

(b —z4)? = b2 — (X2 (Y- a9)2)
correct to thesecondorder in small quantities. Hence

A =b— (b= (X 4+ (¥ - 619)2))1/2

X2+ (Y —af)?\ '
—b-b(1- -

X2 4+ (Y — ab)? 12
_b—b(l— o +)
B X2 4+ (Y —ab)?

2b

correct to thesecondorder in small quantities. Similarly?, the vertical displace-
ment of the endB, is given by

B _ X2+ (Y +ab)?
2c

correct to thesecondorder in small quantities. Hene#, the vertical displacement
of G is given by

2% = % (ZA + zB>
X2+ (Y —ab)? N X2+ (Y +ab)?
N 4b 4¢

correct to thesecondorder in small quantities. Since the gravitatiopakential
energyof the system i9/ = Mgz, the approximate potential energy is

M
e _ ﬁ ((b FOX 4+ b+ )Y+ b+ c)a0® +2a(b — c)Ye) .
The V-matrix is therefore
b+c 0 0

0 b+c alb-oc)

0 a(b—c) b+ c)a?

_ Mg
"~ 4bc
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The kinetic energy of the rod can be expressed as the sum of its translational
and rotational contributions in the form

T =3iMV’+ 1l

whereV is the speed ofr, I is the moment of inertia of the rod abatit andw is
its angular speed. The value Bf*P can be found by evaluatinfj when the system

is passing through its equilibrium configuratiomm terms of the chosen coordinates,
this is

TP = 1y (X2 + YZ) +1 (

W=
<
IS
[\)
~—
>
[\)

The T-matrix is therefore

T=ImM|[0 1 0

Theeigenvalue equatiordetV — w?T) = 0 can be written

alb+c)—2bcu 0 0
0 a(b +c¢)—2bcp a*(b —c) = 0.
0 a?(b—c)  (b+c)a® —2a*bep

whereu = aw?/g. This equation will be satisfied if

(a) either
alb+c)—2bcu =0,
(b) or
a(b +c¢)—2bcp a’(b —c) .
a’(b—c) a*(b+c)— %azbc,u o
In Case (a)
a(b + c)
~ 2bc
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and the corrresponding normal frequency is

W — b+co)g
0 2bc

In order to identify this frequency with the longitudinal d& we determine the
correspondingamplitude vector. For this normal frequency, the equatiof\s —
w?T) - a = 0 for the amplitude vectoa become

0 0 0 0% 0
0 0 a’b—c) |-lY |=]0
® 0

0a*(b—c) 2(b + c)a®

These equations have the solutibn= ® = 0 so that the amplitude vector for the
wo-mode isap = (1, 0, 0). Thusy = 6 = 0 in this mode, that is, the mode is
purely longitudinal . The existence of such a mode is entirely to be expected since
itis clear by the symmetry of the system that purely longitatimotions do exist.

In Case (b) the determinant expands to give the quadratic equation
bep? —2a(b + c)p + 3a* = 0,

as required.

In the special case in which = 3¢ andc = 8a, the longitudinal frequency
becomesog = 11g/48a and the equation for the other normal frequences becomes

24p% =22 +3 =0,

the roots of which arg. = é andu = %. Hence, in this special case, the three
normal frequencies are
11 3
wi=—2, =L w2=22na
48a 6a 4a

© Cambridge University Press, 2006



Chapter 15 The general theory of small oscillations 556

Problem 15.8 %

A uniform rod BC has massV/ and lengti2a. The endB of the rod is connected
to a fixed point4 on a smooth horizontal table by an elastic string of streigth
and the end” is connected to a second fixed polhon the table by a second elastic
string of strengthw,. In equilibrium, the rod lies along the ling D with the strings
having tension7, and lengths, ¢ respectively. Show that the frequency of the
longitudinal mode ig(cr; + a2)/M)'/? and that the frequencies of the transverse
modes satisfy the equation

b2c*u? — 2be(2ab + 3be + 2ac)u + 6abe(2a + b + ¢) = 0,

wherey = Maw?/ T,. [The calculation of’ 2P is very tricky.]
Find the frequencies of the transverse modes for the p&ticase in which
a = 3candb = 5c.

Solution

A

b a

FIGURE 15.8 The system in problem 15.8.

Let (X,Y) be the displacement of the centre of m@sf the rod from its
equilibrium positionGy, and letd be the rotation angle of the rod (see Figure 15.8).

The kinetic energy of the rod can be expressed as the sum of its translational
and rotational contributions in the form

T=imMv?+ 1l

where M is the mass of the rod/ is the speed ofs, I is the moment of inertia
of the rod aboutz, andw is its angular speed. The value Bf°P can be found by
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evaluating?” when the system ipassing through its equilibrium configuratiom
terms of the chosen coordinates, this is

1 -2 2 1 1 2\ N2
T = Ly (X2 4 72) + 3 (4Ma?) 6
and theT -matrix is therefore

10 0
T=3M [0 1 0
0 0 }a?

1
361

The length4 B of the left string segment is given by

AB? = (b + X +a(1 —cosh))’ + (Y —asinb)’
=b*+ X? +a*(1 —cosh)? + 2bX + 2ab(1 — cosh) + 2aX (1 — cosh)
+Y?% + a*sin? 6 — 2aY sing

=b24+2bX + X2 +Y? +a(a + b)6? —2aY0,
correct to thesecondorder in small quantities. The extensidn of this segment is
therefore
Ay =AB—-b

2 2 2 2 172
- (b F2bX + X2+ Y2 a(a+ b)0% —2aY0 + --- ) —b

1/2
—b

2X X2+ Y?+a(a+b)0*—2aY0
=b(1+=—+ 4o
b b2
2 2 2
=b<1+§+x + Y2 +a(a+b)o 2aY9+(

b 2h? 2!

Y2 +a(a+ b)o? —2aY0
2b '

=
N—
—_~
|
S
N—
/N
=&
N—
()
+
v
|
S

correct to thesecondorder in small quantities.
The potential energy of the segment relative to the equulbiconfiguration is

Ay
14 =[0 (To + 1 &) dE,

= ToA1 + %OMAZ,
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and so the approximate potential energy of the segment is

T
VP = ToX + 2_2 (Y2 ta(a+ b))% — 2aY9) + oy X2

The approximate potential energy of the right string segroan be calculated sim-
ilarly and is given by

T
VP = —ToX + 2—2 <Y2 + a(a + b)H* + 2aY9) + T2 X7

The approximate totglotential energy of the system is therefore

L To

— 1 2
Ve — 5(0[1+0[2)X 2be

((b £ VY2 +a(ab + ac + 2bc)0? + 2a(b — c)Ye)

and theV -matrix is

bC(O(l +O(2)/T() 0 0
V = To 0 b+c alb —c¢)
2bc
0 a(b—c)a(ab + ac + 2bc)

Theeigenvalue equatiordetV — »?T) = 0 is therefore

abc(ay + az)/To — bep 0 0
0 alb+c)—bcn a*(b —c) =0,
0 a’?(b—c)  a*(ab +ac + 2bc) — 3a*bep

whereu = Maw?/ Ty. The eigenvalue equation is satisfied if

(a) either

abc(ay + az)/To— bcp =0,

(b) or

a(b +c)—bcu a’(b —c¢)

a*(b—c) a*(ab + ac + 2bc) — %azbc,u =0
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In Case (a)

a(ay + o)
==

and, sincew = Maw?/ Ty, the corresponding normal frequency is

P2 Bk’ %)
a)0: M .

It is easily verified that the correspondiagplitude vectorisao = (1, 0, 0) so
that this mode ipurely longitudinal . The existence of such a mode is entirely to be
expected since it is clear from the symmetry of the systempteely longitudinal
motions do exist.

In Case (b) the determinant expands to give the quadratic equation
bep? —2(2ab + 2ac + 3bc)p + 6aa + b + ¢) = 0,

as required.
In the special case in which= 3¢ andb = 5c¢, this equation reduces to

S5u® — 102 + 216 = 0,

the roots of which arg. = % andp = 18. Sincep = Maw?/ Ty, the corrre-
sponding normal frequencies are

, _ 12T

187 .
@ s
! SMa

Ma’

2 _
y =
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Problem 15.9 %

A light elasticstring is stretched between two fixed poimtsand B a distance

(n + 1)a apart, and: particles of mass: are attached to the string at equally spaced
intervals. The strength afachof then + 1 sections of the string i8. The system
performs smallongitudinal oscillations along the linet B. Show that the normal
frequencies satisfy the determinantal equation

2cosfd  —1 0--- 0 0
-1 2cosf —1--- 0 0

>
=
ll
|
e

0 0 0---2cosf —1
0 0 0--- —1 2cosf

where co9 = 1 — (mw?/2a).
By expanding the determinant by the top row, show thatsatisfies the recur-
rence relation
A, =2C0SOA,_1 — A,
for n > 3. Hence, show by induction that

A, = sin(n + 1)6/ sing.

Deduce the normal frequencies of the system.

Solution
Let the longitudinal displacements of the particles fromitlequilibrium positions
be xi, x2, ..., x,. Then the exact and approximddieetic energiesare the same,
namely

2

a 1,02 1,22 1
T =T = mxj + 3mx; 4 -+ 4+ ymx;,

2

so that thel"-matrix is

10---00
01---00
_ 1 .. ..
T—Em oo
00---10
00---01
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Likewise, since the elastic string is linear, the exact gopt@ximatepotential
energiesare the same, namely

V=V =lax]+ Ja(xa—x1)* + - + (o —xam1)? + jox,

=a<x12—x1xz—|—x§—xzx3—|—x§—---+x§_1—x,,_lx,,—l—x,3>,

so that thel/ -matrix is

2—1.--- 0 O

-1 2--- 0 O
1 . .
V—za : :

0 0 2 -1

0 0 -1 2

Theeigenvalue equatiordetV — w?T) = 0 can therefore be written in the form

2coshd  —1 o --- 0 0
—1 2cosf -1 --- 0 0
0 —1 2cosf--- 0 0
Ay = . . . . . . =0,
0 0 0 ---2cosf -1
0 0 0 --- —1 2cosb

where co® = 1 — (mw?/2a).

561

In order to evaluate\,,, we first show that it satisfies the given recurrence rela-

tion. On expanding\, by the top row, we obtain

-1 -1 - 0 0
02cosf --- 0 0
Ay =2Cc080 A,y — (1) :+ = . :
0 0 ---2cosf -1
0 0 --- —1 2cosf

=2C0SO A1 + (—1)A,—2,
on expanding this new determinant by its first column. Hefare; > 3,

Ay =2C0SOA,_1 — Ap_2,
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as required.
We now wish to show thah,, = D,,, where

_sin(n + 1)0
~ sing

n

We prove this by induction.

(i) Whenn =1,
2sinfdcosf  sin26
A{ =2cosf = ! - = I.
sing siné
= D;.
(i) Whenn =2,
2cosf  —1
Ay =
—1 2cosf

=4c080—1=3—4sin* 0 =

3sinf —4sin’ 6 sin30

sing
= D,.

(ili) SupposeA,,, = D, form =3,4,...,n— 1. Then

Ay =2C0S0 A1 — Ay_s
=2cost D,,_1 — D,_»
__2cosb sinnt) —sin(n — 1)6
sing
sin(n + 1)6 + sin(n — 1)8 — sin(n — 1)0

siné
sin(n + 1)6
siné
= D,.

This completes the induction and hence

_sin(n + 1)0

A -
" sin@

© Cambridge University Press, 2006

~ sinfd

562



Chapter 15 The general theory of small oscillations
foralln > 1.

The normal frequencies are found by solving the equatigr= 0, that is,

sin(n + 1)0 = 0.

The roots are

jr
n+1’

where is any integer. Since cés= 1 — (mw?/2a), thenormal frequenciesare
given by

Hence the: normal frequencies of the system are all distinct and arergy

a\1/2 VEU
or=2(0) e ()

wherej =1, 2, ...,n. Further values of give nothing newm
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Problem 15.10

A light string is stretched to a tensidfiy between two fixed pointgl and B a
distance(n + 1)a apart, and: particles of massn are attached to the string at
equally spaced intervals. The system performs small pi@amesverseoscillations.
Show that the normal frequencies satisfy the same detemailhequation as in the
previous question, except that now dos= 1 — (maw?/2T,). Find the normal
frequencies of the system.

Solution
Let the transverse displacements of the particles front gaiilibrium positions
be y1, y2, ..., yn. Then the exact and approximateetic energiesare the same,
namely

T =T =1Impi+ imps +--+ imy;,

so that thel'-matrix is

10---00
0100

1 :
T=gm| i1
00---10
00---01

The extension\,, of then-th segment of the string is

_ ’ B ) 1/2 B
Ap=(a" 4+ (Yn—Yn-1) a
1/2

_ 2
=Cl(1+ (Vn — Yn—1) ) —u

a2

(.Vn_yn—l)2
=Cl(l+T+"' —d

_ (yn — yn—1)2
2a '
correct to the second order in small quantities.
The potential energy of the segment relative to the equilibrconfiguration is

Ay
Vn=/0 (To + «§) dé,

= ToAn + 1A},

© Cambridge University Press, 2006



Chapter 15 The general theory of small oscillations

565

and so the approximate potential energy of/ibild segment is

Ty
2_(J/n - yn—l)z-
a
The approximate totglotential energyis therefore

Ty
VAP = 7(3712—;"1)/24-)’%—)’2)/3+;V32—"'+yr%—1 _y”_ly”-'_y’%)’

so that thel/-matrix is

2—1-- 0 0
-1 2-. 0 0
Ty
V=— L. .
2a . .
0 O0-- 2 —1
0O 0---—1 2

Theeigenvalue equatiordetV—w?T) = 0 can therefore be written in the form

2cosh  —1 0 0 0
—1 2cosf -1 0 0
0 —1 2cosf--- 0 0
A, = . . 5 . =0,
0 0 0 ---2cosf -1
0 0 0 —1 2cosf

where co® = 1 — (maw?/2Ty).

In order to evaluaté\,,, we first show that it satisfies the given recurrence rela-
tion. On expanding\,, by the top row, we obtain

-1 -1 - 0 0
02cosf --- 0 0
Ap=2c0s0 Ay — (=] + Lo :
0 0 ---2cosf -1
0 0 —1 2cos#

=2¢0s0 Ay + (=1) Ay,
on expanding this new determinant by its first column. Hefare; > 3,

Ay =2C0SOA,_1 — Ap_2,
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as required.
We now wish to show thah,, = D,,, where

_sin(n + 1)0
~ sing

n

We prove this by induction.

(i) Whenn =1,
2sinfdcosf  sin26
A{ =2cosf = ! - = I.
sing siné
= D;.
(i) Whenn =2,
2cosf  —1
Ay =
—1 2cosf

=4c080—1=3—4sin* 0 =

3sinf —4sin’ 6 sin30

sing
= D,.

(ili) SupposeA,,, = D, form =3,4,...,n— 1. Then

Ay =2C0S0 A1 — Ay_s
=2cost D,,_1 — D,_»
__2cosb sinnt) —sin(n — 1)6
sing
sin(n + 1)6 + sin(n — 1)8 — sin(n — 1)0

siné
sin(n + 1)6
siné
= D,.

This completes the induction and hence

_sin(n + 1)0

A -
" sin@
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foralln > 1.
The normal frequencies are found by solving the equatigr= 0, that is,

sin(n + 1)0 = 0.
The roots are
o=1"
n+1

where is any integer. Since cds= 1 — (maw?/2T,), thenormal frequencies

are given by
2T j
w; = 220 (1~ cos( L
ma n—+1

Hence the: normal frequencies of the system are all distinct and arergy

To\'? . '
wj =2 —_— sin( /" ,
ma 2(n+1)

wherej =1, 2, ...,n. Further values of give nothing newm
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Problem 15.11 Unsymmetrical linear molecule

A general linear triatomic molecule has atonts, 4,, A; with massesn,, m,,
m3. The chemical bond betweet, and 4, is represented by a spring of strength
a1, and the bond between, and 4; is represented by a spring of strengtfy.
Show that the vibrational frequences of the molecule satisf equation

myimyms w* — [a12m3(m1 + my) + azzmy(my + m3)]a)2

+ ajpa23(my + my + ms3) = 0.

Find the vibrational frequencies for the special case ircWhi; = 3m, m, = m,
msz = 2m andw 2 = 3w, w3 = 2.

The molecule O—-C-S (carbon oxysulphide) is known to be tindse the&l‘1
values given in Table 2 of the book (p. 441) to estimate itsatibnal frequencies.
[The experimentally measured values 2até4 cm~! and874 cm™1.]

Solution
« «
12 23
m, ~ I m, mg
—_— {131 e SCQ —_— {1:3

FIGURE 15.9 The system in problem 15.11.

Let the longitudinal displacements of the atoms from theuikbrium positions
be x;, x2, x3 as shown in Figure 15.9. Then the exact and approxirkiatetic
energiesare the same, namely

a L, 2 1 2 12
T =T%P = Zmx{ + smaX; + 3m3x3,

so that thel"-matrix is

Likewise, since the springs are linear, the exact and ajppetie potential en-
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ergiesare the same, namely

V =V = lap(x2 — x1)° + teas(xs —x2)°

1 2 2 2
- (0112361 —2012X1X2 + (12 + 023) X5 — 223X2Xx3 + a23x3) ,

so that thel/-matrix is

a2 —aq2 0
|
V = 5 | —%12 12 + 023 —23
0 —Q23 023

Theeigenvalue equatiordetV — »?T) = 0 is therefore

12 —mla)z —U12 0
2 —
—U12 12 + 03 —Mayw —023 =0.
0 —023 073 —I’I’l3a)2

On expanding the determinant, we obtain
602[74’1174’1274’13 ot — [a12m3(m1 + my) + apzmy(my + m3)]a)2
+ arpe23(my +my + m3)] =0,

a cubic equation in the variabte?. The rootw = 0 corresponds to a rigid body
translation of the whole molecule. There are therefore twbyvibrational modes,
the frequencies of which satisfy the equation

mimams w* — [o1ams(my + ma) + axzmy(my + m3)|o?
+ appaa3(my +my +m3) =0,

a quadratic equation in the varialé.

In the special case in whicth; = 3m, my; = m, m; = 2m anday; = 3a,
a3 = 2a, the equation for the normal frequencies reduces to

m?w* — Tmaw? + 60> =0

and thenormal frequenciesare
(04
W= .
m m
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In order to calculate the vibrational frequenciescafbon oxysulphide we
need to knowy;, anda,s, the strengths of the O—C and C—S bonds. These can
be found from the vibrational frequencies of €@nd CS given in Table 2 of the
book. From Example 15.5 , the strengtlof the bonds in aymmetrictriatomic
molecule is given by = Ma)lz, whereM is the mass of each of the outer atoms
andw; is the frequency of the symmetric stretching mode.

In order to use the data given in Table 2 more easily, we initec non-standard
system of units in which the unit of mass is the atomic un#, uhit of length is the
centimetre, and the unit of time is taken so that the speeiglufis 1 /2. In these
units, the mass of an atomesjualto its atomic weight, and the angular frequency
of a mode iqualto its reciprocal wavelength in chh. For the carbon oxysulphide
moleculeyn, = 16, m, = 12, m3; = 32 and the bond strengths are given by

a1y = 16 x 13372, a3 = 32 x 6572,
on using the values dfl_l given in Table 2. On substituting this data into the equa-
tion for the normal frequencies, we find that trbrational frequencies of carbon
oxysulphide are

ATt =2230em™!,  A;' =880cm!,
correct to three significant figures. (Examination of the kinnge vectors reveals
that theA;-mode is predominantly a C—O stretching mode, while Xhanode is

predominantly a C—S stretching mode.) The experimentathasared values are
2174 cm~! and874 cm™! respectivelym
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Problem 15.12 % Symmetric V-shaped molecule

Book Figure 15.7 shows the symmetric V-shaped triatomiceqde XY,; the
X—Y bonds are represented by springs of strergtivhile the Y—Y bond is rep-
resented by a spring of strengtk. Common examples of such molecules include
water, hydrogen sulphide, sulphur dioxide and nitrogexidies the apex angleo
is typically betwee®0° and120°. In planar motion, the molecule has six degrees of
freedom of which three are rigid body motions; there aredfwethreevibrational
modes. It is best to exploit the reflective symmetry of theauoole and solve sepa-
rately for the symmetric and antisymmetric modes. Book fadib.7 (left) shows a
symmetric motion while (right) shows an antisymmetric roatithe displacements
X, Y, x, y are measuredtom the equilibrium position Show that there is one
antisymmetric mode whose frequengy is given by

k .
wi = W(M + 2msirt @),

and show that the frequencies of the symmetric modes s#étisfgquation
- (1 +2ycoda —|—2€>/4 +2ecofa(l +2y) =0,
wherey = mw?/k andy = m/M.
Find the three vibrational frequencies for the special gasehich M = 2m,

a = 60° ande = 1/2.

Solution

Anti-symmetric modes

Let the coordinated’, x, y be those shown in book Figure 15.7 (right). Then the
exact and approximatenetic energiesare the same, namely

T =T% = IMV? 4+ Im (2 + 32) + dm (¥2 + 7)),
so that thel'-matrix is
0 0
T=m 0 1 0},
0 1
wherey = m/M.
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The extension of the upper X—Y bond from its equilibrium cgnfiation is
X cosx + y sina — Y sina,

correct to thefirst order in small quantities. Its approximate potential epesy
therefore

Tk(x cosa + y sina — Y sina)?

and the approximate potential energy of the lower X—Y bonrslth@ same value.
The extension of the Y—Y bond from its equilibrium configuoatis zero and hence
its potential energy is also zero. The approximate tptakntial energy of the
molecule is therefore

V3P = [(x cosa 4+ y sina — Y sina)?

so that thel/ -matrix is
V=k| —-sc ¢* sc|,

wheres = sine andc = cos.
Theeigenvalue equatiordetV — w?T) = 0 can therefore be written

s2— /2y —sc  —s?

—sc  c2—p sc | =0,

—s2 s¢ sP—pu

whereu = mw?/ k. On expanding the determinant, we obtain
w1+ 2ysifa—p) =0,

a cubic equation in the variabje. The double roop? = 0 corresponds to rigid
body motions of the whole molecule (one translation and atation). There is
therefore onlyone vibrational mode corresponding to the rogt = 1 + 2y sir? a.
Sincep = mw?/m andy = m/M , the frequency; of this mode is given by

k .
Cl)?% = W(M +2mSIn20t).

In the special case in which/ = 2m anda = 60°, the antisymmetric mode
has frequencw? = 7k /4m.
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Symmetric modes

Let the coordinates(, x, y be those shown in book Figure 15.7 (left). Then the
exact and approximatg@netic energiesare the same, namely

T=T%=1MX*+1m (;‘c2 —|—j/2> +1m ()'cz +y2),

so that thel"-matrix is

The extension of the upper X—Y bond from its equilibrium cgofiation is
X COS« + y Sino — X cosu,

correct to thefirst order in small quantities. Its approximate potential epesy
therefore

1k (x cosa + y sina — X cosa)?

and the approximate potential energy of the lower X—Y bonsl the same value.
The extension of the Y—Y bond from its equilibrium configueoatis 2y and hence
its potential energy i%(ek)(Zy)2 = 2eky?. The approximate totglotential en-
ergy of the molecule is therefore

VP = [ (x cosa + y sina — X cosa)? + 2eky?

so that thel/ -matrix is
2 —c? —sc
V==Fk| —=c* ¢* sc ,

—sc  sc s* + 2e

wheres = sina andc = cos.
Theeigenvalue equatiordetV — wT) = 0 can therefore be written

2 —u/2y —c? —sc
—c? c?— I SC =0,
—sc sc s2+2—p
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whereu = mw?/ k. On expanding the determinant, we obtain

M(;ﬁ — (1 +2ycos o + 2¢)u + 2ecos a(l + 2)/)) =0,
a cubic equation in the variabje. The rootu = 0 corresponds to a rigid body
translation of the whole molecule . There are therefore tmbyvibrational modes
corresponding to the roots of the quadratic equation

p* — (1 + 2y cos a + 2€)uu + 2 cos a(l + 2y) =0,

wherey = mw?/m andy = m/M.

In the special case in whichd = 2m, « = 60° ande =
reduces to

1., this equation

4u* —9u +2 =0,

the roots of which aree = % andu = 2. Sinceu = mw?/ k, the symmetric modes
therefore have frequencies
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Problem 15.13 Plane triangular molecule

The molecule BGl (boron trichloride) is plane and symmetrical. In equlilonitthe
Cl atoms are at the vertices of an equilateral triangle vinénB atom at the centroid.
Show that the molecule has six vibrational modes of whichdneein the plane of
the molecule; show also that the out-of-plane mode and otigeah-plane modes
have axial symmetry; and show finally that the remaining fotplane modes are in
doubly degenerate pairs. Deduce that the Br@blecule has a total of four distinct
vibrational frequencies.

Solution
k

\//‘

-7 N

_ - | N

- N

- o
e N
Al.—~-___~__\0 S

T——_

_~‘—.A2

FIGURE 15.10 The boron trichloride molecule.

This problem involves thelassificationof vibrational modes rather than the
determination of their frequencies. There is a general auefor classifying vi-
brational modes based on a study of the symmetry group of tleaule. Here
however we will find the solution bgd hocsymmetry arguments. Such arguments
are adequate for small molecules.

(a) Total number of modes Since each atom has three degrees of freedom,
the molecule has twelve degrees of freedom. However, simgermlecule
has six possible rigid body motions (three translational tmee rotational)
there are onlysix normal modes Note that the number dafistinctnormal
frequencies may be less than six.

(b) In-plane and anti-plane modes Since the molecule is plane, the particle
motions in its normal modes must all lie either (i) in the @aof the mole-
cule (in-plane motion) or (ii) perpendicular to it (antiaple motion). If we
restrict the motion of the molecule to be in-plane, this ceduthe number of
degrees of freedom to eight and the number of rigid body metio three
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(©)

(two translational and one rotational). Hence there musfiveein-plane
modesand therefore onlpne anti-plane mode

Axially symmetric modes Let {O, k} be the axis of rotational symmetry
of the molecule in its equilibrium position (see Figure 1H.1Then amo-
tion is said to have axial symmetry if it is preserved when the odkeis
rotated through an angle a20° about the axi§ O, k}. If we restrict the
motion of the molecule to be in-plaredto have axial symmetry, this re-
duces the number of degrees of freedom to two and the numbigridbbody
motions to one (a rotation). Hence, of the five in-plane mpda$/ one is
axially symmetric. Similarly, if we restrict the motion of the molecule to be
anti-planeand to have axial symmetry, this reduces the number of degrees
of freedom to two and the number of rigid body motions to on&dasla-
tion). Hencethe anti-plane mode is axially symmetric The forms of these
axially symmetric modes are depicted in Figure 15.11.

FIGURE 15.11 The axially symmetric modes of boron trichloridd.eft: the in-plane
mode.Right: the anti-plane mode.

(d)

Degenerate modes It remains to show that the remaining four in-plane
modes are in doubly degenerate pairs. This arises from thgaoal symme-
try of the molecule. LetM be some normal mode with frequen@y Then
M/, the motion obtained by rotatingyf through120° about the axi§ O, k},

is also a normal mode with frequené&¥. If M is axially symmetric, then
M’ = M and we have found nothing new. However, in any other case, we
have found a second normal mode with frequeficyHence, except for the
axially symmetric modes, all the normal frequencies mugiabéeast) dou-
bly degenerate. It follows that the remaining four in-planedes must be in
doubly degenerate pairs. [Exceptionally, it might hapgeat these doubly
degenerate frequencies are equal, producing one fourégldrteracy. Mea-
surement shows that this doest happen for boron trichlorides
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Problem 16.1

A rigid body is rotating in the right-handed sense about the @z with a constant
angular speed of 2 radians per second. Write down the angellacity vector of
the body, and find the instantaneous velocity, speed andeaatien of the particle
of the body at the poin4, —3, 7), where distances are measured in metres.

Solution

The vector angular velocity of the bodyds = 2k radians per second. The given
particle P has position vectar = 4i — 3 j + 7k and itsvelocity v is given by

V=wXr

= 2k)x@4i —-3j +7k)
i j k

=|0 02
4 -3 7

=6i +8jms

Thespeedof P is|v| = (6% + 82)1/2 =10msL.
Theaccelerationof P can then be calculated as follows:

a=0v=—(wxr)

dt

=@WXr +oxr
=0xr +wxv
i j k
=100 2
6 80

=—16i +12jms >’ m
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Problem 16.2

A rigid body is rotating with constant angular speed 3 raslipar second about a
fixed axis through the pointd(4,1,1), B(2,—1,0), distances being measured in

—_
centimetres. The rotation is in the left-handed senseivel& the directiond B.
Find the instantaneous velocity and acceleration of thegbaP of the body at the
point(4,4,4).

Solution
The points4 and B have position vectorsa = 4i + j + k andb = 2i — j

respectively. The rotation axi¢ B has directiorb —a = —2i —2 j — k and so the
unit vectorn pointing in this direction is given by

b—a
"Th—d
_ 2i+42j+k
20 +2j + k|
=—1Q2i +2j + k).

Theangular velocity of the body is therfore
o=-3n=2i+2j+k

radians per second.
The instantaneouselocity of the particleP that has position vecteri +4 j +
4k is then given by

v=wx(r —>b)
2i +2j +k)x(2i +5j + 4k)
i jk
=12 21
254

=3i —6j+6kcms!,
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The instantaneousccelerationof P is can then be calculated as follows:

a=1v = %(wx(r—b))

=ox(r —b)+wx( —b)
=0xr +ox(v—-0)

= WXV
i jk
=12 21
36 6
=18i —9j —18kcms 2. m
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Problem 16.3

A spinning top (a rigid body of revolution) is in general nmtiwith its vertex (a
particle on the axis of symmetry) fixed at the origih Leta(z) be the unit vector
pointing along the axis of symmetry and ket{z) be the angular velocity of the
top. (In generalw doesnot point along the axis of symmetry.) By considering the
velocities of particles of the top that lie on the axis of syetm, show that satisfies
the equation

a=wxa.
Deduce that the most general fowncan have is
®w =axa-+ Aa,

wherex is a scalar function of the time. [This formula is needed mtteory of the
spinning top.]

Solution

FIGURE 16.1 The symmetrical spinning top
with its vertex fixed alD has angular veloc-
ity @. The unit vectore points along the

symmetry axis of the top. O

Let P be the particle of the top that lies on the symmetry axis anditdistance
from the vertexO. Then the position vector aP (relative to the originO) is the
axial unit vectom(z). It follows thatv, the velocity of P, isa. However,p can also
be expressed in the form = w xa. It follows that the vectora ande must be
related by the formula

a=wxa. (1)
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On taking the cross product of this formula withwe obtain

axa = ax(wxa)
=(a-a) o —(w-a)a

=w—(w-a)a,
sincea - a = 1. Hencew must have the form

®w=axa-+ \a, (2)
whereA is some scalar function of the time. (Actually,= o - a, the axial com-

ponent ofw.) In fact, the expression (2) satisfies equation (1)diay choice of the
scalar functiori.(¢) and this is therefore the most general form thatan havem
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Problem 16.4

A penny of radius: rolls without slipping on a rough horizontal table. The pgnn
rolls in such a way that its centi@ remains fixed (see Figure 16.5). The plane of
the penny makes a constant angle/ith the table and the point of contaCttraces
out a circle with centr&® and radius: cosw, as shown. At time, the angle between
the radiusOC and some fixed radius . Find the angular velocity vector of the
penny in terms of the unit vectoust), k shown.

Find the velocity of the highest particle of the penny.

Solution

Suppose that the penny is viewed from a frame rotating atbeuaxis{ O, k} with
angular velocityw = Ok. In the rotating frame( is still fixed anda is now
constant. The apparent angular velocity of the penny mesetore have the form
®’ = Aa, wherel is some scalar function of the time. Hence, by #uslition
theorem for angular velocities, the true angular velocity of the pers given by

®w=0w+o
=0k + La.

It remains to determine the scalar functiofrom therolling condition. Since
G is permanently at rest and the contact partiClés instantaneously at rest, the
instantaneous axis of rotation must lie along the €. In particular thenp must
be perpendicular ta. The conditionw - @ = 0 gives

Ok -a)+ Ma-a) =0,
that is,
Ok -a) + 1 =0,
sincea -a = 1. Hence
A =—0(k-a) =—6 cosu
and theangular velocity of the penny is
w = 6(k — cosaa).

The velocity of the highest particle of the penny can be fowitdout using the
above formula fow. Since the highest particle of the penny lies on the insteatdas
rotation axis, its velocity must be zem.
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Problem 16.5

A rigid circular cone with altitudé: and semi-angler rolls without slipping on a
rough horizontal table. Explain why the vertéxof the cone never moves. Létr)

be the angle betweef?C, the line of the cone that is in contact with the table, and
some fixed horizontal reference li@4. Show that the angular velocity of the
cone is given by

w = —(9C0ta)i,
- - - - - - - H - - - -
wherei (¢) is the unit vector pointing in the directiofC. [First identify thedirec-
tion of w, and then consider the velocities of those particles of tmedhat lie on

the axis of symmetry.]
Identify the particle of the cone that has the maximum speeédiad this speed.

FIGURE 16.2 A cone of semi-angle rolls on a flat table.

Solution

The cone is shown in Figure 16.2. The unit veaide= a(z)) lies along the sym-
metry axis, and the unit vectaér(= i (¢)) lies along the generator of the cone that
is in instantaneous contact with the table. By tbling condition, every patrticle
of the cone lying on this generator is instantaneously &t HsnceO must beper-
manentlyat rest and the angular velocity of the cone must point albegltrection
OC. ThusO is fixed andw has the form

w = A,

wherel is some scalar function of the time.
To determine the scalar functidn consider the motion of a particle on the
symmetry axis that is distaneefrom O. Then the position vector aP relative to
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Ois

r =acosui +asinak,
and its velocity is given by

V=wXr
= Al x(acosai + asinak)
= alsina(i xk).

However, it is evident tha” moves on a horizontal circle of radiuscosx
centered on the axig), k}, and that its scalar velocity {& cosx)6. On comparing
these two formulae, we see thatA sine = (a cosa ). Hence

A = —0 cota
and theangular velocity of the cone is
@ = —(9C0to¢>i.

The instantaneous speedanfy particle Q of the cone isvp, wherew = |w]|
and p is the perpendicular distance ¢f from the instantaneous ax@C. The
particle with the highest speed is therefore the partictthéest fromOC, namely,
the highest particle. This particle has perpendiculafadist(/ seax) sin2« from

OC and its speed is therefore

lv| = wp = |— 6 cota|(h secx) sin2a
=2hcosx|f|. m
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Problem 16.6

Two rigid plastic panels lie in the planes= —b andz = b respectively. A rigid

ball of radiush can move in the space between the panels and is gripped by them
so that it does not slip. The panels are made to rotate withlangelocitiesw, k,

wyk about fixed vertical axes that are a distadcapart. Show thatyith a suitable
choice of origin the position vectoR of the centre of the ball satisfies the equation

R=w X R,
whereow = %(wl + w;). Deduce that the ball must move in a circle and find the
position of the centre of this circle.

Solution

Suppose that the panel= —b rotates with angular velocity,k about an axis
through the point—c, 0, 0), and that the panel = b rotates with angular velocity
w,k about an axis through the poift, 0,0). Let r be the position vector of the
centre of the ball relative t® and letw be its angular velocity.

Then therolling conditions at the points where the ball contacts the panels
z = +b are

F+wx(—bk) = (wik)x(r +ci),
F+ox(bk) = (wk)x(r—ci).

Adding these equations together gives
2F = (a)1 + a)z)(kXV) + C(CUI — CUZ)(kXi)»

which can be written in the form

r= (%(601 —|—a)2)k)><(r —1—6’(211 ;Zi):)

Hence, if we defineR by

R=r +c(“’1 _‘”Z)i,

w1 + w3

then R satisfies the equation
R = wx R,

wherew = 1(w1 +wz2)k = 3(@1 +2). The change from to R represents a shift
in the origin of position vectors fror® to the new originO” whose coordinates are

(e(2522). 0.0).
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Now the solutions of the equatioR = w x R (Wherew is a constant) are known
to be motions in which the point with position vectBrmoves on a circle lying in
a plane perpendicular to the vector and with centre lying on the axi®, w}. It
follows that, in our case, the centre of the ball moves ondecin the(x, y)-plane
with centre at the poin®’.
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Problem 16.7

Two hollow spheres have radiiandb (b > ), and their common centr@ is fixed.

A rigid ball of radius%(b — a) can move in the annular space between the spheres
and is gripped by them so that it does not slip. The spheresiade to rotate with
constant angular velocities;, w, respectively. Show that the ball must move in a
circle whose plane is perpendicular to the veaton + b ;.

Solution

FIGURE 16.3 The ball is gripped between two rotat-
ing hollow spheres.

Let r be the position vector of the centre of the ball anddéte its angular

—_
velocity. Letn be the unit vector in the directio@ C. Then therolling conditions
at the points where the ball contacts the inner and outersplage

F+ wx(—%(b —a)n) = wx(an),

F+ wx(%(b —a)n) = wyx(bn).
Adding these equations together gives
2F = (awy + bwy)xn.

Sincer = %(a + b)n, this equation can be written in the form

. aw, +bw;
r =\—— | Xr.
a—+b
Now the solutions of the equation= w xr (Wherew is a constant) are known
to be motions in which the point with position vectoimoves on a circle lying in
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a plane perpendicular to the vector and with centre lying on the axi®, w}. It
follows that, in our case, the centre of the ball moves on deiwhose plane is
perpendicular to the vectatw; + bw,. m
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Problem 17.1

Use the velocity and acceleration transformation formuta€derive the standard
expressions for the velocity and acceleration of a particfgane polar coordinates.

Solution

FIGURE 17.1 The frameZ’ rotates about the axisO, k} with scalar
angular velocityd. In this frame, the unit vectois @ are constants.

Suppose the polar coordinates), are measured relative to the fratheand let
F' be the frame rotating about the axi@, k} with scalar angular velocit§. Then
Q, the vector angular velocity of” relative toF is = 6k, as shown in Figure
17.1.

Suppose that a particl2 moves in the plane and is viewed from both frames.
Then, inF’, the unit vectoi is constantso that

/ ~ / .~ e~
r=rr, v =77, a =rir.

Thevelocity of P is given by

as required.
In the same way, thaccelerationof P is given by

a=Rxr +2@xv + Lx(2xr') +d
= (k)% (r7) + 2(0 k) x (77) + (04) x ((05) x (7)) + 77
— ('r‘—r9'2>?+ (r'é + 2r‘é)§-
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Problem 17.2 Addition of angular velocities
Prove the ‘addition of angular velocities’ theorem, Theork7.1.

Solution

FIGURE 17.2 The angular velocity addition theorem.

Let B be a rigid body whose motion is observed from the referermmdsF
andF’ as shown in Figure 17.2. The fran#€ has velocity) and angular velocity
Q relative toF. Let A be some reference particle Bfand P a general particle.
Then, by thevelocity transformation formula, v, the velocity of P in F is given

by
v="V+Qxr +v,
wherev’, the velocity of P in F, is given by theigid body formula
V=1, +e'x(' —a),
where®’ is the angular velocity oB in F'. Hence
v=V +@xr' + v+ o'x(r' —a)
=(V+2xd +v))+ (2 +o)x(r'—d)
=v4+ (R +0)x(r—a).
But v is also given directly by thegid body formula

v=vy 4 +wx(r—a),
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wherew is the angular velocity oB in . By comparing these two formulae for
we see that

0=+

This is exactly the theorem on tlagldition of angular velocities
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Problem 17.3

A circular cone with semi-angle is fixed with its axis of symmetry vertical and its
vertex O upwards. A second circular cone has semi-vertical afgje) — o« and

has its vertex fixed a. The second cone rolls on the first cone so that its axis
of symmetry precesses around the upward vertical with amguydeed.. Find the
angular speed of the rolling cone.

Solution

Fixed cone Rolling cone

FIGURE 17.3 The upper cone rolls on the fixed lower one.

Suppose the fram& be fixed and the fram&’ is rotating with scalar angular
velocity 2 about the axi§0, k}. ThenF’ has vector angular velocityk relative
to F.

In the frameF’, the rolling cone has its axis of symmetry fixed and so its &argu

velocity @’ must have the form
/

® = un,

where . is some scalar function of the time. Thedition theorem for angular
velocities then shows that, the true angular velocity of the cone, is given by

® = Ak + un.

It remains to determing from therolling condition. Since the particles on the
contact generator of the rolling cone are instantaneousisa, it follows that

wxr =0
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for those position vectons that have the form
r =a(—cosak + sinan).
Hence
(Ak + pn)x(—cosak + sinan) = 0,
from which it follows that
ASina + pcosa = 0.
Henceu = —A tana and theangular velocity of the rolling cone is therefore
@ = A (k —tanan)
It follows that theangular speedof the rolling cone is

l@| = |\ (kK —tanan) |
1/2
=A (1 + tar? oc)

=Asecxnm
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Problem 17 .4

A particle P of massm can slide along a smooth rigid straight wire. The wire has
one of its points fixed at the origi®, and is made to rotate in a plane through
with constant angular spe&el Show that-, the distance of from O, satisfies the
equation

P — Q% =0.
Initially, P is at rest (relative to the wire) at a distarcgom O. Findr as a function
of ¢ in the subsequent motion.

Solution

Suppose the framé is fixed and the frameF’ is rotating with scalar angular
velocity 2 about the axi§ O, k}, where the unit vectok is perpendicular to the
plane of motion of the wire. Then the vecmgular velocity of 7’ relative toF is
Qk. In the frameZ”, the unit vectorg, 8 are constants and so

r=rT, v =77, a =ir.
The equation of motion for the particl in the rotating frame*” is therefore
m[ 7+ 04 2(QK) < (F7) + (k) x (k) x (r 7)) ] —~ N9,

where N is the reaction of the wire on the particle. Since the wirenmoththis
points perpendicular to the wire. This equation simplifeegive

m| (7 - Q)7 + (22)0 | = NG
and, on equating components in fhed directions, we obtain the two scalar equa-
tions
F—Q%r =0,
2mQi = N.

The second equation serves to determine the normal reagtiorhe general solu-
tion of the first equation can be written

r = AcoshQ¢ + BsinhQz,

and, on applying the initial conditions= « and/ = 0 whenz = 0, we obtain the
solution

r = a coshQ2z.

This is themotion of the particleP along the wirem
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Problem 17.5 Larmor precession

A particle of massn and charge moves in the force field (r) and the uniform
magnetic fieldBk, wherek is a constant unit vector. Its equation of motion is then

dv eB
mE = (7) 'UXk =+ F(V)

in cgs Gaussian units. Show that the te@® /c)v x k can be removed from the
equation by viewing the motion from an appropriate rotatnagne.

For the special case in whidh(r) = —ma)g r, show that circular motions with
two different frequencies are possible.

Solution

Suppose the framg& is fixed and the frameF’ is rotating with vector angular
velocity 2 about some axis throug®, the origin of position vectors. Then the
equation of motion of the particle in the rotating frathéis

eB

m[a/—i— Lxr' +22xv + SZX(SZxr/)] = (—) (v + @xr')xk + F(r).
c

We see that the terms involving can be made to cancel by taking

Q= (ﬁ) k,
2mc

that is, by takingF’ to be rotating with scalar angular velociy = ¢ B/2mc¢ about
an axis parallel to the uniform magnetic field. The quarttis called the_armor
frequency.

On making the substitutioR = —Q k and dropping the dashes, the equation of
motion for the particle becomes

d
md—l; = F(r) + mQ*(k x (k xr)).
For the special case in whidh = —m;r, this reduces to
d
v _ —a)gr + Q%kx(kxr).
dt
Let us seek motions in which the particle moves in a planeutjin@ perpen-
dicular to the uniform magnetic field. Thdnx (k xr) = —r and the equation of

motion becomes

‘;—?+(w§+92)r=o.
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This is the two-dimension&@HM equation. The most general motion of the particle
is elliptical with centreO and with frequencyw?2 + ©2)!/2. In particularcircular
motionswith centreO and frequencyw? + ©2)!/2 are possible.

This is how the motions appear in the rotating frame. On rétgrto the fixed
frame, the circular motions remain circular but have onenaf different frequen-
cies (w2 + ©2)!/2 £ Q, depending on theidirection of motion around the axis
{0,k}. When|Q/wy| < 1, as is usually the case, the two frequencies are given
approximately byoy + Q2. m
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Problem 17.6

A bullet is fired vertically upwards with speedfrom a point on the Earth with co-
latitude 8. Show that it returns to the ground west of the firing point listance
4Qu sinp/3g>.

Solution

In the standard notation, the equation of particle motideatire to the rotating Earth
is

d
m [d—;) + 2Slxv] =—-mgk,

where the Earth’s angular velocif¥ is given by
Q = Q(—sinfi + cospk)

andp is the co-latitude.
One integration with respect tayives

d
d—:—i-ZSZxr = (u—gt)k,

on using the initial conditions = u k andr = 0 whent = 0.
A second integration with respecttdeads to thentegral equation

t
r(t) = (ut — 1gt*)k —2SZx/ r(t')dt’
0

on using the initial conditiom = 0 whenz = 0.
Hence thezero order approximation to the motion is

r® = (ur - 1gt*)k

and thefirst order approximation is given by

‘
rD =, _1@ xf rO@ydr’
0

t
=r©@ _ 2Slx/ (ut' — Lgt'*) k dt’
0
=r©® _ 2(Rxk) (%utz — %gt3)

=r©® 4 Qsing (%gt?’ — ut2> j.
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wherej is the unit vector pointing east. Hence thest order correction to the
zero order solution is a deflection of

Qsinp (%gl3 — ul2)

to the east.

To find the value of this deflection when the bullet returndodround, we need
an approximation ta, the time of flight. In this case, the zero order approxinmatio
is sufficient, namely

2u
A ———
g

On substituting in this value far, thedeflection of the bullet is found to be

4Qu3 sinB
3g2

to thewest m
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Problem 17.7

An artillery shell is fired from a point on the Earth with cditade 8. The direction
of firing is duesouth, the muzzle speed of the shellisand the angle of elevation
of the barrel isx. Show that the effect of the Earth’s rotation is to deflectghell
to the west by a distance

4Qu’3
3g2

sin’ « (3 cosa cosp + sina sing) .

Solution

In the standard notation, the equation of particle motideatire to the rotating Earth
is

d
m [d_;) + 2Slxv] =—-mgk,

where the Earth’s angular velocif¥y is given by
Q = Q(—sinfi + cospk)

andg is the co-latitude.
One integration with respect tagives

d .
d_: + 2@ xr =u(cosai + sinak) — gtk,

on using the initial conditions = u(cosxi + sina k) andr = 0 whens = 0.
A second integration with respecttdeads to thentegral equation

t
r(t) = u(cosai + sinak)t — 1g1*k — 2L x/ r(t'ydt
0

on using the initial conditiom = 0 whenz = 0.
Hence thezero order approximation to the motion is

r© = u(coswi + sinak)t — 1gt?k,
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and thefirst order approximation is given by

t
rD =@ _2@ x/ rOydt’
0

t
=@ _20 x/ (u(COSai + sinak)t’ — %gt/2k> dr’
0
— O _Qx (u(COSai + sinak)t? — %gt3k)
=r® + 1Qgt3sinBj — Qut?(cosa cosp + sina sinp) j
=r® 1L Q (%gt?’ sinB — ut* coga — /3)) Js

wherej is the unit vector pointing east. Hence tiest order correction to the
zero order solution is a deflection of

Q (%gt?’ sing — ut? coqo — ﬂ))

to the east.

To find the value of this deflection when the particle retumghe ground, we
need an approximation ta the time of flight. In this case, the zero order approxi-
mation is sufficient, namely

2u Sing
O ===
g

On substituting in this value far, the requiredieflectionof the shell is found to be

4Qu3
3g2

sin® «(3 cosa cosp + 2 sina sinB)

to thewest m
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Problem 17.8

An artillery shell is fired from a point on the Earth with cditade 8. The direction
of firing is dueeast the muzzle speed of the shellkisand the angle of elevation of
the barrel isx. Show that the effect of the Earth’s rotation is to deflectghell to
the south by a distance

4Qu’

1.7 sin* o cosa cosp.
g

% Show also that the easterly range is increased by

3

sina sinp (3 —4sir? oz) .

3g2
[Hint. The second part requires a corrected value for the flighe.tim
Solution

In the standard notation, the equation of particle motideatire to the rotating Earth
is

d
m [d_;) + 2Slxv] =—-mgk,

where the Earth’s angular velocif¥y is given by
Q = Q(—sinfi + cospk)

andp is the co-latitude.
One integration with respect tagives

d .
d_: +2@xr = u(cosa j + sinak) — gk,

on using the initial conditions = u(cosxi + sina k) andr = 0 whent = 0.
A second integration with respecttdeads to thentegral equation

t
r() = u(cosa j + sina k)t — 3gt°k —mxf r(t)dr’
0

on using the initial conditiom = 0 whenz = 0.
Hence thezero order approximation to the motion is

r© = u(cosa j + sinak)t — 1gt’k,
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and thefirst order approximation is given by
t
VU):rmy—2Qx/‘ﬂm03w/
0

t
—+©_2g x/ (u(cosaj + sina k) — %gt/2k> dr’
0
=r©® _@x (u(COSaj + sinak)t? — %gt3k)
=r® + 1Qgt3sinBj + Qui?(cose cosi — sina sinfj + cosa sinfk)
Hence the first ordecorrection to the zero order solution is
1Qgt’ sinBj + Qui*(cosa cospi —sinasinf j + cosa sinpk).
In particular, the shell suffers a deflection of
Qut? cosu cosp

to the south.

To find the value of this deflection when the particle retumghe ground, we
need an approximation ta the time of flight. In this case, the zero order approxi-
mation is sufficient, namely

2u Sina
O ==
g

On substituting in this value far, the requiredieflectionof the shell is found to be

4Qu’3

—— sin’ « cosa cosp
g

to thesouth.

Finding the correction to theasterly rangeis very tricky. This part should
probably not have been set, but it’s too late now!

The total easterly displacement of the shell at time given by the first order
approximation to be

ut cose + +Qgr* sinB — Qut* sina sin B, (1)

and we now need to replacen this expression by, the time of flight. The second
and third terms of this expression are small correctionstaadufficient to use ©,
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the zero order approximation to However, the first term is not small and we need
to user", thefirst order approximation tor. To find t(!), consider thevertical
motion. The total vertical displacement of the shell at timis given by the first
order approximation to be

ut sina — 1gt* + Qui* cosa sin
and the flight timer () must make this expression zero. It follows that

2u sin 2Q . !
L - 24 (1 ~ 2 osa smﬁ) .
g g

One last hurdle. Since the first order approximation alreaebylects squares and
higher powers of the small dimensionless param&egy g, we may replace this
expression for ") by the simpler formula

2u sin 2Q .
L - 21 (1 + 2 cosa smﬁ) .
g g

This is the required expression for thime of flight, correct to the first order.

It now remains to substitute this value fof) into the first term of (1) and the
value of 7 into the last two terms. After some heavy algebra we find that t
easterly rangeof the shell is increased by

3

17 sina sinB (3—4sin2a> m
g
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Problem 17.9

Consider Problem 17.4 again. This time find the motion of tigle by using the
transformed energy equation.

Solution

Suppose the framé is fixed and the frameF’ is rotating with scalar angular
velocity 2 about the axi§ O, k}, where the unit vectok is perpendicular to the
plane of motion of the wire. Then, in the rotating frafig, the wire is at rest and
the system is standard and conservative &fiparent potential energyzero.

The apparent kinetic energyis T = %miz and themoment of inertia of the
system about the ax{®), k} is I = mr?. Theenergy conservation principlefor
uniformly rotating frames then implies that

%miz +0— %mQ2r2 = E,

where E is a constant. The initial conditions= « and/ = 0 whent = 0 show
that E = —%mszzaz and so theenergy conservation equatiorbecomes

2= Q2 <r2 —a2> .
On taking square roots and separating, we find that

cosh'! (2) =4Qr + C,

whereC is a constant of integration. The initial conditien= ¢ whens = 0 shows
thatC = 0 and the solution for is found to be

r = a coshQ2z.

This is themotion of the particle along the wiraa
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Problem 17.10

One end of a straight rod is fixed at a potton a smooth horizontal table and the
rod is made to rotate arour@d with constant angular speéel. A uniform circular
disk of radiusz lies flat on the table and can slide freely upon it. The discaies
in contact with the rod at all times and is constraineclbalong the rod. Initially,
the disk is at rest (relative to the rod) with its point of caettat a distance from

0. Find the displacement of the disk as a function of the time.

Solution

FIGURE 17.4 The disk rolls along the rotat-
ing rod. 0]

Suppose the fram& is fixed and the framé’ is rotating with scalar angular
velocity 2 about the axi§ O, k}, where the unit vectok is perpendicular to the
plane of motion of the rod. Then, in the rotating frathg the rod is at rest and the
system is standard and conservative vaifiparent potential energyzero.

Theapparent kinetic energyis

.\ 2
T =3Mi*+ § ($Ma?) (2)
=3MF’.
Themoment of inertia of the system about the axi®), k} is
Lioxy = Iigay + M(0G)?
= %Ma2 + M (r2 + az)
= Mr? + %Maz.

The energy conservation principlefor uniformly rotating frames then implies
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that
IMi? 40— IMQ2 (r? + 3a?) = E,

where E is a constant. The initial conditions= « and7 = 0 whent = 0 show
that

E=-3MQ*a*
and so theenergy conservation equatiorbecomes
i2=20%(r =),
On taking square roots and separating, we find that

cosh'! (2) = i\@m +C,

whereC is a constant of integration. The initial condition= ¢ whent = 0 shows
thatC = 0 and the solution for is found to be

r= acosh(\/g Qz) :

This is thedisplacementof the disk at time. m
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Problem 17.11

A horizontal turntable is made to rotate about a fixed velrgoas with constant
angular spee. A hollow uniform circular cylinder of masd/ and radius: can
roll on the turntable. Initially the cylinder is at rest (rel&tito the turntable), with
its centre of mass on the rotation axis, when it is slightstutibed. Find the speed
of the cylinder when it has rolled a distancen the turntable.

% Find also an expression (in termsof for the force that the turntable exerts
on the cylinder.

Solution

FIGURE 17.5 The hollow circular cylinder rolls on the rotating turntabl

Suppose the fram& is fixed and the framé’ is rotating with scalar angular
velocity 2 about the axi§ O, k}, where the unit vectok is perpendicular to the
plane of the turntable. Then, in the rotating fraffg the turntable is at rest and the
system is standard and conservative vaifiparent potential energyzero.

Theapparent kinetic energyis

<N\ 2
Lafe2 | 1 2\ (X
T=1Mx —|—§(Ma>(g)
= Mx?%
Themoment of inertia of the system about the axi®, k} is

Loy = Iigry + Mx2.
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[We could put in the value of sy from the table in the Appendix, but there is no
point. It is just a constant and will eventually cancel.]

Theenergy conservation principlefor uniformly rotating frames then implies
that

M3? 4+ 0-3Q% (L + Mx?) = E,

whereE is a constant. The initial conditions= 0 andx = 0 whens = 0 show
that

102
E = _EQ I{G,k}
and so theenergy conservation equatiorbecomes
22 __ 1022
X =5Qx"%.

This equation obviously has the equilibrium solutioa= 0, but this is not what
we are looking for. We are interested in then-zerosolution in which

=+ ()~

In this solution, thevelocity of the cylinder when it has rolled a distangeon the
turntable isQ2x /v/2.

To find the reaction forc&X acting on the cylinder, we use the full equation for
particle motion in rotating frames. This gives

d
X—Mgk=m[d—?+0+2ﬂxv+ﬂx(ﬂxr)],

wherer = xi, v = xi, = Qk and the unit vector$i, j, k} are shown in
Figure 17.5. Now, from the energy equation,

7= =(5)4-(3)(B)
—=Xi=|—4|xi=(—4])|—]xi
dt V2 V2)\V2
102, :
= 5Qx1,
and, on substituting in all of these values, we find that
X=Mgk—|—M[%szi—|—x/§S22j—S22xi]
=Mgk+M522[\/§j—%i]x.

This is theforce exertedon the cylinder by the turntabla.
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Problem 17.12 Newton'’s bucket

A bucket half full of water is made to rotate with angular sp&€eabout its axis of
symmetry, which is vertical. Find, to within a constant, plmessure field in the fluid.
By considering the isobars (surfaces of constant pressfithis pressure field, find
the shape of the free surface of the water.

What would the shape of the free surface be if the bucket wepkaced by a
cubical box?

Solution

Suppose the framé is fixed and the frameF’ is rotating with scalar angular
velocity 2 about the same vertical axis as the bucket. Then, in themgtdame
F', the bucket is at rest.

Suppose that the water has come to rest relative to the butketequation of
‘hydrostatics’ in the rotating framé&”’ is

pRx(xr)=F —gradp,

wherep is the (constant) water density, is the pressure field2 (= Qk) is the
angular velocity of the bucket, anl is the body force (per unit volume) acting on
the water.

In this problem, the body force is gravity so that

F = —pgk.
It follows that pressure fielgh(r) must satisfy the equation

gradp = —pgk — pQ2k x (k xr)
— —pgk + pQ*RR,
whereR is the distance of the poimtfrom the rotation axis and is the unit vector
pointing in the direction of increasing. (In other words,R and R relate to the

cylindrical polar coordinate system whose axis lies along the rotation axihef
bucket.) This equation fop can be integrated to give

p=p (%QZR2 — gZ) + constant

This is thepressure fieldin the water, correct to within a constant. The surfaces of
constant pressure (of which the free surface must be oné¢harefore

Q2R?

-+ constant
2g

© Cambridge University Press, 2006



Chapter 17 Rotating reference frames 612

Each of these surfaces isparaboloid (a parabola of revolution) whose axis lies
along the rotation axis of the bucket. In particular theeftbe surfaceof the water
must be one of these paraboloids.

If the bucket is replaced by eubical box (or any other container), the above
solution still holds. The only difference is that the freefaoe will now terminate
where it meets the sides of thexinstead of where it met the bucke.
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Problem 17.13

A sealed circular can of radius is three-quarters full of water of densipy; the
remainder being air at pressypg. The can is taken into gravity free space and then
rotated about its axis of symmetry with constant angulaedigz Where will the
water be when it comes to rest relative to the can? Find thervpmessure at the
wall of the can.

Solution

Suppose the framg& is fixed and the frameF’ is rotating with scalar angular
velocity 2 about the symmetry axis of the can. Then, in the rotating & the
can is at rest.

Suppose that the water has come to rest relative to the cae.edtation of
‘hydrostatics’ in the rotating framé&”’ is

pRx(xr)=F —gradp,

wherep is the (constant) water density, is the pressure field2 (= Qk) is the
angular velocity of the bucket, anfl is the body force (per unit volume) acting on
the water.

In this problem, there is no body force so thfat= 0. It follows that pressure
field p(r) must satisfy the equation

gradp = —pQ2k x (k xr)
= —pQ’RR,
whereR is the distance of the poimtfrom the rotation axis ang is the unit vector
pointing in the direction of increasing. (In other words,R and R relate to the

cylindrical polar coordinate system whose axis lies along the symmetry axiseof
can.) This equation fop can be integrated to give

p = 2pQ2*R* + constant

This is thepressure fieldin the water, correct to within a constant. Thafaces of
constant pressure(of which the free surface must be one) are therefore

R = constant

a family of cylindrical surfaces whose axes lie along the atithe can. In particular
then, the free surface of the water must be one of these sstfac

The onlystableconfiguration of the system is the one in which the water occu-
pies the region between the curved wall of the can and oneeddltbve cylindrical

© Cambridge University Press, 2006



Chapter 17 Rotating reference frames 614

surfaces. The actual one is determined by the fact that tierwasconstant vol-
ume and a little geometry shows that tfree surfaceof the water actually lies in
the surfaceR = %a. At the free surface, the water pressure is known tpfehe

same as that of the enclosed air. On applying the boundaditcamp = p, when

R = %a, we find that thegoressure fieldin the water is

p=po+1pQ* (4R2 —a2> .

By substitutingR = « into this formula, we find that thpressure at the can
wall is

po + %szaz. [ |
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Problem 18.1
Show that the matrix

3
A=-|-6
2

is orthogonal. IfA is the transformation matrix between the coordinate systém
and(C’, doC and(’ have the same, or opposite, handedness?

Solution
{ 32 6\ (/3 -6 2 49 0 0
AAT:E—632 2 3 6]l=—1] 049 0
2 6-3)/\6 2-3 0 049

100

=010

001

Hence the matri is orthogonal.
Also, detA is given by

|32 6
detA=—|—-6 3 2
73
2 6 -3
1 343
- ﬁ[3(—9 —12) = 2(18 — 4) + 6(—36 — 6)] i
=—1.
Since deA = —1, it follows that the transformation representedAyonsists of

a rotation followed by a reflection. Hence, the coordinatgeynsC andC’ have
opposite handedness
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Problem 18.2

Find the transformation matrix between the coordinateesys€ andC’ when(C’ is
obtained

(i) by rotatingC through an angle of5° about the axi®x;,
(ii) by reflectingC in the planex, = 0,

(i) by rotating C through a right angle about the ax@&B, whereB is the point
with coordinateg2, 2, 1),
(iv) by reflectingC in the plan€x; — x, 4+ 2x3 = 0.

In each case, find the new coordinates of the pdinvhose coordinates i@ are
(3,-3,0).

Solution

(i) The transformation matrix whe@ is rotated through an angig about the

axisOx; is
cosy 0 —siny
A= 0 1 0
sinyy 0 cosy

Hence, wheny = 45°, thetransformation matrix is

[ (1 0l
A=—[0+v2 0

V2 I 0 1
Thenew coordinatesof the pointD are the elements of the column vector
3 1 1 0 -1 3
~)sle e
| 3
=7 —33«@

Hence, in the coordinate syste? D is the point(3/+/2, =3, 3/+/2). m
(ii) The transformation matrix when( is reflected in the plane, = 0 is
1 00
A=10-10
0 01
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Thenew coordinatesof the pointD are the elements of the column vector

3 00 3
A-l=3]=|0-10]|[-3
0 01 0

1
0
0
3
3
0

Hence, in the coordinate systéi D is the point(3, 3, 0), which is obvious
anyway.m
(i) In C, the line segmen® B is represented by the vectdi + 2 j + k. Hence
_
n, the unit vector in the directio®B is given by
2042 +k
n=———-
12i +2j + k|
= %(21’ +2j+k).

To find the required transformation matrix, we now subsgithis value ok
(andy = 90°) into the general formula (18.10) on page 497. This gives

L[4 T4
A=-|1 4 8
8§ —4 1

Thenew coordinatesof the pointD are the elements of the column vector

3\ (4 74 3
A-l3l==2(1 4 8|[-=3
o) 2\s—4 1 0

-

| =1

4

Hence, in the coordinate systéi D is the point(—1,—1, 4). m

(iv) The plane2x; — x, + 2x3 = 0 can be written in the formm - x = 0, where
the unit vectom is given by

2i —j 42k
n=—(/——"—m——
2i — j + 2k|

= 1Qi—j+2k).
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To find the required transformation matrix, we now subsgithis value of
into the general formula (18.11) on page 498. This gives

1
-8

BN NN

—8
4
1

Thenew coordinatesof the pointD are the elements of the column vector

3\ (1 4-8 3
Al=al=2 a7 al]|-=3
o] 2\-8 4 1 0

Hence, in the coordinate systét) D is the point(—1,—1,—4). =
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Problem 18.3
Show that the matrix

2 -1 =2
A=-12 2 1
1 -2 2

is orthogonal and has determinani. Find the column vectorg that satisfy the
equatiomA-v = v. If A is the transformation matrix between the coordinate system

—

C and(C’, show thatA represents a rotation ¢fabout the axis)E whereE is the
point with coordinatesl, 1,—1) in C.
% Find the rotation angle.

Solution

P21 -2 22 1 (900
A-AT="1|2 2 1 1 2=2=-(090
N1 22 2/J\=21 2/ 2\ooo
100
=010
001

Hence the matriA is orthogonal. Thedeterminant of A is given by

2 -1 =2

detA=—|2 2 1
33

1 -2 2

1
= = [264+ 2+ 16D -2-4-2)]
= +1.

Since deA = +1, it follows that the transformation representedfis arotation.
In expanded form, the equatidn-v = v is

2 —1 =2 V1 U1
12 2 1 v | =1v ],
1 -2 2 U3 U3
that is,
-1 -1 =2 V1 0
2 -1 1 v |=10
I -2 —1 V3 0
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The last equation is just the sum of the first two, and the fivetdan be written in
the form

V] + vy = —2v3,

21)1 — Uy = —V3,

The general solution of these equations;is= A, v, = A, v3 = —A, whereA may
take any value. Hence tlgeneral solutionof the equatioA - v = v is

V=A 11,

whereA may take any value.

It follows that points that have coordinates of the fo(m A, —X) in C have
thesame coordinatesn C’ and so must lie on the rotation axis of the rotation repre-
sented byA. In particular, theotation axis must pass through the poift(1, 1, —1).

There are many ways to find the rotation angle. One way is tetgute the
valuen = (i + j —k)/+/3 into the general formula (18.10) and pick out the values
of cosy and sinyr. Alternatively, one may work from first principles, usingeth
following homespun method:

Select a pointF such thatOE and OF are perpendicular. The poift, 0, 1)
will do. Now find the coordinates of in C’. These are the elements of the column
vector

The rotation angle abou?E must therefore be the same as the angle between the
vectorsi + k andj + k, which is cos! % The angle is thereforeg-zr/3. The
correctsign can be determined by examining the sign of the triple scaladymct

(@ +k)x(j +k))- (i + j — k). Itturns out that theotation angle about the axis

—

OEis+7/3.m
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Problem 18.4

Write out the transformation formula for a fifth order tenddihe main difficulty is
finding enough suffix names!]

Solution

As it says in the text on page 502, the tensor transformationdlae follow a pat-
tern. In the definition of a vector there is only one summaéind one appearance of
ap q; in the definition of a tensor of the second order, there aceswnmations and
two appearances af, ,, and so on. The suffices of the tensor on the left (in order)
must be the same as the first suffix of each ofdpg (in order), and the suffices of
the tensor on the right (in order) must be the same as the deciiix of each of the
a, 4 (inorder). By observing these rules, one can deduce thsftianation formula

for a tensor ofanyorder. In particular, for a tensor of order five, tinensformation
formula is

303 3 3 3
/
ittm = D 2 D 2 D inGjakr dlsdms pgrs:

p=lg=1r=1s=1t=1
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Problem 18.5
In the coordinate systeth a certain second order tensor is represented by the matrix

T=

—_— O
S = O
—_— O

Find the matrix representing the tensor in the coordinastesyC’, where(’ is
obtained

(i) by rotatingC through an angle of5° about the axi® x,
(ii) by reflectingC in the planex; = 0.

Solution

(i) The transformation matrix whe@ is rotated through an angig about the

axisOx; is
1 0 0
A=10 cosy siny
0 —siny cosy
Hence, wheny = 45°, thetransformation matrix is
L (V2 00
A=— 0 11
V2 0—-1 1
ThenT’, the matrix representing the tensor in the coordinate syste is
given by
T=A.T.-AT
L (YV2 00\ 101\ (V20
= 3 0 11 010 0 1-1
0-1 1 101 1
(V21
=— 1v2 0] m
V2 o2
(i) The transformation matrix whefi is reflected in the plane; = 0 is
1 0 0
A=]101 0
0 0-1
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ThenT’, the matrix representing the tensor in the coordinate syste is

given by

T=A.T.-AT
10 0 101 10 0

=101 0o]lo10])|l0o 1 0
0 0-—1 101 0 0-—1
1 0-—1

= 01 0]m
-1 0 1
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Problem 18.6

The quantities;;x andu;;x; are third and fourth order tensors respectively. Decide
if each of the following quantities is a tensor and, if it igte its order:

3
() tijktimnp ORI (i) > aij
j=1

3 3 3
V) > i) V) > i VD) D tijktkimn
j=1 k=1

i=1

3 3 3 3 3 3
wi) D3 uiig Wiii) > ttmn ) D> tjktijk.
k=1

i=1j=1 i=1j=1k=1

Solution

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

tijkUimnp 1S theouter produciof the tensors;;;, andu;;x; and is therefore a
seventh order tensor

tijktimn 1S the outer productof the tensor;;, with itself. It is therefore a
sixth order tensor.

Z§.=1 t;jj is the tensor; ;. with the suffix pair{ j, k} contracted It is there-
fore afirst order tensor (a vector).

Z§.=1 tjij is the tensor;;; with the suffix pair{i, k} contracted(and the
suffix j renamed as). It is therefore dirst order tensor (a vector).

Zle t;ii 1S nota contraction of the tensay;; sincethree suffices are set
equal and summed. It is therefamet a tensor. Mathematicians might like
to provide an explicit example of a third order tensor (onensugh) for
which 3°7_, #;; is not preserved under coordinate transformation.

S i_. tijkUkimn 1S theouter productof the tensors;;x andu;,,,, with the
suffix pair{k, [} contracted (and the suffices:, n, p renamed as, m, n). It
is therefore difth order tensor.

> i1 Yoy uiijj i the tensou;,, with the suffix pairs{i, j} and {k,}
contracted It is therefore a&ero order tensor(a scalar).

Z/Sc=1 Uk1mn 1S NOta contraction of the tensaw,;,,, Sinceno suffices are set
equal. It is therefor@eot a tensor.
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(iX) 37—y 3321 Yie tijktijk iS the tenso;;k iy, with the suffix pairs{i, /}
and{j,m} and{k,n} all contracted It is therefore aero order tensor (a
scalar). Thus the sum of the squares of the elements of tkertgy), is an
invariant.
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Problem 18.7

Show that the sum of the squares of the elements of a tensorimwvariant. [First
and second order tensors will suffice.]

Solution

Suppose that the three component quanijtys a vector. Then the sum of the
squares of its elements is

3
2 2 2
vy vy vy = E V; V;

i=1

which is the second order tensan; with the suffix pair{i, j} contracted. It is
therefore annvariant.

Similarly, suppose that the nine component quanjtis a second order tensor.
Then the sum of the squares of its elements is

3 3
D2 tiiti

i=1j=1

which is the fourth order tensay;jt; with the suffix pairs{i,k} and{;,/} con-
tracted. It is therefore amvariant .

The corresponding result for third order tensors is pajtdbquestion 18.6 and
a similar argument applies to tensors of any orsier.
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Problem 18.8

If the matrixT represents a second order tensor, show thak gean invariant. [We
have now found three invariant functions of a second ordesae the sum of the
diagonal elements, the sum of the squares of all the elepramdgshe determinant.]

Solution
If T represents a second order tensor, then it satisfies théamnanagion formula

T=A.-T-AT,
whereA is the transformation matrix. Then

detT’ = det(A - T-AT>

= detA x detT x detAT
= detA x detT x detA
= detT,

since deA = 1 whenA is a rotation matrix. Hence d&tis preserved under coor-
dinate transformation and is thereforeiavariant . m
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Problem 18.9

In crystalline materials, the ordinary elastic moduli agplaced by;;;, a fourth
order tensor with eighty one elements. It appears that tret gemeral material has
eighty one elastic moduli, but this number is reduced bezagyg has the following
symmetries:

(i) Cjikl = Cijkl (i) Cijlk = Cijkl (iii) Cklij = Cijkl
How many elastic moduli does the most general material dgtoave?

Solution

The symmetry (i) means that, for each choice of the suffix fJaif}, there aresix
independent choices for the suffix p&ir j } instead of nine. Likewise, the symme-
try (ii) means that, for each choice of the suffix pgir; }, there aresixindependent
choices for the suffix paifk,/} instead of nine. This reduces the number of in-
dependent moduli from eighty one to thirty six. These thsgity elements can be
set out in a convenierd x 6 array. For example, we can ‘number’ the rows and
columns of this array by using the labgls 1}, {2,2}, {3, 3}, {2, 3}, {3, 1}, {1,2}.
The symmetry (iii) then implies that the elements in this 6 array are symmetric
about the leading diagonal. On counting up the number of @son or above this
diagonal, we find that the number of independalastic moduliis actually twenty
one. [Further symmetries of the crystal lead to further céidas in the number of
elastic constants; an isotropic material has only two!]

Triclinic crystals have the full twenty one elastic constants. Sugstals exhibit
the least symmetry of all crystal systems. Their axes arquadend do not intersect
at right angles anywher@&razilian axinite is an example of a triclinic crysta
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FIGURE 18.1 A typical particle of the body
has massn, position vectorr, and is dis-
tancep from the axis{O, n}.

Problem 18. 10

Show that/p, ny, the moment of inertia of a body about an axis throdyparallel
to the unit vectom, is given by

I{O,n} = nT +Ipo-N

whereIop is the matrix representing the inertia tensor of the bod9 &in some
coordinate system), amdis the column vector that contains the components of
(in the same coordinate system).

Find the moment of inertia of a uniform rectangular platedwgides2a and25b
about a diagonal.

Solution

This formula can be proved by comparing the scalar and tenqmessions for
the angular momentum of a rigid body about an axis. Howewueceshe result is
entirely geometrical (and has no direct connection withudelgmomentum), it is
perhaps preferable to give a direct geometrical proof.

Figure 18.1 shows a typical particle of the body with masgosition vectowr,
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L3

G - T,

FIGURE 18.2 Principal axes for the reactangular plate at the point
G.

and distance from the axis{O, n}. Then

pr=r-r—(r-n)?

= (2 + x2 +x2)% = (mx1 + naxa + naxs)’
= (1=ni)xi + (1 —n3)x3 + (1 —n3)x3
—21’111’12X1X2 — 2n1n3x1x3 — 21’121’13)62)63
= (n3 + n3)xi + (n} +n3)x3 + (nf + n3)x3
—21’111’12X1X2 — 2n1n3x1x3 — 21’121’13)62)63
= (x3 +x3)nt + (x] + x3)ny + (x7 + x3)n3

—21’111’12X1X2 — 2n1n3x1x3 — 21’121’13)62)63

x% +x§ —X1X3 —X1X3 ni
_ 2 2
= (n1 ny n3) —X1X2 X] + X7 —X2X3 ny
—X1X3 —XX3 X] + X) 3

On multiplying this equality byn and summing over all the particles, we obtain

Iy 112 113 ni
Lio,ny = Zmpz = (ninynz) | In1 Iz Iz | | 12
I31 I3 I33 n3

:nT'IO‘n

which is the required result.
Figure 18.2 shows the rectangular plate and the principes ax the point.
Relative to these axes, the diagotad points in the direction of the unit vectar,
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where
n = CoSxe; + Sinaes,
ando is the angle betweefi4 and thex;-axis. Then
cosu
n=1\ sina
0

and/g4, the moment of inertia of the plate about the a¥i$, is given by

IGAZHT-IG-H

IMbB? 0 0 cosu
= (cosasine0)| 0 IMad? 0 sina
0 0 1M(a*+5?) 0
b? 0 0 a
M
= W ((1 b 0) 0 (12 0 b
(a® +b%) 0 0 a®+52)\0
_ 2Ma’h? .
~ 3(a? + b2)’
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L3

FIGURE 18.3 Principal axes for the circular disk at the poiat

Problem 18.11

Find the principal moments of inertia of a uniform circulaskdof massM and
radiusa (i) at its centre of mass, and (ii) at a point on the edge of thk.d

Solution

() The axes shown in Figure 18.3 are a sepohcipal axes of the disk atG'.
This follows from the reflective symmetry of the disk in eadhtlze three
coordinate planes. Also, since the disk is a lamina lyindghenglanex; = 0,
theperpendicular axestheorem shows that

ItG,es3 = Itg,e,y + 110,e,3

and the rotational symmetry of the disk about the dxises} implies that
Iig,e,y = IiG,e,- From thetable of moments of inertia on page 570,

Iig,e,; = $Ma?, and so theprincipal moments of inertia of the disk at
G are

Iigey = %Maz» lIig.e,y = %Maz, I ey = %Ma2 [ |

(i) The set of parallel axede  e,e3 areprincipal axes of the disk at4. This
follows from the reflective symmetry of the disk in each of tve coordinate
planesx, = 0 andx; = 0. [Why is two enough?] The corresponding
principal moments can be found by using tberallel axestheorem. The
principal moments of inertia of the disk a4 are therefore

Iige; = %Mazv Iig,e,y = %Maz, Iig,e) = %Ma2 ]
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Problem 18.12

A uniform circular disk has mas® and radius:. A spinning top is made by fitting
the disk with a light spindlel B which passes through the disk and is fixed along its
axis of symmetry. The distance of the eadrom the disk is equal to the disk radius
a. Find the principal moments of inertia of the top at the enaf the spindle.

Solution

Let Gxx,x3 be the set of axes shown in Figure 18.3. Then the set of pbaaks
Ax1x,x3 areprincipal axes of the top at the tipd. This follows from the rotational
symmetry of the top about the axiéx;. The corresponding principal moments
can be found from those & by using theparallel axestheorem. Theprincipal
momentsof inertia of the top a4 are therefore

2

Igey =3Mda>,  Iigey =3Md*,  Iye,y=3Md’m
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Problem 18.13

A uniform hemisphere has mad4 and radius:. A spinning top is made by fitting
the hemisphere with a light spindl¢B which passes through the hemisphere and
is fixed along its axis of symmetry with the curved surfacehefthiemisphere facing
away from the end!{. The distance off from the point where the spindle enters the
flat surface is equal to the radiusof the hemisphere. Find the principal moments
of inertia of the top at the end of the spindle.

Solution

Let Cx1x,x3 be a set of axes like those shown in Figure 18.3, widéiis the
centre of the circular flat face of the hemisphere éhd points along the axis of
rotational symmetry of the top. Then the set of parallel axesx,x3 areprincipal
axesof the top at the centre of maés This follows from the rotational symmetry
of the top about the axis of the spindle. The correspondimggral moments can be
found from those a€” by using theparallel axestheorem. The principal moments
of inertia of the top at; are therefore

I{G,gl}=%Ma2—Md2, I{G,ez}=%Ma2—Md2, I{G,e3}:%Ma2,

whered is the distancé& C, which was found in Example A.2 to l@z It follows
that theprincipal moments of the top atG are

83 2 83 2 2 2
IG,ey = 50Ma”, IG,e,3 = 150 Ma”, Ig,e;y = 5Ma”.

In a similar way, the second set of parallel axes, x, x3 areprincipal axes of
the top at the tipd. The corresponding principal moments can be found fromehos
atG by a second application of thgarallel axestheorem. Therincipal moments
of inertia of the top at the tipl are therefore

ILaey = Iey + M(d +a)* = 5Ma* + () Ma® = 5Ma?,
Iaery = Igeny + M(d +a)* = $5Ma* + () Ma® = 5Ma?,
I{G,ez} = %Mazl
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I
>

&
Y HH
8

FIGURE 18.4 The cube with principal axes
atGx;x;x3 atG andBx|x5x} at B.

Problem 18.14

Find the principal moments of inertia of a uniform cube of & and side« (i)
at its centre of mass, (ii) at the centre of a face, and (ii§ ebrner point.

Find the moment of inertia of the cube (i) about a space dialydin) about a
face diagonal, and (iii) about an edge.

Solution

(i) Consider the coordinate systefiix; x,x3; shown in Figure 18.4. Since the
cube haseflectivesymmetry in each of the three coordinate planes, this is a
set of principal axes aF. The moment of inertia of the cube about the axis
G x; is the same as that of a uniform plate of magsoccupying the region
x1 = 0, —a < x3,x3 < a, which, from Example A.7 i%Maz. The other
principal moments have the same value. Henceptirecipal moments of
the cube atG are2 Ma?, 2Ma?, 2 Ma*. m

(i) Now consider a set of parallel axes at the paiht Since the cube hag-
flectivesymmetry in each of the coordinate plangs= 0, x, = 0, this is
a set of principal axes a1. [Why aretwo reflective symmetries enough?]
The corresponding principal moments can be found from thb&eby using
the parallel axestheorem. Hence therincipal moments of the cube at the
pointA are3 Ma?, $Ma?, Ma*>. m

(iii) Now consider the corner poinB. A set of parallel axes aB is nota princi-
pal set since there are now no reflective symmetries. Howthecube has a
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rotational symmetry (of order three) about the space diagon2 which is
therefore an axis of dynamical symmetry. Hetig® is a principal axis, and
the other principal axes & can be any axes that form an orthogonal set. In
particular, the axe8 x| x,x; shown in Figure 18.4 are a set of principal axes
at B. It looks tough to find the corresponding principal momehts,the sit-
uation is saved by the fact that the cube dgsamical spherical symmetry
atG. It follows that the moment of inertia of the cube abany axis through
Gis %Maz. Hence the principal moments &tcan be found from those at
G by using theparallel axestheorem. Theprincipal moments of the cube
at B are thereford! Ma?, L1 Ma?, 2Ma*. m

The moment of inertia of the cube about a space diagonal is/tkmbe%Maz
and the others can be found from thosé&diy using theparallel axestheorem. For
the face diagonal, the momentéMaz, and, for the edge, the moment%iMaz. [
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Problem 18.15

A uniform rectangular block has maas$ and sideQa, 2b and2¢. Find the principal
moments of inertia of the block (i) at its centre of mass, dtithe centre of a face
of areadab. Find the moment of inertia of the block (i) about a space oinad, (ii)
about a diagonal of a face of aréab.

Solution

(i) Consider the coordinate systefix;x,;x3; shown in Figure 18.4, where the
body is now considered to be a rectangular block. Since thekiilasreflec-
tive symmetry in each of the three coordinate planes, this is af ggtncipal
axes atG. The moment of inertia of the block about the akis; is the
same as that of a uniform plate of ma6 occupying the regionr; = 0,
—b < x < b, —c < x3 < ¢, which, from Example A.7 is; M (b? + ¢?).
The other principal moments are found in a similar way. Hetherinci-
pal momentsof the block at the poinG are 1M (b2 + ¢?), 1 M (a* + ¢?),
IM(a® +b%).m

(i) Now consider a set of parallel axety; x,x3 at the point4. Since the block
hasreflectivesymmetry in each of the coordinate plangs= 0, x, = 0, this
is a set of principal axes at. [Why aretwo reflective symmetries enough?]
The corresponding principal moments can be found from thb&eby using
theparallel axestheorem. Hence thgrincipal moments of the block at the
pointA arel M (b* + 4c?), 1M (a* + 4¢?), 1M (a® + b%). m

There seems to be no simple way to find the principal axes andemts at a
corner point of the block.

() To find the moment of inertia of the block about the spa@gdnalGB, we
can use the known principal momentsattogether with the formula

I{G,n} = nT «Ig-nN.
In the present application, the unit vectois

ai +bj+ck
n= )
(a% + b2 + c2)1/2
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Hence

IGanT-Ig-n

M b% + ¢? 0 0 a

2 2
= > > > (abc) 0 a* +c 0 b
3(61 +b +C) 0 0 a2+b2 c

_ 2M (a*b? + a*c* + b2c?)
- 3(a? 4+ b% + ¢?)

(i) To find the moment of inertia of the block about the facagbnalA4 B, we
can use the known principal momentsAttogether with the formula

I{A,n} = nT- I4-N.

In the present application, the unit vectois

_ai+bj
n= (a2 +b2)1/2'
Hence
IAB:nT-IA-n
M b? + 4c? 0 0 a
2 2
3(a® +b%) 0 0 a+52)\0
_ 2M (a?b? + 2a%c? + 2b2c?)

3(a? + b?)
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Problem 18.16

Find the principal moments of inertia of a uniform cylindéneassi/, radiusz and
length2b at its centre of masé&'. Is it possible for the cylinder to have dynamical
sphericalsymmetry abou&'?

Solution

Since the cylinder has rotational symmetry (of infinite ajdEbout its axis, this
must be an axis aflynamical axial symmetry. Hence, any orthogonal coordinate
systemAx;x,x3 in which A lies on the axis andix3 points along the axis is a
set ofprincipal axes at A. In particular, this is true afr, the centre of mass. The
correspondingrincipal moments at G are given in the table in the Appendix. They
are

1 2 1 2 1 2 1 2 1 2
ZMa —|—§Mb , ZMa +§Mb , EMCI .

The cylinder will havedynamical spherical symmetryat G if all the principal
moments at; are equal. This will be true if

1 2 1 2 1 2
ZMCI +§Mb —EMCI ,

that is, if

anl

|G
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Problem 18.17

Determine the dynamical symmetry (if any) of each the follgyp\bodies about their
centres of mass:
(i) a frisbee,
(ii) a piece of window glass having the shape of an isoscekasgle,
(iii) a two bladed aircraft propellor,
(iv) a three-bladed ship propellor,
(v) an Allen screw (ignore the thread),
(vi) eight particles of equal mass forming a rigid cubicalisture,
(vii) a cross-handled wheel nut wrench,
(viii) the great pyramid of Giza,
(ix) a molecule of carbon tetrachloride.

Solution

(i) The frisbee has one rotational symmetry (of infinite ajdand so hasly-
namical axial symmetryatG.

(i) The window glass has a rotational symmetry (of order)twaut this is not
enough to give rise to any dynamical symmetry.

(iif) The two bladed aircraft propellor has a rotational syetry of order two, but
this is not enough to give rise to any dynamical symmetry.

(iv) The three-bladed ship propellor has one rotationalrsgtny (of order three)
and so haslynamical axial symmetryatG.

(v) The Allen screw has one rotational symmetry (of orde) sixd so hasly-
namical axial symmetryatG.

(vi) The cubical structure has three different rotationahmetries atG; each
symmetry is of order four. The structure therefore tgsamical spherical
symmetry atG.

(vii) The cross-handled wheel nut wrench has one rotatisypiametry (of order
four) and so hagdynamical axial symmetryatG.

(viii) The great pyramid of Giza has one rotational symmétfyorder four) and
so hasdlynamical axial symmetryatG.

(ix) The molecule of carbon tetrachloride has the form of gutar tetrahedron
with the four chlorine atoms at the vertices and the carbomatt the centre
G. [Surely you knew that!] The molecule thus has four diffénestational
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symmetries atG; each symmetry is of order three. The molecule therefore
hasdynamical spherical symmetryatG.
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Problem 18.18 %

A uniform rectangular plate has ma&$ and sidefa and4a. Find the principal
axes and principal moments of inertia at@ner point of the plate. [Make use of
the formula forI¢ obtained in Example 18.6, with = 2a.]

Solution

In Example 18.6, we found that the inertia tensor of a reatlarglate at a corner
pointC is

{ 4b2 —3ab 0
Ic = §M —3ab 4a* 0 ,
0 0 4(a®+b?)

where the axe€'x; x,x3 are those shown in Figure 18.3 (right). Whege= 24, this
expression becomes

8 —
Ic=3Mda*| -3
0

S W
S O O

1

The object is to move to a new set of coordinates in which tlegtim tensor is
diagonal. The standard method provided by linear algebra is to fin@idenvalues
andeigenvectorsof the matrixI ¢.

It is convenient to drop the constant muItipIi%Ma2 for the time being. Let

8§ -3
J=\|-3 2
0 0

S O O

1
By definition, the eigenvalugsand eigenvectorg of J satisfy the equation
J.v=Av,
which is equivalent to the homogeneous system of lineartemsa
J—-A1)-v=0.

Written out in full, this becomes

§—A =3 0 Uy 0
-3 2—-12 0 v |=10
0 0 10-—A U3 0
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For this system of equations to havean-trivial solution forv, the determinant of
the matrix must be zero, that is,

8§—A =3 0
-3 2—-12 0 = 0.
0 0 10—A

On expanding the determinant, this equation becomes
(A —10)(A* =101 4+ 7) = 0,
from which it follows that theeigenvaluesof the matrixJ are
M=5+3vV2,  A=5-3v2, A3=10.
We must now find theigenvectorcorresponding to each eigenvalue.

Eigenvaluel; Wheni = 5 + 3+/2, the system of equations ferbecomes

V2—-1 1 0 vy 0
1 V241 0 v |=10],
0 0 1 V3 0

which has the general solution
V1 Ik, U2=—k(\/§—1), U3 =0,

wherek can take any value. In particular, the column vector
1
vi=al| -(2-1)].
0

wherea = (4 — Zﬁ)_l/Z, is anormalised eigenvectorof the matrixJ
corresponding to the eigenvaliie= 5 + 3+/2.

Eigenvaluei, By proceeding in a similar way, we find that
V2-1

Vo = 1
0

is anormalised eigenvectorof the matrixJ corresponding to the eigenvalue

A =5—32.
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Eigenvaluei; This time, we find that

o

Vi3 =
1

is anormalised eigenvectorof the matrixJ corresponding to the eigenvalue

A = 10.
LetV be the matrix whose columns are the normalised eigenveatdrghat
is,

V = (vi|vi]|vs).
Then linear algebra theory tells us that

A1 0 0
vi.g.v=|0x,0 |,
0 0 As

which is adiagonal matrix. If we now compare this formula with the tensor
transformation formula (18.17) on page 503, we see that we hahieved
our object of diagonalisingc and that the transformation matéxthat does
the job isV”. Hence, the requiretlansformation matrix is

o —a(v/2-1) 0
A=|a(x2-1) o 0
0 0 1

If we now compare this transformation matrix with that giyenequation
(18.8) on page 495, we see thatrepresents eotation about the axi< x3
through a negative acute anglewhere

f=—tamr' (V2 1) = —%.

This rotated coordinate system is a sepdhcipal axes for the plate aiC.
The correspondingrincipal moments are

2 2 2 2 20 2
25+3vV2)Ma*, 2(5-3V2)Mda*,  LMd’m
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Problem 19.1 Ball rolling on a slope

A uniform ball can roll or skid on a rough plane inclined at amgke g to the
horizontal. Show that, ianymotion of the ball, the component ef perpendicular
to the plane is conserved. If the baills on the plane, show that the path of the ball
must be a parabola.

—Mgk/

FIGURE 19.1 A ball of massM and radius: rolls and skids on a rough plane
inclined at angles to the horizontal.

Solution

The plane and the ball are shown in Figure 19.1; the planesappe be horizontal,
but observe the direction of gravity! The vectdis j, k} are a standard basis set
with k£ perpendicular to the plang, horizontal, and pointing down the direction
of steepest slope. The unit vectdrpoints vertically upwards.

The equations of motion for the ball are as follows. The equdbr thetrans-
lational motion of G is

MV =X — Mgk’ 1)
while the equation for theotational motion relative toG is
(vMa*)w = (—ak)xX +0x(—Mgk’)

=aXxk. (2)
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Here M is the mass and the radius of the ball, and is a constant depending on

the moment of inertia of the ball. Forumiformball, v = % and, for ahollow ball,
2

' _O3n eliminating the reactioX between these two equations, we find that
vav = (V + gk')x k
=Vxk+gsingj. (3)
If we take the scalar product of this equation withwe obtain

vaw -k = (Vxk)-k+gsinfj -k
= 0.

Sincek is aconstantvector, it follows that
w -k =n, (4)

wheren is a constant. Hence thapin of the ball perpendicular to the plane is
conserved
If we now take the vector product of equation (3) wkthwe obtain

vakxw = kx(ka) +gsinBkxj
- ((k kW — (k - V)k) _gsinBi
=V —gsingi.
Hencel andw must always be related by

V =vakxw + gsinfi. (5)

Equations (4), (5) hold foany motionof the ball whether skidding or rolling.
Suppose that we now restrict the ballrtdling motions. Then by the rolling
condition atC,

v =V 4w x(—ak) =0,
that is,
V +akxw =0. (6)

If we now differentiate equation (6) with respectrt@and use this equation to elim-
inatek xw from equation (5), we obtain

. (gsinBy .
V—(1+v)l. (7)
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This is the require@quation of motionsatisfied byG in rolling motions. The most
generakolling motion therefore consists of

(i) constant spinperpendicular to the plane, and

(ii) constant accelerationdown the plane of magnitudesing/(1 + v). In par-
ticular, the path of the point of conta€t must be gparabola.

For a uniform ball, the acceleration of the ball down the plim;g sing. m
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Problem 19.2 #% Ball rolling on a rotating turntable

A rough horizontal turntable is made to rotate about a fixaticad axis through
its centreO with constantangular velocityQ2k, where the unit vectak points ver-
tically upwards. A uniform ball of radiug can roll or skid on the turntable. Show
that, inany motion of the ball, the vertical spia - k is conserved. If the batblls
on the turntable, show that

V =2QkxV,

wherel is the velocity of the centre of the ball viewed fronfixedreference frame.
Deduce the amazing result that the path of the rolling baBtrbe a circle.

Suppose the ball is held at rest (relative to the turntalléh its centre a dis-
tanceb from the axis{ O, k}, and is then released. Given that the ball rolls, find the
radius and the centre of the circular path on which it moves.

FIGURE 19.2 A ball of massM and radiusa rolls and skids on a rough rotating
turntable.

Solution

The turntable and the ball are shown in Figure 19.2. The usitor k& points
vertically upwards.
The equations of motion for the ball are as follows. The eiqudbr thetrans-
lational motion of G is

MV =X — Mgk, 1)
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while the equation for theotational motion relative toG is

(vMa*)vi = (—ak)xX + 0x(—Mgk)
=aXxk. (2

Here M is the mass and the radius of the ball, and is a constant depending on

the moment of inertia of the ball. Forumiformball,v = % and, for ahollow ball,

U=;.

3
On eliminating the reactioX between these two equations, we find that

vav = (V + gk)xk
=V xk. (3)

If we take the scalar product of this equation withwe obtain

vaw +k = (Vxk)-k
= 0.

Sincek is aconstantvector, it follows that
w -k =n, (4)

wheren is a constant. Hence thvertical spin of the ball isconserved
If we now take the vector product of equation (4) wkthwe obtain

vakxv =kx(Vxk)
=k kW —(k-V)k
=V.

HencelV andw must always be related by
V =vakxu . (5)

Equations (4), (5) hold foany motionof the ball whether skidding or rolling.
Suppose that we now restrict the ballrtdling motions. Then by the rolling
condition atC,

vC =V +w x(—ak) = (k) xR,
whereR is the position vector ofs relative toO. Hence

V +akxw = QkxR.
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On differentiating this equation with respectrtave obtain
V +akxv =QkxV,
and this equation can now be used to elimirdater from equation (5). This gives
V = (1‘;—91}) kxV,

which is the requirecquation of motion satisfied byG in rolling motions. On
integrating with respect tq we obtain

. Q
R:(" )ka+c, (6)
14+v

whereC is a constant of integration.

—_

Suppose that, initiallyQ G is in thei -direction, where the basis vectdis j , k}
arefixed in spac@ndk points vertically upwards. Then the initial conditionsuee
thatR = bi andR = Qb j whent = 0. It follows that

Q
C=Qbj— (ler—v)kx(bi)

-(157)
S\l +v I

The equation of motion (6) can therefore be written in thenfor

. Q b
R:(” )kx(R+(—)i).
1 4+v %
This solutions of this equation are known to represgriform circular motions
with centre at the point-(b/v)i. Since the initial value oR is bi, theradius of

the circle must bél + v)b/v. In particular, for auniformball, the centre of the
circle is at the point-25i and the radius i). m
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Problem 19.3 #% Ball rolling on a fixed sphere

A uniform ball with radiusz and centre rolls on the rough outer surface of a fixed
sphere of radiué and centreD. Show that the radial spia - ¢ is conserved, where

—_
¢ (= ¢(1)) is theunit vector in the radial directio@C'. [Take care!] Show also that
¢ satisfies the equation

7(a + b)exé +2anc¢ + Sgexk =0,

wheren is the constant value af - ¢ andk is the unit vector pointing vertically
upwards.

By comparing this equation with that for the spinning topduiee the amazing
result that the ball can roll on the spherical surface witlewer falling off. Find the
minimum value ofz such that the ball is stable at the highest point of the sphere

X

FIGURE 19.3 A ball of massM and radius: rolls on the rough surface of a fixed ball
of radiusb.

Solution

The ball and the sphere are shown in Figure 19.3. NoteRhahe position vector
of the centre of the ball, iR = (a + b)c, sothatV’ = (a + b)¢.

The equations of motion for the ball are as follows. The equdbr thetrans-
lational motion of G is

MV =X — Mgk, 1)
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while the equation for theotational motion relative toG is

(vMaz)v& = (—ac)xX +0x(—Mgk)
=aX xc. (2)
Here M is the mass and the radius of the ball, and is a constant depending on

the moment of inertia of the ball. Forumiformball, v = % and, for ahollow ball,

_2
V—3.

On eliminating the reactioX between these two equations, we find that
vavw =V xc + gkxc, 3)

an equation satisfied @ny motionof the ball whether skidding or rolling.
If we take the scalar product of this equation withwe obtain

vaw ¢ = (ch)-c +g(k><c)-c
=0.

However, since is nota constant vector, it does not follow (from this) that ¢ is
constant. Actually, its constant in rolling motions, but not in general.

Suppose then that we restrict the baliaing motions. We will proceed in the
same manner as in the derivation of the vectorial equatiothitop. The rolling
condition at the contact poiiit implies that

W=V +w X(—ac) =0,
and so
V+acxw =0.
If we take the vector product of this equation withwe obtain
exV +aex(exw) =0,

which simplifies to give

w = (l)ch—l—(w -c)c.
a

Hencew must have the form

1
w o= (—)ch—l—Ac,
a
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wherel is some scalar function of the time. If we now substitute thrsula forw
into equation (3) and make use of the form¥la= (a + b)¢é, we obtain

(1+v)(a+b)exé +va(he + 1é) + gexk = 0,

after some simplification. This is the equation satisfiedhi®yradial unit vectoe.
If we take the scalar product of this equation withthe only term on the left that
survives isvak ¢ - ¢ and hencé. = 0. Thus theradial spin of the ball isconserved
Theequation of motionfor ¢ then reduces to

(I +v)(a+b)exé +vané + gexk =0,

wheren is the constant value of the radial spin- ¢. In particular, for auniform
ball, the equation for is

T(a+ b)exé +2ané + S5gexk =0,

as required.
From the vectorial theory of thep, the equation for the unit axial vecteris

Aaxa +Cna+ Mghaxk =0,

in the standard notion. We observe that the equations foraitial vectore of the

ball and the axial vectar of the top have the same form. Moreover, they become
exactlythe same if we multiply the equation ferby M« and give4, C and/ the
special values

A="TMa(a + D),
C =2Ma?,
h = 5a.

Hence, if we were to construct a top with these parametergiardt spinz, then the
motions of its axial vectog would be exactly the same as those of the radial vector
¢ of the ball with spirm. For example, since thtep can undergo steady precession
with a at a fixed angle to the vertical, thall must be able to move so that its point
of contactC moves uniformly round a horizontal circle. The ball wouldreefall
off!

Similarly (see Problem 19.5), thep is known to be stable in the vertically
upright position if

C?n* > 44AMgh.
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On substituting in the above values fdr C and#, it follows that theball will be
stable on the top of the sphere if

0 s 35(a+b)g .
a2
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Problem 19.4

Investigate the steady precession of a top for the case iohwthe axis of the top
moves in the horizontal plane through Show that for any: # 0 there is jusbne
rate of steady precession and find its value.

Solution

We give two solutions to this problem, the first based on Lagian mechanics and
the second on vectorial mechanics.

Lagrangian solution
ThelLagrangian for the top in terms of Euler’'s angles is

L=146>+14 (qs sin@)2 +1c (1// + <i>cos€)2 — M gh cosh.

The coordinateg andyr arecyclicand the corresponding conservation relations
are

A¢sit 6 + Cncosh = L,
v + ¢ cosf = n,

where the spim and angular momentuth, are constants, determined by the initial
conditions.
The coordinaté is not cyclicand the corresponding Lagrange equation is

A6 — (A¢* cosh — Cng + M gh) sing = 0.

We now seek solutions in which = 7/2 for all z. This is possible if, and only
if,
Ad =L,
v =n,
Cngp — Mgh =0.

Hence, for any: # 0, there is jusbnerate ofsteady precessionnamely,

. Mgh
¢ = Cn "

Vectorial solution
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|
FIGURE 19.4 The top precesses with angu- |

lar velocity  with its axis in the horizontal O ‘
plane througlO. |

Figure 19.4 shows the top precessing with angular veldRityith its axis in the
horizontal plane througl®. Then, in the reference frame precessing with the top,
the axis vectou is fixed and theapparentangular velocity of the top has the form
Aa, wherel is some scalar function of the time. Hence, by the theoremhen t
addition of angular velocities, thteue angular velocity of the top is

w =Qk + Aa.

Sincea andk are principal directions of the top &, it follows that the correspond-
ing angular momentumaboutO is

Lo =AQk + Cha,

whereA, A4, C are the principal moments of inertia of the top(at
Theangular momentum principle then requires that

d
E(Aszk n Cka) — (ha)x (=M gk),
that is,

A(Qk) + C()La + m) — Mghkxa.

If we take the scalar product of this equation withwe find that®2 = 0 so that the
rate of precession must be constant. Similarly, if we takesttalar product witl,
we find thath = 0 so that the axial spir - a must be constant. The equation for
then becomes

Cna= Mghk xa,
wheren is the constant value of - a. However, in this steady precessian,=
(k) xa and so there is jusinerate of precessiorwhich is given by
Mgh
= g | |

Q
Cn
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Problem 19.5 The sleeping top
By performing a perturbation analysis, show that a top vélsbable in the vertically
upright position if

C?n* > 44Mgh,

in the standard notation.

Solution

We give two solutions to this problem, the first based on Lagi@n mechanics
and the second on vectorial mechanics.

Lagrangian solution
ThelLagrangian for the top in terms of Euler’'s angles is

L=146>+14 (qs sin@)2 +1c (1// + <i>cos€)2 — M ghcosh.

The coordinateg andyr arecyclicand the corresponding conservation relations
are

A¢sintd + Cncosh = L,
W + ¢ cos = n,

where the spim and angular momenturh, are constants, determined by the initial
conditions.
The coordinaté is not cyclicand the corresponding Lagrange equation is

Af — (Ad? cosd — Cng + M gh) sind = 0.

When the top is spinning in the vertically upright posititime constantg and
L are related by_, = Cn. Suppose now that the top is disturbed from this steady
state by being given a horizontal impulse that does not ahahginstantaneous
values ofiy andg. Then, in the subsequent motiorand L, retain their undisturbed
values and the angular momentum equation still has the form

A¢sint 6 + Cncost = Chn.

If we now use this equation to eliminadefrom the Lagrange equation fér, we
obtain

<C2n2(1 — cosb)?

A6 + —
Asin" 0

— Mgh) sind = 0.
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This is theequation of motion for the inclination anglé. This equation is exact
and applies to large disturbances as well as small ones.

To investigate thestability of the top when spinning in the upright position, we
suppose thad and its time derivatives are small and approximate the emuédr 6
by linearising. It is not difficult to show that, whehis small,

(1 —cosh)? 1
sinfg 4
so that thdinearised equationfor 6 is
C?n?
44

Aé+( —Mgh)@:O.

The top will be stable wheamall disturbances remain smalhd this requires that
the bracketed coefficient ositive This in turn requires that

C?n*? > 44AMgh,
which is thecondition for stability . m

Vectorial solution

k k
J a
FIGURE 19.5 The axial vectora is ex- .
pressed in the form = k + &. 2

This time we start from the equation of motion for the axiattee of the top,
namely

Aaxa+Cna+ Mghaxk = 0.
If we write a in the form
a=k+E§&,
then theequation of motionfor & becomes

Ak +E)xE +Cn€ + Mghk xk = 0.
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This equation is exact and applies to large disturbancesslisas small ones. To
investigate thetability of the top when spinning in the upright position, we suppose
thaté and its time derivatives are small and approximate the &by linearising.
Thelinearised equationfor £ is

AkxE +Cné + Mght xk = 0.
In order to analyse the solutions of this vector equatioftgwr
E=851+&]+&k,

where the standard basis $ét, j, k} is fixedin space.
Then, in thdinear approximation, &; is negligible and, &, satisfy the equa-
tions

Ay + Cnéy — Mght; =0,
A&y — Cnéy — Mghé, = 0.

This pair of coupled equations for the componéntst, can be combined into the
single equation

AZ —iCnZ — MghZ =0

by introducing theeomplexunknownZ = &; + i&,. This second order ODE for

is linear, homogeneous and has constant coefficients fl&kdamped SHO). One of
the coefficients is complex, but this does not affect thetemiumethod in any way.
The general solution is

Z = De*! 4 Ee)‘zt,
where

_iCn + (44Mgh — C2n2)'? L iCn—(44Mgh~ c2p2)'/?
1 = 2A ’ 2 = 2A ’

and D, E are arbitrary constants.
The top will be stable wheemall disturbances remain smalhd this requires
that neither exponent should have a positive real part. ifilisn requires that

C?n* > 4AMgh,

which is thecondition for stability . m
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Problem 19.6

Estimate how large the spinof a pencil would have to be for it to be stable in the
vertically upright position, spinning on its point. [Takieetpencil to be a uniform
cylinder 15 cm long and 7 mm in diameter.]

Solution

This is a numerical application of the result in Problem 1¥.éhe pencil has mass
M , radiusz and lengti2b, then (ignoring the fact that one end has been sharpened!)

A= (§Ma® +3MbY) + MB? = fMa® + $MD?,

_ 1 2
C—EMCZ,

h=b.

For our pencilz = 0.0035m andb = h = 0.075 m. On takingg = 9.81 ms2,
thestability condition

C?n* > 4AMgh

shows thakz must be greater than 24,250 radians per second, which ig a/860
revolutions per secona
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Problem 19.7

A juggler is balancing a spinning ball of diameter 20 cm onehe of his finger.
Estimate the spin required for stability (i) for a uniformiddall, (ii) for a uniform
thin hollow ball. Which do you suppose the juggler uses?

Solution

This is a numerical application of the result in Problem 19f@he ball has mass
M and radiust, then

A=vMa*+ Md?,
C = vMaz,
h=a,

wherev = £ for the uniform ball and> = 2 for the hollow ball.
Forour balla = 0.1 mandk = 0.1 m. Ontakingg = 9.81 ms™2, thestability
condition

C?n? > 44AMgh
shows thak must be greater than about 9.3 revolutions per second farrtifierm
ball, and greater than about 6.2 revolutions per second fdnahew ball.

The juggler should therefore use thellow ball since it is stable at lower angu-
lar speeds. [It is also has the advantage of being lighser!]
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Problem 19.8

Solve the problem of the free motion of an axisymmetric bogyhe Lagrangian
method. Compare your results with those in Section 19.4.

Solution
Suppose thatr, the centre of mass of the body is at rest. Then, in terms adrEul

angles centred o@, theLagrangian for the body is
. . 2 . 2
L=140>+14 (¢ sin@) +1C (w + ¢cos@) — M gh cosh.
The coordinateg andys arecyclicand the corresponding conservation relations are

A¢sint 8 + Cncosh = L,
W + ¢ cos = n,

where the angular momentuiny (= Lg - k) and spinm (= w - a) are constants,
determined by the initial conditions.

Take the coordinate axiSz to point in the direction of the angular momentum
vectorLg. ThenL, = |Lg| = L and the axial angular momentu@ir is related
to L by

Cn=Lg-a= Lcosh.
Hencef = « (a constant), and the conservation equation/fothen becomes
A¢ = L.
Hence, theate of precessionof the body about the axig7, L} is

L
=
Furthermore, from the constant spin equation,

¢ = 1)

Y =n — ¢ cos

_LCOSO( L cosu
- C A

A-C

This is theapparent rate of spin, viewed from the precessing frame. Equations (1)
and (2) confirm the results of section 19m4.
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Problem 19.9 Frisbee with resistance

A (wobbling) frisbee moving through air is subject to a figetal couple equal to
K w . Find the time variation of the axial spin(= w - a), wherea is the axial unit
vector. Show also that satisfies the equation

Aaxa + Kaxa + Cha = 0.

% By taking the cross product of this equation withfind the time variation of
|a|. Deduce that the angle betweenanda decreases with time f > A (which
itis for a normal frisbee). Thus, in the presence of linearstance, the wobble dies
away.

Solution

By following the same procedure as that in section 19.4, wktfiatw , the angular
velocity of the frisbee can be expressed in the form

w =axa-+ Aa,

where the unit vectoa points along the axis of symmetry, andis some scalar
function of the timer. By the axial symmetry of the frisbee, the corresponding
angular momentum about is

Lg=Aaxa+ Cla,

whereA, A, C are the principal moments of inertia of the frisbe&rat
The equation of rotational motion is tlgular momentum principle about
G, namely,

%(Aaxiz n Cka) — Ng.

whereN g is the total moment of external forces abaiit In the present problem,
the resistance forces provide the moment

Ng=—-Kw
and the equation of motion for the axial vectobecomes
Aaxi+ Cha + Cha = —K(axd + )»a),
that is,

Aaxi + Kaxa + (Ci + Kk)a +Cha=0.
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If we take the scalar product of this equation witkve find that
Ch+Kr=0,

which is an ODE for the unknown axial spi(z). The general solution of this
equation is

A= Qe_K’/C,
where(2 is a constant. Thus, in the presence of resistance, thewspia is not
constantut decays exponentially.
On making use of this formula, treguation of motion for the axial vectom
becomes
Aaxa+ Kaxa+ Cha = 0.
If we now take the vector product of this equation witkve find that
A(@-d)a+ K(@a-a)a=0,
which leads to the scalar equation
Aa-a+ Ka-a=0.
Now
d
. . . 2 . .o 1 . 2
a-a=|a and a-a=——<a)
al 3, (lal

from which it follows that

d . 2 . 2
A <|a| ) 12K <|a| ) — 0.
The general solution of this ODE fdd| is

la| = eQe_K’/A,

wheree is a dimensionless constant. This is the requinee variation of |a|.

% The time variation o), the angle between anda, can now be found ex-
plicitly. To do this, we observe that, singe-a = A andw xa = a, the angle can
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be expressed as

|w xa|

tanf =
W -dad
_lal

A
Qe Ki/4

T Qe ki/C

= eexp[—K (C
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)]

It follows that the wobblalecaysf 4 < C butgrowsif A > C. m
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Problem 19.10 Spinning hoop on a smooth floor

A uniform circular hoop of radiug rolls and slides on perfectly smoothorizontal
floor. Find its Lagrangian in terms of the Euler angles, anemeine which of the
generalised momenta are conserved. [Supposé&tinats nchorizontalmotion.]

Investigate the existence of motions in which the angle betwthe hoop and
the floor is a constant. Show that, the rate of steady precession, must satisfy the
equation

cosa Q2 — 20 — 2% cota = 0,
a

wheren is the constant axial spin. Deduce that, foe£ 0, there are two possible
rates of precession, a faster one going the ‘same way, asd a slower one in the
opposite direction. [These are interesting motions butvem@d need aerysmooth
floor to observe them.]

Solution

FIGURE 19.6 The hoop (or disk) slides on a
perfectly smooth floor.

Since there are no horizontal forces acting on the hoop, ¢dhiedntal compo-
nents of linear momentum are conserved. It follows thdtas constartiorizontal
velocity. Any motion of the hoop can therefore be viewed framinertial frame in
which G moves vertically, as shown in Figure 19.6.

The kinetic energy of the hoop is the sum of its translational and rotational
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parts, that is,
. , ) 2 . 2
T=1MZ>+140%+ 14 (¢sin9) +5C (Iﬂ +¢0059) »

where Z is the vertical displacement aF and {6, ¢,y } are the standard Euler
angles based d@. SinceZ = asinf,

Z = acosh b

and the expression fdf becomes
) _ . . 2
T=1 (A + Ma* cos 9) 02 + 1Asin 0 ¢* + 1C (w +¢cos€> :
The correspondingotential energyis simply
V=MgZ = Mgasinf.
Hence, in terms of the generalised coordindtes, v }, the hoop hasagrangian
) ) ) . 2 )
L=1 (A + Ma? cog 9) 02 + 1 Asint 0 ¢* + 1C (w + ¢cos€> — Mgasiné.
The coordinate®, v arecyclic and the corresponding conserved momenta are
Py = Asirt 0 ¢ + C cosf (w +¢cos€),
py=C (w +¢cos@).
This gives theconservation relations

A¢psiit 0 + Cncosh = L,
v + ¢ cosf = n,
where the angular momentuiny (= Lg - k) and spinm (= w - a) are constants,

determined by the initial conditions.
The coordinaté is not cyclic and its Lagrange equation is

%[Aé + Ma? coszeé] +
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[Ma2 sind cosf §2 — A sinf cosh ¢> + Cnsinb ¢ + Mga cos@] =0,

on making use of the spin conservation relation.

We can now investigatprecessional motionsn which § = «, a constant. In
this case, the Lagrange equation fois satisfied if

Acosa Q? —CnQ — Mgacota = 0,

where we have now writtef2 for the rate of precessia;in Hence2 must be constant
and take one of the two possible values

g Cn (C2n* + 44 M ga cose cotar) '/
B 24 cosu '

WhenC?n? > 44AM ga, these values o are given approximately by

oF Cn
Acosa’
M ga cotu
QS v o
Cn

so that the fast precession goes the ‘same way’ asd the slow precession goes
the opposite waym
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Problem 19.11 Bicycle wheel

A bicycle wheel (a hoop) of mask and radius: is fitted with a smooth spindle
lying along its symmetry axis. The wheel is spun with the df@rhorizontal, and
the spindle is then made to turn with angular speedbout a fixed vertical axis
through the centre of the wheel. Show thathe axial spin of the wheel, remains
constant and find the moment that must be applied to the sptodbroduce this
motion.

Solution

Let Gx1x,x3 be a set oembedded principal axesof the wheel atG' with Gx3
lying along the symmetry axis. Then, sinée = A, Euler's equations for the
wheel become

Awr — (A — C)mws = K,
Awy — (C — A) w31 = Ky,
Cw; = K3,

whereKg (= K¢y + K>e, + Kzes) is the applied moment of external forces
aboutG.

Since the wheel ismoothlypivoted about its axisK3 = 0 and the equations
become

Ad)l + (C —A)a)2a)3 = Kl,
Ay — (C — A)wywy = Ky,

w3 = 0.

Hence, inany motion, theaxial spin componenty; = n, aconstant and the spin
components, w, satisfy the equations

ACZ)1+(C—A)I’[C()2=K1, (1)
Awy — (C - A)na)1 =K. (2)

In this problem we argiventhat the spindle is made to turn with constant an-
gular speed? about a fixed vertical axis throudgh. Let Gxyz be a set of Cartesian
axes withG x horizontal,Gy vertical (and fixed), andrz coincident with the spin-
dle axisG x3, as shown in Figure 19.7. Since the aXgsyz rotate with the wheel
around the fixed vertical axi6€y, we will call them theprecessingaxes. Because
of the axisymmetry of the wheel, the precessing axes areaasbof principal axes,
but they arenot embeddednd Euler’s equations do not apply in them.

© Cambridge University Press, 2006



Chapter 19 Problems in rigid body dynamics 672

FIGURE 19.7 The embedded axes
G x1x,x3 and theprecessingaxesGx yz.

Relative to the precessing axes, the spindle axis is at nessa theapparent
angular velocity must have the form’ = Ak, whereA is some scalar function
of the time. Hence, by the theorem on the addition of angutémoities, thetrue
angular velocity of the wheel is

w =Qj + Mk,
which, sincew -k = n, becomes
w =Qj +nk.
The components of this angular velocity in the embedded aseetherefore

w; = Qsinnt,
w, = S2 cosnt,

w3 = n,

and, if we now substitute these values &or, w, into the Euler equations (1), (1),
we find that

K1 = CnS2 cosnt,
K>, = —-CnS2 sinnt.

Themomentthat must be applied to the wheel is therefore

Kg = CnQ (cosnte, —Sinnte,),
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which, in terms of the unit vectofs , j, k} of the precessing axes, becomes
Kg =CnQi.
This is the formula for the@pplied moment K . Note that this moment is applied
about thenorizontalaxisGx;.
If the wheel can be modelled by a hoop of magsand radiusz, thenC = Ma?

and the required moment is

Kg=Md*nQi.m
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Problem 19.12 Stability of steady rotation

An unsymmetrical body is in steady rotation about a prinicgas throughG. By
performing a perturbation analysis, investigate the Btglaf this motion for each
of the three principal axes.

Solution
Since the body is subject to no external momektser's equationsare

Ad)] — (B — C)w2w3 = 0,
Bd)z — (C — A)a)3a)1 = O,
Cd)y, — (A — B)a)1a)2 = 0,
whereG x;x,x3 are a set oembedded principal axesof the body atG. Suppose

the body is rotating with constant angular velockyabout the principal axi x;
when it isslightly disturbed. Then, in the subsequent motion,

w1 =§1,
wy =&,
w3 = A+ &3,

whereéy, &, &; areinitially small. We wish to find conditions such that theynain
small. The motion will then be stable.

On substituting these forms into Euler’'s equations, we fimat,tin thelinear
appraoximation, &1, &, &; satisfy the equations

A& —(B-C)AE =0,
B& —(C—A)A& =0,
&3 =0.
Thusé; is constant and certainly remains small. It remains to firdtitme depen-

dencies ofty, &. If we differentiate the first equation with respectstand then
make use of the second equation, we find thatatisfies the equation

- (C—-A4)(C—-B)
&1 +[ 1B

]A2§1 =0,

and it can be shown tht satisfies a similar equation. The quantitigs &, will
therefore remain small if the bracketed coefficierpasitive that is, if

(C — A)(C — B) > 0.
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This is true if the principal moment is thebiggestor smallestof {4, B, C}, but not
otherwise. Hencehe steady rotation of an unsymmetrical body about a prialcip
axis is stable for the axes with the greatest and least mawéimertia, but unstable
for the other axism
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Problem 19.13 Frisbee with resistance

Re-solve the problem of the frisbee with resistance (Proldl®.9) by using Euler’s
equations.

Solution

Since the resistance forces are known to exert the motignt= —Kw aboutG,
Euler’s equationsfor the frisbee are

Ad)] — (A — C)a)za)3 = —Ka)l,
Ad)2 — (C — A)a)3a)1 = —Ka)z,
Cd)y, = —Ka)3,

whereG x; x,x3 is a set oembedded principal axesof the frisbee atz with G x3
lying along the symmetry axis.
The third equation is a first order ODE feg alone and its general solution is

w3 = Ae K1/C,

whereA is a constant of integration. This is the genenale variation of ws.
If we now multiply the first equation bw,;, the second by,, and add, we
obtain

A(C()]d)] + a)zd)z) +0=-K (a)12 + Cl)g) )
which can be written in the form

A% (wf + w%) + 2K ((wlz + w%)) =0.

This is a first order ODE for the quantit{;ol2 + w%) and its general solution is
— QZe—ZKt/A

wi + w3

whereQ is a second constant of integration. Hence
1/2

(a)l2 + wg) = Qe Kt/

This is the generaime variation of (w? + w%)l/z.

Theangle 6 between the angular velocity vecter and the unit axial vectar
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is then given by

1/2
(0} +03)"
w3

Qe—Kt/A

Ae—Kt/C

(&) el (%) )

tanf =

It follows that the wobblelecaysf 4 < C butgrowsif 4 > C.
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Problem 19.14 Wobble on spinning lamina

An unsymmetrical lamina is in steady rotation about the #&xisughG perpen-
dicular to its plane. Find an approximation to the wobblehi$ &xis if the body is
slightly disturbed. [This is a repeat of Example 19.7 for ¢ipecial case in which
the body is an unsymmetriceming in this caseC = 4 + B and there is much
simplification.]

Solution

Takeembedded principal axesat G with Gx3 perpendicular to the plane of the
lamina. Then, by the perpendicular axes theor€ms A + B andEuler’s equa-
tions reduce to

d)l + wrws = 0,
d)z — w3 = O,
(A+ B)w; — (A — B)wjw, = 0.

Suppose the body is rotating with constant angular velacigpout the principal
axisGx; when it isslightly disturbed. Then, in the subsequent motion,

w1 =§1,
wy =&,
w3 = A+ &3,

wherety, &, £ are small (at least initially). On substituting these foints Euler’s
equations, we find that, in tHmear approximation, &1, &, &; satisfy the equations

5.'1 + A& =0,
52—1\5_1 =0,
&3 =0.

To find an equation fo§; alone, we differentiate the first equation with respeat to
and then make use of the second equation. This gives

El+ A% =0.
Hence the time variation &f; has the general form
£1 = e ACOgAL + y),
wheree andy are arbitrary constants. The corresponding time variati@g is then

& = eAsin(At + y).
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Now we find the time variaton of the unit vectas. In general this is obtained
by solving the system afoupledODEs

e =w3ey —wres,
€ = w13 —w3eq, (1)

€3 =wre; —wiey,

for thethreeunknown vectorg, e», e5.
In the undisturbed motion,

e; = COSAti +sSinAtj,
ey, = —SiNAti 4+ COSAtj,
(K] =k,

where{i, j, k} is afixedorthonormal set. Since,, w, are small in the disturbed
motion, the vectorg; ande, that appear in the third equation of (1) can be replaced
by their steady (zero order) approximations to give

€3 =& (CoOSAti +sSinAtj) —& (—SinAti + COSAtj),

correct to the first order. On substituting in the approxaerfatms for§; andé,, we
find that

€3 = eASin(At + y) (COSAti + SinAtj) —
€A COJAt + y) (—SinAti + COSAt j)
- eA[sin(zAt ¥ )i — cog2A1 + J/)j].

Hence, correct to the first order, the ODE for is uncoupledfrom the other two
and integrates to give

ey =k — %e[cos(zAt +y)i +sin2Az + )/)j] +eC,

whereC is a constant of integration.

Hence, in the first order theory, the principal axis; has aperiodic wob-
ble with frequency 2A. This result is consistent with the motion of a frae-
isymmetridbody, which precesses around the &G5 L ¢} with frequencyL /A =
Cn/(Acosx), wheren is the axial spin and is the angle between the axial vector
a and the angular momentuilg. For anaxisymmetric laminaC = 24 and the
frequency of the wobble i3n/ cose. m

© Cambridge University Press, 2006



Chapter 19 Problems in rigid body dynamics 680

Problem 19.15 % Euler theory for the unsymmetrical lamina

An unsymmetrical lamina has principal ax@s; x,x; at G with the corresponding
moments of inertig 4, B, A + B}. Initially the lamina is rotating with angular
velocity  about an axis througly that lies in the(x, x,)-plane and makes an
acute anglex with Gx;. By using Euler’s equations, show that, in the subsequent
motion,

wf—l—w% = Q2
(B— A)w?+ (B+ Aw? = (B— A)Q*sina.

Interpret these results in terms of the motion of thepoint’ moving in(w;, w,, w3)-
space and deduce thatis periodic when viewed from the embedded frame.

Find an ODE satisfied by, alone and deduce that the lamina will once again
be rotating about the same axis after a time

4 (B+ A\ (72 df
§(B—A) /o (1 —sina sin? 6)1/2
Solution

Take embedded principal axesat G with Gx3 perpendicular to the plane of the
lamina. Then, by the perpendicular axes theor€ms A + B andEuler’s equa-
tions become

d)l + wrws = 0,
d)z — 3w = 0,
(A+ B)w; — (A — B)wjw, = 0.

Without loss of generality, we will suppose that< B; if not, this can be be made
true by rotating the axes through a right angle.

If we multiply the first Euler equation by, the second bw,, and add, we
obtain

w11 + wywy = 0,
which can be integrated immediately to give
a)l2 + a)§ =C,

whereC is a constant. It follows from the initial conditions; = 2 cose and
w, = Qsine whent = 0thatC = Q2. Hencew satisfies the firstonservation
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relation
2 2 2
wy +w; = Q7.

If instead we multiply the second Euler equation(l/— 4)w,, the third byws,
and add, we obtain

(B + A)wsws + (B — A)wywy = 0,
which can also be integrated immediately to give
(B— A)w; + (B + A)o; = D,

where D is a constant. This time, the initial conditions show tiat= (B —
A)Q? sir? «. Hencew also satisfies the secordnservation relation

(B — A)o? + (B + Aw? = (B — A)Q?sinta.

N “

FIGURE 19.8 The ‘point’ in w -space moves along the curve in which the
circular cylindero} 4+ w3 = Q2 meets the elliptical cylinder
(B — A)w? + (B + A)w? = (B — A)Q?sin*a.

These two conservation relations enable us to find the paitects -point’ in

(w1, wy, w3) space. The first relation shows that thepoint must move on the ‘ver-
tical’ circular cylinder shown in Figure 19.8. Similarljpe¢ second relation shows
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that thew -point must also move on the ‘horizontal’ elliptic cylindgnown in the
same figure. Ther -point must therefore move along tleerve of intersection
PQORS of these two surfaces. The-point begins atP = (2 cosa, Q2 sina, 0) at
timer = 0 and proceeds in the direction shown, eventually returrorg.tit follows
thatw is periodic when viewed from the embedded frame

To obtain an ODE satisfied lay, alone, we begin with the second Euler equation
and make use of the two conservation relations. This gives

Wy = W1W3

= [j: (QZ — w§>1/2:| X |:j: (g _T_ j) v (QZ Sinf o — w§>1/2:|

B_A\Y? 1/2 _ 1/2
:i(B—l—A) (Qz—wg) (QZSInZa—a)§> .

where the sign depends on which part of the cuR@R S the w -point is on; on
the ‘upper’ half of the curve, the sign positiveand, on the ‘lower’ half, the sign is
negative This first order separable ODE is thexjuired equation for w,.

Finally we must find the time taken for thew -point to return toP. On inte-
grating the ODE for, over the sectiorb P of the curve, we obtain

Q sina dw, 1/2
1/2 2= T B+ A dl
0 (QZ —a)g) (QZ sif o — 2)

and so

T_4(B+A)1/2[Qsina da)2
- _ 1/2
EoAl b (@0 (2sita - 3)

4 (B+A\'? 72 do
_5(B—A) fo (1 — sin? o sin? 6)1/2°

on making the substitutiolm, = Q sine sing. m
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